
The practical experience of implementing a GSM

BTS through Open Software/Hardware
(Invited Paper)

E. Natalizio, V. Loscrı́, G. Aloi

DEIS

University of Calabria

Italy

Email: enatalizio,vloscri,aloi @deis.unical.it

N. Paolı́, N. Barbaro

Orangee srl

Via Pedro Alvares Cabrai

87036 Rende - Italy

Email: n.paoli,n.barbaro @orangee.com

Abstract—The objective of this paper is to show the imple-
mentation experience of a GSM Base Transceiver System (BTS)
by using Universal Software Radio Peripheral, which is a multi-
purpose motherboard for Software Defined Radio (SDR), and
a Personal Computer (PC). The OpenBTS project provides a
software suite, created for the GNU Radio environment, and able
to mimic the behavior of a GSM BTS. In order to allow GSM
users to make calls and send text messages, it is necessary to
operate some hardware modifications on the SDR motherboard,
to set up a Session Initiation Protocol (SIP) server, to configure
the server for providing connectivity between the mobile devices
and the VoIP backhaul. In this paper, we will illustrate the needed
software and hardware, and the steps necessary to create a small,
cheap and autonomous GSM BTS.

I. INTRODUCTION

1 In recent years, the research and industry worlds have

focused a lot of attention on Cognitive Networks (CN). Cog-

nitive Networks are a very interesting concept for both the

theoretical and practical aspects. Mainly due to the “cognitive”

capabilities, from the theoretical point of view, CN represent

the connecting link between telecommunications systems and

artificial intelligence. At the same time, a telecommunication

device able to sense the radio environment, discover under

utilized frequency range and allocate its transmission in the

most convenient frequency spot represents a great commercial

innovation for all telecommunications providers. Historically,

in the telecommunications field, CN are the evolution and

the extension of Software Defined Radio (SDR). The main

objective of SDR is to convert all of the analog blocks of

a telecommunications system into equivalent digital blocks,

in order to push the analog components of the architecture

towards its extremities (the antenna) and make the whole

system programmable. The advantages of such a system

are well-known: low-cost implementation, easy to use, cus-

tomization, interoperability, enhanced security, etc. Especially

the reduced costs related to the hardware implementation

of SDR systems represent an economically viable solution

for telecommunications providers. The possibility to purchase

1This work has been carried out under the framework of OPEN-
KNOWTECH, National Italian Project #DM21301, financed by the Italian
Ministry of University and Research

multi-purpose hardware able to be programmed in order to

change its behavior also created a lot of interest from research

laboratories all around the world. In fact, hardware devices

such as the Ettus Research USRP [1] used in combination with

GNU Radio software [2] allow researchers to design, develop

and test their ideas. In [3] it is possible to find several projects

developed with the cited hardware/software, from Dynamic

Spectrum Schemes to the whole IEEE 802.15.4 standard.

Among these projects, the OpenBTS [4] one deserves a special

mention, because it implements the whole GSM stack through

GNU Radio (more details about OpenBTS will follow in

the rest of the paper). The choice to implement a second

generation BTS is motivated by several reasons: GSM is

currently the most used cellular system in the world, its

technology is consolidated and stable, the specifications of the

standard are publicly available, its behavior is easier to emulate

in respect of CDMA or WCDMA systems. In respect of the

GSM architecture, reported in Fig. 1, the practical experience

illustrated in this work focuses solely on the development of

GSM BTS, however through the usage of some additional

software it will show how it is possible to connect GSM

mobiles and VoIP terminals.

The paper is organized as follows. Section II presents

some literature works in the field of Cognitive Networks and

Cognitive Radio Networks. Section III and IV introduces the

Fig. 1. Architecture of the GSM.

hardware and software used for the GSM BTS implementation,

respectively. Section V highlights some of the issues to be

solved and some initial results of this experience, and finally

Section VI draws the conclusion of the work.

