
Complete Java® 2
Certification: Study Guide,

Fifth Edition

Philip Heller
Simon Roberts

SYBEX®

Complete Java

2
Certification

Study Guide

Fifth Edition

4419FM.fm Page i Friday, February 25, 2005 3:24 PM

4419FM.fm Page ii Friday, February 25, 2005 3:24 PM

San Francisco • London

Complete Java

®

2
Certification

Study Guide

Fifth Edition

Philip Heller
Simon Roberts

4419FM.fm Page iii Friday, February 25, 2005 3:24 PM

Publisher: Neil Edde
Acquisitions and Developmental Editor: Jeff Kellum
Production Editor: Katherine Perry
Technical Editor: James Nuzzi
Copyeditor: Linda S. Recktenwald
Compositor: Laurie Stewart, Happenstance Type-O-Rama
Graphic Illustrator: Jeffrey Wilson, Happenstance Type-O-Rama
CD Coordinator: Dan Mummert
CD Technician: Kevin Ly
Proofreaders: Jim Brook, Jennifer Larsen, Nancy Riddiough
Indexer: Ted Laux
Book Designer: Judy Fung
Cover Designer: Archer Design
Cover Illustrator/Photographer: Photodisk and Victor Arre

Copyright © 2005 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. The
author(s) created reusable code in this publication expressly for reuse by readers. Sybex grants readers limited
permission to reuse the code found in this publication or its accompanying CD-ROM so long as the author(s)
are attributed in any application containing the reusable code and the code itself is never distributed, posted online
by electronic transmission, sold, or commercially exploited as a stand-alone product. Aside from this specific excep-
tion concerning reusable code, no part of this publication may be stored in a retrieval system, transmitted, or repro-
duced in any way, including but not limited to photocopy, photograph, magnetic, or other record, without the prior
agreement and written permission of the publisher.

First edition copyright © 1999 SYBEX, Inc.

Second edition copyright © 2000 SYBEX, Inc.

Third edition copyright © 2002 SYBEX, Inc.

Fourth edition copyright © 2003 SYBEX, Inc.

Library of Congress Card Number: 2005920774

ISBN: 0-7821-4419-5

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States
and/or other countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991–1999 Inbit Incorporated. All rights reserved.

FullShot is a trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, © 1994, 1997–1999 Macromedia Inc. For more infor-
mation on Macromedia and Macromedia Director, visit

http://www.macromedia.com

.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descrip-
tive terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final
release software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied
by software manufacturer(s). The author and the publisher make no representation or warranties of any kind
with regard to the completeness or accuracy of the contents herein and accept no liability of any kind including
but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of
any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4419FM.fm Page iv Friday, February 25, 2005 3:24 PM

To Our Valued Readers:

Thank you for looking to Sybex for your Java certification exam prep needs. We at Sybex are
proud of the reputation we’ve established for providing certification candidates with the prac-
tical knowledge and skills needed to succeed in the highly competitive IT marketplace.

The author, editors, and technical reviewers have worked hard to ensure that the updated
fifth edition of the

Complete Java 2 Certification Study Guide

 you hold in your hands is com-
prehensive, in-depth, and pedagogically sound. We’re confident that this book will exceed the
demanding standards of the certification marketplace and help you, the Java certification can-
didate, succeed in your endeavors.

As always, your feedback is important to us. If you believe you’ve identified an error in the
book, please send a detailed e-mail to support@sybex.com. And if you have general comments
or suggestions, feel free to drop me a line directly at nedde@sybex.com. At Sybex we're con-
tinually striving to meet the needs of individuals preparing for certification exams.

Good luck in pursuit of your Java certification!

Neil Edde
Publisher—Certification
Sybex, Inc.

4419FM.fm Page v Friday, February 25, 2005 3:24 PM

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying
this book that are available now or in the future contain
programs and/or text files (the "Software") to be used in
connection with the book. SYBEX hereby grants to you
a license to use the Software, subject to the terms that
follow. Your purchase, acceptance, or use of the Soft-
ware will constitute your acceptance of such terms.
The Software compilation is the property of SYBEX
unless otherwise indicated and is protected by copyright
to SYBEX or other copyright owner(s) as indicated in the
media files (the "Owner(s)"). You are hereby granted a
single-user license to use the Software for your personal,
noncommercial use only. You may not reproduce, sell,
distribute, publish, circulate, or commercially exploit the
Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s)
of any component software included on this media.
In the event that the Software or components include spe-
cific license requirements or end-user agreements, state-
ments of condition, disclaimers, limitations or warranties
("End-User License"), those End-User Licenses supersede
the terms and conditions herein as to that particular Soft-
ware component. Your purchase, acceptance, or use of
the Software will constitute your acceptance of such End-
User Licenses.
By purchase, use or acceptance of the Software you fur-
ther agree to comply with all export laws and regulations
of the United States as such laws and regulations may exist
from time to time.

Reusable Code in This Book

The author(s) created reusable code in this publication
expressly for reuse by readers. Sybex grants readers
limited permission to reuse the code found in this pub-
lication, its accompanying CD-ROM or available for
download from our website so long as the author(s) are
attributed in any application containing the reusable code
and the code itself is never distributed, posted online by
electronic transmission, sold, or commercially exploited
as a stand-alone product.]

Software Support

Components of the supplemental Software and any offers
associated with them may be supported by the specific
Owner(s) of that material, but they are not supported by
SYBEX. Information regarding any available support may
be obtained from the Owner(s) using the information pro-
vided in the appropriate read.me files or listed elsewhere
on the media.
Should the manufacturer(s) or other Owner(s) cease to
offer support or decline to honor any offer, SYBEX bears
no responsibility. This notice concerning support for the
Software is provided for your information only. SYBEX is
not the agent or principal of the Owner(s), and SYBEX is
in no way responsible for providing any support for the
Software, nor is it liable or responsible for any support
provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase.
The Software is not available from SYBEX in any other
form or media than that enclosed herein or posted to

www.sybex.com

. If you discover a defect in the media
during this warranty period, you may obtain a replace-
ment of identical format at no charge by sending the defec-
tive media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web:

http://www.sybex.com

After the 90-day period, you can obtain replacement
media of identical format by sending us the defective
disk, proof of purchase, and a check or money order for
$10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either
expressed or implied, with respect to the Software or its
contents, quality, performance, merchantability, or fit-
ness for a particular purpose. In no event will SYBEX,
its distributors, or dealers be liable to you or any other
party for direct, indirect, special, incidental, consequen-
tial, or other damages arising out of the use of or inabil-
ity to use the Software or its contents even if advised of
the possibility of such damage. In the event that the Soft-
ware includes an online update feature, SYBEX further
disclaims any obligation to provide this feature for any
specific duration other than the initial posting.
The exclusion of implied warranties is not permitted
by some states. Therefore, the above exclusion may not
apply to you. This warranty provides you with specific
legal rights; there may be other rights that you may
have that vary from state to state. The pricing of the
book with the Software by SYBEX reflects the alloca-
tion of risk and limitations on liability contained in this
agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are
distributed as shareware. Copyright laws apply to both
shareware and ordinary commercial software, and the
copyright Owner(s) retains all rights. If you try a share-
ware program and continue using it, you are expected to
register it. Individual programs differ on details of trial
periods, registration, and payment. Please observe the
requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-
protected or encrypted. However, in all cases, reselling or
redistributing these files without authorization is expressly
forbidden except as specifically provided for by the
Owner(s) therein.

4419FM.fm Page vi Friday, February 25, 2005 3:24 PM

To Keara:

Two years ago, before we met,

When you were only seven,

I thought the blue that fills your eyes

Was only found in heaven.

What wonders will you gaze upon

When my own eyes are fading,

In forty years, when you’re as old

As I was just this morning?

—Love, Philip

For my children, Emily and Bethan

—Simon

4419FM.fm Page vii Friday, February 25, 2005 3:24 PM

 Acknowledgments

The authors would like to acknowledge the dedicated and talented people at Sybex who
worked on this edition: Jeff Kellum, Katherine Perry, Linda Recktenwald, James Nuzzi, and the
proofreaders, Jim Brook, Jennifer Larsen, Nancy Riddiough.

Phil would like to express his gratitude to Simon Roberts and Bryan Basham. Also to all
teachers, especially Carol, Gabriel, and Pantea.

4419FM.fm Page viii Friday, February 25, 2005 3:24 PM

Contents at a Glance

Introduction xix

Assessment Test xxv

Chapter 1

Language Fundamentals 3

Chapter 2

Operators and Assignments 37

Chapter 3

Modifiers 71

Chapter 4

Converting and Casting 101

Chapter 5

Flow Control, Assertions, and Exception Handling 129

Chapter 6

Objects and Classes 167

Chapter 7

Threads 213

Chapter 8

The

java.lang

 and

java.util

 Packages 249

Chapter 9

I/O and Streams 311

Chapter 10

About the Developer’s Exam 349

Chapter 11

Swing Components 357

Chapter 12

Layout Managers 395

Chapter 13

Object Streams and RMI 435

Chapter 14

Putting It All Together 461

Appendix A

Practice Exam 475

Glossary

499

Index 509

4419FM.fm Page ix Friday, February 25, 2005 3:24 PM

4419FM.fm Page x Friday, February 25, 2005 3:24 PM

Contents

Introduction xix

Assessment Test xxv

Chapter 1 Language Fundamentals 3

Source Files 4
Keywords and Identifiers 5
Primitive Data Types 7
Literals 9

String Literals 11
Arrays 11
Importing 15
Class Fundamentals 19

Class Paths 19
The

main()

 Method 19
Variables and Initialization 20

Argument Passing: By Reference or by Value 22
Garbage Collection 24
Summary 26
Exam Essentials 27
Review Questions 29
Answers to Review Questions 34

Chapter 2 Operators and Assignments 37

Overview of the Java Operators 38
Evaluation Order 39
The Unary Operators 40

The Increment and Decrement Operators:

++

 and

--

 40
The Unary Plus and Minus Operators:

+

 and

-

 41
The Bitwise Inversion Operator:

~

 41
The

Boolean

 Complement Operator:

!

 41
The Cast Operator:

(type)

 42
The Arithmetic Operators 43

The Multiplication and Division Operators: * and / 43
The Modulo Operator:

%

 45
The Addition and Subtraction Operators:

+

 and

-

 46
Arithmetic Error Conditions 48
Arithmetic Promotion of Operands 49

The Comparison Operators 49
The Ordinal Comparisons Operators:

<

,

<=

,

>

, and

>=

 50

4419FM.fm Page xi Friday, February 25, 2005 3:24 PM

xii

Contents

The

instanceof

 Operator 50
The Equality Comparison Operators:

==

 and

!=

 52
The Bitwise Operators 52

Boolean

Operations 56
The Short-Circuit Logical Operators 58
The Conditional Operator 60
The Assignment Operators 61
Summary 62
Exam Essentials 64
Review Questions 65
Answers to Review Questions 69

Chapter 3 Modifiers 71

Modifier Overview 72
The Access Modifiers 73
Other Modifiers 79

Modifiers and Features 89
Summary 90
Exam Essentials 90
Review Questions 91
Answers to Review Questions 98

Chapter 4 Converting and Casting 101

Explicit and Implicit Type Changes 102
Primitives and Conversion 103

Primitive Conversion: Assignment 103
Primitive Conversion: Method Call 107
Primitive Conversion: Arithmetic Promotion 108

Primitives and Casting 109
Object Reference Conversion 112

Object Reference Assignment Conversion 112
Object Method-Call Conversion 115

Object Reference Casting 115
Summary 120
Exam Essentials 120
Review Questions 121
Answers to Review Questions 127

Chapter 5 Flow Control, Assertions, and Exception Handling 129

The Loop Constructs 130
The

while()

 Loop 130
The

do

 Loop 132
The

for()

 Loop 132

4419FM.fm Page xii Friday, February 25, 2005 3:24 PM

Contents

xiii

The

break

 and

continue

 Statements in Loops 136
The Selection Statements 137

The

if()/else

 Construct 138
The

switch()

 Construct 139
Exceptions 140

Catching Exceptions 140
Declaring Exceptions 143
How the JVM Dispatches Exceptions 143
Two Kinds of Exception 144
The

finally

 Block 145
Throwing Exceptions 146
Creating Your Own Exception Classes 147
Exceptions and Overriding 148

Assertions 150
Assertions and Compilation 150
Runtime Enabling of Assertions 151
Using Assertions 151

Summary 154
Exam Essentials 154
Review Questions 156
Answers to Review Questions 164

Chapter 6 Objects and Classes 167

Benefits of Object-Oriented Implementation 169
Encapsulation 169
Re-use 170

Coupling and Cohesion 171
Implementing Object-Oriented Relationships 172
Methods, Overloading and Overriding 172

Overloading Method Names 173
Method Overriding 175

Constructors and Subclassing 181
Overloading Constructors 182

Inner Classes 183
The Enclosing

this

 Reference and Construction of
Inner Classes 185

Member Classes 187
Classes Defined inside Methods 188

Contracts and Naming Conventions 193
Enums 195
Summary 200
Exam Essentials 201
Review Questions 203
Answers to Review Questions 210

4419FM.fm Page xiii Friday, February 25, 2005 3:24 PM

xiv

Contents

Chapter 7 Threads 213

Thread Fundamentals 214
What a Thread Executes 214
When Execution Ends 217
Thread States 217
Thread Priorities 219
Daemon Threads 219

Controlling Threads 220
Yielding 220
Suspending 222
Sleeping 222
Blocking 223
Monitor States 224

Monitors, Waiting, and Notifying 225
The Object Lock and Synchronization 227

wait()

 and

notify() 229

The Class Lock 234

notifyAll() 234

Deadlock 236
Synchronizing Part of a Method 238

Summary 239
Exam Essentials 240
Review Questions 241
Answers to Review Questions 246

Chapter 8 The

java.lang

 and

java.util

 Packages 249

The

Object

 Class 251
The

Math

 Class 253
Strings 254

The

String

 Class 254
The

StringBuffer

 and

StringBuilder

 Classes 258
String Concatenation the Easy Way 260

The Wrapper Classes 262
The Collections Framework 268

The

Collection

 Superinterface and Iteration 269
Lists 271
Sets 272
Maps 275
Support Classes 277
Collections and Code Maintenance 279

Generic Collections 285
Generics and the API Pages 288
Generics and Enhanced

For

 Loops 289

4419FM.fm Page xiv Friday, February 25, 2005 3:24 PM

Contents xv

Scanning and Formatting Text 290
Scanning Text 291
Formatting Text 294

Summary 302
Exam Essentials 302
Review Questions 304
Answers to Review Questions 309

Chapter 9 I/O and Streams 311

Text, UTF, and Unicode 312
File Input and Output 313

The File Class 313
The RandomAccessFile Class 317

Streams, Readers, and Writers 321
Low-Level Streams 321
High-Level Streams 323
Readers and Writers 327
Encodings 330

Object Streams and Serialization 332
Summary 338
Exam Essentials 338
Review Questions 339
Answers to Review Questions 345

Chapter 10 About the Developer’s Exam 349

Are You Ready? 350
Formalities of the Exam 351
The Project Assignment 352
The Essay Exam 353
Grading 354

Chapter 11 Swing Components 357

A Strategy for Designing the GUI 358
Step 1: Identify Needed Components 359
Step 2: Isolate Regions of Behavior 359
Step 3: Sketch the GUI 359
Step 4: Choose Layout Managers 362

Common Swing Methods 362
getSize() and setSize() 362
getLocation() and setLocation() 362
setForeground() and setBackground() 362
setFont() 363
setEnabled() 363

4419FM.fm Page xv Friday, February 25, 2005 3:24 PM

xvi Contents

Basic Swing Components 363
Container Components 364
Ordinary Components 367
Menu Components 376

JTable 377
JTree 382
JMenus and Actions 387
Panes 389

JSplitPane 389
JOptionPane 391

Summary 392

Chapter 12 Layout Managers 395

Layout Manager Theory 396
Component Size and Position 399

Layout Policies 401
The Flow Layout Manager 401
The Grid Layout Manager 404
The Border Layout Manager 405
The Card Layout Manager 412
The GridBag Layout Manager 417

Other Layout Options 433
Summary 434

Chapter 13 Object Streams and RMI 435

Sockets and Streams 436
TCP: A Reliable Protocol 436
Sockets and Ports 437
Client Sockets in Java 437
Server Sockets in Java 440
Object Streams and Serialization 443
Remote Control Using Object Streams 447

Remote Method Invocation 452
Remote References 452
RMI Step by Step 453

Summary 459

4419FM.fm Page xvi Friday, February 25, 2005 3:24 PM

Contents xvii

Chapter 14 Putting It All Together 461

Javadoc 462
Thread Issues 465
Extra Credit 466
RMI or Object Streams? 467
Common-Sense GUI Design 468
Using the jar Tool 472
Summary 474

Appendix A Practice Exam 475

Questions 476
Answers 493

Glossary 499

Index 509

4419FM.fm Page xvii Friday, February 25, 2005 3:24 PM

4419FM.fm Page xviii Friday, February 25, 2005 3:24 PM

Introduction

Tiger is a very big deal. Actually, we should say that release 5.0 of Java 2 is a very big deal. “Tiger”
was the project’s code name during development. Now that it’s been released to the world, they’ve
given it a number and taken away its name.

We have only good things to say about the release. It makes our lives better, because it invites
us to write cleaner Java code. It also requires us to make some mental adjustments. It will do the
same to you, if you haven’t already adjusted. You’re going to have to get used to structures like

enum Size { SMALL, MEDIUM, LARGE; }

and

for (String s : myVectorOfStrings)

and even

Map<String, Float> myMap = new HashMap<String, Float>();

Since the new Java release is a very big deal, you would expect the Sun Certified Java Program-
mer (SCJP) and Sun Certified Java Developer (SCJD) exams to be similarly big deals. And they
are. The Programmer Exam has been extensively revised, with new objectives and questions
covering new subject matter.

At the time of this writing, Sun was keeping quiet about the Developer Exam,
which is mostly a programming assignment, but you can be sure that you will be
expected to know about Java’s new features and to use them appropriately.(By
the way, your authors are the people who created the current edition of the
Developer Exam. Our non-disclosure agreements limit what we’re allowed to
tell you, but we can guarantee that everything we say about that exam is truth-
ful and helpful. Other authors will claim to be able to tell you about the exam,

but they don’t have full access to it, and they will have to rely on guesswork.)

And since the new exams are very big deals, this edition of this book is a very big deal. When
JavaSoft revises Java, you can count on Sun to revise the exams. And when Sun revises the exams,
you can count on us to revise this book.

The first part of the book contains nine chapters that discuss the content of every objective
of the Programmer Exam. The second part of the book contains five chapters that prepare you
to write the programming assignment and take the essay exam for the SCJD certification.

There are several ways to prepare for the Java certification exams, including attending sem-
inars and study groups, visiting websites and newsgroups, programming at home and at work,
and of course, reading study guides such as this. We’re glad you chose our book as one of your
preparation tools, and we encourage you to exploit as many other resources as you can to
ensure your success.

4419Intro.fm Page xix Friday, February 25, 2005 10:52 AM

xx

Introduction

We believe you’ll find this book particularly helpful because it was written by Java instruc-
tors and practitioners who have also taken part in the writing of the Java certification exams.

Why Become Java 2 Certified?

There are a number of reasons for becoming Java 2 certified:
�

It provides proof of professional achievement.
�

It increases your marketability.
�

It provides greater opportunity for advancement in your field.
�

It is increasingly found as a requirement for some types of advanced training.
�

It raises customer confidence in you and your company’s services.

Let’s explore each reason in detail.

Provides Proof of Professional Achievement

Specialized certifications are the best way to stand out from the crowd. In this age of technology
certifications, you will find hundreds of thousands of administrators who have successfully
completed the Microsoft and Cisco certification tracks. To set yourself apart from the crowd,
you need a little bit more. The Java Programmer Certification is the most basic Java certification
and the Developer Certification is the most prestigious. If you pass either of these exams, you
will get the recognition you deserve.

Increases Your Marketability

Almost anyone can bluff their way through an interview. Once you have been certified in Java,
you will have the credentials to prove your competency. And certifications are not something
that can be taken from you when you change jobs. Once certified, you can take that certification
with you to any position you accept.

Provides Opportunity for Advancement

Those individuals who prove themselves as competent and dedicated are the ones who will most
likely be promoted. Becoming certified is a great way to prove your skill level, and it shows your
employers that you are committed to improving your skill set. Look around you at those who
are certified. They are probably the ones who receive good pay raises and promotions when they
come up.

Fulfills Training Requirements

Many companies have set training requirements for their staff so that they stay up-to-date on the
latest technologies. Having a certification program for Sun’s Java family of products provides
administrators another certification path to follow when they have exhausted some of the other
industry-standard certifications.

4419Intro.fm Page xx Friday, February 25, 2005 10:52 AM

Introduction

xxi

Raises Customer Confidence

As companies continue to write their production software using Java, they will undoubtedly
require qualified staff to embrace this ever-changing technology. Many companies outsource
the work to consulting firms with experience working with Java. Those firms that have certified
staff have a definite advantage over other firms that do not.

Who Should Buy This Book?

If you want to acquire a solid foundation in Java and your goal is to prepare for the exam by learn-
ing how to program and develop in Java, this book is for you. You’ll find clear explanations of the
concepts you need to grasp and plenty of help to achieve the high level of professional competency
you need in order to succeed in your chosen field.

If you want to become certified as a Java programmer and developer, this book is definitely
for you. However, if you just want to attempt to pass the exam without really understanding
Java, this study guide is not for you. It is written for people who want to acquire hands-on skills
and in-depth knowledge of programming Java.

How to Become a Sun Certified Java Programmer

for the Java 2 Platform 5.0

You can take the Sun Certified Java Programmer Exam whenever you like by making an appoint-
ment with Sun Educational Services. Sun contracts with third-party test centers throughout the
world, so you probably won’t have to travel far. The cost of taking the exam is $150.

The U.S. telephone number for Sun Educational Services is (800) 422-8020; their
URL is

http://suned.sun.com

. From there it will be easy to find the links you
need. We hesitate to give more detailed instructions, because the site layout

may change.

You can make an appointment for any time during regular business hours. When you make
the appointment, ask how much time you will have. This is subject to change; on average, you’ll
be given two minutes per question. You will not be allowed to bring food or personal belongings
into the test area. One piece of scratch paper is permitted; you will not be allowed to keep it after
you have finished the exam. Most sites have security cameras.

You will be escorted to a cubicle containing a PC. The exam program will present you with
randomly selected questions. Navigation buttons take you to the next or previous question for
review and checking. When you have finished the test, the program will immediately present
you with your score and a pass/fail indication. You will also be given feedback that indicates
how well you performed in each of the dozen or so categories of the objectives. You will not be
told which particular questions you got right or wrong.

4419Intro.fm Page xxi Friday, February 25, 2005 10:52 AM

xxii

Introduction

Formalities of the Programmer’s Exam

There are no trick questions on the exam, but every question requires careful thought. The
wording of the questions is highly precise; the exam has been reviewed not just by Java experts,
but also by language experts whose task was to eliminate any possible ambiguity. All you have
to worry about is knowing Java; your score will not depend on your ability to second-guess the
examiners.

It is not a good idea to try to second-guess the question layout. For example, do not be biased
toward answer

C

 simply because

C

 has not come up recently. The questions are taken from a
pool and presented to you in a random order, so it is entirely possible to get a run of a particular
option; it is also possible to get the answers neatly spread out.

Most of the questions are multiple-choice. Some are drag-and-drop: you might be called on
to arrange four lines of code into the correct order or to drop each of five technical words near
the phrase that best describes it. Be aware that where multiple answers are possible, you are
being asked to make a decision about each answer, almost as though the question were five
individual true/false questions. This requires more effort and understanding from you, because
you have to get all the pieces correct. Think carefully, and always base your answer on your
knowledge of Java.

The test is taken using a windowed interface that can be driven almost entirely with the mouse.
Many of the screens require scrolling. Always check the scroll bar so you can be sure you have read
a question in its entirety. It would be a shame to get a question wrong because you didn’t realize
you needed to scroll down a few lines.

Some of the questions are easier than others, and undoubtedly you will be able to answer some
more quickly than others. However, you really do need to answer all the questions if you possibly
can. Unlike some exams, this one doesn’t penalize you for wrong answers. If you leave a question
blank, you don’t have a chance. If a blind guess is your best shot, at least you have a chance. But
best of all, study this book. It will prepare you so that you won’t need to guess about anything—
you’ll know it all!

How to Become a Sun Certified Java Developer

for the Java 2 Platform 5.0

The Sun Certified Java Developer Exam costs $250. You aren’t allowed to register for this exam
unless you are a certified Java programmer. As with the Programmer’s Exam, you can register
by phone or on the Web; you can use the phone number or URL given above for the Program-
mer’s Exam.

The Developer Exam requires you to write a Java application based on a specification. You
do this on your own time, not at a testing site. After you complete your assignment and submit
your work, you go to a testing site to take a follow-up exam. Chapter 10, “About the Devel-
oper’s Exam,” gives you all the details about this process.

4419Intro.fm Page xxii Friday, February 25, 2005 10:52 AM

Introduction

xxiii

Conventions Used in This Book

This book uses a number of conventions to present information in as readable a manner as pos-
sible. Tips, Notes, and Warnings, shown here, appear from time to time in the text in order to
call attention to specific highlights.

This is a Tip. Tips contain specific programming information.

This is a Note. Notes contain important side discussions.

This is a Warning. Warnings call attention to bugs, design omissions, and other

trouble spots.

This book takes advantage of several font styles.

Bold font

 in text indicates something that the
user types. A

monospaced

font

 is used for code, output, URLs, and file and directory names. A

monospaced

italic

font

 is used for code variables mentioned in text.
These style conventions are intended to facilitate your learning experience with this book—

in other words, to increase your chances of passing the exam.
If you type, compile, and run the sample code in this book, you may observe slightly different

results than what you see in the book. This is particularly true with code that has a GUI. Each plat-
form has its own windowing system that displays buttons, check boxes, and so on differently.

How to Use This Book and the CD

We’ve included several testing features in both the book and on the CD bound at the back of the
book. These tools will help you retain vital exam content as well as prepare to sit for the actual
exam. Using our custom test engine, you can identify weak areas up front and then develop a
solid studying strategy using each of these robust testing features. Our thorough

readme

 will
walk you through the quick and easy installation process.

Before you begin

At the beginning of the book (right after this introduction, in fact) is an
assessment test that you can use to check your readiness for the actual exam. Take this test
before you start reading the book. It will help you determine the areas you may need to brush
up on. The answers to each assessment test question appear on a separate page after the last
question of the test. Each answer also includes an explanation and a note telling you in which
chapter this material appears.

Chapter review questions

To test your knowledge as you progress through the book, in Part 1
of this book there are review questions at the end of each chapter. As you finish each chapter,
answer the review questions and then check to see if your answers are right—the correct answers

4419Intro.fm Page xxiii Friday, February 25, 2005 10:52 AM

xxiv

Introduction

appear on the page following the last review question. You can go back and reread the section
that deals with each question you got wrong to ensure that you get the answer correctly the next
time you are tested on the material.

Test engine

In addition to the assessment test and the chapter review tests, you’ll find four
sample exams, three that are only on the CD and one that is both printed and electronic. Take
these practice exams just as if you were taking the actual exam (that is, without any reference
material). When you have finished the first exam, move onto the next one to solidify your test-
taking skills. If you get more than 90 percent of the answers correct, you’re ready to go ahead
and take the certification exam.

Real-World Scenarios and Chapter Review Labs

The chapters in Part 1 of this book have Real
World Scenarios, which are small programming exercises that give you a chance to put your new
knowledge to use or to explore Java’s features in more depth. In the Programmer Exam part of this
book you’ll find Chapter Review Labs, which let you practice the techniques you’ve just learned.
You’ll find solutions to these scenarios and labs on the CD-ROM that accompanies this book,
in the

solutions

 directory. If you prefer to look on the Web, check out the book’s website at

www.sybex.com

 .

Full Text of the book in PDF

If you have to travel but still need to study for the Java 2 pro-
gramming exam and you have a laptop with a CD drive, you can carry this entire book with you
just by taking along the CD. The CD contains this book in PDF (Adobe Acrobat) format so it
can be easily read on any computer.

About the Authors

Philip Heller is a technical author, novelist, public speaker, and consultant. He has been instru-
mental in the creation and maintenance of the Java Programmer and Developer exams. His
popular seminars on certification have been delivered internationally. He is also the author of

Ground-Up Java

 (available from Sybex), which uses interactive animated illustrations to
present fundamental concepts of Java programming to new programmers.

Simon Roberts worked for Sun Microsystems for nine years as an instructor, an authority on
the Java language, and the key player in the development of the entire Java certification pro-
gram. He is now a consultant and instructor, specializing in Java and security. He is also a flight
instructor.

4419Intro.fm Page xxiv Friday, February 25, 2005 10:52 AM

Assessment Test

1.

Which of the following are valid declarations? Assume

java.util.*

 is imported.

A.

Vector<Map> v;

B.

Set<String> s;

C.

Map<String> m;

D.

Map<String, String> m;

2.

You can determine all the keys in a Map in which of the following ways?

A.

By getting a Set object from the Map and iterating through it.

B.

By iterating through the Iterator of the Map.

C.

By enumerating through the Enumeration of the Map.

D.

By getting a List from the Map and enumerating through the List.

E.

You cannot determine the keys in a Map.

3.

What keyword is used to prevent an object from being serialized?

A.

private

B.

volatile

C.

protected

D.

transient

E.

None of the above

4.

An abstract class can contain methods with declared bodies.

A.

True

B.

False

5.

Select the order of access modifiers from least restrictive to most restrictive.

A.

public

,

private

,

protected

, default

B.

default,

protected

,

private

,

public

C.

public

, default,

protected

,

private

D.

default,

public

,

protected

,

private

E.

public

,

protected

, default,

private

6.

Which access modifier allows you to access method calls in libraries not created in Java?

A.

public

B. static

C. native

D. transient

E. volatile

4419Intro.fm Page xxv Friday, February 25, 2005 10:52 AM

xxvi Assessment Test

7. Which of the following statements are true? (Select all that apply.)

A. A final object’s data cannot be changed.

B. A final class can be subclassed.

C. A final method cannot be overloaded.

D. A final object cannot be reassigned a new address in memory.

E. None of the above.

8. The keyword extends refers to what type of relationship?

A. “is a”

B. “has a”

C. “was a”

D. “will be a”

E. None of the above

9. Which of the following keywords is used to invoke a method in the parent class?

A. this

B. super

C. final

D. static

10. Given the following code, what will be the outcome?

public class Funcs extends java.lang.Math {

 public int add(int x, int y) {

 return x + y;

 }

 public int sub(int x, int y) {

 return x - y;

 }

 public static void main(String [] a) {

 Funcs f = new Funcs();

 System.out.println("" + f.add(1, 2));

 }

}

A. The code compiles but does not output anything.

B. “3” is printed out to the console.

C. The code does not compile.

D. None of the above.

4419Intro.fm Page xxvi Friday, February 25, 2005 10:52 AM

Assessment Test xxvii

11. Given the following code, what is the expected outcome?

public class Test {

 public static void main(String [] a) {

 int [] b = [1,2,3,4,5,6,7,8,9,0];

 System.out.println("a[2]=" + a[2]);

 }

}

A. The code compiles but does not output anything.

B. “a[2]=3” is printed out to the console.

C. “a[2]=2” is printed out to the console.

D. The code does not compile.

E. None of the above.

12. What is the value of x after the following operation is performed?

x = 23 % 4;

A. 23

B. 4

C. 5.3

D. 3

E. 5

13. Given the following code, what keyword must be used at line 4 in order to stop execution of the
for loop?

1. boolean b = true;

2. for (;;) {

3. if (b) {

4. <insert code>

5. }

6. // do something

7. }

A. stop

B. continue

C. break

D. None of the above

4419Intro.fm Page xxvii Friday, February 25, 2005 10:52 AM

xxviii Assessment Test

14. What method call is used to tell a thread that it has the opportunity to run?

A. wait()

B. notify()

C. start()

D. run()

15. Given the following code, which of the results that follow would you expect?

1. package mail;

2.

3. interface Box {

4. protected void open();

5. void close();

6. public void empty();

7. }

A. The code will not compile because of line 4.

B. The code will not compile because of line 5.

C. The code will not compile because of line 6.

D. The code will compile.

16. Assertions are used to enforce all but which of the following?

A. Preconditions

B. Postconditions

C. Exceptions

D. Class invariants

17. The developer can force garbage collection by calling System.gc().

A. True

B. False

18. Select the valid primitive data types. (Select all that apply.)

A. boolean

B. bit

C. char

D. float

E. All of the above

4419Intro.fm Page xxviii Friday, February 25, 2005 10:52 AM

Assessment Test xxix

19. How many bits does a float contain?

A. 1

B. 8

C. 16

D. 32

E. 64

20. What is the value of x after the following line is executed?

x = 32 * (31 - 10 * 3);

A. 32

B. 31

C. 3

D. 704

E. None of the above

21. A StringBuffer is slower than a StringBuilder, but a StringBuffer is threadsafe.

A. True

B. False

22. Select the list of primitives ordered in smallest to largest bit size representation.

A. boolean, char, byte, double

B. byte, int, float, char

C. char, short, long, float

D. char, int, float, long

E. None of the above

23. Which class provides locale-sensitive text formatting for date and time information?

A. java.util.TimeFormat

B. java.util.DateFormat

C. java.text.TimeFormat

D. java.text.DateFormat

24. The following line of code is valid.

int x = 9; byte b = x;

A. True

B. False

4419Intro.fm Page xxix Friday, February 25, 2005 10:52 AM

xxx Assessment Test

25. Which of the following code snippets compile?

A. Integer i = 7;

B. Integer i = new Integer(5); int j = i;

C. byte b = 7;

D. int i = 7; byte b = i;

E. None of the above

26. What will be the output of the following code?

public class StringTest {

 public static void main(String [] a) {

 String s1 = "test string";

 String s2 = "test string";

 if (s1 == s2) {

 System.out.println("same");

 } else {

 System.out.println("different");

 }

 }

}

A. The code will compile but not run.

B. The code will not compile.

C. “different” will be printed out to the console.

D. “same” will be printed out to the console.

E. None of the above.

27. Java arrays always start at index 1.

A. True

B. False

28. Which of the following statements accurately describes how variables are passed to methods?

A. Arguments are always passed by value.

B. Arguments are always passed by reference.

C. Arguments that are primitive type are passed by value.

D. Arguments that are passed with the & operator are passed by reference.

4419Intro.fm Page xxx Friday, February 25, 2005 10:52 AM

Assessment Test xxxi

29. How do you change the value that is encapsulated by a wrapper class after you have instan-
tiated it?

A. Use the setXXX() method defined for the wrapper class.

B. Use the parseXXX() method defined for the wrapper class.

C. Use the equals() method defined for the wrapper class.

D. None of the above.

30. Suppose you are writing a class that provides custom deserialization. The class implements
java.io.Serializable (and not java.io.Externalizable). What method should imple-
ment the custom deserialization, and what is its access mode?

A. private readObject

B. public readObject()

C. private readExternal()

D. public readExternal()

4419Intro.fm Page xxxi Friday, February 25, 2005 10:52 AM

xxxii Answers to Assessment Test

Answers to Assessment Test
1. A, B, D. The angle-bracket notation is part of release 5.0’s generic collections. See Chapter 6

for more information.

2. A. A Map contains a Set, which is a list that does not allow duplicates. Once you acquire the
Set you can iterate through the keys. See Chapter 8 for more information.

3. D. By placing the keyword transient before an object’s declaration, that value will not be
included with the serialized data of the parent object. See Chapter 9 for more information.

4. A. Abstract classes can contain methods that are defined and methods that are not defined. See
Chapter 3 for more information.

5. E. The public access modifier means the element is available to all; protected lets those
within the class, package, or subclass gain access to the element. The lack of a modifier, that is,
“default,” means that it is accessible only within the package. Finally, private is the most
restrictive and provides access within the class only. See Chapter 3 for more information.

6. C. The native modifier is an indicator to the Java Virtual Machine that the method actually
lives in a library outside of Java. The System.loadLibrary() method is required to indicate
which library contains the method. See Chapter 3 for more information.

7. D. An object denoted as final can have its data changed; however, the address location is
what is determined as unchangeable. The third statement is false because a final method means
it cannot be overridden, and the second statement is false because a final class means it cannot
be subclassed. See Chapter 3 for more information.

8. A. The keyword extends is used when referring to another class. The extending class will have
all access to all the available methods in the extended class, and the methods may be called as
though they are defined in the extending class. If the extending class defines a method that exists
in the extended class, that method is said to be overridden in the extending class. Because the
extending class does not have to define any of the methods available in the extended class, it is
said that the subclass X “is a” Y. See Chapter 6 for more information.

9. B. The super keyword is used to invoke a method or constructor in a parent class. See Chapter 6
for more information.

10. C. The code does not compile because it extends the Math class, which has been declared as final.
A class cannot extend a class that has been declared final. See Chapter 3 for more information.

11. D. The declaration of the integer array is incorrect. An array is declared by using curly braces
({}) instead of square brackets ([]). See Chapter 1 for more information.

12. D. The modulo (%) operator returns the leftover value after a division operation. In the given
example, 23 / 4 = 5, with 3 remaining after the division. Therefore, the answer is 3. See Chap-
ter 2 for more information.

13. C. The break keyword is used to stop execution of a loop. See Chapter 5 for more information.

4419Intro.fm Page xxxii Friday, February 25, 2005 10:52 AM

Answers to Assessment Test xxxiii

14. B. The notify() method is used to tell a pool of waiting threads that one of them can run.
There is no guarantee as to which thread will run, though. See Chapter 7 for more information.

15. A. All methods in an interface must be public. The default access modifier automatically
assumes the method or constant to be public. See Chapter 1 for more information.

16. C. Assertions do not enforce exceptions in any way. Assertions do, however, augment the use
of exceptions to ensure that code is used correctly. See Chapter 5 for more information.

17. B. Garbage collection cannot be forced by the developer. The call to System.gc() schedules
garbage collection in the thread queue, but it is up to the Java Virtual Machine to allow the gar-
bage collection to run. See Chapter 1 for more information.

18. A, C, D. The second option is incorrect because there is no primitive named “bit”; there is a
primitive named byte, however. See Chapter 1 for more information.

19. D. A float is represented using 32 bits for data storage. See Chapter 1 for more information.

20. A. Using the order of precedence, the equation contained within the parentheses is evaluated first.
Again, using the order of precedence within the parentheses, the multiplication is executed
first (10 * 3 = 30) and then the subtraction (31 - 30 = 1). Once this is completed, the final
equation is executed as 32 * 1, which equals 32. See Chapter 2 for more information.

21. A. The StringBuilder class is compatible with StringBuffer but is not threadsafe and is
generally faster. See Chapter 8 for more information.

22. D. The sizes of the primitives are as follows: byte, 8 bits; char, 16 bits; short, 16 bits; int,
32 bits; float, 32 bits; long, 64 bits; double, 64 bits. The Java specification does not state the
size of a boolean, so it is not accurate to call it the smallest primitive. See Chapter 1 for more
information.

23. D. The java.text.DateFormat class formats date and time data into strings that are appro-
priate to locales. See Chapter 8 for more information.

24. B. Due to the rules of widening conversions, the integer value of x cannot be automatically con-
verted to a byte. The assignment of the variable x to the variable b would require an explicit cast.
This cast could result in a loss of data, though. See Chapter 4 for more information.

25. A, B, C. A and B are examples of 5.0’s boxing and unboxing functionality. See Chapter 8 for
details. C is a legal assignment, but D is an illegal assignment that requires a cast; see Chapter 4
for details.

26. D. Both String variables are assigned the same string, “test string”. Because these strings
are not created using the new String() method, the strings are placed in the string pool, and
a reference to those strings is stored in the String variables. Because the reference to the string
pool is the same, the == comparison will return true. If the strings were created using the new
String() method, the references would be different and the == comparison would return
false. See Chapter 8 for more information.

27. B. Java arrays always start at index 0. See Chapter 1 for more information.

4419Intro.fm Page xxxiii Friday, February 25, 2005 10:52 AM

xxxiv Answers to Assessment Test

28. C. Arguments are not always passed only by reference or only by value. It depends on the
argument itself, and primitives are always passed by value. Java does not use the & operator
to denote “pass by reference” as is done in the C programming language. See Chapter 1 for
more information.

29. D. The value encapsulated by a wrapper class is immutable. See Chapter 8 for more information.

30. A. The readObject() method must be private. See Chapter 9 for more information.

4419Intro.fm Page xxxiv Friday, February 25, 2005 10:52 AM

PART

I

The Sun
Certified Java

Programmer
Exam

4419c01.fm Page 1 Tuesday, February 15, 2005 4:50 PM

4419c01.fm Page 2 Tuesday, February 15, 2005 4:50 PM

Chapter

1

Language
Fundamentals

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

1.1 Develop code that declares classes (including abstract

and all forms of nested classes), interfaces, and enums,

and includes the appropriate use of package and import

statements (including static imports).

�

1.3 Develop code that declares, initializes, and uses

primitives, arrays, enums, and objects as static, instance,

and local variables. Also, use legal identifiers for variable

names.

�

7.2 Given an example of a class and a command-line,

determine the expected runtime behavior.

�

7.3 Determine the effect upon object references and primitive

values when they are passed into methods that perform

assignments or other modifying operations on the

parameters.

�

7.4 Given a code example, recognize the point at which

an object becomes eligible for garbage collection, and

determine what is and is not guaranteed by the garbage

collection system. Recognize the behaviors of System.gc

and finalization.

4419c01.fm Page 3 Tuesday, February 15, 2005 4:50 PM

This book is not an introduction to Java. Since you’re getting
ready to take the Programmer Exam, it’s safe to assume that you
know how to write code, what an object is, what a constructor is,

and so on. So we’re going to dive right in and start looking at what you need to know to pass
the exam

This chapter covers a lot of objectives. They may seem unrelated, but they all have a common
thread: they deal with the fundamentals of the language. Here you will look at Java’s keywords
and identifiers. Then you’ll read about primitive data types and the literal values that can be
assigned to them. You’ll also cover some vital information about arrays, variable initialization,
argument passing, and garbage collection.

Source Files

All Java source files must end with the

.java

 extension. A source file should generally con-
tain, at most, one top-level public class definition; if a public class is present, the class name
should match the unextended filename. For example, if a source file contains a public class
called

RayTraceApplet

, then the file must be called

RayTraceApplet.java

. A source file
may contain an unlimited number of non-public class definitions.

This is not actually a language requirement, but it is an implementation require-
ment of many compilers, including the reference compilers from Sun. It is unwise
to ignore this convention, because doing so limits the portability of your source

files (but not, of course, your compiled files).

Three top-level elements known as

compilation units

 may appear in a file. None of these
elements is required. If they are present, then they must appear in the following order:

1.

Package declaration

2.

Import statements

3.

Class, interface, and enum definitions

The format of the package declaration is quite simple. The keyword

package

 occurs first and
is followed by the package name. The package name is a series of elements separated by periods.
When class files are created, they must be placed in a directory hierarchy that reflects their package
names. You must be careful that each component of your package name hierarchy is a legitimate

4419c01.fm Page 4 Tuesday, February 15, 2005 4:50 PM

Keywords and Identifiers

5

directory name on all platforms. Therefore, you must not use characters such as the space, for-
ward slash, backslash, or other symbols. Use only alphanumeric characters in package names.

Import statements have a similar form, but you may import either an individual class from
a package or the entire package. To import an individual class, simply place the fully qualified
class name after the

import

 keyword and finish the statement with a semicolon (;); to import
an entire package, simply add an asterisk (*) to the end of the package name.

Java’s import functionality was enhanced in 5.0. For more information, see the

“Importing” section later in this chapter.

White space and comments may appear before or after any of these elements.
For example, a file called

Test.java

 might look like this:

1. // Package declaration

2. package exam.prepguide;

3.

4. // Imports

5. import java.awt.Button; // imports a specific class

6. import java.util.*; // imports an entire package

7.

8. // Class definition

9. public class Test {...}

Sometimes you might use classes with the same name in two different pack-
ages, such as the

Date

 classes in the packages

java.util

 and

java.sql

. If you
use the asterisk form of import to import both entire packages and then attempt
to use a class simply called

Date

, you will get a compiler error reporting that
this usage is ambiguous. You must either make an additional import, naming
one or the other

Date

 class explicitly, or you must refer to the class using its

fully qualified name.

Keywords and Identifiers

A

keyword

 is a word whose meaning is defined by the programming language. Anyone who
claims to be competent in a language must at the very least be familiar with that language’s key-
words. Java’s keywords and other special-meaning words are listed in Table 1.1.

Most of the words in Table 1.1 are keywords. Strictly speaking,

true

 and

false

 aren’t really
keywords, they are literal boolean values. Also,

goto

 and

const

 are

reserved words

, which
means that although they have no meaning to the Java compiler, programmers may not use
them as identifiers.

4419c01.fm Page 5 Tuesday, February 15, 2005 4:50 PM

6

Chapter 1 �

Language Fundamentals

Fortunately, the exam doesn’t require you to distinguish among keywords, lit-
eral booleans, and reserved words. You won't be asked trick questions like “Is

goto

 a keyword?” You

will

 be expected to know what each word in Table 1.1

does, except for

strictfp

,

transient

, and

volatile

.

An

identifier

 is a word used by a programmer to name a variable, method, class, or label.
Keywords and reserved words may not be used as identifiers. An identifier must begin with a
letter, a dollar sign ($), or an underscore (_); subsequent characters may be letters, dollar signs,
underscores, or digits.

Some examples are

foobar // legal

BIGinterface // legal: embedded keywords are ok

$incomeAfterTaxes // legal

3_node5 // illegal: starts with a digit

!theCase // illegal: bad 1

st

 char

Identifiers are case sensitive—for example,

radius

 and

Radius

 are distinct identifiers.

The exam is careful to avoid potentially ambiguous questions that require you

to make purely academic distinctions between reserved words and keywords.

T A B L E 1 . 1

Java Keywords and Reserved Words

abstract class extends implements null strictfp true

assert const false import package super try

boolean continue final instanceof private switch void

break default finally int protected synchronized volatile

byte do float interface public this

while

case double for long return throw

catch else goto native short throws

char enum if new static transient

4419c01.fm Page 6 Tuesday, February 15, 2005 4:50 PM

Primitive Data Types

7

Primitive Data Types

A

primitive

 is a simple non-object data type that represents a single value. Java’s primitive data
types are
�

boolean

�

char

�

byte

�

short

�

int

�

long

�

float

�

double

The apparent bit patterns of these types are defined in the Java language specification, and
their effective sizes are listed in Table 1.2.

Variables of type

boolean

 may take only the values

true

 or

false

. Their repre-

sentation size might vary.

T A B L E 1 . 2 Primitive Data Types and Their Effective Sizes

Type Effective Representation Size (bits)

byte 8

int 32

float 32

char 16

short 16

long 64

double 64

4419c01.fm Page 7 Tuesday, February 15, 2005 4:50 PM

8 Chapter 1 � Language Fundamentals

A signed data type is a numeric type whose value can be positive, zero, or negative. (So the
number has an implicit plus sign or minus sign.) An unsigned data type is a numeric type whose
value can only be positive or zero. The four signed integral data types are
� byte

� short

� int

� long

Variables of these types are two’s-complement numbers; their ranges are given in Table 1.3.
Notice that for each type, the exponent of 2 in the minimum and maximum is one less than the
size of the type.

Two’s-complement is a way of representing signed integers that was originally
developed for microprocessors in such a way as to have a single binary repre-
sentation for the number 0. The most significant bit is used as the sign bit,
where 0 is positive and 1 is negative.

The char type is integral but unsigned. The range of a variable of type char is from 0 through
216 − 1. Java characters are in Unicode, which is a 16-bit encoding capable of representing a wide
range of international characters. If the most significant 9 bits of a char are all 0, then the encod-
ing is the same as 7-bit ASCII.

The two floating-point types are
� float

� double

The ranges of the floating-point primitive types are given in Table 1.4.

T A B L E 1 . 3 Ranges of the Integral Primitive Types

Type Size Minimum Maximum

byte 8 bits −27 27 − 1

short 16 bits −215 215 − 1

int 32 bits −231 231 − 1

long 64 bits −263 263 − 1

4419c01.fm Page 8 Tuesday, February 15, 2005 4:50 PM

Literals 9

These types conform to the IEEE 754 specification. Many mathematical operations can yield
results that have no expression in numbers (infinity, for example). To describe such non-numeric
situations, both double and float can take on values that are bit patterns that do not represent
numbers. Rather, these patterns represent non-numeric values. The patterns are defined in the
Float and Double classes and may be referenced as follows (NaN stands for Not a Number):
� Float.NaN

� Float.NEGATIVE_INFINITY

� Float.POSITIVE_INFINITY

� Double.NaN

� Double.NEGATIVE_INFINITY

� Double.POSITIVE_INFINITY

The following code fragment shows the use of these constants:

1. double d = -10.0 / 0.0;

2. if (d == Double.NEGATIVE_INFINITY) {

3. System.out.println(“d just exploded: “ + d);

4. }

In this code fragment, the test on line 2 passes, so line 3 is executed.

All numeric primitive types are signed.

Literals
A literal is a value specified in the program source, as opposed to one determined at runtime.
Literals can represent primitive or string variables and may appear on the right side of assign-
ments or in method calls. You cannot assign values into literals, so they cannot appear on the
left side of assignments.

T A B L E 1 . 4 Ranges of the Floating-Point Primitive Types

Type Size Minimum Maximum

float 32 bits +/–1.40239846–45 +/–3.40282347+38

double 16 bits +/–4.94065645841246544–324 +/–1.79769313486231570+308

4419c01.fm Page 9 Tuesday, February 15, 2005 4:50 PM

10 Chapter 1 � Language Fundamentals

In this section you’ll look at the literal values that can be assigned to boolean, character, integer,
floating-point, and String variables.

 The only valid literals of boolean type are true and false. For example:

1. boolean isBig = true;

2. boolean isLittle = false;

A chararacter literal (char) represents a single Unicode character. (Unicode is a convention
for using 16-bit unsigned numeric values to represent characters of all languages. For more on
Unicode, see Chapter 9, “I/O and Streams”. Usually a char literal can be expressed by enclosing
the desired character in single quotes, as shown here:

char c = ’w’;

Of course, this technique works only if the desired character is available on the keyboard at hand.
Another way to express a char literal is as a Unicode value specified using four hexadecimal digits,
preceded by \u, with the entire expression in single quotes. For example:

char c1 = ’\u4567’;

Java supports a few escape sequences for denoting special characters:
� ’\n’ for new line
� ’\r’ for return
� ’\t’ for tab
� ’\b’ for backspace
� ’\f’ for formfeed
� ’\’’ for single quote
� ’\” ’ for double quote
� ’\\’ for backslash

Integral literals may be assigned to any numeric primitive data type. They may be expressed
in decimal, octal, or hexadecimal. The default is decimal. To indicate octal, prefix the literal
with 0 (zero). To indicate hexadecimal, prefix the literal with 0x or 0X; the hex digits may be
upper- or lowercase. The value 28 may thus be expressed six ways:
� 28

� 034

� 0x1c

� 0x1C

� 0X1c

� 0X1C

4419c01.fm Page 10 Tuesday, February 15, 2005 4:50 PM

Arrays 11

By default, an integral literal is a 32-bit value. To indicate a long (64-bit) literal, append the
suffix L to the literal expression. (The suffix can be lowercase, but then it looks so much like a
one that your readers are bound to be confused.)

A floating-point literal expresses a floating-point number. In order to be interpreted as a
floating-point literal, a numerical expression must contain one of the following:
� A decimal point, such as 1.414
� The letter E or e, indicating scientific notation, such as 4.23E+21
� The suffix F or f, indicating a float literal, such as 1.828f
� The suffix D or d, indicating a double literal, such as 1234d

A floating-point literal with no F or D suffix defaults to double type.

String Literals

A string literal is a sequence of characters enclosed in double quotes. For example:

String s = “Characters in strings are 16-bit Unicode.”;

Java provides many advanced facilities for specifying non-literal string values, including a
concatenation operator and some sophisticated constructors for the String class. These facil-
ities are discussed in detail in Chapter 8, “The java.lang and java.util Packages.”

Arrays
A Java array is an ordered collection of primitives, object references, or other arrays. Java arrays
are homogeneous: except as allowed by polymorphism, all elements of an array must be of the
same type. That is, when you create an array, you specify the element type, and the resulting
array can contain only elements that are instances of that class or subclasses of that class.

To create and use an array, you must follow three steps:

1. Declaration

2. Construction

3. Initialization

Declaration tells the compiler the array’s name and what type its elements will be. For example:

1. int[] ints;

2. Dimension[] dims;

3. float[][] twoDee;

4419c01.fm Page 11 Tuesday, February 15, 2005 4:50 PM

12 Chapter 1 � Language Fundamentals

Line 1 declares an array of a primitive type. Line 2 declares an array of object references
(Dimension is a class in the java.awt package). Line 3 declares a two-dimensional array—that
is, an array of arrays of floats.

