
The Windows NT operating system family's
architecture consists of two layers (user mode
and kernel mode), with many different modules
within both of these layers.

Architecture of Windows NT
The architecture of Windows NT, a line of operating
systems produced and sold by Microsoft, is a layered
design that consists of two main components, user mode
and kernel mode. It is a preemptive, reentrant multitasking
operating system, which has been designed to work with
uniprocessor and symmetrical multiprocessor (SMP)-
based computers. To process input/output (I/O) requests,
they use packet-driven I/O, which utilizes I/O request
packets (IRPs) and asynchronous I/O. Starting with
Windows XP, Microsoft began making 64-bit versions of
Windows available; before this, there were only 32-bit
versions of these operating systems.

Programs and subsystems in user mode are limited in
terms of what system resources they have access to, while
the kernel mode has unrestricted access to the system
memory and external devices. Kernel mode in Windows
NT has full access to the hardware and system resources
of the computer. The Windows NT kernel is a hybrid
kernel; the architecture comprises a simple kernel,
hardware abstraction layer (HAL), drivers, and a range of
services (collectively named Executive), which all exist in
kernel mode.[1]

User mode in Windows NT is made of subsystems
capable of passing I/O requests to the appropriate kernel mode device drivers by using the I/O manager.
The user mode layer of Windows NT is made up of the "Environment subsystems", which run applications
written for many different types of operating systems, and the "Integral subsystem", which operates system-
specific functions on behalf of environment subsystems. The kernel mode stops user mode services and
applications from accessing critical areas of the operating system that they should not have access to.

The Executive interfaces, with all the user mode subsystems, deal with I/O, object management, security
and process management. The kernel sits between the hardware abstraction layer and the Executive to
provide multiprocessor synchronization, thread and interrupt scheduling and dispatching, and trap handling
and exception dispatching. The kernel is also responsible for initializing device drivers at bootup. Kernel
mode drivers exist in three levels: highest level drivers, intermediate drivers and low-level drivers. Windows
Driver Model (WDM) exists in the intermediate layer and was mainly designed to be binary and source
compatible between Windows 98 and Windows 2000. The lowest level drivers are either legacy Windows
NT device drivers that control a device directly or can be a plug and play (PnP) hardware bus.

User mode
Win32 environment subsystem
OS/2 environment subsystem

Contents

https://en.wikipedia.org/wiki/File:Windows_2000_architecture.svg
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/Protection_ring#SUPERVISOR-MODE
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/User_space
https://en.wikipedia.org/wiki/Protection_ring#SUPERVISOR-MODE
https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Uniprocessor_system
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/I/O_request_packet
https://en.wikipedia.org/wiki/Asynchronous_I/O
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/Hybrid_kernel
https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Windows_Driver_Model
https://en.wikipedia.org/wiki/Windows_98
https://en.wikipedia.org/wiki/Windows_2000
https://en.wikipedia.org/wiki/Plug_and_play


COMMAND.COM running in the
NTVDM

POSIX environment subsystem
Security subsystem

Kernel mode
Executive
Kernel

Hybrid kernel design
Kernel-mode drivers
Hardware abstraction layer

See also
Further reading
Notes and references
External links

User mode is made up of various system-defined processes and DLLs.

The interface between user mode applications and operating system kernel functions is called an
"environment subsystem." Windows NT can have more than one of these, each implementing a different
API set. This mechanism was designed to support applications written for many different types of operating
systems. None of the environment subsystems can directly access hardware; access to hardware functions is
done by calling into kernel mode routines.

There are three main environment subsystems: the Win32 subsystem, an OS/2 subsystem and a POSIX
subsystem.[2]

The Win32 environment subsystem can run 32-bit Windows
applications. It contains the console as well as text window
support, shutdown and hard-error handling for all other
environment subsystems. It also supports Virtual DOS Machines
(VDMs), which allow MS-DOS and 16-bit Windows (Win16)
applications to run on Windows NT. There is a specific MS-DOS
VDM that runs in its own address space and which emulates an
Intel 80486 running MS-DOS 5.0. Win16 programs, however, run
in a Win16 VDM. Each program, by default, runs in the same
process, thus using the same address space, and the Win16 VDM
gives each program its own thread on which to run. However, Windows NT does allow users to run a
Win16 program in a separate Win16 VDM, which allows the program to be preemptively multitasked, as
Windows NT will pre-empt the whole VDM process, which only contains one running application. The
Win32 environment subsystem process (csrss.exe) also includes the window management functionality,
sometimes called a "window manager". It handles input events (such as from the keyboard and mouse),
then passes messages to the applications that need to receive this input. Each application is responsible for
drawing or refreshing its own windows and menus, in response to these messages.