II. RELATED WORKS

The concept of Cognitive Networks has existed in the

research world for a number of years already. The first formal

research on CN is in [5]. More recent research tends to

separate the CN concept from the Cognitive Radio Networks

(CRN). The pioneeristic work of Mitola [6] can be classified

in the latter branch. In fact in [7], the author explains how

CRs are able to interact amongst themselves in the general

context of CN. The same approach is also used by Haykin [8]

and Neel [9]: the former analyzes multi-user CR networks, the

latter models the network as a multi-player game to determine

the convergence criteria. The research on the CRNs is focused

mainly on the PHY and MAC layer issues, usually by consid-

ering some end-to-end objective. In a CRN, still the radios take

individual decisions, even though they interact in a cooperative

fashion. Currently the CRNs applications include cooperative

spectrum sensing [10], [11] and emergency networks [12].

The first citation of CN is from Clark [13], he proposes a

network able to self-assemble and re-assemble through high

level instructions, capable of discovering and fixing failures

and malfunctions. In order to do this, it is necessary to have

a Knowledge Plane (KP) that is transversal to the protocol

stack, and that allows the devices to take cogntive decisions.

The KP increases the intelligent capabilities of the terminals.

Saracco in [14] noticed how in recent years the focus of

research and industry moved from the resources control to user

satisfaction, this would eventually lead to move intelligence

from the network core to the terminals. While CRNs are

focused on PHY and MAC layer, CNs work by taking into

account the whole protocol stack. Furthermore, CNs devices

are less autonomous than CRNs devices, in fact they have

to cooperate in order to pursue a common objective, and the

cognitive processes can be parallelized onto several network

devices. Mahonen [15] states that CRs can be considered as a

logical subset of CNs. Recently, several research groups have

proposed architectures for CNs. These architectures can be

classified according to their objective: the first category aims to

solve complex problems by using the cognitive capabilities of

the devices. E2R II [16] is a project that falls into this typology,

it offers connectivity for all the devices through the usage of

a connection-less reconfiguration. The main purpose of this

ambitious project is to offer and preserve connectivity for all

users. The same purpose is pursued by the m@Angel platform

[17], which proposes a CN architecture for managing mobility

in heterogeneous networks. Both these projects focus on

interoperability and maintenance of 4G wireless and cellular

networks. Instead, a second typology of CNs is presented

by the Centre for Telecommunications Value-Chain Research

(CTVR) of Trinity College [18]. In this case, the CN platform

consists of reconfigurable wireless nodes. Nodes in [18] are

able to solve several problems by modifying their protocol

Fig. 2. Ettus Research Motherboard

stack depending on the network operations conditions. The

objectives pursuable from this typology of CNs extend beyond

connectivity and mobility management. This work falls in

the second category, since one of the main objectives of the

OPENKNOWTECH project is to create devices able to use

their cognitive capabilities in order to solve complex problems

and guarantee network reactivity under different environmental

conditions. Specifically, this work, by using the experience

of the OpenBTS project [30], illustrates the steps to follow

in order to transform commercial hardware in a GSM base

station.

III. HARDWARE

As we introduced in I, the choice of implementing a GSM

BTS is motivated by two main reasons: the ease with which

an FDMA/TDMA system can be implemented, and the inex-

pensive cost of such implementation. In fact, in order to have

a fully operating GSM BTS, only a TX/RX daughterboard

(working in the GSM bands) installed in a general purpose

motherboard, connected to a personal computer is needed.

Specifically, we used the following hardware:

1 Motherboard Ettus Research Universal Software Radio

Peripheral (Fig. 2);

2 Daugtherboards RFX900, each of them equipped with

a VERT900 antenna;

several GSM terminals equipped with SIM cards.

The device used for the GSM BTS implementation is a gen-

eral purpose motherboard able to host several daughterboards.

It can be connected to a personal computer through a USB

2.0 interface and is able to use a Radio Frequency bandwidth

of 16 MHs in both directions. The motherboard is equipped

with 1 Field programmable gate array, 4 AD (sampling rate:

64 Msps and resolution: 12 bit) and 4 DA (sampling rate: 128

Msps and resolution: 14 bit) converters, 4 downconverters and

2 upconverters (both with programmable conversion rates).