The square brackets can come before or after the array variable name. This is also true, and
perhaps most useful, in method declarations. A method that takes an array of doubles could
be declared as myMethod(double dubs[]) or as myMethod(double[] dubs); a method that
returns an array of doubles may be declared as either double[] anotherMethod() or as
double anotherMethod()[]. In this last case, the first form is probably more readable.

Generally, placing the square brackets adjacent to the type, rather than follow-
ing the variable or method, allows the type declaration part to be read as a single
unit: int array or float array, which might make more sense. However, C/C++
programmers will be more familiar with the form where the brackets are placed
to the right of the variable or method declaration. Given the number of mag-
azine articles that have been dedicated to ways to correctly interpret complex
C/C++ declarations (perhaps you recall the “spiral rule”), it’s probably not a
bad thing that Java has modified the syntax for these declarations. Either way,
you need to recognize both forms.

Notice that the declaration does not specify the size of an array. Size is specified at runtime,
when the array is allocated via the new keyword. For example

1. int[] ints; // Declaration to the compiler

2. ints = new int[25]; // Runtime construction

Since array size is not used until runtime, it is legal to specify size with a variable rather than
a literal:

1. int size = 1152 * 900;

2. int[] raster;

3. raster = new int[size];

Declaration and construction may be performed in a single line:

1. int[] ints = new int[25];

When an array is constructed, its elements are automatically initialized to their default values.
These defaults are the same as for object member variables. Numerical elements are initialized to
0; non-numeric elements are initialized to 0-like values, as shown in Table 1.5.

Arrays are actually objects, even to the extent that you can execute methods on
them (mostly the methods of the Object class), although you cannot subclass
the array class. So this initialization is exactly the same as for other objects, and
as a consequence you will see this table again in the next section.

4419c01.fm Page 12 Tuesday, February 15, 2005 4:50 PM

Arrays 13

If you want to initialize an array to values other than those shown in Table 1.5, you can com-
bine declaration, construction, and initialization into a single step. The following line of code
creates a custom-initialized array of five floats:

1. float[] diameters = {1.1f, 2.2f, 3.3f, 4.4f, 5.5f};

The array size is inferred from the number of elements within the curly braces.
Of course, an array can also be initialized by explicitly assigning a value to each element,

starting at array index 0:

1. long[] squares;

2. squares = new long[6000];

3. for (int i = 0; i < 6000; i++) {

4. squares[i] = i * i;

5. }

When the array is created at line 2, it is full of default values (0L), which are replaced in lines
3–4. The code in the example works but can be improved. If you later need to change the array
size (in line 2), the loop counter will have to change (in line 3), and the program could be dam-
aged if line 3 is not taken care of. The safest way to refer to the size of an array is to append the
.length member variable to the array name. Thus, our example becomes

1. long[] squares;

2. squares = new long[6000];

T A B L E 1 . 5 Array Element Initialization Values

Element Type Initial Value

byte 0

int 0

float 0.0f

char ‘\u0000’

object reference null

short 0

long 0L

double 0.0d

boolean false

4419c01.fm Page 13 Tuesday, February 15, 2005 4:50 PM

14 Chapter 1 � Language Fundamentals

3. for (int i = 0; i < squares.length; i++) {

4. squares[i] = i * i;

5. }

When an array has more than one dimension, there is more going on than you might think.
Consider this declaration plus initialization:

int[][] myInts = new int[3][4];

It’s natural to assume that the myInts contains 12 ints and to imagine them as organized into
rows and columns, as shown in Figure 1.1.

Actually, Figure 1.1 is misleading. myInts is actually an array with three elements. Each element
is a reference to an array containing 4 ints, as shown in Figure 1.2.

The subordinate arrays in a multi-dimension array don’t have to all be the same length. It’s
possible to create an array that looks like Figure 1.3.

F I G U R E 1 . 1 The wrong way to think about multi-dimension arrays

F I G U R E 1 . 2 The right way to think about multi-dimension arrays

1 2 3 4

91 92 93 94

2001 2002 2003 2004

1

2

3

4

91

92

93

94

2001

2002

2003

2004

4419c01.fm Page 14 Tuesday, February 15, 2005 4:50 PM

Importing 15

F I G U R E 1 . 3 An irregular multi-dimension array

Figure 1.3 shows an array whose elements are an array of 3 ints, an array of 4 ints, and an
array of 2 ints. Such an array may be created like this:

int[][] myInts = { {1, 2, 3}, {91, 92, 93, 94}, {2001, 2002} };

When you realize that the outermost array is a single-dimension array containing references,
you understand that you can replace any of the references with a reference to a different sub-
ordinate array, provided the new subordinate array is of the right type. For example, you can
do the following:

int[][] myInts = { {1, 2, 3}, {91, 92, 93, 94}, {2001, 2002} };

int[] replacement = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

myInts[1] = replacement;

Importing
The term “import” can be confusing. In common speech, import means to bring something
from abroad into one’s own territory. In the Java context, it’s natural to wonder what is getting
brought in, and where it is getting brought into. A common mistake is to guess that importing
has something to do with class loading. It’s a reasonable mistake, since the class loader is the
only obvious Java entity that brings something (class definitions) into somewhere (the Java Vir-
tual Machine). However, the guess is dead wrong.

What gets brought in is the import class’ name. The name is brought into the source file’s
namespace. A namespace is a kind of place—not a physical place, but an abstract place such as

1

2

3

91

92

93

94

2001

2002

4419c01.fm Page 15 Tuesday, February 15, 2005 4:50 PM

16 Chapter 1 � Language Fundamentals

a directory or a source file—that contains items with unique names. The easiest example is a
directory: within a directory, all filenames must be different from all other filenames. Names
may be duplicated in different namespaces. For example, readme.txt may appear only once
within a single directory but may appear in any other directory.

Items that appear in namespaces have short names and long names. The short name is for
use within the namespace. The long name is for use outside the namespace. Suppose directory
C:\MyCode\Projects contains a file named Sphinx.java. When you are working in C:\MyCode\
Projects, you can refer to the file by its short name: Sphinx.java. However, when your work-
ing directory is not C:\MyCode\Projects, you need to use the file’s full name: C:\MyCode\
Projects\Sphinx.java.

The namespace of a Java source file contains the names of all classes and interfaces in the
source file’s package. In other words, within the source file you may refer to any class by its
short name; classes outside the package must be called by their complete names. Suppose the
current package contains a class named Formula. The following code creates an instance of
Formula and an instance of Vector:

1. Formula f = new Formula();

2. java.util.Vector vec = new java.util.Vector();

Line 2 is a mess. The Vector class resides in the java.util package, so it must be referred
to by its full name…twice! (Once in the declaration, and again in the constructor call.) If there
were no workaround, the only thing worse than writing Java code would be reading Java code.
Fortunately, Java provides a workaround. The source file needs an import statement:

import java.util.Vector;

Then line 2 becomes

2. Vector vec = new Vector();

This statement imports the name “Vector” into the namespace, allowing it to be used without
the “java.util” prefix. When the compiler encounters a short class name, it checks the current
package. If the class name is not found, the compiler then checks its import statements. In our
example, the compiler will notice that there is no Vector class in the current package, but there
is an import statement. The import tells the compiler, “When I say Vector, I really mean
java.util.Vector.”

Java’s static import facility, which was introduced in rev 5.0, allows you to import static
data and methods, as well as classes. In other words, you may refer to static data and methods
in external classes without using full names. For example, the java.awt.Color class contains
static data members names RED, GREEN, BLUE, and so on. Suppose you want to set myColor to
GREEN. Without static imports, you have to do the following:

import java.awt.Color;

…

myColor = Color.GREEN;

4419c01.fm Page 16 Tuesday, February 15, 2005 4:50 PM

Importing 17

With a static import, you can import the name “GREEN” into your namespace:

import static java.awt.Color.GREEN;

…

myColor = GREEN;

Note that the import keyword is followed by static. This tells the compiler to import the
name of a static element of a class, rather than a class name.

Static imports eliminate the nuisance of constant interfaces. Constant interfaces are fairly
common, since before rev 5.0 there was no good alternative. Many packages or applications
define constants that are needed by more than one source file. For example, an application that
uses both English and metric weights might need the following:

public static float LBS_PER_KG = 2.2f;

public static float KGS_PER_LB = 1 / LBS_PER_KG;

Now the question is, where do these lines belong? The general answer to this question is that
they belong in the most appropriate class or interface. Unfortunately, “most appropriate”
doesn’t always mean most convenient. Suppose you put our two lines in a class called Scales.
Since the constants are in the namespace of Scales, they may appear there without prefix. For
example, Scales might contain

massInPounds = massInKgs * LBS_PER_KG;

However, other classes must go to more trouble. Any class except Scales has to do the
following:

massInPounds = massInKgs * Scales.LBS_PER_KG;

Many programmers, wishing to avoid the inconvenience of prefixing, have discovered the
trick of creating an interface (known as a constant interface) to contain constants. This trick has
two benefits. First, you don’t have to decide which class to put the constants in; they go in the
interface. Second, in any class that implements the constant interface, you don’t have to prefix
the constants. In our example, you might be tempted to place the constant definitions in an
interface called Conversion. Then the Scales class, and all other classes that convert between
pounds and kilos, can implement Conversion.

Unfortunately, constant interfaces have several drawbacks. In the first place, to say that a
class implements an interface really means that the class exposes the public methods listed in the
interface. Interfaces are for defining types and should be used exclusively for that purpose. Con-
stant interfaces only contain data, so they definitely don’t define types.

The second disadvantage is a bit more complicated. Suppose someone you work with writes
some code that uses an instance of Scales. This person can legally reference that instance with
a variable of type Conversion, even though doing so would be quite inappropriate. Later, if
you wanted to eliminate the Conversion interface, you couldn’t do so, because your misguided
colleague would be relying on the existence of the interface.

4419c01.fm Page 17 Tuesday, February 15, 2005 4:50 PM

18 Chapter 1 � Language Fundamentals

With static imports, you have an alternative to constant interfaces. To use static imports, you
first locate your constants in the classes where they belong. Let’s assume you put LBS_PER_KG
and KGS_PER_LB in the Scales class. Now any other source file can use the following syntax:

import static Scales.LBS_PER_KG;

import static Scales.KGS_PER_LB;

Any source file that uses these statements may refer to LBS_PER_KG and KGS_PER_LB, rather
than Scales.LBS_PER_KG and Scales.KGS_PER_LB.

The static import facility is aware of packages and access modes. To do a static import
from a class in a different package, you have to prefix the class name with its package path. For
example, to import the constant NORTH from class java.awt.BorderLayout, you would use

import static java.awt.BorderLayout.NORTH;

Only public data may be imported from classes in external packages. Data imported from
other classes in the same package may be public, protected, or default, but not private. These
rules are consistent with the meanings of public, protected, default, and private.

Java’s access modes are discussed in detail in Chapter 3, “Modifiers.”

You can use the star notation to import all accessible constants from a class. The line

import static pkga.pkgb.AClassName.*;

will import all non-private constants if AClassName is in the current package or all public constants
if AClassName is in a different package.

Static importing gives you access to static methods as well as static data. Suppose class
measure.Scales has a method called poundsToMicrograms() that looks like this:

public static float poundsToMicrograms(float pounds) {

 return pounds * KGS_PER_LB * 1.0e6f;

}

Any source file can import this method as follows:

import static measure.Scales.poundsToMicrograms();

A source file that performs this import may invoke the method as (for example)

float ugs = poundsToMicrograms(lbs);

This is a bit more convenient than

float ugs = Scales.poundsToMicrograms(lbs);

4419c01.fm Page 18 Tuesday, February 15, 2005 4:50 PM

Class Fundamentals 19

As with ordinary imports, static imports have only a slight compile-time cost and zero run-
time cost. Many programmers are unclear on this point, perhaps because the word “import”
feels like such an active verb; it seems as if surely the class loader or some other mechanism must
be hard at work. Remember that importing does nothing more than bring a name into the local
namespace. So importing and static importing are quite inexpensive.

Class Fundamentals
Java is all about classes, and a review of the exam objectives will show that you need to be
intimately familiar with them. Classes are discussed in detail in Chapter 6, “Objects and
Classes.” For now, let’s examine a few fundamentals.

Class Paths

When the Java compiler or the Virtual Machine needs a classfile, it searches all the locations
listed in its classpath. The classpath is formed by merging the CLASSPATH environment variable
and any locations specified in -classpath or -cp command line arguments. The members of
a classpath may be directories or jar files.

Let’s take an example. Suppose the compiler is looking for class sgsware.sphinx.Domain.
The package structure sgsware.sphinx requires that the Domain.class file must be in a directory
called sphinx, which must be in a directory called sgsware. So the compiler checks each class-
path member to see if it contains sgsware\sphinx\Domain.class.

On Windows platforms, directories and jar files in a classpath are separated by a semicolon
(“;”). On UNIX platforms the separator is a colon (“:”).

The main() Method

The main() method is the entry point for standalone Java applications. To create an applica-
tion, you write a class definition that includes a main() method. To execute an application, type
java at the command line, followed by the name of the class containing the main() method to
be executed.

The signature for main() is

public static void main(String[] args)

The main() method must be public so that the JVM can call it. It is static so that it can be
executed without the necessity of constructing an instance of the application class. The return
type must be void.

The argument to main() is a single-dimension array of Strings, containing any arguments
that the user might have entered on the command line. For example, consider the following
command line:

% java Mapper France Belgium

4419c01.fm Page 19 Tuesday, February 15, 2005 4:50 PM

20 Chapter 1 � Language Fundamentals

With this command line, the args[] array has two elements: France in args[0], and Belgium
in args[1]. Note that neither the class name (Mapper) nor the command name (java) appears in
the array. Of course, the name args is purely arbitrary: any legal identifier may be used, pro-
vided the array is a single-dimension array of String objects.

Variables and Initialization

Java supports variables of three different lifetimes:

Member variable A member variable of a class is created when an instance is created, and it
is destroyed when the object is destroyed. Subject to accessibility rules and the need for a ref-
erence to the object, member variables are accessible as long as the enclosing object exists.

Automatic variable An automatic variable of a method is created on entry to the method and
exists only during execution of the method, and therefore it is accessible only during the exe-
cution of that method. (You’ll see an exception to this rule when you look at inner classes, but
don’t worry about that for now.)

Class variable A class variable (also known as a static variable) is created when the class is
loaded and is destroyed when the class is unloaded. There is only one copy of a class variable, and
it exists regardless of the number of instances of the class, even if the class is never instantiated.

All member variables that are not explicitly assigned a value upon declaration are automat-
ically assigned an initial value. The initialization value for member variables depends on the
member variable’s type. Values are listed in Table 1.6.

The values in Table 1.6 are the same as those in Table 1.5; member variable initialization values
are the same as array element initialization values.

A member value may be initialized in its own declaration line:

1. class HasVariables {

2. int x = 20;

3. static int y = 30;

When this technique is used, nonstatic instance variables are initialized just before the class con-
structor is executed; here x would be set to 20 just before invocation of any HasVariables con-
structor. Static variables are initialized at class load time; here y would be set to 30 when the
HasVariables class is loaded.

Automatic variables (also known as method local variables are not initialized by the system;
every automatic variable must be explicitly initialized before being used. For example, this
method will not compile:

1. public int wrong() {

2. int i;

3. return i+5;

4. }

4419c01.fm Page 20 Tuesday, February 15, 2005 4:50 PM

Class Fundamentals 21

The compiler error at line 3 is, “Variable i may not have been initialized.” This error often
appears when initialization of an automatic variable occurs at a lower level of curly braces than the
use of that variable. For example, the following method returns the fourth root of a positive number:

1. public double fourthRoot(double d) {

2. double result;

3. if (d >= 0) {

4. result = Math.sqrt(Math.sqrt(d));

5. }

6. return result;

7. }

Here the result is initialized on line 4, but the initialization takes place within the curly braces
of lines 3 and 5. The compiler will flag line 6, complaining that “Variable result may not have
been initialized.” A common solution is to initialize result to some reasonable default as soon
as it is declared:

1. public double fourthRoot(double d) {

2. double result = 0.0; // Initialize

3. if (d >= 0) {

4. result = Math.sqrt(Math.sqrt(d));

5. }

6. return result;

7. }

Now result is satisfactorily initialized. Line 2 demonstrates that an automatic variable may
be initialized in its declaration line. Initialization on a separate line is also possible.

Class variables are initialized in the same manner as for member variables.

T A B L E 1 . 6 Initialization Values for Member Variables

Element Type Initial Value Element Type Initial Value

byte 0 short 0

int 0 long 0L

float 0.0f double 0.0d

char ‘\u0000’ boolean false

object reference null

4419c01.fm Page 21 Tuesday, February 15, 2005 4:50 PM

22 Chapter 1 � Language Fundamentals

Argument Passing: By Reference
or by Value
When Java passes an argument into a method call, a copy of the argument is actually passed.
Consider the following code fragment:

1. double radians = 1.2345;

2. System.out.println(“Sine of “ + radians +

3. “ = “ + Math.sin(radians));

The variable radians contains a pattern of bits that represents the number 1.2345. On line 2,
a copy of this bit pattern is passed into the method-calling apparatus of the JVM.

When an argument is passed into a method, changes to the argument value by the method
do not affect the original data. Consider the following method:

1. public void bumper(int bumpMe) {

2. bumpMe += 15;

3. }

Line 2 modifies a copy of the parameter passed by the caller. For example

1. int xx = 12345;

2. bumper(xx);

3. System.out.println(“Now xx is “ + xx);

On line 2, the caller’s xx variable is copied; the copy is passed into the bumper() method and
incremented by 15. Because the original xx is untouched, line 3 will report that xx is still
12345.

This is also true when the argument to be passed is an object rather than a primitive. How-
ever, it is crucial for you to understand that the effect is very different. In order to understand
the process, you have to understand the concept of the object reference.

Java programs do not deal directly with objects. When an object is constructed, the construc-
tor returns a value—a bit pattern—that uniquely identifies the object. This value is known as a
reference to the object. For example, consider the following code:

1. Button btn;

2. btn = new Button(“Ok“);

In line 2, the Button constructor returns a reference to the just-constructed button—not the
actual button object or a copy of the button object. This reference is stored in the variable btn.
In some implementations of the JVM, a reference is simply the address of the object; however,
the JVM specification gives wide latitude as to how references can be implemented. You can
think of a reference as simply a pattern of bits that uniquely identifies an individual object.

4419c01.fm Page 22 Tuesday, February 15, 2005 4:50 PM

Argument Passing: By Reference or by Value 23

In most JVMs, the reference value is actually the address of an address. This
second address refers to the real data. This approach, called double indirection,
allows the garbage collector to relocate objects to reduce memory fragmentation.

When Java code appears to store objects in variables or pass objects into method calls, the
object references are stored or passed.

Consider this code fragment:

1. Button btn;

2. btn = new Button(“Pink“);

3. replacer(btn);

4. System.out.println(btn.getLabel());

5.

6. public void replacer(Button replaceMe) {

7. replaceMe = new Button(“Blue“);

8. }

Line 2 constructs a button and stores a reference to that button in btn. In line 3, a copy of
the reference is passed into the replacer() method. Before execution of line 7, the value in
replaceMe is a reference to the Pink button. Then line 7 constructs a second button and stores
a reference to the second button in replaceMe, thus overwriting the reference to the Pink button.

How to Create a Reference to a Primitive

This is a useful technique if you need to create the effect of passing primitive values by refer-
ence. Simply pass an array of one primitive element over the method call, and the called
method can now change the value seen by the caller. To do so, use code like this:

 1. public class PrimitiveReference {

 2. public static void main(String args[]) {

 3. int [] myValue = { 1 };

 4. modifyIt(myValue);

 5. System.out.println(“myValue contains “ +

 6. myValue[0]);

 7. }

 8. public static void modifyIt(int [] value) {

 9. value[0]++;

10. }

11. }

4419c01.fm Page 23 Tuesday, February 15, 2005 4:50 PM

24 Chapter 1 � Language Fundamentals

However, the caller’s copy of the reference is not affected, so on line 4 the call to btn.getLabel()
calls the original button; the string printed out is “Pink”.

You have seen that called methods cannot affect the original value of their arguments—that is,
the values stored by the caller. However, when the called method operates on an object via the ref-
erence value that is passed to it, there are important consequences. If the method modifies the
object via the reference, as distinguished from modifying the method argument—the reference—
then the changes will be visible to the caller. For example

1. Button btn;

2. btn = new Button(“Pink“);

3. changer(btn);

4. System.out.println(btn.getLabel());

5.

6. public void changer(Button changeMe) {

7. changeMe.setLabel(“Blue“);

8. }

In this example, the variable changeMe is a copy of the reference btn, just as before. How-
ever, this time the code uses the copy of the reference to change the actual original object rather
than trying to change the reference. Because the caller’s object is changed rather than the callee’s
reference, the change is visible and the value printed out by line 4 is “Blue”.

Arrays are objects, meaning that programs deal with references to arrays, not with arrays
themselves. What gets passed into a method is a copy of a reference to an array. It is therefore
possible for a called method to modify the contents of a caller’s array.

Garbage Collection
Most modern languages permit you to allocate data storage during a program run. In Java, this
is done directly when you create an object with the new operation and indirectly when you call
a method that has local variables or arguments. Method locals and arguments are allocated
space on the stack and are discarded when the method exits, but objects are allocated space on
the heap and have a longer lifetime.

Each process has its own stack and heap, and they are located on opposite
sides of the process address space. The sizes of the stack and heap are limited
by the amount of memory that is available on the host running the program.
They may be further limited by the operating system or user-specific limits.

4419c01.fm Page 24 Tuesday, February 15, 2005 4:50 PM

Garbage Collection 25

It is important to recognize that objects are always allocated on the heap. Even if they are
created in a method using code like

public void aMethod() {

 MyClass mc = new MyClass();

}

the local variable mc is a reference, allocated on the stack, whereas the object to which that
variable refers, an instance of MyClass, is allocated on the heap.

In this discussion, we are concerned with recovery of space allocated on the heap. The increased
lifetime raises the question of when storage allocation on the heap can be released. Some lan-
guages require that you, the programmer, explicitly release the storage when you have finished
with it. This approach has proven seriously error-prone, because you might release the storage
too soon (causing corrupted data if any other reference to the data is still in use) or forget to
release it altogether (causing a memory shortage). Java’s garbage collection solves the first of these
problems and greatly simplifies the second.

How to Cause Leaks in a Garbage Collection System

The nature of automatic garbage collection has an important consequence: you can still get
memory leaks. If you allow live, accessible references to unneeded objects to persist in your
programs, then those objects cannot be garbage collected. Therefore, it may be a good idea to
explicitly assign null into a variable when you have finished with it. This issue is particularly
noticeable if you are implementing a collection of some kind.

In this example, assume the array storage is being used to maintain the storage of a stack. This
pop() method is inappropriate:

1. public Object pop() {

2. return storage[index--];

3. }

If the caller of this pop() method abandons the popped value, it will not be eligible for garbage
collection until the array element containing a reference to it is overwritten. This might take a
long time. You can speed up the process like this:

1. public Object pop() {

2. Object returnValue = storage[index];

3. storage[index--] = null;

4. return returnValue;

5. }

4419c01.fm Page 25 Tuesday, February 15, 2005 4:50 PM

26 Chapter 1 � Language Fundamentals

In Java, you never explicitly free memory that you have allocated; instead, Java provides
automatic garbage collection. The runtime system keeps track of the memory that is allocated
and is able to determine whether that memory is still useable. This work is usually done in the
background by a low-priority thread that is referred to as the garbage collector. When the gar-
bage collector finds memory that is no longer accessible from any live thread (the object is out
of scope), it takes steps to release it back into the heap for re-use. Specifically, the garbage col-
lector calls the class destructor method called finalize() (if it is defined) and then frees the
memory.

Garbage collection can be done in a number of different ways; each has advantages and
disadvantages, depending on the type of program that is running. A real-time control system,
for example, needs to know that nothing will prevent it from responding quickly to interrupts;
this application requires a garbage collector that can work in small chunks or that can be inter-
rupted easily. On the other hand, a memory-intensive program might work better with a garbage
collector that stops the program from time to time but recovers memory more urgently as a
result. At present, garbage collection is hardwired into the Java runtime system; most garbage
collection algorithms use an approach that gives a reasonable compromise between speed of
memory recovery and responsiveness. In the future, you will probably be able to plug in dif-
ferent garbage-collection algorithms or buy different JVMs with appropriate collection algo-
rithms, according to your particular needs.

This discussion leaves one crucial question unanswered: When is storage recovered? The best
answer is that storage is not recovered unless it is definitely no longer in use. That’s it. Even though
you are not using an object any longer, you cannot say if it will be collected in 1 millisecond, in 100
milliseconds, or even if it will be collected at all. The methods System.gc() and Runtime.gc()
look as if they run the garbage collector, but even these cannot be relied upon in general, because
some other thread might prevent the garbage-collection thread from running. In fact, the documen-
tation for the gc() methods states:

Calling this method suggests that the Java Virtual Machine expends effort
toward recycling unused objects.

Summary
This chapter has covered a variety of topics. You learned that a source file’s elements must
appear in this order:

1. Package declaration

2. Import statements

3. Class, interface, and enum definitions

Imports may be static. There should be, at most, one public class definition per source file; the
filename must match the name of the public class.

You also learned that an identifier must begin with a letter, a dollar sign, or an underscore;
subsequent characters may be letters, dollar signs, underscores, or digits. Java has four signed

4419c01.fm Page 26 Tuesday, February 15, 2005 4:50 PM

Exam Essentials 27

integral primitive data types: byte, short, int, and long; all four types display the behavior
of two’s-complement representation. Java’s two floating-point primitive data types are float
and double; the char type is unsigned and represents a Unicode character; the boolean type
may take on only the values true and false.

In addition, you learned that arrays must be (in order)

1. Declared

2. Constructed

3. Initialized

Default initialization is applied to member variables, class variables, and array elements, but not
automatic variables. The default values are 0 for numeric types, the null value for object ref-
erences, the null character for char, and false for boolean. The length member of an array
gives the number of elements in the array. A class with a main() method can be invoked from
the command line as a Java application. The signature for main() is public static void
main(String[] args). The args[] array contains all command-line arguments that appeared
after the name of the application class.

You should also understand that method arguments are copies, not originals. For arguments
of primitive data type, this means that modifications to an argument within a method are not
visible to the caller of the method. For arguments of object type (including arrays), modifica-
tions to an argument value within a method are still not visible to the caller of the method; how-
ever, modifications in the object or array to which the argument refers do appear to the caller.

Finally, Java’s garbage-collection mechanism may recover only memory that is definitely
unused. It is not possible to force garbage collection reliably. It is not possible to predict when
a piece of unused memory will be collected, only to say when it becomes eligible for collection.
Garbage collection does not prevent memory leaks; they can still occur if unused references are
not cleared to null or destroyed.

Exam Essentials
Recognize and create correctly constructed source files. You should know the various kinds
of compilation units and their required order of appearance.

Recognize and create correctly constructed declarations. You should be familiar with decla-
rations of packages, classes, interfaces, methods, and variables.

Recognize Java keywords. You should recognize the keywords and reserved words listed in
Table 1.1.

Distinguish between legal and illegal identifiers. You should know the rules that restrict the
first character and the subsequent characters of an identifier.

Know all the primitive data types and the ranges of the integral data types. These are summa-
rized in Tables 1.2 and 1.3.

4419c01.fm Page 27 Tuesday, February 15, 2005 4:50 PM

28 Chapter 1 � Language Fundamentals

Recognize correctly formatted literals. You should be familiar with all formats for literal
characters, strings, and numbers.

Know how to declare and construct arrays. The declaration includes one empty pair of
square brackets for each dimension of the array. The square brackets can appear before or after
the array name. Arrays are constructed with the keyword new.

Know the default initialization values for all possible types of class variables and array elements.
Know when data is initialized. Initialization takes place when a class or array is constructed.
The initialization values are 0 for numeric type arrays, false for boolean arrays, and null for
object reference type arrays.

Understand importing and static importing. Be aware of the difference between traditional
importing and the new static import facility.

Know the contents of the argument list of an application’s main() method, given the command
line that invoked the application. Be aware that the list is an array of Strings containing every-
thing on the command line except the java command, command-line options, and the name of
the class.

Know that Java passes method arguments by value. Changes made to a method argument
are not visible to the caller, because the method argument changes a copy of the argument.
Objects are not passed to methods; only references to objects are passed.

Understand memory reclamation and the circumstances under which memory will be reclaimed.
If an object is still accessible to any live thread, that object will certainly not be collected. This is
true even if the program will never access the object again—the logic is simple and cannot make
inferences about the semantics of the code. No guarantees are made about reclaiming available
memory or the timing of reclamation if it does occur. A standard JVM has no entirely reliable,
platform-independent way to force garbage collection. The System and Runtime classes each
have a gc() method, and these methods make it more likely that garbage collection will run, but
they provide no guarantee.

4419c01.fm Page 28 Tuesday, February 15, 2005 4:50 PM

Review Questions 29

Review Questions
1. A signed data type has an equal number of non-zero positive and negative values available.

A. True

B. False

2. Choose the valid identifiers from those listed here. (Choose all that apply.)

A. BigOlLongStringWithMeaninglessName

B. $int

C. bytes

D. $1

E. finalist

3. Which of the following signatures are valid for the main() method entry point of an application?
(Choose all that apply.)

A. public static void main()

B. public static void main(String arg[])

C. public void main(String [] arg)

D. public static void main(String[] args)

E. public static int main(String [] arg)

4. If all three top-level elements occur in a source file, they must appear in which order?

A. Imports, package declarations, classes/interfaces/enums

B. Classes/interfaces/enums, imports, package declarations

C. Package declaration must come first; order for imports and class/interfaces/enum definitions
is not significant

D. Package declaration, imports, class/interface/enum definitions.

E. Imports must come first; order for package declarations and class/interface/enum definitions
is not significant

5. Consider the following line of code:

int[] x = new int[25];

After execution, which statements are true? (Choose all that apply.)

A. x[24] is 0

B. x[24] is undefined

C. x[25] is 0

D. x[0] is null

E. x.length is 25

4419c01.fm Page 29 Tuesday, February 15, 2005 4:50 PM

30 Chapter 1 � Language Fundamentals

6. Consider the following application:

 1. class Q6 {

 2. public static void main(String args[]) {

 3. Holder h = new Holder();

 4. h.held = 100;

 5. h.bump(h);

 6. System.out.println(h.held);

 7. }

 8. }

 9.

10. class Holder {

11. public int held;

12. public void bump(Holder theHolder) {

13. theHolder.held++; }

14. }

15. }

What value is printed out at line 6?

A. 0

B. 1

C. 100

D. 101

7. Consider the following application:

 1. class Q7 {

 2. public static void main(String args[]) {

 3. double d = 12.3;

 4. Decrementer dec = new Decrementer();

 5. dec.decrement(d);

 6. System.out.println(d);

 7. }

 8. }

 9.

10. class Decrementer {

11. public void decrement(double decMe) {

12. decMe = decMe - 1.0;

13. }

14. }

4419c01.fm Page 30 Tuesday, February 15, 2005 4:50 PM

Review Questions 31

What value is printed out at line 6?

A. 0.0

B. 1.0

C. 12.3

D. 11.3

8. How can you force garbage collection of an object?

A. Garbage collection cannot be forced.

B. Call System.gc().

C. Call System.gc(), passing in a reference to the object to be garbage-collected.

D. Call Runtime.gc().

E. Set all references to the object to new values (null, for example).

9. What is the range of values that can be assigned to a variable of type short?

A. Depends on the underlying hardware

B. 0 through 216 − 1

C. 0 through 232 − 1

D. −215 through 215 − 1

E. −231 through 231 − 1

10. What is the range of values that can be assigned to a variable of type byte?

A. Depends on the underlying hardware

B. 0 through 28 − 1

C. 0 through 216 − 1

D. −27 through 27 − 1

E. −215 through 215 − 1

11. Suppose a source file contains a large number of import statements. How do the imports affect
the time required to compile the source file?

A. Compilation takes no additional time.

B. Compilation takes slightly more time.

C. Compilation takes significantly more time.

12. Suppose a source file contains a large number of import statements and one class definition.
How do the imports affect the time required to load the class?

A. Class loading takes no additional time.

B. Class loading takes slightly more time.

C. Class loading takes significantly more time.

4419c01.fm Page 31 Tuesday, February 15, 2005 4:50 PM

32 Chapter 1 � Language Fundamentals

13. Which of the following are legal import statements?

A. import java.util.Vector;

B. static import java.util.Vector.*;

C. import static java.util.Vector.*;

D. import java.util.Vector static;

14. Which of the following may be statically imported? (Choose all that apply.)

A. Package names

B. Static method names

C. Static field names

D. Method-local variable names

15. What happens when you try to compile and run the following code?

public class Q15 {

 static String s;

 public static void main(String[] args) {

 System.out.println(“>>” + s + “<<”);

 }

}

A. The code does not compile

B. The code compiles, and prints out >><<

C. The code compiles, and prints out >>null<<

16. Which of the following are legal? (Choose all that apply.)

A. int a = abcd;

B. int b = ABCD;

C. int c = 0xabcd;

D. int d = 0XABCD;

E. int e = 0abcd;

F. int f = 0ABCD;

17. Which of the following are legal? (Choose all that apply.)

A. double d = 1.2d;

B. double d = 1.2D;

C. double d = 1.2d5;

D. double d = 1.2D5;

4419c01.fm Page 32 Tuesday, February 15, 2005 4:50 PM

Review Questions 33

18. Which of the following are legal?

A. char c = 0x1234;

B. char c = \u1234;

C. char c = ‘\u1234’;

19. Consider the following code:

1. StringBuffer sbuf = new StringBuffer();

2. sbuf = null;

3. System.gc();

Choose all true statements:

A. After line 2 executes, the StringBuffer object is garbage collected.

B. After line 3 executes, the StringBuffer object is garbage collected.

C. After line 2 executes, the StringBuffer object is eligible for garbage collection.

D. After line 3 executes, the StringBuffer object is eligible for garbage collection.

20. Which of the following are true? (Choose all that apply.)

A. Primitives are passed by reference.

B. Primitives are passed by value.

C. References are passed by reference.

D. References are passed by value.

4419c01.fm Page 33 Tuesday, February 15, 2005 4:50 PM

34 Chapter 1 � Language Fundamentals

Answers to Review Questions
1. B. The range of negative numbers is greater by one than the range of positive numbers.

2. A, B, C, D, E. All of the identifiers are valid. An identifier begins with a letter, a dollar sign, or
an underscore; subsequent characters may be letters, dollar signs, underscores, or digits. And of
course keywords and their kin may not be identifiers.

3. B, D. All the choices are valid method signatures. However, in order to be the entry point of an
application, a main() method must be public, static, and void; it must take a single argument
of type String[].

4. D. Package declaration must come first, followed by imports, followed by class/interface/enum
definitions.

5. A, E. The array has 25 elements, indexed from 0 through 24. All elements are initialized to 0.

6. D. A holder is constructed on line 3. A reference to that holder is passed into method bump() on
line 5. Within the method call, the holder’s held variable is bumped from 100 to 101.

7. C. The decrement() method is passed a copy of the argument d; the copy gets decremented, but
the original is untouched.

8. A. Garbage collection cannot be forced. Calling System.gc() or Runtime.gc() is not 100 per-
cent reliable, because the garbage-collection thread might defer to a thread of higher priority;
thus options B and D are incorrect. Option C is incorrect because the two gc() methods do not
take arguments; in fact, if you still have a reference to pass into any method, the object is not yet
eligible to be collected. Option E will make the object eligible for collection the next time the gar-
bage collector runs.

9. D. The range for a 16-bit short is −215 through 215 − 1. This range is part of the Java specifi-
cation, regardless of the underlying hardware.

10. D. The range for an 8-bit byte is −27 through 27 −1. Table 1.3 lists the ranges for Java’s integral
primitive data types.

11. B . Importing slightly increases compilation time.

12. A.. Importing is strictly a compile-time function. It has no effect on class loading or on any other
run-time function.

13. A, C. The import keyword may optionally be followed by the static keyword.

14. B, C. You may statically import method and field names.

15. C. The code compiles without error. At static initialization time, s is initialized to null (and not
to a reference to an empty string, as suggested by C).

16. C, D. The characters a–f and A–F may be combined with the digits 0–9 to create a hexadecimal
literal, which must begin with 0x.

4419c01.fm Page 34 Tuesday, February 15, 2005 4:50 PM

Answers to Review Questions 35

17. A, B. The d suffix in option A and the D suffix in option B are optional. Options C and D are
illegal because the notation requires e or E, not d or D.

18. C. A Unicode literal character must be enclosed in single quotes and must begin with \u.

19. C.. After line 2 executes, there are no references to the StringBuffer object, so it becomes
eligible for garbage collection.

20. B, D. In Java, all arguments are passed by value.

4419c01.fm Page 35 Tuesday, February 15, 2005 4:50 PM

4419c01.fm Page 36 Tuesday, February 15, 2005 4:50 PM

Chapter

2

Operators and
Assignments

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

7.6 Write code that correctly applies the appropriate

operators including assignment operators (limited to: =,

+ =, -=), arithmetic operators (limited to: +, -, *, /, %, ++, --),

relational operators (limited to: <, < =, >, > =, = =, !=), the

instanceof operator, logical operators (limited to: &, |, ^, !,

&&, ||), and the conditional operator (? :), to produce a

desired result. Write code that determines the equality of

two objects or two primitives.

4419c02.fm Page 37 Thursday, February 24, 2005 4:20 PM

Java provides a full set of operators, most of which are taken from
C and C

++

. However, Java’s operators differ in some important
aspects from their counterparts in these other languages, and you

need to understand clearly how Java’s operators behave. This chapter describes all the operators.
Some are described briefly, whereas operators that sometimes cause confusion are described in more
detail. You will also learn about the behavior of expressions under conditions of arithmetic over-
flow. In this chapter, we will first look at the different Java operators. The rest of this chapter exam-
ines each of these operators. But before we start, let’s consider the general issue of evaluation order.

Overview of the Java Operators

Java’s operators, which are shown in Table 2.1, perform traditional arithmetic and logical oper-
ations, as well as the object-oriented cast and

instanceof

 operations. They are listed in prece-
dence order, with the highest precedence at the top of the table. Each group has been given a
name for reference purposes; that name is shown in the left column of the table. Arithmetic and
comparison operators are each split further into two subgroupings because they have different
levels of precedence. We’ll discuss these groupings later.

T A B L E 2 . 1

Operators in Java, in Descending Order of Precedence

Category Operators

Unary

++ -- + - ! ~

(type)

Arithmetic

* / %

+ -

Shift

<< >> >>>

Comparison

< <= > >= instanceof

== !=

4419c02.fm Page 38 Thursday, February 24, 2005 4:20 PM

Evaluation Order

39

Evaluation Order

In Java, the order of evaluation of operands in an expression is fixed. Consider this code fragment:

1. int [] a = { 4, 4 };

2. int b = 1;

3. a[b] = b = 0;

In this case, it might be unclear which element of the array is modified: Which value of

b

is used to select the array element,

0

 or

1

? An evaluation from left to right requires that the
leftmost expression,

a[b]

, be evaluated first, so it is a reference to the element

a[1]

. Next,

b

 is
evaluated, which is simply a reference to the variable called

b

. The constant expression

0

 is eval-
uated next, which clearly does not involve any work. Now that the operands have been evalu-
ated, the operations take place. This is done in the order specified by precedence and associativity.
For assignments, associativity is right to left, so the value

0

 is first assigned to the variable called

b

; then the value

0

 is assigned into the last element of the array

a

.
We will look at each of these operators in more detail in the rest of this chapter.

Although Table 2.1 shows the precedence order, the degree of detail in this
precedence ordering is rather high. It is generally better style to keep expres-
sions simple and to use redundant bracketing to make it clear how any partic-
ular expression should be evaluated. This approach reduces the chance that
less-experienced programmers will have difficulty trying to read or maintain
your code. Bear in mind that the code generated by the compiler will be the

same despite redundant brackets.

Bitwise

& ^ |

Short-circuit

&& ||

Conditional

?:

Assignment

=

op

=

T A B L E 2 . 1

Operators in Java, in Descending Order of Precedence

(continued)

Category Operators

4419c02.fm Page 39 Thursday, February 24, 2005 4:20 PM

40

Chapter 2 �

Operators and Assignments

The Unary Operators

The first group of operators in Table 2.1 consists of the

unary operators

. Most operators take two
operands. When you multiply, for example, you work with two numbers. Unary operators, on the
other hand, take only a single operand and work just on that. Java provides seven unary operators:
�

The increment and decrement operators:

++

 and

--

�

The unary plus and minus operators:

+

 and

-

�

The bitwise inversion operator:

~

�

The

boolean

 complement operator:

!

�

The cast:

()

Strictly speaking, the cast is not an operator. However, we discuss it as if it were

for simplicity, because it fits well with the rest of our discussion.

The Increment and Decrement Operators:

++

 and

--

The

++

 and

--

 operators modify the value of an expression by adding or subtracting 1. So, for
example, if an

int

 variable

x

 contains 10, then

++x

 results in 11. Similarly,

--x

, again applied
when

x

 contains 10, gives a value of 9. In this case, the expression

--x

 itself describes storage
(the value of the variable

x

), so the resulting value is stored in

x

.
The preceding examples show the operators positioned before the expression (known as

pre-
increment

 or

pre-decrement

). They can, however, be placed after the expression instead (known
as

post-increment

 or

post-decrement

). To understand how the position of these operators affects
their operation, you must appreciate the difference between the value stored by these operators
and the result value they give. Both

x++

 and

++x

 cause the same result in

x

. However, the value
of the expression itself is different. For example, if you say

y = x++;

, then the value assigned to

y

 is the original value of

x

. If you say

y = ++x;

, then the value assigned to

y

 is 1 more than the
original value of

x. In both cases, the value of x is incremented by 1.
Table 2.2 shows the values of x and y before and after particular assignments using these

operators.

T A B L E 2 . 2 Examples of Pre-and Post- Increment and Decrement Operations

Initial Value of x Expression Final Value of y Final Value of x

5 y = x++ 5 6

5 y = ++x 6 6

4419c02.fm Page 40 Thursday, February 24, 2005 4:20 PM

The Unary Operators 41

The Unary Plus and Minus Operators: + and -

The unary operators + and - are distinct from the more common binary + and - operators,
which are usually just referred to as add and subtract. Both the programmer and the compiler
are able to determine which meaning these symbols should have in a given context.

Unary + has no effect beyond emphasizing the positive nature of a numeric literal. Unary -
negates an expression. So, you might make a block of assignments like this:

1. x = -3;

2. y = +3;

3. z = -(y + 6);

In such an example, the only reasons for using the unary + operator are to make it explicit that
y is assigned a positive value and perhaps to keep the code aligned more pleasingly. At line 3,
notice that these operators are not restricted to literal values but can be applied to expressions
equally well, so the value of z is initialized to −9.

The Bitwise Inversion Operator: ~

The ~ operator performs bitwise inversion on integral types. For each primitive type, Java uses
a virtual machine representation that is platform independent. This means that the bit pattern
used to represent a particular value in a particular variable type is always the same. This feature
makes bit-manipulation operators even more useful, because they do not introduce platform
dependencies. The ~ operator works by inverting all the 1 bits in a binary value to 0s and all the
0 bits to 1s.

For example, applying this operator to a byte containing 00001111 would result in the value
11110000. The same simple logic applies, no matter how many bits there are in the value being
operated on. This operator is often used in conjunction with shift operators (<<, >>, and >>>)
to perform bit manipulation, for example, when driving I/O ports.

The Boolean Complement Operator: !

The ! operator inverts the value of a boolean expression. So !true gives false and !false gives
true. This operator is often used in the test part of an if() statement. The effect is to change

5 y = x-- 5 4

5 y = --x 4 4

T A B L E 2 . 2 Examples of Pre-and Post- Increment and Decrement Operations (continued)

Initial Value of x Expression Final Value of y Final Value of x

4419c02.fm Page 41 Thursday, February 24, 2005 4:20 PM

42 Chapter 2 � Operators and Assignments

the value of the boolean expression. In this way, for example, the body of the if() and else
parts can be swapped. Consider these two equivalent code fragments:

1. public Object myMethod(Object x) {

2. if (x instanceof String) {

3. // do nothing

4. }

5. else {

6. x = x.toString();

7. }

8. return x;

9. }

and

1. public Object myMethod(Object x) {

2. if (!(x instanceof String)) {

3. x = x.toString();

4. }

5. return x;

6. }

In the first fragment, a test is made at line 2, but the conversion and assignment, at line 6,
occur only if the test failed. This is achieved by the somewhat cumbersome technique of using
only the else part of an if/else construction. The second fragment uses the complement oper-
ator so that the overall test performed at line 2 is reversed; it may be read as, “If it is false that
x is an instance of a string,” or more likely, “If x is not a string.” Because of this change to the
test, the conversion can be performed at line 3 in the situation that the test has succeeded; no
else part is required, and the resulting code is cleaner and shorter.

This is a simple example, but such usage is common. This level of understand-
ing will leave you well armed for the Certification Exam.

The Cast Operator: (type)

Casting is used for explicit conversion of the type of an expression. This is possible only for
plausible target types. The compiler and the runtime system check for conformance with typing
rules, which are described in Chapter 4, “Converting and Casting.”

Casts can be applied to change the type of primitive values—for example, forcing a double
value into an int variable like this:

int circum = (int)(Math.PI * diameter);

4419c02.fm Page 42 Thursday, February 24, 2005 4:20 PM

The Arithmetic Operators 43

If the cast, which is represented by the (int) part, were not present, the compiler would
reject the assignment; a double value, such as is returned by the arithmetic here, cannot be rep-
resented accurately by an int variable. The cast is the programmer’s way to say to the compiler,
“I know you think this is risky, but trust me—I’m an engineer.” Of course, if the result loses
value or precision to the extent that the program does not work properly, then you are on your
own. Casts can also be applied to object references. This often happens when you use contain-
ers, such as the Vector object. If you put, for example, String objects into a Vector, then when
you extract them, the return type of the elementAt() method is simply Object. To use the
recovered value as a String reference, a cast is needed, like this:

1. Vector v = new Vector();

2. v.add ("Hello");

3. String s = (String)v.get(0);

The cast here occurs at line 3, in the form (String). Although the compiler allows this cast,
checks occur at runtime to determine if the object extracted from the Vector really is a String.

Chapter 4, “Converting and Casting,” covers casting, the rules governing which
casts are legal and which are not, and the nature of the runtime checks that are
performed on cast operations.

Now that we have considered the unary operators, which have the highest precedence, we
will discuss the five arithmetic operators.

The Arithmetic Operators
Next highest in precedence, after the unary operators, are the arithmetic operators. This group
includes, but is not limited to, the four most familiar operators, which perform addition, sub-
traction, multiplication, and division. Arithmetic operators are split into two further subgroup-
ings, as shown in Table 2.1. In the first group are *, /, and %; in the second group, at a lower
precedence, are + and -. The following sections discuss these operators and also what happens
when arithmetic goes wrong.

The Multiplication and Division Operators: * and /

The * and / operators perform multiplication and division on all primitive numeric types and
char. Integer division will generate an ArithmeticException when attempting to divide by zero.

You probably understand multiplication and division quite well from years of rote learning
at school. In programming, of course, some limitations are imposed by the representation of
numbers in a computer. These limitations apply to all number formats, from byte to double,
but are perhaps most noticeable in integer arithmetic.

4419c02.fm Page 43 Thursday, February 24, 2005 4:20 PM

44 Chapter 2 � Operators and Assignments

If you multiply or divide two integers, the result will be calculated using integer arithmetic
in either int or long representation. If the numbers are large enough, the result will be bigger
than the maximum number that can be represented, and the final value will be meaningless.
This condition is referred to as overflow. For example, byte values can represent a range of
−128 to +127, so if two particular bytes have the values 64 and 4, then multiplying them should,
arithmetically, give a value of 256 (100000000 in binary—note that this value has nine digits).
Actually, when you store the result in a byte variable, you will get a value of 0, because only
the low-order eight bits of the result can be represented.

On the other hand, when you divide with integer arithmetic, the result is forced into an integer
and, typically, a lot of information that would have formed a fractional part of the answer is lost.
This condition is referred to as underflow. For example, 7 / 4 should give 1.75, but integer arith-
metic will result in a value of 1. You therefore have a choice in many expressions: multiply first and
then divide, which risks overflow, or divide first and then multiply, which risks underflow. Con-
ventional wisdom says that you should multiply first and then divide, because this at least might
work perfectly, whereas dividing first almost definitely loses precision. Consider this example:

 1. int a = 12345, b = 234567, c, d;

 2. long e, f;

 3.

 4. c = a * b / b; // this should equal a, that is, 12345

 5. d = a / b * b; // this should also equal a

 6. System.out.println("a is " + a +

 7. "\nb is " + b +

 8. "\nc is " + c +

 9. "\nd is " + d);

10.

11. e = (long)a * b / b;

12. f = (long)a / b * b;

13. System.out.println(

14. "\ne is " + e +

15. "\nf is " + f);

The output from this code is

a is 12345

b is 234567

c is -5965

d is 0

e is 12345

f is 0

4419c02.fm Page 44 Thursday, February 24, 2005 4:20 PM

The Arithmetic Operators 45

Do not worry about the exact numbers in this example. The important feature is that in the
case where multiplication is performed first, the calculation overflows when performed with int
values, resulting in a nonsense answer. However, the result is correct if the representation is wide
enough—as when using the long variables. In both cases, dividing first has a catastrophic effect
on the result, regardless of the width of the representation.

The Modulo Operator: %

Although multiplication and division are generally familiar operations, the % operator is perhaps
less well known. The modulo operator gives a value that is related to the remainder of a division.
It is generally applied to two integers, although it can be applied to floating-point numbers, too.
In school, we learned that 7 divided by 4 gives 1, remainder 3. In Java, we say x = 7 % 4; and
expect that x will have the value 3.

This is the simple behavior of the modulo operator, but additional concerns appear if you use
negative or floating-point operands. In such cases, follow this procedure:

1. Reduce the magnitude of the left operand by the magnitude of the right one.

2. Repeat until the magnitude of the result is less than the magnitude of the right operand.

This gives the result of the modulo operator. Figure 2.1 shows some examples of this process.
Note that the sign of the result is entirely determined by the sign of the left operand. When the

modulo operator is applied to floating-point types, the effect is to perform an integral number of
subtractions, leaving a floating-point result that might well have a fractional part.

A useful rule of thumb for dealing with modulo calculations that involve negative numbers
is this: Simply drop any negative signs from either operand and calculate the result. Then, if the
original left operand was negative, negate the result. The sign of the right operand is irrelevant.

F I G U R E 2 . 1 Calculating the result of the modulo operator for a variety of conditions

4419c02.fm Page 45 Thursday, February 24, 2005 4:20 PM

46 Chapter 2 � Operators and Assignments

The modulo operation involves division during execution. As a result, it can throw an
ArithmeticException if it’s applied to integral types and the second operand is 0.

You might not have learned about the modulo operator in school, but you will certainly
recognize the + and - operators. Although basically familiar, the + operator has some capa-
bilities beyond simple addition.

The Addition and Subtraction Operators: + and -

The operators + and - perform addition and subtraction. They apply to operands of any
numeric type but, uniquely, + is also permitted where either operand is a String object. Java
does not allow the programmer to perform operator overloading, but the + operator is over-
loaded by the language. This is not surprising, because in most languages that support multiple
arithmetic types, the arithmetic operators (+, -, *, /, and so forth) are overloaded to handle
these different types. Java, however, further overloads the + operator to support concatena-
tion—that is, joining together—of String objects. The use of + with String arguments also
performs conversions, and these can be succinct and expressive if you understand them. First,
we will consider the use of the + operator in its conventional role of numeric addition.

Overloading is the term given when the same name is used for more than one
piece of code, and the code that is to be used is selected by the argument or
operand types provided. For example, the println() method can be given a
String argument or an int. These two uses actually refer to entirely different
methods; only the name is reused. Similarly, the + symbol is used to indicate
addition of int values, but the exact same symbol is also used to indicate the
addition of float values. These two forms of addition require entirely different
code to execute; again, the operand types are used to decide which code is to
be run. Where an operator can take different operand types, we refer to operator
overloading. Some languages, but not Java, allow you to use operator over-
loading to define multiple uses of operators for your own types. Overloading is
described in detail in Chapter 6, “Objects and Classes.”

Where the + operator is applied to purely numeric operands, its meaning is simple and famil-
iar. The operands are added together to produce a result. Of course, some promotions might
take place, according to the normal rules, and the result might overflow. Generally, however,
numeric addition behaves as you would expect.

