
Buffer overflow
In information security and programming, a buffer overflow, or buffer overrun, is an anomaly where a
program, while writing data to a buffer, overruns the buffer's boundary and overwrites adjacent memory
locations.

Buffers are areas of memory set aside to hold data, often while moving it from one section of a program to
another, or between programs. Buffer overflows can often be triggered by malformed inputs; if one
assumes all inputs will be smaller than a certain size and the buffer is created to be that size, then an
anomalous transaction that produces more data could cause it to write past the end of the buffer. If this
overwrites adjacent data or executable code, this may result in erratic program behavior, including memory
access errors, incorrect results, and crashes.

Exploiting the behavior of a buffer overflow is a well-known security exploit. On many systems, the
memory layout of a program, or the system as a whole, is well defined. By sending in data designed to
cause a buffer overflow, it is possible to write into areas known to hold executable code and replace it with
malicious code, or to selectively overwrite data pertaining to the program's state, therefore causing behavior
that was not intended by the original programmer. Buffers are widespread in operating system (OS) code,
so it is possible to make attacks that perform privilege escalation and gain unlimited access to the
computer's resources. The famed Morris worm in 1988 used this as one of its attack techniques.

Programming languages commonly associated with buffer overflows include C and C++, which provide no
built-in protection against accessing or overwriting data in any part of memory and do not automatically
check that data written to an array (the built-in buffer type) is within the boundaries of that array. Bounds
checking can prevent buffer overflows, but requires additional code and processing time. Modern operating
systems use a variety of techniques to combat malicious buffer overflows, notably by randomizing the
layout of memory, or deliberately leaving space between buffers and looking for actions that write into
those areas ("canaries").

Technical description
Example

Exploitation
Stack-based exploitation
Heap-based exploitation
Barriers to exploitation
Practicalities of exploitation

NOP sled technique
The jump to address stored in a register technique

Protective countermeasures
Choice of programming language
Use of safe libraries
Buffer overflow protection
Pointer protection

Contents

https://en.wikipedia.org/wiki/Information_security
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Anomaly_in_software
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Data_buffer
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Exploit_(information_security)
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Malicious_code
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Privilege_escalation
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/Address_space_layout_randomization

Executable space protection
Address space layout randomization
Deep packet inspection
Testing

History
See also
References
External links

A buffer overflow occurs when data written to a buffer also corrupts data values in memory addresses
adjacent to the destination buffer due to insufficient bounds checking. This can occur when copying data
from one buffer to another without first checking that the data fits within the destination buffer.

In the following example expressed in C, a program has two variables which are adjacent in memory: an 8-
byte-long string buffer, A, and a two-byte big-endian integer, B.

Initially, A contains nothing but zero bytes, and B contains the number 1979.

variable name A B

value [null string] 1979

hex value 00 00 00 00 00 00 00 00 07 BB

Now, the program attempts to store the null-terminated string "excessive" with ASCII encoding in the
A buffer.

"excessive" is 9 characters long and encodes to 10 bytes including the null terminator, but A can take
only 8 bytes. By failing to check the length of the string, it also overwrites the value of B:

variable name A B

value 'e' 'x' 'c' 'e' 's' 's' 'i' 'v' 25856

hex 65 78 63 65 73 73 69 76 65 00

B's value has now been inadvertently replaced by a number formed from part of the character string. In this
example "e" followed by a zero byte would become 25856.

Technical description

Example

char A[8] = "";
unsigned short B = 1979;

strcpy(A, "excessive");

https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Null_string
https://en.wikipedia.org/wiki/Null-terminated_string
https://en.wikipedia.org/wiki/ASCII

Writing data past the end of allocated memory can sometimes be detected by the operating system to
generate a segmentation fault error that terminates the process.

To prevent the buffer overflow from happening in this example, the call to strcpy could be replaced with
strlcpy, which takes the maximum capacity of A (including a null-termination character) as an
additional parameter and ensures that no more than this amount of data is written to A:

When available, the strlcpy library function is preferred over strncpy which does not null-terminate
the destination buffer if the source string's length is greater than or equal to the size of the buffer (the third
argument passed to the function), therefore A may not be null-terminated and cannot be treated as a valid C-
style string.

The techniques to exploit a buffer overflow vulnerability vary by architecture, by operating system and by
memory region. For example, exploitation on the heap (used for dynamically allocated memory), differs
markedly from exploitation on the call stack.

A technically inclined user may exploit stack-based buffer overflows to manipulate the program to their
advantage in one of several ways:

By overwriting a local variable that is located near the vulnerable buffer on the stack, in order
to change the behavior of the program
By overwriting the return address in a stack frame to point to code selected by the attacker,
usually called the shellcode. Once the function returns, execution will resume at the
attacker's shellcode.
By overwriting a function pointer[1] or exception handler to point to the shellcode, which is
subsequently executed
By overwriting a local variable (or pointer) of a different stack frame, which will be used by
the function which owns that frame later.[2]

The attacker designs data to cause one of these exploits, then places this data in a buffer supplied to users
by the vulnerable code. If the address of the user-supplied data used to affect the stack buffer overflow is
unpredictable, exploiting a stack buffer overflow to cause remote code execution becomes much more
difficult. One technique that can be used to exploit such a buffer overflow is called "trampolining". In that
technique, an attacker will find a pointer to the vulnerable stack buffer, and compute the location of their
shellcode relative to that pointer. Then, they will use the overwrite to jump to an instruction already in
memory which will make a second jump, this time relative to the pointer; that second jump will branch
execution into the shellcode. Suitable instructions are often present in large code. The Metasploit Project,
for example, maintains a database of suitable opcodes, though it lists only those found in the Windows
operating system.[3]

strlcpy(A, "excessive", sizeof(A));

Exploitation

Stack-based exploitation

Heap-based exploitation

https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/Strcpy
https://en.wikipedia.org/wiki/Strlcpy
https://en.wikipedia.org/wiki/Strlcpy
https://en.wikipedia.org/wiki/Strncpy
https://en.wikipedia.org/wiki/Exploit_(computer_security)
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Heap_memory
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Stack_frame
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Function_pointer
https://en.wikipedia.org/wiki/Exception_handler
https://en.wikipedia.org/wiki/Trampolining_(computing)
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Metasploit_Project
https://en.wikipedia.org/wiki/Microsoft_Windows

A buffer overflow occurring in the heap data area is referred to as a heap overflow and is exploitable in a
manner different from that of stack-based overflows. Memory on the heap is dynamically allocated by the
application at run-time and typically contains program data. Exploitation is performed by corrupting this
data in specific ways to cause the application to overwrite internal structures such as linked list pointers.
The canonical heap overflow technique overwrites dynamic memory allocation linkage (such as malloc
meta data) and uses the resulting pointer exchange to overwrite a program function pointer.