As we can see in Fig. 2, the motherboard can accomodate

4 daugtherboards: 2 slots are used for the RX daughterboards

and 2 for the TX daughterboards. Both the RX daughterboards

Fig. 3. Software/Hardware Architecture.

and the TX daughterboards need the RF stage, a tuner and

a transmitter, respectively. The 4-slot separation permits two

distinct and independent sections in RF for RX and TX, when

we use non-IQ sampling. On the contrary, when the sampling

is IQ, each section is used for only receiving or transmitting

the two branches of the complex signal. The daughterboards

used for this work are RFX900, which receive/transmit on

the 750-1050 MHz band, with a transmit power of 200 mW

(23dBm) through an ISM VERT900 antenna, 9 inches long

and with a 3dBi gain.

IV. SOFTWARE

In Fig. 3, we show the dependencies among the software

architecture components. The OpenBTS [4] component is the

core of the work, it runs over GNU Radio [2]. Specifically, the

software installed on the personal computer for our practical

implementation is:

GNU Radio v3.3 (released on June 3rd, 2010)

OpenBTS v2.6Mamou (released on August 1st, 2010)

Asterisk v1.6.2.0

Even if this implementation work started using the

OpenBTS v2.5.4Lacassine, we decided to switch to the more

recent version because many bugs had been fixed. The configu-

ration of the BTS and the smsqueue (the buffer used to forward

text messages) have been simplified, but, above all, the power

control procedure and the monitor of the physical channel have

been remarkably enriched and the detection and tracking of

the International Mobile Equipment Identity (IMEI) have been

introduced.

In the following two subsections we provide an introduction

to GNU Radio and Asterisk.

A. GNU Radio

GNU Radio is an Open Source project for Software Defined

Radio started in 2000 by Eric Blossom. The main idea of this

project is to convert all the hardware problems in software

problems, or, in other terms, to transfer the complexity of

radio systems design from the hardware to the software, trying

to move the software as close to the antenna as possible.

GNU Radio is a software suite constituted by several modules

that can be combined with minimal hardware to implement

radio systems based on a personal computer. It offers a

graphical interface in order to facilitate the design of the

SDR system through the creation of a graph, whose blocks

represent the signal processing stages and the lines connecting

the blocks highlight the data flow among the blocks. The signal

processing blocks operate on infinite length data flow and

have a finite number of input/output ports. The construction

of the graph is accomplished by the language Python, which

is defined as a scripting object-oriented language. In fact, it

shows to be both easy and flexible as a scripting language and

powerful and rich as a programming language. Furthermore,

Python is:

open source;

portable. It is written in ANSI C, so it is possible to

implement an interpreter for the most important software

platforms;

rich of libraries and mechanisms as a popular program-

ming language.

Therefore, the GNU Radio architecture is based on a

hybrid C++/Python where the signal processing blocks are

implemented in C++, while the graph, the functioning rules

definition and the setting options are implemented in Python.

The integration among the two programming languages is

realized through SWIG, which allows Python to connect

the blocks and run them without any interpretation. GNU

Radio offers the SDR designer more than 100 sinks, sources

and primitives of I/O, TCP, high-speed AD and DA, audio

cards, filters, NCO, VCO, modulators, demodulators, FEC,

etc. Furthermore, it offers on-the-fly reconfigurability of the

designed system through the Graphical User Interface (GUI),

built with WxPython and blocks visual editing and connection

through GNU Radio Companion (GRC), which translate the

blocks graph in a Python script.

B. Asterisk

In OpenBTS, all the functions, which in the GSM are

provided by the Base Station Controllers (BSCs), the Mobile

Switching Centers (MSCs), the Home and Visitor Location

Registers (HLR, VLR), are not implemented, because the

USRP is used to provide only the GSM “Um” (Fig. 1) air

interface to the GSM devices that are considered as Session

Initiation Protocol (SIP) endpoints. In order to allow the BTS

to correctly route calls and text messages, as well as for

the registration and authentication of the GSM devices with

the network (that happen in the HLR), it is necessary to

use a communication server, such as Asterisk. By installing

Asterisk and connecting it with the OpenBTS, Subscriber

Identity Modules (SIM) will be considered as SIP users, and

their International Mobile Subscriber Identity (IMSI) will be

used as an SIP username. Thus, the IMSI of the GSM device

has to be already set in the setting file of Asterisk. In order to

substantiate the last consideration, the OpenBTS is logically

connected in Fig. 3 to the Asterisk PBX, which manages calls

and text messages among the GSM devices and the VoIP

terminals.