User mode

Win32 environment subsystem

OS/2 environment subsystem

https://en.wikipedia.org/wiki/File:Command.com_Win8.png
https://en.wikipedia.org/wiki/COMMAND.COM
https://en.wikipedia.org/wiki/NTVDM
https://en.wikipedia.org/wiki/Windows_API#Win32
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Virtual_DOS_machine
https://en.wikipedia.org/wiki/MS-DOS
https://en.wikipedia.org/wiki/16-bit
https://en.wikipedia.org/wiki/Windows_API#Win16
https://en.wikipedia.org/wiki/Intel_80486
https://en.wikipedia.org/wiki/Client/Server_Runtime_Subsystem
https://en.wikipedia.org/wiki/Window_manager


The OS/2 environment subsystem supports 16-bit character-based OS/2 applications and emulates OS/2
1.x, but not 32-bit or graphical OS/2 applications as used with OS/2 2.x or later, on x86 machines only.[3]

To run graphical OS/2 1.x programs, the Windows NT Add-On Subsystem for Presentation Manager must
be installed.[3] The last version of Windows NT to have an OS/2 subsystem was Windows 2000; it was
removed as of Windows XP.[4][5]

The POSIX environment subsystem supports applications that are strictly written to either the POSIX.1
standard or the related ISO/IEC standards. This subsystem has been replaced by Interix, which is a part of
Windows Services for UNIX.[4] This was in turn replaced by the Windows Subsystem for Linux.

The security subsystem deals with security tokens, grants or denies access to user accounts based on
resource permissions, handles login requests and initiates login authentication, and determines which
system resources need to be audited by Windows NT. It also looks after Active Directory. The workstation
service implements the network redirector, which is the client side of Windows file and print sharing; it
implements local requests to remote files and printers by "redirecting" them to the appropriate servers on the
network.[6] Conversely, the server service allows other computers on the network to access file shares and
shared printers offered by the local system.[7]

Windows NT kernel mode has full access to the hardware and system resources of the computer and runs
code in a protected memory area.[8] It controls access to scheduling, thread prioritization, memory
management and the interaction with hardware. The kernel mode stops user mode services and applications
from accessing critical areas of the operating system that they should not have access to; user mode
processes must ask the kernel mode to perform such operations on their behalf.

While the x86 architecture supports four different privilege levels (numbered 0 to 3), only the two extreme
privilege levels are used. Usermode programs are run with CPL 3, and the kernel runs with CPL 0. These
two levels are often referred to as "ring 3" and "ring 0", respectively. Such a design decision had been done
to achieve code portability to RISC platforms that only support two privilege levels,[9] though this breaks
compatibility with OS/2 applications that contain I/O privilege segments that attempt to directly access
hardware.[10]

Code running in kernel mode includes: the executive, which is itself made up of many modules that do
specific tasks; the kernel, which provides low-level services used by the Executive; the Hardware
Abstraction Layer (HAL); and kernel drivers.[8][11]

The Windows Executive services make up the low-level kernel-mode portion, and are contained in the file
NTOSKRNL.EXE.[8] It deals with I/O, object management, security and process management. These are
divided into several subsystems, among which are Cache Manager, Configuration Manager, I/O Manager,
Local Procedure Call (LPC), Memory Manager, Object Manager, Process Structure and Security

POSIX environment subsystem

Security subsystem

Kernel mode

Executive

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/Interix
https://en.wikipedia.org/wiki/Windows_Services_for_UNIX
https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/Network_redirector
https://en.wikipedia.org/wiki/Protection_ring#SUPERVISOR-MODE
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Reduced_instruction_set_computing
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/Ntoskrnl.exe
https://en.wikipedia.org/wiki/Local_Procedure_Call
https://en.wikipedia.org/wiki/Object_Manager_(Windows)


Each object in Windows NT exists in
a global namespace. This is a
screenshot from Sysinternals WinObj
(https://docs.microsoft.com/en-us/sy
sinternals/downloads/winobj).

