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ABSTRACT
Launching a denial of service (DoS) attack is trivial, but detec-
tion and response is a painfully slow and often a manual process.
Automatic classification of attacks as single- or multi-source can
help focus a response, but current packet-header-based approaches
are susceptible to spoofing. This paper introduces a framework for
classifying DoS attacks based on header content, transient ramp-up
behavior and novel techniques such as spectral analysis. Although
headers are easily forged, we show that characteristics of attack
ramp-up and attack spectrum are more difficult to spoof. To eval-
uate our framework we monitored access links of a regional ISP
detecting 80 live attacks. Header analysis identified the number of
attackers in 67 attacks, while the remaining 13 attacks were clas-
sified based on ramp-up and spectral analysis. We validate our re-
sults through monitoring at a second site, controlled experiments,
and simulation. We use experiments and simulation to understand
the underlying reasons for the characteristics observed. In addition
to helping understand attack dynamics, classification mechanisms
such as ours are important for the development of realistic models
of DoS traffic, can be packaged as an automated tool to aid in rapid
response to attacks, and can also be used to estimate the level of
DoS activity on the Internet.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]:
General–Security and ProtectionG.3 [PROBABILITY AND
STATISTICS]: Time series Analysis

General Terms
Measurement, Security
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1. INTRODUCTION
The Internet connects hundreds of millions of computers across

the world running on multiple hardware and software platforms.
It serves uncountable personal and professional needs for people
and corporations. However, this interconnectivity among comput-
ers also enables malicious users to misuse resources and mount de-
nial of service (DoS) attacks against arbitrary sites.

In a denial of service attack, a malicious user exploits the con-
nectivity of the Internet to cripple the services offered by a victim
site, often simply by floodinga victim with many requests. A DoS
attack can be either a single-sourceattack, originating at only one
host, or a multi-source, where multiple hosts coordinate to flood the
victim with a barrage of attack packets. The latter is called a dis-
tributed denial of service (DDoS) attack. Sophisticated attack tools
that automate the procedure of compromising hosts and launching
attacks are readily available on the Internet, and detailed instruc-
tions allow even an amateur to use them effectively.

Denial of service attacks cause significant financial damage ev-
ery year, making it essential to devise techniques to detect and re-
spond to attacks quickly. Development of effective response tech-
niques requires intimate knowledge of attack dynamics, yet little
information about attacks in the wild is published in the research
community. Moore et al provide insight into the prevalence of
DoS activity on the Internet [24], but their analysis is based on
back-scatter packets and lacks the level of detail required to study
attack dynamics or generate high-fidelity models needed for DoS
research. Monitoring tools today can detect an attack and identify
basic properties such as traffic rates and packet types. However,
because attackers can forge most packet information, characteriz-
ing attacks as single- or multi-source and identifying the number of
attackers is difficult.

In this paper, we develop a framework to classify attacks based
on header analysis, ramp-up behavior and spectral analysis. First,
we analyze the header content to get a rapid characterization of
the attackers. Since headers can be forged by the attacker, we de-
velop two new techniques to analyze packet stream dynamics us-
ing the ramp-up behavior and the spectral characteristics of the at-
tack traffic. The absence of an initial ramp-up suggests a single
attacker, whereas a slow ramp-up (several hundred milliseconds or
more) suggests a multi-source attack. Since ramp-up is also easily
spoofed, we identify spectral characteristics that distinguish single-
from multi-source attacks and show that attackers cannot easily
spoof spectral content without reducing attack effectiveness. We
describe the algorithms used in our framework in Section 4 and
discuss robustness to counter-measures in Section 7.

The contribution of this paper is an automated methodology for
characterizing DoS attacks that adds new techniques of ramp-up
and spectral analysis, building on the existing approach of header
analysis. In addition to providing a better understanding of DoS
attack dynamics, our work has several direct applications. This
identification framework can be used as part of an automated DoS
detection and response system. It can provide the classification
component of a real-time attack analysis system to aid network ad-
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ministrators in selecting an appropriate response depending on the
type of ongoing DoS attack. For example, if an attack consists of
only a single source using traceback to identify the culprit is trivial,
but as the number of attackers increase traceback becomes rapidly
intractable. Thus one application of our framework is to judiciously
decide if activation of traceback is appropriate during a particular
attack. This analysis can also be used to create and validate mod-
els of DoS and DDoS attacks for simulation and experimentation.
Finally, long-term automated measurements of DoS attacks can be
used to estimate the level of DoS attack activity in the Internet. We
describe these applications in Section 8.

We evaluated our framework on traffic collected from two peer-
ing links at Los Nettos, a regional ISP in Los Angeles. Over a pe-
riod of five months we observed and analyzed 80 attacks. We could
classify 67 attacks as single- or multi-source with header analy-
sis; the remaining 13 attacks were classified based on ramp-up and
spectral behavior. We validate our algorithm and conclusions in
three ways. First, we monitor a second site at University of South-
ern California and compare the observed attack dynamics. Second,
to understand the spectral characteristics of attacks we conduct a
series of experiments with synthetically generated attack traffic sent
over a wide-area network and with real attack traffic generated us-
ing attack tools on an isolated testbed. Finally, we use simple nu-
merical simulations to improve and confirm our understanding of
the underlying causes for differences in spectral behavior. Our val-
idation methodology is detailed in Section 6.

2. RELATED WORK
Denial of service attacks attempt to exhaust or disable access to

resources at the victim. These resources are either network band-
width, computing power, or operating system data structures. Re-
search on denial of service attacks is primarily focused on attack
detection and response mechanisms. Attack detection identifies
an ongoing attack using either anomaly-detection [13, 25, 38] or
signature-scan techniques [28, 30]. Most response mechanisms at-
tempt to alleviate the damage caused by the attack by taking reac-
tive measures like reducing the intensity of the attack by blocking
attack packets [17, 21, 25], or localizing the source of the attack us-
ing traceback techniques [3, 8, 31, 32, 33, 35]. Besides the reactive
techniques discussed above, some systems take proactive measures
to discourage DoS activity. For example, distributed packet filter-
ing [26] blocks spoofed packets using local routing information and
SOS [19] uses overlay techniques with selective re-routing to pre-
vent large flooding attacks . In this paper, we use a simple anomaly-
detection technique to identify attacks and focus on a classification
mechanism to understand attack dynamics.

