CISCO SYSTEMS

# **Service Provider Solutions**

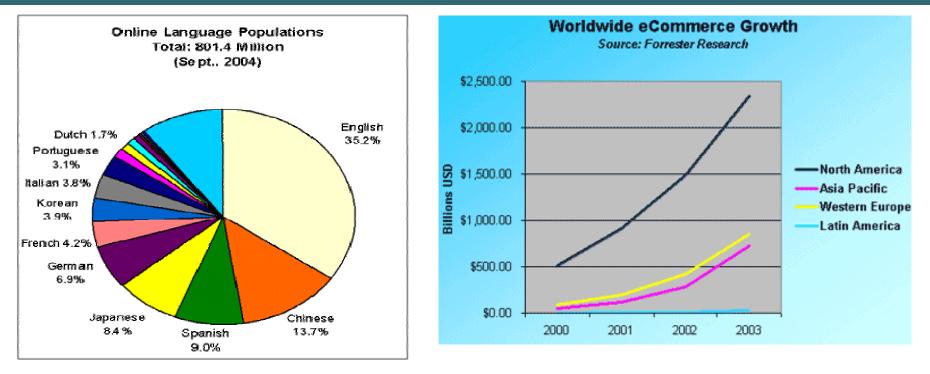
# DDoS Protection Solution Enabling "Clean Pipes" Capabilities

June 2005

Cisco Public

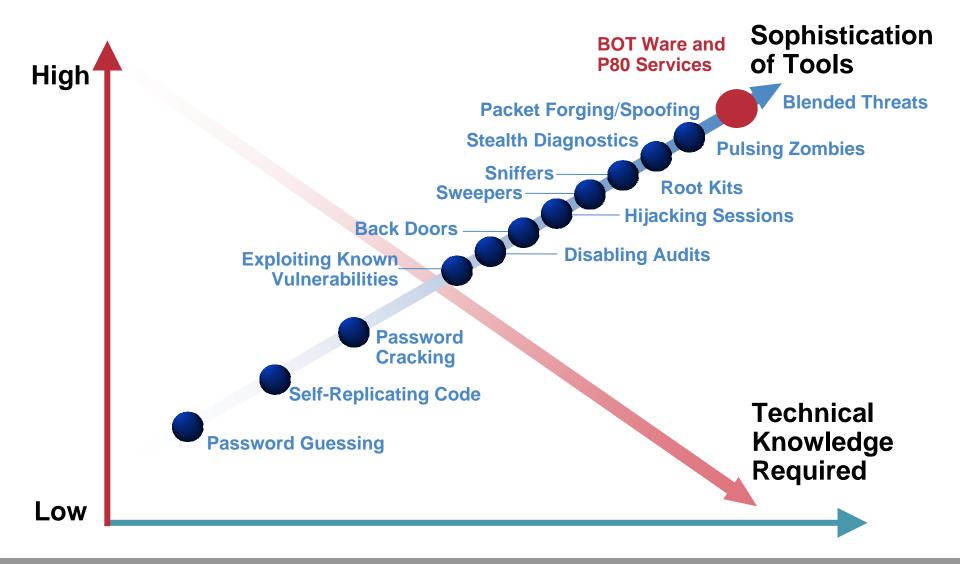
# **Service Provider Security Highlights**

- Security is the heart of internetworking's future—A secure infrastructure forms the foundation for service delivery
- We have moved from an Internet of implicit trust to an Internet of pervasive distrust
- The Miscreant Economy is here to stay and has created a damaging business opportunity of criminal intent
- All the other functionality of the router merges into a pervasive policy enforcement model


QoS = Security

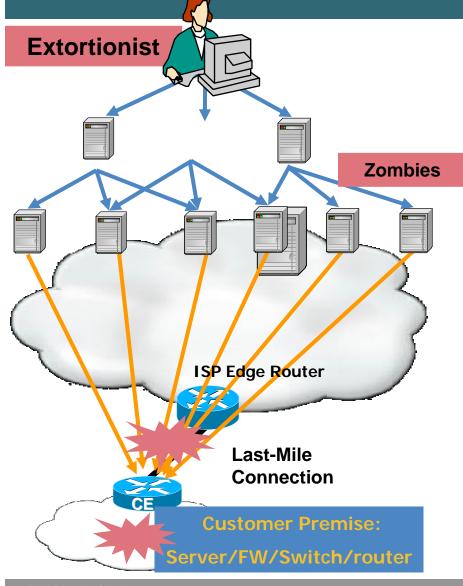
HA = Security

Edge Policy = Security


• We must improve reaction times, reduce windows of vulnerability, and ensure service delivery across the network

# **Macro Trends Fueling DDoS Attacks**




- World Internet usage between 2000–2005 has grown 146.2% to 800+ million
- Broadband explosion has resulted in an increasing number of poorly secured home PCs with always-on Internet connections just waiting to be discovered and taken over by miscreants
- eCommerce growth has made dependence on Internet more critical than ever
- Globalization due to the dot com explosion, outsourcing, and peer-to-peer applications has increased international traffic exchange significantly
- Most attacks launched from multinational origins—very hard to isolate and take action on the extortionists

## **Evolution of Threats and Exploits**



DDoS Protection S May 2005

# **BOTNETs—Making DDoS Attacks Easy**



#### • BOTNETs for Rent

- A BOTNET is comprised of computers that have been broken into and planted with programs (zombies) that can be directed to launch attacks from a central controller computer
- BOTNETs allow for all the types of DDOS attacks: ICMP attacks, TCP attacks, UDP attacks, and http overload
- Options for deploying BOTNETs are extensive and new tools are created to exploit the latest system vulnerabilities
- A relatively small BOTNET with only 1000 zombies can cause a great deal of damage
- For example: 1000 home PCs with an average upstream bandwidth of 128 kBps can offer more than 100 MBps
- Size of attacks are ever increasing