Microsoft's GDI+ vulnerability in handling JPEGs is an example of the danger a heap overflow can
present.[4]

Manipulation of the buffer, which occurs before it is read or executed, may lead to the failure of an
exploitation attempt. These manipulations can mitigate the threat of exploitation, but may not make it
impossible. Manipulations could include conversion to upper or lower case, removal of metacharacters and
filtering out of non-alphanumeric strings. However, techniques exist to bypass these filters and
manipulations; alphanumeric code, polymorphic code, self-modifying code and return-to-libc attacks. The
same methods can be used to avoid detection by intrusion detection systems. In some cases, including
where code is converted into Unicode,[5] the threat of the vulnerability has been misrepresented by the
disclosers as only Denial of Service when in fact the remote execution of arbitrary code is possible.

In real-world exploits there are a variety of challenges which need to be overcome for exploits to operate
reliably. These factors include null bytes in addresses, variability in the location of shellcode, differences
between environments and various counter-measures in operation.

A NOP-sled is the oldest and most widely known technique for exploiting stack buffer overflows.[6] It
solves the problem of finding the exact address of the buffer by effectively increasing the size of the target
area. To do this, much larger sections of the stack are corrupted with the no-op machine instruction. At the
end of the attacker-supplied data, after the no-op instructions, the attacker places an instruction to perform a
relative jump to the top of the buffer where the shellcode is located. This collection of no-ops is referred to
as the "NOP-sled" because if the return address is overwritten with any address within the no-op region of
the buffer, the execution will "slide" down the no-ops until it is redirected to the actual malicious code by
the jump at the end. This technique requires the attacker to guess where on the stack the NOP-sled is
instead of the comparatively small shellcode.[7]

Because of the popularity of this technique, many vendors of intrusion prevention systems will search for
this pattern of no-op machine instructions in an attempt to detect shellcode in use. It is important to note that
a NOP-sled does not necessarily contain only traditional no-op machine instructions; any instruction that
does not corrupt the machine state to a point where the shellcode will not run can be used in place of the
hardware assisted no-op. As a result, it has become common practice for exploit writers to compose the no-
op sled with randomly chosen instructions which will have no real effect on the shellcode execution.[8]

While this method greatly improves the chances that an attack will be successful, it is not without problems.
Exploits using this technique still must rely on some amount of luck that they will guess offsets on the stack
that are within the NOP-sled region.[9] An incorrect guess will usually result in the target program crashing
and could alert the system administrator to the attacker's activities. Another problem is that the NOP-sled

Barriers to exploitation

Practicalities of exploitation

NOP sled technique

https://en.wikipedia.org/wiki/Malloc
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Graphics_Device_Interface
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/Metacharacter
https://en.wikipedia.org/wiki/Alphanumeric
https://en.wikipedia.org/wiki/Alphanumeric_code
https://en.wikipedia.org/wiki/Polymorphic_code
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/No-op
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Intrusion_prevention_system
https://en.wikipedia.org/wiki/System_administrator

Illustration of a NOP-sled payload
on the stack.

An instruction from ntdll.dll to call the
DbgPrint() routine contains the i386 machine
opcode for jmp esp.

requires a much larger amount of memory in which to hold a NOP-
sled large enough to be of any use. This can be a problem when the
allocated size of the affected buffer is too small and the current depth
of the stack is shallow (i.e., there is not much space from the end of
the current stack frame to the start of the stack). Despite its problems,
the NOP-sled is often the only method that will work for a given
platform, environment, or situation, and as such it is still an important
technique.

The "jump to register" technique allows for reliable exploitation of
stack buffer overflows without the need for extra room for a NOP-
sled and without having to guess stack offsets. The strategy is to
overwrite the return pointer with something that will cause the
program to jump to a known pointer stored within a register which
points to the controlled buffer and thus the shellcode. For example, if
register A contains a pointer to the start of a buffer then any jump or
call taking that register as an operand can be used to gain control of
the flow of execution.[10]

In practice a program may not intentionally contain
instructions to jump to a particular register. The
traditional solution is to find an unintentional instance
of a suitable opcode at a fixed location somewhere
within the program memory. In figure E on the left is

an example of such an unintentional instance of the i386 jmp esp instruction. The opcode for this
instruction is FF E4.[11] This two-byte sequence can be found at a one-byte offset from the start of the
instruction call DbgPrint at address 0x7C941EED. If an attacker overwrites the program return
address with this address the program will first jump to 0x7C941EED, interpret the opcode FF E4 as the
jmp esp instruction, and will then jump to the top of the stack and execute the attacker's code.[12]

When this technique is possible the severity of the vulnerability increases considerably. This is because
exploitation will work reliably enough to automate an attack with a virtual guarantee of success when it is
run. For this reason, this is the technique most commonly used in Internet worms that exploit stack buffer
overflow vulnerabilities.[13]

This method also allows shellcode to be placed after the overwritten return address on the Windows
platform. Since executables are mostly based at address 0x00400000 and x86 is a Little Endian
architecture, the last byte of the return address must be a null, which terminates the buffer copy and nothing
is written beyond that. This limits the size of the shellcode to the size of the buffer, which may be overly

The jump to address stored in a register technique

https://en.wikipedia.org/wiki/File:Nopsled.svg
https://en.wikipedia.org/wiki/File:JumpToEsp.png
https://en.wikipedia.org/wiki/I386
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/File:JumpToEsp.png
https://en.wikipedia.org/wiki/Internet_worm
https://en.wikipedia.org/wiki/Little_endian

restrictive. DLLs are located in high memory (above 0x01000000) and so have addresses containing no
null bytes, so this method can remove null bytes (or other disallowed characters) from the overwritten
return address. Used in this way, the method is often referred to as "DLL trampolining".