Promotions are discussed in a later section, “Arithmetic Promotion of Operands.”

If overflow or underflow occurs during numeric addition or subtraction, then data is lost but
no exception occurs. A more detailed description of behavior in arithmetic error conditions
appears in a later section, “Arithmetic Error Conditions.” Most of the new understanding to be
gained about the + operator relates to its role in concatenating text.

4419c02.fm Page 46 Thursday, February 24, 2005 4:20 PM

The Arithmetic Operators 47

Where either of the operands of a + expression is a String object, the meaning of the operator
is changed from numeric addition to string concatenation. In order to achieve this result, both
operands must be handled as text. If both operands are in fact String objects, this is simple. If,
however, one of the operands is not a String object, then the non-String operand is converted
to a String object before the concatenation takes place.

For object types, conversion to a String object is performed by invoking the toString()
method of that object. The toString() method is defined in java.lang.Object, which is the
root of the class hierarchy, and therefore all objects inherit a toString() method. Sometimes,
the effect of the toString() method is to produce rather cryptic text that is suitable only for
debugging output, but it definitely exists and may legally be called.

Conversion of an operand of primitive type to a String is typically achieved by using, indi-
rectly, the conversion utility methods in the wrapper classes. So, for example, an int value is
converted by the static method Integer.toString().

The toString() method in the java.lang.Object class produces a String that contains the
name of the object’s class and some identifying value—typically its reference value, separated by
the at symbol (@). For example, this String might look like java.lang.Object@1cc6dd. This
behavior is inherited by subclasses unless they deliberately override it.

It is a good idea to define a helpful toString() method in all your classes,
even if you do not require it as part of the class behavior. Code the toString()
method so that it represents the state of the object in a fashion that can assist
in debugging; for example, output the names and values of the main instance
variables.

To prepare for the Certification Exam questions, and to use the + operator effectively in your
own programs, you should understand the following points:
� For a + expression with two operands of primitive numeric type, the result

� Is of a primitive numeric type.
� Is at least int, because of normal promotions.
� Is of a type at least as wide as the wider of the two operands.
� Has a value calculated by promoting the operands to the result type and then performing

the addition using that type. This might result in overflow or loss of precision.
� For a + expression with any operand that is not of primitive numeric type,

� At least one operand must be a String object or literal; otherwise, the expression is illegal.
� Any remaining non-String operands are converted to String, and the result of the

expression is the concatenation of all operands.
� To convert an operand of some object type to a String, the conversion is performed by

invoking the toString() method of that object.
� To convert an operand of a primitive type to a String, the conversion is performed by a

static method in a container class, such as Integer.toString().

4419c02.fm Page 47 Thursday, February 24, 2005 4:20 PM

48 Chapter 2 � Operators and Assignments

If you want to control the formatting of the converted result, you should use the
facilities in the java.text package.

Now that you understand arithmetic operators and the concatenation of text using the + oper-
ator, you should realize that sometimes arithmetic does not work as intended—it could result in
an error of some kind. The next section discusses what happens under such error conditions.

Arithmetic Error Conditions

We expect arithmetic to produce “sensible” results that reflect the mathematical meaning of the
expression being evaluated. However, because the computation is performed on a machine with
specific limits on its ability to represent numbers, calculations can sometimes result in errors. You
saw, in the section on the multiplication and division operators, that overflow and underflow can
occur if the operands are too large or too small. In exceptional conditions, the following rules apply:
� Integer division by zero, including modulo (%) operation, results in an ArithmeticException.
� No other arithmetic causes any exception. Instead, the operation proceeds to a result, even

though that result might be arithmetically incorrect.
� Floating-point calculations represent out-of-range values using the IEEE 754 infinity, minus

infinity, and Not a Number (NaN) values. Named constants representing these are declared
in both the Float and Double classes.

� Integer calculations, other than division by zero, that cause overflow or a similar error simply
leave the final, typically truncated bit pattern in the result. This bit pattern is derived from the
operation and the number representation and might even be of the wrong sign. Because the
operations and number representations do not depend upon the platform, neither do the
result values under error conditions.

These rules describe the effect of error conditions, but some additional significance is asso-
ciated with the NaN values. NaN values are used to indicate that a calculation has no result in
ordinary arithmetic, such as some calculations involving infinity or the square root of a negative
number.

Some floating-point calculations can return a NaN. This occurs, for example, as a result of
calculating the square root of a negative number. Two NaN values are defined in the java.lang
package (Float.NaN and Double.NaN) and are considered non-ordinal for comparisons. This
means that for any value of x, including NaN itself, all of the following comparisons will return
false:

x < Float.NaN

x <= Float.NaN

x == Float.NaN

x > Float.NaN

x >= Float.NaN

4419c02.fm Page 48 Thursday, February 24, 2005 4:20 PM

The Comparison Operators 49

In fact, the test

Float.NaN != Float.NaN

and the equivalent with Double.NaN return true, as you might deduce from the fact that x ==
Float.NaN gives false even if x contains Float.NaN.

The most appropriate way to test for a NaN result from a calculation is to use the Float
.isNaN(float) or Double.isNaN(double) static method provided in the java.lang package.

Arithmetic Promotion of Operands

Arithmetic promotion of operands takes place before any binary operator is applied so that all
numeric operands are at least int type. This promotion has an important consequence for the
unsigned right-shift operator when applied to values that are narrower than int.

The diagram in Figure 2.2 shows the process by which a byte is shifted right. First the byte
is promoted to an int, which is done treating the byte as a signed quantity. Next, the shift
occurs, and 0 bits are indeed propagated into the top bits of the result—but these bits are not
part of the original byte. When the result is cast down to a byte again, the high-order bits of
that byte appear to have been created by a signed shift right, rather than an unsigned one. This
is why you should generally not use the logical right-shift operator with operands smaller than
an int: It is unlikely to produce the result you expected.

F I G U R E 2 . 2 Unsigned right shift of a byte

The Comparison Operators
Comparison operators—<, <=, >, >=, ==, and !=—return a boolean result; the relation as
written is either true or it is false. In addition, the instanceof operator determines whether
or not a given object is an instance of a particular class. These operators are commonly used
to form conditions, such as in if() statements or in loop control. There are three types of
comparison: Ordinal comparisons test the relative value of numeric operands. Object-type
comparisons determine whether the run-time type of an object is of a particular type or a

4419c02.fm Page 49 Thursday, February 24, 2005 4:20 PM

50 Chapter 2 � Operators and Assignments

subclass of that particular type. Equality comparisons test whether two values are the same
and may be applied to values of non-numeric types.

The Ordinal Comparisons Operators: <, <=, >, and >=

The ordinal comparison operators are
� Less than: <
� Less than or equal to: <=
� Greater than: >
� Greater than or equal to: >=

These are applicable to all numeric types and to char and produce a boolean result.
So, for example, given the following declarations,

int p = 9;

int q = 65;

int r = -12;

float f = 9.0F;

char c = ‘A’;

the following tests all return true:

p < q

f < q

f <= c

c > r

c >= q

Notice that arithmetic promotions are applied when these operators are used. This is entirely
according to the normal rules discussed in Chapter 4. For example, although it would be an
error to attempt to assign, say, the float value 9.0F to the char variable c, it is perfectly accept-
able to compare the two. To achieve the result, Java promotes the smaller type to the larger type;
hence the char value ‘A’ (represented by the Unicode value 65) is promoted to a float 65.0F.
The comparison is then performed on the resulting float values.

Although the ordinal comparisons operate satisfactorily on dissimilar numeric types, including
char, they are not applicable to any non-numeric types. They cannot take boolean or any class-
type operands.

The instanceof Operator

The instanceof operator tests the class of an object at runtime. The left argument can be any
object reference expression, usually a variable or an array element, whereas the right operand
must be a class, interface, or array type. You cannot use a java.lang.Class object reference
or a String representing the name of the class as the right operand. A compiler error results if
the left operand cannot be cast to the right operand.

4419c02.fm Page 50 Thursday, February 24, 2005 4:20 PM

The Comparison Operators 51

Casting is discussed in Chapter 4.

This code fragment shows an example of how instanceof may be used. Assume that a class
hierarchy exists with Person as a base class and Parent as a subclass:

 1. public class Classroom {

 2. private Hashtable inTheRoom = new Hashtable();

 3. public void enterRoom(Person p) {

 4. inTheRoom.put(p.getName(), p);

 5. }

 6. public Person getParent(String name) {

 7. Object p = inTheRoom.get(name);

 8. if (p instanceof Parent) {

 9. return (Parent)p;

10. }

11. else {

12. return null;

13. }

14. }

15. }

The method getParent() at lines 6–14 checks to see if the Hashtable contains a parent with
the specified name. This is done by first searching the Hashtable for an entry with the given
name and then testing to see if the entry that is returned is actually a Parent. The instanceof
operator returns true if the class of the left argument is the same as, or is some subclass of, the
class specified by the right operand.

The right operand may equally well be an interface. In such a case, the test determines whether
the object at the left argument implements the specified interface.

You can also use the instanceof operator to test whether a reference refers to an array. Because
arrays are themselves objects in Java, this is natural enough, but the test that is performed actually
checks two things: First, it checks whether the object is an array, and then it checks whether the ele-
ment type of that array is some subclass of the element type of the right argument. This is a logical
extension of the behavior that is shown for simple types and reflects the idea that an array of, say,
Button objects is an array of Component objects, because a Button is a Component. A test for an
array type looks like this:

if (x instanceof Component[])

Note, however, that you cannot simply test for “any array of any element type,” as the syntax.
This line is not legal:

if (x instanceof [])

4419c02.fm Page 51 Thursday, February 24, 2005 4:20 PM

52 Chapter 2 � Operators and Assignments

Neither is it sufficient to test for arrays of Object element type like this

if (x instanceof Object [])

because the array might be of a primitive base type, in which case the test will fail.

Although it is not required by the Certification Exam, you might find it useful
to know that you can determine whether an object is in fact an array without
regard to the base type. You can do this using the isArray() method of the
Class class. For example, this test returns true if the variable myObject refers to
an array: myObject.getClass().isArray().

If the left argument of the instanceof operator is a null value, the instanceof test simply
returns false; it does not cause an exception.

The Equality Comparison Operators: == and !=

The operators == and != test for equality and inequality, respectively, returning a boolean
value. For primitive types, the concept of equality is quite straightforward and is subject to pro-
motion rules so that, for example, a float value of 10.0 is considered equal to a byte value of
10. For variables of object type, the “value” is taken as the reference to the object—typically,
the memory address. You should not use these operators to compare the contents of objects,
such as strings, because they will return true if two references refer to the same object, rather
than if the two objects have equivalent value. Object comparisons compare the data of two
objects, whereas reference comparisons compare the memory locations of two objects.

To achieve a content or semantic comparison, for example, so that two different Double
objects containing the value 1234 are considered equal, you must use the equals() method
rather than the == or != operator.

To operate appropriately, the equals() method must have been defined for the class of the
objects you are comparing. To determine whether it has, check the documentation supplied with
the JDK or, for third-party classes, produced by Javadoc. The documentation should report that
an equals() method is defined for the class and overrides equals() in some superclass. If this
is not indicated, then you should assume that the equals() method will not produce a useful
content comparison. You also need to know that equals() is defined as accepting an Object
argument, but the actual argument must be of the same type as the object upon which the method
is invoked—that is, for x.equals(y), the test y instanceof the-type-of-x must be true. If
this is not the case, then equals() must return false.

The Bitwise Operators
The bitwise operators—&, ^, and |—provide bitwise AND, eXclusive-OR (XOR), and OR
operations, respectively. They are applicable to integral types. Collections of bits are sometimes
used to save storage space where several boolean values are needed or to represent the states
of a collection of binary inputs from physical devices.

4419c02.fm Page 52 Thursday, February 24, 2005 4:20 PM

The Bitwise Operators 53

The bitwise operations calculate each bit of their results by comparing the corresponding bits
of the two operands on the basis of these three rules:
� For AND operations, 1 AND 1 produces 1. Any other combination produces 0.
� For XOR operations, 1 XOR 0 produces 1, as does 0 XOR 1. (All these operations are

commutative.) Any other combination produces 0.
� For OR operations, 0 OR 0 produces 0. Any other combination produces 1.

The names AND, XOR, and OR are intended to be mnemonic for these operations. You get
a 1 result from an AND operation if both the first operand and the second operand are 1. An
XOR gives a 1 result if one or the other operand, but not both (this is the exclusiveness), is 1.
In the OR operation, you get a 1 result if either the first operand or the second operand (or both)
is 1. These rules are represented in Tables 2.3 through 2.5.

Compare the rows of each table with the corresponding rule for the operations listed in the
previous bullets. You will see that for the AND operation, the only situation that leads to a
1 bit as the result is when both operands are 1 bits. For XOR, a 1 bit results when one or the
other (but not both) of the operands is a 1 bit. Finally, for the OR operation, the result is a
1 bit, except when both operands are 0 bits. Now let’s see how this concept works when applied
to whole binary numbers, rather than just single bits. The approach can be applied to any size

Defining an equals() Method

This information is not required for the Certification Exam but is generally of value when writ-
ing real programs. If you define an equals() method in your own classes, you should be care-
ful to observe three rules, or else your classes might behave incorrectly in some specific
circumstances.

First, the argument to the equals() method is an Object; you must avoid the temptation
to make the argument to equals() specific to the class you are defining. If you do this,
you will have overloaded the equals() method, not overridden it, and functionality in
other parts of the Java APIs that depends on the equals() method will fail. Perhaps most
significant, lookup methods in containers, such as containsKey() and get() in the HashMap,
will fail.

The second rule is that the equals() method should be commutative: The result of x.equals(y)
should always be the same as the result of y.equals(x).

The final rule is that if you define an equals() method, you should also define a hashCode()
method. This method should return the same value for objects that compare equal using the
equals() method. Again, this behavior is needed to support the containers and other classes.
A minimal but acceptable behavior for the hashCode() method is simply to return 1. Doing so
removes any efficiency gains that hashing would give, forcing a HashMap to behave like a linked
list when storing such objects, but at least the behavior is correct.

4419c02.fm Page 53 Thursday, February 24, 2005 4:20 PM

54 Chapter 2 � Operators and Assignments

of integer, but we will look at bytes because they serve to illustrate the idea without putting so
many digits on the page as to cause confusion. Consider this example:

T A B L E 2 . 3 The AND Operation

Op1 Op2 Op1 AND Op2

0 0 0

0 1 0

1 0 0

1 1 1

T A B L E 2 . 4 The XOR Operation

Op1 Op2 Op1 XOR Op2

0 0 0

0 1 1

1 0 1

1 1 0

T A B L E 2 . 5 The OR Operation

Op1 Op2 Op1 OR Op2

0 0 0

0 1 1

 00110011
 11110000
AND --------
 00110000

4419c02.fm Page 54 Thursday, February 24, 2005 4:20 PM

The Bitwise Operators 55

Observe that each bit in the result is calculated solely on the basis of the two bits appearing
directly above it in the calculation. Take a look at the least significant bit:

This result bit is calculated as 1 and 0, which gives 0.
Now observe the fourth bit from the left:

This result bit is calculated as 1 AND 1, which gives 1. All the other bits in the result are
calculated in the same fashion, using the two corresponding bits and the rules stated earlier.

Exclusive-OR operations are done by using the same bit-by-bit approach, using the appro-
priate rules for calculating the individual bits, as the following calculations show:

The indicated bit positions above are calculated as either 1 XOR 0 or as 0 XOR 1, producing
1 in either case.

In the previous calculation, the result bit is 0 because both operand bits were 1.

1 0 1

1 1 1

T A B L E 2 . 5 The OR Operation (continued)

Op1 Op2 Op1 OR Op2

 00110011
 11110000
AND --------
 00110000

 00110011
 11110000
AND --------
 00110000

 00110011 00110011
 11110000 11110000
XOR --------- XOR --------
 11000011 11000011

 00110011
 11110000
XOR --------
 11000011

 00110011
 11110000
XOR --------
 11000011

4419c02.fm Page 55 Thursday, February 24, 2005 4:20 PM

56 Chapter 2 � Operators and Assignments

And here, the 0 operand bits also result in a 0 result bit.
The OR operation again takes a similar approach, but with its own rules for calculating the

result bits. Consider this example:

Here, the two operand bits are 1 and 0, so the result is 1.

However, in this calculation, both operand bits are 0, which is the condition that produces
a 0 result bit for the OR operation.

Although programmers usually apply these operators to the bits in integer variables, it is also
permitted to apply them to Boolean operands.

Boolean Operations

The comparison operators behave in fundamentally the same way when applied to arguments
of boolean, rather than integral, types. However, instead of calculating the result on a bit-by-
bit basis, the boolean values are treated as single bits, with true corresponding to a 1 bit and
false to a 0 bit. The general rules discussed in the previous section may be modified like this
when applied to boolean values:
� For AND operations, true AND true produces true. Any other combination produces false.
� For XOR operations, true XOR false produces true, and false XOR true produces true.

Other combinations produce false.
� For OR operations, false OR false produces false. Any other combination produces true.

These rules are represented in Tables 2.6 through 2.8.
Again, compare these tables with the rules stated in the bulleted list. Also compare them with

Tables 2.3 through 2.5, which describe the same operations on bits. You will see that 1 bits are
replaced by true, and 0 bits are replaced by false.

T A B L E 2 . 6 The AND Operation on boolean Values

Op1 Op2 Op1 AND Op2

false false false

false true false

 00110011
 11110000
 OR --------
 11110011

 00110011
 11110000
 OR --------
 11110011

4419c02.fm Page 56 Thursday, February 24, 2005 4:20 PM

The Bitwise Operators 57

As with all operations, the two operands must be of compatible types. So, if
either operand is of boolean type, both must be. Java does not permit you to
cast any type to boolean; instead you must use comparisons or methods that
return boolean values.

The next section covers the short-circuit logical operators. These operators perform logical
AND and OR operations but are slightly different in implementation from the operators just
discussed.

true false false

true true true

T A B L E 2 . 7 The XOR Operation on boolean Values

Op1 Op2 Op1 XOR Op2

false false false

false true true

true false true

true true false

T A B L E 2 . 8 The OR Operation on boolean Values

Op1 Op2 Op1 OR Op2

false false false

false true true

true false true

true true true

T A B L E 2 . 6 The AND Operation on boolean Values (continued)

Op1 Op2 Op1 AND Op2

4419c02.fm Page 57 Thursday, February 24, 2005 4:20 PM

58 Chapter 2 � Operators and Assignments

The Short-Circuit Logical Operators
The short-circuit logical operators—&& and ||—provide logical AND and OR operations on
boolean types. Note that no XOR operation is provided. Superficially, these operators are
similar to the & and | operators, with the limitation of being applicable only to boolean values
and not integral types. However, the && and || operations have a valuable additional feature:
the ability to “short circuit” a calculation if the result is definitely known. This feature makes
these operators central to a popular null-reference-handling idiom in Java programming.
They can also improve efficiency.

The main difference between the & and && and between the | and || operators is that the right
operand might not be evaluated in the latter cases. We will look at how this happens in the rest
of this section. This behavior is based on two mathematical rules that define conditions under
which the result of a boolean AND or OR operation is entirely determined by one operand with-
out regard for the value of the other:
� For an AND operation, if one operand is false, the result is false, without regard to the other

operand.
� For an OR operation, if one operand is true, the result is true, without regard to the other

operand.

To put it another way, for any boolean value X,
� false AND X = false
� true OR X = true

Given these rules, if the left operand of a boolean AND operation is false, then the result
is definitely false, whatever the right operand. It is therefore unnecessary to evaluate the right
operand. Similarly, if the left operand of a boolean OR operation is true, the result is definitely
true and the right operand need not be evaluated.

Consider a fragment of code intended to print out a String if that String exists and is
longer than 20 characters:

1. if (s != null) {

2. if (s.length() > 20) {

3. System.out.println(s);

4. }

5. }

However, the same operation can be coded very succinctly like this:

1. if ((s != null) && (s.length() > 20)) {

2. System.out.println(s);

3. }

4419c02.fm Page 58 Thursday, February 24, 2005 4:20 PM

The Short-Circuit Logical Operators 59

If the String reference s is null, then calling the s.length() method would raise a
NullPointerException. In both of these examples, however, the situation never arises. In the
second example, avoiding execution of the s.length() method is a direct consequence of the
short-circuit behavior of the && operator. If the test (s != null) returns false (if s is in fact null),
then the whole test expression is guaranteed to be false. Where the first operand is false, the &&
operator does not evaluate the second operand; so, in this case, the expression (s.length() > 20)
is not evaluated.

Although these shortcuts do not affect the result of the operation, side effects might well be
changed. If the evaluation of the right operand involves a side effect, then omitting the evalua-
tion will change the overall meaning of the expression in some way. This behavior distinguishes
these operators from the bitwise operators applied to boolean types. Consider these fragments:

//first example:

1. int val = (int)(2 * Math.random());

2. boolean test = (val == 0) || (++val == 2);

3. System.out.println("test = " + test + "\nval = " + val);

//second example:

1. int val = (int)(2 * Math.random());

2. boolean test = (val == 0) | (++val == 2);

3. System.out.println("test = " + test + "\nval = " + val);

The first example will sometimes print

test = true

val = 0

and sometimes it will print

test = true

val = 2

The second example will sometimes print

test = true

val = 1

and sometimes it will print

test = true

val = 2

The point is that in the case of the short-circuit operator, if val starts out at 0, then the second
part of the expression (++val) is never executed, and val remains at 0. Alternatively, val starts
at 1 and is incremented to 2. In the second case, the non-short-circuit version, the increment

4419c02.fm Page 59 Thursday, February 24, 2005 4:20 PM

60 Chapter 2 � Operators and Assignments

always occurs, and val ends up as either 1 or 2, depending on the original value returned by the
random() method. In all cases, the value of test is true, because either val starts out at 0, or it
starts at 1 and the test (++val == 2) is true.

So, the essential points about the && and || operators are as follows:
� They accept boolean operands.
� They evaluate the right operand only if the outcome is not certain based solely on the left

operand. This is determined using these identities:
� false AND X = false
� true OR X = true

The next section discusses the conditional, or ternary, operator. Like the short-circuit logical
operators, this operator may be less familiar than others, especially to programmers without a
background in C, C++, or C#.

The Conditional Operator
The conditional operator—?:— (also known as a ternary operator, because it takes three operands)
provides a way to code simple conditions (if/else) into a single expression. The (boolean) expres-
sion to the left of the ? is evaluated. If true, the result of the whole expression is the value of the
expression to the left of the colon; otherwise, it is the value of the expression to the right of the colon.
The expressions on either side of the colon must be assignment-compatible with the result type.

For example, if a, b, and c are int variables, and x is a boolean, then the statement a = x
? b : c; is directly equivalent to the textually longer version:

1. if (x) {

2. a = b;

3. }

4. else {

5. a = c;

6. }

Of course x, a, b, and c can all be complex expressions if you desire.

Many people do not like the conditional operator, and in some companies its
use is prohibited by the local style guide. This operator does keep source code
more concise, but in many cases an optimizing compiler will generate equally
compact and efficient code from the longer, and arguably more readable, if/
else approach. One particularly effective way to abuse the conditional operator is
to nest it, producing expressions of the form a = b ? c ? d : e ? f : g : h ?
i : j ? k : l;. Whatever your feelings or corporate mandate, you should at least
be able to read this operator, because you will find it used by other programmers.

4419c02.fm Page 60 Thursday, February 24, 2005 4:20 PM

The Assignment Operators 61

Here are the points you should review for handling conditional operators in an exam question,
or to use them properly in a program. In an expression of the form a = x ? b : c;
� The types of the expressions b and c should be compatible and are made identical through

conversion.
� The type of the expression x should be boolean.
� The types of the expressions b and c should be assignment-compatible with the type of a.
� The value assigned to a will be b if x is true or will be c if x is false.

Now that we have discussed the conditional (ternary) operator, only one group of operators
remains: the assignment operators.

The Assignment Operators
Assignment operators—= andop=— set the value of a variable or expression to a new value.
Assignments are supported by a battery of operators. Simple assignment uses =. Operators such
as += and *= provide compound “calculate and assign” functions. These compound operators
take a general form op=, where op can be any of the binary non-boolean operators already dis-
cussed. In general, for any compatible expressions x and y, the expression x op= y is a shorthand
for x = x op y. However, there are two differences you must know. First, be aware that side effects
in the expression x are evaluated exactly once, not twice, as the expanded view might suggest. The
second issue is that the assignment operators include an implicit cast. Consider this situation:

1. byte x = 2;

2. x += 3;

If this had been written using the longhand approach

1. byte x = 2;

2. x = (byte)(x + 3);

the cast to byte would have been necessary because the result of an integer addition is at least an
int. In the first case, using the assignment operator, this cast is implied. This is one of two situations
where Java allows down-casting without explicit programmer intervention. (The other situation is
in combined declaration and initialization.) Be sure to compare this with the general principles of
assignment and casting laid out in Chapter 4.

The statement x += 2; involves typing two fewer characters but is otherwise
no more effective than the longer version x = x + 2; and is neither more nor
less readable. However, if x is a complex expression, such as target[temp
.calculateOffset(1.9F) + depth++].item, it is definitely more readable to
express incrementing this value by 2 using the += 2 form. This is because these
operators define that the exact same thing will be read on the right side as is writ-
ten on the left side. So the maintainer does not have to struggle to decide whether
the two complex expressions are actually the same, and the original programmer
avoids some of the risk of mistyping a copy of the expression.

4419c02.fm Page 61 Thursday, February 24, 2005 4:20 PM

62 Chapter 2 � Operators and Assignments

All the operators discussed up to this point have produced a value as a result of the operation.
The expression 1 ? 2, for example, results in a value 3, which can then be used in some further
way—perhaps assignment to a variable. The assignment operators in Java are considered to be
operators because they have a resulting value. So, given three int variables a, b, and c, the state-
ment a = b = c = 0; is entirely legal. It is executed from right to left, so that first 0 is assigned
into the variable c. After it has been executed, the expression c = 0 takes the value that was
assigned to the left side—that is, 0. Next, the assignment of b takes place, using the value of the
expression to the right of the equal sign—again, 0. Similarly, that expression takes the value that
was assigned, so finally the variable a is also set to 0.

Although execution order is determined by precedence and associativity, evaluation order of
the arguments is not. Be sure you understand the points made in the section “Evaluation Order”
at the start of this chapter.

As a general rule, avoid writing expressions that are complex enough for these
issues to matter. A sequence of simply constructed expressions is easier to read
and is less likely to cause confusion or other errors than complex ones. You are
also likely to find that the compiler will optimize multiple simple expressions
just as well as it would a single, very complex one.

Summary
We have covered a lot of material in this chapter, so let’s recap some of the key points.

The unary operators were the first topics we covered. Recall that they take only a single oper-
and. The seven unary operators are ++, --, +, -, !, ~, and (). Their key points are as follows:
� The ++ and -- operators increment and decrement expressions. The position of the operator

(either prefix or suffix) is significant.
� The + operator has no effect on an expression other than to make it clear that a literal

constant is positive. The - operator negates an expression’s value.
� The ! operator inverts the value of a boolean expression.
� The ~ operator inverts the bit pattern of an integral expression.
� The (type) operator is used to persuade the compiler to permit certain assignments that

the programmer believes are appropriate, but that break the normal, rigorous rules of the
language. Its use is subject to extensive checks at compile time and runtime.

Next we covered arithmetic operators. We discussed in detail the four most familiar opera-
tors, which perform addition, subtraction, multiplication, and division. Recall that this group
is further split into two subgroupings. There are five arithmetic operators:
� Multiplication: *
� Division: /

4419c02.fm Page 62 Thursday, February 24, 2005 4:20 PM

Summary 63

� Modulo: %
� Addition and String concatenation: +
� Subtraction: -

The arithmetic operators can be applied to any numeric type. Also, the + operator performs
text concatenation if either of its operands is a String object. Under the conditions where one
operand in a + expression is a String object, the other is forced to be a String object, too. Con-
versions are performed as necessary. They might result in cryptic text, but they are definitely legal.

Under conditions of arithmetic overflow or similar errors, accuracy is generally lost silently.
Only integer division by zero can throw an exception. Floating-point calculations can produce
NaN—indicating Not a Number (that is, the expression has no meaning in normal arithmetic)—
or infinity as their result under error conditions.

We also discussed bitwise operators, which are sometimes used to save storage space,
for instance. There are three bitwise operators: &, ^, and |. They are usually named AND,
eXclusive-OR (XOR), and OR, respectively. For these operators, the following points apply:
� In bitwise operations, each result bit is calculated on the basis of the two bits from the same,

corresponding position in the operands.
� For the AND operation, a 1 bit results if the first operand bit and the second operand bit

are both 1.
� For the XOR operation, a 1 bit results only if exactly one operand bit is 1.
� For the OR operation, a 1 bit results if either the first operand bit or the second operand

bit is 1.

For boolean operations, the arguments and results are treated as single-bit values with true
represented by 1 and false by 0.

We described assignment operators, which set the value of a variable or expression to a new
value. The key points about the assignment operators are as follows:
� Simple assignment, using =, assigns the value of the right operand to the left operand.
� The value of an object is its reference, not its contents.
� The right operand must be a type that is assignment-compatible with the left operand.

Assignment compatibility and conversions are discussed in detail in Chapter 4.
� The assignment operators all return a value so that they can be used within larger expres-

sions. The value returned is the value that was assigned to the left operand.
� The compound assignment operators, of the form op=, when applied in an expression like

a op= b; , appear to behave like a = a op b;, except that the expression a and any of its
side effects are evaluated only once.

Compound assignment operators exist for all binary, non-boolean operators: *=, /=, %=, +=,
-=, &=, ^=, and |=. We have now discussed all the operators provided by Java.

The ternary operator ?: (also referred to as the conditional operator) requires three operands
and provides the programmer with a more compact way to write an if/else statement.

4419c02.fm Page 63 Thursday, February 24, 2005 4:20 PM

64 Chapter 2 � Operators and Assignments

The short-circuit Boolean operators && and || are binary operators that allow the program-
mer to circumvent evaluating one or more expressions, thereby making the code more efficient
at runtime.

The remainder of the operators discussed in this chapter are the comparison operators <, <=,
>, >=, and instanceof. These binary operators compare the left operand with the right operand
and return a Boolean result of either true or false.

Exam Essentials
Understand the functionality of all the operators discussed in this chapter. These operators
are unary operators, the cast operator, binary arithmetic operators, comparison operators, bit-
wise operators, short-circuit operators, the conditional operator, and assignment operators.

Understand when arithmetic promotion takes place. You should know the type of the result
of unary and binary arithmetic operations performed on operands of any type.

Understand the difference between object equality and reference equality. Object equality
checks the data of two possibly distinct objects. Reference equality checks whether two refer-
ences point to the same object.

Know the functionality of the equals() method of the Object, Boolean, and String classes.
The Object version uses a reference equality check; the Boolean and String versions compare
encapsulated data.

4419c02.fm Page 64 Thursday, February 24, 2005 4:20 PM

Review Questions 65

Review Questions
1. After execution of the following code fragment, what are the values of the variables x, a, and b?

1. int x, a = 6, b = 7;

2. x = a++ + b++;

A. x = 15, a = 7, b = 8

B. x = 15, a = 6, b = 7

C. x = 13, a = 7, b = 8

D. x = 13, a = 6, b = 7

2. Which of the following expressions are legal? (Choose all that apply.)

A. int x = 6; x = !x;

B. int x = 6; if (!(x > 3)) {}

C. int x = 6; x = ~x;

3. Which of the following expressions results in a positive value in x?

A. int x = –1; x = x >>> 5;

B. int x = –1; x = x >>> 32;

C. byte x = –1; x = x >>> 5;

D. int x = –1; x = x >> 5;

4. Which of the following expressions are legal? (Choose all that apply.)

A. String x = "Hello"; int y = 9; x += y;

B. String x = "Hello"; int y = 9; if (x == y) {}

C. String x = "Hello"; int y = 9; x = x + y;

D. String x = "Hello"; int y = 9; y = y + x;

5. What is -8 % 5?

A. -3

B. 3

C. -2

D. 2

6. What is 7 % -4?

A. -3

B. 3

C. -4

D. 4

4419c02.fm Page 65 Thursday, February 24, 2005 4:20 PM

66 Chapter 2 � Operators and Assignments

7. What results from running the following code?

1. public class Xor {

2. public static void main(String args[]) {

3. byte b = 10; // 00001010 binary

4. byte c = 15; // 00001111 binary

5. b = (byte)(b ^ c);

6. System.out.println("b contains " + b);

7. }

8. }

A. The output: b contains 10

B. The output: b contains 5

C. The output: b contains 250

D. The output: b contains 245

8. What results from attempting to compile and run the following code?

1. public class Conditional {

2. public static void main(String args[]) {

3. int x = 4;

4. System.out.println("value is " +

5. ((x > 4) ? 99.99 : 9));

6. }

7. }

A. The output: value is 99.99

B. The output: value is 9

C. The output: value is 9.0

D. A compiler error at line 5

9. What does the following code do?

Integer i = null;

if (i != null & i.intValue() == 5)

 System.out.println(“Value is 5”);

A. Prints “Value is 5”.

B. Throws an exception.

4419c02.fm Page 66 Thursday, February 24, 2005 4:20 PM

Review Questions 67

10. Is it possible to define a class called Thing so that the following method can return true under
certain circumstances?

boolean weird(Thing s) {

 Integer x = new Integer(5);

 return s.equals(x);

}

A. Yes

B. No

11. Suppose ob1 and ob2 are references to instances of java.lang.Object. If (ob1 == ob2) is
false, can ob1.equals(ob2) ever be true?

A. Yes

B. No

12. When a byte is added to a char, what is the type of the result?

A. byte

B. char

C. int

D. short

E. You can’t add a byte to a char.

13. When a short is added to a float, what is the type of the result?

A. short

B. int

C. float

D. You can’t add a short to a float.

14. Which statement is true about the following method?

int selfXor(int i) {

 return i ^ i;

}

A. It always returns 0.

B. It always returns 1.

C. It always an int where every bit is 1.

D. The returned value varies depending on the argument.

4419c02.fm Page 67 Thursday, February 24, 2005 4:20 PM

68 Chapter 2 � Operators and Assignments

15. Which of the following operations might throw an ArithmeticException?

A. >>

B. >>>

C. <<

D. None of these

16. Which of the following operations might throw an ArithmeticException?

A. +

B. -

C. *

D. /

E. None of these

17. What is the return type of the instanceof operator?

A. A reference

B. A class

C. An int

D. A boolean

18. Which of the following may appear on the left-hand side of an instanceof operator?

A. A reference

B. A class

C. An interface

D. A variable of primitive type

19. Which of the following may appear on the right-hand side of an instanceof operator? (Choose
all that apply.)

A. A reference

B. A class

C. An interface

D. A variable of primitive type

E. The name of a primitive type

20. What is -50 >> 1?

A. A negative number with very large magnitude.

B. A positive number with very large magnitude.

C. -100

D. -25

E. 100

F. 25

4419c02.fm Page 68 Thursday, February 24, 2005 4:20 PM

Answers to Review Questions 69

Answers to Review Questions
1. C. The assignment statement is evaluated as if it were

x = a + b; a = a + 1; b = b + 1;

So the assignment to x is made using the sum of 6 + 7, giving 13. After the addition, the values
of a and b are incremented; the new values, 7 and 8, are stored in the variables.

2. B, C. In option A, the use of ! is illegal because x is of int type, not boolean. In option B, the
comparison operation is valid, because the expression (x > 3) is a boolean type and the ! oper-
ator can properly be applied to it. In option C, the bitwise inversion operator is legally applied
to an integral type.

3. A. Option A uses the unsigned right shift, so 0s are shifted into the most significant positions; any
two’s-complement number with a 0 in the most significant position is positive. Option B shifts by
32 % 32 = 0 positions, so there is no effect. Option C doesn’t compile, because “x >>> 5” is an
int, which can’t be assigned to a byte. Option D applies the signed shift to a negative operand,
so the result is negative.

4. A, C. Options A and C are equivalent. They both add a String to an int; the resulting String is
assigned to x, whose type is String, so the code is legal. Option B doesn’t compile because an
int and a String may not be compared. C is illegal because the last statement tries to assign a
String to an int.

5. A. When doing modulo arithmetic with a negative left-hand operand, the result is the negative
of what it would be if both operands were positive. So -8 % 5 is the negative of 8 % 5.

6. B. When doing modulo arithmetic with a negative right-hand operand, the result is the same as
it would be if the right-hand operand were positive. So 7 % -4 is the same as 7 % 4.

7. B. The XOR operator produces a 1 bit in any position where the operand bits are different. So
00001010 ^ 00001111 is 00000101, which is 5.

8. C. In this code, the optional result values for the conditional operator, 99.99 (a double) and 9
(an int), are of different types. The result type of a conditional operator must be fully deter-
mined at compile time, and in this case the type chosen, using the rules of promotion for binary
operands, is double. Because the result is a double, the output value is printed in a floating-
point format.

If the two possible argument types had been entirely incompatible—for example, (x > 4) ?
"Hello" : 9—then the compiler would have issued an error at that line.

9. B. The & operator does not short circuit. Even though the left-hand operand is null, the right-
hand operand is still evaluated. Attempting to call the intValue() method on null results in
a NullPointerException.

10. A. The Thing class is free to override equals() to do anything it likes. The method can even
return true when comparing the current instance to an instance of Integer.

4419c02.fm Page 69 Thursday, February 24, 2005 4:20 PM

70 Chapter 2 � Operators and Assignments

11. B. The Object class’ equals() method just does an == check, so if (ob1 == ob2) is false, then
ob1.equals(ob2) will always be false.

12. C. Byte, short, and char operands are widened to ints before the addition is performed. The
result type is the same as the operands: int.

13. C. When a short is added to a float, the narrower data type (short) is widened to match the wider
type (float), and the result is a float.

14. A. Any value XOR itself is always 0.

15. D. Only non-floating division can throw an ArithmeticException.

16. D. Only non-floating division can throw an ArithmeticException.

17. D. The instanceof operator generates a boolean value.

18. A. Only references may be the left-hand operands of instanceof.

19. B, C. Classes, interfaces, arrays of classes, and arrays of interfaces may be the right-hand operands
of instanceof.

20. D. >> is the signed right-shift operator, so the result has the same sign as the left-hand operand.
Right-shifting by n bit positions is equivalent to dividing by 2-to-the-n, so the result is -50 / 2,
which is -25.

4419c02.fm Page 70 Thursday, February 24, 2005 4:20 PM

Chapter

3

Modifiers

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

1.2 Develop code that declares an interface. Develop code

that implements or extends one or more interfaces. Develop

code that extends an abstract class.

�

1.4 Develop code that declares both static and non-static

methods, and - if appropriate - use method names that

adhere to the JavaBeans naming standards. Also develop

code that declares and uses a variable-length argument list.

�

5.3 Explain the effect of modifiers on inheritance with

respect to constructors, instance or static variables, and

instance or static methods.

�

7.1 Given a code example and a scenario, write code

that uses the appropriate access modifiers, package

declarations, and import statements to interact with

(through access or inheritance) the code in the example.

4419c03.fm Page 71 Thursday, February 24, 2005 4:28 PM

When you create a class, a variable, or a method, you have some
control over how it will behave under certain situations, such as
access from external classes, multi-threaded contention, or serial-

ization. You enforce this control by using modifiers.
In this chapter you will learn about all of Java’s modifiers as they apply to top-level classes.

Inner classes are not discussed here but are covered in Chapter 6, “Objects and Classes.”

Modifier Overview

Modifiers

 are Java keywords that give the compiler information about the nature of code, data,
or classes. Modifiers specify, for example, that a particular feature is static, final, or transient.
(A

feature

 is a class, a method, or a variable.) A group of modifiers, called

access modifiers

, dic-
tates which classes are allowed to use a feature. Other modifiers can be used in combination to
describe the attributes of a feature.

The most common modifiers are the access modifiers:
�

public

�

private

�

protected

The remaining modifiers do not fall into any clear categorization. They are
�

final

�

abstract

�

static

�

native

�

transient

�

synchronized

�

volatile

In the following sections, we will first look at the access modifiers, and then look at the other
modifiers.

4419c03.fm Page 72 Thursday, February 24, 2005 4:28 PM

Modifier Overview

73

The Access Modifiers

Access modifiers control which classes may use a feature. A class’s features are
�

The class itself
�

Its member variables
�

Its methods and constructors
�

Its nested classes

Since nested (or inner) classes are not presented until Chapter 6, this discus-
sion concerns only access modifiers as they apply to regular classes, member

variables, methods, and constructors.

Note that, with rare exceptions, the only variables that may be controlled by access modifiers
are class-level variables. The variables that you declare and use within a class’s methods may not
have access modifiers. This makes sense; a method variable can be used only within its method.

The access modifiers are
�

public

�

private

�

protected

The only access modifier permitted to non-nested classes is

public

; there is no such thing as
a protected or private top-level class.

A feature may have at most one access modifier. If a feature has no access modifier, its access
defaults to a mode that, unfortunately, has no standardized name. The default access mode is
known variously as

friendly

,

package

, or

default

. In this book, we use the term

default

. Be aware
that Sun is encouraging us to avoid the use of

friendly

, due to confusion with a somewhat sim-
ilar concept in C

++

.
The following declarations are all legal (provided they appear in an appropriate context):

class Parser { ... }

public class EightDimensionalComplex { ... }

private int i;

Graphics offScreenGC;

protected double getChiSquared() { ... }

private class Horse { ... }

The following declarations are illegal:

public protected int x; // At most 1 access modifier

default Button getBtn() {...} // default isn’t a keyword

4419c03.fm Page 73 Thursday, February 24, 2005 4:28 PM

74

Chapter 3 �

Modifiers

public

The most generous access modifier is

public

. A

public

 class, variable, or method may be used
in any Java program without restriction. Any public method may be overridden by any subclass.
An application declares its

main()

 method to be public so that

main()

 can be invoked from any
Java runtime environment.

private

The least generous access modifier is

private

. Top-level (that is, not inner) classes may not be
declared private. A

private

 variable or method may be used only by an instance of the class that
declares the variable or method. For an example of the private access modifier, consider the
following code:

 1. class Complex {

 2. private double real, imaginary;

 3.

 4. public Complex(double r, double i) {

 5. real = r; imaginary = i;

 6. }

 7. public Complex add(Complex c) {

 8. return new Complex(real + c.real,

 9. imaginary + c.imaginary);

10. }

11. }

12.

13. class Client {

14. void useThem() {

15. Complex c1 = new Complex(1, 2);

16. Complex c2 = new Complex(3, 4);

17. Complex c3 = c1.add(c2);

18. double d = c3.real; // Illegal!

19. }

20. }

On line 17, a call is made to

c1.add(c2)

. Object

c1

 will execute the method using object

c2

as a parameter. In line 8,

c1

 accesses its own private variables as well as those of

c2

. There is
nothing wrong with this. Declaring

real

 and

imaginary

 to be private means that they can be
accessed only by instances of the

Complex

 class, but they can be accessed by any instance of

Complex

. Thus

c1

 may access its own

real

 and

imaginary

 variables, as well as the

real

 and

imaginary

 of any other instance of

Complex

. Access modifiers dictate which

classes

, not which

instances

, may access features.

4419c03.fm Page 74 Thursday, February 24, 2005 4:28 PM

Modifier Overview

75

Line 18 is illegal and will cause a compiler error. The error message says, “Variable real in
class Complex not accessible from class Client.” The private variable

real

 may be accessed only
by an instance of

Complex

.
Private data can be hidden from the very object that owns the data. If class

Complex

 has
a subclass called

SubComplex

, then every instance of SubComplex will inherit its own real
and imaginary variables. Nevertheless, no instance of SubComplex can ever access those vari-
ables. Once again, the private features of Complex can be accessed only within the Complex
class; an instance of a subclass is denied access. Thus, for example, the following code will not
compile:

 1. class Complex {

 2. private double real, imaginary;

 3. }

 4.

 5.

 6. class SubComplex extends Complex {

 7. SubComplex(double r, double i) {

 8. real = r; // Trouble!

 9. }

10. }

In the constructor for class SubComplex (on line 8), the variable real is accessed. This line
causes a compiler error, with a message that is very similar to the message of the previous example:
“Undefined variable: real.” The private nature of variable real prevents an instance of
SubComplex from accessing one of its own variables!

Default

Default is the name of the access of classes, variables, and methods if you don’t specify an access
modifier. A class’s data and methods may be default, as well as the class itself. A class’s default
features are accessible to any class in the same package as the class in question. A default method
may be overridden by any subclass that is in the same package as the superclass.

Default is not a Java keyword; it is simply a name that is given to the access level that results
from not specifying an access modifier.

It would seem that default access is of interest only to people who are in the business of mak-
ing packages. This is technically true, but actually everybody is always making packages, even
if they aren’t aware of it. The result of this behind-the-scenes package making is a degree of con-
venience for programmers that deserves investigation.

When you write an application that involves developing several different classes, you prob-
ably keep all your .java sources and all your .class class files in a single working directory.
When you execute your code, you do so from that directory. The Java runtime environment
considers that all class files in its current working directory constitute a package.

4419c03.fm Page 75 Thursday, February 24, 2005 4:28 PM

76 Chapter 3 � Modifiers

Imagine what happens when you develop several classes in this way and don’t bother to pro-
vide access modifiers for your classes, data, or methods. These features are neither public nor
private nor protected. They result in default access, which means they are accessible to any other
classes in the package. Because Java considers that all the classes in the directory actually make
up a package, all your classes get to access one another’s features. This makes it easy to develop
code quickly without worrying too much about access.

Now imagine what happens if you are deliberately developing your own package. A little
extra work is required: You have to put a package statement in your source code, and you have
to compile with the -d option. Any features of the package’s classes that you do not explicitly
mark with an access modifier will be accessible to all the members of the package, which is
probably what you want. Fellow package members have a special relationship, and it stands to
reason that they should get access not granted to classes outside the package. Classes outside the
package may not access the default features, because the features are default, not public. Classes
outside the package may subclass the classes in the package (you do something like this, for
example, when you write an applet); however, even the subclasses may not access the default
features, because the features are default, not protected or public. Figure 3.1 illustrates default
access both within and outside a package.

F I G U R E 3 . 1 Default access

protected

The name protected is a bit misleading. From the sound of it, you might guess that protected
access is extremely restrictive—perhaps the next closest thing to private access. In fact, protected
features are even more accessible than default features.

Only classes that are
 in the package may
 access default
 features of
 classes that are
 in the package.

Class

Class

Class Class

Class

Class

Class
Class

Package

4419c03.fm Page 76 Thursday, February 24, 2005 4:28 PM

Modifier Overview 77

Only variables and methods may be declared protected. A protected feature of a class is avail-
able to all classes in the same package, just like a default feature. Moreover, a protected feature
of a class can be available in certain limited ways to all subclasses of the class that owns the pro-
tected feature. This access is provided even to subclasses that reside in a different package from
the class that owns the protected feature.

It’s important to be aware that different-package subclasses don’t have unlimited access to
protected superclass features. In fact, different-package subclasses have only the following
privileges:
� They may override protected methods of the superclass.
� An instance may read and write protected fields that it inherits from its superclass. However,

the instance may not read or write protected inherited fields of other instances.
� An instance may call protected methods that it inherits from its superclass. However, the

instance may not call protected methods of other instances.

As an example of the protected access modifier, consider the following code:

1. package sportinggoods;

2. class Ski {

3. void applyWax() { . . . }

4. }

The applyWax() method has default access. Now consider the following subclass:

1. package sportinggoods;

2. class DownhillSki extends Ski {

3. void tuneup() {

4. applyWax();

5. // other tuneup functionality here

6. }

7. }

The subclass calls the inherited method applyWax(). This is not a problem as long as both
the Ski and DownhillSki classes reside in the same package. However, if either class were
to be moved to a different package, DownhillSki would no longer have access to the inher-
ited applyWax() method, and compilation would fail. The problem would be fixed by mak-
ing applyWax() protected on line 3:

1. package adifferentpackage; // Class Ski now in

 // a different package

2. class Ski {

3. protected void applyWax() { . . . }

4. }

4419c03.fm Page 77 Thursday, February 24, 2005 4:28 PM

78 Chapter 3 � Modifiers

Subclasses and Method Privacy

Java specifies that methods may not be overridden to be more private. For example, most
applets provide an init() method, which overrides the do-nothing version inherited from the
java.applet.Applet superclass. The inherited version is declared public, so declaring the
subclass version to be private, protected, or default would result in a compiler error. The error
message says, “Methods can’t be overridden to be more private.”

Protected Access in Depth

In this exercise you will look at how protected data can be accessed from a subclass that belongs
to a different package. Because access is enforced at compile time, you will not be writing code
that is intended to be executed. Rather, you will write several simple classes and see which ones
compile.

Begin by creating a public superclass called Bird, in a package called birdpack. This superclass
should have a single data member: a protected int called nFeathers. Then create four sub-
classes of Bird, all of which reside in a package called duckpack. Thus you will have subclasses
whose package is different from their superclass’ package; this is exactly the situation for which
protected access is designed.

The first subclass, called Duck1, should have a method that accesses the nFeathers variable of the
current instance of Duck1. Before compiling Duck1.java, ask yourself if the code should compile.

The second subclass, called Duck2, should have a method that constructs a new instance of
Duck2 and accesses the nFeathers variable of the new instance. Before compiling Duck2.java,
ask yourself if the code should compile.

The third subclass, called Duck3, should have a method that constructs an instance of Bird
(the superclass) and accesses the nFeathers variable of the Bird instance. Before compiling
Duck3.java, ask yourself if the code should compile.

The fourth and last subclass, called Swan, should have a method that constructs a new instance
of Duck1 and accesses the nFeathers variable of that instance. Before compiling Swan.java, ask
yourself if the code should compile.

Sample solutions appear on your CD-ROM in the directory solutions\Chapter_03.

A note on compilation: When a source file contains a package declaration, it is generally most
convenient to compile with the -d option. Doing so will ensure creation of an appropriate pack-
age directory hierarchy, with class files installed correctly. Thus, for example, the easiest way
to compile Bird.java is with the following command line:

javac -d . Bird.java

4419c03.fm Page 78 Thursday, February 24, 2005 4:28 PM

Modifier Overview 79

Figure 3.2 shows the legal access types for subclasses. A method with some particular access
type may be overridden by a method with a different access type, provided there is a path in the
figure from the original type to the new type.

F I G U R E 3 . 2 Legal overridden method access

The rules for overriding can be summarized as follows:
� A private method may be overridden by a private, default, protected, or public method.
� A default method may be overridden by a default, protected, or public method.
� A protected method may be overridden by a protected or public method.
� A public method may be overridden only by a public method.

Figure 3.3 shows the illegal access types for subclasses. A method with some particular access
type may not be shadowed by a method with a different access type, if there is a path in the figure
from the original type to the new type.

F I G U R E 3 . 3 Illegal overridden method access

The illegal overriding combinations can be summarized as follows:
� A default method may not be overridden by a private method.
� A protected method may not be overridden by a default or private method.
� A public method may not be overridden by a protected, default, or private method.

Other Modifiers

In this section, we will discuss Java’s other modifiers, namely:
� final

� abstract

� static

� native

� transient

� volatile

� synchronized

Private Default Protected Public

Public Protected Default Private

4419c03.fm Page 79 Thursday, February 24, 2005 4:28 PM

80 Chapter 3 � Modifiers

The transient and volatile modifiers are not mentioned in the Certification
Exam objectives, so they are just touched on briefly in this chapter. In addition,
the synchronized modifier is discussed in more detail in Chapter 7, “Threads.”

Unlike the access modifiers, the modifiers listed above are unrelated to one another. Each one
relates to a distinct programming concept. A feature may have more than one of these modifiers;
in this situation the order of appearance of the keywords does not matter.

Not every modifier can be applied to every kind of feature. Table 3.2, at the end
of this chapter, summarizes which modifiers apply to which features.

final

The final modifier applies to classes, variables, and methods. The meaning of final varies from
context to context, but the essential idea is the same: final features may not be changed.

A final class cannot be subclassed. For example, the following code will not compile, because
the java.lang.Math class is final:

class SubMath extends java.lang.Math { }

The compiler error says, “Can’t subclass final classes.”
A final variable cannot be modified once it has been assigned a value. In Java, final variables play

the same role as consts in C++ and #define constants in C. For example, the java.lang.Math
class has a final variable, of type double, called PI. Obviously, pi is not the sort of value that should
be changed during the execution of a program.

If a final variable is a reference to an object, it is the reference that must stay the same, not
the object. This is shown in the following code:

 1. class Walrus {

 2. int weight;

 3. Walrus(int w) { weight = w; }

 4. }

 5.