2-for-1 Special

## **Elements Impacted by DDoS**

## Applications

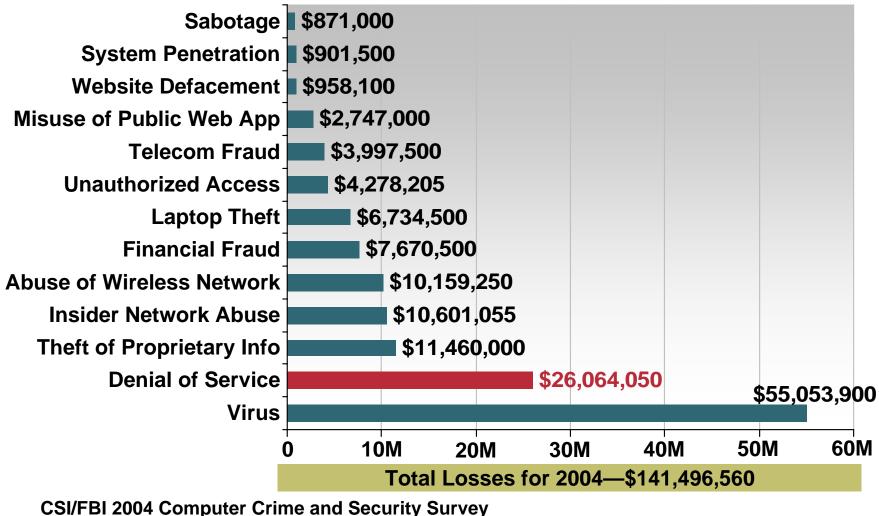
Attacks will exploit the usage of TCP/HTTP to overwhelm the computational resources

### Host/servers

Attacks will attempt to overload the resources using protocol attacks—Critical servers will not respond to normal request

#### • Bandwidth

Attacks will saturate the bandwidth on IP data connections that limit or block legitimate traffic flows


#### • Infrastructure

Attack target critical assets of network including routers, DNS/DHCP servers, and others devices that deliver network connections

## Collateral damage

Attacks that impact devices not originally targeted such as computation overload by devices that carry the DDoS attack

## Impacts Caused by Denial of Service



## Source: Computer Security Institute

2004: 269 Respondents


## **Quotes from the Industry**

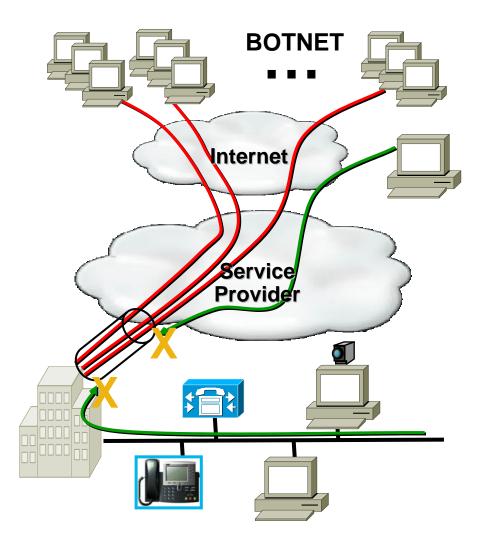


Extortion is "becoming more commonplace," says Ed Amoroso, chief information security officer at AT&T. "It's happening enough that it doesn't even raise an eyebrow anymore."

"We've had [extortion attempts] happen to our customers," says Bruce Schneier, CTO at managed security services provider Counterpane Internet Security. "More often than I'd like, they're paying up."






"Antidistributed DoS services cost around \$12K per month from carriers such as AT&T and MCI," says John Pescatore, Gartner security analyst. "The most popular type of antidistributed DoS equipment used by SPs is Cisco<sup>®</sup> Riverhead gear and Arbor Networks' detection tools. This equipment can filter about 99% of the attack traffic."

DDoS Protection Sol May 2005

© 2005 Cisco Systems, Inc. All rights reserved.

## The Risk to Your Business

- At risk:
  - The network is at risk to extortion
  - Maintaining business availability
  - Preserving reputation and customer retention
  - Regulatory obligations— SOX, GLBA, ...
  - Legal and service-level liabilities
- What can you do
  - Take a proactive stance
  - Plan and prepare for the worst case
  - Apply appropriate security tools → DDoS prevention solution



# What are Clean Pipes Capabilities?

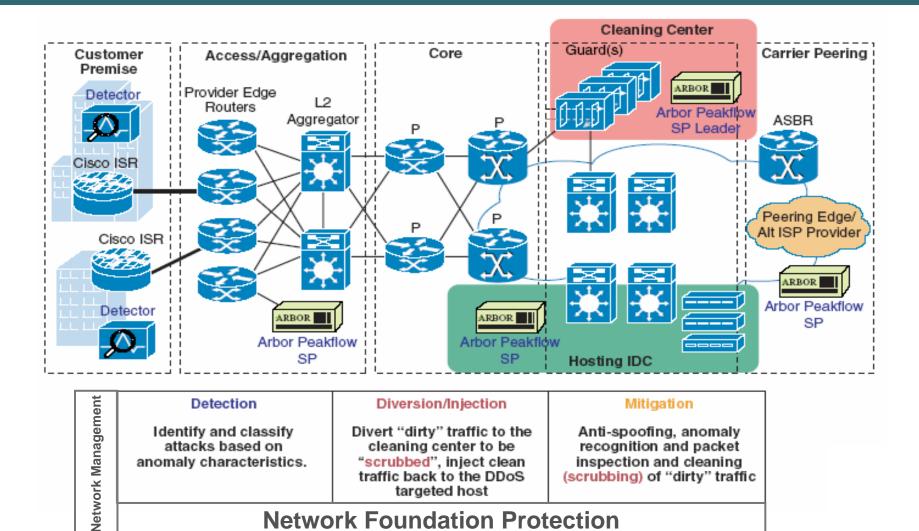
- A solution set to protect against security threats on the data pipe that are critical to deliver connectivity and services
- The data pipe choke point could be:

Enterprise/SMB/Consumer—Last-mile data connection

Federal—Data connections accessing critical information

Service Provider—All data connections (i.e., Peering Points, Peering Edges, Data Center...)