Beside attack detection and response mechanisms, it is important
to understand DoS attack prevalence and attack dynamics on the
Internet. Moore et al used backscatter analysis and detected 12,805
attacks during a period of 3 weeks [24]. The backscatter technique
allows detection of attacks that uniformly spoof source addresses
in the complete IP address space. Many attack tools use reflection
techniques, subnet spoofing, or do not spoof source addresses [14,
29]. The backscatter technique will not detect these attacks. In this
paper, we develop an alternate approach where we extrapolate the
attack activity observed at Los Nettos to the Internet (Section 8.3).

Signal processing technique have been used previously to ana-
lyze malicious network traffic and to detect ongoing attacks. Cheng
et al use spectral analysis to detect high volume DoS attack due to
change in periodicities in the aggregate traffic [9] while Barford et
al use flow-level information to identify frequency characteristics
of DoS attacks and other anomalous network traffic [2]. Further,
wavelets and other signal processing techniques have been exten-

sively used to analyze both wired and wireless network traffic [7,
27, 39]. In this paper we analyze the spectral behavior of the attack
stream to provide information regarding the presence of multiple
attackers.

3. ATTACK TAXONOMY
To launch a DDoS attack, a malicious user first compromises In-

ternet hosts by exploiting security holes, many of which are openly
disclosed by software vendors. Subsequently, the malicious user
installs attack tools on the compromised host (also known as a zom-
bie), making it available to attack any victim on command. With
full control on the zombie the attacker can construct any packet in-
cluding illegal packets, such as packets with incorrect checksums,
incorrect header field values, or an invalid combination of flags.

The different types of denial of service attacks can be broadly
classified into software exploitsand flooding attacks. In software
exploits the attacker sends a few packets to exercise specific soft-
ware bugs within the target’s OS or application, disabling the vic-
tim. In flooding attacks, one or more attackers sending incessant
streams of packets aimed at overwhelming link bandwidth or com-
puting resources at the victim. Although software-exploit attacks
are important, this paper focuses on flooding attacks, since they
cannot be addressed by software fixes.

Based on the location of the observation point we classify flood-
ing attacks as single-source when a single zombie is observed flood-
ing the victim and as direct multi-source when multiple zombies
are observed, as shown in Figure 1(b). It is difficult to distinguish
between single- and multi-source attacks by observing only source
addresses since most attacks spoof the source address. In both cases
there may be additional zombies present that are not discernible
from our observation point. Therefore an attack classified as single-
source may potentially contain multiple zombies when observed at
the victim. Zombies are usually insecure machines that have been
compromised by a malicious user. Multiple attackers may be sum-
moned for an attack to increase firepower, or to evade detection.

Reflectorattacks (Figure 1(c)) are a special case of multi-source
attacks. Such attacks are used to hide the identity of the attacker,
or to amplify an attack [29]. A reflector is any host that responds
to requests, for example a web server that responds to TCP SYN
requests with a SYN-ACK reply, or any host that respond to ICMP
echo requests with ICMP echo replies. Any host can be used as a
reflector by spoofing the the victim’s IP address in the source field
of the request, tricking the reflector into directing its response to the
victim. Reflectors can also be used as amplifiers by sending pack-
ets to the broadcast address on the reflector network, soliciting a re-
sponse from every host on the LAN. Unlike zombies that represent
improperly secured hosts, reflectors are typically legitimate hosts
providing Internet services, making reflector attacks more difficult
to eradicate.

4. ATTACK CLASSIFICATION
Our framework classifies attacks using header contents, transient

ramp-up behavior, and spectral characteristics. This three-pronged
approach is necessary to deal with an increasing level of difficulty
in classifying attacks depending on the level of IP header spoofing
present in an attack.

4.1 Header Contents
Most attacks spoof the source address concealing the number of

attackers. However, other header fields, such as the fragment iden-
tification field (ID) and time-to-live field (TTL), can be indirectly
interpreted to provide hints regarding the number of attackers. Such
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Figure 1: Flooding attacks are classified as (a) single-source, (b) multi-source, or (c) reflected based on the number of attackers and
their location, with respect to the observation point and victim.

Let P ={attack packets}, Pi ⊂ P, P =
⋃n

i=2Pi

If ∀ p ∈ P
ID value increases monotonically and
TTL value remains constant
then Single-source

elseif ∀ p ∈ Pi

ID value increases monotonically and
TTL value remains constant
then Multi-source with n attackers

else Unclassified

Figure 2: Pseudo code to identify number of attackers based on
header content.

techniques have been used before to identify multiple interfaces
on routers [34] and count number of hosts behind a NAT box [4].
These techniques work because many operating systems sequen-
tially increment the ID field for each successive packet. As a result,
all packets generated by the same host will contain monotonically
increasing ID values. In addition, assuming the routes remain rela-
tively stable during the attack, the TTL value will remain constant
for the same source-destination pair. Thus for attacks where the
ID and TTL fields are not forged we use the algorithm outlined in
Figure 2 to estimate the number of attackers and classify attacks as
single- or multi-source.

We estimate the number of attackers by counting the number of
distinct ID sequences present in the attack. Packets are classified as
belonging to the same sequence if their ID values are separated by
less than idgap(we use an idgapof 16) and the TTL value remains
constant for all packets. We allow for some separation in idgap
to tolerate moderate packet reordering. In high volume attacks the
ID value typically wraps around within a second. Therefore using
a small idgap also limits collisions during sequence identification.
If a packet does not belong to an existing sequence, it forms the
beginning of a new sequence. In most cases, attack packets arrive
close to each other and have a idgap of one. An attack sequence
must consist of at least 100 packets to identify a distinct attacker.

Some attacks have short silence periods during the attack. After a
silence period, packets may form a new attack sequence that should
be considered as a continuation of an old sequence, but would not
be identified as such due to the strict idgap. To bridge these silence
periods we coalesce such streams into one stream if they are within
500ms of each other. Finally, since many operating systems do not

send the ID value in network byte order, we infer byte-order from
the first 10 packets observed.

Many attack tools spoof the source IP address but allow the op-
erating system to fill in default values for other fields [10]. These
tools are susceptible to ID analysis. We are not aware of any attack
tools that attempt to coordinate the ID field over a distributed set of
attackers. In fact, differences in RTT and available bandwidth make
it inherently difficult to coordinate packet streams from multiple
hosts such that their ID fields consistently arrive in order without
reducing the rate (and hence effectiveness) of the attack.

Some attack tools forge all header contents, including both the
ID and the TTL field. For such attacks it is impossible to distin-
guish between a single or multiple sources based on header infor-
mation alone, making it essential to use additional techniques.

