

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by GrandMasters and Mike Hotek

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009924965

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to tkinput@microsoft.com.

Microsoft, Microsoft Press, Excel, MS, Outlook, Silverlight, SQL Server, Virtual Earth, Visual Basic, Visual Studio,
Win32, Windows, Windows Vista, and PowerShell are either registered trademarks or trademarks of the Microsoft group
of companies. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Laura Sackerman
Project Editor: Melissa von Tschudi-Sutton
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member of CM Group,
Ltd.
Cover: Tom Draper Design

Body Part No. X15-52839

Exam 70-433: Microsoft ® SQL Server ® 2008
—Database Development

Objective LOcatiOn in bOOk

iMPLeMentinG tabLeS anD vieWS

Create and alter tables. Chapter 3, Lesson 1

Create and alter views. Chapter 5, Lesson 4

Create and alter indexes. Chapter 6, Lesson 2

Create and modify constraints. Chapter 3, Lesson 2

Implement data types. Chapter 3, Lesson 1

Chapter 8, Lesson 1

Implement partitioning solutions. Chapter 6, Lesson 2

iMPLeMentinG PROGRaMMinG ObjectS

Create and alter stored procedures. Chapter 5, Lesson 1

Create and alter user-defined functions (UDFs). Chapter 5, Lesson 2

Create and alter DML triggers. Chapter 5, Lesson 3

Create and alter DDL triggers. Chapter 5, Lesson 3

Create and deploy CLR-based objects. Chapter 7, Lesson 2

Implement error handling. Chapter 5, Lesson 1

Manage transactions. Chapter 2, Lesson 3

Chapter 5, Lesson 1

WORkinG WitH QUeRY FUnDaMentaLS

Query data by using SELECT statements. Chapter 1, Lesson 2

Modify data by using INSERT, UPDATE, and DELETE statements. Chapter 2, Lesson 1

Return data by using the OUTPUT clause. Chapter 2, Lesson 2

Modify data by using MERGE statements. Chapter 2, Lesson 2

Implement aggregate queries. Chapter 1, Lesson 3

Combine datasets. Chapter 1, Lesson 4

Apply built-in scalar functions. Chapter 1, Lesson 5

Objective LOcatiOn in bOOk

aPPLYinG aDDitiOnaL QUeRY tecHniQUeS

Implement subqueries. Chapter 4, Lesson 2

Implement CTE (common table expression) queries. Chapter 4, Lesson 1

Apply ranking functions. Chapter 4, Lesson 3

Control execution plans. Chapter 6, Lesson 1

Manage international considerations. Chapter 3, Lesson 1

WORkinG WitH aDDitiOnaL SQL SeRveR cOMPOnentS

Integrate Database Mail. Chapter 9, Lesson 1

Implement full-text search. Chapter 8, Lesson 2

Implement scripts by using Windows PowerShell and SQL Server
Management Objects (SMOs).

Chapter 9, Lesson 2

Implement Service Broker solutions. Chapter 8, Lesson 3

Track data changes. Chapter 9, Lesson 3

WORkinG WitH XML Data

Retrieve relational data as XML. Chapter 7, Lesson 1

Transform XML data into relational data. Chapter 7, Lesson 1

Query XML data. Chapter 7, Lesson 1

Manage XML data. Chapter 7, Lesson 1

GatHeRinG PeRFORMance inFORMatiOn

Capture execution plans. Chapter 6, Lesson 1

Gather trace information by using the SQL Server Profiler. Chapter 6, Lesson 1

Collect output from the Database Engine Tuning Advisor. Chapter 6, Lesson 2

Collect information from system metadata. Chapter 6, Lesson 1

Chapter 6, Lesson 2

exam Objectives The exam objectives listed here are current as of this book’s publication date. Exam objectives are
subject to change at any time without prior notice and at Microsoft’s sole discretion. Please visit the Microsoft Learning
Web site for the most current listing of exam objectives: http://www.microsoft.com/learning/en/us/exams/70-433.mspx.

To my husband, Ron, and my children, Melissa and Scott, for all of
your patience and help, especially close to deadline times.
—Ann

To Marissa, may you find the joys of teaching as fulfilling as I do.

—Mike

To my wife, Frida, my mother, Viveca, and the memory of my father,
Bertil.
—TobiAs

Contents at a Glance

Introduction xix

cHaPteR 1 Data Retrieval 1

cHaPteR 2 Modifying Data—The INSERT, UPDATE, DELETE,

and MERGE Statements 45

cHaPteR 3 Tables, Data Types, and Declarative Data Integrity 81

cHaPteR 4 Using Additional Query Techniques 121

cHaPteR 5 Programming Microsoft SQL Server with T-SQL

User-Defined Stored Procedures, Functions,

Triggers, and Views 141

cHaPteR 6 Techniques to Improve Query Performance 193

cHaPteR 7 Extending Microsoft SQL Server Functionality with

XML, SQLCLR, and Filestream 255

cHaPteR 8 Extending Microsoft SQL Server Functionality with

the Spatial, Full-Text Search, and Service Broker 321

cHaPteR 9 An Introduction to Microsoft SQL Server

Manageability Features 373

Answers 427

Glossary 433

Index 439

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

 introduction xix

chapter 1 Data Retrieval 1

Before You Begin . 1

Lesson 1: Querying Data . 3

SELECT Statement Syntax 3

Manipulating Result Sets 8

Lesson Summary 11

Lesson 2: Joining Related Tables . 12

Using the JOIN Operator 12

Lesson Summary 18

Lesson 3: Implementing Aggregate Queries . 19

Working with Aggregate Functions 19

Using the GROUP BY Clause 20

Using the WITH ROLLUP and WITH CUBE Operators 20

Using the GROUPING Aggregate Function 22

Using GROUPING SETS 24

Using the HAVING Clause 26

Lesson Summary 29

Lesson 4: Combining Datasets . 30

Using the UNION Operator 30

Using the EXCEPT and INTERSECT Commands 31

Using the APPLY Operator 32

Lesson Summary 35

viii Contents

Lesson 5: Applying Built-in Scalar Functions . 36

Using the Built-in Scalar Functions 36

Built-in Function Samples 36

Lesson Summary 41

Chapter Review . 42

Chapter Summary 42

Key Terms . 42

Case Scenarios 43

Suggested Practices .44

Query Data by Using SELECT Statements 44

Combine Datasets 44

Implement Aggregate Queries 44

Apply Built-in Scalar Functions 44

Take a Practice Test .44

chapter 2 Modifying Data—the INSERT, UPDATE, DELETE,
and MERGE Statements 45

Before You Begin .46

Lesson 1: Modifying Data by Using INSERT, UPDATE,
and DELETE Statements . 47

Inserting Data 48

Updating Data 50

Deleting Data 52

Lesson Summary 57

Lesson 2: Enhancing DML Functionality with the
OUTPUT Clause and MERGE Statement . 58

Using the OUTPUT Clause 58

Using the MERGE Statement 60

Lesson Summary 66

Lesson 3: Managing Transactions . 67

Understanding Transactions 67

Defining Explicit Transactions 68

Understanding Special ROLLBACK Scenarios 68

Gathering Information About Transactions 69

Understanding Locking 70

ixContents

Setting Transaction Isolation Levels 75

Lesson Summary 77

Chapter Review . 78

Chapter Summary 78

Key Terms . 78

Case Scenarios 78

Suggested Practices . 79

Modify Data by Using INSERT, UPDATE, and DELETE
Statements 79

Return Data by Using the OUTPUT Clause 79

Modify Data by Using MERGE Statements 80

Manage Transactions 80

Take a Practice Test .80

Chapter 3 Tables, Data Types, and Declarative Data Integrity 81

Before You Begin . 81

Lesson 1: Working with Tables and Data Types . 83

Data Types 83

Table Basics 89

Compression 96

Lesson Summary 96

Lesson 2: Declarative Data Integrity .101

Validating Data 101

Chapter Review .117

Chapter Summary 117

Key Terms .117

Case Scenario 118

Suggested Practices .118

Create and Alter Tables 118

Implement Data Types 118

Manage International Considerations 118

Create and Modify Constraints 118

Take a Practice Test .119

x Contents

chapter 4 Using additional Query techniques 121

Before You Begin .121

Lesson 1: Building Recursive Queries with CTEs .123

Common Table Expressions 123

Lesson Summary 126

Lesson 2: Implementing Subqueries .127

Noncorrelated Subqueries 127

Running Aggregates 129

Correlated Subqueries 129

Lesson Summary 132

Lesson 3: Applying Ranking Functions .133

Ranking Data 133

Lesson Summary 137

Chapter Review .138

Chapter Summary 138

Key Terms .138

Case Scenario 138

Suggested Practices .139

Build Recursive Queries with CTEs 139

Implement Subqueries 139

Apply Ranking Functions 139

Take a Practice Test .140

chapter 5 Programming Microsoft SQL Server with t-SQL
User-Defined Stored Procedures, Functions,
triggers, and views 141

Before You Begin .142

Lesson 1: Stored Procedures .144

Creating Stored Procedures 144

Commenting Code 146

Variables, Parameters, and Return Codes 146

Control Flow Constructs 149

Error Messages 152

xiContents

Error Handling 153

Executing Stored Procedures 157

Module Execution Context 159

Cursors 159

Compilation and Recompilation 162

Lesson Summary 166

Lesson 2: User-Defined Functions .167

System Functions 167

User-Defined Functions 168

Retrieving Data from a Function 170

Lesson Summary 174

Lesson 3: Triggers .175

DML Triggers 175

DDL Triggers 176

Logon Triggers 178

Lesson Summary 182

Lesson 4: Views .183

Creating a View 183

Modifying Data Through a View 184

Partitioned Views 184

Creating an Indexed View 185

Determinism 187

Query Substitution 187

Lesson Summary 189

Chapter Review .190

Chapter Summary 190

Key Terms .190

Case Scenario 191

Suggested Practices .192

Create a Stored Procedure 192

Create a Function 192

Create a Trigger 192

Create a View 192

Take a Practice Test .192

xii Contents

chapter 6 techniques to improve Query Performance 193

Before You Begin .193

Lesson 1: Tuning Queries .195

Evaluating Query Performance 195

Tuning Query Performance 199

Table-Valued UDFs 207

Cursors 208

Finding Out Which Queries to Tune 208

Lesson Summary 209

Lesson 2: Creating Indexes .216

Improving Performance with Covered Indexes 216

Using Clustered Indexes 224

Read Performance vs. Write Performance 225

Using Computed Columns 229

Using Indexed Views 233

Analyzing Index Usage 235

Partitioning 236

Tuning Indexes Automatically 243

Lesson Summary 243

Chapter Review .252

Chapter Summary 252

Key Terms .252

Case Scenario 253

Suggested Practices .253

Create and Alter Indexes 253

Take a Practice Test .254

chapter 7 extending Microsoft SQL Server Functionality with
XML, SQLcLR, and Filestream 255

Before You Begin .255

Lesson 1: Working with XML .257

Retrieving Tabular Data as XML 258

Using the XML Data Type 275

Lesson Summary 279

xiiiContents

Lesson 2: Using SQLCLR and Filestream . 283

The Basics of Using SQLCLR 283

Objects That Can Be Created Using SQLCLR 288

What Is My CLR Code Allowed to Do? 310

Using Filestream 310

Lesson Summary 312

Chapter Review . 317

Chapter Summary 317

Key Terms . 317

Case Scenario 318

Suggested Practices .318

Create and Deploy CLR- Based Objects 318

Retrieve Relational Data as XML 318

Transform XML Data into Relational Data 318

Query XML Data 318

Manage XML Data 319

Take a Practice Test .319

chapter 8 extending Microsoft SQL Server Functionality with
the Spatial, Full-text Search, and Service broker 321

Before You Begin .322

Lesson 1: Implementing Spatial Data Types .324

Understanding Spatial Data Types 324

Instantiating Spatial Data Types 327

Lesson Summary 333

Lesson 2: Implementing Full-Text Search .334

Overview of Full-Text Search 334

Configuring Full-Text Searches 336

Writing Full-Text Queries 339

Troubleshooting Full-Text Searches 339

Lesson Summary 350

Lesson 3: Implementing Service Broker Solutions .351

Service Broker Overview 351

Creating Service Broker Applications 354

xiv Contents

Enabling Service Broker 356

Configuring Service Broker Components 358

Sending and Receiving Messages 363

Lesson Summary 368

Chapter Review .369

Chapter Summary 369

Key Terms .369

Case Scenarios 370

Suggested Practices .371

Implement Data Types 371

Implement Full-Text Search 371

Implement Service Broker Solutions 372

Take a Practice Test .372

chapter 9 an introduction to Microsoft SQL Server
Manageability Features 373

Before You Begin . 374

Lesson 1: Integrating Database Mail .375

Overview of Database Mail 375

Lesson Summary 387

Lesson 2: Implementing Scripts by Using Windows PowerShell388

What Is Windows PowerShell? 388

Navigating the SQL Server PowerShell Hierarchy 389

Using SQL Server PowerShell to Enumerate Objects 391

Lesson Summary 396

Lesson 3: Tracking Data Changes .397

Comparing Change Tracking to CDC 397

Configuring Change Tracking 399

Configuring CDC 408

SQL Server Audit 415

Lesson Summary 423

Chapter Review .424

Chapter Summary 424

xvContents

Key Terms .424

Case Scenarios 424

Suggested Practices .425

Integrate Database Mail 425

Implement Scripts by Using Windows PowerShell
and SQL Server Management Objects (SMOs) 425

Track Data Changes 425

Take a Practice Test .426

Answers 427

Glossary 433

Index 439

xvii

Acknowledgments

tobias thernström
First of all, I want to thank my wife, Frida, for bearing with me while I worked on this book.
I also want to thank the people at Microsoft Press for turning my Swenglish into English;
I know it wasn’t easy. I really enjoyed working with Ken, Melissa, Laura, and DeAnn, as well
as our great technical reviewer, Kurt! I would also like to extend my thanks to the people at
GrandMasters for helping put together the great team that made this book possible. Finally,
to my great coauthors, Ann and Mike—without you, there would never have been a book.
Thanks, guys. You rock!

ann Weber
I would like to thank my family and friends for all of the support I received while working
on this project. I would also like to thank Richard Kobylka and Lisa Kreissler for believing in
me and providing me with this great opportunity. I would be remiss if I did not thank Mike
Hotek for sharing the wisdom and knowledge he has gained while authoring many books.
His helpfulness and sense of humor kept me going throughout the project. Finally, I would like
to thank Laura Sackerman for making my first project with Microsoft Press an easy transition.

Mike Hotek
I’d like to thank all of our readers for your many years of support and encouragement. Thank
you to my coauthors, Ann and Tobias—my small contribution wouldn’t have made it out the
door without all of the work that you put in. Thank you to Richard, DeAnn, and Kurt—your
long hours and hard work transformed our technobabble into coherent English. It has been
a pleasure working with Melissa, who spent countless hours herding cats to bring this book
into being. Laura, this has been our third book together and, as always, it has been a pleasure.
To the proverbial “man behind the curtain,” Ken Jones—even when the train is barreling
down the wrong track without a driver, it always manages to arrive at the right station, which
is a testament to the invaluable time and effort you put into every Microsoft Press book.

 Contents
Acknowledgments xvii

xix

Introduction

This training kit is designed for IT professionals who plan to take the Microsoft Certified
Technology Specialist (MCTS) Exam 70-433, as well as database developers who need to

know how to implement, query, and optimize databases using Microsoft SQL Server 2008.
It’s assumed that before using this training kit, you already have a working knowledge of
Microsoft Windows and SQL Server 2008, or that you have experience with previous versions
of SQL Server or another database platform.

By using this training kit, you will learn how to do the following:

n Create and manage database objects

n Query and modify data

n Optimize query performance

n Extend database functionality with full-text search, Service Broker, and SQL Server
PowerShell

n Integrate Database Mail

Using the cD and DvD
A companion CD and an evaluation software DVD are included with this training kit.
The companion CD contains the following:

n Practice tests You can practice for the 70-433 certification exam by using tests
 created from a pool of about 200 realistic exam questions, which gives you enough
different practice tests to ensure that you’re prepared.

n Practice files Not all exercises incorporate code, but for each exercise that does,
there is one or more files in a folder for the corresponding chapter on the companion
CD. You can either type the code from the book or open the corresponding code file in
a query window.

n ebook An electronic version (eBook) of this training kit is included for use at times
when you don’t want to carry the printed book with you. The eBook is in Portable
Document Format (PDF), and you can view it by using Adobe Acrobat or Adobe
Reader. You can use the eBook to cut and paste code as you read through the text or
work through the exercises.

n Sample chapters Sample chapters are included from other Microsoft Press titles on
SQL Server 2008. These chapters are in PDF format.

 Contents
Introduction
xix

How to Install the Sample Databases xx

How to Install the Practice Tests xxi

How to Use the Practice Tests xxi

How to Uninstall the Practice Tests xxii

xx Introduction

n evaluation software The evaluation software DVD contains a 180-day evaluation
edition of SQL Server 2008 in case you want to use it instead of the full version of
SQL Server 2008 to complete the exercises in this book.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://go.microsoft.com/fwlink/?LinkId=139187 to get your downloadable content. This content
is always up-to-date and available to all readers.

How to Install the Sample Databases

Caution

Database names are unique within an instance of SQL Server. The sample databases are

named AdventureWorks2008, AdventureWorksDW2008, and Northwind. If you already

have databases with these names, you need to make changes to either the names of these

sample databases or to the databases that already exist in your instance. If you make changes

to the names, you also need to make the corresponding naming adjustments wherever

a database name is referenced within this book.

To install the sample databases from the companion CD to your hard disk, perform the
following steps:

 1. Follow the instructions in the SQL Server Books Online article “How to: Enable
FILESTREAM” at http://msdn.microsoft.com/en-us/library/cc645923.aspx.

 2. Insert the companion CD into your CD-ROM drive.

 3. Browse to the \Databases folder and then to the directory of your choice.

 4. Copy the Northwind.mdf and Northwind.ldf files to C:\Program Files\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL\DATA.

 5. Copy the AdventureWorksDW2008_Data.mdf and AdventureWorksDW2008_Log.ldf
files to C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\DATA.

 6. Copy the AdventureWorks2008_Data.mdf and AdventureWorks2008_Log.ldf files
with the entire Documents folder to C:\Program Files\Microsoft SQL Server\
MSSQL10.MSSQLSERVER\MSSQL\DATA.

 7. In SQL Server Management Studio connect to your SQL Server instance in an Object
Explorer window.

 8. Right-click the Databases node and select Attach.

 9. Click Add, select AdventureWorks2008_Data.mdf, and click OK.

 10. Click Add, select AdventureWorksDW2008_Data.mdf, and click OK.

xxiIntroduction

 11. Click Add, select Northwind.mdf, and click OK.

 12. Click OK. Verify that you have the AdventureWorks2008, AdventureWorksDW2008, and
Northwind databases attached to your instance.

How to Install the Practice Tests
To install the practice test software from the companion CD to your hard disk, perform the
following steps:

 1. Insert the companion CD into your CD-ROM drive and accept the license agreement
that appears onscreen. The CD menu appears.

note aLteRnative inStaLLatiOn inStRUctiOnS iF aUtORUn iS DiSabLeD

If the CD menu or the license agreement doesn’t appear, AutoRun might be disabled

on your computer. Refer to the Readme.txt file on the companion CD for alternative

 installation instructions.

 2. Click Practice Tests and follow the instructions on the screen.

How to Use the Practice Tests
To start the practice test software, follow these steps:

 1. Click Start and select All Programs, Microsoft Press Training Kit Exam Prep. A window
appears that shows all the Microsoft Press training kit exam prep suites that are
 installed on your computer.

 2. Double-click the practice test that you want to use.

Practice Test Options
When you start a practice test, you can choose whether to take the test in Certification Mode,
Study Mode, or Custom Mode, which are as follows:

n certification Mode Resembles closely the experience of taking a certification exam.
The test has a set number of questions, it is timed, and you cannot pause and restart
the timer.

n Study Mode Creates an untimed test in which you can review the correct answers
and the explanations after you answer each question.

n custom Mode Gives you full control over the test options so that you can customize
them as you like.

In all modes, the user interface that you see when taking the test is basically the same, but
different options are enabled or disabled, depending on the mode. When you review your

xxii Introduction

answer to an individual practice test question, a “References” section is provided. This section
lists the location in the training kit where you can find the information that relates to that
question, and it provides links to other sources of information. After you click Test Results to
score your entire practice test, you can click the Learning Plan tab to see a list of references
for every objective.

How to Uninstall the Practice Tests
To uninstall the practice test software for a training kit, browse to Control Panel and use
either the Add Or Remove Programs option (in Windows XP and Windows Server 2003) or the
Programs And Features option (in Windows Vista and Windows Server 2008).

Microsoft certified Professional Program
Microsoft certifications provide the best method to prove your command of current Microsoft
products and technologies. The exams and corresponding certifications are developed to
validate your mastery of critical competencies as you design and develop or implement and
support solutions with Microsoft products and technologies. Computer professionals who
become Microsoft-certified are recognized as experts and are sought after industry-wide.
Certification brings a variety of benefits to the individual and to employers and organizations.

More info LiSt OF MicROSOFt ceRtiFicatiOnS

For a full list of Microsoft certifications, go to http://www.microsoft.com/learning/mcp/

default.mspx.

technical Support
Every effort has been made to ensure the accuracy of this book and the contents of the
 companion CD. If you have comments, questions, or ideas regarding this book or the
 companion CD, please send them to Microsoft Press by using either of the following methods:

E-mail:
• tkinput@microsoft.com

Postal Mail:
• Microsoft Press

 Attn: MCTS Self-Paced Training Kit (Exam 70-433): Microsoft SQL Server 2008—Database
 Development, Editor

 One Microsoft Way

 Redmond, WA 98052-6399

xxiiiIntroduction

For additional support information regarding this book and the companion CD
 (including answers to commonly asked questions about installation and use), visit the Microsoft
Press Technical Support Web site at http://www.microsoft.com/learning/support/books.
To connect directly to the Microsoft Knowledge Base and enter a query, visit
http://support.microsoft.com/search. For support information regarding Microsoft software,
please connect to http://support.microsoft.com.

evaluation edition Software
The 180-day evaluation edition provided with this training kit is not the full retail product and
is provided only for the purposes of training and evaluation. Microsoft and Microsoft Technical
Support do not support this evaluation edition.

Information about any issues relating to the use of this evaluation edition with
this training kit is posted in the Support section of the Microsoft Press Web site
(http://www.microsoft.com/learning/support/books). For information about ordering the
full version of any Microsoft software, please call Microsoft Sales at (800) 426-9400 or visit
http://www.microsoft.com.

 CHAPTER 1 25

c H a P t e R 1

Data Retrieval

One of the primary functions that you need to perform on your Microsoft SQL Server
databases is retrieving data. Because querying data is a fundamental function

on databases, this book starts with coverage of this important topic. Data retrieval is
 accomplished by using the SELECT statement with a large variety of operators and clauses
that expand on the functionality provided by a simple SELECT statement.

Exam objectives in this chapter:
n Query data by using SELECT statements.

n Implement aggregate queries.

n Combine datasets.

n Apply built-in scalar functions.

Lessons in this chapter:
n Lesson 1: Querying Data 3

n Lesson 2: Joining Related Tables 12

n Lesson 3: Implementing Aggregate Queries 19

n Lesson 4: Combining Datasets 30

n Lesson 5: Applying Built-in Scalar Functions 36

before You begin

To complete the lessons in this chapter, you must have:

n A basic understanding of SQL Server data types

n A basic understanding of relational database concepts

n A basic understanding of object and schema naming standards, including multi-part
names such as Schema.Table

 Contents

 chapter 1: Data Retrieval 1

Before You Begin . 1

Lesson 1: Querying Data . 3

SELECT Statement Syntax 3

Manipulating Result Sets 8

Lesson Summary 11

Lesson 2: Joining Related Tables . 12

Using the JOIN Operator 12

Lesson Summary 18

Lesson 3: Implementing Aggregate Queries . 19

Working with Aggregate Functions 19

Using the GROUP BY Clause 20

Using the WITH ROLLUP and WITH CUBE Operators 20

Using the GROUPING Aggregate Function 22

Using GROUPING SETS 24

Using the HAVING Clause 26

Lesson Summary 29

Lesson 4: Combining Datasets . 30

Using the UNION Operator 30

Using the EXCEPT and INTERSECT Commands 31

Using the APPLY Operator 32

Lesson Summary 35

Lesson 5: Applying Built-in Scalar Functions . 36

Using the Built-in Scalar Functions 36

Built-in Function Samples 36

Lesson Summary 41

Chapter Review . 42

Chapter Summary 42

Key Terms . 42

Case Scenarios 43

Suggested Practices .44

Query Data by Using SELECT Statements 44

Combine Datasets 44

Implement Aggregate Queries 44

Apply Built-in Scalar Functions 44

Take a Practice Test .44

 26 CHAPTER 1 Data Retrieval

n A general understanding of SQL programming concepts, such as batches, scripts,
 looping, and remarks.

n Knowledge about how to open and execute queries in SQL Server Management
 Studio (SSMS).

n Microsoft SQL Server 2008 Developer, Enterprise, or Enterprise Evaluation,
with the AdventureWorks2008, AdventureWorksDW2008, and Northwind
sample databases installed. You can download the AdventureWorks2008 and
 AdventureWorksDW2008 from the Codeplex Web site at http://www.codeplex.com/
MSFTDBProdSamples/ Release/ProjectReleases.aspx?ReleaseId=18407. The Northwind
database can currently be found at http://www.microsoft.com/downloads/details
.aspx?FamilyID=06616212-0356-46A0-8DA2-EEBC53A68034&displaylang=en.
For Northwind, the .msi file will simply extract the files to your hard drive. Use SSMS
to attach the Northwind database.

note SaMPLe DatabaSe

Unless otherwise specified, the samples and practices in this chapter refer to the

 AdventureWorks2008 database.

 Lesson 1: Querying Data CHAPTER 1 27

Lesson 1: Querying Data

The primary function of a database is to store data and provide access to that data. In the
SQL programming language, the SELECT statement provides the data retrieval functionality.

After this lesson, you will be able to:

n Write basic SELECT statements.

n Manipulate the query result set.

Estimated lesson time: 30 minutes

SELECT Statement Syntax
The most basic SELECT statement must include at least a SELECT clause and a FROM clause.
The most basic SELECT statement retrieves all columns and all rows from a table. The following
code sample retrieves all rows and columns from the Employee table in the HumanResources
schema.

SELECT * FROM HumanResources.Employee;

To narrow the result set and only return relevant columns, replace the asterisk (*) with the
required column names, as in the code sample here:

SELECT LoginID, JobTitle, BirthDate

, MaritalStatus, Gender

FROM HumanResources.Employee;

Best PraCtiCes cODinG beSt PRactice

When breaking lines for readability, it is a good idea to place commas at the beginning

of the next line, rather than the end of the previous line, as shown in the preceding

code sample. When you do this, you can remark out a line more easily for testing or

 troubleshooting. This practice also decreases the chances of parsing errors caused by

 missing or extra commas.

The default behavior of the SELECT statement is to return all rows in the table or all rows
matching the WHERE clause. If you want to exclude rows that have exact duplications of the
data, you can use SELECT DISTINCT. Figure 1-1 shows each distinct color that exists in the
Production.Product table. Without the keyword DISTINCT, the color associated with every row
from the table would be returned, increasing the size of the result set and making it more
difficult to read.

 28 CHAPTER 1 Data Retrieval

FiGURe 1-1 SELECT DISTINCT option

A WHERE clause can also be added to the SELECT statement to limit the rows that are
returned. For example, if you want to view only colors and not see that there are NULL rows
in the preceding sample, you can use the following code:

SELECT DISTINCT Color from Production.Product

WHERE Color IS NOT NULL;

note WORkinG WitH NULL vaLUeS

A NULL value is the absence of data in a column. When the ANSI_NULLS setting is set to

ON, the default configuration, you cannot equate values to NULL. If you try, the server

returns “unknown”. For example, in the previous code, if you replaced “IS NOT” with

“<>” , the query would not return any rows in a default configuration. If you executed

the following commands together, you would get the same result set as the previous

 sample code:

SET ANSI_NULLS OFF;

SELECT DISTINCT Color from Production.Product

WHERE Color <> NULL;

 Lesson 1: Querying Data CHAPTER 1 29

Defining a WHERE Clause
As shown in the previous example, the WHERE clause is used in most cases to limit the
 number of rows returned in the result set. Including well-written WHERE clauses typically
increases query performance by limiting the amount of data that needs to be sent back to
the client application.

More info UnDeRStanDinG QUeRY PROceSSinG anD PeRFORMance

For more in-depth information about how SQL Server processes queries and about

 advanced querying techniques, see Inside Microsoft SQL Server 2008: T-SQL Querying

(Microsoft Press, 2009), by Itzik Ben-Gan, Lubor Kollar, Steve Kass, and Dejan Sarka.

The WHERE clause can include a variety of search conditions that can include Boolean
operators and predicates such as LIKE , BETWEEN, EXISTS, IS NULL, IS NOT NULL, and
 CONTAINS. As mentioned earlier, the IS (IS NOT) NULL clause returns rows based on the
 existence of NULL values in the named column. The CONTAINS clause is available only when
you create a full text index on the column being compared. For more information about full
text searches, see Chapter 8, “Extending Microsoft SQL Server Functionality with the Spatial,
 Full-Text Search, and Service Broker.”

Boolean operators, which include AND, OR, and NOT, can be used to define more than
one criterion in a WHERE clause. The following sample code returns only products that have a
color attribute of Silver and also have a list price greater than $200:

SELECT * FROM Production.Product

WHERE Color = 'Silver' AND ListPrice > 200

The following sample assumes that the Product table includes newly added products
that do not yet have a list price assigned to them. The following sample code includes Silver
 products with a price over $200, as well as the new Silver products with a list price of $0
(the default list price for new products added). If the parentheses were not added, the query
would return Silver products with a price over $200 and all colors of products with a list
price of $0 because of the order in which the conditions are evaluated, which is based on the
 Boolean order of operations:

SELECT * FROM Production.Product

WHERE Color = 'Silver'

 AND (ListPrice > 200 OR ListPrice = 0)

iMPortant ORDeR OF OPeRatiOnS

When the database engine parses and compiles a query, conditions that include Boolean

operators are evaluated in the following order: NOT, AND, OR. This order of operations is

important to understand because misunderstanding this can cause the query to return an

unintended result set. You can use parentheses to control the order of operations.

 30 CHAPTER 1 Data Retrieval

real World

Ann Weber

A long time ago, I was teaching a class on Microsoft System Management Server

(SMS). One of my students was trying to query the SQL database created by SMS

that contained all the information about client computers on the network. He was

trying to build a report that included computers with certain hardware specifications

that did not have Microsoft Windows 98 (I told you it was a long time ago) installed

on them yet. Because he was using a combination of AND, NOT, and OR and did not

 understand the order of operations for the Boolean operators, he was getting incorrect

results and was blaming SMS because the installations were failing for various reasons

(Windows 98 already installed, improper hardware configurations, and so on). I asked

him to bring his query to class with him the next day. We added some parentheses to

his query and he took it back to work to try it. The installations succeeded because

the new query returned the correct set of workstations from the database. To avoid

 problems like this, use the following rule: “When in doubt, use parentheses.”

Using the AND operator typically results in a smaller result set, thus improving
 performance. The NOT operator typically hurts performance because the query optimizer
cannot use indexes for the WHERE clause when a NOT operator is specified. For indexes to be
utilized when an OR operator is specified, all columns referenced by the OR condition must
be included in an index or none of the indexes are used.

The LIKE clause allows you to match a character string found in a column to a specified
pattern in the WHERE clause. The LIKE clause uses the following wildcard characters:

n Percent (%) Replaces any number of characters (including 0 characters) in the string.
For example, %at would match at, cat, hat, and that.

n Underscore(_) Replaces exactly one character in the string. For example, _at would
match cat and hat, but it would not match that or at.

n Square brackets ([]) Replaces any one character within a set or a range of characters.
A set is frequently displayed as a straight list of characters, for example, [abcd]; but the
characters can be separated by commas to add clarity, for example, [a,b,c,d]. A range is
separated by a dash, for example, [a–d]. Each of these three options includes all rows
where the specified character is an a, b, c, or d.

n caret (̂) Any character not within a set or range of characters. For example, [^a-d]
would be equal to [e–z].

note PeRFORMance WitH LeaDinG WiLDcaRD cHaRacteRS anD NOT LOGic

Neither leading wildcard characters nor NOT logic allow the query optimizer to use

 indexes to optimize the search. For optimal performance, you should avoid using the

NOT keyword and leading wildcard symbols.

 Lesson 1: Querying Data CHAPTER 1 31

The following code sample returns all employees whose job title starts with the word
 market. Because we are using a case-insensitive database, capitalization is not considered as
part of the search criteria:

SELECT BusinessEntityID, JobTitle

FROM HumanResources.Employee

WHERE JobTitle LIKE 'Market%';

To search for all employees where the word market appears anywhere in the job title, you
would change the LIKE expression to ‘%Market%’.

The result set shown in Figure 1-2 contains all employees whose job titles start with the
letter C or the letter E.

FiGURe 1-2 LIKE clause representing a set comparison

Figure 1-3 shows the same query, but it defines a range rather than a set and returns all
employees whose job titles start with the letters C, D, or E.

The BETWEEN clause returns all rows based on a range of values. The following code
sample returns all rows from the Production.Product table where the list price is between $50
and $80. Note that the list price can be used in the WHERE clause even though it is not listed
in the SELECT clause:

SELECT ProductNumber, Name, Color

FROM Production.Product

WHERE ListPrice BETWEEN 50 AND 80

 32 CHAPTER 1 Data Retrieval

FiGURe 1-3 LIKE clause representing a range comparison

iMPortant incLUSive BETWEEN

It is important to remember that the BETWEEN clause is inclusive of the outer values

 specified in the range. For example, BETWEEN 1 AND 5 includes 1, 1.001, 1.11, and so on

through 4.9, 4.99, and 5.0. This can sometimes be confusing when working with alphanumeric

fields. If you are querying a book title column and you search BETWEEN 'S' AND 'Z', all book

titles starting with S, even if only the single letter S, are returned, but at the other end of the

range, a book with a title of simply Z is returned, but Zebras 101 is not returned.

The EXISTS clause defines a subquery to be used to determine if rows exist in the subquery
result set.

More info SUbQUeRieS

Subqueries are covered in detail in Chapter 4, “Using Additional Query Techniques.”

Manipulating Result Sets
Although your organization is likely to use Reporting Services or other report-generating
software to provide reports to users, you are still required to manipulate result sets to
 improve readability or programmability. You can accomplish this by incorporating aliases,
string literals, and concatenation.

 Lesson 1: Querying Data CHAPTER 1 33

You can define a table alias to be used when it is not desirable to repeatedly type
the table name throughout the query. In addition, table aliases may be required in
 certain commands such as self-joins. Self-joins are covered in Lesson 2 , “Joining Related
Tables.” You can also define an alias for a column so that the result set displays the new
 column name.

The following query uses both column aliases and a table alias:

SELECT PP.FirstName AS 'First Name', PP.LastName AS 'Last Name'

, PP.PersonType AS 'Person Category'

FROM Person.Person AS PP

ORDER BY PersonType

This query uses an additional clause that affects how the result set is displayed. The ORDER
BY clause indicates one or more columns that should be used to sort the result set. The
preceding query uses the default option of ORDER BY ASC, which orders the result set from
the lowest to highest values. Sometimes, especially with numeric values, you might want to
see the highest values first. When you want to see the highest values first, you would use the
ORDER BY DESC clause. The sort order and collation defined for the column affect how the
results are sorted.

More info cOLLatiOnS anD SORt ORDeR

For more information about collations and sort orders, see Chapter 3, “Tables, Data Types,

and Declarative Data Integrity.”

When you define a select list, you can include expressions in the result set. You can define
column titles for these expressions by using an alias. Concatenations allow you to combine
multiple columns and string literals into a single column. The following example creates a
single column out of the first and last name columns in the Person table. It also adds a space
between the first and last name:

SELECT PP.FirstName + ' ' + PP.LastName AS 'Name', PP.PersonType AS 'Category'

FROM Person.Person AS PP

ORDER BY PersonType

note eXPReSSiOn

When looking through SQL Server Books Online and other Transact-SQL (T-SQL) syntax

help, you frequently see the term expression. In SQL Server Books Online, an expression is

defined as “a combination of symbols and operators that evaluate to a single data value.”

In the Person table, the PersonType column contains “EM” for employees. Figure 1-4 shows
a command that builds off the command shown previously and adds a column spelling out
Employee in a column titled Description for each row. The query also restricts the result set to
rows containing a PersonType of “EM”.

 34 CHAPTER 1 Data Retrieval

FiGURe 1-4 Using a string literal

Practice Querying Data

In this practice session, you retrieve data from the ProductSubcategory table. You use
the WHERE clause, the LIKE operator, and the ORDER BY clause to manipulate the result set.

exercise Write a SELECT Statement

In this exercise, you write a basic SELECT statement that retrieves all rows and columns
from the ProductSubcategory table. You then modify the statement to modify the result
set returned.

 1. If necessary, start SSMS, connect to your SQL Server instance, and open a new query
window.

 2. In the existing query window, type and execute the following code to specify the
 AdventureWorks2008 database, and then return all rows and all columns in the
 ProductSubcategory table:

USE AdventureWorks2008;

SELECT * FROM Production.ProductSubcategory;

 Lesson 1: Querying Data CHAPTER 1 35

 3. In the existing query window, below the existing code, type, highlight, and execute the
following code to return only the ProductSubcategoryID, ProductCategoryID, Name,
and ModifiedDate columns:

SELECT ProductSubcategoryID, ProductCategoryID

 , Name, ModifiedDate

FROM Production.ProductSubcategory;

 4. In the existing query window, below the existing code, type, highlight, and execute the
following code to return rows where the word bike is found somewhere in the Name
column:

SELECT ProductSubcategoryID, ProductCategoryID

 , Name, ModifiedDate

FROM Production.ProductSubcategory

WHERE Name LIKE '%Bike%';

 5. In the existing query window, below the existing code, type, highlight, and execute
the following code to add a column alias to the Name column to clarify it as the
 subcategory name. Notice the change to the column title in the result set:

SELECT ProductSubcategoryID, ProductCategoryID

 , Name AS 'Subcategory Name', ModifiedDate

FROM Production.ProductSubcategory

WHERE Name LIKE '%Bike%';

 6. In the existing query window, below the existing code, type, highlight, and execute the
following code to sort the result set by the subcategory name:

SELECT ProductSubcategoryID, ProductCategoryID

 , Name AS 'Subcategory Name', ModifiedDate

FROM Production.ProductSubcategory

WHERE Name LIKE '%Bike%'

ORDER BY [Subcategory Name];

 7. Save the script and close the query window.

 8. Leave SSMS open for the next practice.

Lesson Summary
n The SELECT statement can be used to retrieve data from a table or view.

n The SELECT statement result set can be filtered by adding a WHERE clause.

n The SELECT statement result set can be sorted by using the ORDER BY clause.

n Concatenation, aliases, and string literals can be used to manipulate and format
the result set.

 36 CHAPTER 1 Data Retrieval

Lesson 2: joining Related tables

With normalized databases, information required for a single result set may be located in two
or more tables within the database.

After this lesson, you will be able to:

n Write queries that use the INNER, OUTER, FULL, and CROSS JOIN operators.

n Explain the difference between the different JOIN operators.

Estimated lesson time: 45 minutes

Using the JOIN Operator
The JOIN operator allows you to return data from columns stored in multiple related tables.
Although actual relationships, implemented by creating PRIMARY KEY and FOREIGN KEY
constraints, are not required, there does need to be at least one column in each of the tables
that has the same meaning for the results to be meaningful.

If a column with the same column name exists in more than one table in the query, you
must qualify the column with the table name when defining the select list or listing columns
in the WHERE clause or other clauses within the SELECT statement. For example, the Name
column exists in the Production.Product, Production.Subcategory, and Production.Category
tables. If you write a query joining these tables and you want to include the Name columns in
the select list or elsewhere in the query, you need to qualify them as Production.Product
.Name, and so on. You can use table aliases to avoid lengthy code caused by long schema
and object names. The following example shows the use of aliases:

SELECT FirstName, LastName, JobTitle, VacationHours, SickLeaveHours

FROM HumanResources.Employee E INNER JOIN Person.Person P

ON E.BusinessEntityID = P.BusinessEntityID;

When defining a JOIN condition, you need to define the tables to be joined, the join
type, and a join condition, which is made up of the columns on which the tables are joined
and the logical operator. INNER JOIN is the default join type when only the keyword JOIN
is specified.

Defining Inner Joins
Inner joins return only the rows that match in the join condition. Although an inner join can
be specified in either the FROM or the WHERE clause, it is recommended to specify the JOIN
in the FROM clause. All samples and practices in this book follow this recommendation.

The following sample returns the employee’s first and last name from the Person.Person
table and their job title, sick hours, and vacation hours from the HumanResources.Employee
table. Aliases are not used in this sample. Notice that the columns in the select list do not

 Lesson 2: Joining Related Tables CHAPTER 1 37

require qualification because they are unique across both tables. Because the column name
BusinessEntityID is used in both tables, it must be qualified with a table name each time it
is referenced:

SELECT FirstName, LastName, JobTitle, VacationHours, SickLeaveHours

FROM HumanResources.Employee INNER JOIN Person.Person

ON HumanResources.Employee.BusinessEntityID = Person.Person.BusinessEntityID;

Because an inner join was defined, rows from the HumanResources.Employee table that
do not have a matching row in the Person.Person table are not returned. The reverse is also
true, in that rows from the Person.Person table that are not matched in the HumanResources
.Employee table are not returned. The way to overcome this behavior is to use an OUTER JOIN
operator.

Defining Outer Joins
An outer join can be used to return all rows from one table and only information from rows
that are in common from the other table, or it can return all rows from all tables in the JOIN
clause. The word OUTER can be omitted from the syntax, but you must specify LEFT, RIGHT,
or FULL.

The LEFT and RIGHT operators can be used to specify from which table all the rows are
returned. When you specify LEFT OUTER JOIN, all rows are returned from the table to the
left of the keyword JOIN. This table is referred to as the outer table. You can accomplish
the same thing with either a LEFT or RIGHT operator by changing the order in which the
table names are referenced. For example, the following sample code returns all rows from
the Person. Person table, along with the corresponding information from the matching rows
in the HumanResources.Employee table. Figure 1-5 shows the result set from this query.
Notice the NULL values in the JobTitle, VacationHours, and SickLeaveHours columns from the
 HumanResources.Employee table. These values are not available for rows in the Person.Person
table that do not have corresponding information in the HumanResources.Employee table.
Because the HumanResources.Employee table does not allow NULL values for these columns,
it is obvious which rows were added to the result set by changing the INNER JOIN to a RIGHT
OUTER JOIN. If NULL values were allowed, you would not be able to use the presence of NULL
values alone to determine which rows were added by changing the join type:

SELECT FirstName, LastName, JobTitle, VacationHours, SickLeaveHours

FROM HumanResources.Employee E RIGHT OUTER JOIN Person.Person P

ON E.BusinessEntityID = P.BusinessEntityID;

The same result set can be achieved by using a LEFT OUTER JOIN by reordering the table
names, as in the following query:

SELECT FirstName, LastName, JobTitle, VacationHours, SickLeaveHours

FROM Person.Person P LEFT OUTER JOIN HumanResources.Employee E

ON E.BusinessEntityID = P.BusinessEntityID;

 38 CHAPTER 1 Data Retrieval

FiGURe 1-5 RIGHT OUTER result set

A FULL OUTER JOIN displays every row from every table in the JOIN clause. This can be
helpful in finding unmatched rows when relational integrity is not being enforced on the
tables. If there are foreign key constraints on the join column, a FULL OUTER JOIN provides
the same result set as a LEFT OUTER JOIN with the table where the foreign key is defined on
the left side of the JOIN keyword. This is because every value in the foreign key column must
have a matching row in the primary key column for the constraint to be satisfied. In addition,
when foreign key constraints are defined, an OUTER JOIN defined with the primary key table
being defined as the outer table provides the same results as an INNER JOIN.

More info cOnStRaintS

For more information about constraints, see Chapter 3.

Defining Cross Joins
Cross joins provide what is referred to as a Cartesian product of the two tables. Every row
from the first table is joined with every row from the second table in the JOIN clause. There
are only a few situations where this type of join is used. The CROSS JOIN syntax is the same
as all the other join types.

Working with More Than Two Tables
You can join more than two tables to access the required columns for your query. A general
performance recommendation is to try and avoid JOIN operations that include more than
four or five tables. You should always test new JOIN statements, especially those containing
a large number of tables or rows, on a nonproduction server to avoid problems caused by
 long-running, resource-intensive queries.

 Lesson 2: Joining Related Tables CHAPTER 1 39

real World

Ann Weber

I was working with a small group within a major university that offered technical

classes to faculty, staff, and sometimes students of the university. They purchased a

database application to manage their class schedule, including student enrollments,

instructors, classrooms, and resources. The database created by the application was

fully normalized and was locked so that modifications to the schema could not be

made. The training coordinator wanted to write a query that would return the course

number, course title, classroom assigned, instructor assigned, and the number of

seats still available. To accomplish this, she needed to join 11 tables because of the

structure of the database. Because she had the permissions required, she developed a

 Web-based application that included her SELECT statement joining 11 tables. Because

of many factors, including limited resources on the server, additional overhead caused

by the Web-based application, and locking contention that her query caused, there

were many problems with several databases housed on this server while she ran her

query. After this situation, she temporarily lost her privileges to write new queries

directly against the production server. Luckily, shortly after this time, they upgraded

their database to SQL Server 2005 and the company from which they purchased the

database added permissions for them to create indexed views, which helped solve the

11-table join problem.

The most common type of JOIN operation involving more than two tables is an INNER
JOIN. The following sample expands on the INNER JOIN sample from earlier in this lesson and
adds an e-mail address from the Person.EmailAddress table:

SELECT FirstName, LastName, JobTitle, VacationHours, SickLeaveHours, EmailAddress

FROM HumanResources.Employee INNER JOIN Person.Person

 ON HumanResources.Employee.BusinessEntityID = Person.Person.BusinessEntityID

INNER JOIN Person.EmailAddress

 ON Person.Person.BusinessEntityID = Person.EmailAddress.BusinessEntityID

Caution WORkinG WitH MORe tHan tWO tabLeS

You need to be especially careful to verify result sets when working with the OUTER JOIN

operator with more than two tables involved. The Database Engine builds temporary result

sets from the first JOIN operation, and then uses that result set for the next JOIN operation.

Depending on the order defined and the operators specified, you may get different results.

Defining a Self-Join
A self-join is when a single table is referenced more than once in the JOIN clause because
it uses a different alias each time it refers to the table. There are two main situations when
 self-joins are beneficial. The first is when your database includes a self-referencing table.

 40 CHAPTER 1 Data Retrieval

The following sample from the AdventureWorksDW2008 database displays each
 employee’s name with his or her direct supervisor’s name. The aliases (“E” for the reference to
the employee information and “DS” to reference the direct supervisor information) were used
to make the query easier to understand. The ParentEmployeeKey in each employee’s record
points to their direct supervisor’s EmployeeKey field:

SELECT E.FirstName + ' ' + E.LastName AS 'Employee Name'

, DS.FirstName + ' ' + DS.LastName AS 'Direct Supervisor'

FROM DimEmployee E INNER JOIN DimEmployee DS

ON E.ParentEmployeeKey = DS.EmployeeKey;

Because this table includes multiple layers of supervisors, you could also use a common
table expression (CTE) to build a recursive output.

More info cOMMOn tabLe eXPReSSiOnS

For more information about CTE, see Chapter 4.

Practice joining Related tables

In this practice session, you write queries that expand on the query developed in the Lesson 1
practice. The resulting query includes product, subcategory, and category names for products
included in any subcategory that includes the word bike.

In addition, you write a query to join the PurchaseOrderHeader table to itself to provide
a list of pairs of purchase orders. Each row includes two purchase orders that have identical
vendors and shipping methods.

exercise 1 Join Tables

In this exercise, you work with the Product, ProductCategory, and ProductSubcategory tables.
You enhance this query so that it includes the product, subcategory, and category names of
products in a subcategory that includes the word bike.

 1. Open a new query window in SSMS.

 2. In the existing query window, type and execute the following command to return
 information from the ProductSubcategory table, where the subcategory name includes
the word bike:

USE AdventureWorks2008;

SELECT ProductSubcategoryID, ProductCategoryID

 , Name AS 'Subcategory Name'

FROM Production.ProductSubcategory

WHERE Name LIKE '%Bike%'

ORDER BY [Subcategory Name];

 3. Notice that the result set includes a product category number but not a category name.
In the existing query window, below the existing code, type, highlight, and execute the
following code to join the ProductCategory table to the ProductSubcategory table to

 Lesson 2: Joining Related Tables CHAPTER 1 41

retrieve the Name column from the ProductCategory table. You use an inner join because
you are looking only for rows that are in common between the two tables:

SELECT ProductSubcategoryID, Production.ProductCategory.ProductCategoryID

 , Production.ProductSubcategory.Name AS 'Subcategory Name'

 , Production.ProductCategory.Name AS 'Category Name'

FROM Production.ProductSubcategory

INNER JOIN Production.ProductCategory

ON Production.ProductCategory.ProductCategoryID =

 Production.ProductSubcategory.ProductCategoryID

WHERE Production.ProductSubcategory.Name LIKE '%Bike%'

ORDER BY [Subcategory Name];

 4. You now add in the Product table so that you can see what products exist in each of these
subcategories. In the existing query window, below the existing code, type, highlight, and
execute the following code to join the product table into the existing query:

SELECT P.ProductID AS 'Product ID'

 , PSC.ProductSubcategoryID AS 'Subcategory ID'

 , PC.ProductCategoryID AS 'Category ID'

 , P.Name AS 'Product Name'

 , PSC.Name AS 'Subcategory Name'

 , PC.Name AS 'Category Name'

FROM Production.ProductSubcategory AS PSC

INNER JOIN Production.ProductCategory AS PC

ON PC.ProductCategoryID = PSC.ProductCategoryID

INNER JOIN Production.Product AS P

ON P.ProductSubcategoryID = PSC.ProductSubcategoryID

WHERE PSC.Name LIKE '%Bike%'

ORDER BY [Subcategory Name];

Again, you use an inner join because only rows in common between the three tables
need to be retrieved. In addition, because the schema and table names are long and
are making the code difficult to read, you add table aliases to the query and reference
the columns with the alias name.

exercise 2 Perform a Self-Join

In this exercise, you build a query that returns unique pairs of purchase orders that have the
same vendor and shipping method. The report should not include the same pair of purchase
order IDs more than once.

 1. Open a new query window.

 2. In the existing query window, type and execute the following command to return pairs
of purchase orders that have the same vendor and shipping method:

USE AdventureWorks2008;

SELECT a.PurchaseOrderID

 , b.PurchaseOrderID

 42 CHAPTER 1 Data Retrieval

 , a.VendorID

 , a.ShipMethodID

FROM Purchasing.PurchaseOrderHeader AS a

JOIN Purchasing.PurchaseOrderHeader AS b

ON a.VendorID = b.VendorID

 AND a.ShipMethodID = b.ShipMethodID

WHERE a.PurchaseOrderID < b.PurchaseOrderID;

 3. In the existing query window, below the existing code, type, highlight, and execute the
following code to make the result set easier to read by replacing the vendor IDs and
shipping method IDs with their names:

SELECT a.PurchaseOrderID

 , b.PurchaseOrderID

 , v.Name

 , s.Name

FROM Purchasing.PurchaseOrderHeader AS a

JOIN Purchasing.PurchaseOrderHeader AS b

 ON a.VendorID = b.VendorID

 AND a.ShipMethodID = b.ShipMethodID

JOIN Purchasing.Vendor AS v

 ON a.VendorID = v.BusinessEntityID

JOIN Purchasing.ShipMethod AS s

 ON a.ShipMethodID = s.ShipMethodID

WHERE a.PurchaseOrderID < b.PurchaseOrderID;

 4. Save the script and close the query window. Leave SSMS open for the next practice.

Lesson Summary
n The JOIN clause allows you to retrieve columns from related tables and group the

results into a single result set.

n JOIN types include INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER, and CROSS.

n JOIN operators can combine more than two tables.

n A table can be joined to itself by defining different aliases for each reference to
the table.

 Lesson 3: Implementing Aggregate Queries CHAPTER 1 43

Lesson 3: implementing aggregate Queries

Aggregate functions allow you to apply calculations on values in a column. Adding the
GROUP BY clause allows you to provide aggregate on subsets of the data.

After this lesson, you will be able to:

n Describe the purpose of the aggregate functions available.

n Group aggregate data by using the GROUP BY statement.

Estimated lesson time: 45 minutes

Working with Aggregate Functions
Aggregate functions perform calculations on a set of data and return a scalar (single) value.
The following aggregate functions are available in SQL Server 2008:

n AVG Returns the average of all values in the data set.

n CHECKSUM_AGG Returns the checksum of all values in the data set.

n COUNT Returns the number of values contained in the data set. COUNT(*) returns
the number of rows in the set. When a column is specified, such as COUNT(FaxNo),
the value returned reflects the number of rows that contain data in that column.
NULL values are ignored. In addition, COUNT DISTINCT returns the number of unique
 non-NULL values in the data set.

n COUNT_BIG Works the same as COUNT, but it returns the bigint data type, while
COUNT returns only the int data type.

n GROUPING Returns 1 or 0 and identifies rows as aggregate or detail rows when the
GROUP BY statement is used. A value of 1 indicates an aggregate row, while 0 indicates
details.

n MAX Returns the highest value in the data set for numeric, data, and character-based
fields.

n MIN Returns the lowest value in the data set for numeric, data, and character-based
fields.

n SUM Returns the total of the values in the data set. You can specify ALL or DISTINCT
to produce either the sum of all values or only distinct values in the data set.

n STDEV Returns the statistical standard deviation of the values in the data set.

n STDEVP Returns the statistical standard deviation for the population of the values in
the data set.

n VAR Returns the statistical variance of the values in the data set.

n VARP Returns the statistical variance for the population of the values in the data set.

 44 CHAPTER 1 Data Retrieval

NULL values are ignored for all the aggregate functions. It is important to understand
this so that you can verify the data is being properly interpreted. For example, in a table that
maintains test scores, there is a big difference between NULL and 0 when you use the AVG
or MIN aggregates. If the test is excused and should not be included in the calculation, the
NULL value does not have a negative impact on the accuracy of the calculation, but if the
test should be averaged in, the database integrity checks should make sure that 0 is entered
rather than NULL.

The following sample returns the average, maximum, and minimum list prices of all
 products in the Production.Product table. Products that are either new and have not been
priced or that are not sold to consumers have a list price of 0. To provide more accurate
 aggregates, these products are removed from the result set:

SELECT AVG(Listprice) AS 'Average'

 , MIN(Listprice) AS 'Minimum'

 , MAX(Listprice) AS 'Maximum'

FROM Production.Product

WHERE ListPrice <> 0;

Using the GROUP BY Clause
Frequently, the GROUP BY clause is included in queries with aggregate functions. When an
aggregate function is included in the SELECT clause, all other expressions in the SELECT clause
must either be aggregate functions or included in a GROUP BY clause.

The GROUP BY clause allows you to define subtotals for the aggregate data. For example,
the following command returns the average, minimum, and maximum list prices for products
that belong to each product subcategory:

SELECT Production.Product.ProductSubcategoryID

 , AVG(Listprice) AS 'Average'

 , MIN(Listprice) AS 'Minimum'

 , MAX(Listprice) AS 'Maximum'

FROM Production.Product

WHERE ListPrice <> 0

GROUP BY Product.ProductSubcategoryID;

The result set for the preceding query is shown in Figure 1-6. The top row, where the
 ProductSubcategoryID is listed as NULL, is the summary row that provides the average,
 minimum, and maximum list prices of products across all subcategories.

Using the WITH ROLLUP and WITH CUBE Operators
To be able to see subtotals for more than one column, you can add the WITH ROLLUP or
WITH CUBE operator. These operators provide a grand total, along with subtotals based
on the columns included in the GROUP BY statement. The order in which the columns are
 specified changes the summary data returned in the result set for the WITH ROLLUP function.

 Lesson 3: Implementing Aggregate Queries CHAPTER 1 45

FiGURe 1-6 Basic GROUP BY sample result set

For example, the query shown here returns the average, minimum, and maximum list
 prices for each subcategory within each category. Because both the subcategory and category
ID columns are listed in the SELECT clause, they must both be listed in the GROUP BY clause
as well. Because the Production.ProductCategory.ProductCategoryID column is listed first in
the GROUP BY statement, a summary row is included that shows the specified aggregates for
all subcategories in that category together. If the Product.ProductSubcategoryID column had
been listed first, the summary rows would return the aggregate values across all categories
for each subcategory. In the sample data, each subcategory is related to only one category,
minimizing the usefulness of this particular result set:

SELECT Production.ProductCategory.ProductCategoryID

 , Production.Product.ProductSubcategoryID

 , AVG(Listprice) AS 'Average'

 , MIN(Listprice) AS 'Minimum'

 , MAX(Listprice) AS 'Maximum'

FROM Production.Product

JOIN Production.ProductSubcategory

ON Production.ProductSubcategory.ProductSubcategoryID =

 Production.Product.ProductSubcategoryID

JOIN Production.ProductCategory

ON Production.ProductSubcategory.ProductCategoryID =

 Production.ProductCategory.ProductCategoryID

WHERE ListPrice <> 0

GROUP BY Production.ProductCategory.ProductCategoryID, Product.ProductSubcategoryID

WITH ROLLUP

The partial result set pictured in Figure 1-7 shows the average, minimum, and maximum
prices for product subcategory 25 in the first row pictured (row 27). The average, minimum,
and maximum prices for category 3 are listed in row 28 and are signified by the NULL value

 46 CHAPTER 1 Data Retrieval

FiGURe 1-7 GROUP BY results with the WITH ROLLUP operator

listed for the ProductSubcateogryID column. The average, minimum, and maximum prices
across all categories and subcategories are listed in row 42 and are signified by the NULL values
in both the ProductCategoryID and the ProductSubcategoryID columns. If the WITH ROLLUP
operator had not been specified, the summary rows found in rows 28 and 41 would not have
been included in the result set.

note CHECKSUM_AGG cOMPatibiLitY

The CHECKSUM_AGG aggregate function is not compatible with ROLLUP, CUBE, or

 GROUPING SETS.

The WITH CUBE operator can be used when summary information needs to be included
for more than one column. Because each subcategory exists in only one category, the WITH
CUBE operator does not make sense with this sample. But if I were listing the average price
for each product on a particular order and from within each subcategory, I could use the
WITH CUBE operator to return the summary information based on each order ID and on each
subcategory ID. I would also get the grand total row included in the result set.

Best PraCtiCes enHancinG GROUP BY PeRFORMance

Avoid using the WITH CUBE operator on large tables where more than three columns exist

in the GROUP BY clause. The WITH CUBE operator returns summary information for every

 column listed in the GROUP BY clause. These result sets can grow very quickly when additional

columns are added to the GROUP BY clause and may slow performance drastically.

Using the GROUPING Aggregate Function
When there are NULL values appearing in a column being returned by the GROUP BY clause, it can
be difficult to find and interpret the summary rows produced. The GROUPING aggregate function
can be added to the SELECT clause to show which rows hold summary information and which rows

 Lesson 3: Implementing Aggregate Queries CHAPTER 1 47

hold detail information that may include NULL values. The GROUPING aggregate function returns
a 1, which indicates an aggregate or summary row, or a 0, which indicates a detail row.

Although these result sets can become overwhelming and difficult to read, if the results are
being further processed by an application, an application can easily use the 1s and 0s returned
to determine which rows include summary data and then perform the appropriate operations.

The following sample includes GROUPING columns with the ROLLUP query used in the
previous sample. Note that in the partial result set shown in Figure 1-8, summary data is not
included for all product categories in a subcategory. Either the columns in the GROUP BY
clause would need to be reversed, or the WITH CUBE operator would need to be specified for
summary data to appear in this column:

SELECT Production.ProductCategory.ProductCategoryID

 ,GROUPING (Production.ProductCategory.ProductCategoryID)

 , Production.Product.ProductSubcategoryID

 ,GROUPING (Production.Product.ProductSubcategoryID)

 , AVG(Listprice) AS 'Average'

 , MIN(Listprice) AS 'Minimum'

 , MAX(Listprice) AS 'Maximum'

FROM Production.Product

JOIN Production.ProductSubcategory

ON Production.ProductSubcategory.ProductSubcategoryID =

 Production.Product.ProductSubcategoryID

JOIN Production.ProductCategory

ON Production.ProductSubcategory.ProductCategoryID =

 Production.ProductCategory.ProductCategoryID

WHERE ListPrice <> 0

GROUP BY Production.ProductCategory.ProductCategoryID, Product.ProductSubcategoryID

WITH ROLLUP;

FiGURe 1-8 Results with the GROUPING function added

 48 CHAPTER 1 Data Retrieval

Using GROUPING SETS
GROUPING SETS were added in SQL Server 2008 to give you greater flexibility when defining
SELECT statements that include aggregate functions. Depending on how the GROUPING
SETS are defined, they can be equivalent to a standard ROLLUP or CUBE operation, to several
GROUP BY operations combined with the UNION ALL operator, or a subset of the data that
would typically be returned by a ROLLUP or CUBE operator.

More info GROUPING SETS eQUivaLentS

For a complete list of commands that are equivalent to different combinations of GROUPING

SETS, see “GROUPING SETS Equivalents,” in SQL Server Books Online.

GROUPING SETS Samples
The samples in this section provide you with an idea of some of the options available when
defining GROUPING SETS.

The following sample includes two separate queries that produce identical result sets,
but the GROUPING SETS query shown first is much cleaner and easier to read. The remark
between the queries has been made bold to make the second query (noted as the Equivalent
code) easier to locate:

SELECT Production.ProductCategory.ProductCategoryID

 , Production.Product.ProductSubcategoryID

 , AVG(Listprice) AS 'Average'

FROM Production.Product

JOIN Production.ProductSubcategory

ON Production.ProductSubcategory.ProductSubcategoryID =

 Production.Product.ProductSubcategoryID

JOIN Production.ProductCategory

ON Production.ProductSubcategory.ProductCategoryID =

 Production.ProductCategory.ProductCategoryID

WHERE ListPrice <> 0

GROUP BY GROUPING SETS ((Production.ProductCategory.ProductCategoryID),

 (Product.ProductSubcategoryID))

--Equivalent code

SELECT NULL AS 'ProductCategoryID', Production.Product.ProductSubcategoryID

 , AVG(Listprice) AS 'Average'

FROM Production.Product

JOIN Production.ProductSubcategory

ON Production.ProductSubcategory.ProductSubcategoryID =

 Production.Product.ProductSubcategoryID

JOIN Production.ProductCategory

ON Production.ProductSubcategory.ProductCategoryID =

 Production.ProductCategory.ProductCategoryID

 Lesson 3: Implementing Aggregate Queries CHAPTER 1 49

WHERE ListPrice <> 0

GROUP BY (Production.Product.ProductSubcategoryID)

UNION ALL

SELECT Production.ProductCategory.ProductCategoryID, NULL

 , AVG(Listprice) AS 'Average'

FROM Production.Product

JOIN Production.ProductSubcategory

ON Production.ProductSubcategory.ProductSubcategoryID =

 Production.Product.ProductSubcategoryID

JOIN Production.ProductCategory

ON Production.ProductSubcategory.ProductCategoryID =

 Production.ProductCategory.ProductCategoryID

WHERE ListPrice <> 0

GROUP BY (Production.ProductCategory.ProductCategoryID)

The partial result set produced by either of these two commands is displayed in Figure 1-9.

FiGURe 1-9 Sample GROUPING SETS results

note UNION ALL OPeRatOR

A full description of the UNION ALL operator is located in Lesson 4, “Combining Datasets.”

The next sample provides the same result set as the previous one, but it also adds a rollup
row that produces the summary of both columns:

SELECT Production.ProductCategory.ProductCategoryID

 , Production.Product.ProductSubcategoryID

 , AVG(Listprice) AS 'Average'

 50 CHAPTER 1 Data Retrieval

FROM Production.Product

JOIN Production.ProductSubcategory

ON Production.ProductSubcategory.ProductSubcategoryID =

 Production.Product.ProductSubcategoryID

JOIN Production.ProductCategory

ON Production.ProductSubcategory.ProductCategoryID =

 Production.ProductCategory.ProductCategoryID

WHERE ListPrice <> 0

GROUP BY GROUPING SETS (ROLLUP(Production.ProductCategory.ProductCategoryID),

 (Product.ProductSubcategoryID));

The partial result set displayed in Figure 1-10 shows the new rollup row on row 38.

FiGURe 1-10 Sample GROUPING SETS with a ROLLUP result set

Using the HAVING Clause
Although you can still use WHERE clauses to limit the result set based on values that exist in
the columns specified in the FROM clause, the HAVING clause allows you to filter based on
the results of the calculations performed by the aggregate functions.

The following query uses a HAVING clause that returns only product subcategories where
the minimum price is greater than $200:

SELECT Production.ProductCategory.ProductCategoryID

 , Production.Product.ProductSubcategoryID

 , AVG(Listprice) AS 'Average'

 , MIN(Listprice) AS 'Minimum'

 , MAX(Listprice) AS 'Maximum'

 Lesson 3: Implementing Aggregate Queries CHAPTER 1 51

FROM Production.Product

JOIN Production.ProductSubcategory

ON Production.ProductSubcategory.ProductSubcategoryID =

 Production.Product.ProductSubcategoryID

JOIN Production.ProductCategory

ON Production.ProductSubcategory.ProductCategoryID =

 Production.ProductCategory.ProductCategoryID

WHERE ListPrice <> 0

GROUP BY Production.ProductCategory.ProductCategoryID, Product.ProductSubcategoryID

WITH ROLLUP

HAVING MIN(ListPrice) > 200;

The result set for this query is shown in Figure 1-11.

FiGURe 1-11 Results with the HAVING clause added

Practice implementing aggregate Queries

In this practice session, you create aggregate queries that progress from returning the results
of a system aggregate function to returning aggregates grouped by a variety of columns and
including GROUPING SETS.

exercise Use the GROUP BY Statement

In this exercise, you use aggregate functions and the GROUP BY clause with a variety of
operators, such as ROLLUP and HAVING, that provide summary and detail information in the
result set.

 1. Open a new query window in SSMS.

 2. In the existing query window, type and execute the following code to return the grand
total of all products ordered on all lines of all sales orders:

USE AdventureWorks2008;

SELECT SUM(LineTotal) FROM Sales.SalesOrderDetail;

 52 CHAPTER 1 Data Retrieval

 3. In the existing query window, below the existing code, type, highlight, and execute the
following code to return the total list price for each combination of sales order IDs and
product IDs. Then, review the result set.

SELECT SalesOrderID, ProductID, SUM(Linetotal) AS 'Total'

FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID, ProductID

ORDER BY SalesOrderID;

 4. In the existing query window, below the existing code, type, highlight, and execute the
following code to provide a grand total, as well as a subtotal of all products on each
sales order. Then, review the result set:

SELECT SalesOrderID, ProductID, SUM(Linetotal) AS 'Total'

FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID, ProductID

WITH ROLLUP

ORDER BY SalesOrderID;

 5. In the existing query window, below the existing code, type, highlight, and execute
the following code to reverse the order of the columns listed in the GROUP BY clause
and provide the subtotal of each product across all sales orders and a grand total. The
sort order has been changed to make the results easier to review. After executing the
query, review the result set:

SELECT SalesOrderID, ProductID, SUM(Linetotal) AS 'Total'

FROM Sales.SalesOrderDetail

GROUP BY ProductID, SalesOrderID

WITH ROLLUP

ORDER BY ProductID;

 6. In the existing query window, below the existing code, type, highlight, and execute the
following code to provide subtotal information on both the sales order IDs and the
product IDs. Review the result set:

SELECT SalesOrderID, ProductID, SUM(Linetotal) AS 'Total'

FROM Sales.SalesOrderDetail

GROUP BY ProductID, SalesOrderID

WITH CUBE

ORDER BY SalesOrderID, ProductID;

 7. In the existing query window, below the existing code, type, highlight, and execute
the following code to limit the result set to line totals that exceed 10,000. Review the
results:

SELECT SalesOrderID, ProductID, SUM(Linetotal) AS 'Total'

FROM Sales.SalesOrderDetail

GROUP BY ProductID, SalesOrderID

 Lesson 3: Implementing Aggregate Queries CHAPTER 1 53

WITH CUBE

HAVING SUM(Linetotal) > 10000

ORDER BY SalesOrderID, ProductID;

 8. In the existing query window, below the existing code, type, highlight, and execute the
following code to create a grouping set on the SalesOrderID and ProductID columns
without any rollup operations. Review the result set:

SELECT SalesOrderID, ProductID, SUM(Linetotal) AS 'Total'

FROM Sales.SalesOrderDetail

GROUP BY GROUPING SETS (ProductID, SalesOrderID)

ORDER BY SalesOrderID, ProductID

 9. Save the script and close the query window, but leave SSMS open for the next practice.

Lesson Summary
n Aggregate functions perform calculations on expressions that are provided as input to

the function.

n Use the GROUP BY clause when aggregates should be applied based on the data in
specific rows rather than the entire table.

n Include all columns listed in a SELECT, WHERE, or ORDER BY clause in the GROUP BY
clause.

n Use ROLLUP and CUBE to provide additional summary information.

n Use the GROUPING function to show which rows hold summary data provided by the
ROLLUP or CUBE operators.

n Use GROUPING SETS to provide greater flexibility and readability to your GROUP BY
queries.

 54 CHAPTER 1 Data Retrieval

Lesson 4: combining Datasets

SQL Server 2008 provides several operators that provide you with the ability to combine
or compare the results from multiple SELECT statements. The UNION operator has been
 available from the first version of SQL Server to provide the ability to combine the result
sets from multiple queries. On the other hand, the EXCEPT and INTERSECT operators were
introduced in SQL Server 2005 to provide the ability to compare the results from two queries
and provide a new result set based on whether or not there are rows in common between the
result sets.

In addition, datasets can be manipulated by using the APPLY operator to apply a table-valued
function against each row of the query results from what is defined as the outer table.

note USeR-DeFineD FUnctiOnS

SQL Server 2008 provides you with the ability to create user-defined functions (UDFs).

Scalar functions return a single value of a specified data type, while inline table-valued

functions and multi-statement table-valued functions return a table data type. For more

information, see Chapter 5, “Programming Microsoft SQL Server with T-SQL User-Defined

Stored Procedures, Functions, Triggers, and Views.”

After this lesson, you will be able to:

n Write queries that use the UNION operator to combine result sets.

n Write queries that use the EXCEPT and INTERSECT operators to compare the
results from multiple queries.

Estimated lesson time: 30 minutes

The UNION, EXCEPT, and INTERSECT operators can be specified between two or more
queries to provide a single result set. While the UNION operator combines the result sets
from the multiple queries into a single result set, the EXCEPT and INTERSECT operators
 compare the result sets of two queries to determine what subset of rows should be included
in the final result set.

Using the UNION Operator
The UNION operator allows you to combine the result sets created by multiple SELECT
 statements into a single result set. Although the syntax for the UNION operator is
 straightforward (you add the word UNION or UNION ALL between each SELECT statement),
you must follow some basic rules if you want the query to succeed. When specifying the UNION
operator, both queries must return the same number of columns. In addition, each data type in
the corresponding columns must be compatible. For example, if the first column in one SELECT

 Lesson 4: Combining Datasets CHAPTER 1 55

statement has an integer data type and the first column of the second SELECT statement has a
character data type, the integer field must be converted for the command to succeed.

In the Northwind database, customers have an alphanumeric customer ID field and
 employees have a numeric ID field. If you want to retrieve these columns as a single result set,
the EmployeeID field would need to be converted, as in this sample query:

SELECT CONVERT(Char(8),Employees.EmployeeID) FROM Employees

UNION

SELECT Customers.CustomerID FROM Customers

In addition to the rules listed previously, there are some other rules that you should be
aware of. First, the column titles are taken from the first query listed. Therefore, you should
define aliases in the first SELECT statement. In addition, ORDER BY clauses should be defined
at the end of the last SELECT statement. The ORDER BY clause can refer to aliases defined in
the first SELECT statement. Finally, if rows should be filtered, each SELECT statement should
include its own WHERE clause.

The ALL keyword specifies that all rows, including duplicate rows, should be returned.
By default, duplicate rows are not returned.

The next example also uses the Employees and Customers tables from the Northwind
 database to create a single result set that merges customers and employees into a single
result set containing a name, company name, and phone number:

SELECT FirstName + ' ' + LastName AS 'Contact Name'

 , 'Northwind Traders' AS 'Company'

 , Employees.HomePhone AS 'Phone'

FROM Employees

UNION

SELECT ContactName, CompanyName, Phone

FROM Customers

ORDER BY 'Contact Name';

Using the EXCEPT and INTERSECT Commands
Unlike the UNION operator, which returns a combination of the rows from various SELECT
statements, the EXCEPT and INTERSECT operators compare the result sets from two separate
queries and provide a subset of the information.

The EXCEPT operator returns all rows that exist in the table to the left of the operator and
that do not have matching rows in the table to the right. In the following example from the
AdventureWorksDW2008 database, employees who have never placed a reseller sales order
are listed in the result set:

SELECT EmployeeKey

FROM DimEmployee

EXCEPT

SELECT EmployeeKey

FROM FactResellerSales

 56 CHAPTER 1 Data Retrieval

Like the UNION statement, the same number of columns with compatible data types must
be defined in both queries. To accomplish this, you can join the tables and use the EXCEPT
operator. The following sample adds an employee’s name and title to the query listed in the
previous sample:

SELECT EmployeeKey, FirstName, LastName, Title

FROM DimEmployee

EXCEPT

SELECT FRS.EmployeeKey, DE.FirstName, DE.LastName, DE.Title

FROM FactResellerSales FRS

 JOIN DimEmployee DE

 ON DE.EmployeeKey = FRS.EmployeeKey

ORDER BY Title;

On the other hand, if we want to see only employees who have placed orders for reseller
sales, we can use the INTERSECT command, as shown in this sample:

SELECT EmployeeKey, FirstName, LastName, Title

FROM DimEmployee

INTERSECT

SELECT FRS.EmployeeKey, DE.FirstName, DE.LastName, DE.Title

FROM FactResellerSales FRS

 JOIN DimEmployee DE

 ON DE.EmployeeKey = FRS.EmployeeKey

ORDER BY Title;

Using the APPLY Operator
The APPLY operator is different from the other operators discussed so far because it uses
the results from a query to a table or view as what is called the left input, and the results of a
table-valued function as what is called the right input.

The APPLY operator has two forms, CROSS APPLY and OUTER APPLY. CROSS APPLY returns
only rows from the left output, which produces data from the table-valued function. The
OUTER APPLY returns all rows from the left, outer table. Like an OUTER JOIN statement, NULL
values are included for the columns where the function does not produce data. This sample
returns the first name, last name, job title, type of contact entry, and e-mail address for all
contacts in the database by combining the results from the Person.EmailAddress table with
the ufnGetContactInformation UDF. The BusinessEntityID value from each row in the table
result set is the input required by the ufnGetContactInformation function:

SELECT GCI.FirstName, GCI.LastName

 , GCI.JobTitle, GCI.BusinessEntityType

 , PE.EmailAddress

FROM Person.EmailAddress AS PE

CROSS APPLY

dbo.ufnGetContactInformation(PE.BusinessEntityID) AS GCI;

 Lesson 4: Combining Datasets CHAPTER 1 57

note LOnG-RUnninG QUeRY

Please note that this query may take a long time to run.

In the previous sample, the query returns 19,683 rows. When CROSS APPLY is replaced
with OUTER APPLY, all 19,972 rows in the EmailAddress table are returned, even though some
of them do not have data returned by the function. Figure 1-12 shows the result set of the
OUTER APPLY displaying NULL in all columns returned by the function.

FiGURe 1-12 OUTER APPLY results

Practice combining Data Sets

In this practice session, you use the UNION, EXCEPT, and INTERSECT operators in the
 AdventureWorks2008 and AdventureWorksDW2008 databases.

exercise 1 Use the UNION Operator

In this exercise, you combine the result sets from the FactInternetSales and the FactResellerSales
tables in the AdventureWorksDW2008 database.

 1. Open a new query window in SSMS.

 2. In the existing query window, type and execute the following command to display all
orders from both the reseller and Internet sales fact tables. Because the Internet sales
fact table does not have a column that would correlate with the reseller name from the
reseller sales table, a string literal of ‘N/A’ is included to respond to the requirement
of the command when both SELECT statements have the same number of columns.
In addition, the reseller name is retrieved from the DimReseller table:

USE AdventureWorksDW2008;

SELECT SalesOrderNumber, SalesOrderLineNumber

, SalesAmount, TaxAmt, 'N/A' FROM FactInternetSales

UNION ALL

 58 CHAPTER 1 Data Retrieval

SELECT SalesOrderNumber, SalesOrderLineNumber

, SalesAmount, TaxAmt, ResellerName FROM FactResellerSales

 JOIN DimReseller

 ON DimReseller.ResellerKey = FactResellerSales.ResellerKey

ORDER BY SalesOrderNumber;

 3. Save the script and close the query window.

exercise 2 Use the EXCEPT and INTERSECT Operators

In this exercise, you use the EXCEPT and INTERSECT operators to compare results from the
Production.Product and Sales.SalesOrderDetail tables in the AdventureWorks2008 database.

 1. Open a new query window.

 2. In the existing query window, type and execute the following command to display the
product ID and name for all active products that have not had any sales. Products with
a list price of $0 are not included because they are not currently available for sale.

USE AdventureWorks2008;

SELECT ProductID, Name, ListPrice FROM Production.Product

WHERE ListPrice <> 0

EXCEPT

SELECT SOD.ProductID, Name, p.listprice FROM Sales.SalesOrderDetail SOD

JOIN Production.Product P

ON P.ProductID = SOD.ProductID

ORDER BY ProductID;

 3. In the existing query window, below the existing code, type, highlight, and execute the
following code to display those products that have been included on a product order:

SELECT ProductID, Name, ListPrice FROM Production.Product

INTERSECT

SELECT SOD.ProductID, Name, p.listprice FROM Sales.SalesOrderDetail SOD

JOIN Production.Product P

ON P.ProductID = SOD.ProductID

ORDER BY ProductID;

 4. Because of the data integrity checks in this database, the SELECT command in
step 3 returns the same result set as a SELECT DISTINCT command run against the
 SalesOrderDetail table because every product that is sold is included in the Product
table. You can execute the following command and compare with the result set from
step 3 to verify this:

SELECT DISTINCT SOD.ProductID, Name, p.listprice

FROM Sales.SalesOrderDetail SOD

 JOIN Production.Product P

 ON P.ProductID = SOD.ProductID

ORDER BY ProductID;

 5. Save the script and close the query window.

 Lesson 4: Combining Datasets CHAPTER 1 59

Lesson Summary
n The UNION operator combines result sets from two or more SELECT statements.

n The EXCEPT operator returns rows that are in the left SELECT statement and do not
have matching rows in the right SELECT statement.

n The INTERSECT operator returns only rows that are shared by the two SELECT
 statements.

n The APPLY operator uses the results from a query as input to apply a table-valued
function to each row in the result set.

n OUTER APPLY returns all rows from the outer table along with the results returned by
the function when rows match, while CROSS APPLY returns only the rows from the
outer table where a match exists within the function results.

 60 CHAPTER 1 Data Retrieval

Lesson 5: applying built-in Scalar Functions

SQL Server 2008 provides a large number of built-in functions in a variety of categories. You
can use many of these functions to enhance your queries. You also can use many of these
functions to perform actions such as inserting data, creating tables, and creating constraints,
as discussed later in this book.

More info FUnctiOnS

For a complete list of function categories that link to descriptions of each function, see

“Functions (Database Engine)” in SQL Server Books Online.

After this lesson, you will be able to:

n Describe uses for built-in scalar functions.

n Describe a variety of built-in scalar functions along with the functionality
they provide.

Estimated lesson time: 45 minutes

Using the Built-in Scalar Functions
Built-in functions can be used in the SELECT or WHERE clause of a SELECT statement, but for
optimal performance, you should avoid using functions in the WHERE clause. When you use a
built-in function, you frequently follow the function name with parentheses, even when there
is no parameter. In many instances, empty parentheses tell the database engine to use the
current value. For example, the db_id function returns the database ID for the database that
is currently active in the system. Because of this behavior, many of the system functions are
what is called nondeterministic, meaning that the result may vary and the system does not
have a list of predetermined values to supply for the results of the function. The ISNULL
 function, on the other hand, is deterministic because the value to be supplied is contained
within the definition when the ISNULL function is called.

Although a discussion of all the functions available is beyond the scope of this chapter, you
will see a number of samples with descriptions of the functionality provided for some of the
more commonly used functions.

Built-in Function Samples
A large number of functions are available. Microsoft has organized these functions into
groups based on their definitions or functionality.

Date and Time Functions
A variety of functions is available when you are working with dates. New to SQL Server 2008,
the SYSDATETIME, SYSDATETIMEOFFSET, and SYSUTCDATETIME functions all retrieve the current

 Lesson 5: Applying Built-in Scalar Functions CHAPTER 1 61

system time from the server, accurate to within 100 nanoseconds. Sample results are shown
in Figure 1-13.

FiGURe 1-13 Sample results for system date functions

If you do not need the precision of these functions, the following functions return the
datetime data type rather than the datetime2(7) and datetimeoffset(7) data types returned
with these functions. Although the GETDATE and GETUTCDATE date functions use the
same format of including parentheses after the function name, the CURRENT_TIMESTAMP
 function does not. The CURRENT_TIMESTAMP and GETDATE functions produce the same
results.

Using these less precise date and time functions can improve performance because they
return a smaller data set. Figure 1-14 shows the results using these less precise functions.

FiGURe 1-14 Results of additional, less precise date and time functions

In addition to the functions that return the current date and time, there are functions that
return date and time parts, such as DATEPART and DATENAME. The DATENAME function
returns the name of the part specified, such as “January” for the month. In contrast, the
DATEPART function returns the numeric value of the part specified. For example, “1” is
 returned for January. There are also functions to perform mathematical operations on dates,
such as DATEADD and DATEDIFF.

 62 CHAPTER 1 Data Retrieval

The DATEADD and DATEDIFF functions require a date part to be defined. A variety of
 keywords and symbols can be used to specify the date part. For example, a year can be
 specified as YEAR, YY, or YYYY. Day can be represented as DAY or DD, and so on. Figure 1-15
shows the result of several queries using date functions.

FiGURe 1-15 Queries that return date and time parts

The DATEDIFF syntax follows:

DATEDIFF (datepart, startdate, enddate)

The startdate is subtracted from the enddate. For example, if the following code was
run on January 19, 2009, the result for the first query would be -8, representing that 8 year
boundaries had been crossed between the start and end dates provided. The result for the
second query would be -18 representing that 18 day boundaries had been crossed between
the start and end dates. By reversing the start and end dates in each query, positive values are
returned in the result set:

SELECT DATEDIFF(YEAR, GETDATE(), '1/1/2001')

SELECT DATEDIFF(DD, GETDATE(), '1/1/2009')

More info Date anD tiMe FUnctiOnS

For a complete list of data types and functions that are used to work with date fields, see

“Date and Time Data Types and Functions (Transact-SQL),” in SQL Server Books Online.

 Lesson 5: Applying Built-in Scalar Functions CHAPTER 1 63

System Functions
In addition to the date and time functions, system functions that manipulate the data
format are commonly used. The CAST and CONVERT functions are used to convert an
expression from one data type to another. The CONVERT statement can also be used to
format a date. Figure 1-16 shows a number of date conversions. It is important, especially
in an international organization, to understand how users interpret dates. For example, in
the United States, most users would interpret the date “01/05/07” as January 5, 2007, while
in France, users would interpret it as May 1, 2007, and in Japan, users would interpret it
as May 7, 2001. If you do not specify a specific date format, the format is determined by
whether a localized version of SQL Server is installed. When a localized version is installed,
the formatting is determined by the default language configured on the computer running
SQL Server.

FiGURe 1-16 Different date styles retrieved by using the CONVERT function

More info inteRnatiOnaL cOnSiDeRatiOnS

For more information about managing international considerations, see Chapter 3.

Additional system functions are beneficial when programming and troubleshooting.
The @@ERROR function returns the most recent error number in the current session, while
@@TRANCOUNT returns the number of current active transactions in the current session.
These functions were known as global variables in early versions of SQL Server. Unlike many
of the previous samples, the syntax for these commands does not include parentheses.
The @@ERROR statement must be executed immediately following the command that
raised the error.

 64 CHAPTER 1 Data Retrieval

String Functions
String functions perform an operation on string expressions. Listed here are several of the
more common string functions:

n LEFT, RIGHT Returns the specified number of characters from the specified side (left
or right) of the expression.

n UPPER, LOWER Returns the specified case (uppercase or lowercase) for all characters
in the expression.

n SUBSTRING Receives an expression as input and returns a certain number of characters
after a starting point. For example, SUBSTRING(FirstName,1,3) starts at the first character
of the value in the FirstName column and returns the next three characters.

n REPLACE Replaces one string with another within a defined string.

n LEN Returns the number of characters within a defined string. If you would like the
number of bytes rather than characters, you should use the DATALENGTH function.

Additional Functions
The following functions are also commonly required:

n DATALENGTH Returns the number of bytes required to represent an expression.
Can be used with any data type, but is especially useful with varchar, varbinary, and
 nvarchar, binary, and image data types.

n PATINDEX Returns the starting position of the first occurrence of a specified pattern
within a defined string.

n CHARINDEX Returns the starting position, if found, of a defined string within another
defined string. The function also accepts an optional input of start_location, which
defines the point within the second expression at which the comparisons should begin.

Practice Using built-in Scalar Functions

In this practice session, you use a variety of built-in scalar functions to add meaning and
formatting to your result sets.

exercise Write Queries That Include Built-in Functions

In this exercise, you use the DATENAME, DATEPART, DATEDIFF, LEFT, REPLACE, and CONVERT
functions.

 1. Open a new query window in SSMS.

 2. In the existing query window, type and execute the following code to retrieve the day
of the week on which each order was placed, arranged by the day of the week:

USE AdventureWorks2008;

SELECT SalesOrderID, DATENAME(DW, orderdate) AS 'Day of Week'

FROM Sales.SalesOrderHeader

ORDER BY DATEPart(DW, orderdate);

 Lesson 5: Applying Built-in Scalar Functions CHAPTER 1 65

 3. In the existing query window, below the existing code, type, highlight, and execute the
following code to retrieve the number of days that passed between when an order was
placed and when it was shipped:

SELECT SalesOrderID, DATEDIFF(DD, Orderdate, ShipDate) AS 'Days lapsed'

FROM Sales.SalesOrderHeader;

 4. In the existing query window, below the existing code, type, highlight, and execute the
following code to return a column named Employee Code that is made up of the first three
characters of each employee’s first name and first three characters of their last name:

SELECT LEFT(FirstName, 3) + LEFT(LastName, 3)AS 'Employee Code'

FROM Person.Person;

 5. In the existing query window, below the existing code, type, highlight, and execute the
following code to replace the word bike with the word bicycle in all product descriptions:

SELECT REPLACE(Description, 'bike', 'bicycle')

FROM Production.ProductDescription;

 6. In the existing query window, below the existing code, type, highlight, and execute
the following code to return each employee’s name and employee number in a single
column. To accomplish this, you must convert the BusinessEntityID (which represents
the employee number) column to a character data type:

SELECT FirstName + ' ' + Lastname + ' Employee Number: '

 + CONVERT(char, E.BusinessEntityID)

FROM HumanResources.Employee AS E

JOIN Person.Person AS P

ON P.BusinessEntityID = E.BusinessEntityID;

 7. In the existing query window, below the existing code, type, highlight, and execute the
following code to return the order number and order date. Format the date so that the
time information is not included:

SELECT SalesOrderNumber, CONVERT(varchar(30), OrderDate, 107)

FROM Sales.SalesOrderHeader;

 8. Modify the date style to additional formats such as 11, 03, 111, 114, and 103. Notice
that 114 does not provide the required information, while 03 and 11 would be
 confusing to any user not familiar with those formats.

 9. Save the script and close SSMS.

Lesson Summary
n Use built-in functions to provide more meaningful result sets.

n Use date and time functions to manipulate and return date information.

n Use string functions to format or return information about string expressions.

 66 CHAPTER 1 Data Retrieval

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can perform the
following tasks:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenarios. These scenarios set up a real-world situation involving
the topics of this chapter and asks you to create solutions.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n The SELECT statement provides the ability to retrieve data from a database. The

 simplest SELECT statement includes a SELECT clause and a FROM clause. A WHERE
clause can limit the number of rows returned in the result set.

n Use JOIN operators to combine columns from multiple related tables to add clarity and
greater functionality to your SELECT statements. Use INNER JOIN to retrieve only those
rows that have a matched row in each table based on the ON predicate. Use LEFT or
RIGHT OUTER JOIN to return all rows from the outer table and those rows in common
from the inner table. Use FULL OUTER JOIN to define both tables as outer tables,
 returning all rows.

n Use aggregate functions and the GROUP BY clause to provide summary data. Use
ROLLUP and CUBE to provide additional summary information. Use the GROUPING
function to show which rows hold summary data provided by the ROLLUP or CUBE
operators. Use GROUPING SETS to provide greater flexibility and readability to your
GROUP BY queries.

n Use the UNION, INTERSECT, and EXCEPT operators to combine and compare result sets.

n Use built-in functions to provide additional formatting and context to the data included
in your result sets. These can include any of the groups of functions defined in SQL
Server 2008, but some of the most common functions are string and date/time functions.

key terms

Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

n Function

n Scalar function

n User-defined function (UDF)

n Aggregate function

 Key Terms CHAPTER 1 67

n Table-valued function

n UNION

n JOIN

n INNER JOIN

n OUTER JOIN

Case Scenarios
In the following case scenarios, you apply what you have learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Retrieving Data
You are a database developer for Wide World Importers. You are responsible for a sales
 database for the company. This database is normalized to third normal form.

An application developer who is fairly new to SQL Server is developing a Web application
that retrieves information from the database. Although he feels confident in his ability to use
his reference tools to develop the required queries, he has asked for a set of sample queries
from which he can extrapolate and build the required queries.

You need to provide a Web developer with a sampling of queries demonstrating the
required functionality. The application needs to include queries that return information on
products (including their names and descriptions) that were imported based on the date
the order was placed or completed. The sales department would like to provide an option in
the application to display dates in different formats. In addition, the salespeople would like
to be able to sort data based on the number of days between when the order was placed
and when it was completed. Finally, users should be able to return data from different time
periods, such as the past month, quarter, or year.

Answer the following question for your manager:

What functions and clauses should you include in the sample queries to provide
the application developer with samples to help him with his application development?

Case Scenario 2: Grouping Data
The application developer from Case Scenario 1 has implemented the first stage of the Web
application successfully based on the queries you provided. The customer has now asked that
he include summary data detailing how many total products were sold, as well as how many
total products were sold from a particular category. Each row in the SalesOrderDetail table
refers to only one product ID and the Qty column includes the quantity ordered of that item
on the order number.

Answer the following question for your manager:

What functions and clauses should you include in the sample queries to provide the
 application developer with samples to help him with his application development?

 68 CHAPTER 1 Data Retrieval

Suggested Practices

To help you master the exam objectives presented in this chapter, do all the following practices.

Query Data by Using SELECT Statements
n Practice 1 Write and execute a variety of SELECT statements including WHERE

 clauses using Boolean operators and LIKE and the ORDER BY clause. Review and
 compare the output from the different statements.

Combine Datasets
n Practice 1 Write and execute a variety of SELECT statements that include the JOIN

operator. Be sure to compare the results of INNER, LEFT or RIGHT OUTER, and FULL
OUTER joins.

n Practice 2 Write and execute a variety of SELECT statements that use the UNION,
EXCEPT, INTERSECT, CROSS APPLY, and OUTER APPLY operators.

Implement Aggregate Queries
n Practice 1 Write and execute a variety of SELECT statements that use aggregate

functions with the GROUP BY clause and GROUPING operator.

Apply Built-in Scalar Functions
n Practice 1 Write and execute a variety of queries that return values from built-in

functions including a variety of date and time functions, CAST and CONVERT,
 REPLACE, LEN and DATALENGTH, PATINDEX, and CHARINDEX.

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just one exam objective, or you can test yourself on all the 70-433 certification
exam content. You can set up the test so that it closely simulates the experience of taking
a certification exam, or you can set it up in study mode so that you can look at the correct
answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section titled “How to

Use the Practice Tests,” in the Introduction to this book.

 CHAPTER 2 45

c H a P t e R 2

Modifying Data—The INSERT,
UPDATE, DELETE, and MERGE
Statements

One of the basic functions required for any database is the ability to add, remove,
and modify data. In the SQL programming language, data manipulation language

(DML) serves this purpose. The INSERT, UPDATE, and DELETE commands provide you with
the ability to manipulate data based on provided input or based on information found
 elsewhere in the database.

In Microsoft SQL Server 2005, the OUTPUT clause was introduced to allow you to return
information from each row affected by an INSERT, UPDATE, or DELETE statement. In SQL
Server 2008, the MERGE statement was introduced to enhance the ability to perform
 INSERT, UPDATE, and DELETE statements on a table based on the results of a query to a
joined table. These two features add flexibility to your DML statements.

To ensure data consistency and reliability, SQL Server provides the ability to execute
statements as part of a transaction. A transaction is a group of commands that succeeds
or fails as a whole. One of the most referenced examples of a transaction is the transfer
of funds from a savings account to a checking account. At a minimum, two steps need to
 occur: a debit from savings and a credit to checking. A transaction would ensure that if only
part of the transaction was completed when the system failed, the entire transaction would
return to its initial state.

More info eRROR HanDLinG

For information about using transactions within stored procedures and about error

handling, see Chapter 5, “Programming Microsoft SQL Server with T-SQL User-Defined

Stored Procedures, Functions, Triggers, and Views.”

Exam objectives in this chapter:
n Modify data by using INSERT, UPDATE, and DELETE statements.

n Return data by using the OUTPUT clause.

 c o n t e n t s

 cHaPteR 2 45

 Modifying Data—the INSERT, UPDATE, DELETE, and MERGE Statements 45

Before You Begin .46

Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements 47

Inserting Data 48

Updating Data 50

Deleting Data 52

Lesson Summary 57

Lesson 2: Enhancing DML Functionality with the OUTPUT Clause and MERGE Statement 58

Using the OUTPUT Clause 58

Using the MERGE Statement 60

Lesson Summary 66

Lesson 3: Managing Transactions . 67

Understanding Transactions 67

Defining Explicit Transactions 68

Understanding Special ROLLBACK Scenarios 68

Gathering Information About Transactions 69

Understanding Locking 70

Setting Transaction Isolation Levels 75

Lesson Summary 77

Chapter Review . 78

Chapter Summary 78

Key Terms . 78

Case Scenarios 78

Suggested Practices . 79

Modify data by using INSERT, UPDATE, and DELETE statements 79

Return data by using the OUTPUT clause 79

Modify data by using MERGE statements 80

Manage transactions 80

Take a Practice Test .80

 46 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

n Modify data by using MERGE statements.

n Manage transactions.

Lessons in this chapter:
n Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements 47

n Lesson 2: Enhancing DML Functionality with the OUTPUT Clause
and MERGE Statement 58

n Lesson 3: Managing Transactions 67

before You begin

To complete the lessons in this chapter, you must have:

n A basic understanding of relational database design concepts and terminology

n A basic understanding of SQL Server data types

n A general understanding of SELECT statement syntax

n Knowledge about how SQL Server Management Studio (SSMS) functions. as well as the
ability to open new query windows and existing query files from within SSMS

n SQL Server 2008 Developer Edition, Enterprise Edition, or Enterprise Evaluation Edition,
with the AdventureWorks2008 and Northwind sample databases installed

real World

Ann Weber

Transactions are key to providing a consistent and reliable view of the data to all

users at all times. As a consultant and as a trainer, I have come across numerous

difficulties caused by poorly written transactions. One of the most frustrating errors

I came across was when a company had long transactions that would cause deadlock

situations to arise from time to time in the application. Shortening and reordering

the order that tables were accessed within the transactions would have minimized the

number of deadlock errors that occurred. But even more frustrating was the fact that

the code did not handle the errors. The users would lose all the data they had been

entering (which may have taken them up to 15 minutes to complete) and they would

receive the following error message: “Transaction (Process ID xx) was deadlocked

on lock resources with another process and has been chosen as the deadlock victim.

Rerun the transaction.” Even if you do not expect deadlock situations to occur, you

need to program for the possibility. Users should never see this kind of message. The

client needed to capture the user’s input before opening the transaction, intercept

the deadlock error, and attempt to resend the user’s input before finally sending a

user-friendly message stating that the insert failed and to please try again later.

 Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements CHAPTER 2 47

Lesson 1: Modifying Data by Using INSERT, UPDATE,
and DELETE Statements

The INSERT, UPDATE, and DELETE statements allow you to add, remove, and modify data in
your databases. These statements can be used in a variety of ways to allow you to specify
fixed values. The table schema (also known as the table definition) affects the values that may
or may not be defined, modified, and removed in INSERT, UPDATE, and DELETE statements.
For example, the IDENTITY property is used to create an identity column that automatically
assigns incremental values in the identity column each time a new row is inserted. Because
of this, under normal circumstances, you cannot enter a value for an identity column when
 executing an INSERT or UPDATE statement. You can overcome this limitation by issuing
the SET IDENTITY_INSERT ON command in the current connection. NULL definitions and
 constraints also have an effect on DML statements.

More info cOnStRaintS anD IDENTITY cOLUMnS

For more information about table schemas, constraints, and the IDENTITY property, see

 Chapter 3, “Tables, Data Types, and Declarative Data Integrity.”

After this lesson, you will be able to:

n Use the INSERT statement to add new rows to your tables.

n Use the UPDATE statement to modify rows in your tables.

n Use the DELETE statement to remove rows from your tables.

Estimated lesson time: 45 minutes

real World

Ann Weber

DML statements are a core functionality in SQL Server. As a trainer and

 consultant, I have come across many cases of data loss caused by improperly

constructed UPDATE or DELETE statements. To minimize the possibility of data loss

when issuing DML commands, you can follow several precautions. First, develop

and test all code on a nonproduction server. Second, build the logic for the UPDATE,

INSERT, or DELETE command as a SELECT statement to verify the correct result set

is being returned. In addition, either execute the command as part of an explicit

transaction and do not commit the transaction until you verify success, or turn

on implicit transactions while you are building ad hoc queries to change data.

 Remember that with implicit transactions, a DML statement automatically starts a

transaction, but you must execute a COMMIT or ROLLBACK statement manually.