Reference Monitor (SRM). Grouped together, the components can be called Executive services (internal
name Ex). System Services (internal name Nt), i.e., system calls, are implemented at this level, too, except
very few that call directly into the kernel layer for better performance.

The term "service" in this context generally refers to a callable routine, or set of callable routines. This is
distinct from the concept of a "service process", which is a user mode component somewhat analogous to a
daemon in Unix-like operating systems.

Object Manager
The Object Manager (internal name Ob) is an
executive subsystem that all other executive
subsystems, especially system calls, must pass
through to gain access to Windows NT resources—
essentially making it a resource management
infrastructure service.[12] The object manager is used
to reduce the duplication of object resource
management functionality in other executive
subsystems, which could potentially lead to bugs and
make development of Windows NT harder.[13] To the
object manager, each resource is an object, whether
that resource is a physical resource (such as a file
system or peripheral) or a logical resource (such as a
file). Each object has a structure or object type that the
object manager must know about.
Object creation is a process in two phases, creation and insertion. Creation causes the
allocation of an empty object and the reservation of any resources required by the object
manager, such as an (optional) name in the namespace. If creation was successful, the
subsystem responsible for the creation fills in the empty object.[14] Finally, if the subsystem
deems the initialization successful, it instructs the object manager to insert the object,
which makes it accessible through its (optional) name or a cookie called a handle.[15]

From then on, the lifetime of the object is handled by the object manager, and it's up to the
subsystem to keep the object in a working condition until being signaled by the object
manager to dispose of it.[16]

Handles are identifiers that represent a reference to a kernel resource through an opaque
value.[17] Similarly, opening an object through its name is subject to security checks, but
acting through an existing, open handle is only limited to the level of access requested
when the object was opened or created.
Object types define the object procedures and any data specific to the object. In this way,
the object manager allows Windows NT to be an object-oriented operating system, as
object types can be thought of as polymorphic classes that define objects. Most
subsystems, though, with a notable exception in the I/O Manager, rely on the default
implementation for all object type procedures.
Each instance of an object that is created stores its name, parameters that are passed to
the object creation function, security attributes and a pointer to its object type. The object
also contains an object close procedure and a reference count to tell the object manager
how many other objects in the system reference that object and thereby determines
whether the object can be destroyed when a close request is sent to it.[18] Every named
object exists in a hierarchical object namespace.

Cache Controller
Closely coordinates with the Memory Manager, I/O Manager and I/O drivers to provide a
common cache for regular file I/O. The Windows Cache Manager operates on file blocks
(rather than device blocks), for consistent operation between local and remote files, and
ensures a certain degree of coherency with memory-mapped views of files, since cache

https://en.wikipedia.org/wiki/File:Object_Manager_(Windows)_screenshot.png
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Screenshot
https://en.wikipedia.org/wiki/Sysinternals
https://docs.microsoft.com/en-us/sysinternals/downloads/winobj
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Daemon_(computing)
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Object_Manager_(Windows)
https://en.wikipedia.org/wiki/Magic_cookie
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Memory-mapped_file


blocks are a special case of memory-mapped views and cache misses a special case of
page faults.

Configuration Manager
Implements the system calls needed by Windows Registry.

I/O Manager
Allows devices to communicate with user-mode subsystems. It translates user-mode read
and write commands into read or write IRPs which it passes to device drivers. It accepts
file system I/O requests and translates them into device specific calls, and can incorporate
low-level device drivers that directly manipulate hardware to either read input or write
output. It also includes a cache manager to improve disk performance by caching read
requests and write to the disk in the background.

Local Procedure Call (LPC)
Provides inter-process communication ports with connection semantics. LPC ports are
used by user-mode subsystems to communicate with their clients, by Executive
subsystems to communicate with user-mode subsystems, and as the basis for the local
transport for Microsoft RPC.