• Most damaging types of threats that reside on the data pipe:


**Distributed Denial of Service (DDoS)** 

Worms

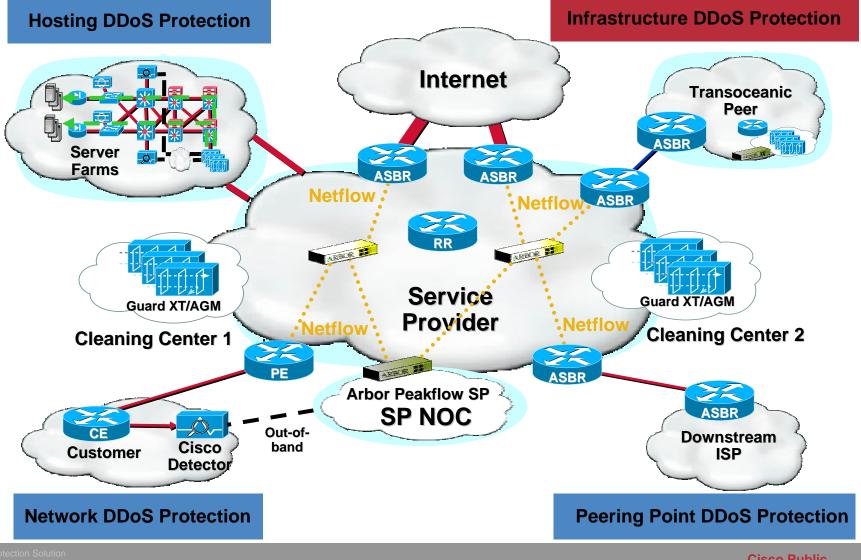
Viruses

- Goal is to remove the malicious traffic from the data pipe and only deliver the legitimate traffic before the link is compromised
- Service providers can protect themselves from attacks and can deliver security services for protection

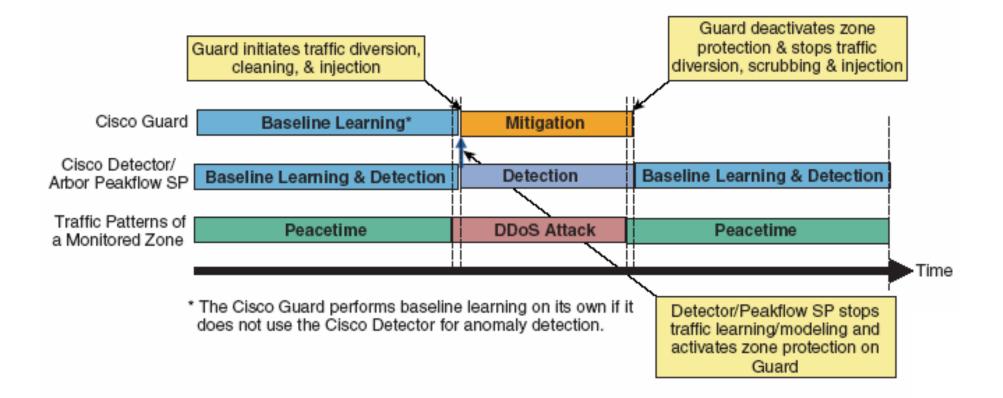
## **DDoS Protection Solution Overview**



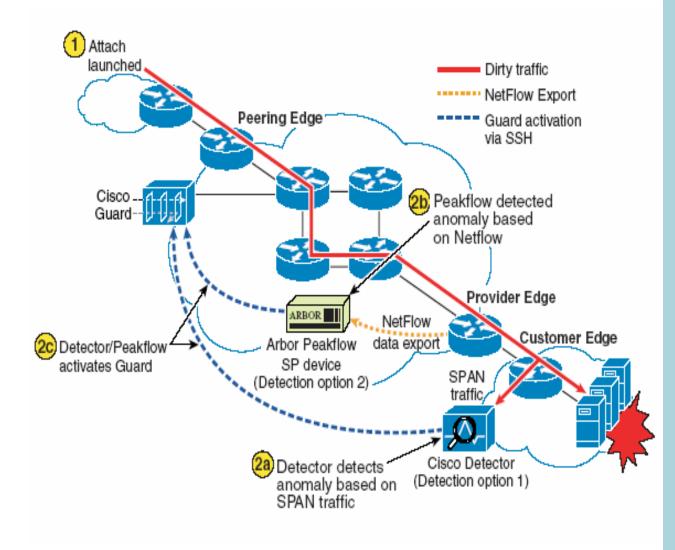
**Network Foundation Protection** 


# **DDoS Protection Models**

| DDoS Protection<br>Model                    | Core Function(s)                                                                                            | Key Capabilities                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Managed Network<br>DDoS Protection          | Last-mile bandwidth<br>protection for the<br>service provider<br>customers                                  | <ul> <li>New SP revenue model</li> <li>Primary function to enhance business<br/>continuance for customers</li> <li>Protection of critical last-mile bandwidth</li> <li>Ensure the continual delivery of enhanced<br/>services offered over data connections</li> </ul>                                                    |
| Managed Hosting<br>DDoS Protection          | Protection of data<br>center assets hosted<br>by the provider                                               | <ul> <li>New SP revenue model</li> <li>Ensure uptime of critical assets hosted by the service provider</li> <li>Differentiation of the hosting service</li> </ul>                                                                                                                                                         |
| Managed Peering<br>Point DDoS<br>Protection | Provide DDoS-free<br>wholesale<br>connections for<br>downstream ISPs                                        | <ul> <li>New SP revenue model</li> <li>Provide clean wholesale connections</li> <li>Better promote a DDoS-free environment</li> </ul>                                                                                                                                                                                     |
| DDoS Infrastructure<br>Protection           | Protection model for<br>the service provider<br>to defend their<br>networks and protect<br>service delivery | <ul> <li>Protect critical assets in the data center</li> <li>Mitigate attacks on critical routing infrastructure<br/>(Peering Points, Provider Edges and Core routers)</li> <li>Reduce OPEX by reduction of unwanted traffic<br/>across expensive transoceanic links</li> <li>Reduce collateral damage impacts</li> </ul> |