Fig. 4. The hardware necessary to implement a GSM BTS.

V. PUTTING IT ALL TOGETHER

In this last section, we will introduce and explain some

issues to face when implementing a GSM BTS through USRP

and GNU Radio.

When a GSM connection is established over the Um inter-

face, the GSM (which a FDMA/TDMA system) assigns an

Absolute Radio Frequency Channel Number (ARFCN) and

a definite time slot. The ARFCN consists of two physical

radio carriers. The GSM is synchronized with the BTS clock

through the Synchronization Channel (SCH) and Frequency

Correction Channel (FCCH). The SCH transmits the current

TDMA time and the FCCH generates a tone used by the GSM

device to command its local oscillator. The main hardware

issue is related to this timing process. In fact, the internal clock

of the USRP is set to work on 64 MHz, whereas the GSM

system has to work on a clock frequency that is a multiple

of 13 MHz, in order to make the synchronization between

BTS and mobile devices possible. If we consider that the

maximum error allowed by GSM specifications is 45 Hz, and

that the simple clock oscillator produces a KHz error on the

RF carrier, it is understandable why the current USRP needs to

be modified to allow RX/TX GSM signalling. Specifically, the

effect of the lack of synchronization produces a beacon signal

from the BTS that is outside the frequency range scanned by

the mobile devices during the roaming phase. The solution to

this problem is given by the installation of an external clock on

the motherboard. The external clock has to be set according

to the GSM specifications. In our implementation we used

a signal source that produces a 52 MHz square wave, with

an amplitude of 1.5 V (0-1.5 V) and an offset of 750 mV.

In order to install the external clock, we had to modify the

USRP motherboard by removing the physical connection of

the board to the internal clock and enabling the input of a

different clock signal. The visual result of the modification

accomplished on the motherboard are shown in Fig. 4 and in

detail in Fig. 5, where the red and black wires at the top of

the figure are connected to the external clock section of the

motherboard and transport the signal of a signal generator.

With the new configuration, all the cellular phones used for

the experiment were able to detect the presence of a BTS and

register with it. In Fig. 6 we show the display of one of the

Fig. 5. Detail of the motherboard modified.

Fig. 6. Example of GSM device connected to the OpenBTS.

devices connected to the OpenBTS.
As we said in Subsection IV-B, in order to allow the

devices to make calls and send text messages, we must first
associate their IMSI with a SIP username. This is done in the
file /etc/asterisk/sip.conf,where we specify the following
instructions:
[IMSI22288141xxxxxxx]

callerid=2106

canreinvite=no

type=friend

context=sip-local

allow=gsm

host=dynamic

dtmfmode=info

Therefore, it is also necessary to discover the IMSI of

each SIM. This can be achieved by connecting the cellular

phones to the PC through a USB connection and running a

Python script. The script interrogates the device about the

IMSI contained in the SIM card, and allows it to store and

use it. Another Asterisk file is in charge for routing the calls:

/etc/asterisk/extensions.conf . It indicates how to route

the calls incoming towards the known IMSI, for example:

exten=>2106,1,Macro(dialSIP,IMSI22288141xxxxxxx) ,

where dialSIP specifies the behavior for the various cases

(busy, congestion, no answer, etc): [macro-dialSIP]

exten=>s,1,Dial(SIP/$ARG1)

exten=>s,2,Goto(s-$DIALSTATUS,1)

exten=>s-NOANSWER,1,Hangup

exten=>s-BUSY,1,Busy(30)

exten=>s-CONGESTION,1,Congestion(30)

exten=>s-CHANUNAVAIL,1,playback(ss-noservice)

exten=>s-CANCEL,1,Hangup Upon the completion of the

Asterisk settings, the mobile terminals are ready to

make/receive calls (in order to send text messages, a

store-and-forward server also has to be set up in Asterisk)

to/from other GSM devices as well as VoIP terminals. Since

the environment where we tested the BTS functioning is

crowded by electronic equipment, and the power available was

very limited in order not to overlap with the existing providers,

further issues were mostly related to the interference and the

coverage of the BTS. Because of other systems’ interference,

the ARFCN initially chosen (#20, uplink 894 MHz-downlink

939 MHz) showed not to be strong enough to permit a

standard phone call. Hence, mobile devices had to frequently

re-search for available networks, wasting their batteries. In

the following we summarized some of the results obtained

by this implementation.

of coverage;

Able to mantain connectivity with mobile users;

GSM to GSM calls established and successfully

terminated;

VoIP connection established and successfully

terminated;

text message delivered.