 6. class Tester {

 7. final Walrus w1 = new Walrus(1500);

 8. void test() {

 9. w1 = new Walrus(1400); // Illegal

10. w1.weight = 1800; // Legal

11. }

12. }

4419c03.fm Page 80 Thursday, February 24, 2005 4:28 PM

Modifier Overview 81

Here the final variable is w1, declared on line 7. Because it is final, w1 cannot receive a new
value; line 9 is illegal. However, the data inside w1 is not final, and line 10 is perfectly legal. In
other words,
� You may not change a final object reference variable.
� You may change data owned by an object that is referred to by a final object reference

variable.

A final method may not be overridden. For example, the following code will not compile:

 1. class Mammal {

 2. final void getAround() { }

 3. }

 4.

 5. class Dolphin extends Mammal {

 6. void getAround() { }

 7. }

Dolphins get around in a very different way from most mammals, so it makes sense to try to
override the inherited version of getAround(). However, getAround() is final, so the only
result is a compiler error at line 6 that says, “Final methods can’t be overridden.”

abstract

The abstract modifier can be applied to classes and methods.
A class that is abstract may not be instantiated (that is, you may not call its constructor).

Abstract classes provide a way to defer implementation to subclasses. Consider the class hier-
archy shown in Figure 3.4.

The designer of class Animal has decided that every subclass should have a travel() method.
Each subclass has its own unique way of traveling, so it is not possible to provide travel() in
the superclass and have each subclass inherit the same parental version. Instead, the Animal
superclass declares travel() to be abstract. The declaration looks like this:

abstract void travel();

At the end of the line is a semicolon where you would expect to find curly braces containing
the body of the method. The method body—its implementation—is deferred to the subclasses.
The superclass provides only the method name and signature. Any subclass of Animal must
provide an implementation of travel() or declare itself to be abstract. In the latter case,
implementation of travel() is deferred yet again, to a subclass of the subclass.

If a class contains one or more abstract methods, the compiler insists that the class must be
declared abstract. This is a great convenience to people who will be using the class: they need
to look in only one place (the class declaration) to find out if they are allowed to instantiate the
class directly or if they have to build a subclass.

4419c03.fm Page 81 Thursday, February 24, 2005 4:28 PM

82 Chapter 3 � Modifiers

F I G U R E 3 . 4 A class hierarchy with abstraction

In fact, the compiler insists that a class must be declared abstract if any of the following
conditions is true:
� The class has one or more abstract methods.
� The class inherits one or more abstract methods (from an abstract parent) for which it does

not provide implementations.
� The class declares that it implements an interface but does not provide implementations for

every method of that interface.

These three conditions are very similar to one another. In each case, there is an incomplete
class. Some part of the class’s functionality is missing and must be provided by a subclass.

In a way, abstract is the opposite of final. A final class, for example, may not
be subclassed; an abstract class must be subclassed.

static

The static modifier can be applied to variables, methods, and even a strange kind of code that
is not part of a method. You can think of static features as belonging to a class, rather than being
associated with an individual instance of the class.

abstract class animal

abstract void travel ()

void travel ()

class Bird

void travel ()

class Fish

void travel ()

class Snake

4419c03.fm Page 82 Thursday, February 24, 2005 4:28 PM

Modifier Overview 83

The following example shows a simple class with a single static variable:

1. class Ecstatic{

2. static int x = 0;

3. Ecstatic() { x++; }

4. }

Variable x is static; this means that there is only one x, no matter how many instances of class
Ecstatic might exist at any moment. There might be one Ecstatic instance, or many, or even
none, yet there is always precisely one x. The 4 bytes of memory occupied by x are allocated
when class Ecstatic is loaded. The initialization to 0 (line 2) also happens at class-load time.
The static variable is incremented every time the constructor is called, so it is possible to know
how many instances have been created.

You can reference a static variable two ways:
� Via a reference to any instance of the class
� Via the class name

The first method works, but it can result in confusing code and is considered bad form. The
following example shows why:

1. Ecstatic e1 = new Ecstatic();

2. Ecstatic e2 = new Ecstatic();

3. e1.x = 100;

4. e2.x = 200;

5. reallyImportantVariable = e1.x;

If you didn’t know that x is static, you might think that reallyImportantVariable gets set to
100 in line 5. In fact, it gets set to 200, because e1.x and e2.x refer to the same (static) variable.

A better way to refer to a static variable is via the class name. The following code is identical
to the previous code:

1. Ecstatic e1 = new Ecstatic();

2. Ecstatic e2 = new Ecstatic();

3. Ecstatic.x = 100; // Why did I do this?

4. Ecstatic.x = 200;

5. reallyImportantVariable = Ecstatic.x;

Now it is clear that line 3 is useless, and the value of reallyImportantVariable gets set to 200
in line 5. Referring to static features via the class name rather than an instance results in source
code that more clearly describes what will happen at runtime.

Methods, as well as data, can be declared static. Static methods are not allowed to use the
nonstatic features of their class (although they are free to access the class’s static data and call
its other static methods). Thus, static methods are not concerned with individual instances of a

4419c03.fm Page 83 Thursday, February 24, 2005 4:28 PM

84 Chapter 3 � Modifiers

class. They may be invoked before even a single instance of the class is constructed. Every Java
application is an example, because every application has a main() method that is static:

1. class SomeClass {

2. static int i = 48;

3. int j = 1;

4.

5. public static void main(String args[]) {

6. i += 100;

7. // j *= 5; Lucky for us this is commented out!

8. }

9. }

When this application is started (that is, when somebody types java SomeClass on a com-
mand line), no instance of class SomeClass exists. At line 6, the i that gets incremented is static,
so it exists even though there are no instances. Line 7 would result in a compiler error if it were
not commented out, because j is nonstatic.

Instance methods have an implicit variable named this, which is a reference to the object
executing the method. In nonstatic code, you can refer to a variable or method without speci-
fying which object’s variable or method you mean. The compiler assumes you mean this. For
example, consider the following code:

1. class Xyzzy {

2. int w;

3.

4. void bumpW() {

5. w++;

6. }

7. }

On line 5, the programmer has not specified which object’s w is to be incremented. The compiler
assumes that line 5 is an abbreviation for this.w++;.

With static methods, there is no this. If you try to access an instance variable or call an
instance method within a static method, you will get an error message that says, “Undefined
variable: this.” The concept of “the instance that is executing the current method” does not
mean anything, because there is no such instance. Like static variables, static methods are not
associated with any individual instance of their class.

If a static method needs to access a nonstatic variable or call a nonstatic method, it must spec-
ify which instance of its class owns the variable or executes the method. This situation is familiar
to anyone who has ever written an application with a GUI:

 1. import java.awt.*;

 2.

 3. public class MyFrame extends Frame {

4419c03.fm Page 84 Thursday, February 24, 2005 4:28 PM

Modifier Overview 85

 4. MyFrame() {

 5. setSize(300, 300);

 6. }

 7.

 8. public static void main(String args[]) {

 9. MyFrame theFrame = new MyFrame();

10. theFrame.setVisible(true);

11. }

12. }

In line 9, the static method main() constructs an instance of class MyFrame. In the next line,
that instance is told to execute the (nonstatic) method setVisible(). This technique bridges
the gap from static to nonstatic, and it is frequently seen in applications.

The following code, for example, will not compile:

 1. class Cattle {

 2. static void foo() {}

 3. }

 4.

 5. class Sheep extends Cattle {

 6. void foo() {}

 7. }

The compiler flags line 6 with the message, “Static methods can’t be overridden.” If line 6 were
changed to static void foo() { }, then compilation would succeed. Static methods can appear
to be overridden—a superclass and a subclass can have static methods with identical names, argu-
ment lists, and return types—but technically this is not considered overriding because the methods
are static.

To summarize static methods:
� A static method may access only the static data of its class; it may not access nonstatic data.
� A static method may call only the static methods of its class; it may not call nonstatic

methods.
� A static method has no this.
� A static method may not be overridden to be nonstatic.

Static Initializers

It is legal for a class to contain static code that does not exist within a method body. A class may
have a block of initializer code that is simply surrounded by curly braces and labeled static.
For example:

 1. public class StaticExample {

 2. static double d = 1.23;

4419c03.fm Page 85 Thursday, February 24, 2005 4:28 PM

86 Chapter 3 � Modifiers

 3.

 4. static {

 5. System.out.println("Static code: d=" + d++);

 6. }

 7.

 8. public static void main(String args[]) {

 9. System.out.println("main: d = " + d++);

10. }

11. }

Something seems to be missing from line 4. You might expect to see a complete method
declaration there: static void printAndBump(), for example, instead of just static. In
fact, line 4 is perfectly valid; it is known as static initializer code. The code inside the curlies
is executed exactly once, at the time the class is loaded. At class-load time, all static initial-
ization (such as line 2) and all free-floating static code (such as lines 4–6) are executed in order
of appearance within the class definition.

The output from this code is:

Static code: d=1.23

main: d = 2.23

Free-floating initializer code should be used with caution because it can easily
become difficult to read. The compiler supports multiple initializer blocks
within a class, but there is rarely a good reason for having more than one
such block.

Static Imports and Access

You saw in Chapter 1, “Language Fundamentals,” that static features of a class can be imported,
using Java 1.5’s static import facility. Static data and methods may have any of the four access
modes discussed earlier in this chapter: public, private, protected, and default. A feature’s
access mode dictates which source files may statically import that feature.

When you think about how access mode affects static importing, you don’t have to consider
class/subclass relationships (which you have to do, for example, when thinking about protected
features). This is because static imports appear in source files just after package declarations,
before any classes are defined. Remember, you import into the namespace of a source file, not
into the definition of a class. A source file may contain one, several, or many class definitions,
or it may contain no class definitions at all.

So the interaction between access mode and static importing is very simple: any nonprivate
feature may be statically imported into a source file of the same package; only a public feature
may be statically imported into a source file in a different package. This is summarized in
Table 3.1.

4419c03.fm Page 86 Thursday, February 24, 2005 4:28 PM

Modifier Overview 87

native

The native modifier can refer only to methods. Like the abstract modifier, native indicates
that the body of a method is to be found elsewhere. In the case of abstract methods, the body
is in a subclass; with native methods, the body lies entirely outside the Java Virtual Machine
(JVM), in a library.

Native code is written in a non-Java language, typically C or C++, and compiled for a single
target machine type. (Thus Java’s platform independence is violated.) People who port Java to
new platforms implement extensive native code to support GUI components, network commu-
nication, and a broad range of other platform-specific functionality. However, it is rare for
application and applet programmers to need to write native code.

One technique, however, is of interest in light of the last section’s discussion of static code.
When a native method is invoked, the library that contains the native code ought to be loaded
and available to the JVM; if it is not loaded, there will be a delay. The library is loaded by calling
System.loadLibrary (“library_name”) and, to avoid a delay, it is desirable to make this
call as early as possible. Often programmers will use the technique shown in the following code
sample, which assumes the library name is MyNativeLib:

1. class NativeExample {

2. native void doSomethingLocal(int i);

3.

4. static {

5. System.loadLibrary("MyNativeLib");

6. }

7. }

Notice the native declaration on line 2, which declares that the code that implements
doSomethingLocal() resides in a local library. Lines 4–6 are static initializer code, so they are
executed at the time that class NativeExample is loaded; this ensures that the library will be
available by the time somebody needs it.

T A B L E 3 . 1 Access and Static Imports

Feature Access Mode

Feature May Be Statically

Imported into Same-Package

Source File

Feature May Be Statically

Imported into Different-Package

Source File

Public Yes Yes

Protected Yes No

Default Yes No

Private No No

4419c03.fm Page 87 Thursday, February 24, 2005 4:28 PM

88 Chapter 3 � Modifiers

Callers of native methods do not have to know that the method is native. The call is made
in exactly the same way as if it were nonnative:

1. NativeExample natex;

2. natex = new NativeExample();

3. natex.doSomethingLocal(5);

Many common methods are native, including the clone() and notify() methods of the
Object class.

transient

The transient modifier applies only to variables. A transient variable is not stored as part of its
object’s persistent state. (If you’re not familiar with object persistence, it is covered in Chapter 12,
“Input and Output”.)

Many objects (specifically, those that implement the Serializable or Externalizable inter-
faces) can have their state serialized and written to some destination outside the JVM. This is done
by passing the object to the writeObject() method of the ObjectOutputStream class. If the
stream is chained to a FileOutputStream, then the object’s state is written to a file. If the stream
is chained to a socket’s OutputStream, then the object’s state is written to the network. In both
cases, the object can be reconstituted by reading it from an ObjectInputStream.

Sometimes an object contains extremely sensitive information. Consider the following class:

1. class WealthyCustomer

2. extends Customer implements Serializable {

3. private float $wealth;

4. private String accessCode;

5. }

Once an object is written to a destination outside the JVM, none of Java’s elaborate security
mechanisms is in effect. If an instance of this class were to be written to a file or to the Internet,
somebody could snoop the access code. Line 4 should be marked with the transient keyword:

1. class WealthyCustomer

2. extends Customer implements Serializable {

3. private float $wealth;

4. private transient String accessCode;

5. }

Now the value of accessCode will not be written out during serialization.

volatile

The volatile modifier is not in common use. Only variables may be volatile; declaring them so
indicates that such variables might be modified asynchronously, so the compiler takes special
precautions. Volatile variables are of interest in multiprocessor environments.

4419c03.fm Page 88 Thursday, February 24, 2005 4:28 PM

Modifiers and Features 89

synchronized

The synchronized modifier is used to control access to critical code in multithreaded programs.
Multithreading is an extensive topic in its own right and is covered in Chapter 7.

Modifiers and Features
Not all modifiers can be applied to all features. Top-level classes may not be protected.
Methods may not be transient. Static is so general that you can apply it to free-floating
blocks of code.

Table 3.2 shows all the possible combinations of features and modifiers. Note that
classes here are strictly top-level (that is, not inner) classes. (Inner classes are covered in
Chapter 6.)

T A B L E 3 . 2 All Possible Combinations of Features and Modifiers

Modifier Class Variable Method Constructor Free-Floating Block

public yes yes yes yes no

protected no yes yes yes no

(default)* yes yes yes yes yes

private no yes yes yes no

final yes yes yes no no

abstract yes no yes no no

static no yes yes no yes

native no no yes no no

transient no yes no no no

volatile no yes no no no

synchronized no no yes no yes

Default is not a modifier; it is just the name of the access if no modifier is specified.

4419c03.fm Page 89 Thursday, February 24, 2005 4:28 PM

90 Chapter 3 � Modifiers

Summary
The focus of this chapter was to understand how all of the modifiers work and how they can or
cannot work together. Some modifiers can be used in combination. Java’s access modifiers are:
� public

� protected

� private

If a feature does not have an access modifier, its access is “default.”
Java’s other modifiers are:

� final

� abstract

� static

� native

� transient

� synchronized

� volatile

Exam Essentials
Understand the four access modes and the corresponding keywords. You should know the
significance of public, private, protected, and default access when applied to data and methods.

Know the effect of declaring a final class, variable, or method. A final class cannot be
subclassed; a final variable cannot be modified after initialization; a final method cannot be
overridden.

Know the effect of declaring an abstract class or method. An abstract class cannot be instan-
tiated; an abstract method’s definition is deferred to a subclass.

Understand the effect of declaring a static variable or method. Static variables belong to the
class; static methods have no this pointer and may not access nonstatic variables and methods
of their class.

Know how to reference a static variable or method. A static feature may be referenced through
the class name—the preferred method—or through a reference to any instance of the class.

Be able to recognize static initializer code. Static initializer code appears in curly brackets
with no method declaration. Such code is executed once, when the class is loaded.

4419c03.fm Page 90 Thursday, February 24, 2005 4:28 PM

Review Questions 91

Review Questions
1. Which of the following declarations are illegal? (Choose all that apply.)

A. default String s;

B. transient int i = 41;

C. public final static native int w();

D. abstract double d;

E. abstract final double hyperbolicCosine();

2. Which of the following statements is true?

A. An abstract class may not have any final methods.

B. A final class may not have any abstract methods.

3. What is the minimal modification that will make this code compile correctly?

 1. final class Aaa

 2. {

 3. int xxx;

 4. void yyy() { xxx = 1; }

 5. }

 6.

 7.

 8. class Bbb extends Aaa

 9. {

10. final Aaa finalref = new Aaa();

11.

12. final void yyy()

13. {

14. System.out.println("In method yyy()");

15. finalref.xxx = 12345;

16. }

17. }

A. On line 1, remove the final modifier.

B. On line 10, remove the final modifier.

C. Remove line 15.

D. On lines 1 and 10, remove the final modifier.

E. The code will compile as is. No modification is needed.

4419c03.fm Page 91 Thursday, February 24, 2005 4:28 PM

92 Chapter 3 � Modifiers

4. Which of the following statements is true?

A. Transient methods may not be overridden.

B. Transient methods must be overridden.

C. Transient classes may not be serialized.

D. Transient variables must be static.

E. Transient variables are not serialized.

5. Which statement is true about this application?

 1. class StaticStuff

 2 {

 3. static int x = 10;

 4.

 5. static { x += 5; }

 6.

 7. public static void main(String args[])

 8. {

 9. System.out.println("x = " + x);

10. }

11.

12. static {x /= 5; }

13. }

A. Lines 5 and 12 will not compile because the method names and return types are missing.

B. Line 12 will not compile because you can only have one static initializer.

C. The code compiles and execution produces the output x = 10.

D. The code compiles and execution produces the output x = 15.

E. The code compiles and execution produces the output x = 3.

6. Which statement is true about this code?

 1. class HasStatic

 2. {

 3. private static int x = 100;

 4.

 5. public static void main(String args[])

 6. {

 7. HasStatic hs1 = new HasStatic();

 8. hs1.x++;

 9. HasStatic hs2 = new HasStatic();

10. hs2.x++;

4419c03.fm Page 92 Thursday, February 24, 2005 4:28 PM

Review Questions 93

11. hs1 = new HasStatic();

12. hs1.x++;

13. HasStatic.x++;

14. System.out.println("x = " + x);

15. }

16. }

A. Line 8 will not compile because it is a static reference to a private variable.

B. Line 13 will not compile because it is a static reference to a private variable.

C. The program compiles and the output is x = 102.

D. The program compiles and the output is x = 103.

E. The program compiles and the output is x = 104.

7. Given the following code, and making no other changes, which combination of access modifiers
(public, protected, or private) can legally be placed before aMethod() on line 3 and be
placed before aMethod() on line 8?

1. class SuperDuper

2. {

3. void aMethod() { }

4. }

5.

6. class Sub extends SuperDuper

7. {

8. void aMethod() { }

9. }

A. line 3: public; line 8: private

B. line 3: protected; line 8: private

C. line 3: default; line 8: private

D. line 3: private; line 8: protected

E. line 3: public; line 8: protected

8. Which modifier or modifiers should be used to denote a variable that should not be written out
as part of its class’s persistent state? (Choose the shortest possible answer.)

A. private

B. protected

C. private protected

D. transient

E. volatile

4419c03.fm Page 93 Thursday, February 24, 2005 4:28 PM

94 Chapter 3 � Modifiers

9. This question concerns the following class definition:

1. package abcde;

2.

3. public class Bird {

4. protected static int referenceCount = 0;

5. public Bird() { referenceCount++; }

6. protected void fly() { /* Flap wings, etc. */ }

7. static int getRefCount() { return referenceCount; }

8. }

Which statement is true about class Bird and the following class Parrot?

 1. package abcde;

 2.

 3. class Parrot extends abcde.Bird {

 4. public void fly() {

 5. /* Parrot-specific flight code. */

 6. }

 7. public int getRefCount() {

 8. return referenceCount;

 9. }

10. }

A. Compilation of Parrot.java fails at line 4 because method fly() is protected in the
superclass, and classes Bird and Parrot are in the same package.

B. Compilation of Parrot.java fails at line 4 because method fly() is protected in the
superclass and public in the subclass, and methods may not be overridden to be more public.

C. Compilation of Parrot.java fails at line 7 because method getRefCount() is static in the
superclass, and static methods may not be overridden to be nonstatic.

D. Compilation of Parrot.java succeeds, but a runtime exception is thrown if method fly()
is ever called on an instance of class Parrot.

E. Compilation of Parrot.java succeeds, but a runtime exception is thrown if method
getRefCount() is ever called on an instance of class Parrot.

10. This question concerns the following class definition:

1. package abcde;

2.

3. public class Bird {

4. protected static int referenceCount = 0;

5. public Bird() { referenceCount++; }

6. protected void fly() { /* Flap wings, etc. */ }

4419c03.fm Page 94 Thursday, February 24, 2005 4:28 PM

Review Questions 95

7. static int getRefCount() { return referenceCount; }

8. }

Which statement is true about class Bird and the following class Nightingale?

 1. package singers;

 2.

 3. class Nightingale extends abcde.Bird {

 4. Nightingale() { referenceCount++; }

 5.

 6. public static void main(String args[]) {

 7. System.out.print("Before: " + referenceCount);

 8. Nightingale florence = new Nightingale();

 9. System.out.println(" After: " + referenceCount);

10. florence.fly();

11. }

12. }

A. The program will compile and execute. The output will be Before: 0 After: 2.

B. The program will compile and execute. The output will be Before: 0 After: 1.

C. Compilation of Nightingale will fail at line 4 because static members cannot be overridden.

D. Compilation of Nightingale will fail at line 10 because method fly() is protected in the
superclass.

E. Compilation of Nightingale will succeed, but an exception will be thrown at line 10,
because method fly() is protected in the superclass.

11. Suppose class Supe, in package packagea, has a method called doSomething(). Suppose class
Subby, in package packageb, overrides doSomething(). What access modes may Subby’s
version of the method have? (Choose all that apply.)

A. public

B. protected

C. Default

D. private

12. Which of the following statements are true?

A. An abstract class may be instantiated.

B. An abstract class must contain at least one abstract method.

C. An abstract class must contain at least one abstract data field.

D. An abstract class must be overridden.

E. An abstract class must declare that it implements an interface.

F. None of the above.

4419c03.fm Page 95 Thursday, February 24, 2005 4:28 PM

96 Chapter 3 � Modifiers

13. Suppose interface Inty defines five methods. Suppose class Classy declares that it implements
Inty but does not provide implementations for any of the five interface methods. Which is/are true?

A. The class will not compile.

B. The class will compile if it is declared public.

C. The class will compile if it is declared abstract.

D. The class may not be instantiated.

14. Which of the following may be declared final? (Choose all that apply.)

A. Classes

B. Data

C. Methods

15. Which of the following may follow the static keyword? (Choose all that apply.)

A. Class definitions

B. Data

C. Methods

D. Code blocks enclosed in curly brackets

16. Suppose class A has a method called doSomething(), with default access. Suppose class B
extends A and overrides doSomething(). Which access modes may apply to B’s version of
doSomething()? (Choose all that apply.)

A. public

B. private

C. protected

D. Default

17. True or false: If class Y extends class X, the two classes are in different packages, and class X has
a protected method called abby(), then any instance of Y may call the abby() method of any
other instance of Y.

A. True

B. False

18. Which of the following statements are true?

A. A final class must be instantiated.

B. A final class must contain at least one final method.

C. A final class must contain at least one final data field.

D. A final class may not be extended.

E. None of the above.

4419c03.fm Page 96 Thursday, February 24, 2005 4:28 PM

Review Questions 97

19. Which of the following statements are true?

A. A final class must be instantiated.

B. A final class may only contain final methods.

C. A final class may not contain non-final data fields.

D. A final class may not be extended.

E. None of the above.

20. What does the following code print?

public class A

{

 static int x;

 public static void main(String[] args) {

 A that1 = new A();

 A that2 = new A();

 that1.x = 5;

 that2.x = 1000;

 x = -1;

 System.out.println(x);

}

 }

A. 0

B. 5

C. 1000

D. -1

4419c03.fm Page 97 Thursday, February 24, 2005 4:28 PM

98 Chapter 3 � Modifiers

Answers to Review Questions
1. A, D, E. A is illegal because “default” is not a keyword. B is a legal transient declaration. C is

strange but legal. D is illegal because only methods and classes may be abstract. E is illegal
because abstract and final are contradictory.

2. B. Any class with abstract methods must itself be abstract, and a class may not be both abstract
and final. Statement A says that an abstract class may not have final methods, but there is noth-
ing wrong with this. The abstract class will eventually be subclassed, and the subclass must avoid
overriding the parent’s final methods. Any other methods can be freely overridden.

3. A. The code will not compile because on line 1, class Aaa is declared final and may not be sub-
classed. Lines 10 and 15 are fine. The instance variable finalref is final, so it may not be
modified; it can reference only the object created on line 10. However, the data within that
object is not final, so nothing is wrong with line 15.

4. E. A, B, and C don’t mean anything because only variables may be transient, not methods or
classes. D is false because transient variables need not be static, and in fact they very rarely are..
E is a good one-sentence definition of transient.

5. E. Multiple static initializers (lines 5 and 12) are legal. All static initializer code is executed at
class-load time, so before main() is ever run, the value of x is initialized to 10 (line 3), then
bumped to 15 (line 5), and then divided by 5 (line 12).

6. E. The program compiles fine; the “static reference to a private variable” stuff in answers A and
B is nonsense. The static variable x gets incremented four times, on lines 8, 10, 12, and 13.

7. D. The basic principle is that a method may not be overridden to be more private. (See Figure
3.2 in this chapter.) All choices except D make the access of the overriding method more private.

8. D. A and B are access modifiers. C is an illegal combination of two access modifiers. E (“volatile”)
is used for certain multi-threaded situations, and is not covered in the Exam.

9. C. Static methods may not be overridden to be nonstatic. B is incorrect because it states the case
backward: methods can be overridden to be more public, not more private. Answers A, D, and
E make no sense.

10. A. There is nothing wrong with Nightingale. The static referenceCount is bumped twice:
once on line 4 of Nightingale and once on line 5 of Bird. (The no-argument constructor
of the superclass is always implicitly called at the beginning of a class’s constructor, unless
a different superclass constructor is requested. This has nothing to do with modifiers; see
Chapter 6.) Because referenceCount is bumped twice and not just once, answer B is wrong.
C says that statics cannot be overridden, but no static method is being overridden on line 4; all
that is happening is an increment of an inherited static variable. D is wrong because protected
is precisely the access modifier you want Bird.fly() to have: you are calling Bird.fly()
from a subclass in a different package. Answer E is ridiculous, but it uses credible terminology.

4419c03.fm Page 98 Thursday, February 24, 2005 4:28 PM

Answers to Review Questions 99

11. A, B. Since the method in the superclass is overridden in a different package, the superclass ver-
sion must be public or protected. (Default methods may be overridden only if the subclass is in
the same package as the superclass; private methods may not be overridden at all.) An over-
riding method’s access mode must be the same as, or more open than, the superclass version’s
access mode.

12. F. A is false because the compiler forbids construction of an abstract class. B is false because abstract
classes need not contain any abstract methods (though if a class does contain any abstract methods,
it must be abstract). C is false because there is no such thing as an abstract data field. D is false
because, when you really think about it, it doesn’t make any sense; the compiler compiles classes one
at a time and has no interest in whether or not a class is overridden. E is false because there is no
compiler requirement that an abstract class must declare that it implements any interface.

13. C, D. If a class does not provide implementations for all methods of all interfaces that the
class declares it implements, that class must be declared abstract. Abstract classes may not be
instantiated.

14. A, B, C. Classes, data, and methods can be declared final. Variables cannot.

15. B, C, D. Classes may not be static. Data and methods may be static, and often they are. When
the static keyword is followed by a code block, the block is a static initializer and is executed
when the class is loaded.

16. A, C, D. An overriding method’s access mode must be the same as, or more open than, the
superclass version’s access mode.

17. B. An object that inherits a protected method from a superclass in a different package may call
that method on itself but not on other instances of the same class.

18. D. There is only one restriction on a final class: A final class may not be extended.

19. D. There is only one restriction on a final class: A final class may not be extended.

20. D. Since x is static, there is only one variable, which is shared by all instances along with the
class. Thus the last assignment wins.

4419c03.fm Page 99 Thursday, February 24, 2005 4:28 PM

4419c03.fm Page 100 Thursday, February 24, 2005 4:28 PM

Chapter

4

Converting and
Casting

JAVA CERTIFICATION EXAM OBJECTIVE
COVERED IN THIS CHAPTER:

�

5.2 Given a scenario, develop code that demonstrates the

use of polymorphism. Further, determine when casting will

be necessary and recognize compiler vs. runtime errors

related to object reference casting.

�

7.6 Write code that correctly applies the appropriate

operators including assignment operators (limited to: =,

+ =, -=), arithmetic operators (limited to: +, -, *, /, %, ++, --),

relational operators (limited to: <, < =, >, > =, = =, !=), the

instanceof operator, logical operators (limited to: &, |, ^, !,

&&, ||), and the conditional operator (? :), to produce a

desired result. Write code that determines the equality of

two objects or two primitives.

4419c04.fm Page 101 Thursday, February 24, 2005 1:54 PM

Every Java variable has a type. Primitive data types include

int

,

long

, and

double

. Object reference data types may be classes (such
as

Vector

 or

Graphics

) or interfaces (such as

LayoutManager

 or

Runnable

). There can also be arrays of primitives, objects, or arrays.
This chapter discusses the ways that a data value can change its type. Values can change

type either implicitly or explicitly; that is, they change either at the system’s initiative or at your
request. These two styles of type change are technically known as converting and casting. Java
places a lot of importance on type, and successful Java programming requires that you be
aware of type changes.

Explicit and Implicit Type Changes

You can explicitly change the type of a value by

casting

. To cast an expression to a new type,
just prefix the expression with the new type name in parentheses. For example, the following
line of code retrieves an element from a vector, casts that element to type

Button

, and assigns
the result to a variable called

btn

:

Button btn = (Button) (myVector.elementAt(5));

Of course, the sixth element of the vector must be capable of being treated as a

Button

. Compile-
time rules and runtime rules must be observed. This chapter will familiarize you with those rules.

In some situations, the system implicitly changes the type of an expression without your
explicitly performing a cast. For example, suppose you have a variable called

myColor

 that
refers to an instance of

Color

, and you want to store

myColor

 in a vector. You would probably
do the following:

myVector.add(myColor);

There is more to this code than meets the eye. The

add()

 method of class

Vector

 is declared
with a parameter of type

Object

, not of type

Color

. As the argument is passed to the method,
it undergoes an implicit type change. Such automatic, nonexplicit type changing is known as

conversion

. Conversion, like casting, is governed by rules. Unlike the casting rules, all conver-
sion rules are enforced at compile time.

The number of casting and conversion rules is rather large, due to the large number of cases to
be considered. (For example, can you cast a

char

 to a

double

? Can you convert an interface to

4419c04.fm Page 102 Thursday, February 24, 2005 1:52 PM

Primitives and Conversion

103

a final class? Yes to the first, no to the second.) The good news is that most of the rules accord with
common sense, and most of the combinations can be generalized into rules of thumb. By the end
of this chapter, you will know when you can explicitly cast and when the system will implicitly
convert on your behalf.

Primitives and Conversion

The two broad categories of Java data types are primitives and objects.

Primitive

 data types
include

ints

,

floats

,

booleans

, and so on. (There are eight primitive data types in all; see
Chapter 1, “Language Fundamentals,” for a complete explanation of Java’s primitives.)

Object

data types (or more properly,

object reference

data types) are the hundreds of classes and inter-
faces provided with the JDK, plus the infinitude of classes and interfaces to be invented by Java
programmers.

Both primitive values and object references can be converted and cast, so you must consider
four general cases:
�

Conversion of primitives
�

Casting of primitives
�

Conversion of object references
�

Casting of object references

The simplest topic is implicit conversion of primitives. All conversion of primitive data types
takes place at compile time; this is the case because all the information needed to determine
whether the conversion is legal is available at compile time.

Conversion of a primitive might occur in three contexts or situations:
�

Assignment
�

Method call
�

Arithmetic promotion

The following sections deal with each of these contexts in turn.

Primitive Conversion: Assignment

Assignment conversion

 happens when you assign a value to a variable of a different type from
the original value. For example

1. int i;

2. double d;

3. i = 10;

4. d = i; // Assign an int value to a double variable

4419c04.fm Page 103 Thursday, February 24, 2005 1:52 PM

104

Chapter 4 �

Converting and Casting

Obviously,

d

 cannot hold an integer value. At the moment that the fourth line of code is
executed, the integer 10 that is stored in variable

i

 gets converted to the double-precision
value 10.0000000000000 (remaining zeros omitted for brevity).

The previous code is perfectly legal. Some assignments, on the other hand, are illegal. For
example

1. double d;

2. short s;

3. d = 1.2345;

4. s = d; // Assign a double value to a short variable

This code will not compile. (The error message says, “Incompatible type for

=

.”) The com-
piler recognizes that trying to cram a

double

 value into a

short

 variable is like trying to pour
a quart of milk into an eight-ounce cup, as shown in Figure 4.1. It can't be done without mess
and loss. If you see someone trying to do it, you might be tempted to say, “Are you sure you
know what you’re doing? Shouldn’t you do that in the sink?” In other words, you would want
some reassurance that the other person wanted the result they were about to get.

When the compiler notices that you are trying to cram a big value into a little variable, it goes
through a similar process. Line 4 above could easily be a mistake, so the compiler needs to be
convinced that it’s really what you want. To convince the compiler, you must use an explicit
cast, which will be explained in the following section.

F I G U R E 4 . 1

Illegal conversion of a quart to a cup, with loss of data

4419c04.fm Page 104 Thursday, February 24, 2005 1:52 PM

Primitives and Conversion

105

The general rules for primitive assignment conversion can be stated as follows:
�

A

boolean

 cannot be converted to any other type.
�

A non-

boolean

 can be converted to another non-

boolean

 type, provided the conversion is
a

widening conversion

.
�

A non-

boolean

 cannot be converted to another non-

boolean

 type if the conversion would
be a

narrowing conversion.

Widening conversions change a value to a type that accommodates a wider range of values
than the original type can accommodate. In most cases, the new type has more bits than the
original and can be visualized as being “wider” than the original, as shown in Figure 4.2.

Widening conversions do not lose information about the magnitude of a value. In the first
example in this section, an

int

 value was assigned to a

double

 variable. This conversion was
legal because

doubles

 are wider (represented by more bits) than

int

s, so there is room in a

double

 to accommodate the information in an

int

. Java’s widening conversions are
�

From a

byte

 to a

short

, an

int

, a long, a float, or a double
� From a short to an int, a long, a float, or a double
� From a char to an int, a long, a float, or a double
� From an int to a long, a float, or a double
� From a long to a float or a double
� From a float to a double

Figure 4.3 illustrates all the widening conversions. The arrows can be taken to mean “can be
widened to.” To determine whether it is legal to convert from one type to another, find the first
type in the figure and see if you can reach the desired type by following the arrows.

F I G U R E 4 . 2 Widening conversion of a positive value

4419c04.fm Page 105 Thursday, February 24, 2005 1:52 PM

106 Chapter 4 � Converting and Casting

F I G U R E 4 . 3 Widening conversions

The figure shows, for example, that it is perfectly legal to assign a byte value to a float vari-
able, because you can trace a path from byte to float by following the arrows (byte to short
to int to long to float). You cannot, on the other hand, trace a path from long to short, so
it is not legal to assign a long value to a short variable.

Figure 4.3 is easy to memorize. The figure consists mostly of the numeric data types in order
of size. The only extra piece of information is char, but that goes in the only place it could go:
a 16-bit char “fits inside” a 32-bit int. (Note that you can’t convert a byte to a char or a char
to a short, even though it seems reasonable to do so.)

Any conversion between primitive types that is not represented by a path of arrows in
Figure 4.3 is a narrowing conversion. These conversions lose information about the magnitude
of the value being converted and are not allowed in assignments. It is graphically impossible
to portray the narrowing conversions in a diagram like Figure 4.3, but they can be summarized
as follows:
� From a byte to a char
� From a short to a byte or a char
� From a char to a byte or a short
� From an int to a byte, a short, or a char
� From a long to a byte, a short, a char, or an int
� From a float to a byte, a short, a char, an int, or a long
� From a double to a byte, a short, a char, an int, a long, or a float

You do not really need to memorize this list. It simply represents all the conversions not shown
in Figure 4.3, which is easier to memorize.

Assignment Conversion, Narrower Primitives, and Literal Values

Java’s assignment conversion rule is sometimes inconvenient when a literal value is assigned to
a primitive. By default, a numeric literal is either a double or an int, so the following line of
code generates a compiler error:

float f = 1.234;

The literal value 1.234 is a double, so it cannot be assigned to a float variable.

byte short

char

int long float double

4419c04.fm Page 106 Thursday, February 24, 2005 1:52 PM

Primitives and Conversion 107

You might assume that assigning a literal int to some narrower integral type (byte, short,
or char) would fail to compile in a similar way. For example, it would be reasonable to assume
that all of the following lines generate compiler errors:

byte b = 1;

short s = 2;

char c = 3;

In fact, all three of these lines compile without error. The reason is that Java relaxes its assign-
ment conversion rule when a literal int value is assigned to a narrower primitive type (byte,
short, or char), provided the literal value falls within the legal range of the primitive type.

This relaxation of the rule applies only when the assigned value is an integral literal. Thus the
second line of the following code will not compile:

int i = 12;

byte b = I

Primitive Conversion: Method Call

Another kind of conversion is method-call conversion. A method-call conversion happens when
you pass a value of one type as an argument to a method that expects a different type. For example,
the cos() method of the Math class expects a single argument of type double. Consider the fol-
lowing code:

1. float frads;

2. double d;

3. frads = 2.34567f;

4. d = Math.cos(frads); // Pass float to method

 // that expects double

The float value in frads is automatically converted to a double value before it is handed
to the cos() method. Just as with assignment conversions, strict rules govern which conversions
are allowed and which conversions will be rejected by the compiler. The following code quite
reasonably generates a compiler error (assuming there is a vector called myVector):

1. double d = 12.0;

2. Object ob = myVector.elementAt(d);

The compiler error message says, “Incompatible type for method. Explicit cast needed to convert
double to int.” This means the compiler can’t convert the double argument to a type that is sup-
ported by a version of the elementAt() method. It turns out that the only version of elementAt()
is the version that takes an integer argument. Thus a value can be passed to elementAt() only if
that value is an int or can be converted to an int.

4419c04.fm Page 107 Thursday, February 24, 2005 1:52 PM

108 Chapter 4 � Converting and Casting

Fortunately, the rule that governs which method-call conversions are permitted is the same
rule that governs assignment conversions. Widening conversions (as shown in Figure 4.3) are
permitted; narrowing conversions are forbidden.

Primitive Conversion: Arithmetic Promotion

The last kind of primitive conversion to consider is arithmetic promotion. Arithmetic-promotion
conversions happen within arithmetic statements while the compiler is trying to make sense out
of many different possible kinds of operand.

Consider the following fragment:

1. short s = 9;

2. int i = 10;

3. float f = 11.1f;

4. double d = 12.2;

5. if (-s * i >= f / d)

6. System.out.println(">=");

7. else

8. System.out.println("<");

The code on line 5 multiplies a negated short by an int; then it divides a float by a double;
finally, it compares the two results. Behind the scenes, the system is doing extensive type con-
version to ensure that the operands can be meaningfully incremented, multiplied, divided, and
compared. These conversions are all widening conversions. Thus they are known as arithmetic-
promotion conversions because values are promoted to wider types.

The rules that govern arithmetic promotion distinguish between unary and binary operators.
Unary operators operate on a single value. Binary operators operate on two values. Figure 4.4
shows Java’s unary and binary arithmetic operators.

For unary operators, two rules apply, depending on the type of the single operand:
� If the operand is a byte, a short, or a char, it is converted to an int (unless the operator

is ++ or --, in which case no conversion happens).
� Else there is no conversion.

F I G U R E 4 . 4 Unary and binary arithmetic operators

Unary operators:

Binary operators:

4419c04.fm Page 108 Thursday, February 24, 2005 1:52 PM

Primitives and Casting 109

For binary operators, there are four rules, depending on the types of the two operands:
� If one of the operands is a double, the other operand is converted to a double.
� Else if one of the operands is a float, the other operand is converted to a float.
� Else if one of the operands is a long, the other operand is converted to a long.
� Else both operands are converted to ints.

With these rules in mind, it is possible to determine what really happens in the code example
given at the beginning of this section:

1. The short s is promoted to an int and then negated.

2. The result of step 1 (an int) is multiplied by the int i. Because both operands are of the
same type, and that type is not narrower than an int, no conversion is necessary. The result
of the multiplication is an int.

3. Before float f is divided by double d, f is widened to a double. The division generates
a double-precision result.

4. The result of step 2 (an int) is to be compared to the result of step 3 (a double). The int is
converted to a double, and the two operands are compared. The result of a comparison is
always of type boolean.

Primitives and Casting
So far, this chapter has shown that Java is perfectly willing to perform widening conversions on
primitives. These conversions are implicit and behind the scenes; you don’t need to write any
explicit code to make them happen.

Casting is explicitly telling Java to make a conversion. A casting operation may widen or
narrow its argument. To cast, just precede a value with the parenthesized name of the desired
type. For example, the following lines of code cast an int to a double:

1. int i = 5;

2. double d = (double)i;

Of course, the cast is not always necessary. The following code, in which the cast has been
omitted, would do an assignment conversion on i, with the same result as the previous example:

1. int i = 5;

2. double d = i;

Casts are required when you want to perform a narrowing conversion. Such conversion will
never be performed implicitly; you have to program an explicit cast to convince the compiler
that what you really want is a narrowing conversion. Narrowing runs the risk of losing infor-
mation; the cast tells the compiler that you accept the risk.

4419c04.fm Page 109 Thursday, February 24, 2005 1:52 PM

110 Chapter 4 � Converting and Casting

For example, the following code generates a compiler error:

1. short s = 259;

2. byte b = s; // Compiler error

3. System.out.println("s = " + s + ", b = " + b);

The compiler error message for the second line will say (among other things), “Explicit cast
needed to convert short to byte.” Adding an explicit cast is easy:

1. short s = 259;

2. byte b = (byte)s; // Explicit cast

3. System.out.println("b = " + b);

When this code is executed, the number 259 (binary 100000011) must be squeezed into a
single byte. This is accomplished by preserving the low-order byte of the value and discarding
the rest. The code prints out the (perhaps surprising) message:

b = 3

The 1 bit in bit position 8 is discarded, leaving only 3, as shown in Figure 4.5. Narrowing
conversions can result in radical value changes; this is why the compiler requires you to cast
explicitly. The cast tells the compiler, “Yes, I really want to do it.”

Casting a value to a wider value (as shown in Figure 4.3) is always permitted but never
required; if you omit the cast, an implicit conversion will be performed on your behalf. How-
ever, explicitly casting can make your code a bit more readable. For example

 1. int i = 2;

 2. double radians;

 . // Hundreds of

 . // lines of

 . // code

600. radians = (double)i;

The cast in the last line is not required, but it serves as a good reminder to any readers (including
yourself) who might have forgotten the type of radians.

Two simple rules govern casting of primitive types:
� You can cast any non-boolean type to any other non-boolean type.
� You cannot cast a boolean to any other type; you cannot cast any other type to a boolean.

Note that although casting is ordinarily used when narrowing, it is perfectly legal to cast
when widening. The cast is unnecessary, but it provides a bit of clarity.

4419c04.fm Page 110 Thursday, February 24, 2005 1:52 PM

Primitives and Casting 111

Legal and Illegal Casts

Write an application that illustrates legal and illegal casts. Work with the following class/
interface hierarchy:

class Fruit

class Apple extends Fruit

interface Squeezable

class Citrus extends Fruit implements Squeezable

class Orange extends Citrus

You will have to define the classes and the interface, but the definitions can be empty. Your
application should construct one instance of each of the following classes:

� Object

� Fruit

� Apple

� Citrus

� Orange

Try to cast each of these objects to the following types:

� Fruit

� Apple

� Squeezable

� Citrus

� Orange

For each attempted cast, print out a message stating whether the cast succeeded. (A
ClassCastException is thrown if the cast failed; if no exception is thrown, the cast
succeeded.) A fragment of the output of the sample solution (Caster.java on the
CD-ROM) looks like this:

Checking casts for FruitFruit: OKApple: NOSqueezable: NOCitrus: NOOrange: NO

Checking casts for AppleFruit: OKApple: OKSqueezable: NOCitrus: NOOrange: NO

4419c04.fm Page 111 Thursday, February 24, 2005 1:52 PM

112 Chapter 4 � Converting and Casting

F I G U R E 4 . 5 Casting a short to a byte

Object Reference Conversion
Object reference variables, like primitive values, participate in assignment conversion, method-
call conversion, and casting. (There is no arithmetic promotion of object references, because ref-
erences cannot be arithmetic operands.) Object reference conversion is more complicated than
primitive conversion, because there are more possible combinations of old and new types—and
more combinations mean more rules.

Reference conversion, like primitive conversion, takes place at compile time, because the
compiler has all the information it needs to determine whether the conversion is legal. Later you
will see that this is not the case for object casting.

The following sections examine object reference assignment, method-call, and casting
conversions.

Object Reference Assignment Conversion

Object reference assignment conversion happens when you assign an object reference value to
a variable of a different type. There are three general kinds of object reference type:
� A class type, such as Button or FileWriter
� An interface type, such as Cloneable or LayoutManager
� An array type, such as int[][] or TextArea[]

Generally speaking, assignment conversion of a reference looks like this:

1. Oldtype x = new Oldtype();

2. Newtype y = x; // reference assignment conversion

4419c04.fm Page 112 Thursday, February 24, 2005 1:52 PM

Object Reference Conversion 113

This is the general format of an assignment conversion from an Oldtype to a Newtype. Unfor-
tunately, Oldtype can be a class, an interface, or an array; Newtype can also be a class, an inter-
face, or an array. Thus there are nine (= 3 ∴ 3) possible combinations to consider. Figure 4.6
shows the rules for all nine cases.

It would be difficult to memorize the nine rules shown in Figure 4.6. Fortunately, there is a
rule of thumb.

Recall that with primitives, conversions were permitted, provided they were widening
conversions. The notion of widening does not really apply to references, but a similar prin-
ciple is at work. In general, object reference conversion is permitted when the direction of
the conversion is “up” the inheritance hierarchy; that is, the old type should inherit from the
new type. This rule of thumb does not cover all nine cases, but it is a helpful way to look
at things.

The rules for object reference conversion can be stated as follows:
� An interface type can be converted only to an interface type or to Object. If the new type

is an interface, it must be a superinterface of the old type.
� A class type can be converted to a class type or to an interface type. If converting to a class

type, the new type must be a superclass of the old type. If converting to an interface type,
the old class must implement the interface.

� An array may be converted to the class Object, to the interface Cloneable or Serializable,
or to an array. Only an array of object reference types can be converted to an array, and the
old element type must be convertible to the new element type.

To illustrate these rules, consider the inheritance hierarchy shown in Figure 4.7 (assume there
is an interface called Squeezable).

F I G U R E 4 . 6 The rules for object reference assignment conversion

4419c04.fm Page 113 Thursday, February 24, 2005 1:52 PM

114 Chapter 4 � Converting and Casting

F I G U R E 4 . 7 A simple class hierarchy

As a first example, consider the following code:

1. Tangelo tange = new Tangelo();

2. Citrus cit = tange;

This code is fine. A Tangelo is being converted to a Citrus. The new type is a superclass of the
old type, so the conversion is allowed. Converting in the other direction (“down” the hierarchy
tree) is not allowed:

1. Citrus cit = new Citrus();

2. Tangelo tange = cit;

This code will result in a compiler error.
What happens when one of the types is an interface?

1. Grapefruit g = new Grapefruit();

2. Squeezable squee = g; // No problem

3. Grapefruit g2 = squee; // Error

The second line (“No problem”) changes a class type (Grapefruit) to an interface type.
This is correct, provided Grapefruit really implements Squeezable. A glance at Figure 4.7
shows that this is indeed the case, because Grapefruit inherits from Citrus, which imple-
ments Squeezable. The third line is an error, because an interface can never be implicitly con-
verted to any reference type other than Object.

Object

Fruit

Citrus
(implements
Squeezable)

GrapefruitTangeloLemon

4419c04.fm Page 114 Thursday, February 24, 2005 1:52 PM

Object Reference Casting 115

Finally, consider an example with arrays:

1. Fruit fruits[];

2. Lemon lemons[];

3. Citrus citruses[] = new Citrus[10];

4. for (int i = 0; i < 10; i++) {

5. citruses[i] = new Citrus();

6. }

7. fruits = citruses; // No problem

8. lemons = citruses; // Error

Line 7 converts an array of Citrus to an array of Fruit. This is fine, because Fruit is a super-
class of Citrus. Line 8 converts in the other direction and fails, because Lemon is not a superclass
of Citrus.

Object Method-Call Conversion

Fortunately, the rules for method-call conversion of object reference values are the same as the
rules described earlier for assignment conversion of objects. The general rule of thumb is that
converting to a superclass is permitted and converting to a subclass is not permitted.

To see how the rules make sense in the context of method calls, consider the extremely useful
java.lang.Vector class. You can store anything you like in a vector (anything nonprimitive,
that is) by calling the method add (Object ob). For example, the following code stores a
Tangelo in a vector:

1. Vector myVec = new Vector();

2. Tangelo tange = new Tangelo();

3. myVec.add (tange);

The tange argument will automatically be converted to type Object. The automatic conversion
means that the people who wrote the java.lang.Vector class didn’t have to write a separate
method for every possible type of object that anyone might conceivably want to store in a vec-
tor. This is fortunate: the Tangelo class was developed years after the invention of the vector,
so the developer of the Vector class could not possibly have written specific Tangelo-handling
code. An object of any class (and even an array of any type) can be passed into the single add
(Object ob) method.

Object Reference Casting
Object reference casting is like primitive casting: by using a cast, you convince the compiler to
let you do a conversion that otherwise might not be allowed.

4419c04.fm Page 115 Thursday, February 24, 2005 1:52 PM

116 Chapter 4 � Converting and Casting

Any kind of conversion that is allowed for assignments or method calls is allowed for explicit
casting. For example, the following code is legal:

1. Lemon lem = new Lemon();

2. Citrus cit = (Citrus)lem;

The cast is legal but not needed; if you leave it out, the compiler will do an implicit assignment
conversion. The power of casting appears when you explicitly cast to a type that is not allowed
by the rules of implicit conversion.

To understand how object casting works, it is important to understand the difference between
objects and object reference variables. Every object (well, nearly every object—there are some
obscure cases) is constructed via the new operator. The class name following new determines for
all time the true class of the object. For example, if an object is constructed by calling new
Color(222, 0, 255), then throughout that object’s lifetime, its class will be Color.

Java programs do not deal directly with objects. They deal with references to objects. For
example, consider the following code:

Color purple = new Color(222, 0, 255);

The variable purple is not an object; it is a reference to an object. The object itself lives in memory
somewhere in the Java Virtual Machine (JVM). The variable purple contains something similar
to the address of the object. This address is known as a reference to the object. The difference
between a reference and an object is illustrated in Figure 4.8. References are stored in variables,
and variables have types that are specified by the programmer at compile time. Object reference
variable types can be classes (such as Graphics or FileWriter), interfaces (such as Runnable
or LayoutManager), or arrays (such as int[][] or Vector[]).

F I G U R E 4 . 8 Reference and object

4419c04.fm Page 116 Thursday, February 24, 2005 1:52 PM

Object Reference Casting 117

Although an object’s class is unchanging, it may be referenced by variables of many dif-
ferent types. For example, consider a stack. It is constructed by calling new Stack(), so its
class really is Stack. Yet at various moments during the lifetime of this object, it may be ref-
erenced by variables of type Stack (of course), or of type Vector (because Stack inherits
from Vector), or of type Object (because everything inherits from Object). It may even be
referenced by variables of type Serializable, which is an interface, because the Stack class
implements the Serializable interface. This situation is shown in Figure 4.9.

F I G U R E 4 . 9 Many variable types, one class

The type of a reference variable is obvious at compile time. However, the class of an object
referenced by such a variable cannot be known until runtime. This lack of knowledge is not a
shortcoming of Java technology; it results from a fundamental principle of computer science.
The distinction between compile-time knowledge and runtime knowledge was not relevant to
our discussion of conversions; however, the difference becomes important with reference value
casting. The rules for casting are a bit broader than those for conversion. Some of these rules
concern reference type and can be enforced by the compiler at compile time; other rules concern
object class and can be enforced only during execution.

Quite a few rules govern object casting because a large number of obscure cases must be cov-
ered. For the exam, the important rules to remember when casting from Oldtype to Newtype
are as follows:
� When both Oldtype and Newtype are classes, one class must be a subclass of the other.
� When both Oldtype and Newtype are arrays, both arrays must contain reference types

(not primitives), and it must be legal to cast an element of Oldtype to an element of
Newtype.

� You can always cast between an interface and a nonfinal object.

4419c04.fm Page 117 Thursday, February 24, 2005 1:52 PM

118 Chapter 4 � Converting and Casting

Assuming that a desired cast survives compilation, a second check must occur at runtime. The
second check determines whether the class of the object being cast is compatible with the new
type. (This check could not be made at compile time, because the object being cast did not exist
then.) Here, compatible means that the class can be converted according to the conversion rules
discussed in the previous two sections. The following rules cover the most common runtime cases:
� If Newtype is a class, the class of the expression being converted must be Newtype or must

inherit from Newtype.
� If Newtype is an interface, the class of the expression being converted must implement

Newtype.