 48 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

The fact that implicit transactions are disabled by default on a server running SQL

Server has caught many Oracle developers off guard. Unless you change the SQL

Server default settings or explicitly start a transaction, there is no way to roll back a

command once it has been executed. Implicit transactions actions are always enabled

on Oracle servers. If you would like to have the same functionality in SQL Server, enable

the SET_IMPLICIT_TRANSACTIONS connection property for each connection created.

Inserting Data
The INSERT statement provides you with the ability to add new rows to a table. Depending
on the schema of the table, you may need to provide data for all or only a portion of the
columns in the table. DEFAULT constraints, IDENTITY properties, and NULL settings may all
affect the data requirements of your INSERT statements.

INSERT Statement Syntax
The INSERT command syntax is as follows:

[WITH <common_table_expression> [,...n]]

INSERT

 [TOP (expression) [PERCENT]]

 [INTO]

 { <object> | rowset_function_limited

 [WITH (<Table_Hint_Limited> [...n])]

 }

{

 [(column_list)]

 [<OUTPUT Clause>]

 { VALUES ({ DEFAULT | NULL | expression } [,...n]) [,...n]

 | derived_table

 | execute_statement

 | <dml_table_source>

 | DEFAULT VALUES

 }

}

[;]

More info tHe WITH <COMMON TABLE EXPRESSION> cLaUSe anD tHe OUTPUT cLaUSe

For more information about the WITH clause and common table expressions, see

 Chapter 4, “Using Additional Query Techniques.” For more information about the WITH

clause, see Lesson 2, “Enhancing DML Functionality with the OUTPUT Clause and MERGE

Statement,” later in this chapter.

 Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements CHAPTER 2 49

Using the INSERT Statement
When inserting data, you can include data for all columns or a partial list of columns. When
inserting data for all columns, you do not have to specify the column names in the INSERT
statement, as in the sample here:

INSERT INTO Sales.SalesReason

VALUES ('Item Closeout', 'Other', getdate());

In this command, SalesReasonID is not entered because it is an identity column and is
inserted automatically by the SQL Server engine.

The ModifiedDate column of the SalesReason table has a DEFAULT constraint associated
with it that specifies the getdate() function. Because of this, the following command produces
the same results as the previous command:

INSERT INTO Sales.SalesReason

VALUES ('Item Closeout', 'Other', DEFAULT);

note OPtiOnaL INTO keYWORD

The INTO keyword is optional in all INSERT statements.

If a column supports NULL values, you can use the keyword NULL to insert a row with
missing data in one or more columns, as shown in bold type in the following example:

INSERT INTO Sales.SpecialOffer

VALUES ('Temporary Holiday Discount', .10, 'Seasonal Discount'

 , 'Reseller', GETDATE(), DATEADD(dd, 30, getdate())

 , 1, NULL, DEFAULT, DEFAULT);

If you want to specify only certain columns, you can reference the column names when
writing the INSERT statement, as in the following example:

INSERT INTO Sales.SpecialOffer

(Description, DiscountPct, Type, Category, StartDate

 , EndDate, MinQty)

VALUES ('Temporary Holiday Discount', .10, 'Seasonal Discount'

 , 'Reseller', GETDATE(), DATEADD(dd, 30, getdate())

 , 1);

Using the INSERT . . . SELECT statement allows you to append rows to an existing table
based on data selected from a different table. The following command takes rows from the
Employees table and appends them to the Customers table. Because the number and data
type of columns in the result set must match the destination table, concatenation is used to
 provide the correct number of columns. The following SUBSTRING command retrieves the

 50 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

first five letters of the employee’s last name to build a customer ID that is similar to those in
the Customers table:

INSERT INTO Customers

SELECT SUBSTRING(lastname,1,5), 'Northwind Traders', FirstName + ' ' + LastName

 , 'Employee', Address, City, Region, PostalCode

 , Country, HomePhone, NULL

FROM Employees

note DatabaSe

The sample that has just been discussed uses the Northwind database.

Finally, the SELECT INTO statement allows you to create a new temporary or permanent
table populated with the results of the defined SELECT statement. The following command
creates a temporary table named #EmployeeDepartment that includes each employee’s name,
job title, and department information:

SELECT IDENTITY (int, 1,1) AS EmpID, FirstName, LastName, JobTitle

 , Name AS 'Department', GroupName as 'Division'

INTO #EmployeeDepartment

FROM HumanResources.Employee JOIN Person.Person

 ON HumanResources.Employee.BusinessEntityID = Person.Person.BusinessEntityID

 JOIN HumanResources.EmployeeDepartmentHistory

 ON HumanResources.Employee.BusinessEntityID =

 HumanResources.EmployeeDepartmentHistory.BusinessEntityID

 JOIN HumanResources.Department

 ON HumanResources.Department.DepartmentID =

 HumanResources.EmployeeDepartmentHistory.DepartmentID

 WHERE HumanResources.EmployeeDepartmentHistory.EndDate IS NULL

 ORDER BY Department, Division

Updating Data
Over time, existing data in the database changes and requires modification. The UPDATE
 command allows you to change the value of one or more columns in one or more rows of a
table. Adding a value to a column that is currently NULL and removing a value from a column
are both considered UPDATE statements, not INSERT or DELETE statements. It is important to
remember that an INSERT statement adds an entirely new row to the table and that a DELETE
statement removes a complete row from the table.

UPDATE Statement Syntax
The UPDATE statement full syntax is as follows:

[WITH <common_table_expression> [...n]]

UPDATE

 [TOP (expression) [PERCENT]]

 Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements CHAPTER 2 51

 { <object> | rowset_function_limited

 [WITH (<Table_Hint_Limited> [...n])]

 }

SET

 { column_name = { expression | DEFAULT | NULL }

 | { udt_column_name.{ { property_name = expression

 | field_name = expression }

 | method_name (argument [,...n])

 }

 }

 | column_name { .WRITE (expression , @Offset , @Length) }

 | @variable = expression

 | @variable = column = expression

 | column_name { += | -= | *= | /= | %= | &= | ^= | |= } expression

 | @variable { += | -= | *= | /= | %= | &= | ^= | |= } expression

 | @variable = column { += | -= | *= | /= | %= | &= | ^= | |= } expression

 } [,...n]

 [<OUTPUT Clause>]

 [FROM{ <table_source> } [,...n]]

 [WHERE { <search_condition>

 | { [CURRENT OF

 { { [GLOBAL] cursor_name }

 | cursor_variable_name

 }

]

 }

 }

]

 [OPTION (<query_hint> [,...n])]

[;]

Using the UPDATE Statement
In its simplest form, the UPDATE statement requires only the name of the object (table or
view) being updated and the value to be set. The WHERE clause defines which rows are
 updated by the command. Because a single UPDATE statement has the ability to update all
rows in a table with a single command, programming techniques such as stored procedures
and triggers need to be designed to detect and handle multiple-row updates.

The following command updates every row in the CurrencyRate table and adds 0.005 to
the current end-of-day rate:

UPDATE Sales.CurrencyRate

SET EndOfDayRate = EndOfDayRate + .005;

 52 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

If you need to update only specific rows, you must define a WHERE clause to restrict the
row set. The following command sets the sales reason name to “N/A,” for SalesReasonID 10 in
the SalesReason table:

UPDATE Sales.SalesReason

SET Name = 'N/A'

WHERE SalesReasonID = 10;

You can also update the information in a target table based on information in a table
joined to the target table by using the FROM clause. For example, the following command
increases the unit price of all red products by 5 percent:

UPDATE Sales.SalesOrderDetail

SET UnitPrice = UnitPrice * 1.05

FROM SALES.SalesOrderDetail JOIN Production.Product

 ON SALES.SalesOrderDetail.ProductID = Production.Product.ProductID

WHERE Production.Product.Color = 'Red'

Best PraCtiCes teStinG Data MODiFicatiOnS

Build the logic of an UPDATE or DELETE statement as a SELECT statement and verify its logic

before modifying it to run as an UPDATE or DELETE statement. In addition, execute data

 modifications as part of an explicit transaction to enable a rollback of unintended modifications.

Transactions are covered in Lesson 3, “Managing Transactions,” later in this chapter.

Deleting Data
The DELETE statement allows you to remove from the database rows that are no longer required.
With the DELETE statement, entire rows of data are removed from the table. If you want to simply
remove a value from a column in a given row, you should use an UPDATE statement.

DELETE Statement Syntax
The DELETE statement full syntax is as follows:

[WITH <common_table_expression> [,...n]]

DELETE

 [TOP (expression) [PERCENT]]

 [FROM]

 { <object> | rowset_function_limited

 [WITH (<table_hint_limited> [...n])]

 }

 [<OUTPUT Clause>]

 [FROM <table_source> [,...n]]

 [WHERE { <search_condition>

 | { [CURRENT OF

 { { [GLOBAL] cursor_name }

 | cursor_variable_name

 }

 Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements CHAPTER 2 53

]

 }

 }

]

 [OPTION (<Query Hint> [,...n])]

[;]

<object> ::=

{

 [server_name.database_name.schema_name.

 | database_name. [schema_name] .

 | schema_name.

]

 table_or_view_name

}

note cURSORS

The CURRENT OF, GLOBAL, cursor_name, and cursor_variable_name options are applicable

only when using cursors. The discussion of cursors is beyond the scope of this book. For more

information about cursors, see the article “Transact-SQL Cursors” in SQL Server Books Online.

Using the DELETE Statement
The syntax for the DELETE statement is the simplest of the three DML statements. Like the
UPDATE statement, it is important to remember to include the WHERE clause when writing a
DELETE statement. If you execute a DELETE statement without a WHERE clause, all rows from
the table are deleted.

To delete all rows from a table, the syntax is simply

DELETE FROM <tablename>

note OPtiOnaL FROM keYWORD

The FROM keyword is optional in the DELETE statement syntax.

To limit the rows removed, add a WHERE clause to the DELETE statement. The following
 example removes all rows in the Employees table for the employee who has an employee ID of 7:

DELETE FROM EMPLOYEES

WHERE EmployeeID = 7

note DatabaSe

This sample uses the Northwind database, but it does not actually succeed in the sample

database due to a foreign key constraint with the Orders table.

 54 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

Like the INSERT and UPDATE commands, the DELETE command can remove rows in one
table based on information returned from a joined table. To accomplish this, you define a
 second FROM clause. The following command removes rows from the Order Details table
where the order was placed before July 10, 1996, and the order has shipped:

DELETE FROM [Order Details]

FROM ORDERS JOIN [Order Details]

 ON Orders.OrderID = [Order Details].OrderID

WHERE OrderDate < '07-10-1996' AND ShippedDate IS NOT NULL

Using the TRUNCATE TABLE Statement
Like a DELETE statement without a WHERE clause, the TRUNCATE TABLE statement can also
be used to remove all data from a table. The TRUNCATE TABLE statement differs from the
DELETE statement in several ways. First, the DELETE statement logs information on each row
deleted, while the TRUNCATE TABLE statement only creates entries for the deallocation of the
data pages. Second, because of the minimal logging, along with how the Database Engine
removes the data from the table, the TRUNCATE TABLE statement executes more quickly and
requires fewer resources on the server. Finally, if an identity column exists in the table, the
TRUNCATE TABLE command resets the identity seed value.

The syntax for the TRUNCATE TABLE statement is simply

TRUNCATE TABLE <tablename>

Neither the DELETE statement without a WHERE clause nor the TRUNCATE TABLE
 statement affect the schema structure of the table or related objects.

Practice Modifying Data

In this practice, you insert data into the Credit table in the Sales database by using a variety of
methods. You also update and delete data from the Credit table.

exercise 1 Insert Data

In this exercise, you insert data into the Credit table and verify the results.

 1. If necessary, start SSMS and connect to your SQL Server instance.

 2. Open, review, and execute the Lesson01 PracticeSetup.sql file, which can be found
among the accompanying sample files in the Practice folder, to create the Sales
 database and the Credit table for these exercises.

 3. Close the current query window.

 4. Open a new query window, and type and execute the following command to review
the columns in the Sales table. No rows exist in this table at this time:

USE Sales;

GO

SELECT * FROM Credit;

 Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements CHAPTER 2 55

 5. In the current query window, below the existing text, type, highlight, and execute the
following command to add a new row to the Credit table by specifying values for each
column based on its relative location in the table schema:

INSERT INTO Credit

VALUES ('Izak', 'Cohen', 5000, 'izak@adatum.com');

More info iDentitY cOLUMnS

You cannot specify a value for CustomerID because it is defined as an identity column.

For more information on the IDENTITY property, see Chapter 3.

 6. In the current query window, below the existing text, type, highlight, and execute the
following command to add a new row to the Credit table by specifying values for each
column based on its relative location, where data is not provided to every column.
A value of “0”, the default value defined when the table was created, is entered for the
credit limit:

INSERT INTO Credit

VALUES ('David', 'Hamilton', DEFAULT, NULL);

 7. In the current query window, below the existing text, type, highlight, and execute the
following command to add a new row to the Credit table by specifying values for each
column based on its relative location, where data is not provided to every column. This
command fails because the number of columns specified does not match the table
definition:

INSERT INTO Credit

VALUES ('Don', 'Hall', 5000);

 8. To correct this error, delete the previous command and type, highlight, and execute
the following command. This command specifies the columns and column order to be
expected in the VALUES clause and adds two new rows to the table:

INSERT INTO Credit

(firstname, lastname, creditlimit)

VALUES ('Don', 'Hall', 5000);

INSERT INTO Credit

(firstname, lastname, creditlimit)

VALUES ('Punya', 'Palit',10000);

 9. In the current query window, below the existing text, type, highlight, and execute the
following command to review the rows added to the Credit table:

SELECT * FROM CREDIT;

 10. Save the script and close the query window. Leave SSMS open for the next exercise.

 56 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

exercise 2 Update Data

In this exercise, you update the data that you entered into the Credit table in Exercise 1. You
then verify the results of each UPDATE statement.

 1. Open a new query window, and type and execute the following command to add an
e-mail address for Punya Palit (CustomerID 4):

USE Sales;

GO

UPDATE Credit

SET Email = 'punya@adatum.com'

WHERE CustomerID = 4;

 2. In the current query window, below the existing text, type, highlight, and execute the
following command to review the row modified in step 1:

SELECT * FROM Credit WHERE CustomerID = 4;

 3. In the current query window, below the existing text, type, highlight, and execute the
following command to add 500 to the CreditLimit value in every row:

UPDATE Credit

SET CreditLimit = CreditLimit + 500;

 4. In the current query window, below the existing text, type, highlight, and execute the
following command to review the rows modified in step 3. Notice that all the credit
limits have been increased by 500:

SELECT * FROM Credit;

 5. Save the script and close the query window. Leave SSMS open for the next exercise.

exercise 3 Delete Data

In this exercise, you delete the data that you entered into the Credit table in Exercise 1. You
also verify the functionality of the TRUNCATE TABLE statement.

 1. Open a new query window, and type and execute the following command to delete
the row for Punya Palit (CustomerID 4):

USE SALES;

GO

DELETE FROM Credit

WHERE CustomerID = 4;

 2. In the current query window, below the existing text, type, highlight, and execute the
following command to review the remaining rows:

SELECT * FROM Credit;

 Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements CHAPTER 2 57

 3. In the current query window, below the existing text, type, highlight, and execute the
following command to delete all rows from the Credit table and verify the results:

DELETE FROM Credit;

GO

SELECT * FROM Credit;

 4. In the current query window, below the existing text, type, highlight, and execute the
following command to add a new row to the credit table and verify the results. Notice
that the CustomerID value is the next incremented value even though the previous
rows were all deleted:

INSERT INTO Credit

(firstname, lastname, creditlimit)

VALUES ('Punya', 'Palit',10000);

SELECT * FROM Credit;

 5. In the current query window, below the existing text, type, highlight, and execute the
following command to truncate the table and reset the CustomerID Identity property
to the original seed value:

TRUNCATE TABLE Credit;

 6. In the current query window, below the existing text, type, highlight, and execute the
following command to add a new row to the credit table and verify the results. Notice
that the CustomerID value is “1”, the original seed value:

INSERT INTO Credit

(firstname, lastname, creditlimit)

VALUES ('Punya', 'Palit',10000);

SELECT * FROM Credit;

 7. Save the script and close the query window.

 8. Verify that you have closed all the query windows opened during this practice, and
then open, review, and execute the Lesson01 PracticeCleanup.sql file, which can be
found among the accompanying sample files in the Chapter 2/Lesson 1 folder.

Lesson Summary
n The INSERT statement allows you to add new rows to a table.

n The UPDATE statement allows you to make changes to the existing data in a table.
It allows you not only to modify the value in a column, it also allows you to add or
remove a value from a single column in the table without affecting the rest of the row
being modified.

n The DELETE statement allows you to remove one or more rows from a table.

 58 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

Lesson 2: enhancing DML Functionality with the
OUTPUT clause and MERGE Statement

You can use the OUTPUT clause and MERGE statement to enhance the functionality provided
by DML statements. The OUTPUT clause allows you to return information from rows affected
by an INSERT, UPDATE, or DELETE statement. With this functionality, you can perform
 additional tasks more cleanly based on the information provided. These tasks can include
confirmation e-mails, data auditing, and similar duties.

The MERGE statement provides you with the ability to perform an INSERT, UPDATE, or
DELETE operation on a target table based on a set of rules that are determined by a row
 comparison between the target table and a source table.

After this lesson, you will be able to:

n Use the OUTPUT clause to return information from inserted, deleted, or modified
rows.

n Use the MERGE statement to perform INSERTS, UPDATES, or DELETES based on a
comparison between two tables.

Estimated lesson time: 30 minutes

Using the OUTPUT Clause
The OUTPUT clause gives you the ability to access the inserted and deleted tables that in
versions previous to SQL Server 2005 were accessible only through triggers. Because of this,
some of the functionality that was previously performed through triggers can be handled by
stored procedures instead, removing the need for certain triggers.

More info tRiGGeRS anD StOReD PROceDUReS

There are both benefits and limitations to consider when deciding whether to provide

functionality through stored procedures and triggers. For more information about triggers

and stored procedures, see Chapter 5.

OUTPUT Clause Syntax
The OUTPUT clause syntax can be included with any INSERT, UPDATE, or DELETE statement.
The syntax specific to the OUTPUT clause follows:

<OUTPUT_CLAUSE> ::=

{

 [OUTPUT <dml_select_list> INTO { @table_variable | output_table } [(column_list)]]

 [OUTPUT <dml_select_list>]

}

<dml_select_list> ::=

 Lesson 2: Enhancing DML Functionality with the OUTPUT Clause and MERGE Statement CHAPTER 2 59

{ <column_name> | scalar_expression } [[AS] column_alias_identifier]

 [,...n]

<column_name> ::=

{ DELETED | INSERTED | from_table_name } . { * | column_name }

 | $action

OUTPUT Clause Samples
There are many functions that can be fulfilled by using the OUTPUT clause. Several examples
are included next.

note DatabaSe anD SaMPLe ScRiPtS

The OUTPUT clause query samples use the Northwind database. You can find scripts

to create the sample data along with the queries presented in the text among the

 accompanying sample files in the Chapter2/TextSamples folder.

Many environments need to record data inserts to an audit table. For the following
 example, the company wants to be able to run reports identifying how many rows are
 inserted during different periods of time. The business requirements specify that the date
the row was inserted, along with the primary key identifier from the source table, should be
included in a special auditing table that is used to run these reports. One way to accomplish
this is with the OUTPUT clause. For this example, the Audit table includes an AuditID column,
which is an identity column; an InsertedDate column, which contains the date the row
was inserted; and the InsertedID column, which contains the primary key value from the
row inserted into the table being audited. The following command adds a new row to the
 Employees table, and also adds a corresponding row with the current date and time and the
EmployeeID for the new employee into the Audit table:

INSERT INTO Employees

(LastName, FirstName, Title)

OUTPUT getdate(), inserted.EmployeeID INTO Audit

VALUES ('Ralls', 'Kim', 'Support Rep');

Another scenario involves data archiving. For example, suppose that a company wants to
move all records for orders placed before December 1, 1997, from the Order Details table
to the OrderDetailsArchive table. You can delete the rows from the Order Details table and
move them to the OrderDetailsArchive table in a single step by using the following DELETE
 statement with the OUTPUT clause:

DELETE FROM [Order Details]

OUTPUT deleted.* INTO OrderDetailsArchive

FROM Orders join [Order Details]

ON Orders.OrderID = [Order Details].OrderID

WHERE OrderDate < '12-01-1997';

 60 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

The final scenario is for a company that would like to see the before and after state of
the CategoryName column whenever updates are made to this column. This information,
along with the modification date and the login ID for the employee that made each change,
is gathered in a table named CategoryChanges. The following command adds information
to a CategoryChanges table that includes the following columns: ChangeID, CategoryID,
 OldCategoryName, NewCategoryName, ModifiedDate, and LoginID. The command also
 modifies a category name and adds a row to the CategoryChanges table:

UPDATE Categories

SET CategoryName = 'Dried Produce'

OUTPUT inserted.CategoryID, deleted.CategoryName

 , inserted.CategoryName, getdate(), SUSER_SNAME()

 INTO CategoryChanges

WHERE CategoryID = 7;

Using the MERGE Statement
The MERGE statement, along with change data capture (CDC), which were both introduced
in SQL Server 2008, greatly enhance the functionality for data warehouses and staging
 databases. The MERGE statement gives you the ability to compare rows in a source and
 destination table. You can then define the appropriate INSERT, UPDATE, or DELETE command
to be performed based on the results of the comparison.

More info cHanGe Data caPtURe (cDc)

For more information about CDC, see Chapter 9, “An Introduction to Microsoft

SQL Server Manageability Features.”

MERGE Statement Syntax
The syntax of the MERGE statement is as follows:

[WITH <common_table_expression> [,...n]]

MERGE

 [TOP (expression) [PERCENT]]

 [INTO] target_table [WITH (<merge_hint>)] [[AS] table_alias]

 USING <table_source>

 ON <merge_search_condition>

 [WHEN MATCHED [AND <clause_search_condition>]

 THEN <merge_matched>]

 [WHEN NOT MATCHED [BY TARGET] [AND <clause_search_condition>]

 THEN <merge_not_matched>]

 [WHEN NOT MATCHED BY SOURCE [AND <clause_search_condition>]

 THEN <merge_matched>]

 [<output_clause>]

 [OPTION (<query_hint> [,...n])]

;

 Lesson 2: Enhancing DML Functionality with the OUTPUT Clause and MERGE Statement CHAPTER 2 61

The following options can be defined as part of the MERGE statement syntax:

n [INTO] <target_table> Defines the table or view where the rows returned by the
WHEN clauses will be inserted, updated, or deleted. This table or view is also used
to match data against rows in the <table_source> based on the <clause_search_
condition>. If the <target_table> is a view, all conditions for updating a view must be
met for the MERGE statement to succeed.

n [AS] table_alias Defines an alias that can be used to minimize typing or make a
 command more readable by shortening table names referenced multiple times within
the command.

n USING <table_source> Defines the table, view, or expression from which the rows
that are matched to the target table come.

n ON <merge_search_condition> Specifies the conditions that should be used to
define whether the rows in the two tables match. Similar to the ON clause in a JOIN
 operation, this could simply be <table1_id> = <table2_id>.

n WHEN MATCHED THEN <merge_matched> Defines the action to be performed on
the rows in the target table where a match exists between the source and target rows
based on the ON <merge_search_condition> clause and any additional conditions
specified as part of the WHEN MATCHED THEN <merge_matched> clause. For an
UPDATE to succeed, the source row must match only one target row. A single MERGE
statement can have up to two WHEN MATCHED clauses joined by an AND operator.
When two WHEN MATCHED clauses are defined, one must perform an UPDATE and
one a DELETE. In addition, the second WHEN MATCHED clause is performed only
where the first is not. For example, assume the target table includes only rows for
products that are in stock. It does not include rows for products with 0 or negative
inventory. The source table includes stock inventory changes and additions and
 subtractions from stock (represented as positive and negative integers). The first WHEN
MATCHED clause includes a condition of adding the quantities of matched rows and
then verifying if they are greater than 0. If yes, the quantity in the target table is set to
the sum of the source quantity and the target quantity. The second WHEN MATCHED
clause has a condition of the sum being less than or equal to 0 and if that is so, it
 deletes the row from the target table.

n WHEN NOT MATCHED [BY TARGET] THEN <merge_not_matched> Specifies that
a row be inserted into the target table if a matched row is not found and if any
 additional conditions defined in the WHEN NOT MATCHED [BY TARGET] clause. Only
one WHEN NOT MATCHED [BY TARGET] clause may exist in a MERGE statement.

n WHEN NOT MATCHED BY SOURCE THEN <merge_matched> Defines an UPDATE
or DELETE action on rows that exist in the target table but not in the source. Like
the WHEN MATCHED clause, a MERGE statement can include up to two WHEN NOT
MATCHED BY SOURCE clauses, and when two exist, one must be defined as an UPDATE
and the other is defined as a DELETE. When no rows are returned by the source table,
columns in the source table cannot be referenced in the <merge_matched> clause or
an error 207 (invalid column name) is returned.

 62 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

MERGE Statement Samples
A common merge scenario is moving data from one table to another. For example,
 suppose that a company needs to copy information from the SalesOrderDetail table in the
 AdventureWorks2008 database to the SalesOrderDetailHistory table. The SalesOrderDetailHistory
table includes a column called Cancelled in addition to the columns defined in the
 SalesOrderDetail table. Instead of using timestamps or some other method to identify what
rows have changed since the last time information was moved, the MERGE statement can
compare the two tables and insert only new rows, rather than having to insert all rows or
 maintaining Timestamp columns. The use of CDC makes this process even more efficient. The
MERGE statement here inserts any new rows into the SalesOrderDetailHistory table and adds
a value of “True” to the Cancelled column for any rows that no longer exist in the source table.
Because business rules and data constraints prohibit updates to the SalesOrderDetails table, row
 modifications are not checked or propagated:

MERGE INTO Sales.SalesOrderDetailHistory AS SODH

 USING Sales.SalesOrderDetail AS SOD

 ON SODH.salesorderid = SOD.salesorderid

 AND SODH.SalesOrderDetailID = SOD.SalesOrderDetailID

WHEN NOT MATCHED BY TARGET THEN

 INSERT (Linetotal, SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty

 , ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount

 , rowguid, ModifiedDate, Cancelled)

VALUES (Linetotal, SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty

 , ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount

 , rowguid, ModifiedDate,DEFAULT)

WHEN NOT MATCHED BY SOURCE THEN

 UPDATE SET SODH.Cancelled = 'True';

You can use the OUTPUT clause in conjunction with the $action variable to report
 information on whether inserts, updates, or deletes were performed during the execution of
the MERGE statement, as shown in Figure 2-1.

Practice implementing extended DML Functionality

In this practice, you use the OUTPUT clause to report the before and after states of the quantity
column when a row is updated in the SalesOrderDetail table. You also use the MERGE statement
in conjunction with the OUTPUT clause to maintain information in a SalesOrderDetailHistory
table and track changes performed by the MERGE statement in the MergeAudit table.

exercise 1 Use the OUTPUT Clause

In this exercise, you test a script that uses the OUTPUT clause to build a table variable with
information determined by the results of an UPDATE command. You perform this update as
part of a transaction so that you can roll back changes after the test has been successfully
completed. Transactions are covered in detail in Lesson 3, later in this chapter.

 Lesson 2: Enhancing DML Functionality with the OUTPUT Clause and MERGE Statement CHAPTER 2 63

FiGURe 2-1 Results of running the OUTPUT $action clause

 1. If necessary, start SSMS, connect to your SQL Server instance, and open a new query
window.

 2. In the new query window, type and execute the following command to declare a table
type variable, update a row in the SalesOrderDetail table, and output the results to the
table variable:

USE AdventureWorks2008;

BEGIN TRANSACTION;

DECLARE @testoutput TABLE

 (SalesOrderID int, SalesOrderDetailID int

 , QtyBefore int, QtyAfter int

 , ModifiedDate datetime2, UserNmae varchar(30))

UPDATE Sales.SalesOrderDetail

SET OrderQty = 2

OUTPUT inserted.SalesOrderID, inserted.SalesOrderDetailID

 , deleted.OrderQty, inserted.OrderQty

 , GETDATE(), SUSER_SNAME()

 INTO @testoutput

WHERE SalesOrderID = 43659 and SalesOrderDetailID = 1;

SELECT * FROM @testoutput;

 64 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

 3. Verify that a row is returned with the required data.

 4. In the existing query window, below the existing code, type, highlight, and execute the
 following command to undo the change that you made to the SalesOrderDetail row:

ROLLBACK TRANSACTION;

 5. Save the script and close the query window. Leave SSMS open for the next exercise.

exercise 2 Use the MERGE Statement and OUTPUT Clause

In this exercise, you execute a script that creates a SalesOrderDetailHistory table in the
 AdventureWorks2008 database. You then use the MERGE statement and the OUTPUT
clause to maintain the data in the SalesOrderDetailHistory table, as well as provide auditing
 information about the modifications made to the SalesOrderDetailHistory table.

 1. In SSMS, open a new query window.

 2. Open, review, and execute the Lesson02 PracticeSetup.sql file, which can be
found among the accompanying sample files in the Practice folder to create the
 SalesOrderDetailHistory table from the SalesOrderDetail table. The script also adds the
Cancelled column and sets the initial values to False. Finally, the script adds an audit
table to hold information about modifications performed by the MERGE statement.

 3. Review the result set and notice that all the rows from the SalesOrderDetail table
have been copied to the new SalesOrderDetailHistory table. This exercise deals with
 SalesOrderID 43659, so review the rows relating to 43659.

 4. Open a new query window.

 5. In the new query window, type and execute the following command to start a new
transaction, and insert a row into the SalesOrderDetail table, modify the OrderQty of a
row, and delete a row from the SalesOrderDetail table:

USE AdventureWorks2008;

BEGIN TRANSACTION;

DELETE FROM Sales.SalesOrderDetail

WHERE SalesOrderID = 43659 AND SalesOrderDetailID = 1

INSERT INTO Sales.SalesOrderDetail

 (SalesOrderID, CarrierTrackingNumber, OrderQty, ProductID

 , SpecialOfferID, UnitPrice, UnitPriceDiscount

 , rowguid, ModifiedDate)

VALUES (43659, '4911-403-C-98', 1, 745

 , 1, 809.76, 0.00

 , DEFAULT, DEFAULT)

UPDATE Sales.SalesOrderDetail

SET OrderQty = 2

WHERE SalesOrderID = 43659 AND SalesOrderDetailID = 2;

 Lesson 2: Enhancing DML Functionality with the OUTPUT Clause and MERGE Statement CHAPTER 2 65

 6. In the existing query window, below the existing code, type, highlight, and execute the
 following code to merge the changes into the Sales.SalesOrderDetailHistory table as
well as add the required information about the merge to the MergeAudit table:

SET IDENTITY_INSERT Sales.SalesOrderDetailHistory ON;

MERGE INTO Sales.SalesOrderDetailHistory AS SODH

 USING Sales.SalesOrderDetail AS SOD

 ON SODH.SalesOrderID = SOD.SalesOrderId

 AND SODH.SalesOrderDetailID = SOD.SalesOrderDetailID

WHEN NOT MATCHED BY TARGET THEN

 INSERT (Linetotal, SalesOrderID, SalesOrderDetailID

 , CarrierTrackingNumber, OrderQty, ProductID

 , SpecialOfferID, UnitPrice, UnitPriceDiscount

 , rowguid, ModifiedDate, Cancelled)

 VALUES (Linetotal, SalesOrderID, SalesOrderDetailID

 , CarrierTrackingNumber, OrderQty, ProductID

 , SpecialOfferID, UnitPrice, UnitPriceDiscount

 , rowguid, ModifiedDate,DEFAULT)

WHEN NOT MATCHED BY SOURCE THEN

 UPDATE SET SODH.Cancelled = 'True'

WHEN MATCHED AND

 (SODH.OrderQty <> SOD.OrderQty

 OR SODH.SpecialOfferID <> SOD.SpecialOfferID

 OR SODH.UnitPrice <> SOD.Unitprice

 OR SODH.UnitPriceDiscount <> SOD.UnitPriceDiscount)

 THEN

 UPDATE SET SODH.OrderQty = SOD.OrderQty

 , SODH.SpecialOfferID = SOD.SpecialOfferID

 , SODH.UnitPrice = SOD.Unitprice

 , SODH.UnitPriceDiscount = SOD.UnitPriceDiscount

 , SODH.Linetotal = SOD.Linetotal

OUTPUT inserted.salesorderid,inserted.salesorderdetailid, getdate(), $action

INTO MergeAudit ;

SELECT * from Sales.SalesOrderDetailHistory

WHERE Salesorderid = 43659;

SELECT * FROM MergeAudit;

 7. In the existing query window, below the existing code, type, highlight, and execute the
 following command to undo the changes that you made:

ROLLBACK TRANSACTION;

 66 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

 8. Save the script and close the query window.

 9. Verify that you have closed all the query windows opened during this practice, and
then open, review, and execute the Lesson02 PracticeCleanup.sql file, which can be
found among the accompanying sample files in the Chapter 2/Lesson 2 folder.

Lesson Summary
n The OUTPUT clause allows you to redirect information to the calling application, or

to an object such as a table or a table variable, about the INSERT, UPDATE, or DELETE
statement performed.

n The MERGE statement allows you to perform DML actions on a target table based on
whether or not a row matches information found in a source table.

 Lesson 3: Managing Transactions CHAPTER 2 67

Lesson 3: Managing transactions

Because data manipulation is a prominent function in Online Transaction Processing (OLTP)
databases, transactions are important in managing and maintaining consistent data.

After this lesson, you will be able to:

n Describe why transactions are used in SQL Server 2008.

n Describe implicit transactions and set a session to support implicit transactions.

n Define explicit transactions.

n Describe how ROLLBACK functions in different situations, such as with savepoints
or nested transactions.

n Describe the different modes of locks assigned to resources within SQL Server.

n Describe transaction isolation levels.

n Set transaction isolation levels.

Estimated lesson time: 60 minutes

Understanding Transactions
Transactions are frequently defined as a set of actions that succeed or fail as a whole. To
be more specific, transactions can provide four major functions to the data manipulation
 processes that access the database:

n atomicity When two or more pieces of information are involved in a transaction,
either all the pieces are committed or none of them are committed.

n consistency At the end of a transaction, either a new and valid form of the data
exists or the data is returned to its original state. Returning data to its original state is
part of the rollback functionality provided by SQL Server transactions.

n isolation During a transaction (before it is committed or rolled back), the data must
remain in an isolated state and not be accessible to other transactions. In SQL Server, the
isolation level can be controlled for each transaction, as described later in this lesson.

n Durability After a transaction is committed, the final state of the data is still
 available even if the server fails or is restarted. This functionality is provided through
 checkpoints and the database recovery process performed at startup in SQL Server.

The acronym ACID is used to represent these four functions.

By default in SQL Server, each INSERT, UPDATE, or DELETE statement is an individual
 transaction that is committed automatically and does not offer rollback functionality.

You can enable implicit transactions within your connection settings so that the Database
Engine starts a transaction automatically when any of the following commands are executed:
ALTER TABLE, CREATE, DELETE, DENY, DROP, FETCH, GRANT, INSERT, OPEN, REVOKE, SELECT,

 68 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

TRUNCATE TABLE, or UPDATE. The transaction is active until you manually issue a COMMIT
or ROLLBACK statement. You can enable implicit transactions by using the SET IMPLICIT_
TRANSACTIONS ON statement, through the Object Linking and Embedding Database (OLE
DB) or Open Database Connectivity (ODBC) application programming interfaces (APIs), on the
ANSI page of the Query Options window in SSMS, or you can modify the server properties to
change the default behavior to enable implicit transactions in all connections, unless they are
explicitly set to OFF for a specific connection.

Defining Explicit Transactions
Explicit transactions are typically defined within stored procedures. An explicit transaction is
started when a BEGIN TRANSACTION statement is executed. The transaction is completed
by issuing either a COMMIT TRANSACTION or ROLLBACK TRANSACTION statement. Once a
transaction is committed, SQL Server ensures that the data is written to the database even in
cases of server failure. A ROLLBACK statement returns the data to its state prior to the start of
the transaction.

note ROLLBACK FUnctiOnaLitY

Although the ROLLBACK statement returns the data to its prior state, some functionalities,

such as seed values for identity columns, are not reset.

While a transaction is active, locks are maintained on the resources accessed based on
the isolation level of the transaction. When a transaction completes (through COMMIT
or ROLLBACK), all locks are released. Understanding how these locks and isolation levels
 function is critical to understanding and optimizing code that includes transactions.

Understanding Special ROLLBACK Scenarios
When transactions are nested, by issuing multiple BEGIN TRANSACTION statements within
a session, a ROLLBACK statement rolls back to the outermost nested transaction. This is
even true if COMMIT statements are issued for the inner transactions before the ROLLBACK
 command is issued for the outer transaction. In the following example, the data is rolled back
all the way to the transaction starting on line 1, and the inserted row does not exist at all in
the table. (The line numbers are only for reference.)

1. BEGIN TRANSACTION

2. INSERT INTO TestTable

3. VALUES (1, 'a', 'b');

4. BEGIN TRANSACTION

5. UPDATE TestTable

6. SET Col2 = 'c' WHERE TestID = 1;

7. COMMIT TRANSACTION;

8. ROLLBACK;

 Lesson 3: Managing Transactions CHAPTER 2 69

If you want to roll back only a portion of a transaction, you can define savepoints by using
the SAVE TRANSACTION savepoint_name statement and then referencing the savepoint
name in the ROLLBACK statement. By doing this, you are telling the Database Engine to roll
back data changes only to the point where you issued the SAVE TRANSACTION statement
with the same name.

If you define more than one savepoint with the same name, the ROLLBACK statement
rolls the data back to the most recent savepoint with the name specified in the ROLLBACK
 statement. If you would like to roll back the entire transaction, issue a ROLLBACK
 TRANSACTION statement with the transaction name or with no name. Remember that issuing
a ROLLBACK TRANSACTION statement with no name rolls back all nested transactions.

iMPortant aDDitiOnaL cODe anD ReStRictiOnS

You must include a COMMIT statement for the saved portion of the transaction and any

additional code that may follow the ROLLBACK TRANSACTION savepoint_name statement.

In addition, you cannot use savepoints with distributed transactions.

Gathering Information About Transactions
It is important to track active transactions, especially when working with nested transactions
and savepoints. When working with stored procedures, error handling routines should verify
transaction completion (COMMIT or ROLLBACK) before closing a connection.

You can use the @@trancount global variable to see the number of open transactions in
the current session.

For a greater level of detail, you can use the following transaction-specific dynamic
 management objects:

n sys.dm_tran_active_snapshot_database_transactions

n sys.dm_tran_current_snapshot

n sys.dm_tran_database_transactions

n sys.dm_tran_session_transactions

n sys.dm_tran_transactions_snapshot

n sys.dm_tran_active_transactions

n sys.dm_tran_current_transaction

n sys.dm_tran_top_version_generators

n sys.dm_tran_version_store

n sys.dm_tran_locks

Like @@trancount, the sys.dm_tran_current_transaction object provides information on the
current transaction within the current session.

The sys.dm_tran_active_transactions object returns information about all active
 transactions on an instance. The transaction ID reported is unique across all databases, but

 70 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

not across all instances on a server. Figure 2-2 shows sample output from sys.dm_tran_active_
transactions where two transactions, one named Tran1 and one named Tran2, are currently
active in two sessions other than the current query session.

FiGURe 2-2 sys.dm_tran_active_transactions

Understanding Locking
To understand fully how transactions interact with one another on a database server, you must
first understand isolation levels and locking. In a database environment, there are two general
control philosophies about locking. The pessimistic control approach assumes that users
could attempt to read and update the same data concurrently and locks are used to prevent
 problems caused by multiple users accessing the same data concurrently. The optimistic control
approach assumes that either users will not be accessing data at the same time or that a certain
level of temporary inconsistency is acceptable for concurrent reads during an update, and no
read locks are issued so that better concurrency and faster performance can be achieved.

To achieve the required approach, you use a combination of lock hints and isolation levels.
Although locking and isolation levels are very interconnected, we discuss locks and how to
view locking information on the server first, followed by a discussion of isolation levels.

Locks are typically handled dynamically by the lock manager, a part of the Database
 Engine, not through applications.

SQL Server assigns locks at different levels to optimize performance, resource
 management, and concurrency. Locks can be assigned to resources such as rows, pages,

 Lesson 3: Managing Transactions CHAPTER 2 71

 indexes, tables, and databases. Depending on the requirements, locks may be assigned to
more than one level, creating a hierarchy of related locks.

SQL Server 2008 includes the following locking modes:

n Shared (S) Placed on resources for read (SELECT) operations. Shared locks are
 compatible with other shared locks. Shared locks are not compatible with exclusive
locks. When the isolation level is set to REPEATABLE READ or higher, or a locking hint
is used, the shared locks are retained for the duration of the transaction. Otherwise,
shared locks are released as soon as the read is completed.

n Update (U) Placed on resources where a shared (S) lock is required, but the need
to upgrade to an exclusive (X) lock is anticipated. Only one transaction at a time can
 obtain an update lock on a resource. When modification to the resource is required,
the update lock is upgraded to an exclusive lock.

n exclusive (X) Placed on resources for data modification. An exclusive lock is
not compatible with any other type of lock. Only the NOLOCK hint or the READ
 UNCOMMITTED isolation level overrides an exclusive lock’s functionality.

n intent (iS, iX, SiX) Placed on resources to improve performance and locking
 efficiency by placing intent (IS, IX, SIX) locks at a high-level object (such as a table)
before placing shared (S) or exclusive (X) locks at a lower level (such as the page level).

n Schema (Sch-M, Sch-S) Schema modification (Sch-M) locks are placed on objects
during schema modification operations, such as adding a new column to a table.
Schema stability (Sch-S) locks are placed on objects while queries are being compiled
or executed. Sch-M locks block all other operations until the lock is released. Sch-S
locks are not compatible with Sch-M locks.

n bulk Update (bU) Placed on tables for bulk insert. These locks allow multiple bulk
insert threads to access the table but do not allow other processes to access the table.
These locks are enabled by either using the TABLOCK hint or by using the
sp_tableoption stored procedure to enable the Table lock on bulk load table option.

n key-range Placed on a range of rows to protect against phantom insertions and
deletions in a record set that is being accessed by a transaction. These locks are used
by transactions using the SERIALIZABLE transaction isolation level.

Understanding Deadlock and Blocking Scenarios
Because transactions at certain isolation levels hold locks until the transaction is completed,
transactions can block each other from completing successfully. By default, transactions
in SQL Server 2008 wait an indefinite amount of time for a resource to become available
 unless SQL Server recognizes that a deadlock situation has occurred. In a deadlock situation,
two transactions are holding resources that each of the two transactions requires before
 completion. Because of this, neither transaction is ever able to complete successfully. Based
on the estimated cost for SQL Server to roll back each transaction, the lock manager selects a
“victim” of the deadlock situation and rolls back that transaction, issuing a 1205 error. Because
this error does not attempt to restart the transaction or provide an informative message to
users, all 1205 errors should be captured and handled appropriately.

 72 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

You can use the following best practices to reduce deadlock situations and blocking issues:

n Keep transactions short.

n Collect and verify input data from users before opening a transaction.

n Access resources in the same order whenever possible within transactions.

n Keep transactions in a single batch.

n Where appropriate, use a lower isolation level or row versioning–based isolation level.

n Access the least amount of data possible in the transaction.

To manage blocking issues further, database administrators can adjust the query wait times
based on performance analysis. This can be accomplished through the advanced server properties.
To locate transactions that are affected by deadlock situations, you can use SQL Server Profiler
to produce an Extensible Markup Language (XML) representation of a deadlock chain of events,
including the system process ID (SPID) of the transactions involved in the deadlock situation.

Understanding Reports on Lock Status
There are many options for viewing lock status within your computer running SQL Server.
You can use SQL Profiler to capture lock and blocking information. You can use the System
 Monitor that is part of the performance console (perfmon) to capture statistics on lock wait
times, locks per second, and so on. You can use the sys.dm_tran_locks dynamic management
view (DMV) to gather information on locks being held by transactions. Finally, you can use
the Activity Monitor in SSMS to see information on blocking processes.

A representation of Activity Monitor showing a session being blocked by another session is
shown in Figure 2-3.

FiGURe 2-3 Activity Monitor

 Lesson 3: Managing Transactions CHAPTER 2 73

The sys.dm_tran_locks DMV provides detailed information about each lock that is currently
being held on the instance. You can then use the sys.dm_tran_active_transactions DMV to provide
additional information about the blocked or blocking transaction. Figures 2-4 and 2-5 show the
results of a query of the sys.dm_tran_locks and the sys.dm_tran_active_transactions DMVs.

FiGURe 2-4 sys.dm_tran_locks

FiGURe 2-5 sys.dm_tran_active_transactions

 74 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

In many of these reports, you see the locking method and the resource that is locked. You
might see locks on the following types of resources:

n Row identifier (RiD) A row identifier used to define a lock on a single row located in
a heap

note HeaPS

A heap is the storage method for a table without a clustered index. For more information

about indexing, see Chapter 6, “Techniques to Improve Query Performance.”

n keY The range of keys in an index used to define a lock on key ranges

n PaGe An 8-kilobyte (KB) page from tables or indexes

n eXtent A group of eight contiguous pages within a table or index

n Hobt A heap or a balanced tree (B-tree) index

n tabLe An entire table, made up of both data and index pages

n FiLe An entire database file

n aPPLicatiOn An application-specified resource

n MetaData Used for metadata locks

n aLLOcatiOn_Unit A single allocation unit

n DatabaSe An entire database, including all data files

Using SQL Server Extended Events
SQL Server 2008 includes SQL Server Extended Events, such as FindBlocker and lock_count,
which can be used in conjunction with Windows Event logs, SQL Profiler, or System Monitor.

More info eXtenDeD eventS

Working with SQL Server Extended Events is beyond the scope of this book. For more

 information about Extended Events, see the article titled “Advanced Troubleshooting with

 Extended Events” at http://technet.microsoft.com/en-us/magazine/dd314391.aspx. To learn

more about or to download a copy of the Extended Events Manager, a C# Microsoft.NET

 WinForms application that aids in creating and working with Extended Events sessions, see “SQL

Server 2008 Extended Events Manager” at http://www.codeplex.com/ExtendedEventManager.

Using DBCC LOG
SQL Server includes the DBCC LOG statement, which is a nondocumented feature that returns
information about the information contained in the current transaction log. The syntax is as
follows:

DBCC LOG (<databasename>, <output identifier>)

 Lesson 3: Managing Transactions CHAPTER 2 75

The output identifier may be set to any of the following levels:

n 0 Returns minimal information, including the current Log Sequence Number (LSN),
operation, context, transaction ID, and log block generation

n 1 Returns all the information from the previous level, as well as flags and record
length information

n 2 Returns all the information from the previous level, as well as the object name,
index name, page ID, and slot ID

n 3 Returns a full set of information about the operation

n 4 Returns a full set of information about the operation, as well as a hex dump of the
current transaction log row

Setting Transaction Isolation Levels
The following transaction levels can be set by using the SET TRANSACTION ISOLATION LEVEL
syntax:

n READ UNCOMMITTED Allows statements to read rows that were updated by
a transaction before the rows are committed to the database. This isolation level
 minimizes contention but allows dirty reads and nonrepeatable (phantom) reads.

n READ COMMITTED Allows statements within the current connection and transaction
to experience nonrepeatable (phantom) reads but prevents dirty reads (data updated by
another connection’s open transaction). This is the default setting for SQL Server 2008.

n REPEATABLE READ Does not allow transactions to read noncommitted modified data
(dirty reads) and ensures that shared locks are maintained until the current transaction
is completed.

n SNAPSHOT Requires the ALLOW_SNAPSHOT_ISOLATION database option to be set
to ON. The SNAPSHOT isolation level takes a snapshot of the data at the time the data
is read into the transaction but does not hold locks on the data. Updates can occur
on the data from other transactions, but the current transaction does not see those
updates reflected in subsequent reads of the original data. If the current transaction
modifies data, those modifications are visible only to the current transaction.

n SERIALIZABLE Does not allow data to be read that has been modified but not
 committed by other transactions. In addition, no other transactions can update
data that has been read by the current transaction until the current transactions is
 complete. The SERIALIZABLE isolation level protects against phantom reads but causes
the highest level of blocking and contention.

More info tRanSactiOn iSOLatiOn LeveLS anD LOckinG

A complete discussion of isolation levels and the effects on locking and blocking is beyond

the scope of this book. Microsoft SQL Server 2008 Internals (Microsoft Press, 2009), by

Kalen Delaney et al., has an extensive discussion about isolation levels.

 76 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

Command Syntax
Once you have determined the appropriate transaction isolation level, the command syntax is
very straightforward, as shown here:

SET TRANSACTION ISOLATION LEVEL

 { READ UNCOMMITTED

 | READ COMMITTED

 | REPEATABLE READ

 | SNAPSHOT

 | SERIALIZABLE

 }

[;]

Once the SET TRANSACTION ISOLATION LEVEL statement has been executed in a session,
all transactions within that connection use the defined isolation level.

Practice Defining explicit transactions

In this practice, you verify a rollback of nested transactions.

exercise Define Explicit Transactions

In this exercise, you create a very simple table and test how rollbacks affect committed nested
transactions.

 1. If necessary, start SSMS, connect to your SQL Server instance, and open a new query window.

 2. In the query window, type and execute the following code to create a simple table:

USE AdventureWorks2008;

CREATE TABLE testtran (col1 int, col2 int);

 3. Open a new query window, type, highlight, and execute the following code to begin a
transaction, verify the data currently in the testtran table, add a row to the testtran table, and
then verify the data now included in the testtran table and the number of open transactions:

BEGIN TRAN

 SELECT * FROM testtran;

 INSERT INTO testtran VALUES (1,1);

 SELECT * FROM testtran;

 SELECT @@TRANCOUNT;

 4. In the current query window, below the existing code, type, highlight, and execute the
following code to start a nested transaction, insert a second row, and verify the rows in
the table and the number of open transactions:

BEGIN TRAN

 INSERT INTO testtran VALUES (2,2);

 Lesson 3: Managing Transactions CHAPTER 2 77

 SELECT * FROM testtran;

 SELECT @@TRANCOUNT;

 5. In the current query window, below the existing code, type, highlight, and execute the
following code to commit the inner transaction, and verify the data in the table and
that the transaction level has decreased by 1:

COMMIT TRAN

SELECT * FROM testtran;

SELECT @@TRANCOUNT;

 6. In the current query window, below the existing code, type, highlight, and execute the
following code to roll back the transactions and verify that both rows were removed
from the table and the transaction level has been lowered to 0:

ROLLBACK TRAN

SELECT * FROM testtran;

SELECT @@TRANCOUNT;

 7. Save the script and close the query window.

 8. Verify that you have closed all the query windows opened during this practice, and
then open, review, and execute the Lesson03 PracticeCleanup.sql file, which can be
found among the accompanying sample files in the Chapter 2/Lesson 3 folder.

 9. Close SSMS.

Lesson Summary
n A transaction is a set of actions that make up an atomic unit of work and must succeed

or fail as a whole

n By default, implicit transactions are not enabled. When implicit transactions are
 enabled, a number of statements automatically begin a transaction. The developer
must execute a COMMIT or ROLLBACK statement to complete the transaction.

n Explicit transactions start with a BEGIN TRANSACTION statement and are completed
by either a ROLLBACK TRANSACTION or COMMIT TRANSACTION statement.

n Issuing a ROLLBACK command when transactions are nested rolls back all transactions
to the outermost BEGIN TRANSACTION statement, regardless of previously issued
COMMIT statements for nested transactions.

n SQL Server uses a variety of lock modes, including shared (S), exclusive (X), and
intent (IS, IX, SIX) to manage data consistency while multiple transactions are being
 processed concurrently.

n SQL Server 2008 supports the READ UNCOMMITTED, READ COMMITTED, REPEATABLE
READ, SNAPSHOT, and SERIALIZABLE isolation levels.

 78 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can perform the
following tasks:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenarios. The scenarios set up a real-world situation involving the
topics of this chapter and ask you to create solutions.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n DML statements such as INSERT, UPDATE, and DELETE allow you to handle the data

storage and retrieval requirements of your organization.

n The MERGE statement and OUTPUT clause allow you to increase the functionality
of your OLTP database environment as well as data warehouse and reporting
 environments. These options, in addition to CDC, provide a means to compare rows
and set the UPDATE, INSERT, or DELETE logic based on those comparisons.

n Transactions and locks provide the means by which many users can access and update
data concurrently on a server running SQL Server while receiving a consistent view of
the data.

key terms

Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

n System process ID (SPID)

n Row identifier (RID)

n Atomicity

n Consistency

n Isolation

n Durability

Case Scenarios
In the following case scenarios, you apply what you have learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

 Suggested Practices CHAPTER 2 79

Case Scenario 1: Modifying Data
You are a database developer for Wide World Importers. Five of the companies from which
your company imports goods have decided to remove their fax capabilities and receive
 information only via the Internet or e-mail. Corporate data standards require that the fax
column either be the numeric value or NULL. In addition, even though a column for e-mail
addresses exists, these companies have not previously had e-mail addresses in their records.
You must add this information. Finally, all updates to the fax, address, or e-mail address must
have their before and after states, along with the user name of the person making the change
and the date the change was made, recorded in the ImporterPropertiesAudit table.

Answer the following question for your manager:

n What statement(s) and or clauses do you need to use to provide the required
 functionality?

Case Scenario 2: Using Transactions
You are a database developer for Litware, Inc. Litware has had numerous problems with
long wait times and many deadlock situations. The database administrator has collected
 performance information through perfmon and SQL Server Profiler and has determined
that the majority of the problems seem to involve five long-running stored procedures
that include transactions. You have been asked to review the stored procedures and make
 recommendations for improving the locking and blocking concerns.

Answer the following question for your manager:

n What types of information should you consider when determining your
 recommendations?

Suggested Practices

To help you master the exam objectives presented in this chapter, do all the following
 practices.

Modify Data by Using INSERT, UPDATE, and DELETE
Statements

n Practice 1 Write multiple INSERT statements using a variety of options.

n Practice 2 Write UPDATE and DELETE statements, including those based on the
 results from a joined table.

Return Data by Using the OUTPUT Clause
n Practice 3 Write a variety of statements that make use of both the INSERTED and

DELETED tables using the OUTPUT clause.

 80 CHAPTER 2 Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements

Modify Data by Using MERGE Statements
n Practice 4 Write a variety of MERGE statements including those using two definitions

for the WHEN NOT MATCHED BY SOURCE THEN <merge_matched> and WHEN
MATCHED THEN <merge_matched> statements.

Manage Transactions
n Practice 5 Practice working with transactions, including nested transactions,

 savepoints, and rollbacks. Verify @@trancount and results along each step of the
 process.

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the content covered in this chapter, or you can test yourself on all the 70-433
certification exam content. You can set up the test so that it closely simulates the experience
of taking a certification exam, or you can set it up in study mode so that you can look at the
correct answers and explanations after you answer each question.

More Info PracTice TeSTS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests,” in the Introduction to this book.

 CHAPTER 3 81

c H a P t e R 3

Tables, Data Types, and
Declarative Data Integrity

The most basic concept of any relational database management system (RDBMS)
is the table. However, tables have evolved significantly since the first RDBMS

 versions. In this chapter, you examine the possibilities and restrictions that exist when
 designing your tables. The chapter also covers ways of optimizing your table structures
and data integrity.

Exam objectives in this chapter:
n Create and alter tables.

n Implement data types.

n Manage international considerations.

n Create and modify constraints.

Lessons in this chapter:
n Lesson 1: Working with Tables and Data Types 83

n Lesson 2: Declarative Data Integrity 101

before You begin

To complete the lessons in this chapter, you must have:

n A basic understanding of Transact-SQL (T-SQL)

n A good understanding of data types in any programming language

n Microsoft SQL Server 2008 Developer Edition, Enterprise Edition, or Enterprise
 Evaluation Edition, and the AdventureWorks sample database installed

 c o n t e n t s

 cHaPteR 3 81

 tables, Data types, and Declarative Data integrity 81

Before You Begin . 81

Lesson 1: Working with Tables and Data Types . 83

Data Types 83

Table Basics 89

Compression 96

Lesson Summary 96

Lesson 2: Declarative Data Integrity .101

Validating Data 101

Chapter Review .117

Chapter Summary 117

Key Terms .117

Case Scenario 118

Suggested Practices .118

Create and Alter Tables 118

Implement Data Types 118

Manage International Considerations 118

Create and Modify Constraints 118

Take a Practice Test .119

 82 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

real World

Tobias Thernström

Without declarative data integrity, your database can end up in a terrible state.

I have seen this too many times when working with clients as a consultant.

It typically starts with queries behaving oddly. As an example, I once visited a client

that complained of an order that he knew should exist in the database and that he

claimed had been lost. My first instinct was that it probably was lost because of

an accidental delete by the client, but when querying the database, sure enough,

there was the order. So why wasn’t it showing up in the application? Simple: the

query that fetched the order was joined (using an INNER JOIN) to a customer

in the table containing customers, and the customer was missing! Because they

didn’t have any foreign key constraint declared between the customer and order

tables, the customer had been accidentally deleted even though it had existing

(and undelivered) orders.

 Lesson 1: Working with Tables and Data Types CHAPTER 3 83

Lesson 1: Working with tables and Data types

Designing, creating, and maintaining tables is one of the most important tasks of a database
developer. In this lesson, you walk through these and other tasks related to tables. You also
take a look at the data types available in SQL Server 2008.

After this lesson, you will be able to:

n Know the details of the basic data types that are included in SQL Server 2008.

n Use these data types correctly.

n Implement declarative data integrity in your tables.

Estimated lesson time: 60 minutes

Data Types
Before you can start creating tables, you must understand the different data types that can
be used to define the domains of columns in tables, that is, what data can be entered into the
column. There are two different kinds of data types in SQL Server:

n SQL Server system data types

n User-defined types (UDTs) or SQL Common Language Runtime (SQLCLR) types

You start by reviewing the available system data types and then look at the possibility of
simplifying the use of data types using UDTs. UDTs are implemented using SQLCLR, which is
covered in Chapter 7, “Extending Microsoft SQL Server Functionality with XML, SQLCLR, and
Filestream.”

The available system data types are typically split into several groups, including exact
numeric, approximate numeric, character, date and time, and binary.

Character Types
There are quite a few string data types in SQL Server; char, varchar, nchar, nvarchar, text,
and ntext. The text and ntext types are both deprecated, so avoid using them. They have
been replaced by varchar(max) and nvarchar(max). All the -char types take one parameter,
which is the number of characters to support storing. The difference between char and
varchar (as well as between nchar and nvarchar) is that char is fixed-length and varchar is
variable-length. This means that char always allocates enough storage space to store its
entire declared length and that varchar stores only the actual data entered. The advantage of
 using char over varchar is that updates made to a char column never require moving the row
because the data that is entered always fits in the allocated space. Note that this advantage
is almost always outweighed by the fact that varchar uses a lot less storage space than char
[consider varchar(100) vs. char(100)].

 84 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

With char and varchar, a collation is used to specify the code page (character set)
to use when storing and interpreting the contents of the columns. The collation is also
used to decide how to sort and compare the data stored in these columns. There are
2,397 variations of collations available in SQL Server 2008, three of which are Japanese_
CI_AI, Finnish_Swedish_CI_AI, and Latin1_General_CI_AI. The rest can be found by
 querying the table-valued function fn_helpcollations. The collation Japanese_CI_AI uses
the 932 code page to support storing Japanese characters. Both Finnish_Swedish_CI_AI
and Latin1_ General_CI_AI use the 1252 code page. The _CI_AI part of the collation name
 specifies whether the collation is case-insensitive (CI) or case-sensitive (CS), as well
as accent-insensitive (AI) or accent-sensitive (AS). It is important to know that what is
 considered an “accent” is different in different languages and, thus, in different collations
as well. Take the character ö, for example. In Latin1_General_CI_AI, ö is considered
an accented o, meaning that ‘o’ = ‘ö’ would return True; on the other hand, in Finnish_
Swedish_CI_AI, ö is considered a separate character and ‘o’ = ‘ö’ would return False.

Finally, what about nchar and nvarchar? Both of these data types store characters using the
Unicode universal code page (UCS-2). This means that if you use nchar or nvarchar, you can
store any type of character regardless of the collation you choose because two bytes are always
used to store each character. Contrast this with varchar and char, which store characters using
one or two bytes depending on the collation. Remember that you still need to specify collation
because the collation still decides how to sort and compare the data stored in your column.

If you want to use a different collation than the one specified on a column when making
a comparison, you can specify it in an expression. Here is an example that shows the WHERE
clause specifying a collation:

. . . WHERE Name = 'Öqvist' COLLATE Finnish_Swedish_CI_AS

Note that by changing the collation in the expression, SQL Server cannot use an index
defined on the column to perform a seek operation because that index is sorted according to
another collation.

Exact Numeric Types
The exact numeric types are made up of integer (or whole number) types and fixed decimal
point types. All exact numeric types always produce the same result, regardless of which kind
of processor architecture is being used or the magnitude of the numbers (that is, how large
the numbers are). Table 3-1 lists the available exact numeric data types.

tabLe 3-1 Exact Numeric Data Types

Data tYPe StORaGe Size POSSibLe vaLUeS cOMMentS

tinyint 1 byte 0 to 255 Equal to the byte data type in
most programming languages,
cannot store negative values

smallint 2 bytes –32768 to 32767 A signed 16-bit integer

 Lesson 1: Working with Tables and Data Types CHAPTER 3 85

Data tYPe StORaGe Size POSSibLe vaLUeS cOMMentS

int 4 bytes –2,147,483,648 to

2,147,483,647

A signed 32-bit integer

bigint 8 bytes –2E63 to 2E63 – 1 A signed 64-bit integer

decimal
(precision,
scale)

5 to 17 bytes
depending on
precision

–10E38 + 1 to
10E38 – 1

A decimal number containing
up to 38 digits

numeric
(precision, scale)

Functionally equivalent to the decimal data type

While the integer data types (tinyint, smallint, int and bigint) don’t accept any parameters,
the decimal (and numeric) data types do. When using the decimal data type, you can
specify the precision and scale of values stored using the data type. The precision defines
the total number of digits that the data type holds, supporting a maximum precision of 38
and the scale defines how many of the digits defined by the precision are used as decimals.
A decimal defined as decimal(38,0) allows only for whole numbers and a decimal defined
as decimal(38, 38) allows only for decimals. If you define a column as just decimal, without
 specifying precision and scale, it gets the default precision of 18 and scale of 0. Depending
on the precision that you specify, the decimal data type requires between 5 and 17 bytes
of storage. It is important that you choose the lowest appropriate precision to conserve
 storage space, as well as memory resources. In Table 3-2, the storage required by the different
 precisions are listed. Note that the scale selected has no effect on storage requirements.

tabLe 3-2 Decimal Storage Requirements

PReciSiOn StORaGe

1 to 9 5 bytes

10 to 19 9 bytes

20 to 28 13 bytes

29 to 38 17 bytes

Approximate Numeric Types
SQL Server supports two data types with floating point or approximate numeric values,
float and real. Like the decimal data type described previously, the float data type accepts a
parameter. The parameter supplied to the float data type defines the number of bits that are
used to store the mantissa of the floating point number, as shown in Table 3-3. Any parameter
value less than or equal to 24 is interpreted as 24, and anything above 24 is interpreted as 53.
This means that the mantissa is either 24 or 53 bits, depending on what value you supply to
the float parameter.

 86 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

tabLe 3-3 Approximate Numeric Data Types

Data tYPe StORaGe Size POSSibLe vaLUeS

float
(n <= 24)

4 bytes –3.40E38 to –1.18E-38, 0 and 1.18E-38 to 3.40E38

float
(24 > n <= 53)

8 bytes –1.79E308 to –2.23E-308, 0 and 2.23E-308 to 1.79E308

real Functionally equivalent to float(24)

Handling Date and Time
Table 3-4 lists the data types that can hold date and time values in SQL Server 2008.

tabLe 3-4 Date and Time Data Types

Data tYPe StORaGe Size POSSibLe vaLUeS cOMMentS

datetime 8 bytes January 1, 1753,
through December 31,
9999, with time
 accuracy down
to every third
 millisecond.

Mainly available for
 backwards compatibility.
Use datetime2, date,
time, or datetimeoffset
 whenever possible.

smalldatetime 4 bytes January 1, 1900,
through June 6, 2079,
with time accuracy
down to every minute.

Mainly available for
 backwards compatibility.
Use datetime2, date,
time, or datetimeoffset
 whenever possible.

datetime2
(fractional seconds
precision)

Between 6
and 8 bytes

January 1, 0001,
through December 31,
9999, with time
 accuracy down to the
specified fractional
seconds precision.

Use when both date and
time are required and
time zone offset is not
required.

datetimeoffset
(fractional seconds
precision)

Between 8
and 10 bytes

January 1, 0001,
through December 31,
9999, with time
 accuracy down to the
specified fractional
seconds precision
and time zone offset
between –14:00 and
+14:00.

Use when date, time,
and time zone offset are
required.

 Lesson 1: Working with Tables and Data Types CHAPTER 3 87

Data tYPe StORaGe Size POSSibLe vaLUeS cOMMentS

date 3 bytes January 1, 0001,
through December 31,
9999.

Use when only a date is
required.

time
(fractional seconds
precision)

Between 3
and 5 bytes.

00:00:00 to 23:59:59,
with accuracy down to
the specified fraction
of a second.

Use when only a time is
required.

One of the most anticipated features of SQL Server 2008 was the introduction of new date
and time data types. Before SQL Server 2008, the software had two data types for managing
date and time: datetime and smalldatetime. Because both of these data types are still in use
in SQL Server 2008 today and it will take a long time before all databases that are upgraded
to SQL Server 2008 are converted to the new date and time data types, it is very important
to understand how to use the smalldatetime and datetime data types. There are two major
problems with the datetime data type. The first problem is that the date and time are stored
together, which may not always be desirable. Take the following query, where you want to
retrieve all orders made on August 18, 2008:

SELECT

 SalesOrderID

 ,CustomerId

 ,OrderDate

FROM Sales.SalesOrderHeader

WHERE OrderDate = '20080818';

This query returns only orders made on August 18, 2008, at exactly 00:00:00. To solve
this problem, you must handle the time portion of the datetime data type correctly in the
query. Doing this brings us to the second problem with the datetime data type, which is the
 precision of the time portion of the data type. The smallest time unit that is supported is
every third millisecond (for smalldatetime, it is every minute). This means that the last digit
in a datetime instance (that is, yyyy-MM-dd hh:mm:ss.xxx) can be only 0, 4, or 7. This in turn
means that the last supported datetime time of day is 23:59:59.997. The time 23:59:59.998
rounds down to 23:59:59.997, and the time 23:59:59:999 rounds up to the next day at
00:00:00.000. This behavior is extremely important to remember when working with the
 datetime data type. Continuing with the example of querying the Sales.SalesOrderHeader
table for all orders of August 18, 2008, you have to use either one of the following two
 queries to get the desired result:

-- Query #1

SELECT

 SalesOrderID

 ,CustomerId

 ,OrderDate

 88 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

FROM Sales.SalesOrderHeader

WHERE OrderDate BETWEEN '2008-08-18T00:00:00' AND '2008-08-18T23:59:59.997';

-- Query #2

SELECT

 SalesOrderID

 ,CustomerId

 ,OrderDate

FROM Sales.SalesOrderHeader

WHERE OrderDate >= '20080818' AND OrderDate < '20080819';

Even though both of these queries produce the same result, you should consider using the
second query because it also correctly handles the new datetime2 data type. This is because
the datetime2 data type can store fractions of time down to 100 nanoseconds (or .0000001
of a second), meaning that .997 is not the last millisecond of the day. Whenever you query
time data, you should try to use a “less than” predicate to avoid relying on a specific second
fraction precision. Finally, when converting a literal string to a datetime or smalldatetime
data type, you should always use the YYYYMMDD format for dates without time, and
the YYYY-MM-DDTHH:MI:SS.XXX format for dates with time. Both of these formats work
 independent of the language and date formats in effect on your connection.

More info Date FORMatS

For more information about how to affect the date formats that SQL Server accepts, see

the articles “SET DATEFORMAT” and “SET LANGUAGE” in SQL Server Books Online.

The new, and long-awaited, date and time data types in SQL Server 2008 are datetime2,
date, time, and datetimeoffset. We start with the simplest data type, which is date.

The date data type is something very simple and very useful, a data type that can store
only dates. Because of this fact, this data type is perfect to use in all cases when no time is
required. This simplifies queries because the time issue described earlier doesn’t exist and
 because this data type saves storage space by allocating only 3 bytes. When converting
a string literal to the date data type, you should always use the YYYY-MM-DD format (always
including the century).

The time data type is available to store a time without a date. For this data type, you can
supply an optional parameter specifying the precision or number of decimals for a fraction
of a second that you want the time instance to support. The possible values that you can
supply are between 0 and 7, that is, between a second being the smallest value (0) and
100 nanoseconds being the smallest value (7). If you do not specify this parameter when
declaring the data type, a default of 7 is used. When converting a string literal to the time
data type, you should always use the HH:MI:SS.NNNNNNN format. The storage size used by
the time data type depends on the precision specified. Table 3-5 lists the storage space used
depending on the specified precision.

 Lesson 1: Working with Tables and Data Types CHAPTER 3 89

tabLe 3-5 Time Data Type Storage Requirements

PReciSiOn StORaGe

0 to 2 3 bytes

3 to 4 4 bytes

5 to 7 5 bytes

The datetime2 data type is a combination of the date and time data types, with the same
precision parameter for fractional seconds as the time data type. When converting a string
literal to the datetime2 data type, you should always use the YYYY-MM-DD HH:MI:SS.
NNNNNNN format. Table 3-6 lists the storage space used by the datetime2 data type
 depending on the precision specified.

tabLe 3-6 Datetime2 Data Type Storage Requirements

PReciSiOn StORaGe

0 to 2 6 bytes

4 to 5 7 bytes

6 to 7 8 bytes

The final date and time data type available in SQL Server 2008 is the datetimeoffset data
type. In addition to what the datetime2 data type stores, this data type stores a time zone
offset. This can be very useful when it is important to know not only the time that something
happened, but also in which time zone it happened. When converting a string literal to the
datetimeoffset data type, you should always use the YYYY-MM-DD HH:MI:SS.NNNNNNN
+|-HH:MI format. Table 3-7 lists the storage space used by the datetimeoffset data type
 depending on the precision specified.

tabLe 3-7 Datetimeoffset Data Type Storage Requirements

PReciSiOn StORaGe

0 to 2 6 bytes

4 to 5 7 bytes

6 to 7 8 bytes

Table Basics
The table is the most central object of any RDBMS. In SQL Server, there are several variations
of tables: permanent tables (or just tables), local temporary tables, global temporary tables,
and table variables. Besides these variations, there are also table types and table parameters,

 90 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

which will be covered in detail in Chapter 5, “Programming Microsoft SQL Server with T-SQL
User-Defined Stored Procedures, Functions, Triggers, and Views.”

Creating a Table
Before you can create a table, you need a schema in which to create the table .A schema is
similar to a namespace in many other programming languages; however, there can be only one
level of schemas (that is, schemas cannot reside in other schemas). There are already several
schemas that exist in a newly created database: the dbo, sys, and information_ schema schemas.
The dbo schema is the default schema for new objects, while the sys and information_schema
schemas are used by different system objects.. Before SQL Server 2005, schemas did not exist.
Instead of the object residing in a schema the object was owned by a database user (however,
the syntax was the same: <owner>.<object>) In these versions, dbo was recommended to
own all objects, but this is not true anymore. Starting with SQL Server 2005, all objects should
be created within a user-defined schema. Schemas are created using the CREATE SCHEMA
statement, as shown in the following example of creating a schema and a table within
that schema:

CREATE SCHEMA Sales;

GO

CREATE TABLE Sales.Customers (

 CustomerId INT NOT NULL

 ,Name NVARCHAR(50) NOT NULL

);

Tables are created either using the CREATE TABLE or the SELECT . . . INTO statement (the
SELECT . . . INTO statement creates a new table based on a query). The basic syntax of the
CREATE TABLE statement is shown here:

CREATE TABLE

 [database_name . [schema_name] . | schema_name .] table_name

 ({ <column_definition> | <computed_column_definition>

 | <column_set_definition> }

 [<table_constraint>] [,...n])

 [ON { partition_scheme_name (partition_column_name) | filegroup

 | "default" }]

 [{ TEXTIMAGE_ON { filegroup | "default" }]

 [WITH (<table_option> [,...n])]

[;]

Before we go into the specifics of the syntax, we will look at the rules that apply when
naming tables and columns.

 Lesson 1: Working with Tables and Data Types CHAPTER 3 91

Table and Column Names (Identifiers)
Both table and column names are identifiers, and they must adhere to certain rules.
 Identifiers are either standard or delimited. The requirements of each of these are
 described next.

STANDARD IDENTIFIERS

Here are the requirements for standard identifiers:

n The first character must be a letter or an underscore (_), not a digit.

note eXcePtiOn

The first character can also be an at sign (@) or a number sign (#), but both of these

have special meanings, as follows:

n @ defines a variable or parameter.

note

@@ doesn’t mean anything other than @, and it should not be used because many

system functions begin with @@.

n # defines a temporary object (that is, the object is available only from the current
connection).

n ## defines a global temporary object (that is, the object is available from any
 connection in the same instance).

n Subsequent characters can include letters, digits, the at sign (@), the dollar sign ($), the
number sign (#), and the underscore (_).

n The identifier must not be a T-SQL reserved word.

n Embedded spaces or special characters are not allowed.

DELIMITED IDENTIFIERS

Any identifier that does not adhere to the standard identifier naming rules must be delimited
using either quotation marks (“) or square brackets ([]). Using quotation marks conforms
to the ANSI SQL standard; however, you must be aware that the SET QUOTED_IDENTIFIER
 session setting must be set to ON for the quotation marks to be used for delimited identifiers.
(Square brackets can always be used for delimited identifiers.) The default setting for SET
QUOTED_IDENTIFIER is ON, but older T-SQL code may require it to be set to OFF. Setting
QUOTED_IDENTIFIER to OFF causes SQL Server to interpret the quotation marks as strings
instead of identifiers.

 92 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

The following are examples of identifiers:

-- Standard identifiers

CREATE TABLE HR.Employees (

 EmployeeId INT NOT NULL

);

-- Delimited identifiers:

SET QUOTED_IDENTIFIER ON;

CREATE TABLE HR."Organisation Employees" (

 "Employee Id" INT NOT NULL

);

-- or

CREATE TABLE HR.[Organisation Employees] (

 [Employee Id] INT NOT NULL

);

Creating the Table
Now, let’s look at creating a simple table. Consider this example:

CREATE TABLE HR.Employees (

 EmployeeId INT NOT NULL

 ,FirstName NVARCHAR(50) NOT NULL

 ,LastName NVARCHAR(50) NOT NULL

 ,PhoneNumber VARCHAR(15) NULL

 ,BirthDate DATE NOT NULL

);

This code creates a table named Employees containing five columns. The CREATE TABLE
statement starts by defining which schema the table should reside in (in this case, HR), the
table’s name (Employees) and the table’s columns. The columns are defined using three
basic properties: column name, data type, and nullability (whether or not the column allows
NULL values).

Naming Guidelines
When choosing the name of tables and columns, it is important to follow the organization or
project’s naming guidelines. A few typical naming guidelines are provided here:

n Use PascalCasing (also known as upper camel casing).

n Avoid abbreviations.

n A long name that users understand is preferred over a short name that users might not
understand.

 Lesson 1: Working with Tables and Data Types CHAPTER 3 93

Choosing Data Types
The data type used for each column is also very important. We have already covered most of
the data types available in SQL Server 2008, but this section discusses some guidelines that
you should try to follow when deciding which data type to use. They are as follows:

n Always use the data type that requires the least amount of disk space while still
 providing the functionality that you require.

n It can be very costly (both in development time and server resources) to change a
column’s data type later on. Do not use a data type if there is a chance that it will not
cover your application’s future needs.

n In most cases use a variable-length data type, such as nvarchar, rather than a
 fixed-length data type, such as nchar.

n One of the few cases where a fixed-length data type is preferred over a variable-length
data type is if the column’s value changes frequently. If the column’s value is updated
frequently, the cost of moving the row to a new position where the new value fits may
outweigh the cost of the additional storage required by a fixed data type.

n Avoid using the datetime and smalldatetime because they use more disk space and
provide less precision than the new date, time, and datetime2 data types.

n Use the varchar(max), nvarchar(max), and varbinary(max) data types instead of the
text, ntext, and image data types, which might not be available in future releases of
SQL Server.

n Use the rowversion data type instead of the timestamp data type because the
 timestamp data type may not be available in future releases of SQL Server.

n Only use the varchar(max), nvarchar(max), varbinary(max), and xml data types if a data
type with a specified size cannot be used. This is because using the data types prevents
you from being able to rebuild indexes online and because these data types cannot be
used in the key of an index.

More info inDeXeS

Indexes are covered in detail in Chapter 6, “Techniques to Improve Query Performance.”

n Use the float or real data types only if the precision provided by decimal is insufficient.

NULL or NOT NULL?
Deciding on whether to allow NULLs in a column can be a problem. Many people have very
strong opinions about NULLs—they either accept them or they are strongly against them.

The decision whether to allow NULLs is actually easy to make: In general, never allow them
because it is the simplest way to design the table. Allowing NULLs where you don’t need to
do so greatly increases the potential for problems when querying your tables.

 94 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

If the value for the column is optional (that is, not all rows have a value), the column
must allow NULLs. You should never use another value instead of NULL (such as –1 for
integers), which might cause you lots of problems in your queries. This is because –1
means “minus one” and not “unknown,” which is the definition of NULL. For example, if
you use the AVG function, it includes -1 values in the calculation, but AVG would omit the
NULL values.

Alternatively, add a new table with a one-to-one relationship to the table you are
 designing and store the potentially unknown value in the other table. If a row shouldn’t have
a value, you simply don’t insert a row into the other table. Consider this example:

CREATE TABLE HR.Employees (

 EmployeeId INT NOT NULL

 ,FirstName NVARCHAR(50) NOT NULL

 ,LastName NVARCHAR(50) NOT NULL

 ,BirthDate DATE NOT NULL

);

CREATE TABLE HR.EmployeePhoneNumbers (

 EmployeeId INT NOT NULL

 ,PhoneNumber VARCHAR(15) NOT NULL

);

-- Employee with phone number:

INSERT HR.Employees (EmployeeId, FirstName, LastName, BirthDate)

 VALUES (1, N'John', N'Kane', '1970-02-20');

INSERT HR.EmployeePhoneNumbers (EmployeeId, PhoneNumber)

 VALUES (1, N'+1-425-555-1234');

-- Employee without phone number:

INSERT HR.Employees (EmployeeId, FirstName, LastName, BirthDate)

 VALUES (2, N'Jane', N'Dow', '1965-05-30');

This implementation is not used very often because it increases the need for queries with
OUTER JOINS or subqueries to retrieve the “nullable” columns from the other table. This, in
turn, increases the risk for performance problems and also adds more complexity to queries
than just allowing NULL values in the original table.

Identity
All tables should have one column or a combination of columns that uniquely identifies
rows in the table. This is called the primary key, and it is covered in Lesson 2, “Declarative
Data Integrity,” later in this chapter. Most of the time, it is difficult to select a column of
data whose values make a good primary key, typically because values are not guaranteed to
be unique or because the values might change frequently. Instead of using such a column,
called a natural key, you can use a technical or automatically generated key. In SQL Server,

 Lesson 1: Working with Tables and Data Types CHAPTER 3 95

the IDENTITY property is used to designate one column per table whose value should be
automatically increased or decreased as new rows are added. The syntax for creating an
identity column is <column name> <data type> IDENTITY(<seed>, <increment>) NOT NULL.
The seed is the starting point for generating numbers, and the increment is the value by
which the key is incremented (or decremented, if negative). An identity column cannot
allow NULL values. The following example creates the HR.Employees table and defines the
EmployeeId column with an identity that starts at 1000 and increments by a value of 2 for
each row:

CREATE TABLE HR.Employees (

 EmployeeId INT IDENTITY(1000, 2) NOT NULL

 ,FirstName NVARCHAR(50) NOT NULL

 ,LastName NVARCHAR(50) NOT NULL

 ,BirthDate DATE NOT NULL

);

Note that the IDENTITY property can be specified only when creating a new column.
An existing column cannot be modified to use the IDENTITY property. To change an
 existing column, the existing column must be dropped and the identity column added in
its place.

The identity column can be used only on data types that store whole numbers, which
include both the integer data types and the decimal data type with a scale set to 0.

Another important point to note with identity columns is that they are not guaranteed to
generate complete sequences. If an insert fails, it still uses the identity value, creating a hole
in the sequence. Consider this example:

INSERT HR.Employees (FirstName, LastName, BirthDate)

 VALUES ('John', 'Kane', '1970-01-30');

-- EmployeeID generated: 1000

GO

INSERT HR.Employees (FirstName, LastName, BirthDate)

 VALUES ('John', 'Kane', '1970-01-32');

-- Fails because of invalid date

GO

INSERT HR.Employees (FirstName, LastName, BirthDate)

 VALUES ('Jane', 'Dow', '1972-03-30');

-- EmployeeID generated: 1004 (1002 is missed)

GO

In this example, the second INSERT fails and the key 1002 is skipped, so Jane Dow is
 inserted with the key 1004.

 96 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

Compression
SQL Server 2008 introduces the possibility of compressing the data in tables and indexes
if you use SQL Server 2008 Enterprise Edition. Data compression is implemented in
two levels: row and page. The following statement configures a table to use page-level
 compression:

ALTER TABLE HR.Employees

 REBUILD

 WITH (DATA_COMPRESSION = PAGE);

If you turn on row-level compression, SQL Server changes the format used to store rows.
In simple terms, this row format converts all data types to variable-length data types. It also
uses no storage space to store NULL values. The more fixed-length data types (such as
 datetime2, int, decimal, and nchar) that you use in a table, the more likely you are to benefit
from row-level compression.

Page-level compression includes row-level compression and adds page-level compression
using page dictionary and column prefixing. Page dictionary simply introduces pointers
between rows in the same page to avoid storing redundant data. Consider the following
simplified page storing names:

Row 01: John Kane

Row 02: John Woods

Row 03: John Kane

If this page used page dictionary, it would look like this:

Row 01: John Kane

Row 02: John Woods

Row 03: 01

Here, the value in Row 03 points to the value in Row 01, saving several bytes in storage.
Page compression also includes column prefixing, which is similar to page dictionary but can
reuse parts of values.

When considering whether to use row- or page-level compression, it is very important to
verify the amount of space actually saved by turning on the compression.

Lesson Summary
n Creating tables is about more than just defining columns. It is very important to

choose the right data type and to implement data integrity.

n You need to know the details of how the different data types behave before you can
use them correctly.

n Data integrity needs be a part of your table definition from the beginning to make
sure that you protect your data from faults.

 Lesson 1: Working with Tables and Data Types CHAPTER 3 97

Practice creating tables and Data types

In this practice, you create tables and data types and modify existing tables. Because the
exercises build sequentially, it is important to do them in the order specified.

exercise 1 Create a New Table

In this exercise, you create a table that can store customer information.

 1. Open Microsoft SQL Server Management Studio (SSMS) and connect to an instance of
SQL Server 2008.

 2. In a new query window, type and execute the following SQL statements to create the
TestDB database and the Test schema:

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

CREATE SCHEMA Test;

GO

 3. In the query window, create a new table with the following properties:

n It should be named Customers.

n It should exist in the Test schema.

n It should have the following columns:

• CustomerId, which is a whole number between 1 and 100,000. This column
should also be given increasing values automatically. The first value should
be 1,000, and then each subsequent row should be given a new value
 increased by 1. You should use the data type that uses the minimum storage
space required.

• Name, which is a string that can contain Unicode characters and be up to
70 characters long.

• CreatedDateTime, which is the date and time when the customer was added to
the database.

• CreditLimit, which is an exact numeric value that must allow up to five decimals
and values less than 10,000,000.

All columns except the CustomerId column should allow NULL values.

The correct statement follows—but don’t look at it before you have tried to create the
table yourself.

 98 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

Type, highlight, and execute the following statement:

CREATE TABLE Test.Customers (

 CustomerId INT IDENTITY(1000, 1) NOT NULL

 ,Name NVARCHAR(70) NULL

 ,CreatedDateTime DATETIME2 NULL

 ,CreditLimit DECIMAL(12,5) NULL

);

exercise 2 Create New Data Types

In this exercise, you create two new data types that can be used in a database application to
minimize errors when using different data types for the same type of data.

 1. If necessary, open SSMS and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statement to use the
TestDB database:

USE TestDB;

 3. In the query window, create a new data type with the following properties:

n It should be called NAME.

n It should exist in the Test schema.

n It should be a string that can contain Unicode characters and be up to 70 characters
long.

The correct statement follows—but don’t look at it before you have tried to create the
data type yourself.

Type, highlight, and execute the following statement:

CREATE TYPE Test.NAME FROM NVARCHAR(70);

 4. In the query window, create a new data type with the following properties:

n It should be named CURRENCYVALUE.

n It should exist in the Test schema.

n It should be an exact numeric value that must allow up to five decimals and values
up to 999,999,999.99999.

The correct statement follows—but don’t look at it before you have tried to create the
data type yourself.

Type, highlight, and execute the following statement:

CREATE TYPE Test.CURRENCYVALUE FROM DECIMAL(14,5);

exercise 3 Modifying an Existing Table

In this exercise, you modify the table that you created in Exercise 1 to use the data types that
you created in Exercise 2.

 Lesson 1: Working with Tables and Data Types CHAPTER 3 99

 1. If necessary, open SSMS and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statement to use the
TestDB database.

USE TestDB;

 3. In the query window, modify the Test.Customers table with the following changes:

n Modify the Name column to use the Test.NAME data type and to not allow NULL
values.

n Modify the CreditLimit column to use the Test.CURRENCYVALUE data type.

n Modify the CreatedDateTime column to not allow NULL values.

The correct set of statements follows—but don’t look at it before you have tried to
modify the table yourself.

Type, highlight, and execute the following statements:

ALTER TABLE Test.Customers

 ALTER COLUMN Name Test.NAME NOT NULL;

ALTER TABLE Test.Customers

 ALTER COLUMN CreditLimit Test.CURRENCYVALUE NULL;

ALTER TABLE Test.Customers

 ALTER COLUMN CreatedDateTime DATETIME2 NOT NULL;

exercise 4 Implement Data Compression

In this exercise, you populate the Test.Customers table with 100,000 rows and then compare
the disk usage of the table depending on the data compression level used. Note that data
compression is available only in the Developer, Enterprise, and Enterprise Evaluation editions
of SQL Server 2008.

 1. If necessary, open SSMS and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statement to use the
TestDB database.

USE TestDB;

 3. In the query window, type, highlight, and execute the following query to populate the
Test.Customers table with 100,000 rows:

INSERT Test.Customers (Name, CreatedDateTime, CreditLimit)

 SELECT TOP(100000)

 so1.name

 ,SYSDATETIME()

 ,CASE

 100 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

 WHEN ABS(so1.object_id) > 100000000 THEN NULL

 ELSE ABS(so1.object_id)

 END

 FROM sys.all_objects AS so1

 CROSS JOIN sys.all_objects AS so2;

 4. In the query window, type, highlight, and execute the following statements to rebuild
the table using no compression and report the space usage of the table:

ALTER TABLE Test.Customers

 REBUILD WITH (DATA_COMPRESSION = NONE);

EXEC sp_spaceused

 @objname = 'Test.Customers'

 ,@updateusage = 'true';

Note the total disk space reserved for the table, as reported by the sp_spaceused
stored procedure.

 5. In the query window, type, highlight and execute the following query to rebuild the
table using row compression and report the space usage of the table:

ALTER TABLE Test.Customers

 REBUILD WITH (DATA_COMPRESSION = ROW);

EXEC sp_spaceused

 @objname = 'Test.Customers'

 ,@updateusage = 'true';

Note the total disk space reserved for the table.

 6. In the query window, type, highlight, and execute the following query to rebuild the
table using page compression and report the space usage of the table:

ALTER TABLE Test.Customers

 REBUILD WITH (DATA_COMPRESSION = PAGE);

EXEC sp_spaceused

 @objname = 'Test.Customers'

 ,@updateusage = 'true';

Note the total disk space reserved for the table.

 7. To clean up after this practice, close all open query windows in SSMS, open a new
query window, and execute the following SQL statement:

USE master;

GO

DROP DATABASE TestDB;

 Lesson 2: Declarative Data Integrity CHAPTER 3 101

Lesson 2: Declarative Data integrity

Validating data is one of the most common tasks in software development. As a result,
 validation routines tend to be spread throughout an application’s architecture. You are likely
to find data validation in the following technologies:

n Microsoft Windows Forms or Windows Presentation Foundation (WPF) applications

n ASP.NET pages and Silverlight applications

n JavaScript embedded in Hypertext Markup Language (HTML)

n Business components (such as .NET library assemblies or COM components)

n Databases

It is very common to find that too few validation routines are created in a database. This
is because many developers tend to trust that the validation is performed before the data
 actually arrives in the database. This lesson covers what type of validation you can and
 probably should perform in a database and how you can implement it.

After this lesson, you will be able to:

n Implement declarative data integrity on your tables.

n Define primary key constraints.

n Define foreign key constraints.

n Define unique constraints.

n Define check constraints.

Estimated lesson time: 60 minutes

Validating Data
There are two ways to validate data integrity in SQL Server, either using declarative data
integrity or procedural data integrity.

Declarative data integrity is a set of rules that are applied to a table and its columns using
the CREATE TABLE or ALTER TABLE statements. These rules are called constraints.

note DOn’t USe RULeS!

You can also implement declarative data integrity using rules (with the CREATE RULE

 statement); however, rules should not be used because they will be removed from

SQL Server in a future release.

 102 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

Procedural data integrity is implemented either by letting a stored procedure validate
data or by creating triggers that check the data before or after a data manipulation language
(DML) statement (such as INSERT, UPDATE or DELETE) is issued. Stored procedures and
 triggers are covered in Chapter 5.

In general, declarative data integrity is the simplest integrity check to integrate because
it requires very little development effort. This also makes it less likely to produce bugs
 because it contains less code than procedural data integrity. On the other hand, procedural
data integrity typically allows for more advanced integrity checks. The typical database
 application needs to use both declarative and procedural data integrity. In this lesson, we
cover declarative data integrity.

Implementing Declarative Data Integrity
Declarative data integrity is implemented using constraints. There are five types of constraints:
PRIMARY KEY, UNIQUE, FOREIGN KEY, CHECK, and DEFAULT.

PRIMARY KEY AND UNIQUE CONSTRAINTS

Both primary keys and unique constraints identify a column or combination of columns that
uniquely identifies a row in a table. This is enforced through the creation of a unique index;
that is, an index that does not allow duplicate values. Because of this, a primary key and
unique constraints have the same size limitations as the key of an index, that is, it cannot
contain more than 16 columns or 900 bytes of data.

If nothing else is specifed, the index that is created for a primary key is a clustered index
and the index for a unique constraint is a non-clustered index. However, you can change
this behavior by specifying the type of index to create in the ALTER TABLE or CREATE TABLE
 statement, as follows:

-- Primary key as a clustered index.

ALTER TABLE MyTable

 ADD PRIMARY KEY (MyTableID);

-- Primary key as a nonclustered index.

ALTER TABLE MyTable

 ADD PRIMARY KEY NONCLUSTERED (MyTableID);

Because primary keys and unique constraints are both constraints and indexes, you can
find information about them in both the sys.key_constraints and sys.indexes catalog views.

note cOMPUteD cOLUMnS

You can create both primary key and unique constraints on computed columns.

 Lesson 2: Declarative Data Integrity CHAPTER 3 103

FOREIGN KEY CONSTRAINTS

Foreign key constraints identify a column or combination of columns whose values must exist
in another column or combination of columns in the same table or another table in the same
database. Foreign key constraints manage referential integrity between tables or within a
single table. To implement a foreign key constraint, you must follow these rules:

n The columns being referenced must have exactly the same data type (and collation, for
string columns) as the local columns.

n The columns being referenced must have a unique index created on them. This is
 typically implemented using either a primary key or a unique constraint.

n Because the foreign key must reference a unique index, the foreign key columns have
the same size limitations as that of the primary key and unique constraints.

You can also create foreign key constraints on computed columns. You can find
 information about which foreign key constraints exist in your database by querying the
sys.foreign_keys and sys.foreign_key_columns catalog views.

Foreign keys are usually queried frequently in user queries and in joins, as well as when
SQL Server needs to verify referential integrity when deleting or updating primary key rows.
This means that foreign keys usually greatly benefit from being indexed. Indexing is covered
in greater detail in Chapter 6.

When a foreign key constraint notices a referential integrity violation because of a DELETE
or an UPDATE of a row that it references, the default reaction is to raise an error message
and roll back the statement that violated the constraint. If this is not the result you want, you
can change the default action for the foreign key to delete the referenced row, update the
 referenced column, or both. There are four actions to choose from:

n NO ACTION (the default)

n SET NULL

n SET DEFAULT

n CASCADE

An example implementation is shown here:

CREATE TABLE Test.Customers

(

 CustomerID INT PRIMARY KEY

);

CREATE TABLE Test.Orders

(

 OrderID INT PRIMARY KEY

 ,CustomerID INT NULL

 REFERENCES Test.Customers

 ON DELETE SET NULL

 ON UPDATE CASCADE

);

 104 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

The default behavior of the foreign key is NO ACTION. If the foreign key finds a violation
and NO ACTION is specified, SQL Server rolls back the statement that violated the constraint
and raises an error message.

SET NULL and SET DEFAULT cause all the referenced values to be set to either NULL
(for SET NULL) or DEFAULT (for SET DEFAULT; that is, the default defined on the column)
instead of raising an error and rolling back the statement. In the relationship between
the Orders and Customers tables shown in the code sample, if a customer is deleted, the
 CustomerID column is set to NULL for all orders belonging to that customer and no error
message is sent to the calling application.

The CASCADE action causes SQL Server to delete referenced rows for a DELETE statement
(ON DELETE) and update the referenced values (ON UPDATE) for an UPDATE statement.
 Using the same code sample, if the CustomerID column is changed for a row in the Customers
table, all corresponding rows in the Orders table are updated with the same CustomerID to
reflect the change. If ON DELETE CASCADE is specified for the foreign key constraint and a
row in the Customers table is deleted, all referencing rows in the Orders table are deleted.
This might sound reasonable, but it might not be possible to implement CASCADE for all
foreign key constraints because cyclic references are not supported. For example, in the
 following script, an error is raised when you try to add the foreign key FKCustomersLastOrder
because it introduces a cyclic reference. If a customer is deleted, all referencing orders must
be deleted, and all customers referencing those orders through the LastOrderID column
must also be deleted:

CREATE TABLE Test.Customers (

 CustomerID INT PRIMARY KEY

 ,LastOrderID INT NULL

);

CREATE TABLE Test.Orders (

 OrderID INT PRIMARY KEY

 ,CustomerID INT NOT NULL

 REFERENCES Test.Customers

 ON DELETE CASCADE

 ON UPDATE NO ACTION

);

ALTER TABLE Test.Customers ADD

 CONSTRAINT FKCustomersLastOrder

 FOREIGN KEY (LastOrderID)

 REFERENCES Test.Orders (OrderID)

 ON DELETE CASCADE

 ON UPDATE NO ACTION;

 Lesson 2: Declarative Data Integrity CHAPTER 3 105

In the previous example, consider what happens if a customer is deleted—all the customer’s
orders are also deleted. This might be fine, but consider the following code:

CREATE TABLE Test.Countries (

 CountryID INT PRIMARY KEY

);

CREATE TABLE Test.Cities (

 CityID INT PRIMARY KEY

 ,CountryID INT NOT NULL

 REFERENCES Test.Countries

 ON DELETE CASCADE

);

CREATE TABLE Test.Customers (

 CustomerID INT PRIMARY KEY

 ,CityID INT NOT NULL

 REFERENCES Test.Cities

 ON DELETE CASCADE

);

CREATE TABLE Test.Orders (

 OrderID INT PRIMARY KEY

 ,CustomerID INT NOT NULL

 REFERENCES Test.Customers

 ON DELETE CASCADE

);

In this example, if you delete a country, all cities in that country, all customers
in those cities, and all orders belonging to those customers are also deleted. Be cautious—
you might be deleting more than you think. Consider someone executing the query
 DELETE Test.Countries WHERE CountryID = 1; from SSMS. The person might think he is
 deleting only one row in the Countries table, when he or she might actually be deleting
 millions of rows. The time it takes to execute this DELETE statement depends on how many
rows are being deleted. When it finishes, SSMS returns the following message:

(1 row(s) affected)

This message is returned even if millions of rows were deleted because the message tells
us only how many rows were deleted directly by the executed statement. There is nothing
wrong with this behavior, but it is definitely something you should consider.

note tRiGGeRS

If you have defined foreign keys with cascading actions, any AFTER triggers on the affected

tables are still executed, but they are executed after the whole chain of cascading actions

have completed. If an error occurs while the cascading action chain is being executed, the

entire chain is rolled back and no AFTER triggers are executed for that chain.

 106 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

CHECK CONSTRAINTS

Check constraints are a set of rules that must be validated prior to data being allowed into a
table. Advantages to using check constraints include the following:

n They are simple to implement. (They are very similar to a WHERE clause.)

n They are checked automatically.

n They can improve performance.

A sample check constraint that verifies that a Product must have a non-negative price is
shown here:

ALTER TABLE Products

 ADD CHECK(Price >= 0.0);

The simplicity of check constraints is a great advantage over using triggers. However, there
are some disadvantages as well, such as the following:

n Error messages from check constraints are system-generated and cannot be replaced
by a more user-friendly error message.

n A check constraint cannot “see” the previous value of a column. This means that it
cannot be used for some types of data integrity rules, such as “Updates to the price
column cannot increase or decrease the price by more than 10 percent.”

One important aspect of check constraints is that they reject values that evaluate to False
rather than accepting values that evaluate to True. That might seem like the same thing,
but in SQL Server, it is not, because of an issue related to NULL values that is important
to acknowledge. For example, if you have a check constraint that states that Price > 10.0,
you can still insert a NULL value into the Price column. This value is allowed because any
 comparison made with NULL returns NULL—it is neither True nor False. If you don’t want the
check constraint to allow the NULL value, you can either dissallow NULL in the Price column
by specifying the NOT NULL constraint for the column or by changing the check constraint
to read Price > 10.0 AND Price IS NOT NULL.

EXTENDING CHECK CONSTRAINTS WITH USER-DEFINED FUNCTIONS

User-defined functions (UDFs) created both in T-SQL and managed code (also referred to as
.NET or CLR UDFs) can be an integral part of check constraints and are therefore discussed
briefly here. They are covered in more detail in Chapter 5.