As future works we intend to test handover and resource

allocation strategies by deploying more BTS and foreseeing

the usage of a central controller unit.

VI. CONCLUSION

In this paper we reported the practical experience of imple-

menting a lab-made version of a GSM BTS. In order to achieve

this objective we used a PC, a multi-purpose motherboard for

SDR on which we installed two RX/TX daughterboards (work-

ing on GSM900 frequencies) and a software project based on

GNU Radio. The experience was particularly fruitful due to

all the issues that arose and were solved by modifying both

the hardware and the software. The new installed version of

OpenBTS (released in August 2010) also allows the developer

to investigate RSSI and power control issues. Currently, we

are running more experiments with the new version in order

to determine the exact BTS coverage and the relevance of the

noise in the test environment.

REFERENCES

[1] www.ettus.com.
[2] GNURadio: http://www.gnu.org/software/gnuradio.
[3] www.cgran.org.
[4] Project OpenBTS: http://openbts.sourceforge.net.
[5] R. W. Thomas, L. A. DaSilva, and A. B. Mackenzie, ”Cognitive net-

works,” in Proc. of IEEE DySPAN 2005, pp. 352-360, Nov. 2005.
[6] J. Mitola and G. Q. Maguire., ”Cognitive radio: Making software radios

more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13-18,
1999.

[7] J. Mitola, Cognitive Radio: An Integrated Agent Architecture for Software
Defined Radio. PhD thesis, Royal Institute of Technology (KTH), 2000.

[8] S. Haykin, ”Cognitive radio: Brain-empowered wireless communication,”
IEEE Journal on Selected Areas in Communication, vol. 23, pp. 201-220,
February 2005.

[9] J. O. Neel, J. H. Reed, and R. P. Gilles, ”Convergence of cognitive radio
networks,” in Proc. of IEEE WCNC 2004, vol. 4, pp. 2250-2255, 2004.

[10] G. Ganesan and Y. Li, ”Cooperative spectrum sensing in cognitive radio
networks,” in Proc. of IEEE DySPAN 2005, pp. 137-143, 2005.

[11] S. M. Mishra, A. Sahai, and R. W. Brodersen, ”Cooperative sensing
among cognitive radios,” in Proc. of IEEE ICC 2006, vol. 4, pp. 1658-
1663, 2006.

[12] P. Pawelczak, R. V. Prasad, L. Xia, and I. G. M. M. Niemegeers,
”Cognitive radio emergency networks - requirements and design,” in Proc.
of IEEE DySPAN 2005, pp. 601-606, 2005.

[13] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, ”A
knowledge plane for the Internet,” in Proc. of SIGCOMM ’03, pp. 3-10,
ACM Press, 2003.

[14] R. Saracco, ”Forecasting the future of information technology: How to
make research investment more cost-effective,” IEEE Communications
Magazine, vol. 41, pp. 38-45, December 2003.

[15] P. Mahonen, J. Riihijarvi, M. Petrova, and Z. Shelby, ”Hop-by-hop
toward future mobile broadband IP,” IEEE Communications Magazine,
vol. 42, no. 3, pp. 138-146, 2004.

[16] D. Bourse, M. Muck, O. Simon, N. Alonistioti, K. Moessner, E. Nicollet,
D. Bateman, E. Buracchini, G. Chengeleroyen, and P. Demestichas, ”End-
to-end reconfigurability (E2R II): Management and control of adaptive
communication systems.” Presented at IST Mobile Summit 2006, June
2006.

[17] P. Demestichas, V. Stavroulaki, D. Boscovic, A. Lee, and J. Strassner,
”m@ANGEL: Autonomic management platform for seamless cognitive
connectivity to the mobile internet,” IEEE Communications Magazine,
vol. 44, no. 6, pp. 118-127, 2006.

[18] P. Sutton, L. E. Doyle, and K. E. Nolan, ”A reconfigurable platform for
cognitive networks,” in Proc. of CROWNCOM 2006, 2006.