Memory Manager
Manages virtual memory, controlling memory protection and the paging of memory in and
out of physical memory to secondary storage, and implements a general-purpose allocator
of physical memory. It also implements a parser of PE executables that lets an executable
be mapped or unmapped in a single, atomic step.
Starting from Windows NT Server 4.0, Terminal Server Edition, the memory manager
implements a so-called session space, a range of kernel-mode memory that is subject to
context switching just like user-mode memory. This lets multiple instances of the kernel-
mode Win32 subsystem and GDI drivers run side-by-side, despite shortcomings in their
initial design. Each session space is shared by several processes, collectively referred to
as a "session".
To ensure a degree of isolation between sessions without introducing a new object type,
the association between processes and sessions is handled by the Security Reference
Monitor, as an attribute of a security subject (token), and it can only be changed while
holding special privileges.
The relatively unsophisticated and ad hoc nature of sessions is due to the fact they weren't
part of the initial design, and had to be developed, with minimal disruption to the main line,
by a third party (Citrix Systems) as a prerequisite for their terminal server product for
Windows NT, called WinFrame. Starting with Windows Vista, though, sessions finally
became a proper aspect of the Windows architecture. No longer a memory manager
construct that creeps into user mode indirectly through Win32, they were expanded into a
pervasive abstraction affecting most Executive subsystems. As a matter of fact, regular use
of Windows Vista always results in a multi-session environment.[19]

Process Structure
Handles process and thread creation and termination, and it implements the concept of
Job, a group of processes that can be terminated as a whole, or be placed under shared
restrictions (such a total maximum of allocated memory, or CPU time). Job objects were
introduced in Windows 2000.

PnP Manager
Handles plug and play and supports device detection and installation at boot time. It also
has the responsibility to stop and start devices on demand—this can happen when a bus
(such as USB or IEEE 1394 FireWire) gains a new device and needs to have a device
driver loaded to support it. Its bulk is actually implemented in user mode, in the Plug and
Play Service, which handles the often complex tasks of installing the appropriate drivers,
notifying services and applications of the arrival of new devices, and displaying GUI to the
user.

Power Manager
Deals with power events (power-off, stand-by, hibernate, etc.) and notifies affected drivers
with special IRPs (Power IRPs).

https://en.wikipedia.org/wiki/Windows_Registry
https://en.wikipedia.org/wiki/I/O_request_packet
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Microsoft_RPC
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Citrix_Systems
https://en.wikipedia.org/wiki/Terminal_server
https://en.wikipedia.org/wiki/Citrix_WinFrame
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Windows_2000
https://en.wikipedia.org/wiki/Plug_and_play
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/IEEE_1394


Security Reference Monitor (SRM)
The primary authority for enforcing the security rules of the security integral subsystem.[20]

It determines whether an object or resource can be accessed, via the use of access control
lists (ACLs), which are themselves made up of access control entries (ACEs). ACEs
contain a Security Identifier (SID) and a list of operations that the ACE gives a select group
of trustees—a user account, group account, or login session[21]—permission (allow, deny,
or audit) to that resource.[22][23]

GDI
The Graphics Device Interface is responsible for tasks such as drawing lines and curves,
rendering fonts and handling palettes. The Windows NT 3.x series of releases had placed
the GDI component in the user-mode Client/Server Runtime Subsystem, but this was
moved into kernel mode with Windows NT 4.0 to improve graphics performance.[24]

The kernel sits between the HAL and the Executive and provides multiprocessor synchronization, thread
and interrupt scheduling and dispatching, and trap handling and exception dispatching; it is also responsible
for initializing device drivers at bootup that are necessary to get the operating system up and running. That
is, the kernel performs almost all the tasks of a traditional microkernel; the strict distinction between
Executive and Kernel is the most prominent remnant of the original microkernel design, and historical
design documentation consistently refers to the kernel component as "the microkernel".

The kernel often interfaces with the process manager.[25] The level of abstraction is such that the kernel
never calls into the process manager, only the other way around (save for a handful of corner cases, still
never to the point of a functional dependence).

The Windows NT design includes many of the same objectives as Mach, the archetypal microkernel
system, one of the most important being its structure as a collection of modules that communicate via well-
known interfaces, with a small microkernel limited to core functions such as first-level interrupt handling,
thread scheduling and synchronization primitives. This allows for the possibility of using either direct
procedure calls or interprocess communication (IPC) to communicate between modules, and hence for the
potential location of modules in different address spaces (for example in either kernel space or server
processes). Other design goals shared with Mach included support for diverse architectures, a kernel with
abstractions general enough to allow multiple operating system personalities to be implemented on top of it
and an object-oriented organisation.[26][27]