4.2 Ramp-up Behavior
In a multi-source attack, a master typically activates a large num-

ber of zombies by sending a trigger message that either activates
the zombies immediately or at some later time. When observed
near the victim, this distributed activation of zombies results in a
ramp-upof the attack intensity due to the variation in path latency
between the master and the zombies and weak synchronization of
local clocks at the zombies. In contrast, single-source attacks do
not exhibit a ramp-up behavior and typically begin their attack at
full strength. Thus, the presence of a ramp-up provides a hint as to
whether the attack is single- or multi-source. This method cannot
robustly identify single-source attacks since an intelligent attacker
could create an artificial ramp-up from a single site. To our knowl-
edge, current attack tools do not attempt to do so.

4.3 Spectral Analysis
A more robust method for classifying attacks as single- or multi-

source is to consider their spectral characteristics. We observed
attack streams have markedly different spectral content that varies
depending on the number of attackers. In this section, we present
our methodology for analyzing the spectral characteristics of an
attack stream; in Section 5.5 we present several examples with in-
tuition why it works.

Spectral analysis requires treating the packet trace as a time se-
ries. We divide the attack stream into 30 second segments, defin-
ing x(t), 0 ≤ t < 30, 000 as the number of attack packet ar-
rivals in each 1ms interval. Since non-stationarity can taint spectral
analysis, we discard segments that show initial ramp-up or abrupt
changes (perhaps due to a change in number of attackers). We use
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linear least-square regression to compute the slope of x(t) and ver-
ify that the difference between the slope and zero is statistically
insignificant within a 95% confidence interval [5]. Further, we con-
dition x(t) by subtracting the mean arrival rate before proceeding
with spectral analysis. The mean value results in a large DC com-
ponent in the spectrum that does not provide any useful information
for our classification framework.

For stationary segments, we compute the power spectral density
by performing the discrete-time Fourier transform on the autocor-
relation function (ACF) of the attack stream. The autocorrelation
of an attack stream is a measure of how similar the attack is to it-
self shifted in time by offset k [5, 6]. When k = 0 we compare
the attack stream to itself, and the autocorrelation is maximum and
equal to the variance of the attack stream. When k > 0 we com-
pare the attack stream with a version of itself shifted by lag k. The
autocorrelation sequence r(k) at lag k is

c(k) = 1/N

N−k∑

t=0

(x(t) − x̄)(x(t + k) − x̄); (1)

r(k) = c(k)/c(0) (2)

where x̄ is the mean of x(t) and N is the length of the attack
stream x(t). The power spectrum S(f) of attack obtained by the
discrete-time Fourier transform of the autocorrelation sequence of
length M :

S(f) =
M∑

k=0

r(k)e−ı2πfk (3)

The highest frequency observable by this procedure is 500Hz,
since we consider 1ms intervals and the Fourier transform is sym-
metric. Intuitively, the spectrum S(f) captures the poweror strength
of the attack stream contains at a particular frequency.

Once we generate the spectrum, we need a technique to compare
the spectral characteristics of different attacks. Therefore, for each
attack we define the cumulative spectrum P (f) as the amount of
power in the range 0 to f . We normalize P (f) by the total power
to get the normalized cumulative spectrum (NCS), C(f) [6]. Fi-
nally, we define quantile F (p) as the frequency at which the NCS
captures p percent of the power. Formally:

P (f) =

f−1∑

i=0

(S(i) + S(i + 1))

2
; (4)

C(f) =
P (f)

P (fmax)
; (5)

F (p) =
min f such that C(f) ≥ p

0≤f≤fmax
(6)

We use F (p) as a numerical method of comparing power spectral
graphs. The key insight is that multi-source attacks shift spectrum
to lower frequencies. To quantify this, we pick a quantile of 60%
of the power and compare the F (60%) values of attacks. Our ob-
servations indicate single-source attacks have a linear cumulative
spectrum due to dominant frequencies spread across the spectrum.
This causes F (60%) to be in the range of 240–296Hz. In contrast,
multi-source attacks have localization of power in lower frequen-
cies resulting a F (60%) in the range of 142–210Hz. Although we
use a 60% quantile, our choice is somewhat arbitrary. The impor-

VerioCogent
Geniuty

LA-MAE

Los Nettos Network
Trace Machine

Figure 3: The trace machine monitors two of the four peering
links at Los Nettos.

tant characteristic is that it capture the trend in frequency distri-
bution of the spectra. Our results are insensitive to the particular
choice of quantile as examined in detail in Section 7.

5. EVALUATION
In this section we present our trace collection infrastructure and

our experimental analysis based on attack captured at Los Nettos.
Validation of these results is presented the next section.

5.1 Attack Detection
We tested the framework described in Section 4 using attacks

captured at Los Nettos, a moderate size ISP located in Los Ange-
les [20]. We captured 80 large-scale attacks over a period of five
months, from July 2002 to November 2003.

Los Nettos has four major peering links with commercial ISP
providers. Due to lack of available mirroring capacity, we were
able to monitor only two links, as shown in Figure 3. Los Nettos has
a diverse clientele including academic and commercial customers.
The trace machine is an off-the-shelf Intel P4 1.8GHz, with 1GB
of RAM running FreeBSD 4.5. We use a Netgear GA620 1000BT-
SX NIC, and modified the driver to support partial packet transfer
from the NIC to the kernel. Typical daytime load is 140Mb/s with
a mean of 38Kpackets/s. Measurement drops (as reported by tcp-
dump) are usually below 0.04% during normal operation, rising to
0.6% during attacks that increase packet rates to 100Kpackets/s.

We continuously capture packet headers using tcpdump, creating
a trace file every two minutes. Each trace is then post-processed and
flagged as containing a potential attack if either of two thresholds
are reached: (a) the number sources that connect to the same desti-
nation within one second exceeds 60, or (b) the traffic rate exceeds
40Kpackets/s. These thresholds were determined by observing the
traffic seen at the observation point. Traces that are not flagged
as an attack are discarded. We identify and ignore known servers
that would trigger these thresholds through normal traffic. Finally,
we manually verify each flagged trace to confirm the presence of
an attack. The automated thresholding works reasonably well, but
provides a false positive rate of 25–35%. Ongoing attacks that do
not meet the thresholds are not identified. We thus miss many small
DoS attacks, including some attacks that would incapacitate a dial-
up line.