The expression in a check constraint can contain most of the logic that you can use in
a WHERE clause (including NOT, AND, and OR). It can call scalar UDFs and reference other
columns in the same table; however, it is not allowed to contain subqueries directly. Because
you can write your own scalar functions in either T-SQL or managed code, you can apply
advanced logic inside your check constraints and, through them, even use subqueries.

The following example creates a UDF called fnIsPhoneNumber in managed code (shown in
both Microsoft Visual Basic and C#) to verify that a string contains a valid U.S. phone number
by applying a regular expression:

 Lesson 2: Declarative Data Integrity CHAPTER 3 107

‘VB

<Microsoft.SqlServer.Server.SqlFunction(IsDeterministic:=True, _

 DataAccess:=DataAccessKind.None)> _

Public Shared Function fnIsPhoneNumber(ByVal phoneNumber As SqlString) _

 As SqlBoolean

 If (phoneNumber.IsNull) Then

 Return SqlBoolean.Null

 End If

 Return System.Text.RegularExpressions.Regex.IsMatch(phoneNumber.Value, _

 "^\([1-9]\d{2}\)\s?\d{3}\-\d{4}$")

End Function

// C#

[SqlFunction(IsDeterministic = true, DataAccess=DataAccessKind.None)]

static public SqlBoolean fnIsPhoneNumber(SqlString phoneNumber)

{

 if (phoneNumber.IsNull){

 return SqlBoolean.Null;

 }

 return System.Text.RegularExpressions.Regex

 .IsMatch(phoneNumber.Value, @"^\([1-9]\d{2}\)\s?\d{3}\-\d{4}$");

}

More info UDFs

UDFs are explained in detail in Chapter 7, “Extending Microsoft SQL Server Functionality

with XML, SQLCLR, and Filestream.”

The following code creates a table and the check constraint that references the UDF:

CREATE TABLE Test.Contacts (

 ContactID INT IDENTITY PRIMARY KEY

 ,Name NVARCHAR(50) NOT NULL

 ,PhoneNumber VARCHAR(20) NULL

 ,CONSTRAINT CKContactsPhoneNumber

 CHECK(dbo.fnIsPhoneNumber(PhoneNumber) = CAST(1 AS BIT))

);

-- Allowed:

INSERT Test.Contacts (Name, PhoneNumber)

 VALUES ('Tobias', '(425)555-1111');

INSERT Test.Contacts (Name, PhoneNumber)

 VALUES ('Chris', NULL);

-- Disallowed, will raise an error:

INSERT Test.Contacts (Name, PhoneNumber)

 VALUES ('Ann', '(42)555-2222');

 108 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

When is this check constraint executed? Only when needed. The optimizer runs the check
constraint only if columns referenced in the check constraints are referenced by the executed
DML statement. For INSERTs, this is always true because an INSERT always affects all columns
(even if you insert a NULL value). For UPDATES, the check constraint is executed only if a
 column contained in the check constraint is referenced by the update.

note PeRFORMance

Adding a lot of logic to your check constraints can hurt performance. A good approach

is to add the necessary constraints and then run a performance test to verify that the

 performance is sufficent.

USING A UDF WITH A SUBQUERY

It is possible to include subqueries in check constraints by placing them inside a UDF. This
practice can result in poor performance because the subquery is executed once for each
row affected by an UPDATE or INSERT statement against the table. Imagine you want to
extend the previous example to also validate the telephone area codes using a subquery.
The supported area codes are stored in a separate table called Test.AreaCodes. Here is the
extended version of the UDF:

‘ VB

<Microsoft.SqlServer.Server.SqlFunction(IsDeterministic:=True, _

 DataAccess:=DataAccessKind.Read)> _

Public Shared Function fnIsPhoneNumber2(ByVal phoneNumber As SqlString) _

 As SqlBoolean

 If (phoneNumber.IsNull) Then

 Return SqlBoolean.Null

 End If

 If Not System.Text.RegularExpressions.Regex.IsMatch(phoneNumber.Value, _

 "^\([1-9]\d{2}\)\s?\d{3}\-\d{4}$") Then

 Return False

 Else

 Dim areaCode As String = phoneNumber.Value.Substring(1, 3)

 Using conn As SqlConnection = New SqlConnection("context connection=true;")

 Using cmd As SqlCommand = conn.CreateCommand()

 cmd.CommandText = _

 "IF EXISTS(SELECT * FROM Test.AreaCodes " & _

 " WHERE AreaCode = @AreaCode) " & _

 " SELECT CAST(1 AS BIT) AS Found " & _

 "ELSE " & _

 " SELECT CAST(0 AS BIT) AS Found"

 Lesson 2: Declarative Data Integrity CHAPTER 3 109

 cmd.Parameters.Add("@AreaCode", SqlDbType.Char, 3).Value = areaCode

 conn.Open()

 Return CType(cmd.ExecuteScalar(), Boolean)

 End Using

 End Using

 End If

End Function

// C#

[SqlFunction(IsDeterministic = true, DataAccess=DataAccessKind.Read)]

static public SqlBoolean fnIsPhoneNumber2(SqlString phoneNumber)

{

 if(phoneNumber.IsNull)

 return SqlBoolean.Null;

 if(!System.Text.RegularExpressions.Regex

 .IsMatch(phoneNumber.Value, @"^\([1-9]\d{2}\)\s?\d{3}\-\d{4}$")){

 return false;

 }else{

 string areaCode = phoneNumber.Value.Substring(1,3);

 using(SqlConnection conn = new SqlConnection(

 @"context connection=true;"))

 {

 using(SqlCommand cmd = conn.CreateCommand())

 {

 cmd.CommandText = @"IF EXISTS(SELECT * FROM Test.AreaCodes

 WHERE AreaCode = @AreaCode)

 SELECT CAST(1 AS BIT) AS Found

 ELSE

 SELECT CAST(0 AS BIT) AS Found";

 cmd.Parameters.Add("@AreaCode", SqlDbType.Char, 3)

 .Value = areaCode;

 conn.Open();

 return (bool)cmd.ExecuteScalar();

 }

 }

 }

}

The following code creates a table and the check constraint referencing the UDF:

CREATE TABLE Test.AreaCodes (

 AreaCode CHAR(3) NOT NULL PRIMARY KEY

);

-- The only allowed area code.

INSERT Test.AreaCodes (AreaCode) VALUES ('425');

 110 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

CREATE TABLE Test.Contacts (

 ContactID INT IDENTITY PRIMARY KEY

 ,Name NVARCHAR(50) NOT NULL

 ,PhoneNumber VARCHAR(20) NULL

 ,CONSTRAINT CKContactsPhoneNumber

 CHECK(dbo.fnIsPhoneNumber2(PhoneNumber) = CAST(1 AS BIT))

);

-- Allowed:

INSERT Test.Contacts (Name, PhoneNumber)

 VALUES ('Ann', '(425)555-1111');

INSERT Test.Contacts (Name, PhoneNumber)

 VALUES ('Chris', NULL);

-- Disallowed because of invalid area code:

INSERT Test.Contacts (Name, PhoneNumber)

 VALUES ('Tobias', '(111)555-2222');

A very imporant consideration when using subqueries in check constraints is that, while
the check constraint is verified for UPDATEs and INSERTs to the table, it is not verified when
deleting rows in the table that the subquery references. The data that the check constraint
validated against on the INSERT or UPDATE can be deleted without raising an error. For
 example, the following DELETE statement does not result in an error:

DELETE Test.AreaCodes WHERE AreaCode = '425';

However, after executing the DELETE statement, the following UPDATE statement raises an
error:

UPDATE Test.Contacts SET PhoneNumber = PhoneNumber;

This behavior is highly undesirable because you might think you have the same protection
that you have with foreign keys, which protect you against the DELETE statement as well.
In SQL Server 2008 (and 2005), you can often replace this logic by using a foreign key, as
 described in the next section.

USING A FOREIGN KEY WITH A SUBQUERY

Let’s implement the validation of the phone number as a combination of a check constraint
and a foreign key constraint. You use the first version of the UDF (the one without the
 subquery) with a foreign key. How can you implement the foreign key? You want it to check
the area code only against the Test.AreaCodes table, not the entire phone number. You do
this by implementing a computed column that returns only the area code portion of the
phone number. You need to do a couple of things to make it possible to create the foreign
key shown in the example.

The result of the expression in the AreaCode column must be of the same data type as the
column that the foreign key references, CHAR(3). You ensure this by calling the CAST function
in the AreaCode expression.

 Lesson 2: Declarative Data Integrity CHAPTER 3 111

The column must also be marked as PERSISTED, which means that SQL Server physically
stores the result of the computed column’s expression in the data row instead of calculating it
each time it is referenced in a query. It is recalculated every time the column is updated. One
of the reasons for this requirement is that it affects performance; you don’t want SQL Server
to execute the SUBSTRING function each time the foreign key needs to be validated.

The following script creates the new version of the Test.Contacts table, including the added
foreign key constraint:

CREATE TABLE Test.Contacts (

 ContactID INT IDENTITY PRIMARY KEY

 ,Name NVARCHAR(50) NOT NULL

 ,PhoneNumber VARCHAR(20) NULL

 ,CONSTRAINT CKContactsPhoneNumber

 CHECK(dbo.fnIsPhoneNumber(PhoneNumber) = 1)

 ,AreaCode AS CAST(SUBSTRING(PhoneNumber, 2, 3) AS CHAR(3)) PERSISTED

 ,CONSTRAINT FKContactsAreaCodes

 FOREIGN KEY (AreaCode)

 REFERENCES Test.AreaCodes

);

As you can see, the AreaCode column in the Contacts table is just a subset of the Phone-
Number column.

What happens if you insert a NULL value into the PhoneNumber column? The SUBSTRING
function returns NULL, and NULL is accepted by the foreign key and interpreted as a value
that does not reference the AreaCodes table.

CHECK AND FOREIGN KEY CONSTRAINTS VS. QUERY PERFORMANCE

Can check and foreign key constraints improve query performance? Don’t they just protect us
against invalid data, and in doing so, somewhat degrade performance? The answers to these
questions are “Yes, they can,” and “No, they don’t.”

Because foreign keys and check constraints are declared rules, the optimizer can use them
to create more efficient query plans. This usually involves skipping some part of the query
plan because for example, the optmizer can see that because of a foreign key constraint, it is
unnecessary to execute that particular part of the plan. The following code sample is a simple
example of this behavior with a foreign key constraint. Consider the following two tables and
the foreign key FKOrdersCustomers:

CREATE TABLE Test.Customers (

 CustomerID INT PRIMARY KEY

);

CREATE TABLE Test.Orders (

 OrderID INT PRIMARY KEY

 ,CustomerID INT NOT NULL

 CONSTRAINT FKOrdersCustomers

 REFERENCES Test.Customers (CustomerID)

);

 112 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

Now, let’s look at what SQL Server actually does when you query these tables with the
 foreign key in place. To do this, in SSMS, from the Query menu, choose Include Actual
 Execution Plan, or, alternatively, press Ctrl-M.

The following query returns all orders that have a valid customer reference:

SELECT o.* FROM Test.Orders AS o

WHERE EXISTS (SELECT * FROM Test.Customers AS c

 WHERE c.CustomerID = o.CustomerID);

The execution plan that SQL Server uses to execute this query is shown in Figure 3-1. In the
execution plan, you can see that the Test.Customers table is not accessed; the only table being
accessed is Test.Orders. This is because the optimizer knows that it is not necessary to execute
the EXISTS operator in this query because the foreign key constraint requires all orders to
refer to an existing customer, which is what the WHERE clause checks.

FiGURe 3-1 An actual execution plan in SSMS

Now turn off the foreign key by executing the following statement:

ALTER TABLE Test.Orders NOCHECK CONSTRAINT FKOrdersCustomers;

After executing the same query again, you get a new execution plan, as shown in
 Figure 3-2. The optimizer executes the EXISTS operator (in this case, the Nested Loops icon in
the execution plan) to return only those orders that actually have a valid reference to the
Test.Customers table. Because you turned off the foreign key constraint, SQL Server could not
be sure that all orders actually have valid customer references. Therefore, it had to execute the
EXISTS operator. For a large table, this can make a huge difference in performance.

FiGURe 3-2 An actual execution plan in SSMS when the foreign key constraint is turned off

 Lesson 2: Declarative Data Integrity CHAPTER 3 113

Now turn on the foreign key again by executing the following statement, then rerun the query:

ALTER TABLE Test.Orders

 CHECK CONSTRAINT FKOrdersCustomers;

After running the query this time, you end up with the same plan again—the plan shown
in Figure 3-2. How can this be? You turned the constraint back on, so now SQL Server should
be sure that all orders have valid customer references. However, this is actually not the case.
This is because the foreign key is considered to be “not trusted”. The optimizer does not take
into account a constraint that is not trusted (which applies only to foreign key and check
constraints). Your foreign key is no longer trusted because, while it was turned off, someone
could have inserted or updated an order row with an invalid CustomerID. Turning the
 constraint back on does not verify existing data. You can verify that the foreign key is indeed
not trusted by executing the following query:

SELECT name, is_not_trusted FROM sys.foreign_keys

 WHERE name = 'FKOrdersCustomers';

You find that the is_not_trusted column contains the value 1, indicating that the constraint
is not trusted. To make it trusted, you need to modify the earlier turn on statement by adding
the WITH CHECK option to it, as shown in the following example:

ALTER TABLE Test.Orders

 WITH CHECK

 CHECK CONSTRAINT FKOrdersCustomers;

This option tells SQL Server to verify that all rows in the table comply with the constraint
prior to turning it back on. If any rows do not comply with the constraint, an error message is
returned and the ALTER TABLE statement is rolled back.

If you execute the query again, you find that you are back to the first execution plan
(the one shown in Figure 3-1) and, if you execute the query against the sys.foreign_keys
catalog view again, you find that the is_not_trusted column now returns the value 0.
The constraint is once again trusted.

One last note on this implementation: you can change the script for the Test.Customers and
Test.Orders tables, as shown in the following example, so that the CustomerID column in the
Test.Orders table allows for NULL values—that is, it is not declared with the NOT NULL constraint:

CREATE TABLE Test.Customers (

 CustomerID INT PRIMARY KEY

);

CREATE TABLE Test.Orders (

 OrderID INT PRIMARY KEY

 ,CustomerID INT NULL

 CONSTRAINT FKOrdersCustomers

 REFERENCES Test.Customers (CustomerID)

);

 114 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

If you execute the same query against this table structure, you get the execution plan
from Figure 3-2. This means that the EXISTS operator is being executed even if you have the
trusted foreign key constraint in place. To persuade the optimizer to go back to the plan that
didn’t execute the EXISTS operator, you need to change the query as shown in the following
 example:

SELECT o.* FROM Test.Orders AS o

WHERE EXISTS (SELECT * FROM Test.Customers AS c

 WHERE c.CustomerID = o.CustomerID)

 AND o.CustomerID IS NOT NULL;

This informs SQL Server that no orders with a CustomerID of NULL should be returned,
which brings you back to the plan from Figure 3-1.

Practice implementing constraints

In this practice, you add constraints when adding a new table. You also modify an existing
table by adding constraints to it. Because the exercises build on each other sequentially, it is
important to do them in the order specified.

exercise 1 Create a New Table with Constraints

In this exercise, you create two tables that will be used to store a list of customers and their
respective orders. You also define basic constraints on the two tables.

 1. If necessary, open SSMS and connect to an instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statements to create the
TestDB database with the Test schema:

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

CREATE SCHEMA Test;

GO

 3. In the query window, create a new table with the following properties:

n It should be named Customers.

n It should exist in the Test schema.

n It should have the following columns:

• CustomerId, which must be a whole number between 1 and 100,000. This
 column should also be given increasing values automatically. Use the data type
that requires the least storage space. The first value should be 1,000, and then

 Lesson 2: Declarative Data Integrity CHAPTER 3 115

each following row should be given a new value increased by 1. This value
should be the table’s primary key.

• Name, which should be a string that can be up to 50 characters long.

n No columns should allow NULL values.

The correct statement follows—but don’t look at it before you have tried to create the
table yourself.

Type, highlight, and execute the following statement:

CREATE TABLE Test.Customers (

 CustomerId INT IDENTITY(1000, 1) NOT NULL

 CONSTRAINT PKCustomers

 PRIMARY KEY

 ,Name NVARCHAR(50) NOT NULL

);

 4. In the query window, create a new table with the following properties:

n It should be named Orders.

n It should exist in the Test schema.

n It should have the following columns:

• OrderId, which must be a whole number between 1 and 100,000. This column
should also be given increasing values automatically. Use the data type that
requires the least storage space. The first value should be 1,000, and then each
following row should be given a new value increased by 1. This value should be
the table’s primary key.

• OrderDate, which must be a date.

If no value is provided, today’s date should be added automatically.

• CustomerId, which must reference a row with the same value in the CustomerId
column of the Test.Customers table.

n No columns should allow NULL values.

The correct statement follows—but don’t look at it before you have tried to create the
table yourself.

Type, highlight, and execute the following statement:

CREATE TABLE Test.Orders (

 OrderId INT IDENTITY(1000, 1) NOT NULL

 ,OrderDate DATE NOT NULL DEFAULT SYSDATETIME()

 ,CustomerId INT NOT NULL

 CONSTRAINT FKOrdersCustomerId

 REFERENCES Test.Customers (CustomerId)

);

 116 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

exercise 2 Add More Constraints

In this exercise, you add further constraints to the tables that you created in Exercise 1.

 1. If necessary, open SSMS and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statements to use the
TestDB database:

USE TestDB;

GO

 3. In the query window, add a constraint that verifies that the Name column in the
Test.Customers table must start with a letter and be at least three characters long.

The correct statement follows—but don’t look at it before you have tried to create the
constraint yourself.

Type, highlight, and execute the following statement:

ALTER TABLE Test.Customers

 ADD CONSTRAINT CKCustomerName

 CHECK(Name LIKE N'[A-Z]__%');

 4. In the query window, add a constraint that verifies that the OrderDate column in the
Test.Orders table must contain today’s date.

The correct statement follows—but don’t look at it before you have tried to create the
constraint yourself.

Type, highlight, and execute the following statement:

ALTER TABLE Test.Orders

 ADD CONSTRAINT CKOrdersOrderDate

 CHECK(OrderDate = CAST(SYSDATETIME() AS DATE));

 5. To clean up after this lab, close all open query windows in SSMS, open a new query
window, and execute the following SQL statements:

USE master;

GO

DROP DATABASE TestDB;

 Key Terms CHAPTER 3 117

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can perform the
following tasks:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenario. This scenario sets up a real-world situation involving the
topics of this chapter and asks you to create solutions.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n Always consider which data types you are using because changing your mind later can

be more difficult than you think.

n Consider using user-defined data types to simplify selecting the correct data type
when creating tables and to avoid data type mismatches in your database.

n Having appropriate names, as defined in a naming guidelines document for objects
and columns, is very important to make sure that the naming in your database is
 consistent.

n Consider compressing large tables to save disk space and memory, as well as possibly
increasing performance.

n Implement constraints to verify data integrity.

n Implement constraints to support the optimizer.

n Consider using UDFs in check constraints to implement advanced data integrity.

key terms

n Constraint

n Primary key

n Unique constraint

n Foreign key constraint

n Check constraint

n Identity

 118 CHAPTER 3 Tables, Data Types, and Declarative Data Integrity

Case Scenario
In the following case scenario, you apply what you have learned about in this chapter. You can
find answers to these questions in the “Answers” section at the end of this book.

Case Scenario: Constraints and Data Types
You are a database developer for Contoso Corporation. You have been given the
 responsibility to add both check and foreign key constraints to the Products table, which
contains a large amount of incorrect data. You need to add the constraints to the table to
prevent any more incorrect data from being inserted or updated in the table.

You also need to create a new table named ProductLog, which will use an identity column
as its primary key and which will contain a huge number of rows. For this reason, you must
choose the largest data type that is supported by the IDENTITY property for this column.

Answer the following questions for your manager:

 1. How should you add the constraints to the Products table?

 2. Which data type should you use for the ProductLog table?

Suggested Practices

To help you master the exam objectives presented in this chapter, do all the following
 practices:

Create and Alter Tables
n Practice 1 Create the tables needed to store information about your DVD collection.

Implement Data Types
n Practice 2 Create all alias types (user-defined data types) needed by the columns

defined in Practice 1.

Manage International Considerations
n Practice 3 Change the tables defined in Practice 1 to use the alias types that you

 created in Practice 2.

Create and Modify Constraints
n Practice 4 Implement referential integrity on the tables that you defined in Practice 1

using primary key and foreign key constraints.

n Practice 5 Implement any check and unique constraints that you think
are appropriate to verify the data integrity in the tables defined in Practice 1.

 Take a Practice Test CHAPTER 3 119

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the content covered in this chapter, or you can test yourself on all the 70-433
certification exam content. You can set up the test so that it closely simulates the experience
of taking a certification exam, or you can set it up in study mode so that you can look at the
correct answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests,” in the Introduction to this book.

 CHAPTER 4 121

c H a P t e R 4

Using Additional Query
Techniques

Within many applications you need to construct queries that go beyond a basic SELECT
statement, such as creating running totals, finding gaps in sequences, traversing a

 recursive hierarchy, or ranking data within a set. In this chapter, you will learn how to extend
the querying techniques that you have learned within this book to encompass subqueries,
 common table expressions (CTEs), and ranking functions.

Exam objectives in this chapter:
n Implement subqueries.

n Implement CTE (common table expression) queries.

n Apply ranking functions.

Lessons in this chapter:
n Lesson 1: Building Recursive Queries with CTEs 123

n Lesson 2: Implementing Subqueries 127

n Lesson 3: Applying Ranking Functions 133

before You begin

To complete the lessons in this chapter, you must have:

n SQL Server 2008 installed

n The AdventureWorks database installed

 c o n t e n t s

 cHaPteR 4 121

 Using additional Query techniques 121

Before You Begin .121

Lesson 1: Building Recursive Queries with CTEs .123

Common Table Expressions 123

Lesson Summary 126

Lesson 2: Implementing Subqueries .127

Noncorrelated Subqueries 127

Running Aggregates 129

Correlated Subqueries 129

Lesson Summary 132

Lesson 3: Applying Ranking Functions .133

Ranking Data 133

Lesson Summary 137

Chapter Review .138

Chapter Summary 138

Key Terms .138

Case Scenario 138

Suggested Practices .139

Build Recursive Queries with CTEs 139

Implement Subqueries 139

Apply Ranking Functions 139

Take a Practice Test .140

 122 CHAPTER 4 Using Additional Query Techniques

real World

Michael Hotek

One of the more common requirements that I come across, especially with data

warehouses, is to find where data is missing. You might be expecting sales

 figures from a store on a daily basis, defects from a manufacturing line every hour,

or inventory levels from a series of sequentially numbered bins. When trying to solve

“missing gaps” problems, many developers turn to some kind of cursor operation.

Either a database cursor is used, or the data is pulled back into an application that

sorts the data and then moves across every record, keeping track of the previous and

subsequent values to find all the missing values.

One particular problem that I see is finding gaps in a sequence. I had to solve this type

of problem several years ago for a customer who was trying to place advertisements

automatically within a time sequence where you had to repeatedly find gaps that

matched a set of criteria. The existing solution used a lot of trial and error with nested

cursors. Using subqueries and unequal joins solved the problem with a 90 percent

reduction in time and resources.

A colleague of mine sent me an e-mail with a solution to the problem of figuring

out a correlation between billboard postings and wildfires that used multiple WHILE

loops and table variables. While the code worked and produced the required result,

it could have been collapsed into a set of noncorrelated subqueries with unequal

joins that would perform much better against a large result set. (Clint, I hope you

found my solution useful.)

Even as I was writing this chapter, another customer needed to validate data sets in

a data warehouse to find data that was missing from the loads.

While the one-row-at-a-time solutions get the job done, finding gaps within a

large set of data can require a significant amount of time. Instead of using a cursor

 approach or multiple WHILE loops, you can solve the problem very efficiently

either by using subqueries with unequal joins or by combining ranking functions

with CTEs.

 Lesson 1: Building Recursive Queries with CTEs CHAPTER 4 123

Lesson 1: building Recursive Queries with ctes

CTEs provide a capability that is very similar to a derived table (derived tables are explained
in Lesson 2 in this chapter). However, CTEs also allow you to iterate across a result set to
solve one of the more difficult challenges within Transact-SQL (T-SQL), efficiently executing a
 recursive query. In this lesson, you learn how to build CTEs to solve recursive query problems.

After this lesson, you will be able to:

n Apply CTEs to recursive query problems.

Estimated lesson time: 20 minutes

Common Table Expressions
A CTE is defined with two parts:

n A WITH clause containing a SELECT statement that generates a valid table

n An outer SELECT statement that references the table expression

The following CTE returns the number of employees that have a given title:

WITH EmpTitle AS

(SELECT JobTitle, count(*) numtitles

 FROM HumanResources.Employee

 GROUP BY JobTitle)

SELECT b.BusinessEntityID, b.JobTitle, a.numtitles

FROM EmpTitle a INNER JOIN HumanResources.Employee b ON a.JobTitle = b.JobTitle;

GO

A recursive CTE expands the definition of the table expression and consists of two parts:

n An anchor query, which is the source of the recursion, along with a UNION ALL
 statement and a second query, which recurses across the anchor query.

n An outer query, which references the routine and specifies the number of recursion levels

For example, the following query allows you to specify an employee and then return
each level of management above the employee in the organization across a maximum of
25 organization levels:

DECLARE @EmployeeToGetOrgFor INT = 126;

WITH EMP_cte(BusinessEntityID, OrganizationNode, FirstName, LastName,

 JobTitle, RecursionLevel)

AS (SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,

 p.LastName, e.JobTitle, 0

 FROM HumanResources.Employee e INNER JOIN Person.Person as p

 ON p.BusinessEntityID = e.BusinessEntityID

 WHERE e.BusinessEntityID = @EmployeeToGetOrgFor

 UNION ALL

 124 CHAPTER 4 Using Additional Query Techniques

 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, p.LastName,

 e.JobTitle, RecursionLevel + 1

 FROM HumanResources.Employee e INNER JOIN EMP_cte

 ON e.OrganizationNode = EMP_cte.OrganizationNode.GetAncestor(1)

 INNER JOIN Person.Person p ON p.BusinessEntityID = e.BusinessEntityID)

SELECT EMP_cte.RecursionLevel, EMP_cte.BusinessEntityID,

 EMP_cte.FirstName, EMP_cte.LastName,

 EMP_cte.OrganizationNode.ToString() AS OrganizationNode,

 p.FirstName AS 'ManagerFirstName', p.LastName AS 'ManagerLastName'

FROM EMP_cte INNER JOIN HumanResources.Employee e

 ON EMP_cte.OrganizationNode.GetAncestor(1) = e.OrganizationNode

 INNER JOIN Person.Person p ON p.BusinessEntityID = e.BusinessEntityID

ORDER BY RecursionLevel, EMP_cte.OrganizationNode.ToString()

OPTION (MAXRECURSION 25);

The first query within the WITH clause defines the anchor result set. The second query
is executed recursively up to the maximum recursion level against the anchor query.
The recursion is accomplished by the inner join on the CTE, as follows:

INNER JOIN EMP_cte

The outer query is then used to return the results of the recursive operation along with any
additional data that is needed. The OPTION clause in the outer query specifies the maximum
number of recursion levels that are allowed.

Caution RecURSiOn LeveLS

If the iterative query does not reach the bottom of the hierarchy by the time the

 MAXRECURSION value has been exhausted, you receive an error message.

exaM tiP

Because the WITH keyword is used in multiple ways within T-SQL, any statements preceding

the WITH keyword are required to be terminated with a semicolon.

Quick check

 1. What are the two parts of a CTE?

 2. What are the two parts of a recursive CTE?

Quick check answers

 1. A CTE has a WITH clause that contains a SELECT statement, which defines a table,

along with an outer SELECT statement, which references the CTE.

 2. A recursive CTE has an anchor query, which is the source of the recursion, along

with a UNION ALL statement and a second query, which recurses across the

anchor query; and an outer query, which references the CTE and specifies the

maximum recursion levels.

 Lesson 1: Building Recursive Queries with CTEs CHAPTER 4 125

Practice creating a Recursive cte

In this practice, you use a recursive CTE to expand the bill of materials for a component within
the AdventureWorks database.

exercise Create a Recursive CTE

In this exercise, you use a recursive CTE to expand the bill of materials for a component within
the AdventureWorks database.

 1. Open a new query window, type and execute the following query:

DECLARE @date date = '4/18/2000',

 @productassembly int = 749;

WITH BOM(ProductAssemblyID, ComponentID, AssemblyDescription, PerAssemblyQty,

 ComponentCost, ListPrice, BOMLevel, RecursionLevel)

AS (SELECT b.ProductAssemblyID, b.ComponentID, p.Name, b.PerAssemblyQty,

 p.StandardCost, p.ListPrice, b.BOMLevel, 0

 FROM Production.BillOfMaterials b INNER JOIN Production.Product p

 ON b.ComponentID = p.ProductID

 WHERE b.ProductAssemblyID = @productassembly

 AND @date >= b.StartDate

 AND @date <= ISNULL(b.EndDate, @date)

 UNION ALL

 SELECT b.ProductAssemblyID, b.ComponentID, p.Name, b.PerAssemblyQty,

 p.StandardCost, p.ListPrice, b.BOMLevel, RecursionLevel + 1

 FROM BOM cte INNER JOIN Production.BillOfMaterials b

 ON b.ProductAssemblyID = cte.ComponentID

 INNER JOIN Production.Product p ON b.ComponentID = p.ProductID

 WHERE @date >= b.StartDate

 AND @date <= ISNULL(b.EndDate, @date))

SELECT b.ProductAssemblyID, b.ComponentID, b.AssemblyDescription,

SUM(b.PerAssemblyQty) AS ComponentQty , b.ComponentCost, b.ListPrice,

 b.BOMLevel, b.RecursionLevel

FROM BOM b

GROUP BY b.ComponentID, b.AssemblyDescription, b.ProductAssemblyID,

 b.BOMLevel, b.RecursionLevel, b.ComponentCost, b.ListPrice

ORDER BY b.BOMLevel, b.ProductAssemblyID, b.ComponentID

OPTION (MAXRECURSION 25)

GO

 2. Rerun the query with the date changed to 10/16/2000 and observe the results.

 3. Inspect the contents of the Production.BillOfMaterials table and observe the changes
to components over time to see why the two queries return such different results.

 126 CHAPTER 4 Using Additional Query Techniques

Lesson Summary
n A recursive CTE contains two SELECT statements within the WITH clause, separated by

the UNION ALL keyword. The first query defines the anchor for the recursion, and the
second query defines the data set that is to be iterated across.

n If a CTE is contained within a batch, all statements preceding the WITH clause must be
terminated with a semicolon.

n The outer query references the CTE and specifies the maximum recursion.

 Lesson 2: Implementing Subqueries CHAPTER 4 127

Lesson 2: implementing Subqueries

Subqueries allow you to nest one query within another to build complex routines, as well
as retrieve data sets that would be impossible to construct without resorting to a multistep
process that writes intermediate results out to temporary objects.

You can construct queries with two types of subqueries: correlated and noncorrelated.
A noncorrelated subquery is independent of the outer query within which it is contained.
A correlated subquery depends upon and references columns from the outer query.

Either type of subquery can return a scalar or multiple values. Scalar-valued subqueries
can be placed anywhere within a SELECT statement where one or zero values are expected.
A multivalued subquery can be used anywhere a set of values is expected.

In this lesson, you learn how to implement correlated and noncorrelated subqueries.

After this lesson, you will be able to:

n Implement correlated subqueries.

n Implement noncorrelated subqueries.

Estimated lesson time: 20 minutes

Noncorrelated Subqueries
The main purpose of a noncorrelated subquery is to allow you to write code that is more
 dynamic and does not require that a user knows all the intermediate values that currently
 exist in the database. For example, if you wanted to return a list of customers that were
 assigned to a specific region, you first have to know the list of cities or states from which to
retrieve the requested list. However, a table would exist within your database that specifies
which cities or states are assigned to a given region and a noncorrelated subquery could be
used to make your query resilient to changes in the way a region is organized. Here is an
example of how it might work:

SELECT a.CustomerID, a.FirstName, a.LastName, b.Address, b.City, b.StateProvince

FROM Customer.Customer a INNER JOIN Customer.CustomerAddress b

 ON a.CustomerID = b.CustomerID

WHERE b.City IN (SELECT c.City FROM Customer.CityRegion c INNER JOIN Customer.Region d

 ON c.RegionID = d.RegionID

 WHERE d.Region = 'RegionX')

As another example, suppose that you wanted to return all the products with a list price
greater than the average list price for all products. Instead of having to retrieve the average
list price separately, store the value in a variable, and then use the variable in a second SELECT
statement, you could use the following query:

SELECT a.ProductID, a.Name, a.ListPrice

FROM Production.Product a

WHERE a.ListPrice > (SELECT AVG(b.ListPrice) FROM Production.Product b)

 128 CHAPTER 4 Using Additional Query Techniques

Derived tables

If you want to return a list of employees and the number of employees who have

the same title, you might try to execute the following query:

SELECT BusinessEntityID, JobTitle, count(*)

FROM HumanResources.Employee

GROUP BY BusinessEntityID, JobTitle

Now you have a problem. You need to calculate the number of employees with

a given job title and then return a list of employees along with how many other

employees have the same job title. But to meet the requirements of the GROUP BY,

you have to include all the nonaggregate columns in the GROUP BY clause. You are

faced with a dilemma because it appears that your query can’t be satisfied.

The issue with your query is the order of operations. You have to first calculate the

number of people with a given job title. Then, based on that result, join it back to

the Employee table to get a list of employees and how many other employees have

the same title.

Instead of resorting to temporary tables to store the intermediate result set, T-SQL

can solve this dilemma by taking advantage of an interesting feature of a FROM

clause; namely, it accepts a table source. A table is constructed of rows and columns.

When you execute a SELECT statement, you get a result set that consists of rows and

columns. Therefore, it seems possible that you could actually put an entire SELECT

statement into the FROM clause because the only requirement is to have a source

that has the structure of a table.

When you embed a SELECT statement into a FROM clause, you are using a feature

 referred to as derived tables or virtual tables. A SELECT statement returns a result set,

but no name exists for the result set to be referenced within a query. You get around

the lack of a name by wrapping the entire SELECT statement in parentheses and

 specifying an alias. The solution to your original problem then becomes the following:

SELECT b.BusinessEntityID, b.JobTitle, a.numtitles

FROM (SELECT JobTitle, count(*) numtitles

 FROM HumanResources.Employee

 GROUP BY JobTitle) a

 INNER JOIN HumanResources.Employee b ON a.JobTitle = b.JobTitle

SQL Server first executes the SELECT…GROUP BY statement, loads the results into

memory, and “tags” the results with the specified alias. You can then reference

any column within the derived table in the remainder of the SELECT statement

just as if you were working with a physical table. Keep in mind that any aggregate,

 concatenation, or computation within the derived table must have an alias specified

because it is not possible to construct a table with a column that has no name.

 Lesson 2: Implementing Subqueries CHAPTER 4 129

The main benefit of a derived table is the fact that the result set resides entirely in

memory, which allows faster data access than if the result set were on a storage device.

In almost all cases, any routine that uses a temporary table to store an intermediate

result set that is used by a subsequent query can use a derived table instead.

Running Aggregates
By combining derived tables with unequal joins, you can calculate a variety of cumulative
 aggregates. The following query returns a running aggregate of orders for each salesperson:

SELECT SH3.SalesPersonID, SH3.OrderDate, SH3.DailyTotal, SUM(SH4.DailyTotal) RunningTotal

FROM (SELECT SH1.SalesPersonID, SH1.OrderDate, SUM(SH1.TotalDue) DailyTotal

 FROM Sales.SalesOrderHeader SH1

 WHERE SH1.SalesPersonID IS NOT NULL

 GROUP BY SH1.SalesPersonID, SH1.OrderDate) SH3

INNER JOIN (SELECT SH2.SalesPersonID, SH2.OrderDate, SUM(SH2.TotalDue) DailyTotal

 FROM Sales.SalesOrderHeader SH2

 WHERE SH2.SalesPersonID IS NOT NULL

 GROUP BY SH2.SalesPersonID, SH2.OrderDate) SH4

ON SH3.SalesPersonID = SH4.SalesPersonID

 AND SH3.OrderDate >= SH4.OrderDate

GROUP BY SH3.SalesPersonID, SH3.OrderDate, SH3.DailyTotal

ORDER BY SH3.SalesPersonID, SH3.OrderDate

The derived tables are used to combine all orders for salespeople who have more than one
order on a single day. The join on SalesPersonID ensures that you are accumulating rows for
only a single salesperson. The unequal join allows the aggregate to consider only the rows for
a salesperson where the order date is earlier than the order date currently being considered
within the result set.

By adding a HAVING clause, you can expand a running aggregate to encompass a variety
of situations, such as displaying a running sales total only for salespeople who have already
met their quota or sales aggregated across a sliding window.

Correlated Subqueries
In a correlated subquery, the inner query depends upon the values from the outer query.
This causes the inner query to be executed repeatedly based on input from the outer query.
The following query returns products and their corresponding list price for all products that
have been sold:

SELECT a.ProductID, a.ListPrice

FROM Production.Product a

WHERE EXISTS (SELECT 1 FROM Sales.SalesOrderDetail b

 WHERE b.ProductID = a.ProductID)

 130 CHAPTER 4 Using Additional Query Techniques

Using a join or any other WHERE clause would return the product every time it were sold;
however, that would detail how many times a product had sold instead of detailing products
that have sold at least once. The EXISTS argument also improves the performance of the
query because SQL Server has to find only a single occurrence within the table for the WHERE
clause to be true. As soon as a value is located, SQL Server quits looking at the remainder of
the rows because the return value would not change from that point forward.

exaM tiP

For the exam, you are going to need to read a query and, based solely on the SELECT

 statement, determine whether the query can be used to solve the business problem

 presented.

Quick check

 1. What is the difference between a correlated and a noncorrelated subquery?

 2. What is a derived table?

Quick check answers

 1. A noncorrelated subquery is a query that is embedded within another query but

does not reference any columns from the outer query. A correlated subquery is

embedded within another query and references columns within the outer query.

 2. A derived table is a SELECT statement that is embedded within a FROM clause.

Practice Finding Sequence Gaps

In this practice, you use subqueries to find gaps in a sequence.

exercise Find Sequence Gaps

In the following exercise, you use subqueries to find gaps in a sequence.

 1. Open a new query window, type and execute the following code to load a table with
test data:

CREATE TABLE #orderdates

(CustomerID INT NOT NULL,

OrderDate DATETIME NOT NULL);

DECLARE @startDate datetime,

 @endDate datetime,

 @CustomerID int

SET @CustomerID = 1

 Lesson 2: Implementing Subqueries CHAPTER 4 131

WHILE @CustomerID < 100

BEGIN

 SELECT @startDate = 'Jan 01, 2007',

 @endDate = DATEADD(yy, 1, @startDate);

 WITH dates AS

 (SELECT @startDate AS begindate

 UNION ALL

 SELECT DATEADD(dd,1,begindate) FROM dates

 WHERE begindate < dateadd(dd,-1,@endDate))

 INSERT INTO #orderdates

 SELECT @CustomerID, begindate FROM dates

 OPTION (MAXRECURSION 0);

 SET @CustomerID = @CustomerID + 1

END

SELECT * FROM #orderdates;

 2. In the existing query window, type, highlight, and execute the following code to
 introduce gaps within the sequence:

--Now delete some of the rows to produce gaps

DELETE #orderdates

WHERE DATEDIFF(dd, 0, OrderDate)%11 = 0 ;

--Produce a couple of multi-day gaps

DELETE FROM #orderdates

WHERE OrderDate IN ('1/4/2007','2/17/2007')

 AND CustomerID%3 = 0

SELECT * FROM #orderdates;

 3. In the existing query window, type, highlight, and execute the following code to
 retrieve a list of all the sequence gaps:

SELECT CustomerID, StartGap, EndGap,

 DATEDIFF(dd,StartGap,EndGap) + 1 AS NumberMissingDays

FROM

 (SELECT t1.CustomerID, t1.OrderDate AS StartGap, MIN(t2.OrderDate) AS EndGap

 FROM

 (SELECT CustomerID, DATEADD(dd, 1, OrderDate) AS OrderDate

 FROM #orderdates tbl1

 WHERE NOT EXISTS(SELECT * FROM #orderdates tbl2

 WHERE DATEDIFF(dd, tbl1.OrderDate, tbl2.OrderDate) = 1

 AND tbl1.CustomerID = tbl2.CustomerID)

 AND OrderDate <> (SELECT MAX(OrderDate) FROM #orderdates)) t1

 132 CHAPTER 4 Using Additional Query Techniques

 INNER JOIN

 (SELECT CustomerID, DATEADD(dd, -1, OrderDate) AS OrderDate

 FROM #orderdates tbl1

 WHERE NOT EXISTS(SELECT * FROM #orderdates tbl2

 WHERE DATEDIFF(dd, tbl2.OrderDate, tbl1.OrderDate) = 1

 AND tbl1.CustomerID = tbl2.CustomerID)

 AND OrderDate <> (SELECT MIN(OrderDate) FROM #orderdates)) t2

 ON t1.OrderDate <= t2.OrderDate AND t1.CustomerID = t2.CustomerID

 GROUP BY t1.CustomerID, t1.OrderDate) a

 ORDER BY CustomerID, StartGap;

Lesson Summary
n Noncorrelated subqueries are independent queries that are embedded within an outer

query and are used to retrieve a scalar value or list of values that can be consumed by
the outer query to make code more dynamic.

n Correlated subqueries are queries that are embedded within an outer query but
 reference values within the outer query.

 Lesson 3: Applying Ranking Functions CHAPTER 4 133

Lesson 3: applying Ranking Functions

Ranking functions are used to provide simple analytics such as statistical ordering or
 segmentation. In this lesson, you learn how to use the four ranking functions that ship with
SQL Server 2008.

After this lesson, you will be able to:

n Use ranking functions in your queries.

Estimated lesson time: 20 minutes

Ranking Data
T-SQL has four functions that can be used for ranking data: ROW_NUMBER, RANK, DENSE_
RANK, and NTILE.

The ROW_NUMBER function assigns a number from 1 to n based on a user-specified
sorting order. ROW_NUMBER does not account for ties within the result set, so if you have
rows with the same values within the column(s) that you are ordering by, repeated calls to the
database for the same result set can produce different row numbering.

The following example returns the salesperson along with his or her year-to-date sales and
is numbered in descending order according to the year-to-date sales amount:

SELECT p.FirstName, p.LastName, ROW_NUMBER() OVER(ORDER BY s.SalesYTD DESC) AS 'RowNumber',

 s.SalesYTD, a.PostalCode

FROM Sales.SalesPerson s INNER JOIN Person.Person p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress ba ON p.BusinessEntityID = ba.BusinessEntityID

 INNER JOIN Person.Address a ON a.AddressID = ba.AddressID

WHERE s.TerritoryID IS NOT NULL

You can also use the ROW_NUMBER function with an aggregate to provide a sequence
number within each group. You generate a number within each group by providing an
 optional PARTITION BY clause as follows:

SELECT p.FirstName, p.LastName,

 ROW_NUMBER() OVER (PARTITION BY s.TerritoryID ORDER BY SalesYTD DESC) AS 'RowNumber',

 s.SalesYTD, s.TerritoryID

FROM Sales.SalesPerson s INNER JOIN Person.Person p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress ba ON p.BusinessEntityID = ba.BusinessEntityID

 INNER JOIN Person.Address a ON a.AddressID = ba.AddressID

WHERE s.TerritoryID IS NOT NULL

If you need to number a result set but also deal with ties, you can use the RANK function.
If the result set does not have any ties, RANK produces the same results as ROW_NUMBER.

 134 CHAPTER 4 Using Additional Query Techniques

However, if there are ties, RANK assigns the same value to each row that is tied and then skips
to the next value, leaving a gap in the sequence corresponding to the number of rows that
were tied. The following examples show how RANK is applied to duplicates as well as within
each aggregate grouping:

SELECT a.ProductID, b.Name, a.LocationID, a.Quantity,

 RANK() OVER (PARTITION BY a.LocationID ORDER BY a.Quantity DESC) AS 'Rank'

FROM Production.ProductInventory a INNER JOIN Production.Product b

 ON a.ProductID = b.ProductID

ORDER BY b.Name

SELECT a.ProductID, b.Name, a.LocationID, a.Quantity,

 RANK() OVER (PARTITION BY a.LocationID ORDER BY a.Quantity DESC) AS 'Rank'

FROM Production.ProductInventory a INNER JOIN Production.Product b

 ON a.ProductID = b.ProductID

ORDER BY 'Rank'

If you do not want any gaps in a sequence, you can use the DENSE_RANK function. DENSE_
RANK assigns the same value to each duplicate but does not produce gaps in the sequence.
The following two examples show the same result set when DENSE_RANK is applied:

SELECT a.ProductID, b.Name, a.LocationID, a.Quantity,

 DENSE_RANK() OVER (PARTITION BY a.LocationID ORDER BY a.Quantity DESC) AS 'DenseRank'

FROM Production.ProductInventory a INNER JOIN Production.Product b

 ON a.ProductID = b.ProductID

ORDER BY b.Name

SELECT a.ProductID, b.Name, a.LocationID, a.Quantity,

 DENSE_RANK() OVER (PARTITION BY a.LocationID ORDER BY a.Quantity DESC) AS DenseRank

FROM Production.ProductInventory a INNER JOIN Production.Product b

 ON a.ProductID = b.ProductID

ORDER BY DenseRank

NTILE is used to divide a result set into approximately equal groups. For example, if you
wanted to split a result set into six groups with approximately the same number of rows in
each group, you could use NTILE(6). The following examples show how NTILE can be used to
segment a result set:

SELECT p.FirstName, p.LastName,

 NTILE(4) OVER(ORDER BY s.SalesYTD DESC) AS QuarterGroup,

 s.SalesYTD, a.PostalCode

FROM Sales.SalesPerson s INNER JOIN Person.Person p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress ba ON p.BusinessEntityID = ba.BusinessEntityID

 INNER JOIN Person.Address a ON a.AddressID = ba.AddressID

WHERE s.TerritoryID IS NOT NULL

 Lesson 3: Applying Ranking Functions CHAPTER 4 135

SELECT p.FirstName, p.LastName,

 NTILE(2) OVER(PARTITION BY s.TerritoryID ORDER BY s.SalesYTD DESC) AS QuarterGroup,

 s.SalesYTD, s.TerritoryID

FROM Sales.SalesPerson s INNER JOIN Person.Person p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress ba ON p.BusinessEntityID = ba.BusinessEntityID

 INNER JOIN Person.Address a ON a.AddressID = ba.AddressID

WHERE s.TerritoryID IS NOT NULL

exaM tiP

In addition to understanding the application of the four ranking functions, you need to

understand when RANK/DENSE_RANK produce the same results as ROW_NUMBER, as well

as what the difference is between RANK and DENSE_RANK.

Quick check

 1. What is the difference between RANK and DENSE_RANK?

 2. When do ROW_NUMBER, RANK, and DENSE_RANK produce the same results?

Quick check answers

 1. RANK assigns the same number to ties but leaves a gap in the sequence

 corresponding to the number of rows that were tied. DENSE_RANK assigns the

same number to ties but does not create a gap in a sequence.

 2. ROW_NUMBER, RANK, and DENSE_RANK produce the same results when the

 column being sorted by does not contain any duplicate values within the result set.

Practice Finding Gaps in a Sequence

In this practice, you enhance the solution of the practice in Lesson 2, “Implementing Subqueries,”
using ranking functions with a CTE to improve performance.

exercise

In this exercise, you will enhance the solution of the practice in Lesson 2 using ranking
 functions with a CTE to improve performance.

 1. Open a new query window, type and execute the following code to load a table with
test data:

CREATE TABLE #orderdates

(CustomerID INT NOT NULL,

OrderDate DATETIME NOT NULL);

 136 CHAPTER 4 Using Additional Query Techniques

DECLARE @startDate datetime,

 @endDate datetime,

 @CustomerID int

SET @CustomerID = 1

WHILE @CustomerID < 100

BEGIN

 SELECT @startDate = 'Jan 01, 2007',

 @endDate = DATEADD(yy, 1, @startDate);

 WITH dates AS

 (SELECT @startDate AS begindate

 UNION ALL

 SELECT DATEADD(dd,1,begindate) FROM dates

 WHERE begindate < dateadd(dd,-1,@endDate))

 INSERT INTO #orderdates

 SELECT @CustomerID, begindate FROM dates

 OPTION (MAXRECURSION 0);

 SET @CustomerID = @CustomerID + 1

END

SELECT * FROM #orderdates;

 2. In the existing query window, type, highlight, and execute the following code to
 introduce gaps within the sequence:

--Now delete some of the rows to produce gaps

DELETE #orderdates

WHERE DATEDIFF(dd, 0, OrderDate)%11 = 0 ;

--Produce a couple of multi-day gaps

DELETE FROM #orderdates

WHERE OrderDate IN ('1/4/2007','2/17/2007')

 AND CustomerID%3 = 0

SELECT * FROM #orderdates;

 3. In the existing query window, type, highlight, and execute the following code to
 retrieve a list of all the sequence gaps:

WITH OrderDatesCTE(CustomerID, RowNum, OrderDate) AS

(SELECT CustomerID,

 ROW_NUMBER() OVER(PARTITION BY CustomerID ORDER BY OrderDate) AS RowNum, OrderDate

 FROM #orderdates)

SELECT a.CustomerID, DATEADD(dd, 1, a.OrderDate) AS StartGap,

 Lesson 3: Applying Ranking Functions CHAPTER 4 137

 DATEADD(dd, -1, b.OrderDate) AS EndGap,

 DATEDIFF(dd,DATEADD(dd, 1, a.OrderDate),DATEADD(dd, -1, b.OrderDate)) + 1

 AS NumberMissingDays

 FROM OrderDatesCTE a INNER JOIN OrderDatesCTE b

 ON a.CustomerID = b.CustomerID and a.RowNum = b.RowNum - 1

 WHERE DATEDIFF(dd, a.OrderDate, DATEADD(dd, -1, b.OrderDate)) <> 0

ORDER BY a.CustomerID, a.OrderDate

Lesson Summary
n ROW_NUMBER is used to number rows sequentially in a result set but might not

 produce identical results if there are ties in the column(s) used for sorting.

n RANK numbers a tie with identical values but can produce gaps in a sequence.

n DENSE_RANK numbers ties with identical values but does not produce gaps in the
sequence.

n NTILE allows you to divide a result set into approximately equal-sized groups.

 138 CHAPTER 4 Using Additional Query Techniques

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can perform the
following tasks:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenarios. These scenarios set up real-world situations involving the
topics in this chapter and ask you to create a solution.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n Recursive CTEs can be used to solve a variety of problems that require traversal of a

hierarchy more efficiently than cursor-based approaches.

n Subqueries allow you to embed one query within another query. A noncorrelated
subquery is independent of the outer query, whereas a correlated subquery references
columns in the outer query.

n Ranking functions can be used to solve a variety of problems that require ordering of a
result set, such as pagination and finding gaps within a sequence.

key terms

Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

n Correlated subquery

n Noncorrelated subquery

n Recursive CTE

Case Scenario
In the following case scenario, you apply what you’ve learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

 Suggested Practices CHAPTER 4 139

Case Scenario: Improving Query Performance
Blue Yonder Airlines is implementing a new data warehouse that receives daily loads. A report
needs to be produced every day to notify management if any of the subsidiaries does not
upload its data. At the same time, severe performance problems are occurring within the
production environment. You have been brought in to design the data load and reporting
requirements of the data warehouse, as well as to solve the performance issues within the
transactional databases. During your analysis, you find that every stored procedure is based
on the use of cursors and temporary tables. Cursors are used to iterate across result sets to
find missing data, fill empty seats on an airplane, or calculate sales figures. Temporary tables
are used primarily to hold intermediate result sets before a final result is returned.

Answer the following question for your manager:

n What can you do to resolve the issues at Blue Yonder Airlines?

Suggested Practices

To help you master the exam objectives presented in this chapter, complete the following
tasks.

Build Recursive Queries with CTEs
n Practice 1 Replace the cursor-based solutions for navigating hierarchies in your

 applications with recursive CTEs.

Implement Subqueries
n Practice 1 Replace the cursor-based solutions that you use to calculate running

totals in your applications with subqueries.

n Practice 2 Find code that makes multiple calls to solve a problem within your
 applications. Change the code to retrieve all the values in a set that can then be
 substituted into a WHERE clause as a noncorrelated subquery.

n Practice 3 Remove temporary tables that are used to store intermediate result sets in
your applications and replace them with derived tables.

Apply Ranking Functions
n Practice 1 Replace a cursor-based solution that you use to find sequence gaps in

one of your applications with a CTE combined with a ROW_NUMBER function.

 140 CHAPTER 4 Using Additional Query Techniques

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just one exam objective, or you can test yourself on all the 70-433 certification
exam content. You can set up the test so that it closely simulates the experience of taking
a certification exam, or you can set it up in study mode so that you can look at the correct
 answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests,” in the Introduction to this book.

 CHAPTER 5 141

c H a P t e R 5

Programming Microsoft SQL
Server with T-SQL
User-Defined Stored
Procedures, Functions,
Triggers, and Views

Microsoft SQL Server 2008 allows you to create three types of programmable objects:
stored procedures, functions, and triggers. Instead of executing a single statement

or command at a time, you can build objects that contain blocks of code using a rich
 programming language complete with variables, parameters, control flow, and error
 handling. SQL Server ships with hundreds of functions and allows you to create your own
functions to encapsulate frequently executed data retrieval operations. Just as application
developers use public properties and methods to expose application programming
 interfaces (APIs) to build the object-oriented, client-server, Web-enabled, service-oriented,
and cloud-computing applications in use throughout organizations, stored procedures
provide an abstraction API to the tables and data contained within your databases, which
allows developers to focus on writing code instead of understanding the intricacies of
the database design. Triggers are a special form of stored procedure that are executed
 automatically when data manipulation language (DML) or data definition language (DDL)
commands are executed.

In addition to the three types of programmable objects, you can store SELECT
 statements within a database by using views.

In this chapter, you learn how to build stored procedures, functions, triggers, and
views for your applications. You also learn how to manage transactions and implement
 error-handling routines. Although programmable objects can be written using either
Transact-SQL (T-SQL) or Common Language Runtime (CLR) languages, in this chapter you
learn how to create objects using T-SQL.

 c o n t e n t s

 cHaPteR 5 141

 Programming Microsoft SQL Server with t-SQL
User-Defined Stored Procedures, Functions, triggers, and views 141

Before You Begin .142

Lesson 1: Stored Procedures .144

Creating Stored Procedures 144

Commenting Code 146

Variables, Parameters, and Return Codes 146

Control Flow Constructs 149

Error Messages 152

Error Handling 153

Executing Stored Procedures 157

Module Execution Context 159

Cursors 159

Compilation and Recompilation 162

Lesson Summary 166

Lesson 2: User-Defined Functions .167

System Functions 167

User-Defined Functions 168

Retrieving Data from a Function 170

Lesson Summary 174

Lesson 3: Triggers .175

DML Triggers 175

DDL Triggers 176

Logon Triggers 178

Lesson Summary 182

Lesson 4: Views .183

Creating a View 183

Modifying Data Through a View 184

Partitioned Views 184

Creating an Indexed View 185

Determinism 187

Query Substitution 187

Lesson Summary 189

Chapter Review .190

Chapter Summary 190

Key Terms .190

Case Scenario 191

Suggested Practices .192

Create a Stored Procedure 192

Create a Function 192

Create a Trigger 192

Create a View 192

Take a Practice Test .192

 142 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views 142 CHAPTER 5

Exam objectives in this chapter:
n Create and alter stored procedures.

n Create and alter user-defined functions (UDFs).

n Create and alter DML triggers.

n Create and alter DDL triggers.

n Create and deploy CLR-based objects.

n Implement error handling.

n Manage transactions.

n Create and alter views.

Lessons in this chapter:
n Lesson 1: Stored Procedures 144

n Lesson 2: User-Defined Functions 167

n Lesson 3: Triggers 175

n Lesson 4: Views 183

before You begin

To complete the lessons in this chapter, you must have:

n SQL Server 2008 installed

n The AdventureWorks database installed

More info cLR ObjectS

You can create triggers, functions, and stored procedures using any supported CLR

 language. The creation and management of CLR objects is covered in Chapter 7, “ Extending

Microsoft SQL Server Functionality with XML, Filestream, and SQLCLR.”

real World

Michael Hotek

For decades, companies have been creating frameworks and code generation

tools that are supposed to “shield” developers from needing to understand

databases or Structured Query Language (SQL). While many of these frameworks

and code generation tools have allowed developers to quickly create large

 volumes of database access code, unless the code generated undergoes significant

 modification, very little will perform well enough to meet the needs of business

applications.

 Before You Begin CHAPTER 5 143 CHAPTER 5 143

At one company where I was working on a project, one of the developers couldn’t

wait to use one of these new code generators that was designed to shield the

 developers from needing to understand the databases they were using. Within

the application, the developer wrote about four lines of code that would retrieve a

single row from a table based on an input value for one of the columns of a table.

This could have been done with a simple SELECT statement, which could have been

 encapsulated inside a stored procedure. However, what the application submitted

to SQL Server created a function that contained the SELECT statement, a SELECT

statement to access the function, code to drop the function at the end of the

 process, and 30 to 40 lines of T-SQL to perform error handling validation and ensure

that the function was properly created and then dropped.

Had the developer simply written the stored procedure and then called the stored

procedure in the code, he would have needed to write a total of eight lines of code,

and each user request would execute a total of three statements. Using the code

generated by the code generator, however, required an object to be created and

then destroyed along with the execution of more than 70 lines of code for each user

request.

Although the code generator did all the work so that the developer “didn’t have to

worry about it,” performance comparisons showed that the automatically generated

code required six times as many resources and took 245 percent longer to execute

than if the developer had just written a stored procedure.

T-SQL is a very simple language to learn and has been around, with much the same

syntax, for more than 50 years. Every time I hear about the next code generation

tool that someone created to free developers from needing to understand how to

access a database, the thing that always comes to mind is reinventing the wheel.

 T-SQL is a much simpler language than any of the development platforms in use.

Just like the wheel, which has been around for more than 5,000 years with very

little in the way of innovation, SQL will long outlive any application development

language you will ever use, while at the same time being the most efficient way to

access a relational database.

 144 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views 144 CHAPTER 5

Lesson 1: Stored Procedures

Stored procedures provide an abstraction layer that shields applications from the underlying
database structure. As the backbone of any SQL Server application, stored procedures allow
you to make changes to the database structure and manage performance without needing
to rewrite applications or deploy application updates. In this lesson, you learn how to
 create stored procedures to provide the programmatic interface necessary for writing easily
 maintained and efficient database applications.

After this lesson, you will be able to:

n Create and alter stored procedures.

n Implement error handling.

n Manage transactions.

Estimated lesson time: 20 minutes

Creating Stored Procedures
A stored procedure is one or more statements that has been given a name and stored within
a database. Almost any command within the T-SQL language can be included in a stored
 procedure, making procedures suitable for applications and for performing myriad administrative
actions. The only commands that cannot be used in a stored procedure are the following:

n USE <database name>

n SET SHOWPLAN_TEXT

n SET SHOWPLAN_ALL

n SET PARSEONLY

n SET SHOWPLAN_XML

n CREATE AGGREGATE

n CREATE RULE

n CREATE DEFAULT

n CREATE SCHEMA

n CREATE FUNCTION or ALTER FUNCTION

n CREATE TRIGGER or ALTER TRIGGER

n CREATE PROCEDURE or ALTER PROCEDURE

n CREATE VIEW or ALTER VIEW

 Lesson 1: Stored Procedures CHAPTER 5 145

The first time that a stored procedure is accessed, SQL Server generates compile and
 execution plans that are stored in the query cache and reused for subsequent executions.
 Therefore, you can receive a slight performance benefit when using a stored procedure by
avoiding the need to parse, compile, and generate a query plan on subsequent executions of
a stored procedure. However, the main purpose of a stored procedure is to provide a security
layer and an API to your databases that isolate applications from changes to the database
structure.

The generic syntax to create a stored procedure is

CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]

 [{ @parameter [type_schema_name.] data_type }

 [VARYING] [= default] [OUT | OUTPUT] [READONLY]

] [,...n]

[WITH <procedure_option> [,...n]]

[FOR REPLICATION]

AS { <sql_statement> [;][...n] | <method_specifier> } [;]

<procedure_option> ::=

 [ENCRYPTION] [RECOMPILE] [EXECUTE AS Clause]

When you specify the ENCRYPTION option, available for triggers, functions, procedures,
and views, SQL Server applies a bitwise OR to the code in the object. The ENCRYPTION
option is a carryover from early versions of SQL Server and the option causes quite a bit of
confusion. When you specify the ENCRYPTION option, you are not applying an encryption
routine to hide your code. The algorithm that SQL Server uses is a simple bitwise OR that only
obfuscates the code in the object. If you look at the definition of the object, it appears as
unintelligible text. However, a very simple, publicly available routine reverses the obfuscation.
SQL Server does not allow you to hide the code in triggers, functions, views, and stored
procedures, and anyone with VIEW DEFINITION authority on the object can retrieve the code
you have written.

Caution encRYPtinG MODULeS

SQL Server is not a digital rights management (DRM) system. The text of the module is

not encrypted; rather, it is obfuscated. Any user with access to database metadata can

 reverse-engineer the obfuscated text easily. The ENCRYPTION option is not meant to

 prevent a user from reading the code within your modules.

If you want to modify the contents of a stored procedure or the procedure options, you
can use the ALTER PROCEDURE statement.

What sets a stored procedure apart from a simple batch of T-SQL are all the code
 structures that can be employed, such as variables, parameterization, error handling, and
 control flow constructs.

 146 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views 146 CHAPTER 5

Commenting Code
One of the hallmarks of well-constructed code is appropriate comments that simplify future
maintenance.

Best PraCtiCes cOMMentinG cODe

You should include enough comments within your code to allow subsequent developers

to understand what the code does, as well as any specific workarounds that needed to be

implemented. The only time that a trigger, function, or stored procedure should not have

a comment is when the code is completely obvious, such as a single SELECT statement

contained within a stored procedure.

T-SQL has two different constructs for commenting code, as follows:

--This is a single line comment

/*

This is a

multi-line comment

*/

Caution batcH DeLiMiteRS

The batch delimiter for T-SQL is GO. While parsing code, when SQL Server encounters a GO,

the batch is considered terminated and any subsequent code is considered to be within

another batch. Even if the GO is within a comment block, SQL Server still interprets the GO

as a batch delimiter.

Variables, Parameters, and Return Codes
SQL Server provides three types of objects that are designed to pass values within your code,
as well as return a scalar value to a calling routine.

Variables
Variables provide a way to manipulate, store, and pass data within a stored procedure, as well
as between stored procedures and functions. SQL Server has two types of variables: local
and global. A local variable is designated by a single at sign (@) while a global variable is
 designated by a double at sign (@@). In addition, you can create, read, and write local
 variables, but you can only read the values from global variables. Table 5-1 lists some of the
more common global variables.

 Lesson 1: Stored Procedures CHAPTER 5 147

tabLe 5-1 Global Variables

GLObaL vaRiabLe DeFinitiOn

@@ERROR Error code from the last statement executed

@@IDENTITY Value of the last identity value inserted within the connection

@@ROWCOUNT The number of rows affected by the last statement

@@TRANCOUNT The number of open transactions within the connection

@@VERSION The version of SQL Server

Best PraCtiCes iDentitieS

The @@IDENTITY variable contains the last identity value inserted for the connection.

If you call multiple code modules that insert identity values, the last value inserted is

always contained in @@IDENTITY. For example, if you call a procedure that inserts a row

into TableA, which has a trigger that inserts rows into TableB, TableC, and TableD, with

each insert generating a new identity value, the value of @@IDENTITY that is retrieved

 following the insert into TableA corresponds to the identity value inserted into TableD.

Because of this limitation, the use of @@IDENTITY is very strongly discouraged. Use the

SCOPE_IDENTITY() function instead, which returns the last identity value inserted in the

scope of the current statement.

You instantiate a variable with the DECLARE clause, where you specify the name and the
data type of the variable. A variable can be defined using any data type except text, ntext, and
image. For example:

DECLARE @intvariable INT,

 @datevariable DATE,

 @spatialvar GEOGRAPHY,

 @levelvar HIERARCHYID

DECLARE @tablevar TABLE

(ID INT NOT NULL,

Customer VARCHAR(50) NOT NULL)

note DePRecateD Data tYPeS

Text, ntext, and image data types have been deprecated and should not be used.

While a single DECLARE statement can be used to instantiate multiple variables, the
 instantiation of a table variable must be in a separate DECLARE statement.

 148 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

You can assign either a static value or a single value returned from a SELECT statement to a
variable. Either a SET or a SELECT can be used to assign a value; however, if you are executing
a query to assign a value, you must use a SELECT statement. SELECT is also used to return the
value of a variable.

In addition to assigning a value using either a SET or SELECT statement, you can also assign
a value at the time a variable is instantiated. Here are some examples of setting variables in
various ways:

DECLARE @intvariable INT = 2,

 @datevariable DATE = GETDATE(),

 @maxorderdate DATE = (SELECT MAX(OrderDate) FROM Orders.OrderHeader),

 @counter1 INT,

 @counter2 INT

SET @counter1 = 1

SELECT @counter2 = -1

SELECT @intvariable, @datevariable, @maxorderdate, @counter1, @counter2

Caution vaRiabLe aSSiGnMent

One of the most common mistakes is to forget that, with the exception of a table variable,

variables contain scalar values. If you assign the results of a SELECT statement to a variable,

you must ensure that only a single row is returned from the SELECT statement. If the

 SELECT statement returns more than one row, the variable is set to the value corresponding

to the last row in the result set and all other values in the result set are discarded.

A variable can be used to perform calculations, control processing, or populate a search
argument (SARG) in a query. You can perform calculations with variables using either a SET or
a SELECT statement. SQL Server 2008 introduces a more compact way of assigning values to
variables using a calculation:

--SQL Server 2005 and earlier

DECLARE @var INT

SET @var = 1

SET @var = @var + 1

SELECT @var

SET @var = @var * 2

SELECT @var

SET @var = @var / 4

SELECT @var

GO

--SQL Server 2008

DECLARE @var INT

 Lesson 1: Stored Procedures CHAPTER 5 149

SET @var = 1

SET @var += 1

SELECT @var

SET @var *= 2

SELECT @var

SET @var /= 4

SELECT @var

GO

Parameters
Parameters are local variables that are used to pass values into a stored procedure when it is
executed. During execution, any parameters are used just like variables and can be read and
written. You declare a parameter as in this example:

CREATE PROCEDURE <procedure name> @parm1 INT, @parm2 VARCHAR(20) = 'Default value'

AS

 --Code block

You can create two types of parameters: input and output. An output parameter is desig-
nated by using the keyword OUTPUT:

CREATE PROCEDURE <procedure name> @parm1 INT, @parm2 VARCHAR(20) = 'Default value',

 @orderid INT OUTPUT

AS

 --Code block

Output parameters are used when you need to return a single value to an application. If you
need to return an entire result set, you include a SELECT statement in the stored procedure that
generates the results and returns the result set to the application as shown here:

CREATE PROCEDURE <procedure name> @parm1 INT, @parm2 VARCHAR(20) = 'Default value'

AS

 --This will return the results of this query to an application

 SELECT SalesOrderID, CustomerID, OrderDate, SubTotal, TaxAmt, Freight, TotalDue

 FROM Sales.SalesOrderHeader

Control Flow Constructs
Stored procedures have several control flow constructs that can be used:

n RETURN

n IF. . .ELSE

n BEGIN. . .END

n WHILE

n BREAK/CONTINUE

n WAITFOR

n GOTO

 150 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

A return code can be passed back to an application to indicate the execution status of the
procedure. Return codes are not intended to send data but are used to report execution status.
RETURN terminates the execution of the procedure and returns control back to the calling
 application. Any statements after the RETURN statement are not executed, as shown here:

CREATE PROCEDURE <procedure name> @parm1 INT, @parm2 VARCHAR(20) = 'Default value'

AS

 --This will return the value 1 back to the caller of the stored procedure

 RETURN 1

 --Any code from this point on will not be executed

IF. . .ELSE provides the ability to conditionally execute code. The IF statement checks the
condition supplied and executes the next statement when the condition evaluates to True.
The optional ELSE statement allows you to execute code when the condition check evaluates
to False. Here is an example:

DECLARE @var INT

SET @var = 1

IF @var = 1

 PRINT 'This is the code executed when true.'

ELSE

 PRINT 'This is the code executed when false.'

Regardless of the branch your code takes for an IF. . .ELSE, only the next statement is
 conditionally executed, as demonstrated in this example:

DECLARE @var INT

SET @var = 1

IF @var = 2

 PRINT 'This is the code executed when true.'

 PRINT 'This will always execute.'

Because an IF statement conditionally executes only the next line of code, you have a
problem when you want to execute an entire block of code conditionally. The BEGIN. . .END
statement allows you to delimit code blocks that should execute as a unit, as shown here:

DECLARE @var INT

SET @var = 1

IF @var = 2

BEGIN

 PRINT 'This is the code executed when true.'

 PRINT 'This code is also executed only when the condition is true.'

END

 Lesson 1: Stored Procedures CHAPTER 5 151

WHILE is used to iteratively execute a block of code so long as a specified condition is true.
Here is an example:

DECLARE @var1 INT,

 @var2 VARCHAR(30)

SET @var1 = 1

WHILE @var1 <= 10

BEGIN

 SET @var2 = 'Iteration #' + CAST(@var1 AS VARCHAR(2))

 PRINT @var2

 SET @var1 += 1

END

Best PraCtiCes StateMent eXecUtiOn

One of the most common mistakes you can make when writing code blocks that use an IF

or a WHILE is forgetting that SQL Server executes the next statement only conditionally.

To avoid the most common coding mistakes, it is strongly recommended that you always

use a BEGIN. . .END with an IF or WHILE, even when you are going to execute only a single

line of code conditionally. Not only does it make the code more readable, but it also helps

prevent bugs when your code is modified in the future.

BREAK is used in conjunction with a WHILE loop. If you need to terminate execution within
a WHILE loop, you can use the BREAK statement to end the loop iteration. Once BREAK is
 executed, the next line of code following the WHILE loop is executed. CONTINUE is used
within a WHILE loop to have the code continue to execute from the beginning of the loop.

note BREAK anD CONTINUE

BREAK and CONTINUE statements are almost never used. A WHILE loop terminates as soon

as the condition for the WHILE loop is no longer true. Instead of embedding a conditional

test along with a BREAK statement, WHILE loops are normally controlled through the use

of an appropriate condition for the WHILE. In addition, so long as the conditional for the

WHILE is true, the loop continues executing. Therefore, you should never need to use a

CONTINUE statement.

WAITFOR is used to allow the code execution to pause. WAITFOR has three different
permutations: WAITFOR DELAY, WAITFOR TIME, and WAITFOR RECEIVE. WAITFOR RECEIVE is
used in conjunction with Service Broker, which you learn about in Chapter 8, “Extending SQL
Server Functionality with the Spatial, Full-Text Search, and Service Broker.” WAITFOR TIME

 152 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

pauses the execution of code until a specified time is reached. WAITFOR DELAY pauses the
execution of code for a specified length of time:

DECLARE @var1 INT,

 @var2 VARCHAR(30)

SET @var1 = 1

--Pause for 2 seconds

WAITFOR DELAY '00:00:02'

WHILE @var1 <= 10

BEGIN

 SET @var2 = 'Iteration #' + CAST(@var1 AS VARCHAR(2))

 PRINT @var2

 SET @var1 += 1

END

GOTO allows you to pass the execution to a label embedded within the procedure. Code
constructs such as GOTO are discouraged in all programming languages.

Error Messages
Error messages in SQL Server have three components:

n Error number

n Severity level

n Error message

The error number is an integer value. Error messages that ship with SQL Server are
 numbered from 1 to 49999.

SQL Server defines 26 severity levels numbered from 0 through 25. Any error with a
 severity level of 16 or higher is logged automatically to the SQL Server error log and the
 Windows Application Event Log. Errors with a severity level of 19 to 25 can be specified only
by members of the sysadmin fixed server role. Errors with a severity level of 20 to 25 are
considered fatal and cause the connection to be terminated and any open transactions to be
rolled back.

The error message can be up to 255 Unicode characters long and allows up to two
 parameters to be passed.

You can create your own custom error messages, which must be numbered 50001
and higher. (The number 50000 is reserved to designate a message whose number is not
 specified.) Error messages can be localized for each language that SQL Server supports;
however, you must create an English version of the message before creating a non-English
version.

 Lesson 1: Stored Procedures CHAPTER 5 153

You create a custom error message by executing sp_addmessage as follows:

sp_addmessage [@msgnum =] msg_id , [@severity =] severity , [@msgtext =] 'msg'

 [, [@lang =] 'language']

 [, [@with_log =] 'with_log']

 [, [@replace =] 'replace']

The following example creates a custom message in the English language with an error
number of 50001 and a severity of 16:

EXEC sp_addmessage 50001, 16,

 N'The approved credit must be between 100 and 10,000';

GO

The following example creates a custom message in both English and French that accepts
two parameters with a message number of 50002 and a severity of 16:

EXEC sp_addmessage @msgnum = 50002, @severity = 16,

 @msgtext = N'The product named %s already exists in %d.',

 @lang = 'us_english';

EXEC sp_addmessage @msgnum = 50002, @severity = 16,

 @msgtext = N' %1! de produit existent déjà dans %2!',

 @lang = 'French';

GO

The first message parameter is designated as %s, while the second parameter is designated
as %d. The %s and %d parameters are used only with U.S. English–based messages. All
other languages use %1! to designate the first parameter and %2! to designate the second
 parameter.

You send an error message by executing the RAISERROR command, using the following
syntax:

RAISERROR ({ msg_id | msg_str | @local_variable }

 { ,severity ,state }

 [,argument [,...n]])

 [WITH option [,...n]]

You can view the messages available for the SQL Server instance by querying the
sys.messages catalog view. Custom error messages can be modified by executing the
sp_altermessage system stored procedure. You can drop a custom error message by executing
the sp_dropmessage system stored procedure.

Error Handling
If you always wrote bug-free code that was always accessed in a well-defined, predictable
manner, you would never have any errors. However, all your code is always subject to failure.
An application could attempt to pass parameters that are invalid, business rules could be

 154 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

violated, or your code might not be designed to handle the calls made from a series of new
applications. Therefore, you need to include error handling in your stored procedures, which
allows the source of a problem to be diagnosed and fixed in a user-friendly way.

Prior to SQL Server 2005, the only way of performing error handling was to test the value
of the @@ERROR global variable. When each statement is executed, SQL Server records the
status of the result in @@ERROR. If an error occurred, @@ERROR contains the error number.
If the statement was successful, @@ERROR contains a 0. You then need to query the variable
to determine whether a statement succeeded or failed. Unfortunately, the simple act of
executing a SELECT statement to retrieve the value of @@ERROR also sets the value of the
variable, thereby overwriting any previous error value. Using @@ERROR to perform error
handling is very cumbersome, requiring you to embed checks after each statement along
with an error handling routine for each statement.

To provide a more structured way of handling errors that is very similar to the error
 handling routines of other programming languages, you can now use a TRY. . .CATCH block.

The TRY. . .CATCH block has two components. The TRY block is used to wrap any code in
which you might receive an error that you want to trap and handle. The CATCH block is used
to handle the error.

The following code creates an error due to the violation of a primary key constraint. You
might expect this code to leave an empty table behind due to the error in the transaction;
however, you find that the first and third INSERT statements succeed and leave two rows in
the table:

--Transaction errors

CREATE TABLE dbo.mytable

(ID INT NOT NULL PRIMARY KEY)

BEGIN TRAN

 INSERT INTO dbo.mytable VALUES(1)

 INSERT INTO dbo.mytable VALUES(1)

 INSERT INTO dbo.mytable VALUES(2)

COMMIT TRAN

SELECT * FROM dbo.mytable

The reason that you have two rows inserted into the table is because by default, SQL
Server does not roll back a transaction that has an error. If you want the transaction to either
complete entirely or fail entirely, you can use the SET command to change the XACT_ABORT
setting on your connection, as follows:

TRUNCATE TABLE dbo.mytable

SET XACT_ABORT ON;

BEGIN TRAN

 INSERT INTO dbo.mytable VALUES(1)

 Lesson 1: Stored Procedures CHAPTER 5 155

 INSERT INTO dbo.mytable VALUES(1)

 INSERT INTO dbo.mytable VALUES(2)

COMMIT TRAN

SET XACT_ABORT OFF;

SELECT * FROM dbo.mytable

Although the SET XACT_ABORT ON statement accomplishes your goal, when you change
the settings for a connection, you can have unpredictable results for an application if your
code does not reset the options properly. A better solution is to use a structured error
 handler to trap and decide how to handle the error.

The way a TRY. . .CATCH is implemented in SQL Server 2008 is as follows:

n If an error with a severity less than 20 is encountered within the TRY block, control
passes to the corresponding CATCH block.

n If an error is encountered in the CATCH block, the transaction is aborted and the error
is returned to the calling application unless the CATCH block is nested within another
TRY block.

n The CATCH block must immediately follow the TRY block.

n Within the CATCH block, you can commit or roll back the current transaction unless
the transaction is in an uncommitable state.

n A RAISERROR executed in the TRY block immediately passes control to the CATCH
block without returning an error message to the application.

n A RAISERROR executed in the CATCH block closes the transaction and returns control
to the calling application with the specified error message.

n If a RAISERROR is not executed within the CATCH block, the calling application never
receives an error message.

note tRaPPinG eRRORS

A TRY. . .CATCH block does not trap errors that cause the connection to be terminated, such

as a fatal error or a sysadmin executing the KILL command. You also cannot trap errors

that occur due to compilation errors, syntax errors, or nonexistent objects. Therefore, you

 cannot use a TRY. . .CATCH block to test for an object’s existence.

The following code implements structured error handling for the previous code block:

--TRY...CATCH

TRUNCATE TABLE dbo.mytable

BEGIN TRY

 BEGIN TRAN

 INSERT INTO dbo.mytable VALUES(1)

 INSERT INTO dbo.mytable VALUES(1)

 INSERT INTO dbo.mytable VALUES(2)

 156 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

 COMMIT TRAN

END TRY

BEGIN CATCH

 ROLLBACK TRAN

 PRINT 'Catch'

END CATCH

SELECT * FROM dbo.mytable

One of the more important aspects of a TRY. . .CATCH block is that no error messages are
sent to an application unless a RAISERROR is executed within the CATCH block. Within the
CATCH block, you have access to the following functions:

n ERROR_NUMBER() The error number of the error thrown

n ERROR_MESSAGE() The text of the error message

n ERROR_SEVERITY() The severity level of the error message

n ERROR_STATE() The state of the error

n ERROR_PROCEDURE() The function, trigger, or procedure name that was executing
when the error occurred

n ERROR_LINE() The line of code within the function, trigger, or procedure that caused
the error

Best PraCtiCes RetURninG SYSteM eRROR MeSSaGeS

If you implement a TRY. . .CATCH block, any errors, including system errors, are not returned

to the calling application. The only way to return an error message to a calling application

is to execute a RAISERROR statement. However, you can only specify a user-defined error

message or dynamically construct an error message using RAISERROR. Therefore, you have

a slight problem if you want to return a system-generated error to a calling application.

If you want to return a system error message, you should dynamically build a message

that includes the system error message information, which is returned with a RAISERROR

 statement that does not supply a message ID. That way, any system-generated messages

are always returned with an error number of 50000.

Within the CATCH block, you can determine the current transaction nesting level with the
@@TRANCOUNT global variable. You can also retrieve the state of the innermost transaction
with the XACT_STATE function. The XACT_STATE function can return the following values:

n 1 An open transaction exists that can be either committed or rolled back.

n 0 There is no open transaction.

n –1 An open transaction exists, but it is in a doomed state. Due to the type of error
that was raised, the transaction can only be rolled back.

XACT_ABORT behaves differently when used in conjunction with a TRY block. Instead
of terminating the transaction, control is transferred to the CATCH block. However, if

 Lesson 1: Stored Procedures CHAPTER 5 157

XACT_ABORT is turned on, any error is fatal. The transaction is left in a doomed state and
XACT_STATE returns –1. Therefore, you cannot commit a transaction inside a CATCH block if
XACT_ABORT is turned on.

exaM tiP

Make sure you understand how TRY. . .CATCH blocks handle errors, as well as how

XACT_ABORT behaves within a TRY. . .CATCH block.

Executing Stored Procedures
You access a stored procedure by using an EXEC statement. If a stored procedure does not
have any input parameters, the only code required is

EXEC <stored procedure>

If a stored procedure has input parameters, you can pass in the parameters either by name
or by position:

--Execute by name

EXEC <stored procedure> @parm1=<value>, @parm2=<value>,...

--Execute by position

EXEC <stored procedure> <value>, <value>,...

Passing parameters to a stored procedure by position results in code that is more compact;
however, it is more prone to errors. When parameters are passed to a stored procedure by
name, changes in the order of parameters within the procedure do not require changes
 elsewhere in your applications. Regardless of whether you are passing parameters by position
or by name, you need to specify a value for each parameter that does not have a default value.

Best PraCtiCes eXecUtinG StOReD PROceDUReS

If the stored procedure being executed is the first line in the batch, the EXEC keyword is

optional. However, the EXEC keyword is required for a stored procedure call anywhere

else in the batch. Even if the only code before the stored procedure is a comment, the

EXEC keyword is still required. To avoid confusion and ensure that your code always runs,

regardless of the structure of the batch, you should always include the EXEC keyword.

To use an output parameter, you need to specify the OUT or OUTPUT keyword following
each output parameter:

--Using output parameters

DECLARE @variable1 <data type>,

 @variable2 <data type>

 ...

EXEC <stored procedure> @parameter1, @variable1 OUTPUT, @variable2 OUT

 158 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

If you need to capture the return code from a stored procedure, you must store it in a
 variable, as follows:

--Capturing a return code

DECLARE @variable1 <data type>,

 @variable2 <data type>,

 @returncode INT

EXEC @returncode = <stored procedure> @parameter1, @variable1 OUTPUT, @variable2 OUT

Dynamic Execution
While dynamic command execution is very rare within stored procedures that applications
use, many administrative procedures need to construct commands and dynamically execute
them. T-SQL has two ways to execute dynamically constructed statements:
EXEC(<command>) and sp_executesql <command>. The following shows how to use each
method.

EXEC('SELECT OrderID, CustomerID FROM Sales.SalesOrderHeader WHERE OrderID = 1')

GO

DECLARE @var VARCHAR(MAX)

SET @var = 'SELECT OrderID, CustomerID FROM Sales.SalesOrderHeader WHERE OrderID = 1'

EXEC(@var)

GO

EXEC sp_executesql N'SELECT OrderID, CustomerID

 FROM Sales.SalesOrderHeader WHERE OrderID = 1'

GO

DECLARE @var NVARCHAR(MAX)

SET @var = 'SELECT OrderID, CustomerID FROM Sales.SalesOrderHeader WHERE OrderID = 1'

EXEC sp_executesql @var

GO

iMPortant aPPLicatiOn SecURitY anD SQL injectiOn attackS

Any time you are building a string for dynamic execution, you have the potential of an SQL

injection attack. You should always validate any parameters passed to the stored procedure

that will be used for a dynamically created command. You should also use the sp_executesql

system stored procedure with parameter substitution to avoid many of the SQL injection

problems that could be created. SQL injection is beyond the scope of this book, but you

should read the many articles published on SQL injection and understand the risks before

writing code that takes advantage of dynamic execution.

 Lesson 1: Stored Procedures CHAPTER 5 159

Module Execution Context
Functions and stored procedures allow you to modify the security context under which the
object is running by using the EXECUTE AS option. EXECUTE AS has three possible arguments:

n LOGIN Executes under the context of the specified login.

n USER Executes under the security context of the specified database user. This account
can’t be a role, group, certificate, or asymmetric key.

n CALLER Executes under the security context of the routine that called the module.

The EXECUTE AS clause also has two additional arguments: NO REVERT and COOKIE
INTO. The NO REVERT option specifies that once the security context is changed, it can’t be
changed back. The COOKIE INTO option sets a cookie that allows the security context to be
returned to a specific, previous security context.

Cursors
SQL Server is built to process sets of data. However, there are times when you need to process
data one row at a time. The result of a SELECT statement is returned to a server-side object
called a cursor, which allows you to access one row at a time within the result set and even
allows scrolling forward as well as backward through the result set.

note cURSOR PeRFORMance

SQL Server is built and optimized for set-based operations. A cursor causes the engine to

perform row-based processing. A cursor never performs as well as an equivalent set-based

process.

Cursors have five components. DECLARE is used to define the SELECT statement that is
the basis for the rows in the cursor. OPEN causes the SELECT statement to be executed and
load the rows into a memory structure. FETCH is used to retrieve one row at a time from the
 cursor. CLOSE is used to close the processing on the cursor. DEALLOCATE is used to remove
the cursor and release the memory structures containing the cursor result set.

iMPortant DeaLLOcatinG cURSORS

If a cursor is used within a stored procedure, it is not necessary to close and deallocate the

cursor. When the stored procedure exits, SQL Server automatically closes and deallocates

any cursors created within the procedure to reclaim memory space.

note cURSOR USaGe

If you write a cursor that performs the same operation against every row retrieved by the

cursor, you should rewrite the process to use a more efficient set-based operation.

 160 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

The generic syntax for declaring a cursor is

DECLARE cursor_name CURSOR [LOCAL | GLOBAL]

 [FORWARD_ONLY | SCROLL]

 [STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

 [READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

 [TYPE_WARNING]

 FOR select_statement

 [FOR UPDATE [OF column_name [,...n]]]

The following statements show three different ways of declaring the same cursor:

DECLARE curproducts CURSOR FAST_FORWARD FOR

 SELECT ProductID, ProductName, ListPrice FROM Products.Product

GO

DECLARE curproducts CURSOR READ_ONLY FOR

 SELECT ProductID, ProductName, ListPrice FROM Products.Product

GO

DECLARE curproducts CURSOR FOR

 SELECT ProductID, ProductName, ListPrice FROM Products.Product

FOR READ ONLY

GO

Once the cursor has been declared, you issue an OPEN command to execute the SELECT
statement:

OPEN curproducts

You then need to retrieve data from the row in the cursor by using a FETCH statement.
When you execute FETCH for the first time, a pointer is placed at the first row in the cursor
result set. Each time a FETCH is executed, the cursor pointer is advanced one row in the result
set until you run out of rows in the result set. Each execution of FETCH also sets a value for
the global variable @@FETCH_STATUS. You usually use a WHILE loop to iterate across the
cursor, fetching a row each iteration through the loop. You iterate the WHILE loop so long as
@@FETCH_STATUS = 0. Here is an example:.

DECLARE @ProductID INT,

 @ProductName VARCHAR(50),

 @ListPrice MONEY

DECLARE curproducts CURSOR FOR

 SELECT ProductID, ProductName, ListPrice FROM Products.Product

FOR READ ONLY

OPEN curproducts

FETCH curproducts INTO @ProductID, @ProductName, @ListPrice

 Lesson 1: Stored Procedures CHAPTER 5 161

WHILE @@FETCH_STATUS = 0

BEGIN

 SELECT @ProductID, @ProductName, @ListPrice

 FETCH curproducts INTO @ProductID, @ProductName, @ListPrice

END

CLOSE curproducts

DEALLOCATE curproducts

note Set-baSeD PROceSSinG

If you are writing stored procedures that have cursors (especially multilevel cursors), you

should reevaluate the process you are trying to write. You can probably replace the cursors

with a set-based process that is more efficient.

You can declare four different types of cursors:

n FAST_FORWARD The fastest performing cursor type because it allows you only
to move forward one row at a time. Scrolling (discussed later in this section) is not
 supported. A FAST_FORWARD cursor is the same as declaring a FORWARD_ONLY,
READ_ONLY cursor. FAST_FORWARD is the default option for cursors.

n STATIC The result set is retrieved and stored in a temporary table in the tempdb
 database. All fetches go against the temporary table and modifications to the
 underlying tables for the cursor are not visible. A STATIC cursor supports scrolling, but
modifications are not allowed.

n KEYSET The set of keys that uniquely identify each row in the cursor result set
is stored in a temporary table in tempdb. As you scroll within the cursor, non-key
 columns are retrieved from the underlying tables. Therefore, any modifications to rows
are reflected as the cursor is scrolled. Any inserts into the underlying table are not
 accessible to the cursor. If you attempt to access a row that has been deleted,
@@FETCH_STATUS returns –2.

n DYNAMIC The most expensive cursor to use. The cursor reflects all changes made to
the underlying result set, including newly inserted rows as the cursor is scrolled. The
position and order of rows within the cursor can change each time a fetch is made. The
FETCH ABSOLUTE option is not available for dynamic cursors.

By default, all cursors are updatable. To make modifications to underlying table rows, you
can execute an UPDATE or DELETE statement with the WHERE CURRENT OF <cursor name>
clause to modify or delete the row in the underlying table that the cursor pointer is currently
accessing.

iMPortant cURSOR OPtiOnS

If all you are going to do is read data within a cursor, make certain that you are declaring

the cursor as read-only. Read-only cursors require less overhead than updatable cursors.

 162 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

Access to rows within a cursor can be restricted by using the FORWARD_ONLY and SCROLL
options. If a cursor is declared as FORWARD_ONLY, each row can be read only once as the
cursor pointer advances through the result set. If you declare a cursor using the SCROLL
 option, the FETCH statement has the following options:

n FETCH FIRST Fetches the first row in the result set.

n FETCH LAST Fetches the last row in the result set.

n FETCH NEXT Fetches the next row in the result set based on the current position
of the pointer. FETCH NEXT is equivalent to just executing FETCH, which also moves
 forward one row at a time within the cursor result set.

n FETCH PRIOR Fetches the row in the result set just before the current position of the
cursor pointer.

n FETCH ABSOLUTE n Fetches the nth row from the beginning of the result set.

n FETCH RELATIVE n Fetches the nth row forward in the cursor result set from the
 current position of the cursor pointer.

T-SQL has three concurrency options available for cursors:

n READ_ONLY SQL Server does not acquire a lock on the underlying row in the table
because a cursor marked as READ_ONLY cannot be updated.

n SCROLL_LOCKS A lock is acquired as each row is read into the cursor, guaranteeing
that any transaction executed against the cursor succeeds.

n OPTIMISTIC A lock is not acquired. SQL Server instead uses either a timestamp or
a calculated checksum in the event that a timestamp column does not exist to detect
if the data has changed since being read into the cursor. If the data has changed, the
modification fails.

Compilation and Recompilation
When a stored procedure is created, SQL Server checks the syntax but does not validate any
of the objects referenced within the procedure. The first time you execute a stored procedure,
SQL Server parses and compiles the code. When the procedure is compiled for the first time,
a check is made to ensure that all objects referenced either exist or will be created within the
procedure prior to being accessed.

At compilation time, a query plan is generated and stored in the query cache. This
 compile plan is reentrant and is reused each time the procedure is executed. Each concurrent
 execution of a stored procedure also generates a query plan for execution, which is called the
execution plan. Execution plans are also stored in the query cache, but they are non-reentrant.
Once a connection has finished executing the procedure, the execution plan stored in the
query cache can be assigned to the next connection that executes the procedure. Therefore,
a single stored procedure that is heavily used can have a single compile plan along with many
execution plans in the query cache, each of which consumes memory.

Under most circumstances, storing the compile plan for reuse eliminates the resources
that need to be used to generate a query plan each time the procedure is executed. However,

 Lesson 1: Stored Procedures CHAPTER 5 163

if the stored procedure contains multiple code paths depending on the results of condition
checking, dramatically different query plans could be generated for the procedure. By reusing
the same query plan for each execution, performance can suffer in some cases.

If a stored procedure generates a different query plan the majority of the time that it is
 executed, you should create the procedure using the RECOMPILE option. When the RECOMPILE
option is enabled for a stored procedure, SQL Server does not cache and reuse a query plan.

In addition to the RECOMPILE option, SQL Server can detect if statistics are out of date
during the execution of a procedure. If SQL Server determines that the query plan could be
less than optimal during the execution of a procedure, execution will stop while a new query
plan is generated for the next statement to execute within the procedure. Prior to SQL Server
2005, the query plan for the entire stored procedure would be regenerated. However, since
SQL Server 2005, recompilation occurs at the statement level.

Best PraCtiCes RecOMPiLatiOn

One of the advantages of procedures and functions is the ability of SQL Server to cache

query plans for subsequent executions of the code. While you want to maximize caching,

there are times when subsequent executions could require different query plans for

optimal execution. When the query plan generated depends upon the values used for

each execution, you should use the RECOMPILE option to force SQL Server to optimize the

procedure or function each time it is executed.

However, a more efficient method is to split the stored procedure into multiple
 procedures. For example, you could have a procedure similar to the following, where
 executing each branch of the IF statement produces dramatically different query plans:

CREATE PROCEDURE PROC1

AS

 IF <some condition>

 BEGIN

 <code block A>

 END

 ELSE

 BEGIN

 <code block B>

 END

GO

You can take advantage of the query cache while avoiding suboptimal query plans by
 creating a stored procedure for each branch of the conditional test, as follows:

CREATE PROCEDURE PROCA

AS

<code block A>

GO

CREATE PROCEDURE PROCB

 164 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

AS

<code block B>

GO

CREATE PROCEDURE PROC1

AS

 IF <some condition>

 BEGIN

 EXEC PROCA

 END

 ELSE

 BEGIN

 EXEC PROCB

 END

GO

When PROC1 is executed, a very simple compile plan is generated, which can be reused
regardless of the code path taken. When PROCA is executed the first time, SQL Server
parses, compiles, and caches the compile plan, which can be reused each time code path A is
 executed. Similarly, the first time PROCB is executed, a compile plan is cached, which can then
be subsequently reused as well.

32-bit vs. 64-bit SQL Server

When the subject of whether to deploy a 32-bit or 64-bit version of SQL Server

comes up, many people mistakenly assume that 64-bit is automatically going

to improve the performance of their applications. Applications that achieve the

greatest improvements are those that are memory bound within the query cache,

not the data cache.

The query cache contains executable code, which on a 32-bit platform cannot

reside in memory above 4 gigabytes (GB), while at the same time, SQL Server limits

the maximum size of the query cache to approximately 20 percent of the memory

 allocated to the SQL Server instance. Applications with large numbers of concurrent

users can quickly use up all the memory available to the query cache between the

compile and execution plans, thereby causing any additional requests to wait until

memory can be freed up in the query cache.

By installing the 64-bit version of SQL Server, you remove the 4-GB limit for

 executable code and allow more space to become available to the query cache.

With increased memory space available, more concurrent executions can be

handled by the instance, thereby improving performance.

 Lesson 1: Stored Procedures CHAPTER 5 165

Quick check

 1. What are the four types of cursors that you can create?

 2. How does XACT_ABORT behave within a TRY block?

Quick check answers

 1. The four types of cursors that can be created are FAST_FORWARD, STATIC,

 KEYSET, and DYNAMIC.

 2. If XACT_ABORT is set within a TRY block, when an error is thrown, control

passes to the CATCH block. However, the transaction is doomed and cannot be

 committed within the CATCH block.

Practice creating a Stored Procedure

In the following practice, you create stored procedures.

exercise Create a Stored Procedure

In this exercise, you create two stored procedures to compare the processing efficiency of a
set-oriented routine and a cursor-based routine.

 1. Open a new query window and change the context to the AdventureWorks
 database.

 2. In the existing query window, type, highlight, and execute the following code to create
a cursor-based stored procedure to modify all the employee hire dates:

CREATE PROCEDURE HumanResources.UpdateAllEmployeeHireDateInefficiently

AS

BEGIN TRY

 SET XACT_ABORT ON

 DECLARE curemployee CURSOR FOR SELECT EmployeeID FROM HumanResources.Employee

 OPEN curemployee

 FETCH FROM curemployee

 WHILE @@FETCH_STATUS = 0

 BEGIN

 UPDATE HumanResources.Employee

 SET HireDate = GETDATE()

 WHERE CURRENT OF curemployee

 FETCH FROM curemployee

 END

END TRY

 166 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

BEGIN CATCH

 ROLLBACK TRANSACTION

 PRINT 'An error occured, transaction rolled back'

END CATCH

GO

 3. In the existing query window, type, highlight, and execute the following code to create
a stored procedure to modify all the employee hire dates using a set-based approach:

CREATE PROCEDURE HumanResources.UpdateAllEmployeeHireDateEfficiently

AS

DECLARE @now DATETIME = GETDATE()

BEGIN TRY

 SET XACT_ABORT ON

 UPDATE HumanResources.Employee

 SET HireDate = @now

END TRY

BEGIN CATCH

 ROLLBACK TRANSACTION

 PRINT 'An error occured, transaction rolled back'

END CATCH

GO

 4. Compare the execution of the two procedures by executing the following code:

EXEC HumanResources.UpdateAllEmployeeHireDateInefficiently

GO

EXEC HumanResources.UpdateAllEmployeeHireDateEfficiently

GO

Lesson Summary
n A stored procedure is a batch of T-SQL code that is given a name and is stored within a

database.

n You can pass parameters to a stored procedure either by name or by position. You can
also return data from a stored procedure using output parameters.

n You can use the EXECUTE AS clause to cause a stored procedure to execute under a
specific security context.

n Cursors allow you to process data on a row by row basis; however, if you are making
the same modification to every row within a cursor, a set-oriented approach is more
efficient.

n A TRY. . .CATCH block delivers structured error handling to your procedures.

 Lesson 2: User-Defined Functions CHAPTER 5 167

Lesson 2: User-Defined Functions

Functions are programmable objects that are used to perform calculations that can be
 returned to a calling application or integrated into a result set. Functions can access data and
return results, but they cannot make any modifications. In this lesson, you learn how to create
user-defined functions using the T-SQL language.

After this lesson, you will be able to:

n Create and alter user-defined functions (UDFs).

Estimated lesson time: 20 minutes

System Functions
SQL Server ships with a vast array of functions that you can use to perform many operations.
The built-in functions can be broken down into 15 different categories, as shown in Table 5-2.

tabLe 5-2 System Functions

OPtiOn PURPOSe

Aggregate Combine multiple values. Examples include SUM, AVG, COUNT_BIG,
and VAR.

Configuration Return system configuration information. Examples include
@@VERSION, @@SERVERNAME, and @@LANGUAGE.

Cryptographic Support encryption and decryption.

Cursor Return state information about a cursor. Examples include @@FETCH_
STATUS and @@CURSOR_ROWS.

Date and time Return portions of a date/time or calculate dates and times. Examples
include DATEADD, DATEPART, DATEDIFF, and GETDATE.

Management Return information to manage portions of SQL Server. Examples
include sys.dm_db_index_physical_stats, sys.dm_db_index_operational_
stats, and fn_trace_gettable.

Mathematical Perform mathematical operations. Examples include SIN, COS, TAN,
LOG, PI, and ROUND.