The primary operating system personality on Windows is the Windows API, which is always present. The
emulation subsystem which implements the Windows personality is called the Client/Server Runtime
Subsystem (csrss.exe). On versions of NT prior to 4.0, this subsystem process also contained the window
manager, graphics device interface and graphics device drivers. For performance reasons, however, in
version 4.0 and later, these modules (which are often implemented in user mode even on monolithic
systems, especially those designed without internal graphics support) run as a kernel-mode subsystem.[26]

Applications that run on NT are written to one of the OS personalities (usually the Windows API), and not
to the native NT API for which documentation is not publicly available (with the exception of routines used
in device driver development). An OS personality is implemented via a set of user-mode DLLs (see
Dynamic-link library), which are mapped into application processes' address spaces as required, together
with an emulation subsystem server process (as described previously). Applications access system services
by calling into the OS personality DLLs mapped into their address spaces, which in turn call into the NT

Kernel

Hybrid kernel design

https://en.wikipedia.org/wiki/Access_control_list
https://en.wikipedia.org/wiki/Security_Identifier
https://en.wikipedia.org/wiki/Graphics_Device_Interface
https://en.wikipedia.org/wiki/Windows_NT_3.x
https://en.wikipedia.org/wiki/Client/Server_Runtime_Subsystem
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/Mach_kernel
https://en.wikipedia.org/wiki/Interprocess_communication
https://en.wikipedia.org/wiki/Windows_API
https://en.wikipedia.org/wiki/Client/Server_Runtime_Subsystem
https://en.wikipedia.org/wiki/Dynamic-link_library


run-time library (ntdll.dll), also mapped into the process address space. The NT run-time library services
these requests by trapping into kernel mode to either call kernel-mode Executive routines or make Local
Procedure Calls (LPCs) to the appropriate user-mode subsystem server processes, which in turn use the NT
API to communicate with application processes, the kernel-mode subsystems and each other.[28]

Windows NT uses kernel-mode device drivers to enable it to interact with hardware devices. Each of the
drivers has well defined system routines and internal routines that it exports to the rest of the operating
system. All devices are seen by user mode code as a file object in the I/O manager, though to the I/O
manager itself the devices are seen as device objects, which it defines as either file, device or driver objects.
Kernel mode drivers exist in three levels: highest level drivers, intermediate drivers and low level drivers.
The highest level drivers, such as file system drivers for FAT and NTFS, rely on intermediate drivers.
Intermediate drivers consist of function drivers—or main driver for a device—that are optionally
sandwiched between lower and higher level filter drivers. The function driver then relies on a bus driver—
or a driver that services a bus controller, adapter, or bridge—which can have an optional bus filter driver
that sits between itself and the function driver. Intermediate drivers rely on the lowest level drivers to
function. The Windows Driver Model (WDM) exists in the intermediate layer. The lowest level drivers are
either legacy Windows NT device drivers that control a device directly or can be a PnP hardware bus.
These lower level drivers directly control hardware and do not rely on any other drivers.

The Windows NT hardware abstraction layer, or HAL, is a layer between the physical hardware of the
computer and the rest of the operating system. It was designed to hide differences in hardware and provide
a consistent platform on which the kernel is run. The HAL includes hardware-specific code that controls
I/O interfaces, interrupt controllers and multiple processors.

However, despite its purpose and designated place within the architecture, the HAL isn't a layer that sits
entirely below the kernel, the way the kernel sits below the Executive: All known HAL implementations
depend in some measure on the kernel, or even the Executive. In practice, this means that kernel and HAL
variants come in matching sets that are specifically constructed to work together.

In particular hardware abstraction does not involve abstracting the instruction set, which generally falls
under the wider concept of portability. Abstracting the instruction set, when necessary (such as for handling
the several revisions to the x86 instruction set, or emulating a missing math coprocessor), is performed by
the kernel, or via hardware virtualization.