We monitor both inbound and outbound traffic. Since we mon-
itor the two busiest peering links, we believe we capture most of
the attack traffic for attacks terminating within Los Nettos, missing
only portions from the peering links we do not monitor and from
attackers within Los Nettos. For attacks transiting through Los Net-
tos, our monitoring point may not be exposed to the full intensity
of the attack since there may be attackers outside Los Nettos and
we do not monitor all external links of Los Nettos. The distinction
between transient and terminating attacks becomes important when
projecting numbers of attacks in Section 8.3.
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Attack Class # Attacks Range (packets/s) Range (kbits/s)
Single-source 37 350–82500 2700–93000
Multi-source 10 300–98000 17000–100000
Reflected 20 340–13000 3000–33000
Unclassified 13 400–68500 12000-66000

Table 1: Number of attacks in each class based on header anal-
ysis

Protocol Packet Type Attack Class
S M R U

TCP SYN 2 3 (2) - 7 (5)
ACK 5 2 (2) - 3 (2)
SYN-ACK 9 - 4 -
no flags 15 1 (1) - -
unusual 5 1 - -
state exploit 2 - - -

ICMP echo request 5 - - -
echo reply 1 - 16 (3) -
invalid - - - 1 (1)

UDP all 6 (1) - - 5 (4)
Other ip-proto 0 5 - - -

ip-proto 255 - 3 - -
fragmented 1 - - 3 (3)

Table 2: Detailed analysis of packet headers. Sindicates single-
source, M indicates multi-source, R indicates distributed re-
flectors, and U indicates unclassified attacks. The number in
parenthesis indicates attacks terminating within our ISP while
the first number indicates total attacks.

5.2 Packet Headers Analysis
First we classify attacks based on packet header information alone.

As shown in Table 1, we classified 67 attacks (all but 13) using this
method. Table 2 shows a more detailed breakdown of attacks based
on manual analysis with tcpdump. The packet type categories listed
in Table 2 are not mutually exclusive since some attack streams
carry multiple packet types.

From header analysis we can make several observations about
the prevalence of attack techniques in the wild. First, 87% of the
zombie attacks use illegal packet formats or randomize fields, indi-
cating the presence of root access on the zombies. Use of TCP pro-
tocol was most common, with reflection attacks typically exploiting
web servers (port 80) and FTP servers (port 21). In Table 2, TCP
no flagsrefers to pure data packets with no flags set, while unusual
refers to attacks that use non-standard (but not always invalid) com-
binations of TCP flags, such as setting all the flags. State exploit
refers to attacks that exhaust OS data-structures based on the TCP-
state diagram, (such as ESTABLISHED or FIN-WAIT1 states) [1].
Even though TCP-SYN attacks belong to this class, we list them
separately since they are common.

ICMP is the next protocol of choice. The echo reply attack was
the most popular reflector attack, since most Internet hosts respond
to an echo request packet allowing the attacker to choose from the
large number of possible reflectors. The remaining ICMP attacks
use echo request packet or an invalid ICMP code. UDP and unde-
fined protocols were less frequently used in the attacks. Finally, we
detected five attacks that use a combination of protocols, such as
TCP, ICMP, UDP, and IP proto-0.

5.3 Arrival Rate Analysis
This section investigates the relation between attack rate and at-

tacker population. We captured attacks with peak rates ranging
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Figure 4: Correlation of attack rates and attack class

from 300packets/s to 98Kpackets/s. Figure 4 shows the correlation
between the attack classes and attack rate. In Figure 4(a) we plot
the peak attack rates in Kbits/s on the x-axis against packets/s on the
y-axis in logarithmic scale for each attack. Not surprisingly, single-
source attacks are clustered toward lower packet rates whereas di-
rect multi-source attacks exhibit higher rates, most likely due to
aggregation of traffic from multiple zombies. In reflection attacks,
many reflectors are typically employed to generate high attack ag-
gregates without overloading the reflectors. The captured reflection
attacks have a much lower intensity than direct multi-source attacks
since the observation point might not be exposed to the complete
intensity of the attack.

To statistically confirm attack rates of single-, multi-source, and
reflected attacks have different means, we performed Kruskal-Wallis
one-way ANOVA test [5]. We consider the null hypothesis, H0;
there is no relation between the attack rates and attack class. The
alternative hypothesis, Ha states there is a relation between attack
rate and class. If H0 is true, the variance estimate based on within-
class variability should be approximately the same as the variance
due to between-class variability. This test defines a F ratio that
evaluates the two variance estimates; if the F ratio is significantly
greater than 1, the test is statistically significant, and we can con-
clude that the means for the three classes are different from each
other and reject H0. It also defines a p-value, the probability of
observing the sample result assuming H0 true. Hence a smaller
p-value provides higher confidence in rejecting H0. For the data
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Figure 5: Due to lack of synchronization among the zombies,
multi-source attacks exhibit initial ramp-up behavior

in Figure 4(a), the F ratio is 37, indicating a strong relation be-
tween the attack rates and the attack classes. Further, the p-value is
1.7×10−11, indicating a very low probability of H0 being correct.

The box plot in Figure 4(b) provides graphical representation of
the means of different classes. The lower and upper lines of the box
indicate the 25th and 75th percentiles of attack rates making the
distance between the top and bottom of the box is the interquartile
range The line in the middle of the box is the median attack rate for
the attack class. The “whiskers” (lines extending above and below
the box) show the range of the attack rate, except for the outliers
indicated by a “+” marker. Single-source attacks have the lowest
median while the median and range of the multi-source attacks is
significantly higher than single-source and reflected attacks.

5.4 Ramp-up Behavior Analysis
To identify the presence of multiple sources when the header is

forged we measure the attack’s ramp-up behavior (changes in the
traffic volume of the attack as a function of time). Of the attacks
we observed, single-source attacks typically exhibit no ramp-up,
while all multi-source attacks showed ramp-up behavior, ranging
from 200ms to 14s.

Figure 5 illustrates the attack ramp-up for two observed attacks.
Figure 5(a) shows an attack where packet headers were not forged,
and thus the attacker population was visible. The graph shows a
three second ramp-up at about 27s as the number of attackers grad-
ually increase to six. The attack reaches a peak rate of 78Kpack-
ets/s with 14 active sources. We observe a total of 40 unique IP
addresses during the attack. Figure 5(b) shows an attack where
the last eight bits of the source address are forged. The attack is
classified as a multi-source attack since it exhibits a ramp-up, ris-
ing from 6Kpackets/s to 52Kpackets/s in 14 seconds. In this attack
the source addresses and ID field is spoofed, and all packets have
the same TTL value, making it difficult to classify the attack based
on header content. The presence of transient ramp-up behavior in
the first few seconds of the attack strongly suggests the presence
of multiple sources. We also verified it is a multi-source attack via
spectral analysis.