Various techniques have been used to detect or prevent buffer overflows, with various tradeoffs. The most
reliable way to avoid or prevent buffer overflows is to use automatic protection at the language level. This
sort of protection, however, cannot be applied to legacy code, and often technical, business, or cultural
constraints call for a vulnerable language. The following sections describe the choices and implementations
available.

Assembly and C/C++ are popular programming languages that are vulnerable to buffer overflow, in part
because they allow direct access to memory and are not strongly typed.[14] C provides no built-in
protection against accessing or overwriting data in any part of memory; more specifically, it does not check
that data written to a buffer is within the boundaries of that buffer. The standard C++ libraries provide many
ways of safely buffering data, and C++'s Standard Template Library (STL) provides containers that can
optionally perform bounds checking if the programmer explicitly calls for checks while accessing data. For
example, a vector's member function at() performs a bounds check and throws an out_of_range
exception if the bounds check fails.[15] However, C++ behaves just like C if the bounds check is not
explicitly called. Techniques to avoid buffer overflows also exist for C.

Languages that are strongly typed and do not allow direct memory access, such as COBOL, Java, Python,
and others, prevent buffer overflow from occurring in most cases.[14] Many programming languages other
than C/C++ provide runtime checking and in some cases even compile-time checking which might send a
warning or raise an exception when C or C++ would overwrite data and continue to execute further
instructions until erroneous results are obtained which might or might not cause the program to crash.
Examples of such languages include Ada, Eiffel, Lisp, Modula-2, Smalltalk, OCaml and such C-
derivatives as Cyclone, Rust and D. The Java and .NET Framework bytecode environments also require
bounds checking on all arrays. Nearly every interpreted language will protect against buffer overflows,
signaling a well-defined error condition. Often where a language provides enough type information to do
bounds checking an option is provided to enable or disable it. Static code analysis can remove many
dynamic bound and type checks, but poor implementations and awkward cases can significantly decrease
performance. Software engineers must carefully consider the tradeoffs of safety versus performance costs
when deciding which language and compiler setting to use.

The problem of buffer overflows is common in the C and C++ languages because they expose low level
representational details of buffers as containers for data types. Buffer overflows must thus be avoided by
maintaining a high degree of correctness in code which performs buffer management. It has also long been
recommended to avoid standard library functions which are not bounds checked, such as gets, scanf
and strcpy. The Morris worm exploited a gets call in fingerd.[16]

Well-written and tested abstract data type libraries which centralize and automatically perform buffer
management, including bounds checking, can reduce the occurrence and impact of buffer overflows. The
two main building-block data types in these languages in which buffer overflows commonly occur are
strings and arrays; thus, libraries preventing buffer overflows in these data types can provide the vast

Protective countermeasures

Choice of programming language

Use of safe libraries

https://en.wikipedia.org/wiki/Legacy_code
https://en.wikipedia.org/wiki/Strongly_typed
https://en.wikipedia.org/wiki/Standard_Template_Library
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Eiffel_(programming_language)
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/OCaml
https://en.wikipedia.org/wiki/Cyclone_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/D_(programming_language)
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Interpreted_programming_language
https://en.wikipedia.org/wiki/Static_code_analysis
https://en.wikipedia.org/wiki/Gets()
https://en.wikipedia.org/wiki/Scanf
https://en.wikipedia.org/wiki/Strcpy
https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Fingerd

majority of the necessary coverage. Still, failure to use these safe libraries correctly can result in buffer
overflows and other vulnerabilities; and naturally, any bug in the library itself is a potential vulnerability.
"Safe" library implementations include "The Better String Library",[17] Vstr[18] and Erwin.[19] The
OpenBSD operating system's C library provides the strlcpy and strlcat functions, but these are more limited
than full safe library implementations.

In September 2007, Technical Report 24731, prepared by the C standards committee, was published;[20] it
specifies a set of functions which are based on the standard C library's string and I/O functions, with
additional buffer-size parameters. However, the efficacy of these functions for the purpose of reducing
buffer overflows is disputable; it requires programmer intervention on a per function call basis that is
equivalent to intervention that could make the analogous older standard library functions buffer overflow
safe.[21]

Buffer overflow protection is used to detect the most common buffer overflows by checking that the stack
has not been altered when a function returns. If it has been altered, the program exits with a segmentation
fault. Three such systems are Libsafe,[22] and the StackGuard[23] and ProPolice[24] gcc patches.

Microsoft's implementation of Data Execution Prevention (DEP) mode explicitly protects the pointer to the
Structured Exception Handler (SEH) from being overwritten.[25]

Stronger stack protection is possible by splitting the stack in two: one for data and one for function returns.
This split is present in the Forth language, though it was not a security-based design decision. Regardless,
this is not a complete solution to buffer overflows, as sensitive data other than the return address may still
be overwritten.

Buffer overflows work by manipulating pointers, including stored addresses. PointGuard was proposed as
a compiler-extension to prevent attackers from being able to reliably manipulate pointers and addresses.[26]

The approach works by having the compiler add code to automatically XOR-encode pointers before and
after they are used. Theoretically, because the attacker does not know what value will be used to
encode/decode the pointer, he cannot predict what it will point to if he overwrites it with a new value.
PointGuard was never released, but Microsoft implemented a similar approach beginning in Windows XP
SP2 and Windows Server 2003 SP1.[27] Rather than implement pointer protection as an automatic feature,
Microsoft added an API routine that can be called. This allows for better performance (because it is not
used all of the time), but places the burden on the programmer to know when it is necessary.

