
Binary number

A binary number is a number expressed in the base-2 numeral system or binary numeral system, a
method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one).

The base-2 numeral system is a positional notation with a radix of 2. Each digit is referred to as a bit, or
binary digit. Because of its straightforward implementation in digital electronic circuitry using logic gates,
the binary system is used by almost all modern computers and computer-based devices, as a preferred
system of use, over various other human techniques of communication, because of the simplicity of the
language.
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The modern binary number system was studied in Europe in the 16th and 17th centuries by Thomas
Harriot, Juan Caramuel y Lobkowitz, and Gottfried Leibniz. However, systems related to binary numbers
have appeared earlier in multiple cultures including ancient Egypt, China, and India. Leibniz was
specifically inspired by the Chinese I Ching.

The scribes of ancient Egypt used two different systems for
their fractions, Egyptian fractions (not related to the binary
number system) and Horus-Eye fractions (so called because
many historians of mathematics believe that the symbols used
for this system could be arranged to form the eye of Horus,
although this has been disputed).[1] Horus-Eye fractions are a
binary numbering system for fractional quantities of grain,
liquids, or other measures, in which a fraction of a hekat is
expressed as a sum of the binary fractions 1/2, 1/4, 1/8, 1/16,
1/32, and 1/64. Early forms of this system can be found in
documents from the Fifth Dynasty of Egypt, approximately

2400 BC, and its fully developed hieroglyphic form dates to the Nineteenth Dynasty of Egypt,
approximately 1200 BC.[2]

The method used for ancient Egyptian multiplication is also closely related to binary numbers. In this
method, multiplying one number by a second is performed by a sequence of steps in which a value (initially
the first of the two numbers) is either doubled or has the first number added back into it; the order in which
these steps are to be performed is given by the binary representation of the second number. This method
can be seen in use, for instance, in the Rhind Mathematical Papyrus, which dates to around 1650 BC.[3]

The I Ching dates from the 9th century BC in China.[4] The binary notation
in the I Ching is used to interpret its quaternary divination technique.[5]

It is based on taoistic duality of yin and yang.[6] Eight trigrams (Bagua) and
a set of 64 hexagrams ("sixty-four" gua), analogous to the three-bit and six-
bit binary numerals, were in use at least as early as the Zhou Dynasty of
ancient China.[4]

The Song Dynasty scholar Shao Yong (1011–1077) rearranged the
hexagrams in a format that resembles modern binary numbers, although he
did not intend his arrangement to be used mathematically.[5] Viewing the
least significant bit on top of single hexagrams in Shao Yong's square (http://www.biroco.com/yijing/seque
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nce.htm) and reading along rows either from bottom right to top left with solid lines as 0 and broken lines
as 1 or from top left to bottom right with solid lines as 1 and broken lines as 0 hexagrams can be interpreted
as sequence from 0 to 63. [7]

The Indian scholar Pingala (c. 2nd century BC) developed a binary system for describing prosody.[8][9] He
used binary numbers in the form of short and long syllables (the latter equal in length to two short
syllables), making it similar to Morse code.[10][11] They were known as laghu (light) and guru (heavy)
syllables.

Pingala's Hindu classic titled Chandaḥśāstra (8.23) describes the formation of a matrix in order to give a
unique value to each meter. "Chandaḥśāstra" literally translates to science of meters in Sanskrit. The binary
representations in Pingala's system increases towards the right, and not to the left like in the binary numbers
of the modern positional notation.[10][12] In Pingala's system, the numbers start from number one, and not
zero. Four short syllables "0000" is the first pattern and corresponds to the value one. The numerical value
is obtained by adding one to the sum of place values.[13]

The residents of the island of Mangareva in French Polynesia were using a hybrid binary-decimal system
before 1450.[14] Slit drums with binary tones are used to encode messages across Africa and Asia.[6] Sets
of binary combinations similar to the I Ching have also been used in traditional African divination systems
such as Ifá as well as in medieval Western geomancy.