Metadata Return information about database objects. Examples include
OBJECT_NAME, OBJECT_ID, DATABASEPROPERTYEX, and DB_NAME.

Ranking Return values used in ranking result sets. Ranking functions are
 described in Chapter 9, “An Introduction to SQL Server Manageability
Features.”

Rowset Return a result set that can be joined to other tables. Examples include
CONTAINS and FREETEXT.

 168 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

OPtiOn PURPOSe

Security Return security information about users and roles. Examples include
SUSER_SNAME, Has_perms_by_name, and USER_NAME.

String Manipulate CHAR and VARCHAR data. Examples include POS,
 CHARINDEX, SOUNDEX, REPLACE, STUFF, and RTRIM.

System Return information about a variety of system, database, and object
settings as well as data. Examples include DATALENGTH, HOST_NAME,
ISDATE, ISNULL, SCOPE_IDENTITY, CAST, and CONVERT.

System statistics Return operational information about a SQL Server instance. Examples
include fn_virtualfilestats and @@CONNECTIONS.

Text and image Manipulate text and image data. Examples include TEXTPTR and
TEXTVALID. Text and image data types have been deprecated and you
should not use either of these functions in applications.

Most of the system functions are stored in the mssqlsystemresource database or master
database, or they are made available within code libraries that support the T-SQL language.

User-Defined Functions
You can create your own functions, referred to as user-defined functions, and store the
 functions in any database for which you have CREATE FUNCTION authority.

While functions are used to perform calculations, a function is not allowed to change the
state of a database or SQL Server instance. Functions cannot do any of the following:

n Perform an action that changes the state of an instance or database

n Modify data in a table

n Call a function that has an external effect, such as the RAND function

n Create or access temporary tables

n Execute code dynamically

Functions can either return a scalar value or a table value. Table-valued functions can be of
two different types: inline and multi-statement.

The general syntax for a scalar function is

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS][type_schema_name.] parameter_data_type

 [= default] [READONLY] } [,...n]])

RETURNS return_data_type

 [WITH <function_option> [,...n]]

 [AS]

 Lesson 2: User-Defined Functions CHAPTER 5 169

 BEGIN

 <function_body>

 RETURN scalar_expression

 END

An inline table-valued function contains a single SELECT statement that returns a table.
Because an inline table-valued function does not perform any other operations, the optimizer
treats an inline table-valued function just like a view.

The general syntax for an inline table-valued function is

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS] [type_schema_name.] parameter_data_type

 [= default] [READONLY] } [,...n]])

RETURNS TABLE

 [WITH <function_option> [,...n]]

 [AS]

 RETURN [(] select_stmt [)]

The general syntax for a multi-statement table-valued function is

CREATE FUNCTION [schema_name.] function_name

([{ @parameter_name [AS] [type_schema_name.] parameter_data_type

 [= default] [READONLY] } [,...n]])

RETURNS @return_variable TABLE <table_type_definition>

 [WITH <function_option> [,...n]]

 [AS]

 BEGIN

 <function_body>

 RETURN

 END

The code within every function is required to complete with a RETURN statement. For a
scalar function, you return a single value. For an inline table-valued function, you return a
SELECT statement. For a multi-statement table-valued function, you include only the RETURN
keyword at the end of the function. With the exception of an inline table-valued function, all
the code within the function is required to be enclosed in a BEGIN. . .END block.

Regardless of the type of function, four options can be specified: ENCRYPTION,
 SCHEMABINDING, RETURNS NULL ON NULL INPUT/CALLED ON NULL INPUT, and EXECUTE
AS. The ENCRYPTION, SCHEMABINDING, and EXECUTE AS options are also available for
stored procedures. In addition, SCHEMABINDING can be specified for triggers and views.

note tHe ENCRYPTION OPtiOn

The ENCRYPTION option behaves the same regardless of whether you are creating a stored

procedure, function, trigger, or view.

 170 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

The SCHEMABINDING option is applied to ensure that you can’t drop dependent
 objects. For example, if you were to create a function that performed a SELECT against the
Sales.SalesOrderHeader table, it would usually be possible to drop the table without
 receiving an error. The next time the function is executed, you would receive an error that the
Sales.SalesOrderHeader table did not exist. To prevent objects that a programmable object
relies on from being dropped or altered, you specify the SCHEMABINDING option. If you
attempt to drop or modify the dependent object, SQL Server prevents the change. To drop
or alter a dependent object, you first have to drop the programmable object that depends on
the object you want to drop or alter.

note tHe SCHEMABINDING OPtiOn

The SCHEMABINDING option is available for functions and views.

The option that is unique to a function is RETURNS NULL ON NULL INPUT/CALLED ON
NULL INPUT. The default value is CALLED ON NULL INPUT. Under the default setting, if you
specify a NULL parameter, the function still is called and any code within the function is
executed. If you specify RETURNS NULL ON NULL INPUT, when you specify NULL for an input
parameter, the function is not executed, and NULL is returned immediately to the calling
routine. If you have a function that should be executed only if you have passed non-NULL
parameters, you should specify the RETURNS NULL ON NULL INPUT option so that you can
avoid executing extraneous code.

Retrieving Data from a Function
You retrieve data from a function by using a SELECT statement. Functions can be used in any
of the following:

n A SELECT list

n A WHERE clause

n An expression

n A CHECK or DEFAULT constraint

n A FROM clause with the CROSS/OUTER APPLY function

How a function is used can have a dramatic impact on the performance of the queries that
you execute.

A function in the SELECT list is used to calculate an aggregate or perform a computation
on one or more columns of the tables in the FROM clause. A function in the WHERE clause is
used to restrict a result set based on the results of the function.

 Lesson 2: User-Defined Functions CHAPTER 5 171

Best PraCtiCes USinG FUnctiOnS in a WHERE cLaUSe

You should not create queries that use a function in the WHERE clause because the

 function would have to execute for each potential row returned from the results of the

FROM clause. If you constructed a SELECT statement with a join between TableA and

TableB that produced 100 rows matching the join, a function in the WHERE clause would

be executed 100 times. If the result of the join produced 10,000 rows, the function would

be executed 10,000 times. While you would not be reusing code, if you merged the code

within the function into your SELECT statement, you would eliminate all the repetitive

queries being executed.

Functions can be nested inside each other so long as the return value of an inner function
matches the input parameter of the outer function. For example, a common string-parsing
routine might contain code as follows: DATALENGTH(POS(CHARINDEX(REPLACE(...)))).

Functions in the CHECK and DEFAULT constraints are used to extend the static
 computations available. For example, if you want to validate the area code for a phone
 number against a list of area codes stored within a table, you can use a function to perform
the validation that would not typically be possible because a CHECK constraint doesn’t accept
a SELECT statement.

exaM tiP

An inline table-valued function behaves like and is interchangeable with a view.

Quick check

 1. What are the three types of functions that you can create?

 2. What are the required elements of a function?

Quick check answers

 1. You can create a scalar function, which returns a single value, an inline table-valued

function, which contains a single SELECT statement and is treated the same as a

view, and a multi-statement table-valued function, which returns a table.

 2. Every function ends with a RETURN statement. Scalar functions include the value

to be returned immediately following the RETURN statement. Inline table-valued

functions include the SELECT statement for the result set to return immediately

following the RETURN statement. Multi-statement table-valued functions just

terminate with a RETURN. With the exception of inline table-valued functions,

the entire function body is required to be enclosed in a BEGIN. . .END block.

 172 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

Practice creating Functions

In this practice, you create and use three different types of functions.

exercise 1 Create a Scalar Function

In this exercise, you create and use a scalar function to return the current inventory of
a product.

 1. Open a new query window, type and execute the following code to create the function:

CREATE FUNCTION Production.udf_GetProductInventory (@ProductID INT)

RETURNS INT

AS

--There are several locations for a product during each stage

-- of manufacturing. We only want finished goods.

--A product can also be stored on multiple shelves and bins, so

-- we need to sum the quantities.

BEGIN

 DECLARE @Inventory INT

 SELECT @Inventory = SUM(a.Quantity)

 FROM Production.ProductInventory a INNER JOIN Production.Location b

 ON a.LocationID = b.LocationID

 WHERE a.ProductID = @ProductID

 AND b.Name IN ('Miscellaneous Storage','Finished Goods Storage')

 IF (@Inventory IS NULL)

 BEGIN

 SET @Inventory = 0

 END

 RETURN @Inventory

END

GO

 2. In the existing query window, type, highlight, and execute the following code to return
results from the function:

SELECT Production.udf_GetProductInventory (325)

GO

 3. In the existing query window, type, highlight, and execute the following code to verify
the results:

SELECT SUM(a.Quantity)

FROM Production.ProductInventory a INNER JOIN Production.Location b

 ON a.LocationID = b.LocationID

WHERE a.ProductID = 325

 AND b.Name IN ('Miscellaneous Storage','Finished Goods Storage')

GO

 Lesson 2: User-Defined Functions CHAPTER 5 173

exercise 2 Create an Inline Table-Valued Function

In this exercise, you create and use an inline table-valued function to return all orders that
have not yet shipped.

 1. Open a new query window, type, highlight, and execute the following code to create
an unshipped order:

UPDATE Sales.SalesOrderHeader

SET ShipDate = NULL

WHERE SalesOrderID = 75123

GO

 2. In the existing query window, type, highlight, and execute the following code to create
the function:

CREATE FUNCTION Sales.GetUnshippedOrders()

RETURNS TABLE

AS

RETURN SELECT a.SalesOrderID, a.CustomerID, a.OrderDate, a.DueDate,

 c.Name, b.OrderQty

 FROM Sales.SalesOrderHeader a INNER JOIN Sales.SalesOrderDetail b

 ON a.SalesOrderID = b.SalesOrderID

 INNER JOIN Production.Product c ON b.ProductID = c.ProductID

 WHERE a.ShipDate IS NULL

GO

 3. Test the function. Turn on the display of the actual execution plan to verify that SQL
Server did not execute the function but instead substituted the function body into
the SELECT statement. In the existing query window, type, highlight, and execute the
 following code:

SELECT c.FirstName, c.MiddleName, c.LastName

FROM Sales.GetUnshippedOrders() a INNER JOIN Sales.Customer b

 ON a.CustomerID = b.CustomerID

 INNER JOIN Person.Person c ON b.PersonID = c.BusinessEntityID

GO

 4. In the existing query window, type, highlight, and execute the following code to reset
the data to the original values:

UPDATE Sales.SalesOrderHeader

SET ShipDate = '08/07/2004'

WHERE SalesOrderID = 75123

GO

exercise 3 Create a Multi-Statement Table-Valued Function

In this exercise, you create and use a multi-statement table-valued function to return the
most recent order for a customer.

 174 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

 1. Open a new query window, type, highlight, and execute the following code to create
the function:

CREATE FUNCTION Sales.GetLastShippedCustomerOrder (@CustomerID INT)

RETURNS @CustomerOrder TABLE

(SalesOrderID INT NOT NULL,

CustomerID INT NOT NULL,

OrderDate DATETIME NOT NULL,

DueDate DATETIME NOT NULL,

Name NVARCHAR(50) NOT NULL,

OrderQty INT NOT NULL)

AS

BEGIN

 DECLARE @MaxOrderDate DATETIME

 SELECT @MaxOrderDate = MAX(OrderDate)

 FROM Sales.SalesOrderHeader

 WHERE CustomerID = @CustomerID

 INSERT @CustomerOrder

 SELECT a.SalesOrderID, a.CustomerID, a.OrderDate, a.DueDate,

 c.Name, b.OrderQty

 FROM Sales.SalesOrderHeader a INNER JOIN Sales.SalesOrderDetail b

 ON a.SalesOrderID = b.SalesOrderID

 INNER JOIN Production.Product c ON b.ProductID = c.ProductID

 WHERE a.OrderDate = @MaxOrderDate

 AND a.CustomerID = @CustomerID

 RETURN

END

GO

 2. In the existing query window, type, highlight, and execute the following code to test
the function:

SELECT * FROM Sales.GetLastShippedCustomerOrder(11000)

GO

SELECT * FROM Sales.SalesOrderHeader WHERE CustomerID = 11000

GO

Lesson Summary
n You can create scalar functions, inline table-valued functions, and multi-statement

table-valued functions.

n With the exception of inline table-valued functions, the function body must be
 enclosed within a BEGIN. . .END block.

n All functions must terminate with a RETURN statement.

n Functions are not allowed to change the state of a database or of a SQL Server instance.

 Lesson 3: Triggers CHAPTER 5 175

Lesson 3: triggers

Triggers are a special type of stored procedure that automatically execute when a DML or
DDL statement associated with the trigger is executed. In this lesson, you learn how to create
DML triggers that execute when you add, modify, or remove rows in a table. You also learn
how to create DDL triggers that execute when DDL commands are executed or users log in to
a SQL Server instance.

After this lesson, you will be able to:

n Create and alter DML triggers.

n Create and alter DDL triggers.

Estimated lesson time: 20 minutes

DML Triggers
Although a trigger is a programmable object that you create, you can’t execute a trigger
 directly. DML triggers are created against a table or a view and are defined for a specific
event: INSERT, UPDATE, or DELETE. When you execute the event for which a trigger is defined,
SQL Server automatically executes the code within the trigger, which also is known as “firing”
the trigger.

The generic syntax for creating a trigger is

CREATE TRIGGER [schema_name .]trigger_name

ON { table | view }

[WITH <dml_trigger_option> [,...n]]

{ FOR | AFTER | INSTEAD OF }

{ [INSERT] [,] [UPDATE] [,] [DELETE] }

[WITH APPEND]

[NOT FOR REPLICATION]

AS { sql_statement [;] [,...n] | EXTERNAL NAME <method specifier [;] > }

When a trigger is defined as AFTER, the trigger fires after the modification has passed
all constraints. If a modification fails a constraint, such as a check constraint, primary key
 constraint, or foreign key constraint, the trigger is not executed.

note MULtiPLe tRiGGeRS FOR tHe SaMe actiOn

AFTER triggers are defined only for tables, and multiple AFTER triggers can be defined for

the same action. If you have multiple triggers created for the same action, you can specify

the first and last triggers to fire by using the sp_settriggerorder system stored procedure.

However, any other triggers for the same action are executed in random order.

 176 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

A trigger defined with the INSTEAD OF clause causes the trigger code to be executed as a
replacement for INSERT, UPDATE, or DELETE. You can define a single INSTEAD OF trigger for
a given action. Although INSTEAD OF triggers can be created against both tables and views,
INSTEAD OF triggers are almost always created against views.

Regardless of the number of rows that are affected, a trigger fires only once for an action.

The NOT FOR REPLICATION option controls the behavior of the trigger when the
 replication engine is applying changes. By default, any INSERT, UPDATE, or DELETE executed
on a subscriber by the replication engine causes the corresponding trigger to fire. If you
do not want the triggers on the subscriber to fire when the replication engine is applying
changes, you can specify the NOT FOR REPLICATION option. If a change is being made by
any process other than the replication engine, the trigger still fires.

When a trigger is executed, two special tables named inserted and deleted are available.
These are the same inserted and deleted tables that were explained in Chapter 2, “Modifying
Data—The INSERT, UPDATE, DELETE, and MERGE Statements.”

DDL Triggers
DDL triggers can execute either when a DDL statement is executed or when the user logs on
to the SQL Server instance.

The general syntax for creating a DDL trigger is as follows:

CREATE TRIGGER trigger_name

ON { ALL SERVER | DATABASE }

[WITH <ddl_trigger_option> [,...n]]

{ FOR | AFTER } { event_type | event_group } [,...n]

AS { sql_statement [;] [,...n] | EXTERNAL NAME < method specifier > [;] }

<ddl_trigger_option> ::=

 [ENCRYPTION] [EXECUTE AS Clause]

<method_specifier> ::=

 assembly_name.class_name.method_name

DDL triggers can be scoped at either the database or instance level. To scope a DDL
 trigger at the instance level, you use the ON ALL SERVER option. To scope a DDL trigger at
the database level, you use the ON DATABASE option.

The following is an example of a DDL trigger:

CREATE TRIGGER tddl_tabledropalterprevent

ON DATABASE

FOR DROP_TABLE, ALTER_TABLE

AS

 PRINT 'You are attempting to drop or alter tables in production!'

 ROLLBACK;

 Lesson 3: Triggers CHAPTER 5 177

note tRanSactiOn cOnteXt

Almost all DDL commands run within the context of a transaction. Because a DDL trigger

also runs within the same transaction context, any DDL statement running in the context of

a transaction can be rolled back. ALTER DATABASE is one of the commands that does not

execute in the context of a transaction because the command affects objects outside SQL

Server that do not obey transactional semantics. Therefore, an ALTER DATABASE command

cannot be rolled back.

The value for the event type is derived from the DDL statement being executed. Table 5-3
shows several examples.

tabLe 5-3 DDL Trigger Event Types

DDL cOMManD event tYPe

CREATE DATABASE CREATE_DATABASE

DROP LOGIN DROP_LOGIN

UPDATE STATISTICS UPDATE_STATISTICS

DROP TRIGGER DROP_TRIGGER

ALTER TABLE ALTER_TABLE

note SecURitY eventS

You can fire a DDL trigger when you grant, revoke, or deny permissions at either a server or

a database level. To execute a DDL trigger for a database-level permission statement, use

the GRANT_DATABASE, REVOKE_DATABASE, or DENY_DATABASE event types. To execute a

DDL trigger for instance-level permissions, use the GRANT_SERVER, REVOKE_SERVER, and

DENY_SERVER event types.

Event types roll up within a command hierarchy called event groups. For example, the
 CREATE_TABLE, ALTER_TABLE, and DROP_TABLE event types are contained within the
DDL_TABLE_EVENTS event group. Event types and event groups allow you to create flexible
and compact DDL triggers.

More info event GROUPS

The events and associated event groups that are valid for a DDL trigger can be found in the

SQL Server Books Online article “Event Groups for Use with DDL Triggers.”

While DML triggers have access to the inserted and deleted tables, DDL triggers have
access to the EVENTDATA function. EVENTDATA returns the following Extensible Markup

 178 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

 Language (XML) document, which can be queried by using the value() method available
through XQUERY:

<EVENT_INSTANCE>

 <EventType>type</EventType>

 <PostTime>date-time</PostTime>

 <SPID>spid</SPID>

 <ServerName>name</ServerName>

 <LoginName>name</LoginName>

 <UserName>name</UserName>

 <DatabaseName>name</DatabaseName>

 <SchemaName>name</SchemaName>

 <ObjectName>name</ObjectName>

 <ObjectType>type</ObjectType>

 <TSQLCommand>command</TSQLCommand>

</EVENT_INSTANCE>

The XML document available varies based on the event type that caused the DDL trigger to
fire. The XML schemas for each DDL event are documented at http://schemas.microsoft.com/
sqlserver. For example, for a CREATE_TABLE, ALTER_TABLE, or DROP_TABLE event, you can use
the following query to retrieve the database, schema, object, and command executed:

SELECT EVENTDATA().value

 ('(/EVENT_INSTANCE/DatabaseName)[1]','nvarchar(max)'),

 EVENTDATA().value

 ('(/EVENT_INSTANCE/SchemaName)[1]','nvarchar(max)'),

 EVENTDATA().value

 ('(/EVENT_INSTANCE/ObjectName)[1]','nvarchar(max)'),

 EVENTDATA().value

 ('(/EVENT_INSTANCE/TSQLCommand)[1]','nvarchar(max)')

Logon Triggers
In addition to responding to DDL events, you can create a trigger to fire for a logon to the SQL
Server instance. Logon triggers are fired after authentication succeeds but before the user session
is actually established. You cannot return any messages to a user from within a logon trigger.

The generic syntax for a logon trigger is

CREATE TRIGGER trigger_name

ON ALL SERVER

[WITH <logon_trigger_option> [,...n]]

{ FOR | AFTER } LOGON

AS { sql_statement [;] [,...n] | EXTERNAL NAME < method specifier > [;] }

<logon_trigger_option> ::= [ENCRYPTION] [EXECUTE AS Clause]

Logon triggers are used to audit and restrict access. For example, you could limit the
 number of connections that a user is allowed to make to the instance. If you execute a
 ROLLBACK statement within a logon trigger, the connection to the instance terminates.

 Lesson 3: Triggers CHAPTER 5 179

Best PraCtiCes DatabaSe Maintenance

One of the more difficult tasks that database administrators face, particularly with

 Web-based applications, is getting all the users out of a database so that maintenance can be

performed. No matter how carefully you plan, you inevitably have unexpected connections

created. As soon as you kill all the connections to the database, another connection shows up,

leading you in an unending circle. One method to lock out access is to disable all the logins;

however, you are changing the state of the login, and reenabling the login might cause policy

checks to fail, thereby creating an unexpected outage. A better method is to create a logon

trigger that rejects logon attempts during your maintenance window. Then, all you need to

do is disable the logon trigger following maintenance to return access to normal.

exaM tiP

For the exam, make sure you know how to retrieve information from within a DDL trigger

using the EVENTDATA function.

Quick check

 1. What are the three types of triggers that can be created?

 2. How do you access information about the cause of an event within a DDL trigger?

Quick check answers

 1. You can create DML, DDL, and logon triggers.

 2. You query the XML document returned by the EVENTDATA function within

DDL and logon triggers to retrieve information about the event that caused

the trigger to fire. Each event has a different XML schema. All the SQL Server

 schemas are documented at http://schemas.microsoft.com/sqlserver.

Practice creating triggers

In this practice, you create DML, DDL, and logon triggers.

exercise 1 Create a DML Trigger

In this exercise, you create a DML trigger to maintain an audit trail of changes.

 1. Open a new query window, type and execute the following code to create a basic audit
trail table:

CREATE TABLE Production.ProductAuditTrail

(AuditID INT IDENTITY(1,1),

AuditDate DATETIME NOT NULL,

ChangeUser SYSNAME NOT NULL,

 180 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

ProductID INT NOT NULL,

BeforeListPrice MONEY NOT NULL,

AfterListPrice MONEY NOT NULL)

GO

 2. In the existing query window, type, highlight, and execute the following code to create
an audit trigger:

CREATE TRIGGER tu_ProductAuditTrail

ON Production.Product

FOR UPDATE

AS

INSERT INTO Production.ProductAuditTrail

(AuditDate, ChangeUser, ProductID, BeforeListPrice, AfterListPrice)

SELECT GETDATE(), SUSER_SNAME(), i.ProductID, d.ListPrice, i.ListPrice

FROM inserted i INNER JOIN deleted d ON i.ProductID = d.ProductID

GO

 3. In the existing query window, type, highlight, and execute the following code to test
the audit trigger:

SELECT * FROM Production.ProductAuditTrail

GO

UPDATE Production.Product

SET ListPrice = ListPrice + 1

WHERE ProductID = 514

GO

SELECT * FROM Production.ProductAuditTrail

GO

exercise 2 Create a DDL Trigger

In this exercise, you create a DDL trigger to prevent dropping tables.

 1. Open a new query window, type, highlight, and execute the following code to create
the DDL trigger:

CREATE TRIGGER ddl_preventtabledrop

ON DATABASE

FOR DROP_TABLE

AS

PRINT 'Prevention of an accidental table drop.'

PRINT 'You are attempting to drop a table in a production database.'

PRINT 'If you really want to drop this table, please disable the DDL trigger.'

PRINT 'Once the table has been dropped, please re-enable the DDL trigger.'

ROLLBACK TRANSACTION

GO

 Lesson 3: Triggers CHAPTER 5 181

 2. In the existing query window, type, highlight, and execute the following code to test
the DDL trigger:

CREATE TABLE dbo.Test

(ID INT NOT NULL)

GO

SELECT * FROM dbo.Test

GO

DROP TABLE dbo.Test

GO

SELECT * FROM dbo.Test

GO

 3. In the existing query window, type, highlight, and execute the following code to
 disable the trigger and test that the drop of the table is successful:

DISABLE TRIGGER ddl_preventtabledrop ON DATABASE

GO

DROP TABLE dbo.Test

GO

SELECT * FROM dbo.Test

GO

ENABLE TRIGGER ddl_preventtabledrop ON DATABASE

GO

exercise 3 Create a Logon Trigger

In this exercise, you create a logon trigger that can be used to lock out users from a SQL
Server instance.

 1. Open a new query window, type, highlight, and execute the following code to create a
logon trigger:

CREATE TRIGGER ddl_preventlogon

ON ALL SERVER

FOR LOGON

AS

IF IS_SRVROLEMEMBER('sysadmin',ORIGINAL_LOGIN()) = 0

BEGIN

 ROLLBACK

END

GO

 182 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

 2. In the existing query window, type, highlight, and execute the following code to create
a login for testing:

CREATE LOGIN TriggerTest WITH PASSWORD = '<InsertStrongPasswordHere>'

GO

 3. Attempt to log on using the account that you just created.

 4. Disable the trigger, and then attempt to log on again:

DISABLE TRIGGER ddl_preventlogon ON ALL SERVER

GO

Lesson Summary
n Triggers are specialized stored procedures that automatically execute in response to a

DDL or DML event.

n You can create three types of triggers: DML, DDL, and logon triggers.

n A DML trigger executes when an INSERT, UPDATE, or DELETE statement for which the
trigger is coded occurs.

n A DDL trigger executes when a DDL statement for which the trigger is coded occurs.

n A logon trigger executes when there is a logon attempt.

n You can access the inserted and deleted tables within a DML trigger.

n You can access the XML document provided by the EVENTDATA function within a DDL
or logon trigger.

 Lesson 4: Views CHAPTER 5 183

Lesson 4: views

In Chapter 1, “Data Retrieval,” and Chapter 4, “Using Additional Query Techniques,” you
learned about the various ways that a SELECT statement can be constructed to retrieve
data. While some of the SELECT statements that you create are used for a specific, one-time
 activity, some SELECT statements are used again and again within your environment. Some of
the queries that you reuse within your environment contain complex business logic, as well as
complex T-SQL code that you do not want to have to re-create each time the query is needed.
SQL Server allows you to store a SELECT statement within a database using an object called
a view. In this lesson, you learn how to create views, modify data through a view, and index a
view to improve query performance.

After this lesson, you will be able to

n Create and alter views.

Estimated lesson time: 20 minutes

Creating a View
A view is simply a SELECT statement that has been given a name and stored in a database.
The main advantage of a view is that once it’s created, it acts like a table for any other SELECT
statements that you want to write.

The generic syntax to create a view is

CREATE VIEW [schema_name .] view_name [(column [,...n])]

[WITH <view_attribute> [,...n]]

AS select_statement

[WITH CHECK OPTION] [;]

The SELECT statement defined for the view can reference tables, other views, and
 functions, but cannot do any of the following:

n Contain the COMPUTE or COMPUTE BY clause

n Create a permanent or temporary table by using the INTO keyword

n Use an OPTION clause

n Reference a temporary table

n Reference any type of variable

n Contain an ORDER BY clause unless a TOP operator is also specified

The view can contain multiple SELECT statements so long as you use the UNION or UNION
ALL operators.

The view attributes that can be specified are ENCRYPTION, SCHEMABINDING, and VIEW_
METADATA. The ENCRYPTION and SCHEMABINDING attributes behave the same way as has
been discussed already in this chapter. The VIEW_METADATA option is used when creating

 184 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

an updatable view and causes SQL Server to return to client applications metadata about the
view, instead of about the tables underlying the view.

Modifying Data Through a View
You can modify data through a view so long as the following requirements are met:

n The data modification must reference exactly one table.

n Columns in the view must reference columns in a table directly.

n The column cannot be derived from an aggregate.

n The column cannot be computed as the result of a UNION/UNION ALL, CROSSJOIN,
EXCEPT, or INTERSECT.

n The column being modified cannot be affected by the DISTINCT, GROUP BY,
or HAVING clause.

n The TOP operator is not used.

note UPDatabLe vieWS

If a view does not meet the requirements to be updatable, you can create an INSTEAD

OF trigger on the view. The INSTEAD OF trigger executes for the DML operation you are

 performing instead of sending the DML through the view.

Because the definition of a view can contain a WHERE clause, it’s possible to make a
 modification through the view that is not visible when you retrieve data from the view. The
WITH CHECK OPTION clause requires that the only data manipulation that can occur through
the view must also be retrievable when you select from the view.

exaM tiP

For the exam, you should understand the requirements to update data through a view.

Partitioned Views
As discussed in Chapter 6, “Techniques to Improve Query Efficiency,” you can implement
partitioning to split a large table across multiple storage structures. Instead of using the
built-in partitioning feature of SQL Server, you can also partition a large table manually by
decomposing a single table into multiple tables with the same structure. When you manually
partition a table, you can bring all the data back together using a view.

Views that unify multiple tables of the same structure are referred to as partitioned views.
A partitioned view implements a UNION ALL of all member tables with the same structure. A
partitioned view has the following conditions:

n All columns of the member tables should be contained in the select list of the view.

n Columns in the same ordinal position of each SELECT statement need to be of exactly
the same data type and collation.

 Lesson 4: Views CHAPTER 5 185

n At least one column that corresponds to a CHECK constraint, unique to each member
table, should be in the same ordinal position of each SELECT statement.

n The constraints must form unique, non-overlapping data sets in each member table.

n The same column cannot be used multiple times in the select list.

n The partitioning column, defined by the CHECK constraint, must be part of the
 primary key.

n The partitioning column cannot be computed, be a timestamp data type, have a
 DEFAULT constraint, or be an identity column.

n The same member table cannot appear twice within the view definition.

n Member tables cannot have indexes on computed columns.

n The primary key of each table must have the same number of columns for each
 member table.

n All member tables must have the same ANSI_PADDING setting.

While this list may seem to be rather restrictive, the intent is to ensure that each member
table within a partitioned view contains a unique set of data. If you were allowed to place
the same primary key value in multiple member tables, the partitioned view would display
duplicates and create confusion within applications, and you would not be able to resolve an
update to a single row.

One of the advantages of partitioning a table manually is that you can use additional
hardware resources that are not available to the built-in partitioning feature. Because manually
partitioning a table produces multiple member tables, you can decide which database and SQL
Server instance each table resides within. When you split member tables of a partitioned view
across SQL Server instances, you create a special case called a distributed partitioned view.

A distributed partitioned view has much the same structure as a partitioned view, except
each member table is referenced with a four-part name and uses linked servers to combine
all the member tables.

More info UPDatinG PaRtitiOneD vieWS

Even though both forms of a partitioned view use a UNION ALL statement, you can perform

updates to a partitioned view. Partitioned views place additional restrictions on the view

definition, as well as any transactions, as outlined in the SQL Server Books Online article

“CREATE VIEW (Transact-SQL)” at http://msdn.microsoft.com/en-us/library/ms187956.aspx.

Creating an Indexed View
In addition to making data modifications through a view, you can also create an index on a
view. However, an index cannot be created on a partitioned view because the member tables
can span databases and SQL Server instances.

 186 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

When a regular view is created, SQL Server stores only the definition of the view, which is
then substituted by the optimizer for SELECT statements issued against the view.

An index can be built against a list of values in a column. When you index a view, SQL
Server executes the SELECT statement defined by the view, stores the result set, and then
builds the index. Any subsequent DML issued against any of the tables the view is defined
against causes SQL Server to update the stored result set incrementally, as well as maintain
the index, if necessary. Because SQL Server physically stores and maintains the result set, or
“materializes” the data, an indexed view is sometimes referred to as a materialized view.

Indexed views have a very long list of requirements. The requirements for an indexed view
derive from the fact that the data has to be materialized to disk in an unchanging manner
and the data within the index also has to be fixed.

Some of the requirements for creating an indexed view are as follows:

n The SELECT statement cannot reference other views.

n All functions must be deterministic.

n AVG, MIN, MAX, STDEV, STDEVP, VAR, and VARP are not allowed.

n The index created must be both clustered and unique.

n ANSI_NULLS must have been set to ON when the view and any tables referenced by
the view were created.

n The view must be created with the SCHEMABINDING option.

n The SELECT statement must not contain subqueries, outer joins, EXCEPT, INTERSECT,
TOP, UNION, ORDER BY, DISTINCT, COMPUTE/COMPUTE BY, CROSS/OUTER APPLY,
PIVOT, or UNPIVOT.

More info inDeXeD vieW ReStRictiOnS

The complete list of restrictions for creating an indexed view can be found in the SQL

Server Books Online article “Creating Indexed Views,” at http://msdn.microsoft.com/en-us/

library/ms191432.aspx.

Meeting the requirements for creating an indexed view may seem prohibitive. However,
the main advantage of an indexed view is that the data is already materialized and does
not have to be calculated on the fly, as with a regular view. Indexed views can provide a
 significant performance gain when you have queries that combine large volumes of data,
such as with aggregates. Indexed views have to be maintained when changes occur to the
underlying tables, so an indexed view shouldn’t be created against tables that receive large
volumes of data modifications.

exaM tiP

For the exam, you should understand the requirements to create an indexed view, as well

as how an indexed view can improve performance of your applications.

 Lesson 4: Views CHAPTER 5 187

Determinism
A function that returns the same value every time it is called, given the same input
 parameters, is a deterministic function. A function that could return a different value each
time it is called, given the same input parameters, is a nondeterministic function. An example
of a deterministic function is SUBSTRING because it returns the same value every time for the
same input parameters. Examples of nondeterministic functions are RAND and GETDATE
because each one could return a different value each time it is called.

Functions can be used in computed columns, as well as within views. You can also create
an index on a computed column as well as indexing a view. To create an index, the results of a
function must be deterministic, such that the set of values for the index is fixed. Also, because
creating an index on a view causes the results of the view to be materialized and stored, to
index a view, every function within the view must be deterministic.

Query Substitution
When a nonmaterialized view is referenced, SQL Server replaces the name of the view
with the actual SELECT statement defined by the view, rewrites the query as if you had not
 referenced the view at all, and then submits the rewritten query to the optimizer.

You might have a view with the following definition:

CREATE VIEW Customers.CustomerOrders

AS

SELECT CASE WHEN a.CompanyName IS NOT NULL THEN a.CompanyName

 ELSE a.FirstName + ' ' + a.LastName END CustomerName,

 b.AddressLine1, b.AddressLine2, b.AddressLine3, b.City, d.StateProvinceAbbrev,

 e.CountryName, c.OrderDate, c.GrandTotal, c.FinalShipDate

FROM Customers.Customer a INNER JOIN Customers.CustomerAddress b

 ON a.CustomerID = b.CustomerID

INNER JOIN Orders.OrderHeader c ON a.CustomerID = c.CustomerID

INNER JOIN LookupTables.StateProvince d ON b.StateProvinceID = d.StateProvinceID

INNER JOIN LookupTables.Country e ON b.CountryID = e.CountryID

GO

You might then issue the following SELECT statement:

SELECT CustomerName, AddressLine1, AddressLine2, AddressLine3,

 City, StateProvinceAbbrev,

 CountryName, OrderDate, GrandTotal, FinalShipDate

FROM Customers.CustomerOrders

GO

But SQL Server actually submits the following query to the optimizer:

SELECT CASE WHEN a.CompanyName IS NOT NULL THEN a.CompanyName

 ELSE a.FirstName + ' ' + a.LastName END CustomerName,

 b.AddressLine1, b.AddressLine2, b.AddressLine3, b.City, d.StateProvinceAbbrev,

 e.CountryName, c.OrderDate, c.GrandTotal, c.FinalShipDate

 188 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

FROM Customers.Customer a INNER JOIN Customers.CustomerAddress b

 ON a.CustomerID = b.CustomerID

INNER JOIN Orders.OrderHeader c ON a.CustomerID = c.CustomerID

INNER JOIN LookupTables.StateProvince d ON b.StateProvinceID = d.StateProvinceID

INNER JOIN LookupTables.Country e ON b.CountryID = e.CountryID

GO

When an index is created against a view, the data is materialized. Queries that reference
the indexed view do not substitute the definition of the view but instead return the results
 directly from the indexed view. The results can be returned directly because in terms of
 storage, the indexed view is in fact a table that the storage engine maintains.

In SQL Server Enterprise Edition, query substitution goes one step further when an indexed
view is present. Normally, the optimizer selects indexes created against tables referenced
within a query if it determines that a given index improves query performance. In SQL Server
Enterprise Edition, if the optimizer determines that the data can be retrieved more efficiently
through the indexed view, it then builds a query plan that ignores the base tables referenced
by the query and instead retrieves data from the indexed view instead of the tables.

exaM tiP

For the exam, you should understand how SQL Server treats views and indexed views in

each edition.

Quick check

 1. What types of views can be created?

 2. What types of indexes can be created on a view?

Quick check answers

 1. You can create a regular view that is just a stored SELECT statement. You can also

create a partitioned view that uses the UNION ALL keywords to combine multiple

member tables.

 2. You can index a view by creating a unique, clustered index.

Practice creating views

In this practice, you create an updatable view to return the orders that have not yet shipped.

exercise 1 Create a View

In this exercise, you create a view to return the orders that have not yet shipped.

 Lesson 4: Views CHAPTER 5 189

 1. Modify an order to have an unshipped state by typing and executing the following code
in a new query window:

UPDATE Sales.SalesOrderHeader

SET ShipDate = NULL

WHERE SalesOrderID = 75123

GO

 2. In the existing query window, type, highlight, and execute the following code to create
the view:

CREATE VIEW Sales.v_UnshippedOrders

AS

SELECT SalesOrderID, RevisionNumber, OrderDate, DueDate, ShipDate,

 Status, OnlineOrderFlag, SalesOrderNumber, PurchaseOrderNumber,

 AccountNumber, CustomerID, SalesPersonID, TerritoryID,

 BillToAddressID, ShipToAddressID, ShipMethodID, CreditCardID,

 CreditCardApprovalCode, CurrencyRateID, SubTotal, TaxAmt, Freight,

 TotalDue, Comment, rowguid, ModifiedDate

FROM Sales.SalesOrderHeader

WHERE ShipDate IS NULL

GO

 3. In the existing query window, type, highlight, and execute the following code to test
the view and then reset the order you modified:

SELECT * FROM Sales.v_UnshippedOrders

GO

UPDATE Sales.SalesOrderHeader

SET ShipDate = '08/07/2004'

WHERE SalesOrderID = 75123

GO

Lesson Summary
n A view is a name for a SELECT statement stored within a database.

n A view has to return a single result set and cannot reference variables or temporary tables.

n You can update data through a view so long as the data modification can be resolved
to a specific set of rows in an underlying table.

n If a view does not meet the requirements for allowing data modifications, you can
 create an INSTEAD OF trigger to process the data modification instead.

n You can combine multiple tables that have been physically partitioned using a UNION
ALL statement to create a partitioned view.

n A distributed partitioned view uses linked servers to combine multiple member tables
across SQL Server instances.

n You can create a unique, clustered index on a view to materialize the result set for
improved query performance.

 190 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can perform the
following tasks:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenario. These scenarios set up real-world situations involving the
topics in this chapter and ask you to create a solution.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n SQL Server allows you to create four programmable objects: functions, stored

 procedures, triggers, and views.

n Functions can return a scalar value or a result set but are not allowed to change the
state of a database or SQL Server instance.

n Stored procedures provide a programming API that abstracts the database structure
from applications.

n A stored procedure can contain almost any command within the T-SQL language.

n Triggers are created for tables and views and automatically execute in response to an
INSERT, UPDATE, or DELETE.

n Views allow you to assign a name to a SELECT statement that produces a single result
set and that is stored within a database.

key terms

Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

n Cursor

n DDL trigger

n Deterministic function

n DML trigger

n Distributed partitioned view

n Event group

n Execution context

n Impersonation

n Indexed view

 Key Terms CHAPTER 5 191

n Materialized view

n Module

n Nondeterministic function

n Parameter

n Partitioned view

n Schema binding

n Stored procedure

n Variable

Case Scenario
In the following case scenario, you apply what you’ve learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

Case Scenario: Improving Application Performance
Fabrikam, a large manufacturer and wholesaler of thousands of products for the consumer
and industrial plastics industry, has hired you to fix a variety of problems within its core
 applications.

The manager of application development has identified 22 core applications that run
Fabrikam’s business lines. Users have complained that almost all these applications have slow
performance. The application development team has attempted to address the performance
issues, but because all the queries are generated at run time and submitted as ad hoc queries
to SQL Server, implementing changes has been extremely difficult. Several attempts to release
new code have resulted in applications crashing, requiring the code release to be rolled back.

The production database servers are configured to allow administrative access to the
entire development team. There have been numerous incidents in the past four months
where objects have been deleted from the production server instead of the deletion occuring
against a development server.

There are three applications that all the developers are afraid to modify because the
 database involved contains very complex code written by a developer who is no longer with
the company. No documentation exists for any of the applications.

Answer the following questions for your manager:

 1. How do you fix the performance tuning problem?

 2. How do you fix the problem with accidentally dropping objects on the production
database?

 3. How do you fix the problem of the complex code that is preventing any changes to
three core applications?

 192 CHAPTER 5 Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views

Suggested Practices

To help you master the exam objectives presented in this chapter, complete the following tasks.

Create a Stored Procedure
n Practice 1 Locate all the ad hoc SQL within your applications and move the code into

stored procedures. Rewrite the application to use the stored procedures.

Create a Function
n Practice 1 Locate a block of nontrivial code that performs a calculation or returns

a result set but does not modify the state of a database or SQL Server instance.
 Encapsulate the code in a function so that the code does not have to be re-created
each time you need to reference this calculation.

Create a Trigger
n Practice 1 Create a DDL trigger to prevent anyone from accidentally dropping

 objects in your production environment.

Create a View
n Practice 1 Locate a complicated SELECT statement in an application. Create a view to

encapsulate this complex SELECT statement. Modify the application to reference the view.

n Practice 2 Locate a deterministic view that is executed frequently and turn it into an
indexed view. Observe the performance difference of the indexed view.

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just one exam objective, or you can test yourself on all the 70-433 certification
exam content. You can set up the test so that it closely simulates the experience of taking
a certification exam, or you can set it up in study mode so that you can look at the correct
answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests” in the Introduction to this book.

 CHAPTER 6 193

c H a P t e R 6

Techniques to Improve
Query Performance

After you have designed your database and application, you typically want to make
sure that it can deliver the performance that your application users demand. This

 chapter covers what you can do to find performance problems in your database and how
to solve the problems you uncover. Microsoft SQL Server 2008 is an extremely capable and
 efficient database engine, but it still requires you to do some performance tuning if you
have a very large database, complicated queries, a high number of queries being served,
or a combination of these factors.

Exam objectives in this chapter:
n Create and alter indexes.

n Implement partitioning solutions.

n Control execution plans.

n Capture execution plans.

n Gather trace information by using the SQL Server Profiler.

n Collect output from the Database Engine Tuning Advisor.

n Collect information from system metadata.

Lessons in this chapter:
n Lesson 1: Tuning Queries 195

n Lesson 2: Creating Indexes 216

before You begin

To complete the lessons in this chapter, you must have:

n A basic understanding of Transact-SQL (T-SQL).

n SQL Server 2008 Developer Edition, Enterprise Edition, or Enterprise Evaluation
 Edition, with the AdventureWorks sample database installed.

 c o n t e n t s

 cHaPteR 6 193

 techniques to improve Query Performance 193

Before You Begin .193

Lesson 1: Tuning Queries .195

Evaluating Query Performance 195

Tuning Query Performance 199

Table-Valued UDFs 207

Cursors 208

Finding Out Which Queries to Tune 208

Lesson Summary 209

Lesson 2: Creating Indexes .216

Improving Performance with Covered Indexes 216

Using Clustered Indexes 224

Read Performance vs. Write Performance 225

Using Computed Columns 229

Using Indexed Views 233

Analyzing Index Usage 235

Partitioning 236

Tuning Indexes Automatically 243

Lesson Summary 243

Chapter Review .252

Chapter Summary 252

Key Terms .252

Case Scenario 253

Suggested Practices .253

Create and Alter Indexes 253

Take a Practice Test .254

 194 CHAPTER 6 Techniques to Improve Query Performance

real World

Tobias Thernström

Tuning queries is not just about understanding how queries, indexes, and related

items work. You must understand how all parts of SQL Server work together.

A couple of years ago, I did a consulting job for a big publishing company where

long delays in the database happened when orders were received. The company

had already investigated their indexing and were not able to find any obvious

problems. I started by running SQL Trace to find what was actually taking so much

time and found that a simple INSERT statement was causing the delays. I then

 verified that the INSERT was not blocked by any locks. Finally, I checked whether

the table had any triggers defined on it. It turned out that the table did in fact have

an AFTER INSERT trigger defined on it. After reviewing the trigger, it was obvious

that the trigger was causing the massive delays; the trigger was actually performing

 aggregations based on the entire order table. After verifying with the customer that

a new approach would still solve the business problem, we went ahead and removed

the trigger and created an agent that ran every 10 minutes and performed the

exact same function as the trigger used to do, for every INSERT. By removing the

 trigger, the INSERT statements were now executing with little to no delay. I bring up

this point so that you will think about whether other issues are involved that affect

 performance rather than just the query itself or the index structures that it uses.

 Lesson 1: Tuning Queries CHAPTER 6 195

Lesson 1: tuning Queries

Tuning queries is an important task for a database developer. Throughout this lesson, you
learn about several options for optimizing queries.

After this lesson, you will be able to:

n Know more about what affects query performance.

n Know how to measure query performance.

n Know how to write more efficient queries.

Estimated lesson time: 60 minutes

Evaluating Query Performance
One of the most important aspects of tuning queries is measuring performance. When
 measuring performance, you need to know what to actually measure—that is, what metric
to use. In SQL Server, there are three main metrics to consider: query cost, page reads, and
query execution time.

Query Cost
The query cost is typically (but not always, as you will soon see) a good metric to use when
comparing query performance. It is an internal metric used in SQL Server that takes into
account both CPU and input/output (I/O) resources used by the query. The lower the query
cost, theoretically, the better the query performance is. The query cost is not affected by
issues such as resource contention or waiting for locks. The query cost is typically a good
performance measurement, but when certain items are used in a query, such as scalar
 user-defined functions (UDFs) and Common Language Runtime (CLR) routines, the cost
for these items is not calculated, which renders the query cost lower than a truly accurate
 assessment. This is why it is called estimated query cost.

Page Reads
Page reads represents the number of 8-kilobyte (KB) data pages accessed by the SQL Server
storage engine while executing a query. You can retrieve this metric by executing SET
 STATISTICS IO ON. This causes each query execution to output something similar to the
 following in the Messages tab of the query window:

Table 'Customer'. Scan count 2, logical reads 136, physical reads 0, read-ahead

 reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

Table 'SalesOrderHeader'. Scan count 121, logical reads 822, physical reads 5,

 read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

 196 CHAPTER 6 Techniques to Improve Query Performance

The total page reads of this output is 136 + 822, which is the sum of the values labeled
“logical reads.” Logical reads are the number of pages read from memory. The logical reads
represent the total number of data pages read from any index on the SalesOrderHeader table.
The other items tell you how many of the logical reads were read from the hard drive (physical
and read-ahead reads), the number of passes through an index or heap it took to respond to
the query (scan count), and how many of the page reads were used to retrieve Large Object
(LOB) data. LOB data is stored outside the row for the data types varchar(max), nvarchar(max),
varbinary(max), text, ntext, image, and XML. The page reads metric does not take into account
the amount of CPU resources used when executing the query. This is why page reads are
typically not as appropriate a performance measurement as the query cost. This metric also
has the same problem with scalar UDFs and CLR routines as the query cost, which is that page
reads caused by these routines are not included in the output of STATISTICS IO.

Query Execution Time
The execution time of the query is the most volatile metric. It is affected by blocking (locks),
as well as resource contention on the server. That said, it is particularly important to always
include the query execution time metric in performance comparisons because it can help you
spot problems missed by the other performance metrics (page reads and query cost). If you
execute SET STATISTICS TIME ON, SQL Server returns the execution time in milliseconds for
each query execution.

Examining the Theoretical Query Execution Order
It is vital to have a basic understanding of the theoretical execution order of a SELECT
 statement when working with query tuning. This helps you understand what SQL Server
 actually needs to do to produce the query results.

The theoretical execution order is referred to as “theoretical” because the optimizer might
change the actual execution order to optimize performance. An alternative execution order is
used only if the query results would be the same were the theoretical execution order to be used.

The execution order needs to be split into two branches because it differs if the UNION
clause is included in the query or not. A simplified version of the first branch, without UNION,
is described in Table 6-1, showing the order in which clauses are processed.

tabLe 6-1 Theoretical Execution Order—Excluding the UNION Clause

cLaUSeS ReSULtS

1. FROM, JOIN, APPLY, and ON The join is executed and the first query filter
(the ON clause) is applied.

2. WHERE The second query filter is applied.

3. GROUP BY and aggregate functions
(such as SUM, AVG, and so on) that
are included in the query

Grouping and aggregation calculations are
performed.

 Lesson 1: Tuning Queries CHAPTER 6 197

cLaUSeS ReSULtS

4. HAVING The third query filter (filtering of the results of
aggregate functions) is applied.

5. SELECT Columns that should be returned by the query
are selected.

6. ORDER BY Results are sorted.

7. TOP The fourth (and last) query filter is applied; this
causes the query to return only the first X rows
from the results thus far.

8. FOR XML The tabular result returned by the SELECT
statement is converted to Extensible Markup
Language (XML).

Queries that use the UNION clause use the theoretical execution order shown in Table 6-2.

tabLe 6-2 Theoretical Execution Order—Including the UNION Clause

cLaUSeS ReSULtS

1. FROM, JOIN, APPLY, and ON The join is executed and the first query filter
(the ON clause) is applied.

2. WHERE The second query filter is applied.

3. GROUP BY and aggregate functions
(such as SUM, AVG, etc.) that are
included in the query

Grouping and aggregation calculations are
performed.

4. HAVING The third query filter (filtering of the results
of aggregate functions) is applied.

5. TOP The fourth (and last) query filter is applied;
this causes the query to return only the first
X rows from the results thus far. (Note that in
this case, the TOP clause is executed before
the ORDER BY clause.)

6. UNION and SELECT The results of each SELECT statement
 included in the query are concatenated;
 columns that should be returned by the
query are selected.

7. ORDER BY The results are sorted.

8. FOR XML The tabular result returned by the SELECT with
UNION statement is converted to XML.

 198 CHAPTER 6 Techniques to Improve Query Performance

The cause of the difference in the execution order is the introduction of the TOP clause
(in SQL Server 7.0), which is not part of the ANSI/ISO SQL standard. The standard-compliant
behavior of the UNION clause allows only one ORDER BY clause, which must be placed in
the last SELECT statement of the query and must sort the entire query result. This means the
TOP clause in any but the final SELECT statement of a UNION query returns the top X items
before they are sorted. This may sound like a minor point, but it is important to be aware of.
For example, compare the result of two queries, both of which are intended to return the two
most expensive red products and the two most expensive black products. The first query,
shown here, produces an incorrect result:

USE AdventureWorks;

SELECT TOP(2) ProductID, Name, Color, ListPrice

FROM Production.Product

WHERE Color = 'Black'

UNION

SELECT TOP(2) ProductID, Name, Color, ListPrice

FROM Production.Product

WHERE Color = 'Red'

ORDER BY ListPrice DESC;

Here is the (incorrect) result of this first query:

ProductID Name Color ListPrice

----------- ------------------------- ----- ----------

706 HL Road Frame - Red, 58 Red 1431,50

707 Sport-100 Helmet, Red Red 34,99

317 LL Crankarm Black 0,00

318 ML Crankarm Black 0,00

The second query, shown here, generates the intended result:

USE AdventureWorks;

WITH a AS (

 SELECT TOP(2) ProductID, Name, Color, ListPrice

 FROM Production.Product

 WHERE Color = 'Black'

 ORDER BY ListPrice DESC

), b AS (

 SELECT TOP(2) ProductID, Name, Color, ListPrice

 FROM Production.Product

 WHERE Color = 'Red'

 ORDER BY ListPrice DESC

)

SELECT * FROM a

UNION ALL

SELECT * FROM b;

 Lesson 1: Tuning Queries CHAPTER 6 199

Here are the (correct) results of this second query:

ProductID Name Color ListPrice

----------- ------------------------- ----- ----------

775 Mountain-100 Black, 38 Black 3374,99

776 Mountain-100 Black, 42 Black 3374,99

749 Road-150 Red, 62 Red 3578,27

750 Road-150 Red, 44 Red 3578,27

As you can see, the first query does not return the correct values because the ORDER BY
clause is executed after the TOP clause.

Tuning Query Performance
There are several ways to optimize queries. Optimization consists of tasks such as rewriting
the query, de-normalizing or normalizing tables, adding indexes, removing indexes, or a
 combination of these tasks.

The Graphical Execution Plan
The graphical execution plan is a useful tool for optimizing queries. This chapter discusses
several execution plans. Some of the items that you should look for in the execution plan are
shown in Table 6-3.

tabLe 6-3 Items from the Graphical Execution Plan

iteM tO WatcH FOR POSSibLe iMPLicatiOnS

thick arrows A thick arrow represents a large number
of rows moving from one operation in the
 execution plan to another. The greater
the number of rows transferred from one
 operation to another, the thicker the arrow.

Hash operations If a hash operation is used to handle clauses
such as GROUP BY and JOIN, it often means
that an appropriate index did not exist to
optimize the query.

Sorts A sort isn’t necessarily bad, but if it is a high
percentage of the query cost, you should
consider whether an index can be built to
remove the need for the sort operation.

 200 CHAPTER 6 Techniques to Improve Query Performance

iteM tO WatcH FOR POSSibLe iMPLicatiOnS

Large plans The plan with fewer operations is typically the
better optimized plan.

table or clustered index scans A clustered index scan and a table scan
 indicate that no appropriate index can be
used to optimize the query.

Using Search Arguments
A search argument (SARG) is a filter expression that is used to limit the number of rows re-
turned by a query and that can use an index seek operation that substantially improves the
performance of the query. Typically, a filter expression is not a SARG if the column from the
table is used in an expression (such as LEFT(Name, 1) = 'A'). If the filter is not a SARG and no
other SARGs exist in the query, this results in an index or table scan, which iterates through
the entire index or table. Instead of a scan, you want a seek operation to be performed.
A seek implies the use of the index’s balanced tree to find the values for which the query
searched. The use of a balanced tree significantly decreases the work that SQL Server
needs to perform to find a row. The difference between a seek and a scan can be orders of
 magnitude. For example, in the following query, SQL Server scans the OrderDateIndex index
(rather than seeking through it). The execution plan for the following query, which you can
view by pressing Ctrl+M in SQL Server Management Studio (SSMS), is shown in Figure 6-1:

USE AdventureWorks;

CREATE NONCLUSTERED INDEX OrderDateIndex

 ON Sales.SalesOrderHeader (OrderDate);

SELECT COUNT(*) FROM Sales.SalesOrderHeader

 WHERE YEAR(OrderDate) = 2004;

 Lesson 1: Tuning Queries CHAPTER 6 201

FiGURe 6-1 The actual execution plan from SSMS showing an index scan operation

If the query instead is rewritten so that the OrderDate column is not used in an expression,
an index seek operation can be used instead of a scan. The execution plan for the following
query is shown in Figure 6-2.

SELECT COUNT(*) FROM Sales.SalesOrderHeader

 WHERE OrderDate >= '20040101' AND OrderDate < '20050101';

FiGURe 6-2 The actual execution plan from SSMS showing an index seek operation

Note that the use of the COLLATE operator in a filter expression also invalidates the use of
an index on that column. You learn about this in more detail in Lesson 2, “Creating Indexes.”

Using Joins
To optimize queries, one of the first basic strategies is to minimize the number of join clauses
used. Another consideration is that outer joins incur more cost than inner joins because of
the extra work needed to find the unmatched rows. If only inner joins are used in a query, the
 behavior of the ON and WHERE clauses is the same; it does not matter if you put an expression
in the ON or WHERE clause. Compare the following two queries, with the differences shown in
bold type; they both return the same results and use identical execution plans:

-- Query 1

SELECT p.ProductID, p.Name, sod.SalesOrderID

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

 ON sod.ProductID = p.ProductID

WHERE p.Color = 'Black';

-- Query 2

SELECT p.ProductID, p.Name, sod.SalesOrderID

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

 ON sod.ProductID = p.ProductID

 AND p.Color = 'Black';

 202 CHAPTER 6 Techniques to Improve Query Performance

If these queries had been written with an outer join, they would not be syntactically equal
and could have substantially different performance.

Subqueries Without Correlation to the Outer Query
As explained in Chapter 4, “Using Additional Query Techniques,” an uncorrelated subquery is
executed only once per query execution and returns only one value. These queries typically
incur very little overhead. Note that this type of subquery cannot have any reference
(correlation) to the outer query. The following example uses a subquery to return all products
that are cheaper than the average product price. The subquery calculating the average
 product price is executed first (only once), and then the value returned by the subquery
is used as a parameter in the outer query:

USE AdventureWorks;

SELECT

 p.ProductID

 ,p.Name

 ,p.ListPrice

FROM Production.Product AS p

WHERE p.ListPrice > (

 SELECT AVG(p2.ListPrice)

 FROM Production.Product AS p2

);

Correlated Subqueries
Correlated subqueries include a reference to the outer query. Typically, this reference is used
to filter the correlated subquery. A correlated subquery is typically equal in performance
compared to using a JOIN when used in combination with the EXISTS operator to filter the
outer query. The following example query uses the EXISTS operator to return only products
that have been sold:

USE AdventureWorks;

SELECT p.ProductID, p.Name

FROM Production.Product AS p

WHERE EXISTS (

 SELECT * FROM Sales.SalesOrderDetail AS sod

 WHERE sod.ProductID = p.ProductID

);

While this type of correlated subquery is typically a good implementation, the use of
 correlated subqueries in the SELECT clause often has a negative effect on performance
 compared to JOINs. Of course, this depends on the number of rows returned by the outer
query. If a large number of rows are returned, each query in the SELECT clause would be
 executed for each row, so that means a large number of query executions. The following

 Lesson 1: Tuning Queries CHAPTER 6 203

query returns 6,224 rows and includes two correlated subqueries. Each of these queries is
executed once per row, resulting in a total of 12,448 subquery executions:

USE AdventureWorks;

SELECT

 soh.SalesOrderID

 ,soh.OrderDate

 ,(

 SELECT TOP(1)

 sod1.UnitPrice

 FROM Sales.SalesOrderDetail AS sod1

 WHERE sod1.SalesOrderID = soh.SalesOrderID

 ORDER BY sod1.OrderQty DESC

) AS UnitPrice

 ,(

 SELECT TOP(1)

 sod2.OrderQty

 FROM Sales.SalesOrderDetail AS sod2

 WHERE sod2.SalesOrderID = soh.SalesOrderID

 ORDER BY sod2.OrderQty DESC

) AS OrderQty

FROM Sales.SalesOrderHeader AS soh

WHERE soh.TerritoryID = 4;

There is also a potential bug in this query. Because each subquery is executed separately,
they might end up using different indexes. This means that these queries might not return
values from the same row (which they are probably intended to) if the same value for
 OrderQty exists for multiple sales order details in any sales order.

There are several ways to rewrite this query; the most common one in SQL Server 2008 is
probably to use the new APPLY clause. If the subquery is used in the FROM, JOIN, or APPLY
clauses, it might also be referred to as a derived table, as explained in Chapter 4. The APPLY
clause basically gives you the opportunity to combine two subqueries into one, cutting the
number of subquery executions in half. For the new query to return the same results as the
previous query, you must use an OUTER APPLY. (An OUTER APPLY works similarly to a left
outer join, and its counterpart, the CROSS APPLY clause, behaves like an inner join.) This
works in this example because, in the previous query, the outer query returns a row even
if the subqueries return nothing. The new query could be written as follows:

USE AdventureWorks;

SELECT

 soh.SalesOrderID

 ,soh.OrderDate

 ,a.*

 204 CHAPTER 6 Techniques to Improve Query Performance

FROM Sales.SalesOrderHeader AS soh

OUTER APPLY (

 SELECT TOP(1)

 sod.UnitPrice

 ,sod.OrderQty

 FROM Sales.SalesOrderDetail AS sod

 WHERE sod.SalesOrderID = soh.SalesOrderID

 ORDER BY sod.OrderQty DESC

) AS a

WHERE soh.TerritoryID = 4;

This query has a cost of roughly 76, while the first query’s cost was double that,
about 151.

Another solution to this type of problem is to make use of the ROW_NUMBER function
instead of a correlated subquery. By using the ROW_NUMBER function, you can find the
specific number of rows that you need by filtering on the row number rather than using the
TOP clause. To be able to filter on the result of the ROW_NUMBER function, the query needs
to be placed inside a derived table or a common table expression (CTE). The larger the result
set, the better this approach performs compared to the previous queries. The cost for the
 following query drops from 76 to about 3.6, an enormous reduction:

-- Common table expression.

WITH a AS (

 SELECT

 soh.SalesOrderID

 ,soh.OrderDate

 ,sod.UnitPrice

 ,sod.OrderQty

 ,ROW_NUMBER() OVER (

 PARTITION BY soh.SalesOrderID

 ORDER BY sod.OrderQty DESC

) AS RowNo

 FROM Sales.SalesOrderDetail AS sod

 INNER JOIN Sales.SalesOrderHeader AS soh

 ON sod.SalesOrderID = soh.SalesOrderID

 WHERE soh.TerritoryID = 4

)

SELECT

 a.SalesOrderID

 ,a.OrderDate

 ,a.UnitPrice

 ,a.OrderQty

FROM a

WHERE a.RowNo = 1;

 Lesson 1: Tuning Queries CHAPTER 6 205

Scalar UDFs
A scalar UDF is a function that returns a single value (not a result set). This type of function
is frequently used in queries and can significantly degrade performance. The reason for this
is that these functions are not expanded and optimized into the main query plan by the
 optimizer; rather, they are just called from the execution plan without any optimization based
on the context into which it is inserted in the plan. This also means that the cost of whatever is
done inside the function is not included in the cost estimates found in the graphical execution
plan for the query. This same problem occurs for the output of the SET STATISTICS IO ON
statement, which contains no references to what is done inside the UDF. As an example, this
section compares the performance of a query using a UDF and that of another query using
a correlated subquery. The UDF and the subquery perform identical SELECT statements.
Because the cost of the UDF is not reflected in the query cost metric, the more appropriate
performance metric for these queries is the execution time, which is returned using the SET
STATISTICS TIME ON statement.

Best PraCtiCes QUeRY eXecUtiOn tiMe

When using query execution times as a performance metric, it is typically a good idea to

execute each query a few times and use either the lowest execution time or the median

as the metric. Also, note that metrics in a test environment might not accurately reflect

performance in a production environment. This depends on a number of factors, including

how users actually interact with real-life data.

The following is a query using a UDF. The execution plan produced for the query is shown
in Figure 6-3:

USE AdventureWorks;

GO

CREATE FUNCTION dbo.fnGetCustomerAccountNumber(@CustomerID INT)

RETURNS VARCHAR(10)

AS

BEGIN

 RETURN ISNULL(

 (

 SELECT

 AccountNumber

 FROM Sales.Customer

 WHERE CustomerID = @CustomerID

), 'NOT FOUND');

END

GO

 206 CHAPTER 6 Techniques to Improve Query Performance

SET STATISTICS IO ON;

SET STATISTICS TIME ON;

SELECT

 soh.SalesOrderID

 ,soh.OrderDate

 ,dbo.fnGetCustomerAccountNumber(soh.CustomerID)

FROM Sales.SalesOrderHeader AS soh;

FiGURe 6-3 The actual execution plan from SSMS for the query using a UDF

The cost of this query is 0.56 and the number of page reads is 706 (neither metric is
 accurate and thus cannot be used to gauge performance), while the execution time on the
test machine used in this example is 25 seconds. Examine the graphical execution plan and
note that it contains no reference to the Sales.Customer table.

The following is an example query that uses a correlated subquery in place of the UDF.
The query’s execution plan is shown in Figure 6-4:

USE AdventureWorks;

SET STATISTICS IO ON;

SET STATISTICS TIME ON;

SELECT

 soh.SalesOrderID

 ,soh.OrderDate

 ,ISNULL(

 (

 SELECT

 AccountNumber

 FROM Sales.Customer

 WHERE CustomerID = soh.CustomerID

), 'NOT FOUND')

FROM Sales.SalesOrderHeader AS soh;

The cost of the query without the UDF goes up to 1.05 and the number of page reads to
742 (both of which are accurate values). At the same time, the execution time drops to about
1 second. As you can see, the first query using the UDF is about 25 times slower than the
 latter query because of the UDF use.

 Lesson 1: Tuning Queries CHAPTER 6 207

FiGURe 6-4 The actual execution plan from SSMS for the query using a correlated subquery

Why was the inline table-valued UDF so much faster? The use of inline table-valued UDFs
or views does not incur the same performance penalty as the use of scalar UDFs because both
inline table-valued UDFs and views are optimized (expanded) into the query plan.

Table-Valued UDFs
There are three different types of table-valued UDFs. Two of them can be developed in T-SQL
and the other one in a CLR language, such as C# or Microsoft Visual Basic .NET:

n T-SQL inline table-valued UDF

n T-SQL multistatement table-valued UDF

n CLR table-valued UDF

More info t-SQL anD cLR UDFs

Chapter 5, “Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures,

Functions, Triggers, and Views,” explains T-SQL UDFs in greater detail. Chapter 7, “Extending

Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream,” gives more

information about CLR UDFs.

These different types of functions behave differently. A T-SQL inline table-valued UDF is
actually just a view that can accept parameters. It is optimized in the same way as a view or
any SELECT statement would be. An advantage of using inline table-valued UDFs instead of
views is that you can require the user that uses the function to supply parameters. In this way
you can make sure that a filter is always used for the query inside the function (based on the
parameters provided).

 208 CHAPTER 6 Techniques to Improve Query Performance

T-SQL multistatement table-valued UDFs, on the other hand, can be considered to
work like a stored procedure that populates a temporary table that can be used by an
outer query. If you include a multistatement table-valued UDF in a query (for example, in
a join), the function has to be executed fully (that is, it must finish execution) before the
query can use its results. This means that if a multistatement table-valued UDF needs to
return 1,000,000 rows, the function must process all rows before the query can use the
 function’s results.

The third type, CLR table-valued UDFs, stream their results. This means that while
the CLR table-valued UDF is executing, its results become available to the calling query.
This difference can help performance because the outer query does not have to wait
for the entire result from the function to be available before it can start processing the
returned rows. A CLR table-valued UDF consists of two CLR methods: one method that
 manages the overall execution of the function and one method that is called for every
row that is returned by the function. The method that is run for each row returned by the
 function is not run until the method that manages the function execution starts executing
yield return commands. This is important to remember because any processing before
the start of the yield return commands has to be finished before any rows are returned
from the function. CLR table-valued UDFs are typically useful for querying objects other
than tables, such as strings (by using regular expressions) or the file system. Note that
the processing done by a CLR function is not accurately included in the query cost or page
read metrics of a query.

Cursors
You should generally avoid using cursors because of their negative effect on performance.
They have such an effect partly because each execution of a FETCH statement in a cursor loop
is similar in performance cost to executing a SELECT statement that returns one row. Another
problem is that a data manipulation language (DML) statement is optimized as a single unit,
while a cursor loop cannot be optimized in the same way (if at all). Instead, each item in the
loop is optimized and executed separately for each iteration of the loop.

You should try to rewrite cursor logic into one or more set-based statements
(SELECT, INSERT, UPDATE, DELETE, or MERGE). If you cannot convert the cursor logic to
a set-based statement, consider implementing the logic using a CLR stored procedure or
a table-valued UDF instead (depending on the functionality you need).

Finding Out Which Queries to Tune
As you have probably figured out, you can do a lot to improve query performance. The next
problem is obviously finding which queries to tune. To do this effectively, you should use
SQL Server Profiler, which is used to listen for events that occur on a SQL Server instance.
There are several events that you can listen for, but for tuning, you typically want to use

 Lesson 1: Tuning Queries CHAPTER 6 209

the SQL:BatchCompleted and RPC:Completed events. In addition to deciding which events
to listen for, you also need to specify which columns to retrieve when the events are raised.
The columns that are typically useful when determining whether an event contains something
that needs to be tuned are as follows:

n Duration Returns the number of milliseconds (or microseconds when writing the
events to a file or table instead of using the graphical utility to view the events)

n Reads Returns the total number of 8-kilobyte (KB) pages read during execution

n Writes Returns the total number of 8-KB pages written during execution

n cPU Returns the total CPU time used during execution

A higher-than-desired value for any of these columns should lead you to look into the
query’s performance.

Because SQL Server Profiler typically returns a lot of rows when used against a production
server, you can consider letting SQL Server Profiler write the result to a file or table. Note
that you can also start traces on the server without using the SQL Server Profiler graphical
 interface. SQL Server Profiler can be used to create the script necessary to start the trace on
the server. To do so, just start the trace in SQL Server Profiler, and then, from the File menu,
select Export, Script Trace Definition, For SQL Server 2005–2008. The server trace supports
only tracing to a file. If you trace to a file, you can still query it from SQL Server by passing the
name of the trace file as a parameter to the fn_trace_gettable table-valued UDF function.

Lesson Summary
n Understanding how queries are logically constructed is important to knowing that they

correctly return the intended result.

n Understanding how queries are logically constructed helps you understand what
physical constructs (like indexes) help the query execute faster.

n Make sure you understand your metrics when you measure performance.

Practice tuning Query Performance

In this practice, you test the query performance of three different versions of one particular
query that produces the same result set. The query that you use should return all customers
in a specific territory, as well as the last order received for those customers. If a customer does
not have any orders, it should still be returned.

exercise 1 Test Using a Small Result Set

In this exercise, you execute the three queries mentioned in the practice preface and record
each query’s cost. In this case, the parameter supplied to all three queries (TerritoryID) yields a
small result set of 64 rows.

 210 CHAPTER 6 Techniques to Improve Query Performance

 1. Open SSMS and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statements to create the
TestDB database, the Test schema, and the two tables that are used in this exercise:

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

CREATE SCHEMA Test;

GO

SELECT * INTO Test.SalesOrderHeader

FROM AdventureWorks.Sales.SalesOrderHeader;

GO

SELECT * INTO Test.Customer

FROM AdventureWorks.Sales.Customer;

GO

ALTER TABLE Test.SalesOrderHeader

 ADD CONSTRAINT PKSalesOrderHeader

 PRIMARY KEY(SalesOrderID);

GO

ALTER TABLE Test.Customer

 ADD CONSTRAINT PKCustomer

 PRIMARY KEY(CustomerID);

 3. Turn on the Actual Execution Plan feature in SSMS by pressing Ctrl+M or by selecting
Include Actual Execution Plan from the Query menu.

 4. In the existing query window, type, highlight, and execute Query 1, shown here, to test
the performance of a query that uses two correlated subqueries.

Because of the use of two separate correlated subqueries in this query, it is not
 guaranteed that both these subqueries return data from the same row in the
Test.Customer table:

-- Query 1

SELECT

 c.CustomerID

 Lesson 1: Tuning Queries CHAPTER 6 211

 ,c.AccountNumber

 ,(

 SELECT TOP(1) soh.SalesOrderID

 FROM Test.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 ORDER BY OrderDate DESC

) AS SalesOrderID

 ,(

 SELECT TOP(1) soh.OrderDate

 FROM Test.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 ORDER BY OrderDate DESC

) AS OrderDate

FROM Test.Customer AS c

WHERE c.TerritoryID = 2;

Record the total query cost of Query 1.

(You can find the value in the Execution Plan tab by moving the pointer over the
 SELECT operator and locating the value named Estimated Subtree Cost.)

 5. In the existing query window, type, highlight, and execute Query 2, shown here, to test
the performance of a query that uses an OUTER APPLY:

-- Query 2

SELECT

 c.CustomerID

 ,c.AccountNumber

 ,o.*

FROM Test.Customer AS c

OUTER APPLY (

 SELECT TOP(1) soh.SalesOrderID, soh.OrderDate

 FROM Test.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 ORDER BY OrderDate DESC

) AS o

WHERE c.TerritoryID = 2;

Record the total cost of Query 2.

 6. In the existing query window, type, highlight, and execute Query 3, shown here, to test
the performance of a query that uses ROW_NUMBER:

-- Query 3

WITH a AS (

 SELECT

 c.CustomerID

 212 CHAPTER 6 Techniques to Improve Query Performance

 ,c.AccountNumber

 ,c.TerritoryID

 ,soh.SalesOrderID

 ,soh.OrderDate

 ,ROW_NUMBER() OVER (PARTITION BY c.CustomerID

 ORDER BY soh.OrderDate DESC) AS RowNo

 FROM Test.Customer AS c

 LEFT OUTER JOIN Test.SalesOrderHeader AS soh

 ON soh.CustomerID = c.CustomerID

)

SELECT

 a.CustomerID

 ,a.AccountNumber

 ,a.SalesOrderID

 ,a.OrderDate

FROM a

WHERE a.RowNo = 1 AND a.TerritoryID = 2;

Record the total cost of Query 3.

exercise 2 Test Using a Large Result Set

In this exercise, you execute the three queries mentioned in the practice preface and record
each query’s cost. In this case, the parameter supplied to all three queries (TerritoryID, shown
below in bold type) yields a larger result set of 3,433 rows (compared to 64 rows in Exercise 1).

 1. Open SSMS, if necessary, and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statement to connect to
the TestDB database created in Exercise 1:

USE TestDB;

 3. Turn on the Actual Execution Plan feature in SSMS by pressing Ctrl+M or by selecting
Include Actual Execution Plan from the Query menu.

 4. In the existing query window, type, highlight, and execute Query 1, shown here, to test
the performance of a query using two correlated subqueries and a large result set.

Again, because of the use of two separate correlated subqueries in this query, it is
not guaranteed that both these subqueries return data from the same row in the
Test.Customer table:

-- Query 1

SELECT

 c.CustomerID

 ,c.AccountNumber

 ,(

 SELECT TOP(1) soh.SalesOrderID

 FROM Test.SalesOrderHeader AS soh

 Lesson 1: Tuning Queries CHAPTER 6 213

 WHERE soh.CustomerID = c.CustomerID

 ORDER BY OrderDate DESC

) AS SalesOrderID

 ,(

 SELECT TOP(1) soh.OrderDate

 FROM Test.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 ORDER BY OrderDate DESC

) AS OrderDate

FROM Test.Customer AS c

WHERE c.TerritoryID = 1;

Record the total cost of Query 1.

(You can find the value in the Execution Plan tab by moving the pointer over the
 SELECT operator and locating the value named Estimated Subtree Cost.)

 5. In the existing query window, type, highlight, and execute Query 2, shown here, to test
the performance of a query using OUTER APPLY and a large result set:

-- Query 2

SELECT

 c.CustomerID

 ,c.AccountNumber

 ,o.*

FROM Test.Customer AS c

OUTER APPLY (

 SELECT TOP(1) soh.SalesOrderID, soh.OrderDate

 FROM Test.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 ORDER BY OrderDate DESC

) AS o

WHERE c.TerritoryID = 1;

Record the total cost of Query 2.

 6. In the existing query window, type, highlight, and execute Query 3, shown here, to test
the performance of a query that uses ROW_NUMBER and a large result set:

-- Query 3

WITH a AS (

 SELECT

 c.CustomerID

 ,c.AccountNumber

 ,c.TerritoryID

 ,soh.SalesOrderID

 ,soh.OrderDate

 214 CHAPTER 6 Techniques to Improve Query Performance

 ,ROW_NUMBER() OVER (PARTITION BY c.CustomerID

 ORDER BY soh.OrderDate DESC) AS RowNo

 FROM Test.Customer AS c

 LEFT OUTER JOIN Test.SalesOrderHeader AS soh

 ON soh.CustomerID = c.CustomerID

)

SELECT

 a.CustomerID

 ,a.AccountNumber

 ,a.SalesOrderID

 ,a.OrderDate

FROM a

WHERE a.RowNo = 1 AND a.TerritoryID = 1;

What was the total cost of Query 3?

exercise 3 Optimize Query 3

In this exercise, you make a small change to Query 3 to optimize it.

 1. Open SSMS, if necessary, and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statement to connect to
the TestDB database created in Exercise 1:

USE TestDB;

 3. Turn on the Actual Execution Plan feature in SSMS by pressing Ctrl+M or by selecting
Include Actual Execution Plan from the Query menu.

 4. In the existing query window, type, highlight, and execute the new version of Query 3,
shown here, with the small result set (TerritoryID = 2). The changes from the previous
version of the query are shown in bold type:

WITH a AS (

 SELECT

 c.CustomerID

 ,c.AccountNumber

 ,c.TerritoryID

 ,soh.SalesOrderID

 ,soh.OrderDate

 ,ROW_NUMBER() OVER (PARTITION BY c.CustomerID

 ORDER BY soh.OrderDate DESC) AS RowNo

 FROM Test.Customer AS c

 LEFT OUTER JOIN Test.SalesOrderHeader AS soh

 ON soh.CustomerID = c.CustomerID

 WHERE c.TerritoryID = 2

)

 Lesson 1: Tuning Queries CHAPTER 6 215

SELECT

 a.CustomerID

 ,a.AccountNumber

 ,a.SalesOrderID

 ,a.OrderDate

FROM a

WHERE a.RowNo = 1;

Record the total cost of this version of Query 3.

 5. In the existing query window, type, highlight, and execute the new version of Query 3,
shown here, with the large result set (TerritoryID = 1). The difference from the previous
version of the query is again shown in bold type:

WITH a AS (

 SELECT

 c.CustomerID

 ,c.AccountNumber

 ,c.TerritoryID

 ,soh.SalesOrderID

 ,soh.OrderDate

 ,ROW_NUMBER() OVER (PARTITION BY c.CustomerID

 ORDER BY soh.OrderDate DESC) AS RowNo

 FROM Test.Customer AS c

 LEFT OUTER JOIN Test.SalesOrderHeader AS soh

 ON soh.CustomerID = c.CustomerID

 WHERE c.TerritoryID = 1

)

SELECT

 a.CustomerID

 ,a.AccountNumber

 ,a.SalesOrderID

 ,a.OrderDate

FROM a

WHERE a.RowNo = 1;

What was the total cost of this version of Query 3 for the large result set?

 6. To clean up after this practice, close all open query windows in SSMS, open a new
query window, and execute the following SQL statements:

USE master;

DROP DATABASE TestDB;

 216 CHAPTER 6 Techniques to Improve Query Performance

Lesson 2: creating indexes

SQL Server 2008 supports two basic types of indexes: clustered and nonclustered. Both
 indexes are implemented as a balanced tree, where the leaf level is the bottom level of the
structure. The difference between these index types is that the clustered index is the actual
table; that is, the bottom level of a clustered index contains the actual rows, including all
columns, of the table. A nonclustered index, on the other hand, contains only the columns
included in the index’s key, plus a pointer pointing to the actual data row. If a table does
not have a clustered index defined on it, it is called a heap, or an unsorted table. You could
also say that a table can have one of two forms: It is either a heap (unsorted) or a clustered
index (sorted).

After this lesson, you will be able to:

n Decide which type of index to implement.

n Create indexes.

Estimated lesson time: 40 minutes

Improving Performance with Covered Indexes
The notion of a covered index is that SQL Server doesn’t need to use lookups between the
nonclustered index and the table to return the query results. Because a clustered index is the
actual table, clustered indexes always cover queries.

To consider the index covered, it must contain all columns referenced in the query (in any
clause, SELECT, JOIN, WHERE, GROUP BY, HAVING, and so on). Consider the following SQL
table and query.

teSt.tabLea

Column1 Column2 Column3

SELECT Column1 FROM Test.TableA

WHERE Column2 = 1;

For an index to cover this query, it must contain at least the columns Column1 and
 Column2. You can do this in several ways. All the following indexes would cover this query:

CREATE NONCLUSTERED INDEX TestIndex ON Test.TableA (Col1, Col2);

CREATE NONCLUSTERED INDEX TestIndex ON Test.TableA (Col2, Col1);

CREATE NONCLUSTERED INDEX TestIndex ON Test.TableA (Col1) INCLUDE (Col2);

CREATE NONCLUSTERED INDEX TestIndex ON Test.TableA (Col2) INCLUDE (Col1);

CREATE NONCLUSTERED INDEX TestIndex ON Test.TableA (Col1, Col2, Col3);

CREATE NONCLUSTERED INDEX TestIndex ON Test.TableA (Col3) INCLUDE (Col1, Col2);

 Lesson 2: Creating Indexes CHAPTER 6 217

As you can see, the columns only need to be found in the index; their position and
 whether they are found in the index key or are included columns (discussed in detail in the
section entitled “Using Included Columns and Reducing Index Depth” later in this lesson)
does not matter. Of course, both the execution plan and the performance could differ greatly
between these indexes; however, they all cover the query.

The performance benefit gained by using a covered index is typically great for queries that
return a large number of rows (a nonselective query) and smaller for queries that return few
rows (a selective query). Remember that a small number of rows is a relative term—it could
mean 10 for a table with a couple of hundred rows and 1,000 for a table with millions of rows.
This section presents a performance comparison of four queries. The table that the queries
are executed against has the following schema and is populated with 1,000,000 rows:

CREATE TABLE Test.CoveredIndexTest (

 Col1 INT NOT NULL

 ,Col2 NVARCHAR(2047) NOT NULL

);

INSERT Test.CoveredIndexTest (Col1, Col2)

 VALUES (0, 'A lonely row...');

INSERT Test.CoveredIndexTest (Col1, Col2)

 SELECT TOP(999999) message_id, text FROM sys.messages AS sm

 CROSS JOIN (

 SELECT TOP(15) 1 AS Col FROM sys.messages

) AS x;

On the test machine in this example, the size of this table is 27,377 pages (roughly
213 megabytes). Also, note that the table is a heap; that is, it does not have a clustered index
defined on it. The queries and indexes used in this test have the definitions shown in the
 following code. The performance metrics (measured in page reads) for the queries are shown
in Table 6-4.

--Non-covered index:

CREATE NONCLUSTERED INDEX NonCovered ON Test.CoveredIndexTest (Col1);

--Covered index:

CREATE NONCLUSTERED INDEX Covered ON Test.CoveredIndexTest (Col1) INCLUDE (Col2);

-- Query 1:

-- Returns 1 row.

SELECT Col1, Col2 FROM Test.CoveredIndexTest

 WHERE Col1 = 0;

-- Query 2:

-- Returns roughly 0.1% of the rows found in the table.

-- (1,056 rows)

SELECT Col1, Col2 FROM Test.CoveredIndexTest

 WHERE Col1 BETWEEN 1205 AND 1225;

 218 CHAPTER 6 Techniques to Improve Query Performance

-- Query 3:

-- Returns roughly 0.5% of the rows found in the table.

-- (5,016 rows)

SELECT Col1, Col2 FROM Test.CoveredIndexTest

 WHERE Col1 BETWEEN 1205 AND 1426;

-- Query 4 (non-selective):

-- Returns roughly 5% of the rows found in the table.

-- (50,028 rows)

SELECT Col1, Col2 FROM Test.CoveredIndexTest

 WHERE Col1 BETWEEN 1205 AND 2298;

tabLe 6-4 Query Peformance Matrix for Logical Reads

QUeRY 1

(1 ROW)

QUeRY 2

(SeLective)

QUeRY 3

(SOMeWHat

SeLective)

QUeRY 4

(nOnSeLective)

No index 29,141 pages 29,141 pages 29,141 pages 29,141 pages

Noncovered index 4 pages 1,703 pages 5,099 pages 46,647 pages

Covered index 3 pages 43 pages 142 pages 1,346 pages

The performance metric that is shown in this table is the number of data pages
that SQL Server handled during the query execution (SET STATISTICS IO ON, logical reads).

Note that the so-called selective query (Query 2) returns 0.01 percent of the rows in the
table. For a table of this size, that still amounts to 1,000 rows. If you are speaking to someone
about the number of rows that are affected by a query, and he or she says that number is
“only a small percentage of the table,” this usually translates to a lot of rows.

Some conclusions you can draw from the test are given here. (This is only with regard to
read performance; write performance is discussed later in this lesson.)

n A covered index always performs better than a noncovered index.

n For queries that return a very limited number of rows, a noncovered index also
 performs very well.

n For the somewhat-selective query (Query 3), the noncovered index reads more than
34 times more pages than the covered index. In this case, a query was considered
selective by the optimizer when it matched less than roughly 0.77 percent of the table.

Using Included Columns and Reducing Index Depth
In versions of SQL Server prior to SQL Server 2005, creating covered nonclustered indexes
could often be impossible because an index could contain no more than 16 columns or be
more than 900 bytes wide. The new Included Column feature makes it possible to add
 columns to an index without adding them to the index’s key. Included columns cannot be

 Lesson 2: Creating Indexes CHAPTER 6 219

used for tasks such as filtering or sorting; their sole benefit is reducing page reads through
covering queries by avoiding table lookups.

An index can have a maximum of 1,023 included columns, and a table can have a
 maximum of 1,024 columns, making it possible to create a nonclustered index that covers the
entire table, which is almost like having a second clustered index! In addition, columns that
use one of the large data types [VARCHAR(max), NVAR-CHAR(max), VARBINARY(max), XML,
TEXT, NTEXT, and IMAGE] are allowed to be included in an index as an included column.

Only columns that are used for filtering, grouping, or sorting should be part of the index
key; all other columns included in the index should be included columns. Besides allowing
for more columns in the index, included columns have other benefits. In the following
SQL script, a table with 1,000,000 rows is created with two indexes. One index has all columns
in the index key, while the other index has only one column in the key (the one that would
be filtered on), and the rest of the columns are included. The width of each row in the index
is a little over 300 bytes. This might sound like a very wide index row, but having this kind
of width is not uncommon. This also makes up for the fact that the test table contains only
1 million rows; for larger tables, the width of the index does not need to be this big to make
a performance difference. The following script defines (and populates) objects and indexes
used in subsequent examples:

CREATE TABLE Test.IncludedColumnsTest(

 PKCol UNIQUEIDENTIFIER NOT NULL DEFAULT NEWSEQUENTIALID()

 PRIMARY KEY CLUSTERED

 ,Col1 INT IDENTITY NOT NULL

 ,Col2 CHAR(20) NOT NULL

 ,Col3 CHAR(20) NOT NULL

 ,Col4 CHAR(20) NOT NULL

 ,Col5 CHAR(20) NOT NULL

 ,Col6 CHAR(20) NOT NULL

 ,Col7 CHAR(20) NOT NULL

 ,Col8 CHAR(20) NOT NULL

 ,Col9 CHAR(20) NOT NULL

 ,Col10 CHAR(20) NOT NULL

 ,Col11 CHAR(20) NOT NULL

 ,Col12 CHAR(20) NOT NULL

 ,Col13 CHAR(20) NOT NULL

 ,Col14 CHAR(20) NOT NULL

 ,Col15 CHAR(20) NOT NULL

 ,Col16 CHAR(20) NOT NULL

);

INSERT Test.IncludedColumnsTest (Col2, Col3, Col4, Col5, Col6, Col7, Col8,

 Col9, Col10, Col11, Col12, Col13, Col14, Col15, Col16)

SELECT TOP(1000000)

 CAST(message_id AS CHAR(20)) AS Col2

 ,CAST(message_id AS CHAR(20)) AS Col3

 ,CAST(message_id AS CHAR(20)) AS Col4

 220 CHAPTER 6 Techniques to Improve Query Performance

 ,CAST(message_id AS CHAR(20)) AS Col5

 ,CAST(message_id AS CHAR(20)) AS Col6

 ,CAST(message_id AS CHAR(20)) AS Col7

 ,CAST(message_id AS CHAR(20)) AS Col8

 ,CAST(message_id AS CHAR(20)) AS Col9

 ,CAST(message_id AS CHAR(20)) AS Col10

 ,CAST(message_id AS CHAR(20)) AS Col11

 ,CAST(message_id AS CHAR(20)) AS Col12

 ,CAST(message_id AS CHAR(20)) AS Col13

 ,CAST(message_id AS CHAR(20)) AS Col14

 ,CAST(message_id AS CHAR(20)) AS Col15

 ,CAST(message_id AS CHAR(20)) AS Col16

FROM sys.messages AS sm

CROSS JOIN (

 SELECT TOP(15) 1 AS Col FROM sys.messages

) AS x;

CREATE NONCLUSTERED INDEX IncludedColumns ON Test.IncludedColumnsTest (Col1)

 INCLUDE (Col2, Col3, Col4, Col5, Col6, Col7, Col8, Col9, Col10, Col11, Col12,

 Col13, Col14, Col15, Col16);

CREATE NONCLUSTERED INDEX NoIncludedColumns ON Test.IncludedColumnsTest

 (Col1, Col2, Col3, Col4, Col5, Col6, Col7, Col8, Col9, Col10, Col11,

 Col12, Col13, Col14, Col15, Col16);

Table 6-5 shows some of the interesting differences between indexes with and without
included columns.

tabLe 6-5 Index Size Matrix

INCLUDEDCOLUMN NOINCLUDEDCOLUMN

Total size 40,147 pages 41,743 pages

Size of the nonleaf
level of the index

146 pages 1,743 pages

Index depth Three levels (a root page +
one intermediate level + one
leaf level)

Five levels (a root page + three
intermediate levels + one leaf
level)

Average size of rows
in the nonleaf levels of
the index

27 bytes 327 bytes

Average size of rows
in the leaf level of
the index

321 bytes 321 bytes

 Lesson 2: Creating Indexes CHAPTER 6 221

You can retrieve this information from the sys.dm_db_index_physical_stats dynamic
 management function by executing the following query:

SELECT

 *

FROM sys.dm_db_index_physical_stats(

 DB_ID()

 ,OBJECT_ID('Test.IncludedColumnsTest')

 ,NULL

 ,NULL

 ,'DETAILED'

) AS a;

The total size of the index is reduced by only about 4 percent because the leaf levels of
both indexes contain the same data. However, the nonleaf levels of the index with included
columns contain only the one column that is in the index’s key (plus pointers to the next
level), while, for the other index, all columns are part of the index key, making each row in
the nonleaf level roughly the same size as that of the leaf level. Table 6-6 shows the layout of
each level of a NoIncludedColumns index.

tabLe 6-6 Levels of the NoIncludedColumns Index

LeveL cOntentS

Root 1 page with 4 rows pointing to the next level

First intermediate level 4 pages with a total of 72 rows pointing to the next level

Second intermediate level 70 pages with a total of 1,668 rows pointing to the next level

Third intermediate level 1,668 pages with a total of 40,000 rows pointing
to the next level

Leaf level 40,000 pages containing all of the 1,000,000 rows
of the index

Table 6-7 shows the layout of each level of an IncludedColumns index.

tabLe 6-7 Levels of the IncludedColumns Index

LeveL cOntentS

Root 1 page with 145 rows pointing to the next level

Intermediate level 145 pages with a total of 40,003 rows pointing to
the next level

Leaf level 40,003 pages containing all of the 1,000,000 rows
of the index

 222 CHAPTER 6 Techniques to Improve Query Performance

Because the rows in the nonleaf level pages of the NoIncludedColumns index are
 substantially larger than those of the IncludedColumns index, more pages (and therefore more
levels) are needed to create the balanced tree for the index. Because the NoIncludedColumns
index is two levels (that is, 40 percent) deeper than the IncludedColumns index, each
search through the NoIncludedColumns index needs two more page reads to get to the
 bottom of the index. This might not sound like much, but if the index is used for repeated
searches, such as for joins or very frequent queries, the extra levels cause performance
 degradation.

In Table 6-8, three example queries are shown that join a table called Test. OtherTable
with the Test.IncludedColumnsTest table using different indexes. Note that the index
hints [WITH(INDEX)] are used only to force SQL Server to use the specified index instead
of the optimal index (which would be the IncludedColumns index). A new index named
 NotCovered is added to show the performance of a nonclustered index that does not
cover the query. The following script defines additional objects and indexes required
by the example:

-- Create the NotCovered index.

CREATE NONCLUSTERED INDEX NotCovered ON Test.IncludedColumnsTest (Col1);

-- Create and populate the Test.OtherTable table.

CREATE TABLE Test.OtherTable (

 PKCol INT IDENTITY NOT NULL PRIMARY KEY

 ,Col1 INT NOT NULL

);

INSERT Test.OtherTable (Col1)

 SELECT Col1 FROM Test.IncludedColumnsTest;

tabLe 6-8 Performance Comparison Matrix

QUeRY DeFinitiOn PaGe ReaDS

Query 1
index: IncludedColumns

The execution plan is
shown in Figure 6-5.

SELECT o.PKCol, i.Col2

FROM Test.OtherTable AS o

INNER JOIN

 Test.IncludedColumnsTest AS i

 WITH(INDEX(IncludedColumns))

 ON o.Col1 = i.Col1

WHERE o.PKCol BETWEEN 1

 AND 10000;

32,726 pages

 Lesson 2: Creating Indexes CHAPTER 6 223

QUeRY DeFinitiOn PaGe ReaDS

Query 2
index:
NoIncludedColumns

The execution plan is
shown in Figure 6-6.

SELECT o.PKCol, i.Col2

FROM Test.OtherTable AS o

INNER JOIN

 Test.IncludedColumnsTest AS i

 WITH(INDEX(NoIncludedColumns))

 ON o.Col1 = i.Col1

WHERE o.PKCol BETWEEN 1

 AND 10000;

53,994 pages

Query 3
index: NotCovered

The execution plan is
shown in Figure 6-7.

SELECT o.PKCol, i.Col2

FROM Test.OtherTable AS o

INNER JOIN

 Test.IncludedColumnsTest AS i

 WITH(INDEX(NotCovered))

 ON o.Col1 = i.Col1

WHERE o.PKCol BETWEEN 1

 AND 10000;

62,900 pages

FiGURe 6-5 The actual execution plan of Query 1 in SSMS

FiGURe 6-6 The actual execution plan of Query 2 in SSMS

 224 CHAPTER 6 Techniques to Improve Query Performance

FiGURe 6-7 The actual execution plan of Query 3 in SSMS

Query 1, with the IncludedColumns index, is the best-performing query, with 32,726 page
reads. Query 2, with the NoIncludedColumns index, used 53,994 page reads. As you can see,
the difference in the number of page reads between the two indexes is roughly the same
as the difference in index levels (40 percent). Query 3, with the NotCovered index, is the
 worst-performing query with 62,900 page reads because of the extra reads necessary to fetch
the data that was not found in the index from the table. (Note the extra Nested Loops Join
operator in the execution plan of Query 3.)

Using Clustered Indexes
Because a clustered index is the actual table, reading from the clustered index never results
in lookups. Therefore, a clustered index should generally be defined on columns that are
often queried and typically return a lot of data. Using a clustered index avoids the problem
of lookups and fetching a large number of rows. Two good candidates for the clustered index
are either the most frequently queried foreign key column of the table (a search on a foreign
key typically returns many rows) or the most frequently searched date column. (Date searches
typically return a large number of rows as well.)

Another important consideration when selecting the column or columns on which to
create the clustered index is that the key size of the clustered index should be as small as
possible. If a clustered index exists on a table, all nonclustered indexes on that table use the
key of the clustered index as the row pointer from the nonclustered index to the table. If a
clustered index does not exist, the row identifier is used, which takes up 8 bytes of storage in
each row of each nonclustered index. This can significantly increase the index size for larger
tables. Consider the following scenario:

n You have a table with 40,000,000 rows.

n The table has five nonclustered indexes.

n The clustered index key is 60 bytes wide. (This is not uncommon when you have
 clustered indexes that span a few columns.)

 Lesson 2: Creating Indexes CHAPTER 6 225

The total size of all row pointers from the nonclustered indexes on this table (only the
pointers—nothing else) would be

40,000,000 * 5 * 60 = 12,000,000,000 bytes (close to 12 gigabytes)

If the clustered index key were changed to only one column with a smaller data type, such
as an integer for a foreign key, each row pointer would be only 4 bytes. Because 4 bytes are
added to all duplicates of the clustered index key to keep it unique internally, the clustered
index key size that actually results would be 8 bytes. The total size of all row pointers would
then be as follows:

40,000,000 * 5 * 8 = 1,600,000,000 bytes (close to 1.5 GB)

The reduction in storage needed is more than 10 GB.

Read Performance vs. Write Performance
The addition of indexes helps boost only the read performance. Write performance is
 typically degraded because the indexes must be kept up-to-date with the data in the table.
If a table has five nonclustered indexes defined on it, an INSERT into that table is really six
 INSERTs: one for the table and one for each index. The same goes for DELETE statements.
With UPDATE statements, only indexes that contain the columns that are updated by the
statement must be touched.

When index keys are updated, the row in the index must be moved to the appropriate
position in the index (unless the update modifies only data in included columns). The result
is that the UPDATE is split into a DELETE followed by an INSERT. Depending on the internal
fragmentation of the index pages, this might also cause page splits.

Consider the following simple performance test on the Test.IndexInsertTest table
 containing 1,000,000 rows. In each test, 10,000 rows are inserted. The table is recreated
between tests. First, the INSERT is performed against the table without any nonclustered
 indexes, then it is performed with one nonclustered index, and finally, it is performed with
five nonclustered indexes. The following code sets up the test:

CREATE TABLE Test.IndexInsertTest (

 PKCol UNIQUEIDENTIFIER NOT NULL DEFAULT NEWSEQUENTIALID()

 PRIMARY KEY CLUSTERED

 ,Col1 INT NOT NULL

);

INSERT Test.IndexInsertTest (Col1)

 SELECT TOP(1000000)

 ROW_NUMBER() OVER (ORDER BY message_id) AS Col1

 FROM sys.messages AS sm

 CROSS JOIN (

 SELECT TOP(15) 1 AS Col FROM sys.messages

) AS x;

 226 CHAPTER 6 Techniques to Improve Query Performance

-- Rebuild the table's clustered index.

ALTER INDEX ALL ON Test.OtherTable REBUILD;

-- Create table containing the rows used to perform the inserts.

CREATE TABLE Test.OtherTable (

 PKCol INT IDENTITY(100000,4) NOT NULL PRIMARY KEY

 ,OtherCol INT NOT NULL

);

INSERT Test.OtherTable (OtherCol)

 SELECT Col1 FROM Test.IncludedColumnsTest

 WHERE Col1 BETWEEN 1 AND 10000;

The following is the first test, without any nonclustered indexes defined on the table.
The execution plan for this INSERT statement is shown in Figure 6-8:

INSERT Test.IndexInsertTest (Col1)

 SELECT PKCol FROM Test.OtherTable;

FiGURe 6-8 The actual execution plan from SSMS of the INSERT statement used in the first test

The estimated query cost for the INSERT statement in this test was 0.88, and SQL Server
touched 32,085 pages in the Test.IndexInsertTest table while performing the INSERTs.

The following is the second test, with one nonclustered index defined on the table.
The execution plan for this INSERT statement is shown in Figure 6-9:

-- 1. Drop and re-create the Test.IndexInsertTest table.

-- 2. Add one non-clustered index.

CREATE NONCLUSTERED INDEX NCIdx1 ON Test.IndexInsertTest (Col1);

-- 3. Execute the insert statement.

INSERT Test.IndexInsertTest (Col1)

 SELECT PKCol FROM Test.OtherTable;

 Lesson 2: Creating Indexes CHAPTER 6 227

FiGURe 6-9 The actual execution plan from SSMS of the INSERT statement used in the second test

The estimated query cost for the INSERT statement in this test was 1.58, and SQL Server
touched 64,902 pages in the Test.IndexInsertTest table while performing the INSERTs. This is
roughly twice the cost and twice the number of pages compared with Test 1.