Because XOR is linear, an attacker may be able to manipulate an encoded pointer by overwriting only the
lower bytes of an address. This can allow an attack to succeed if the attacker is able to attempt the exploit
multiple times or is able to complete an attack by causing a pointer to point to one of several locations (such
as any location within a NOP sled).[28] Microsoft added a random rotation to their encoding scheme to
address this weakness to partial overwrites.[29]

Executable space protection is an approach to buffer overflow protection which prevents execution of code
on the stack or the heap. An attacker may use buffer overflows to insert arbitrary code into the memory of a
program, but with executable space protection, any attempt to execute that code will cause an exception.

Buffer overflow protection

Pointer protection

Executable space protection

https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/C_library
https://en.wikipedia.org/wiki/Strlcpy
https://en.wikipedia.org/wiki/Strlcat
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Segmentation_fault
https://en.wikipedia.org/wiki/StackGuard
https://en.wikipedia.org/wiki/ProPolice
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://en.wikipedia.org/wiki/Structured_Exception_Handler
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Windows_XP
https://en.wikipedia.org/wiki/Windows_Server_2003

Some CPUs support a feature called NX ("No eXecute") or XD ("eXecute Disabled") bit, which in
conjunction with software, can be used to mark pages of data (such as those containing the stack and the
heap) as readable and writable but not executable.

Some Unix operating systems (e.g. OpenBSD, macOS) ship with executable space protection (e.g. W^X).
Some optional packages include:

PaX[30]

Exec Shield[31]

Openwall[32]

Newer variants of Microsoft Windows also support executable space protection, called Data Execution
Prevention.[33] Proprietary add-ons include:

BufferShield[34]

StackDefender[35]

Executable space protection does not generally protect against return-to-libc attacks, or any other attack
which does not rely on the execution of the attackers code. However, on 64-bit systems using ASLR, as
described below, executable space protection makes it far more difficult to execute such attacks.

Address space layout randomization (ASLR) is a computer security feature which involves arranging the
positions of key data areas, usually including the base of the executable and position of libraries, heap, and
stack, randomly in a process' address space.

Randomization of the virtual memory addresses at which functions and variables can be found can make
exploitation of a buffer overflow more difficult, but not impossible. It also forces the attacker to tailor the
exploitation attempt to the individual system, which foils the attempts of internet worms.[36] A similar but
less effective method is to rebase processes and libraries in the virtual address space.

The use of deep packet inspection (DPI) can detect, at the network perimeter, very basic remote attempts to
exploit buffer overflows by use of attack signatures and heuristics. These are able to block packets which
have the signature of a known attack, or if a long series of No-Operation instructions (known as a NOP-
sled) is detected, these were once used when the location of the exploit's payload is slightly variable.

Packet scanning is not an effective method since it can only prevent known attacks and there are many
ways that a NOP-sled can be encoded. Shellcode used by attackers can be made alphanumeric,
metamorphic, or self-modifying to evade detection by heuristic packet scanners and intrusion detection
systems.

Checking for buffer overflows and patching the bugs that cause them naturally helps prevent buffer
overflows. One common automated technique for discovering them is fuzzing.[37] Edge case testing can
also uncover buffer overflows, as can static analysis.[38] Once a potential buffer overflow is detected, it

Address space layout randomization

Deep packet inspection

Testing

https://en.wikipedia.org/wiki/NX_bit
https://en.wikipedia.org/wiki/XD_bit
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/W%5EX
https://en.wikipedia.org/wiki/PaX
https://en.wikipedia.org/wiki/Exec_Shield
https://en.wikipedia.org/wiki/Openwall
https://en.wikipedia.org/wiki/Data_Execution_Prevention
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/ASLR
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Internet_worm
https://en.wikipedia.org/wiki/Rebasing
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Payload_(software)
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Alphanumeric_code
https://en.wikipedia.org/wiki/Metamorphic_code
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/Intrusion_detection_system
https://en.wikipedia.org/wiki/Fuzzer

must be patched; this makes the testing approach useful for software that is in development, but less useful
for legacy software that is no longer maintained or supported.

Buffer overflows were understood and partially publicly documented as early as 1972, when the Computer
Security Technology Planning Study laid out the technique: "The code performing this function does not
check the source and destination addresses properly, permitting portions of the monitor to be overlaid by the
user. This can be used to inject code into the monitor that will permit the user to seize control of the
machine."[39] Today, the monitor would be referred to as the kernel.

The earliest documented hostile exploitation of a buffer overflow was in 1988. It was one of several
exploits used by the Morris worm to propagate itself over the Internet. The program exploited was a service
on Unix called finger.[40] Later, in 1995, Thomas Lopatic independently rediscovered the buffer overflow
and published his findings on the Bugtraq security mailing list.[41] A year later, in 1996, Elias Levy (also
known as Aleph One) published in Phrack magazine the paper "Smashing the Stack for Fun and
Profit",[42] a step-by-step introduction to exploiting stack-based buffer overflow vulnerabilities.

Since then, at least two major internet worms have exploited buffer overflows to compromise a large
number of systems. In 2001, the Code Red worm exploited a buffer overflow in Microsoft's Internet
Information Services (IIS) 5.0[43] and in 2003 the SQL Slammer worm compromised machines running
Microsoft SQL Server 2000.[44]

In 2003, buffer overflows present in licensed Xbox games have been exploited to allow unlicensed
software, including homebrew games, to run on the console without the need for hardware modifications,
known as modchips.[45] The PS2 Independence Exploit also used a buffer overflow to achieve the same
for the PlayStation 2. The Twilight hack accomplished the same with the Wii, using a buffer overflow in
The Legend of Zelda: Twilight Princess.

Billion laughs
Buffer over-read
Coding conventions
Computer security
End-of-file
Heap overflow
Ping of death
Port scanner

Return-to-libc attack
Safety-critical system
Security-focused operating system
Self-modifying code
Software quality
Shellcode
Stack buffer overflow
Uncontrolled format string

1. "CORE-2007-0219: OpenBSD's IPv6 mbufs remote kernel buffer overflow" (http://www.secur
ityfocus.com/archive/1/462728/30/150/threaded). Retrieved 2007-05-15.