5.5 Spectral Content Analysis
In this section we demonstrate that spectral analysis of the at-

tack time-series (described in Section 4.3) can distinguish between
single- and multi-source attacks, even if all headers are spoofed.
Because the traffic spectrum is influenced by OS and network be-
havior we argue that it will be difficult for attackers to easily con-
ceal their spectrum without reducing attack effectiveness. We re-
view this claim more carefully Sections 6 and 7, for now we present
example spectra to illustrate the technique.
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Figure 6: The power spectrum (top) and NCS (bottom) for two
example attacks

We analyze the spectral content of all 67 attacks previously clas-
sified by header analysis. Based on observations from these known
classes, we conclude that single- and multi-source attacks can be
distinguished by their spectra:

• Single-source attacks include dominant high frequencies cre-
ating a linear trend in the normalized cumulative spectrum.

• Multi-source attacks have dominant low frequencies causing
the normalized cumulative spectrum to sharply rises at lower
frequencies.

Figure 6(a) shows an example of the spectrum of a single-source
attack. In this case, the attacker that generates TCP no flag packets
at a rate of 1100packets/s. The source addresses are spoofed, but
the ID and TTL values clearly indicate a single-source attack (using
analysis from Section 4.1). There are noticeable peaks at higher
frequencies in the spectrum and the NCS is linear.

In contrast, Figure 6(b) shows a reflected attack using echo reply
packets. Since the source address in reflected attacks is not spoofed,
we can count 145 different reflectors located in countries such as
Brazil, Japan, Korea, Singapore, and United States. The attack rate
is 4300packets/s. Here we observe concentration of power in lower
frequencies creating a corresponding shift in the NCS.

The intuition behind the result requires consideration of a sin-
gle attack source and then the interaction of multiple attackers. We
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Figure 7: Comparison of F (60%) against attack rate for each
attack class

suggest that a single attacker sending at full rate will have high
frequency components in the attack traffic because any computer
and network interface has a maximum possible transmission rate
due to hardware or operating system limits. This rate gives that
attacker a basic frequency and harmonics at multiples of that fre-
quency, resulting in some high-frequency components and a basi-
cally linear cumulative spectrum. Now consider a collaborative,
distributed attack with multiple attackers, each sending as fast as
possible. Each attacker will have its own maximum rate and cor-
responding spectra, but in the aggregate, their traffic will “blur to-
gether”, because the attackers operate independently at different
rates and frequencies, and because each attacker experiences noise
from different levels of cross-traffic, loosing high frequency com-
ponents and causing the lower frequency components to dominate
the spectrum. We expand on this intuition in several steps: through
experiments in Section 6.2, simple simulations in Section 6.3, and
discussion about robustness in Section 7.

Since it is difficult to quantify differences between attacks with
a graphical representation of spectrum, we use the F (60%) value
(from Equation 6) for each attack to isolate the concept of power
being concentrated in lower frequencies. Figure 7 plots F (60%)
against the attack rates in packets/s (log-scale). Single-source at-
tacks are concentrated in the center frequency band because their
linear normalized cumulative spectrum results in mid-range F (60%)
values. Multi-source attacks, both direct and reflected, are con-
centrated in the lower frequency band, due to the accumulation of
power in lower frequencies. The two classes of attacks also have a
significant difference in first-order statistics: single-source attacks
have a mean 268Hz and a 95% confidence interval between 240–
295Hz, while multi-source attacks have a mean of 172Hz, and a
95% confidence interval between 142–210Hz. We performed the
Wilcoxon rank sum test [5] to verify that the two classes have dif-
ferent F (60%) ranges. The test strongly rejects the null hypoth-
esis, that single- and multi-source attacks have identical dominant
frequencies, with a p-value of 7.5 × 10−5.

We use the spectral analysis described above to classify the re-
maining 13 unclassified attacks. The spectrum of five attacks match
spectral characteristics of single-source attacks, with a F (60%) lo-
cated above 240Hz. The remaining eight attacks have spectral char-
acteristics similar to multi-source attacks with localization of power
in the lower frequencies. These attacks also exhibit an initial ramp-
up lasting from 300ms to 14 seconds corroborating the presence of
multiple attackers.

Protocols Los Nettos USC
TCP 84.2% 95.6%
UDP 13.8% 4.10%
ICMP 1.21% 0.118%
other 0.894% 0.175%

Table 3: Percentage of packets observed for each protocol at
the two sites

Attack Class # Attacks Range (packets/s) Range (kbits/s)
Single-source 9 1250–54000 1100–10000
Multi-source 3 58700–95000 28000–72000
Reflected 3 2120-2250 1641–2142
Unclassified 3 6170–8500 2600–6500

Table 4: Number of attacks in each class based on header anal-
ysis at USC.

6. VALIDATION
We use three techniques to validate our classification algorithms

and understand the nature of our observations. First, we analyze
DoS attacks from a second site to confirm that the numbers and
types of attacks we identified were not unique to our original ob-
servation point. Then we conduct controlled experiments and use
simple numerical simulations to understand the physical character-
istics behind our classification techniques.

6.1 Observations from an Alternate Site
We deployed a second trace machine at USC’s connection to In-

ternet2. The typical daytime load is 112Mbits/s with a mean of
25Kpackets/s. The traffic mix on the Internet2 link is fairly dif-
ferent than what we observed at Los Nettos; see Tables 3 for a
breakdown of traffic at each site by protocol. Los Nettos shows
much more DNS traffic (due to the presence of the b-root name-
server) and web traffic, while USC shows more “other” traffic due
to gaming, file sharing and research that uses atypical or ephemeral
ports.

We observed 18 attacks at USC during the months of October
and November 2003. Due to the differences in monitoring duration
and traffic quantity, it is difficult to compare the absolute number of
attacks with our observations at Los Nettos. However, we observed
about the same ratio of attacks in each attack class.

Table 4 lists attacks by class as determined by header content.
Three attacks were unclassified since they completely randomize
the ID value. Table 5 shows a detailed manual analysis of packet
headers. Although it is difficult to directly compare with Table 2,
we observe a similar set of attacks. Attacks of type TCP SYN-
ACK, TCP-unusual and ICMP-illegal were not seen at USC; how-
ever, these were not very frequent at Los Nettos either.