In the late 13th century Ramon Llull had the ambition to account for all wisdom in every branch of human
knowledge of the time. For that purpose he developed a general method or 'Ars generalis' based on binary
combinations of a number of simple basic principles or categories, for which he has been considered a
predecessor of computing science and artificial intelligence.[15]

In 1605 Francis Bacon discussed a system whereby letters of the alphabet could be reduced to sequences of
binary digits, which could then be encoded as scarcely visible variations in the font in any random text.[16]

Importantly for the general theory of binary encoding, he added that this method could be used with any
objects at all: "provided those objects be capable of a twofold difference only; as by Bells, by Trumpets, by
Lights and Torches, by the report of Muskets, and any instruments of like nature".[16] (See Bacon's cipher.)

John Napier in 1617 described a system he called location arithmetic for doing binary calculations using a
non-positional representation by letters. Thomas Harriot investigated several positional numbering systems,
including binary, but did not publish his results; they were found later among his papers.[17] Possibly the
first publication of the system in Europe was by Juan Caramuel y Lobkowitz, in 1700.[18]

Leibniz studied binary numbering in 1679; his work appears in his article Explication de l'Arithmétique
Binaire (published in 1703). The full title of Leibniz's article is translated into English as the "Explanation
of Binary Arithmetic, which uses only the characters 1 and 0, with some remarks on its usefulness, and on
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Gottfried Leibniz

George Boole

the light it throws on the ancient Chinese figures of Fu Xi".[19] Leibniz's
system uses 0 and 1, like the modern binary numeral system. An example
of Leibniz's binary numeral system is as follows:[19]

0 0 0 1   numerical value 20

0 0 1 0   numerical value 21

0 1 0 0   numerical value 22

1 0 0 0   numerical value 23

Leibniz interpreted the hexagrams of the I Ching as evidence of binary
calculus.[20] As a Sinophile, Leibniz was aware of the I Ching, noted with
fascination how its hexagrams correspond to the binary numbers from 0 to
111111, and concluded that this mapping was evidence of major Chinese
accomplishments in the sort of philosophical mathematics he admired. The
relation was a central idea to his universal concept of a language or
characteristica universalis, a popular idea that would be followed closely by his successors such as Gottlob
Frege and George Boole in forming modern symbolic logic.[21] Leibniz was first introduced to the I Ching
through his contact with the French Jesuit Joachim Bouvet, who visited China in 1685 as a missionary.
Leibniz saw the I Ching hexagrams as an affirmation of the universality of his own religious beliefs as a
Christian.[20] Binary numerals were central to Leibniz's theology. He believed that binary numbers were
symbolic of the Christian idea of creatio ex nihilo or creation out of nothing.[22]

[A concept that] is not easy to impart to the pagans, is the creation ex nihilo through God's
almighty power. Now one can say that nothing in the world can better present and demonstrate
this power than the origin of numbers, as it is presented here through the simple and unadorned
presentation of One and Zero or Nothing.

— Leibniz's letter to the Duke of Brunswick attached with the I Ching hexagrams[20]

In 1854, British mathematician George Boole published a landmark paper
detailing an algebraic system of logic that would become known as Boolean
algebra. His logical calculus was to become instrumental in the design of
digital electronic circuitry.[23]

In 1937, Claude Shannon produced his master's thesis at MIT that
implemented Boolean algebra and binary arithmetic using electronic relays
and switches for the first time in history. Entitled A Symbolic Analysis of
Relay and Switching Circuits, Shannon's thesis essentially founded practical
digital circuit design.[24]

In November 1937, George Stibitz, then working at Bell Labs, completed a
relay-based computer he dubbed the "Model K" (for "Kitchen", where he
had assembled it), which calculated using binary addition.[25] Bell Labs

authorized a full research program in late 1938 with Stibitz at the helm. Their Complex Number Computer,
completed 8 January 1940, was able to calculate complex numbers. In a demonstration to the American
Mathematical Society conference at Dartmouth College on 11 September 1940, Stibitz was able to send the
Complex Number Calculator remote commands over telephone lines by a teletype. It was the first
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A binary clock might use LEDs to express
binary values. In this clock, each column
of LEDs shows a binary-coded decimal
numeral of the traditional sexagesimal
time.

computing machine ever used remotely over a phone line. Some participants of the conference who
witnessed the demonstration were John von Neumann, John Mauchly and Norbert Wiener, who wrote
about it in his memoirs.[26][27][28]

The Z1 computer, which was designed and built by Konrad Zuse between 1935 and 1938, used Boolean
logic and binary floating point numbers.[29]

Any number can be represented by a sequence of bits (binary digits), which in turn may be represented by
any mechanism capable of being in two mutually exclusive states. Any of the following rows of symbols
can be interpreted as the binary numeric value of 667:

1 0 1 0 0 1 1 0 1 1
| ― | ― ― | | ― | |
☒ ☐ ☒ ☐ ☐ ☒☒ ☐ ☒☒

y n y n n y y n y y

The numeric value represented in each case is dependent
upon the value assigned to each symbol. In the earlier days of
computing, switches, punched holes and punched paper tapes
were used to represent binary values.[30] In a modern
computer, the numeric values may be represented by two
different voltages; on a magnetic disk, magnetic polarities may
be used. A "positive", "yes", or "on" state is not necessarily
equivalent to the numerical value of one; it depends on the
architecture in use.

In keeping with customary representation of numerals using
Arabic numerals, binary numbers are commonly written using
the symbols 0 and 1. When written, binary numerals are often
subscripted, prefixed or suffixed in order to indicate their
base, or radix. The following notations are equivalent:

100101 binary (explicit statement of format)
100101b (a suffix indicating binary format; also known as Intel convention[31][32])
100101B (a suffix indicating binary format)
bin 100101 (a prefix indicating binary format)
1001012 (a subscript indicating base-2 (binary) notation)

%100101 (a prefix indicating binary format; also known as Motorola convention[31][32])
0b100101 (a prefix indicating binary format, common in programming languages)
6b100101 (a prefix indicating number of bits in binary format, common in programming
languages)
#b100101 (a prefix indicating binary format, common in Lisp programming languages)

When spoken, binary numerals are usually read digit-by-digit, in order to distinguish them from decimal
numerals. For example, the binary numeral 100 is pronounced one zero zero, rather than one hundred, to
make its binary nature explicit, and for purposes of correctness. Since the binary numeral 100 represents the
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Decimal
number

Binary
number

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

This counter shows how to count in
binary from numbers zero through
thirty-one.

value four, it would be confusing to refer to the numeral as one hundred (a word that represents a
completely different value, or amount). Alternatively, the binary numeral 100 can be read out as "four" (the
correct value), but this does not make its binary nature explicit.

Counting in binary is similar to counting in any other number system. Beginning with
a single digit, counting proceeds through each symbol, in increasing order. Before
examining binary counting, it is useful to briefly discuss the more familiar decimal
counting system as a frame of reference.

Decimal counting uses the ten symbols 0 through 9. Counting begins with the
incremental substitution of the least significant digit (rightmost digit) which is often
called the first digit. When the available symbols for this position are exhausted, the
least significant digit is reset to 0, and the next digit of higher significance (one
position to the left) is incremented (overflow), and incremental substitution of the low-
order digit resumes. This method of reset and overflow is repeated for each digit of
significance. Counting progresses as follows:

000, 001, 002, ... 007, 008, 009, (rightmost digit is reset to zero, and the
digit to its left is incremented)
010, 011, 012, ...
   ...
090, 091, 092, ... 097, 098, 099, (rightmost two digits are reset to
zeroes, and next digit is incremented)
100, 101, 102, ...

Binary counting follows the same procedure, except that only the
two symbols 0 and 1 are available. Thus, after a digit reaches 1 in
binary, an increment resets it to 0 but also causes an increment of
the next digit to the left:

0000,
0001, (rightmost digit starts over, and next digit is
incremented)
0010, 0011, (rightmost two digits start over, and next
digit is incremented)
0100, 0101, 0110, 0111, (rightmost three digits start
over, and the next digit is incremented)
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 ...

In the binary system, each digit represents an increasing power of 2, with the rightmost digit representing
20, the next representing 21, then 22, and so on. The value of a binary number is the sum of the powers of 2
represented by each "1" digit. For example, the binary number 100101 is converted to decimal form as
follows:

1001012 = [ ( 1 ) × 25 ] + [ ( 0 ) × 24 ] + [ ( 0 ) × 23 ] + [ ( 1 ) × 22 ] + [ ( 0 ) × 21 ] + [ ( 1 ) × 20 ]

Counting in binary

Decimal counting

Binary counting
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A party trick to guess a
number from which cards it
is printed on uses the bits of
the binary representation of
the number. In the SVG file,
click a card to toggle it

1001012 = [ 1 × 32 ] + [ 0 × 16 ] + [ 0 × 8 ] + [ 1 × 4 ] + [ 0 × 2 ] +
[ 1 × 1 ]