Microsoft Windows library files
MinWin
Unix architecture
Comparison of operating system kernels
User-Mode Driver Framework
Kernel-Mode Driver Framework
Hybrid Kernel

Kernel-mode drivers

Hardware abstraction layer

See also

Further reading

https://en.wikipedia.org/wiki/Local_Procedure_Call
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Windows_Driver_Model
https://en.wikipedia.org/wiki/Hardware_abstraction
https://en.wikipedia.org/wiki/Interrupt_controller
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Hardware_virtualization
https://en.wikipedia.org/wiki/Microsoft_Windows_library_files
https://en.wikipedia.org/wiki/MinWin
https://en.wikipedia.org/wiki/Unix_architecture
https://en.wikipedia.org/wiki/Comparison_of_operating_system_kernels
https://en.wikipedia.org/wiki/User-Mode_Driver_Framework
https://en.wikipedia.org/wiki/Kernel-Mode_Driver_Framework
https://en.wikipedia.org/wiki/Hybrid_Kernel


Martignetti, E.; What Makes It Page?: The Windows 7 (x64) Virtual Memory Manager
(ISBN 978-1479114290)
Russinovich, Mark E.; Solomon, David A.; Ionescu, A.; Windows Internals, Part1: Covering
Windows Server 2008 R2 and Windows 7 (ISBN 978-0735648739)
Russinovich, Mark E.; Solomon, David A.; Ionescu, A.; Windows Internals, Part2: Covering
Windows Server 2008 R2 and Windows 7 (ISBN 978-0735665873)

Notes

1. Finnel 2000, Chapter 1: Introduction to Microsoft Windows 2000, pp. 7–18.
2. "Appendix D - Running Nonnative Applications in Windows 2000 Professional" (https://tech

net.microsoft.com/en-us/library/cc939090.aspx). Microsoft Windows 2000 Professional
Resource Kit. Microsoft.

3. "Windows NT Workstation Resource Kit Chapter 28 - OS/2 Compatibility" (http://www.micros
oft.com/resources/documentation/windowsnt/4/workstation/reskit/en-us/os2comp.mspx?mfr=
true). Microsoft.

4. "POSIX and OS/2 are not supported in Windows XP or in Windows Server 2003" (http://supp
ort.microsoft.com/kb/308259). Microsoft.

5. Reiter, Brian (August 24, 2010). "The Sad History of the Microsoft POSIX Subsystem" (http://
brianreiter.org/2010/08/24/the-sad-history-of-the-microsoft-posix-subsystem/).

6. "Basic Architecture of a Network Redirector" (https://msdn.microsoft.com/en-us/windows/har
dware/drivers/ifs/basic-architecture-of-a-network-redirector). Microsoft. Retrieved
2016-11-18.

7. "Windows NT Networking Architecture" (https://www.microsoft.com/resources/documentatio
n/windowsnt/4/server/reskit/en-us/net/chptr1.mspx?mfr=true). Microsoft. Retrieved
2016-11-18.

8. Roman, Steven (1999). "Windows Architecture" (https://technet.microsoft.com/en-us/library/c
c768129.aspx). Win32 API Programming with Visual Basic. O'Reilly and Associates, Inc.
ISBN 1-56592-631-5.

9. "MS Windows NT Kernel-mode User and GDI White Paper" (http://www.microsoft.com/techn
et/archive/ntwrkstn/evaluate/featfunc/kernelwp.mspx). Windows NT Workstation
documentation. Microsoft TechNet. Archived (https://web.archive.org/web/20071215042008/
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/kernelwp.mspx) from
the original on 15 December 2007. Retrieved 2007-12-09.

10. "Chapter 28 - OS/2 Compatibility" (http://www.microsoft.com/resources/documentation/windo
wsnt/4/workstation/reskit/en-us/os2comp.mspx?mfr=true). Windows NT Workstation
Resource Kit. Microsoft. Archived (https://web.archive.org/web/20090210125723/http://www.
microsoft.com/resources/documentation/windowsnt/4/workstation/reskit/en-us/os2comp.msp
x?mfr=true) from the original on 10 February 2009. Retrieved 2009-01-18.

11. Mark E. Russinovich; David A. Solomon; Alex Ionescu. Windows Internals, Fifth Edition.
Microsoft Press. pp. 228–255.

12. Russinovich & Solomon 2005, pp. 124-125.
13. Russinovich 1997, Introduction.
14. Russinovich 1997, "Object Types".
15. Russinovich & Solomon 2005, pp. 135-140.
16. Russinovich & Solomon 2005, pp. 141-143.
17. "Handles and Objects" (http://msdn.microsoft.com/en-us/library/ms724457(VS.85).aspx).

MSDN - Win32 and COM Development. Microsoft. Retrieved 2009-01-17.