It is definitely time for some examples! Look once again at the Fruit/Citrus hierarchy that
you saw earlier in this chapter, which is repeated in Figure 4.10.

First, consider the following code:

1. Grapefruit g, g1;

2. Citrus c;

3. Tangelo t;

4. g = new Grapefruit(); // Class is Grapefruit

5. c = g; // Legal assignment conversion,

 // no cast needed

6. g1 = (Grapefruit)c; // Legal cast

7. t = (Tangelo)c; // Illegal cast

 // (throws an exception)

F I G U R E 4 . 1 0 Fruit hierarchy (reprise)

Object

Fruit

Citrus
(implements
Squeezable)

GrapefruitTangeloLemon

4419c04.fm Page 118 Thursday, February 24, 2005 1:52 PM

Object Reference Casting 119

This code has four references but only one object. The object’s class is Grapefruit, because
Grapefruit’s constructor is called on line 4. The assignment c = g on line 5 is a perfectly legal
assignment conversion (“up” the inheritance hierarchy), so no explicit cast is required. In lines 6
and 7, the Citrus is cast to a Grapefruit and to a Tangelo. Recall that for casting between class
types, one of the two classes (it doesn’t matter which one) must be a subclass of the other. The first
cast is from a Citrus to its subclass Grapefruit; the second cast is from a Citrus to its subclass
Tangelo. Thus both casts are legal—at compile time. The compiler cannot determine the class of
the object referenced by c, so it accepts both casts and lets fate determine the outcome at runtime.

When the code is executed, eventually the JVM attempts to execute line 6: g1 =
(Grapefruit)c;. The class of c is determined to be Grapefruit, and there is no objection
 to converting a Grapefruit to a Grapefruit.

Line 7 attempts (at runtime) to cast c to type Tangelo. The class of c is still Grapefruit, and
a Grapefruit cannot be cast to a Tangelo. In order for the cast to be legal, the class of c would
have to be Tangelo itself or some subclass of Tangelo. Because this is not the case, a runtime
exception (java.lang.ClassCastException) is thrown.

Now take an example where an object is cast to an interface type. Begin by considering the
following code fragment:

1. Grapefruit g, g1;

2. Squeezable s;

3. g = new Grapefruit();

4. s = g; // Convert Grapefruit to Squeezable (OK)

5. g1 = s; // Convert Squeezable to Grapefruit

 // (Compile error)

This code will not compile. Line 5 attempts to convert an interface (Squeezable) to a class
(Grapefruit). It doesn’t matter that Grapefruit implements Squeezable. Implicitly converting
an interface to a class is never allowed; it is one of those cases where you have to use an explicit
cast to tell the compiler that you really know what you’re doing. With the cast, line 5 becomes

5. g1 = (Grapefruit)s;

Adding the cast makes the compiler happy. At runtime, the JVM checks whether the class of
s (which is Grapefruit) can be converted to Grapefruit. It certainly can, so the cast is allowed.

For a final example, involving arrays, look at the following code:

1. Grapefruit g[];

2. Squeezable s[];

3. Citrus c[];

4. g = new Grapefruit[500];

5. s = g; // Convert Grapefruit array to

 // Squeezable array (OK)

6. c = (Citrus[])s; // Cast Squeezable array to Citrus

 // array (OK)

4419c04.fm Page 119 Thursday, February 24, 2005 1:52 PM

120 Chapter 4 � Converting and Casting

Line 6 casts an array of Squeezables (s) to an array of Citruses (c). An array cast is legal
if casting the array element types is legal (and if the element types are references, not primi-
tives). In this example, the question is whether a Squeezable (the element type of array s) can
be cast to a Citrus (the element type of the cast array). The previous example showed that
this is a legal cast.

Summary
Primitive values and object references are very different kinds of data. Both can be converted
(implicitly) or cast (explicitly). Primitive type changes are caused by assignment conversion,
method-call conversion, arithmetic-promotion conversion, or explicit casting.

Primitives can be converted only if the conversion widens the data. Primitives can be narrowed
by casting, as long as neither the old nor the new type is boolean.

Object references can be converted or cast; the rules that govern these activities are extensive
because many combinations of cases must be covered. In general, going “up” the inheritance
tree can be accomplished implicitly through conversion; going “down” the tree requires explicit
casting. Object reference type changes are caused by assignment conversion, method-call con-
version, or explicit casting.

Exam Essentials
Understand when primitive conversion takes place. Assignment and method-call conversion
take place when the new data type is the same as or wider than the old type. Type widths are
summarized in Figure 4.3.

Understand when arithmetic promotion takes place. You should know the type of result of
unary and binary arithmetic operations performed on operands of any type.

Understand when primitive casting is required. Casting is required when the new data type is
neither the same as nor wider than the old type.

Understand when object reference conversion takes place. The rules are summarized in
Figure 4.6. The most common case is when the new type is a parent class of the old type.

Understand when object reference casting is required. The most common case is when the
new type inherits from the old type.

4419c04.fm Page 120 Thursday, February 24, 2005 1:52 PM

Review Questions 121

Review Questions
1. Which of the following statements is correct? (Choose one.)

A. Only primitives are converted automatically; to change the type of an object reference, you
have to do a cast.

B. Only object references are converted automatically; to change the type of a primitive, you
have to do a cast.

C. Arithmetic promotion of object references requires explicit casting.

D. Both primitives and object references can be both converted and cast.

E. Casting of numeric types may require a runtime check.

2. Which one line in the following code will not compile?

1. byte b = 5;

2. char c = ‘5’;

3. short s = 55;

4. int i = 555;

5. float f = 555.5f;

6. b = s;

7. i = c;

8. if (f > b)

9. f = i;

A. Line 1

B. Line 2

C. Line 3

D. Line 4

E. Line 5

F. Line 6

G. Line 7

H. Line 8

I. Line 9

3. Will the following code compile?

1. byte b = 2;

2. byte b1 = 3;

3. b = b * b1;

A. Yes

B. No

4419c04.fm Page 121 Thursday, February 24, 2005 1:52 PM

122 Chapter 4 � Converting and Casting

4. In the following code, what are the possible types for variable result? (Choose the most complete
true answer.)

1. byte b = 11;

2. short s = 13;

3. result = b * ++s;

A. byte, short, int, long, float, double

B. boolean, byte, short, char, int, long, float, double

C. byte, short, char, int, long, float, double

D. byte, short, char

E. int, long, float, double

5. Consider the following class:

 1. class Cruncher {

 2. void crunch(int i) {

 3. System.out.println("int version");

 4. }

 5. void crunch(String s) {

 6. System.out.println("String version");

 7. }

 8.

 9. public static void main(String args[]) {

10. Cruncher crun = new Cruncher();

11. char ch = ‘p’;

12. crun.crunch(ch);

13. }

14. }

Which of the following statements is true? (Choose one.)

A. Line 5 will not compile, because void methods cannot be overridden.

B. Line 12 will not compile, because no version of crunch() takes a char argument.

C. The code will compile but will throw an exception at line 12.

D. The code will compile and produce the following output: int version.

E. The code will compile and produce the following output: String version.

4419c04.fm Page 122 Thursday, February 24, 2005 1:52 PM

Review Questions 123

6. Which of the following statements is true? (Choose one.)

A. Object references can be converted in assignments but not in method calls.

B. Object references can be converted in method calls but not in assignments.

C. Object references can be converted in both method calls and assignments, but the rules
governing these conversions are very different.

D. Object references can be converted in both method calls and assignments, and the rules
governing these conversions are identical.

E. Object references can never be converted.

7. Consider the following code. Which line will not compile?

1. Object ob = new Object();

2. String[] stringarr = new String[50];

3. Float floater = new Float(3.14f);

4. ob = stringarr;

5. ob = stringarr[5];

6. floater = ob;

7. ob = floater;

A. Line 4

B. Line 5

C. Line 6

D. Line 7

Questions 8–10 refer to the class hierarchy shown in the graphic below.

8. Consider the following code:

1. Dog rover, fido;

2. Animal anim;

3.

Animal

Mammal

Swamp
Thing

Raccoon
(implements

Washer)

Cat
(implements

Washer)
Dog

4419c04.fm Page 123 Thursday, February 24, 2005 1:52 PM

124 Chapter 4 � Converting and Casting

4. rover = new Dog();

5. anim = rover;

6. fido = (Dog)anim;

Which of the following statements is true? (Choose one.)

A. Line 5 will not compile.

B. Line 6 will not compile.

C. The code will compile but will throw an exception at line 6.

D. The code will compile and run.

E. The code will compile and run, but the cast in line 6 is not required and can be eliminated.

9. Consider the following code:

1. Cat sunflower;

2. Washer wawa;

3. SwampThing pogo;

4.

5. sunflower = new Cat();

6. wawa = sunflower;

7. pogo = (SwampThing)wawa;

Which of the following statements is true? (Choose one.)

A. Line 6 will not compile; an explicit cast is required to convert a Cat to a Washer.

B. Line 7 will not compile, because you cannot cast an interface to a class.

C. The code will compile and run, but the cast in line 7 is not required and can be eliminated.

D. The code will compile but will throw an exception at line 7, because runtime conversion
from an interface to a class is not permitted.

E. The code will compile but will throw an exception at line 7, because the runtime class of
wawa cannot be converted to type SwampThing.

10. Consider the following code:

1. Raccoon rocky;

2. SwampThing pogo;

3. Washer w;

4.

5. rocky = new Raccoon();

6. w = rocky;

7. pogo = w;

4419c04.fm Page 124 Thursday, February 24, 2005 1:52 PM

Review Questions 125

Which of the following statements is true? (Choose one.)

A. Line 6 will not compile; an explicit cast is required to convert a Raccoon to a Washer.

B. Line 7 will not compile; an explicit cast is required to convert a Washer to a SwampThing.

C. The code will compile and run.

D. The code will compile but will throw an exception at line 7, because runtime conversion
from an interface to a class is not permitted.

E. The code will compile but will throw an exception at line 7, because the runtime class of w
cannot be converted to type SwampThing.

11. Which of the following may legally appear as the new type (between the parentheses) in a cast
operation?

A. Classes

B. Interfaces

C. Arrays of classes

D. Arrays of interfaces

E. All of the above

12. Which of the following may legally appear as the new type (between the parentheses) in a cast
operation?

A. Abstract classes

B. Final classes

C. Primitives

D. All of the above

13. Suppose the declared type of x is a class, and the declared type of y is an interface. When is the
assignment x = y; legal?

A. When the type of x is Object

B. When the type of x is an array

C. Always

D. Never

14. Suppose the type of xarr is an array of XXX, and the type of yarr is an array of YYY. When is
the assignment xarr = yarr; legal?

A. Sometimes

B. Always

C. Never

4419c04.fm Page 125 Thursday, February 24, 2005 1:52 PM

126 Chapter 4 � Converting and Casting

15. When is x & y an int? (Choose one).

A. Always

B. Sometimes

C. When neither x nor y is a float, a long, or a double

16. What are the legal types for whatsMyType?

short s = 10;

whatsMyType = !s;

A. short

B. int

C. There are no possible legal types.

17. When a negative long is cast to a byte, what are the possible values of the result?

A. Positive

B. Zero

C. Negative

D. All of the above

18. When a negative byte is cast to a long, what are the possible values of the result?

A. Positive

B. Zero

C. Negative

19. Which of the following operators can perform promotion on their operands? (Choose all
that apply.)

A. +

B. -

C. ++

D. --

E. ~

F. !

20. What is the difference between the rules for method-call conversion and the rules for assignment
conversion?

A. There is no difference; the rules are the same.

B. Method-call conversion supports narrowing, assignment conversion does not.

C. Assignment conversion supports narrowing, method-call conversion does not.

D. Method-call conversion supports narrowing if the method declares that it throws
ClassCastException.

4419c04.fm Page 126 Thursday, February 24, 2005 1:52 PM

Answers to Review Questions 127

Answers to Review Questions
1. D. D is correct because in Java primitives and object references can be both converted and cast.

A and B are wrong because they contradict D. C is wrong because objects do not take part in
arithmetic operations. E is wrong because only casting of object references potentially requires
a runtime check.

2. F. The code b = s will not compile, because converting a short to a byte is a narrowing conver-
sion, which requires an explicit cast. The other assignments in the code are widening conversions.

3. B. Surprisingly, the code will fail to compile at line 3. The two operands, which are originally
bytes, are converted to ints before the multiplication. The result of the multiplication is an int,
which cannot be assigned to byte b.

4. E. The result of the calculation on line 2 is an int (because all arithmetic results are ints or
wider). An int can be assigned to an int, long, float, or double.

5. D. At line 12, the char argument ch is widened to type int (a method-call conversion) and
passed to the int version of method crunch().

6. D. Method-call and assignment conversions are governed by the same rules concerning the legal
relationships between the old and new types.

7. C. Changing an Object to a Float is going “down” the inheritance hierarchy tree, so an explicit
cast is required.

Questions 8–10 refer to the class hierarchy shown in the graphic below.

8. D. 80The code will compile and run. The cast in line 6 is required, because changing an Animal
to a Dog is going “down” the tree.

9. E. The cast in line 7 is required. Answer D is a preposterous statement expressed in a tone of
authority.

Animal

Mammal

Swamp
Thing

Raccoon
(implements

Washer)

Cat
(implements

Washer)
Dog

4419c04.fm Page 127 Thursday, February 24, 2005 1:52 PM

128 Chapter 4 � Converting and Casting

10. B. The conversion in line 6 is fine (class to interface), but the conversion in line 7 (interface
to class) is not allowed. A cast in line 7 will make the code compile, but then at runtime a
ClassCastException will be thrown, because Washer and SwampThing are incompatible.

11. E. Any type may appear inside the parentheses of a cast.

12. E. Any type, including classes with any kind of modifier, may appear inside the parentheses
of a cast.

13. A. An interface may be converted only to a class, and the class must be Object.

14. A. An array may be converted to another array, provided the element types of the arrays are
compatible. This is sometimes, but not always, the case.

15. B. The result is an int whenever the operands are bytes, shorts, chars, or ints. C is wrong
because it does not account for the situation where both operands are booleans.

16. C. The expression !s won’t compile, because the ! operator may be applied only to booleans.

17. D. When a long is cast to a byte, all but the least-significant 8 bits are discarded. The remaining
bits might represent a positive number, zero, or a negative number.

18. C. When a numeric primitive is cast or converted to a wider type, the original value is preserved,
so naturally the original sign cannot change.

19. A, B, E. All numeric operators promote. !, which is strictly boolean, does not promote.

20. A. Method-call conversion and assignment conversion are governed by the same rules.

4419c04.fm Page 128 Thursday, February 24, 2005 1:52 PM

Chapter

5

Flow Control,
Assertions, and
Exception Handling

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

2.1 Develop code that implements an if or switch statement;

and identify legal argument types for these statements.

�

2.2 Develop code that implements all forms of loops and

iterators, including the use of for, the enhanced for loop

(for-each), do, while, labels, break, and continue; and explain

the values taken by loop counter variables during and after

loop execution.

�

2.3 Develop code that makes use of assertions, and distinguish

appropriate from inappropriate uses of assertions.

�

2.4 Develop code that makes use of exceptions and exception

handling clauses (try, catch, finally), and declares methods and

overriding methods that throw exceptions.

�

2.5 Recognize the effect of an exception arising at a specified

point in a code fragment. Note that the exception may be a

runtime exception, a checked exception, or an error.

�

2.6 Recognize situations that will result in any of the following

being thrown: ArrayIndexOutOfBoundsException, ClassCast-

Exception, IllegalArgumentException, IllegalState-Exception,

NullPointerException, NumberFormatException, Assertion-

Error, ExceptionInInitializerError, StackOverflow-Error or

NoClassDefFoundError.ÊUnderstand which of these are

thrown by the virtual machine and recognize situations in

which others should be thrown programatically.

4419c05.fm Page 129 Thursday, February 17, 2005 5:04 PM

Programming is the art of getting program execution to flow to the
right place at the right time. Java lets you control program flow
with traditional features such as loops, conditionals, and switches.

Java also supports two more modern flow-control constructs: exceptions and assertions. More-
over, Java has enhanced the for-loop syntax to make it more closely integrated with collections.

In this chapter you’ll look at both the traditional and the new facilities for controlling pro-
gram flow.

The Loop Constructs

Java provides three loop constructions. Taken from C and C

++

, these are the

while()

,

do

, and

for()

 constructs. Each provides the facility for repeating the execution of a block of code until
some condition occurs.

The

while()

 Loop

The general form of the

while()

 loop is

1. while (

boolean_condition

)

2.

repeated_statement_or_block

In such a construct, the element

boolean_condition

 must be an expression that returns a

boolean

 result. Notice that this differs from C and C

++

, where a variety of types may be used:
In Java you can use

only

 a

boolean

 expression. Typically, you might use a comparison of some
kind, such as

x > 5

.
The

repeated_statement_or_block

 will be executed again and again as long as the

boolean_condition

 is true. If the condition never becomes false, then the loop will repeat
forever. In practice, this really means that the loop will repeat until the program is stopped
or the machine is turned off.

Notice that we’ve described the loop body as a “repeated statement or block.” We need to
make two important points here. The first is one of coding style, and as such is not directly related
to the Programmer’s Exam (although it might be relevant to the Developer’s Exam when you take
that). The second is the strict interpretation of the language specification, and as such might be
needed in the Programmer’s Exam. The two issues are related, so we will discuss them over the
next few paragraphs.

4419c05.fm Page 130 Thursday, February 17, 2005 5:04 PM

The Loop Constructs

131

The first point is that you would be well advised always to write a block to contain the code
for the body of a loop or an

if()

 statement. That is, always use a pair of braces so your code
will look like this:

1. while (

boolean_condition

) {

2. statement(s);

3. }

You should do so even where the loop contains only a single statement. The reason is that in many
situations, you will change from a single line to multiple lines, and if the braces are in position
already, that is one less thing to forget. One typical situation where this arises is when you add
debug output to the middle of a loop to see how many times the loop is executed. It’s very frus-
trating to realize after 20 minutes of messing about that the loop was executed 10 times, although
the message was printed only on exit from the loop. It’s perhaps worse to see the message printed
10 times but to have moved the proper body of the loop outside of it entirely.

The second point is that, from the position of strict correctness, you need to know that a single
statement without braces is allowed in loops and

if

 statements. So, the following code is correct
and prints “five times” five times, but “once” only once:

1. int i = 0;

2. while (i++ < 5)

3. System.out.println("five times");

4. System.out.println("once");

It is highly unlikely that you will be presented with code that uses a single nonblocked state-
ment as the body of a loop or the conditional part of an

if

 statement, but if you do, you need
to recognize how it will behave and that it is not incorrect.

The exact position of the opening curly brace that marks a block of code is a mat-
ter of near-religious contention. Some programmers put it at the end of a line, as
in most of the examples in this book. Others put it on a line by itself. Provided it
is otherwise placed in the correct sequence, it does not matter how many space,
tab, and newline characters are placed before or after the opening curly brace. In
other words, this positioning is not relevant to syntactic correctness. You should
be aware, however, that the style used in presenting the exam questions, as well
as that used for the code in the developer-level exam, is the style shown here,

where the opening brace is placed at the end of the line.

Observe that if the

boolean_condition

 is already false when the loop is first encountered,
then the body of the loop will never be executed. This fact relates to the main distinguishing fea-
ture of the

do

 loop, which we will discuss next.

4419c05.fm Page 131 Thursday, February 17, 2005 5:04 PM

132

Chapter 5 �

Flow Control, Assertions, and Exception Handling

The

do

 Loop

The general form of the

do

 loop is

1. do

2.

repeated_statement_or_block

3. while (

boolean_condition

);

It is similar to the

while()

 loop just discussed, and as before, it is best to have a loop body
formed with a block:

1. do {

2. do_something

3. do_more

4. } while (

boolean_condition

);

Again, repetition of the loop is terminated when the

boolean_condition

 becomes false.
The significant difference is that this loop always executes the body of the loop at least once,
because the test is performed at the end of the body.

Notice that the

do

 loop (as opposed to the

while

 loop) is guaranteed to run at least once,
regardless of the value of the conditional expression. The

do

 loop is probably used less frequently
than the

while()

 loop, but the third loop format is perhaps the most common. The third form is
the

for()

 loop, which we will discuss next.

The

for()

 Loop

A common requirement in programming is to perform a loop so that a single variable is incre-
mented over a range of values between two limits. This ability is frequently provided by a loop
that uses the keyword

for

. Java’s

while()

 loop can achieve this effect, but it is most commonly
achieved using the

for()

 loop. However, as with C and C

++

, using the

for()

 loop is more gen-
eral than simply providing for iteration over a sequence of values.

The general form of the

for()

 loop is

1. for (

statement

 ;

condition

 ;

expression

)

2.

loop_body

Again, a block should normally be used as the

loop_body

 part, like this:

1. for (statement ; condition ; expression) {

2. do_something

3. do_more

4. }

4419c05.fm Page 132 Thursday, February 17, 2005 5:04 PM

The Loop Constructs 133

The keys to this loop are in the three parts contained in the brackets following the for keyword:
� The statement is executed immediately before the loop itself is started. It is often used to set

up starting conditions. You will see shortly that it can also contain variable declarations.
� The condition must be a boolean expression and is treated exactly the same as in the

while() loop. The body of the loop will be executed repeatedly until the condition ceases
to be true. As with the while() loop, it is possible that the body of a for() loop might
never be executed. This occurs if the condition is already false at the start of the loop.

� The expression (short for “iteration expression”) is executed immediately after the body of the
loop, just before the test is performed again. Commonly, it is used to increment a loop counter.

If you have already declared an int variable x, you can code a simple sequence-counting loop
like this:

1. for (x = 0; x < 10; x++) {

2. System.out.println(" value is " + x);

3. }

This code would result in 10 lines of output, starting with

value is 0

and ending with

value is 9

In fact, because for() loops commonly need a counting variable, you are allowed to declare
variables in the statement part. The scope of such a variable is restricted to the statement or
block following the for() statement and the for() part itself. This limitation protects loop
counter variables from interfering with each other and prevents leftover loop count values from
accidental re-use. The result is code like this:

1. for (int x = 0; x < 10; x++) {

2. System.out.println("value is " + x);

3. }

It might be useful to look at the equivalent of this code implemented using a while() loop:

1. {

2. int x = 0;

3. while (x < 10) {

4. System.out.println("value is " + x);

5. x++;

6. }

7. }

4419c05.fm Page 133 Thursday, February 17, 2005 5:04 PM

134 Chapter 5 � Flow Control, Assertions, and Exception Handling

This version reinforces a couple of points. First, the scope of the variable x, declared in
the statement part of the for() loop, is restricted to the loop and its control parts (that is, the
statement, condition, and expression). Second, the expression is executed after the rest of
the loop body, effectively before control comes back to the test condition.

Empty for() Loops

Any part of a for() loop’s control may be omitted if you wish. Omitting the test is equivalent
to a perpetually true test, so the construct

for(;;) {}

creates a loop that repeats forever. Notice that both semicolons must still be included for correct
syntax, even though the statement, condition, and expression are omitted.

The for() Loop and the Comma Separator

The for() loop allows the use of the comma separator in a special way. The statement and
expression parts described previously can contain a sequence of expressions rather than just
a single one. If you want such a sequence, you should separate those expressions, not with a
semicolon (which would be mistaken as the separator between the three parts of the for() loop
control structure), but with a comma. This behavior is borrowed from C and C++, where the
comma is an operator; in Java the comma serves only as a special case separator for conditions
where the semicolon would be unsuitable. This example demonstrates:

1. int j, k;

2. for (j = 3, k = 6; j + k < 20; j++, k +=2) {

3. System.out.println("j is " + j + " k is " + k);

4. }

Note that although you can use the comma to separate several expressions, you cannot mix
expressions with variable declarations, nor can you have multiple declarations of different types.
So these would be illegal:

1. int i = 7;

2. for (i++, int j = 0; i < 10; j++) { } // illegal!

1. for (int i = 7, long j = 0; i < 10; j++) { } // illegal!

A final note on this issue is that the use of the comma to separate multiple declarations of a
single type is allowed, like this:

1. for (int i = 7, j = 0; i < 10; j++) { }

This line declares two int variables, i and j, and initializes them to 7 and 0 respectively. This,
however, is a standard feature of declarations and is not specific to the for() loop.

4419c05.fm Page 134 Thursday, February 17, 2005 5:04 PM

The Loop Constructs 135

Enhanced for Loops

Java’s for loops were enhanced in release 1.5 to work more easily with arrays and collections.
Collections and their for loop enhancements are discussed in Chapter 8, “The java.lang and
java.util Packages.” Here we will just look at how arrays work with enhanced for loops.

You often want to perform identical processing on every element of an array. For example,
the following method returns the sum of the squares of the members of an array of floats:

float sumOfSquares(float[] floats) {

 float sum = 0;

 for (int i=0; i<floats.length; i++)

 sum += floats[i];

 return sum;

}

With enhanced for loops, this method can be rewritten as

float sumOfSquares(float[] floats) {

 float sum = 0;

 for (float f:floats)

 sum += f;

 return sum;

}

The new version eliminates the loop counter. The new syntax is

for (type variable_name:array)

The type must be compatible with the array type. The colon is pronounced “in,” so if you were
reading the new for line out loud you would say, “for float f in floats.” The loop executes once
for each member of the array, with the variable taking on each array member value in turn.

The array may contain primitives or references. The next example is a method that computes
the sum of the lengths of an array of strings:

int sumOfLengths(String[] strings) {

 int totalLength = 0;

 for (String s:strings)

 totalLength += s.length();

 return totalLength;

}

In Chapter 8 you will see how the enhanced for loop can iterate over collection
members as well as array members.

4419c05.fm Page 135 Thursday, February 17, 2005 5:04 PM

136 Chapter 5 � Flow Control, Assertions, and Exception Handling

We have now discussed the loop constructions in their basic forms. The next section looks
at more advanced flow control in loops, specifically the use of the break and continue
statements.

The break and continue Statements in Loops

Sometimes you need to abandon execution of the body of a loop—or perhaps a number of nested
loops. Java provides two statements, break and continue, which can be used to achieve this
effect. The break statement terminates execution of a loop. The continue statement terminates
the current pass through a loop. Let’s look in more detail at these two keywords.

Using continue

Suppose you have a loop that is processing an array of items that each contain two String ref-
erences. The first String is always non-null, but the second might not be present. To process
this, you might decide that you want, in pseudocode, something along these lines:

for each element of the array

 process the first String

 if the second String exists

 process the second String

 endif

endfor

You will recognize that this can be coded easily by using an if block to control processing
of the second String. However, you can also use the continue statement like this:

1. for (int i = 0; i < array.length; i++) {

2. // process first string

3. if (array[i].secondString == null) {

4. continue;

5. }

6. // process second string

7. }

In this case, the example is sufficiently simple that you probably do not see any advantage over
using the if() condition to control the execution of the second part. If the second String pro-
cessing was long, and perhaps heavily indented in its own right, you might find that the use of
continue was slightly simpler visually.

The real strength of continue is that it is able to skip out of multiple levels of loop. Suppose
the example, instead of being two String objects, is two-dimensional arrays of char values.
Now you will need to nest your loops. Consider this sample:

1. mainLoop: for (int i = 0; i < array.length; i++) {

2. for (int j = 0; j < array[i].length; j++) {

3. if (array[i][j] == ‘\u0000’) {

4419c05.fm Page 136 Thursday, February 17, 2005 5:04 PM

The Selection Statements 137

4. continue mainLoop;

5. }

6. }

7. }

Notice particularly the label mainLoop that has been applied to the for() on line 1. The fact
that this is a label is indicated by the trailing colon. You typically apply labels of this form to
the opening loop statements: while(), do, or for().

Here, when the processing of the second array comes across a 0 value, it abandons the whole
processing not just for the inner loop but for the current object in the main array. This is equiv-
alent to jumping to the statement i++ in the first for() statement.

You might still think this is not really any advantage over using if() statements, but imagine
that further processing was done between lines 6 and 7, and that finding the 0 character in the
array was required to avoid that further processing. To achieve that without using continue,
you would have to set a flag in the inner loop and use it to abandon the outer loop processing.
It can be done, but it is rather messy.

Using break

The break statement, when applied to a loop, is somewhat similar to the continue statement.
However, instead of prematurely completing the current iteration of a loop, break causes the
entire loop to be abandoned. Consider this example:

1. for (int j = 0; j < array.length; j++) {

2. if (array[j] == null) {

3. break; //break out of inner loop

4. }

5. // process array[j]

6. }

In this case, instead of simply skipping some processing for array[j] and proceeding directly to
processing array[j+1], this version quits the entire inner loop as soon as a null element is found.

You can also use labels on break statements, and as before, you must place a matching label
on one of the enclosing blocks. The break and continue statements provide a convenient way
to make parts of a loop conditional, especially when used in their labeled formats.

The next section discusses the if()/else and switch() constructions, which provide the
normal means of implementing conditional code.

The Selection Statements
Java provides a choice of two selection constructs: the if()/else and switch() mechanisms.
You can easily write simple conditional code for a choice of two execution paths based on the
value of a boolean expression using if()/else. If you need more complex choices between

4419c05.fm Page 137 Thursday, February 17, 2005 5:04 PM

138 Chapter 5 � Flow Control, Assertions, and Exception Handling

multiple execution paths, and if an integral argument is available to control the choice, then you
can use switch(); otherwise you can use either nests or sequences of if()/else.

The if()/else Construct

The if()/else construct takes a boolean argument as the basis of its choice. Often you will use
a comparison expression to provide this argument. For example

1. if (x > 5) {

2. System.out.println("x is more than 5");

3. }

This sample executes line 2, provided the test (x > 5) in line 1 returns true. Notice that we used
a block even though there is only a single conditional line, just as we suggested you should gen-
erally do with the loops discussed earlier.

You can use an else block to give code that is executed under the conditions that the test
returns false. For example

1. if (x > 5) {

2. System.out.println("x is more than 5");

3. }

4. else {

5. System.out.println("x is not more than 5");

6. }

You can also use if()/else in a nested fashion, refining conditions to more specific, or
narrower, tests at each point.

The if()/else construction makes a test between only two possible paths of execution.
However, you can also use the if()/else construction to choose between multiple possible
execution paths by using the if()/else if() variation of the construction. For example

1. if (hours > 1700) {

2. System.out.println("good evening");

3. }

4. else if (hours > 1200){

5. System.out.println("good afternoon");

6. }

7. else {

8. System.out.println("good morning");

9. }

The code snippet above can be rewritten using the switch() statement. The next section dis-
cusses the switch() statement, which allows a single value to select between multiple possible
execution paths.

4419c05.fm Page 138 Thursday, February 17, 2005 5:04 PM

The Selection Statements 139

The switch() Construct

If you need to make a choice between multiple alternative execution paths, and the choice can
be based upon an int value, you can use the switch() construct. Consider this example:

 1. switch (x) {

 2. case 1:

 3. System.out.println("Got a 1");

 4. break;

 5. case 2:

 6. case 3:

 7. System.out.println("Got 2 or 3");

 8. break;

 9. default:

10. System.out.println("Not a 1, 2, or 3");

11. break;

12. }

Note that, although you cannot determine the fact by inspection of this code, the variable
x must be either byte, short, char, or int. It must not be long, either of the floating-point
types, boolean, or an object reference. Strictly, the value must be “assignment compatible”
with int.

The comparison of values following case labels with the value of the expression supplied as
an argument to switch() determines the execution path. The arguments to case labels must
be constants, or at least constant expressions that can be fully evaluated at compile time. You
cannot use a variable or an expression involving variables.

Each case label takes only a single argument, but when execution jumps to one of these
labels, it continues downward until it reaches a break statement. This occurs even if execu-
tion passes another case label or the default label. So, in the previous example, if x has the
value 2, execution goes through lines 1, 5, 6, 7, and 8 and continues beyond line 12. This
requirement for break to indicate the completion of the case part is important. More often
than not, you do not want to omit the break, because you do not want execution to “fall
through.” However, to achieve the effect shown in the example, where more than one par-
ticular value of x causes execution of the same block of code, you use multiple case labels
with only a single break.

The default statement is comparable to the else part of an if()/else construction. Exe-
cution jumps to the default statement if none of the explicit case values matches the argument
provided to switch(). Although the default statement is shown at the end of the switch()
block in the example (and this is both a conventional and reasonably logical place to put it), no
rule requires this placement.

Now that you have examined the constructions that provide for iteration and selection under
normal program control, let’s look at the flow of control under exception conditions—that is,
conditions when some runtime problem has arisen.

4419c05.fm Page 139 Thursday, February 17, 2005 5:04 PM

140 Chapter 5 � Flow Control, Assertions, and Exception Handling

Exceptions
Occasionally when a program is executing something occurs that is not quite normal from the
point of view of the goal at hand. For example, a user might type an invalid filename; a file might
contain corrupted data; a network link could fail; or a bug in the program might cause it to try
to make an illegal memory access, such as referring to an element beyond the end of an array.

Circumstances of this type are called exception conditions in Java and are represented using
objects. An extensive class hierarchy descending from java.lang.Throwable is dedicated to
describing them.

Most new Java programmers first encounter exceptions when they try to call a useful method
that they read about in the API pages. Usually it’s the pages for the java.io package, whose meth-
ods throw lots of exceptions. For example, you might decide to call the getCanonicalFile()
method of an instance of java.io.File. (Don’t worry about what the method actually does!
We’re here to study exceptions, not file I/O.)

If you don’t know anything about exceptions, you might try to do the following:

myFile.getCanonicalFile();

Unfortunately, this doesn’t compile. The compiler error says something like

unreported exception java.io.IOException; must be caught or declared to be
thrown

On closer inspection of the API page for the File class, you see that the getCanonicalFile()
method declaration includes the words “throws IOException.” Whenever you see “throws” in
a method description on an API page, you can’t just call the method. You need to deal with the
exception in one of two ways: you can catch it or you can declare it. These options are explained
in the next two sections.

Catching Exceptions

One way to call a method that throws an exception is to create a try block and a catch block.
The structure looks like this:

try {

 // Exception-throwing code

}

catch (Exception_type name) {

 // Exception-handling code

}

The try block contains code that throws exceptions. Code that doesn’t throw exceptions
may also be included.

The catch keyword is followed by a declaration, which appears in parentheses. Like any
declaration, this consists of a type followed by a name. The type must match the type of the

4419c05.fm Page 140 Thursday, February 17, 2005 5:04 PM

Exceptions 141

exception being thrown in the try block. (Well, not exactly, but it’s a good enough explanation
for now.) The name may be anything you like; it has scope within the curlies ({ }) of the catch
block. To make sense of all this, let’s see what happens when an exception is thrown. We’ll con-
tinue the example of the previous section.

 1. File myFile = getMyFile();

 2.

 3. try {

 4. System.out.println("About to call.");

 5. myFile.getCanonicalFile();

 6. System.out.println("Call succeeded.");

 7. }

 8.

 9. catch (IOException xceptn) {

10. System.out.println("File stress! " + xceptn.getMessage());

11. xceptn.printStackTrace();

12. }

13.

14. System.out.println("Life goes on.");

Line 1 is just setup. The try block is lines 3–7. Note that only line 5 can throw an exception.
(Recall that the API explanation for getCanonicalFile() says, “throws IOException.”) Lines
9–12 are the catch block.

When this code executes, there are two possible scenarios, because the
getCanonicalFile() call might or might not find itself in an abnormal condition. When a
method declares that it throws an exception type, it doesn’t mean that an exception is thrown
every time the method is called. It just means that an exception might get thrown, if the method
gets into trouble.

In the simpler scenario, no exception is thrown. Execution starts on line 1 and then enters the
try block. Lines 4, 5, and 6 execute. The catch block is skipped, and execution continues at
line 14.

In the more interesting scenario, execution runs as before until the getCanonicalFile() call
on line 5 gets into trouble. Then the getCanonicalFile() method throws an IOException.
(You’ll see a little later how methods throw exceptions.) In Java, exceptions are objects, and so in
our example an instance of IOException is created (somehow, somewhere) and given to the Java
Virtual Machine (JVM). The current execution of the try block is abandoned, so line 6 does not
execute. Instead, execution jumps into the catch block. Within the block (lines 10 and 11 in our
example) xceptn is a reference to the exception object.

All exceptions descend from the java.lang.Throwable superclass, from which they inherit
two very useful methods. When an exception object is constructed, a text message is stored
inside it. This message describes the circumstances that caused the exception to be thrown. It
can be retrieved by calling getMessage() on the exception, as in line 10. Often the way to handle
an exception is to display the message to the user and let the user figure out what to do next. The
second useful method is printStackTrace(), as seen on line 11, which displays a snapshot of

4419c05.fm Page 141 Thursday, February 17, 2005 5:04 PM

142 Chapter 5 � Flow Control, Assertions, and Exception Handling

the JVM’s call stack at the moment the exception was created. The stack trace tells you on what
line of what source file the exception was created. It also tells you from where (line number and
source filename) the method containing that line was called. And it also tells from where the
method containing that line was called, and so on, up and up until you get to a line in main().
So the stack trace tells you who called the code that called the code that called the code, et cetera,
which is extremely useful for debugging.

As useful as stack traces are for debugging, they are inappropriate for deployed
code, since they expose users to information they shouldn’t have to worry
about.

A try block may contain code that throws different exception types. This can even happen
if the block contains only a single line of code, because a method is allowed to throw different
types to indicate different kinds of trouble. When multiple exception types are thrown, you use
multiple catch blocks. Here’s an example of a try block that throws two different exception
types, with one catch block for each type:

 1. File myFile = getMyFile();

 2. String s = getStringAndHopeForAllDigits();

 3.

 4. try {

 5. System.out.println("About to call.");

 6. int x = Integer.parseInt(s);

 7. myFile.getCanonicalFile();

 8. System.out.println("Call succeeded.");

 9. }

10.

11. catch (NumberFormatException xceptn) {

12. System.out.println("Bad text! " + xceptn.getMessage());

13. xceptn.printStackTrace();

14. }

15.

16. catch (IOException xceptn) {

17. System.out.println("File stress! " + xceptn.getMessage());

18. xceptn.printStackTrace();

19. }

20.

21. System.out.println("Life goes on.");

The first catch block, on lines 11–14, handles the NumberFormatException that parseInt()
throws. The second catch block, on lines 16–19, is the same as the one from the previous
example, handling the IOException thrown by the getCanonicalFile() call.

4419c05.fm Page 142 Thursday, February 17, 2005 5:04 PM

Exceptions 143

If no exception is thrown, the try block runs to completion, and then execution continues
at the first line after the last catch block. If an exception is thrown, the appropriate catch block
executes, and then execution continues at the first line after the last catch block.

There is more to say about catch blocks, but first let’s look at a way to handle exceptions
without using catch blocks at all.

Declaring Exceptions

There is a way to call exception-throwing methods without enclosing the calls in try blocks. A
method declaration may end with the throws keyword, followed by an exception type, or by
multiple exception types followed by commas. A throws declaration may be combined without
restriction with any other modifiers. Here are some examples:

public void throwsOne() throws IOException {

…

}

private static synchronized int throwsTwo()

 throws IOException, AWTException {

…

}

When a method declares that it throws exceptions, any method call that throws exception
types listed in the method declaration does not need to appear in a try block. So in the examples
above, throwsOne() may contain calls to methods that throw IOException, without enclosing
those calls in try blocks. Similarly, within throwsTwo(), any calls to methods that throw
IOException or AWTException need not appear in try blocks.

Of course, methods that call throwsOne() or throwsTwo() must either enclose those calls
in try blocks or declare that they, too, throw the exception types.

How the JVM Dispatches Exceptions

When a method throws an exception, an exception object is (somehow) created and (somehow)
handed off to the JVM. We’ll examine these somehows in the next section. For now, it’s time
to see what really happens when the JVM needs to process an exception.

The JVM begins by checking whether the exception came from code in a try block. If so,
each catch block following that try block is checked, in order of appearance, for compati-
bility with the exception. A catch block is compatible if the exception is an instance of the
class declared at the beginning of the catch block. The check is made using the instanceof
operator. So, for example, if a catch block looks like this

catch (IOException x) { … }

4419c05.fm Page 143 Thursday, February 17, 2005 5:04 PM

144 Chapter 5 � Flow Control, Assertions, and Exception Handling

then the block will handle any IOException instance and also (because that’s how instanceof
works) any instance of any subclass of IOException.

If the exception is not compatible with any catch block, or if it wasn’t thrown from a try
block, the JVM checks the exception types declared to be thrown by the current method. If a com-
patible type is found (again using instanceof), then the JVM’s attention turns to the method that
called the current method, and this entire process repeats…possibly many times, if the exception
is to be handled far up the calling chain.

If there simply isn’t a compatible catch block for the exception, then the JVM prints out the
exception’s stack trace and then terminates itself. The compiler makes every possible effort to
prevent you from writing code in which this happens.

Notice that if a try block throws 15 different exception types, and all the types are sub-
classes of, for example, IOException, then you don’t need 15 catch blocks. You can have
a single catch (IOException x) block, because every exception that can possibly be thrown
will be an instanceof IOException. You would do this if every different exceptional con-
dition required the same processing.

Two Kinds of Exception

Java has two kinds of exception: checked and runtime. A good way to understand the differ-
ence is to look at some exception class names. All of Java’s exception classes have names that
are somewhat long and quite descriptive. (It’s a worthwhile trade-off.) For example, there’s
ArrayIndexOutOfBoundsException. It’s obvious what condition that one indicates. There’s
also FileNotFoundException, which is equally obvious.

There’s an important difference between an array index that’s too large and a file that can’t
be found. The array index problem is completely avoidable: there is no reason why anyone
should ever ship code that tries to index nonexistent array elements. On the other hand, the
existence or nonexistence of files out on a disk is not something over which the program or the
programmer has any control. At the time you write your code, you can’t possibly have knowl-
edge about what files will exist on all disks attached to all computers that will run your pro-
gram at any time in the infinite future.

To put it bluntly, an out-of-bounds array index is all your fault. An absent file is nobody’s fault.
In Java terminology, the avoidable exceptions that are your fault are known as runtime

exceptions. The term isn’t very descriptive; you might want to think of it as an abbreviation
for “these-should-never-happen-at-runtime” exceptions. Other runtime exceptions include
ArithmeticException, which as you’ve seen indicates division by zero, and NegativeArray-
SizeException, which is thrown when you construct an array with—you guessed it—nega-
tive length.

The right time to deal with runtime exceptions is when you’re designing, developing, and
debugging your code. Since runtime exceptions should never be thrown in finished code, it’s not
appropriate to deal with them in catch blocks. In fact, runtime exceptions are exempt from all
the rules we’ve discussed so far. You are free to call methods that throw runtime exceptions,
without enclosing the calls in try blocks or adding throws to the declaration of your enclosing
methods. (If it weren’t for this exemption, Java source would be all but impossible to read.

4419c05.fm Page 144 Thursday, February 17, 2005 5:04 PM

Exceptions 145

Every expression that uses division, every array construction, and every array access would need
an exception-handling mechanism.)

The compiler and JVM define runtime exceptions to be the java.lang.RuntimeException
class, as well as all its subclasses. Figure 5.1 shows the big picture of the exception hierarchy.

Any exception class that doesn’t descend from RuntimeException is known as a checked
exception. It is the checked exceptions that must be handled by either the try-catch mecha-
nism or the throws-declaration mechanism. The compiler ensures that every checked excep-
tion has a handler somewhere.

Errors, which appear on the right side of the figure, behave just like other checked exceptions.
However, programmers should never throw or catch errors, which mostly are reserved for indi-
cating trouble in JVM. The only errors that programmers are ever likely to see are assertion
errors, which are discussed later in this chapter.

F I G U R E 5 . 1 The Exception Inheritance Hierarchy

The finally Block

The last catch block associated with a try block may be followed by a finally block. This
is a block of code, enclosed in curlies ({ }) and preceded by the keyword finally. Here’s an
example:

 1. File myFile = getMyFile();

 2. String s = getStringAndHopeForAllDigits();

 3.

 4. try {

 5. System.out.println("About to call.");

 6. int x = Integer.parseInt(s);

 7. myFile.getCanonicalFile();

4419c05.fm Page 145 Thursday, February 17, 2005 5:04 PM

146 Chapter 5 � Flow Control, Assertions, and Exception Handling

 8. System.out.println("Call succeeded.");

 9. }

10.

11. catch (NumberFormatException xceptn) {

12. System.out.println("Bad text! " + xceptn.getMessage());

13. xceptn.printStackTrace();

14. }

15.

16. catch (IOException xceptn) {

17. System.out.println("File stress! " + xceptn.getMessage());

18. xceptn.printStackTrace();

19. }

20.

21. finally {

22. System.out.println("In the finally block.");

23. }

24.

25. System.out.println("Life goes on.");

The finally block’s code is guaranteed to execute in nearly all circumstances. If the block
throws its own exception, execution jumps to the corresponding exception handler, and so the
finally block doesn’t run to completion. Aside from that it almost takes a catastrophe to pre-
vent a finally block from running to completion. Here’s what it takes:
� The death of the current thread
� Execution of System.exit()
� Turning off the computer

At first glance, finally blocks don’t seem very useful. After all, won’t the first line of code
after the try/catch/finally stuff run in all circumstances? In most cases this is so, but it’s pos-
sible to create code that never gets to that line. For example, a catch block might call a method
that throws an exception out of the current method; in that case execution will never get around
to the first line after the try/catch/finally code.

Throwing Exceptions

The methods that you write can throw exceptions. To throw your own exception, first decide
whether the exception should be checked at runtime. Then choose the appropriate exception
type. Check the API pages. An easy way is to check the exceptions listing for the major packages
(java.lang, java.util, etc.). If you find a class whose name describes the situation you want
to signal, use that class. If you don’t, you’ll have to create your own exception class, as described
in the next section.

4419c05.fm Page 146 Thursday, February 17, 2005 5:04 PM

Exceptions 147

At the point where you want your method to throw, construct an instance of your chosen
exception type. Then use the throw keyword as shown in the example below:

IOException x = new IOException("Phaser bank lockup.");

throw x;

All the exception classes in the core packages have two constructors. One is a no-args con-
structor. It’s bad form to use that one. It’s much more helpful to pass a descriptive string into the
constructor. This string becomes the text that is returned when someone catches your exception
and calls its getMessage() method.

The moment an exception is constructed, the current thread’s call stack is recorded in the
exception object, where it can be retrieved by a printStackTrace() call. It’s good practice to
throw an exception as soon as possible after construction, so that the stack trace will nearly
reflect the thread’s status at the moment the exception was thrown.

All checked exception types thrown from a method must be represented in the method’s
“throws” list. To be properly represented, an exception type must either appear on the list or
descend from a type that appears on the list.

Creating Your Own Exception Classes

Creating your own exception classes is easy. First, decide whether you want a checked or
a runtime exception. Checked exceptions should extend java.lang.Exception or one of
its subclasses. Runtime exceptions should extend java.lang.RuntimeException or one
of its subclasses. Choose a descriptive name for your class; it should end with exception.

The class doesn’t need any methods, unless you see a special need for them. It should have
three constructors. The argument list of these constructors should include
� A message
� A cause
� A message and a cause

A message is a string that is retrieved by the getMessage() call. A cause is another exception.
Causes come into play when a method handles an exception by throwing a different exception
type, one that will have more meaning to that method’s callers. The code that catches the new
exception might need information embedded in the original exception: the cause or the stack trace
might be especially useful.

To retrieve an exception’s cause, call its getCause() method. The return type is actually
Throwable, which allows throwables and errors to have causes. A cause might have its own
cause, and so on; this structure is known as exception chaining.

All you need to do with the message and the cause is pass them to the superclass constructor.
Here’s an example:

public class PhaserBankException extends Exception {

 public PhaserBankException(String message) {

 super(message);

4419c05.fm Page 147 Thursday, February 17, 2005 5:04 PM

148 Chapter 5 � Flow Control, Assertions, and Exception Handling

 }

 public PhaserBankException(Throwable cause) {

 super(cause);

 }

 public PhaserBankException(String message, Throwable cause) {

 super(message);

 }

}

Custom exception types are always the right choice when the core classes don’t contain an
exception whose name describes your situation.

Exceptions and Overriding

When you extend a class and override a method, the Java compiler insists that all exception
classes thrown by the new method must be the same as, or subclasses of, the exception classes
thrown by the original method. Consider these examples (assume they are declared in separate
source files; the line numbers are simply for reference):

 1. public class BaseClass {

 2. public void method() throws IOException {

 3. }

 4. }

 5.

 6. public class LegalOne extends BaseClass {

 7. public void method() throws IOException {

 8. }

 9. }

10.

11. public class LegalTwo extends BaseClass {

12. public void method() {

13. }

14. }

15.

16. public class LegalThree extends BaseClass {

17. public void method()

18. throws EOFException, MalformedURLException {

19. }

20. }

21.

4419c05.fm Page 148 Thursday, February 17, 2005 5:04 PM

Exceptions 149

22. public class IllegalOne extends BaseClass {

23. public void method()

24. throws IOException, IllegalAccessException {

25. }

26. }

27.

28. public class IllegalTwo extends BaseClass {

29. public void method()

30. throws Exception {

31. }

32. }

Notice that the original method() in BaseClass is declared as throwing an IOException.
This declaration allows it, and any overriding method defined in a subclass, to throw an
IOException or any object that is a subclass of IOException. Overriding methods cannot,
however, throw any checked exceptions that are not subclasses of IOException.

Given these rules, you will see that line 7 in LegalOne is correct, because method() is declared
exactly the same way as the original that it overrides. Similarly, line 18 in LegalThree is correct,
because both EOFException and MalformedURLException are subclasses of IOException—so
this adheres to the rule that nothing may be thrown that is not a subclass of the exceptions already
declared. Line 12 in LegalTwo is correct, because it throws no exceptions and therefore cannot
throw any exceptions that are not subclasses of IOException.

The methods at lines 23 and 29 are not permissible, because both of them throw checked
exceptions that are not subclasses of IOException. In IllegalOne, IllegalAccessException
is a subclass of Exception; in IllegalTwo, Exception itself is a superclass of IOException.
Both IllegalAccessException and Exception are checked exceptions, so the methods that
attempt to throw them are illegal as overriding methods of method() in BaseClass.

The point of this rule relates to the use of base class variables as references to objects of sub-
class type. Chapter 4, “Converting and Casting,” explains that you can declare a variable of
a class X and then use that variable to refer to any object that is of class X or any subclass of X.

Imagine that in the examples just described, you declared a variable myBaseObject of class
BaseClass; you can use it to refer to objects of any of the classes LegalOne, LegalTwo, and
LegalThree. (You can’t use it to refer to objects of class IllegalOne or IllegalTwo, because
those objects cannot be created in the first place: their code won’t compile.) The compiler imposes
checks on how you call myBaseObject.method(). Those checks ensure that for each call, either
you have enclosed the call in a try block and provided a corresponding catch block or you have
declared that the calling method itself might throw an IOException. Now suppose that at runt-
ime, the variable myBaseObject was used to refer to an object of class IllegalOne. Under these
conditions, the compiler would still believe that the only exceptions that must be dealt with are of
class IOException, because it believes that myBaseObject refers to an object of class BaseClass.
The compiler would therefore not insist that you provide a try/catch construct that catches the
IllegalAccessException, nor that you declare the calling method as throwing that exception.
Thus if the class IllegalOne were permitted, overriding methods would be able to bypass the
enforced checks for checked exceptions.

4419c05.fm Page 149 Thursday, February 17, 2005 5:04 PM

150 Chapter 5 � Flow Control, Assertions, and Exception Handling

It is important to consider the likely needs of subclasses whenever you define a class. Recall that
it is entirely permissible to declare that a method throws an exception even if no code exists to actu-
ally throw that exception. Now that you know an overriding method cannot throw exceptions that
were not declared in the parent method, you will recognize that some parent classes need to declare
exceptions in methods that do not in fact throw any exceptions. For example, the InputStream
class cannot, of itself, actually throw any exceptions, because it doesn’t interact with real devices
that could fail. However, it is used as the base class for a whole hierarchy of classes that do interact
with physical devices: FileInputStream and so forth. It is important that the read() methods
of those subclasses be able to throw exceptions, so the corresponding read() methods in the
InputStream class itself must be declared as throwing IOException.

We have now looked at all the aspects of exception handling that you will need to prepare
for the Programmer’s Exam and to make effective use of exceptions in your programs.

Assertions
A new facility called assertions was introduced in the Java 1.4 release. Assertions provide a con-
venient mechanism for verifying that a class’s methods are called correctly. This mechanism can
be enabled or disabled at runtime. The intention is that assertions typically will be enabled during
development and disabled in the field.