1001012 = 3710

Fractions in binary arithmetic terminate only if 2 is the only prime factor in
the denominator. As a result, 1/10 does not have a finite binary
representation (10 has prime factors 2 and 5). This causes 10 × 0.1 not to
precisely equal 1 in floating-point arithmetic. As an example, to interpret
the binary expression for 1/3 = .010101..., this means: 1/3 = 0 × 2−1 + 1 ×
2−2 + 0 × 2−3 + 1 × 2−4 + ... = 0.3125 + ... An exact value cannot be
found with a sum of a finite number of inverse powers of two, the zeros
and ones in the binary representation of 1/3 alternate forever.

Fraction Decimal Binary Fractional approximation

1/1 1  or  0.999... 1  or  0.111... 1/2 + 1/4 + 1/8...

1/2 0.5  or  0.4999... 0.1  or  0.0111... 1/4 + 1/8 + 1/16 . . .

1/3 0.333... 0.010101... 1/4 + 1/16 + 1/64 . . .

1/4 0.25  or  0.24999... 0.01  or  0.00111... 1/8 + 1/16 + 1/32 . . .

1/5 0.2  or  0.1999... 0.00110011... 1/8 + 1/16 + 1/128 . . .

1/6 0.1666... 0.0010101... 1/8 + 1/32 + 1/128 . . .

1/7 0.142857142857... 0.001001... 1/8 + 1/64 + 1/512 . . .

1/8 0.125  or  0.124999... 0.001  or  0.000111... 1/16 + 1/32 + 1/64 . . .

1/9 0.111... 0.000111000111... 1/16 + 1/32 + 1/64 . . .

1/10 0.1  or  0.0999... 0.000110011... 1/16 + 1/32 + 1/256 . . .

1/11 0.090909... 0.00010111010001011101... 1/16 + 1/64 + 1/128 . . .

1/12 0.08333... 0.00010101... 1/16 + 1/64 + 1/256 . . .

1/13 0.076923076923... 0.000100111011000100111011... 1/16 + 1/128 + 1/256 . . .

1/14 0.0714285714285... 0.0001001001... 1/16 + 1/128 + 1/1024 . . .

1/15 0.0666... 0.00010001... 1/16 + 1/256 . . .

1/16 0.0625  or  0.0624999... 0.0001  or  0.0000111... 1/32 + 1/64 + 1/128 . . .

Fractions

Binary arithmetic
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The circuit diagram for a binary
half adder, which adds two bits
together, producing sum and
carry bits

Arithmetic in binary is much like arithmetic in other numeral systems. Addition, subtraction, multiplication,
and division can be performed on binary numerals.

The simplest arithmetic operation in binary is addition. Adding two
single-digit binary numbers is relatively simple, using a form of
carrying:

0 + 0 → 0
0 + 1 → 1
1 + 0 → 1
1 + 1 → 0, carry 1 (since 1 + 1 = 2 = 0 + (1 × 21) )

Adding two "1" digits produces a digit "0", while 1 will have to be
added to the next column. This is similar to what happens in decimal
when certain single-digit numbers are added together; if the result
equals or exceeds the value of the radix (10), the digit to the left is incremented:

5 + 5 → 0, carry 1 (since 5 + 5 = 10 = 0 + (1 × 101) )
7 + 9 → 6, carry 1 (since 7 + 9 = 16 = 6 + (1 × 101) )

This is known as carrying. When the result of an addition exceeds the value of a digit, the procedure is to
"carry" the excess amount divided by the radix (that is, 10/10) to the left, adding it to the next positional
value. This is correct since the next position has a weight that is higher by a factor equal to the radix.
Carrying works the same way in binary:

  1 1 1 1 1    (carried digits) 
    0 1 1 0 1 
+   1 0 1 1 1 
------------- 
= 1 0 0 1 0 0 = 36 

In this example, two numerals are being added together: 011012 (1310) and 101112 (2310). The top row
shows the carry bits used. Starting in the rightmost column, 1 + 1 = 102. The 1 is carried to the left, and the
0 is written at the bottom of the rightmost column. The second column from the right is added: 1 + 0 + 1 =
102 again; the 1 is carried, and 0 is written at the bottom. The third column: 1 + 1 + 1 = 112. This time, a 1
is carried, and a 1 is written in the bottom row. Proceeding like this gives the final answer 1001002 (36
decimal).