Notes and references

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1479114290
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0735648739
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0735665873
https://technet.microsoft.com/en-us/library/cc939090.aspx
https://en.wikipedia.org/wiki/Microsoft
http://www.microsoft.com/resources/documentation/windowsnt/4/workstation/reskit/en-us/os2comp.mspx?mfr=true
http://support.microsoft.com/kb/308259
http://brianreiter.org/2010/08/24/the-sad-history-of-the-microsoft-posix-subsystem/
https://msdn.microsoft.com/en-us/windows/hardware/drivers/ifs/basic-architecture-of-a-network-redirector
https://www.microsoft.com/resources/documentation/windowsnt/4/server/reskit/en-us/net/chptr1.mspx?mfr=true
https://technet.microsoft.com/en-us/library/cc768129.aspx
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-56592-631-5
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/kernelwp.mspx
https://en.wikipedia.org/wiki/Microsoft_TechNet
https://web.archive.org/web/20071215042008/http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/kernelwp.mspx
http://www.microsoft.com/resources/documentation/windowsnt/4/workstation/reskit/en-us/os2comp.mspx?mfr=true
https://en.wikipedia.org/wiki/Microsoft
https://web.archive.org/web/20090210125723/http://www.microsoft.com/resources/documentation/windowsnt/4/workstation/reskit/en-us/os2comp.mspx?mfr=true
http://msdn.microsoft.com/en-us/library/ms724457(VS.85).aspx


References

Finnel, Lynn (2000). MCSE Exam 70-215, Microsoft Windows 2000 Server. Microsoft Press.
ISBN 1-57231-903-8.
Russinovich, Mark (October 1997). "Inside NT's Object Manager" (http://www.windowsitpro.c
om/Articles/Index.cfm?ArticleID=299). Windows IT Pro.
"Active Directory Data Storage" (http://www.microsoft.com/resources/documentation/Window
s/2000/server/reskit/en-us/Default.asp?url=/resources/documentation/Windows/2000/server/
reskit/en-us/distrib/dsbg_dat_brlr.asp). Microsoft. Retrieved 2005-05-09.
Solomon, David; Russinovich, Mark E. (2000). Inside Microsoft Windows 2000 (https://web.a
rchive.org/web/20050323090649/http://mipagina.cantv.net/jjaguilerap/w2k_arq.html)
(Third ed.). Microsoft Press. ISBN 0-7356-1021-5. Archived from the original (http://mipagina.
cantv.net/jjaguilerap/w2k_arq.html) on 2005-03-23.
Russinovich, Mark; Solomon, David (2005). Microsoft Windows Internals (4th ed.). Microsoft
Press. ISBN 0-7356-1917-4.
Schreiber, Sven B. (2001). Undocumented Windows 2000 Secrets. Addison-Wesley
Longman. ISBN 978-0201721874.
Siyan, Kanajit S. (2000). Windows 2000 Professional Reference. New Riders. ISBN 0-7357-
0952-1.

18. Russinovich 1997, "Objects".
19. "Impact of Session 0 Isolation on Services and Drivers in Windows Vista" (http://www.micros

oft.com/whdc/system/vista/services.mspx). Microsoft.
20. "Active Directory Data Storage" (http://www.microsoft.com/resources/documentation/Window

s/2000/server/reskit/en-us/Default.asp?url=/resources/documentation/Windows/2000/server/
reskit/en-us/distrib/dsbg_dat_brlr.asp). Microsoft.

21. "Trustee definition" (http://msdn.microsoft.com/library/en-us/secgloss/security/t_gly.asp?FRA
ME=true#_security_trustee_gly). MSDN.

22. Siyan 2000.
23. "1.2 Glossary" (https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/9b

af9127-2ffb-4dda-aa45-0efcf409cee5). [MS-AZOD]: Authorization Protocols Overview.
access control entry (ACE).

24. "The Windows NT 4.0 Kernel mode change" (https://technet.microsoft.com/en-us/library/cc7
50820.aspx#XSLTsection124121120120). MS Windows NT Kernel-mode User and GDI
White Paper. Microsoft. Archived (https://web.archive.org/web/20090113021015/http://techn
et.microsoft.com/en-us/library/cc750820.aspx) from the original on 13 January 2009.
Retrieved 2009-01-19.

25. Solomon & Russinovich 2000, pp. 543–551.
26. "MS Windows NT Kernel-mode User and GDI White Paper" (http://www.microsoft.com/techn

et/archive/ntwrkstn/evaluate/featfunc/kernelwp.mspx?mfr=true). Microsoft Corporation. 2007.
Retrieved 2007-03-01.