2. "Modern Overflow Targets" (http://packetstormsecurity.com/files/download/121751/ModernO
verflowTargets.pdf) (PDF). Retrieved 2013-07-05.

3. "The Metasploit Opcode Database" (https://web.archive.org/web/20070512195939/http://ww
w.metasploit.com/users/opcode/msfopcode.cgi). Archived from the original (http://metasploit.
com/users/opcode/msfopcode.cgi) on 12 May 2007. Retrieved 2007-05-15.

History

See also

References

https://en.wikipedia.org/wiki/Morris_worm
https://en.wikipedia.org/wiki/Service_(systems_architecture)
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Finger_protocol
https://en.wikipedia.org/wiki/Bugtraq
https://en.wikipedia.org/wiki/Elias_Levy
https://en.wikipedia.org/wiki/Phrack
https://en.wikipedia.org/wiki/Code_Red_worm
https://en.wikipedia.org/wiki/Internet_Information_Services
https://en.wikipedia.org/wiki/SQL_Slammer
https://en.wikipedia.org/wiki/Microsoft_SQL_Server_2000
https://en.wikipedia.org/wiki/Xbox_(console)
https://en.wikipedia.org/wiki/Homebrew_(video_games)
https://en.wikipedia.org/wiki/Modchip
https://en.wikipedia.org/wiki/PS2_Independence_Exploit
https://en.wikipedia.org/wiki/PlayStation_2
https://en.wikipedia.org/wiki/Wii
https://en.wikipedia.org/wiki/The_Legend_of_Zelda:_Twilight_Princess
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Buffer_over-read
https://en.wikipedia.org/wiki/Coding_conventions
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/End-of-file
https://en.wikipedia.org/wiki/Heap_overflow
https://en.wikipedia.org/wiki/Ping_of_death
https://en.wikipedia.org/wiki/Port_scanner
https://en.wikipedia.org/wiki/Return-to-libc_attack
https://en.wikipedia.org/wiki/Safety-critical_system
https://en.wikipedia.org/wiki/Security-focused_operating_system
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Shellcode
https://en.wikipedia.org/wiki/Stack_buffer_overflow
https://en.wikipedia.org/wiki/Uncontrolled_format_string
http://www.securityfocus.com/archive/1/462728/30/150/threaded
http://packetstormsecurity.com/files/download/121751/ModernOverflowTargets.pdf
https://web.archive.org/web/20070512195939/http://www.metasploit.com/users/opcode/msfopcode.cgi
http://metasploit.com/users/opcode/msfopcode.cgi

4. "Microsoft Technet Security Bulletin MS04-028" (https://web.archive.org/web/201108042213
11/http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx#). Archived from the
original (http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx) on 2011-08-04.
Retrieved 2007-05-15.

5. "Creating Arbitrary Shellcode In Unicode Expanded Strings" (https://web.archive.org/web/20
060105041036/http://www.net-security.org/dl/articles/unicodebo.pdf) (PDF). Archived from
the original (http://www.net-security.org/dl/articles/unicodebo.pdf) (PDF) on 2006-01-05.
Retrieved 2007-05-15.

6. Vangelis (2004-12-08). "Stack-based Overflow Exploit: Introduction to Classical and
Advanced Overflow Technique" (https://web.archive.org/web/20070818115455/http://www.n
eworder.box.sk/newsread.php?newsid=12476). Wowhacker via Neworder. Archived from
the original (http://www.neworder.box.sk/newsread.php?newsid=12476) (text) on August 18,
2007.

7. Balaban, Murat. "Buffer Overflows Demystified" (http://www.enderunix.org/docs/en/bof-eng.tx
t) (text). Enderunix.org.

8. Akritidis, P.; Evangelos P. Markatos; M. Polychronakis; Kostas D. Anagnostakis (2005).
"STRIDE: Polymorphic Sled Detection through Instruction Sequence Analysis." (https://web.
archive.org/web/20120901034404/http://dcs.ics.forth.gr/Activities/papers/stride-IFIP-SEC05.
pdf) (PDF). Proceedings of the 20th IFIP International Information Security Conference
(IFIP/SEC 2005). IFIP International Information Security Conference. Archived from the
original (http://dcs.ics.forth.gr/Activities/papers/stride-IFIP-SEC05.pdf) (PDF) on 2012-09-01.
Retrieved 2012-03-04.

9. Klein, Christian (September 2004). "Buffer Overflow" (https://web.archive.org/web/20070928
011639/http://c0re.23.nu/~chris/presentations/overflow2005.pdf) (PDF). Archived from the
original (http://c0re.23.nu/~chris/presentations/overflow2005.pdf) (PDF) on 2007-09-28.

10. Shah, Saumil (2006). "Writing Metasploit Plugins: from vulnerability to exploit" (http://confere
nce.hitb.org/hitbsecconf2006kl/materials/DAY%201%20-%20Saumil%20Shah%20-%20Writ
ing%20Metasploit%20Plugins.pdf) (PDF). Hack In The Box. Kuala Lumpur. Retrieved
2012-03-04.

11. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2A: Instruction Set
Reference, A-M (https://web.archive.org/web/20071129123212/http://developer.intel.com/de
sign/processor/manuals/253666.pdf) (PDF). Intel Corporation. May 2007. pp. 3–508.
Archived from the original (http://developer.intel.com/design/processor/manuals/253666.pdf)
(PDF) on 2007-11-29.

12. Alvarez, Sergio (2004-09-05). "Win32 Stack BufferOverFlow Real Life Vuln-Dev Process" (h
ttp://packetstormsecurity.org/papers/Win2000/Intro_to_Win32_Exploits.pdf) (PDF). IT
Security Consulting. Retrieved 2012-03-04.