The following is the third test, with five nonclustered indexes defined on the table.
The execution plan for this INSERT statement is shown in Figure 6-10:

-- 1. Drop and recreate the Test.IndexInsertTest table.

-- 2. Add five non-clustered indexes.

CREATE NONCLUSTERED INDEX NCIdx1 ON Test.IndexInsertTest (Col1);

CREATE NONCLUSTERED INDEX NCIdx2 ON Test.IndexInsertTest (Col1);

CREATE NONCLUSTERED INDEX NCIdx3 ON Test.IndexInsertTest (Col1);

CREATE NONCLUSTERED INDEX NCIdx4 ON Test.IndexInsertTest (Col1);

CREATE NONCLUSTERED INDEX NCIdx5 ON Test.IndexInsertTest (Col1);

-- 3. Execute the insert statement.

INSERT Test.IndexInsertTest (Col1)

 SELECT PKCol FROM Test.OtherTable;

This time, the estimated query cost for the INSERT statement was 5.04 and SQL Server
handled a staggering 196,170 pages in the Test.IndexInsertTest table while performing
the INSERTs. As you can see, the cost for performing the INSERTs is roughly doubled with
each new nonclustered index. However, in this case, each nonclustered index is roughly the
same width as the table itself. For typical tables, the nonclustered indexes are narrower than
the table and do not hurt performance (percentage-wise) to the same degree as in this test.

Because the ratio between read and write operations varies greatly between systems (and
even tables), it is typically a good idea to create indexes to optimize read performance and
then test the effect that the created indexes have on write performance. So long as the write

 228 CHAPTER 6 Techniques to Improve Query Performance

FiGURe 6-10 The actual execution plan from SSMS of the INSERT statement used in the third test

performance is acceptable (and you have enough disk space to manage the created indexes),
you can keep the created indexes. It is typically also advisable to run such a test every so
often to verify that the read versus write ratio for the table hasn’t changed.

You should also note that both the UPDATE and DELETE statements benefit from certain
indexes to locate the rows in the table that they need to update or delete.

 Lesson 2: Creating Indexes CHAPTER 6 229

Using Computed Columns
A computed column is generally derived from other columns in the same table and can
 reference both system- and user-defined functions in its definition. To be able to create an
index on a computed column, it must adhere to a few requirements, which you can find in
SQL Server Books Online under the topic “Creating Indexes on Computed Columns,” at
http://msdn.microsoft.com/en-us/library/ms189292.aspx.

By defining a computed column and indexing it, it is possible to make queries that
would typically require an index or table scan to instead use a seek operation. Consider the
 following query for sales orders in the AdventureWorks database. The query’s execution plan
is shown in Figure 6-11:

USE AdventureWorks;

-- First create an index on the OrderDate column

-- to support this query.

CREATE NONCLUSTERED INDEX OrderDateIndex ON

 Sales.SalesOrderHeader (OrderDate);

GO

SET STATISTICS IO ON;

SELECT

 COUNT(*) FROM Sales.SalesOrderHeader

WHERE MONTH(OrderDate) = 5;

FiGURe 6-11 The actual execution plan of the SELECT statement without a SARG

Because the query did not use a valid SARG (the column in the WHERE clause is used in
an expression), the OrderDateIndex index can be used only for scanning and not for seeking.
To be able to produce an index seek, SQL Server must maintain an index of the result of the
function call, in this case, MONTH(OrderDate). You can do this by adding a computed column
to the table and indexing that column as follows (the query’s execution plan is shown in
Figure 6-12):

-- Add the column.

ALTER TABLE Sales.SalesOrderHeader

 ADD OrderMonth AS MONTH(OrderDate);

 230 CHAPTER 6 Techniques to Improve Query Performance

-- Create an index on the computed column.

CREATE NONCLUSTERED INDEX OrderMonthIndex

 ON Sales.SalesOrderHeader (OrderMonth);

GO

SET STATISTICS IO ON;

-- Run the query and reference the new column.

SELECT COUNT(*) FROM Sales.SalesOrderHeader

WHERE OrderMonth = 5;

FiGURe 6-12 The actual execution plan of the SELECT statement using the computed column
in the WHERE clause

This time, the query performs a seek operation on the index of the computed column,
 resulting in only eight page reads. Depending on the complexity of your query and computed
column definition, the optimizer automatically uses the index of the computed column
 without the computed column being referenced in the query. The following query, for
 example, also generates the execution plan previously shown in Figure 6-12:

SET STATISTICS IO ON;

-- Run the query without referencing the computed column.

SELECT COUNT(*) FROM Sales.SalesOrderHeader

WHERE MONTH(OrderDate) = 5;

As you can see, SQL Server used the index of the computed column without having
a reference to it in the query. This is a great feature because it makes it possible to
add computed columns and index them without having to change the queries in
 applications or stored procedures to use the new index.

Besides using indexed computed columns with function calls, you can also use indexed
computed columns to provide indexes in different collations. Consider that you have the table
Test.Person with the column Name using the Latin1_General_CI_AI collation. Now you want
to find all rows starting with the character Ö. In Latin1_General, the dots over the O are just
 considered accents, but in other languages, such as German and Swedish, Ö is a different
character than O. Consider that the table is typically queried by English-speaking customers
who expect to get both O and Ö back from a search such as LIKE ‘Ö%’ and occasionally
by Swedish customers who expect to get only Ö back from that same search. Because the

 Lesson 2: Creating Indexes CHAPTER 6 231

table is typically queried by English-speaking customers, it makes sense to keep the
Latin1_General_CI_AI collation, and, when Swedish customers query the table, to use the
COLLATE keyword to use the Finnish_Swedish_CI_AI collation explicitly. Review the following
script and queries. The execution plans for the two queries in the following script are shown
in Figures 6-13 and 6-14:

-- Create and populate the table

CREATE TABLE Test.ProductNames (

 Name NVARCHAR(50) COLLATE Latin1_General_CI_AI

);

INSERT Test.ProductNames (Name) VALUES ('Öl');

INSERT Test.ProductNames (Name) VALUES ('Olja');

INSERT Test.ProductNames (Name) VALUES ('Beer');

INSERT Test.ProductNames (Name) VALUES ('Oil');

CREATE CLUSTERED INDEX NameIndex ON Test.ProductNames

 (Name);

GO

-- Query 1

-- Query for all product names that begin with the letter Ö

-- using the default collation.

SELECT Name FROM Test.ProductNames

 WHERE Name LIKE 'Ö%';

Here is the result of Query 1:

Name

Oil

Öl

Olja

Query 2 looks like this:

-- Query 2

-- Query for all product names that begin with the letter Ö

-- using the Finnish_Swedish_CI_AI collation.

SELECT Name FROM Test.ProductNames

 WHERE Name LIKE 'Ö%' COLLATE Finnish_Swedish_CI_AI;

Here is the result of Query 2:

Name

Öl

 232 CHAPTER 6 Techniques to Improve Query Performance

FiGURe 6-13 The actual execution plan of Query 1 in SSMS

FiGURe 6-14 The actual execution plan of Query 2 in SSMS

Comparing the execution plans of Query 1 (Figure 6-13) and Query 2 (Figure 6-14), you
can see that in Query 2, because the comparison needs to use a collation other than that
of the column (and therefore, the index), a clustered index scan is used instead of an index
seek, as in Query 1. By adding an indexed computed column to this table and specifying the
 Finnish_Swedish_CI_AS collation for this column (as shown in the next code example), SQL
Server can automatically use that index instead. Note that the query itself need not change,
and that this is a viable solution only if you are using a relatively low number of collations
because these indexes need to be both stored and maintained, like all other indexes.
The execution plan for the query in the following script is shown in Figure 6-15:

-- Add a computed column with another collation.

ALTER TABLE Test.ProductNames

 ADD Name_Finnish_Swedish_CI_AI

 AS Name COLLATE Finnish_Swedish_CI_AI;

-- Create an index on the computed column.

CREATE NONCLUSTERED INDEX NameIndex2 ON Test.ProductNames

 (Name_Finnish_Swedish_CI_AI);

GO

-- Query for all product names that begin with the letter Ö

-- using the Finnish_Swedish_CI_AI collation without specifying

-- the computed column.

SELECT Name FROM Test.ProductNames

 WHERE Name LIKE 'Ö%' COLLATE Finnish_Swedish_CI_AI;

Here is the result of this query:

Name

Öl

 Lesson 2: Creating Indexes CHAPTER 6 233

FiGURe 6-15 The actual execution plan of the query using an alternate collation index in SSMS

Using Indexed Views
A normal database view is just a named SELECT statement that can be used from other
 SELECT statements. These views have no particular impact on performance. Beginning with
SQL Server 2000, you could create one or more indexes on a view so long as the view satisfies
certain requirements. These requirements are quite extensive and can be found in SQL Server
Books Online in the article “Creating Indexed Views,” at http://msdn.microsoft.com/en-us/
library/ms191432.aspx. By creating an index on a view, the view is materialized. This means
that, in the logical sense, it is still a view, but the view actually stores the data found in
the view. (Materialized views are explained in detail in Chapter 5.) If the data is changed
in the tables on which the view is based, the view is automatically updated to reflect
those changes.

Creating indexed views can greatly improve the read performance of queries.
An important aspect of indexed views is that, depending on your SQL Server edition, the
 optimizer can automatically detect and use an indexed view that satisfies a certain query,
even if the indexed view is not referenced in the query. This, however, is true only for
SQL Server 2008 Enterprise Edition and Developer Edition.

The following example shows a query and its execution plan (shown in Figure 6-16)
 without an indexed view:

USE AdventureWorks;

SELECT

 p.Name

 ,sod.OrderQty

 ,soh.OrderDate

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

 ON sod.ProductID = p.ProductID

INNER JOIN Sales.SalesOrderHeader AS soh

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.TerritoryID = 1;

The cost of the previous query was 2.03. Next, an indexed view is created to optimize the
query and then the same query is executed again. The execution plan for this query is shown
in Figure 6-17. The first index created on a view must materialize the entire view, which means

 234 CHAPTER 6 Techniques to Improve Query Performance

FiGURe 6-16 The actual execution plan of the query without an indexed view in SSMS

that the resulting index must be a clustered index. The first index also must be unique (which
is why the column SalesOrderDetailID has been added to the example’s indexed view):

CREATE VIEW Sales.ProductsSoldVw

WITH SCHEMABINDING

AS

SELECT

 soh.TerritoryID

 ,sod.SalesOrderDetailID

 ,p.Name

 ,sod.OrderQty

 ,soh.OrderDate

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

 ON sod.ProductID = p.ProductID

INNER JOIN Sales.SalesOrderHeader AS soh

 ON soh.SalesOrderID = sod.SalesOrderID

GO

CREATE UNIQUE CLUSTERED INDEX ProductsSoldVwIdx

 ON Sales.ProductsSoldVw (TerritoryID, SalesOrderDetailID);

GO

SELECT

 p.Name

 ,sod.OrderQty

 ,soh.OrderDate

 Lesson 2: Creating Indexes CHAPTER 6 235

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

 ON sod.ProductID = p.ProductID

INNER JOIN Sales.SalesOrderHeader AS soh

 ON soh.SalesOrderID = sod.SalesOrderID

WHERE soh.TerritoryID = 1;

FiGURe 6-17 The actual execution plan of the query with a materialized indexed view available in SSMS
in SQL Server 2008 Enterprise Edition or Developer Edition

This time (if you are using SQL Server 2008 Enterprise Edition or Developer Edition), the
query uses the indexed view, even though it is not referenced, and the query cost drops to 0.12.

After you have created the unique clustered index on the view, it is possible to create
 additional nonclustered indexes on the same view.

note SQL SeRveR eDitiOn

If you are using any edition of SQL Server other than Enterprise Edition or Developer

 Edition, your query must reference the view directly, and you must add the optimizer hint

WITH(NOEXPAND) to the query:

SELECT

 Name

 ,OrderQty

 ,OrderDate

FROM Sales.ProductsSoldVw WITH(NOEXPAND)

WHERE TerritoryID = 1;

Analyzing Index Usage
Because indexes incur a cost (for storage space and for keeping them up-to-date when DML
statements are executed), it is important to keep track of which indexes are actually being
used in your applications. If an index is never used, it is likely that it can be dropped both to
save storage space and to reduce the cost of write operations. However, keep in mind that
some indexes are created for a specific purpose; for example, to optimize the monthly salary
reports. Therefore, you should be careful when dropping unused or seldom-used indexes.
When you drop an index that is seldom used, you should document your actions so that the
dropped index can be re-created if it is needed later.

 236 CHAPTER 6 Techniques to Improve Query Performance

You can query the sys.dm_db_index_usage_stats dynamic management view (DMV) to
find index-usage information. The columns from this view that are particularly interesting
are shown in Table 6-9; you can find documentation of the whole table at SQL Server Books
Online at http://msdn.microsoft.com/en-us/library/ms188755.aspx.

tabLe 6-9 Subset of the sys.dm_db_index_usage_stats DMV

cOLUMn naMe Data tYPe DeScRiPtiOn

database_id smallint
ID of the database on which the table or
view is defined

object_id int
ID of the table or view on which the index
is defined

index_id int ID of the index

user_seeks bigint Number of seeks by user queries

user_scans bigint Number of scans by user queries

user_lookups bigint Number of lookups by user queries

user_updates bigint Number of updates by user queries

last_user_seek datetime Time of last user seek

last_user_scan datetime Time of last user scan

last_user_lookup datetime Time of last user lookup

You should typically query this view for indexes that have low values in the user_seeks or
user_scans column. All values in the sys.dm_db_index_usage_stats view are reset whenever the
SQL Server service is restarted. The values for a specific database are removed if the database
is either detached or shut down. Note that indexes that have not been used since the
sys.dm_db_index_usage_stats view was reset are not included in the view.

Partitioning
Starting with SQL Server 2005, you can choose to partition tables and indexes horizontally
(that is, by rows) into smaller chunks. The main use for this is improving import performance by
 reducing the work needed to be performed by SQL Server when importing data. Why would it
reduce the work needed? As shown earlier in this lesson, it is quite a lot of work for SQL Server to
maintain indexes when rows are inserted, updated, or deleted. Of course, this is also true when
performing an import. If you don’t use partitioning, you have the choice of either importing
your new data into a table and letting SQL Server automatically update the indexes. As you have
seen, this causes a lot of fragmentation. If it caused enough fragmentation, you are likely to
want to rebuild your indexes after the import. Considering that this happens, it is faster to drop
all the indexes, import the data, and then re-create all the indexes again. That way, SQL Server
doesn’t waste resources maintaining the indexes during the import. This is where partitioning
really excels. What if, instead of re-creating your indexes for the entire table, you just did it for
the data being inserted? The import performance would vastly improve. With partitioning, you

 Lesson 2: Creating Indexes CHAPTER 6 237

could create a new table without any indexes on it, import the data into the table, create the
indexes on this new table, and finally add it as a new partition to the main table.

Partitioning can also help query performance, but query performance is best helped using
indexes rather than partitioning.

To be able to partition tables and indexes, you first need to create two objects: a partition
function and a partition scheme. The partition function simply defines the points (or rather,
values) where each partition ends. The partition scheme defines on which file group each
partition goes; note that you can also define one file group to hold all partitions.

Partition Functions
Partition functions are created using the CREATE PARTITION FUNCTION statement.
A partition function is simply a list of up to 999 values that define dividers between partitions.
You can decide if the values that you supply are interpreted as “less than or equal to” (<=) or
“less than” (<) by defining the partition function as either LEFT or RIGHT.

The following code creates a partition function defined as LEFT. The resulting partitions are
shown in Table 6-10:

CREATE PARTITION FUNCTION PF(INT)

AS RANGE LEFT

FOR VALUES (10, 20, 30);

tabLe 6-10 Partitions Available with the PF Partition Function

PaRtitiOn nUMbeR PaRtitiOn RanGe

1 <= 10

2 > 10 AND <= 20

3 > 20 AND <= 30

4 > 30

Now consider the following code, which creates virtually the same partition function but
defined as RIGHT instead of LEFT. The resulting partitions are shown in Table 6-11:

CREATE PARTITION FUNCTION pf (INT)

AS RANGE RIGHT

FOR VALUES (10, 20, 30);

tabLe 6-11 Partitions Available with the PF Partition Function

PaRtitiOn nUMbeR PaRtitiOn RanGe

1 < 10

2 >= 10 AND < 20

3 >= 20 AND < 30

4 >= 30

 238 CHAPTER 6 Techniques to Improve Query Performance

Partition Schemes
You define a partition function by using the CREATE PARTITION SCHEME statement. The
partition scheme is a simple map between partitions for a particular partition and file groups.
The reason for using different file groups for different partitions is typically to be able to store
different parts of a table on different types of storage devices; you might want to store older
data on slower but cheaper devices and new data on faster but more expensive devices.

The following example creates a partition scheme that maps each of the partitions defined
in Table 6-11 to its own file group; as you can see, the same file group can be used for
 multiple partitions:

CREATE PARTITION SCHEME PS

AS PARTITION PF TO (FG1, FG2, FG1, FG2);

As another example, the statement shown here creates a partition scheme mapping all
partitions to the primary file group:

CREATE PARTITION SCHEME PS

AS PARTITION PF ALL TO ([PRIMARY]);

Creating the Partitioned Table
After you have created the partition function and partition scheme, you can create tables
and indexes on the partition scheme using the ON clause of the CREATE TABLE and CREATE
INDEX statements. Even though you can have a table on one partition scheme and its
 indexes on different partition schemes (or one on a partition scheme and one not), it is
recommended that they all be created on the same partition scheme to support adding
and removing partitions as needed, without having to shut down any applications. A table
with all indexes defined on the same partition scheme is said to have “aligned partitions.”
 Nonunique, nonclustered indexes are aligned automatically with the table’s partition scheme
when created; that is, you don’t even need to specify the ON clause for the CREATE INDEX
 statement. For unique indexes, however, you must include the partitioning column in the
index key to make it aligned with the table. This typically defeats the purpose of having a
unique index. For example, if you want to add a unique index on the SSN column in a table
partitioned over the ID column, you have to make it a composite index over both SSN and
ID to align it. You typically must have any unique index defined as nonaligned; and if you
need to add or remove a partition, you must drop the nonaligned index, add or remove the
 partition, and then re-create the nonaligned index. Doesn’t doing all this defeat the purpose
of the partitioning? Not really—if you have five aligned indexes and one nonaligned, you
need only re-create the nonaligned index, whereas without partitioning, you potentially have
to re-create all six indexes.

Now let’s look at an example of using partitioning to improve import performance. The
following batch creates a partition function and partition scheme, as well as a table and a
nonclustered index defined on the partition scheme. After the objects are created, an INSERT
statement is used to populate the table with an initial 19,185 rows. Note that even though
the CREATE INDEX statement doesn’t use the ON clause to specify the partition scheme, the

 Lesson 2: Creating Indexes CHAPTER 6 239

index is created on the partition scheme. The last part of the script is a query against the
sys.partitions catalog view, which returns the 8 partitions created by the script: 4 for the table
(heap, index_id = 0) and 4 for the nonclustered index (index_id = 2):

USE AdventureWorks;

CREATE PARTITION FUNCTION PFCustomerID (INT)

AS RANGE LEFT

FOR VALUES (5000, 10000, 15000);

CREATE PARTITION SCHEME PSCustomerID

AS PARTITION PFCustomerID ALL TO ([PRIMARY]);

CREATE TABLE Test.CustomersPartitioned (

 CustomerID INT IDENTITY NOT NULL

 ,AccountNumber VARCHAR(50) NOT NULL

 ,ModifiedDate DATETIME2 NOT NULL

) ON PSCustomerID (CustomerID);

CREATE NONCLUSTERED INDEX AccountNumberIdx

 ON Test.CustomersPartitioned (AccountNumber);

INSERT Test.CustomersPartitioned (AccountNumber, ModifiedDate)

 SELECT AccountNumber, ModifiedDate FROM Sales.Customer;

SELECT index_id, partition_number, rows FROM sys.partitions

 WHERE object_id = OBJECT_ID('Test.CustomersPartitioned')

 ORDER BY index_id, partition_number;

Here are the results of the query against the sys.partitions catalog view:

index_id partition_number rows

----------- ---------------- --------------------

0 1 5000

0 2 5000

0 3 5000

0 4 4185

2 1 5000

2 2 5000

2 3 5000

2 4 4185

To import data into the Test.CustomersPartitioned table by adding a new partition, you
need to define the new partition. To do that, you need to find the next divider value for the
partition function and add it to the partition function. The following query finds the next
divider for the PFCustomerID partition function:

SELECT MAX(CustomerID) AS MaxCustomerID FROM Test.CustomersPartitioned;

 240 CHAPTER 6 Techniques to Improve Query Performance

Here is the result, showing the divider value you need:

MaxCustomerID

19185

Now that you have the value 19185, you can define the next divider value as 19185.
 Because the partition function is defined as LEFT, the fourth partition now contains the
 CustomerID range 15001 to 19185 and the new partition contains all CustomerIDs greater
than 19185. The following script alters the partition function and displays the new list of
 partitions in the table:

ALTER PARTITION FUNCTION PFCustomerID()

 SPLIT RANGE (19185);

SELECT index_id, partition_number, rows FROM sys.partitions

 WHERE object_id = OBJECT_ID('Test.CustomersPartitioned')

 ORDER BY index_id, partition_number;

Here are the results of the query against the sys.partitions catalog view with the
new partition:

index_id partition_number rows

----------- ---------------- --------------------

0 1 5000

0 2 5000

0 3 5000

0 4 4185

0 5 0

2 1 5000

2 2 5000

2 3 5000

2 4 4185

2 5 0

The next step is to import the new data, which is done by creating a new table with exactly
the same schema as the main table and then importing the new data into it. Note that if you
use multiple file groups, this new table has to exist on the same file group as the partition
that you want it to become. The following script creates the new table, imports the data, and
creates the nonclustered index on the table. (If you had any constraints, such as a primary key,
check constraint, or foreign key, these would also have to be added before you can add the
new table to the partitioned table.) One caveat with the nonclustered index is that you must
include the column that you are partitioning the table on in the nonclustered index definition
to allow the new table to be added to the partitioned table. This is done automatically when
the table is already partitioned, but not for the new table because it simply isn’t
partitioned—at this point, it is still just a normal table:

 Lesson 2: Creating Indexes CHAPTER 6 241

-- New empty table.

CREATE TABLE Test.NewCustomers (

 CustomerID INT IDENTITY(19186, 1) NOT NULL

 ,AccountNumber VARCHAR(50) NOT NULL

 ,ModifiedDate DATETIME2 NOT NULL

);

-- Import into the empty table, note that no indexes

-- that need to be maintained exist yet!

INSERT Test.NewCustomers (AccountNumber, ModifiedDate)

 SELECT TOP(3000) AccountNumber, ModifiedDate

 FROM Sales.Customer;

-- Now you create the index (and any constraints needed).

CREATE NONCLUSTERED INDEX AccountNumberIdx

 ON Test.NewCustomers (AccountNumber) INCLUDE (CustomerID);

To finally add the Test.NewCustomers table to the partitioned table as partition 5, you
must define a check constraint on it that guarantees that it matches the values allowed for
partition 5 (values greater than 19185). The following script adds the check constraint and
then switches the new table with the current partition 5 (which is empty) in the partitioned
table, and the current partition 5 now becomes the empty Test.NewCustomers table, which
can then be dropped:

-- Add the check constraint.

ALTER TABLE Test.NewCustomers ADD CHECK(CustomerID > 19185);

-- Switch places between the new table and partition 5 in the partitioned table.

ALTER TABLE Test.NewCustomers SWITCH TO Test.CustomersPartitioned PARTITION 5;

-- Finally drop the Test.NewCustomers table.

DROP TABLE Test.NewCustomers;

-- Done:

SELECT index_id, partition_number, rows FROM sys.partitions

 WHERE object_id = OBJECT_ID('Test.CustomersPartitioned')

 ORDER BY index_id, partition_number;

Here are the results of the query against the sys.partitions catalog view, showing the
 number of rows that have been added to the new partition:

index_id partition_number rows

----------- ---------------- --------------------

0 1 5000

0 2 5000

0 3 5000

0 4 4185

 242 CHAPTER 6 Techniques to Improve Query Performance

0 5 3000

2 1 5000

2 2 5000

2 3 5000

2 4 4185

2 5 3000

So why is this import so much better now than it was without the partitions? First, consider
that only the imported rows needed to be handled during the operation—the existing rows
were never touched. Also, the partitioned table was much more available to users; it was
 inaccessible only during the execution of the ALTER TABLE. . .SWITCH. . . statement. Because
ALTER TABLE. . .SWITCH. . . changes only pointers in the system catalog, it is executed in
 virtually no time, no matter how many rows are being added.

So, you can potentially improve import performance a great deal by implementing
partitioning. But what about query performance? Well, partitioning also can improve query
performance, especially if the partitioned column is one that you often query over. If so, SQL
Server can do partition elimination during optimization so that it needs to do seek or scan
operations on only certain partitions instead of on the entire table. However, comparing the
query performance of a partitioned table without an appropriate index with a nonpartitioned
table with an appropriate index, you see that the index performs much better than the
partitioning (without an index). The following query is run against the schema and the rows
(the original 19,185 rows) defined in the previous example on partitioning, and the results are
shown in Table 6-12. The query is designed so that it needs to scan only two of the partitions
in the table:

SET STATISTICS IO ON;

SELECT COUNT(*) FROM Test.CustomersPartitioned

 WHERE CustomerID BETWEEN 1000 AND 10000;

tabLe 6-12 Performance Comparison

DeScRiPtiOn LOGicaL ReaDS (i/O) cOSt

Nonpartitioned table without an index on CustomerID 85 pages 0.095

Partitioned table without an index on CustomerID 44 pages 0.049

Nonpartitioned table with an index on CustomerID 20 pages 0.030

Partitioned table with an index on CustomerID 23 pages 0.031

Note that when no index is available, the query against the partitioned table performs
best. But when an index is available, the query against the nonpartitioned table performs
best. Why does the query against the nonpartitioned table with an index perform better
than the query against the partitioned table with an index? Because in the partitioned

 Lesson 2: Creating Indexes CHAPTER 6 243

table, the query performs a seek operation against two indexes (one for each partition),
 whereas the query against the nonpartitioned table performs a seek operation against
only one index.

Tuning Indexes Automatically
Besides tuning indexes manually, SQL Server provides other ways that help you choose the right
indexing solution for a specific query. When viewing the graphical execution plan, you may see
a note about a “Missing Index.” In this case, you can right-click the missing index note, which
lets you retrieve the script needed to create the missing index. An aggregation of missing
 indexes that the optimizer has needed can be found in the sys.dm_db_missing_index_details,
sys.dm_db_missing_index_groups, and sys.dm_db_missing_index_group_stats database
management views (DMVs).

You can also use the Database Engine Tuning Advisor graphical utility to retrieve
 information on indexes, indexed views, and even partitioning solutions that may help
query performance. The Database Engine Tuning Advisor can either be run against a script
 containing queries that need tuning or against a SQL Server Profiler trace file containing a
workload of queries that need tuning.

Note that neither the graphical execution plan missing index help, the missing index
DMVs, nor the Database Engine Tuning Advisor can replace manually tuning both the query
itself and the indexes. Remember that these utilities are not going to know if you really need
that last join to retrieve that extra column to enhance the look of that special executive
report—only you can make that decision.

Lesson Summary
n Indexes typically help read performance but can hurt write performance.

n Indexed views can increase performance even more than indexes, but they are
 restrictive and typically cannot be created for the entire query.

n Deciding which columns to put in the index key and which should be implemented as
included columns is important.

n Analyze which indexes are actually being used and drop the ones that aren’t. This
saves storage space and minimizes the resources used to maintain indexes for write
 operations.

Practice indexing to Support Queries

In this practice, you use two different indexing techniques to optimize a specific query.
The query returns the customer IDs and the total amount for all purchases in a specific
 territory for all customers who have made purchases. This practice considers read
 performance only; it does not take write performance into account.

 244 CHAPTER 6 Techniques to Improve Query Performance

You are optimizing the following query:

-- Query that will be optimized:

USE AdventureWorks;

SELECT

 soh.CustomerID

 ,SUM(sod.OrderQty * sod.UnitPrice) AS TotalPurchases

FROM Test.SalesOrderHeader AS soh

INNER JOIN Test.SalesOrderDetail AS sod

 ON sod.SalesOrderID = soh.SalesOrderID

WHERE soh.TerritoryID = 1

GROUP BY soh.CustomerID;

exercise 1 Set a Performance Base Line for the Query

In this exercise, you create the base line for the query that needs to be optimized by
 executing it without adding any indexes.

 1. Open SSMS and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statements to create the
TestDB database, the Test schema, and the two tables that are used in this exercise:

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

CREATE SCHEMA Test;

GO

SELECT * INTO Test.SalesOrderHeader

FROM AdventureWorks.Sales.SalesOrderHeader;

GO

SELECT * INTO Test.SalesOrderDetail

FROM AdventureWorks.Sales.SalesOrderDetail;

GO

ALTER TABLE Test.SalesOrderHeader

 ADD CONSTRAINT PKSalesOrderHeader

 PRIMARY KEY(SalesOrderID);

GO

 Lesson 2: Creating Indexes CHAPTER 6 245

ALTER TABLE Test.SalesOrderDetail

 ADD CONSTRAINT PKSalesOrderDetail

 PRIMARY KEY(SalesOrderDetailID);

 3. Turn on the Actual Execution Plan feature in SSMS by pressing Ctrl+M or by selecting
Include Actual Execution Plan from the Query menu.

 4. In the existing query window, type, highlight, and execute the following SQL statement
to turn on the reporting of page reads:

SET STATISTICS IO ON;

 5. In the existing query window, type, highlight, and execute the following SQL statement:

SELECT

 soh.CustomerID

 ,SUM(sod.OrderQty * sod.UnitPrice) AS TotalPurchases

FROM Test.SalesOrderHeader AS soh

INNER JOIN Test.SalesOrderDetail AS sod ON sod.SalesOrderID = soh.SalesOrderID

WHERE soh.TerritoryID = 1

GROUP BY soh.CustomerID;

Record the total cost of the query. A table for this purpose is provided in Exercise 5.

(You can find the value in the Execution Plan tab by moving the pointer over the
 SELECT operator and locating the value named Estimated Subtree Cost.)

Record the total number of page reads for the query.

(You can find this value by scrolling to the bottom of the Messages tab and summing
the values for logical reads.)

 6. In the existing query window, type, highlight, and execute the following SQL statement
to clean up after this exercise:

USE master;

DROP DATABASE TestDB;

exercise 2 Tune the Query by Using Clustered Indexes

In this exercise, you optimize the query by modifying the primary key constraints to be
 nonclustered indexes and then creating appropriate clustered indexes.

 1. Open SSMS, if necessary, and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statements to create the
TestDB database, the Test schema, and the two tables that are used in this exercise:

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

 246 CHAPTER 6 Techniques to Improve Query Performance

CREATE SCHEMA Test;

GO

SELECT * INTO Test.SalesOrderHeader

FROM AdventureWorks.Sales.SalesOrderHeader;

GO

SELECT * INTO Test.SalesOrderDetail

FROM AdventureWorks.Sales.SalesOrderDetail;

GO

ALTER TABLE Test.SalesOrderHeader

 ADD CONSTRAINT PKSalesOrderHeader

 PRIMARY KEY(SalesOrderID);

GO

ALTER TABLE Test.SalesOrderDetail

 ADD CONSTRAINT PKSalesOrderDetail

 PRIMARY KEY(SalesOrderDetailID);

 3. In the existing query window, type, highlight, and execute the following SQL statements
to modify the primary key constraint on the Test.SalesOrderHeader table to become a
nonclustered index and then create an appropriate clustered index for the query:

-- Modify the PK to be a non-clustered index.

ALTER TABLE Test.SalesOrderHeader

 DROP CONSTRAINT PKSalesOrderHeader;

ALTER TABLE Test.SalesOrderHeader

 ADD CONSTRAINT PKSalesOrderHeader

 PRIMARY KEY NONCLUSTERED (SalesOrderID);

-- Create the clustered index.

CREATE CLUSTERED INDEX CluIdx ON Test.SalesOrderHeader

 (TerritoryID, CustomerID);

 4. In the existing query window, type, highlight, and execute the following SQL statements
to modify the primary key constraint on the Test.SalesOrderDetail table to become a
nonclustered index and then create an appropriate clustered index for the query:

-- Modify the PK to be a non-clustered index.

ALTER TABLE Test.SalesOrderDetail

 DROP CONSTRAINT PKSalesOrderDetail;

 Lesson 2: Creating Indexes CHAPTER 6 247

ALTER TABLE Test.SalesOrderDetail

 ADD CONSTRAINT PKSalesOrderDetail

 PRIMARY KEY NONCLUSTERED (SalesOrderDetailID);

-- Create the clustered index.

CREATE CLUSTERED INDEX CluIdx ON Test.SalesOrderDetail

 (SalesOrderID);

 5. Turn on the Actual Execution Plan feature in SSMS by pressing Ctrl+M or by selecting
Include Actual Execution Plan from the Query menu.

 6. In the existing query window, type, highlight, and execute the following SQL statement
to turn on the reporting of page reads:

SET STATISTICS IO ON;

 7. In the existing query window, type, highlight, and execute the following SQL statement:

SELECT

 soh.CustomerID

 ,SUM(sod.OrderQty * sod.UnitPrice) AS TotalPurchases

FROM Test.SalesOrderHeader AS soh

INNER JOIN Test.SalesOrderDetail AS sod ON sod.SalesOrderID = soh.SalesOrderID

WHERE soh.TerritoryID = 1

GROUP BY soh.CustomerID;

Record the total cost of the query.

Record the total number of page reads for the query.

 8. In the existing query window, type, highlight, and execute the following SQL statement
to clean up after this exercise:

USE master;

DROP DATABASE TestDB;

exercise 3 Tune the Query by Using Covered Nonclustered Indexes

In this exercise, you optimize the query by creating covered nonclustered indexes.

 1. Open SSMS, if necessary, and connect to the instance of SQL Server 2008 running on
your machine.

 2. In a new query window, type and execute the following SQL statements to create the
TestDB database, the Test schema, and the two tables that are used in this exercise:

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

 248 CHAPTER 6 Techniques to Improve Query Performance

CREATE SCHEMA Test;

GO

SELECT * INTO Test.SalesOrderHeader

FROM AdventureWorks.Sales.SalesOrderHeader;

GO

SELECT * INTO Test.SalesOrderDetail

FROM AdventureWorks.Sales.SalesOrderDetail;

GO

ALTER TABLE Test.SalesOrderHeader

 ADD CONSTRAINT PKSalesOrderHeader

 PRIMARY KEY(SalesOrderID);

GO

ALTER TABLE Test.SalesOrderDetail

 ADD CONSTRAINT PKSalesOrderDetail

 PRIMARY KEY(SalesOrderDetailID);

 3. In the existing query window, type, highlight, and execute the following SQL statement
to create the covered nonclustered index that will be used by the query when
 accessing the Test.SalesOrderHeader table:

CREATE NONCLUSTERED INDEX TestIndex

 ON Test.SalesOrderHeader (TerritoryID, SalesOrderID)

 INCLUDE (CustomerID);

 4. In the existing query window, type, highlight, and execute the following SQL statement
to create the covered nonclustered index that will be used by the query when
 accessing the Test.SalesOrderDetail table:

CREATE NONCLUSTERED INDEX TestIndex

 ON Test.SalesOrderDetail (SalesOrderID)

 INCLUDE (OrderQty, UnitPrice);

 5. Turn on the Actual Execution Plan feature in SSMS by pressing Ctrl+M or by selecting
Include Actual Execution Plan from the Query menu.

 6. In the existing query window, type, highlight, and execute the following SQL statement
to turn on the reporting of page reads:

SET STATISTICS IO ON;

 7. In the existing query window, type, highlight, and execute the following SQL statement:

SELECT

 soh.CustomerID

 ,SUM(sod.OrderQty * sod.UnitPrice) AS TotalPurchases

 Lesson 2: Creating Indexes CHAPTER 6 249

FROM Test.SalesOrderHeader AS soh

INNER JOIN Test.SalesOrderDetail AS sod ON sod.SalesOrderID = soh.SalesOrderID

WHERE soh.TerritoryID = 1

GROUP BY soh.CustomerID;

Record the total cost of the query.

Record the total number of page reads for the query.

 8. In the existing query window, type, highlight, and execute the following SQL statement
to clean up after this exercise:

USE master;

DROP DATABASE TestDB;

exercise 4 Tune the Query by Implementing an Indexed View

In this exercise, you optimize the query by creating an indexed view to cover the query.

 1. Open SSMS, if necessary, and connect to the appropriate instance of SQL Server 2008.

 2. In a new query window, type and execute the following SQL statements to create the
TestDB database, the Test schema, and the two tables that are used in this exercise:

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

CREATE SCHEMA Test;

GO

SELECT * INTO Test.SalesOrderHeader

FROM AdventureWorks.Sales.SalesOrderHeader;

GO

SELECT * INTO Test.SalesOrderDetail

FROM AdventureWorks.Sales.SalesOrderDetail;

GO

ALTER TABLE Test.SalesOrderHeader

 ADD CONSTRAINT PKSalesOrderHeader

 PRIMARY KEY(SalesOrderID);

GO

ALTER TABLE Test.SalesOrderDetail

 ADD CONSTRAINT PKSalesOrderDetail

 PRIMARY KEY(SalesOrderDetailID);

 250 CHAPTER 6 Techniques to Improve Query Performance

 3. In the existing query window, type, highlight, and execute the following SQL statement
to create the view:

CREATE VIEW Test.SalesByCustomerVw

WITH SCHEMABINDING

AS

SELECT

 soh.TerritoryID

 ,soh.CustomerID

 ,SUM(sod.OrderQty * sod.UnitPrice) AS TotalPurchases

 ,COUNT_BIG(*) AS NumberOfRows

FROM Test.SalesOrderHeader AS soh

INNER JOIN Test.SalesOrderDetail AS sod

 ON sod.SalesOrderID = soh.SalesOrderID

GROUP BY soh.TerritoryID, soh.CustomerID;

 4. In the existing query window, type, highlight, and execute the following SQL statement
to index the view:

CREATE UNIQUE CLUSTERED INDEX SalesByCustomerVwIdx

 ON Test.SalesByCustomerVw (TerritoryID, CustomerID);

 5. Turn on the Actual Execution Plan feature in SSMS by pressing Ctrl+M or by selecting
Include Actual Execution Plan from the Query menu.

 6. In the existing query window, type, highlight, and execute the following SQL statement
to turn on the reporting of page reads:

SET STATISTICS IO ON;

 7. In the existing query window, type, highlight, and execute the following SQL statement:

SELECT

 soh.CustomerID

 ,SUM(sod.OrderQty * sod.UnitPrice) AS TotalPurchases

FROM Test.SalesOrderHeader AS soh

INNER JOIN Test.SalesOrderDetail AS sod ON sod.SalesOrderID = soh.SalesOrderID

WHERE soh.TerritoryID = 1

GROUP BY soh.CustomerID;

Verify that the indexed view is used to execute the query by examining the query
execution plan. If the indexed view is not used (which would be the case if you are not
running the Developer Edition or the Enterprise Edition of SQL Server 2008), instead
execute the following query to force the use of the indexed view:

SELECT CustomerID, TotalPurchases

FROM Test.SalesByCustomerVw WITH(NOEXPAND)

WHERE TerritoryID = 1;

 Lesson 2: Creating Indexes CHAPTER 6 251

Record the total cost of the query.

Record the total number of page reads for the query.

 8. In the existing query window, type and execute the following SQL statement to clean
up after this exercise:

USE master;

DROP DATABASE TestDB;

exercise 5 Compare Your Test Results

In this exercise, you compare the results from the earlier exercises.

 1. Enter the cost and page read count for each index technique in the following table.

inDeX tecHniQUe cOSt PaGeS

Base line

Clustered indexes

Covered nonclustered indexes

Indexed view

Which of these techniques provided the lowest (best) cost?

Which of these techniques provided the lowest (best) page count?

Your results should show that the indexed view is the best performing option, followed
by the covered nonclustered index, and finally by the clustered index.

 252 CHAPTER 6 Techniques to Improve Query Performance

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can do any or all of
the following:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenario. This scenario sets up a real-world situation involving the
topics of this chapter and asks you to create solutions.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n Always evaluate different ways of implementing costly queries.

n Because indexes take up space (if not disabled) and are maintained for write
 operations, try to drop unused indexes.

n When measuring query performance, always include the query execution time as a
metric; don’t just rely on cost and page reads.

n Create covered indexes for the most frequently executed queries.

n Evaluate creating indexed views to cover entire queries or parts of queries.

key terms

Do you know what these key terms mean? You can check your answers by looking up the
terms in the glossary at the end of the book.

n Cost

n Page

n Index

n Heap

n Clustered index

n Nonclustered index

n Partition function

n Partition scheme

 Suggested Practices CHAPTER 6 253

Case Scenario
In the following case scenario, you apply what you have learned about in this chapter. You
can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario: Tune Query Performance
In this scenario, you are a database developer in your company. You have been assigned the
task of optimizing the database used by the company Web site. Because of heavy user activity
on the company Web site, there are two performance problems. First, the user response time
for the online chat forums is very poor. The Web site developers have narrowed this problem
down to slow response times from the forum stored procedures in the SQL Server instance
hosting the forums. You need to optimize these stored procedures. Second, employees in
the finance department use database queries from Microsoft Office Excel 2007 to retrieve
usage statistics for the Web site. These queries currently take up to 10 minutes to execute,
 depending on what statistics are being retrieved. The CFO has stated that the execution time
for these queries must be reduced to a couple of seconds.

Answer the following question for your manager:

n What steps should you take to solve these problems?

Suggested Practices

To help you master the exam objectives presented in this chapter, do all the following practices:

Create and Alter Indexes
n Practice 1 Create a simple table without indexes, insert 1,000,000 rows into the

table, and write down the query cost and execution time for the insertion. Add one
nonclustered index to the table, truncate the table, reinsert the 1,000,000 rows, and
write down the query cost and execution time again. Add a few more nonclustered
 indexes and review the performance difference of populating the table after each
index has been added.

n Practice 2 Create a simple table (with a row width of at least 50 bytes) without
indexes and insert 1,000,000 rows into the table. Execute queries that retrieve 10, 100,
1,000, 10,000, and 100,000 rows (for example, using a BETWEEN filter on an identity
column in the table) against the table without indexes and write down the query cost
and number of page reads for each query. Create a clustered index on the column
 being searched, reexecute the queries, and write down the performance metrics again.
Do the same thing for a covered and uncovered nonclustered index.

 254 CHAPTER 6 Techniques to Improve Query Performance

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can
test yourself on just one exam objective, or you can test yourself on all the 70-433 certification
exam content. You can set up the test so that it closely simulates the experience of taking
a certification exam, or you can set it up in study mode so that you can look at the correct
answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests” in the Introduction to this book.

 CHAPTER 7 255

c H a P t e R 7

Extending Microsoft SQL
Server Functionality with
XML, SQLCLR, and Filestream

Microsoft SQL Server 2008 comes loaded with a host of capabilities that widely extend
the notion of the typical relational database management system (RDBMS). In this

version of the software, support has been added for managing large binary data portions
without them being stored inside the database files, while still allowing for transactional
consistency and consistent backup and restore operations. Microsoft also made
 enhancements to SQL Server’s support for Extensible Markup Language (XML) data and
Common Language Runtime (CLR) code within the database. In this chapter, you learn what
you need to get started using these new and enhanced capabilities.

Exam objectives in this chapter:
n Create and deploy CLR-based objects.

n Retrieve relational data as XML.

n Transform XML data into relational data.

n Query XML data.

n Manage XML data.

Lessons in this chapter:
n Lesson 1: Working with XML 257

n Lesson 2: Using SQLCLR and Filestream 283

before You begin

To complete the lessons in this chapter, you must have:

n A basic understanding of Transact-SQL (T-SQL).

n A basic understanding of XML.

 c o n t e n t s

 cHaPteR 7 255

 extending Microsoft SQL Server Functionality with XML, SQLcLR, and
Filestream 255

Before You Begin .255

Lesson 1: Working with XML .257

Retrieving Tabular Data as XML 258

Using the XML Data Type 275

Lesson Summary 279

Lesson 2: Using SQLCLR and Filestream .283

The Basics of Using SQLCLR 283

Objects That Can Be Created Using SQLCLR 288

What Is My CLR Code Allowed to Do? 310

Using Filestream 310

Lesson Summary 312

Chapter Review . 317

Chapter Summary 317

Key Terms . 317

Case Scenario 318

Suggested Practices .318

Create and Deploy CLR-Based Objects 318

Retrieve Relational Data as XML 318

Transform XML Data into Relational Data 318

Query XML Data 318

Manage XML Data 319

Take a Practice Test .319

 256 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream 256 CHAPTER 7

n Microsoft SQL Server 2008 Developer Edition, Enterprise Edition, or Enterprise
 Evaluation Edition, and the AdventureWorks sample database installed.

n It also helps if you have experience developing applications in either C# or Microsoft
Visual Basic .NET.

real World

Tobias Thernström

I once came across a customer who had big problems with a very business-

logic-oriented stored procedure. The procedure in question required more

than 100 parameters to be passed to it and was a nightmare to call. Some of the

 parameters were actually lists of values that had to be split into a table variable

using a user-defined function (UDF) before being used within the procedure.

I suggested replacing all these parameters with a single parameter of the XML data

type and an XML schema applied to it. They were resistant at first, but after making

the change to the procedure, they found it much easier to call from the calling

 application because it used just one parameter, required fewer “plumbing” changes

because everything was passed in the XML parameter, and used less code in the

stored procedure. In addition, it executed more quickly because the routines that

they used to split the strings into table variables were less efficient than using the

nodes-method of the XML data type.

 Lesson 1: Working with XML CHAPTER 7 257 CHAPTER 7 257

Lesson 1: Working with XML

XML is a hierarchical text markup language, easily readable by human beings, that is typically

used for data exchange within and between systems. Because XML itself is such a big topic, it

can’t be covered within the scope of this book. A basic understanding of XML is a prerequisite

for this lesson.

note DatabaSe

Unless otherwise stated, all examples shown in this lesson use the AdventureWorks sample

database for SQL Server 2008.

For reference, a simple example of an XML document containing two customers (denoted

by the <Customer> tag), each with a few orders (denoted by the <Order> tag), is shown here:

<?xml version="1.0"?>

<Customers>

 <Customer Id="1" AccountNumber="AW00000001" Type="S">

 <Orders>

 <Order Id="43860" OrderDate="2001-08-01T00:00:00" ShipDate="2001-08-08T00:00:00" />

 <Order Id="44501" OrderDate="2001-11-01T00:00:00" ShipDate="2001-11-08T00:00:00" />

 <Order Id="45283" OrderDate="2002-02-01T00:00:00" ShipDate="2002-02-08T00:00:00" />

 <Order Id="46042" OrderDate="2002-05-01T00:00:00" ShipDate="2002-05-08T00:00:00" />

 </Orders>

 </Customer>

 <Customer Id="2" AccountNumber="AW00000002" Type="S">

 <Orders>

 <Order Id="46976" OrderDate="2002-08-01T00:00:00" ShipDate="2002-08-08T00:00:00" />

 <Order Id="47997" OrderDate="2002-11-01T00:00:00" ShipDate="2002-11-08T00:00:00" />

 <Order Id="49054" OrderDate="2003-02-01T00:00:00" ShipDate="2003-02-08T00:00:00" />

 <Order Id="50216" OrderDate="2003-05-01T00:00:00" ShipDate="2003-05-08T00:00:00" />

 <Order Id="51728" OrderDate="2003-08-01T00:00:00" ShipDate="2003-08-08T00:00:00" />

 <Order Id="57044" OrderDate="2003-11-01T00:00:00" ShipDate="2003-11-08T00:00:00" />

 <Order Id="63198" OrderDate="2004-02-01T00:00:00" ShipDate="2004-02-08T00:00:00" />

 <Order Id="69488" OrderDate="2004-05-01T00:00:00" ShipDate="2004-05-08T00:00:00" />

 </Orders>

 </Customer>

</Customers>

As mentioned, the previous code sample is an XML document. In this lesson, XML

 fragments also are discussed. XML fragments are similar to XML documents; the difference

is that they are not in themselves a document. Sound strange? The thought is just that an

XML fragment is supposed to be part of an XML document, that is, it has been taken out of

the context of the document. This means that an XML fragment lacks the XML declaration

(<?xml. . .>) and does not have to have a root element (such as <Customers> in the previous

example). Here is an example of an XML fragment:

 258 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

<Order Id="43860" OrderDate="2001-08-01T00:00:00" ShipDate="2001-08-08T00:00:00" />

<Order Id="44501" OrderDate="2001-11-01T00:00:00" ShipDate="2001-11-08T00:00:00" />

<Order Id="45283" OrderDate="2002-02-01T00:00:00" ShipDate="2002-02-08T00:00:00" />

Whether or not to use XML within a relational database system is often debated. As with

most features, when and where to use it depends on the problem that you are trying to solve.

XML can be used for several actions related to a database. The major uses are listed here:

n Retrieving relational data as XML Instead of retrieving a tabular result set from the
database, you retrieve an XML document.

n Passing data as XML to the database Instead of passing scalar values to the database
by issuing multiple data manipulation language (DML) statements or running a stored
procedure multiple times, an XML document or fragment can be passed directly to the
database.

n Storing and querying an actual XML document or fragment in the database This is
one of the more controversial topics. Why would you store XML directly in a table? There
are several reasons, which are covered later in this lesson.

After this lesson, you will be able to:

n Use FOR XML to retrieve relational data as XML from SQL Server.

n Use the XML data type and its methods to work with XML inside SQL Server.

Estimated lesson time: 60 minutes

Retrieving Tabular Data as XML
To start with, why would you want to retrieve an XML document or fragment from the database
instead of a tabular result set? One reason might simply be that the person for whom you are
 retrieving this data wants it as XML. Another reason might simply be that the data you are
 fetching lends itself better to being described using XML than using a table. This is true for
 hierarchical data, like the first example in this chapter with customers and their respective orders.
If you think about it, it is probably very common for an application to fetch a hierarchy of data like
this. If you can’t use XML as the data for the format, you have two other options in SQL Server.

The first option is to execute two separate SELECT statements and combine the customers
with their respective orders in the client application. Note that you need to include the
 CustomerID in both queries to allow for combining the results in the client:

SELECT

 c.CustomerID

 ,c.AccountNumber

 ,c.CustomerType

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1, 2);

 Lesson 1: Working with XML CHAPTER 7 259

SELECT

 soh.CustomerID

 ,soh.SalesOrderID

 ,soh.OrderDate

 ,soh.ShipDate

FROM Sales.SalesOrderHeader AS soh

WHERE soh.CustomerID IN (1, 2);

Here are the results:

CustomerID AccountNumber CustomerType

----------- ------------- ------------

1 AW00000001 S

2 AW00000002 S

CustomerID SalesOrderID OrderDate ShipDate

----------- ------------ ----------------------- -----------------------

1 43860 2001-08-01 00:00:00.000 2001-08-08 00:00:00.000

1 44501 2001-11-01 00:00:00.000 2001-11-08 00:00:00.000

1 45283 2002-02-01 00:00:00.000 2002-02-08 00:00:00.000

1 46042 2002-05-01 00:00:00.000 2002-05-08 00:00:00.000

2 46976 2002-08-01 00:00:00.000 2002-08-08 00:00:00.000

2 47997 2002-11-01 00:00:00.000 2002-11-08 00:00:00.000

2 49054 2003-02-01 00:00:00.000 2003-02-08 00:00:00.000

2 50216 2003-05-01 00:00:00.000 2003-05-08 00:00:00.000

2 51728 2003-08-01 00:00:00.000 2003-08-08 00:00:00.000

2 57044 2003-11-01 00:00:00.000 2003-11-08 00:00:00.000

2 63198 2004-02-01 00:00:00.000 2004-02-08 00:00:00.000

2 69488 2004-05-01 00:00:00.000 2004-05-08 00:00:00.000

The second option is to execute one SELECT and retrieve the desired columns from each
table using a join. This option still relies on the client application determining what data
 belongs to the customer and what data belongs to the order. Of course, this can be made
easier by applying appropriate column aliases, but you probably agree that it can be a bit
of a mess handling this result in the client application. Two observations are worth nothing
about this query. First, you must use a LEFT OUTER JOIN to combine the two tables to allow
 customers without orders to be returned. Second, the ORDER BY clause is useful (but not
required) to simplify managing the results in the client application because all orders for a
specific customer are guaranteed to be returned sequentially. The join query looks like this:

SELECT

 c.CustomerID AS Customer_CustomerID

 ,c.AccountNumber AS Customer_AccountNumber

 ,c.CustomerType AS Customer_CustomerType

 ,soh.SalesOrderID AS Order_SalesOrderID

 ,soh.OrderDate AS Order_OrderDate

 ,soh.ShipDate AS Order_ShipDate

FROM Sales.Customer AS c

 260 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

LEFT OUTER JOIN Sales.SalesOrderHeader AS soh

 ON soh.CustomerID = c.CustomerID

WHERE c.CustomerID IN (1, 2)

ORDER BY Customer_CustomerID;

Here is the result (some columns have been omitted to save space):

Customer_CustomerID Customer_AccountNumber Order_SalesOrderID

------------------- ---------------------- ------------------

1 AW00000001 43860

1 AW00000001 44501

1 AW00000001 45283

1 AW00000001 46042

2 AW00000002 46976

2 AW00000002 47997

2 AW00000002 49054

2 AW00000002 50216

2 AW00000002 51728

2 AW00000002 57044

2 AW00000002 63198

2 AW00000002 69488

Both of the previous tabular solutions create a fair amount of work for the client application.

So why would the XML solution be desirable? Because the result that you want from the

database is a hierarchy (customers having orders); therefore, retrieving the result as XML,

which is hierarchical by definition, can simplify matters for the application.

For reference, look at the SELECT statement shown here, which returns an XML result. You

examine this query in detail later in this lesson:

SELECT

 c.CustomerID AS "@Id"

 ,c.AccountNumber AS "@AccountNumber"

 ,c.CustomerType AS "@Type"

 ,(

 SELECT

 soh.SalesOrderID AS "@Id"

 ,soh.OrderDate AS "@OrderDate"

 ,soh.ShipDate AS "@ShipDate"

 FROM Sales.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 FOR XML PATH('Order'), TYPE

) AS "Orders"

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1, 2)

FOR XML PATH('Customer'), ROOT('Customers');

 Lesson 1: Working with XML CHAPTER 7 261

Here is the result:

<Customers>

 <Customer Id="1" AccountNumber="AW00000001" Type="S">

 <Orders>

 <Order Id="43860" OrderDate="2001-08-01T00:00:00" ShipDate="2001-08-08T00:00:00" />

 <Order Id="44501" OrderDate="2001-11-01T00:00:00" ShipDate="2001-11-08T00:00:00" />

 <Order Id="45283" OrderDate="2002-02-01T00:00:00" ShipDate="2002-02-08T00:00:00" />

 <Order Id="46042" OrderDate="2002-05-01T00:00:00" ShipDate="2002-05-08T00:00:00" />

 </Orders>

 </Customer>

 <Customer Id="2" AccountNumber="AW00000002" Type="S">

 <Orders>

 <Order Id="46976" OrderDate="2002-08-01T00:00:00" ShipDate="2002-08-08T00:00:00" />

 <Order Id="47997" OrderDate="2002-11-01T00:00:00" ShipDate="2002-11-08T00:00:00" />

 <Order Id="49054" OrderDate="2003-02-01T00:00:00" ShipDate="2003-02-08T00:00:00" />

 <Order Id="50216" OrderDate="2003-05-01T00:00:00" ShipDate="2003-05-08T00:00:00" />

 <Order Id="51728" OrderDate="2003-08-01T00:00:00" ShipDate="2003-08-08T00:00:00" />

 <Order Id="57044" OrderDate="2003-11-01T00:00:00" ShipDate="2003-11-08T00:00:00" />

 <Order Id="63198" OrderDate="2004-02-01T00:00:00" ShipDate="2004-02-08T00:00:00" />

 <Order Id="69488" OrderDate="2004-05-01T00:00:00" ShipDate="2004-05-08T00:00:00" />

 </Orders>

 </Customer>

</Customers>

Now let’s take a quick look at how you can execute this query from a .NET application,
retrieve the XML into memory, and easily loop through the customers and their respective
orders. For simplicity, a console application is used in the example:

'VB:

Imports System

Imports System.Xml

Imports System.Data.SqlClient

Module TK433

Sub Main()

 Using conn As SqlConnection = New SqlConnection(_

 "server=.;database=AdventureWorks;trusted_connection=yes")

 Dim cmd As SqlCommand = conn.CreateCommand()

 cmd.CommandText = _

 "SELECT " & vbCrLf & _

 " c.CustomerID AS ""@Id""" & vbCrLf & _

 " ,c.AccountNumber AS ""@AccountNumber""" & vbCrLf & _

 " ,c.CustomerType AS ""@Type""" & vbCrLf & _

 " ,(" & vbCrLf & _

 " SELECT" & vbCrLf & _

 " soh.SalesOrderID AS ""@Id""" & vbCrLf & _

 262 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 " ,soh.OrderDate AS ""@OrderDate""" & vbCrLf & _

 " ,soh.ShipDate AS ""@ShipDate""" & vbCrLf & _

 " FROM Sales.SalesOrderHeader AS soh" & vbCrLf & _

 " WHERE(soh.CustomerID = c.CustomerID)" & vbCrLf & _

 " FOR XML PATH('Order'), TYPE" & vbCrLf & _

 ") AS Orders" & vbCrLf & _

 " FROM Sales.Customer AS c" & vbCrLf & _

 "WHERE c.CustomerID IN (1, 2)" & vbCrLf & _

 "FOR XML PATH('Customer'), ROOT('Customers')"

 conn.Open()

 ' Execute the query using an XML reader.

 Dim reader As XmlReader = cmd.ExecuteXmlReader()

 ' Use the XML reader to populate an XML document.

 Dim doc As XmlDocument = New XmlDocument()

 doc.Load(reader)

 ' Loop through the customers.

 For Each customer As XmlElement In doc.SelectNodes("/Customers/Customer")

 Console.WriteLine("Customer: {0}", customer.Attributes("Id").Value)

 For Each order As XmlElement In customer.SelectNodes("Orders/Order")

 Console.WriteLine(vbTab & "Order: {0}", order.Attributes("Id").Value)

 Next

 Next

 End Using

 Console.WriteLine("Press [ENTER] to exit. . .")

 Console.ReadLine()

End Sub

End Module

//C#:

using System;

using System.Xml;

using System.Data.SqlClient;

class TK433Demo

{

 static void Main()

 {

 using (SqlConnection conn = new SqlConnection(

 "server=.;database=AdventureWorks;trusted_connection=yes;"))

 {

 SqlCommand cmd = conn.CreateCommand();

 cmd.CommandText = @"

 Lesson 1: Working with XML CHAPTER 7 263

 SELECT

 c.CustomerID AS ""@Id""

 ,c.AccountNumber AS ""@AccountNumber""

 ,c.CustomerType AS ""@Type""

 ,(

 SELECT

 soh.SalesOrderID AS ""@Id""

 ,soh.OrderDate AS ""@OrderDate""

 ,soh.ShipDate AS ""@ShipDate""

 FROM Sales.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 FOR XML PATH('Order'), TYPE

) AS Orders

 FROM Sales.Customer AS c

 WHERE c.CustomerID IN (1, 2)

 FOR XML PATH('Customer'), ROOT('Customers');";

 conn.Open();

 // Execute the query using an XML reader to retrieve the results.

 XmlReader reader = cmd.ExecuteXmlReader();

 // Use the XML reader to populate an XML document.

 XmlDocument doc = new XmlDocument();

 doc.Load(reader);

 // Loop through the customers.

 foreach (XmlElement customer in doc.SelectNodes("/Customers/Customer"))

 {

 Console.WriteLine("Customer: {0}", customer.Attributes["Id"].Value);

 foreach (XmlElement order in customer.SelectNodes("Orders/Order"))

 {

 Console.WriteLine("\tOrder: {0}", order.Attributes["Id"].Value);

 }

 }

 }

 Console.WriteLine("Press [ENTER] to exit. . .");

 Console.ReadLine();

 }

}

The simplicity can be seen specifically in the following code, which loops through the
customers and orders:

'VB:

For Each customer As XmlElement In doc.SelectNodes("/Customers/Customer")

 Console.WriteLine("Customer: {0}", customer.Attributes("Id").Value)

 For Each order As XmlElement In customer.SelectNodes("Orders/Order")

 264 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 Console.WriteLine(vbTab & "Order: {0}", order.Attributes("Id").Value)

 Next

Next

//C#:

foreach (XmlElement customer in doc.SelectNodes("/Customers/Customer"))

{

 Console.WriteLine("Customer: {0}", customer.Attributes["Id"].Value);

 foreach (XmlElement order in customer.SelectNodes("Orders/Order"))

 {

 Console.WriteLine("\tOrder: {0}", order.Attributes["Id"].Value);

 }

}

As you can see, because XML is hierarchical in nature, you don’t need to keep track of
which customer or order you are currently iterating over. Instead, this is managed by the
hierarchy in your XML document.

FOR XML <mode>
As you saw in the previous example, an additional clause, FOR XML, is added to the end of
the SELECT statement to produce an XML result. In SQL Server 2008, there are four flavors
(or modes) of the FOR XML clause: RAW, AUTO, EXPLICIT, and PATH. In the previous example,
the PATH mode is used. This is both the recommended mode and the most powerful mode.
For completeness, and because you might run into them, this chapter covers the other three
variations as well. Because it is the simplest one, we start with the RAW mode.

FOR XML RAW

The SELECT. . .FOR XML RAW statement is the simplest implementation of FOR XML, but it can
still be useful. Consider the query shown here:

SELECT

 c.CustomerID

 ,c.AccountNumber

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1,2)

FOR XML RAW;

You can see from the results shown here that in its default usage (just specifying FOR
XML RAW), the FOR XML RAW query basically returns each row as an XML element and each
column as an XML attribute (<row Column1=”. . .” Column2=”. . .” />):

<row CustomerID="1" AccountNumber="AW00000001" />

<row CustomerID="2" AccountNumber="AW00000002" />

Some enhancements were made in SQL Server 2005 to allow you to add and name a root
element, as well as name the elements created for each row. An example of this is shown in
the next block of code that uses the ROOT directive, as well as adds a parameter to the RAW
mode specifying the element name (the changes are shown in bold type). Also note that by

 Lesson 1: Working with XML CHAPTER 7 265

changing the name of the column by using an alias, you are also changing the attribute’s
name (this was also supported in SQL Server 2000):

SELECT

 c.CustomerID AS Id

 ,c.AccountNumber

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1,2)

FOR XML RAW('Customer'), ROOT('Customers');

Here is the result:

<Customers>

 <Customer Id="1" AccountNumber="AW00000001" />

 <Customer Id="2" AccountNumber="AW00000002" />

</Customers>

A question you might ask yourself is how NULLs are handled in XML results. The default
implementation is to simply remove the attribute if the value is NULL. This is good for most
applications, but some applications might differentiate between a missing value and NULL.
How can they be differentiated? Consider the following example:

A customer’s XML element describes a customer in the database that needs to be updated.
The customer has 10 attributes that can possibly exist in the XML element, but only 2 of
them exist in this particular XML element. When passing this XML element to the database to
 perform an update of the customer, the database can take one of two actions:

n Update all 10 attributes, setting 8 of them to NULL because they are missing and 2 of
them to their new values.

n Update only the 2 attributes that exist in the XML element being passed to the
 database and skip the remaining 8, letting them keep their current values.

If you choose the second option, just leaving the attributes out of the XML element if they

are actually NULL won’t work. You must somehow define explicitly that they are actually NULL

(or should be set to NULL). This is supported through an element in XML called NIL. NIL in

XML is equal to what the database refers to as NULL. If a value should be defined as NIL, it

cannot be stored in an attribute. Rather, it must be stored as its own element because it needs

an attribute that defines it as NIL if necessary. Look at the following example, where the first

element representing a product has Color set to NULL. The previously used FOR XML RAW

query was used as a reference. Note that the Color attribute is missing for the first product:

SELECT

 p.ProductID AS Id

 ,p.ListPrice

 ,p.Color

FROM Production.Product AS p

WHERE p.ProductID IN (514, 707)

FOR XML RAW('Product'), ROOT('Products');

 266 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

The query returns this result:

<Products>

 <Product Id="514" ListPrice="133.3400" />

 <Product Id="707" ListPrice="34.9900" Color="Red" />

</Products>

Now consider the next example, where you add the ELEMENTS directive to make each

column an XML element instead of an attribute. Note that the Color element is still missing

for the first product:

SELECT

 p.ProductID AS Id

 ,p.ListPrice

 ,p.Color

FROM Production.Product AS p

WHERE p.ProductID IN (514, 707)

FOR XML RAW('Product'), ROOT('Products'), ELEMENTS;

Here is the result:

<Products>

 <Product>

 <Id>514</Id>

 <ListPrice>133.3400</ListPrice>

 </Product>

 <Product>

 <Id>707</Id>

 <ListPrice>34.9900</ListPrice>

 <Color>Red</Color>

 </Product>

</Products>

Finally, you add the XSINIL directive to the ELEMENTS directive to tell SQL Server to handle

NULLs by keeping the XML element for the missing value and setting its NIL attribute to True.

In this case, you can see that Color is actually NULL (or NIL) and not just “missing”:

SELECT

 p.ProductID AS Id

 ,p.ListPrice

 ,p.Color

FROM Production.Product AS p

WHERE p.ProductID IN (514, 707)

FOR XML RAW('Product'), ROOT('Products'), ELEMENTS XSINIL;

Here is the result, with the NULL color shown in bold type:

<Products xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <Product>

 <Id>514</Id>

 Lesson 1: Working with XML CHAPTER 7 267

 <ListPrice>133.3400</ListPrice>

 <Color xsi:nil="true" />

 </Product>

 <Product>

 <Id>707</Id>

 <ListPrice>34.9900</ListPrice>

 <Color>Red</Color>

 </Product>

</Products>

In the last example, you can also see that an XML namespace reference called xsi that

 references http://www.w3.org/2001/XMLSchema-instance has been added to the root

 element. This is because the NIL attribute is defined in this namespace. The namespace

 reference is always added if you use the XSINIL directive. Before moving on to the next FOR

XML mode, AUTO, you should know that both the ELEMENTS and XSINIL directives exist for

the AUTO mode but not for the two other modes, EXPLICIT and PATH.

FOR XML AUTO

The AUTO mode differs from RAW in that it natively supports hierarchies. However, the
 hierarchies have to be simple because AUTO doesn’t support more than one path of
 branches. For example, the following hierarchy works:

Customer

 Order

 Order row

But the following does not work because it has multiple paths:

Customer

 Order

 Order row

 Contacts

In AUTO mode, each table included in the query gets its own element in the hierarchy

and the name of the element is derived from the table alias used in the query. The hierarchy

is created from the order of the columns returned by the query, not the order of the tables.

Look at the query in the next example that returns customers with orders using FOR XML

AUTO. Note that the join is performed from order to customer, but the customer is still above

the order in the hierarchy. This is because the customer columns are listed before the order

columns in the column list of the SELECT clause. Also note that each customer element is

repeated a few times in the XML result. This is because the hierarchy is also built from the

order of the rows in the result. That means you must make sure that the ORDER BY clause is

 268 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

used correctly to group each order under its customer (in this example, you sort the rows by a

unique identifier/GUID column in the table to get a random-looking sorting):

SELECT

 Customer.CustomerID AS Id

 ,Customer.AccountNumber

 ,"Order".SalesOrderID

 ,"Order".rowguid AS RowGuid

FROM Sales.SalesOrderHeader AS "Order"

RIGHT OUTER JOIN Sales.Customer AS Customer ON Customer.CustomerID = "Order".CustomerID

WHERE Customer.CustomerID IN (1,2)

ORDER BY "Order".rowguid

FOR XML AUTO, ROOT('Customers');

Here is the XML result:

<Customers>

 <Customer Id="2" AccountNumber="AW00000002">

 <Order SalesOrderID="49054" RowGuid="01C5EFDE-5C6E-47C9-B1AE-077937989297" />

 <Order SalesOrderID="51728" RowGuid="C2B5D4CC-113E-4102-884B-22A6DACEEDE6" />

 </Customer>

 <Customer Id="1" AccountNumber="AW00000001">

 <Order SalesOrderID="46042" RowGuid="62991BDA-C42D-494F-9EF1-2754BEC25FAE" />

 <Order SalesOrderID="43860" RowGuid="D2745233-B05B-409C-93BB-4451569F4253" />

 <Order SalesOrderID="44501" RowGuid="1A116F86-71E4-40A2-A32C-4938D8977D26" />

 </Customer>

 <Customer Id="2" AccountNumber="AW00000002">

 <Order SalesOrderID="63198" RowGuid="C6C5306D-F416-433C-92CC-4DB4747DC133" />

 <Order SalesOrderID="46976" RowGuid="8A533BE6-0669-470A-B361-796DD1CD0ED4" />

 </Customer>

 <Customer Id="1" AccountNumber="AW00000001">

 <Order SalesOrderID="45283" RowGuid="F57AB920-675E-4B1D-B43C-8EA091CF6F38" />

 </Customer>

 <Customer Id="2" AccountNumber="AW00000002">

 <Order SalesOrderID="47997" RowGuid="1FAAD98B-1DE0-4B80-A804-9FBBB6F289EB" />

 <Order SalesOrderID="69488" RowGuid="50144563-A6B4-4857-9451-B229D21C7ED5" />

 <Order SalesOrderID="50216" RowGuid="00A755D8-7BD9-4B12-AF58-E4EF22D39AA1" />

 <Order SalesOrderID="57044" RowGuid="1841BF49-544C-4A8F-8ACE-F63DADA00314" />

 </Customer>

</Customers>

Here is the tabular result (created by omitting the FOR XML part of the query):

Id AccountNumber SalesOrderID RowGuid

----------- ------------- ------------ ------------------------------------

2 AW00000002 49054 01C5EFDE-5C6E-47C9-B1AE-077937989297

2 AW00000002 51728 C2B5D4CC-113E-4102-884B-22A6DACEEDE6

1 AW00000001 46042 62991BDA-C42D-494F-9EF1-2754BEC25FAE

1 AW00000001 43860 D2745233-B05B-409C-93BB-4451569F4253

 Lesson 1: Working with XML CHAPTER 7 269

1 AW00000001 44501 1A116F86-71E4-40A2-A32C-4938D8977D26

2 AW00000002 63198 C6C5306D-F416-433C-92CC-4DB4747DC133

2 AW00000002 46976 8A533BE6-0669-470A-B361-796DD1CD0ED4

1 AW00000001 45283 F57AB920-675E-4B1D-B43C-8EA091CF6F38

2 AW00000002 47997 1FAAD98B-1DE0-4B80-A804-9FBBB6F289EB

2 AW00000002 69488 50144563-A6B4-4857-9451-B229D21C7ED5

2 AW00000002 50216 00A755D8-7BD9-4B12-AF58-E4EF22D39AA1

2 AW00000002 57044 1841BF49-544C-4A8F-8ACE-F63DADA00314

To fix the problem shown in the previous example, you obviously just need to sort the

result correctly. This might sound simple, but it is a really insidious, easy-to-miss bug that

can sneak into your code if you’re not careful. In the next example, you solve the problem

by sorting by CustomerID to group all orders together that belong to a specific customer.

Here, a little trick using a derived table called Orders to create an XML element between the

 Customer and Order elements is employed:

SELECT

 Customer.CustomerID AS Id

 ,Customer.AccountNumber

 ,Orders.X

 ,"Order".SalesOrderID

 ,"Order".rowguid AS RowGuid

FROM Sales.SalesOrderHeader AS "Order"

RIGHT OUTER JOIN Sales.Customer AS Customer ON Customer.CustomerID = "Order".CustomerID

CROSS JOIN (SELECT NULL AS X) AS Orders

WHERE Customer.CustomerID IN (1,2)

ORDER BY Customer.CustomerID

FOR XML AUTO, ROOT('Customers');

Here is the XML result:

<Customers>

 <Customer Id="1" AccountNumber="AW00000001">

 <Orders>

 <Order SalesOrderID="43860" RowGuid="D2745233-B05B-409C-93BB-4451569F4253" />

 <Order SalesOrderID="44501" RowGuid="1A116F86-71E4-40A2-A32C-4938D8977D26" />

 <Order SalesOrderID="45283" RowGuid="F57AB920-675E-4B1D-B43C-8EA091CF6F38" />

 <Order SalesOrderID="46042" RowGuid="62991BDA-C42D-494F-9EF1-2754BEC25FAE" />

 </Orders>

 </Customer>

 <Customer Id="2" AccountNumber="AW00000002">

 <Orders>

 <Order SalesOrderID="46976" RowGuid="8A533BE6-0669-470A-B361-796DD1CD0ED4" />

 <Order SalesOrderID="47997" RowGuid="1FAAD98B-1DE0-4B80-A804-9FBBB6F289EB" />

 <Order SalesOrderID="49054" RowGuid="01C5EFDE-5C6E-47C9-B1AE-077937989297" />

 <Order SalesOrderID="50216" RowGuid="00A755D8-7BD9-4B12-AF58-E4EF22D39AA1" />

 <Order SalesOrderID="51728" RowGuid="C2B5D4CC-113E-4102-884B-22A6DACEEDE6" />

 <Order SalesOrderID="57044" RowGuid="1841BF49-544C-4A8F-8ACE-F63DADA00314" />

 270 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 <Order SalesOrderID="63198" RowGuid="C6C5306D-F416-433C-92CC-4DB4747DC133" />

 <Order SalesOrderID="69488" RowGuid="50144563-A6B4-4857-9451-B229D21C7ED5" />

 </Orders>

 </Customer>

</Customers>

Here is the tabular result (created by omitting the FOR XML part of the query):

Id AccountNumber X SalesOrderID RowGuid

----------- ------------- ----------- ------------ ------------------------------------

1 AW00000001 NULL 43860 D2745233-B05B-409C-93BB-4451569F4253

1 AW00000001 NULL 44501 1A116F86-71E4-40A2-A32C-4938D8977D26

1 AW00000001 NULL 45283 F57AB920-675E-4B1D-B43C-8EA091CF6F38

1 AW00000001 NULL 46042 62991BDA-C42D-494F-9EF1-2754BEC25FAE

2 AW00000002 NULL 46976 8A533BE6-0669-470A-B361-796DD1CD0ED4

2 AW00000002 NULL 47997 1FAAD98B-1DE0-4B80-A804-9FBBB6F289EB

2 AW00000002 NULL 49054 01C5EFDE-5C6E-47C9-B1AE-077937989297

2 AW00000002 NULL 50216 00A755D8-7BD9-4B12-AF58-E4EF22D39AA1

2 AW00000002 NULL 51728 C2B5D4CC-113E-4102-884B-22A6DACEEDE6

2 AW00000002 NULL 57044 1841BF49-544C-4A8F-8ACE-F63DADA00314

2 AW00000002 NULL 63198 C6C5306D-F416-433C-92CC-4DB4747DC133

2 AW00000002 NULL 69488 50144563-A6B4-4857-9451-B229D21C7ED5

FOR XML EXPLICIT

The third FOR XML mode is EXPLICIT, which is awkward to write and even more awkward to
maintain. The interesting fact about the EXPLICIT mode is that you can create virtually any
XML structure, even some not supported by the PATH mode that you learn about later in this
lesson. In essence, to create an XML document using FOR XML EXPLICIT, you must return a
specific result set; that is, you must name your columns in a specific way. Much like the AUTO
mode, you must also sort the results appropriately to reach the desired result. The EXPLCIIT
mode result set must contain two columns called Tag and Parent. In the Tag column, you add
an integer identifier for each XML element that you want to return, and in the Parent column,
you specify the Tag identifier of the XML element that is the element’s parent. If the element
doesn’t have a parent, you specify NULL in the Parent column. The rest of the columns in
the result set are used to define both the names and values of the elements and attributes
that should be returned. The following example shows how you can create the customer and
order example using EXPLICIT mode:

SELECT

 1 AS Tag

 ,NULL AS Parent

 ,NULL AS "Customers!1!!element"

 ,NULL AS "Customer!2!Id"

 ,NULL AS "Customer!2!AccountNumber"

 ,NULL AS "Order!3!Id"

 ,NULL AS "Order!3!OrderDate"

UNION ALL

 Lesson 1: Working with XML CHAPTER 7 271

SELECT

 2 AS Tag

 ,1 AS Parent

 ,NULL AS "Customers!1!!element"

 ,c.CustomerID AS "Customer!2!Id"

 ,c.AccountNumber AS "Customer!2!AccountNumber"

 ,NULL AS "Order!3!Id"

 ,NULL AS "Order!3!OrderDate"

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1,2)

UNION ALL

SELECT

 3 AS Tag

 ,2 AS Parent

 ,NULL AS "Customers!1!!element"

 ,soh.CustomerID AS "Customer!2!Id"

 ,NULL AS "Customer!2!AccountNumber"

 ,soh.SalesOrderID AS "Order!3!Id"

 ,soh.OrderDate AS "Order!3!OrderDate"

FROM Sales.SalesOrderHeader AS soh

WHERE soh.CustomerID IN (1,2)

ORDER BY "Customer!2!Id", Tag

FOR XML EXPLICIT;

Here is the result:

<Customers>

 <Customer Id="1" AccountNumber="AW00000001">

 <Order Id="43860" OrderDate="2001-08-01T00:00:00" />

 <Order Id="44501" OrderDate="2001-11-01T00:00:00" />

 <Order Id="45283" OrderDate="2002-02-01T00:00:00" />

 <Order Id="46042" OrderDate="2002-05-01T00:00:00" />

 </Customer>

 <Customer Id="2" AccountNumber="AW00000002">

 <Order Id="46976" OrderDate="2002-08-01T00:00:00" />

 <Order Id="47997" OrderDate="2002-11-01T00:00:00" />

 <Order Id="49054" OrderDate="2003-02-01T00:00:00" />

 <Order Id="50216" OrderDate="2003-05-01T00:00:00" />

 <Order Id="51728" OrderDate="2003-08-01T00:00:00" />

 <Order Id="57044" OrderDate="2003-11-01T00:00:00" />

 <Order Id="63198" OrderDate="2004-02-01T00:00:00" />

 <Order Id="69488" OrderDate="2004-05-01T00:00:00" />

 </Customer>

</Customers>

 272 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

FOR XML PATH

FOR XML PATH mode is the best choice of the different FOR XML modes for most solutions.
PATH mode allows for the easy creation of different XML structures by simply interpreting
column names specified using an XPath-like expression when generating the XML result.
Consider the following query:

SELECT

 c.CustomerID AS "@Id"

 ,c.AccountNumber AS "@AccountNumber"

 ,c.RowGuid AS "comment()"

 ,CAST('<Test/>' AS XML) AS "node()"

 ,c.CustomerType AS "AdditionalInfo/@Type"

 ,c.ModifiedDate AS "AdditionalInfo/text()"

 ,c.rowguid AS "node()"

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1, 2)

FOR XML PATH('Customer'), ROOT('Customers');

Here is the result:

<Customers>

 <Customer Id="1" AccountNumber="AW00000001">

 <!--3F5AE95E-B87D-4AED-95B4-C3797AFCB74F-->

 <Test />

 <AdditionalInfo Type="S">2004-10-13T11:15:07.263</AdditionalInfo>

 </Customer>

 <Customer Id="2" AccountNumber="AW00000002">

 <!--E552F657-A9AF-4A7D-A645-C429D6E02491-->

 <Test />

 <AdditionalInfo Type="S">2004-10-13T11:15:07.263</AdditionalInfo>

 </Customer>

</Customers>

In the XML result, you can see the following:

n The @Id column resulted in the attribute Id in the Customer element.

n The @AccountNumber column resulted in the attribute AccountNumber in the
 Customer element.

n The comment() column resulted in the value of the RowGuid column being returned as
an XML comment.

n The node() column resulted in the XML constant in the query being placed directly into
the XML result without ending up in a subelement.

n The AdditionalInfo/@Type column resulted in the attribute Type in the subelement
 AdditionalInfo.

n The AdditionalInfo/text() column resulted in the text of the subelement AdditionalInfo
being set.

 Lesson 1: Working with XML CHAPTER 7 273

This mode is far more powerful than both the RAW and AUTO modes because it allows

you to add both attributes and subelements to the output, as well as including other types of

XML constructs. The PATH mode is also far simpler to use and easier to read than a query that

uses EXPLICIT mode.

Nesting FOR XML Queries
All FOR XML mode queries can be nested to produce a hierarchy. This means that you can
place a FOR XML query as a subquery in another FOR XML query to produce a complete XML
document:

Consider the following query and result:

SELECT

 c.CustomerID AS "@Id"

 ,c.AccountNumber AS "@AccountNumber"

 ,c.CustomerType AS "@Type"

 ,(

 SELECT TOP(2) -- Included to limit the size of the XML result.

 soh.SalesOrderID AS "@Id"

 ,soh.OrderDate AS "@OrderDate"

 ,soh.ShipDate AS "@ShipDate"

 ,(

 SELECT TOP(2) -- Included to limit the size of the XML result.

 sod.ProductID AS "@ProductId"

 ,sod.OrderQty AS "@Quantity"

 FROM Sales.SalesOrderDetail AS sod

 WHERE sod.SalesOrderID = soh.SalesOrderID

 FOR XML PATH('OrderDetail'), TYPE

)

 FROM Sales.SalesOrderHeader AS soh

 WHERE soh.CustomerID = c.CustomerID

 FOR XML PATH('Order'), TYPE

) AS "Orders"

FROM Sales.Customer AS c

WHERE c.CustomerID = 1

FOR XML PATH('Customer');

Here is the result:

<Customer Id="1" AccountNumber="AW00000001" Type="S">

 <Orders>

 <Order Id="43860" OrderDate="2001-08-01T00:00:00" ShipDate="2001-08-08T00:00:00">

 <OrderDetail ProductId="761" Quantity="2" />

 <OrderDetail ProductId="770" Quantity="1" />

 </Order>

 274 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 <Order Id="44501" OrderDate="2001-11-01T00:00:00" ShipDate="2001-11-08T00:00:00">

 <OrderDetail ProductId="761" Quantity="1" />

 <OrderDetail ProductId="768" Quantity="3" />

 </Order>

 </Orders>

</Customer>

Note that the TYPE option is required in each subquery. Without the TYPE option, SQL Server
interprets the result of the subquery as an XML-encoded string. The following XML would be
returned if the TYPE option were removed from the subqueries in the previous example:

<Customer Id="1" AccountNumber="AW00000001" Type="S">

 <Orders>

 <Order Id="43860" OrderDate="2001-08-01T00:00:00" ShipDate="2001-08-08T00:

00:00">&lt;OrderDetail ProductId="761" Quantity="2"/&gt;&lt;OrderD

etail ProductId="770" Quantity="1"/&gt;</Order><Order Id="44501" Ord

erDate="2001-11-01T00:00:00" ShipDate="2001-11-08T00:00:00">&lt;OrderDetail

ProductId="761" Quantity="1"/&gt;&lt;OrderDetail ProductId="768" Quantity=

"3"/&gt;</Order>

 </Orders>

</Customer>

Finally, it is possible to add an XML namespace to the result by including the WITH
 XMLNAMESPACES clause in the query. In the following example, the namespace http://www
.contoso.com/CustomerSchema is added as the default namespace for the XML document,
and the namespace http://www.contoso.com/CustomerSchemaV2 is added under the alias v2
(the AdditionalInfo subelement is the only element that uses the v2 alias):

WITH XMLNAMESPACES(

 DEFAULT 'http://www.contoso.com/CustomerSchema'

 ,'http://www.contoso.com/CustomerSchemaV2' AS v2

)

SELECT

 c.CustomerID AS "@Id"

 ,c.AccountNumber AS "@AccountNumber"

 ,c.CustomerType AS "@Type"

 ,c.ModifiedDate AS "v2:AdditionalInfo/@ModifiedDate"

FROM Sales.Customer AS c

WHERE c.CustomerID IN (1, 2)

FOR XML PATH('Customer'), ROOT('Customers');

Here is the result:

<Customers xmlns:v2="http://www.contoso.com/CustomerSchemaV2"

 xmlns="http://www.contoso.com/CustomerSchema">

 <Customer Id="1" AccountNumber="AW00000001" Type="S">

 <v2:AdditionalInfo ModifiedDate="2004-10-13T11:15:07.263" />

 </Customer>

 Lesson 1: Working with XML CHAPTER 7 275

 <Customer Id="2" AccountNumber="AW00000002" Type="S">

 <v2:AdditionalInfo ModifiedDate="2004-10-13T11:15:07.263" />

 </Customer>

</Customers>

Using the XML Data Type
SQL Server 2008 includes the XML data type, which can be used to store both XML fragments
and documents. Internally, the XML data type is stored using the varbinary(max) data type;
that is, the XML is not stored as a text string but rather as a binary representation of an XML
document or fragment.

The XML data type can be either typed or untyped. Typed simply means that an XML
schema collection is assigned to the type to verify its contents.

The following example shows the creation of an XML schema collection and a table with
both untyped and typed XML columns. Note that the typed XML column includes the use
of the DOCUMENT option to force the column to support only XML documents (and not
 fragments):

CREATE XML SCHEMA COLLECTION BooksSchemaCollection

AS

N'<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://www.contoso.com/BooksSchema"

 xmlns="http://www.contoso.com/BooksSchema"

 elementFormDefault="qualified">

 <xs:element name="Book">

 <xs:complexType>

 <xs:attribute name="Title" type="xs:string"/>

 <xs:attribute name="Price" type="xs:decimal"/>

 </xs:complexType>

 </xs:element>

</xs:schema>';

GO

CREATE TABLE Test.Person

(

 PersonID INT IDENTITY PRIMARY KEY

 ,Name NVARCHAR(50) NOT NULL

 ,FavoriteBookUntypedXml XML NULL

 ,FavoriteBookTypedXml XML(DOCUMENT BooksSchemaCollection) NULL

);

Now let’s look at the following DML statements. Note that updating a typed column with
invalid data (in this case, a book with an invalid price of FortyFive instead of 45) receives

 276 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

an XML validation error message, but the same invalid data is allowed in the untyped XML
column:

INSERT Test.Person (Name) VALUES ('Jane Dow');

-- Will succeed:

UPDATE Test.Person SET

 FavoriteBookUntypedXml =

 '<Book xmlns="http://www.contoso.com/BooksSchema"

 Title="The Best Book" Price="FortyFive"/>'

WHERE PersonID = 1;

-- Will not succeed:

UPDATE Test.Person SET

 FavoriteBookTypedXml =

 '<Book xmlns="http://www.contoso.com/BooksSchema"

 Title="The Best Book" Price="FortyFive"/>'

WHERE PersonID = 1;

-- Will succeed:

UPDATE Test.Person SET

 FavoriteBookTypedXml =

 '<Book xmlns="http://www.contoso.com/BooksSchema"

 Title="The BestBook" Price="45"/>'

WHERE PersonID = 1;

Here are the results:

(1 row(s) affected)

(1 row(s) affected)

Msg 6926, Level 16, State 1, Line 3

XML Validation: Invalid simple type value: 'FortyFive'. Location: /*:Book[1]/@*:Price

(1 row(s) affected)

One last important note is that there is a problem with using typed XML columns, and that
is the fact that the data structure might change. If you need to change the schema (such as by
adding more attributes to an element), you must first alter all columns that uses the schema
to instead use untyped XML. Then, you must drop the schema collection, re-create it with the
added attributes, and finally alter the columns again to use the schema. The problem isn’t just
that it’s a lot of work to create the scripts to perform this change (though that’s bad enough).
It also creates a lot of work for SQL Server because untyped and typed XML code have dif-
ferent structures internally (for example, all data in untyped XML is stored as strings, whereas
in typed XML, the data is stored using the actual data type selected in the schema) and SQL
Server must then convert all data from typed to untyped and then back again each time you
want to change the XML schema.

 Lesson 1: Working with XML CHAPTER 7 277

Here is an example that removes the schema from the column and then reattaches it:

ALTER TABLE Test.Person

 ALTER COLUMN FavoriteBookTypedXml XML NULL;

GO

ALTER TABLE Test.Person

 ALTER COLUMN FavoriteBookTypedXml XML(DOCUMENT BooksSchemaCollection) NULL;

Working with XML Stored in an XML Variable or Column
When you have data stored using an XML data type, you want to both query and modify it.
This is performed using a few methods provided by the XML data type.

THE EXIST METHOD

The exist method returns a bit value and is used to verify if an XPath expression is found within
an XML instance. The following example shows a simple query against the Demographics
column that uses the exist method to find all surveys with a value for TotalPurchaseYTD greater
than 5,000. It also uses the xs:decimal XPath function to convert the element to a decimal
value. (Note that this conversion is not necessary when using typed XML because SQL Server
derives from the XML schema that the element is in fact a decimal.)

WITH XMLNAMESPACES(DEFAULT

 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey')

SELECT

 COUNT(*)

FROM Sales.Individual

WHERE Demographics.exist(

 '/IndividualSurvey/TotalPurchaseYTD[xs:decimal(.) > 5000]') = 1;

THE VALUE METHOD

The value method is used to perform an XQuery against the XML instance to fetch a single
scalar value from it. In this example, the XPath aggregate function count is used to calculate
the number of IndividualSurvey elements in the XML column Demographics, and then the SQL
aggregate function SUM is used to summarize the counts returned by the value method:

WITH XMLNAMESPACES(DEFAULT

 'http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/IndividualSurvey')

SELECT

 SUM(Demographics.value('count(/IndividualSurvey)', 'INT')) AS NumberOfIndividualSurveys

FROM Sales.Individual;

Here is the result:

NumberOfIndividualSurveys

18484

 278 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

Note that the second argument of the value method indicates which SQL data type the
value retrieved from the XML document should be converted to in the result.

THE NODES METHOD

The nodes method is used to shred the XML into a tabular form. In the following example,
each Order element found is returned as a separate row in the query result. In addition to
using the nodes method, the code also uses the value method to retrieve specific values from
the XML document into the resulting columns. Note that this method can be used with an
INSERT. . . SELECT or an UPDATE statement to pass multiple values to SQL Server in a single
parameter:

DECLARE @Orders XML;

SET @Orders = N'

<Orders>

 <Order Product="Bike" Quantity="1"/>

 <Order Product="Bike" Quantity="2"/>

 <Order Product="Car" Quantity="4"/>

</Orders>';

SELECT

 tab.col.value('@Product', 'NVARCHAR(50)') AS Product

 ,tab.col.value('@Quantity', 'INT') AS Quantity

 ,tab.col.value('count(../Order)', 'INT') AS TotalNumberOfOrders

FROM @Orders.nodes('/Orders/Order[xs:integer(@Quantity) > 1]') AS tab(col);

Here is the result:

Product Quantity TotalNumberOfOrders

-------- ----------- -------------------

Bike 2 3

Car 4 3

Notice the use of the count function and the parent path (..) used to create the
 TotalNumberOfOrders column. This can be very useful, but be aware that using parent paths
in a value method call on a nodes method result can degrade performance significantly.

THE QUERY METHOD

The query method is used to perform an XQuery against the XML instance to retrieve an
XML fragment rather than a scalar value or a tabular result. In the query method, you use the
XQuery language’s FLWOR expressions to retrieve the parts of the XML document that you
need and present it in the way you want. XQuery FLWOR expressions can actually be used
in other XML data type methods as well, but it is typically used in the context of the query
method. A FLWOR expression consists of the for, let, return, order by, and where keywords,
where for is roughly equal to FROM in SQL, let is roughly equal to a common table expression
(CTE) declaration, return is roughly equal to SELECT in SQL, and order by and where are equal
to their SQL namesakes.

 Lesson 1: Working with XML CHAPTER 7 279

The following example uses a FLWOR expression to return all orders of a quantity of two or
more from the XML document, sorted with the greatest quantity being returned first and the
actual XML elements being translated to Swedish:

DECLARE @Orders XML;

SET @Orders = N'

<Orders>

 <Order Product="Bike" Quantity="1"/>

 <Order Product="Bike" Quantity="2"/>

 <Order Product="Car" Quantity="4"/>

</Orders>';

SELECT @Orders.query('

<Beställningar>

{

 for $o in /Orders/Order

 where xs:decimal($o/@Quantity) >= 2

 order by xs:decimal($o/@Quantity) descending

 return <Beställning Produkt="{data($o/@Product)}" Antal="{data($o/@Quantity)}"/>

}

</Beställningar>

');

Here is the result:

<Beställningar>

 <Beställning Produkt="Car" Antal="4" />

 <Beställning Produkt="Bike" Antal="2" />

</Beställningar>

Lesson Summary
n XML can be generated using a SELECT statement in four different modes: FOR XML

RAW, FOR XML AUTO, FOR XML PATH, and FOR XML EXPLICIT.

n FOR XML PATH is typically the preferred mode used to generate XML.

n The XML data type can be either typed (validated by an XML schema collection) or
untyped.

n In an untyped XML data type, all values are always interpreted as strings.

n You can use the value, query, exist, nodes, and modify methods to query and alter
instances of the XML data type.

Practice Using XML

In this practice, you use both a FOR XML PATH mode query to return an XML result set from
SQL Server and a combination of the nodes and value methods to insert rows into a table
based on an XML parameter passed to a stored procedure.

 280 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

exercise 1 Use FOR XML PATH

In this exercise, you query the Production.Product, Sales.SalesOrderHeader, and
Sales.SalesOrderDetail tables to create an XML document.

 1. Open Microsoft SQL Server Management Studio (SSMS) and connect to the

 appropriate instance of SQL Server 2008.

 2. In a new query window, execute a SQL query against the AdventureWorks database

that produces the following XML document for ProductID = 707:

<Product Id="707">

 <Info Name="Sport-100 Helmet, Red" ListPrice="34.9900" />

 <Order Id="43665" Date="2001-07-01T00:00:00" CustomerId="146" />

 <Order Id="43668" Date="2001-07-01T00:00:00" CustomerId="514" />

 <Order Id="43673" Date="2001-07-01T00:00:00" CustomerId="618" />

 <Order Id="43677" Date="2001-07-01T00:00:00" CustomerId="679" />

 . . .

</Product>

Here are the correct statements—but don’t look at them before you have tried to create
the query yourself. Type, highlight, and execute the following:

USE AdventureWorks;

GO

SELECT

 p.ProductID AS "@Id"

 ,p.Name AS "Info/@Name"

 ,p.ListPrice AS "Info/@ListPrice"

 ,(

 SELECT DISTINCT

 soh.SalesOrderID AS "@Id"

 ,soh.OrderDate AS "@Date"

 ,soh.CustomerID AS "@CustomerId"

 FROM Sales.SalesOrderHeader AS soh

 INNER JOIN Sales.SalesOrderDetail AS sod

 ON sod.SalesOrderID = soh.SalesOrderID

 WHERE sod.ProductID = p.ProductID

 FOR XML PATH('Order'), TYPE

)

FROM Production.Product AS p

WHERE p.ProductID = 707

FOR XML PATH('Product');

exercise 2 Use the nodes and value Methods

In this exercise, you create a stored procedure that accepts an XML data type as its parameter.
The stored procedure shreds the XML document into tabular form using the nodes and value
methods and then inserts the results into a table.

 Lesson 1: Working with XML CHAPTER 7 281

 1. If necessary, open SSMS and connect to the appropriate instance of SQL Server 2008.

 2. In the query window, type, highlight, and execute the following SQL statements to

 create a new table and schema in the AdventureWorks database:

USE AdventureWorks;

GO

CREATE SCHEMA TestXml;

GO

CREATE TABLE TestXml.Messages

(

 MessageId INT IDENTITY PRIMARY KEY

 ,FromUser NVARCHAR(50) NOT NULL

 ,Message NVARCHAR(max) NOT NULL

 ,CreatedDateTime DATETIME2 NOT NULL DEFAULT SYSDATETIME()

);

 3. In the existing query window, type, highlight, and execute the following SQL

 statements to create the stored procedure that populates the TestXml.Messages table

from an XML document:

CREATE PROCEDURE TestXml.spMessageInsertMultiple

@Messages XML

AS

BEGIN

 SET NOCOUNT ON;

 INSERT TestXml.Messages (FromUser, Message)

 SELECT

 tab.col.value('@FromUser', 'NVARCHAR(50)')

 ,tab.col.value('text()[1]', 'NVARCHAR(max)')

 FROM @Messages.nodes('/Messages/Message') AS tab(col);

END

 4. Finally, in the existing query window, type, highlight, and execute the following SQL

statements to run the stored procedure (adding two messages to the table) and then

query the table to see the results:

EXEC TestXml.spMessageInsertMultiple @Messages = N'

<Messages>

 <Message FromUser="Jeff Low">Hi, how are you?</Message>

 <Message FromUser="Jane Dow">Not bad, and yourself?</Message>

</Messages>';

SELECT * FROM TestXml.Messages;

 282 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

The result returned by the query should look like this:

MessageId FromUser Message CreatedDateTime

--------- -------- -------------------- ----------------------

1 Jeff Low Hi, how are you? 2008-11-05 12:40:56.14

2 Jane Dow Not bad, and yourself? 2008-11-05 12:40:56.14

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 283

Lesson 2: Using SQLcLR and Filestream

Let’s begin this lesson by discussing what SQLCLR is. SQLCLR refers to the use of CLR
 execution within the SQL Server Database Engine. CLR is also often referred to as the .NET
Framework, just .NET, or by the name of the programming language that might be used, such
as Visual Basic .NET or C#. The use of CLR within SQL Server is an important aspect of making
SQL Server more extensible, allowing developers to do more than what is possible with just
the T-SQL language and its system functions. In this lesson, we start by exploring the basics
of using CLR within SQL Server, and then cover why you might want to build certain database
objects using CLR. Next, we look at how stored procedures, triggers, functions, types, and
aggregates can be created using CLR. At the end of this lesson, we look at how you can use
Filestream objects to store binary large objects (BLOBs) in SQL Server 2008.

After this lesson, you will be able to:

n Create stored procedures using SQLCLR.

n Create scalar user-defined functions (UDFs) using SQLCLR.

n Create table-valued UDFs using SQLCLR.

n Create triggers using SQLCLR.

n Create user-defined types using SQLCLR.

n Create user-defined aggregates using SQLCLR.

n Store BLOBs in SQL Server using a Filestream object.

Estimated lesson time: 60 minutes

The Basics of Using SQLCLR
To use CLR within the database, you must perform the following steps:

 1. You must set the SQL Server instance to allow CLR code to run.

 2. You must write the code that the object uses with a .NET language (in this chapter, we
include C# and Visual Basic .NET code examples for reference).