Ramp-up and spectral analysis of attacks at USC were similar to
attacks observed at our original site, and hence we do not reproduce
spectra of individual attacks here. Figure 8 plots F (60%) against
the attack rate (in log-scale) for each attack class. The USC results
also indicate the F (60%) is located in the middle frequency band
for single-source attacks, and in the low frequency band for multi-
source attacks. The two classes of attacks also have first-order
statistics similar to the Los Nettos. The mean for single-source at-
tacks is 292Hz and a 95% confidence interval between 200–380Hz,
while multi-source attacks have a mean of 120Hz and a 95% con-
fidence interval between 35Hz–200Hz. One unclassified attack is
most likely a single-source attack since it does not show a ramp-up
and its F (60%) is 260Hz. The other two unclassified attacks are
similar to each other in many aspects. They exhibit a small ramp-
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Protocol Packet Type Attack Class
S M R U

TCP SYN - - - 2
ACK 3 (1) - - -
no flag 5 - - -
unusual 3 - - -
state exploit - - - 1

ICMP echo request 4 - - -
echo reply - - 3 -

UDP all 5 2 (2) - -
Other ip-proto 0 4 - - -

ip-proto 255 1 1 (1) - -
fragmented 1 - - -
routing 1 - - -

Table 5: Detailed analysis of packet headers at USC.
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Figure 8: Comparison of F (60%) against attack rate by attack
class for USC attacks.

up of 120ms and have low F (60%) of 12Hz, indicating multiple
attackers.

The tendency of multi-source attacks to localize power in lower
frequencies is distinctly visible in the summary of F (60%) fre-
quencies for both sites, Los Nettos in Figure 7 and USC in Figure 8.
Based on these observations, we conclude that our results are not
distorted by unusual traffic characteristics at Los Nettos and our
techniques could be applied to other traffic mixes.

6.2 Experimental Confirmation
To understand the effect of network topology and number of

sources on attack traffic we carried out controlled experiments over
the Internet varying both these parameters. We placed synthetic at-
tackers at universities and research labs on both coasts of the United
States (at ISI East, UCLA, UCSB, UCSD, UMass, and USC). We
measured traffic at a target while varying the number of sources
from 1–5 considering two topologies: a clusteredattack, where
all attackers reside on the same LAN segment and are well con-
nected to the target via a high bandwidth, low latency link, and
a distributedtopology where attackers are widely distributed with
attackers on both coasts. Although it is not possible to control In-
ternet traffic, we repeated these experiments multiple times during
heavy and light network utilization, during peak weekday hours
and early morning/weekends (as measured local to the target). The
victim and the observation point were located on the same Ether-
net segment, connected via a hub. The traffic traces were captured
using tcpdump [16]. Each synthetic DoS attacker was an Iperf [36]
UDP source sending 50 byte packets at a rate of 1Mbits/s and each
experiment was run for 100 seconds. The hosts in the experiments
have different operating speeds and all run variants of Linux.

Figure 9(a) shows the clustered topology with only one sender.
We see strong peaks in the high frequency ranges. This behavior
is an inherent characteristic of a host sending at a rapid pace. All
computers run at certain frequencies due to clocks in the CPU, the
network card, and the operating system. We therefore believe that
this pattern will be present in any host that is sending as rapidly as
possible.

Looking across Figure 9 we see how the spectrum changes as
the number of sources increase from 1 to 3 with all sources on the
same Ethernet segment. The dominant spectral characteristics tend
to shift toward low frequencies as the number of sources increase,
with F (60%) at 300Hz, 150Hz, and 21Hz for 1, 2 and 3 sources
respectively. In Section 6.3 we examine this effect more closely to
show that it is due to multiple attackers operating out of phase with
each other.

To examine the effect of network topology we repeated this ex-
periment with each source at different locations around the Inter-
net. Figure 10(a) shows the spectrum of a single synthetic attacker
located at UMass. The spectrum lacks the distinct peaks of Fig-
ure 9(a). We believe this smoothing is due to a larger amount of
cross traffic and more variation in transit time than with a single at-
tacker in the clustered topology. The normalized cumulative spec-
trum is robust to this effect, with both single-source attacks show-
ing nearly linear trends.

Comparing Figure 10(a) to Figures 10(b) and 10(c), we see a
shift in the spectrum to lower frequencies, with F (60%) at 43Hz
and 35Hz for 2 and 3 sources, as compared to 328Hz for a single-
source. Again, we believe this is due to the presence of multiple,
unsynchronized sources.

Figure 11 summarizes the F (60%) results for 30 experiments
conducted at different times of the day. The experiments show a
localization of power in lower frequencies as the number of sources
increase from 1–5 in both clustered and the distributed topologies.
As seen in Figure 11, the F (60%) is close to 300Hz during single-
source experiments, but reduces to 100Hz when more sources are
introduced. The experiments indicate that although the absolute
value of F (60%) differs from one experiment to the next, the multi-
source attacks always have a lower F (60%) in both topologies,
qualitatively confirming our attack observations at Los Nettos.

To confirm the above results are not due to characteristics unique
to the synthetic attack traffic generated by Iperf, we conducted ex-
periments with real DoS attack tools on a dumbbell-shaped topol-
ogy consisting of 12 hosts, four hubs and two Cisco routers (we
could not deploy the attack tools on the clustered and distributed
topologies due to signature-based IDS monitoring tools). The testbed
provides a low latency (less than 1ms), high bandwidth (100Mbits/s)
connection between the attackers and the victim. We generated at-
tack traffic using three DoS tools: punk, stream, and synful, and
web-based background traffic with WebStone [37]. All three attack
tools produced spectral characteristics similar to Figure 11, in both
single- and multi-source experiments.

These experiments confirm the presence of multiple attackers
changes the attack spectrum, and that the F (60%) is a reason-
ably robust discriminator between single- and multi-source attacks.
They do not completely explain, however, the reasons why multiple
attackers shift the spectrum; we consider that next.

6.3 Understanding Multi-Source Effects
Although Section 6.2 confirms the validity of using spectral anal-

ysis to discriminate between single- and multiple-sources, it does
not explain why spectral content is a good discriminator. To un-
derstand the physical meaning behind the shift in F (60%) to lower
frequencies, we considered three hypotheses:
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Figure 9: WAN experiments using a clustered topology.
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Figure 10: WAN experiments using a distributed topology.
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Figure 11: Localization of power as the number of sources in-
crease in both clustered and distributed topologies. The error
bars show 95% confidence intervals for the experiment.