13. Ukai, Yuji; Soeder, Derek; Permeh, Ryan (2004). "Environment Dependencies in Windows
Exploitation" (https://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-ukai-eng.ppt).
BlackHat Japan. Japan: eEye Digital Security. Retrieved 2012-03-04.

14. https://www.owasp.org/index.php/Buffer_OverflowsBuffer Overflows article on OWASP
Archived (https://web.archive.org/web/20160829122543/https://www.owasp.org/index.php/B
uffer_Overflows) 2016-08-29 at the Wayback Machine

15. "vector::at - C++ Reference" (http://www.cplusplus.com/reference/vector/vector/at/).
Cplusplus.com. Retrieved 2014-03-27.

16. http://wiretap.area.com/Gopher/Library/Techdoc/Virus/inetvir.823
17. "The Better String Library" (http://bstring.sf.net/).
18. "The Vstr Homepage" (https://web.archive.org/web/20170305020810/http://www.and.org/vst

r/). Archived from the original (http://www.and.org/vstr/) on 2017-03-05. Retrieved
2007-05-15.

19. "The Erwin Homepage" (http://www.theiling.de/projects/erwin.html). Retrieved 2007-05-15.

https://web.archive.org/web/20110804221311/http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx#
http://www.microsoft.com/technet/security/bulletin/MS04-028.mspx
https://web.archive.org/web/20060105041036/http://www.net-security.org/dl/articles/unicodebo.pdf
http://www.net-security.org/dl/articles/unicodebo.pdf
https://web.archive.org/web/20070818115455/http://www.neworder.box.sk/newsread.php?newsid=12476
http://www.neworder.box.sk/newsread.php?newsid=12476
http://www.enderunix.org/docs/en/bof-eng.txt
https://web.archive.org/web/20120901034404/http://dcs.ics.forth.gr/Activities/papers/stride-IFIP-SEC05.pdf
http://dcs.ics.forth.gr/Activities/papers/stride-IFIP-SEC05.pdf
https://web.archive.org/web/20070928011639/http://c0re.23.nu/~chris/presentations/overflow2005.pdf
http://c0re.23.nu/~chris/presentations/overflow2005.pdf
http://conference.hitb.org/hitbsecconf2006kl/materials/DAY%201%20-%20Saumil%20Shah%20-%20Writing%20Metasploit%20Plugins.pdf
https://web.archive.org/web/20071129123212/http://developer.intel.com/design/processor/manuals/253666.pdf
http://developer.intel.com/design/processor/manuals/253666.pdf
http://packetstormsecurity.org/papers/Win2000/Intro_to_Win32_Exploits.pdf
https://www.blackhat.com/presentations/bh-asia-04/bh-jp-04-ukai-eng.ppt
https://www.owasp.org/index.php/Buffer_OverflowsBuffer
https://web.archive.org/web/20160829122543/https://www.owasp.org/index.php/Buffer_Overflows
https://en.wikipedia.org/wiki/Wayback_Machine
http://www.cplusplus.com/reference/vector/vector/at/
http://wiretap.area.com/Gopher/Library/Techdoc/Virus/inetvir.823
http://bstring.sf.net/
https://web.archive.org/web/20170305020810/http://www.and.org/vstr/
http://www.and.org/vstr/
http://www.theiling.de/projects/erwin.html

20. International Organization for Standardization (2007). "Information technology –
Programming languages, their environments and system software interfaces – Extensions to
the C library – Part 1: Bounds-checking interfaces" (https://www.iso.org/obp/ui/#iso:std:iso-ie
c:tr:24731:-1:ed-2:v1:en:sec:4). ISO Online Browsing Platform.

21. "CERT Secure Coding Initiative" (https://www.securecoding.cert.org/confluence/x/QwY).
Retrieved 2007-07-30.

22. "Libsafe at FSF.org" (http://directory.fsf.org/libsafe.html). Retrieved 2007-05-20.
23. "StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks by

Cowan et al" (https://www.usenix.org/publications/library/proceedings/sec98/full_papers/co
wan/cowan.pdf) (PDF). Retrieved 2007-05-20.

24. "ProPolice at X.ORG" (https://web.archive.org/web/20070212032750/http://wiki.x.org/wiki/Pr
oPolice). Archived from the original (http://wiki.x.org/wiki/ProPolice) on 12 February 2007.
Retrieved 2007-05-20.

25. "Bypassing Windows Hardware-enforced Data Execution Prevention" (https://web.archive.or
g/web/20070430040534/http://www.uninformed.org/?v=2&a=4&t=txt). Archived from the
original (http://www.uninformed.org/?v=2&a=4&t=txt) on 2007-04-30. Retrieved 2007-05-20.

26. "12th USENIX Security Symposium – Technical Paper" (http://www.usenix.org/events/sec0
3/tech/full_papers/cowan/cowan_html/index.html). www.usenix.org. Retrieved 3 April 2018.

27. "Protecting against Pointer Subterfuge (Kinda!)" (https://web.archive.org/web/201005020217
54/http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx). msdn.com.
Archived from the original (http://blogs.msdn.com/michael_howard/archive/2006/01/30/5202
00.aspx) on 2010-05-02. Retrieved 3 April 2018.

28. "USENIX - The Advanced Computing Systems Association" (http://www.usenix.org/publicati
ons/login/2005-06/pdfs/alexander0506.pdf) (PDF). www.usenix.org. Retrieved 3 April 2018.

29. "Protecting against Pointer Subterfuge (Redux)" (https://web.archive.org/web/20091219202
748/http://blogs.msdn.com/michael_howard/archive/2006/08/16/702707.aspx). msdn.com.
Archived from the original (http://blogs.msdn.com/michael_howard/archive/2006/08/16/7027
07.aspx) on 2009-12-19. Retrieved 3 April 2018.

30. "PaX: Homepage of the PaX team" (https://pax.grsecurity.net). Retrieved 2007-06-03.
31. "KernelTrap.Org" (https://archive.is/20120529183334/http://kerneltrap.org/node/644).