## **DDoS Protection Solution Architecture**

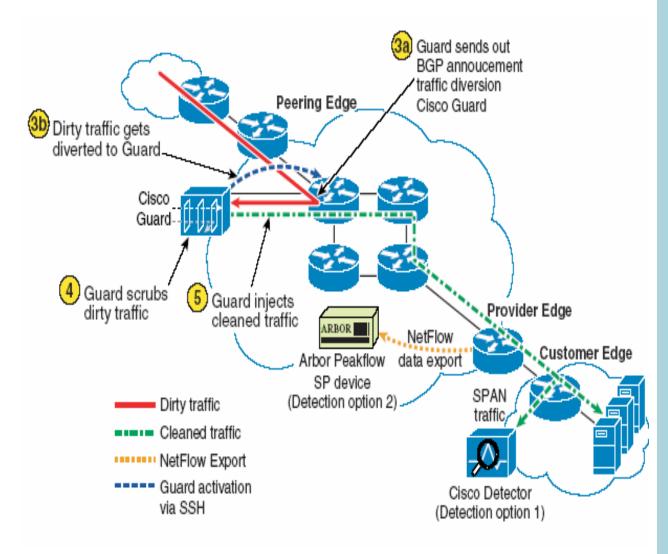
Managed Service


**Infrastructure Security** 



## **Lifecycle of DDoS Protection**




## **Detection Process**

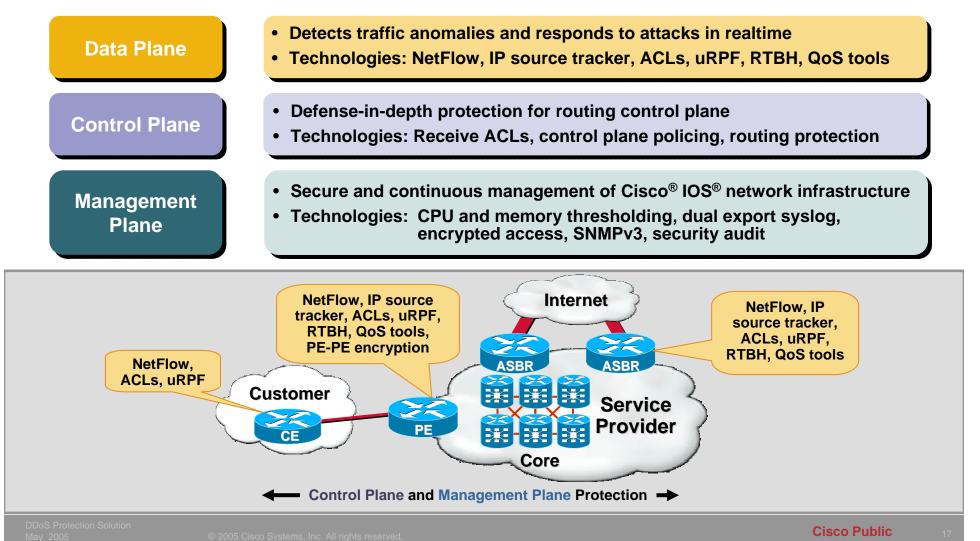


## Steps

- 1. Attacks are launched by extortionist via BOTNETS.
- 2a. Cisco<sup>®</sup> Detector on the customer premise can precisely detect when the customer is under attack.
- 2b. Netflow statistics from Cisco routers are exported to Arbor Peakflow SP for correlation. Anomalies are inspected for unexpected traffic behavior.
- 2c. The Detector or Arbor Peakflow SP indicates to the Guard that an attack has commenced.

# **Diversion and Mitigation Process**




## Steps

- 3a. A BGP announcement is the mechanism used to divert traffic to the Cisco<sup>®</sup> Guard.
- 3b. All traffic (malicious and legitimate) to the attacked destination is redirected to the Guard.
- 4. The Cisco Guard drops the DDoS anomalies and allows only the legitimate traffic to continue.
- 5. Cleaned traffic is injected back to the data path to reach the actual destination.

Traffic is continually monitored by Netflow and the Cisco Detector.

## **Network Foundation Protection**

## Protects infrastructure, enables continuous service delivery



## **Cisco Traffic Anomaly Detector** Detecting and Defeating Complex DDoS Attacks

#### **Programmable Element Enabling:**

- Sophisticated behavior-based anomaly detection
- Granular, per-connection state analysis of all packets
- Behavioral recognition engine eliminates the need to continually update profiles
- Session-state context recognizes validated session traffic

#### **Delivering:**

- Highly accurate identification of all types of known and Day Zero attacks
- Fast and thorough detection of the most elusive and sophisticated attacks
- Elimination of the need to continually update profiles
- Reduced number of alerts and false positives common with static signature-based approaches

- Detects per-flow deviations
- Identifies anomalous behavior
- Responds based on user preference



#### **Traffic Anomaly Detector XT 5600**



**Traffic Anomaly Detector Module** 

## Cisco Guard Detecting and Defeating Complex DDoS Attacks

#### **Programmable Element Enabling:**

- Detailed, granular, per-flow analysis and blocking
- Integrated dynamic filtering and active verification technologies
- Protocol analysis and rate limiting
- Intuitive, Web-based GUI simplifies policy definition, operational monitoring, and reporting

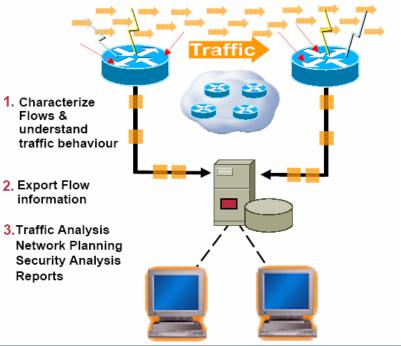
#### **Delivering:**

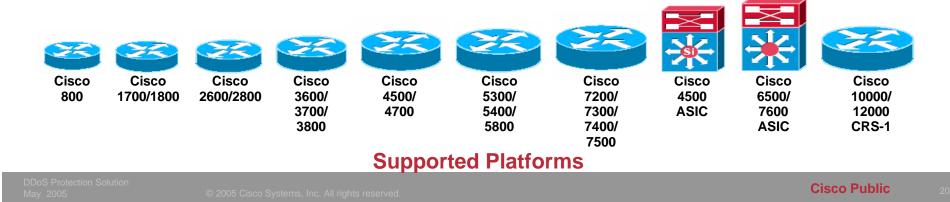
- Precision traffic protection, while allowing legitimate transactions to flow
- Rapid, auto protection against all types of assaults, even Day Zero attacks
- Admission of only traffic volumes that will not overwhelm downstream devices
- Identification/blocking all sizes of attacks, including those launched by distributed zombie hosts