When computers must add two numbers, the rule that: x xor y = (x + y) mod 2 for any two bits x and y
allows for very fast calculation, as well.

A simplification for many binary addition problems is the Long Carry Method or Brookhouse Method of
Binary Addition. This method is generally useful in any binary addition in which one of the numbers
contains a long "string" of ones. It is based on the simple premise that under the binary system, when given
a "string" of digits composed entirely of n ones (where n is any integer length), adding 1 will result in the
number 1 followed by a string of n zeros. That concept follows, logically, just as in the decimal system,
where adding 1 to a string of n 9s will result in the number 1 followed by a string of n 0s:

Addition

Long carry method
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     Binary                        Decimal 
    1 1 1 1 1     likewise        9 9 9 9 9 
 +          1                  +          1 
  ———————————                   ——————————— 
  1 0 0 0 0 0                   1 0 0 0 0 0 

Such long strings are quite common in the binary system. From that one finds that large binary numbers can
be added using two simple steps, without excessive carry operations. In the following example, two
numerals are being added together: 1 1 1 0 1 1 1 1 1 02 (95810) and 1 0 1 0 1 1 0 0 1 12 (69110), using the
traditional carry method on the left, and the long carry method on the right:

Traditional Carry Method                       Long Carry Method 
                                vs. 
  1 1 1   1 1 1 1 1      (carried digits)   1 ←     1 ←            carry the 1 until it is 
one digit past the "string" below 
    1 1 1 0 1 1 1 1 1 0                       1 1 1 0 1 1 1 1 1 0  cross out the "string", 
+   1 0 1 0 1 1 0 0 1 1                   +   1 0 1 0 1 1 0 0 1 1  and cross out the digit 
that was added to it 
———————————————————————                    —————————————————————— 
= 1 1 0 0 1 1 1 0 0 0 1                     1 1 0 0 1 1 1 0 0 0 1 

The top row shows the carry bits used. Instead of the standard carry from one column to the next, the
lowest-ordered "1" with a "1" in the corresponding place value beneath it may be added and a "1" may be
carried to one digit past the end of the series. The "used" numbers must be crossed off, since they are
already added. Other long strings may likewise be cancelled using the same technique. Then, simply add
together any remaining digits normally. Proceeding in this manner gives the final answer of 1 1 0 0 1 1 1 0
0 0 12 (164910). In our simple example using small numbers, the traditional carry method required eight
carry operations, yet the long carry method required only two, representing a substantial reduction of effort.

0 1

0 0 1

1 1 10

The binary addition table is similar, but not the same, as the truth table of the logical disjunction operation 
. The difference is that , while .

Subtraction works in much the same way:

0 − 0 → 0
0 − 1 → 1, borrow 1
1 − 0 → 1
1 − 1 → 0

Subtracting a "1" digit from a "0" digit produces the digit "1", while 1 will have to be subtracted from the
next column. This is known as borrowing. The principle is the same as for carrying. When the result of a
subtraction is less than 0, the least possible value of a digit, the procedure is to "borrow" the deficit divided
by the radix (that is, 10/10) from the left, subtracting it from the next positional value.

    *   * * *   (starred columns are borrowed from) 
  1 1 0 1 1 1 0 

Addition table

Subtraction
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−     1 0 1 1 1 
---------------- 
= 1 0 1 0 1 1 1 

  *             (starred columns are borrowed from) 
  1 0 1 1 1 1 1 
-   1 0 1 0 1 1 
---------------- 
= 0 1 1 0 1 0 0 

Subtracting a positive number is equivalent to adding a negative number of equal absolute value.
Computers use signed number representations to handle negative numbers—most commonly the two's
complement notation. Such representations eliminate the need for a separate "subtract" operation. Using
two's complement notation subtraction can be summarized by the following formula:

A − B = A + not B + 1

Multiplication in binary is similar to its decimal counterpart. Two numbers A and B can be multiplied by
partial products: for each digit in B, the product of that digit in A is calculated and written on a new line,
shifted leftward so that its rightmost digit lines up with the digit in B that was used. The sum of all these
partial products gives the final result.