Archived from the original (http://kerneltrap.org/node/644) on 2012-05-29. Retrieved
2007-06-03.

32. "Openwall Linux kernel patch 2.4.34-ow1" (https://web.archive.org/web/20120219111512/htt
p://linux.softpedia.com/get/System/Operating-Systems/Kernels/Openwall-Linux-kernel-patch
-16454.shtml). Archived from the original (http://linux.softpedia.com/get/System/Operating-Sy
stems/Kernels/Openwall-Linux-kernel-patch-16454.shtml) on 2012-02-19. Retrieved
2007-06-03.

33. "Microsoft Technet: Data Execution Prevention" (https://web.archive.org/web/200606221402
39/http://technet2.microsoft.com/WindowsServer/en/Library/b0de1052-4101-44c3-a294-4da
1bd1ef2271033.mspx?mfr=true#). Archived from the original (http://technet2.microsoft.com/
WindowsServer/en/Library/b0de1052-4101-44c3-a294-4da1bd1ef2271033.mspx?mfr=true)
on 2006-06-22. Retrieved 2006-06-30.

34. "BufferShield: Prevention of Buffer Overflow Exploitation for Windows" (http://www.sys-mana
ge.com/english/products/products_BufferShield.html). Retrieved 2007-06-03.

35. "NGSec Stack Defender" (https://web.archive.org/web/20070513235539/http://www.ngsec.c
om/ngproducts/stackdefender/). Archived from the original (http://www.ngsec.com/ngproduct
s/stackdefender/) on 2007-05-13. Retrieved 2007-06-03.

36. "PaX at GRSecurity.net" (https://pax.grsecurity.net/docs/aslr.txt). Retrieved 2007-06-03.
37. "The Exploitant - Security info and tutorials" (http://raykoid666.wordpress.com). Retrieved

2009-11-29.

https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:24731:-1:ed-2:v1:en:sec:4
https://www.securecoding.cert.org/confluence/x/QwY
http://directory.fsf.org/libsafe.html
https://www.usenix.org/publications/library/proceedings/sec98/full_papers/cowan/cowan.pdf
https://web.archive.org/web/20070212032750/http://wiki.x.org/wiki/ProPolice
http://wiki.x.org/wiki/ProPolice
https://web.archive.org/web/20070430040534/http://www.uninformed.org/?v=2&a=4&t=txt
http://www.uninformed.org/?v=2&a=4&t=txt
http://www.usenix.org/events/sec03/tech/full_papers/cowan/cowan_html/index.html
https://web.archive.org/web/20100502021754/http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx
http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx
http://www.usenix.org/publications/login/2005-06/pdfs/alexander0506.pdf
https://web.archive.org/web/20091219202748/http://blogs.msdn.com/michael_howard/archive/2006/08/16/702707.aspx
http://blogs.msdn.com/michael_howard/archive/2006/08/16/702707.aspx
https://pax.grsecurity.net/
https://archive.is/20120529183334/http://kerneltrap.org/node/644
http://kerneltrap.org/node/644
https://web.archive.org/web/20120219111512/http://linux.softpedia.com/get/System/Operating-Systems/Kernels/Openwall-Linux-kernel-patch-16454.shtml
http://linux.softpedia.com/get/System/Operating-Systems/Kernels/Openwall-Linux-kernel-patch-16454.shtml
https://web.archive.org/web/20060622140239/http://technet2.microsoft.com/WindowsServer/en/Library/b0de1052-4101-44c3-a294-4da1bd1ef2271033.mspx?mfr=true#
http://technet2.microsoft.com/WindowsServer/en/Library/b0de1052-4101-44c3-a294-4da1bd1ef2271033.mspx?mfr=true
http://www.sys-manage.com/english/products/products_BufferShield.html
https://web.archive.org/web/20070513235539/http://www.ngsec.com/ngproducts/stackdefender/
http://www.ngsec.com/ngproducts/stackdefender/
https://pax.grsecurity.net/docs/aslr.txt
http://raykoid666.wordpress.com/

"Discovering and exploiting a remote buffer overflow vulnerability in an FTP server" (http://ra
ykoid666.wordpress.com/2009/11/28/remote-buffer-overflow-from-vulnerability-to-exploit-par
t-1/) by Raykoid666
"Smashing the Stack for Fun and Profit" (http://phrack.org/issues/49/14.html#article) by
Aleph One
Gerg, Isaac (2005-05-02). "An Overview and Example of the Buffer-Overflow Exploit" (https://
web.archive.org/web/20060927225105/http://iac.dtic.mil/iatac/download/Vol7_No4.pdf)
(PDF). IAnewsletter. Information Assurance Technology Analysis Center. 7 (4): 16–21.
Archived from the original (http://iac.dtic.mil/iatac/download/Vol7_No4.pdf) (PDF) on 2006-
09-27. Retrieved 2019-03-17.
CERT Secure Coding Standards (https://www.securecoding.cert.org/)
CERT Secure Coding Initiative (http://www.cert.org/secure-coding)
Secure Coding in C and C++ (http://www.cert.org/books/secure-coding)
SANS: inside the buffer overflow attack (http://www.sans.org/reading_room/whitepapers/sec
urecode/386.php)
"Advances in adjacent memory overflows" (https://web.archive.org/web/20130126024851/htt
p://www.awarenetwork.org/etc/alpha/?x=5) by Nomenumbra
A Comparison of Buffer Overflow Prevention Implementations and Weaknesses (https://ww
w.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf)
More Security Whitepapers about Buffer Overflows (https://web.archive.org/web/200908172
30359/http://doc.bughunter.net/buffer-overflow/)

38. Larochelle, David; Evans, David (13 August 2001). "Statically Detecting Likely Buffer
Overflow Vulnerabilities" (https://www.usenix.org/legacy/events/sec01/full_papers/larochell
e/larochelle_html/). USENIX Security Symposium. 32.