## Helps ensure uninterrupted business operations from even the most malicious assaults



#### **Traffic Anomaly Guard XT 5650**





#### **Traffic Anomaly Guard Module**

## **Cisco IOS NetFlow**

- NetFlow is a standard for acquiring IP network and operational data
- Benefits
  - Understand the impact of network changes and services
  - Improve network usage and application performance
  - Reduce IP service and application costs
  - **Optimize network costs**
  - Detect and classify security agents

#### Enable NetFlow





# **Day Zero Attack Detection with NetFlow**

## **Benefits:**

- Monitor traffic for anomalies
- Identify and classify the attack
- Trace attack to its source

| ecent Anon<br>tatistics                                                                              | Recent Anomalies : Anomaly 125772 : Detailed 11:51:49 EST 27 Jan 2003                                                          |                                                                               |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          |                                       |                                    |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|
| Status                                                                                               | Topology                                                                                                                       | Ongoing                                                                       |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           | ARBOR                                                     |                                                                                          |                                       |                                    |
| 310105                                                                                               | lopology                                                                                                                       | Ongoing                                                                       | Recent                                                     | Dark IP                                                                                                                                                                                               | Admin                                                                                                | Abour                                                                                                                |                                                                                                                                                                           |                                                           |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                |                                                                               |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          |                                       | Help                               |
| nomaly                                                                                               | 125772 De                                                                                                                      | atailod Sta                                                                   | tistics                                                    |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          |                                       |                                    |
| inomary                                                                                              | 125112 00                                                                                                                      |                                                                               | 03003                                                      |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          | Sample summary                        | @ 09:40 💌 Go                       |
| ID                                                                                                   | Importance                                                                                                                     | r                                                                             | Severity                                                   | Dura                                                                                                                                                                                                  | ation                                                                                                | Direction                                                                                                            | Resource                                                                                                                                                                  | Start Time                                                | End Time Class                                                                           | Subclass                              | Action                             |
|                                                                                                      | High                                                                                                                           |                                                                               |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      | Group#3                                                                                                                                                                   | 00:33:27 EST                                              | 09:40:14 EST                                                                             |                                       |                                    |
| 25772                                                                                                | and tested                                                                                                                     | 958.2                                                                         | ?% of 3.40 Kpp                                             | s 09h 06                                                                                                                                                                                              | im 47s C                                                                                             | Dutgoing                                                                                                             | 192.168.16.0/20<br>members misc nets                                                                                                                                      | 25 Jan 2003                                               | 25 Jan 2003 Profile                                                                      | UDP Protocol An                       | nomaly Report                      |
|                                                                                                      |                                                                                                                                |                                                                               |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                |                                                                               |                                                            |                                                                                                                                                                                                       |                                                                                                      | pps of                                                                                                               | net8 for anomaly 1257                                                                                                                                                     | 72                                                        |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                | 40 K-                                                                         |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                | 30 H-                                                                         |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           | and the State of State of State of State                  | TRANSPORT                                                                                |                                       |                                    |
|                                                                                                      |                                                                                                                                |                                                                               | <b>R</b> -5                                                | , ee aff 99 a                                                                                                                                                                                         | Penla no the                                                                                         |                                                                                                                      |                                                                                                                                                                           | annaith attaithath at                                     |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                | ~ 20 H-                                                                       | 90 (P. 1)                                                  |                                                                                                                                                                                                       | <b>阿爾爾</b> 爾                                                                                         | 1976 H H H H H H                                                                                                     |                                                                                                                                                                           |                                                           |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                | 10 h-                                                                         | FTT 1                                                      | - 4 I <del>4</del>       4                                                                                                                                                                            | 》 111 仲旨仲兄。                                                                                          |                                                                                                                      | <u>_</u>                                                                                                                                                                  |                                                           |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                |                                                                               | L 14 14 18                                                 | ऽणण <u>ाक</u> ा⊱                                                                                                                                                                                      | ₩ ¥1    ₩//                                                                                          |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          | T I I                                 |                                    |