27. Silberschatz, Abraham; Galvin, Peter Baer; Gagne, Greg (2005). Operating System
Concepts; 7th Edition (http://higheredbcs.wiley.com/legacy/college/silberschatz/047169466
5/appendices/appb.pdf) (PDF). Hoboken, New Jersey: John Wiley & Sons Inc. ISBN 978-0-
471-69466-3.

28. Probert, Dave (2005). "Overview of Windows Architecture" (http://research.microsoft.com/ur/
asia/curriculum/download/BeijingPresentation.ppt). Using Projects Based on Internal NT
APIs to Teach OS Principles. Microsoft Research/Asia - Beijing. Retrieved 2007-03-01.

External links

https://en.wikipedia.org/wiki/Microsoft_Press
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-57231-903-8
https://en.wikipedia.org/wiki/Mark_Russinovich
http://www.windowsitpro.com/Articles/Index.cfm?ArticleID=299
http://www.microsoft.com/resources/documentation/Windows/2000/server/reskit/en-us/Default.asp?url=/resources/documentation/Windows/2000/server/reskit/en-us/distrib/dsbg_dat_brlr.asp
https://en.wikipedia.org/w/index.php?title=David_A._Solomon&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mark_Russinovich
https://web.archive.org/web/20050323090649/http://mipagina.cantv.net/jjaguilerap/w2k_arq.html
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-7356-1021-5
http://mipagina.cantv.net/jjaguilerap/w2k_arq.html
https://en.wikipedia.org/wiki/Mark_Russinovich
https://en.wikipedia.org/w/index.php?title=David_A._Solomon&action=edit&redlink=1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-7356-1917-4
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0201721874
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-7357-0952-1
http://www.microsoft.com/whdc/system/vista/services.mspx
http://www.microsoft.com/resources/documentation/Windows/2000/server/reskit/en-us/Default.asp?url=/resources/documentation/Windows/2000/server/reskit/en-us/distrib/dsbg_dat_brlr.asp
http://msdn.microsoft.com/library/en-us/secgloss/security/t_gly.asp?FRAME=true#_security_trustee_gly
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-azod/9baf9127-2ffb-4dda-aa45-0efcf409cee5
https://technet.microsoft.com/en-us/library/cc750820.aspx#XSLTsection124121120120
https://web.archive.org/web/20090113021015/http://technet.microsoft.com/en-us/library/cc750820.aspx
http://www.microsoft.com/technet/archive/ntwrkstn/evaluate/featfunc/kernelwp.mspx?mfr=true
http://higheredbcs.wiley.com/legacy/college/silberschatz/0471694665/appendices/appb.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-69466-3
http://research.microsoft.com/ur/asia/curriculum/download/BeijingPresentation.ppt


"Microsoft's official Windows 2000 site" (https://web.archive.org/web/20000229142634/http://
www.microsoft.com/windows2000/default.asp). Archived from the original (http://www.micros
oft.com/windows2000/) on February 29, 2000.
"Microsoft Windows 2000 Plug and Play" (https://web.archive.org/web/20040808162827/htt
p://www.microsoft.com/technet/prodtechnol/windows2000pro/evaluate/featfunc/plugplay.msp
x). Archived from the original (http://www.microsoft.com/technet/prodtechnol/windows2000pr
o/evaluate/featfunc/plugplay.mspx) on August 8, 2004.
Memory management in the Windows XP kernel (http://www.reactos.org/wiki/Techwiki:Mem
ory_management_in_the_Windows_XP_kernel)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Architecture_of_Windows_NT&oldid=1031982961"

This page was last edited on 4 July 2021, at 21:23 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://web.archive.org/web/20000229142634/http://www.microsoft.com/windows2000/default.asp
http://www.microsoft.com/windows2000/
https://web.archive.org/web/20040808162827/http://www.microsoft.com/technet/prodtechnol/windows2000pro/evaluate/featfunc/plugplay.mspx
http://www.microsoft.com/technet/prodtechnol/windows2000pro/evaluate/featfunc/plugplay.mspx
http://www.reactos.org/wiki/Techwiki:Memory_management_in_the_Windows_XP_kernel
https://en.wikipedia.org/w/index.php?title=Architecture_of_Windows_NT&oldid=1031982961
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