Since there are only two digits in binary, there are only two possible outcomes of each partial
multiplication:

If the digit in B is 0, the partial product is also 0
If the digit in B is 1, the partial product is equal to A

For example, the binary numbers 1011 and 1010 are multiplied as follows:

           1 0 1 1   (A) 
         × 1 0 1 0   (B) 
         --------- 
           0 0 0 0   ← Corresponds to the rightmost 'zero' in B 
   +     1 0 1 1     ← Corresponds to the next 'one' in B 
   +   0 0 0 0 
   + 1 0 1 1 
   --------------- 
   = 1 1 0 1 1 1 0 

Binary numbers can also be multiplied with bits after a binary point:

               1 0 1 . 1 0 1     A (5.625 in decimal) 
             × 1 1 0 . 0 1       B (6.25 in decimal) 
             ------------------- 
                   1 . 0 1 1 0 1   ← Corresponds to a 'one' in B 
     +           0 0 . 0 0 0 0     ← Corresponds to a 'zero' in B 
     +         0 0 0 . 0 0 0 
     +       1 0 1 1 . 0 1 
     +     1 0 1 1 0 . 1 
     --------------------------- 
     =   1 0 0 0 1 1 . 0 0 1 0 1 (35.15625 in decimal) 

See also Booth's multiplication algorithm.

Multiplication
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0 1

0 0 0

1 0 1

The binary multiplication table is the same as the truth table of the logical conjunction operation .

Long division in binary is again similar to its decimal counterpart.

In the example below, the divisor is 1012, or 5 in decimal, while the dividend is 110112, or 27 in decimal.
The procedure is the same as that of decimal long division; here, the divisor 1012 goes into the first three
digits 1102 of the dividend one time, so a "1" is written on the top line. This result is multiplied by the
divisor, and subtracted from the first three digits of the dividend; the next digit (a "1") is included to obtain a
new three-digit sequence:

              1 
        ___________ 
1 0 1   ) 1 1 0 1 1 
        − 1 0 1 
          ----- 
          0 0 1 

The procedure is then repeated with the new sequence, continuing until the digits in the dividend have been
exhausted:

             1 0 1 
       ___________ 
1 0 1  ) 1 1 0 1 1 
       − 1 0 1 
         ----- 
             1 1 1 
         −   1 0 1 
             ----- 
             0 1 0 

Thus, the quotient of 110112 divided by 1012 is 1012, as shown on the top line, while the remainder,
shown on the bottom line, is 102. In decimal, this corresponds to the fact that 27 divided by 5 is 5, with a
remainder of 2.

Aside from long division, one can also devise the procedure so as to allow for over-subtracting from the
partial remainder at each iteration, thereby leading to alternative methods which are less systematic, but
more flexible as a result.[33]

The process of taking a binary square root digit by digit is the same as for a decimal square root and is
explained here. An example is:

             1 0 0 1 
            --------- 
           √ 1010001 

Multiplication table

Division

Square root
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Conversion of
(357)10 to
binary notation
results in
(101100101)

             1 
            --------- 
      101     01  
               0 
             -------- 
      1001     100 
                 0 
             -------- 
      10001    10001 
               10001 
              ------- 
                   0 

Though not directly related to the numerical interpretation of binary symbols, sequences of bits may be
manipulated using Boolean logical operators. When a string of binary symbols is manipulated in this way, it
is called a bitwise operation; the logical operators AND, OR, and XOR may be performed on
corresponding bits in two binary numerals provided as input. The logical NOT operation may be performed
on individual bits in a single binary numeral provided as input. Sometimes, such operations may be used as
arithmetic short-cuts, and may have other computational benefits as well. For example, an arithmetic shift
left of a binary number is the equivalent of multiplication by a (positive, integral) power of 2.

To convert from a base-10 integer to its base-2 (binary) equivalent, the number is
divided by two. The remainder is the least-significant bit. The quotient is again
divided by two; its remainder becomes the next least significant bit. This process
repeats until a quotient of one is reached. The sequence of remainders (including the
final quotient of one) forms the binary value, as each remainder must be either zero or
one when dividing by two. For example, (357)10 is expressed as (101100101)2.