1. Aggregation of multiple sources at either slightly, or very dif-
ferent rates.

2. Bunching of traffic due to queuing behavior (analogous to
ACK compression [23], but for data).

3. Aggregation of multiple sources, each at different phase.

To investigate these hypotheses we perform simple numerical
simulations. Due to space constraints we omit plots support our
rejected hypotheses; interested readers are referred to a companion
technical report [15]. To test Hypothesis 1, we aggregate a scaled
attack trace with the original attack trace to simulate aggregation
of multiple attackers at different rates. If a(t) represents the packet
arrival sequence in the original trace, we multiply the time-stamp

by a scaling factors, with artificial added jitter denoted by ε, to
generate a scaled trace. Therefore the aggregate trace is given by:

a1(t) = a(t) + a((s + ε)t) (7)

We use the packet trace from the single-source clustered experi-
ment (Figure 9(a)) and vary the scaling factor from 0.5 to 2 repre-
senting attackers with rates varying from twice to half the original
attack rate respectively (ε is uniformly distributed between 1–5µs).
The scaled trace is then aggregated with the original attack trace us-
ing the approach defined by Kamath et al. [18]. If Hypothesis 1 is
true, then a change in the attack rate should cause a corresponding
change in F (60%). However, we observe F (60%) remains nearly
constant even when aggregated with an attacker with dissimilar at-
tack rates. Hence we reject Hypothesis 1.

To test Hypothesis 2 we capture a packet arrival sequence on the
attacker host and filter the arrival sequence to delay transmission
until p packets (p varies from 5–15) have arrived, sending out all
the packets at once. The spectra created by this process has a clus-
ter of prominent frequencies around 320Hz with very little power
(less than 15%) in the lower frequency band. The normalized cu-
mulative spectrum has a sharp rise between 300–320Hz which is
unlike spectra we have observed earlier. We therefore discarded
Hypothesis 2.

To test Hypothesis 3, we aggregate a shiftedattack trace with the
original attack trace to simulate aggregation of attackers at different
phases. If a(t) represents the packet arrival sequence in the original
trace, we add a phaseφ, with jitter ε, to generate a shifted trace.
Therefore the aggregate trace is given by:

a3(t) = a(t) + a(t + φ + ε) (8)
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Figure 12: The effect of aggregation of multiple sources at dif-
ferent phases.

We vary the phase from 1–200ms, representing the difficultly
of attackers to start and remain synchronized. If Hypothesis 3 is
true, then changes in attacker phase should cause a corresponding
change in F (60%), but we observe F (60%) remains nearly con-
stant even when aggregated with an attacker with dissimilar phase
demonstrating that phase alone (Hypothesis 3) does not cause the
shift.

Finally we consider a variation on Hypothesis 3 and aggregate
multiple streams each slightly out of phase. To test this hypothesis
we aggregate shifted attack traces with the original attack trace to
simulate aggregation of multiple attackers at different phases. If
a(t) represents the packet arrival sequence in the original trace, we
generate the shifted trace by:

a3b(t) =
n∑

i=2

a(t + iφ) (9)

We vary the number of attackers n from 2–15 with a 1ms phase
shift between each attacker. If the hypothesis is true, then we
should observe a drop in F (60%) as the number of attacker in-
crease. Figure 12 plots the number of sources against F (60%)
when using packet traces from both Figures 9(a) and 10(a). In both
cases we observe a drop in the F (60%) as the number of sources
increase indicating that phase along with aggregation of multiple
sources is most likely the cause of localization of power in the
lower frequencies. This result is consistent with the attack traffic
observed at Los Nettos and USC.

In summary, these experiments support our claims that: (a) High-
rate single-source attacks have an inherently linear cumulative spec-
trum. (b) High-rate multi-source attacks cannot maintain this lin-
earity; lower frequency components dominate due to aggregation
of multiple attackers starting out of phase. (c) Cross traffic can
decrease the prominence of individual frequencies, but the cumu-
lative spectrum is robust to its effects. While these results apply to
high-rate attackers, it is possible for attackers to affect their spectral
characteristics by changing their attack rate. We examine this issue
in the next section.

7. SENSITIVITY ANALYSIS
Network security is an arms race: both attack tools and defenses

evolve in relation to each other. Thus an important consideration
of our framework is its robustness to improved attack tools. In fact,
our ramp-up and spectral analysis techniques were motivated by
limitations of header analysis in the face of packet spoofing.

Although header analysis was successful at classifying 83% of
the attacks we observed, this percentage may drop as more so-
phisticated tools become available. Even though source addresses
are forged, currently most attack tools neglect randomizing the ID
field. However, it is easy for attackers to spoof this field and even
standard operating systems are randomizing the ID field when the
packet is not fragmented to discourage OS fingerprinting [12]. Fur-
ther, it may be possible to synchronize ID values in low volume
attacks using out-of-band communication to make it appear mono-
tonically increasing and evade correct classification [11]. The use
of TTL is somewhat more robust (assuming stable routing), since
attack packets with very low TTL values will fail to reach the vic-
tim. Statistical analysis of TTL values may be helpful in determin-
ing attacker distance in spite of spoofing. Unfortunately usefulness
of this approach will be limited because a distance of a few hops
quickly encompasses much of the Internet. We expect evolution of
attack tools to increase dependence on more advanced classifica-
tion techniques based on spectral content.

Even though none of the observed single-source attacks exhibit
an initial ramp-up, it can be easily generated by an attacker that
gradually increases the attack rate emulating a multi-source attack
and effectively triggering more complex response mechanisms. On
the other hand, in large multi-source attacks we believe an initial
ramp-up will be quite difficult to conceal. The duration of the ramp-
up may vary based on the zombie clock skew and differences in the
zombie-victim network distance, but masking the ramp-up by ac-
counting for both sources of variability would require fair sophisti-
cation.

Spectral analysis is more robust to attacker manipulation than
header analysis. We believe the characteristics of high-rate attack
traffic are inherent; they cannot be avoided by single- or multi-
source attackers sending at maximum rate. Further, it is not prac-
tical for a multi-source attacker to synchronize geographically dis-
tributed attackers to create spectral characteristics similar to single-
source attacks. Accomplishing comparable levels of synchroniza-
tion requires not only tight time synchronization between attacking
hosts but also measurement and accounting for the varying prop-
agation and queuing delay between each attacker and the victim.
It may be possible for a single-source attacker to masquerade as a
multi-source attack if it is willing to reduce its attack rate. A single-
source can generate packets in bursty, on-off patterns by introduc-
ing a delay between packets and creating dominant low frequency
contents in its spectrum. As future work we will investigate spectral
analysis techniques based on uneven sampling that will be more ro-
bust to such attack patterns [27] and study the effect of packet loss
and queuing on the attack spectra.