|                                                                                                      |                                                                                                                                |                                                                               |                                                            |                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      |                                                                                                                                                                           |                                                           |                                                                                          |                                       |                                    |
|                                                                                                      |                                                                                                                                | 0 k-<br>Sat                                                                   | 0:00 Sat 0                                                 | 1:00 Sat 0                                                                                                                                                                                            | ≟#Poi∰<br>2:00 Sat                                                                                   | 03:00 Sat 04:0                                                                                                       | 0 Sat 05:00 Sat 06:                                                                                                                                                       | 100 Sat 07:00                                             | Sat 08:00 Sat 09:00                                                                      | Sat 10:00                             |                                    |
|                                                                                                      |                                                                                                                                | 0 ki-<br>Sat                                                                  |                                                            | 1:00 Sat 0                                                                                                                                                                                            | 上伊西战<br>2:00 Sat                                                                                     | 03:00 Sat 04:0                                                                                                       | 0 Sat 05:00 Sat 06:<br>time                                                                                                                                               | :00 Sat 07:00                                             | Sat 08:00 Sat 09:00                                                                      | Sat 10:00                             |                                    |
|                                                                                                      |                                                                                                                                | 0 k -<br>Sat                                                                  | 00:00 Sat Ó:<br>expected                                   | 1:00 Sat Ó:                                                                                                                                                                                           | 上伊也战<br>2:00 Sat                                                                                     | 03:00 Sat 04:0                                                                                                       |                                                                                                                                                                           | :00 Sat 07:00                                             | Sat 08:00 Sat 09:00                                                                      | Sat 10:00                             |                                    |
| ffected N                                                                                            | letwork Eler                                                                                                                   |                                                                               |                                                            | <u>. </u> <u>.</u> <u>.</u> <u>.</u> <u>.</u> <u>.</u> <u>.</u> <u>.</u> <u>.</u> <u>.</u>                                                                                                            | 남 伊 也 战<br>2:00 Sat                                                                                  | 03200 Sat 0420                                                                                                       |                                                                                                                                                                           | :00 Sat 07:00                                             | Sat 08:00 Sat 09:00                                                                      | Sat 10:00                             |                                    |
|                                                                                                      | letwork Eler<br>et8 1.2.3.4                                                                                                    |                                                                               |                                                            | <u>н</u> С С                                                                                                                                                                                          | 1 🖶 📩 🕌<br>2:00 Sat                                                                                  | 03100 Sat 0410                                                                                                       |                                                                                                                                                                           | 00 Sat 07100                                              | Sat 00:00 Sat 09:00                                                                      | Sat 20100                             | High                               |
|                                                                                                      |                                                                                                                                |                                                                               | expected<br>Trigg                                          | ering                                                                                                                                                                                                 | Exp                                                                                                  | ected                                                                                                                | time                                                                                                                                                                      | ľ                                                         | laximum                                                                                  | Mear                                  | n                                  |
| outer ne                                                                                             | et8 1.2.3.4<br>itrate                                                                                                          |                                                                               | expected<br>Trigg<br>71.69                                 | ering<br>Mbps                                                                                                                                                                                         | <b>Ехр</b><br>2.34                                                                                   | ected                                                                                                                | tine<br>Difference<br>69.35 Mbps                                                                                                                                          | N<br>105.26                                               | laximum<br>Mbps @ 03:19                                                                  | Mear<br>76.05 M                       | n<br>1bps                          |
| outer ne                                                                                             | et8 1.2.3.4                                                                                                                    |                                                                               | expected<br>Trigg                                          | ering<br>Mbps                                                                                                                                                                                         | <b>Ехр</b><br>2.34                                                                                   | ected                                                                                                                | time                                                                                                                                                                      | N<br>105.26                                               | laximum                                                                                  | Mear                                  | n<br>1bps                          |
| outer ne<br>Bi<br>Pi                                                                                 | et8 1.2.3.4<br>itrate<br>acket Rate                                                                                            | ments                                                                         | expected<br>Trigg<br>71.69<br>22.20                        | ering<br>Mbps<br>Kpps                                                                                                                                                                                 | Ехр<br>2.34<br>712                                                                                   | ected<br>Mbps<br>? pps                                                                                               | tine<br>Difference<br>69.35 Mbps                                                                                                                                          | N<br>105.26                                               | laximum<br>Mbps @ 03:19                                                                  | Mear<br>76.05 M                       | n<br>1bps                          |