[34]

Conversion from base-2 to base-10 simply inverts the preceding algorithm. The bits of
the binary number are used one by one, starting with the most significant (leftmost)
bit. Beginning with the value 0, the prior value is doubled, and the next bit is then
added to produce the next value. This can be organized in a multi-column table. For
example, to convert 100101011012 to decimal:

Prior value × 2 + Next bit Next value

0 × 2 + 1 = 1

1 × 2 + 0 = 2

2 × 2 + 0 = 4

4 × 2 + 1 = 9

9 × 2 + 0 = 18

18 × 2 + 1 = 37

37 × 2 + 0 = 74

74 × 2 + 1 = 149

Bitwise operations

Conversion to and from other numeral systems

Decimal
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149 × 2 + 1 = 299

299 × 2 + 0 = 598

598 × 2 + 1 = 1197

The result is 119710. The first Prior Value of 0 is simply an initial decimal value. This method is an
application of the Horner scheme.

Binary 1 0 0 1 0 1 0 1 1 0 1

Decimal 1×210

+
0×29

+ 0×28 + 1×27 + 0×26 + 1×25 + 0×24 + 1×23 + 1×22 + 0×21 + 1×20 = 1197

The fractional parts of a number are converted with similar methods. They are again based on the
equivalence of shifting with doubling or halving.

In a fractional binary number such as 0.110101101012, the first digit is , the second , etc. So
if there is a 1 in the first place after the decimal, then the number is at least , and vice versa. Double that
number is at least 1. This suggests the algorithm: Repeatedly double the number to be converted, record if
the result is at least 1, and then throw away the integer part.

For example, 10, in binary, is:

Converting Result

0.

0.0

0.01

0.010

0.0101

Thus the repeating decimal fraction 0.3... is equivalent to the repeating binary fraction 0.01... .

Or for example, 0.110, in binary, is:

https://en.wikipedia.org/wiki/Horner_scheme


0hex = 0dec = 0oct 0 0 0 0
1hex = 1dec = 1oct 0 0 0 1

Converting Result

0.1 0.

0.1 × 2 = 0.2 < 1 0.0

0.2 × 2 = 0.4 < 1 0.00

0.4 × 2 = 0.8 < 1 0.000

0.8 × 2 = 1.6 ≥ 1 0.0001

0.6 × 2 = 1.2 ≥ 1 0.00011

0.2 × 2 = 0.4 < 1 0.000110

0.4 × 2 = 0.8 < 1 0.0001100

0.8 × 2 = 1.6 ≥ 1 0.00011001

0.6 × 2 = 1.2 ≥ 1 0.000110011

0.2 × 2 = 0.4 < 1 0.0001100110

This is also a repeating binary fraction 0.00011... . It may come as a surprise that terminating decimal
fractions can have repeating expansions in binary. It is for this reason that many are surprised to discover
that 0.1 + ... + 0.1, (10 additions) differs from 1 in floating point arithmetic. In fact, the only binary fractions
with terminating expansions are of the form of an integer divided by a power of 2, which 1/10 is not.

The final conversion is from binary to decimal fractions. The only difficulty arises with repeating fractions,
but otherwise the method is to shift the fraction to an integer, convert it as above, and then divide by the
appropriate power of two in the decimal base. For example:

Another way of converting from binary to decimal, often quicker for a person familiar with hexadecimal, is
to do so indirectly—first converting (  in binary) into (  in hexadecimal) and then converting (  in
hexadecimal) into (  in decimal).

For very large numbers, these simple methods are inefficient because they perform a large number of
multiplications or divisions where one operand is very large. A simple divide-and-conquer algorithm is
more effective asymptotically: given a binary number, it is divided by 10k, where k is chosen so that the
quotient roughly equals the remainder; then each of these pieces is converted to decimal and the two are
concatenated. Given a decimal number, it can be split into two pieces of about the same size, each of which
is converted to binary, whereupon the first converted piece is multiplied by 10k and added to the second
converted piece, where k is the number of decimal digits in the second, least-significant piece before
conversion.

Hexadecimal
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2hex = 2dec = 2oct 0 0 1 0
3hex = 3dec = 3oct 0 0 1 1
4hex = 4dec = 4oct 0 1 0 0
5hex = 5dec = 5oct 0 1 0 1
6hex = 6dec = 6oct 0 1 1 0
7hex = 7dec = 7oct 0 1 1 1
8hex = 8dec = 10oct 1 0 0 0
9hex = 9dec = 11oct 1 0 0 1
Ahex = 10dec = 12oct 1 0 1 0
Bhex = 11dec = 13oct 1 0 1 1
Chex = 12dec = 14oct 1 1 0 0
Dhex = 13dec = 15oct 1 1 0 1
Ehex = 14dec = 16oct 1 1 1 0
Fhex = 15dec = 17oct 1 1 1 1

Binary may be converted to and from hexadecimal more easily.
This is because the radix of the hexadecimal system (16) is a
power of the radix of the binary system (2). More specifically,
16 = 24, so it takes four digits of binary to represent one digit
of hexadecimal, as shown in the adjacent table.