 3. You must compile the code to an assembly (a CLR executable).

 4. You must load the assembly into SQL Server.

 5. Finally, you must create the database object and point it to the assembly using Data
Definition Language (DDL).

We now follow each of these steps to create a very simple CLR stored procedure that

should simply execute the SQL statement SELECT * FROM Sales.Customer WHERE CustomerID = @

CustomerID. Even though you would never use the CLR for this particular stored procedure,

it is a good example because it allows you to see clearly the difference between creating

 284 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

a stored procedure using T-SQL to run a parameterized query and using SQLCLR to run a

 parameterized query. For reference, the T-SQL version of the stored procedure is shown here:

CREATE PROCEDURE Sales.spCustomerGet

@CustomerID INT

AS

BEGIN

 SELECT * FROM Sales.Customer

 WHERE CustomerID = @CustomerID;

END

To run the same query using SQLCLR, first we allow SQLCLR code to be executed within

this SQL Server instance by executing the T-SQL code shown here. Note that system types and

functions that use SQLCLR (such as the spatial types geography and geometry) do not require

the CLR to be enabled; it is required only for user code:

EXEC sp_configure 'clr enabled', 1;

RECONFIGURE;

The first line of code changes the 'CLR enabled’ setting to 1 (true) and the second line of

code tells SQL Server to start using any changed configuration settings.

Now it is time to write the .NET code (C# or Visual Basic .NET) for the stored procedure. In

this example, we create a single file containing the .NET code and then compile it using the

command prompt.

tiP USinG viSUaL StUDiO tO cReate FiLeS

If you have Microsoft Visual Studio handy, you can use it to create the files. Use the SQL

Server Project template, which can be found under the Database project type heading,

to create your CLR database objects. Visual Studio can even deploy CLR database objects

directly to SQL Server (meaning that Visual Studio performs for you the rest of the steps

that we describe here).

We create a file called CLRStoredProc.cs (if you are using C#) or CLRStoredProc.vb (if you

are using Visual Basic .NET) and add the following code to it:

'VB:

Imports System

Imports System.Data.SqlTypes

Imports System.Data.SqlClient

Imports Microsoft.SqlServer.Server

Namespace TK433.Clr

 Public Class Demo

 Public Shared Sub CustomerGetProcedure(ByVal customerId As SqlInt32)

 Using conn As SqlConnection = New SqlConnection("context connection=true")

 Dim cmd As SqlCommand = conn.CreateCommand()

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 285

 cmd.CommandText = "SELECT * FROM Sales.Customer " & vbCrLf & _

 "WHERE CustomerID = @CustomerID;"

 cmd.Parameters.AddWithValue("@CustomerID", customerId)

 conn.Open()

 ' Execute the command and send the results to the caller.

 SqlContext.Pipe.ExecuteAndSend(cmd)

 End Using

 End Sub

 End Class

End Namespace

//C#:

using System;

using System.Data.SqlTypes;

using System.Data.SqlClient;

using Microsoft.SqlServer.Server;

namespace TK433.Clr

{

 public class Demo

 {

 static public void CustomerGetProcedure(SqlInt32 customerId)

 {

 using (SqlConnection conn = new SqlConnection("context connection=true"))

 {

 SqlCommand cmd = conn.CreateCommand();

 cmd.CommandText = @"SELECT * FROM Sales.Customer

 WHERE CustomerID = @CustomerID";

 cmd.Parameters.AddWithValue("@CustomerID", customerId);

 conn.Open();

 // Execute the command and send the results to the caller.

 SqlContext.Pipe.ExecuteAndSend(cmd);

 }

 }

 }

}

Note the following points in this example:

n The connection string “context connection=true” tells the SqlConnection object to con-
nect to the SQL Server instance within which you are already executing. Note that you
are still in the same session as you were in outside the CLR code. This means that you
are not blocked by any locks that are held by the session that executed this CLR code.

n The additional namespaces used are the following:

 286 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

• The System.Data.SqlClient namespace contains the SqlConnection and SqlCommand
classes used in the example. These classes are used to connect to SQL Server and
execute the query. Note that these classes are the same ones that you use when
connecting from an application.

• The System.Data.SqlTypes namespace contains the SqlInt32 type used in the
 example. This type mimics the behavior of an INTEGER in SQL Server. You can use
the Value property of the SqlInt32 type to retrieve a CLR integer.

• The Microsoft.SqlServer.Server namespace contains the SqlContext and SqlPipe
classes (needed for the SqlContext.Pipe call) used in the example. These classes are
specific to the SQLCLR implementation and are used to communicate to the SQL
Server session within which you are executing.

n The code is very similar to any code that accesses SQL Server from an application.

n This seems pretty cumbersome for executing only this simple SELECT statement. As
you can clearly see, you won’t want to use SQLCLR for simple stored procedures like
the one in this example.

The next step is to compile the code to a CLR assembly. This is accomplished by executing

the C# compiler (csc.exe) or the Visual Basic .NET compiler (vbc.exe). Both these compilers can

typically be found in the directory C:\Windows\Microsoft.NET\Framework\v3.5. To compile

the code from a command prompt, execute the following command within the directory

where you store the source code. (Note that you must have your path set up so that it points

to the directory containing the compiler.)

'VB:

vbc.exe /target:library /out:CLRStoredProc.dll CLRStoredProc.vb

//C#:

csc.exe /target:library /out:CLRStoredProc.dll CLRStoredProc.cs

The /target:library switch tells the compiler that you are compiling an assembly without a

starting point; that is, the assembly can’t be executed directly. It is simply a type library, and

therefore, it should use the .dll extension. The /out switch simply tells the compiler what it

should name the created assembly.

Now it is time to load the created assembly into your database. This is accomplished by

using the CREATE ASSEMBLY statement. When the statement is executed, the assembly is

copied physically into the database to which you are attached. Therefore, you can delete

the .dll assembly file after it has been loaded because SQL Server doesn’t need it. Having

the assembly stored within the database is very useful when you are moving a database to

another instance because all assemblies within the database are moved with the database. To

see which assemblies exist within a database, you can query the sys.assemblies catalog view.

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 287

The following T-SQL code loads the assembly into the AdventureWorks database and displays

its properties by querying the sys.assemblies catalog view:

USE AdventureWorks;

CREATE ASSEMBLY TK433ClrDemo

 FROM 'C:\TK433Clr\CLRStoredProc.dll';

SELECT assembly_id, name

FROM sys.assemblies

WHERE name = 'TK433ClrDemo';

The result should look like this:

assembly_id name

------------- ------------------------

65544 TK433ClrDemo

It is finally time for the last step: creating the stored procedure so that it can be executed

by users. The following T-SQL code creates a stored procedure named Sales.spCustomerGetClr

that points to the CLR method named CustomerGetProcedure in the class TK433.Clr.Demo in the

 assembly TK433ClrDemo. After creating the stored procedure in the next example, we also query

the sys.assembly_modules catalog view for information regarding this CLR stored procedure.

T-SQL modules can be found in the sys.sql_modules catalog view:

CREATE PROCEDURE Sales.spCustomerGetClr

@CustomerID INT

AS

EXTERNAL NAME TK433ClrDemo."TK433.Clr.Demo".CustomerGetProcedure;

GO

SELECT assembly_id, assembly_class, assembly_method

FROM sys.assembly_modules

WHERE object_id = OBJECT_ID('Sales.spCustomerGetClr');

The result should look like this:

assembly_id assembly_class assembly_method

------------- ---------------- ----------------------

65544 TK433.Clr.Demo CustomerGetProcedure

After the stored procedure has been created, we can execute it. Note that executing the

stored procedure looks exactly like executing a T-SQL stored procedure:

EXEC Sales.spCustomerGetClr @CustomerID = 1;

Here is the result (which has been truncated for clarity):

CustomerID TerritoryID AccountNumber CustomerType. . .

------------- ------------- --------------- ------------. . .

1 1 AW00000001 S . . .

 288 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

Before we continue looking at more details of creating the different types of SQLCLR

 objects, it is worth noting that you can also store the CLR source code in the database.

SQL Server does not use the source code, but it is handy to store the code in the database

 because it is then possible to retrieve it from the database later (you may have lost the actual

source code by then. . .). To add a source code file to the database, execute the following

 statement:

ALTER ASSEMBLY TK433ClrDemo

 ADD FILE FROM 'C:\TK433Clr\CLRStoredProc.cs'; -- Or .vb. . .

To see which files have been added to an assembly, you can query the sys.assembly_files

catalog view. Note that the actual assembly (.dll file) can also be found through this view.

Objects That Can Be Created Using SQLCLR
The following types of objects can be created using SQLCLR:

n Stored procedures (as shown in the previous example)

n Scalar UDFs that return a single value

n Table-valued UDFs that return a table and can be called from the FROM, JOIN, or
 APPLY clauses

n Triggers (DML, DDL, and logon triggers)

n User-defined aggregates

n User-defined types (UDTs)

It is worth noting that the last two objects, user-defined aggregates and UDTs, can be

 created only using SQLCLR; they cannot be created using T-SQL.

Because we have already covered how to create a CLR stored procedure, we start by

 looking at how to create a scalar UDF.

Creating a Scalar UDF
Much like the CLR stored procedure, a scalar UDF consists of a single method. The difference
is that for the UDF, the method needs to return a value, whereas for the stored procedure, the
method should return void (for C#) or be a Sub (for Visual Basic .NET). UDFs are where SQLCLR
really excels because you can easily create UDFs that let you use basically anything within the
.NET Framework. You should typically use a CLR UDF only to perform computations, that is,
not to access any tables. Your functions are then typically used in an SQL DML statement. In
this example, we create a UDF that allows you to use regular expressions in SQL Server. Using
regular expressions is an often-needed feature that does not exist natively in SQL Server but
that you can easily “steal” from the .NET Framework using SQLCLR. In the following examples,
we do not cover compiling or loading the assembly because those steps were covered earlier
in this lesson.

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 289

To create the new UDF, the following CLR code is used. For abbreviation, only the method

itself and the imported namespaces are included:

'VB:

Imports System

Imports System.Data.SqlTypes

Imports System.Text.RegularExpressions

Imports Microsoft.SqlServer.Server

. . .

<SqlFunction(IsPrecise:=True, Isdeterministic:=True)> _

Public Shared Function IsRegExMatch(ByVal input As SqlString, ByVal pattern As

 SqlString) _

 As SqlBoolean

 If input.IsNull Or pattern.IsNull Then

 Return SqlBoolean.Null ' Return NULL if either parameter is NULL.

 End If

 Return CType(Regex.IsMatch(input.Value, pattern.Value), SqlBoolean)

End Function

. . .

//C#:

using System;

using System.Data.SqlTypes;

using System.Text.RegularExpressions;

using Microsoft.SqlServer.Server;

. . .

[SqlFunction(IsDeterministic = true, IsPrecise = true)]

static public SqlBoolean IsRegExMatch(SqlString input, SqlString pattern)

{

 if (input.IsNull || pattern.IsNull)

 return SqlBoolean.Null; // Return NULL if either parameter is NULL.

 return (SqlBoolean)Regex.IsMatch(input.Value, pattern.Value);

}

. . .

Notice the SqlFunction attribute that is used to define the function. This attribute tells SQL

Server that the function is both precise (that is, doesn’t use floating point calculations that

affect its return value) and deterministic (that is, doesn’t return different values when called

multiple times with the same input values). Because of this, the result of the function can be

both persisted in a computed column and indexed.

After compiling and loading the assembly into SQL Server, the following T-SQL code is

executed to create the function:

CREATE FUNCTION dbo.fnIsRegExMatch

(

 @Input NVARCHAR(MAX)

 ,@Pattern NVARCHAR(100)

)

 290 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

RETURNS BIT

AS

EXTERNAL NAME TK433ClrDemo."TK433.Clr.Demo".IsRegExMatch;

Now this function can be used when you want to apply a regular expression in a query. In

the following T-SQL example, the query returns the number of rows in the Sales.CreditCard

table that do not have a credit card number with exactly 14 numbers. This is done using the

regular expression ^[0-9]{14}$:

SELECT

 COUNT(*) AS InvalidCreditCardNumbers

FROM Sales.CreditCard

WHERE dbo.fnIsRegExMatch(CardNumber, N'^[0-9]{14}$') = 0;

Here is the result:

InvalidCreditCardNumbers

0

Another interesting aspect of CLR (and T-SQL) UDFs is that they can be used in constraints.

The following example shows how we can add a check constraint to the Sales.CreditCards

table so that it allows only credit card numbers that are NULL or that match the regular

 expression from the previous example:

ALTER TABLE Sales.CreditCard

 ADD CONSTRAINT CKCreditCardNumber

 CHECK(dbo.fnIsRegExMatch(CardNumber, N'^[0-9]{14}$') = 1 OR CardNumber IS NULL);

-- Test the constraint by trying to insert an invalid card number.

UPDATE Sales.CreditCard SET CardNumber = '1234' WHERE CreditCardID = 1;

Here is the error that results:

Msg 547, Level 16, State 0, Line 1

The UPDATE statement conflicted with the CHECK constraint "CKCreditCardNumber". The

 conflict occurred in database "AdventureWorks", table "Sales.CreditCard", column

 'CardNumber'.

Because we marked the function as both precise (IsPrecise) and deterministic

(IsDeterministic) in the CLR code, we can both persist and index a computed column that uses

the function. Although the result in this particular example isn’t really useful for indexing or

persisting, we look at how to go about doing it because it is useful in other cases. To index

the result of the function, it must first be placed in the expression of a computed column. In

the following T-SQL example, a computed column using the function is added to the table

and marked with the persisted attribute. The persisted attribute tells SQL Server to calculate

the result of the function only whenever it writes to the underlying column or columns and to

store the result of the function physically in the table row. After we add the column, we also

create an index on top of it. Note that the computed column does not need to be marked as

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 291

persisted for you to be able to index it. The query that is executed against the new column at

the end of the example uses the newly created index:

ALTER TABLE Sales.CreditCard

 ADD IsValidCardNumber AS dbo.fnIsRegExMatch(CardNumber, N'^[0-9]{14}$')

 PERSISTED;

GO

CREATE NONCLUSTERED INDEX IsValidCardNumberIdx

 ON Sales.CreditCard (IsValidCardNumber);

GO

-- This query makes use of the IsValidCardNumberIdx index and performs

-- an index seek operation against it.

SELECT

 COUNT(*)

FROM Sales.CreditCard

WHERE IsValidCardNumber = 1;

Creating a Table-Valued CLR UDF
Because a table-valued UDF returns multiple values (or rather, multiple rows), it is a bit more
complex than a scalar UDF. While a scalar UDF consists of a single method, a table-valued
UDF consists of two methods:

n A method that acts as the iterator or state machine, looping over the values that
should be returned as rows

n A method that is executed for every row and populates the actual row being returned
to the SQL Server execution engine

Consider the following CLR code, which defines these two methods for a table-valued UDF.

This particular function can be used to split comma-delimited strings.

Why no visual basic .net example?

This example uses the yield keyword in C# to create an iterator. The yield keyword
doesn’t exist in Visual Basic .NET, so a Visual Basic .NET code sample is not

included. You can create table-valued functions using Visual Basic .NET, but this
requires that you create a class that acts as the iterator and handles looping over
the values (that is, what yield in C# does for you).

//C#:

using System;

using System.Collections;

using System.Collections.Generic;

 292 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

. . .

[SqlFunction(FillRowMethodName = "SplitStringFillRow",

 TableDefinition = "ValueIndex INT, Value NVARCHAR(100)")]

static public IEnumerator SplitString(SqlString stringToSplit)

{

 // Exit if the string to split is NULL.

 if (stringToSplit.IsNull)

 yield break;

 int valueIndex = 0;

 foreach (string s in stringToSplit.Value.Split(new char[] { ',' },

 StringSplitOptions.RemoveEmptyEntries))

 {

 yield return new KeyValuePair<int, string>(valueIndex++, s.Trim());

 }

}

static public void SplitStringFillRow(object oKeyValuePair,

 out SqlInt32 valueIndex, out SqlString value)

{

 // Fetch the key value pair from the first parameter.

 KeyValuePair<int, string> keyValuePair = (KeyValuePair<int, string>)oKeyValuePair;

 // Set each output parameter's value.

 valueIndex = keyValuePair.Key;

 value = keyValuePair.Value;

}

. . .

In the previous example, you can see that we created the two methods SplitString and

SplitStringFillRow. When you execute the UDF from SQL Server, the SplitString method is

executed first. Each yield return statement that is executed within this method calls the

SplitStringFillRow method (that is, the fill row method specified in the SqlFunction attribute).

As you can see, the result set that is returned by the SplitString function is defined using the

TableDefinition parameter of the SqlFunction attribute.

The fill row method always takes one parameter of type System.Object that contains a

 reference to whatever you called yield return for, as well as one out parameter for each column

that should be returned by the function according to the TableDefinition parameter. In the

 following example, you can see the T-SQL code used to create and query the table-valued UDF:

CREATE FUNCTION dbo.fnSplitString

(

 @StringToSplit NVARCHAR(max)

)

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 293

RETURNS TABLE (ValueIndex INT, Value NVARCHAR(100))

AS

EXTERNAL NAME TK433ClrDemo."TK433.Clr.Demo".SplitString;

GO

SELECT

 ValueIndex

 ,Value

FROM dbo.fnSplitString('Hi,how,are,you?') AS a;

Here is the result:

ValueIndex Value

----------- ---------

0 Hi

1 how

2 are

3 you?

Creating a CLR Trigger
Creating a CLR trigger is very similar to creating a CLR stored procedure. The CLR code
consists of a single method or Sub that performs the actions that you want the trigger to
perform. Just like a T-SQL trigger, a CLR trigger has access to the trigger-specific inserted and
deleted tables. In the following example of a CLR trigger, the transaction is rolled back if the
statement that triggered the trigger deleted more than one row:

'VB:

Imports System.Data.SqlClient

Imports System.Text.RegularExpressions

Imports Microsoft.SqlServer.Server

. . .

Public Shared Sub ClrTrigger()

 ' If this wasn't a delete statement, just exit.

 If SqlContext.TriggerContext.TriggerAction <> TriggerAction.Delete Then

 Return

 End If

 Using conn As SqlConnection = New SqlConnection("context connection=true")

 Dim cmd As SqlCommand = conn.CreateCommand()

 cmd.CommandText = "SELECT COUNT(*) FROM deleted"

 conn.Open()

 294 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 ' Check the number of rows that were found in the deleted table.

 If (CType(cmd.ExecuteScalar(), Integer)) > 1 Then

 cmd.CommandText = _

 "RAISERROR('Too many rows deleted, rolling back " & _

 "transaction.', 16, 1);" & vbCrLf & _

 "ROLLBACK TRAN;"

 ' This try/catch is needed in order to skip the error that is

 ' caused by the RAISERROR being executed.

 Try

 SqlContext.Pipe.ExecuteAndSend(cmd)

 Catch

 End Try

 End If

 End Using

End Sub

. . .

//C#:

using System;

using System.Data.SqlClient;

using Microsoft.SqlServer.Server;

. . .

static public void ClrTrigger()

{

 // If this wasn't a delete statement, just exit.

 if (SqlContext.TriggerContext.TriggerAction != TriggerAction.Delete)

 return;

 using (SqlConnection conn = new SqlConnection("context connection=true"))

 {

 SqlCommand cmd = conn.CreateCommand();

 cmd.CommandText = "SELECT COUNT(*) FROM deleted;";

 conn.Open();

 // Check the number of rows that were found in the deleted table.

 if (((int)cmd.ExecuteScalar()) > 1)

 {

 cmd.CommandText = @"RAISERROR('Too many rows deleted, " +

 "rolling back transaction.', 16, 1);" +

 "ROLLBACK TRAN;";

 // This try/catch is needed in order to skip the error that is

 // caused by the RAISERROR being executed.

 try

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 295

 {

 SqlContext.Pipe.ExecuteAndSend(cmd);

 }

 catch { }

 }

 }

}

The following code would be used to create the trigger:

CREATE TRIGGER dbo.ClrTrigger

ON dbo.MyTable

AFTER DELETE

AS

EXTERNAL NAME TK433ClrDemo."TK433.Clr.Demo".ClrTrigger;

GO

Just as with CLR stored procedures, creating this otherwise simple trigger becomes very

cumbersome compared to creating a T-SQL trigger because you need to use a SqlConnection

and SqlCommand object every time that you want to execute an SQL statement. As

you can see, there is a property of the SqlContext class called TriggerContext (of type

 SqlTriggerContext), which can be used to perform trigger-specific checks from the CLR code.

CLR triggers should be used only when you need to perform tasks that cannot be

 performed using regular T-SQL triggers, or when the tasks are heavily calculation-intensive

and the CLR trigger outperforms the T-SQL trigger.

Creating a CLR User-Defined Aggregate
The possibility of creating custom aggregation functions can be very useful when you want
to create an aggregate that isn’t included with SQL Server (such as a product aggregate) or to
create an aggregate function that can handle a custom CLR UDT.

When creating a CLR user-defined aggregate, you must create an entire CLR type (either

class or struct) rather than just one or two methods as with the previous CLR objects. This is

because the aggregate needs to be able to do a few things, including the following:

n initialize itself This is performed using the Init method of the aggregate CLR type.

n add another value to the calculation For each value that needs to be added to the
calculation, the Accumulate method is called.

n combine itself with another instance of the same aggregate function This is
 performed by calling the Merge method.

n Return its result This is performed by calling the Terminate method.

Before we explore more details of user-defined aggregates, take a few moments to

read through the following example of CLR code, which defines a mathematical product

 aggregate. The result of this aggregate is all inputs multiplied together (such as 5 * 10 *

15 = 750). To add some extra functionality to this aggregate, we have included a second

 296 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 parameter that tells the aggregate whether or not to include zeros in the calculation (because

the inclusion of a zero would always result in an aggregate of zero). The possibility of having

 multiple parameters in user-defined aggregates was added in SQL Server 2008. There are

quite a few observations to make about this code:

n In this example, the SqlUserDefinedAggregate attribute tells SQL Server that we will
manually manage serializing the aggregate (if necessary) by specifying the format to
be user-defined (Format.UserDefined). The attribute also tells SQL Server that it should
return NULL if no values are included in the aggregation (IsNullIfEmpty = True), that
the aggregate cares about duplicates (IsInvariantToDuplicates = False), doesn’t care
about NULL values (IsInvariantToNulls = True), and doesn’t care about the order of
the input (IsInvariantToOrder = True). Finally, the attribute tells SQL Server that the
 maximum storage space used when serializing this aggregate is 19 bytes (16 bytes for
the decimal value and 1 byte each for three Boolean values).

n The SqlFacet attribute is used a few times throughout the code to specify the precision
and scale of the SqlDecimal type.

n The IBinarySerialize interface must be implemented because we used the user-defined
format when defining the aggregate. You can also choose to use the native format;
however, that does not work in this example because the decimal data type here is not
supported by native serialization.

n The IBinarySerialize.Write method is called by SQL Server to serialize the instance
 during execution, if needed.

n The IBinarySerialize.Read method is called by SQL Server to deserialize the instance
during execution, if needed.

'VB:

Imports System

Imports System.Data.SqlTypes

Imports System.Runtime.InteropServices

Imports Microsoft.SqlServer.Server

. . .

<SqlUserDefinedAggregate(Format.UserDefined, IsNullIfEmpty:=True, _

IsInvariantToDuplicates:=False, IsInvariantToNulls:=True, _

IsInvariantToOrder:=True, MaxByteSize:=19)> _

Public Structure DecimalProductAggregate

 Implements IBinarySerialize

 Private m_Value As Decimal ' 16 bytes storage.

 Private m_ValueIsNull As Boolean ' 1 byte storage.

 Private m_SkipZeros As Boolean ' 1 byte storage.

 Private m_SkipZerosIsNull As Boolean ' 1 byte storage.

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 297

 Public Sub Init()

 Me.m_ValueIsNull = True

 Me.m_SkipZerosIsNull = True

 End Sub

 Public Sub Accumulate(<SqlFacet(Precision:=38, Scale:=5)> ByVal value _

 As SqlDecimal, ByVal skipZeros As SqlBoolean)

 If skipZeros.IsNull Then

 Throw New InvalidOperationException(_

 "The @SkipZeros parameter cannot be null.")

 End If

 If value.IsNull Then

 Return

 End If

 ' Init skip zeros flag if it hasn't' been set.

 If (Me.m_SkipZerosIsNull) Then

 Me.m_SkipZeros = skipZeros.Value

 Me.m_SkipZerosIsNull = False

 ElseIf Me.m_SkipZeros <> skipZeros.Value Then

 ' Don't allow the skip zeros setting to change during execution.

 Throw New InvalidOperationException(_

 "The @SkipZeros parameter cannot be changed.")

 End If

 ' Skip zero values if the settings tells us to

 ' and the current value is zero.

 If Me.m_SkipZeros And value.Value = 0 Then

 Return

 End If

 ' If this is the first value, just set it.

 If Me.m_ValueIsNull Then

 Me.m_Value = value.Value

 Me.m_ValueIsNull = False

 Return

 End If

 Me.m_Value *= value.Value

 End Sub

 Public Sub Merge(ByVal other As DecimalProductAggregate)

 Dim skipZeros As SqlBoolean

 If other.m_SkipZerosIsNull Then

 skipZeros = SqlBoolean.Null

 298 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 Else

 skipZeros = other.m_SkipZeros

 End If

 Dim otherValue As SqlDecimal = other.Terminate()

 Me.Accumulate(otherValue, skipZeros)

 End Sub

 Public Function Terminate() As <SqlFacet(Precision:=38, Scale:=5)> SqlDecimal

 If Me.m_ValueIsNull Then

 Return SqlDecimal.Null

 End If

 Return Me.m_Value

 End Function

 ' Read the aggregate from SQL Server.

 Sub Read(ByVal r As System.IO.BinaryReader) Implements IBinarySerialize.Read

 Me.m_ValueIsNull = r.ReadBoolean()

 Me.m_Value = r.ReadDecimal()

 Me.m_SkipZerosIsNull = r.ReadBoolean()

 Me.m_SkipZeros = r.ReadBoolean()

 End Sub

 ' Write the aggregate to SQL Server.

 Sub Write(ByVal w As System.IO.BinaryWriter) Implements IBinarySerialize.Write

 w.Write(Me.m_ValueIsNull)

 w.Write(Me.m_Value)

 w.Write(Me.m_SkipZerosIsNull)

 w.Write(Me.m_SkipZeros)

 End Sub

End Structure

. . .

//C#:

using System;

using System.Data.SqlTypes;

using System.Runtime.InteropServices;

using Microsoft.SqlServer.Server;

. . .

[SqlUserDefinedAggregate(Format.UserDefined, IsNullIfEmpty=true,

IsInvariantToDuplicates=false, IsInvariantToNulls=true,

IsInvariantToOrder=true, MaxByteSize=19)]

public struct DecimalProductAggregate : IBinarySerialize

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 299

{

 private decimal m_Value; // 16 bytes storage.

 private bool m_ValueIsNull; // 1 byte storage.

 private bool m_SkipZeros; // 1 byte storage.

 private bool m_SkipZerosIsNull; // 1 byte storage.

 public void Init()

 {

 this.m_ValueIsNull = true;

 this.m_SkipZerosIsNull = true;

 }

 public void Accumulate([SqlFacet(Precision = 38, Scale = 5)]SqlDecimal value,

 SqlBoolean skipZeros)

 {

 if (skipZeros.IsNull)

 {

 throw new InvalidOperationException(

 "The @SkipZeros parameter cannot be null.");

 }

 if (value.IsNull)

 return;

 // Init skip zeros flag if it hasn't been set.

 if (this.m_SkipZerosIsNull)

 {

 this.m_SkipZeros = skipZeros.Value;

 this.m_SkipZerosIsNull = false;

 }

 // Don't allow the skip zeros setting to change during execution.

 else if (this.m_SkipZeros != skipZeros.Value)

 {

 throw new InvalidOperationException(

 "The @SkipZeros parameter cannot be changed.");

 }

 // Skip zero values if the settings tells us to

 // and the current value is zero.

 if (this.m_SkipZeros && value.Value == 0M)

 {

 return;

 }

 // If this is the first value, just set it.

 if (this.m_ValueIsNull)

 300 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 {

 this.m_Value = value.Value;

 this.m_ValueIsNull = false;

 return;

 }

 this.m_Value *= value.Value;

 }

 public void Merge(DecimalProductAggregate other)

 {

 SqlBoolean skipZeros = other.m_SkipZerosIsNull ? SqlBoolean.Null

 : other.m_SkipZeros;

 SqlDecimal otherValue = other.Terminate();

 this.Accumulate(otherValue, skipZeros);

 }

 [return: SqlFacet(Precision = 38, Scale = 5)]

 public SqlDecimal Terminate()

 {

 if (this.m_ValueIsNull)

 {

 return SqlDecimal.Null;

 }

 return this.m_Value;

 }

 // Read the aggregate from SQL Server.

 void IBinarySerialize.Read(System.IO.BinaryReader r)

 {

 this.m_ValueIsNull = r.ReadBoolean();

 this.m_Value = r.ReadDecimal();

 this.m_SkipZerosIsNull = r.ReadBoolean();

 this.m_SkipZeros = r.ReadBoolean();

 }

 // Write the aggregate to SQL Server.

 void IBinarySerialize.Write(System.IO.BinaryWriter w)

 {

 w.Write(this.m_ValueIsNull);

 w.Write(this.m_Value);

 w.Write(this.m_SkipZerosIsNull);

 w.Write(this.m_SkipZeros);

 }

}

. . .

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 301

After loading the assembly into SQL Server, you can execute the following T-SQL code to

create the user-defined aggregate:

CREATE AGGREGATE dbo.PRODUCT_DECIMAL_38_5

(

 @Input DECIMAL(38,5)

 ,@SkipZeros BIT

)

RETURNS DECIMAL(38,5)

EXTERNAL NAME TK433ClrDemo."TK433.Clr.DecimalProductAggregate";

In this case, we named the aggregate PRODUCT_DECMIAL_38_5 so that it reflects

the actual type for which it can calculate the product. You can see how we can use the

 user-defined aggregate in an SQL query in the following T-SQL code:

WITH Numbers AS (

 SELECT * FROM (VALUES

 (0)

 ,(5.5)

 ,(10.5)

 ,(15.5)

) AS a(Number)

)

SELECT

 dbo.PRODUCT_DECIMAL_38_5(Number, 1) AS ProductExcludingZeros

 ,dbo.PRODUCT_DECIMAL_38_5(Number, 0) AS ProductIncludingZeros

FROM Numbers;

Here is the result:

ProductExcludingZeros ProductIncludingZeros

--------------------- ---------------------

895.12500 0.00000

In this example, the query is executed against a CTE, but the user-defined aggregate can

be used against tables as well.

Creating a CLR UDT
The final CLR object that is supported by SQL Server is a UDT. Creating custom UDTs is similar
to creating user-defined aggregates. The type consists of a CLR type (class or struct) that
uses the SqlUserDefinedType attribute to inform SQL Server of its various behaviors. In the
 following example, you can see the CLR code that is used to define a CLR UDT. This type,
called CURRENCY_VALUE, can be used to store a monetary value (a decimal) and its currency
code (a string). (Note that this example has not been rigorously tested and should not be
used in production code.)

 302 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

As with user-defined aggregates, there are a few observations to make about this code:

n In this example, the SqlUserDefinedType attribute tells SQL Server that we will manually
manage serializing the type by specifying the format to be user-defined (Format
.UserDefined). The attribute also tells SQL Server that a method named Validate should
be run to verify the integrity of the type whenever a binary value is cast to this type
(ValidationMethodName) and that the type is not byte-ordered (IsByteOrdered = False).
Because the only sorting of UDTs supported by SQL Server is byte sorting, you should be
very careful how you implement it. Remember that an integer value of –1 is larger than
1 when comparing the byte structures because the most significant bit in the integer is
set to 1 if it is negative and to zero if it is positive. The other two options that are set are
IsFixedLength, which tells SQL Server whether this type always uses the same number
of bytes for storage, and MaxByteSize, which, as for a user-defined aggregate, tells SQL
Server the maximum number of bytes needed to store a serialized instance of this type.

n The SqlFacet attribute is used a few times throughout the code to specify the precision
and scale of the SqlDecimal type, as well as the maximum length of the SqlString type.

n The SqlMethod attribute is used in two places to specify that both the CurrencyCode
and the Value properties are deterministic and precise; therefore, it can be indexed
and persisted.

n The Parse method is used to convert from a string to the UDT. It is automatically called
by SQL Server both when implicitly and explicitly converting a string to this type.

n The ToString method is used by SQL Server when converting from the UDT to a string.
Note that it is typically a very good idea for the Parse and ToString methods to use the
same string representation of the type.

n The IBinarySerialize interface must be implemented because we used the user-defined
format when defining the type. You can also choose to use the native format; however,
it will not work in this example because neither the decimal nor the string data types
that are used in this example are supported for native serialization.

n The IBinarySerialize.Write method is called by SQL Server to serialize the type.

n The IBinarySerialize.Read method is called by SQL Server to deserialize the type.

'VB:

Imports System

Imports System.Data.SqlTypes

Imports System.Runtime.InteropServices

Imports Microsoft.SqlServer.Server

. . .

<SqlUserDefinedType(Format.UserDefined, ValidationMethodName:="Validate", _

IsByteOrdered:=False, IsFixedLength:=True, MaxByteSize:=20)> _

Public Structure CurrencyValueType

 Implements IBinarySerialize, INullable

 Private m_Value As Decimal ' 16 bytes storage.

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 303

 Private m_CurrencyCode As String ' 4 bytes storage.

 Private m_IsNull As Boolean

 Public Sub New(ByVal value As Decimal, ByVal currencyCode As String)

 Me.m_Value = value

 Me.m_CurrencyCode = currencyCode.ToUpper()

 Me.m_IsNull = False

 End Sub

 ' Get a null instance of the CurrencyValueType type.

 Public Shared ReadOnly Property Null() As CurrencyValueType

 Get

 Dim currValue As CurrencyValueType = New CurrencyValueType()

 currValue.m_IsNull = True

 Return currValue

 End Get

 End Property

 <SqlFacet(MaxSize:=3)> _

 Public Property CurrencyCode() As SqlString

 <SqlMethod(IsPrecise:=True, IsDeterministic:=True)> _

 Get

 If Me.m_IsNull Then

 Return SqlString.Null

 End If

 Return Me.m_CurrencyCode

 End Get

 Set(ByVal value As SqlString)

 Me.m_CurrencyCode = value.Value.ToUpper()

 If Me.Validate() = False Then

 Throw New InvalidOperationException(_

 "The currency code is invalid.")

 End If

 End Set

 End Property

 <SqlFacet(Precision:=38, Scale:=5)> _

 Public Property Value() As SqlDecimal

 <SqlMethod(IsPrecise:=True, IsDeterministic:=True)> _

 Get

 If Me.m_IsNull Then

 Return SqlDecimal.Null

 End If

 Return Me.m_Value

 End Get

 304 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 Set(ByVal value As SqlDecimal)

 Me.m_Value = value.Value

 End Set

 End Property

 ' Called by SQL Server to validate the currency value.

 Public Function Validate() As Boolean

 Return System.Text.RegularExpressions.Regex.IsMatch(_

 Me.m_CurrencyCode, "^[A-Z]{3}$")

 End Function

 ' Convert a string to a currency value.

 Public Shared Function Parse(ByVal input As SqlString) As CurrencyValueType

 If input.IsNull Then

 Return CurrencyValueType.Null

 End If

 Dim space As Integer = input.Value.IndexOf(" ")

 If space <> 3 Then

 Throw New InvalidOperationException(_

 "The input string cannot be converted to a currency value.")

 End If

 Dim currencyCode As String = input.Value.Substring(0, 3)

 Dim value As Decimal = SqlDecimal.Parse(input.Value.Substring(_

 4, input.Value.Length - 4)).Value

 Return New CurrencyValueType(value, currencyCode)

 End Function

 ' Convert a currency value to a string.

 Public Overrides Function ToString() As String

 If Me.m_IsNull Then

 Return Nothing

 End If

 Return String.Format("{0} {1}", Me.CurrencyCode.Value, _

 Me.Value.ToString())

 End Function

 ' Read the type from SQL Server.

 Public Sub Read(ByVal r As System.IO.BinaryReader) _

 Implements IBinarySerialize.Read

 Me.m_Value = r.ReadDecimal()

 Me.m_CurrencyCode = r.ReadString()

 Me.m_IsNull = False

 End Sub

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 305

 ' Write the type to SQL Server.

 Public Sub Write(ByVal w As System.IO.BinaryWriter) _

 Implements IBinarySerialize.Write

 w.Write(Me.m_Value)

 w.Write(Me.m_CurrencyCode)

 End Sub

 Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull

 Get

 Return Me.m_IsNull

 End Get

 End Property

End Structure

. . .

//C#:

using System;

using System.Data.SqlTypes;

using System.Runtime.InteropServices;

using Microsoft.SqlServer.Server;

. . .

[SqlUserDefinedType(Format.UserDefined, ValidationMethodName="Validate",

IsByteOrdered=false, IsFixedLength=true, MaxByteSize=20)]

public struct CurrencyValueType : IBinarySerialize, INullable

{

 private decimal m_Value; // 16 bytes storage.

 private string m_CurrencyCode; // 4 bytes storage.

 private bool m_IsNull; // Not stored. . .

 public CurrencyValueType(decimal value, string currencyCode)

 {

 this.m_Value = value;

 this.m_CurrencyCode = currencyCode.ToUpper();

 this.m_IsNull = false;

 }

 // Get a null instance of the CurrencyValueType type.

 static public CurrencyValueType Null

 {

 get

 {

 return new CurrencyValueType() { m_IsNull = true };

 }

 }

 306 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 [SqlFacet(MaxSize = 3)]

 public SqlString CurrencyCode

 {

 [SqlMethod(IsPrecise = true, IsDeterministic = true)]

 get

 {

 if (this.m_IsNull)

 return SqlString.Null;

 return this.m_CurrencyCode;

 }

 set

 {

 this.m_CurrencyCode = value.Value.ToUpper();

 if (!this.Validate())

 {

 throw new InvalidOperationException("The currency code is invalid.");

 }

 }

 }

 [SqlFacet(Precision = 38, Scale = 5)]

 public SqlDecimal Value

 {

 [SqlMethod(IsPrecise=true, IsDeterministic=true)]

 get

 {

 if (this.m_IsNull)

 return SqlDecimal.Null;

 return this.m_Value;

 }

 set

 {

 this.m_Value = value.Value;

 }

 }

 // Called by SQL Server to validate the currency value.

 private bool Validate()

 {

 return System.Text.RegularExpressions.Regex.IsMatch(

 this.m_CurrencyCode, "^[A-Z]{3}$");

 }

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 307

 // Convert a string to a currency value.

 static public CurrencyValueType Parse(SqlString input)

 {

 if (input.IsNull)

 return CurrencyValueType.Null;

 int space = input.Value.IndexOf(' ');

 if (space != 3)

 throw new InvalidOperationException(

 "The input string cannot be converted to a currency value.");

 string currencyCode = input.Value.Substring(0, 3);

 decimal value = SqlDecimal.Parse(input.Value.Substring(

 4, input.Value.Length - 4)).Value;

 return new CurrencyValueType(value, currencyCode);

 }

 // Convert a currency value to a string.

 override public string ToString()

 {

 if (this.m_IsNull)

 return null;

 return string.Format("{0} {1}", this.CurrencyCode.Value,

 this.Value.ToString());

 }

 // Read the type from SQL Server.

 void IBinarySerialize.Read(System.IO.BinaryReader r)

 {

 this.m_Value = r.ReadDecimal();

 this.m_CurrencyCode = r.ReadString();

 this.m_IsNull = false;

 }

 // Write the type to SQL Server.

 void IBinarySerialize.Write(System.IO.BinaryWriter w)

 {

 w.Write(this.m_Value);

 w.Write(this.m_CurrencyCode);

 }

 308 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 bool INullable.IsNull

 {

 get

 {

 return this.m_IsNull;

 }

 }

}

. . .

After loading the assembly into SQL Server, you can execute the following T-SQL code to

create the UDT:

CREATE TYPE dbo.CURRENCY_VALUE

EXTERNAL NAME TK433ClrDemo."TK433.Clr.CurrencyValueType";

In the T-SQL example shown here, a new table is created and populated with rows from

the Production.Product table. Note that we convert the prices from the Product table to

 CURRENCY_VALUE when we insert them into the new table. Also note that we can use the

public properties of the type to read and write data:

CREATE TABLE Production.TestProducts

(

 Name NVARCHAR(100) NULL

 ,Price dbo.CURRENCY_VALUE NULL

);

INSERT Production.TestProducts (Name, Price)

 SELECT

 Name

 ,CAST('SEK ' + CAST(ListPrice AS NVARCHAR(100)) AS dbo.CURRENCY_VALUE)

 FROM Production.Product;

UPDATE Production.TestProducts SET

 Price.CurrencyCode = 'USD'

WHERE Price.Value = 3578.27000;

SELECT

 Name

 ,Price.CurrencyCode

 ,Price.Value

 ,Price

FROM Production.TestProducts

WHERE Price.CurrencyCode = 'USD';

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 309

Here is the result:

 Price

---- ------------- --

USD 3578.27000 0xC375050000000000000000000000020003555344

USD 3578.27000 0xC375050000000000000000000000020003555344

USD 3578.27000 0xC375050000000000000000000000020003555344

USD 3578.27000 0xC375050000000000000000000000020003555344

USD 3578.27000 0xC375050000000000000000000000020003555344

As you can see, when you query the UDT without calling a property, you see the raw byte

form of the type. For the value 0xC375050000000000000000000000020003555344, the first 16 bytes

shown in bold type represent the decimal value. It is placed before the string simply because

we wrote it out before the string in the Write method. Of course, it is very important to read

the data in the same order that you write it in the Read method; otherwise, you will end up

with some really nasty bugs. If you were to use the native format instead, you wouldn’t need

to worry about this. However, because the native format is very limited as to which data types

can be used, you typically will need to use the user-defined format. The last 4 bytes of the

type are the string that represents the currency code 03555344 (03 = three characters in the

string, followed by the hexadecimal representation of each character: 55H/85D = U, 53H/83D

= S, and 44H/68D = D).

As with UDFs, the result of a UDT’s method can be persisted and indexed (in this case, it

must be persisted to be indexed) using a computed column. Consider the following T-SQL

example, where we create a persisted computed column to index the currency code of the

price in the Production.TestProducts table and then query the column for the number of prices

that are noted in Swedish kronor (SEK):

ALTER TABLE Production.TestProducts

 ADD ComputedCurrencyCode AS Price.CurrencyCode

 PERSISTED; -- Must be persisted in order to index.

CREATE NONCLUSTERED INDEX ComputedCurrencyCodeIdx

 ON Production.TestProducts (ComputedCurrencyCode);

GO

SELECT COUNT(*)

FROM Production.TestProducts

WHERE ComputedCurrencyCode = 'SEK';

-- SQL Server performs an index seek operation using the

-- ComputedCurrencyCodeIdx index.

 310 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

An interesting note is that the optimizer notices that the ComputedCurrencyCodeIdx exists

for the expression used in the last query and uses the index even if we do not query the

 computed column directly, as in this example (the change is shown in bold type):

SELECT COUNT(*)

FROM Production.TestProducts

WHERE Price.CurrencyCode = 'SEK';

-- SQL Server still performs an index seek operation using the

-- ComputedCurrencyCodeIdx index.

What Is My CLR Code Allowed to Do?
The CLR code that is used within your database can be placed in one of three different
“permission sets”: SAFE, EXTERNALACCESS, and UNSAFE. The default permission set is SAFE.
SAFE is the permission set that has been used for all examples in this lesson, and it is also the
permission set that you should try to use at all times to minimize both security problems as
well as the potential impact of bugs. The meaning of each permission set is explained here:

n SAFE A SAFE assembly is not allowed to access any resources outside the database to
which it is deployed; it can only perform calculations and access the local database.

n EXTERNAL ACCESS An EXTERNAL ACCESS assembly is allowed to access resources
outside the local SQL Server instance to which it is deployed, such as another SQL
Server instance, the file system, or even a network resource such as a Web service.

n UNSAFE An UNSAFE assembly is allowed to go even further than EXTERNAL ACCESS.
It is allowed to execute non-CLR (also called unmanaged) code such as a Win32 API or
a COM component.

Using Filestream
Filestream is an option that can be specified for columns of the varbinary(max) data type.
In essence, it makes SQL Server store the data in these columns in separate files in the file
 system instead of inside the actual database files. The use of Filestream can greatly enhance
both the read and the write performance of this type of data.

Filestream is typically recommended if the data that you store in the column is at least

1 megabyte (MB) in size. Filestream can hurt performance if you have very frequent inserts of

small BLOB data.

To be able to use Filestream, you need to enable it in SQL Server by setting the
sp_configure option to 1, 2, or 3. Setting the configuration option to 1 allows only T-SQL
access to the Filestream data, and setting the option to 2 also allows direct file access to the
data through the file system. Finally, setting the option to 3 allows access to the Filestream
data through a file (network) share. To use Filestream, you must also create a filegroup
that contains a Filestream database file. The Filestream database file isn’t really a file; it is a
 directory where the Filestream data files are stored. A Filestream filegroup can have only one
“database file.”

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 311

The following code example shows how to add a Filestream filegroup to the

 AdventureWorks database (the FILENAME string has been formatted to fit on the printed page):

ALTER DATABASE AdventureWorks

 ADD FILEGROUP FileStreamPhotosFG

 CONTAINS FILESTREAM;

ALTER DATABASE AdventureWorks

 ADD FILE

 (

 NAME = 'FileStreamPhotosDF'

 ,FILENAME = 'C:\Program Files\Microsoft SQL Server\

 MSSQL10.MSSQLSERVER\MSSQL\DATA\FileStreamPhotosDF'

)

 TO FILEGROUP FileStreamPhotosFG;

When the filegroup has been added, varbinary(max) Filestream columns can be created.

For a table to contain Filestream columns, it must have a uniqueidentifier column marked with

the property ROWGUIDCOL and having a unique constraint defined on it. The following code

sample shows how to add a ROWGUIDCOL to the Production.ProductPhoto table:

ALTER TABLE Production.ProductPhoto

 ADD RowGuid UNIQUEIDENTIFIER NOT NULL

 ROWGUIDCOL

 CONSTRAINT DFProductPhotoRowGuid DEFAULT NEWSEQUENTIALID()

 CONSTRAINT UQProductPhotoRowGuid UNIQUE;

Now we can add a varbinary(max) Filestream column and copy data into it using regular
T-SQL:

ALTER TABLE Production.ProductPhoto

 ADD ThumbNailPhotoAsFileStream VARBINARY(MAX) FILESTREAM NULL;

GO

UPDATE Production.ProductPhoto SET

 ThumbNailPhotoAsFileStream = ThumbNailPhoto;

If we examine the C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\
DATA\FileStreamPhotosDF folder, we find the following items in it:

n The $FSLOG directory acts as the Filestream data’s transaction log.

n The Filestream.hdr file stores metadata about the Filestream filegroup.

n All other directories with GUID names, such as 09A42544-450A-4932-B25F-5E33F117C179,
are the directories that store the actual data.

When you delete Filestream data (either by using an UPDATE or a DELETE statement), SQL

Server doesn’t immediately delete the file. Instead, the files are deleted when the Filestream

garbage collection process is run. This process in turn is run when the database checkpoint

process is executed.

 312 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

Lesson Summary
n To use user-defined objects based on SQLCLR, SQLCLR must be enabled on the SQL

Server instance.

n The objects most suitable for development using SQLCLR are UDFs and user-defined
aggregates.

n If you create UDTs based on SQLCLR, make sure that you test them thoroughly.

n Consider using Filestream if the relevant data mostly involves storing streams larger
than 1 MB.

Practice SQLcLR

In this practice, you create and use both a scalar and table-valued CLR UDF in the
 AdventureWorks database.

exercise 1 Create a Scalar UDF

In this exercise, you create a scalar UDF that allows a datetime2 value to be converted to a
string by applying a format string (such as yyyy-MM-dd).

 1. Create a new directory in the root of your hard drive called TK433SQLCLR (the path
would be C:\TK433SQLCLR).

 2. Create a new file in the C:\TK433SQLCLR directory called ScalarUDF.cs (if you want to
use C# to create the function) or ScalarUDF.vb (if you want to use Visual Basic .NET).

 3. Type the following code block into the file using a text editor such as Notepad.exe, and
then save and close the file:

'VB:

Imports System

Imports System.Data.SqlTypes

Namespace TK433.ClrLab

 Public Class ScalarUdf

 Public Shared Function DateTimeToString(_

 ByVal dateTime As SqlDateTime, ByVal format As SqlString) _

 As SqlString

 If dateTime.IsNull Or format.IsNull Then

 Return SqlString.Null

 End If

 Return dateTime.Value.ToString(format.Value)

 End Function

 End Class

End Namespace

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 313

//C#:

using System;

using System.Data.SqlTypes;

namespace TK433.ClrLab

{

 public class ScalarUdf

 {

 static public SqlString DateTimeToString(SqlDateTime dateTime, SqlString

 format)

 {

 if(dateTime.IsNull || format.IsNull)

 return SqlString.Null;

 return dateTime.Value.ToString(format.Value);

 }

 }

}

 4. Open a new command prompt and enter the following commands to set the path
environment variable to point to the directory that contains the CLR compilers and to
change the folder in which you saved your source code:

PATH "C:\Windows\Microsoft.NET\Framework\v3.5"

C:

CD \TK433SQLCLR

 5. In the same command prompt, enter the following command to compile the assembly:

//C#:

csc /target:library /out:ScalarUDF.dll ScalarUDF.cs

'VB:

vbc /target:library /out:ScalarUDF.dll ScalarUDF.vb

 6. If necessary, open SSMS and connect to the appropriate instance of SQL Server 2008.

 7. In a new query window, type and execute the following SQL statements to create the
ScalarUDF assembly in the AdventureWorks database:

USE AdventureWorks;

GO

CREATE ASSEMBLY ScalarUDF

 FROM 'C:\TK433SQLCLR\ScalarUDF.dll';

 314 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

 8. In the existing query window, type, highlight, and execute the following SQL
 statements to create the fnDateTimeToString UDF.

CREATE FUNCTION dbo.fnDateTimeToString

(

 @DateTime DATETIME

 ,@Format NVARCHAR(50)

)

RETURNS NVARCHAR(50)

AS

EXTERNAL NAME ScalarUDF."TK433.ClrLab.ScalarUdf".DateTimeToString;

 9. In the same query window, type, highlight, and execute the following SELECT
 statement to execute the fnDateTimeToString UDF:

SELECT TOP(5)

 CustomerID

 ,dbo.fnDateTimeToString(OrderDate, N'yyyy_MM_dd')

FROM Sales.SalesOrderHeader;

The result should look like this:

CustomerID

------------- -----------

676 2001_07_01

117 2001_07_01

442 2001_07_01

227 2001_07_01

510 2001_07_01

exercise 2 Create a Table-Valued UDF

In this exercise, you create a table-valued UDF that returns a numbers table. Because of the
extra code involved with using Visual Basic .NET, only a C# solution is provided.

 1. In the C:\TK433SQLCLR directory created in Exercise 1, create a new file called
 TableValuedUDF.cs.

 2. Type the following code block into the file using a text editor such as Notepad.exe, and
then save and close the file:

//C#

using System;

using System.Collections;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

namespace TK433.ClrLab

{

 public class TableValuedUdf

 Lesson 2: Using SQLCLR and Filestream CHAPTER 7 315

 {

 [SqlFunction(FillRowMethodName = "GetNumbersTableFillRow",

 TableDefinition = "Number INT")]

 static public IEnumerable GetNumbersTable(

 SqlInt32 startNumber, SqlInt32 endNumber)

 {

 for (int number = startNumber.Value; number <= endNumber.Value;

 ++number)

 {

 yield return number;

 }

 }

 static private void GetNumbersTableFillRow(

 object value, out SqlInt32 number)

 {

 number = (int)value;

 }

 }

}

 3. Open a command prompt and enter the following commands to set the path
 environment variable to point to the directory that contains the CLR compilers and
change to the folder in which you saved the source code:

PATH "C:\Windows\Microsoft.NET\Framework\v3.5"

C:

CD \TK433SQLCLR

 4. In the same command window, enter the following command to compile the assembly.

csc /target:library /out:TableValuedUDF.dll TableValuedUDF.cs

 5. If necessary, open SSMS and connect to the appropriate instance of SQL Server 2008.

 6. In a new query window, type and execute the following SQL statements to create the
TableValuedUDF assembly in the AdventureWorks database:

USE AdventureWorks;

GO

CREATE ASSEMBLY TableValuedUDF

 FROM 'C:\TK433SQLCLR\TableValuedUDF.dll';

 7. In the existing query window, type, highlight, and execute the following SQL

 statements to create the fnGetNumbersTable UDF.

CREATE FUNCTION dbo.fnGetNumbersTable

(

 @StartNumber INT

 ,@EndNumber INT

)

 316 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

RETURNS TABLE (Number INT)

AS

EXTERNAL NAME TableValuedUDF."TK433.ClrLab.TableValuedUdf".GetNumbersTable;

 8. In the existing query window, type, highlight, and execute the following SELECT

 statement to execute the fnGetNumbersTable UDF.

SELECT *

FROM dbo.fnGetNumbersTable(501, 505) AS n;

The result should look like this:

Number

501

502

503

504

505

 Key Terms CHAPTER 7 317

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can do any or all of
the following:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenario. This scenario sets up a real-world situation involving the
topics of this chapter and asks you to create solutions.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n Consider whether using XML as a transport protocol between your application (or

parts of your application) and SQL Server is the right solution for your business needs.

n Think twice about storing data in the database as XML; only do so if storing these
values in tabular form either is not possible or is very cumbersome.

n Consider the pros and cons of using XML schema collections to validate your XML.
Remember that schema validation isn’t always beneficial.

n Before using SQLCLR, make sure that it is allowed on the SQL Server instance that your
application is using.

n Think twice about using SQLCLR. As with XML, only do so if it is clearly the right way to
meet your business needs; for instance, if the performance is a lot better than T-SQL or
perhaps because it makes the code much easier to write and maintain.

n Remember that there is extra work associated with deploying SQLCLR objects
(installing assemblies and so forth).

key terms

n XML

n XML document

n XML fragment

n FOR XML

n XML data type

n SQLCLR

n Filestream

 318 CHAPTER 7 Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream

Case Scenario
In the following case scenario, you apply what you have learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

Case Scenario: How Should You Store Data?
You are a database developer for Contoso News Corporation. You have been given the
 responsibility to design the storage of news articles produced by the organization’s reporters.
An article always has a title, but its content may consist of several paragraphs, tables,
 headings, and lists. An article must always be assigned to a predefined category.

Answer the following question for your manager:

n How would you design the storage of this data? That is, which tables do you need and
which columns do you need in each table?

Suggested Practices

To help you master the exam objectives presented in this chapter, do all of the following
practices:

Create and Deploy CLR-Based Objects
n Practice 1 Create the tables suggested in the answer of the case scenario and

 populate them with at least five articles.

Retrieve Relational Data as XML
n Practice 2 Create an XML schema collection that validates the content XML column

from Practice 1.

n Practice 3 Apply the XML schema collection from Practice 2 to the content column.

Transform XML Data into Relational Data
n Practice 4 Modify the schema used by the XML schema collection in Practice 3 by, for

example, changing the name of one of the defined elements.

Query XML Data
n Practice 5 Using SQLCLR, create a UDT that can store information about a customer,

including name, phone number, and address.

n Practice 6 Use the data type that you created in Practice 5 to create a column in a
table, and then populate it with a few customers.

 Take a Practice Test CHAPTER 7 319

Manage XML Data
n Practice 7 Change the definition of your customer UDT by creating a column in the

table to store the address. Instead of using a UDT, move the address from the UDT to
the new column, remove the address property from the UDT, and redeploy the UDT to
the SQL Server instance.

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the content covered in this chapter, or you can test yourself on all the 70-433
certification exam content. You can set up the test so that it closely simulates the experience
of taking a certification exam, or you can set it up in study mode so that you can look at the
correct answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests” in the Introduction to this book.

 CHAPTER 8 321

c H a P t e R 8

Extending Microsoft
SQL Server Functionality with
the Spatial, Full-Text Search,
and Service Broker

With the new spatial data types provided in Microsoft SQL Server 2008, you can store
location data that allows you to work with location and geospatial information.

You can use the geography and geometry data types to track standard geometric x, y, and
z coordinates, as well as ellipsoidal (round-earth) representations such as latitude and
 longitude. Companies might use this data to track sales regions, determine routes from
a warehouse to a store, or determine the location of a particular classroom in a school and
find the distance to the nearest fire escape.

As a database developer, your databases can contain special function data types such
as varchar(max), XML, geometry, or geography. SQL Server 2008 provides you with the
tools you need to use this data efficiently. The full-text search capabilities allow you to
 perform advanced linguistic based searches that are well beyond the capabilities of the
LIKE clause. In addtion, these searches can be completed on columns with data types such
as varbinary(max) that cannot be listed as key columns in standard indexes.

In addition, SQL Server Service Broker allows you to build applications that take
 advantage of the guaranteed asynchronous message delivery between local or
 remote services. Service Broker uses a combination of objects such as queues, dialogs,
 contracts, services, and message types to develop asynchronous messaging solutions.
A company might use Service Broker to design a series of applications that automate
the reimbursement of travel expenses for company employees. When employees fill out
 expense reports, the information is sent to a queue where it is stored until the nightly
batch processing of the reports. Expense reports with the appropriate information are
then sent to an application to be paid. Incomplete expense reports are flagged and then
forwarded through another service to a queue to await manual processing by a manager.

 c o n t e n t s

 cHaPteR 8 321

 extending Microsoft SQL Server Functionality with the Spatial, Full-text
Search, and Service broker 321

Before You Begin .322

Lesson 1: Implementing Spatial Data Types .324

Understanding Spatial Data Types 324

Instantiating Spatial Data Types 327

Lesson Summary 333

Lesson 2: Implementing Full-Text Search .334

Overview of Full-Text Search 334

Configuring Full-Text Searches 336

Writing Full-Text Queries 339

Troubleshooting Full-Text Searches 339

Lesson Summary 350

Lesson 3: Implementing Service Broker Solutions .351

Service Broker Overview 351

Creating Service Broker Applications 354

Enabling Service Broker 356

Configuring Service Broker Components 358

Sending and Receiving Messages 363

Lesson Summary 368

Chapter Review .369

Chapter Summary 369

Key Terms .369

Case Scenarios 370

Suggested Practices .371

Implement Data Types 371

Implement Full-Text Search 371

Implement Service Broker Solutions 372

Take a Practice Test .372

 322 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Exam objectives in this chapter:
n Implement data types.

n Implement full-text search.

n Implement Service Broker solutions.

Lessons in this chapter:
n Lesson 1: Implementing Spatial Data Types 324

n Lesson 2: Implementing Full-Text Search 334

n Lesson 3: Implementing Service Broker Solutions 351

before You begin

To complete the lessons in this chapter, you must have:

n A basic understanding of SQL Server data types

n A general understanding of Common Language Runtime (CLR) data types

n An understanding of basic data manipulation language (DML) constructs, such as
INSERT, UPDATE, and DELETE

n A general understanding of SELECT statement syntax

n A basic understanding of data definition language (DDL) code structure

n Knowledge about how to open and execute queries in SQL Server Management
 Studio (SSMS)

n SQL Server 2008 Developer Edition, Enterprise Edition, or Enterprise Evaluation Edition,
with the AdventureWorks2008 sample database installed

real World

Michael Hotek

A customer of mine who runs a very large retail Web site had a large business

problem when processing credit cards. Their Web site required the customer’s

credit card to be charged before checkout could be completed. Once the order was

completed, the available inventory could be debited.

Credit card processing is a complicated process with many components. Credit

cards are received on the Web site, encrypted, and securely submitted to a payment

gateway. The payment gateway forwards the request to your merchant processor.

The merchant processor might forward the request to a payment aggregator or

intermediary bank. The request is then forwarded to the credit card company. The

credit card company looks up the account, performs fraud and account balance

checks, and returns an approval or rejection.

 Before You Begin CHAPTER 8 323

If any system is unavailable between the Web site and credit card company,

 payments cannot be processed. The payment system also has a timing mechanism

that attempts to defeat hacking and other third-party fraud activity such that

if a response is not received within a specific amount of time, the charge is

 automatically rejected. If any system between the merchant and credit card

 company is overwhelmed with requests and too busy to respond in a timely

 manner, payments cannot be processed.

One or more systems between the company’s Web site and the credit card company

were frequently unavailable, thereby causing a significant number of outages.

While each outage was usually less than one hour, any problems cost the company

a significant amount of revenue. Solving the outages could be accomplished very

easily by taking all the payment processing offline and allowing the orders to be

completed. Unfortunately, this customer was dealing with very limited inventory

where the demand almost always exceeded the supply, hence the requirement to

receive payment before an order was allowed to complete and inventory debited.

We solved their outage problems, which were costing the company millions of

dollars in lost revenue, by implementing a Service Broker solution. Service Broker

allowed us to move the payment processing to a background task when necessary.

Orders would first be processed using the normal methods, but if the credit card

could not be processed due to an outage, the order would be placed onto a Service

Broker queue and the customer would be allowed to complete their order, subject

to payment acceptance. The Service Broker application would then retry the

 payment system until the payment could be processed. To preserve the integrity

of the inventory, once an order was placed on the Service Broker queue, all orders

would be sent to the queue to ensure a first-come, first-served access to available

inventory. Only when the queue was empty would the order processing revert to

directly processing payments.

The implementation of Service Broker saved the company hundreds of thousands

of dollars of custom development and third-party applications. The Service Broker

implementation also eliminated all the outages caused by the payment system,

thereby adding over $20 million in net profit.

 324 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Lesson 1: implementing Spatial Data types

SQL Server 2008 includes a variety of new data types, including two spatial data types that
allow you to manage geographical and geometric data. By using these data types, you can
store location information such as latitude and longitude, which can be used in conjunction
with Microsoft Virtual Earth to provide a visual representation of your geospatial data.

After this lesson, you will be able to:

n Describe the functionality of the geometry and geography data types.

n Instantiate spatial data types.

Estimated lesson time: 60 minutes

More info aDDitiOnaL Data tYPeS

For more information about SQL Server data types and how they function, see Chapter 3,

“Tables, Data Types, and Declarative Data Integrity.”

Understanding Spatial Data Types
SQL Server 2008 includes two new data types to help you work with spatial data. The geometry
and geography data types offer this support and are implemented as .NET CLR data types in
SQL Server 2008. Both the geometry and geography types are predefined and available in each
database on your server as system objects and do not require any additional configuration
before they can be used.

real World

Michael Hotek

One of our customers, a large engineering firm specializing in custom

 machinery, needed to streamline its supply chain and be able to return quotes

to its customers. New machinery requests were first sent to a drafting department,

where an engineering team created detailed specifications of each component.

Once the detailed specifications were created, a research team would search

through hundreds of electronic catalogs to locate any components that could be

purchased off the shelf. Any components that could not be located would be sent

out for a quote to custom fabricators. The entire process could take as long as three

months to compile a quote for the customer, and more than 60 percent of the

components required custom fabrication. By reducing the number of components

requiring custom fabrication, the firm could reduce the overall cost to the customer

as well as reducing the delivery time.

 Lesson 1: Implementing Spatial Data Types CHAPTER 8 325

To improve the offerings to their customers, a new system was designed that used

the geometry data type. The drafting department created detailed specifications

for each component in a machine. Once created, the CAD system generated

 two-dimensional slices of the three-dimensional components at each 1 millimeter

of height. The catalogs of all their suppliers were also imported into a SQL Server

database. All components were also modeled with two-dimensional slices taken at

each 1 millimeter of height. After the detailed design specifications were created

by the drafting department, a spatial query could be executed that located all

stock components that matched the dimensions. The query was designed with

a 10 percent error factor, which would allow the drafting team to decide if small

changes to a component could be made such that it matched a stock component,

thereby eliminating a custom component.

Once implemented, the system increased the match rate and the firm was able

to purchase more than 70 percent of the necessary components off the shelf.

The response to customers for a quote was reduced to an average of six weeks.

 However, the biggest impact was in the cost savings. By being able to match a

higher percentage of off-the-shelf components, the firm was able to reduce the

overall cost of a machine by more than 40 percent and is projecting a reduction in

the assembly time of almost 50 percent, thereby saving their customers an average

of $6 million per machine.

Understanding Spatial Data Terminology
When you are working with spatial data, you need to be familiar with the following terms:

n geography data type A data type used to store ellipsoidal data, such as latitude
and longitude coordinates. Virtual Earth, many mapping products, and census results
 typically feature ellipsoidal measurements.

n geometry data type A data type used to store two and three dimensional data
coordinates. For example, you can use the geometry data type to track locations where
different products are stored within a warehouse.

More info cOMPaRinG tYPeS OF SPatiaL Data

For more information about differences between the two spatial data types as well as

how measurements and orientation are affected with each data type, see the article

“Types of Spatial Data” in SQL Server Books Online.

n Open Geospatial consortium (OGc) An international, nonprofit organization that
develops standards for geospatial- and location-based services.

 326 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

More info OGc StanDaRDS ORGanizatiOn

For more information about the Open Geospatial Consortium (OGC) and the associated

standards, see http://www.opengeospatial.org/.

n Well-known text (Wkt) A standard created by the OGC used to represent text-based
descriptions of geospatial objects.

n Well-known binary (Wkb) The binary equivalent to WKT, which is sometimes used
to transfer and store spatial data.

n Methods Actions an object can perform.

n OGc and extended Methods Methods designed to work with geometry and
 geography data types.

n Object A collection of properties and methods that provide a defined functionality.

n instantiation The process of producing a particular instance of an object based on
the object’s properties and methods.

n Spatial Reference identifier (SRiD) A reference ID associated with a specific model of
the earth. These IDs reference the European Petroleum Survey Group (EPSG) standard
identification system. For example, SRID 4326, the default geography SRID, maps to the
WGS 84 standard. Since geometry data types can exist in undefined planar space, the
default geometry SRID is 0, representing undefined planar space.

More info WGS 84

For more information about the WGS 84 system and additional geodetic standards,

see http://www.ngs.noaa.gov/faq.shtml#WGS84.

n instance types (or spatial data objects) A group of 11 spatial data objects designed
to allow you to work with geometrical or geographical data. Only seven of these
objects are instantiable in a database. The spatial instance types are part of the
 GeometryCollection and are built in a hierarchy. Each object receives properties from
its parent object in the class hierarchy, as shown in Figure 8-1.

Geometry

Surface Curve Point GeomCollection

MultiLineString

Polygon MultiSurface MultiCurve

MultiPolygon

LineString MultiPoint

FiGURe 8-1 Spatial instance types class hierarchy

 Lesson 1: Implementing Spatial Data Types CHAPTER 8 327

Both the geometry and geography data types support these spatial instance types
(data objects). As indicated by the gray boxes in Figure 8-1, the Point, LineString, Polygon,
 MultiPolygon, MultiLineString, MultiPoint, and GeomCollection instance types can be
 instantiated in your SQL Server databases. The white boxes represent spatial instance types
that are used to define general properties that are inherited by objects below them but are
not complete enough to be instantiated on their own.

Restrictions When Using the geography Data Type
When you use the geography data type, each geography instance must fit inside a single
 hemisphere. You cannot store objects larger than a hemisphere. We typically think of
 hemispheres as the Northern, Southern, Eastern, and Western Hemispheres, but this is not the
case with the geography data type. For the geography data type, a hemisphere simply represents
one half of the globe. In addition, if you use a geography data type that requires the input of
two or more geography instances, and the results from the methods do not fit inside a single
 hemisphere, the output returns NULL. Finally, when you use a WKT or WKB representation, the
results must fit inside a single hemisphere or the system throws an ArgumentException.

Instantiating Spatial Data Types
Before you can instantiate spatial data types, you must create a table that includes a column
defined with the geometry or geography data type. For our examples in this chapter, we use
the geography data type.

The following sample code creates a table named Museum. The Location column holds
geospatial data for the museum location:

CREATE TABLE Museum

(MuseumID int IDENTITY PRIMARY KEY,

 MuseumName nchar(50),

 MuseumAddress nvarchar(200),

 Location geography);

Once you have created the table with a geography column, you can instantiate the spatial
data type by inserting geodetic data, such as latitude and longitude, into the table.

There are a large number of methods available to allow you to enter information of different
formats into the geography column. The Point extended static geography method constructs an
instance representing a point that includes information on the longitude, latitude, and SRID.

iMPortant ORDeR OF aRGUMentS

It is important to remember that geospatial data is frequently referred to in terms of

latitude followed by longitude. If you used a Community Technology Preview (CTP) release

of SQL Server 2008 prior to CTP 6, the order of the commands was also latitude followed

by longitude. Beginning with CTP 6 and in the final release of SQL Server 2008, Microsoft

put the arguments in the order of longitude followed by latitude, in response to user input.

Depending on the version of SQL Server Books Online that you are using, the syntax for the

spatial methods might have the longitude and latitude values reversed.

 328 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

The Parse extended static geography method returns a geography instance when the input
is expressed in the OGC WKT representation. The Parse method has a single input parameter
that defines the WKT representation of the geometry instance to be returned.

More info SPatiaL MetHODS

For more information about the spatial methods available in SQL Server 2008, see

“ geography Data Type Method Reference” and “geometry Data Type Method Reference”

in SQL Server Books Online.

The following code adds a row for the COSI museum in Columbus, Ohio, to the Museum
table. This code uses the Parse and Point methods to create an instance of a point based on a
WKT description. The default SRID of 4326 is used:

INSERT INTO Museum

 (MuseumName, MuseumAddress, Location)

 VALUES

 ('COSI Columbus',

 '333 West Broad Street, Columbus, OH 43215',

 geography::Parse('POINT(-83.0086 39.95954)'));

note PARSE anD STGEOMFROMTEXT

Both the Parse and STGeomFromText methods return a geometry instance from an OGC

WKT representation. The difference between the commands is that Parse assumes an SRID

of 0 as a parameter. STGeomFromText includes an argument to specify the SRID.

Figure 8-2 shows a SELECT command and result set displaying the text output for the COSI
museum row entered previously.

FiGURe 8-2 A geography point displayed as text

The ToString function displays the geography value as readable text in the same WKT
representation that you used when you added the row. Figure 8-3 shows location information
without converting the location to a string for readability.

Notice in Figure 8-3, that an additional tab named Spatial Results appears next to the
 Results tab. This tab can be used to view a graphical representation of your spatial data.

 Lesson 1: Implementing Spatial Data Types CHAPTER 8 329

FiGURe 8-3 A geography point returned as a hexadecimal value, which is difficult to read

Before creating Figure 8-4, a new row for the Columbus Art Museum is added to the table.
You can use the following code to add the second row to the Museum table:

INSERT INTO Museum

 (MuseumName, MuseumAddress, Location)

 VALUES

 ('Columbus Art Museum',

 '480 East Broad Street, Columbus, OH 43215',

 geography::Parse('POINT(-82.98775 39.963775)'));

Figure 8-4 represents two points of data in the museum table. Unfortunately, it is difficult
to see these individual points in the screen capture. A description of the point appears when
you place the pointer over the location, as shown in Figure 8-4.

Point for the Columbus Art Museum is in the middle of the circle

FiGURe 8-4 Sample of two points in the Spatial Results tab

 330 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

To better demonstrate the Spatial Results tab, you can create a line using the STLineFromText
and LINESTRING methods. The following code defines a geography type variable and sets
the variable to a line between two points. Figure 8-5 shows the line displayed in the Spatial
Results tab.

FiGURe 8-5 Example of the LINESTRING method

More info SQL SeRveR SPatiaL Data

For more information about working with spatial data in SQL Server 2008, see “Spatial Ed”

at http://blogs.msdn.com/edkatibah/.

Practice instantiating Spatial Data types

In this practice, you create a new table named Airports to store location data for airports
used by customers of your travel agency. You then use several methods to add the geodetic
coordinates for each location. You also create a Sales table to track the sales regions in which
your travel agents are assigned customers. You use the Spatial Results tab in SSMS to view a
sales region.

exercise 1 Work with Points

In this exercise, you instantiate spatial data points and use the Spatial Results tab to view the
points that you entered.

 1. Start SSMS (if it’s not already started), connect to the appropriate SQL Server instance,
and open a new query window.

 2. In the new query window, type and execute the following command to create a new
database for your travel agency:

CREATE DATABASE Travel;

GO

 Lesson 1: Implementing Spatial Data Types CHAPTER 8 331

 3. Below the existing text, type, highlight, and execute the following code to create the
Airports and Sales tables:

USE Travel;

CREATE TABLE Airports

(AirportID int IDENTITY PRIMARY KEY

, AirportName nchar(50)

, AirportCode nchar(3)

, Location geography);

 CREATE TABLE Sales

(SalesPersonID int IDENTITY PRIMARY KEY

, FirstName nchar(50)

, LastName nchar(50)

, SalesRegionName Nchar(50)

, SalesRegionDesc nvarchar(200)

, SalesRegion geography);

 4. Below the existing text, type, highlight, and execute the following code to add rows for
the Los Angeles International Airport (LAX) and London Heathrow Airport (LHR) to the
Airports table:

INSERT INTO Airports

 (AirportName, AirportCode, Location)

 VALUES ('Los Angeles International Airport'

 , 'LAX'

 , geography::STGeomFromText('POINT(-118.4071611 33.9425222)', 4326));

INSERT INTO Airports

 (AirportName, AirportCode, Location)

 VALUES ('London Heathrow Airport'

 , 'LHR'

 , geography::Parse('POINT(-0.45277777 51.47138888)'));

 5. Practice using various methods to add rows for the remaining airports in the
Airport.xls file, which you can find in the Chapter08\Lesson 1 folder in the samples
installed from the companion CD.

 6. Below the existing text, type, highlight, and execute the following command to view
the data that you have entered into the Airports table:

SELECT * FROM Airports;

 7. Switch to the Spatial Results tab. Place the pointer over each of the dots representing
the airports to view their properties. If necessary, use WHERE clauses to limit the result
set to make it easier to read.

 8. Leave SSMS open for the next exercise.

 332 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

exercise 2 Work with a Polygon

In this exercise, you instantiate spatial data as a polygon and use the Spatial Results tab to
view the polygon that you created.

 1. Open a new query window.

 2. In the query window, type and execute the following code to add Kim Abercrombie to
the Sales table:

USE Travel;

INSERT INTO Sales

 (FirstName, LastName, SalesRegionName, SalesRegionDesc, SalesRegion)

 VALUES

 ('Kim',

 ' Abercrombie ',

 'Southeast US',

 'Florida, Georgia, Alabama',

 geography::STGeomFromText('POLYGON((-88.34609167 30.286825,

 -86.28281667 30.43045278,

 -85.10322222 29.63877222,

 -84.04541389 30.06674722,

 -82.78871389 29.10671389,

 -82.80399722 28.12101667,

 -82.63304722 27.47348611,

 -82.12766111 26.46439722,

 -81.65219167 25.88982778,

 -81.06721944 25.18627222,

 -80.41878333 25.15618611,

 -80.01395278 26.75898889,

 -80.55964722 28.29220833,

 -80.53146667 28.59193056,

 -81.41381944 30.69794444,

 -80.90161944 31.97196944,

 -83.19839167 34.92200556,

 -88.13663611 34.96236944,

 -88.34609167 30.286825))', 4326));

 3. Below the existing text, type and execute the following text to view the row that you
entered into the Sales table.

SELECT * FROM Sales;

 4. In the query window, review the results of the query, click the Spatial Results tab,
and review the shape of the Southeast US region.

 5. Save your script, and close SSMS.

 Lesson 1: Implementing Spatial Data Types CHAPTER 8 333

Lesson Summary
n The geography and geometry data types provide you with the ability to work with

spatial data with system-defined data types rather than having to define your own
CLR data types.

n You can instantiate spatial data by using any of the spatial methods included with
SQL Server 2008.

 334 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Lesson 2: implementing Full-text Search

SQL Server 2008 includes a fully integrated full-text search engine. Full-text search allows
you to build advanced queries that go beyond the capabilities of the traditional SELECT
 command with the LIKE argument. By using the CONTAINS and FREETEXT predicates as well
as the CONTAINSTABLE and FREETEXTTABLE functions, you can write queries that return
the following:

n Inflectional forms of a verb that you input

n Matched results from data stored as a PDF file in a varbinary(max) column

n Synonyms of the search term located through a thesaurus search

This lesson provides you with an overview of the full-text search architecture and an
overview of how to configure full-text search in SQL Server 2008. You also learn about and
practice writing full-text search queries.

After this lesson, you will be able to:

n Describe the full-text search capabilities in SQL Server 2008.

n Configure full-text indexes.

n Write full-text queries by using CONTAINS, CONTAINSTABLE, FREETEXT,
and FREETEXTTABLE.

Estimated lesson time: 60 minutes

Overview of Full-Text Search
Full-text search capabilities were introduced in SQL Server 7.0 and continue to progress and
improve through each new release. In SQL Server 2008, the full-text search service is fully
integrated with the Database Engine and no longer requires an external search service.
In addition, full-text indexes can exist as a part of the database structure rather than in a
separate file in the file system.

Full-Text Search Architecture
To be able to troubleshoot improperly functioning full-text queries, you should be familiar
with the general architecture and configuration of full-text search.

The following processes make up the full-text search architecture:

n SQL Server process (Sqlservr.exe) Contains the Full-Text Engine, which manages
full-text indexing and queries. Because of this complete integration with the Database
Engine, the optimizer recognizes and enhances performance on full-text queries.

 Lesson 2: Implementing Full-Text Search CHAPTER 8 335

note MSFteSQL SeRvice nO LOnGeR USeD

The MSFTESQL Service no longer exists in SQL Server 2008.

n Filter daemon host process (Fdhost.exe) Runs as an isolated process to host
 third-party components, thus protecting the SQL Server process from those
 components.

n SQL Full-text Filter Daemon Launcher (Fdlauncher.exe) Starts Fdhost.exe processes
when required.

More info beHaviOR cHanGeS in FULL-teXt SeaRcH

For more information about full-text search behavior changes introduced in SQL Server 2008,

see http://technet.microsoft.com/en-us/library/ms143272.aspx.

Full-Text Terminology
In learning about full-text search, you might encounter a large number of new concepts and
terminology. These concepts and terms include the following:

n term The word, phrase, or character string included as input in the full-text query.

n Full-text catalog A virtual object that represents a group of full-text indexes. When
you create a full-text catalog in a SQL Server 2008 environment, the full-text catalog
does not belong to any filegroups.

n Full-text index An object that contains significant words and their locations within
the columns included in the index. When you define the full-text index, you specify a
unique index that identifies the rows in the table, what columns are to be included in
the index, the catalog to which the index belongs, the filegroup on which the index is
created, and additional options.

n Word breaker A process that finds word boundaries (that is, tokenizes words) based
on the linguistic rules for the data language defined. You can define the language of
the data in the column when creating a full-text index on a table.

n token A word or character string defined by a word breaker.

n Stemmer A process that conjugates verbs based on the linguistic rules of the data
language defined.

n thesaurus Extensible Markup Language (XML) files that define the synonyms for a
term in a specific language. You must define thesaurus mappings for a given language
before full-text queries can look for synonyms in that language. The thesaurus files are
empty by default.

n Stopword A word that is commonly used and adds no meaning to a search, such
as a, an, and the. Stopwords in SQL Server 2008 provide similar functionality to noise
words in SQL Server 2005.

 336 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

n Stoplist A database object that is used to manage stopwords. There is a system-defined
stoplist and you can also create your own stoplists. A stoplist can be associated with a
full-text index.

n Filter A component that processes a document to extract the textual information
from documents stored in a varbinary(max) or image column and then sends that
information to the word breaker. Each file type (such as .doc, .xls, and .pdf) must have
its own filter. When you define a full-text index on a varbinary(max) or image column
containing documents, you must also define a type column that contains the file
 extension associated with the file type contained in the same row.

n Population (crawl) The process of adding data to (populating) an index either during
creation or when the index is rebuilt. This can be initiated automatically or manually.

n Full-text engine An integral component of the SQL Server Service process that
 manages full-text administrative tasks, handles full-text query execution, and manages
the filter daemon host process.

n Filter daemon host process (Fdhost.exe) A process that manages third-party
 components such as filters, word breakers, and stemmers separated from the
SQL Server process.

n SQL Full-text Filter Daemon Launcher (Fdlauncher.exe) A service that starts
Fdhost.exe processes when the Full-Text Engine requires them. This is the only function
of this service.

More info StOPLiStS anD tHeSaURUS FiLeS

For more information about stoplists and thesaurus files, including how to create and

edit them, see “CREATE FULL-TEXT STOPLIST (Transact-SQL),” “Thesaurus Configuration,”

and “How to: Edit a Thesaurus File (Full-Text Search)” in SQL Server Books Online. Another

resource is Chapter 5, “Managing Full Text Indexes,” in MCTS Self-Paced Training Kit

(Exam 70-432): Microsoft SQL Server 2008—Implementation and Maintenance by Michael

Hotek (Microsoft Press, 2009).

Configuring Full-Text Searches
Although a database administrator typically configures and manages full-text indexes, as a
database developer, you should have a basic understanding of how to enable and configure
full-text searches. You can perform all the required steps with either Transact-SQL (T-SQL)
code or through SSMS. In this section, you use T-SQL code.

More info HOW tO cOnFiGURe FULL-teXt SeaRcHeS WitH SSMS

For more information about how to configure full-text indexes and catalogs by using

SSMS, see the article “Full-Text Catalog and Index How-to Topics (Full-Text Search)” in SQL

Server Books Online.

 Lesson 2: Implementing Full-Text Search CHAPTER 8 337

By default, when you install the SQL Server 2008 Database Engine, full-text search is
 included in the installation. If you choose not to install the full-text search components during
SQL Server installation, you can use the SQL Server Installation Center to add this feature.
In addition, in SQL Server 2008, all databases are enabled automatically to support full-text
search. You can locate the SQL Server Installation Center by clicking Start, All Programs,
 Microsoft SQL Server 2008, and Configuration Tools.

To enable full-text search capabilities, you must create a full-text catalog and a full-text
index, as explained in the next sections.

Creating Full-Text Catalogs
The first step in configuring full-text indexing on a database is to create a full-text catalog on
the database where you want to query data by using full-text search capabilities. You cannot
create full-text catalogs in the master, model, or tempdb databases. You can use the CREATE
FULLTEXT CATALOG command to create the full-text catalog.

The CREATE FULLTEXT CATALOG command includes the following arguments:

n Catalog_name Specifies the name that the catalog will be given.

n ON FILEGROUP filegroup Included for backward compatibility and has no effect in
SQL Server 2008.

n IN PATH ‘rootpath’ Included for backward compatibility and has no effect in
SQL Server 2008.

n ACCENT_SENSITIVITY ON/OFF Specifies whether searches are accent-sensitive. If you
do not specify this option, the accent sensitivity from the database collation is used.

n AS DEFAULT Specifies the catalog you are creating as the default catalog for the
 database. (If you create a full-text index in the same database without specifying a
catalog, the default catalog is used.)

n AUTHORIZATION owner_name Sets the owner of the full-text catalog.

The following code creates a catalog named ftCatalog as the default full-text catalog on
the AdventureWorks2008 database:

USE AdventureWorks2008;

CREATE FULLTEXT CATALOG ftCatalog AS DEFAULT

Creating Full-Text Indexes
Before you can create a full-text index by using the CREATE FULLTEXT INDEX command, you
must satisfy the following requirements:

n A full-text index cannot already exist on the table. You can create only one full-text
index per table.

n A unique key index must exist on the table. This key index must be based on a unique,
single-key column that does not allow NULL values.

n A full-text catalog must exist in the respective database. If a default catalog does not
exist in the table's database, you must specify a catalog name in your CREATE FULLTEXT
INDEX command.

 338 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

note USinG tHe FULL-teXt inDeXinG WizaRD

If you are using the Full-Text Indexing Wizard in SSMS, you can create a new full-text

 catalog as part of the full-text index definition.

The CREATE FULLTEXT INDEX command includes the following arguments:

n Table_name Specifies the table or indexed view on which the full-text index is created.

n Column_name Specifies the columns to be included in the full-text index. If you do
not specify any columns, the command completes successfully to create the full-text
index, but no columns are included in the index. Before you can populate or query the
full-text index, you must add columns.

n TYPE COLUMN type_column_name Defines the column that contains the extension
representing the file type of information included in a varbinary, varbinary(max), or
image column. If you specify this option but you do not include a binary column with
data in the full-text index, an error is generated.

n LANGUAGE language_term Defines the string, integer, or hexadecimal value that
 represents the locale identifier. If a language is not specified, the default language of
the SQL Server instance is used.

n KEY INDEX index_name Defines the name of the unique index required by the
 full-text index to identify each row in the table. This value is required.

n fulltext_catalog_name Defines the logical full-text catalog where the index is
 created. If a default catalog does not exist, you must specify a valid full-text catalog
name in the table’s database.

n FILEGROUP filegroup_name Defines the valid name of an existing filegroup on which
the full-text index is stored. If you do not specify a filegroup, the full-text index is
stored on the same filegroup as the specified table or view. If the table is partitioned,
the full-text index is stored on the primary filegroup for the partitioned table.

n CHANGE_TRACKING Specifies how changes to the table are propagated to the
 full-text index. The settings for this argument are as follows:

• AUTO Specifies that the propagation of changes happens automatically. Changes
still might not be reflected immediately in the full-text index. This is the default
 setting.

• MANUAL Specifies that the ALTER FULLTEXT INDEX. . .START UPDATE POPULATION
statement must be run either manually or by using SQL Server Agent jobs to
 propagate changes to the full-text index.

• OFF Specifies that SQL Server does not track changes to the table. A full
 population must be performed for any changes to be propagated to the full-text
index. Unless the NO POPULATION option is specified, an initial population of the
full-text index will occur automatically after the full-text index is created.

 Lesson 2: Implementing Full-Text Search CHAPTER 8 339

• OFF, NO POPULATION Specifies that the initial population of the full-text index
does not occur after the full-text index is created. The NO POPULATION option is
valid only with the OFF change tracking option.

note MODiFicatiOnS MaDe bY USinG tHe WRITETEXT

anD UPDATETEXT cOMManDS

Modifications made by using the WRITETEXT and UPDATETEXT commands are not

reflected in the full-text index and are not tracked through change tracking.

n STOPLIST Specifies a stoplist to be associated with the full-text index. If this option is
not specified, the default full-text system stoplist is used. The options for this argument
are as follows:

• OFF Specifies that a stoplist is not associated with this full-text index.

• SYSTEM Specifies that the default system stoplist is associated with this full-text
index.

• Stoplist_name Specifies the valid name of an existing stoplist to be associated with
this full-text index.

The following code creates a full-text index on the Description column in the
Production.ProductDescription table. The full-text index uses the AW2008FullTextCatalog
and uses the system stoplist:

CREATE FULLTEXT INDEX ON Production.ProductDescription (Description)

 KEY INDEX PK_ProductDescription_ProductDescriptionID

 ON AW2008FullTextCatalog

 WITH STOPLIST = SYSTEM;

Writing Full-Text Queries
When you write full-text queries, you can choose between the CONTAINS and FREETEXT
predicates and the CONTAINSTABLE and FREETEXTTABLE functions. These commands provide
you with a variety of query terms that allow you to return different forms of data. In this
 section, you learn the functionality of these predicates and functions and examine samples of
each type of query.

Troubleshooting Full-Text Searches
As you are learning about and practicing full-text queries, you should understand the tools
available to help you troubleshoot and understand the query results being returned.

 340 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

real World

Ann Weber

W ith SQL Server 2000 and SQL Server 2005, I had several experiences building

full-text queries against data where symbols were included in our searches.

For example, searching for n/a and C#, we had to execute extensive test queries

on different data samples to determine what would be returned by a variety of

 queries. There was no easy way to see how the full-text search engine would

 interpret a particular query. Now, with SQL Server 2008, the sys.dm_fts_parser

dynamic management function (DMF) shows you the results of the word breaker for

 different terms based on the input and term operators.

When you execute a full-text query before the full-text population has completed,
the query might return only a portion of the matching rows. You can use the
 FULLTEXTCATALOGPROPERTY function to determine the population status of the full-text
catalog. If a population is in progress, a value of 1 is typically returned.

You would execute the following command to verify the population status of the
 AdvWksDocFTCat catalog:

SELECT FULLTEXTCATALOGPROPERTY('AdvWksDocFTCat', 'PopulateStatus');

In addition, the sys.dm_fts_index_population dynamic management object returns
 current population status. Figure 8-6 displays the sys.dm_fts_index_population function in
its simplest form.

FiGURe 8-6 Basic sys.dm_fts_index_population syntax and sample results

 Lesson 2: Implementing Full-Text Search CHAPTER 8 341

To make the results more readable, you can create stored procedures that return a more
user-friendly output. The code shown here uses aliases and system functions to improve the
readability of the sys.dm_fts_index_population dynamic management view (DMV). Figure 8-7
shows the results of this query:

SELECT DB_NAME(database_id) AS 'Database Name'

 , database_id AS 'DB_ID'

 , OBJECT_NAME(table_id) AS 'Table Name'

 , table_id

 , population_type_description AS 'Population Desc.'

 , status_description AS 'Status Desc.'

 , completion_type_description AS 'Completion Desc.'

 , start_time

FROM sys.dm_fts_index_population;

FiGURe 8-7 Example of a more user-friendly output for the sys.dm_fts_index_population DMV

To view what columns are included in a full-text index, you can use the sys.fulltext_index_
columns catalog view, as shown in the following command.

SELECT OBJECT_NAME (object_id) AS TableName

 , object_id

 , COL_NAME(object_id, column_id) AS ColumnName

 , column_id

 , COL_NAME(object_id, type_column_id) AS TypeColumn

 , language_id

FROM sys.fulltext_index_columns;

Figure 8-8 shows the names of the tables and columns where a full-text index has
been defined.

FiGURe 8-8 Sample syntax and output from the sys.fulltext_index_columns catalog view

 342 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

If a full-text query does not return the expected result set, you can use the sys.dm_fts_parser
DMF to view the final tokenization result from the query. The tokenization result is based on
the input term and conditions, such as the word breaker, thesaurus, and stoplists used.

The syntax for the sys.dm_fts_parser function is as follows:

sys.dm_fts_parser('query_string', lcid, stoplist_id, accent_sensitivity)

The following arguments are used with this function:

n query_string Defines the string for which you would like to view the word breaker
 output. This string can include any valid options from the CONTAINS predicate,
 including INFLECTIONAL, THESAURUS, and Boolean operators.

n lcid Defines the location identifier that defines the word breaker to be used.

note vieWinG avaiLabLe LanGUaGeS

You can view the available languages for a particular SQL Server instance by executing

the following query:

SELECT * FROM sys.full-text_languages ORDER BY lcid

n stoplist Defines the identifier number (ID) of the stoplist associated with the query.
A value of 0 specifies that the system-supplied stoplist is to be used, and a value of
NULL specifies that no stoplist is to be used.

n accent_sensitivity Specifies the accent sensitivity to be used. Set this argument to
1 for accent-sensitive queries and 0 for accent-insensitive queries. When a language
such as French includes an accent, this option determines whether or not a word such
as ou matches où . With accent sensitivity set to 1, these two words would not be
 considered a match.

Figure 8-9 shows a sample of the sys.dm_fts_parser DMF. The result set includes matches
for inflectional forms of the verb read.

FiGURe 8-9 The syntax and result set for forms of the verb read

 Lesson 2: Implementing Full-Text Search CHAPTER 8 343

When your search data includes special characters such as an ampersand or a forward
slash, you might not receive the result set that you expect. These characters and a few
 others have special meaning to the Full-Text Engine. Figure 8-10 displays the results from the
 following queries on the term n/a:

SELECT * FROM sys.dm_fts_parser

 ('n/a', 1033, 0, 0);

SELECT * FROM sys.dm_fts_parser

 ('n/a', 1033, NULL, 0);

SELECT * FROM sys.dm_fts_parser

 ('"n/a"', 1033, 0, 0);

FiGURe 8-10 Sample syntax and results from a variety of searches on the term n/a

The first query uses the system noise list. The parser views the input (query_string) as two
separate terms, n and a. Single letters are flagged as noise words, and in an actual query
against your data, no rows would be returned because noise words are ignored in the result set.

The second query uses the NULL option to tell the parser to ignore all stoplists. Because
of this, an actual query against your data using these options would return all rows with the
 letter n by itself and all rows that include the letter a by itself.

The final query adds double quotes around the term and demonstrates that even though
the input is now seen as n/a, the parser still resolves it to n and a.

More info FULL-teXt SeaRcH anD SPeciaL cHaRacteRS

For more information about full-text search and how it behaves with special characters,

 including how special characters affect thesaurus files, see http://support.microsoft.com/default

.aspx/kb/923317 and the article “sys.dm_fts_parser (Transact-SQL)” in SQL Server Books Online.

The final example shows the usage of double quotes to define a phrase rather than a
single term. The second query also shows the usage of Boolean operators within the query.
The results are displayed in Figure 8-11.

SELECT * FROM sys.dm_fts_parser

('"Backyard Playground"', 1033,0,0)

SELECT * FROM sys.dm_fts_parser

('"Backyard Playground" OR "Swing Set" ', 1033,0,0)

 344 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

FiGURe 8-11 Sample syntax and output with double quotes and Boolean operators

CONTAINS and CONTAINSTABLE
The CONTAINS predicate allows you to write queries to return exact matches to your input
as well as fuzzy (less precise) matches to the input term. The CONTAINSTABLE function has
the same search conditions as the CONTAINS predicate, but it also allows you to return a
relevance value (RANK) and the full-text key (KEY) for each row in the result set. With these
commands, you can search for the following:

n Exact matches of a word or phrase.

n A synonym (thesaurus match) for a word or phrase. For example, you can create a
custom thesaurus that returns “teacher,” “educator,” and “professor” when you query
on the term teacher.

n The conjugated verb forms (inflectional forms) of a word. For example, if you query on
the term write, an inflectional query also returns such matches as “wrote,” “written,”
and “writes.”

n A series of characters that appear at the beginning of a word or at the beginning of
any word within a phrase. For example, you can define a prefix term as the phrase
“local school.” Full-text search on such a term returns “local schools” and “locally
schooled.”

n A word that is located near another word.

The CONTAINS predicate has two arguments, an InludedColumns argument and a
 SearchCondition argument. The IncludedColumns argument can contain any of the following
components:

n Column_name Set this to the name of the column if you want to search only a single
column.

n Column_list Set this to the names of the columns to be included in the search if you
want to search multiple columns.

n * An asterisk (*) signifies that all full-text-enabled columns in the table in the
FROM clause are to be included in the search. If more than one table is listed in the
FROM clause, you must specify the table name (for example, production.productreview.*).

 Lesson 2: Implementing Full-Text Search CHAPTER 8 345

n Language Set this to the language of the query. This value can be set to the name of
a language in the syslanguages table (enclosed in single quotes), to an integer-based
locale identifier (LCID) number, or to the hexadecimal value of an LCID.

The SearchCondition argument can contain the following components:

n Simple Term Set this to a word (a string of characters without punctuation or spaces)
or phrase (one or more words, typically with a space between each word). Phrases
should be contained within double quotes (“”).

n Prefix Term Set this to a word or phrase when you want to match words or phrases
that start with your input prefix term. All prefix terms should be followed by an
 asterisk, and the full term including the asterisk should be contained within double
quotes. If you use single quotes, SQL Server interprets the query as a simple term, not
a prefix term. For a prefix term, the asterisk is interpreted as 0 or more characters. For
example, if your contains_search_condition_ is “text*”, rows with the values of “text” and
“textbook” are both returned.

n Generation Term Set this to INFLECTIONAL or THESAURUS to define a
 language-dependent lookup. The INFLECTIONAL term uses the stemmer for a given
language to find forms of nouns or verbs. The THESAURUS term uses the thesaurus for
the corresponding language to match the longest pattern or patterns from the word
or phrase provided in contains_Search_Condition to the thesaurus file. If a match is not
found in the thesaurus file, the Generation Term is ignored, and a simple term lookup
is performed.

n Proximity Term Set this to NEAR or a tilde (~) to specify that the term to the left of
the proximity operator should be close to the term on the right. When you link more
than two terms with proximity operators, all the terms should be close to each other.
The word NEAR and the tilde (~) function identically.

n Weighted Term Set this to ISABOUT to identify the use of a weighted term. Also, it
uses the WEIGHT keyword and a number between 0.0 and 1.0 to specify the relative
weight for each component in the weighted term. It has meaning only when used with
the CONTAINSTABLE function.

n Logical Operators Set this to AND (or &), to AND NOT (or &!), or to OR (or |).
The keywords and symbols can be used interchangeably. AND indicates that both
conditions must be met, while AND NOT indicates that the first condition must be true
and the second condition must be false. OR indicates that either one or both of the
conditions must be met.

note ORDeR OF OPeRatiOnS

When multiple logical operators are included, parenthesized groups are evaluated

first, followed by NOT, then AND, then OR. NOT must follow an AND, as in AND NOT.

The order of multiple uses of the same operator is not important (for example, 1 OR 2

OR 3 evaluates the same as 2 OR 3 OR 1) because Boolean operators are associative.

 346 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

The CONTAINSTABLE function includes the following additional arguments:

n Table Specifies the name of a table for which full-text search is enabled.

n Top_n_by_rank Specifies that only the specified number of rows with the highest
 rankings should be returned. You can improve query performance by using this option
to limit the results to only the most relevant rows.

CONTAINS and CONTAINSTABLE Samples
The following query returns rows from the ProductReview table where the word quality is
found near the word comfort. To show the product name rather than the product ID, the
sample includes a join to the Product table. Because the CONTAINS predicate can query only
one full-text index, you must specify from which table you want to query columns in the
WHERE clause, as shown in bold type in this query:

SELECT ProductReviewID, Production.Product.Name AS 'Product Name'

, Rating, Comments, Production.ProductReview.ModifiedDate

FROM Production.Product

JOIN Production.ProductReview

ON Production.Product.ProductID = Production.ProductReview.ProductID

WHERE CONTAINS(Production.ProductReview.*,'Quality NEAR comfort')

The following query returns rows in the ProductReview table that include forms of the
word bike, such as biking:

SELECT ProductReviewID, Production.Product.Name AS 'Product Name'

, Rating, Comments, Production.ProductReview.ModifiedDate

FROM Production.Product

JOIN Production.ProductReview

ON Production.Product.ProductID = Production.ProductReview.ProductID

WHERE CONTAINS(Production.ProductReview.*,'FORMSOF(INFLECTIONAL , bike)')

note bOOSt PeRFORMance

If you use a variable to set the simple term of the query, use a variable of data type nvarchar,

not of data type varchar. If you use the varchar data type, SQL Server must perform an

implicit conversion. Conversions limit query optimization techniques.