Finally, we consider the sensitivity of the 60% quantile used to
in attack classification. The technique used in this paper is based
on testing for localization of power in lower frequency band (un-
der 200Hz). Any mid-range quantile can capture this characteristic
of the trace; our selection of 60% is somewhat arbitrary. To ver-
ify this we compared classification of the attacks we captured and
found comparable results for quantiles between 45–65%. How-
ever, at very low or high quantiles (less than 40% or more than
70%) many attacks are incorrectly classified because the measure
becomes overly influenced by variance at either end of the spectra.

8. APPLICATIONS
There are several applications of our results, including automated

attack detection, developing synthetic models of attack traffic and
inferring the amount of DoS attack activity in the Internet. Al-
though details of these applications are outside the scope of this
paper, we briefly discuss each next.
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8.1 Automating Attack Detection
A robust automatic attack detection tool is useful in guiding re-

sponse systems (both manual and automated) in installing filters [17,
25] or for use in aggregate congestion control for flash crowds [21].
Although we use simple filters for first-pass detection of an attack,
the approaches we develop help classifyattacks as from single or
multiple sources. Discrimination between single and multi-source
attacks is useful in selecting the appropriate response mechanism
since some mechanisms are more expensive when dealing with
multiple attackers compared to single attackers (for example, trace-
back [31]). We developed an automated tool that takes the attack
trace and carries out spectral analysis to classify it. While this
demonstrates the feasibility of such a tool, but we have not yet inte-
grated this tool with other detection systems. We are also exploring
the possibility of developing attack profiles to identify similar at-
tack scenariosconsisting of same the attack tool and zombies used
in repeated attacks.

8.2 Modeling Attacks
Many simulation studies of DoS attack detection and response

use fairly simple traffic models such as constant bit-rate sources
with fixed size packets. Such models fail to capture the nuances of
attack traffic. Although real attack tools are easy to obtain and can
be used in a testbed, there remain questions about how to support
large numbers of attack machines and how to configure a testbed
to reproduce attacks similar to those in the wild. Clearly, to create
more realistic synthetic DoS traffic both in simulation and testbeds,
we need a better understanding of attack dynamics.

To our knowledge there have been no published studies of de-
tailed characterization or models of DoS attack traffic. Studies
based on back-scatter observe attacks indirectly, and thus do not
capture fine-grained details of the attack dynamics [24]. Given the
many modes of failure an attack can cause (such as hardware fail-
ures, exploitation of software glitches, misconfiguration), it is im-
portant to create faithful reproductions of real attacks. Although
not the focus of this paper, we include some statistics about the
kinds of attacks we see in the wild. Future work may use our tools
as part of a broader study to better characterize DoS attacks, laying
down the groundwork for the development of more realistic attack
models.

8.3 Inferring DoS Activity in the Internet
Using our detection tools, we captured 80 DoS attacks in Los

Nettos over five months. If we consider these attacks to be a sample
of DoS activity in the Internet as a whole, we can project attack ac-
tivity to the public Internet. Such a projection should be considered
extremelyrough due to the small fraction of the Internet and the
relatively few attacks we observed, and the assumptions required
by such an estimation. However, we believe that the methodology
proposed below coupled with a larger future monitoring effort can
provide a reasonable Internet-wide estimate of attack counts.

To arrive at our rough projection, we first compare the size of the
monitored address space to the Internet. We monitor about 0.105%
of the advertised Internet address space, determined by compar-
ing the size of the routing table advertised by Los Nettos to the
size of the advertised Internet address space as reported by Route
Views [22] on December 15, 2002. We assume that addresses are
consumed uniformly and that attacks are targeted uniformly in both
Los Nettos and the general Internet. Given these assumptions, we
can scale our observations to the Internet accordingly (multiplying
by a factor of 1900).

We observe DoS attacks that both transit and terminate in Los
Nettos. Since distributed DoS attacks depart from many sources to

Figure 13: Limitations when extrapolating Los Nettos DoS ac-
tivity to the Internet.

Month In Los Nettos In the Internet
transiting terminating terminating (projected)

July 18 6 11400
Aug 12 1 1800
Sept 10 5 9500
Oct 10 0 0*
Nov 9 6 11400

Table 6: Extrapolating Los Nettos DoS activity to the Internet.

attack a victim, we would expect that transiting attacks are more
prevalent than terminating attacks. For example, in Figure 13 we
monitor a quarter of the address space. If we measure unique vic-
tims of any attacks involving the shaded area, we observe 3 attacks
and project 12, overestimating by a factor of three. If instead we
observe only attacks terminating in the area, we get an accurate es-
timate of 4. In general, projections from transit traffic identify an
upper-bound on the number of attacks, since it may overestimate by
the minimum of the scale-up factor or the number of distributed at-
tackers. Although, it is difficult to quantify the false negative rate of
our detection mechanism, we believe it captures most large attacks
but misses many small attacks. Therefore, the number of attacks
observed can be considered a lower bound.

Based on these assumptions, Table 6 projects our observations
to the Internet as a whole. Clearly these projections are tentative,
since we know that there were at least 10 attacks in October but
we project none. One point of comparison is the work of Moore
et al. where they observe backscatter from 12,805 attacks in 3
weeks [24]. Direct comparison between their observation and ours
is extremely difficult since the methodology and classes of counted
attacks are very different, but it is somewhat reassuring that both
their observation and our estimate are roughly the same order of
magnitude.

Although the observations are very rough and require many as-
sumptions, we believe this methodology will be useful at approx-
imating attack prevalence if we can increase the size and duration
of the monitored region. We are working on doing both.

9. CONCLUSION
This paper presented a framework to classify DoS attacks into

single- and multi-source attacks. In addition to using packet head-
ers to classify the attacks, we develop two new approaches: initial
ramp-up transients and spectral analysis. These approaches depend
only on information in the attack packet stream, and we believe the
spectral characteristics of attacks cannot be altered without reduc-
ing attack rates.

We evaluated our framework on 80 attacks captured from two
peering links at a moderate-size, regional ISP. We validated our
framework with attacks captured at a second monitoring site, and
through experiments with synthetic attacks on a wide-area network,
and real attack tools on an isolated testbed. We used experiments
and simulations to explain the underlying reasons for the difference
in attack characteristics.
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DoS attacks are constantly evolving, and currently there is a
dearth of detailed information regarding attack dynamics. We sug-
gested several applications of the techniques developed in this pa-
per: to develop an automatic detection and response system based
on number of attackers, to enable fine-grained analysis of attack
patterns and topologies, and to infer global DoS activity.
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