| outer ne<br>Bi<br>P:                                                                                 | et8 1.2.3.4<br>itrate<br>acket Rate                                                                                            | ments                                                                         | Trigg<br>71.69<br>22.20<br>es   Source Ports               | ering<br>Mbps<br>Kpps                                                                                                                                                                                 | Ехр<br>2.34<br>712                                                                                   | ected<br>Mbps<br>? pps                                                                                               | time Difference 69.35 Mbps 21.49 Kpps                                                                                                                                     | N<br>105.26                                               | laximum<br>Mbps @ 03:19                                                                  | Mear<br>76.05 M                       | n<br>1bps                          |
| outer ne<br>Bi<br>P:                                                                                 | et8 1.2.3.4<br>itrate<br>acket Rate<br>rce Addresses   De                                                                      | ments                                                                         | Trigg<br>71.69<br>22.20<br>es   Source Ports               | ering<br>Mbps<br>Kpps                                                                                                                                                                                 | Ехр<br>2.34<br>712                                                                                   | ected<br>Mbps<br>? pps                                                                                               | tine Difference 69.35 Mbps 21.49 Kpps Linterfaces   Generate Filter                                                                                                       | N<br>105.26                                               | laximum<br>Mbps @ 03:19                                                                  | Mear<br>76.05 M                       | n<br>1bps                          |
| outer ne<br>Bi<br>P:<br>mmary   <u>Sour</u><br>ummary                                                | et8 1.2.3.4<br>itrate<br>acket Rate<br><u>ce Addresses</u>   De<br>of all Data S                                               | ments<br>estination Address<br>Snapshots C                                    | Trigg<br>71.69<br>22.20<br>es   Source Ports<br>Collected: | ering<br>Mbps<br>Kpps<br>I Destination Port                                                                                                                                                           | E×p<br>2.34<br>712<br>s   Protocols   9<br>Bytes<br>3.01 GB                                          | ected<br>Mbps<br>? pps<br>udput interfaces   inpu<br>Packets<br>762,849,500                                          | tine Difference 69.35 Mbps 21.49 Kpps Unterfaces   Generate Filter Bytes/Pkt 404 B                                                                                        | N<br>105.26<br><b>32.58</b>                               | laximum<br>Mbps @ 03:19<br>Kpps @ 03:19                                                  | Mear<br>76.05 M                       | n<br>1bps                          |
| outer ne<br>Bi<br>P:<br>mmary   Sour<br>mmary   Sour                                                 | et8 1.2.3.4<br>itrate<br>acket Rate<br>ce Addresses   De<br>of all Data S                                                      | ments<br>estination Address<br>Snapshots C                                    | Trigg<br>71.69<br>22.20<br>es   Source Ports<br>Collected: | ering<br>Mbps<br>Kpps<br>I Destination Port                                                                                                                                                           | E×p<br>2.34<br>712<br>s   Protocols   9<br>Bytes<br>3.01 GB                                          | ected<br>Mbps<br>? pps<br>udput interfaces   inpu<br>Packets<br>762,849,500                                          | time Difference 69.35 Mbps 21.49 Kpps Interfaces   Generate Filter Bytes/Pkt                                                                                              | M<br>105.26<br>32.58<br>bps                               | laximum<br>Mbps @ 03:19<br>Kpps @ 03:19<br>pps                                           | Mear<br>76.05 M                       | n<br>Ibps<br>ipps                  |
| mmary   Sour                                                                                         | et8 1.2.3.4<br>itrate<br>acket Rate<br><u>ce Addresses</u>   De<br>of all Data S                                               | ments<br>estination Address<br>Snapshots C                                    | Trigg<br>71.69<br>22.20<br>es   Source Ports<br>Collected: | ering<br>Mbps<br>Kpps<br>I Destination Port                                                                                                                                                           | E×p<br>2.34<br>712<br>s   Protocols   9<br>Bytes<br>3.01 GB                                          | ected<br>Mbps<br>? pps<br>udput interfaces   inpu<br>Packets<br>762,849,500                                          | tine Difference 69.35 Mbps 21.49 Kpps Unterfaces   Generate Filter Bytes/Pkt 404 B                                                                                        | M<br>105.26<br>32.58<br>bps                               | laximum<br>Mbps @ 03:19<br>Kpps @ 03:19<br>pps                                           | Mear<br>76.05 M                       | n<br>1bps                          |
| mmary   Sour                                                                                         | et8 1.2.3.4<br>itrate<br>acket Rate<br>of all Data S<br>ce Addresses   De<br>ddresses                                          | ments<br>estination Address<br>Snapshots C                                    | Trigg<br>71.69<br>22.20<br>es   Source Ports<br>Collected: | ering<br>Mbps<br>Kpps<br>I Destination Port                                                                                                                                                           | E×p<br>2.34<br>712<br>s   Protocols   9<br>Bytes<br>3.01 GB                                          | ected<br>Mbps<br>? pps<br>udput interfaces   inpu<br>Packets<br>762,849,500                                          | time     Difference     69.35 Mbps     21.49 Kpps     Interfaces   Generate Filter     Bytes/Pkt     404 B     Linterfaces   Generate Filter                              | M<br>105.26<br>32.58<br>bps                               | laximum<br>Mbps @ 03:19<br>Kpps @ 03:19<br>pps                                           | Mear<br>76.05 M                       | n<br>Ibps<br>ipps                  |
| nmary   Sour                                                                                         | et8 1.2.3.4<br>itrate<br>acket Rate<br>of all Data S<br>ce Addresses   De<br>ddresses<br>Networ                                | ments<br>estination Address<br>Snapshots C<br>estination Address              | Trigg<br>71.69<br>22.20<br>es   Source Ports<br>Collected: | ering<br>Mbps<br>Kpps<br>I Destination Port                                                                                                                                                           | Exp<br>2.34<br>712<br>s   Protocols   Q<br>Bytes<br>3.01 GB<br>s   Protocols   Q                     | ected<br>Mbps<br>2 pps<br>wutput interfaces   input<br>Packets<br>762,849,500<br>wutput interfaces   input           | time     Difference     G9.35 Mbps     21.49 Kpps     therfaces   Generate Filter     Bytes/Pkt     404 B     therfaces   Generate Filter     Bytes/Pkt                   | N<br>105.26<br><b>32.58</b><br>bps<br>76.05 Mbps          | laximum<br>Mbps @ 03:19<br>Kpps @ 03:19<br>pps<br>23.54 Kpps                             | Mear<br>76.05 M<br>23.54 K            | n<br>Ibps<br>pps<br>Graph          |
| nmary   Sour<br>nmary   Sour<br>nmary   Sour<br>Durce Ac                                             | et8 1.2.3.4<br>itrate<br>acket Rate<br>ce Addresses   De<br>of all Data S<br>ce Addresses   De<br>ddresses<br>Networ<br>217/32 | ments<br>estination Address<br>Snapshots C<br>estination Address              | Trigg<br>71.69<br>22.20<br>es   Source Ports<br>Collected: | ering<br>Mbps<br>Kpps<br>I Destination Port<br>I Destination Port                                                                                                                                     | Exp<br>2.34<br>712<br>s   Protocols   Q<br>Bytes<br>3.01 GB<br>s   Protocols   Q<br>Bytes            | ected Mbps 2 Pps Packets 762,849,500 wdpud interfaces   inpu Packets 762,849,500 wdpud interfaces   inpu Packets     | tine Difference 69.35 Mbps 21.49 Kpps Unterfaces   Generate Filter Bytes/Pkt 404 B Unterfaces   Generate Filter Bytes/Pkt 404 B                                           | 105.26<br>32.58<br>76.05 Mbps<br>76.05 Mbps               | laximum<br>Mbps @ 03:19<br>Kpps @ 03:19<br>23.54 Kpps<br>pps                             | Меат<br>76.05 М<br>23.54 Кр           | n<br>Hops<br>pps<br>Graph<br>Block |
| mmary   Sour<br>mmary   Sour<br>ummary   Sour<br>ource Act<br>2.168.20.1<br>2.168.18.                | et8 1.2.3.4<br>itrate<br>acket Rate<br>ce Addresses   De<br>of all Data S<br>ce Addresses   De<br>ddresses<br>Networ<br>217/32 | ments<br>estination Address<br>Snapshots C<br>estination Address<br>rk / Mask | Trigg<br>71.69<br>22.20<br>es   Source Ports               | ering<br>Mbps<br>Kpps<br>I Destination Port<br>I Destination Port | Exp<br>2.34<br>712<br>a   Protocols   Q<br>Bytes<br>a   Protocols   Q<br>Bytes<br>3.22 GB<br>3.53 GB | ected<br>Mbps<br>2 pps<br>Packets<br>762,849,500<br>utput interfaces   inpu<br>Packets<br>416,436,800<br>345,372,800 | tine Difference 69.35 Mbps 21.49 Kpps Unterfaces   Generate Filter Bytes/Pkt 404 B Unterfaces   Generate Filter Bytes/Pkt 404 B                                           | 105.26<br>32.58<br>76.05 Mbps<br>76.45 Mbps<br>41.54 Mbps | laximum<br>Mbps @ 03:19<br>Кррв @ 03:19<br>23.54 Кррs<br>23.54 Кррs<br>ррs<br>12.85 Кррs | Mean<br>76.05 M<br>23.54 K<br>23.54 K | n<br>Ibps<br>                      |
| nmary   Sour<br>nmary   Sour<br>nmary   Sour<br>Source Ac<br>2.168.20.1<br>2.168.18.<br>nmary   Sour | et8 1.2.3.4<br>itrate<br>acket Rate<br>ce Addresses   De<br>of all Data S<br>ce Addresses   De<br>ddresses<br>Networ<br>217/32 | ments<br>estination Address<br>Snapshots C<br>estination Address<br>rk / Mask | Trigg<br>71.69<br>22.20<br>es   Source Ports               | ering<br>Mbps<br>Kpps<br>I Destination Port<br>I Destination Port | Exp<br>2.34<br>712<br>a   Protocols   Q<br>Bytes<br>a   Protocols   Q<br>Bytes<br>3.22 GB<br>3.53 GB | ected<br>Mbps<br>2 pps<br>Packets<br>762,849,500<br>utput interfaces   inpu<br>Packets<br>416,436,800<br>345,372,800 | time Difference B9.35 Mbps 21.49 Kpps therfaces   Generate Filter Bytes/Pkt 404 B therfaces   Generate Filter Bytes/Pkt 404 B therfaces   Generate Filter Bytes/Pkt 404 B | 105.26<br>32.58<br>76.05 Mbps<br>76.45 Mbps<br>41.54 Mbps | laximum<br>Mbps @ 03:19<br>Кррв @ 03:19<br>23.54 Кррs<br>23.54 Кррs<br>ррs<br>12.85 Кррs | Mean<br>76.05 M<br>23.54 K<br>23.54 K | n<br>Ibps<br>                      |