The following code returns rows from the ProductDescription table that include the words
safety, performance, or comfort. Each word is given a relative weight value, and the results are
ordered from the highest-ranking match to the lowest:

USE AdventureWorks2008

GO

SELECT FT_Table.ProductDescriptionID, FT_Table.[Description]

 , KEY_TBL.RANK

 Lesson 2: Implementing Full-Text Search CHAPTER 8 347

 FROM Production.ProductDescription AS FT_Table

 INNER JOIN CONTAINSTABLE(production.ProductDescription, Description,

 'ISABOUT (comfort weight (.8)

 , Safety weight (.5)

 , Performance weight(.2))') AS KEY_TBL

 ON FT_Table.ProductDescriptionID = KEY_TBL.[KEY]

ORDER BY KEY_TBL.RANK DESC;

FREETEXT and FREETEXTTABLE
The FREETEXT predicate allows you to write queries that return values that match the meaning
of the search condition, not simply the exact words or synonyms of the search condition.
The full-text query engine performs the following tasks when you execute a full-text query by
using the FREETEXT predicate:

n Uses the word breaker to split the value of the string entered for the search condition
into words.

n Uses stemming to create inflectional forms of the words created by the word breaker.

n Uses the thesaurus to locate additional expansions or replacements for the search
terms.

The FREETEXT command has the following arguments:

n Column An individual column name, a list of columns separated by commas and
enclosed within parentheses, or an asterisk (*) to designate all full-text columns.

n Free-text string Inputs the string to search for in the listed columns. If you enclose
the string in double quotes, a phrase search is performed. With a phrase search,
 stemming and thesaurus lookups are not performed.

n Language The language that is used for word breaking, stemming, stoplists, and
 thesaurus lookups.

The FREETEXTTABLE command includes a combination of arguments from both the
 FREETEXT and CONTAINSTABLE commands. The FREETEXTTABLE command includes the
 Table, Column, Free-text string, Language, and Top-n-by-rank arguments as defined previously.

FREETEXT and FREETEXTTABLE Samples
The following command uses the FREETEXT predicate to return rows with descriptions that
match the general meaning of the phrase “provides a light stiff ride.” The result set for this
command returns 34 of the 762 rows in the ProductDescription table when a full-text index is
built on the description column:

SELECT * FROM Production.ProductDescription

WHERE FREETEXT(*,'provides a light stiff ride')

 348 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

In contrast, if you execute the following command, only one row is returned:

SELECT * FROM Production.ProductDescription

WHERE CONTAINS(*,'"provides a light stiff ride"')

The following code uses the FREETEXTTABLE command to return rows with a meaning close
to the input text. The full-text search engine assigns a rank based on how close the match is to
the input phrase. The results are returned with the highest ranking rows listed first:

SELECT FT_TBL.ProductDescriptionID, FT_TBL.Description, KEY_TBL.RANK

FROM Production.ProductDescription AS FT_TBL

INNER JOIN FREETEXTTABLE (Production.ProductDescription, description,

 'light stiff ride') AS KEY_TBL

 ON FT_TBL.ProductDescriptionID = KEY_TBL.[KEY]

 ORDER BY KEY_TBL.RANK DESC

Quick check

n You need to write a query that returns all tenses of the verb write. Which

 generational term should you include in your query?

Quick check answer

n INFLECTIONAL

Practice Writing Full-text Queries

In this practice, you execute queries against tables and columns in the AdventureWorks2008
database that have been enabled for full-text indexing.

exercise 1 Review Full-Text Indexed Tables

In this exercise, you review the existing full-text indexes in the AdventureWorks2008 database.

 1. Start SSMS (if it’s not already started), connect to your SQL Server instance, and open a
new query window.

 2. In the new query window, type and execute the following command to view the tables
with populated full-text indexes:

USE AdventureWorks2008;

GO

SELECT db_name(database_id) AS 'Database Name'

, OBJECT_NAME(table_id) AS 'Table Name'

FROM sys.dm_fts_index_population;

 3. Review the result set and notice that full-text indexing has been enabled on the
 ProductReview, Document, and JobCandidate tables.

 Lesson 2: Implementing Full-Text Search CHAPTER 8 349

note inDeX On tHe PRODUCTDESCRIPTION tabLe

If you run the samples from the text, a full-text index also exists on the

 ProductDescription table.

 4. If necessary, open Object Explorer by selecting Object Explorer from the View menu.

 5. In Object Explorer, expand the Databases node, expand AdventureWorks2008, expand
Tables, right-click Production.ProductReview, select Full-Text Index, and then select
Properties.

 6. In the Full-Text Index Properties window, in the Select A Page pane, click Columns.

 7. On the Columns page, note the columns that have been enabled for full-text indexing.

 8. Repeat steps 5–7 for the Production.Document and HumanResources. JobCandidate
 tables. Notice that the Document column of the Production.Document table has
a Type Column value of FileExtension. This is because the document column has a
varbinary(max) data type and the data must be interpreted by the appropriate filter
 defined by the file name extension included in the FileExtension column. All the files
in the sample have the .doc extension and will be interpreted by the Microsoft Office
Word filter.

 9. Leave SSMS open for the next exercise.

exercise 2 Use the CONTAINS Command

In this exercise, you use the CONTAINS command to query the ProductionDocument table.
You also use the sys.dm_fts_parser function to view how the word breaker interprets a term.

 1. Open a new query window, and type and execute the following command to retrieve
rows from the Production.Document table that contain any verb form of the word
lubricate in any full-text indexed column:

USE AdventureWorks2008;

GO

SELECT Title, Filename, FileExtension, DocumentSummary

FROM Production.Document

WHERE CONTAINS(*, 'FORMSOF(INFLECTIONAL, lubricate) ');

 2. Notice that the DocumentSummary column includes the word “lubricating.” Because
the Document column is returned as a binary data type, you cannot read the words
included in the file, but you can verify that the document actually contains a verb
form of this word by searching on only the Document column, rather than both the
 Document and DocumentSummary columns, as in the prior command. To do this,
in the current query window, copy and paste the SELECT statement from step 1 just
below the existing query. In the query that you just pasted, change the * to Document,
highlight this new query, and execute it.

 350 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Notice that your result set is the same, verifying that forms of the word “lubricate” exist
in both the Document and DocumentSummary columns.

 3. Open a new query window. In the new query window, type and execute the following
command to view the output generated by the FORMSOF option, which is used by
the Full-Text Engine as a comparison to locate matching rows. This command uses the
 English word breaker with an ID of 1033, the system stoplist, and no accent sensitivity:

SELECT * FROM sys.dm_fts_parser

('FORMSOF(INFLECTIONAL, lubricate) ', 1033, 0,0)

 4. Review the display_term column in the result set, and notice that the noun “lubrication”
is not returned as a match for the verb “lubricate.”

 5. Leave SSMS open for the next exercise.

exercise 3 Use the FREETEXTTABLE Command to Rank Results

In this exercise, you use the FREETEXTTABLE command to rank the results of your query. The
rows best matching the term quality bike are returned at the top of the result set.

 1. Open a new query window, and type and execute the following command to return
matching rows along with their relative ranking:

SELECT FT_TBL.ProductReviewID, FT_TBL.COMMENTS, KEY_TBL.RANK

FROM Production.ProductReview AS FT_TBL

INNER JOIN FREETEXTTABLE (Production.ProductReview, comments,

 'quality bike') AS KEY_TBL

 ON FT_TBL.ProductReviewID = KEY_TBL.[KEY]

ORDER BY KEY_TBL.RANK DESC

 2. Review the result set.

 3. Save your scripts and exit SSMS.

Lesson Summary
n SQL Server 2008 provides fully integrated full-text search capabilities.

n Full-text indexes are created and maintained inside the database and are organized
into virtual full-text catalogs.

n The CONTAINS and FREETEXT predicates, as well as the CONTAINSTABLE and
 FREETEXTTABLE functions, allow you to fully query text, XML, and certain forms of
binary data.

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 351

Lesson 3: implementing Service broker Solutions

Service Broker was introduced in SQL Server 2005 to provide a reliable, scalable, and
 asynchronous message queuing system for local or distributed applications. Service Broker
solutions can range from a simple application existing in a single database to a complex
 application reaching across several remote SQL Server instances.

This lesson provides you with an overview of the components you work with to create a
Service Broker solution. You also learn how to configure a simple Service Broker application
within a single SQL Server instance.

After this lesson, you will be able to:

n Describe the components of Service Broker.

n Determine an activation method.

n Configure Service Broker.

n Start a dialog and send and receive messages.

Estimated lesson time: 60 minutes

Service Broker Overview
To be able to work with Service Broker, you must first understand the components that work
together to provide a Service Broker solution. As in SQL Server 2005, a Service Broker solution
is made of queues, services, messages, message types, and contracts.

note SeRvice bROkeR PReReQUiSiteS

Before enabling Service Broker on a database, you must create a database master key

for that database. If you do not, processes appear to work, but messages are never

 delivered to the queue.

New Features in SQL Server 2008
In addition to the components listed previously, SQL Server 2008 provides the following new
Service Broker features:

n broker Priorities Allow you to give one conversation precedence over another.
 Broker priorities are created by using the CREATE BROKER PRIORITY statement.

n Ssbdiagnose utility Used to analyze conversations and Service Broker services.

n System Monitor Object and counters Provides added analysis capabilities with the
Broker TO Statistics object and five new counters added to the Broker Statistics object.

 352 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

More info GatHeRinG SeRvice bROkeR StatiSticS

For more information about Service Broker statistics, see the articles “SQL Server, Broker

Statistics Object” and “SQL Server, Broker TO Statistics Object” in SQL Server Books Online.

Service Broker Components
The SQL Server 2008 Service Broker components can be divided into the following three
major categories:

n conversation components These components are created at run time and function
according to the rules defined with the service definition and network and security
components. A conversation exists between an initiator and a target. Conversations
are long-termed, asynchronous, and reliable. Conversations are made of messages.
A message can belong to one and only one conversation and is made of a specific
 message type. A conversation between two specific Service Broker services is called a
dialog. Dialogs provide exactly once-in-order (EOIO) message delivery by managing
the flow of messages between the services. Each dialog belongs to a conversation
group and follows the rules specified in a contract. Conversation priorities set the
 relative precedence for conversations.

n Service definition components You define these components as you design your
Service Broker solution:

• Queues These are tables where messages are stored until they are processed. Each
row in the table represents a message. When a new message is added to the queue,
a row is appended to the bottom of the table. When messages are received and
the RETENTION option is not specified, the messages are removed from the top of
the table.

• Services This is the name given to the group of tasks that require messages to be
sent. When a service is created, the queue that holds incoming messages is defined
as part of the service definition. Contracts are associated with services to manage
incoming conversations. More than one contract can be associated with a target
service. If you create a service that initiates conversations but never is the target
for any new conversations, you do not need to include a contract in the service
 definition. If a service can receive messages on the DEFAULT contract, you must
specify the DEFAULT contract when you define the service.

• Contracts This is an agreement between two services that defines the message
types the services send to accomplish certain tasks. It also defines what participants
can send which message types. A contract exists in the database where it is created.
If you are developing a solution that involves multiple databases, you must create
an identical contract in each database that participates in the solution. The DEFAULT
contract contains the DEFAULT message type. When you initiate a dialog and do
not specify a contract, the DEFAULT contract is used.

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 353

• Message types This is the object that defines the name and contents of a
 message. Every database contains a message type named DEFAULT that uses
a validation of NONE. Be careful not to confuse the DEFAULT message type with
the system DEFAULT contract. In addition, you should be aware that DEFAULT
is a delimited object name, not a keyword, when used to define a contract or
a message type.

n network and security components These components are used to define the
 infrastructure that allows the messages to be delivered. They are as follows:

• Routes These are used to determine where to deliver messages. By default,
 every database contains a route to which all messages without a specific
route definition should be delivered within the current SQL Server instance.
This route is named AutoCreatedLocal and matches a service name and broker
 instance. When you define a route, you define the service name associated with
the route; the broker instance identifier, which identifies a specific database
where the messages should be sent; and the Network address, which contains
the actual machine address or a keyword that identifies the machine that hosts
the service.

• Remote service bindings These are used to provide security to dialogs with
 remote databases.

More info DiaLOG SecURitY

Dialog security lets your Service Broker solution use authorization, authentication,

and encryption. Some of these settings can be controlled with the BEGIN DIALOG

 CONVERSATION statement. Additional specifications are controlled through remote

service bindings. For more information about dialog security and encryption see the

article “Service Broker Dialog Security” in SQL Server Books Online.

More info cReatinG ReMOte SeRvice binDinGS

For more information about creating remote service bindings, see the article “CREATE

REMOTE SERVICE BINDING (Transact-SQL)” in the SQL Server Books Online.

• Service Broker endpoints These are used to configure SQL Server to send and
receive messages over TCP/IP connections. Endpoints can be used to control
 connections to the endpoint and provide transport security. By default, Service
Broker cannot communicate on the network because there are no Service Broker
endpoints unless you configure them.

 354 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Creating Service Broker Applications
Several applications function together to provide a Service Broker solution. To start
a conversation and send messages, an application for the initiating service issues
the BEGIN DIALOG statement, which includes all the required information about the
 initiating and target services, contracts, and so on. Once messages have been sent to a
queue, the target application must be started to receive and process messages. You can
 configure one or more of the four startup options for the Server Broker applications in
your solution.

Applications where there is a continuous stream of messages and applications that
require a large number of resources to start up can be configured to start when SQL
Server starts, as part of the Microsoft Windows startup group or as a service. Because these
applications are always running, they continually hold on to their resources, but they are
also available immediately to process messages without the time lag required to start a new
application.

The second startup option that you can configure uses the SQL Server agent to schedule
the application to run at specific times. Using scheduled tasks to start applications is common
for target applications that might be performed as a batch. For example, employees can
submit travel reimbursement forms throughout the day. The reimbursement messages
can be stored in the queue throughout the day. Overnight, the target application receives
all the messages and either processes the reimbursement check or flags the message for
manual review and uses another application to send the form on to another queue to await
 processing by another target application. Figure 8-12 shows the information flow for the
expense reimbursement example.

In the expense reimbursement scenario, weeks may pass without any messages being
sent to the manual review queue. In such a situation it would be inefficient to process
this queue on a scheduled basis. Also, because it is important for the company to handle
expense reimbursements quickly and efficiently, you need an activation method to
 support these requirements. The internal and event-based activation processes meet
these requirements.

Service Broker Activation
You can configure Service Broker activation to allow your solutions to start automatically
when there is work for the program to do. The two automatic activation methods are internal
activation and event-based activation.

Internal activation is managed by using stored procedures and requires the application
to be written as stored procedures. Event-based activation is managed by an external
 application and is activated by a SQL Server queue activation event sent to the external
 application.

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 355

Pay Expenses

E-mail to Manager
with Data and

Flagged Message

Receive and
Process

Expense
Reimbursement

Application

Manual Review
Application

Receive and
Process

Expense
Report

Queue

Expense
Report

Queue

Expense
Report

FiGURe 8-12 Sample Service Broker solution

 356 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

These Service Broker activations are ideal for applications that can start quickly and for
 applications where the frequency or number of messages varies over time. In addition to
starting an application where messages are received infrequently, you can also use Service
Broker activation to allow applications to add queue reader processes automatically when
messages start to accumulate in a queue.

More info cOnFiGURinG SeRvice bROkeR activatiOn

For more information about selecting a startup method for your Service Broker

 applications, as well as information on Service Broker activation and how to implement,

see the following articles in SQL Server Books Online:

n “Choosing a Startup Strategy “

n “Service Broker Activation”

n “Implementing Internal Activation”

n “Understanding When Activation Occurs”

Enabling Service Broker
New in SQL Server 2008, Service Broker is enabled by default in all user databases as well as
the msdb database. By using Object Explorer in SSMS, you can view and modify the Service
Broker–related properties on the Options page of the Properties window of a particular
 database, as shown in Figure 8-13.

FiGURe 8-13 Service Broker–related database options

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 357

Alternatively, the following query displays the Service Broker properties for the
 AdventureWorks2008 database:

SELECT name, service_broker_guid

 , is_broker_enabled, is_honor_broker_priority_on

 FROM sys.databases

 WHERE name = 'AdventureWorks2008'

You can also use the ALTER DATABASE command to modify the database options related
to Service Broker.

You use the following syntax with the ALTER DATABASE command to modify Service
 Broker options:

ALTER DATABASE database_name

SET {

 ENABLE_BROKER

 | DISABLE_BROKER

 | NEW_BROKER

 | ERROR_BROKER_CONVERSATIONS

 | HONOR_BROKER_PRIORITY { ON | OFF}

}

The DISABLE_BROKER option disables the Service Broker in the current database and stops
messages from being delivered, but it maintains the current Service Broker identifier. When
you use the ENABLE_BROKER option to reenable Service Broker, the current Service Broker
identifier is also maintained. The NEW_BROKER option creates a new Service Broker identifier
and immediately removes all existing conversations without cleanly ending conversations or
sending end dialog messages. All conversations that were started with the old Service Broker
identifier must be restarted to be valid. The ERROR_BROKER_CONVERSATIONS option can be
used if two databases involved in conversations become out of sync due to a failure or error
on one of the databases. When you use this option, Service Broker remains enabled and the
Service Broker identifier is maintained, but all conversations are ended with an error message.
This option can also be used to tell an application to perform regular cleanup of existing
conversations. The final option, HONOR_BROKER_PRIORITY, is set to ON or OFF to specify
whether the system gives a preference to messages that come from conversations with a
high priority value.

note tiMinG OF HONOR_BROKER_PRIORITY cHanGeS

Changes to the HONOR_BROKER_PRIORITY option do not take effect for dialogs with

existing messages until the current messages have been sent. This means that there might

be a significant delay between when you set the option and when all dialogs have started

using the new setting.

 358 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Configuring Service Broker Components
Before you can build your Service Broker solution applications, you need to be able to create
and configure the individual components. The components that you configure include
queues, services, message types, contracts, and conversation priorities.

Creating Message Types
When you create a message type, you define the name for the message. You also define
whether Service Broker performs validation on the messages with that name. Before
you start conversations, you must define the same message types for both sides of the
 conversation.

You can see the full syntax for the CREATE MESSAGE TYPE command here:

CREATE MESSAGE TYPE message_type_name

 [AUTHORIZATION owner_name]

 [VALIDATION = { NONE

 | EMPTY

 | WELL_FORMED_XML

 | VALID_XML WITH SCHEMA COLLECTION

 schema_collection_name

 }]

[;]

The CREATE MESSAGE TYPE command includes the following arguments:

n message_type_name Defines the name of the message type that you reference when
you create the contract(s) that use this message type. When you create a message
type, it is created in the current database and you must specify a one-part name (not
including server, database, or schema).

n AUTHORIZATION Defines the owner for the message type. If you are logged on with
an account that does not have sa, dbo permissions when you create the message type,
you must define your own user account, a role that you belong to, or a user account
to which you have the impersonate permission. If you do not specify this clause, it
defaults to your current user account.

n VALIDATION Set to NONE, EMPTY, WELL_FORMED_XML, or VALID_XML WITH
 SCHEMA COLLECTION schema_collection_name to define the type of validation that
Service Broker should perform on messages of this type. The default validation setting of
NONE specifies that no validation is performed. The EMPTY validation setting specifies
that the message body must be NULL. The WELL_FORMED_XML setting specifies that
the message body must contain well-formed XML. The final option, VALID_XML WITH
SCHEMA COLLECTION specifies the name of an existing XML schema collection to which
the message body must conform.

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 359

The following code creates a message type named [//Adventure-Works.com/SampleType]:

CREATE MESSAGE TYPE [//Adventure-Works.com/SampleType]

 AUTHORIZATION dbo

 VALIDATION = WELL_FORMED_XML

Creating Queues
When you create a Service Broker solution, you must create at least one queue. Service Broker
uses queues to hold messages. You associate queues with services when you create the
 service.

You can see the full syntax for the CREATE QUEUE command here:

CREATE QUEUE <object>

 [WITH

 [STATUS = { ON | OFF } [,]]

 [RETENTION = { ON | OFF } [,]]

 [ACTIVATION (

 [STATUS = { ON | OFF } ,]

 PROCEDURE_NAME = <procedure> ,

 MAX_QUEUE_READERS = max_readers ,

 EXECUTE AS { SELF | 'user_name' | OWNER }

)]

]

 [ON { filegroup | [DEFAULT] }]

[;]

<object> ::=

{

 [database_name. [schema_name] . | schema_name.]

 queue_name

}

<procedure> ::=

{

 [database_name. [schema_name] . | schema_name.]

 stored_procedure_name

}

The only required option is the queue name. This command creates a queue named
 TestQueue:

CREATE QUEUE TestQueue

 360 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

The CREATE QUEUE command includes the following arguments:

n object Set this to the name of the queue to be created. The object name is expressed
as a complete three-part name (database_name.schema_name.queue_name) or a
partial name. If you do not specify a database name, the current database is used. If a
schema is not specified, the default schema for the user that is executing the CREATE
QUEUE statement is used.

n STATUS Set this to ON if the queue is available or OFF when the queue is unavailable
and no messages can be added to or removed from the queue. The default setting is ON.

n RETENTION Set this to ON if you want sent and received messages from
 conversations that use this queue to remain in the queue until the associated
 conversation has ended. The default setting of OFF removes messages from the queue
when the RECEIVE command is issued against the message.

n ACTIVATION Specifies information about the stored procedure to start to process
messages in the queue and includes the following arguments:

• STATUS Set this to ON if Service Broker should start the stored procedure.

• PROCEDURE_NAME Set this to the name of the required stored procedure. Like
the queue name, the procedure name can be expressed as a full or partial three-part
name in the format database_name.schema_name.queue_name.

• MAX_QUEUE_READERS Set this to the maximum number of instances of the
stored procedure that can be started simultaneously.

• EXECUTE AS Specifies the user account to be used for the execution context of the
stored procedure. This value can be set to SELF, OWNER, or a database user_name.

n ON Specifies the filegroup on which the queue should be created.

Best PraCtiCes QUeUe PLaceMent

For both performance and recoverability benefits, it is recommended that you create

queues on a dedicated filegroup to allow for partial restores and to minimize input/output

(I/O) conflicts with other database reads and writes.

Creating Contracts
Contracts specify the message types that can be used in a particular conversation. The
 contract also specifies by whom (initiator, target, or both) each particular message type can
be sent.

You can see the full syntax for the CREATE CONTRACT command here:

CREATE CONTRACT contract_name

 [AUTHORIZATION owner_name]

 ({ { message_type_name | [DEFAULT] }

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 361

 SENT BY { INITIATOR | TARGET | ANY }

 } [,...n])

[;]

The CREATE CONTRACT command includes the following arguments:

n contract_name Defines the name of the contract that you reference when you start
a conversation. When you create a contract, it is created in the current database. You
cannot specify server, database, or schema names in the definition.

n AUTHORIZATION Defines the owner for the contract. If you are logged on as an
 account that does not have sa, dbo permissions when you create the message type,
you must define your own user account, a role that you belong to, or a user account to
which you have the impersonate permission. If you do not specify this clause, it defaults
to your current user account.

n message_type_name Defines the names of the message types that are included in
 conversations specifying this contract. You can add multiple message types to a contract.

n SENT BY Set to INITIATOR, TARGET, or ANY to specify which services can send the
message type specified in the corresponding message_type_name. ANY specifies that
both initiator and target services can use the corresponding message type.

Each database includes a contract named DEFAULT that specifies the DEFAULT message
type, which uses a VALIDATION of NONE:

CREATE CONTRACT SampleContract

 AUTHORIZATION dbo

 (SampleType1 SENT BY INITIATOR,

 SampleType2 SENT BY ANY)

Creating Services
Once you have created a queue, the next step in the process is to create the services that
define the queue and the contract to which the service is linked. The service represents the
business task or group of tasks required by the application. Although many services can point
to a single queue, each service typically uses a dedicated queue to facilitate receiving and
processing messages.

You can see the full syntax for the CREATE SERVICE command here:

CREATE SERVICE service_name

 [AUTHORIZATION owner_name]

 ON QUEUE [schema_name.]queue_name

 [(contract_name | [DEFAULT] [,...n])]

[;]

Unlike queues, where you can define the database and schema in which they are to be
created, services are created in the current database and you cannot specify a schema for the
service.

 362 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

The AUTHORIZATION option defines the owner for the service. You must define the name
of the queue where messages for this service will be stored in the ON QUEUE option.

Best PraCtiCes SPeciFY a ScHeMa naMe

Although it is not required to specify a schema name as part of the queue name if the

queue resides in the default schema for the user executing the command, including

the schema name in your scripts improves readability and eliminates possible problems

if the script is executed in the future in a different user context.

If a contract is not defined in the CREATE SERVICE command, the service might only
 initiate conversations and not be a target. If the DEFAULT contract is specified, the service
may be a target for conversations that use the DEFAULT contract. The word DEFAULT in this
query context is being used as a delimited name of a contract and not as a keyword as in
some other commands such as CREATE TABLE.

Configuring Conversation Priorities
You can use the CREATE BROKER PRIORITY COMMAND to set a priority level for
 conversations that are associated with particular contracts and services. When you define
the broker priority, you define the name for the conversation priority, the contract name,
local and remote service names, and the priority level given to the combination of the
 contract and services defined. The priority level can be set to any value between 0 and 10.
The default value of 5 is assigned if the PRIORITY_LEVEL is not specified or is set
to DEFAULT.

The complete syntax for the CREATE BROKER PRIORITY command is here:

CREATE BROKER PRIORITY ConversationPriorityName

FOR CONVERSATION

[SET ([CONTRACT_NAME = {ContractName | ANY }]

 [[,] LOCAL_SERVICE_NAME = {LocalServiceName | ANY }]

 [[,] REMOTE_SERVICE_NAME = {'RemoteServiceName' | ANY }]

 [[,] PRIORITY_LEVEL = {PriorityValue | DEFAULT }]

)

]

[;]

More info cOnveRSatiOn PRiORitY LeveLS

For more information about the criteria that Service Broker uses to assign a priority level

to a conversation, see the article “CREATE BROKER PRIORITY (Transact-SQL)” in SQL Server

Books Online.

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 363

Sending and Receiving Messages
Once you have configured the service definition components and the network and security
components, you need to configure your applications to initiate dialogs, send messages, and
handle receiving messages.

Creating a Dialog Conversation
You can use the BEGIN DIALOG statement to initiate a dialog conversation from one service
to another. A dialog exists between two services and provides message delivery, guaranteeing
that each message is received only once and in order.

The complete syntax for the BEGIN DIALOG command is here:

BEGIN DIALOG [CONVERSATION] @dialog_handle

 FROM SERVICE initiator_service_name

 TO SERVICE 'target_service_name'

 [, { 'service_broker_guid' | 'CURRENT DATABASE' }]

 [ON CONTRACT contract_name]

 [WITH

 [{ RELATED_CONVERSATION = related_conversation_handle

 | RELATED_CONVERSATION_GROUP = related_conversation_group_id }]

 [[,] LIFETIME = dialog_lifetime]

 [[,] ENCRYPTION = { ON | OFF }]]

[;]

Before the BEGIN DIALOG command is executed, you need to define the @dialog_handle
variable as a uniqueidentifier. Once you have defined the @dialog_handle variable, you must
include the following arguments as part of the BEGIN DIALOG command:

n FROM SERVICE Defines the name of the service initiating the dialog. This service
must exist in the current database. The queue linked to this service is used to store
messages returned by the target service.

n TO SERVICE Defines the name of the target service to which the messages are
sent. This service name is case-sensitive even if the database uses a case-insensitive
 collation.

The following optional arguments can also be defined as part of the BEGIN DIALOG
 command:

n service_broker_guid Set to the globally unique identifier (GUID) of the Service Broker
in a particular database. This argument can be used if your target service is hosted
on multiple databases and you want to direct the dialog to the Service Broker of a
 particular database.

n ‘CURRENT DATABASE’ Specifies that the Service Broker ID of the current database
is used.

n ON CONTRACT Specifies the contract that is enforced for this dialog. If a contract is
not specified, the contract named DEFAULT is used for this dialog.

 364 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

n RELATED_CONVERSATION or RELATED_CONVERSATION_GROUP Defines the
 related_conversation_handle to add a single related conversation or the related_
conversation_groupid for the group to which this new dialog should be added.

n LIFETIME Specifies the maximum amount of time that the conversation can
 remain open.

n ENCRYPTION Set to OFF or ON to define the encryption status of messages
 included in this dialog. The default setting, ON, requires messages between services
on different SQL Server instances to be encrypted, but messages between services on
the same SQL Server instance are never encrypted. However, a database master key
and the appropriate certificates must be configured if the initiator and target services
are in separate databases, even when on the same instance. This facilitates moving a
 database to a separate instance in the future.

In its simplest form, the BEGIN DIALOG command is similar to the following code:

DECLARE @dialog_handle uniqueidentifier

BEGIN DIALOG @dialog_handle

FROM SERVICE AW_Initiate

TO SERVICE AW_Target

Sending Messages
Once you have created a dialog, you use the SEND command to send messages on the
 conversation created in the BEGIN DIALOG command.

The SEND command is fairly straightforward and uses the following syntax:

SEND

 ON CONVERSATION conversation_handle

 [MESSAGE TYPE message_type_name]

 [(message_body_expression)]

[;]

Once the initiator sends the message, the message is stored in the queue linked to the
target service. The message type parameter is optional and typically is not included as part
of the SEND command. Rather, it is defined as part of the contract specification. Although
the message body expression is optional, if it is not specified, the message body is empty.
 Typically, the message body provides information pertinent to the target service.

Receiving Messages
Once messages are added to the queue, you can use a simple SELECT statement to view the
messages included in the queue. To process the messages, you use the RECEIVE command
to retrieve one or more messages from the queue. Messages are read from the top of
the queue. If the RETENTION option for the queue is set to OFF, messages are removed from
the queue when the RECEIVE command retrieves them. Here is the syntax of the
RECEIVE command:

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 365

[WAITFOR (]

 RECEIVE [TOP (n)]

 <column_specifier> [,...n]

 FROM <queue>

 [INTO table_variable]

 [WHERE { conversation_handle = conversation_handle

 | conversation_group_id = conversation_group_id }]

[)] [, TIMEOUT timeout]

[;]

<column_specifier> ::=

{ *

 | { column_name | [] expression } [[AS] column_alias]

 | column_alias = expression

} [,...n]

<queue> ::=

{

 [database_name . [schema_name] . | schema_name .]

 queue_name

}

The RECEIVE command accepts the following arguments:

n WAITFOR Specifies that the RECEIVE command waits for a new message to be
 received. This argument is used only if the queue is currently empty.

n TOP Specifies the maximum number of messages to be retrieved from the queue.
If the TOP option is not included in the command, all messages that meet the criteria
defined in the RECEIVE statement are returned.

n column Specifier Lists a column name, an alias to a column expression.

n FROM Specifies the name of the queue from which you want to retrieve messages.

n INTO Optionally specifies a table variable name into which the results are returned
to be processed. Alternatively, the result set can be processed directly. Most
 environments use the INTO option.

n WHERE Limits the rows retrieved by specifying a conversation or a conversation
group on which the messages were received.

n TIMEOUT Limits the amount of time the RECEIVE command will wait for a new
 message when the WAITFOR option is also specified. The default wait time of -1 specifies
that the RECEIVE command waits an unlimited amount of time for a new message to
be received.

iMPortant cOMManD teRMinatOR

Although it is always good programming practice to put a semicolon (;) at the end of each

T-SQL statement, it is required in the statement preceding a RECEIVE statement in a batch.

 366 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Practice implementing a Simple Service broker Solution

In this practice, you create the components required for a simple Service Broker solution. You
also create a dialog, send messages on the dialog, and receive messages from the queue.

exercise 1 Create Service Definition Components

In this exercise, you create the service definition components required to initiate a Service
Broker conversation.

 1. Start SSMS (if it’s not already started), connect to your SQL Server instance, and open
a new query window.

 2. In the new query window, type and execute the following command to create a master
key in the AdventureWorks2008 database:

USE AdventureWorks2008;

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'dyfnds65;sdf%h457!;'

 3. Open a new query window, and type and execute the following script to create the
message types and contract to be used by the initiator and target services:

CREATE Message Type

 AWNewNotice

 VALIDATION = NONE;

CREATE Message Type

 AWAck

 VALIDATION = NONE;

CREATE CONTRACT

 NewNoticeContract

 AUTHORIZATION dbo

 (AWNewNotice SENT BY ANY,

 AWAck SENT BY ANY);

 3. In the current query window, below the existing text, type, highlight, and execute the
following script to create the queues and services for your solution:

CREATE QUEUE AWNewNoticeQueue;

CREATE QUEUE AWAckQueue;

CREATE SERVICE AWNewNoticeService

ON QUEUE AWNewNoticeQueue;

CREATE SERVICE AWAckService

ON QUEUE AWAckQueue;

 4. Leave SSMS open for the next exercise.

 Lesson 3: Implementing Service Broker Solutions CHAPTER 8 367

exercise 2 Send and Receive Messages

In this exercise, you initiate a dialog conversation and send and receive messages on the
dialog conversation.

 1. Open a new query window. Type, but do not execute, the following commands to
define a dialog conversation between AWNewNoticeService and AWAckService:

DECLARE @dialog_handle uniqueidentifier

 , @XMLdata XML;

SET @XMLdata = (SELECT * FROM sys.tables FOR XML AUTO);

BEGIN DIALOG @dialog_handle

FROM SERVICE AWNewNoticeService

TO SERVICE 'AWAckService'

ON CONTRACT NewNoticeContract;

 2. In the current query window, below the existing text, type the following command
and execute the entire script to start the conversation and send a message on the
 conversation:

SEND ON CONVERSATION @dialog_handle

MESSAGE TYPE AWNewNotice;

 3. Open a new query window, and type and execute the following command to view the
AWNewNoticeQueue queue:

SELECT * FROM AWNewNoticeQueue;

 4. In the current query window, below the existing text, type, highlight, and execute the
following command to receive the message and view the XML data:

SELECT * FROM AWNewNoticeQueue;

DECLARE @dialog_handle UNIQUEIDENTIFIER

 , @XMLdata XML;

SET @XMLdata = (SELECT * FROM sys.tables FOR XML AUTO);

RECEIVE TOP (1) @dialog_handle = conversation_handle

 FROM AWNewNoticeQueue;

END CONVERSATION @dialog_handle;

SELECT @XMLData;

 5. Execute the SELECT * FROM AWNewNoticeQueue statement again to verify that the
row is no longer in the queue.

 6. Save your scripts and exit SSMS.

 368 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Lesson Summary
n Service Broker provides reliable asynchronous messaging capabilities for your SQL

Server instance.

n You need to configure the Service Broker components for your solution. These
 components might include message types, contracts, services, queues, dialogs, and
conversation priorities.

n You use the BEGIN DIALOG, SEND, and RECEIVE commands to control individual
 conversations between two services.

 Key Terms CHAPTER 8 369

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can do any or all of
the following:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenarios. These scenarios set up real-world situations involving the
topics of this chapter and ask you to create solutions.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n SQL Server 2008 provides two new spatial data types. The geometry and geography

data types can be used to manage spatial data, such as the coordinate location of a
classroom in a school or the longitude and latitude of the school’s location.

n The fully integrated full-text search feature allows you to write advanced linguistic
searches to locate matching rows with a variety of data types.

n Service Broker provides you with a reliable, asynchronous messaging system that can
provide solutions ranging from within a single database to across multiple instances
and servers.

key terms

n geography data type

n geometry data type

n Open Geospatial Consortium (OGC)

n Well-known text (WKT)

n Well-known binary (WKB)

n Methods

n OGC Extended Methods

n Object

n Instantiation

n Spatial reference identifier (SRID)

n Full-Text Engine

n Filter daemon host process (Fdhost.exe)

n SQL Full-Text Filter Daemon Launcher (Fdlauncher.exe)

 370 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

n Population (crawl)

n Term

n Filter

n Stoplist

n Stopword

n Thesaurus

n Stemmer

n Token

n Word breaker

n Full-text index

n Full-text catalog

n Conversation

n Dialog

n Conversation group

n Conversation priority

n Message

n Queue

n Service

n Contract

n Message type

n Route

n Remote service binding

n Service Broker endpoint

Case Scenarios
In the following case scenarios, you apply what you have learned in this chapter. You can find
answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Initiating Spatial Data
You are a database developer for Wide World Importers. Your company has recently
 upgraded to SQL Server 2008, and management would like to take advantage of the new
spatial data types to manage the import business better.

Management sees two separate functions that it wants to implement. The first function
would allow them to design a two-dimensional model of the company’s warehouses. They
would like to track the location of specific categories of goods within the warehouse. The
location would be represented by x and y coordinates and a unit of measure that defines the
distance from the axis.

 Suggested Practices CHAPTER 8 371

The second function includes tracking the physical location of each warehouse, as well as
the region that each warehouse supplies. You want to use a mapping program to show the
locations of the warehouses and to shade in the region that the warehouse serves.

Answer the following question for your manager:

n What data type and instantiation method should you use for each requested
 functionality?

Case Scenario 2: Querying a Full-Text Index
You are a database developer for Litware, Inc. Litware has scanned a large number of
 documents and is now storing them in varbinary(max) columns in the LitwareDoc database.
The documents are Microsoft Office Word and Microsoft Office Excel documents. The
database administrator has configured full-text indexes on the appropriate tables and has
included the appropriate columns for each table. You need to define queries that retrieve the
name and location of documents that include general phrases. You need to be able to query
on a word such as author and also receive rows that include the words writer and contributor.
You need to match rows with a similar meaning rather than exact terms. You do not want
to match the word Litware even if it is entered as a search term; you want it to be ignored
 because it is in almost every document. You also need to return the rows with the most
 relevant rows at the top of the result set.

Answer the following questions for your manager:

 1. What, if any, additional configuration needs to occur for your queries to work properly?

 2. What command provides you with the required functionality?

Suggested Practices

To help you master the exam objectives presented in this chapter, do all the following practices:

Implement Data Types
n Practice 1 Add geometry and geography data types to a test database. Practice

 instantiating spatial instances by using a variety of spatial methods.

Implement Full-Text Search
n Practice 2 Write and execute a variety of CONTAINS, CONTAINSTABLE, FREETEXT,

and FREETEXTTABLE commands. Review the result sets carefully.

n Practice 3 Modify a thesaurus file and create a custom stoplist. Reexecute the
 commands you wrote for Practice 2 and review how these modifications affect your
data. Also, try executing a command with a common word such as to, both with and
without a stoplist.

 372 CHAPTER 8 Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker

Implement Service Broker Solutions
n Practice 4 Create the components required to start a Service Broker dialog

 conversation, start a dialog, send messages, and receive messages.

n Practice 5 Add to the solution that you completed in Lesson 3 to send an
 acknowledgment message from AWAckService to AWNewNoticeService.

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the content covered in this chapter, or you can test yourself on all the 70-433
certification exam content. You can set up the test so that it closely simulates the experience
of taking a certification exam, or you can set it up in study mode so that you can look at the
correct answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests” in the Introduction to this book.

 CHAPTER 9 373

c H a P t e R 9

An Introduction to Microsoft
SQL Server Manageability
Features

As a database developer, you might need to extend your database solutions beyond
simply returning queried data to a front-end application. For example, you might need

to e-mail reports to users or query metadata from the system. This chapter discusses several
features in Microsoft SQL Server 2008 that allow you to disseminate and manage the data
in your database efficiently. Features discussed include Database Mail, Windows PowerShell,
and data change tracking. SQL Server 2005 introduced Database Mail, and SQL Server 2008
continues support for Database Mail to allow you to send e-mail messages to and from your
server running SQL Server. In SQL Server 2008, Microsoft introduced Windows PowerShell
to manage technologies supported by the SQL Server Management Objects (SMOs). In
 addition, database developers have new tools to track data changes more easily.

Exam objectives in this chapter:
n Integrate Database Mail.

n Implement scripts by using Windows PowerShell and SQL Server Management
 Objects (SMOs).

n Track data changes.

Lessons in this chapter:
n Lesson 1: Integrating Database Mail 375

n Lesson 2: Implementing Scripts by Using Windows PowerShell 388

n Lesson 3: Tracking Data Changes 397

 c o n t e n t s

 cHaPteR 9 373

 an introduction to Microsoft SQL Server Manageability Features 373

Before You Begin . 374

Lesson 1: Integrating Database Mail .375

Overview of Database Mail 375

Lesson Summary 387

Lesson 2: Implementing Scripts
by Using Windows PowerShell .388

What Is Windows PowerShell? 388

Navigating the SQL Server PowerShell Hierarchy 389

Using SQL Server PowerShell to Enumerate Objects 391

Lesson Summary 396

Lesson 3: Tracking Data Changes .397

Comparing Change Tracking to CDC 397

Configuring Change Tracking 399

Configuring CDC 408

SQL Server Audit 415

Lesson Summary 423

Chapter Review .424

Chapter Summary 424

Key Terms .424

Case Scenarios 424

Suggested Practices .425

Integrate Database Mail 425

Implement Scripts by Using Windows PowerShell
and SQL Server Management Objects (SMOs) 425

Track Data Changes 425

Take a Practice Test .426

 374 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features 374 CHAPTER 9

before You begin

To complete the lessons in this chapter, you must have:

n An understanding of basic data manipulation language (DML) constructs such as
 INSERT, UPDATE, and DELETE

n A basic understanding of views, stored procedures, and functions used in SQL Server

n Knowledge about how to open and execute queries in SQL Server Management Studio
(SSMS)

n SQL Server 2008 Developer Edition, Enterprise Edition, or Enterprise Evaluation Edition,
with the AdventureWorks2008 and the AdventureWorksDW2008 sample databases
installed

n A Simple Mail Transfer Protocol (SMTP) server with two valid e-mail addresses, one for
the SQL Server Service account and one for receiving test e-mails

 Lesson 1: Integrating Database Mail CHAPTER 9 375 CHAPTER 9 375

Lesson 1: integrating Database Mail

With SQL Server 2005, Microsoft introduced Database Mail to allow the SQL Server service
to send e-mail messages. By using Database Mail, you can develop database applications
that send query results and file attachments to users. This lesson provides you with a
short overview and explanation about configuring Database Mail followed by an in-depth
 discussion of how to use the sp_send_dbmail system stored procedure.

After this lesson, you will be able to:

n Understand the Database Mail configuration process.

n Send e-mail messages by using sp_send_dbmail.

n Understand the basics of managing Database Mail.

Estimated lesson time: 45 minutes

real World

Ann Weber

Recently, a client and I were discussing the options to send very basic weekly

reports to his database users automatically. The reports did not need special

formatting, but they needed to be created and delivered to the users before the

start of each business day. We were able to use the SQL Server Agent with Database

Mail to meet the needs of the client successfully.

We created a job for each report set that needed to be sent. We then created a job

step that used the sp_send_dbmail system stored procedure to execute a database

query and send the results to the intended group. Because the queries were already

built and used the datetime function to retrieve the current date, configuring

 Database Mail and the SQL Server Agent was quick and painless.

Overview of Database Mail
Database Mail allows administrators and developers to send e-mail messages generated by
the SQL Server service. In SQL Server 2005, Database Mail was introduced to replace SQLMail.
SQLMail is included in SQL Server 2008 only for backward compatibility. One of the primary
benefits of Database Mail is that it communicates by using the SMTP protocol and does not
require an Extended MAPI–compliant e-mail application, such as Microsoft Office Outlook,
on the server running SQL Server. In addition, Database Mail provides fault tolerance by
 supporting multiple SMTP servers and multiple SMTP user accounts and profiles.

 376 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

Configuring Database Mail
Although configuring Database Mail is traditionally a function of the database administrator
role, a brief overview is provided here as general background information. You can use SSMS
to start the Database Mail Configuration Wizard.

note enabLinG DatabaSe MaiL

To minimize the security footprint of your server, Database Mail is disabled by default.

If you define Database Mail by using the Database Mail Configuration Manager, Database

Mail is enabled as part of the configuration process. In addition, you can use the Surface

Area Configuration Policy-Based Management facet or the sp_configure system stored

procedure to enable Database Mail on one or more servers.

To configure Database Mail, you should perform the following steps:

 1. Open SSMS and connect to the SQL Server instance that you want to configure.

 2. In Object Explorer, expand the Management folder, right-click Database Mail, and
select Configure Database Mail, as shown in Figure 9-1.

FiGURe 9-1 Configuring the Database Mail option

 3. On the Database Mail Configuration Wizard Welcome page, review the information,
and click Next.

 4. On the Select Configuration Task page, verify that the Set up Database Mail by
 performing the Following Tasks option is selected, and then click Next.

 Lesson 1: Integrating Database Mail CHAPTER 9 377

note ManaGinG DatabaSe MaiL

Once Database Mail has been configured, the Database Mail Configuration Wizard can

be used to manage the Database Mail configuration settings.

 5. If an SSMS warning message notifies you that the Database Mail feature is not
 available, click Yes to enable this feature.

tiP SeRvice bROkeR ReQUiReMent

If Service Broker has been disabled on the msdb database, you must stop the SQL Server

Agent (if running) and enable Service Broker on the msdb database before you can

 enable Database Mail.

 6. On the New Profile page, type in a descriptive profile name and description in the
 appropriate fields.

 7. In the SMTP Accounts section, click Add to create a new Database Mail account.

 8. In the New Database Mail Account window, add the information that corresponds to
the SMTP account that the SQL Server service will use, and then click OK. Figure 9-2
shows sample input. Replace this information with valid account information for your
server.

FiGURe 9-2 Sample input for the New Database Mail Account page

 378 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

 9. On the New Profile page, verify your configuration information, and then click Next.

 10. On the Manage Profile Security page, configure the appropriate public or private
 profiles, and then click Next.

More info UnDeRStanDinG PROFiLe SecURitY SettinGS

For more information about determining the appropriate profile security settings, see

the articles “Manage Profile Security, Public Tab (Database Mail)” and “Manage Profile

Security, Private Tab (Database Mail),” in SQL Server Books Online.

 11. On the Configure System Parameters page, review the default system parameters,
make any necessary changes, and click Next.

 12. On the Complete the Wizard page, click Finish.

 13. Verify the success of the configuration, and then click Close.

More info cOnFiGURinG DatabaSe MaiL

For more information about enabling and configuring Database Mail, see the article

“Database Mail Configuration Wizard” in SQL Server Books Online.

Sending Database Mail Messages
You can use the features of Database Mail to integrate e-mail messages into your applications.
For example, you can add the sp_send_dbmail system stored procedure at the end of the stored
procedure that your application calls to add a new customer to the credit database to send an
e-mail message to the credit supervisor with the information added for the new customer.

The sp_send_dbmail system stored procedure is used to send e-mail messages from the
SQL Server service to e-mail recipients. This command has options that allow you to define
the standard e-mail message fields, such as To:, CC:, BCC:, and Subject:, along with more
SQL Server–specific options (such as the query to be run) to provide flexibility when building
SQL Server applications that need to send e-mail messages. The sp_send_dbmail system
stored procedure includes the following arguments:

n @profile_name Specifies the name of the mail profile from which the message is
sent. If no default mail profiles exist, you must include @profile_name. If no profile is
listed, the system first attempts to use the default private profile for the current user.
If the current user does not have a default private profile, the system uses the default
public profile for the msdb database.

n @recipients Specifies the recipients of the e-mail message. The entire list of e-mail
addresses should be enclosed in single quotes, and semicolons should separate the
 addresses. This field is optional, but if @recipients, @copy_recipients, and
@blind_copy_recipients are all left blank, the command fails.

 Lesson 1: Integrating Database Mail CHAPTER 9 379

n @copy_recipients Specifies the e-mail addresses of recipients to be included in the
CC: field. The entire list of e-mail addresses should be enclosed in single quotes, and
semicolons should separate the addresses. This field is optional, but if @recipients,
@copy_recipients, and @blind_copy_recipients are all left blank, the command fails.

n @blind_copy_recipients Specifies the e-mail addresses of recipients to be included in
the BCC: field. The entire list of e-mail addresses should be enclosed in single quotes,
and semicolons should separate the addresses. This field is optional, but if @recipients,
@copy_recipients, and @blind_copy_recipients are all left blank, the command fails.

n @subject Specifies the value to be included in the Subject: heading of the e-mail. If
no subject is specified, the subject will be ‘SQL Server Message’. The subject heading
should be enclosed in single quotes.

n @body Specifies the content of the message; should be enclosed in single quotes.

n @body_format Specifies whether the body of the message is ‘TEXT’ or ‘HTML’. The
default format type is TEXT.

n @importance Sets the importance level of the message to ‘Low’, ‘Normal’, or ‘High’. If
not listed, the default importance is ‘Normal’.

n @sensitivity Sets the sensitivity level of the message to ‘Normal’, ‘Personal’, ‘Private’,
or ‘Confidential’. The default value is ‘Normal’.

n @file_attachments Specifies a list of file names separated by semicolons that you
want to attach to the message. The entire list should be enclosed in single quotes.

n @query Defines a query that the system executes. You can include the results of the
query in the e-mail message body or as an attachment. The entire query is contained
within single quotes.

n @execute_query_database Specifies the database context for the query. This
 argument is ignored if you do not specify @query.

n @attach_query_result_as_file Specifies whether the query results are included as
an attachment or within the body of the mail message. A value of 1 specifies a file
 attachment will be used. A value of 0 specifies the query results will follow the content
specified in the @body argument. This argument is ignored if you do not specify
@query. If you do not include this option, the query results are returned in the body of
the e-mail message.

n @query_attachment_filename Specifies the file name assigned to the query results
attachment. This option requires single quotes if the file name includes a file name
extension (such as .txt) or other disallowed characters. If @attach_query_result_as_file
is set to 1 and this parameter is not included, Database Mail sets the default file name.
The @query_attachment_filename is ignored if the @attach_query_result_as_file
 argument is not specified or set to 0 or @query is not defined.

n @query_result_header Set to 1 or 0 to specify whether or not column headers are
included in the result set. The default value is 1, which specifies to include column
headers. This argument is ignored if you do not specify @query.

 380 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

n @query_result_width Specifies the number of characters to be included in a single
line when formatting the result set. The default is 256 characters, but you can set this
option to anything between 10 and 32767. This argument is ignored if you do not
specify @query.

n @query_result_separator Specifies the character to be used to separate columns in
the result set. The default value is a space.

n @exclude_query_output Is set to 0 or 1 to specify whether query error messages such
as the one shown in Figure 9-3 are displayed on the monitor. A value of 0 includes the
query error message on the monitor, and a value of 1 reports on the monitor only that
the command completed successfully, even if the query within the stored procedure fails.

FiGURe 9-3 Sample query error message

n @append_query_error Specifies whether an e-mail message is still sent when a query
error occurs. The default setting of 0 signifies that Database Mail does not send the
 e-mail message when the query fails. When the value is set to 1, Database Mail sends the
e-mail message and appends the error message to the e-mail as displayed in Figure 9-4.
This setting also affects the behavior of the @exclude_query_output argument.

n @query_no_truncate Is set to 0 or 1 to specify whether large variable-length columns in
the result set are truncated. The default value of 0 truncates columns to 256 characters. If
the value is set to 1, it does not truncate large variable-length columns, column headers
are not included, and additional resources are required to run the query. Figures 9-5 and
9-6 show the difference in row length when the Resume column defined as an XML data
type is sent as an attached text file. Figure 9-5 was executed with the @query_no_truncate
 argument set to 0. Figure 9-6 was executed with this option set to 1.

 Lesson 1: Integrating Database Mail CHAPTER 9 381

FiGURe 9-4 Sample of appended error message

FiGURe 9-5 Resume column truncated

n @mailitem_id [OUTPUT] Sets an optional output variable to return the mailitem_id
of the message.

 382 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

FiGURe 9-6 Resume column not truncated

The following query sends an e-mail message to student@Adventure-Works.com that
has the subject heading of Job Candidate Resumes. The message includes an attachment
named Candidate_resumes.txt. This attachment includes the results of a query returning
the JobCandidateID and Resume columns from the HumanResources.JobCandidate table in
the AdventureWorks2008 database. The XML data retrieved from the Resume column is not
 truncated. The text file generated is shown in Figure 9-6:

EXEC msdb.dbo.sp_send_dbmail

 @recipients = 'student@Adventure-Works.com',

 @query =

 'SELECT JobCandidateID

 , Resume from HumanResources.JobCandidate' ,

 @subject = 'Job Candidate Resumes',

 @execute_query_database = 'AdventureWorks2008',

 @attach_query_result_as_file = 1,

 @query_attachment_filename = 'Candidate_resumes.txt',

 @query_no_truncate = 1;

iMPortant DePRecateD cOMManDS

SQL Server 2008 includes xp_sendmail as well as a number of additional deprecated stored

procedures to support SQLMail and backward compatibility. You should not use SQLMail

in new development because support will be removed in a future version of SQL Server.

You should implement Database Mail in any new projects. In addition, you should begin to

convert your existing code to Database Mail.

 Lesson 1: Integrating Database Mail CHAPTER 9 383

More info cOnveRtinG tO DatabaSe MaiL

For more information about how to convert xp_sendmail commands, see the article “How

to: Convert Stored Procedures from SQLMail to Database Mail (Transact-SQL)” in SQL

Server Books Online.

Managing Database Mail
Although typically the configuration of Database Mail falls into the Database Administrator
role, you can use the following system stored procedures to modify or troubleshoot
 configuration settings that affect the messages you are sending from your applications:

n sysmail_configure_sp Configures parameters such as the maximum file size allowed
for attachments, prohibited file name extensions that cannot be sent as attachments,
and retry settings.

n sysmail_help_configure_sp Displays the current settings for Database Mail.

n sysmail_help_queue_sp Displays information about the status and mail queues. You
can use this stored procedure to troubleshoot messages that were not received.

n sysmail_delete_mailitems_sp Deletes e-mail messages permanently from Database
Mail tables in the msdb database. These messages can be deleted based on their status
or the date on which the message was sent. Attachments of deleted messages are
also deleted, but associated logged events must be deleted independently by using
sysmail_delete_log_sp.

n sysmail_delete_log_sp Deletes entries permanently from the Database Mail logs.
These entries can be deleted based on their status or the date on which the associated
message was sent. The e-mail messages associated with the deleted log entries must
be deleted independently by using sysmail_delete_mailitems_sp.

n sysmail_start_sp Starts Database Mail by starting the associated Service Broker
 objects.

n sysmail_stop_sp Stops Database Mail by stopping the associated Service Broker
 objects. You can use this stored procedure to troubleshoot Database Mail by
 temporarily pausing the processing of messages in the Database Mail queues. The
sp_send_dbmail stored procedure still functions while the Service Broker objects are
stopped.

More info aDDitiOnaL StOReD PROceDUReS

For more information about all the Database Mail Procedures, see the article “Database

Mail and SQL Mail Stored Procedures (Transact-SQL)” in SQL Server Books Online.

 384 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

Quick check

n Your company is using Database Mail in SQL Server 2008. You need to send an

 e-mail message to the sales manager that contains the results of a query. What

command should you use to generate and send the e-mail message?

Quick check answer

n You should use the sp_send_dbmail command.

Practice Using Database Mail to Send Messages

In this practice, you configure Database Mail on your SQL Server instance. You then configure
mail settings and send a Database Mail message from SQL Server.

exercise 1 Configure Database Mail

If Database Mail is not configured on your system, use the following steps to configure
 Database Mail:

 1. Open SSMS.

 2. In Object Explorer, expand the Management folder, right-click Database Mail, and click
Configure Database Mail.

 3. On the Database Mail Configuration Wizard Welcome page, review the information,
and click Next.

 4. On the Select Configuration Task page, verify that the Set up Database Mail by
 Performing the Following Tasks option is selected, and then click Next.

 5. If an SSMS warning message notifies you that the Database Mail feature is not
 available, click Yes to enable this feature.

 6. On the New Profile page, type a descriptive profile name and description in the
 appropriate fields.

 7. In the SMTP Accounts section, click Add to create a new Database Mail account.

 8. In the New Database Mail Account window, add the information that corresponds
to the SMTP account that the SQL Server service will use, and then click OK. For the
account to function, you must provide an account name, e-mail address, and proper
server name and port number for your mail messages to be sent.

 9. On the New Profile page, verify your configuration information, and then click Next.

 10. On the Manage Profile Security page, in the Public Profiles tab, select the Public check
box next to your profile name, select Yes in the drop-down list in the Default Profile
column, and then click Next.

 Lesson 1: Integrating Database Mail CHAPTER 9 385

note SecURitY RiSk

Using the SQLService profile as a default public profile is not a best practice due to

security implications. We use it here to simplify the setup process.

 11. On the Configure System Parameters page, review the default system parameters, and
click Next.

 12. On the Complete the Wizard page, click Finish.

 13. Verify the success of the configuration, and click Close.

 14. Leave SSMS open for the next exercise.

exercise 2 Verify Database Mail Configuration

In this exercise, you verify the Database Mail configuration by sending a test e-mail message.

 1. In Object Explorer, expand the Management folder, right-click Database Mail, and click
Send Test E-Mail.

 2. In the Send Test E-Mail From <server name> window, select your Database Mail Profile,
 enter the e-mail address to which you want to send the test message in the To: box,
review the Subject: and Body: information, and click Send Test E-mail. The Database
Mail Test E-mail dialog box appears and provides you with verification that the e-mail
has been queued.

 3. Wait a few minutes, and then check your e-mail messages. If you receive the e-mail
 message, click OK to close the dialog box, or click Troubleshoot to open troubleshooting
tips in SQL Server Books Online.

 4. Leave SSMS open for the next exercise.

exercise 3 Write Database Mail Messages

In this exercise, you send a variety of e-mail messages by using the different options of the
sp_send_dbmail command.

iMPortant cOnFiGURatiOn SettinGS

If you do not have a default profile configured for Database Mail, you need to add the

@profile_name option to each of the sp_send_dbmail commands described in this exercise.

 1. To send a test message to your mail account by using the sp_send_dbmail command,
replace the @recipients option with your e-mail address, and execute the following
code in a new query window:

EXEC msdb.dbo.sp_send_dbmail

 @recipients = 'student@Adventure-Works.com'

 , @body = 'The command completed successfully.'

 , @subject = 'Test Automated Success Message' ;

 386 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

note WHY WOULD YOU USe tHiS MeSSaGe?

You can use a simple message like the one you created in step 1 as part of a larger

procedure with many steps. At the end of the other steps, you can check for success and

then send a simple message such as this one to notify the manager or another user that

the procedure completed successfully.

 2. Open a new query window.

 3. In the new query window, type and execute the following command to send a mail
message to your e-mail account with the results of a query included as an attachment.
Remember to replace the @recipients option with your e-mail address.

EXEC msdb.dbo.sp_send_dbmail

 @recipients = 'student@Adventure-Works.com'

 ,@query =

 'USE AdventureWorks2008;

 Go

 SELECT Production.Product.Name, Color, ListPrice

 , Production.ProductSubcategory.Name AS SubCategory

 , Production.ProductCategory.Name AS Category

 FROM Production.Product JOIN Production.ProductSubcategory

 ON Production.Product.ProductSubcategoryID =

 Production.ProductSubcategory.ProductSubcategoryID

 JOIN Production.ProductCategory

 ON Production.ProductCategory.ProductCategoryID =

 Production.ProductSubcategory.ProductSubcategoryID

 WHERE ListPrice > 500

 ORDER BY Category, SubCategory; '

 ,@subject = 'Products over $500'

 ,@attach_query_result_as_file = 1 ;

 4. Switch to your mail program and verify that the message was received with an
 attachment. Open and review the attachment. Notice the database context change
 information in the result set. To avoid this, you would use the @execute_query_database
argument to specify the AdventureWorks2008 database.

 5. Switch to SSMS and modify the query from step 3 to set @attach_query_result_as_file
to 0, which includes the results as a part of the message rather than as an attachment.
Also, configure @execute_query_database to ‘AdventureWorks2008’, and remove the
USE database and go commands from the query to eliminate the database context
change from the query results. The query you execute should look similar to the
 following code:

EXEC msdb.dbo.sp_send_dbmail

 @recipients = 'student@Adventure-Works.com'

 ,@query =

 Lesson 1: Integrating Database Mail CHAPTER 9 387

 'SELECT Production.Product.Name, Color, ListPrice

 , Production.ProductSubcategory.Name AS SubCategory

 , Production.ProductCategory.Name AS Category

 FROM Production.Product JOIN Production.ProductSubcategory

 ON Production.Product.ProductSubcategoryID =

 Production.ProductSubcategory.ProductSubcategoryID

 JOIN Production.ProductCategory

 ON Production.ProductCategory.ProductCategoryID =

 Production.ProductSubcategory.ProductSubcategoryID

 WHERE ListPrice > 500

 ORDER BY Category, SubCategory; '

 ,@subject = 'Products over $500'

 ,@attach_query_result_as_file = 0

 ,@execute_query_database = 'AdventureWorks2008';

 6. Switch to your mail program and verify that the message was received and includes
the query result set.

 7. Switch to SSMS and modify and execute the query from steps 3 and 5 to send an
 attachment using the file name ProdsOver500.txt. To achieve this, set the
@attach_query_result_as_file option to 1 and include the following code after the last
line of code, but before the semicolon:

, @query_attachment_filename = 'ProdsOver500.txt'

 8. Switch to your mail program and verify that the message was received and includes
the query result set.

Lesson Summary
n Database Mail was introduced in SQL Server 2005 and should be used in place of SQL

Mail.

n Database Mail is disabled by default to minimize the surface area of the server.

n You should use the sp_send_dbmail system stored procedure to integrate Database
Mail with your applications.

n A wide variety of arguments allows you to customize the e-mail messages and
 attachments sent from the database server.

 388 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

Lesson 2: implementing Scripts
by Using Windows PowerShell

As a developer, you can use PowerShell in SQL Server 2008 to automate the process of
 deploying your applications. You can also use SQL Server PowerShell to automate the
 enumeration of database objects and the object properties. Additionally, you can invoke
 Sqlcmd through SQL Server PowerShell, allowing you to execute any valid SQL commands
from within the Windows PowerShell environment.

After this lesson, you will be able to:

n Understand the capabilities of SQL Server PowerShell.

n Navigate the SQL Server PowerShell hierarchy.

n Use SQL Server PowerShell to enumerate objects.

Estimated lesson time: 45 minutes

What Is Windows PowerShell?
Windows PowerShell is a command-line shell and scripting environment that allows you to
automate administrative and development tasks by creating robust scripts. Because Windows
PowerShell functions across many Microsoft applications, once you learn this common
 scripting language, you can use it to manage multiple servers and products.

When you install SQL Server 2008, the installation program installs Windows PowerShell
1.0 (if not already installed), the SQL Server PowerShell provider, a set of SQL Server
 PowerShell cmdlets, and the sqlps utility to enable SQL Server functionality within the
 PowerShell environment. With SQL Server PowerShell, you can create scripts that you can
run as scheduled SQL Server Agent jobs, by using the Start PowerShell option in SSMS, or
by executing a SQL Server PowerShell environment application such as sqlps or a custom
 application.

note WinDOWS POWeRSHeLL SUPPORt

In SQL Server 2008, Windows PowerShell support is limited to the SMOs relating to the

 Database Engine and Service Broker. A Windows PowerShell provider for SQL Server

Analysis Services (SSAS) is available on the CodePlex Web site at http://www.codeplex.com/

powerSSAS.

 Lesson 2: Implementing Scripts by Using Windows PowerShell CHAPTER 9 389

Caution MeMORY ReQUiReMentS

When you create Windows PowerShell job steps within your SQL Server Agent job, each

step launches a separate sqlps process. Each of these processes requires approximately

20 megabytes (MB) of memory. If you run a large number of SQL Server PowerShell job

steps concurrently, you should test the resources and performance impact.

Navigating the SQL Server PowerShell Hierarchy
SQL Server uses a hierarchy to represent how objects are related to each other within a server.
For example, a table exists in a schema, which exists within a database, which exists within a
SQL Server instance, which resides on a server. SQL Server PowerShell uses a drive-and-path
representation of this hierarchy. The drive-and-path structure used by SQL Server PowerShell
is constructed using similar terminology and commands to the ones you use in a file system.

The root node for SQL Server is the SQLSERVER: drive. Under the SQLSERVER: drive, the
SQL Server PowerShell provider implements the following three folders:

n SQLSeRveR:\SQL Contains database objects, such as databases, tables, views, and
stored procedures

n SQLSeRveR:\SQLPolicy Contains policy-based management objects, such as policies
and facets

n SQLSeRveR:\SQLRegistration Contains registered server objects, such as server
groups and registered servers

Within each engine and folder, you can define the path to the object you want to create,
view, or manage. The folders, subfolders, and objects that you can access are defined by the
SMO model included in SQL Server 2008.

More info SMO ReFeRence

A complete list of SMO objects can be found in SQL Server Books Online by searching for

“SMO Object Model Diagram.”

When you use Object Explorer in SSMS to start a SQL Server PowerShell session, the path
is set to the object from which you began the session, as shown in Figures 9-7 and 9-8.

The SQL Server PowerShell path starts with the drive, followed by one of the three
 supported folders. For the SQL folder, the server name and instance name follow the folder.
If you are referring to the default instance, you must specify the word DeFaULt. After the
instance name, the path alternates between the object type and the name of the object to
which you are referring.

For example, SQLSERVER:\SQL\MIAMI\DEFAULT\Databases\AdventureWorks2008\Tables\
Person.Address refers to the Address table in the Person schema in the AdventureWorks2008
database on the default instance of a server named MIAMI.

 390 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

FiGURe 9-7 Using Object Explorer to start a SQL Server PowerShell session

FiGURe 9-8 A path set to the location where the SQL Server PowerShell session was initiated

Quick check

n Which folder would you specify if you wanted to determine what objects

existed in a particular schema?

Quick check answer

n You would specify the SQLSERVER:\SQL folder.

 Lesson 2: Implementing Scripts by Using Windows PowerShell CHAPTER 9 391

Using SQL Server PowerShell to Enumerate Objects
Once you set the path to the correct object, you can list child items, move items, rename

items, and perform many other actions as well. PowerShell cmdlets can be referred to with

their full names or with any of a number of aliases. A list of the cmdlets, their functions, and

their alias implemented in SQL Server 2008 are as follows:

n Get-Location Returns the current node name. Aliases: gl, pwd.

n Set-Location Changes the current node. Aliases: sl, cd, chdir.

n Get-ChildItem Lists the objects stored at the current node. Aliases: gci, dir, ls.

n Get-Item Returns the properties of the current item. Alias: gu.

n Move-Item Moves an item. Aliases: mi, move, mv.

n Rename-Item Renames an object. Aliases: rni, rn, ren,

n Remove-Item Deletes an object. Aliases: ri, del, rd, rm, rmdir.

Best PraCtiCes USinG aLiaSeS

Although it is usually easier to use aliases when working interactively, using the full cmdlet

name will make stored scripts easier to read and maintain.

When you are working interactively in the SQL Server PowerShell session, you can use the
following tips:

n Use the up and down arrow keys to scroll through commands that have been run
 previously.

n Use the right and left arrow keys to move through and edit a command that has been
returned by using the up and down arrow keys, or one that you have just typed.

n Use aliases to minimize typing.

n Use the full or relative path depending on the current and desired paths, as shown in
the following examples:

• If your current path is SQLSERVER:\SQL\MIAMI\DEFAULT\Databases\
AdventureWorks2008\Tables\Person.Address and you want to move to the Tables
subfolder directly above the current path, you can type cd .. to move up one level
in the path.

• If your current path is SQLSERVER:\SQL\MIAMI\DEFAULT\Databases\
AdventureWorks2008\Tables\Person.Address and you want to move to the SQL
Policy folder, the easiest option is probably to type cd \SQLPolicy.

n Use cls to clear the screen to make your result set easier to read.

n Use the –force parameter to view system objects such as the sys schema and the
 objects in it.

n Use tab-completion to allow you to type a partial path or cmdlet name and press Tab
to receive a list of objects whose names match what you have typed.

 392 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

More info ManaGinG tab-cOMPLetiOn

For more information about using and managing tab-completion, see the “Managing

Tab-Completion” heading in the “Using the SQL Server PowerShell Provider” article in SQL

Server Books Online.

Additional SQL Server PowerShell Cmdlets
In addition to the cmdlets listed previously, the SQL Server PowerShell provider includes other
built-in cmdlets to provide greater functionality. The following cmdlets might be beneficial to
developers:

n Get-Help Provides help information about each cmdlet. The –Full parameter provides
the full technical help, including the samples. Figure 9-9 shows the results of the Help
screen for the Invoke-Sqlcmd cmdlet.

FiGURe 9-9 Sample Help screen

 Lesson 2: Implementing Scripts by Using Windows PowerShell CHAPTER 9 393

note SettinG SQL SeRveR POWeRSHeLL WinDOW PROPeRtieS

You might need to modify the screen buffer size to view all of the help information

when you use the –Full option. You can use the SQL Server PowerShell window

 properties to modify the command buffer size, font, colors, and other default settings.

To reconfigure the screen buffer size, you can perform the following steps:

 1. Open a SQL Server PowerShell session.

 2. In the SQL Server PowerShell window, right-click the title bar, and click
Properties.

 3. In the properties window, click the Layout tab.

 4. On the layout page, increase the Screen Buffer Size Height to 500, and
click OK.

 5. If the Apply Properties window appears, select whether you want the
 properties to be applied only to the current window, or for all future
windows with the same title, and then click OK.

 6. If you need to reset the parameters to their default values, in the SQL Server
 PowerShell window, right-click the title bar, and click Defaults.

n Invoke-Sqlcmd Runs a Transact-SQL (T-SQL) or XQuery script.

n Encode-SqlName Encodes a SQL Server identifier (object name) to reformat any
 characters not supported by the SQL Server PowerShell language.

n Decode-SqlName Returns the original SQL identifier when provided with an encoded
SQL identifier.

n Convert-UrnToPath Converts an SMO Uniform Resource Name (URN) to the path
structure used by SQL Server PowerShell. Both the path and URN contain the same
information, but the format is different.

For example, you can use the following command to retrieve the current date and time
as shown in Figure 9-10:

Invoke-Sqlcmd –Query "SELECT GETDATE() AS 'Date';"

FiGURe 9-10 Sample of the Invoke-Sqlcmd cmdlet

 394 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

More info SQL POWeRSHeLL eXtenSiOnS

For more information about SQL PowerShell extensions, see http://www.codeplex.com/

SQLPSX and http://www.sqlservercentral.com/articles/powershell/64316/.

Using SQL Server PowerShell—Examples
The following examples are provided to help you become more familiar with some of the
cmdlets and options available when using SQL Server PowerShell with SQL Server 2008.

This first example uses the Get-Item option and evaluates and displays the current status
of the SQL Server Login Mode policy on a server named MIAMI. This policy is one of the Best
Practices policies included with SQL Server 2008, which you can import into your server’s
policies. If your server is set to Integrated-only authentication, the result returned is True. If
your security settings allow both SQL- and Windows-integrated logins, the result returned is
False, as shown in Figure 9-11.

FiGURe 9-11 Sample of the Get-Item cmdlet

note cOMManD ReQUiReMentS

Before executing the sample in Figure 9-11, you need to change to the appropriate path

and verify that the RPC server is available.

The second sample, in Figure 9-12, shows the list of subfolders available under the
 DEFAULT instance on the MIAMI server in the SQL folder. Notice that the sample uses the ls
alias rather than spelling out the complete Get-ChildItem cmdlet.

The final example, in Figure 9-13, demonstrates using the Get-ChildItem cmdlet to list the
parameters defined on the HumanResources.uspUpdateEmployeeLogin user-defined stored
procedure in the AdventureWorks2008 database on the DEFAULT instance of the server
 MIAMI.

 Lesson 2: Implementing Scripts by Using Windows PowerShell CHAPTER 9 395

FiGURe 9-12 Sample of the Get-ChildItem cmdlet to list the subfolders available under
the DEFAULT instance

FiGURe 9-13 Sample of the Get-ChildItem cmdlet to list the parameters defined on a stored procedure

Practice Using the SQL Server PowerShell Provider

In this practice, you use SQL Server PowerShell to browse within the SQLSERVER context.

exercise Browse the SQL Server PowerShell Hierarchy

In this exercise, you browse through various paths and view objects by using the SQL Server
PowerShell utility.

 1. Open SSMS, if it is not already open.

 2. In Object Explorer, expand the Databases folder, right-click the AdventureWorks2008
database, and select Start PowerShell.

 3. In the SQL Server PowerShell window, note that the active path is as follows:
PS SQLSERVER:\SQL\MIAMI\DEFAULT\Databases\AdventureWorks2008.

 396 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

 4. Right-click within the SQL Server PowerShell window, and select Mark. Use the arrow
keys to move the cursor three spaces to the right, to the first letter of your path. Use
the Shift key in conjunction with the arrow keys to highlight the current path. Do not
highlight the PS prompt before the path or the > at the end of the path. Press Enter
before pressing any other keys. Your cursor should return to the end of the current
command line.

 5. On the current command line, type Set-Location, followed by a space, and then
 right-click within the SQL Server PowerShell window, and select Paste. Immediately
following the pasted path, type \tables, and press Enter. Verify that the path has
changed to the Tables object level.

 6. In the SQL Server PowerShell window, on the current command line, type
 Get-childitem and press Enter. Review the data that is returned. Notice that the
 schema, table name, and creation date for each user-defined table in the current
 database are returned.

 7. In the SQL Server PowerShell window, on the current command line, type
 Set-Location .. to move up one level in the path.

 8. In the SQL Server PowerShell window, on the current command line, type cd views to
change to the Views object level. Use the Get-ChildItem command from step 6 to list
the user-defined views in the AdventureWorks2008 database. Review the list of views
returned.

 9. While the current path is set to the Views subfolder, use the Get-ChildItem –force
 option to list all views, including system views. Notice the difference from the results
that you obtained in step 8.

 10. In the SQL Server PowerShell window, on the current command line, type
 Set-Location HumanResources.vemployee and press Enter.

 11. To view the columns defined in the HumanResources.vEmployee view, type
 Get-childitem columns and press Enter. Review the columns defined in the
 HumanResources.vEmployee view.

Lesson Summary
n SQL Server PowerShell is a command-line shell and scripting environment, based on

Windows PowerShell.

n SQL Server PowerShell uses a hierarchy to represent how objects are related to each
other.

n The three folders that exist in the SQL Server PowerShell provider are SQLSERVER:\SQL,
SQLSERVER:\SQLPolicy, and SQLSERVER\SQLRegistration.

n You can browse the hierarchy by using either the cmdlet names or their aliases.

 Lesson 3: Tracking Data Changes CHAPTER 9 397

Lesson 3: tracking Data changes

If you worked on previous versions of SQL Server, you may have built complex solutions
that included adding timestamp columns, adding triggers, and possibly even configuring
 replication to track changes in your database. In SQL Server 2008, Microsoft introduced
change tracking and change data capture (CDC) to help answer questions about data that
changes in a database. In addition, SQL Server 2008 Enterprise Edition includes SQL Server
Audit, which provides automatic auditing of a SQL Server instance. In addition to being able
to audit server and database level events, SQL Server Audit provides you with a tool to log
not only when a table is modified (INSERT, UPDATE, DELETE), but also when data is read from
a table (SELECT).

After this lesson, you will be able to:

n Describe and compare the change tracking and CDC features and differences.

n Enable change tracking on databases and tables.

n Query for information about changed data when using change tracking.

n Enable CDC on databases and tables.

n Query for information about changed data when using CDC.

Estimated lesson time: 60 minutes

Comparing Change Tracking to CDC
When implementing a method to track changes in your database, you need to decide
 between the change tracking and CDC methods. Each of these methods allows you to
 determine whether a change has occurred to the data. The following sections compare the
benefits of each method and describe how each method operates.

Change Tracking
Change tracking has the following functions:

n Provides functionality with DML statements.

n Can answer questions such as:

• What rows in the table have changed?

• What columns have changed?

• Has a particular row been updated?

• Did an INSERT, UPDATE, or DELETE occur?

n Operates synchronously to provide change information immediately.

n Provides a lower storage overhead than CDC.

 398 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

n Provides a built-in cleanup mechanism.

n Uses the transaction commit time to determine the order of the changes.

n Works without requiring schema changes to the table or additional triggers.

n Must be enabled at the database level by using ALTER DATABASE.

Change Data Capture
Change data capture has the following functions:

n Provides functionality with DML statements.

n Can answer the same questions as change tracking, as well as the following ones:

• What were the intermediate changes made to the data since the last synchronization?

• How many times has a row been updated since the last synchronization?

n Uses change tables to record modified column data and metadata that is required
to apply changes to a target environment. The column structure of the change table
 mirrors the structure of the source table.

n Uses the transaction log as input for the information added to the change tables.

n Operates asynchronously and changes are available only after the DML statement has
completed.

n Provides table-valued functions to allow access to the data in the change tables.

n Requires the database to be enabled by using sys.sp_cdc_enable_db.

n Requires SQL Server 2008 Enterprise, Developer, or Evaluation Edition.

real World

Ann Weber

A few weeks ago, I was working with a large retail company in the Chicago

area. They currently use SQL Server 2005 OLTP databases along with Analysis

Services. Their sales managers change territories on a regular basis. When a change

occurs in the staging database for the OLAP data warehouse, a special program

needs to be run before the cubes can be processed. We were talking about different

ways to accomplish this in SQL Server 2005, and although it can be done, they need

to add additional columns and triggers to their tables, which can slow input into

this staging base and add complexity.

We also discussed SQL Server 2008 and change tracking. They only need to

know if a row was updated and what the current data in the table is, so the lower

 performance overhead of change tracking is ideal for them. We also discussed the

added functionality of CDC, but they did not need that functionality at this time.

 Lesson 3: Tracking Data Changes CHAPTER 9 399

Configuring Change Tracking
Before you can configure change tracking on your tables, you must enable change tracking
on the database. You can use either SSMS or ALTER DATABASE to enable change tracking on
your database.

iMPortant DatabaSe cOMPatibiLitY LeveL

Before you can configure change tracking for a given database, you must set the database

compatibility level to SQL Server 2005 (90) or higher for that database.

Enabling Change Tracking for a Database
When you enable change tracking for a database, you can configure the following options:

n change tracking Set to True or False (the default) to enable or disable change
 tracking.

n Retention Period Set to a numeric value that represents the minimum amount of
time that changes are maintained. The default retention period is 2.

n Retention Period Units Set to Days (the default), Hours, or Minutes.

n auto cleanUp Set to ON (the default) or OFF to enable or disable the process that
removes outdated change tracking information.

Warning enabLinG aUtO cLean-UP ReSetS DeFaULtS

Each time the Auto Clean-Up option is set to ON, the Retention Period and Retention

 Period Units are reset to the default value of 2 and 2 days, respectively.

To enable change tracking by using SSMS, you should perform the following steps:

 1. In Object Explorer, expand the Databases folder, right-click the database where you
want to use change tracking, and select Properties.

 2. In the select a page pane of the Database Properties window, click Change Tracking.

 3. On the Change Tracking page, configure the appropriate options, and then click OK.

Figure 9-14 shows change tracking settings for the AdventureWorks2008 database. The
retention period is set to seven days. If the Analysis Services staging database is synchronized
with the AdventureWorks2008 database once every three days, the configured retention
period allows a synchronization to be missed and repaired before the data is removed from
the change tables. In this scenario, more space is required in the change tables than if you
configure a shorter retention period.

 400 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

FiGURe 9-14 Change tracking database settings

You can enable change tracking by executing the ALTER DATABASE command. The
 following code includes the full syntax for the ALTER DATABASE command for the options
related to change tracking:

ALTER DATABASE database_name

SET

{

<change_tracking_option> ::=

{

 CHANGE_TRACKING {

 = ON [<change_tracking_option_list >] |

 <change_tracking_option_list> |

 = OFF

 }

}

<change_tracking_option_list> ::=

{

 (<change_tracking_option> | <change_tracking_option_list> ,

 <change_tracking_option>)

}

 <change_tracking_option> ::=

 Lesson 3: Tracking Data Changes CHAPTER 9 401

{

 AUTO_CLEANUP = { ON | OFF }

 | CHANGE_RETENTION = { retention_period { DAYS | HOURS | MINUTES }]

}

}

You can execute the following command to enable change tracking on the
AdventureWorksDW2008 database. Changes are maintained for at least seven days and the
automatic cleanup process removes change tracking information that was created more than
seven days ago:

ALTER DATABASE AdventureWorksDW2008

SET CHANGE_TRACKING = ON

(CHANGE_RETENTION = 7 DAYS, AUTO_CLEANUP = ON)

Enabling Change Tracking for a Table
Once change tracking has been enabled on the database, the ALTER TABLE command is used
to enable change tracking on individual tables that you want to track. There are only two
arguments in the ALTER TABLE command that affect change tracking:

n Change_Tracking Set to ENABLE (the default) or DISABLE to identify the status of
change tracking on the table.

n Track_Columns_Updated Set to ON or OFF (the default) to designate whether you
want to maintain a list of which columns are updated when the UPDATE command is
executed against the table.

To configure change tracking by using SSMS, select the Change Tracking page of the Table
Properties window for the table on which you want to track changes.

You can execute the following code to enable change tracking, including information
about changes to individual columns that are modified on the DimEmployee table in the
AdventureWorksDW2008 database:

ALTER TABLE DimEmployee

ENABLE CHANGE_TRACKING

WITH (TRACK_COLUMNS_UPDATED = ON);

Disabling Change Tracking
You must disable change tracking on each table by using either SSMS or ALTER TABLE before
you can disable change tracking on the database.

To determine which tables in the AdventureWorksDW2008 database have change tracking
enabled, you can query the sys.change_tracking_tables catalog view as shown in Figure 9-15.

To disable change tracking on the FactInternetSales table, execute the following code:

ALTER TABLE FactInternetSales

DISABLE CHANGE_TRACKING;

 402 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

FiGURe 9-15 Viewing tables with change tracking enabled

Once you have disabled change tracking on all the tables in the database, you can disable
change tracking on the database by using SSMS or the ALTER DATABASE command.

The following command disables change tracking on the AdventureWorksDW2008
 database:

ALTER DATABASE AdventureWorksDW2008

SET CHANGE_TRACKING = OFF

Understanding Additional Change Tracking Effects
The following commands may behave differently when change tracking is enabled:

n TRUNCATE TABLE Succeeds, but deleted rows are not tracked and the minimum valid
version is updated, which requires applications to reinitialize before they can resume
synchronization.

n DROP INDEX or ALTER INDEX DISABLE Fails only if referencing the index that
 enforces the PRIMARY KEY constraint.

n DROP TABLE Succeeds and removes all change tracking information pertaining to
the dropped table.

n ALTER TABLE DROP CONSTRAINT Fails if you try to drop the PRIMARY KEY
 constraint. You must disable change tracking before you can drop the PRIMARY KEY
constraint on the table.

n ALTER TABLE DROP COLUMN Succeeds so long as the column is not part of the
PRIMARY KEY constraint. Unless the application is programmed to handle the dropped
column, data from the dropped column might still be returned as part of the change
tracking information.

n ALTER TABLE ADD COLUMN Succeeds and begins tracking changes that are made to
the new column.

n ALTER TABLE ALTER COLUMN Succeeds, but data type changes on non–primary key
columns are not tracked.

n ALTER TABLE SWITCH Fails if one or both of the tables has change tracking enabled.

 Lesson 3: Tracking Data Changes CHAPTER 9 403

Working with Change Tracking
When you are developing applications to synchronize data by using change tracking, you can
use several T-SQL commands and catalog views that are provided in SQL Server 2008.

The following functions allow you to query change information and manage the change
tracking environment:

n CHANGETABLE Used to return all change information for a table by using the
CHANGES option, or change information for a specific row by using the VERSION
 option.

n CHANGE_TRACKING_MIN_VALID_VERSION Returns the minimum version that
is valid for use in obtaining change tracking when you execute the CHANGETABLE
 function. You must specify the table object ID for the tracked table as an argument to
the command.

n CHANGE_TRACKING_CURRENT_VERSION Obtains the version that is associated with
the last committed transaction. You can use this version information when you execute
the CHANGETABLE function.

n CHANGE_TRACKING_IS_COLUMN_IN_MASK Interprets the SYS_CHANGE_COLUMNS
value returned by the CHANGETABLE (CHANGES . . .) function allowing your application
to determine whether the column listed in the argument is included in the values
returned for SYS_CHANGE_COLUMNS.

n WITH CHANGE_TRACKING_CONTEXT Allows you to set context information to
a varbinary(128) field in the change tracking information when updates occur. This
 allows you to determine what application initiated an update.

More info cHanGe tRackinG FUnctiOnS SYntaX

For detailed information about the syntax for the change tracking functions, see the article

“Change Tracking Functions (Transact-SQL)” in SQL Server Books Online.

CHANGETABLE Function Output and Samples
The CHANGETABLE(CHANGES) function displays the following columns when queried:

n SYS_CHANGE_VERSION Displays the version of the most recent change to the row.

n SYS_CHANGE_CREATION_VERSION Displays the version value of the last INSERT
operation.

n SYS_CHANGE_OPERATION Displays U for UPDATE, D for DELETE, or I for INSERT.

n SYS_CHANGE_COLUMNS Displays the columns that have changed since the baseline
version. This column contains NULL under the following circumstances:

• The Track_Columns_Updated argument is set to OFF.

• The operation is an INSERT or DELETE.

• All non–primary key columns were updated in the same operation.

 404 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

n SYS_CHANGE_CONTEXT Displays a context for the update if defined. You configure
the context as part of the INSERT, UPDATE, or DELETE statement by using the WITH
clause.

n <primary key column value> Displays the primary key value for the row.

For the following sample queries, change tracking was enabled on the AdventureWorksDW2008
database and the DimEmployee table in the AdventureWorksDW2008 database. To start with, the
Track_Columns_Updated argument is set to OFF.

A new row is inserted into the DimEmployee table for an employee named Jonathan
Haas. His employee key is 299. Figure 9-16 displays the change by using the CHANGETABLE
 function. Notice that the SYS_CHANGE_VERSION is 1 and the SYS_CHANGE_OPERATION is
I for INSERT.

FiGURe 9-16 Sample output from a change table query with Track_Columns_Updated off

For the next sample, two rows are updated in the DimEmployee table. Jonathan Haas,
Employee 299, became a salesperson (the SalesPersonFlag column was set to 1). Syed Abbas,
Employee 294, is no longer a salesperson; therefore, the SalesPersonFlag column was set
to 0. Figure 9-17 shows the results of the CHANGETABLE(CHANGES) function showing all
updates from the first capture to this point. Notice that the SYS_CHANGE_VERSION has
been incremented to 2 for the EmployeeKey 299, but the operation is still I. The row has
not been synchronized since the initial INSERT, so an INSERT still needs to occur when
the table is synchronized, but the new current data with a SalesPersonFlag of 1 is included
in the synchronization. For Employee 294, the SYS_CHANGE_VERSION is now set to 3 (each
 update to the table increments this count), the SYS_CHANGE_OPERATION is U for UPDATE,
but the SYS_CHANGE_CREATION_VERSION is set to NULL because this row was inserted
before change tracking was enabled.

The final sample for this scenario includes the deletion of the new user, Jonathan Haas.
Notice in Figure 9-18 that for the row with EmployeeKey 299, the SYS_CHANGE_VERSION has
incremented to 4 and the SYS_CHANGE_OPERATION is now D for DELETE.

 Lesson 3: Tracking Data Changes CHAPTER 9 405

FiGURe 9-17 The sample after the row from sample 1 and an additional row are updated

FiGURe 9-18 The sample after the new row is deleted

In the second set of screenshots, a clean server is used and change tracking is enabled on
the database once again. When change tracking is enabled on the DimEmployee table, the
TRACK_COLUMNS_UPDATED argument is set to ON. Once again, a row for Jonathan Haas,
now with an EmployeeKey of 297, is inserted into the database, and the query in Figure 9-19 is
executed. Notice that the results are the same as with the first set of queries.

Once again, for the next query, two rows are updated in the DimEmployee table. Jonathan
Haas, Employee 299, became a salesperson (the SalesPersonFlag column was set to 1). Syed Abbas,
Employee 294, is no longer a salesperson; therefore, the SalesPersonFlag column was set to 0.
Figure 9-20 shows the results of the CHANGETABLE(CHANGES) function showing all updates from

 406 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

FiGURe 9-19 A sample after the first insert with TRACK_COLUMNS_UPDATED on

the first capture to this point. Notice this time that the SYS_CHANGE_COLUMNS includes a binary
value representing the column that was changed. You should use the CHANGE_TRACKING_IS_
COLUMN_IN_MASK function when you need to interpret this information.

FiGURe 9-20 The sample after the columns are updated

For the final example, shown in Figure 9-21, we see once again that the TRACK_
COLUMNS_UPDATED columns argument has no effect on the DELETE statement.

The CHANGETABLE(VERSION) function displays the following columns when queried:

n SYS_CHANGE_VERSION Displays the version of the most recent change to the row.

n SYS_CHANGE_CONTEXT Displays a context for the update if defined. You configure
the context as part of the INSERT, UPDATE, or DELETE statement by using the WITH
clause.

n <primary key column value> Displays the primary key value for the row.

 Lesson 3: Tracking Data Changes CHAPTER 9 407

FiGURe 9-21 The sample after the newly added row is deleted

Managing Change Tracking
The following catalog views display change tracking configuration information:

n sys .change_tracking_databases Displays the following information:

• Database_id An integer field that represents the unique database ID within the
SQL Server instance for databases where change tracking has been enabled.

• Is_auto_cleanup_on A bit field set to 0 for off and 1 for on.

• Retention_period An integer field representing the minimum amount of time that
tracked changes are saved before they are removed from the auto-cleanup process.

• Retention_period_units_desc An nvarchar field specifying Minutes, Hours, or Days.

• Retention_period_unit A tinyint field set to 1 for minutes, 2 for hours, or 3 for days.

n sys .change_tracking_tables Displays the following information:

• Object_id An integer field that represents the unique table ID for tables in the
database that have a change journal. A table where change tracking is currently
disabled can still have a change journal.

• Is_track_columns_updated_on A bit field set to 0 for off and 1 for on.

• Begin_version A bigint field that contains the version of the database when change
tracking began for the table.

• Cleanup_version A bigint field that contains the version number where, prior to
this version, data may have been removed by the auto-cleanup process.

• Min_valid_version A bigint field that contains the minimum valid version number
for change tracking information for each table.

 408 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

More info cHanGe tRackinG cataLOG vieWS

For more information about change tracking catalog views, see the article “Change Tracking

Catalog Views (Transact-SQL)” in SQL Server Books Online.

Configuring CDC
Configuring CDC is a multistep process. Before you can enable CDC on your tables, you must
enable CDC on the database that contains the tables that you want to track.

iMPortant cDc ReQUiReMentS

To configure and use CDC successfully, you must verify that the SQL Server Agent service is

running.

Enabling CDC on Your Database
To enable CDC on a database, you execute the sys.sp_cdc_enable_db system stored procedure.

The following command enables CDC on the AdventureWorksDW2008 database:

USE AdventureWorksDW2008;

GO

EXECUTE sys.sp_cdc_enable_db;

GO

When you enable CDC for a database, the system sets the is_cdc_enabled column in the
sys.databases catalog view to 1 and creates the system objects that CDC requires. These
objects include the cdc schema, the cdc database user account, and the tables, jobs, stored
procedures, and functions that the CDC process requires.

note cDc ReStRictiOnS

You cannot enable CDC on system databases.

Enabling CDC on Your Tables
Once you have enabled CDC on your database, you can enable it for the tables in the
 database. When you enable CDC on a table by using the sys.sp_cdc_enable_table system
stored procedure, you create a capture instance for the source table.

The sys.sp_cdc_enable_table system stored procedure includes the following arguments:

n source_schema Defines the schema to which the source table belongs.

n source_name Defines the name of the source table. This name must exist in the
 current database and cannot exist in the cdc schema.

 Lesson 3: Tracking Data Changes CHAPTER 9 409

n role_name Defines the database role that is used to provide access to the captured
data. If the role does not exist, SQL Server tries to create it. If the user executing the
command does not have sufficient permissions to create a role, the whole stored
 procedure operation fails.

note ReQUiReD aRGUMentS

When executing sys.sp_cdc_enable_table you must provide the source_schema, source_name,

and role_name arguments. The role_name argument may be set to NULL. See the section

entitled “Understanding CDC Permissions,” later in this chapter, for additional information.

n capture_Instance Defines a name given to the instance that is used for the naming of
instance-specific objects. A source table can have up to two capture instances defined.
If you do not specify capture_instance, the default name is schemaname_sourcename.
The capture_instance name cannot exceed 100 characters.

n supports_net_changes Set to 1 or 0 to define whether or not support for querying
net changes is enabled. The default of 0 allows the functions to query only for all
changes. A value of 1 allows you to query for net changes.

note aDDitiOnaL ReQUiReMentS FOR SUPPORtinG net cHanGeS

If you enable support for net changes and a primary key field does not exist on the

source table, you must specify a valid unique index on the source table for the index_

name argument.

n index_name Defines the name of a valid unique index on the source table.

n captured_column_list Identifies the source columns that will be captured. If this field
is NULL, all columns are included in the change table.

note aDDitiOnaL cOLUMn ReQUiReMentS

Captured columns have the following requirements:

n You must list the columns included in the primary key field or in the unique
index specified in the index_name argument.

n You must use commas to separate the column names.

n If column names include an embedded comma, or if you would like to add
 quoted identifiers to column names, you can use the single quotation mark or
brackets around the column name.

n You cannot list any of the following reserved column names: __$start_lsn,
__$end_lsn, __$seqval, __$operation, and __$update_mask.

n You cannot list columns that are defined with any of the new data types
 introduced in SQL Server 2008.

 410 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

n filegroup_name Defines the name of the filegroup on which the change table will be
created. If this value is NULL, the change table is created on the default filegroup. If
filegroup_name is specified, the filegroup name must exist in the current database.

n partition_switch Set to TRUE or FALSE (the default) to indicate whether the SWITCH
PARTITION command of ALTER DATABASE can be executed against the source table
when CDC is enabled.

iMPortant HOW SWITCH PARTITION anD cDc inteRact

Data changes that are caused by a SWITCH PARTITION command are not captured in

the change table. For instance, if rows are switched out of the source table, and into

another table, the DELETE operation is not captured.

You can use the following code sample to enable CDC on the FactInternetSales table in the
AdventureWorksDW2008 database. This sample allows you to query for net changes made to
the data:

USE AdventureWorksDW2008;

GO

EXEC sys.sp_cdc_enable_table

 @source_schema = N'dbo'

 , @source_name = N'FactInternetSales'

 , @role_name = N'cdc_admin'

 , @capture_instance = N'InternetSales'

 , @supports_net_changes = 1

 GO

You can use the cdc.fn_cdc_get_net_changes function to verify the CDC configuration
 settings.

Understanding CDC Permissions
By default, the sysadmin and db_owner roles have full permissions to the data in the change
tables.

When the role_name option is set to NULL, CDC is enabled without using a gating role.
The gating role controls access to the data in the change table. When you configure your
CDC system this way, any user with SELECT permission on the source table can access the
 information in the change table.

When you specify a specific built-in or user-defined role in the role_name argument,
you define a gating role for the change table, thus forcing all users who need access to the
 captured data to have SELECT permission on the captured columns in the source table as well
as membership in the gating role for that capture instance.

 Lesson 3: Tracking Data Changes CHAPTER 9 411

Querying for Changes
You use either the cdc.fn_cdc_get_all_changes_<capture_instance> or the cdc.fn_cdc_get_net_
changes_<capture_instance> function to query data in the change table. If you enable CDC
and set the supports_net_changes argument to 1, both functions are available for the CDC
instance defined. If you set the supports_net_changes argument to 0, or if you do not include
the argument, only the cdc.fn_cdc_get_all_changes_<capture_instance> is available.

With net changes enabled, if you want to write a query that returns one row in the result
set for each changed row in the Log Sequence Number (LSN) range and includes only the
final content, even if intermediate changes have occurred, you should use the cdc.fn_cdc_get_
net_changes_<capture_instance> function.

The cdc.fn_cdc_get_net_changes_<capture_instance> function includes the following
 arguments:

n from_lsn Defines the starting LSN number to create the range within which rows
should be returned. All rows in the change table with an LSN value equal to or greater
than the from_lsn value are included in the result set. This is referred to as setting the
lower bound of the query range.

n to_lsn Defines the ending LSN number to create the range of rows returned. All rows
in the change table with an LSN value less than or equal to the from_lsn value are
included in the result set. This is referred to as setting the upper bound of the query
range.

n row_filter Controls which rows are returned and what is displayed in the metadata
columns of the result set. The row_filter argument can have any of the following values:

• All Returns the LSN number of the transaction in the _$start_lsn column, the value
of the operation performed in the _$operation column, and NULL in the _$update_
mask column.

• All with mask Returns the LSN number of the transaction in the _$start_lsn
 column, and the value of the operation performed in the _$operation column. If
the UPDATE operation returns a value of 4, the bits in the _$update_mask column
 associated with the updated columns are set to 1.

• All with merge Returns the LSN number of the transaction in the _$start_lsn
 column, and returns a value of 1 in the _$operation column if the row was deleted
and a value of 5 if an INSERT or UPDATE needs to be used to apply the change. The
 _$update_mask always has a value of NULL.

note USinG tHe ALL WITH MERGE OPtiOn

This option is designed to improve performance when you don’t need to distinguish

between INSERT and UPDATE statements. You should consider using this option if you

are also using the MERGE operation available in SQL Server 2008.

 412 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

More info MERGE cOMManD

For more information about the MERGE command, see Lesson 2 of Chapter 2,

“ Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements,” in this book.

The table returned when you query the cdc.fn_cdc_get_net_changes_<capture_instance>
function includes the following columns:

n _start_lsn Displays the LSN associated with the commit transaction action of the
change.

n _$seqval Displays the sequence value to order the row changes that occur within a
transaction. All rows in a transaction have the same _$start_lsn value.

n _$operation Displays an integer value based on the operation performed and the
row_filter_option parameter. When you set the row_filter_option to all or all with mask,
this column displays the following values:

• 1 for DELETE operations

• 2 for INSERT operations

• 4 for UPDATE operations

When the row_filter_option parameter is set to all with merge, the _$operation column
displays the following values:

• 1 for DELETE operations

• 5 for both INSERT and UPDATE operations

n _$update_mask Displays a bit mask representing the columns that are being
 captured from the source table. A 1 in the mask represents a column that was
changed. For INSERT and DELETE statements, all bits are set to 1.

n <captured source table columns> Returns each column from the source table that
was captured.

The following query modifies rows in the FactInternetSales table. Figure 9-22 shows the
result set of the cdc.fn_cdc_get_net_changes_InternetSales function once the updates have
been executed:

USE AdventureWorksDW2008;

GO

DECLARE @begin_time datetime, @end_time datetime, @from_lsn binary(10)

 , @to_lsn binary(10);

-- Set the beginning of the time interval to yesterday to capture all changes.

SET @begin_time = GETDATE() -1;

-- DML statements to produce changes.

UPDATE dbo.FactInternetSales

SET OrderQuantity = 5

WHERE SalesOrderNumber = 'SO43697' AND SalesOrderLineNumber = 1;

 Lesson 3: Tracking Data Changes CHAPTER 9 413

UPDATE dbo.FactInternetSales

SET OrderQuantity = 2

WHERE SalesOrderNumber = 'SO43697' AND SalesOrderLineNumber = 1;

DELETE FROM dbo.FactInternetSales

WHERE SalesOrderNumber = 'SO43701'AND SalesOrderLineNumber = 1 ;

-- Set the end of the time interval after changes were completed.