39. "Computer Security Technology Planning Study" (https://web.archive.org/web/20110721060
319/http://csrc.nist.gov/publications/history/ande72.pdf) (PDF). p. 61. Archived from the
original (http://csrc.nist.gov/publications/history/ande72.pdf) (PDF) on 2011-07-21. Retrieved
2007-11-02.

40. " "A Tour of The Worm" by Donn Seeley, University of Utah" (https://web.archive.org/web/20
070520233435/http://world.std.com/~franl/worm.html). Archived from the original (http://worl
d.std.com/~franl/worm.html) on 2007-05-20. Retrieved 2007-06-03.

41. "Bugtraq security mailing list archive" (https://web.archive.org/web/20070901222723/http://w
ww.security-express.com/archives/bugtraq/1995_1/0403.html). Archived from the original (htt
p://www.security-express.com/archives/bugtraq/1995_1/0403.html) on 2007-09-01.
Retrieved 2007-06-03.

42. " "Smashing the Stack for Fun and Profit" by Aleph One" (http://www.phrack.com/issues.htm
l?issue=49&id=14). Retrieved 2012-09-05.

43. "eEye Digital Security" (http://research.eeye.com/html/advisories/published/AL20010717.ht
ml). Retrieved 2007-06-03.

44. "Microsoft Technet Security Bulletin MS02-039" (https://web.archive.org/web/200803070529
03/http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx#). Archived from the
original (http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx) on 2008-03-07.
Retrieved 2007-06-03.

45. "Hacker breaks Xbox protection without mod-chip" (https://web.archive.org/web/2007092721
0513/http://www.gamesindustry.biz/content_page.php?aid=1461). Archived from the original
(http://www.gamesindustry.biz/content_page.php?aid=1461) on 2007-09-27. Retrieved
2007-06-03.

External links

http://raykoid666.wordpress.com/2009/11/28/remote-buffer-overflow-from-vulnerability-to-exploit-part-1/
http://phrack.org/issues/49/14.html#article
https://web.archive.org/web/20060927225105/http://iac.dtic.mil/iatac/download/Vol7_No4.pdf
https://en.wikipedia.org/wiki/Information_Assurance_Technology_Analysis_Center
http://iac.dtic.mil/iatac/download/Vol7_No4.pdf
https://www.securecoding.cert.org/
http://www.cert.org/secure-coding
http://www.cert.org/books/secure-coding
http://www.sans.org/reading_room/whitepapers/securecode/386.php
https://web.archive.org/web/20130126024851/http://www.awarenetwork.org/etc/alpha/?x=5
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-silberman/bh-us-04-silberman-paper.pdf
https://web.archive.org/web/20090817230359/http://doc.bughunter.net/buffer-overflow/
https://www.usenix.org/legacy/events/sec01/full_papers/larochelle/larochelle_html/
https://web.archive.org/web/20110721060319/http://csrc.nist.gov/publications/history/ande72.pdf
http://csrc.nist.gov/publications/history/ande72.pdf
https://web.archive.org/web/20070520233435/http://world.std.com/~franl/worm.html
http://world.std.com/~franl/worm.html
https://web.archive.org/web/20070901222723/http://www.security-express.com/archives/bugtraq/1995_1/0403.html
http://www.security-express.com/archives/bugtraq/1995_1/0403.html
http://www.phrack.com/issues.html?issue=49&id=14
http://research.eeye.com/html/advisories/published/AL20010717.html
https://web.archive.org/web/20080307052903/http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx#
http://www.microsoft.com/technet/security/bulletin/ms02-039.mspx
https://web.archive.org/web/20070927210513/http://www.gamesindustry.biz/content_page.php?aid=1461
http://www.gamesindustry.biz/content_page.php?aid=1461

Chapter 12: Writing Exploits III (https://web.archive.org/web/20071129123212/http://www.sy
ngress.com/book_catalog/327_SSPC/sample.pdf) from Sockets, Shellcode, Porting &
Coding: Reverse Engineering Exploits and Tool Coding for Security Professionals by James
C. Foster (ISBN 1-59749-005-9). Detailed explanation of how to use Metasploit to develop a
buffer overflow exploit from scratch.
Computer Security Technology Planning Study (https://web.archive.org/web/201107210603
19/http://csrc.nist.gov/publications/history/ande72.pdf), James P. Anderson, ESD-TR-73-51,
ESD/AFSC, Hanscom AFB, Bedford, MA 01731 (October 1972) [NTIS AD-758 206]
"Buffer Overflows: Anatomy of an Exploit" (https://web.archive.org/web/20170905183149/htt
ps://www.exploit-db.com/docs/18346.pdf) by Nevermore
Secure Programming with GCC and GLibc (https://cansecwest.com/csw08/csw08-holtmann.
pdf) Archived (https://web.archive.org/web/20081121103054/https://cansecwest.com/csw08/
csw08-holtmann.pdf) 2008-11-21 at the Wayback Machine (2008), by Marcel Holtmann
"Criação de Exploits com Buffer Overflor – Parte 0 – Um pouco de teoria " (https://www.helvi
ojunior.com.br/it/security/criacao-de-exploits/criacao-de-exploits-parte-0-um-pouco-de-teori
a/) (2018), by Helvio Junior (M4v3r1ck)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Buffer_overflow&oldid=1040652327"

This page was last edited on 25 August 2021, at 21:11 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://web.archive.org/web/20071129123212/http://www.syngress.com/book_catalog/327_SSPC/sample.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-59749-005-9
https://web.archive.org/web/20110721060319/http://csrc.nist.gov/publications/history/ande72.pdf
https://web.archive.org/web/20170905183149/https://www.exploit-db.com/docs/18346.pdf
https://cansecwest.com/csw08/csw08-holtmann.pdf
https://web.archive.org/web/20081121103054/https://cansecwest.com/csw08/csw08-holtmann.pdf
https://en.wikipedia.org/wiki/Wayback_Machine
https://www.helviojunior.com.br/it/security/criacao-de-exploits/criacao-de-exploits-parte-0-um-pouco-de-teoria/
https://en.wikipedia.org/w/index.php?title=Buffer_overflow&oldid=1040652327
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