To convert a hexadecimal number into its binary equivalent,
simply substitute the corresponding binary digits:

3A16 = 0011 10102
E716 = 1110 01112

To convert a binary number into its hexadecimal equivalent,
divide it into groups of four bits. If the number of bits isn't a
multiple of four, simply insert extra 0 bits at the left (called
padding). For example:

10100102 = 0101 0010 grouped with padding =
5216
110111012 = 1101 1101 grouped = DD16

To convert a hexadecimal number into its decimal equivalent, multiply the decimal equivalent of each
hexadecimal digit by the corresponding power of 16 and add the resulting values:

C0E716 = (12 × 163) + (0 × 162) + (14 × 161) + (7 × 160) = (12 × 4096) + (0 × 256) + (14 ×
16) + (7 × 1) = 49,38310

Binary is also easily converted to the octal numeral system, since octal uses a radix of 8, which is a power
of two (namely, 23, so it takes exactly three binary digits to represent an octal digit). The correspondence
between octal and binary numerals is the same as for the first eight digits of hexadecimal in the table above.
Binary 000 is equivalent to the octal digit 0, binary 111 is equivalent to octal 7, and so forth.

Octal Binary

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Converting from octal to binary proceeds in the same fashion as it does for hexadecimal:

658 = 110 1012
178 = 001 1112

Octal
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And from binary to octal:

1011002 = 101 1002 grouped = 548
100112 = 010 0112 grouped with padding = 238

And from octal to decimal:

658 = (6 × 81) + (5 × 80) = (6 × 8) + (5 × 1) = 5310
1278 = (1 × 82) + (2 × 81) + (7 × 80) = (1 × 64) + (2 × 8) + (7 × 1) = 8710

Non-integers can be represented by using negative powers, which are set off from the other digits by means
of a radix point (called a decimal point in the decimal system). For example, the binary number 11.012
means:

1 × 21 (1 × 2 = 2) plus

1 × 20 (1 × 1 = 1) plus

0 × 2−1 (0 × 1⁄2 = 0) plus

1 × 2−2 (1 × 1⁄4 = 0.25)

For a total of 3.25 decimal.

All dyadic rational numbers  have a terminating binary numeral—the binary representation has a finite

number of terms after the radix point. Other rational numbers have binary representation, but instead of
terminating, they recur, with a finite sequence of digits repeating indefinitely. For instance

The phenomenon that the binary representation of any rational is either terminating or recurring also occurs
in other radix-based numeral systems. See, for instance, the explanation in decimal. Another similarity is the
existence of alternative representations for any terminating representation, relying on the fact that
0.111111... is the sum of the geometric series 2−1 + 2−2 + 2−3 + ... which is 1.

Binary numerals which neither terminate nor recur represent irrational numbers. For instance,

0.10100100010000100000100... does have a pattern, but it is not a fixed-length recurring
pattern, so the number is irrational

1.0110101000001001111001100110011111110... is the binary representation of , the
square root of 2, another irrational. It has no discernible pattern.

Balanced ternary
Binary code

Representing real numbers

See also

https://en.wikipedia.org/wiki/Radix_point
https://en.wikipedia.org/wiki/Decimal_point
https://en.wikipedia.org/wiki/Dyadic_fraction
https://en.wikipedia.org/wiki/Rational_numbers
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/0.111..._%3D_1_(binary)
https://en.wikipedia.org/wiki/Geometric_series
https://en.wikipedia.org/wiki/Irrational_number
https://en.wikipedia.org/wiki/Square_root_of_2
https://en.wikipedia.org/wiki/Balanced_ternary
https://en.wikipedia.org/wiki/Binary_code


Binary-coded decimal
Finger binary
Gray code
IEEE 754
Linear feedback shift register
Offset binary
Quibinary
Reduction of summands
Redundant binary representation
Repeating decimal
Two's complement
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