SET @end_time = GETDATE();

-- Map the time interval to a change data capture query range.

SET @from_lsn = sys.fn_cdc_map_time_to_lsn(

 'smallest greater than or equal', @begin_time);

SET @to_lsn = sys.fn_cdc_map_time_to_lsn(

 'largest less than or equal', @end_time);

-- Return the net changes occurring within the query window.

SELECT * FROM cdc.fn_cdc_get_net_changes_InternetSales(

 @from_lsn, @to_lsn, 'all');

FiGURe 9-22 Partial output from the cdc.fn_cdc_get_net_changes_InternetSales function

If you want to write a query that returns rows for all changes that occurred during the
specified period, you should use the cdc.fn_cdc_get_all_changes_capture_instance function.
If more than one change has occurred in a given row of the source table, multiple rows are
returned by this function.

The cdc.fn_cdc_get_all_changes_capture_instance function includes the following
 arguments:

n from_lsn Defines the starting LSN number to create the range within which rows
should be returned. All rows in the change table with an LSN value equal to or greater
than the from_lsn value are included in the result set. This is referred to as setting the
lower bound of the query range.

n to_lsn Defines the ending LSN number to create the range of rows returned. All rows
in the change table with an LSN value less than or equal to the from_lsn value are
included in the result set. This is referred to as setting the upper bound of the query
range.

 414 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

n row_filter_option The row_filter_option can have either of the following settings:

• All Returns all changes that occurred within the range defined by the from_lsn and
to_lsn options. For rows that were modified with the UPDATE statement, only the
row containing the new values is returned.

• All update old Returns all changes that occurred within the range defined by
the from_lsn and to_lsn options. For rows that were modified with the UPDATE
 statement, both the row containing the values before the update and the row
 containing the values after the update are returned.

The table returned by the cdc.fn_cdc_get_all_changes_capture_instance function has
the same columns as those listed previously for the cdc.fn_cdc_get_net_changes_<capture_
instance> function.

Figure 9-23 shows the results of the cdc.fn_cdc_get_all_changes_InternetSales function with
the identical changes that occurred for the result set shown in Figure 9-22. You can compare
these two figures to see the differences between showing net changes and all changes.

FiGURe 9-23 Sample of cdc.fn_cdc_get_all_changes_InternetSales results

When you are building an application to query a change table, you may want to define
the rows returned based on the time when the changes occurred rather than on the LSN. You
can use the sys.fn_cdc_map_time_to_lsn to determine the LSN numbers that you use in the
from_lsn and to_lsn arguments of the cdc.fn_cdc_get_all_changes_<capture_instance> or
cdc.fn_cdc_get_net_changes_<capture_instance> function.

You can use the following CDC functions when querying changed data:

n sys .fn_cdc_has_column_changed Returns a 1 or 0 to identify whether the column
identified by the mask supplied has been updated in any associated change row. The
capture instance, column name, and update mask values are included as input for this
function.

n sys .fn_cdc_increment_lsn Returns the next LSN in the sequence based on an input
LSN value. If you know the upper-bound LSN value for the previous query, you can use
this function to define the new lower bound for the range of your new query. You can
use this logic to avoid having to know the specific time that the synchronization last
ran. You simply need to maintain the LSN values from the previous synchronization
period.

n sys .fn_cdc_decrement_lsn Returns the previous LSN based on an input LSN value.
You can use this function to determine the upper bound of an LSN range defined
within a query.

 Lesson 3: Tracking Data Changes CHAPTER 9 415

n sys .fn_cdc_is_bit_set Uses the ordinal position in the bit mask (the $_update_mask
value) for a specified column and the bit mask as inputs to return a bit representing
whether the input column was updated. You can use this function to append a column
to your output representing the update state of a given source column. For example:
You are querying the change table and you want to know specifically whether the
GroupName column was updated in each row returned from the HR_Department
table. You can use the cdc.fn_cdc_get_all_changes_HR_Department, sys.fn_cdc_get_
column_ordinal, and sys.fn_cdc_is_bit_set functions to add a column with an alias set to
‘Group Name Updated’ to the result set that displays a 1 when true and a 0 when false.

n sys .fn_cdc_get_column_ordinal Uses the capture instance and column name
 information as input and returns an integer representing the ordinal position of the
column in the bit mask.

n sys .fn_cdc_map_lsn_to_time Uses an LSN as input and returns the DATETIME value of
the commit time from the tran_end_time column in the cdc.lsn_time_mapping system
table.

n sys .fn_cdc_get_max_lsn Returns the maximum LSN that exists in the start_lsn column
of the cdc.lsn_time_mapping system table. This value represents the last committed
change propagated to a change table in the current database. This value does not
depend on the capture instance.

n sys .fn_cdc_get_min_lsn Returns the maximum LSN that exists in the start_lsn column
of the cdc.lsn_time_mapping system table. This value can change when the cleanup
process is performed. You can use this function to determine the low endpoint for the
LSN value to verify that your range is inside the CDC timeline.

In addition to the functions to allow you to query the data in the change tables, SQL
Server includes stored procedures that you can use to manage CDC.

More info ManaGinG cDc

For additional information about using the built-in CDC stored procedures, see “Change

Data Capture Stored Procedures (Transact-SQL)” in SQL Server Books Online.

SQL Server Audit
SQL Server Audit provides you with the ability to log information about events and changes
occurring on your server running SQL Server. To use SQL Server Audit, you must create and
configure at least one SQL Server Audit object for each instance where auditing occurs. You
then create specifications for Server Audit, Database Audit, or both, based on a SQL Server
Audit object to manage auditing on specific events and objects.

 416 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

More info cOnFiGURinG SQL SeRveR aUDit

The discussion in this lesson about SQL Server Audit is limited to how it pertains to tracking

data access and modifications on your SQL Server instance. For a full discussion on SQL

Server Audit, see Chapter 11 in MCTS Self-Paced Training Kit (Exam 70-432): Microsoft SQL

Server 2008—Implementation and Maintenance (Microsoft Press, 2009), and Chapter 18 in

Microsoft SQL Server 2008 Step by Step (Microsoft Press, 2008).

Creating a SQL Server Audit Object
You must create a SQL Server Audit object before you can define audit specifications. You can
accomplish this by using SSMS or with the CREATE SERVER AUDIT statement.

In SSMS, you can use the Object Explorer and browse to the Audits folder under the
 Security folder. You can then right-click the Audits folder and select New Audit to create a
new SQL Server Audit. Within the audit definition, you can configure the following options:

n audit name Defines the name assigned to the Audit object.

n Queue Delay Defines the amount of lapsed time in milliseconds that can pass
 before the server must process an audit action. The default value is 1 second or
1,000 milliseconds.

n Shut Down Server On audit Log Failure Determines whether or not SQL Server shuts
down when auditing fails. You can enable this option if your organization’s auditing
policies or applicable regulatory requirements, such as the Health Insurance Portability
and Accountability Act (HIPAA), the Payment Card Industry (PCI) act, and the Federal
Information Security Management Act (FISMA), require you to audit every specified
event without failure.

n audit Destination Specifies where the audit information is written. The options
include a file, the Windows Security Log, or the Windows Application Log. When you
select File for the audit destination, you also need to configure the following options:

• File Path Specifies the directory where the file is stored. The Database Engine
automatically generates the file name, which is based on the Audit object name and
audit globally unique identifier (GUID).

• Maximum Rollover Defines the maximum number of rollover files that can be cre-
ated, except when the Unlimited option is selected. When you enable the Unlimited
option for this setting, there is no limit to the number of rollover files created.

• Maximum Filesize Specifies the maximum file size before rollover begins. You must
specify both an integer value and whether that integer should be interpreted as
megabytes, gigabytes, or terabytes. When you select Unlimited, the file grows until
the hard disk drive is full. If the file fills the hard disk drive completely, logging stops
and the server shuts down if the Shut Down Server On Audit Log Failure option is
also enabled. The minimum value allowed for this field is 2 MB.

 Lesson 3: Tracking Data Changes CHAPTER 9 417

• Reserve Disk Space Specifies that a file is created at the maximum file size
 immediately. Otherwise, the file grows as audit details are added to it. You cannot
choose this option if the Unlimited option is enabled for the maximum file size.

The following code displays the full syntax for the CREATE SERVER AUDIT statement. The
options available mirror the configuration options described previously for creating a new
Audit object by using SSMS:

CREATE SERVER AUDIT audit_name

 TO { [FILE (<file_options> [, ...n])] | APPLICATION_LOG | SECURITY_LOG }

 [WITH (<audit_options> [, ...n])]

}

[;]

<file_options>::=

{

 FILEPATH = 'os_file_path'

 [, MAXSIZE = { max_size { MB | GB | TB } | UNLIMITED }]

 [, MAX_ROLLOVER_FILES = integer]

 [, RESERVE_DISK_SPACE = { ON | OFF }]

}

<audit_options>::=

{

 [QUEUE_DELAY = integer]

 [, ON_FAILURE = { CONTINUE | SHUTDOWN }]

 [, AUDIT_GUID = uniqueidentifier]

}

After creating the SQL Server Audit object, you must enable it. You can accomplish this by
using SSMS or the ALTER SERVER AUDIT statement.

Creating a Database-Level Audit Specification
Once you have created the SQL Server Audit object, you can choose to create audit
 specifications at the server level or the database level. For tracking access or modifications
made to data, you create a Database Audit Specification.

You can create a Database Audit Specification by using the CREATE DATABASE AUDIT
 SPECIFICATION statement or by using Object Explorer in SSMS. The Database Audit Specifications
folder is located below the [instance name]\[Databases]\[database name]\Security folder.

To define a Database Audit Specification, you must define the name of the audit specification,
the Audit object to which the events will be written, and each audit action that is logged.

There is a wide variety of Audit Action Types that can be configured within each Database
Audit Specification. For example, you can specify INSERT, UPDATE, DELETE, or SELECT and
 define on which objects you want to track these commands. You can also specify for which
users and roles you would like to have the events logged.

 418 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

In addition to specifying individual events to be logged, you can specify an entire group
of events to be logged. The SCHEMA_OBJECT_ACCESS_GROUP, also equivalent to the Audit
Schema Object Access event class, returns information when an object permission such
as INSERT, UPDATE, DELETE, SELECT, EXECUTE, or REFERENCES occurs. The information
 provided by this event class reports the query syntax that was issued but does not maintain
 before-and-after values of updated or deleted data. A complete list of the data columns and
the information provided in these log entries is given in the “Audit Schema Object Access
Event Class” article in SQL Server Books Online.

iMPortant PeRFORMance anD aUDitinG

You need to be careful when defining auditing to verify performance effects of the

logs. There is a tendency to try and log every event, which may lead to extremely slow

 performance. Carefully consider the objects on which auditing is required, as well as which

events need to be tracked.

Before the Database Audit Specification begins to collect information, you must enable it
by using SSMS, as part of the CREATE DATABASE AUDIT SPECIFICATION statement, or with
the ALTER DATABASE AUDIT SPECIFICATION.

iMPortant MODiFYinG DatabaSe aUDit SPeciFicatiOnS

A Database Audit Specification must be disabled before modifications can be made to the

audit specification.

Practice configuring SQL Server to track changes

In this practice, you track changes by implementing change tracking and CDC.

exercise 1 Configure and Use Change Tracking

In this exercise, you configure the ProspectiveBuyer table to track changes. The application
needs to know only when INSERTs and DELETEs occur on this table. You do not need to in-
clude information about columns that are updated.

iMPortant Data MODiFicatiOnS

In the exercises in this practice, you delete and update rows in the AdventureWorksDW2008

database. You should make a copy of your tables and work on the copies, or restore the

original AdventureWorksDW2008 after completing the practices from this chapter.

 1. Open SSMS, if it is not already open.

 2. In SSMS, click New Query to open a new query window.

 Lesson 3: Tracking Data Changes CHAPTER 9 419

 3. In the new query window, type and execute the following command to enable change
tracking with auto cleanup enabled and a change retention period of five days on the
AdventureWorksDW2008 database:

ALTER DATABASE AdventureWorksDW2008

SET CHANGE_TRACKING = ON

(CHANGE_RETENTION = 5 DAYS, AUTO_CLEANUP = ON)

 4. In the existing query window, below the existing code, type, highlight, and execute the
following code to enable change tracking on the AdventureWorksDW2008 database:

USE AdventureWorksDW2008;

GO

ALTER TABLE ProspectiveBuyer

ENABLE CHANGE_TRACKING

WITH (TRACK_COLUMNS_UPDATED = OFF);

 5. In the existing query window, below the existing code, type, highlight, and execute the
following code to insert two new rows into the ProspectiveBuyer table.

INSERT INTO ProspectiveBuyer

 (FirstName, LastName, MaritalStatus, Gender)

 VALUES ('Terry', 'Adams', 'M', 'M');

INSERT INTO ProspectiveBuyer

 (FirstName, LastName, MaritalStatus, Gender)

 VALUES ('Wilson', 'Pais', 'S', 'M');

 6. In the existing query window, below the existing code, type, highlight, and execute
the following code to determine the object_id and version information for the
 ProspectiveBuyer table. Make note of the object_id.

SELECT object_name(object_id)AS 'ObjectName' , *

 FROM sys.change_tracking_tables

 7. In the existing query window, below the existing code, type, highlight, and execute
the following code to view the information in the change table. If necessary, edit the
object_id for the CHANGE_TRACKING_Min_VALID_VERSION argument:

DECLARE @last_synchronization_version bigint

SET @last_synchronization_version

 = CHANGE_TRACKING_Min_VALID_VERSION(389576426);

SELECT

 CT.*

FROM CHANGETABLE(CHANGES ProspectiveBuyer

 , @last_synchronization_version)

 AS CT

Review the result set.

 420 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

 8. In the existing query window, below the existing code, type, highlight, and execute
the following code to view the row added for Terry Adams in step 5. Make note of the
ProspectiveBuyerKey for Terry Adams for use in the next step.

SELECT * FROM ProspectiveBuyer

 WHERE LastName = 'Adams' and FirstName = 'Terry'

 9. In the existing query window, below the existing code, type, highlight, and
 execute the following code to delete the row for Terry Adams and also the row for
 ProspectiveBuyerKey 308. If necessary, modify the ProspectiveBuyerKey to match the
key from step 8.

DELETE FROM ProspectiveBuyer

WHERE ProspectiveBuyerKey = 2060;

DELETE FROM ProspectiveBuyer

WHERE ProspectiveBuyerKey = 308;

 10. In the existing query window, below the existing code, type, highlight, and execute
the following code to view the information in the change table. If necessary, edit the
object_id for the CHANGE_TRACKING_Min_VALID_VERSION argument:

DECLARE @last_synchronization_version bigint

SET @last_synchronization_version

 = CHANGE_TRACKING_Min_VALID_VERSION(389576426);

SELECT

 CT.*

FROM CHANGETABLE(CHANGES ProspectiveBuyer

 , @last_synchronization_version)

 AS CT

 11. Review the result set. Leave SSMS open for the next exercise.

exercise 2 Configure and Use CDC

In this exercise, you configure the FactInternetSales and FactResellerSales tables for CDC,
 configure the FactInternetSales table to allow access to net changes, and configure the
 FactResellerSales table to only allow access to all changes.

iMPortant Data MODiFicatiOnS

In this exercise, you delete and update rows in the AdventurWorksDW2008 database.

You should make a copy of your tables and work on the copies, or restore the original

 AdventureWorksDW2008 after completing the practices from this chapter.

 Lesson 3: Tracking Data Changes CHAPTER 9 421

 1. In SSMS, click New Query to open a new query window.

 2. In the new query window, type and execute the following command to enable CDC on
the AdventureWorksDW2008 database:

USE AdventureWorksDW2008;

GO

EXECUTE sys.sp_cdc_enable_db;

GO

 3. In the existing query window, below the existing code, type, highlight, and execute the
following code to enable CDC on the FactInternetSales and FactResellerSales tables:

USE AdventureWorksDW2008;

GO

EXEC sys.sp_cdc_enable_table

 @source_schema = N'dbo'

 , @source_name = N'FactInternetSales'

 , @role_name = N'cdc_admin'

 , @capture_instance = N'InternetSales'

 , @supports_net_changes = 1

 GO

USE AdventureWorksDW2008;

GO

EXEC sys.sp_cdc_enable_table

 @source_schema = N'dbo'

 , @source_name = N'FactResellerSales'

 , @role_name = N'cdc_admin'

 , @capture_instance = N'ResellerSales'

 , @supports_net_changes = 0

 GO

 4. In the existing query window, below the existing code, type, highlight, and execute the
following code to verify your CDC configuration settings:

sys.sp_cdc_help_change_data_capture;

iMPortant cDc ReQUiReMentS

To configure and use CDC successfully, you must verify that the SQL Server Agent

 service is running.

 5. In the existing query window, below the existing code, type, highlight, and execute the
following code to update the FactResellerSales table and view the changes by using the
cdc.fn_cdc_get_all_changes_ResellerSales function:

USE AdventureWorksDW2008;

GO

DECLARE @from_lsn binary(10), @to_lsn binary(10);

 422 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

-- DML statements to produce changes.

UPDATE dbo.FactResellerSales

SET OrderQuantity = 6

WHERE SalesOrderNumber = 'SO44771' AND SalesOrderLineNumber = 12;

DELETE FROM dbo.FactResellerSales

WHERE SalesOrderNumber = 'SO44771'AND SalesOrderLineNumber = 31;

UPDATE dbo.FactResellerSales

SET OrderQuantity = 4

WHERE SalesOrderNumber = 'SO44771' AND SalesOrderLineNumber = 12;

-- Wait for the capture process to process change data.

WAITFOR DELAY '00:00:10'

-- Set the start and end lsn values to the min and max valid values.

SET @from_lsn = sys.fn_cdc_get_min_lsn('ResellerSales')

SET @to_lsn = sys.fn_cdc_get_max_lsn()

-- Return the net changes occurring within the query window.

SELECT * FROM cdc.fn_cdc_get_all_changes_ResellerSales(

 @from_lsn, @to_lsn, 'all');

 6. Review the results and notice that two rows are reported for the updates to the row for
SalesOrderNumber SO44771 and a SalesOrderLineNumber of 12.

 7. In the existing query window, below the existing code, type, highlight, and execute
the following code to update the FactInternetSales table and view the net changes by
 using the cdc.fn_cdc_get_net_changes_InternetSales function:

USE AdventureWorksDW2008;

GO

DECLARE @from_lsn binary(10), @to_lsn binary(10);

-- DML statements to produce changes.

UPDATE dbo.FactInternetSales

SET OrderQuantity = 4

WHERE SalesOrderNumber = 'SO43698' AND SalesOrderLineNumber = 1;

DELETE FROM dbo.FactInternetSales

WHERE SalesOrderNumber = 'SO43717'AND SalesOrderLineNumber = 1 ;

UPDATE dbo.FactInternetSales

SET OrderQuantity = 2

WHERE SalesOrderNumber = 'SO43698' AND SalesOrderLineNumber = 1;

-- Wait for the capture process to process change data.

WAITFOR DELAY '00:00:10'

 Lesson 3: Tracking Data Changes CHAPTER 9 423

-- Set the start and end lsn values to the min and max valid values.

SET @from_lsn = sys.fn_cdc_get_min_lsn('ResellerSales')

SET @to_lsn = sys.fn_cdc_get_max_lsn()

-- Return the net changes occurring within the query window.

SELECT * FROM cdc.fn_cdc_get_net_changes_InternetSales(

 @from_lsn, @to_lsn, 'all');

 8. Review the results and notice that only one row is returned for each row in the source
table, rather than a row for every intermediate modification.

Lesson Summary
n Change tracking is enabled first at the database and then at the table level.

n Change tracking can tell you what rows have been modified and provide you with the
end result of the data.

n Change tracking requires fewer system resources than CDC.

n CDC can tell you what rows have been modified and provide you with the final data as
well as the intermediate states of the data.

n SQL Server Audit allows you to log access to tables, views, and other objects.

 424 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

chapter Review

To practice and reinforce the skills you learned in this chapter further, you can do any or all of
the following:

n Review the chapter summary.

n Review the list of key terms introduced in this chapter.

n Complete the case scenarios. These scenarios set up real-world situations involving the
topics of this chapter and ask you to create solutions.

n Complete the suggested practices.

n Take a practice test.

Chapter Summary
n You can use the sp_send_db mail to integrate e-mail messages into your database

 applications.

n The SQL Server PowerShell provider allows you to create scripts to automate SQL
 commands and enumeration of objects on the database server.

n Change tracking and CDC provide you with a variety of ways to implement tracking of
data modifications and synchronization with other databases.

key terms

n Cmdlets

n Change tables

n Gating role

n Lower bound

n Upper bound

n Log Sequence Number (LSN)

Case Scenarios
In the following case scenarios, you apply what you have learned about integrating Database
Mail. You can find answers to these questions in the “Answers” section at the end of this book.

Case Scenario 1: Integrating Windows PowerShell and Database Mail
You are a database developer for Litware, Inc. Your manager has asked you to create a script
that lists all user-created tables and views in the Litware_Sales database. This script needs to
be generated automatically at 5 P.M. each Friday.

 Suggested Practices CHAPTER 9 425

The database administrator has configured Database Mail on your server running SQL
Server. There is no default public profile in the msdb database. The user context from which
you are running this step in the job does not have a default private profile associated with it.

Answer the following question for your manager:

n What steps would be involved in configuring a solution for your manager?

Case Scenario 2: Tracking Changes
You are a database developer for Litware, Inc. You maintain an Online Transaction Processing
(OLTP) database named LitwareSales and a relational data warehouse (RDW) named
 LitwareDW. You synchronize the data between LitwareSales and LitwareDW every day.
 Business rules prohibit updates to data once a row is added to the LitwareSales database.

You have been asked to determine the best method to track changes on the LitwareSales
database to optimize the synchronization process. Resources are limited and you want to
minimize the amount of disk, processor, and memory resources required for the solution.

Answer the following questions for your manager:

 1. What solution best fits the requirements?

 2. What options can you set to minimize resource utilization?

Suggested Practices

To help you master the exam objectives presented in this chapter, do all the following
 practices:

Integrate Database Mail
n Practice 1 Create and test a variety of e-mail messages created by using different

 options in the sp_send_dbmail system stored procedure.

Implement Scripts by Using Windows PowerShell
and SQL Server Management Objects (SMOs)

n Practice 2 Practice browsing the SQL Server hierarchy and executing cmdlets in a SQL
Server PowerShell session.

n Practice 3 Create a SQL Server PowerShell script to list the columns of a particular
table and execute the script by using a SQL Server Agent job.

Track Data Changes
n Practice 4 Enable change tracking on a database and table. Make modifications to

the data and review the information in the change tables to help you understand how
 different configuration options and different functions allow you to see different results.

 426 CHAPTER 9 An Introduction to Microsoft SQL Server Manageability Features

n Practice 5 Enable CDC on a database and table. Make modifications to the data and
review the information in the change tables to help you understand how different
configuration options and different functions allow you to see different results.

take a Practice test

The practice tests on this book’s companion CD offer many options. For example, you can test
yourself on just the content covered in this chapter, or you can test yourself on all the 70-433
certification exam content. You can set up the test so that it closely simulates the experience
of taking a certification exam, or you can set it up in study mode so that you can look at the
correct answers and explanations after you answer each question.

More info PRactice teStS

For details about all the practice test options available, see the section entitled “How to

Use the Practice Tests” in the Introduction to this book.

 Case Scenario Answers 427

Case Scenario Answers

chapter 1: case Scenario answers

Case Scenario 1: Retrieving Data
n Include a sample of an ORDER BY clause that references either the order date or completion

date.

n Include several queries and sample results that use the CONVERT function to display the
dates in a variety of formats. Include the names of the format styles in the result set to help
the application developer make date formatting decisions.

n Include a query that uses the DATEDIFF function in both the SELECT and the ORDER BY
clauses that determines the number of days between the order date and the completed date.

n Include a query that uses the DATEDIFF function to find orders that were placed 1 month
(MONTH), 1 quarter (QUARTER), and 1 year (YEAR) from the current date.

n Provide information on any JOIN operations that may be required due to the database
 normalization level.

Case Scenario 2: Grouping Data
n Include a sample of a SELECT statement using the SUM aggregate function to provide the

 total number of products sold. Provide samples of WHERE clauses that can be added to
 provide information based on different criteria.

n Include a sample of a GROUP BY statement that includes the SUM aggregate function
 ROLLUP operator.

n Include a sample of a GROUP BY statement that includes the SUM aggregate function CUBE
operator.

 Contents

Case Scenario Answers 427

Chapter 1: Case Scenario Answers .427

Case Scenario 1: Retrieving Data 427

Case Scenario 2: Grouping Data 427

Chapter 2: Case Scenario Answers .428

Case Scenario 1: Modifying Data 428

Case Scenario 2: Using Transactions 428

Chapter 3: Case Scenario Answer .428

Case Scenario: Constraints and Data Types 428

Chapter 4: Case Scenario Answer .429

Case Scenario: Improving Query Performance 429

Chapter 5: Case Scenario Answer .429

Case Scenario: Improving Application Performance 429

Chapter 6: Case Scenario Answer .430

Case Scenario: Tune Query Performance 430

Chapter 7: Case Scenario Answer .430

Case Scenario: How Should You Store Data? 430

Chapter 8: Case Scenario Answers .430

Case Scenario 1: Initiating Spatial Data 430

Case Scenario 2: Querying a Full-Text Index 431

Chapter 9: Case Scenario Answers .431

Case Scenario 1: Integrating Windows PowerShell
and Database Mail 431

Case Scenario 2: Tracking Changes 431

 428 Case Scenario Answers

chapter 2: case Scenario answers

Case Scenario 1: Modifying Data
n The UPDATE statement can add the e-mail information and replace the fax number

with NULL. In addition, the OUTPUT clause can store the required information into the
 ImporterPropertiesAudit table.

Case Scenario 2: Using Transactions
Your considerations should include, but not be limited to, the following:

n What is the current transaction isolation level?

n What business rules would affect changing the transaction isolation level?

n How long is each transaction? Are there ways to shorten any transaction or separate the
transactions into groups?

n Is all data retrieved from users and verified before starting the transaction so as to avoid user
interaction once the transaction has begun?

n Are resources being accessed in the same order in all transactions?

n How many batches are included in a single transaction? Is there a way to minimize this with-
out jeopardizing required functionality?

n Are any locking hints being used within the queries?

More info LOckinG HintS

A discussion about locking hints and the effects on locking and blocking is beyond the scope

of this book. Microsoft SQL Server 2008 Internals (Microsoft Press, 2009), by Kalen Delaney

et al., covers the topic of locking hints.

chapter 3: case Scenario answer

Case Scenario: Constraints and Data Types
 1. Because the table already has data that is not correct according to the constraints that

you need to add, you must add the constraints using the WITH NOCHECK option (ALTER
 TABLE. . .ADD CONSTRAINT. . .WITH NOCHECK). This causes the new constraints to check any
 incoming data (including updates of the existing data) while allowing the existing data to
 remain in the table.

 2. The largest data type supported by the IDENTITY property is decimal(38, 0).

 Chapter 5: Case Scenario Answer Case Scenario Answers 429

chapter 4: case Scenario answer

Case Scenario: Improving Query Performance
n The report for the data warehouse loads can be accomplished easily by using either subqueries,

CTEs, or a combination of CTEs with ranking functions. Because a CTE combined with a ranking
function should provide the best performance, you should use this method.

Iteration across a result set can be accomplished using CTEs, which would be much more
efficient than a cursor-based solution. Depending upon the specific business problem, you
could use the same method to find load gaps in the data warehouse to solve the problems of
finding missing data or filling empty seats. You could rewrite the cursors that are calculating
sales figures to use subqueries that can provide running totals as well as aggregate data within
a group.

You can eliminate all the intermediate temporary tables by using derived tables, which can
take advantage of the memory available on the machine instead of requiring physical reads
and writes to disk.

chapter 5: case Scenario answer

Case Scenario: Improving Application Performance
 1. Most of the problems Fabrikam is having stem from poorly designed applications.

The applications should not be generating ad hoc queries to submit to SQL Server.
The applications should instead follow code encapsulation best practices used throughout
the industry. All the database code needs to be removed from the application and moved
into stored procedures. The applications then must be rewritten to access the stored
 procedures. Once a stable release of an application has been achieved that uses stored
 procedures, you can then begin the analysis and tuning activities that Fabrikam needs. You
can tune the stored procedures in isolation from the applications such that any changes
needing to be deployed affect only the stored procedures and do not require an application
release.

 2. You can prevent the accidental deletion of objects on the production server by implementing
a DDL trigger to roll back any DROP event. However, you also need to address the lack of
 security and remove administrative access from anyone who is not responsible for managing
the server running SQL Server.

 3. The complex database code should be removed from the application and migrated into
stored procedures, functions, and views, as appropriate. This reduces the complexity of the
applications and moves the database code into a format that is more easily maintained and
managed.

 430 Case Scenario Answers

chapter 6: case Scenario answer

Case Scenario: Tune Query Performance
n To optimize the poorly performing stored procedures, you execute them in SSMS, examine

their graphical execution, and consider rewriting their queries as well as redesigning
the indexes on the queried tables. To reduce the query execution times for the finance
 department queries from up to 10 minutes down to a couple of seconds, you most likely
need to add more indexes. After adding indexes, test to ensure you haven’t compromised
performance elsewhere in your applications.

chapter 7: case Scenario answer

Case Scenario: How Should You Store Data?
First of all, there probably is no perfect answer to this question. You most likely need to do
 prototyping to make sure you get it right. However, from the given scenario, the following points
are probably the most important to keep in mind:

n Categories are stored in a table.

n Articles are stored in a table that references the categories table.

n Given that all articles always have a single title, the table should probably be stored directly in
a column in the articles table.

n Because the content of an article can contain so many different parts, and those parts
 probably can be nested inside each other (such as a list inside a cell in a table) and given the
fact that the order of the different parts is important, the content should probably be stored
in a single XML column.

n Given that what is allowed in the content column probably must be fairly well-defined, you
should probably use an XML schema collection to type the content column.

chapter 8: case Scenario answers

Case Scenario 1: Initiating Spatial Data
n For the pallet locations within the warehouse, you should use the geometry data type. You

should instantiate the spatial data by using one of the POINT methods. Because you are
defining specific x, y coordinates, POINT is the best method to use. For the warehouse region
functionality, you should use the geometry data type. You should instantiate the spatial data
by using one of the POLYGON methods. Because you want to define a region, a POLYGON
method allows you to define the coordinates for the outer edge of the region.

 Chapter 9: Case Scenario Answers Case Scenario Answers 431

Case Scenario 2: Querying a Full-Text Index
 1. A custom stoplist needs to be created and associated with the appropriate catalog.

In addition, the thesaurus files for the appropriate language need to be edited to include all
synonymous words as defined by the business needs.

 2. The FREETEXTTABLE command provides you with all the functionality required. You need to
arrange the result set by descending rank to show the most relevant rows at the top of the
result set.

chapter 9: case Scenario answers

Case Scenario 1: Integrating Windows PowerShell
and Database Mail
Here is one set of possible steps:

 1. You should determine the path and cmdlets that will be required for the SQL Server
 PowerShell script and then write and test the script.

 2. Create a SQL Server Agent job with the appropriate schedule. Use the PowerShell type when
defining the job step to be performed. Open or copy your tested script into the job step.
In the Advanced tab of the Job Step window, create an output file for the SQL Server
 PowerShell script.

More info SQL SeRveR aGent jObS

For a full discussion about SQL Server Agent jobs, see MCTS Self-Paced Training Kit (Exam 70-432):

Microsoft SQL Server 2008-Implementation and Maintenance (Microsoft Press, 2009), and

 Chapter 18 in Microsoft SQL Server 2008 Step by Step (Microsoft Press, 2008).

 3. Add another job step to send an e-mail message with the SQL Server PowerShell output file
attached. Verify that an appropriate profile is defined with the @profile_name option.

Case Scenario 2: Tracking Changes
 1. Change tracking uses fewer resources and has less overhead than CDC. Because UPDATE

commands are not executed against tracked tables, being able to see intermediate changes is
not an issue, thus removing the need for CDC.

 2. Two database-level change tracking settings that can make a difference on the required
disk space are the auto-cleanup and retention period settings. Depending on how the daily
synchronizations are scheduled and your recoverability requirements, you might want to
consider a retention period of between 26 and 50 hours.

433

Glossary Terms

a
aggregate function A built-in or user-defined function

that provides a calculation on a set of rows or values.

atomicity When two or more pieces of information

are involved in a transaction, either all the pieces are

committed or none of them are.

c
change tables Tables within a database that store

modified rows in a database with CDC enabled.

check constraint A constraint that applies a Boolean

expression to rows added or updated in tables to verify

whether the update should be allowed.

clustered index An index that imposes a physical

order on the rows within a table. There can only be a

single clustered index on a table.

cmdlets .NET Framework applications that provide

specialized functionality within SQL Server PowerShell.

consistency At the end of a transaction, either a new

and valid form of the data exists or the data is returned

to its original state. Returning data to its original state

is part of the rollback functionality provided by SQL

Server transactions.

constraint A rule applied to a column(s) within a table

that is used to validate changes and ensure that data

within a table does not violate business rules.

contract An agreement between two services that

defines the message types the services send to accomplish

certain tasks. It also defines what participants can send

which message types.

conversation A long-term, asynchronous, and reliable

communication channel across which messages are sent

by using Service Broker.

conversation group A collection of conversations that

are related.

conversation priority Sets the relative precedence for

Service Broker conversations.

correlated subquery A query that is embedded

within, and references columns from, an outer query.

cost An internal metric used by SQL Server to

 determine the amount of processing resources a given

query plan will consume.

cursor A server-side object that allows you to retrieve

and process a set of data on a row-by-row basis.

D
DDL trigger A trigger that executes in response to

a DDL event.

Deterministic function A function that returns the

same value every time it is executed given the same

input parameters.

Dialog A conversation between two specific Service

Broker services that provides exactly-once-in-order

(EOIO) message delivery.

Distributed partitioned view A special case of

a partitioned view where the member tables are stored

on multiple SQL Server instances.

DML trigger A trigger that executes in response to

a DML event.

 Contents

Glossary Terms
433

434 Glossary Terms

Durability After a transaction is committed, the final

state of the data is still available even if the server fails

or is restarted.

e
event group A set of DDL events within the DDL event

hierarchy.

execution context The security credentials under

which a code module is executed.

F
Filestream A property that can be applied to the

varbinary(max) data type and that makes the actual

data reside in a directory structure in the file system

 instead of inside the database’s data file or files.

Filter A component that processes a document to

 extract the textual information from documents stored

in a varbinary(max) or image column and then sends

that information to the word breaker.

Filter daemon host process (Fdhost.exe) A process

that manages third-party components such as filters,

word breakers, and stemmers separated from the SQL

Server process.

FOR XML A way to make SQL Server return a stream

making up an XML document or fragment.

Foreign key constraint A constraint that is used to

implement referential integrity between tables (or even

within a single table).

Full-text catalog A virtual object that represents a

group of full-text indexes.

Full-text engine A part of the SQL Server process that

manages full-text administrative tasks, handles full-text

query execution, and manages the filter daemon host

process.

Full-text index An object that contains significant

words and their locations within the columns included

in the index.

Function A named SQL statement programming

object that can be called in either a SELECT or FROM

clause that returns a single (scalar) value or a value with

a table data type, but is not allowed to modify the state

of a database or the instance.

G
Gating role A role specified when enabling CDC that is

used to limit access to the change data.

geography data type Used to store ellipsoidal

(round-earth) data, such as latitude and longitude

coordinates.

geometry data type Used to store planar data

based on Euclidean space such as points, lines, and

polygons.

H
Heap A table without a clustered index. (A heap can

still have nonclustered indexes defined on it.)

i
identity One column per table can be defined as its

identity. The IDENTITY property automatically generates

a new increased or decreased number for the column

when rows are inserted into the table.

impersonation The process by which a user assumes

the security credentials of another user.

index A physical structure implemented as a balanced

tree that is used to speed up query operations.

indexed view A deterministic view that has a unique,

clustered index created against it.

INNER JOIN A join that includes only the rows that are

in common in all tables referenced in the FROM clause.

(See also JOIN and OUTER JOIN.)

instantiation The process of producing a particular

instance of an object based on the object’s properties

and methods.

isolation During a transaction (before it is committed

or rolled back), the data must remain in an isolated

state and not be accessible to other transactions. In SQL

Server, the isolation level can be controlled for each

transaction.

435Glossary Terms

OGc extended Methods Methods designed to work

with geometry and geography data types.

Open Geospatial consortium (OGc) An international,

nonprofit organization that develops standards for

geospatial and location-based services.

OUTER JOIN A join that includes all rows from an

outer table and includes any rows from the inner table

that match the join criteria.

P
Page The smallest storage object maintained by SQL

Server; a page is exactly 8 KB in size.

Parameter A variable that is passed to a stored proce-

dure or function.

Partition function A function that defines the values

that divide a table or index into multiple partitions.

Partition scheme Defines on which file group each

partition defined by a partition function should be stored.

Partitioned view A view that utilizes a UNION ALL

clause to combine multiple member tables of the same

structure into a single result set.

Population (crawl) The process of adding data to

(populating) a full-text index either during creation or

when the full-text index is built.

Primary key A constraint that is set on one column or

a combination of columns in a table that must uniquely

identify a row in the table. By definition, the primary

key cannot contain NULL values.

Q
Queue A hidden table where Service Broker messages

are stored until they are processed.

R
Recursive cte A special type of common table

 expression that has an anchor query, which is the source

of the recursion, along with a UNION ALL statement

and a second query, which recurses across the anchor

query, and an outer query, which references the CTE

and specifies the maximum recursion levels.

j
JOIN A T-SQL operator that combines multiple related

tables to define the result set. The JOIN syntax defines

a column or columns which are common between the

tables that are used to correlate the data. (See also

 INNER JOIN and OUTER JOIN.)

L
Log Sequence number (LSn) A number assigned to

entries within a transaction log to aid with recovery.

Lower bound Defines a starting Log Sequence Number

(LSN) to define a valid range of rows within a change table.

M
Materialized view Another name for an indexed view.

Message Contains information that is sent within a

Service Broker conversation.

Message type Defines the name and contents of a

message.

Methods Actions an object can perform.

Module A set of code that is stored within a database.

The module types supported by SQL Server are triggers,

functions, views, and stored procedures.

n
nonclustered index An index that contains one or

more columns in a table that are used to improve query

efficiency. If the table has a clustered index, the root level

of the nonclustered index points back to the clustering

key, otherwise, the root level points to a row in the table.

noncorrelated subquery A query that is embedded

within, but does not reference any columns from, an

outer query.

nondeterministic function A function that might

return a different value each time it is called given the

same input parameter.

O
Object A collection of properties and methods that

provide a defined functionality.

436 Glossary Terms

in SQL Server 2008 provide similar functionality to noise

words in SQL Server 2005.

Stored procedure A module of code that is stored

within a database that provides an API that applications

can use to abstract the database structure from

 application code.

System process iD (SPiD) A numeric value assigned

to each connection to SQL Server.

t
table-valued function A function that returns the

results as a table data type.

term The word, phrase, or character string included as

input in the full-text query.

thesaurus XML files that define synonyms for terms in

a specific language.

token A word or character string defined by a word

breaker.

U
UNION A T-SQL operator that combines the result sets

from multiple queries.

Unique constraint A constraint that is set on one

or more columns in a table that ensures the data in

each row is unique within the table for that column or

combination of columns. A unique constraint allows

NULL values and therefore cannot be used to uniquely

identify a row unless all of the columns defined for the

unique index do not allow NULLs.

Upper bound Defines an ending Log Sequence

Number (LSN) to define a valid range of rows within a

change table.

User-defined function (UDF) A function created as

T-SQL or as Common Language Runtime (CLR) code.

T-SQL UDFs include scalar, multistatement table-valued,

and inline table-valued functions.

v
variable An object that is used to store a scalar value

for use within a function, trigger, or stored procedure.

Remote service binding Provides security to dialogs

connecting to remote databases.

Route Defines where to deliver Service Broker

 messages. If not specified, the AutoCreatedLocal route

is used.

Row identifier (RiD) A numeric value representing

a physical location within a heap and page.

S
Scalar function A function referenced in a SELECT

clause that accepts an expression and returns a single

value of a defined data type.

Schema binding An option that is available for views

and functions that ensures any dependent objects

 cannot be dropped unless the view or function is

dropped first.

Service The name given to the group of tasks within

a Service Broker solution that require messages to

be sent.

Service broker endpoint Used to configure SQL Server

to send and receive messages over TCP/IP connections.

Spatial reference identifier (SRiD) A reference ID

associated with a specific model of the earth. These IDs

reference the European Petroleum Survey Group (EPSG)

standard identification system.

SQL Full-text Filter Daemon Launcher

(Fdlauncher.exe) A service that starts Fdhost.exe

 processes when the Full-Text Engine requires them.

SQLcLR A run time inside SQL Server that allows some

objects to be created using a .NET language such as C#

or Visual Basic .NET.

Stemmer A process that provides inflectional matches

to verbs and nouns based on the linguistic rules of the

data language defined.

Stoplist A database object that is used to manage

stopwords. There is a system-defined stoplist and you

can also create your own stoplists.

Stopword A word that is commonly used and adds no

meaning to a search, such as a, an, and the. Stopwords

437Glossary Terms

X
XML A specification by the World Wide Web Consortium

for transmitting and storing semistructured data.

XML data type A native SQL Server data type that can

handle both XML fragments and documents as well as

untyped and typed (schema-validated) XML data.

XML document XML that is well-formed; that is, it

must have a root node.

XML fragment XML that is not well-formed; that is, it

does not have a root node.

W
Well-known binary (Wkb) The binary equivalent to

WKT, which is sometimes used to transfer and store

spatial data.

Well-known text (Wkt) A standard created by the

OGC that is used to represent text-based descriptions of

geospatial objects.

Word breaker A process that finds word boundaries

(tokenizes words) based on the linguistic rules for the

data language specified. You can specify the language

of the data in the column when creating a full-text

index on a table.

439

Index

Symbols and numbers
@mailitem_id, 381
(number) sign, in standard indentifiers, 91
(double number sign), in standard identifiers, 91
$action variable, 62
$FSLOG directory, 311
%1!, message parameter, 153
%2!, message parameter, 153
%d, message parameter, 153
%s, message parameter, 153
[] (square brackets)

for delimited identifiers, 91
in LIKE clause, 6

““ (quotation marks)
defined phrase, 343
delimited identifiers, 91

.NET Framework, 283
@ (at) symbol, 146

in standard identifiers, 91
@@ (double at) symbol, 146
@@ERROR function, 39, 154
@@TRANCOUNT function

determining current nesting level, 156
retrieves active transactions, 39, 69

@append_query_error, 380
@attach_query_result_as_file, 379
@blind_copy_recipients, 379
@body, 379
@body_format, 379
@copy_recipients, 379
@dialog_handle, 363
@exclude_query_output, 380
@execute_query_database, 379
@file_attachments, 379
@importance, 379
@mailitem_id [OUTPUT], 381
@profile_name, 378
@query, 379
@query_attachment_filename, 379

@query_no_truncate, 380
@query_result_header, 379
@query_result_separator, 380
@query_result_width, 380
@recipients, 378
@sensitivity, 379
@subject, 379
^ (caret) symbol, in LIKE clause, 6
_ (underscore), in LIKE clause, 6

a
abbreviations, in identifiers, 92
accent_sensitivity, 337, 342
ACCENT_SENSITIVITY ON/OFF, CREATE FULLTEXT

 CATALOG command, 337
ACID properties, 67
activation

CREATE QUEUE command, 360
Service Broker, 354

Activity Monitor, 72
AdventureWorks2008/DW2008 database, 2

change tracking in, 399, 401–402
enabling change data capture (CDC) on, 408

AFTER triggers, 105, 175
aggregate functions

creating custom, 295–301
grouping, 20, 22
overview, 19
running, 129

aggregate queries
GROUP BY clause in, 20
with unequal joins, 129

aliases
[AS] table alias, 61
data manipulation and, 9
defining, in SELECT statement, 31

 Contents

Index
439

440

aligned partitions

in derived tables, 128
self-joins and, 9, 15
SQL Server PowerShell cmdlets vs., 391
WHERE clause joins and, 12

aligned partitions, 238
ALL keyword, 19, 31
All with merge option, 411
ALLOCATION_UNIT resource, 74
ALTER DATABASE command

enabling change tracking with, 399–401
Service Broker, 357
transactions and, 177

ALTER INDEX DISABLE command, 402
ALTER PROCEDURE statement, 145
ALTER TABLE ADD COLUMN, 402
ALTER TABLE ALTER COLUMN, 402
ALTER TABLE DROP COLUMN, 402
ALTER TABLE DROP CONSTRAINT, 402
ALTER TABLE statement

change tracking and, 401–402
declarative data integrity and, 101
starting transactions, 67

ALTER TABLE SWITCH statement, 242, 402
ALTER TABLE, DDL command, 177
anchor query, 123
AND operator, 6
APPLICATION resource, 74
applications, creating Service Broker, 354
APPLY operator

data manipulation using, 30
overview, 32
subqueries and, 203

approximate numeric types, 85–86
arguments, order of, 327
arrows, graphical execution plan, 199
AS DEFAULT, CREATE FULLTEXT CATALOG

command, 337
AS option, in MERGE statement, 61
at (@) symbol, in standard indentifiers, 91
atomicity property, 67
audit action types, 417
Audit Destination, SQL Server Audit, 416–417
audit objects, 416–417
Audit Schema Object Access event class, 418
audit specifications, 417–418
authorization

CREATE CONTRACT command, 361
CREATE FULL TEXT CATALOG command, 337

CREATE MESSAGE TYPE command, 358
CREATE SERVICE command, 362

AUTHORIZATION owner_name, CREATE FULLTEXT
CATALOG command, 337

Auto Clean-Up, 399
AUTO mode, FOR XML clause, 267–270
AUTO, CREATE FULLTEXT INDEX command, 338
AVG function, 19, 94

b
batch delimiter, in T-SQL, 146
BEGIN DIALOG statement

CURRENT DATABASE argument, 363
ENCRYPTION argument, 364
FROM SERVICE argument, 363
LIFETIME argument, 364
ON CONTRACT argument, 363
RELATED_CONVERSATION argument, 364
Service Broker applications, 354
Service Broker dialog conversations, 363
service_broker_guid, 363
TO SERVICE argument, 363

BEGIN TRANSACTION statement, 68
BEGINEND statement, in stored procedures,

150–151
BETWEEN clause, 7–8
bigint data type, 85
Boolean operators, in a WHERE clause, 5
BREAK statement, in stored procedure, 151
Broker priorities, Service Broker, 351
B-tree (balanced tree) index, 74, 200
Bulk Update (BU) locks, 71

c
C# command line compiler, 286
CALLED ON NULL INPUT option, 170
CALLER, in EXECUTE AS, 159
captured columns, 409–410
caret (̂) symbol, in LIKE clause, 6
CASCADE option, 104–105
CAST function, 39
catalog views and change tracking, 407
Catalog_name, CREATE FULLTEXT CATALOG

command, 337

441

consistency property

catalogs, full-text, 335, 337
catch blocks. See TRYCATCH block
CDC (change data capture). See change data capture

(CDC)
cdc.fn_cdc_get_all_changes_capture_instance

function, 413–414
change data capture (CDC)

change tables and, 398
configuring, 408
enabling, 408–410
functionality, 414–415
MERGE statement and, 60
overview, 398
permissions and, 410
query performance, 411
SWITCH PARTITION command and, 410

change tables
change data capture (CDC) and, 398
permissions in, 410
querying, 411–415

change tracking
ALTER TABLE statement, 401–402
catalog views and, 407
functionality, 397–398
overview, 399–403
T-SQL commands, 403

CHANGE_TRACKING, CREATE FULLTEXT INDEX
 command, 338

CHANGE_TRACKING, in ALTER TABLE, 401
CHANGE_TRACKING_CURRENT_VERSION

function, 403
CHANGE_TRACKING_IS_COLUMN_IN_MASK

function, 403
CHANGE_TRACKING_MIN_VALID_VERSION

function, 403
CHANGETABLE function, 403
CHANGETABLE(CHANGES) function, 403–404
CHANGETABLE(VERSION) function, 406
char data type, 83
character data types, 83–84
characters, special, in full-text search, 343
charindex string function, 40
check constraints

declarative data integrity and, 106
disadvantages of, 106
error messages and, 106
functions in, 170–171
NULL values and, 106

overview, 106–110
performance, 108, 111–114
subqueries in, 108–110
UDFs (user defined functions) and, 106–108

CHECKSUM_AGG function, 19, 22
CLOSE cursor statement, 159
CLR (Common Language Runtime). See also SQLCLR

(SQL Common Language Runtime)
overview, 283–288
permission sets, 310
table-valued UDF (user-defined function), 208

clustered indexes
creating, 224–225
overview, 216
primary keys and, 102
scans, 200

cmdlets, SQL Server PowerShell, 391–392
COLLATE operator, 201
collations, 84
column prefixing, 96
column Specifier, RECEIVE command, 365
Column_name, CREATE FULLTEXT INDEX

command, 338
columns

captured, 409–410
changing values in. See UPDATE statement
clustered indexes and key, 224–225
computed. See computed columns
identity, 94–95
included, 197, 222–224
indexes and, 218–224
naming guidelines for, 92
persisted, 111, 290

comments, in well-constructed code, 146
COMMIT statement, 67–68
Common Language Runtime (CLR).

See CLR (Common Language Runtime)
common table expressions (CTEs).

See CTEs (common table expressions)
compile plans, 162–164
computed columns

foreign key constraints on, 103
functions in, 187
overview, 229–232
primary and unique constraints on, 102

concatenations, 9
configuration system function, 167
consistency property, 67

442

constraints

constraints
check. See check constraints
default. See default constraints
defined, 101
DML statements and, 47
foreign key. See foreign key constraints
primary key. See primary key constraints
unique, 102

CONTAINS predicate, 344–345
CONTAINSTABLE function, 339, 344, 346

Weighted Term and, 345
CONTINUE statement, in stored procedures, 151
contract_name, CREATE CONTRACT command, 361
contracts, Service Broker, 352, 360–361
conversation components, in Service Broker, 352
conversation priorities, Service Broker, 352, 362
conversations, Service Broker, 363
CONVERT function, 39
COOKIE INTO, in EXECUTE AS, 159
correlated subqueries, 127, 129–130, 202–204
costs, query performance, 195
COUNT function, 19
COUNT_BIG function, 19
CPU column, query tuning, 209
CREATE ASSEMBLY statement, 286
CREATE BROKER PRIORITY statement, 351, 362
CREATE CONTRACT command, 360–361
CREATE DATABASE AUDIT SPECIFICATION

statement, 417
CREATE DATABASE, DDL command, 177
CREATE FULLTEXT CATALOG command, 337
CREATE FULLTEXT INDEX command, 337–339
CREATE FUNCTION statement, 168
CREATE INDEX statement, 238
CREATE MESSAGE TYPE command, 358
CREATE PARTITION FUNCTION statement, 237
CREATE PARTITION SCHEME statement, 238
CREATE QUEUE command, 359–360
CREATE SCHEMA statement, 89
CREATE SERVER AUDIT statement, 416–417
CREATE SERVICE command, 361–362
CREATE TABLE statement, 90, 92–95, 101, 238
CROSS APPLY operator, 32–33, 170
CROSS JOIN operator, 14
cryptographic system function, 167
CTEs (common table expressions)

overview, 123
recursive queries and, 16, 123–124

CUBE operators, 20, 22
CURRENT DATABASE BEGIN DIALOG statement, 363
CURRENT_TIMESTAMP function, 36
cursor logic

performance and, 208
set-based processing, 161, 208

cursors
components of, 159
concurrency options in T-SQL for, 162
optimization and, 208
overview, 159–162
read-only, 161
row-based processing, 159, 161
types of, 161
updating, 161

custom error messages, 152–153

D
data archiving, 59
data changes, tracking. See change tracking
data compression, 96
data formats, 39
data integrity

declarative. See declarative data integrity
overview, 101–114
procedural. See procedural data integrity

data manipulation, 67
data manipulation language (DML) statements.

See DML (data manipulation language) statements
data types, 83–89

approximate numeric, 85–86
binary, 93
character, 83–84
date and time, 86–89
decimal, 84–85
exact numeric, 84–85
fixed length, 83, 93
guidelines for choosing, 93
integer, 84–85
spatial, 324–330
UDTs (user-defined types), 83, 301–308
variable length, 83–84, 93
XML, 275–276

data validation, 101. See also data integrity
Database Audit Specification, 417–418
database compatibility, 399

443

dynamic management views (DMVs)

Database Engine Tuning Advisor, 243
database level, 176
Database Mail

configuring, 376–378, 385
managing, 383
overview, 375
sending messages, 378
sysmail_configure_sp, 383
sysmail_delete_log_sp, 383
sysmail_delete_mailitems_sp, 383
sysmail_help_configure_sp, 383
sysmail_help_queue_sp, 383
sysmail_start_sp, 383
sysmail_stop_sp, 383

Database Mail Configuration Wizard,
376–377

DATABASE resource, 74
DATALENGTH string function, 40
date and time data types, 86–89
date formats, 87–88
date function, 36–37, 167
DATEADD function, 38
DATEDIFF function, 38
DATENAME function, 37
DATEPART function, 37
datetime data type, 87–88, 93
datetime2 data type, 88–89
datetimeoffset data type, 86, 88–89
DBCC LOG statement, 74–75
dbo schemas, 89
DDL (Data Definition Language) triggers,

176–177
deadlocks, 71–72
DEALLOCATE cursor statement, 159
decimal data type, 84
declarative data integrity

ALTER TABLE statement and, 101
check and foreign keys for improving query

 performance, 110–111
check constraints and, 106
extending check constraints with user-defined

 functions, 106–108
foreign key constraints, 103–105, 113–114
foreign keys used with subqueries, 110–111
overview, 101–102
primary and unique constraints, 102
user-defined functions used with subqueries,

108–110

DECLARE cursor clause, 159–160
DECLARE statement, 147
default constraints, 48

functions in, 170–171
DELETE statement

data modification and, 47
FROM keyword, 53
OUTPUT clause, 58
overview, 52–54
when using subqueries in check constraint, 110
working with multiple tables, 54

deletions, impact of, on database, 104–105
delimited identifiers, 91–92
DENSE_RANK function, 134
DENY permissions, 177
derived tables, 128–130

calculating aggregates in, 129
deterministic functions, 36, 187, 289
dialog security, Service Broker, 353
dialogs, Service Broker, 352
DISABLE_BROKER option, 357
DISTINCT keyword, 19
distributed partitioned views, 185
DML (data manipulation language) statements

optimization in, 208
OUTPUT clause in, 58–60
overview, 45, 47
procedural data integrity and, 102

DML (data manipulation language) triggers, 102,
175–176

DMVs (dynamic management views)
index usage information and, 236
lock status and, 72
missing index groups and, 243

double at (@@) symbol, global variable, 146
double number sign (##), in standard identifiers, 91
double quotes (““)

defined phrase, 343
delimited identifiers, 91

DROP INDEX, 402
DROP LOGIN, DDL command, 177
DROP TABLE, 402
DROP TRIGGER, DDL command, 177
durability property, 67
duration column, query tuning, 209
DYNAMIC cursor type, 161
dynamic management views (DMVs).

See DMVs (dynamic management views)

444

e-mail messaging

e
e-mail messaging. See Database Mail
ENABLE_BROKER option, 357
ENCRYPTION option

BEGIN DIALOG command, 364
functionality of, 169
overview, 145
view attribute and, 183

endpoints, Service Broker, 353
EOIO (exactly-once-in-order) message delivery, 352
error 1205 message, 71
error handling

overview, 153–157
stored procedures and, 69
trapping, 155

error messages
check constraints and, 106
creating custom, 152–153
overview, 152–153
TRYCATCH blocks and, 156

error number, 152
ERROR_BROKER_CONVERSATIONS option, 357
ERROR_LINE function, 156
ERROR_MESSAGE function, 156
ERROR_NUMBER function, 156
ERROR_PROCEDURE function, 156
ERROR_SEVERITY function, 156
ERROR_STATE function, 156
event based activation, Service Broker, 354
event groups, 177, 208
event types, 177
EVENTDATA function, 177
exact numeric data type, 84–85
exactly-once-in-order (EOIO) message delivery, 352
EXCEPT operator, 30–32
Exclusive (X) locks, 71
EXEC keyword, 157–158
EXEC(<command>), 158
EXECUTE AS clause

execution context of, 159
in functions, 169

EXECUTE AS, CREATE QUEUE command, 360
execution context, security, 159
execution plan

correlated subqueries, 206
graphical execution plan, 199–200
included columns and, 220–224

INSERT statement, 226–227
query performance, 112–114, 205
search argument query, 200–201
stored procedure, 162

execution time
as a performance metric, 205
query performance, 196

exist method, 277
EXISTS argument, 202
EXISTS clause, 8, 130
EXPLICIT mode, FOR XML clause, 270–271
expressions

defined in SQL Server, 9
functions in, 170

Extended Events. See SQL SERVER Extended Events
EXTENT resource, 74
EXTERNAL ACCESS permission setting, 310

F
FAST_FORWARD cursor type, 160–161
Fdhost.exe (filter daemon host process), 335–336
Fdlauncher.exe (SQL Full-Text Filter Daemon Launcher),

335–336
FETCH ABSOLUTE option, 161–162
FETCH cursor statement, 159–160
FETCH FIRST option, 162
FETCH LAST option, 162
FETCH NEXT option, 162
FETCH PRIOR option, 162
FETCH RELATIVE option, 162
FETCH statement, 162, 208
FILE resource, 74
FILEGROUP filegroup_name, CREATE FULLTEXT INDEX

command, 338
FILESTREAM, 310–311
Filestream.hdr file, 311
fill row method, 292
filter daemon host process (Fdhost.exe), 335–336
filter, in full-text search, 336
float data type, 85–86, 93
FLWOR expressions, 278–279
for keyword, in XML query, 278
FOR XML clause

in execution orders, 197
modes, 264–274
nesting mode queries, 273–274

445

included columns

foreign key constraints
cascading actions and, 104–105
computed columns, 103
declarative data integrity and, 113–114
join operations and, 12, 14
overview, 103–104
query performance and, 111–113
used with subqueries, 110–111

FORWARD_ONLY cursor type, 162
FORWARD_ONLY, READ_ONLY cursor type, 161–162
fragmentation, 236
FREETEXT predicate, 347
FREETEXTTABLE function, 339, 347
FROM clause

embedded SELECT statement, 128
functions in, 170
inner joins and, 12
RECEIVE command, 365
SELECT statement, 3
table source feature, 128

FROM keyword
in DELETE statement, 52
in UPDATE statement, 52

FROM SERVICE, BEGIN DIALOG statement, 363
full joins, 14
full-text catalog, 335, 337
full-text index, 335
full-text search

creating, 337–339
managing, 336–337
overview, 334
search engine, 334, 336
terminology, 335–336
troubleshooting search results, 339–346
writing queries, 339

fulltext__catalog_name, CREATE FULLTEXT INDEX
 command, 338

FULLTEXTCATALOGPROPERTY function, 340
functions. See also UDFs (user-defined functions)

built-in functions, 36–40, 167–168
computed columns, 187
deterministic and non-deterministic, 187
limitations of user-defined, 168
partitioning, 237
required elements for, 171
retrieving data from, 170–171
SCHEMABINDING option for, 170
table-valued, 169, 207–208
user-defined, 167–171

G
gating role, change data capture (CDC), 410
geography data type, 324–327
geometry data type, 324–327
GeometryCollection, 326
GETDATE function, 36
GETUTCDATE function, 36
global temporary object, 91
global variables, 39, 146–147
GO statement, in T-SQL, 146
GOTO statement, 152
GRANT permissions, 177
graphical execution plan, 199–200, 243
GROUP BY clause, 9, 19–20, 22
GROUPING function, 19, 22
GROUPING SETS, 24–26
GUID (globally unique identifier), 363

H
hash operations, graphical execution plan, 199
HAVING clause, 26–27
heaps, in non-clustered indexes, 74, 216
hemispheres, geography data type, 327
HoBT resource, 74
HONOR_BROKER_PRIORITY option, 357

i
IBinarySerialize methods

CLR user-defined aggregate, 296–301
CLR user-defined type, 302–308

identifiers
delimited, 91
naming guidelines for, 92
standard, 91

identity column, 94–95
IDENTITY property, 47, 94–95

INSERT statement, 48
identity values, 147
IFELSE statement, in stored procedures, 150–151
impersonation, 361
implicit transactions, 67–68
IN PATH ‘rootpath’, CREATE FULLTEXT CATALOG

 command, 337
included columns, 197, 219, 222–224

446

IncludedColumns argument

IncludedColumns argument, 344–345
index keys

data types in, 93
included columns and, 219
primary key and unique constraints, 102

index performance, 186, 229–232
analyzing index usage, 235–236
clustered indexes, 224–225
included columns and index depth and, 218–224
partitioning and, 236–243
read performance vs. write performance, 225–228

index scans, 200
index_name, change data capture (CDC), 409
indexed views

creating, 185–186, 233–235
query performance and, 186
read performance and, 233
restrictions, 186
SQL Server 2008 Enterprise Edition, 188

indexes
clustered, 102
covered, 216–218
creating, 216
foreign keys and, 103
full-text, 335
missing, 243
non-clustered, 102
partitioned, 236
reducing, 218–222
unique clustered, 189

INFLECTIONAL term, 345
information_schema schemas, 89
inline table-valued functions, 169

user-defined, 205–207
user-defined, T-SQL, 207–208
views and, 171

inner joins, 12–13, 15, 201
input parameters, 149, 157
INSERT . . . SELECT statement, 49
INSERT statement

INTO keyword, 49
OUTPUT clause, 58
overview, 48–50

instance level, 176
instance types, 326–327
instantiation, 326
INSTEAD OF triggers, 176, 184
integer data types, 84–85
Intent (IS, IX, SIX) locks, 71
internal activation, Service Broker, 354

INTERSECT operator, 30–32
INTO keyword

INSERT statement, 49
MERGE statement, 61
RECEIVE command, 365

INTO, RECEIVE command, 365
ISNULL function, 5, 36
isolation levels

locking and, 70
READ COMMITTED, 75
READ UNCOMMITTED, 75
REPEATABLE READ, 75
SERIALIZABLE, 75
SNAPSHOT, 75
transaction, 75–76

isolation property, 67

j
JOIN operator

optimizing queries and, 201
overview, 12
types of, 12–15
working with multiple tables, 14–15

k
KEY INDEX index_name, CREATE FULLTEXT INDEX

 command, 338
KEY resource, 74
key-range locks, 71
KEYSET cursor type, 161

L
LANGUAGE language_term, CREATE FULLTEXT INDEX

command, 338
Large Object (LOB) data, 196
lcid (location identifier), 342
leaf levels, index, 220–222
left joins, 13
LEFT string function, 40
LEN string function, 40
let keyword, in XML query, 278
LIFETIME BEGIN DIALOG statement, 364
LIKE clause, 6
LINESTRING method, 330

447

objects

LOB (Large Object) data, 196
local variables, 146, 149
location identifier (lcid), 342
lock status, 72–74
locking hints, 70–72
locks, 68, 71
Log Sequence Number (LSN), 411, 413–414
logical reads, 196, 218
LOGIN, in EXECUTE AS, 159
logon triggers, 178–179
lower bound setting, of query range, 411
LOWER string function, 40
LSN (Log Sequence Number), 411, 413–414

M
mail profile, 378
management system function, 167
MANUAL, CREATE FULLTEXT INDEX command, 338
materialized views, 186, 188
mathematical system functions, 167
MAX function, 19
MAX_QUEUE_READERS, CREATE QUEUE command, 360
MAXRECURSION value, 124
MERGE statement

AS option, 61
change data capture (CDC) and, 60
INTO keyword, 61
ON keyword, 61
OUTPUT clause, 58
overview, 60–62
USING keyword, 61
WHEN MATCHED THEN keyword, 61
WHEN NOT MATCHED THEN keyword, 61

message types, Service Broker, 353, 358
message_type_name

CREATE CONTRACT command, 361
CREATE MESSAGE TYPE command, 358

messages, Service Broker, 352, 363–365
METADATA resource, 74
metadata system functions, 167
methods, 326
Microsoft Visual Basic .NET, 284, 286, 288, 291
Microsoft Visual Studio, 284, 292
Microsoft Windows PowerShell, 388–389
Microsoft.SqlServer.Server namespace, 286
MIN function, 19
modules, 145, 159

multi-statement table-valued functions, 169
user-defined, 207–208

multivalued subqueries, 127

n
names. See identifiers
natural keys, 94
nchar data type, 83–84
nested functions, 171
network components, Service Broker, 353
NEW_BROKER option, 357
NIL attribute, 265–267
NO ACTION option, 104
NO REVERT, in EXECUTE AS, 159
nodes method, 278
NOLOCK hint, 71
non-clustered indexes

heaps, 74, 216
overview, 216
partitioned tables and, 238
unique constraints and, 102

noncorrelated subqueries, 127, 202–204
nondeterministic functions, 36, 187
Northwind database, 2
NOT FOR REPLICATION option, 176
NOT operator, 6
ntext data type, 83
NTILE function, 134
NULL keyword, 48–49
NULL values, 4

designing tables and, 93–94
in aggregate functions, 20
in XML results, 265

number (#) sign, in standard indentifiers, 91
numeric data type, 84–86
nvarchar data type, 83–84, 93, 346
nvarchar(max) data type, 83, 93

O
Object Linking and Embedding Database (OLE DB), 67
object, CREATE QUEUE command, 360
objects, 326

global temporary, 91
preventing dropped, 170
SQL Server Audit, 416

448

ODBC (Open Database Connectivity)

ODBC (Open Database Connectivity), 67
OFF argument, STOPLIST command, 339
OFF, CREATE FULLTEXT INDEX command, 338
OFF, NO POPULATION, CREATE FULLTEXT INDEX

 command, 339
OGC (Open Geospatial Consortium), 325–326

extended methods, 326
OLE DB (Object Linking and Embedding Database), 67
ON ALL SERVER option, 176
ON clause, 238
ON CONTRACT, BEGIN DIALOG statement, 363
ON DATABASE option, 176
ON FILEGROUP filegroup, CREATE FULLTEXT CATALOG

command, 337
ON keyword, in MERGE statement, 61
ON, CREATE QUEUE command, 360
OPEN cursor statement, 159–160
Open Database Connectivity (ODBC), 67
Open Geospatial Consortium (OGC), 325–326

extended methods, 326
OPTIMISTIC concurrency option, 162
optimizer, 187

theoretical execution order, 196
tuning indexes, 243

optimizing performance. See index performance;
 performance; query performance

optimizing queries, 235
OPTION clause, 124
OR operator, 6
ORDER BY clause, 9, 31, 259, 267

in theoretical exection order, 197
TOP clause and, 183, 198

order by, keyword, in XML query, 278
order of arguments, 327
order of operations, 5, 128, 345
OUT keyword, 157
OUTER APPLY operator, 32–33
outer joins, 13–14, 201–202
OUTPUT clause, 45, 48, 58–60
OUTPUT keyword, 149, 157
output parameters, 149, 157

P
page dictionary, 96
page reads, query performance, 195–196
PAGE resource, 74
page splits, 225

page-level compression, 96
parameters

declaring, 149
input, in EXEC statement, 157
multiple, in user defined aggregates, 295

Parent column, 270
parentheses, use of, in order of operations, 5
Parse extended static geography method, 328
Parse method, 302
PARTITION BY clause, 133
partitioned tables, 184, 236, 238–243
partitioned views, 184–185
partitioning

functions, 237
overview, 236–237
performance and, 238–243
schemes, 238

PascalCasing, for identifiers, 92
PATH mode, FOR XML clause, 272–273
PATINDEX string function, 40
percent (%), in LIKE clause, 6
performance. See also index performance;

query performance
audit specifications and, 417–418
benefits of stored procedures, 145
blocking, 72
check constraints, 108, 111–114
cursor, 159
derived tables and, 129
NULL values and, 94
query optimization, 346
scalar UDF functions and, 205–207
set-based processing, 208
SQL Server platform and, 164
TRUNCATE TABLE statement, 54
with leading wildcard characters and NOT logic, 6

permissions
change data capture (CDC) and, 410
CLR (Common Language Runtime), 310
DDL triggers and, 177
Service Broker, 358

persisted columns, 111, 290
point extended static geography method, 327
population (crawl) process, 336
Powershell. See SQL Server PowerShell
precise function, 289
primary key constraints

computed columns, 102
identity column and, 94

449

rows

join operations and, 12, 14
overview, 102

procedural data integrity, 101–102
PROCEDURE_NAME, CREATE QUEUE command, 360
profile security settings, 378

Q
queries. See also subqueries

full-text, 339
SELECT statement. See SELECT statement
tuning, 195
using SQLCLR, 283
XML schemas, 277

query cache, 162–164
query cost, performance metric, 195
query method, 278
query performance

costs, 195
covered indexes, 216–218
data compression, 96
execution plan, 112–114, 205
execution time, 196
foreign key constraints, 111–113
graphical execution plan, 199–200, 243
indexes and, 237
logical reads and, 218
page reads, 195–196
partitioned tables and, 242–243

query plans, 162–163
query substitution, 187–188, 233
query_string, 342
queues, Service Broker, 359–360
quotation marks (““)

defined phrase, 343
delimited identifiers, 91

quoted identifiers. See delimited identifiers

R
RAISERROR command

in TRYCATCH block, 155–156
syntax, 153

RANK function, 133
rank, in search results. See relevance value
ranking functions, 133–135

RAW mode, FOR XML clause, 264–267
READ COMMITTED isolation level, 75
read performance, 225–228, 233
READ UNCOMMITTED isolation level, 75
READ_ONLY concurrency option, 162
READ_ONLY cursor, 160–161
readability, improving, 3, 8, 29, 341, 362
reads column, query tuning, 209
real data type, 85–86, 93
RECEIVE command, 364–365

column Specifier, 365
RECOMPILE option, 163
recursive queries, 123–124
RELATED_CONVERSATION BEGIN DIALOG

statement, 364
relevance value, 344
remote service bindings, Service Broker, 353
REPEATABLE READ isolation level, 75
REPLACE string function, 40
Retention Period, 399
RETENTION, CREATE QUEUE command, 360
return codes

capturing, 158
execution status and, 150

return keyword, in XML query, 278
RETURN statement

in functions, 169
in stored procedures, 150

RETURNS NULL ON NULL INPUT option, 169–170
REVOKE permissions, 177
RID (row identifier resource), 74
right joins, 13
RIGHT operators, 13
RIGHT string function, 40
role_name, change data capture (CDC), 409
ROLLBACK statement

implicit and explicit transactions, 67–68
nested transactions and, 68–69
savepoints, 69

ROLLUP operators, 20–21
routes, Service Broker, 353
row identifier (RID) resource, 74, 224
ROW_NUMBER function, 133–134, 204
row-based processing, 159, 161
row-level compression, 96
rows

adding. See INSERT statement
appending. See INSERT. . .SELECT statement

450

rowset system functions

comparing. See MERGE statement
data compression in, 96
limiting. See DELETE statement
processing data by, 159
removing. See DELETE statement; TRUNCATE TABLE

statement
specifying. See UPDATE statement; WHERE clause
updating. See UPDATE statement

rowset system functions, 167
rowversion data type, 93
RPC: Completed events, 208
rules

basic query and UNION operator, 30
declarative data integrity and, 101
for implementing check constraints, 106–110
for implementing foreign key constraints, 103
for naming identifiers, 91–92

S
SAFE permission setting, 310
SARG (search arguments), 200
SAVE TRANSACTION statement, 69
savepoints, 69
scalar functions

built-in, 36–38
user-defined, 30, 168, 205–207, 288–290

scans, 200–201
schema modification (Sch-M) locks, 71
schema stability (Sch-S) locks, 71
SCHEMABINDING option

creating indexed views, 186
functions and views, 170
in functions, 169
view attribute, 183

SCOPE_IDENTITY function, 147
screen buffer size, 393
scripts, implementing, 388–389
SCROLL option, 162
SCROLL_LOCKS concurrency option, 162
search arguments (SARG), 200
search, full-text

architecture, 334
creating, 337–339
managing, 336–337
overview, 334
search engine, 334, 336
terminology, 335–336

troubleshooting search results, 339–346
writing queries, 339

SearchCondition argument, 345
security

events and permissions, 177
profile settings, 378
security and network components, 353
setting context for, 159
SQL injection attacks and, 158
system functions, 168

seek operation, 200, 230
SELECT DISTINCT clause, 3
SELECT INTO statement, 50, 90
SELECT list, 170
SELECT statement, 3

assigning value to variables, 147–148
built-in scalar functions in, 36
defining aliases in, 31
in CTEs (common table expressions), 123
in indexed views, 186
limitations of when defined as a view, 183
normal database view, 233
retrieving data, 170
storing, 183
syntax, 3
testing data modifications in, 52
WHERE clause. See WHERE clause

self-joins, 9, 15
self-referencing tables, 15
semicolon, use of

e-mail addresses and, 378–379
in T-SQL statements, 365
with WITH keyword, 124

SEND command, 364
SENT BY, CREATE CONTRACT command, 361
sequence gaps, eliminating, 133–134
SERIALIZABLE isolation level, 75
server trace, 209
services, Service Broker, 361–362
SET DEFAULT option, 104
SET IMPLICIT_TRANSACTIONS ON statement, 67
SET NULL option, 104
SET QUOTED_IDENTIFIER session setting, 91
SET statement, assigning value to variables, 148
SET STATISTICS IO ON statement, 195, 205
SET STATISTICS TIME ON statement, 196, 205
SET TRANSACTION ISOLATION LEVEL

statement, 75
SET XACT_ABORT ON statement, 154–155

451

SQL Server PowerShell

set-based processing
performance and, 208
vs. row-based processing, 159, 161

severity levels, of errors, 152
Shared (S) locks, 71
smalldatetime data type, 86–88, 93
smallint data type, 85
SMOs (SQL Server Management Objects), 389
SNAPSHOT isolation level, 75
sorts, graphical execution plan, 199
source table, 398
source_name, change data capture (CDC), 408
source_schema, change data capture (CDC), 408
sp_addmessage stored procedure, 153
sp_altermessage stored procedure, 153
sp_configure, Database Mail, 376
sp_dropmessage system stored procedure, 153
sp_executesql <command>, 158
sp_send_dbmail system stored procedure

@append_query_error, 380
@attach_query_result_as_file, 379
@blind_copy_recipients, 379
@body, 379
@body_format, 379
@copy_recipients, 379
@exclude_query_output, 380
@execute_query_database, 379
@file_attachments, 379
@importance, 379
@mailitem_id [OUTPUT], 381
@profile_name, 378
@query, 379
@query_attachment_filename, 379
@query_no_truncate, 380
@query_result_header, 379
@query_result_separator, 380
@query_result_width, 380
@recipients, 378
@sensitivity, 379
@subject, 379

spatial data types, 324–330
Spatial Reference Identifier (SRID), 326
special characters, in full-text search, 343
SPID (system process ID), 72
SplitString method, 292
SplitStringFillRow, 292
SQL: BatchCompleted events, 209
SQL Common Language Runtime (SQLCLR).

See SQLCLR (SQL Common Language
Runtime)

SQL Full-Text Filter Daemon Launcher (Fdlauncher.exe),
335–336

SQL injection attacks, 158
SQL Mail, 382
SQL Server

compilation process, 162–163
enabling FILESTREAM, 310
system data types, 83

SQL Server 2005
Database Mail. See Database Mail
SQL Server Service Broker, 351

SQL Server 2008
assigning value to variables, 148
built-in functions, 36–40, 167–168
change tracking and T-SQL commands in, 403
data compression, 96
error messages in, 152–153
programmable objects in, 141
SQL Server Service Broker new features, 351
xp_sendmail, 382–383

SQL Server 2008 Developer Edition, 233–235
SQL Server 2008 Enterprise Edition

change data capture (CDC) in, 397
data compression, 96
indexed views, 188, 233–235
query substitution in, 188, 233
SQL Server Audit, 397

SQL Server Agent
change data capture (CDC), 421
Service Broker startup option, 354
Windows PowerShell, 388–389

SQL Server Audit, 415–418
Audit Destination, 416–417
Audit Name, 416
change data capture (CDC), 421
Queue Delay, 416
Shut Down Server On Audit Log Failure, 416

SQL Server Database Engine, 283
SQL SERVER Enterprise Edition, 96
SQL SERVER Extended Events, 74
SQL Server Instance, 397
SQL Server Management Objects (SMOs), 389
SQL Server Management Studio (SSMS). See SSMS (SQL

Server Management Studio)
SQL Server PowerShell

clear screen (cls), 391
Convert-UrnToPath, 393
Decode-SqlName, 393
drive-and-path structure, 389
Encode-SqlName, 393

452

SQL Server PowerShell cmdlets

enumerate objects, 391–394
-force parameter, 391
-Full parameter, 392
Invoke-Sqlcmd, 393
memory requirements, 389
moving to another folder, 391
moving up one level in the path, 391
Object Explorer, 389
objects, 388
setting window properties, 393
SMO objects, 389
SQLSERVER

\SQL, 389
\SQLPolicy, 389
\SQLRegistration, 389

tab completion, 391
window properties, 393

SQL Server PowerShell cmdlets
Get-ChildItem, 391
Get-Help, 392
Get-Item, 391
Get-Location, 391
Move-Item, 391
Remove-Item, 391
Rename-Item, 391
Set-Location, 391

SQL Server Profiler
deadlock transactions, 72
initiate trace file using, 208–209

SQL Server Service Broker, 377
activation methods, 354–356
components, 352–353
configuring components, 358–365
conversation, in Service Broker, 352
creating applications, 354
enabling, 356–357
implementing, 351–353
overview, 321
permissions, 358
security and network components, 353
statistics, 351–352
WAITFOR statement, 151

SQL ServerBroker. See SQL Server Service Broker
SQLCLR (SQL Common Language Runtime).

See also CLR (Common Language Runtime)
overview, 283
stored procedures, 284–287
triggers, 293–295

types of objects in, 288
UDFs (user-defined functions), 288–293
UDTs (user-defined types), 83, 288, 301–308
user-defined aggregates, 295–301

Sqlcmd, 388
SqlCommand class, 286
SqlConnection class, 286
SqlFacet attribute, 296, 302
SqlMethod attribute, 302
SQLSERVER

drive. See SQL Server PowerShell
SqlUserDefinedAggregate attribute, 296
square brackets ([])

for delimited identifiers, 91
in LIKE clause, 6

SRID (Spatial Reference Identifier), 326
Ssbdiagnose utility, Service Broker, 351
SSMS (SQL Server Management Studio), 2

accessing Service Broker, 356
Activity Monitor, 72
change tracking, 399
change tracking in a table, 401
change tracking using, 399, 401–402
creating SQL Server Audit objects, 416–417
Database Mail Configuration Wizard, 376–378
enabling change tracking, 399
enabling implicit transactions using, 67
Full-Text Indexing Wizard, 338
full-text search, 94
Northwind database, 2
Object Explorer, 356, 389, 417

STATIC cursor type, 161
STATUS, CREATE QUEUE command, 360
STDEV function, 19
STDEVP function, 19
stemmer, 335, 345
STOPLIST command, 339, 342
Stoplist_name, STOPLIST command, 339
stoplists, 336
stopword, 335
storage requirements

approximate numeric data types, 86
date and time data types, 86–87
datetime2 data type, 89
datetimeoffset data type, 89
decimal data type, 85
exact numeric data types, 84–85
time data type, 89

453

Table_name, CREATE FULLTEXT INDEX command

stored procedures, 144–152. See also triggers
ALTER PROCEDURE statement, 145
commands not allowed in, 144
compilation process, 162–163
control flow constructs for, 149
creating, 144
creating in SQLCLR, 284–287
ENCRYPTION option, 169
executing, 157–158
executing under SQLCLR, 287
explicit transactions and, 68
internal activation of Service Broker, 354
list of CDC, 415
modifying contents of, 145
object types, 288
overview, 144–145
performance benefits, 145
splitting into multiple, 163–164
syntax, 145
sysmail_, 383
troubleshooting full-text search with, 341
using SQLCLR, 283

streams–, 311
string data types, 83
string functions, 40
string literals, 9

converting, 88–89
string system functions, 168
subqueries. See also queries

APPLY operator and, 203
check constraints in, 108–110
EXISTS CLAUSE, 8
foreign key constraints used with, 110–111
multivalued, 127
overview, 127–130
UDFs (user-defined functions) in, 108–110
with correlation to outer query, 127, 129–130,

202–204
without correlation to outer query, 127, 202–204

SUBSTRING function, 40
subtotals, viewing, 20
SUM function, 19
supports_net_changes change data capture

(CDC), 409
Surface Area Configuration Policy-Based Management

facet, 376
SWITCH PARTITION command, 410

change data capture (CDC) and, 410

sys schemas, 89
sys.change_tracking_tables catalog view, 401
sys.dm_db_index_physical_stats, 221
sys.dm_db_index_usage_stats, 236
sys.dm_fts_index_population function, 340
sys.dm_fts_parser function, 342
sys.dm_tran_active_transactions DMV, 73
sys.dm_tran_current_transaction object, 69–70
sys.dm_tran_locks DMV, 72–73
sys.fn_cdc_decrement_lsn, 414
sys.fn_cdc_get_column_ordinal, 415
sys.fn_cdc_get_max_lsn, 415
sys.fn_cdc_get_min_lsn, 415
sys.fn_cdc_has_column_changed, 414
sys.fn_cdc_increment_lsn, 414
sys.fn_cdc_is_bit_set, 415
sys.fn_cdc_map_lsn_to_time, 415
sys.partitions, 238
sys.sp_cdc_enable_db, 398
sys.sp_cdc_enable_table system stored procedure, 408
SYS_CHANGE_COLUMNS column, 403
SYS_CHANGE_CREATION_VERSION column, 403
SYS_CHANGE_OPERATION column, 403
SYS_CHANGE_VERSION column, 403
SYSDATETIME function, 36
SYSDATETIMEOFFSET function, 36
sysmail_ stored procedures, 383
system error messages, 156
system functions. See functions
System Monitor Object and Counters, Service Broker, 351
system process ID (SPID), 72
system statistics functions, 168
SYSTEM, STOPLIST command, 339
System.Data.SqlClient, 286
System.Data.SqlClient namespace, 286
System.Data.SqlTypes namespace, 286
SYSUTCDATETIME function, 36

t
tab completion, 391
TABLE resource, 74
table scans, 200
table schema, 47
table source feature, in FROM clause, 128
Table_name, CREATE FULLTEXT INDEX

command, 338

454

tables

tables
change. See change tables
creating, 89–96. See also CREATE TABLE statement
derived. See derived tables
importing data into new, 240
inserted and deleted, 58, 176–177
naming guidelines for, 92
partitioned. See partitioned tables
self-referencing, 15
sorted. See clustered indexes
unsorted. See heaps, in non-clustered indexes
working with multiple, 12, 14–15, 184

table-valued functions, 168–169
user-defined, 207
Visual Basic .NET, 291

TABLOCK hint, 71
Tag column, 270
tenses, returning, in full-text search, 345
term, in full-text search, 335
text and image system functions, 168
text data type, 83
theoretical execution order, 196–199
ties, handling, in RANK function, 133
time data type, 86–89
time function, 36–37, 167
TIMEOUT, RECEIVE command, 365
timestamp data type, 93
tinyint data type, 84
TO SERVICE, BEGIN DIALOG statement, 363
token, in full-text search, 335
TOP clause, 183, 198, 365
TOP operator, 184
Top-n-by-rank argument, 346
ToString method, 302
transactions, 67–76

ACID properties of, 67
case scenario using, 79
closing and making permanent changes to.

See COMMIT statement
defined, 45
error handling and, 153–157
implicit and explicit, 67–68
isolation levels and locking, 70
minimizing deadlocks and blocks, 71–72
nested, 68–69
READ COMMITTED isolation level, 75
READ UNCOMMITTED isolation level, 75
REPEATABLE READ isolation level, 75

savepoints in, setting. See SAVE TRANSACTION
 statement

SERIALIZABLE isolation level, 75
setting isolation levels, 75–76
SNAPSHOT isolation level, 75
undoing, 68–69
working with active, 69–70

Transact-SQL (T-SQL). See T-SQL (Transact-SQL)
TriggerContext, 295
triggers. See also stored procedures

CLR (Common Language Runtime), 293–295
creating in SQLCLR, 293–295
DDL (Data Definition Language), 176–177
DML (data manipulation language), 102, 175–176
ENCRYPTION option, 169
logon, 178–179
overview, 141, 175–179
vs. stored procedures, 58

TRUNCATE TABLE statement, 54
in change tracking mode, 402

TRYCATCH block, 153–157
T-SQL (Transact-SQL), 123

batch delimiter for, 146
creating objects using, 141
dynamic execution of commands in, 158
ranking functions for data, 133
table-valued UDFs, 207
WITH keyword in, 124

TYPE COLUMN type_column_name, CREATE
FULLTEXT INDEX command, 338

TYPE option, in XML subquery, 274

U
UDFs (user-defined functions), 167–171

check constraints and, 106–108
creating in SQLCLR, 288–293
execution plan example, 205–206
in SQL Server 2008, 30
limitations, 168
scalar, 205–207, 288–290
table-valued, 207–208
with foreign key constraints, 110–111

UDTs (user-defined types), 83, 288, 301–308
underscore (_), in LIKE clause, 6
unequal joins, 129
Unicode data, 84

455

WITH clause

UNION ALL statement
in recursive queries, 123
partitioned views and, 184–185

UNION operator, 30–31, 183
in execution order, 196–197

unique constraints, 102
unique indexes, 103, 238
UNSAFE permission setting, 310
Update (U) locks, 71
UPDATE statement

data modification and, 47
OUTPUT clause, 58
overview, 50–52

UPDATE STATISTICS, DDL command, 177
UPDATETEXT commands, 339
upper bound, setting, of query range, 411
upper camel casing, for identifiers, 92
UPPER string function, 40
user columns, 236
user-defined aggregates, 295–301
USER, in EXECUTE AS, 159
user-defined functions (UDFs). See UDFs

(user-defined functions)
USING keyword, in MERGE statement, 61

v
validation. See data integrity
VALIDATION, CREATE MESSAGE TYPE command, 358
value method, XML schemas, 277–278
values

adding. See UPDATE statement
changing. See UPDATE statement
removing. See DELETE statement; UPDATE statement

var function, 19
varbinary(max) data type, 93, 275

FILESTREAM and, 310–311
varchar data type, 83–84
varchar(max) data type, 83, 93
variables, 146–148
VARP function, 19
VIEW_METADATA option, 183
views

catalog, 407
clustered indexes, 189
creating, 183–184
distributed partitioned, 185

indexed. See indexed views
inline table-valued functions and, 171
limitations of, 183
materialized, 188, 233
nonmaterialized, 187
overview, 183–186
partitioned, 184–185
restrictions on indexed, 186
SCHEMABINDING option for, 170
storing SELECT statement using, 141

virtual tables. See derived tables
Visual Basic .NET, 284, 288, 292

command line compiler, 286
table-valued functions, 291

Visual Studio, 284, 292

W
WAITFOR statement, 365

in stored procedures, 151
TIMEOUT clause and, 365

Weighted Term, 345
Well-known binary (WKB), 326–327
Well-known text (WKT), 326
WHEN MATCHED THEN keyword, 61
WHEN NOT MATCHED THEN keyword, 61
WHERE clause

aliases and, 12
built-in scalar functions in, 36
functions in, 171
in DELETE statement, 53
in SELECT statement, 3–5
in UPDATE statement, 51–52
RECEIVE command, 365
using functions in, 170

where keyword
in XML query, 278
RECEIVE command, 365

WHILE statement, in stored procedures, 151
wildcard operators, in LIKE clause, 6
window properties, SQL Server PowerShell, 393
Windows PowerShell, 388–389
WITH CHANGE_TRACKING_CONTEXT function, 403
WITH CHECK option

constraints and, 113
updating data, 184

WITH clause, 48, 123

456

WITH CUBE operators

WITH CUBE operators, 20, 22
WITH keyword, 124
WITH ROLLUP operators, 20–21
WITH(NOEXPAND), 235
WKB (Well-known binary), 326
WKT (Well-known text), 326
word breaker, in full-text search, 335, 342
write performance, 225–228
writes column, query tuning, 209
WRITETEXT commands, 339

X
XACT_ABORT function, 154–156
XACT_STATE function, 156–157

XML (Extensible Markup Language)
overview, 257–258
retrieving tabular data as, 258

XML data type, 93, 275–278
XML document, 177, 257
XML fragment, 257
XML schemas, 178
xp_sendmail,

382–383
XQUERY, 177

Y
yield keyword, 291
yield return statement, 208, 292

About the Authors

tObiaS tHeRnStRöM has enjoyed the company of Microsoft
SQL Server for over 13 years. He currently works with Microsoft in
 Redmond on the development of the SQL Server Engine. Tobias
has been involved in the development of several of the SQL Server
 certifications provided by Microsoft. He is a Microsoft Certified
Trainer (MCT) and cofounder of the Swedish SQL Server User Group
(http://www.sqlug.se).

ann WebeR is an independent instructor, consultant, and author
from Dublin, Ohio, and she is an MCT, a Microsoft Certified IT
Professional (MCITP) on SQL Server, and a Microsoft Certified
Systems Engineer (MCSE). Having over 12 years of experience with
the various versions of SQL Server, she specializes in classes and
projects that center around this product. Ann has worked closely
with Microsoft Learning and Microsoft Certification on several
projects. Although she enjoys the time she spends as a trainer in the
classroom, she also enjoys sharing information through the various
white papers and custom courses she has written.

Mike HOtek is the vice president of MHS Enterprises, Inc.,
a U.S. corporation, and president of FilAm Software Technology,
Inc., a Philippine corporation. An application developer for about
three decades and a SQL Server professional for almost two
decades, he has consulted on over 1,000 SQL Server projects over
the years and develops products and solutions that span every
feature within SQL Server—relational, Extract, Transform, and
Load (ETL), reporting, Online Analytical Processing (OLAP), and
data mining. He is proficient in over 40 development languages or

platforms ranging from Cobol, RPG, Fortran, and LISP to Powerbuilder, Delphi, .NET, and
PHP. He has written or cowritten eight books, seven of those about SQL Server, along with
dozens of articles for various trade magazines. When he isn’t consulting on SQL Server
projects, speaking at conferences, delivering seminars, building software, or teaching
classes, you can find him behind a lathe in his woodworking shop.

 Contents

About the Authors 457

	Cover
	Copyright page

	Objectives
	Dedications
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Using the CD and DVD
	How to Install the Sample Databases
	How to Install the Practice Tests
	How to Use the Practice Tests
	How to Uninstall the Practice Tests

	Microsoft Certified Professional Program
	Technical Support
	Evaluation Edition Software

	Chapter 1: Data Retrieval
	Before You Begin
	Lesson 1: Querying Data
	SELECT Statement Syntax
	Manipulating Result Sets
	Lesson Summary

	Lesson 2: Joining Related Tables
	Using the JOIN Operator
	Lesson Summary

	Lesson 3: Implementing Aggregate Queries
	Working with Aggregate Functions
	Using the GROUP BY Clause
	Using the WITH ROLLUP and WITH CUBE Operators
	Using the GROUPING Aggregate Function
	Using GROUPING SETS
	Using the HAVING Clause
	Lesson Summary

	Lesson 4: Combining Datasets
	Using the UNION Operator
	Using the EXCEPT and INTERSECT Commands
	Using the APPLY Operator
	Lesson Summary

	Lesson 5: Applying Built-in Scalar Functions
	Using the Built-in Scalar Functions
	Built-in Function Samples
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenarios

	Suggested Practices
	Query Data by Using SELECT Statements
	Combine Datasets
	Implement Aggregate Queries
	Apply Built-in Scalar Functions

	Take a Practice Test

	Chapter 2: Modifying Data—The INSERT, UPDATE, DELETE, and MERGE Statements
	Before You Begin
	Lesson 1: Modifying Data by Using INSERT, UPDATE, and DELETE Statements
	Inserting Data
	Updating Data
	Deleting Data
	Lesson Summary

	Lesson 2: Enhancing DML Functionality with the OUTPUT Clause and MERGE Statement
	Using the OUTPUT Clause
	Using the MERGE Statement
	Lesson Summary

	Lesson 3: Managing Transactions
	Understanding Transactions
	Defining Explicit Transactions
	Understanding Special ROLLBACK Scenarios
	Gathering Information About Transactions
	Understanding Locking
	Setting Transaction Isolation Levels
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenarios

	Suggested Practices
	Modify Data by Using INSERT, UPDATE, and DELETE Statements
	Return Data by Using the OUTPUT Clause
	Modify Data by Using MERGE Statements
	Manage Transactions

	Take a Practice Test

	Chapter 3: Tables, Data Types, and Declarative Data Integrity
	Before You Begin
	Lesson 1: Working with Tables and Data Types
	Data Types
	Table Basics
	Compression
	Lesson Summary

	Lesson 2: Declarative Data Integrity
	Validating Data

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenario

	Suggested Practices
	Create and Alter Tables
	Implement Data Types
	Manage International Considerations
	Create and Modify Constraints

	Take a Practice Test

	Chapter 4: Using Additional Query Techniques
	Before You Begin
	Lesson 1: Building Recursive Queries with CTEs
	Common Table Expressions
	Lesson Summary

	Lesson 2: Implementing Subqueries
	Noncorrelated Subqueries
	Running Aggregates
	Correlated Subqueries
	Lesson Summary

	Lesson 3: Applying Ranking Functions
	Ranking Data
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenario

	Suggested Practices
	Build Recursive Queries with CTEs
	Implement Subqueries
	Apply Ranking Functions

	Take a Practice Test

	Chapter 5: Programming Microsoft SQL Server with T-SQL User-Defined Stored Procedures, Functions, Triggers, and Views
	Before You Begin
	Lesson 1: Stored Procedures
	Creating Stored Procedures
	Commenting Code
	Variables, Parameters, and Return Codes
	Control Flow Constructs
	Error Messages
	Error Handling
	Executing Stored Procedures
	Module Execution Context
	Cursors
	Compilation and Recompilation
	Lesson Summary

	Lesson 2: User-Defined Functions
	System Functions
	User-Defined Functions
	Retrieving Data from a Function
	Lesson Summary

	Lesson 3: Triggers
	DML Triggers
	DDL Triggers
	Logon Triggers
	Lesson Summary

	Lesson 4: Views
	Creating a View
	Modifying Data Through a View
	Partitioned Views
	Creating an Indexed View
	Determinism
	Query Substitution
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenario

	Suggested Practices
	Create a Stored Procedure
	Create a Function
	Create a Trigger
	Create a View

	Take a Practice Test

	Chapter 6: Techniques to Improve Query Performance
	Before You Begin
	Lesson 1: Tuning Queries
	Evaluating Query Performance
	Tuning Query Performance
	Table-Valued UDFs
	Cursors
	Finding Out Which Queries to Tune
	Lesson Summary

	Lesson 2: Creating Indexes
	Improving Performance with Covered Indexes
	Using Clustered Indexes
	Read Performance vs. Write Performance
	Using Computed Columns
	Using Indexed Views
	Analyzing Index Usage
	Partitioning
	Tuning Indexes Automatically
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenario

	Suggested Practices
	Create and Alter Indexes

	Take a Practice Test

	Chapter 7: Extending Microsoft SQL Server Functionality with XML, SQLCLR, and Filestream
	Before You Begin
	Lesson 1: Working with XML
	Retrieving Tabular Data as XML
	Using the XML Data Type
	Lesson Summary

	Lesson 2: Using SQLCLR and Filestream
	The Basics of Using SQLCLR
	Objects That Can Be Created Using SQLCLR
	What Is My CLR Code Allowed to Do?
	Using Filestream
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenario

	Suggested Practices
	Create and Deploy CLR-Based Objects
	Retrieve Relational Data as XML
	Transform XML Data into Relational Data
	Query XML Data
	Manage XML Data

	Take a Practice Test

	Chapter 8: Extending Microsoft SQL Server Functionality with the Spatial, Full-Text Search, and Service Broker
	Before You Begin
	Lesson 1: Implementing Spatial Data Types
	Understanding Spatial Data Types
	Instantiating Spatial Data Types
	Lesson Summary

	Lesson 2: Implementing Full-Text Search
	Overview of Full-Text Search
	Configuring Full-Text Searches
	Writing Full-Text Queries
	Troubleshooting Full-Text Searches
	Lesson Summary

	Lesson 3: Implementing Service Broker Solutions
	Service Broker Overview
	Creating Service Broker Applications
	Enabling Service Broker
	Configuring Service Broker Components
	Sending and Receiving Messages
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenarios

	Suggested Practices
	Implement Data Types
	Implement Full-Text Search
	Implement Service Broker Solutions

	Take a Practice Test

	Chapter 9: An Introduction to Microsoft SQL Server Manageability Features
	Before You Begin
	Lesson 1: Integrating Database Mail
	Overview of Database Mail
	Lesson Summary

	Lesson 2: Implementing Scripts by Using Windows PowerShell
	What Is Windows PowerShell?
	Navigating the SQL Server PowerShell Hierarchy
	Using SQL Server PowerShell to Enumerate Objects
	Lesson Summary

	Lesson 3: Tracking Data Changes
	Comparing Change Tracking to CDC
	Configuring Change Tracking
	Configuring CDC
	SQL Server Audit
	Lesson Summary

	Chapter Review
	Chapter Summary

	Key Terms
	Case Scenarios

	Suggested Practices
	Integrate Database Mail
	Implement Scripts by Using Windows PowerShell
and SQL Server Management Objects (SMOs)
	Track Data Changes

	Take a Practice Test

	Case Scenario Answers
	Chapter 1: Case Scenario Answers
	Case Scenario 1: Retrieving Data
	Case Scenario 2: Grouping Data

	Chapter 2: Case Scenario Answers
	Case Scenario 1: Modifying Data
	Case Scenario 2: Using Transactions

	Chapter 3: Case Scenario Answer
	Case Scenario: Constraints and Data Types

	Chapter 4: Case Scenario Answer
	Case Scenario: Improving Query Performance

	Chapter 5: Case Scenario Answer
	Case Scenario: Improving Application Performance

	Chapter 6: Case Scenario Answer
	Case Scenario: Tune Query Performance

	Chapter 7: Case Scenario Answer
	Case Scenario: How Should You Store Data?

	Chapter 8: Case Scenario Answers
	Case Scenario 1: Initiating Spatial Data
	Case Scenario 2: Querying a Full-Text Index

	Chapter 9: Case Scenario Answers
	Case Scenario 1: Integrating Windows PowerShell and Database Mail
	Case Scenario 2: Tracking Changes

	Glossary Terms
	Index
	About the Authors