The new assert keyword has the following syntax:

assert Expression1;

assert Expression1:Expression2;

Expression1 must have boolean type. Expression2 may have any type. If assertions are dis-
abled at runtime (the default state), the assert statement does absolutely nothing. If assertions
are enabled at runtime (via a command-line argument to the JVM), then Expression1 is evalu-
ated. If its value is true, no further action is taken. If its value is false, then an AssertionError
is thrown. If Expression2 is present, it is passed into the constructor of the AssertionError,
where it is converted to a String and used as the error’s message.

If you want to use assertions, you need to understand three concepts: how to compile them,
how to enable them at runtime, and how to use them appropriately. We’ll look at these concepts
in the next three sections.

Assertions and Compilation

Sun is generally reluctant to expand the Java language, and with good reason. Unbridled language
expansion would compromise Java’s simplicity and could also create compatibility problems with
existing code.

For example, the introduction of the assert keyword in release 1.4 was inconvenient for
developers who had used assert as an identifier in pre-1.4 code (perhaps to implement their own
home-grown assertion facility). Thus it was necessary to introduce a compiler flag to control

4419c05.fm Page 150 Thursday, February 17, 2005 5:04 PM

Assertions 151

whether assert should be treated as an identifier or as a keyword. To treat it as a keyword (that
is, to take advantage of the new facility), you had to compile with -source 1.4 as in the following
example:

javac -source 1.4 UsefulApplication.java

If the flag was omitted, the 1.4 compiler treated source code as if the assert keyword did
not exist; thus assert could be used as an identifier.

Release 5.0 automatically treats assert as a keyword, so it is no longer necessary to compile
with a -source flag.

Runtime Enabling of Assertions

Assertions are disabled by default. To enable assertions at runtime, use the -enableassertions
or -ea flag on the Java command line, as in the following example:

java -ea UsefulApplication

Additional runtime flags enable or disable assertions at the class level, but they are beyond
the scope of the exam and of this book. If assertions are disabled, assert statements have no
effect.

The -ea flag means that code can be developed with heavy reliance on assertions for debug-
ging. The code can be shipped without removing the assert statements from the source files.

Using Assertions

Assertions are commonly used to check preconditions, postconditions, and class invariants.
Before going further, we should define these terms.

A precondition is a constraint that must be met on entry of a method. If a method’s precondi-
tions are not met, the method should terminate at once before it can do any damage. A method’s
preconditions are typically functions of its arguments and the state of its object. Argument range
checking at the start of a method is a common form of precondition testing.

A postcondition is a constraint that must be met on return from a method. If a method’s post-
conditions are not met, the method should not be allowed to return. A method’s postconditions
are typically functions of its return value and the state of its object. In a general sense, if a precon-
dition fails, the problem lies in the method’s caller, whereas if a postcondition fails, the problem
lies in the method itself.

A class invariant is a constraint on a class’s state that must be met before and after execution
of any non-private method of a class. (Private methods might be used to restore the required
state after execution of a non-private method.)

To see how assertions can be used to enforce pre- and postconditions, imagine a class called
Library that models a library (not a software library, but the kind where you can borrow
books). Such a class might have a method called reserveACopy() that reserves a copy of a
book on behalf of a library member. This method might look as follows, assuming the existence

4419c05.fm Page 151 Thursday, February 17, 2005 5:04 PM

152 Chapter 5 � Flow Control, Assertions, and Exception Handling

of classes Member (representing a person who is a member of the library) and Book (representing
a single copy of a book):

1. private Book reserveACopy(String title, Member member) {

2. assert isValidTitle(title);

3.

4. Book book = getAvailableCopy(title);

5. reserve(book, member);

6.

7. assert bookIsInStock(book);

8. return book;

9. }

Line 2 enforces a precondition. If the title is not valid (perhaps someone accidentally
typed “Moby-Duck”), then the method should terminate as soon as possible, before any
damage can be done. In fact, if the precondition fails, the failure indicates that the class needs
more work. The code that called reserveACopy() with bad arguments needs to be fixed.
The assertion failed (we hope) during in-house testing. Eventually the Library class would
be debugged so that reserveACopy() would never be called with bad arguments. At this
point (and not before this point), the class would be ready for shipment to the field, where
assertions would be disabled.

Line 7 enforces a postcondition. The body of the method is supposed to find an available
copy of the desired book. If the book that was found is not available after all, then a problem
exists with the method’s algorithm. The method should be terminated immediately before the
library’s data gets hopelessly corrupted, and the method should be debugged. When the author
of the method has faith in the algorithm’s correctness, the method can be shipped to an envi-
ronment where assertions can be disabled.

There is a subtle point to be made about the appropriateness of using assertions to check
preconditions of public methods. Note that the method in our example was private, so it
could be called only from within its own class. Thus if the assertion on line 2 failed, you could
point the finger of blame only at yourself or at a colleague down the hall; nobody else could
call reserveACopy(). However, if the method were public, it could be called by anyone,
including a customer who bought the class for re-use in a separate product. Such a program-
mer is beyond the control of your quality assurance system. A call to reserveACopy() with
bad arguments would not necessarily indicate an internal problem with the Library class. So,
if the reserveACopy() method were public, preconditions would have to be checked without
the assertion mechanism, because the bad call would happen in the field with assertions dis-
abled. The following code shows how to use an exception to indicate precondition failure:

 1. public Book reserveACopy(String title, Member member) {

 2. if (!isValidTitle(title))

 3. throw new IllegalArgumentException("Bad title: " + title);

 4.

 5. Book book = getAvailableCopy(title);

4419c05.fm Page 152 Thursday, February 17, 2005 5:04 PM

Assertions 153

 6. reserve(book, member);

 7.

 8. assert bookIsInStock(book);

 9. return book;

10. }

IllegalArgumentException is a runtime exception, so reserveACopy() does not need a
throws clause and callers do not need to use the try/catch mechanism.

This previous example demonstrates that assertions are not appropriate for checking pre-
conditions in public methods.

Practicing with Assertions

In this exercise, you will modify a very simple class to take advantage of assertions. The original
code, which appears in the AssertCheckStarting.java file on the CD-ROM, is as follows:

public class AssertCheckStarting

{

 private final static int SUIT_CLUBS = 0;

 private final static int SUIT_DIAMONDS = 1;

 private final static int SUIT_HEARTS = 2;

 private final static int SUIT_SPADES = 3;

 private final static String[] suitNames =

 {

 "Clubs", "Diamonds", "Hearts", "Spades"

 };

 private static String suitToName(int suitNum)

 {

 return suitNames[suitNum];

 }

 public static void explainSuitNum(int suitNum)

 {

 System.out.println("Suit #" + suitNum + " is " +

 suitToName(suitNum));

 }

4419c05.fm Page 153 Thursday, February 17, 2005 5:04 PM

154

Chapter 5 �

Flow Control, Assertions, and Exception Handling

Summary

This chapter covered various aspects of flow control in Java.
We began by discussing Java’s three loop constructions:

while()

,

do

, and

for()

. These can
be used with traditional syntax, but Java has expanded them by adding labeled

break

 and

continue

 statements, as well as the enhanced-

for

 syntax.
We then covered Java’s two selection constructs: the

if()/else

 and

switch()

 statements
which provide ways to conditionally execute code.

The chapter ended with a discussion of exceptions and assertions. Exceptions indicate abnor-
mal termination of

try

 blocks or methods, and must be dealt with programmatically. Assertions
indicate bugs.

Exam Essentials

Understand the operation of Java

while

,

do

, and

for

 loops. Understand labeled loops, labeled
breaks, and labeled continues in these loops.

You should be able to construct each kind of
loop and know when blocks are executed and conditions are evaluated. Know how flow control
proceeds in each of these structures.

Know the syntax of the enhanced

for

 loop.

The syntax is

for (type variable_name:array)

.

Know the legal argument types for

if

 and

switch()

 statements.

The argument of an

if

statement must be of type

boolean

. The argument of a

switch()

 must be of type

byte

,

short

,

char

, or

int

.

 public static void main(String[] args)

 {

 int suitNum = Integer.parseInt(args[0]);

 explainSuitNum(suitNum);

 }

}

The

explainSuitToName()

method is public, presumably so that it can be called from other
classes; it calls

suitToName()

, which is appropriately private, since it uses knowledge of the
way the class internally represents suit names.

Your assignment is to modify

suitToName()

,

explainSuitToName()

, or both, so that
they appropriately check their preconditions. One possible solution appears in the file

AssertCheckFinal.java

 on the CD-ROM. The method comments explain the solution.

4419c05.fm Page 154 Thursday, February 17, 2005 5:07 PM

Exam Essentials 155

Recognize and create correctly constructed switch() statements. You should be able to create
regular and default cases, with or without break statements.

Analyze code that uses a try block, and understand the flow of control no matter what excep-
tion types are thrown. You should be completely familiar with all the functionality of the try,
catch, and finally blocks.

Understand the difference between checked exceptions and runtime exceptions. Know the
inheritance of these families of exception types and know which kinds must be explicitly handled
in your code.

Understand all of your exception-handling options when calling methods that throw checked
exceptions. You should know how to create try blocks and how to declare that a method
throws exceptions.

Know what exception types may be thrown when you override a method that throws exceptions.
You need to be familiar with the required relationships between the superclass version’s exception
types and the subclass version’s exception types.

Know how to use the assertions facility. You need to know the syntax of assert statements
and behavior when the boolean statement is true or false. You also need to know how to enable
assertions at compile- and runtime.

4419c05.fm Page 155 Thursday, February 17, 2005 5:04 PM

156 Chapter 5 � Flow Control, Assertions, and Exception Handling

Review Questions
1. Consider the following code:

1. for (int i = 0; i < 2; i++) {

2. for (int j = 0; j < 3; j++) {

3. if (i == j) {

4. continue;

5. }

6. System.out.println("i = " + i + " j = " + j);

7. }

8. }

Which lines would be part of the output? (Choose all that apply.)

A. i = 0 j = 0

B. i = 0 j = 1

C. i = 0 j = 2

D. i = 1 j = 0

E. i = 1 j = 1

F. i = 1 j = 2

2. Consider the following code:

1. outer: for (int i = 0; i < 2; i++) {

2. for (int j = 0; j < 3; j++) {

3. if (i == j) {

4. continue outer;

5. }

6. System.out.println("i = " + i + " j = " + j);

7. }

8. }

Which lines would be part of the output? (Choose all that apply.)

A. i = 0 j = 0

B. i = 0 j = 1

C. i = 0 j = 2

D. i = 1 j = 0

E. i = 1 j = 1

F. i = 1 j = 2

4419c05.fm Page 156 Thursday, February 17, 2005 5:04 PM

Review Questions 157

3. Which of the following are legal loop constructions? (Choose all that apply.)

A. while (int i<7) {
 i++;
 System.out.println("i is " + i);
}

B. int i = 3;
while (i) {
 System.out.println("i is " + i);
}

C. int j = 0;
for (int k=0, j+k != 10; j++,k++) {
 System.out.println("j=" + j + ", k=" + k);
}

D. int j=0;
do {
 System.out.println("j=" + j++);
 if (j==3)
 continue loop;
} while (j<10);

4. What would be the output from this code fragment?

 1. int x = 0, y = 4, z = 5;

 2. if (x > 2) {

 3. if (y < 5) {

 4. System.out.println("message one");

 5. }

 6. else {

 7. System.out.println("message two");

 8. }

 9. }

10. else if (z > 5) {

11. System.out.println("message three");

12. }

13. else {

14. System.out.println("message four");

15. }

A. message one

B. message two

C. message three

D. message four

4419c05.fm Page 157 Thursday, February 17, 2005 5:04 PM

158 Chapter 5 � Flow Control, Assertions, and Exception Handling

5. Which statement is true about the following code fragment?

 1. int j = 2;

 2. switch (j) {

 3. case 2:

 4. System.out.println("value is two");

 5. case 2 + 1:

 6. System.out.println("value is three");

 7. break;

 8. default:

 9. System.out.println("value is " + j);

10. break;

11. }

A. The code is illegal because of the expression at line 5.

B. The acceptable types for the variable j, as the argument to the switch() construct, could
be any of byte, short, int, or long.

C. The output would be the text value is two.

D. The output would be the text value is two followed by the text value is three.

E. The output would be the text value is two, followed by the text value is three, fol-
lowed by the text value is 2.

6. Consider the following class hierarchy and code fragment:

 1. try {

 2. // assume s is previously defined

 3. URL u = new URL(s);

 4. // in is an ObjectInputStream

 5. Object o = in.readObject();

 6. System.out.println("Success");

 7. }

 8. catch (MalformedURLException e) {

 9. System.out.println("Bad URL");

10. }

11. catch (StreamCorruptedException e) {

12. System.out.println("Bad file contents");

13. }

14. catch (Exception e) {

15. System.out.println("General exception");

4419c05.fm Page 158 Thursday, February 17, 2005 5:04 PM

Review Questions 159

16. }

17. finally {

18. System.out.println("Doing finally part");

19. }

20. System.out.println("Carrying on");

What lines are output if the constructor at line 3 throws a MalformedURLException? (Choose
all that apply.)

A. Success

B. Bad URL

C. Bad file contents

D. General exception

E. Doing finally part

F. Carrying on

7. Consider the following class hierarchy and code fragment:

 1. try {

 2. // assume s is previously defined

 3. URL u = new URL(s);

 4. // in is an ObjectInputStream

 5. Object o = in.readObject();

 6. System.out.println("Success");

 7. }

 8. catch (MalformedURLException e) {

 9. System.out.println("Bad URL");

10. }

11. catch (StreamCorruptedException e) {

12. System.out.println("Bad file contents");

13. }

14. catch (Exception e) {

15. System.out.println("General exception");

16. }

17. finally {

18. System.out.println("Doing finally part");

19. }

20. System.out.println("Carrying on");

4419c05.fm Page 159 Thursday, February 17, 2005 5:04 PM

160 Chapter 5 � Flow Control, Assertions, and Exception Handling

What lines are output if the methods at lines 3 and 5 complete successfully without throwing any
exceptions? (Choose all that apply.)

A. Success

B. Bad URL

C. Bad file contents

D. General exception

E. Doing finally part

F. Carrying on

8. Consider the following class hierarchy and code fragment:

 1. try {

 2. // assume s is previously defined

 3. URL u = new URL(s);

 4. // in is an ObjectInputStream

 5. Object o = in.readObject();

 6. System.out.println("Success");

 7. }

 8. catch (MalformedURLException e) {

 9. System.out.println("Bad URL");

10. }

11. catch (StreamCorruptedException e) {

12. System.out.println("Bad file contents");

13. }

14. catch (Exception e) {

15. System.out.println("General exception");

16. }

17. finally {

18. System.out.println("Doing finally part");

19. }

20. System.out.println("Carrying on");

4419c05.fm Page 160 Thursday, February 17, 2005 5:04 PM

Review Questions 161

What lines are output if the method at line 5 throws an OutOfMemoryError? (Choose all that apply.)

A. Success

B. Bad URL

C. Bad file contents

D. General exception

E. Doing finally part

F. Carrying on

9. Which of the following are appropriate situations for assertions?

A. Preconditions of a public method

B. Postconditions of a public method

C. Preconditions of a private method

D. Postconditions of a private method

10. Consider the following code:

1. public class Assertification {

2. public static void main(String[] args) {

3. assert args.length == 0;

4 }

5. }

Which of the following conditions must be true in order for the code to throw an AssertionError?
Assume you are using release 5.0. (Choose all that apply.)

A. The source code must be compiled with the -source 1.5 flag.

B. The application must be run with the -enableassertions flag or another assertion-
enabling flag.

C. The args array must have exactly zero elements.

D. The args array must have one or more elements.

11. Which of the following is the most appropriate way to handle invalid arguments in a public
method?

A. Throw java.lang.InvalidArgumentException.

B. Throw java.lang.IllegalArgumentException.

C. Check for argument validity in an assert statement, which throws AssertionError when
the arguments are invalid.

D. Use non-assert code to check for argument validity. If invalid arguments are detected,
explicitly throw AssertionError.

4419c05.fm Page 161 Thursday, February 17, 2005 5:04 PM

162 Chapter 5 � Flow Control, Assertions, and Exception Handling

12. Suppose salaries is an array containing floats. Which of the following are valid loop control
statements for processing each element of salaries?

A. for (float f:salaries)

B. for (int i:salaries)

C. for (float f::salaries)

D. for (int i::salaries)

13. Which of the following are legal? (Choose all that apply.)

A. for (int i=0, j=1; i<10; i++, j++)

B. for (int i=0, j=1;; i++, j++)

C. for (int i=0, float j=1; ; i++, j++)

D. for (String s = “”; s.length()<10; s += ‘!’)

14. Suppose a method called finallyTest() consists of a try block, followed by a catch block,
followed by a finally block. Assuming the JVM doesn’t crash and the code does not execute
a System.exit() call, under what circumstances will the finally block not begin to execute?

A. The try block throws an exception, and the catch block also throws an exception.

B. The try block throws an exception that is not handled by the catch block.

C. The try block throws an exception, and the catch block calls finallyTest() in a way that
causes another exception to be thrown.

D. If the JVM doesn’t crash and the code does not execute a System.exit() call, the finally
block will always execute.

15. Which of the following are legal loop definitions? (Choose all that apply.)

A. while (int a = 0) { /* whatever */ }

B. while (int a == 0) { /* whatever */ }

C. do { /* whatever */ } while (int a = 0)

D. do { /* whatever */ } while (int a == 0)

E. for (int a==0; a<100; a++) { /* whatever */ }

F. None of them are legal.

16. Which of the following are legal argument types for a switch statement?

A. byte

B. int

C. long

D. float

E. char

F. String

4419c05.fm Page 162 Thursday, February 17, 2005 5:04 PM

Review Questions 163

17. When is it appropriate to pass a cause to an exception’s constructor?

A. Always

B. When the exception is being thrown in response to catching of a different exception type

C. When the exception is being thrown from a public method

D. When the exception is being thrown from a private method

18. Which of the following should always be caught?

A. Runtime exceptions

B. Checked exceptions

C. Assertion errors

D. Errors other than assertion errors

19. When does an exception’s stack trace get recorded in the exception object?

A. When the exception is constructed

B. When the exception is thrown

C. When the exception is caught

D. When the exception’s printStackTrace() method is called

20. When is it appropriate to write code that constructs and throws an error?

A. When a public method’s preconditions are violated

B. When a public method’s postconditions are violated

C. When a nonpublic method’s preconditions are violated

D. When a nonpublic method’s postconditions are violated

E. Never

4419c05.fm Page 163 Thursday, February 17, 2005 5:04 PM

164 Chapter 5 � Flow Control, Assertions, and Exception Handling

Answers to Review Questions
1. B, C, D, F. The loops iterate i from 0 to 1 and j from 0 to 2. However, the inner loop executes a

continue statement whenever the values of i and j are the same. Because the output is generated
inside the inner loop, after the continue statement, no output is generated when the values are the
same. Therefore, the outputs suggested by options A and E are skipped.

2. D. It seems that the variable i will take the values 0 and 1, and for each of these values, j will
take values 0, 1, and 2. However, whenever i and j have the same value, the outer loop is con-
tinued before the output is generated. Because the outer loop is the target of the continue
statement, the whole of the inner loop is abandoned. Therefore, the only line to be output is
that shown in option D.

3. C. In A, the variable declaration for i is illegal. This type of declaration is permitted only in the
first part of a for() loop. In B, the loop control expression—the variable i in this case—is of
type int. A boolean expression is required. C is valid. Despite the complexity of declaring one
value inside the for() construction and one outside (along with the use of the comma operator
in the end part), this code is entirely legitimate. D would be correct, except that the label has been
omitted from the 2nd line, which should read loop: do {.

4. D. The first test at line 2 fails, which immediately causes control to skip to line 10, bypassing
both the possible tests that might result in the output of message one or message two. So, even
though the test at line 3 would be true, it is never made; A is not correct. At line 10, the test is
again false, so the message at line 11 is skipped, but message four, at line 14, is output.

5. D. A is incorrect because the code is legal despite the expression at line 5; the expression itself
is a constant. B is incorrect because it states that the switch() part can take a long argu-
ment. Only byte, short, char, and int are acceptable. The output results from the value 2
like this: first, the option case 2: is selected, which outputs value is two. However, there
is no break statement between lines 4 and 5, so the execution falls into the next case and
outputs value is three from line 6. The default: part of a switch() is executed only
when no other options have been selected, or if no break precedes it. Neither of these situ-
ations holds true, so the output consists only of the two messages listed in D.

6. B, E, F. The exception causes a jump out of the try block, so the message Success from line 6 is
not printed. The first applicable catch is at line 8, which is an exact match for the thrown excep-
tion. This results in the message at line 9 being printed, so B is one of the required answers. Only
one catch block is ever executed, so control passes to the finally block, which results in the
message at line 18 being output; so E is part of the correct answer. Execution continues after
the finally block. This results in the output of the message at line 20, so F is also part of the
correct answer.

7. A, E, F. With no exceptions, the try block executes to completion, so the message Success
from line 6 is printed and A is part of the correct answer. No catch is executed, so B, C, and D
are incorrect. Control then passes to the finally block, which results in the message at line 18
being output, so E is part of the correct answer. Because no exception was thrown, execution
continues after the finally block, resulting in the output of the message at line 20; so F is also
part of the correct answer.

4419c05.fm Page 164 Thursday, February 17, 2005 5:04 PM

Answers to Review Questions 165

8. E. The thrown error prevents completion of the try block, so the message Success from line 6
is not printed. No catch is appropriate, so B, C, and D are incorrect. Control then passes to the
finally block, which results in the message at line 18 being output; so option E is part of the
correct answer. Because the error was not caught, execution exits the method and the error is
rethrown in the caller of this method; so F is not part of the correct answer.

9. B, C, D. Assertions should not be used to check preconditions of a public method.

10. A, B, D. The 1.4 compiler only treated assert as a keyword (and not an ordinary identifier) if
the -source 1.4 flag appeared in the command line. However, 5.0 does not require a -source
flag. So A is not a requirement. If the application is not run with assertions explicitly enabled,
all assert statements will be ignored. If the args array does not have exactly zero arguments,
no AssertionError will be thrown.

11. B. Assertions should not be used to check preconditions in a public method. Some kind of runtime
exception should be thrown, and IllegalArgumentException is the most appropriate class
name for this situation. There is no such thing as java.lang.InvalidArgumentException.

12. A. Option A demonstrates the correct syntax of an enhanced for loop, traversing the elements
of an array of floats.

13. A, B, D. A and B demonstrate multiple initialization and increment parts, which are legal. In B,
the test part is empty, so the loop will run forever unless it hits a break statement, throws an
exception, or does something equally catastrophic. C is illegal because only one type may be
declared in the initialization. D is unusual because it uses strings rather than the more commonly
seen ints, but it is perfectly legal.

14. D. Unless execution terminates abnormally, the finally block will always eventually execute.

15. F. A through D are all illegal because only for loops allow loop variables to be declared in the
loop control code. E is illegal because the variable must be initialized with =, not ==.

16. A, B, E. The argument of a switch statement must be a byte, char, short, int, or enum. Enums
are discussed in Chapter 6, “Objects and Classes.”

17. B. Exception chaining is appropriate when an exception is being thrown in response to catching
a different exception type.

18. B. Runtime exceptions don’t have to be caught. Errors should never be caught.

19. A. The stack trace is recorded when the exception is constructed.

20. E. It is never appropriate for application programmers to construct and throw errors.

4419c05.fm Page 165 Thursday, February 17, 2005 5:04 PM

4419c05.fm Page 166 Thursday, February 17, 2005 5:04 PM

Chapter

6

Objects and Classes

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

1.1 Develop code that declares classes (including abstract

and all forms of nested classes), interfaces, and enums,

and includes the appropriate use of package and import

statements (including static imports).

�

1.4 Develop code that declares both static and non-static

methods, and - if appropriate - use method names that

adhere to the JavaBeans naming standards. Also develop

code that declares and uses a variable-length argument list.

�

1.5 Given a code example, determine if a method is correctly

overriding or overloading another method, and identify

legal return values (including covariant returns), for the

method.

�

1.6 Given a set of classes and superclasses, develop

constructors for one or more of the classes. Given a

class declaration, determine if a default constructor will

be created, and if so, determine the behavior of that

constructor. Given a nested or non-nested class listing,

write code to instantiate the class.

�

5.1 Develop code that implements tight encapsulation,

loose coupling, and high cohesion in classes, and describe

the benefits.

�

5.2 Given a scenario, develop code that demonstrates the

use of polymorphism. Further, determine when casting will

be necessary and recognize compiler vs. runtime errors

related to object reference casting.

�

5.3 Explain the effect of modifiers on inheritance with

respect to constructors, instance or static variables, and

instance or static methods.

4419c06.fm Page 167 Thursday, February 24, 2005 4:22 PM

�

5.4 Given a scenario, develop code that declares and/or

invokes overridden or overloaded methods and code

that declares and/or invokes superclass, overridden, or

overloaded constructors.

�

5.5 Develop code that implements "is-a" and/or "has-a"

relationships.

�

6.2 Distinguish between correct and incorrect overrides

of corresponding

hashCode()

 and

equals()

 methods, and

explain the difference between

==

 and the

equals()

 method.

�

7.5 Given the fully-qualified name of a class that is deployed

inside and/or outside a JAR file, construct the appropriate

directory structure for that class. Given a code example and

a classpath, determine whether the classpath will allow the

code to compile successfully.

4419c06.fm Page 168 Thursday, February 24, 2005 4:22 PM

This chapter discusses the object-oriented features of Java.
Good coding in Java requires a sound understanding of the
object-oriented (OO) paradigm, and this in turn requires a good

grasp of the language features that implement objects and classes. The many benefits of object
orientation have been the subject of considerable public debate, but for many programmers
these benefits have not been realized. In most cases, the reason the promise has not been ful-
filled is simply that programmers have not been writing objects. Instead, many programmers
have been writing hybrid applications with a mixture of procedural and object-oriented code.
Unfortunately, while such an approach has given rise to

some

 of the benefits of OO, it has also
engendered

all

 the disadvantages of both styles. So you can see why the designers of the exam
believe that it is important to understand object-oriented concepts.

This chapter assumes that you know what classes and interfaces are. However, you may not
be familiar with enums, which were introduced in release 5.0. Enums are also presented in detail
in this chapter.

Benefits of Object-Oriented
Implementation

As a Java programmer and developer, you should have an understanding of the benefits of
object-oriented design. These benefits accrue from two particular features of the OO paradigm.
The first of these, and perhaps the most important, is the notion of

encapsulation

; the second
and perhaps better known is the extensibility provided by

inheritance

.

Encapsulation

Encapsulation is really just a fancy name for the aggregation of data and behavior. Consider the
primitive data types of any programming language you have ever used. You do not know how
these data items are stored and, for the most part, you do not care. What matters are the oper-
ations that you can perform on these data items and the boundary conditions within which you
can expect those operations to properly work. These primitive types are in fact reference types,
albeit not user-defined.

Your first goal in defining a good class should be to clearly define the data members that
describe instances of that class, keeping in mind that this should be done only with variables of
private accessibility. Next, consider how to represent the behavior associated with these data.

4419c06.fm Page 169 Thursday, February 24, 2005 4:22 PM

170

Chapter 6 �

Objects and Classes

All behavior should be accessed only via methods. By insisting that the variables inside an
object are inaccessible outside the object, you ensure that the nature of those variables is irrel-
evant outside the object. This in turn means that you can freely change the nature of the stor-
age for maintenance purposes, performance improvement, or any other reason. This is the
essence of encapsulation.

Sometimes, perhaps as a consequence of the way you have stored the state in a class, boundary
conditions must be applied to its methods. A

boundary condition

 is a limit on the range of
arguments for which a method can operate properly. As examples, a square-root function can-
not operate on a negative number unless imaginary numbers are included in its range; an add
operation cannot operate if both of its arguments are more than half the maximum value for
the operation’s return type.

When you encounter a boundary condition that results from your choice of storage format,
you must make a choice. If you consider that the boundary conditions are reasonable, then you
should do two things. First, document the boundary condition. Next, test the boundary con-
ditions at the entry to the method and, if the boundary condition has been exceeded, throw a
runtime exception of some kind. Alternatively, you might decide that the boundary condition
is not acceptable, in which case you should redesign the storage used in the class.

Now, consider this: if you had allowed access to any of the variables used to represent the
object state, then redefining the way the object’s state is stored would immediately cause any
other code that uses these variables to have to be rewritten. However, by using only private
member variables, you have insisted that all interaction with this object is made through meth-
ods and never by direct variable access—so you have eliminated this problem. In consequence,
you are able to redesign your internal storage freely and, provided the signatures of all the
methods remain the same, no other code needs to change.

Re-use

We discussed how tight encapsulation can make code that is more reliable and robust. Now we
will consider the second most significant advantage of object-oriented programming: code re-use.

Writing good, encapsulated classes usually requires more work in the initial stages than would
be required to produce the same functionality with a traditional programming approach. How-
ever, you will normally find that using rigorous OO techniques will actually reduce the overall
time required to produce finished code. This is the case for two reasons. First, the robust classes
you produce require less time to integrate into the final program and less time to fix bugs. Second,
with careful design, you can re-use classes even in some circumstances that are different from the
original intent of the class.

This re-use is possible in two ways, using either composition (the “has a” relation) or inheritance
(the “is a” relation). Composition is probably safer and easier to control, although inheritance—
perhaps because it is perceived as “pure OO”—seems to be more interesting and appealing to most
programmers.

As a certified Java programmer, you don’t really need to know the details of object-oriented
design techniques or the relative merits and weaknesses of composition versus inheritance.

4419c06.fm Page 170 Thursday, February 24, 2005 4:22 PM

Coupling and Cohesion

171

However, you should appreciate one significant sequence of facts: if a class is well encapsu-
lated, it will be easier to re-use successfully. The more a class is re-used, the better tested it will
be and the fewer bugs it will have. Better-tested, less-buggy classes are easier to re-use. This
sequence leads to a positive spiral of quality because the better the class, the easier and safer
it becomes to re-use. All these benefits come from tight encapsulation.

Coupling and Cohesion

After object-oriented programming had been in practice for a while, the research community
coined the terms “coupling” and “cohesion” to describe two related qualities of object-oriented
programs. The Programmer’s Exam requires you to be familiar with these concepts.

Coupling

 is an object’s reliance on knowledge of the internals of another entity’s implemen-
tation. When object A is tightly coupled to object B, a programmer who wants to use or modify
A is required to have an inappropriately extensive expertise in how to use B.

The best insurance against coupling between classes is good encapsulation. However, Java’s
access model makes it possible to create coupling between two instances of the same class, even
if that class is well encapsulated. Recall from Chapter 3, “Modifiers,” that an object’s private
data and methods may be accessed by any instance of that object’s class. If an instance uses
another instance’s private data or methods, the result is tight coupling.

Cohesion

 is the degree to which a class or method resists being broken down into smaller
pieces. Cohesion is desirable and is easy to recognize in its absence.

Consider a

Telescope

 class with methods that aim and focus a telescope and other methods
that process the images that the scope captures. If you were modeling the Hubble, your class
would have a lot of methods of each type. If you looked at the class’ source, you would probably
find that the aiming and focusing methods might call each other, but they wouldn’t call the
image-processing methods or access the image-processing data. The converse would also be
true: the image-processing code wouldn’t have much contact with the aiming/focusing code.

A class like

Telescope

 that can easily be split into distinct elements probably models not
one but two (or more!) real-world objects. Such a class ought to be divided into its natural
constituents.

Methods as well as classes can have or lack cohesion. A low-cohesion method can
often be spotted by the presence of “

and

” in its name. For example, if you’re reading
the source code for a Java-based guitar-playing robot, you might come across a method
named

tuneDStringAndPlayDMinorScale()

. Obviously this method performs two differ-
ent tasks; the only reason they are together is that playing a scale on a string is often done right
after tuning that string. But

often

 isn’t

always

. If you separate the code into

tuneDString()

and

playDMinorScale()

, then people have the option of playing a different scale, or not
playing a scale at all, after they tune the string.

Now that we’ve discussed why you would want to write object-oriented code, let’s look at
how this is achieved.

4419c06.fm Page 171 Thursday, February 24, 2005 4:22 PM

172

Chapter 6 �

Objects and Classes

Implementing Object-Oriented
Relationships

This section considers the implementation of classes for which you have been given a basic
description.

There are two phrases that are commonly used when describing a class in plain English: “is a”
and “has a.” As a working simplification, they are used to describe the superclass and member
variables, respectively. For example, consider this description:

“A home is a house that has a family and a pet.”
This description would give rise to the outline of a Java class in this form:

1. public class Home extends House {

2. Family inhabitants;

3. Pet thePet;

4. }

Notice the direct correspondence between the “is a” clause and the

extends

 clause. In this
example, a direct correspondence also exists between the items listed after “has a” and the member
variables. Such a correspondence is representative in simple examples and in a test situation; how-
ever, you should be aware that in real examples, there are other ways you can provide a class with
attributes. Probably the most important of these alternatives is the approach taken by JavaBeans,
which is to supply accessor and mutator methods that operate on private data members.

The example shown is simplified to focus on the knowledge and understanding
that is required by the exam. In a real situation, the variables should generally
be private (or at least some specific rationale should apply to whatever acces-

sibility they have), and some methods will be needed in the class.

Methods, Overloading and Overriding

As you construct classes and add methods to them, in some circumstances you will want to re-use
the same name for a method. You can do so two ways with Java. Re-using the same method name
with different arguments and perhaps a different return type is known as

overloading

. Using the
same method name with identical arguments and return type is known as

overriding

.
A method name can be re-used anywhere, as long as certain conditions are met:

�

In an unrelated class, no special conditions apply, and the two methods are not considered
related in any way.

�

In the class that defines the original method, or a subclass of that class, the method name
can be re-used if the argument list differs in terms of the type of at least one argument. This

4419c06.fm Page 172 Thursday, February 24, 2005 4:22 PM

Methods, Overloading and Overriding

173

is overloading. It is important to realize that a difference in return type or list of thrown
exceptions is insufficient to constitute an overload and is illegal.

�

In a strict subclass of the class that defines the original method, the method name can be
re-used with identical argument types and order and with identical return type. This is
overriding. In this case, additional restrictions apply to the accessibility of, and exceptions
that may be thrown by, the method.

In general, a class is considered to be a subclass of itself. That is, if classes

A

,

B

, and

C

 are defined so that

C

 extends

B

 and

B

 extends

A

, then the subclasses of

A

 are

A

,

B

, and

C

. The term

strict subclass

 is used to describe the subclasses

excluding the class itself. So the strict subclasses of

A

 are only

B

 and

C

.

Now let’s take a look at these ideas in detail. First, we will consider overloading method names.

Overloading Method Names

In Java, a method is uniquely identified by the combination of its fully qualified class name, the
method name, and the exact sequence of its argument types. Overloading is the re-use of a method
name in the one class or subclass for a different method. It is not related to object orientation,
although a purely coincidental correlation shows that object-oriented languages are more likely to
support overloading. Notice that overloading is essentially a trick with names; hence this section’s
title is “Overloading Method Names” rather than “Overloading Methods.” The following are all
different methods:

1. public void aMethod(String s) { }

2. public void aMethod() { }

3. public void aMethod(int i, String s) { }

4. public void aMethod(String s, int i) { }

These methods all have identical return types and names, but their argument lists are different
either in the types of the arguments that they take or in the order. Only the argument

types

 are
considered, not their names, so a method such as

public void aMethod(int j, String name) { }

would

 not be distinguished from the method defined in line 3.

What Is Overloading For?

Why is overloading useful? Sometimes you will be creating several methods that perform closely
related functions under different conditions. For example, imagine methods that calculate the
area of a triangle. One such method might take the Cartesian coordinates of the three vertices,
and another might take the polar coordinates. A third method might take the lengths of all three
sides, whereas a fourth might take three angles and the length of one side. These methods would

4419c06.fm Page 173 Thursday, February 24, 2005 4:22 PM

174 Chapter 6 � Objects and Classes

all be performing the same essential function, so it is entirely proper to use the same name for
the methods. In languages that do not permit overloading, you would have to think up four dif-
ferent method names, such as

areaByCoord(Point p, Point q, Point r)

areaByPolarCoord(PolarPt p, PolarPt q, PolarPt r)

areaBySideLengths(int l1, int l2, int l3)

areaByAnglesAndASide(int l1, int angle1, int angle2, int angle3)

Overloading is really nothing new. Almost every language that has a type system has used over-
loading in a way, although most have not allowed the programmer free use of it. Consider the
arithmetic operators +, -, *, and /. In most languages, they can be used with integer or floating-
point operands. The implementation of, say, multiplication for integer and floating-point oper-
ands generally involves completely different code, and yet the compiler permits the same symbol
to be used. Because the operand types are different, the compiler can decide which version of the
operation should be used. This process is known as operator overloading and is the same principle
as method overloading.

It is quite useful, for thinking up method names and for improving program readability, to be
able to use one method name for several related methods requiring different implementations.
However, you should restrict your use of overloaded method names to situations where the
methods really are performing the same basic function with different data sets. Methods that
perform different jobs should have different names.

One last point to consider is the return type of an overloaded method. The language treats
methods with overloaded names as totally different methods, and as such they can have differ-
ent return types (you will see shortly that overriding methods do not have this freedom).

Invoking Overloaded Methods

When you write multiple methods that perform the same basic function with different arguments,
you often find that it would be useful to call one of these methods as support for another version.
Consider a method called printRJ() that is to be provided in versions that take a String or an
int value. The version that takes an int could most easily be coded so that it converts the int to
a String and then calls the version that operates on String objects.

You can do this easily. Remember that the compiler decides which method to call simply by
looking at the argument list and that the various overloaded methods are in fact unrelated. All
you have to do is write the method call exactly as normal—the compiler will do the rest. Con-
sider this example:

 1. public class RightJustify {

 2. // Declare a String of 80 spaces

 3. private static final String padding =

 4. “ “ +

 5. “ “ +

 6. “ “ +

 7. “ “;

4419c06.fm Page 174 Thursday, February 24, 2005 4:22 PM

Methods, Overloading and Overriding 175

 8. public static void printRJ(String s, int w) {

 9. System.out.print(

10. padding.substring(0, w - s.length()));

11. System.out.print(s);

12. }

13. public static void printRJ(int i, int w) {

14. printRJ(““, w);

15. }

16. }

At line 14, the int argument is converted to a String object by adding it to an empty
String. The method call at this same line is then seen by the compiler as a call to a method
called print() that takes a String as the first argument, which results in selection of the
method at line 8.

To summarize, these are the key points about overloading methods:
� The identity of a method is determined by the combination of its fully qualified class; its

name; and the type, order, and count of arguments in the argument list.
� Two or more methods in the same class (including methods inherited from a superclass)

with the same name but different argument lists are called overloaded.
� Methods with overloaded names are effectively independent methods—using the same name

is really just a convenience to the programmer. Return type, accessibility, and exception lists
may vary freely.

Now that we have considered overloading thoroughly, let’s look at overriding.

Method Overriding

You have just seen that overloading is essentially a trick with names, effectively treating the
argument list as part of the method identification. Overriding is somewhat more subtle, relating
directly to subclassing and hence to the object-oriented nature of a language.

When you extend one class to produce a new one, you inherit and have access to certain non-
private methods of the original class (as dictated by access modifiers and package relationships).
Sometimes, however, you might need to modify the behavior of one of these methods to suit
your new class. In this case, you actually want to redefine the method, and this is the essential
purpose of overriding.

There are a number of key distinctions between overloading and overriding:
� Overloaded methods supplement each other; an overriding method replaces the method it

overrides.
� Overloaded methods can exist, in any number, in the same class. Each method in a parent

class can be overridden at most once in any one subclass.
� Overloaded methods must have different argument lists; overriding methods must have

argument lists of identical type and order (otherwise they are simply treated as over-
loaded methods).

4419c06.fm Page 175 Thursday, February 24, 2005 4:22 PM

176 Chapter 6 � Objects and Classes

� The return type of an overloaded method may be chosen freely; the return type of an over-
riding method must be identical to that of the method it overrides.

� The exception list of an overloaded method may be chosen according to the rules defined
earlier in this chapter.

� The access modifiers of an overloaded method may be chosen according to the rules defined
earlier in this chapter.

What Is Overriding For?

Overloading allows multiple implementations of the same essential functionality to use the
same name. Overriding, on the other hand, modifies the implementation of a particular piece
of behavior for a subclass.

Consider a class that describes a rectangle. Imaginatively, we’ll call it Rectangle. We’re talk-
ing about an abstract rectangle here, so no visual representation is associated with it. This class
has a method called setSize(), which is used to set width and height values. In the Rectangle
class, the implementation of the setSize() method simply sets the value of the private width
and height variables for later use. Now, imagine you create a DisplayedRectangle class that
is a subclass of the original Rectangle. When the setSize() method is called, you need to
arrange a new behavior. Specifically, the width and height variables must be changed, but also
the visual representation must be redrawn. This is achieved by overriding.

If you define a method that has exactly the same name and exactly the same argument types
as a method in a parent class, then you are overriding the method. Under these conditions, the
method must also have the identical return type and follow the accessibility and exception list
rules for that of the method it overrides. Consider this example:

 1. class Rectangle {

 2. int x, y, w, h;

 3.

 4. public void setSize(int w, int h) {

 5. this.w = w; this.h = h;

 6. }

 7. }

 8. class DisplayedRectangle extends Rectangle {

 9. public void setSize(int w, int h) {

10. this.w = w; this.h = h;

11. redisplay(); // implementation

12. }

13. public void redisplay() {

14. // implementation not shown

15. }

16. }

17.

4419c06.fm Page 176 Thursday, February 24, 2005 4:22 PM

Methods, Overloading and Overriding 177

18. public class TestRectangle {

19. public static void main(String args[]) {

20. Rectangle [] recs = new Rectangle[4];

21. recs[0] = new Rectangle();

22. recs[1] = new DisplayedRectangle();

23. recs[2] = new DisplayedRectangle();

24. recs[3] = new Rectangle();

25. for (int r=0; r<4; r++) {

26. int w = ((int)(Math.random() * 400));

27. int h = ((int)(Math.random() * 200));

28. recs[r].setSize(w, h);

29. }

30. }

31. }

Clearly this example is incomplete, because no code exists to cause the display of the
DisplayedRectangle objects, but it is complete enough for us to discuss.

At line 20, the array recs is created as an array of Rectangle objects; yet at lines 21–24,
the array is used to hold not only two instances of Rectangle but also two instances of
DisplayedRectangle. Subsequently, when the setSize() method is called, it will be impor-
tant that the executed code be the code associated with the actual object referred to by the
array element, rather than always being the code of the Rectangle class. This is exactly what
Java does, and this is the essential point of overriding methods. It is as if you ask an object
to perform certain behavior, and that object makes its own interpretation of the request. C++
programmers should take particular note of this point, because it differs significantly from the
default behavior of overriding methods in that language.

In order for any particular method to override another correctly, some requirements must be
met. Some of them have been mentioned before in comparison with overloading, but all are
listed here for completeness:
� The method name and the type and order of arguments must be identical to those of a

method in a parent class. If this is the case, then the method is an attempt to override the
corresponding parent class method, and the remaining points listed here must be adhered
to or a compiler error arises. If these criteria are not met, then the method is not an attempt
to override and the following rules are irrelevant.

� The return type must be the same as, or a subclass of, the superclass version’s return type.
� Methods marked final may not be overridden.
� The accessibility must not be more restrictive than that of the original method.
� The method may throw only checked exception types that are the same as, or subclasses of,

exception types thrown by the original method.

The second rule is new in release 5.0. Prior to 5.0, an overriding method’s return type had to
exactly match the superclass version’s return type. Now the rule has been expanded, to support

4419c06.fm Page 177 Thursday, February 24, 2005 4:22 PM

178 Chapter 6 � Objects and Classes

covariant return types. A covariant return type of an overriding method is a subclass of the return
type of the superclass version. Here’s an example:

class TheSuperclass {

 Number getValue() {

 return new Long(33);

 }

}

class TheSubclass extends TheSuperclass {

 Float getValue() {

 return new Float(1.23f);

 }

}

The superclass version returns a Number. The subclass version returns a Float, which extends
Number. This would be illegal without covariant return types.

The accessibility of an overriding method must not be less than that of the method it overrides,
simply because it is considered to be the replacement method in conditions like those of the rectan-
gles example earlier. So, imagine that the setSize() method of DisplayedRectangle was inac-
cessible from the main() method of the TestRectangle class. The calls to recs[1].setSize()
and recs[2].setSize() would be illegal, but the compiler would be unable to determine this
because it knows only that the elements of the array are Rectangle objects. The extends keyword
literally requires that the subclass be an extension of the parent class: if methods could be removed
from the class or made less accessible, then the subclass would not be a simple extension but would
potentially be a reduction. Under those conditions, the idea of treating DisplayedRectangle
objects as being Rectangle objects when used as method arguments or elements of a collection
would be severely flawed.

A similar logic gives rise to the final rule relating to checked exceptions. Checked exceptions
are those that the compiler ensures are handled in the source you write. As with accessibility,
it must be possible for the compiler to make correct use of a variable of the parent class even if
that variable really refers to an object of a derived class. For checked exceptions, this require-
ment means that an overriding method must not be able to throw exceptions that would not be
thrown by the original method.

Chapter 5, “Flow Control, Assertions, and Exception Handling,” discussed
checked exceptions and this rule in more detail.

Late Binding

Normally, when a compiler for a non-object-oriented language comes across a method (or
function or procedure) invocation, it determines exactly what target code should be called
and builds machine language to represent that call. In an object-oriented language, this

4419c06.fm Page 178 Thursday, February 24, 2005 4:22 PM

Methods, Overloading and Overriding 179

behavior is not possible because the proper code to invoke is determined based upon the class
of the object being used to make the call, not the type of the variable. Instead, code is gen-
erated that will allow the decision to be made at runtime. This delayed decision-making is
variously referred to as late binding (binding is one term for the job a linker does when it
glues various bits of machine code together to make an executable program file).

The Java Virtual Machine (JVM) has been designed from the start to support an object-
oriented programming system, so there are machine-level instructions for making method
calls. The compiler needs only to prepare the argument list and produce one method invo-
cation instruction; the job of identifying and calling the proper target code is performed by
the JVM.

If the JVM is to be able to decide what code should be invoked by a particular method call,
it must be able to determine the class of the object upon which the call is based. Again, the
JVM design has supported this process from the beginning. Unlike traditional languages or
runtime environments, every time the Java system allocates memory, it marks that memory
with the type of the data that it has been allocated to hold. So, given any object, and without
regard to the type associated with the reference variable acting as a handle to that object, the
runtime system can determine the real class of that object by inspection. This process is the
basis of the instanceof operator, which allows you to program a test to determine the actual
class of an object at runtime.

The instanceof operator was described in Chapter 2, “Operators and
Assignments.”

Invoking Overridden Methods

When we discussed overloading methods, you saw how to invoke one version of a method from
another. It is also useful to be able to invoke an overridden method from the method that over-
rides it. Consider that when you write an overriding method, that method entirely replaces the
original method. However, sometimes you wish only to add a little extra behavior and want to
retain all the original behavior. This goal can be achieved, although it requires a small trick of
syntax to perform. Look at this example:

 1. class Rectangle {

 2. private int x, y, w, h;

 3. public String toString() {

 4. return “x = “ + x + “, y = “ + y +

 5. “, w = “ + w + “, h = “ + h;

 6. }

 7. }

 8. class DecoratedRectangle extends Rectangle {

 9. private int borderWidth;

10. public String toString() {

4419c06.fm Page 179 Thursday, February 24, 2005 4:22 PM

180 Chapter 6 � Objects and Classes

11. return super.toString() + “, borderWidth = “ +

12. borderWidth;

13. }

14. }

At line 11, the overriding method in the DecoratedRectangle class uses the parental
toString() method to perform the greater part of its work. Because the variables x, y, w,
and h in the Rectangle class are marked as private, it would have been impossible for the
overriding method in DecoratedRectangle to achieve its work directly.

A call of the form super.xxx() always invokes the behavior that would have been used if the
current overriding method had not been defined. It does not matter whether the parental method
is defined in the immediate superclass or in some ancestor class further up the hierarchy: super
invokes the version of this method that is “next up the tree.”

To summarize, these are the key points about overriding methods:
� A method that has an identical name and identical number, types, and order of arguments

as a method in a parent class is an overriding method.
� Each parent class method may be overridden once at most in any one subclass. (That is, you

cannot have two identical methods in the same class.)
� An overriding method must return exactly the same type as the method it overrides.
� An overriding method must not be less accessible than the method it overrides.
� An overriding method must not throw any checked exceptions (or subclasses of those

exceptions) that are not declared for the overridden method.
� An overridden method is completely replaced by the overriding method unless the overridden

method is deliberately invoked from within the subclass.

This is quite a lot to think about, so you might like to take a break before you move on to
the next topic: constructors.

Variable-Length Argument Lists

Prior to release 5.0, a method declaration specified an exact number of arguments. Release 5.0
allows a method to declare that its argument list includes a variable number of args of a particular
type. This is done by appending three dots (…) after the type. For example, here’s a method dec-
laration that accepts a variable number of Strings:

void xyz(String … stringies)

Callers may invoke this method with any number of String arguments (even none at all).
Within the method, stringies appears as an array of Strings.

Many methods of the core Java classes accept variable argument lists, so keep your eye out
for the three dots in method descriptions in the API pages.

4419c06.fm Page 180 Thursday, February 24, 2005 4:22 PM

Constructors and Subclassing 181

Constructors and Subclassing
Inheritance generally makes the code and data defined in a parent class available for use in a
subclass. This is subject to accessibility controls so that, for example, private items in the par-
ent class are not directly accessible in the methods of the subclass, even though they exist. In
fact, constructors are not inherited in the normal way but must be defined for each class in
the class itself.

A constructor is invoked with a call of the form new MyClass(arg1, arg2, ...). If the
argument list is empty, the constructor is called a no-arguments (or no-args) constructor. If you
do not explicitly code any constructors for a class, the compiler automatically creates a default
constructor that does nothing except invoke the superclass’ default constructor, via a mecha-
nism described in the next section. This “freebie” constructor is called the default constructor.
It has public access if the class is public; otherwise its access mode is default.

Often you will define a constructor that takes arguments and will want to use those argu-
ments to control the construction of the parent part of the object. You can pass control to a con-
structor in the parent class by using the keyword super. To control the particular constructor
that is used, you simply provide the appropriate arguments. Consider this example:

 1. class Base {

 2. public Base(String s) {

 3. // initialize this object using s

 4. }

 5. public Base(int i) {

 6. // initialize this object using i

 7. }

 8. }

 9.

10. class Derived extends Base {

11. public Derived(String s) {

12. // pass control to Base constructor at line 2

13. super(s);

14. }

15. public Derived(int i) {

16. // pass control to Base constructor at line 5

17. super(i);

18. }

19. }

The code at lines 13 and 17 demonstrates the use of super() to control the construction of
the parent class part of an object. The definitions of the constructors at lines 11 and 15 select

4419c06.fm Page 181 Thursday, February 24, 2005 4:22 PM

182 Chapter 6 � Objects and Classes

an appropriate way to build their inherited part by invoking super() with an argument list that
matches one of the constructors for the parent class. It is important to know that the superclass
constructor must be called before any reference is made to any part of this object. This rule is
imposed to guarantee that nothing is ever accessed in an uninitialized state. Generally, the rule
means that if super() is to appear at all in a constructor, then it must be the first statement.

Although the example shows the invocation of parental constructors with argument lists that
match those of the original constructor, this is not a requirement. It would be perfectly accept-
able, for example, if line 17 read

17. super(“Value is “ + i);

This would have caused control to be passed to the constructor at line 2, which takes a String
argument, rather than the one at line 5.

Overloading Constructors

Although you just saw that constructors are not inherited in the same way as methods, the
overloading mechanisms apply quite normally. In fact, the example discussing the use of
super() to control the invocation of parental constructors showed overloaded constructors.
You saw earlier how you could invoke one method from another that overloads its name simply
by calling the method with an appropriate parameter list. There are also times when it’s useful
to invoke one constructor from another. Imagine you have a constructor that takes five argu-
ments and does considerable processing to initialize the object. You wish to provide another
constructor that takes only two arguments and sets the remaining three to default values. It
would be nice to avoid re-coding the body of the first constructor and instead simply set up
the default values and pass control to the first constructor. You can do so using a small trick
of syntax.

Usually, you would invoke a method by using its name followed by an argument list in
parentheses, and you would invoke a constructor by using the keyword new, followed by the
name of the class, followed again by an argument list in parentheses. Thus you might try to
use the new ClassName(args) construction to invoke another constructor of your own class.
Unfortunately, although this is legal syntax, it results in an entirely separate object being cre-
ated. The approach Java takes is to provide another meaning for the keyword this. Look at
this example:

1. public class AnyClass {

2. public AnyClass(int a, String b, float c, Date d) {

3. // complex processing to initialize

4. // based on arguments

5. }

6. public AnyClass(int a) {

7. this(a, “default”, 0.0F, new Date());

8. }

9. }

4419c06.fm Page 182 Thursday, February 24, 2005 4:22 PM

Inner Classes 183

The constructor at line 6 takes a single argument and uses that, along with three other default
values, to call the constructor at line 2. The call is made using the this() construction at line 7.
As with super(), this() must be positioned as the first statement of the constructor.