# References Product and Technology Enablers

NetFlow IOS<sup>®</sup> on Cisco<sup>®</sup> Routers

http://www.cisco.com/go/netflow

Network Foundation Protection

http://www.cisco.com/go/nfp

• Cisco Guard XT Appliance and Cisco Anomaly Guard Service Module

http://www.cisco.com/en/US/products/ps5888/index.html

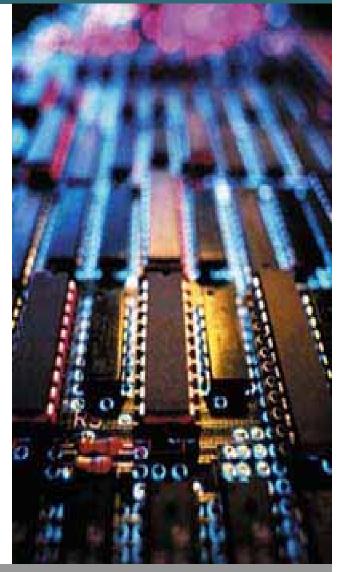
http://www.cisco.com/en/US/products/ps6235/index.html

 Cisco Traffic Anomaly Detector XT Appliance and Cisco Traffic Anomaly Detector Service Module

http://www.cisco.com/en/US/products/ps5887/index.html

http://www.cisco.com/en/US/products/ps6236/index.html

• Router Security


http://www.cisco.com/go/security

Arbor Networks (a Cisco Partner)

http://www.arbor.net/products\_sp.php

## Conclusion

- DDoS is a real and growing threat that can impact your business delivery and business reputation
- Take a proactive approach to handling security on your network
- DDoS protection is a managed security service opportunity
- Protect your infrastructure with DDoS protection and NFP
- Cisco<sup>®</sup> has the leading products and solutions to address the security threats
- Contact your sales contact to find out more today



# CISCO SYSTEMS

## Network Foundation Protection Features and Benefits

| Plane                                | Cisco IOS Services                        | Benefits                                                                                                                                                                                                                                                    |
|--------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Plane                           | NetFlow                                   | <ul> <li>Macro-level anomaly-based DDoS detection; provides rapid confirmation and isolation of attack</li> </ul>                                                                                                                                           |
|                                      | IP source tracker                         | Quickly and efficiently pinpoints the source interface an attack is coming from                                                                                                                                                                             |
|                                      | Access control lists<br>(ACLs)            | <ul> <li>Protect edge routers from malicious traffic; explicitly permit the legitimate traffic<br/>that can be sent to the edge router's destination address</li> </ul>                                                                                     |
|                                      | Unicast reverse path<br>forwarding (uRPF) | <ul> <li>Mitigates problems caused by the introduction of malformed or spoofed IP<br/>source addresses into either the service provider or customer network</li> </ul>                                                                                      |
|                                      | Remotely triggered<br>black holing (RTBH) | <ul> <li>Drops packets based on source IP address; filtering is at line rate on most<br/>capable platforms. Hundreds of lines of filters can be deployed to multiple<br/>routers even while the attack is in progress.</li> </ul>                           |
|                                      | QoS tools                                 | <ul> <li>Protects against flooding attacks by defining QoS policies to limit bandwidth or<br/>drop offending traffic (identify, classify, and rate limit)</li> </ul>                                                                                        |
|                                      | PE-to-PE encryption                       | Provides strong encryption within service provider network                                                                                                                                                                                                  |
| Control Plane                        | Receive ACLs                              | Control the type of traffic that can be forwarded to the processor                                                                                                                                                                                          |
|                                      | Control plane policing                    | <ul> <li>Provides QoS control for packets destined to the control plane of the routers;<br/>ensures adequate bandwidth for high-priority traffic such as routing protocols</li> </ul>                                                                       |
|                                      | Routing protection                        | <ul> <li>MD5 neighbor authentication protects routing domain from spoofing attacks</li> <li>Redistribution protection safeguards network from excessive conditions</li> <li>Overload protection (e.g., prefix limits) enhances routing stability</li> </ul> |
| Management<br>Plane                  | CPU and memory thresholding               | Protects CPU and memory resources of IOS device against DoS attacks                                                                                                                                                                                         |
|                                      | Dual export syslog                        | Syslog exported to dual collectors for increased availability                                                                                                                                                                                               |
|                                      | Encrypted access                          | Encryption access for users (SSHv2, SSL) and management applications                                                                                                                                                                                        |
|                                      | SNMPv3                                    | Secure SNMP management for third-party or custom-built applications                                                                                                                                                                                         |
|                                      | Security audit                            | Provides audit trail of configuration changes                                                                                                                                                                                                               |
| DDoS Protection Solutior<br>May 2005 |                                           | 25. All rights reserved.                                                                                                                                                                                                                                    |