We have said that any use of either super() or this() in a constructor must be placed at
the first line. Clearly, you cannot put both on the first line. If you write a constructor that has
neither a call to super() nor a call to this(), then the compiler automatically inserts a call to
the parent class constructor with no arguments. If an explicit call to another constructor is made
using this(), then the superclass constructor is not called until the other constructor runs.
It is permitted for that other constructor to start with a call to either this() or super(), if
desired. Java insists that the object is initialized from the top of the class hierarchy downward;
that is why the call to super() or this() must occur at the start of a constructor. This point
has an important consequence. We just said that if there is no call to either this() or super(),
then the compiler puts in a call to the no-argument constructor in the parent. As a result, if you
try to extend a class that does not have a no-argument constructor, then you must explicitly call
super() with one of the argument forms that are supported by constructors in the parent class.

Let’s summarize the key points about constructors before we move on to inner classes:
� Constructors are not inherited in the same way as normal methods. You can create an

object only if the class defines a constructor with an argument list that matches the one your
new call provides.

� If you define no constructors in a class, then the compiler provides a default that takes no
arguments. If you define even a single constructor, this default is not provided.

� It is common to provide multiple overloaded constructors—that is, constructors with dif-
ferent argument lists. One constructor can call another using the syntax this(arguments).

� A constructor delays running its body until the parent parts of the class have been initial-
ized. This commonly happens because of an implicit call to super() added by the compiler.
You can provide your own call to super(arguments) to control the way the parent parts
are initialized. If you do so, it must be the first statement of the constructor.

� A constructor can use overloaded constructor versions to support its work. These are invoked
using the syntax this(arguments) and if supplied, this call must be the first statement of the
constructor. In such conditions, the initialization of the parent class is performed in the over-
loaded constructor.

Inner Classes
The material we have looked at so far has been part of Java since its earliest versions. Inner
classes are a feature added with the release of JDK 1.1. Inner classes, which are sometimes called
nested classes, can give your programs additional clarity and make them more concise.

Fundamentally, an inner class is the same as any other class but is declared inside (that is,
between the opening and closing curly braces of) some other class. In fact, you can declare
nested classes in any block, including blocks that are part of a method. Classes defined inside

4419c06.fm Page 183 Thursday, February 24, 2005 4:22 PM

184 Chapter 6 � Objects and Classes

a method differ slightly from the more general case of inner classes that are defined as members
of a class; we’ll look at these differences in detail later. For now, when we refer to a “member
class,” we mean a class that is not defined in a method but rather in a class. In this context, the
use of the term member is closely parallel to its use in the context of member variables and mem-
ber methods.

The complexity of inner classes relates to scope and access—particularly access to variables
in enclosing scopes. Before we consider these matters, let’s look at the syntax of a basic inner
class, which is really quite simple. Consider this example:

 1. public class OuterOne {

 2. private int x;

 3. public class InnerOne {

 4. private int y;

 5. public void innerMethod() {

 6. System.out.println(“y is “ + y);

 7. }

 8. }

 9. public void outerMethod() {

10. System.out.println(“x is “ + x);

11. }

12. // other methods...

13. }

In this example, there is no obvious benefit in having declared the class called InnerOne as an
inner class; so far we are only looking at the syntax. When an inner class is declared like this, the
enclosing class name becomes part of the fully qualified name of the inner class. In this case, the
two classes’ full names are OuterOne and OuterOne.InnerOne. This format is reminiscent of a
class called InnerOne declared in a package called OuterOne. This point of view is not entirely
inappropriate, because an inner class belongs to its enclosing class in a fashion similar to the way
a class belongs to a package. It is illegal for a package and a class to have the same name, so there
can be no ambiguity.

Although the dotted representation of inner class names works for the declara-
tion of the type of an identifier, it does not reflect the filename of the class. If you
try to load this class using the Class.forName() method, the call will fail. On the
disk, and from the point of view of the Class class and class loaders, the name of
the class is OuterOne$InnerOne. The dollar-separated name is also used if you
print out the class name by using the methods getClass().getName() on an
instance of the inner class. You probably recall that classes are located in direc-
tories that reflect their package names. The dollar-separated convention is
adopted for inner class names to ensure that there is no ambiguity on the disk
between inner classes and package members. It also reduces conflicts with file
systems and shell interpreters that treat the dot character as special, perhaps
limiting the number of characters that can follow it.

4419c06.fm Page 184 Thursday, February 24, 2005 4:22 PM

Inner Classes 185

Although for the purpose of naming, being able to define a class inside another class provides
some organizational benefit, but this is not the end of the story. Objects that are instances of the
inner class generally retain the ability to access the members of the outer class. This behavior is
discussed in the next section.

The Enclosing this Reference and Construction

of Inner Classes

When an instance of an inner class is created, normally a preexisting instance of the outer class
must act as context. This instance of the outer class will be accessible from the inner object.
Consider this example, which is expanded from the earlier one:

 1. public class OuterOne {

 2. private int x;

 3. public class InnerOne {

 4. private int y;

 5. public void innerMethod() {

Inner Class Details

Here is a simple public interface:

public interface Reporter {

 public void report();

}

Write an application that answers the following two questions:

1. Suppose an enclosing class contains a non-anonymous inner class, which implements
Reporter. Suppose the enclosing class has a method called getReporter() with return type
Reporter that returns an instance of the inner class. How useful is the returned object? Can it
be used outside of the class where it is defined? The external called doesn’t own the definition
of the inner class and doesn’t even know that the return type is an instance of the inner class;
it knows only that it’s going to get something that implements Reporter. So the situation seems
reasonable. Verify for yourself whether it works. To go further, experiment with different access
modes for the inner class.

2. What if the inner class in part 1 is anonymous?

One possible solution, with explanatory comments, appears on the CD-ROM in the file
\solutions\Chapter_06\InnerClassTest.java.

4419c06.fm Page 185 Thursday, February 24, 2005 4:22 PM

186 Chapter 6 � Objects and Classes

 6. System.out.println(“enclosing x is “ + x);

 7. System.out.println(“y is “ + y);

 8. }

 9. }

10. public void outerMethod() {

11. System.out.println(“x is “ + x);

12. }

13. public void makeInner() {

14. InnerOne anInner = new InnerOne();

15. anInner.innerMethod();

16. }

17. // other methods...

18. }

You will see two changes in this code when you compare it to the earlier version. First,
innerMethod() now not only outputs the value of y, which is defined in InnerOne, but also,
at line 6, outputs the value of x, which is defined in OuterOne. The second change is that in lines
13–16, the code creates an instance of the InnerOne class and invokes innerMethod() upon it.

The accessibility of the members of the enclosing class is crucial and very useful. It is pos-
sible because the inner class has a hidden reference to the outer class instance that was the cur-
rent context when the inner class object was created. In effect, it ensures that the inner class and
the outer class belong together, rather than the inner instance being just another member of the
outer instance.

Sometimes you might want to create an instance of an inner class from a static method or in
some other situation where no this object is available. The situation arises in a main() method
or if you need to create the inner class from a method of some object of an unrelated class. You
can achieve this by using the new operator as though it were a member method of the outer class.
Of course, you still must have an instance of the outer class. The following code, which is a main()
method in isolation, could be added to the code seen so far to produce a complete example:

1. public static void main(String args[]) {

2. OuterOne.InnerOne i = new OuterOne().new InnerOne();

3. i.innerMethod();

4. }

From the point of view of the inner class instance, this use of two new statements on the same
line is a compacted way of doing the following:

1. public static void main(String args[]) {

2. OuterOne o = new OuterOne();

3. OuterOne.InnerOne i = o.new InnerOne();

4. i.innerMethod();

5. }

4419c06.fm Page 186 Thursday, February 24, 2005 4:22 PM

Inner Classes 187

If you attempt to use the new operation to construct an instance of an inner class without a
prefixing reference to an instance of the outer class, the implied prefix this. is assumed. This
behavior is identical to that which you find with ordinary member accesses and method invo-
cations. As with member access and method invocation, it is important that the this reference
be valid when you try to use it. A static method contains no this reference, which is why you
must take special efforts in these conditions.

Member Classes

To this point, we have not distinguished between classes defined directly in the scope of a class—
that is, member classes—and classes defined inside methods. There are important distinctions
between these two scopes that you will need to have clear in your mind. First, we’ll look at the
features that are unique to member classes.

Access Modifiers

Members of a class, whether they are variables, methods, or nested classes, may be marked with
modifiers that control access to those members. This means that member classes can be marked
private, public, protected, or default access. The meaning of these access modifiers is the
same for member classes as it is for other members, and therefore we won’t spend time on those
issues here. Instead, refer to Chapter 3 if you need to revisit these concepts.

Static Inner Classes

Just like any other member, a member inner class may be marked static. When applied to
a variable, static means that the variable is associated with the class, rather than with any
particular instance of the class. When applied to an inner class, the meaning is similar. Spe-
cifically, a static inner class does not have any reference to an enclosing instance. As a result,
methods of a static inner class cannot use the keyword this (either implied or explicit) to
access instance variables of the enclosing class; those methods can, however, access static vari-
ables of the enclosing class. This is just the same as the rules that apply to static methods in
ordinary classes. As you would expect, you can create an instance of a static inner class with-
out the need for a current instance of the enclosing class. The syntax for this construction is
very simple; just use the long name of the inner class—that is, the name that includes the name
of the outer class, as in the underlined part of line 5:

 1. public class MyOuter {

 2. public static class MyInner {

 3. }

 4. public static void main(String [] args) {

 5. MyInner aMyInner = new MyOuter.MyInner();

 6. }

 7. }

4419c06.fm Page 187 Thursday, February 24, 2005 4:22 PM

188 Chapter 6 � Objects and Classes

The net result is that a static inner class is really just a top-level class with a modified naming
scheme. In fact, you can use static inner classes as an extension to packaging.

Not only can you declare a class inside another class, but you can also declare a class inside
a method of another class. We will discuss this next.

Classes Defined inside Methods

In the opening of this chapter, we said that nested classes can be declared in any block and that
this means you can define a class inside a method. This is superficially similar to what you have
already seen, but in this case there are three particular points to be considered.

The first point is that anything declared inside a method is not a member of the class but is
local to the method. The immediate consequence is that classes declared in methods are private
to the method and cannot be marked with any access modifier; neither can they be marked as
static. If you think about this, you’ll recognize that these are just the same rules as for any vari-
able declaration you might make in a method.

The second point is that an object created from an inner class within a method can have some
access to the variables of the enclosing method. We’ll look at how this is done and the restric-
tions that apply to this access in a moment.

Finally, it is possible to create an anonymous class—literally, a class with no specified name—
and doing so can be very eloquent when working with event listeners. We will discuss this tech-
nique after covering the rules governing access from an inner class to method variables in the
enclosing blocks.

Accessing Method Variables

The rule that governs access to the variables of an enclosing method is simple. Any variable,
either a local variable or a formal parameter, can be accessed by methods within an inner class,
provided that variable is marked final. A final variable is effectively a constant, so this might
seem to be quite a severe restriction, but the point is simply this: an object created inside a method
is likely to outlive the method invocation. Because local variables and method arguments are con-
ventionally destroyed when their method exits, these variables would be invalid for access by
inner class methods after the enclosing method exits. By allowing access only to final variables,
it becomes possible to copy the values of those variables into the object, thereby extending their
lifetimes. The other possible approaches to this problem would be writing to two copies of the
same data every time it was changed or putting method local variables onto the heap instead of
the stack. Either of these approaches would significantly degrade performance.

Let’s look at an example:

 1. public class MOuter {

 2. private int m = (int)(Math.random() * 100);

 3. public static void main(String args[]) {

 4. MOuter that = new MOuter();

 5. that.go((int)(Math.random() * 100),

 6. (int)(Math.random() * 100));

4419c06.fm Page 188 Thursday, February 24, 2005 4:22 PM

Inner Classes 189

 7. }

 8.

 9. public void go(int x, final int y) {

10. int a = x + y;

11. final int b = x - y;

12. class MInner {

13. public void method() {

14. System.out.println(“m is “ + m);

15. // System.out.println(“x is “ + x); //Illegal!

16. System.out.println(“y is “ + y);

17. // System.out.println(“a is “ + a); //Illegal!

18. System.out.println(“b is “ + b);

19. }

20. }

21.

22. MInner that = new MInner();

23. that.method();

24. }

25. }

In this example, the class MInner is defined in lines 12–20. Within it, method() has access
to the member variable m in the enclosing class (as with the previous examples) but also to the
final variables of go(). The commented-out code on lines 15 and 17 would be illegal, because
it attempts to refer to nonfinal variables in go(); if these lines were included in the source
proper, they would cause compiler errors.

Anonymous Classes

Some classes that you define inside a method do not need a name. A class defined in this way
without a name is called an anonymous class. Anonymous classes can be declared to extend
another class or to implement a single interface. The syntax does not allow you to do both at
the same time or to implement more than one interface explicitly (of course, if you extend a class
and the parent class implements interfaces, then so does the new class). If you declare a class that
implements a single explicit interface, then it is a direct subclass of java.lang.Object.

Because you do not know the name of an anonymous inner class, you cannot use the new key-
word in the usual way to create an instance of that class. In fact, the definition, construction,
and first use (often in an assignment) of an anonymous class all occur in the same place. The
next example shows a typical creation of an anonymous inner class that implements a single
interface, in this case ActionListener. The essential parts of the declaration and construction
are on lines 3–7:

1. public void aMethod() {

2. theButton.addActionListener(

3. new ActionListener() {

4419c06.fm Page 189 Thursday, February 24, 2005 4:22 PM

190 Chapter 6 � Objects and Classes

4. public void actionPerformed(ActionEvent e) {

5. System.out.println(“The action has occurred”);

6. }

7. }

8.);

9. }

In this fragment, the variable used at line 2, theButton, is a reference to a Button object.
Notice that the action listener attached to the button is defined in lines 3–7. The entire dec-
laration forms the argument to the addActionListener() method call at line 2; the closing
parenthesis that completes this method call is on line 8.

The declaration and construction both start on line 3. Notice that the name of the interface
is used immediately after the new keyword. This pattern is used for both interfaces and classes.
The class has no visible name of its own in the source but is referred to simply using the class
or interface name from which the new anonymous class is derived. The effect of this syntax is
to state that you are defining a class and you do not want to think up a name for that class. Fur-
ther, the class implements the specified interface or extends the specified class without using
either the implements or extends keyword.

An anonymous class gives you a convenient way to avoid having to think up trivial names for
classes, but the facility should be used with care. Clearly, you cannot instantiate objects of this
class anywhere except in the code shown. Further, anonymous classes should be small. If the class
defines methods other than those of a simple, well-known interface such as an AWT event lis-
tener, it probably should not be anonymous. Similarly, if the class has methods containing more
than one or two lines of straightforward code or if the entire class has more than about 10 lines,
it probably should not be anonymous. These are not absolute rules; rather, the point here is that
if you do not give the class a name, you have only the “self-documenting” nature of the code to
explain what it is for. If, in fact, the code is not simple enough to be genuinely self-documenting,
then you probably should give it a descriptive name.

When the compiler comes across an anonymous inner class, it creates a separate class file for
it called EnclosingClassName$n.class, where EnclosingClassName is the name of the class
that contains the anonymous inner class, and n is the integer counter for the anonymous inner
classes in the enclosing class (starting at 1).

Construction and Initialization of Anonymous Inner Classes

You need to understand a few points about the construction and initialization of anonymous
inner classes to succeed in the Certification Exam and in real life. Let’s look at these issues.

As you have already seen, the class is instantiated and declared in the same place. This means
that anonymous inner classes are unique to method scopes; you cannot have anonymity with a
member class.

You cannot define any specific constructor for an anonymous inner class. This is a direct con-
sequence of the fact that you do not specify a name for the class, and therefore you cannot use
that name to specify a constructor. However, an inner class can be constructed with arguments
under some conditions, and an inner class can have an initializer if you wish.

4419c06.fm Page 190 Thursday, February 24, 2005 4:22 PM

Inner Classes 191

Anonymous Class Declarations

As you have already seen, the structure of the code that declares and constructs an anonymous
inner class is

new Xxxx() { /* class body. */ }

where Xxxx is a class or interface name. It is important to grasp that code of this form is an
expression that returns a reference to an object. Thus the previous code is incomplete by itself
but can be used wherever you can use an object reference. For example, you might assign the
reference to the constructed object into a variable, like this:

Xxxx anXxxx = new Xxxx () { /* class body. */ };

Notice that you must be sure to make a complete statement, including the closing semicolon.
Alternatively, you might use the reference to the constructed object as an argument to a method
call. In that case, the overall appearance is like this:

someMethod(new Xxxx () { /* class body. */ });

Passing Arguments into the Construction of an Anonymous Inner Class

If the anonymous inner class extends another class, and that parent class has constructors that
take arguments, then you can arrange for one of these constructors to be invoked by specifying
the argument list to the construction of the anonymous inner class. An example follows:

// Assume this code appears in some method

Button b = new Button(“Anonymous Button“) {

 // behavior for the button

};

// do things with the button b...

...

In this situation, the compiler will build a constructor for your anonymous inner class that
effectively invokes the superclass constructor with the argument list provided, something like this:

// This is not code you write! This exemplifies what the

// compiler creates internally when asked to compile

// something like the previous anonymous example

class AnonymousButtonSubclass extends Button {

 public AnonymousButtonSubclass(String s) {

 super(s);

 }

}

Note that this isn’t the actual code that would be created—specifically, the class name is made
up—but it conveys the general idea.

4419c06.fm Page 191 Thursday, February 24, 2005 4:22 PM

192 Chapter 6 � Objects and Classes

Initializing an Anonymous Inner Class

Sometimes you will want to perform some kind of initialization when an inner class is constructed.
In normal classes, you would create a constructor. In an anonymous inner class, you cannot do
this, but you can use the initializer feature that was added to the language at JDK 1.1. If you
provide an unnamed block in class scope, then it will be invoked as part of the construction
process, like this:

public MyClass {

 { // initializer

 System.out.println(“Creating an instance”);

 }

}

This is true of any class, but the technique is particularly useful with anonymous inner classes,
where it is the only tool you have that provides some control over the construction process.

A Complex Example of Anonymous Inner Classes

Now let’s look at a complete example following the pattern of the earlier example using a Button.
This example uses two anonymous inner classes, one nested inside the other; an initializer; and a
constructor that takes an argument:

 1. import java.awt.*;

 2. import java.awt.event.*;

 3.

 4. public class X extends Frame {

 5. public static void main(String args[]) {

 6. X x = new X();

 7. x.pack();

 8. x.setVisible(true);

 9. }

10.

11. private int count;

12.

13. public X() {

14. final Label l = new Label("Count = " + count);

15. add(l, BorderLayout.SOUTH);

16.

17. add(

18. new Button("Hello " + 1) {

19. // initializer

20. addActionListener(

21. new ActionListener() {

4419c06.fm Page 192 Thursday, February 24, 2005 4:22 PM

Contracts and Naming Conventions 193

22. public void actionPerformed(

23. ActionEvent ev) {

24. count++;

25. l.setText("Count = " + count);

26. }

27. }

28.);

29. }

30. }, BorderLayout.NORTH

31.);

32. }

33. }

Lines 19–29 form the initializer and set up a listener on the Button. The listener is another
anonymous inner class; as we said earlier, you can arbitrarily nest these things. Notice how the
label variable declared at line 14 is final; this allows it to be accessed from the inner classes and,
specifically, from the listener defined in the initializer of the first anonymous inner class.

Contracts and Naming Conventions
In programming, as in life, a contract is an agreement about behavior; each party agrees to act
in certain predictable ways and gains the right to expect certain predictable behavior from the
other party. More precisely, a Java contract is an agreement that prescribes the behavior of
some of a class’ methods. Any class that honors the contract can expect to interact predictably
with other classes.

Java’s two most common contracts are the equals contract and the hash code contract. They
describe the expected behavior of any equals() or hashCode() method. If a class’ equals()
and hashCode() methods honor the contracts, the class can take advantage of many useful Java
features, the most important of which is the Collections framework is described in Chapter 8,
“The java.lang and java.util Packages.”

The equals contract is described in detail on the API page for java.lang.Object, in the
equals() method description. It has several parts, of which the most important are
� Any object should be equal to itself.
� If x equals y, then y equals x.
� If x equals y and y equals z, then x equals z.

The version of equals() inherited from Object uses the == operator to test for equality. If
you override this behavior, the compiler has no way to know whether your new version honors
the contract. Your choices are to make sure it does or to forego the benefits of, for example, the
Collections framework. If you violate the contract and use collections anyway, the resulting
bugs could be very difficult to track down. (This is useful information: If you have an elusive

4419c06.fm Page 193 Thursday, February 24, 2005 4:22 PM

194 Chapter 6 � Objects and Classes

bug related to storing your class in a collection, check out your equals() and hashCode()
methods to make sure they obey their contracts.)

The hash code contract specifies behavior of the hashCode() method. A hash code is an int
that represents the uniqueness of an object; it is used by classes that need an efficient way to deter-
mine whether two objects contain different values. The contract is specified on the API page for
java.lang.Object, in the hashCode() method description. It requires that if two objects are
equal according to their equals() methods, then they must have equal hash codes. Note that the
converse is not part of the contract: it’s okay for two unequal objects to have the same hash code.

Consider a class called Point3D, representing a point in three-dimensional space. A reason-
able implementation would be

public class Point3d {

 private int x, y, z;

 public boolean equals(Object ob) {

 Point3D that = (Point3D ob);

 return this.x == that.x &&

 this.y == that.y &&

 this.z == that.z;

 }

 public int hashCode() {

 return x + y + z;

 }

}

Two instances of this class are equal if their x, y, and z values match. Clearly the hash code
contract is honored. Note that it is possible for unequal instances to have equal hash codes. For
example, one instance might have values (100, 200, 300) while another has values (600, 1, -1).
This is acceptable. However, be aware that collection classes might slow down when dealing
with unequal objects with equal hash codes.

A hash code algorithm should strike a reasonable balance between detecting uniqueness and
running efficiently. You can avoid slowing down collections by writing hashCode() methods
that are scrupulous about uniqueness, but it does you no good to speed up collection efficiency
if your scrupulous hashCode() methods are inefficient. For example, you might wonder about
the following alternative hashCode() version for Point3D:

 public int hashCode() {

 return (int)(Math.pow(2, x) +

 Math.pow(3, y) +

 Math.pow(5, z));

 }

4419c06.fm Page 194 Thursday, February 24, 2005 4:22 PM

Enums 195

This version is very unlikely to return equal hash codes for unequal objects, so collections
containing Point3D instances will be efficient, but those three power operations and the cast
will make the hashCode() method itself run too slowly.

A naming convention is a contract that specifies how a method’s name relates to its behavior.
Java’s most important naming convention is the JavaBeans convention (it has nothing to do
with Enterprise JavaBeans).

The JavaBeans naming convention concerns properties of objects. A property is a quality that
is represented by one or more of an object’s variables. The convention specifies a discipline for
choosing names for properties and the methods that access and modify them. Specifically,
� A property name begins with a lowercase letter. All subsequent letters are lowercase except

for the first letter of a new word. Underscores are not used. Examples: bear, innerClass,
normalizedRotationalInertia

� A method that returns the value of a property is named getXxx(), where xxx is the property
name. Example: getInnerClass()

� A method that modifies the value of a property is named setXxx(), where xxx is the property
name. Example: setNormalizedRotationalInertia()

If you develop the habit of using the JavaBeans naming convention, the habit will serve you
well if you decide to pursue the various technologies of J2EE.

Enums
5.0 introduces the enum, which is a class with certain added functionality and also certain restric-
tions. Enums are subclasses of java.lang.Enum. They address a problem that is best explained
by example. Suppose you are programming a Java-based automatic car. One of the car’s tasks will
be to respond to an oncoming traffic light. So you decide to create a TrafficLight class to encap-
sulate a light’s red/yellow/green status. Here is one approach:

public class TrafficLight {

 private int state; // 1 means red

 // 2 means yellow

 // 3 means green

 public int getState() {

 return state;

 }

}

Assume that the class also contains timing code to change the state at appropriate intervals.
That code isn’t relevant here.

4419c06.fm Page 195 Thursday, February 24, 2005 4:22 PM

196 Chapter 6 � Objects and Classes

This class is extremely prone to error. Anyone who modifies the class or calls getState()
has to know that 1 means red, 2 means yellow, and 3 means green. If anyone’s code gets con-
fused even for a moment about which value means which color, the resulting bug could be very
difficult to track down.

The common solution is to introduce constants:

public class TrafficLight {

 public final static int RED = 1;

 public final static int YELLOW = 2;

 public final static int GREEN = 3;

 private int state;

 public int getState() {

 return state;

 }

}

That’s a bit better. In fact, prior to release 5.0 it was the best possible approach short of
writing about a page of tedious support code. However, this version of TrafficLight still
has problems. You can hope that everybody who calls getState() will treat the return value
appropriately, like this:

switch (nextTrafficLight.getState()) {

 case TrafficLight.RED:

 stop();

 break;

 case TrafficLight.YELLOW:

 floorIt();

 break;

 case TrafficLight.GREEN:

 proceed();

 break;

 default:

 assert false: “Strange-colored light”;

}

This code compares the light’s state only to constants defined in the TrafficLight class,
never to literal integer values. You can hope people who call getState() use this approach;
you can insist they do so in daily e-mail memos; but you can’t guarantee they will do so.

Our code so far has numerous drawbacks, especially these:
� It is possible to assign an out-of-range value to a light’s state.
� Printing a light’s state is not very informative.

4419c06.fm Page 196 Thursday, February 24, 2005 4:22 PM

Enums 197

A more robust approach is shown here:

 1. public class LightState {

 2. protected final String name;

 3.

 4. public final static LightState RED = new LightState("red");

 5. public final static LightState YELLOW = new LightState("yellow");

 6. public final static LightState GREEN = new LightState("green");

 7.

 8. private LightState(String s) {

 9. name = s;

10. }

11.

12. public String name() {

13. return name;

14. }

15. }

The new approach represents states by using instances of the LightState class, rather
than ints. Note that the constructor is private, so you can never construct any instances
from outside the class or its subclasses; the only instances you will ever need are constructed
statically. You can’t use the new class as a switch statement argument as you could with the
ints of the previous example, but that’s a small price to pay. Our original switching code
becomes

LightState state = nextTrafficLight.getState();

if (state == LightState.RED)

 stop();

else if (state == LightState.YELLOW)

 floorIt();

else if (state == LightState.GREEN)

 proceed();

else

 assert false : “null light state.”;

This design ensures that the only possibly unexpected state value for a traffic light is null.
Also, debugging code can print out any LightState instance and produce an informative
result. In fact, this approach is so useful that it has a name: the typesafe enumeration design
pattern. It is considered typesafe because there is a dedicated type whose sole purpose is to
encode a few enumerated states, thus avoiding the dangers of using arbitrarily assigned int
values. (Arbitrarily assigned ints or other primitives are knows as enumerated constants.)
Some programming languages (Pascal, for example) have built-in support for typesafe enu-
merations. Java did not, until 1.5.

4419c06.fm Page 197 Thursday, February 24, 2005 4:22 PM

198 Chapter 6 � Objects and Classes

There is only one disadvantage to the typesafe enumeration pattern: it requires a lot of coding.
The LightState class shown above is easy enough to create, but a large program with lots of
formalized states might require dozens of enumeration classes, and even seasoned developers
might be tempted to cut corners.

Java 5.0’s typesafe enumeration support provides all the benefits of the LightState class
with very little programming effort. The similarities between traditional classes and enums
include the following:
� You can declare an enum anywhere you can declare a class.
� Compiling an enum generates a .class file whose name is derived from the enum’s name.
� Enums inherit data and methods from Object.
� Enums may be converted and cast according to the same rules that govern any class that

extends Object.
� Enums may have main() methods and can be invoked as applications.
� Enums that have no explicit constructors get default no-args constructors.

Enums have restricted functionality. They are unlike traditional classes in the following ways:
� Enums are declared with the enum keyword rather than the class keyword.
� Enums may not be instantiated.
� Enums may not extend anything and may not be extended.
� Enums may be arguments in switch statements.
� Enums have built-in name() and toString() methods, both of which return the name of

the current instance.

The first statement of an enum has a special format, as shown below. Here is LightState
rewritten as an enum:

public enum LightState {

 RED, YELLOW, GREEN;

}

Notice the first (and only) statement, which is a comma-separated list of identifiers, terminated
by a semicolon. When an enum is class-loaded, one instance is created for each identifier in the list;
you can think of the identifiers as the names of the instances. The names become public static final
members of the enum, so you can refer to the instances as, for example, LightState.YELLOW. The
instances are called the enum’s constants.

The code that follows shows how to use the LightState enum. Assume the getState()
method now returns a LightState rather than an int:

switch (nextTrafficLight.getState()) {

 case LightState.RED:

 stop();

 break;

4419c06.fm Page 198 Thursday, February 24, 2005 4:22 PM

Enums 199

 case LightState.YELLOW:

 floorIt();

 break;

 case LightState.GREEN:

 proceed();

 break;

 default:

 assert false: “null light state”;

}

This code is almost identical to the original version. The main difference is that RED, YELLOW,
and GREEN are now defined in LightState rather than in TrafficLight. This is a more appro-
priate place for them. The only other difference is the message printed by the assert statement (the
original version printed “Strange-colored light”). With enums, the light cannot have a strange
color. The compiler ensures that the only instances of TrafficLight that can ever exist are RED,
YELLOW, and GREEN. If the value returned by getState() is not one of these values, then it must
be null.

Often a simple enum containing only a name list is all you need. However, you can add data,
methods, and constructors to an enum. Here is an example that adds all three. Suppose you
want to create an enum to represent the suits of a deck of cards. You might begin like this:

public enum Suit {

 CLUB, DIAMOND, HEART, SPADE;

}

That’s fine until you realize that suits are colored, and it is appropriate for a suit to know its
own color. Here is a version of Suit that supports colors:

 1. enum Suit {

 2. DIAMOND(true), HEART(true), CLUB(false), SPADE(false);

 3.

 4. private boolean red;

 5.

 6. Suit(boolean b) {

 7. red = b;

 8. }

 9.

10. public boolean isRed() {

11. return red;

12. }

13.

14. public String toString() {

15. String s = name();

4419c06.fm Page 199 Thursday, February 24, 2005 4:22 PM

200 Chapter 6 � Objects and Classes

16. s += red ? ":red" : ":black";

17. return s;

18. }

19.}

The name list on line 2 must appear before all other elements of the enum. Line 4 is
an ordinary data declaration. Lines 6–8 are an ordinary constructor and lines 10–12 are an
ordinary accessor method. You would expect to see such code in any class with a private
boolean variable called red.

The booleans in parens on line 2 (after each name) are constructor arguments. If there
is no argument list following an instance name, that instance is constructed using the enum’s
no-args constructor. (As with traditional classes, an enum with no explicit constructor gets a
default no-args constructor.) However, if an instance name is followed by an argument list,
there must be a constructor with a compatible arg list. In our example, the constructor on
lines 6–8 is compatible.

Line 16 calls name(), which is a final method inherited from java.lang.Enum. The name()
method returns an instance’s name as it appears in the instance name list. toString() also
returns the instance’s name but is not final. So your enums can override toString() to provide
extra information, relying on a call to name().

As you can see, enums are very easy to use, thanks to functionality provided by the compiler
and inherited from the java.lang.Enum superclass. If you get in the habit of using enums
instead of enumerated constants in all appropriate situations, you will spare yourself countless
debugging headaches.

Summary
We have covered a lot of material in this chapter, but all of it is important. Let’s look again at
the key points.

We began by covering object-oriented design and implementation. The benefits of object-
oriented design and implementation include reusability (through composition and inheritance)
and data protection (through encapsulation). We discussed the concept of overloading methods,
which allows the programmer to write several methods by the same name in the same class with
different argument lists, return types, accessibility modifiers, and lists of exceptions to be
thrown. We also discussed overriding methods, which allows the programmer to define new
behavior in a subclass method that differs from that of the superclass method. Late binding
ensures that the correct behavior is executed at runtime.

We defined when and how constructors are defined with respect to subclassing. Constructors
are not inherited, but a single default constructor is provided by the compiler for all classes,
including subclasses. A constructor in a subclass can call a constructor in its superclass (by using
the super() reference) or another constructor in the same class (by using the this() reference).

4419c06.fm Page 200 Thursday, February 24, 2005 4:22 PM

Exam Essentials 201

Inner classes can give your programs additional clarity and make them more concise. An
inner class in class scope can have any accessibility, including private. Inner classes defined as
local to a block may not be static. However, an inner class declared local to a block (for example,
in a method) must not have any access modifier. Such a class is effectively private to the block.
Classes defined in methods can be anonymous, in which case they must be instantiated at the
same point they are defined. Anonymous inner classes can implement an interface or extend a
class, but they cannot have any explicit constructors.

Contracts are agreements among programmers regarding class behavior. Classes that honor
contracts will interact predictably with other classes.

Finally, we looked at enums, which are specialized classes that provide a robust alternative
to enumerated constants. Enums are never explicitly constructed.

Exam Essentials
Be familiar with the way the Java language realizes the “is a” and “has a” relationships.
The “is a” relationship implies class extension. The “has a” relationship implies ownership of
a reference to a different object.

Be able to identify legally overloaded methods and constructors. The methods/constructors
must have different argument lists.

Be able to identify legally overridden methods. The methods must have the same name,
argument list, and return type.

Know the legal return types for overloaded and overridden methods. There are no restrictions
for an overloaded method; an overriding method must have the same return type as the overridden
version.

Know that the compiler generates a default constructor when a class has no explicit constructors.
When a class has constructor code, no default constructor is generated.

Understand the chain of calls to parental constructors. Each constructor invocation begins
by invoking a parental constructor.

Know how to create a constructor that invokes a nondefault parental constructor. Understand
the use of the super keyword.

Be able to identify correctly constructed inner classes, including inner classes in methods and
anonymous inner classes. The syntax for each of these forms is explained in previous sections
of this chapter.

Know which data and methods of an enclosing class are available to an inner class.
Understand that the inner class can access all data and methods of its enclosing class.

Understand the restrictions on static inner classes. Understand that a static inner class cannot
access nonstatic features of its enclosing class.

4419c06.fm Page 201 Thursday, February 24, 2005 4:22 PM

202 Chapter 6 � Objects and Classes

Know how to use a nonstatic inner class from a static method of the enclosing class. Be able
to recognize the new Outer().new Inner() format.

Know how to use enums, and know when it is appropriate to use them. Enums are classes
that are intended to replace enumerated constants. You should be able to recognize an (old-
style) group of enumerated constants and know how to create appropriate enums to replace
the constants.

4419c06.fm Page 202 Thursday, February 24, 2005 4:22 PM

Review Questions 203

Review Questions
1. Consider this class:

1. public class Test1 {

2. public float aMethod(float a, float b) {

3. }

4.

5. }

Which of the following methods would be legal if added (individually) at line 4? (Choose all
that apply.)

A. public int aMethod(int a, int b) { }

B. public float aMethod(float a, float b) { }

C. public float aMethod(float a, float b, int c) throws Exception { }

D. public float aMethod(float c, float d) { }

E. private float aMethod(int a, int b, int c) { }

2. Consider these classes, defined in separate source files:

1. public class Test1 {

2. public float aMethod(float a, float b)

3. throws IOException {...

4. }

5. }

1. public class Test2 extends Test1 {

2.

3. }

Which of the following methods would be legal (individually) at line 2 in class Test2? (Choose
all that apply.)

A. float aMethod(float a, float b) {...}

B. public int aMethod(int a, int b) throws Exception {...}

C. public float aMethod(float a, float b) throws Exception {...}

D. public float aMethod(float p, float q) {...}

4419c06.fm Page 203 Thursday, February 24, 2005 4:22 PM

204 Chapter 6 � Objects and Classes

3. You have been given a design document for a veterinary registration system for implementation
in Java. It states:

“A pet has an owner, a registration date, and a vaccination-due date. A cat is a pet that has a
flag indicating whether it has been neutered, and a textual description of its markings.”

Given that the Pet class has already been defined, which of the following fields would be
appropriate for inclusion in the Cat class as members? (Choose all that apply.)

A. Pet thePet;

B. Date registered;

C. Date vaccinationDue;

D. Cat theCat;

E. boolean neutered;

F. String markings;

4. You have been given a design document for a veterinary registration system for implementation
in Java. It states:

“A pet has an owner, a registration date, and a vaccination-due date. A cat is a pet that has a
flag indicating if it has been neutered, and a textual description of its markings.”

Given that the Pet class has already been defined and you expect the Cat class to be used freely
throughout the application, how would you make the opening declaration of the Cat class, up
to but not including the first opening brace? Use only these words and spaces: boolean, Cat,
class, Date, extends, Object, Owner, Pet, private, protected, public, String.

A. protected class Cat extends Owner

B. public class Cat extends Object

C. public class Cat extends Pet

D. private class Cat extends Pet

5. Consider the following classes, declared in separate source files:

 1. public class Base {

 2. public void method(int i) {

 3. System.out.print(“Value is “ + i);

 4. }

 5. }

 1. public class Sub extends Base {

 2. public void method(int j) {

 3. System.out.print(“This value is “ + j);

4419c06.fm Page 204 Thursday, February 24, 2005 4:22 PM

Review Questions 205

 4. }

 5. public void method(String s) {

 6. System.out.print(“I was passed “ + s);

 7. }

 8. public static void main(String args[]) {

 9. Base b1 = new Base();

10. Base b2 = new Sub();

11. b1.method(5);

12. b2.method(6);

13. }

14. }

What output results when the main method of the class Sub is run?

A. Value is 5Value is 6

B. This value is 5This value is 6

C. Value is 5This value is 6

D. This value is 5Value is 6

E. I was passed 5I was passed 6

6. Consider the following class definition:

1. public class Test extends Base {

2. public Test(int j) {

3. }

4. public Test(int j, int k) {

5. super(j, k);

6. }

7. }

Which of the following are legitimate calls to construct instances of the Test class? (Choose all
that apply.)

A. Test t = new Test();

B. Test t = new Test(1);

C. Test t = new Test(1, 2);

D. Test t = new Test(1, 2, 3);

E. Test t = (new Base()).new Test(1);

4419c06.fm Page 205 Thursday, February 24, 2005 4:22 PM

206 Chapter 6 � Objects and Classes

7. Consider the following class definition:

1. public class Test extends Base {

2. public Test(int j) {

3. }

4. public Test(int j, int k) {

5. super(j, k);

6. }

7. }

Which of the following forms of constructor must exist explicitly in the definition of the Base
class? Assume Test and Base are in the same package. (Choose all that apply.)

A. Base() { }

B. Base(int j) { }

C. Base(int j, int k) { }

D. Base(int j, int k, int l) { }

8. Consider the following definition:

 1. public class Outer {

 2. public int a = 1;

 3. private int b = 2;

 4. public void method(final int c) {

 5. int d = 3;

 6. class Inner {

 7. private void iMethod(int e) {

 8.

 9. }

10. }

11. }

12. }

Which variables can be referenced at line 8? (Choose all that apply.)

A. a

B. b

C. c

D. d

E. e

4419c06.fm Page 206 Thursday, February 24, 2005 4:22 PM

Review Questions 207

9. Which of the following statements are true? (Choose all that apply.)

A. Given that Inner is a nonstatic class declared inside a public class Outer and that appro-
priate constructor forms are defined, an instance of Inner can be constructed like this: new
Outer().new Inner()

B. If an anonymous inner class inside the class Outer is defined to implement the interface
ActionListener, it can be constructed like this: new Outer().new ActionListener()

C. Given that Inner is a nonstatic class declared inside a public class Outer and that appro-
priate constructor forms are defined, an instance of Inner can be constructed in a static
method like this: new Inner()

D. An anonymous class instance that implements the interface MyInterface can be constructed
and returned from a method like this:
1. return new MyInterface(int x) {
2. int x;
3. public MyInterface(int x) {
4. this.x = x;5. }6. };

10. Which of the following are legal enums?

A. enum Animals { LION, TIGER, BEAR }

B. enum Animals {
 int age;
 LION, TIGER, BEAR;
}

C. enum Animals {
 LION, TIGER, BEAR;
 int weight;
}

D. enum Animals {
 LION(450), TIGER(450), BEAR;
 int weight;

 Animals(int w) {
 weight = w;
 }
}

E. enum Animals {
 LION(450), TIGER(450), BEAR;
 int weight;

 Animals() { }

 Animals(int w) {
 weight = w;
 }
}

4419c06.fm Page 207 Thursday, February 24, 2005 4:22 PM

208 Chapter 6 � Objects and Classes

11. Which of the following may override a method whose signature is void xyz(float f)?

A. void xyz(float f)

B. public void xyz(float f)

C. private void xyz(float f)

D. public int xyz(float f)

E. private int xyz(float f)

12. Which of the following are true? (Choose all that apply.)

A. An enum definition should declare that it extends java.lang.Enum.

B. An enum may be subclassed.

C. An enum may contain public method definitions.

D. An enum may contain private data.

13. Which of the following are true? (Choose all that apply.)

A. An enum definition may contain the main() method of an application.

B. You can call an enum’s toString() method.

C. You can call an enum’s wait() method.

D. You can call an enum’s notify() method.

14. Suppose x and y are of type TrafficLightState, which is an enum. What is the best way to
test whether x and y refer to the same constant?

A. if (x == y)

B. if (x.equals(y))

C. if (x.toString().equals(y.toString()))

D. if (x.hashCode() == y.hashCode())

15. Which of the following restrictions apply to anonymous inner classes?

A. They must be defined inside a code block.

B. They may only read and write final variables of the enclosing class.

C. They may only call final methods of the enclosing class.

D. They may not call the enclosing class’ synchronized methods.

16. Given the following code, which of the following will compile?

enum Spice { NUTMEG, CINNAMON, CORIANDER, ROSEMARY; }

A. Spice sp = Spice.NUTMEG; Object ob = sp;

B. Spice sp = Spice.NUTMEG; Object ob = (Object)sp;

C. Object ob = new Object(); Spice sp = object;

D. Object ob = new Object(); Spice sp = (Spice)object;

4419c06.fm Page 208 Thursday, February 24, 2005 4:22 PM

Review Questions 209

17. Which of the following are true?

A. An anonymous inner class may implement at most one interface.

B. An anonymous inner class may implement arbitrarily many interfaces.

C. An anonymous inner class may extend a parent class other than Object.

D. An anonymous inner class that implements one interface may extend a parent class other
than Object.

E. An anonymous inner class that implements several interfaces may extend a parent class
other than Object.

18. Which methods return an enum constant’s name?

A. getName()

B. name()

C. toString()

D. nameString()

E. getNameString()

19. Suppose class X contains the following method:

void doSomething(int a, float b) { … }

Which of the following methods may appear in class Y, which extends X?

A. public void doSomething(int a, float b) { … }

B. private void doSomething(int a, float b) { … }

C. public void doSomething(int a, float b)
 throws java.io.IOException { … }

D. private void doSomething(int a, float b)
 throws java.io.IOException { … }

20. This question involves IOException, AWTException, and EOFException. They are all checked
exception types. IOException and AWTException extend Exception, and EOFException extends
IOException. Suppose class X contains the following method:

void doSomething() throws IOException{ … }

Which of the following methods may appear in class Y, which extends X?

A. void doSomething() { … }

B. void doSomething() throws AWTException { … }

C. void doSomething() throws EOFException { … }

D. void doSomething() throws IOException, EOFException { … }

4419c06.fm Page 209 Thursday, February 24, 2005 4:22 PM

210 Chapter 6 � Objects and Classes

Answers to Review Questions
1. A, C, E. In each of these answers, the argument list differs from the original, so the method is

an overload. Overloaded methods are effectively independent, and there are no constraints on
the accessibility, return type, or exceptions that may be thrown. B would be a legal overriding
method, except that it cannot be defined in the same class as the original method; rather, it must
be declared in a subclass. D is also an override, because the types of its arguments are the same:
changing the parameter names is not sufficient to count as overloading.

2. B, D. A is illegal because it is less accessible than the original method; the fact that it throws no
exceptions is perfectly acceptable. B is legal because it overloads the method of the parent class,
and as such it is not constrained by any rules governing its return value, accessibility, or argu-
ment list. The exception thrown by C is sufficient to make that method illegal. D is legal because
the accessibility and return type are identical, and the method is an override because the types
of the arguments are identical—remember that the names of the arguments are irrelevant. The
absence of an exception list in D is not a problem: An overriding method may legitimately throw
fewer exceptions than its original, but it may not throw more.

3. E, F. The Cat class is a subclass of the Pet class, and as such should extend Pet, rather than con-
tain an instance of Pet. B and C should be members of the Pet class and as such are inherited
into the Cat class; therefore, they should not be declared in the Cat class. D would declare a ref-
erence to an instance of the Cat class, which is not generally appropriate inside the Cat class
(unless, perhaps, you were asked to give the Cat a member that refers to its mother). Finally, the
neutered flag and markings descriptions, E and F, are the items called for by the specification;
these are correct items.

4. C. The class should be public, because it is to be used freely throughout the application. The
statement “A cat is a pet” tells you that the Cat class should subclass Pet. The other words
offered are required for the body of the definitions of either Cat or Pet—for use as member
variables—but are not part of the opening declaration.

5. C. The first message is produced by the Base class when b1.method(5) is called and is therefore
Value is 5. Despite the fact that variable b2 is declared as being of the Base class, the behavior
that results when method() is invoked upon it is the behavior associated with the class of the
actual object, not with the type of the variable. Because the object is of class Sub, not of class
Base, the second message is generated by line 3 of class Sub: This value is 6.

6. B, C. Because the class has explicit constructors defined, the default constructor is suppressed,
so A is not possible. B and C have argument lists that match the constructors defined at lines
2 and 4 respectively, and so they are correct constructions. D has three integer arguments, but
there are no constructors that take three arguments of any kind in the Test class, so D is incor-
rect. Finally, E is a syntax used for construction of inner classes and is therefore wrong.

4419c06.fm Page 210 Thursday, February 24, 2005 4:22 PM

Answers to Review Questions 211

7. A, C. The constructor at lines 2 and 3 includes no explicit call to either this() or super(),
which means that the compiler will generate a call to the no-args superclass constructor, as in A.
The explicit call to super() at line 5 requires that the Base class must have a constructor as in
C. This requirement has two consequences. First, C must be one of the required constructors and
therefore one of the answers. Second, the Base class must have at least that constructor defined
explicitly, so the default constructor is not generated but must be added explicitly. Therefore the
constructor of A is also required and must be a correct answer. At no point in the Test class is
there a call to either a superclass constructor with one or three arguments, so B and D need not
explicitly exist.

8. A, B, C, E. Because Inner is not a static inner class, it has a reference to an enclosing object, and
all the variables of that object are accessible. Therefore A and B are correct, despite the fact that
b is marked private. Variables in the enclosing method are accessible only if those variables are
marked final, so the method argument c is correct, but the variable d is not. Finally, the param-
eter e is of course accessible, because it is a parameter to the method containing line 8.

9. A. Construction of a normal (that is, a named and nonstatic) inner class requires an instance of
the enclosing class. Often this enclosing instance is provided via the implied this reference, but
an explicit reference can be used in front of the new operator, as shown in A. Anonymous inner
classes can be instantiated only at the same point they are declared, so B is illegal. C is illegal
because Inner is a nonstatic inner class, and so it requires a reference to an enclosing instance
when it is constructed. D is illegal because it attempts to use arguments to the constructor of an
anonymous inner class that implements an interface.

10. C, E. A is illegal because the list of names must be terminated by a semicolon. B is illegal because
the list of names must be the first element in the enum body. C is a legal enum that contains, in
addition to its name list, a variable. D is illegal because the declaration of Bear requires the exist-
ence of a no-args constructor. E fixes the bug in D by adding a no-args constructor.

11. A, B. A uses the original method’s signature verbatim, which is legal. B makes the subclass ver-
sion more accessible, which is legal. C makes the subclass version less accessible, which is not
legal. D and E change the return type, which is not legal.

12. C, D. Enums may not extend or be extended. They may contain methods and data just like ordi-
nary classes.

13. A, B, C, D. Enums may contain public static void main() methods and may serve as appli-
cation main classes. Enums inherit from Object, so they have toString(), wait(), and
notify() methods.

14. A. It is never possible to have two instances of an enum that represent the same value. So the ==
operator is reliable, and it’s faster than any method call.

15. A. An anonymous inner class must appear inside a block of code. There are no restrictions pre-
venting an anonymous inner class from accessing the enclosing class’ non-final data or methods
or calling the enclosing class’ synchronized methods.

4419c06.fm Page 211 Thursday, February 24, 2005 4:22 PM

212 Chapter 6 � Objects and Classes

16. A, B, D. Enums may be converted to Object, just like other objects. So A and B are legal, though
the cast in B is not necessary. Assigning an Object reference to an enum requires a cast, so C is
illegal, but D is legal.

17. A, C. An anonymous inner class may either implement a single interface or extend a parent class
other than Object, but not both.

18. B, C. Both name() and toString() return a constant’s name. name() is final, but toString()
can be overridden.

19. A. A method with default access may be overridden to have default, protected, or public access
but not private access, because a method may not be overridden with more restrictive access. An
overriding method may not declare that it throws exception types that do not appear in the
superclass version.

20. A, C, D. An overriding method may throw an unlimited number of exception types, provided all
types are the same as, or are descended from, the types that appear in the overridden version’s
declared list of thrown exception types.

4419c06.fm Page 212 Thursday, February 24, 2005 4:22 PM

Chapter

7

Threads

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

 4.1 Write code to define, instantiate, and start new threads

using both java.lang.Thread and java.lang.Runnable.

�

4.2 Recognize the states in which a thread can exist, and

identify ways in which a thread can transition from one state

to another.

�

4.3 Given a scenario, write code that makes appropriate use

of object locking to protect static or instance variables from

concurrent access problems.

�

4.4 Given a scenario, write code that makes appropriate use

of wait, notify, or notifyAll.

4419c07.fm Page 213 Thursday, February 17, 2005 5:47 PM

Threads are Java’s way of making a single Java Virtual Machine
(JVM) look like many machines, all running at the same time. This
effect, usually, is an illusion: there is only one JVM and usually only

one CPU, but the CPU switches among the JVM’s various threads to give the impression that there
are multiple CPUs. JVM threads work behind the scenes on your behalf, listening for user input,
managing garbage collection, and performing a variety of other tasks.

As a Java programmer, you can choose between a

single-threaded

 and a

multithreaded

 pro-
gramming paradigm. A single-threaded Java program has one entry point (the

main()

 method)
and one exit point. All instructions are run serially, from start to finish. A multithreaded program
has a

first

 entry point (the

main()

 method), followed by multiple entry and exit points for other
methods that may be scheduled to run concurrently with the

main()

 method.
Java provides you with tools for creating and managing threads. Threads are valuable tools

for allowing unrelated, loosely related, or tightly related work to be programmed separately and
executed concurrently.

The Certification Exam objectives require that you be familiar with Java’s thread support,
including the mechanisms for creating, controlling, and communicating between threads.
This chapter begins with some fundamentals of thread programming. After that you’ll learn
about basic thread control techniques, and then move on to the real heart of the matter: mon-
itor programming.

Thread Fundamentals

Java’s thread support resides in three places:
�

The

java.lang.Thread

 class
�

The

java.lang.Object

 class
�

The Java language and JVM

In this section you’ll learn some of the underlying concepts of thread programming, including
what really happens when a thread executes, what happens after execution ends, basic thread
states, priorities, and daemon threads.

What a Thread Executes

To make a thread execute, you call its

start()

 method. Doing so registers the thread with a
piece of system code called the

thread scheduler

. The scheduler might be part of the JVM or of

4419c07.fm Page 214 Thursday, February 17, 2005 5:47 PM

Thread Fundamentals

215

the host operating system. The scheduler determines which thread is running on each available
CPU at any given time. Note that calling your thread’s

start()

 method doesn’t immediately
cause the thread to run; it just makes the thread

eligible

 to run. The thread must still contend
for CPU time with all the other threads. If all is well, then at some point in the future the thread
scheduler will permit your thread to execute.

During its lifetime, a thread spends some time executing and some time in any of several non-
executing states. In this section, you can ignore (for the moment) the question of how the thread
is moved between states. The question at hand is this: When the thread gets to execute, what
does it execute?

The simple answer is that it executes a method called

run()

. But which object’s

run()

method? You have two choices:
�

The thread can execute its own

run()

 method.
�

The thread can execute the

run()

 method of some other object.

If you want the thread to execute its own

run()

 method, you need to subclass the

Thread

class and implement the

run()

 method. For example:

1. public class CounterThread extends Thread {

2. public void run() {

3. for (int i = 1; i <= 10; i++) {

4. System.out.println(“Counting: “ + i);

5. }

6. }

7. }

This

run()

 method prints out the numbers from 1 to 10. To do this in a thread, you first con-
struct an instance of

CounterThread

 and then invoke its

start()

 method:

1. CounterThread ct = new CounterThread();

2. ct.start(); // start(), not run()

What you

don’t

 do is call

run()

 directly; that would just count to 10 in the current thread.
Instead, you call

start()

, which the

CounterThread

 class inherits from its parent class,

Thread

. The

start()

 method registers the thread

ct

 with the thread scheduler; eventually
the thread will execute, and at that time its

run()

 method will be called.
If you want your thread to execute the

run()

 method of some object other than itself, you
still need to construct an instance of the

Thread

 class. The only difference is that when you call
the

Thread

 constructor, you have to specify which object owns the

run()

 method that you
want. To do this, you invoke an alternate form of the

Thread

 constructor:

public Thread(Runnable target)

The

Runnable

 interface describes a single method:

public void run();

4419c07.fm Page 215 Thursday, February 17, 2005 5:47 PM

216

Chapter 7 �

Threads

Thus you can pass any object you want into the

Thread

 constructor, provided it implements the

Runnable

 interface (so that it really does have a

run()

 method for the thread scheduler to invoke).
The object is called the thread’s

target

. Having constructed an instance of

Thread

, you proceed as
before: you invoke the

start()

 method. As before, doing so registers the thread with the sched-
uler, and eventually the

run()

 method of the target will be called.
For example, the following class has a

run()

 method that counts down from 10 to 1:

1. public class DownCounter implements Runnable {

2. public void run() {

3. for (int i = 10; i >= 1; i——) {

4. System.out.println(“Counting Down: “ + i);

5. }

6. }

7. }

This class does not extend

Thread

. However, it has a

run()

 method, and it declares that it
implements the

Runnable

 interface. Thus any instance of the

DownCounter

 class is eligible
to be passed into the alternative (nondefault) constructor for

Thread

:

1. DownCounter dc = new DownCounter();

2. Thread t = new Thread(dc);

3. t.start();

This section has presented two strategies for constructing threads: extending

Thread and
implementing Runnable. Superficially, the only difference between these two strategies is the
location of the run() method. The second strategy, where a runnable target is passed into the
constructor, is perhaps a bit more complicated in the case of the simple examples we have con-
sidered. However, there are good reasons why you might choose to make this extra effort. The
run() method, like any other member method, is allowed to access the private data, and call the
private methods, of the class of which it is a member. Putting run() in a subclass of Thread may
mean that the method cannot access the features it needs (or cannot access those features in a
clean, reasonable manner).

Another reason that might persuade you to implement your threads using runnables rather
than subclassing Thread is the single-implementation inheritance rule. If you write a subclass of
Thread, it cannot be a subclass of anything else; but using Runnable, you can subclass whatever
other parent class you choose.

Finally, from an object-oriented point of view, a subclass of Thread combines two unrelated
functionalities: support for multithreading inherited from the Thread superclass and execution
behavior provided by the run() method. These functionalities are not closely related, so good
object-oriented discipline suggests that they exist in two separate classes. In the jargon of object-
oriented analysis, if you create a class that extends Thread, you’re saying that your class “is a”
thread. If you create a class that implements Runnable, you’re saying that your class “is asso-
ciated with” a thread.

4419c07.fm Page 216 Thursday, February 17, 2005 5:47 PM

Thread Fundamentals 217

To summarize, you can use two approaches to specify which run() method will be executed
by a thread:
� Subclass Thread. Define your run() method in the subclass.
� Write a class that implements Runnable. Define your run() method in that class. Pass an

instance of that class into your call to the Thread constructor.

When Execution Ends

When the run() method returns, the thread has finished its task and is considered dead. There
is no way out of this state. Once a thread is dead, it cannot be started again; if you want the
thread’s task to be performed again, you have to construct and start a new thread instance. The
dead thread continues to exist; it is an object like any other object, and you can still access its
data and call its methods. You just can’t make it run again. In other words,
� You can’t restart a dead thread by calling its start() or run() methods.
� You can call other methods (besides start() and run()) of a dead thread.

The Thread methods include a method called stop(), which forcibly terminates a thread,
putting it into the dead state. This method is deprecated since JDK 1.2, because it can cause data
corruption or deadlock if you kill a thread that is in a critical section of code. Therefore, if a
thread might need to be killed from another thread, you should call interrupt() on it from the
killing method.

Although you can’t restart a dead thread, if you use runnables, you can submit the
old Runnable instance to a new thread. However, it is generally poor design to con-
stantly create, use, and discard threads, because constructing a Thread is a rela-
tively heavyweight operation, involving significant kernel resources. It is better to
create a pool of reusable worker threads that can be assigned chores as needed.

Thread States

When you call start() on a thread, the thread does not run immediately. It goes into a “ready-
to-run” state and stays there until the scheduler moves it to the “running” state. Then the run()
method is called. In the course of executing run(), the thread may temporarily give up the CPU
and enter some other state for a while. It is important to be aware of the possible states a thread
might be in and of the triggers that can cause the thread’s state to change.

The thread states are as follows:

Running A running thread gets the full attention of the JVM’s processor, which executes the
thread’s run() method.

Various non-running states The basic non-running states are Suspended, Sleeping, and Blocked.
There are also some non-running states that relate to monitors, which are explained later in this
chapter.

4419c07.fm Page 217 Thursday, February 17, 2005 5:47 PM

218 Chapter 7 � Threads

Ready A ready thread can enter the Running state as soon as the JVM’s processor is assigned to it.

Dead A dead thread has completed execution of its run() method.

Figure 7.1 shows only the living states.
At the top of Figure 7.1 is the Running state. At the bottom is the Ready state. In between

are the various non-running states. A thread in one of these intermediate states is waiting for
something to happen; when that something eventually happens, the thread moves to the Ready
state, and eventually the thread scheduler will permit it to run again.

Note that the methods associated with the Suspended state are now depre-
cated; you will not be tested on this state or its associated methods in the exam.
For this reason, we will not discuss them in any detail in this book.

The arrows between the bubbles in Figure 7.1 represent state transitions. Be aware that only
the thread scheduler can move a ready thread into the CPU.

Later in this chapter, you will examine in detail the various waiting states. For now, the impor-
tant thing to observe in Figure 7.1 is the general flow: a running thread enters an intermediate non-
running state; later, whatever the thread was waiting for comes to pass, and the thread enters the
Ready state; later still, the scheduler grants the CPU to the thread. The exceptions to this general
flow involve synchronized code and the wait()…notify() sequence—the corresponding por-
tion of Figure 7.1 is depicted as a bubble labeled “Monitor States.”

These monitor states are discussed later in this chapter, in the section “Moni-
tors, Waiting, and Notifying.”

F I G U R E 7 . 1 Living thread states

4419c07.fm Page 218 Thursday, February 17, 2005 5:47 PM

Thread Fundamentals 219

Thread Priorities

Every thread has a priority, which is an integer from 1 to 10; threads with higher priority should
get preference over threads with lower priority. The thread scheduler considers the priority when
it decides which ready thread should execute. The scheduler generally chooses the highest-priority
waiting thread. If more than one thread is waiting, the scheduler chooses one of them. There is no
guarantee that the thread chosen will be the one that has been waiting the longest.

The default priority is 5, but all newly created threads have their priority set to that of the cre-
ating thread. To set a thread’s priority, call the setPriority() method, passing in the desired
new priority. The getPriority() method returns a thread’s priority. The following code frag-
ment increments the priority of thread theThread, provided the priority is less than 10. Instead
of hard-coding the value 10, the fragment uses the constant MAX_PRIORITY. The Thread class also
defines constants for MIN_PRIORITY (which is 1) and NORM_PRIORITY (which is 5).

1. int oldPriority = theThread.getPriority();

2. int newPriority = Math.min(oldPriority+1,

3. Thread.MAX_PRIORITY);

4. theThread.setPriority(newPriority);

The specifics of how thread priorities affect scheduling are platform dependent.
The Java specification states that threads must have priorities, but it does not
dictate precisely what the scheduler should do about priorities. This vagueness
is a problem: algorithms that rely on manipulating thread priorities might not run
consistently on all platforms.

Daemon Threads

Some threads are daemon threads. (Pronounced like “demon,” the name comes from the
rich folklore of the early days of Unix.) Daemon threads are infrastructure threads, created
automatically by the JVM. The garbage collector is a daemon thread, and so is the GUI
event-processing thread.

When an application begins to run, there is only one non-daemon thread in existence: the main
thread, which runs your main() method. Any threads created by daemon threads are initially dae-
mon threads. Threads created by non-daemon threads are initially non-daemon threads. Before a
thread begins execution, you can change its daemon status by calling its setDaemon() method,
which takes a boolean argument. The JVM runs until the only live threads are daemons. In other
words, the JVM considers its work to be done when the only remaining threads are its own infra-
structure threads.

4419c07.fm Page 219 Thursday, February 17, 2005 5:47 PM

220 Chapter 7 � Threads

Controlling Threads
Thread control is the art of moving threads from state to state. You control threads by triggering
state transitions. This section examines the various pathways out of the Running state. These
pathways are
� Yielding
� Suspending and then resuming
� Sleeping and then waking up
� Blocking and then continuing
� Waiting and then being notified

The first four of these pathways are presented below. The fifth concerns monitors, and is
discussed in the major section “Monitors, Waiting, and Notifying.”

Yielding

A thread can offer to move out of the virtual CPU by yielding. A call to the yield() method
causes the currently executing thread to move to the Ready state if the scheduler is willing to run
any other thread in place of the yielding thread. The Yield state is shown in Figure 7.2.

A thread that has yielded goes into the Ready state. There are two possible scenarios. If any
other threads are in the Ready state, then the thread that just yielded might have to wait a while
before it gets to execute again. However, if no other threads are waiting, then the thread that
just yielded will get to continue executing immediately. Note that most schedulers do not stop
the yielding thread from running in favor of a thread of lower priority.

The yield() method is a static method of the Thread class. It always causes the currently
executing thread to yield.

F I G U R E 7 . 2 Yield

scheduler
yield()

Ready

Running

4419c07.fm Page 220 Thursday, February 17, 2005 5:47 PM

Controlling Threads 221

Yielding allows a time-consuming thread to permit other threads to execute. For example,
consider an applet that computes a 300 × 300 pixel image using a ray-tracing algorithm. The
applet might have a Compute button and an Interrupt button. The action event handler for the
Compute button would create and start a separate thread, which would call a traceRays()
method. A first cut at this method might look like this:

1. private void traceRays() {

2. for (int j = 0; j < 300; j++) {

3. for (int i = 0; i < 300; i++) {

4. computeOnePixel(i, j);

5. }

6. }

7. }

There are 90,000 pixel color values to compute. If it takes 0.1 second to compute the color
value of one pixel, then it will take two and a half hours to compute the complete image.

Suppose after half an hour the user looks at the partial image and realizes that something is
wrong (perhaps the viewpoint or zoom factor is incorrect). The user will then click the Interrupt
button, because there is no sense in continuing to compute the useless image. Unfortunately, the
thread that handles GUI input might not get a chance to execute until the thread that is executing
traceRays() gives up the CPU. Thus the Interrupt button will not have any effect for another
two hours.

If priorities are implemented meaningfully in the scheduler, then lowering the priority of the
ray-tracing thread will have the desired effect, ensuring that the GUI thread will run when it has
something useful to do. However, this mechanism is not reliable between platforms (although
it is a good course of action anyway, because it will do no harm). The reliable approach is to
have the ray-tracing thread periodically yield. If no input is pending when the yield is executed,
then the ray-tracing thread will not be moved off the CPU. If, on the other hand, there is input
to be processed, the input-listening thread will get a chance to execute.

The ray-tracing thread can have its priority set like this:

rayTraceThread.setPriority(Thread.NORM_PRIORITY-1);

The traceRays() method listed earlier can yield after each pixel value is computed, after
line 4. The revised version looks like this:

1. private void traceRays() {

2. for (int j = 0; j < 300; j++) {

3. for (int i = 0; i < 300; i++) {

4. computeOnePixel(i, j);

5. Thread.yield();

6. }

7. }

8. }

4419c07.fm Page 221 Thursday, February 17, 2005 5:47 PM

222 Chapter 7 � Threads

Suspending

Suspending a thread is a mechanism that allows any arbitrary thread to make another thread
unready for an indefinite period of time. The suspended thread becomes ready when some other
thread resumes it. This might feel like a useful technique, but it is very easy to cause deadlock
in a program using these methods—a thread has no control over when it is suspended (the con-
trol comes from outside the thread) and it might be in a critical section, holding an object lock
at the time. The exact effect of suspend() and resume() is much better implemented using
wait() and notify().

The suspend() and resume() methods are deprecated as of the Java 2 release
and do not appear in the Certification Exam, so we will not discuss them any
further.

Sleeping

A sleeping thread passes time without doing anything and without using the CPU. A call to the
sleep() method requests the currently executing thread to cease executing for (approximately)
a specified amount of time. You can call this method two ways, depending on whether you want
to specify the sleep period to millisecond precision or to nanosecond precision:

public static void sleep(long milliseconds) throws InterruptedException

or

public static void sleep(long milliseconds, int nanoseconds) throws
InterruptedException

sleep(), like yield(), is static. Both methods operate on the currently execut-
ing thread.

The state diagram for the Sleeping state is shown in Figure 7.3. Notice that when the thread
has finished sleeping, it does not continue execution. As you would expect, it enters the Ready
state and will execute only when the thread scheduler allows it to do so. For this reason, you
should expect that a sleep() call will block a thread for at least the requested time, but it might
block for much longer. This behavior suggests that you should give very careful thought to your
design before you expect any meaning from the nanosecond-accuracy version of the sleep()
method.

The Thread class has a method called interrupt(). A sleeping thread that receives an
interrupt() call moves immediately into the Ready state; when it gets to run, it will execute
its InterruptedException handler.

4419c07.fm Page 222 Thursday, February 17, 2005 5:47 PM

Controlling Threads 223

F I G U R E 7 . 3 The Sleeping state

Blocking

Many methods that perform input or output have to wait for some occurrence in the outside
world before they can proceed; this behavior is known as blocking. A good example is reading
from a socket:

1. try {

2. Socket sock = new Socket(“magnesium”, 5505);

3. InputStream istr = sock.getInputStream();

4. int b = istr.read();

5. }

6. catch (IOException ex) {

7. // Handle the exception

8. }

It looks like line 4 reads a byte from an input stream that is connected to port 5505 on a
machine called magnesium. Actually, line 4 tries to read a byte. If a byte is available (that is, if
magnesium has previously written a byte), then line 4 can return immediately and execution can
continue. If magnesium has not yet written anything, however, the read() call has to wait. If
magnesium is busy doing other things and takes half an hour to get around to writing a byte,
then the read() call has to wait for half an hour.

Clearly, it would be a serious problem if the thread executing the read() call on line 4
remained in the Running state for the entire half hour. Nothing else could get done. In gen-
eral, if a method needs to wait an indeterminable amount of time until some I/O occurrence
takes place, then a thread executing that method should graciously step out of the Running
state. All Java I/O methods behave this way. A thread that has graciously stepped out in this
fashion is said to be blocked. Figure 7.4 shows the transitions of the Blocked state.

Running

sleep()

Sleeping

time expires
or interrupted

Ready

scheduler

4419c07.fm Page 223 Thursday, February 17, 2005 5:47 PM

224 Chapter 7 � Threads

F I G U R E 7 . 4 The Blocked state

In general, if you see a method with a name that suggests that it might do
nothing until something becomes ready—for example, waitForInput() or
waitForImages()—you should expect that the caller thread might be blocked,
thus losing the CPU, when the method is called. You do not need to know
about all APIs to make this assumption; this is a general principle of APIs,
both core and third party, in a Java environment.

A thread can also become blocked if it fails to acquire the lock for a monitor or if it issues a
wait() call. Locks and monitors are explained in detail later in the remainder of this chapter.
Internally, most blocking for I/O, like the read() calls just discussed, is implemented using
wait() and notify() calls.

Monitor States

Recall that Figure 7.1 showed all the thread-state transitions. The intermediate states on the right
side of the figure (Suspended, Sleeping, and Blocked) have been discussed in previous sections.
The monitor states are drawn all alone on the left side of the figure to emphasize that they are
very different from the other intermediate states.

The wait() method puts an executing thread into the Waiting state, and the notify() and
notifyAll() methods move waiting threads out of the Waiting state. However, these methods
are very different from suspend(), resume(), and yield(). For one thing, they are implemented
in the Object class, not in Thread. For another, they can be called only in synchronized code. The
Waiting state and its associated issues and subtleties are discussed in the final sections of this chap-
ter. But first, let’s look at one more topic concerning thread control.

4419c07.fm Page 224 Thursday, February 17, 2005 5:47 PM

Monitors, Waiting, and Notifying 225

Monitors, Waiting, and Notifying
You have seen that various conditions can cause a running thread to lose the JVM processor,
entering a non-running state. These non-running states were shown in Figure 7.1, which is
repeated here:

F I G U R E 7 . 5 Thread states (reprise)

In the remainder of this chapter, you’ll look at the Monitor States represented by the cloud
at the left of the figure.

A monitor is an object that can block and revive threads. The concept is simple, but it takes
a bit to understand what monitors are good for and how to use them effectively.

The reason for having monitors is that sometimes a thread cannot perform its job until an
object reaches a certain state. For example, consider a class that handles requests to write to
standard output:

1. class Mailbox {

2. public boolean request;

3. public String message;

4. }

The intention of this class is that a client can set message to some value and then set request
to true:

1. myMailbox.message = “Hello everybody.”;

2. myMailbox.request = true;

There must be a thread that checks request; on finding it true, the thread should write
message to System.out and then set request to false. (Setting request to false indicates

Running

BlockedSleepingSuspended

Ready

Monitor
States

4419c07.fm Page 225 Thursday, February 17, 2005 5:47 PM

226 Chapter 7 � Threads

that the mailbox object is ready to handle another request.) It is tempting to implement the
thread like this:

 1. public class Consumer extends Thread {

 2. private Mailbox myMailbox;

 3.

 4. public Consumer(Mailbox box) {

 5. this.myMailbox = box;

 6. }

 7.

 8. public void run() {

 9. while (true) {

10. if (myMailbox.request) {

11. System.out.println(myMailbox.message);

12. myMailbox.request = false;

13. }

14.

15. try {

16. sleep(50);

17. }

18. catch (InterruptedException e) { }

19. }

20. }

The consumer thread loops forever, checking for requests every 50 milliseconds. If there is
a request (line 10), the consumer thread writes the message to standard output (line 11) and then
sets request to false to show that it is ready for more requests.

The Consumer class may look fine at first glance, but it has two serious problems:
� The Consumer class accesses data internal to the Mailbox class, introducing the possibility

of corruption. On a time-sliced system, the consumer thread could just possibly be inter-
rupted between lines 10 and 11. The interrupting thread could just possibly be a client that
sets message to its own message (ignoring the convention of checking request to see if the
handler is available). The consumer thread would send the wrong message.

� The choice of 50 milliseconds for the delay can never be ideal. Sometimes 50 milliseconds
will be too long, and clients will receive slow service; sometimes 50 milliseconds will be too
frequent, and cycles will be wasted. A thread that wants to send a message has a similar
dilemma if it finds the request flag set: the thread should back off for a while, but for how
long? There is no good answer to this question.

Ideally, these problems would be solved by making some modifications to the Mailbox class:
� The mailbox should be able to protect its data from irresponsible clients.

4419c07.fm Page 226 Thursday, February 17, 2005 5:47 PM

Monitors, Waiting, and Notifying 227

� If the mailbox is not available—that is, if the request flag is already set—then a client
consumer should not have to guess how long to wait before checking the flag again. The
handler should tell the client when the time is right.

Java’s monitor support addresses these issues by providing the following resources:
� A lock for each object
� The synchronized keyword for accessing an object’s lock
� The wait(), notify(), and notifyAll() methods, which allow the object to control

client threads

The following sections describe locks (including class locks and deadlocking), synchronized
code, and the wait(), notify(), and notifyAll() methods, and show how these can be used
to make thread code more robust.

The Object Lock and Synchronization

Every object has a lock. At any moment, that lock is controlled by, at most, one single thread.
The lock controls access to the object’s synchronized code. A thread that wants to execute an
object’s synchronized code must first attempt to acquire that object’s lock. If the lock is avail-
able—that is, if it is not already controlled by another thread—then all is well. If the lock is
under another thread’s control, then the attempting thread goes into the Seeking Lock state
and becomes ready only when the lock becomes available. When a thread that owns a lock
passes out of the synchronized code, the thread automatically gives up the lock. All this lock-
checking and state-changing is done behind the scenes; the only explicit programming you
need to do is to declare code to be synchronized.

Figure 7.6 shows the Seeking Lock state. This figure is the first state in our expansion of the
monitor states, as depicted in Figure 7.1.

F I G U R E 7 . 6 The Seeking Lock state

4419c07.fm Page 227 Thursday, February 17, 2005 5:47 PM

228 Chapter 7 � Threads

You can mark code as synchronized two ways:
� Synchronize an entire method by putting the synchronized modifier in the method’s dec-

laration. To execute the method, a thread must acquire the lock of the object that owns the
method.

� Synchronize a subset of a method by surrounding the desired lines of code with curly brack-
ets ({}) and inserting the expression synchronized(someObject) before the opening
curly. This technique allows you to synchronize the block on the lock of any object at all,
not necessarily the object that owns the code.

The first technique is by far the more common; synchronizing on any object other than the
object that owns the synchronized code can be extremely dangerous.

The Certification Exam requires you to know how to apply the second tech-
nique, but the exam does not make you think through complicated scenarios of
synchronizing on external objects. The second technique is discussed at the
end of this chapter.

Synchronization makes it easy to clean up some of the problems with the Mailbox class:

 1. class Mailbox {

 2. private boolean request;

 3. private String message;

 4.

 5. public synchronized void

 6. storeMessage(String message) {

 7. request = true;

 8. this.message = message;

 9. }

10.

11. public synchronized String retrieveMessage() {

12. request = false;

13. return message;

14. }

15. }

Now the request flag and the message string are private, so they can be modified only via
the public methods of the class. Because storeMessage() and retrieveMessage() are syn-
chronized, there is no danger of a message-producing thread corrupting the flag and spoiling
things for a message-consuming thread, or vice versa.

4419c07.fm Page 228 Thursday, February 17, 2005 5:47 PM

Monitors, Waiting, and Notifying 229

The Mailbox class is now safe from its clients, but the clients still have problems. A
message-producing client should call storeMessage() only when the request flag is false;
a message-consuming client should call retrieveMessage() only when the request flag is
true. In the Consumer class of the previous section, the consuming thread’s main loop polled
the request flag every 50 milliseconds. (Presumably a message-producing thread would do
something similar.) Now the request flag is private, so you must find another way.

It is possible to come up with any number of clever ways for the client threads to poll the
mailbox, but the whole approach is backward. The mailbox becomes available or unavailable
based on changes of its own state. The mailbox should be in charge of the progress of the clients.
Java’s wait() and notify() methods provide the necessary controls, as you will see in the next
section.

wait() and notify()

The wait() and notify() methods provide a way for a shared object to pause a thread when
it becomes unavailable to that thread and to allow the thread to continue when appropriate.
The threads themselves never have to check the state of the shared object.

An object that controls its client threads in this manner is known as a monitor. In strict Java
terminology, a monitor is any object that has some synchronized code. Any such object has the
infrastructure needed to allow it to block and revive threads. To be really useful, most monitors
make use of wait() and notify() methods. So, the Mailbox class is already a monitor; it just
is not quite useful yet.

Figure 7.7 shows the state transitions of wait() and notify().

F I G U R E 7 . 7 The monitor states

4419c07.fm Page 229 Thursday, February 17, 2005 5:47 PM

230 Chapter 7 � Threads

Both wait() and notify() must be called in synchronized code. A thread that calls wait()
releases the virtual CPU; at the same time, it releases the lock. It enters a pool of waiting threads,
which is managed by the object whose wait() method got called. Every object has such a pool.
The following code shows how the Mailbox class’s retrieveMessage() method could be
modified to begin taking advantage of calling wait():

1. public synchronized String retrieveMessage() {

2. while (request == false) {

3. try {

4. wait();

5. } catch (InterruptedException e) { }

6. }

7. request = false;

8. return message;

9. }

Now consider what happens when a message-consuming thread calls this method. The call
might look like this:

myMailbox.retrieveMessage();

When a message-consuming thread calls this method, the thread must first acquire the lock for
myMailbox. Acquiring the lock could happen immediately, or it could incur a delay if some other
thread is executing any of the synchronized code of myMailbox. One way or another, eventually the
consumer thread has the lock and begins to execute at line 2. The code first checks the request
flag. If the flag is not set, then myMailbox has no message for the thread to retrieve. In this case the
wait() method is called at line 4 (it can throw an InterruptedException, so the try/catch
code is required, and the while will retest the condition). When line 4 executes, the consumer
thread ceases execution; it also releases the lock for myMailbox and enters the pool of waiting
threads managed by myMailbox.

The consumer thread has been successfully prevented from corrupting the myMailbox monitor.
Unfortunately, it is stuck in the monitor’s pool of waiting threads. When the monitor changes to
a state where it can provide the consumer with something to do, then something will have to be
done to get the consumer out of the Waiting state. This is done by calling notify() when the
monitor’s request flag becomes true, which happens only in the storeMessage() method. The
revised storeMessage() looks like this:

1. public synchronized void

2. storeMessage(String message) {

3. this.message = message;

4. request = true;

5. notify();

6. }

4419c07.fm Page 230 Thursday, February 17, 2005 5:47 PM

Monitors, Waiting, and Notifying 231

On line 5, the code calls notify() just after changing the monitor’s state. The notify()
method arbitrarily selects one of the threads in the monitor’s waiting pool and moves it to the
Seeking Lock state. Eventually that thread will acquire the mailbox’s lock and can proceed with
execution.

Now imagine a complete scenario. A consumer thread calls retrieveMessage() on a mail-
box that has no message. It acquires the lock and begins executing the method. It sees that the
request flag is false, so it calls wait() and joins the mailbox’s waiting pool. (In this simple
example, no other threads are in the pool.) Because the consumer has called wait(), it has given
up the lock. Later, a message-producing thread calls storeMessage() on the same mailbox. It
acquires the lock, stores its message in the monitor’s instance variable, and sets the request flag
to true. The producer then calls notify(). At this moment, only one thread is in the monitor’s
waiting pool: the consumer. So the consumer gets moved out of the waiting pool and into the
Seeking Lock state. Now the producer returns from storeMessage(); because the producer has
exited from synchronized code, it gives up the monitor’s lock. Later the patient consumer reac-
quires the lock and gets to execute; once this happens, it checks the request flag and (finally!)
sees that a message is available for consumption. The consumer returns the message; upon
return it automatically releases the lock.

To briefly summarize this scenario: a consumer tried to consume something, but there was
nothing to consume, so the consumer waited. Later a producer produced something. At that
point there was something for the consumer to consume, so the consumer was notified; once the
producer was done with the monitor, the consumer consumed a message.

As Figure 7.7 shows, a waiting thread has ways to get out of the Waiting state
that do not require being notified. One version of the wait() call takes an argu-
ment that specifies a timeout in milliseconds; if the timeout expires, the thread
moves to the Seeking Lock state, even if it has not been notified. No matter what
version of wait() is invoked, if the waiting thread receives an interrupt() call,
it moves immediately to the Seeking Lock state.

This example protected the consumer against the possibility that the monitor might be empty;
the protection was implemented with a wait() call in retrieveMessage() and a notify() call
in storeMessage(). A similar precaution must be taken in case a producer thread wants to pro-
duce into a monitor that already contains a message. To be robust, storeMessage() needs to
call wait(), and retrieveMessage() needs to call notify(). The complete Mailbox class
looks like this:

 1. class Mailbox {

 2. private boolean request;

 3. private String message;

 4.

 5. public synchronized void

 6. storeMessage(String message) {

 7. while(request == true) {

4419c07.fm Page 231 Thursday, February 17, 2005 5:47 PM

232 Chapter 7 � Threads

 8. // No room for another message

 9. try {

10. wait();

11. } catch (InterruptedException e) { }

12. }

13. request = true;

14. this.message = message;

15. notify();

16. }

17.

18. public synchronized String retrieveMessage() {

19. while(request == false) {

20. // No message to retrieve

21. try {

22. wait();

23. } catch (InterruptedException e) { }

24. }

25. request = false;

26. notify();

27. return message;

28. }

29. }

By synchronizing code and judiciously calling wait() and notify(), monitors
such as the Mailbox class can ensure the proper interaction of client threads
and protect shared data from corruption.

Here are the main points to remember about wait():
� The calling thread gives up the CPU.
� The calling thread gives up the lock.
� The calling thread goes into the monitor’s waiting pool.

Here are the main points to remember about notify():
� One arbitrarily chosen thread gets moved out of the monitor’s waiting pool and into the

Seeking Lock state.
� The thread that was notified must reacquire the monitor’s lock before it can proceed.

4419c07.fm Page 232 Thursday, February 17, 2005 5:47 PM

Monitors, Waiting, and Notifying 233

Order of Notification

If an object has multiple threads waiting for it, there is no guarantee about the order in which
those threads will be revived when the object receives a notifyAll() call. In this exercise, you’ll
observe the order of notification on your own JVM.

Begin with a class called Rendezvous, which has a single method called hurryUpAndWait(). The
method increments a counter and then calls wait(). Does the method need to be synchronized?

Next create a class called Waiter, which extends Thread. Its constructor should take an argument
of type Rendezvous. Its run() method calls hurryUpAndWait() on the instance of Rendezvous and
then prints out a message to report that notification has happened. (Getting notified is the only
way to return from hurryUpAndWait().) Each instance of Waiter should have a unique serial num-
ber, assigned at creation time and printed out after notification, so that you will be able to know
the order in which threads were notified.

Your main class should create one instance of Rendezvous and multiple instances of Waiter.
The number of Waiter instances should be specified on the command line. After each Waiter
is created, call its hurryUpAndWait() method. Eventually all the Waiter instances will be waiting
on the Rendezvous object. Then call notifyAll() on Rendezvous. Observe the order in which
threads report that they have been notified.

One possible solution appears on the CD-ROM in the file solutions\Chapter_07\NotifyLab.java.
Here is a sample of its output:

>java NotifyLab 5

Thread #0 just got notified.

Thread #2 just got notified.

Thread #3 just got notified.

Thread #4 just got notified.

Thread #1 just got notified.

Your own results could be different, depending on the maker and revision of your JVM. You also
might observe different results from one execution to the next. There are three possible results:

� Threads always get notified in serial-number order.

� Threads get notified in a scrambled order that is always the same.

� Threads get notified in a scrambled order that changes from one execution to the next.

4419c07.fm Page 233 Thursday, February 17, 2005 5:47 PM

234 Chapter 7 � Threads

The Class Lock

It is clear by now that every object (that is, every instance of every class) has a lock. Every class
also has a lock. The class lock controls access to all synchronized static code in the class. Con-
sider the following example:

class X {

 static int x, y;

 static synchronized void foo() {

 x++;

 y++;

 }

}

When the foo() method is called (for example, with the code X.foo()), the invoking thread
must acquire the class lock for the X class. Ordinarily, when a thread attempts to call a nonstatic
synchronized method, the thread must acquire the lock of the current object; the current object
is referenced by this in the scope of the method. However, there is no this reference in a static
method because there is no current object.

If Java did not provide class locks, there would be no built-in way to synchronize static code
and no way to protect shared static data such as x and y in the previous example.

notifyAll()

The mailbox example above is a very simple example of a situation involving one producer and
one consumer. In real life, things are not always so simple. You might have a monitor that has
several methods that do not purely produce or purely consume. All you can say in general about
such methods is that they cannot proceed unless the monitor is in a certain state, and they them-
selves can change the monitor’s state in ways that could be of vital interest to the other methods.

The notify() method is not precise: You cannot specify which thread is to be notified. In a
mixed-up scenario such as the one just described, a thread might alter the monitor’s state in a way

Be careful about drawing the wrong conclusions from your observations. It you see a repeated
order (serial or scrambled), that doesn’t prove that your JVM’s notifier has predictable behav-
ior. It might have random behavior that just happened to come out the same every time you ran
your application. Of course, if you see the same order 100 or 1000 times in a row, that’s prob-
ably not a coincidence. But any conclusion you draw is just an educated speculation about the
inner workings of one rev of one JVM. Never rely on observed notification behavior, for the
simple reason that other JVMs that could want to run your software might have other notifica-
tion behavior patterns.

4419c07.fm Page 234 Thursday, February 17, 2005 5:47 PM

Monitors, Waiting, and Notifying 235

that is useless to the particular thread that gets notified. In such a case, the monitor’s methods
should take two precautions:
� Always check the monitor’s state in a while loop rather than an if statement.
� After changing the monitor’s state, call notifyAll() rather than notify().

The first precaution means that you should not do the following:

1. public synchronized void mixedUpMethod() {

2. if (i<16 || f>4.3f || message.equals(“UH-OH”) {

3. try { wait(); } catch (InterruptedException e) { }

4. }

5.

6. // Proceed in a way that changes state, and then...

7. notify();

8. }

The danger is that sometimes a thread might execute the test on line 2 and then notice that i is
(for example) 15 and have to wait. Later, another thread might change the monitor’s state by
setting i to −23444 and then call notify(). If the original thread is the one that gets notified,
it will pick up where it left off, even though the monitor is not in a state where it is ready for
mixedUpMethod().

The solution is to change mixedUpMethod() as follows:

1. public synchronized void mixedUpMethod() {

2. while (i<16 || f>4.3f || message.equals(“UH-OH”) {

3. try { wait(); } catch (InterruptedException e) { }

4. }

5.

6. // Proceed in a way that changes state, and then...

7. notifyAll();

8. }

The monitor’s other synchronized methods should be modified in a similar manner. Now when
a waiting thread gets notified, it does not assume that the monitor’s state is acceptable. It checks
again, in the while-loop check on line 2. If the state is still not conducive, the thread waits again.

On line 7, having made its own modifications to the monitor’s state, the code calls
notifyAll(); this call is like notify(), but it moves every thread in the monitor’s waiting pool
to the Seeking Lock state. Presumably every thread’s wait() call happened in a loop like the one
on lines 2–4, so every thread will once again check the monitor’s state and either wait or pro-
ceed. Note that if a monitor has a large number of waiting threads, calling notifyAll() can
cost a lot of time.

4419c07.fm Page 235 Thursday, February 17, 2005 5:47 PM

236 Chapter 7 � Threads

Using a while loop to check the monitor’s state is a good idea even if you are
coding a pure model of one producer and one consumer. After all, you can
never be sure that somebody won’t try to add an extra producer or an extra
consumer.

Deadlock

The term deadlock describes another class of situations that might prevent a thread from
executing. In general terms, if a thread blocks because it is waiting for a condition, and some-
thing else in the program makes it impossible for that condition to arise, then the thread is
said to be deadlocked.

Deadlock conditions can arise for many reasons, but there is one classic example of the
situation that is easy to understand. Because it is used as the standard example, this situation
has a special name of its own: “deadly embrace.”

Imagine a thread is trying to obtain exclusive use of two locks that are encapsulated in objects
a and b. First the thread gets the lock on object a, and then it proceeds to try to get the lock on
object b. This process sounds innocent enough, but now imagine that another thread already
holds the lock on object b. Clearly, the first thread cannot proceed until the second thread
releases the lock on object b.

Now for the nasty part: imagine that the other thread, while holding the lock on object b, is
trying to get the lock on object a. This situation is now hopeless. The first thread holds the lock
on object a and cannot proceed without the lock on object b. Further, the first thread cannot
release the lock on object a until it has obtained the lock on object b. At the same time, the sec-
ond thread holds the lock on object b and cannot release it until it obtains the lock on object a.

Let’s have a look at code that could cause this situation:

 1. public class Deadlock implements Runnable {

 2. public static void main(String [] args) {

 3. Object a = "Resource A";

 4. Object b = "Resource B";

 5. Thread t1 = new Thread(new Deadlock(a, b));

 6. Thread t2 = new Thread(new Deadlock(b, a));

 7. t1.start();

 8. t2.start();

 9. }

10.

11. private Object firstResource;

12. private Object secondResource;

13.

14. public Deadlock(Object first, Object second) {

4419c07.fm Page 236 Thursday, February 17, 2005 5:47 PM

Monitors, Waiting, and Notifying 237

15. firstResource = first;

16. secondResource = second;

17. }

18.

19. public void run() {

20. while (true) {

21. System.out.println(

22. Thread.currentThread().getName() +

23. " Looking for lock on " + firstResource);

24.

25. synchronized (firstResource) {

26. System.out.println(

27. Thread.currentThread().getName() +

28. " Obtained lock on " + firstResource);

29.

30. System.out.println(

31. Thread.currentThread().getName() +

32. " Looking for lock on " + secondResource);

33.

34. synchronized (secondResource) {

35. System.out.println(

36. Thread.currentThread().getName() +

37. " Obtained lock on " + secondResource);

38. // simulate some time consuming activity

39. try { Thread.sleep(100); }

40. catch (InterruptedException ex) {}

41. }

42. }

43. }

44. }

45. }

In this code, the resources are locked at lines 25 and 34. Notice that, although the same code
executes in both threads, the references firstResource and secondResource actually refer to
different objects in both threads. This is the case because of the way the two Deadlock instances
are constructed on lines 5 and 6.

When you run the code, the exact behavior is nondeterministic, because of differences in
thread scheduling between executions. Commonly, however, the output will look something
like this:

Thread-0 Looking for lock on Resource A

Thread-0 Obtained lock on Resource A

4419c07.fm Page 237 Thursday, February 17, 2005 5:47 PM

238 Chapter 7 � Threads

Thread-1 Looking for lock on Resource B

Thread-0 Looking for lock on Resource B

Thread-1 Obtained lock on Resource B

Thread-1 Looking for lock on Resource A

If you study this output, you will see that the first thread (Thread-1) holds the lock on Resource
A and is trying to obtain the lock on Resource B. Meanwhile, the second thread (Thread-2)
holds the lock on Resource B—which prevents the first thread from ever executing. Further, the
second thread is waiting for Resource A and can never proceed because that object will never
be released by the first thread.

It is useful to realize that if both threads were looking for the locks in the same order, then
the deadly embrace situation would never occur. However, it can be very difficult to arrange for
this ordering solution in situations where the threads are disparate parts of the program. Indeed,
looking at the variables used in this example, you will see that it can sometimes be difficult to
recognize an ordering problem like this even if the code is all in one place.

Synchronizing Part of a Method

There is an additional way to synchronize code. It is hardly common and generally should not
be used without a compelling reason. This approach is to synchronize on the lock of a different
object.

We briefly mentioned in the section “The Object Lock and Synchronization” that you can
synchronize on the lock of any object. Suppose, for example, that you have the following class,
which is admittedly a bit contrived:

1. class StrangeSync {

2. Rectangle rect = new Rectangle(11, 13, 1100, 1300);

3. void doit() {

4. int x = 504;

5. int y = x / 3;

6. rect.width -= x;

7. rect.height -= y;

8. }

9. }

If you add the synchronized keyword at line 3, then a thread that wants to execute the doit()
method of some instance of StrangeSync must first acquire the lock for that instance. That may
be exactly what you want. However, perhaps you want to synchronize only lines 6 and 7, and
perhaps you want a thread attempting to execute those lines to synchronize on the lock of rect,
rather than on the lock of the current executing object. The way to do this is shown here:

 1. class StrangeSync {

 2. Rectangle rect = new Rectangle(11, 13, 1100, 1300);

 3. void doit() {

4419c07.fm Page 238 Thursday, February 17, 2005 5:47 PM

Summary 239

 4. int x = 504;

 5. int y = x / 3;

 6. synchronized(rect) {

 7. rect.width -= x;

 8. rect.height -= y;

 9. }

10. }

11. }

This code synchronizes on the lock of some arbitrary object (specified in parentheses after the
synchronized keyword on line 6), rather than synchronizing on the lock of the current object.
Also, the code synchronizes just two lines, rather than an entire method.

It is difficult to find a good reason for synchronizing on an arbitrary object. However,
synchronizing only a subset of a method can be useful; sometimes you want to hold the lock
as briefly as possible, so that other threads can get their turn as soon as possible. The Java
compiler insists that when you synchronize a portion of a method (rather than the entire
method), you have to specify an object in parentheses after the synchronized keyword. If
you put this in the parentheses, then the goal is achieved: you have synchronized a portion
of a method, with the lock using the lock of the object that owns the method.

To summarize, your options are
� To synchronize an entire method, using the lock of the object that owns the method. To do

this, put the synchronized keyword in the method’s declaration.
� To synchronize part of a method, using the lock of an arbitrary object. Put curly brackets

around the code to be synchronized, preceded by synchronized(theArbitraryObject).
� To synchronize part of a method, using the lock of the object that owns the method. Put

curly brackets around the code to be synchronized, preceded by synchronized(this).

Summary
A Java thread scheduler can be preemptive or time-sliced, depending on the design of the JVM. No
matter which design is used, a thread becomes eligible for execution (ready) when its start()
method is invoked. When a thread begins execution, the scheduler calls the run() method of the
thread’s target (if there is a target) or the run() method of the thread itself (if there is no target).
The target must be an instance of a class that implements the Runnable interface.

In the course of execution, a thread can become ineligible for execution for a number of rea-
sons: A thread can suspend, sleep, block, or wait. In due time (we hope!), conditions will change
so that the thread once more becomes eligible for execution; then the thread enters the Ready
state and eventually can execute.

When a thread returns from its run() method, it enters the Dead state and cannot be
restarted.

4419c07.fm Page 239 Thursday, February 17, 2005 5:47 PM

240 Chapter 7 � Threads

You might find the following lists to be a useful summary of Java’s threads.
� Scheduler implementations:

� Preemptive
� Time-sliced

� Constructing a thread:
� new Thread(): no target; thread’s own run() method is executed
� new Thread(Runnable target): target’s run() method is executed

� Nonrunnable thread states:
� Suspended: caused by suspend(), waits for resume()
� Sleeping: caused by sleep(), waits for timeout
� Blocked: caused by various I/O calls or by failing to get a monitor’s lock, waits for I/O

or for the monitor’s lock
� Waiting: caused by wait(), waits for notify() or notifyAll()
� Dead: caused by stop() or returning from run(), no way out

Exam Essentials
Know how to write and run code for a thread by extending java.lang.Thread. Extend the
Thread class, overriding the run() method. Create an instance of the subclass and call its
start() method to launch the new thread.

Know how to write and run code for a thread by implementing the interface java.lang
.Runnable. Create a class that implements Runnable. Construct the thread with the
Thread(Runnable) constructor and call its start() method.

Know the mechanisms that suspend a thread’s execution. These mechanisms include entering
any synchronized code or calling wait(), yield(), or sleep().

Recognize code that might cause deadly embrace. Deadlock conditions cause permanent
suspension of threads, and deadly embrace is the classic example of this.

Understand the functionality of the wait(), notify(), and notifyAll() methods.
The wait() method puts the current thread in the current object’s Waiting state. The
notify() method arbitrarily moves one thread out of the current object’s Waiting state.
The notifyAll() method moves all threadd out of the current object’s Waiting state.

Know that the resumption order of threads that execute wait() on an object is not specified.
The Java specification states that the resumption order for threads waiting on an object is
unspecified.

4419c07.fm Page 240 Thursday, February 17, 2005 5:47 PM

Review Questions 241

Review Questions
1. Which one statement is true concerning the following code?

 1. class Greebo extends java.util.Vector

 2. implements Runnable {

 3. public void run(String message) {

 4. System.out.println(“in run() method: “ +

 5. message);

 6. }

 7. }

 8.

 9. class GreeboTest {

10. public static void main(String args[]) {

12. Greebo g = new Greebo();

13. Thread t = new Thread(g);

14. t.start();

15. }

16. }

A. There will be a compiler error, because class Greebo does not correctly implement the
Runnable interface.

B. There will be a compiler error at line 13, because you cannot pass a parameter to the
 constructor of a Thread.

C. The code will compile correctly but will crash with an exception at line 13.

D. The code will compile correctly but will crash with an exception at line 14.

E. The code will compile correctly and will execute without throwing any exceptions.

2. Which one statement is always true about the following application?

 1. class HiPri extends Thread {

 2. HiPri() {

 3. setPriority(10);

 4. }

 5.

 6. public void run() {

 7. System.out.println(

 8. “Another thread starting up.”);

 9. while (true) { }

10. }

11.

12. public static void main(String args[]) {

4419c07.fm Page 241 Thursday, February 17, 2005 5:47 PM

242 Chapter 7 � Threads

13. HiPri hp1 = new HiPri();

14. HiPri hp2 = new HiPri();

15. HiPri hp3 = new HiPri();

16. hp1.start();

17. hp2.start();

18. hp3.start();

19. }

20. }

A. When the application is run, thread hp1 will execute; threads hp2 and hp3 will never get
the CPU.

B. When the application is run, thread hp1 will execute to completion, thread hp2 will execute
to completion, then thread hp3 will execute to completion.

C. When the application is run, all three threads (hp1, hp2, and hp3) will execute concurrently,
taking time-sliced turns in the CPU.

D. None of the above scenarios can be guaranteed to happen in all cases.

3. A thread wants to make a second thread ineligible for execution. To do this, the first thread can
call the yield() method on the second thread.

A. True

B. False

4. A thread’s run() method includes the following lines:

1. try {

2. sleep(100);

3. } catch (InterruptedException e) { }

Assuming the thread is not interrupted, which one of the following statements is correct?

A. The code will not compile, because exceptions cannot be caught in a thread’s run() method.

B. At line 2, the thread will stop running. Execution will resume in, at most, 100 milliseconds.

C. At line 2, the thread will stop running. It will resume running in exactly 100 milliseconds.

D. At line 2, the thread will stop running. It will resume running some time after 100 milliseconds
have elapsed.

5. A monitor called mon has 10 threads in its waiting pool; all these waiting threads have the same
priority. One of the threads is thr1. How can you notify thr1 so that it alone moves from the
Waiting state to the Ready state?

A. Execute notify(thr1); from within synchronized code of mon.

B. Execute mon.notify(thr1); from synchronized code of any object.

C. Execute thr1.notify(); from synchronized code of any object.

D. Execute thr1.notify(); from any code (synchronized or not) of any object.

E. You cannot specify which thread will get notified.

4419c07.fm Page 242 Thursday, February 17, 2005 5:47 PM

Review Questions 243

6. If you attempt to compile and execute the following application, will it ever print out the
message In xxx?

 1. class TestThread3 extends Thread {

 2. public void run() {

 3. System.out.println(“Running”);

 4. System.out.println(“Done”);

 5. }

 6.

 7. private void xxx() {

 8. System.out.println(“In xxx”);

 9. }

10.

11. public static void main(String args[]) {

12. TestThread3 ttt = new TestThread3();

13. ttt.xxx();

14. ttt.start();

12. }

13. }

A. Yes

B. No

7. A Java monitor must either extend Thread or implement Runnable.

A. True

B. False

8. Which of the following methods in the Thread class are deprecated?

A. suspend() and resume()

B. wait() and notify()

C. start() and stop()

D. sleep() and yield()

9. Which of the following statements about threads is true?

A. Every thread starts executing with a priority of 5.

B. Threads inherit their priority from their parent thread.

C. Threads are guaranteed to run with the priority that you set using the setPriority()
method.

D. Thread priority is an integer ranging from 1 to 100.

4419c07.fm Page 243 Thursday, February 17, 2005 5:47 PM

244 Chapter 7 � Threads

10. Which of the following statements about the wait() and notify() methods is true?

A. The wait() and notify() methods can be called outside synchronized code.

B. The programmer can specify which thread should be notified in a notify() method call.

C. The thread that calls wait() goes into the monitor’s pool of waiting threads.

D. The thread that calls notify() gives up the lock.

11. Which of the following may not be synchronized?

A. Blocks within methods

B. Static methods

C. Blocks within static methods

D. Classes

12. Which of the following calls may be made from a non-static synchronized method?

A. A call to the same method of the current object.

B. A call to the same method of a different instance of the current class.

C. A call to a different synchronized method of the current object.

D. A call to a static synchronized method of the current class.

13. How many locks does an object have?

A. One

B. One for each method

C. One for each synchronized method

D. One for each non-static synchronized method

14. Is it possible to write code that can execute only if the current thread owns multiple locks?

A. Yes.

B. No.

15. Which of the following are true? (Choose all that apply.)

A. When an application begins running, there is one daemon thread, whose job is to
execute main().

B. When an application begins running, there is one non-daemon thread, whose job is to
execute main().

C. A thread created by a daemon thread is initially also a daemon thread.

D. A thread created by a non-daemon thread is initially also a non-daemon thread.

16. Which of the following are true?

A. The JVM runs until there is only one daemon thread.

B. The JVM runs until there are no daemon threads.

C. The JVM runs until there is only one non-daemon thread.

D. The JVM runs until there are no non-daemon threads.

4419c07.fm Page 244 Thursday, February 17, 2005 5:47 PM

Review Questions 245

17. How do you prevent shared data from being corrupted in a multithreaded environment?

A. Mark all variables as synchronized.

B. Mark all variables as volatile.

C. Use only static variables.

D. Access the variables only via synchronized methods.

18. How can you ensure that multithreaded code does not deadlock?

A. Synchronize access to all shared variables.

B. Make sure all threads yield from time to time.

C. Vary the priorities of your threads.

D. A, B, and C do not ensure that multithreaded code does not deadlock.

19. Which of the following are true? (Choose all that apply.)

A. When you declare a method to be synchronized, the method always synchronizes on the lock
of the current object.

B. When you declare a method to be synchronized, you can specify the object on whose lock
the method should synchronize.

C. When you declare a block of code inside a method to be synchronized, the block always
synchronizes on the lock of the current object.

D. When you declare a block of code inside a method to be synchronized, you can specify the
object on whose lock the block should synchronize.

20. Suppose you want to create a custom thread class by extending java.lang.Thread in order to
provide some special functionality. Which of the following must you do?

A. Declare that your class implements java.lang.Runnable.

B. Override run().

C. Override start().

D. Make sure that all access to all data is via synchronized methods.

4419c07.fm Page 245 Thursday, February 17, 2005 5:47 PM

246 Chapter 7 � Threads

Answers to Review Questions
1. A. The Runnable interface defines a run() method with void return type and no parameters.

The method given in the problem has a String parameter, so the compiler will complain that
class Greebo does not define void run() from interface Runnable. B is wrong, because you can
definitely pass a parameter to a thread’s constructor; the parameter becomes the thread’s target.
C, D, and E are nonsense.

2. C. There is no way to predict how thread priority manipulation will affect the specific perfor-
mance of individual threads. Priority manipulation only affects overall statistical behavior.

3. B. The yield() method is static and always causes the current thread to yield. In this case, iron-
ically, the first thread will yield.

4. D. The thread will sleep for 100 milliseconds (more or less, given the resolution of the JVM
being used). Then the thread will enter the Ready state; it will not actually run until the scheduler
permits it to run.

5. E. When you call notify() on a monitor, you have no control over which waiting thread gets
notified.

6. A. The call to xxx() occurs before the thread is registered with the thread scheduler, so the
object executes the method in the main thread.

7. B. A monitor is an instance of any class that has synchronized code.

8. A. The suspend() and resume() methods were deprecated in the Java 2 release. They still
appear on the API page for Thread but should not be used.

9. B. Threads inherit their priority from their parent thread. A is incorrect because, although the
default priority for a thread is 5, it may be changed by the parent thread. C is incorrect because
Java does not make any promises about priority at runtime. Finally, D is incorrect because
thread priorities range from 1 to 10.

10. C. The thread that calls wait() goes into the monitor’s pool of waiting threads. Option A is
incorrect because wait() and notify() must be called from within synchronized code. Option
B is incorrect because the notify() call arbitrarily selects a thread to notify from the pool of
waiting threads. Option D is incorrect because the thread that calls wait() is the thread that
gives up the lock.

11. D. You can synchronize a block inside a method by preceding the block with synchronized.
You can declare a static method to be synchronized; since there is no object, the thread that
executes the method will synchronize on a lock belonging to the class. You can synchronize
a block inside a static method just as you would a block within a non-static method; again,
synchronization will occur on a lock belonging to the class.

12. A, B, C, D. All four situations are legal. Java has no restrictions regarding which methods may
call which methods, with respect to synchronization.

13. A. An object has only one lock, which controls access to all synchronized code.

4419c07.fm Page 246 Thursday, February 17, 2005 5:47 PM

Answers to Review Questions 247

14. A. On way to do this is to have a synchronized method call a synchronized method of a different
object.

15. B, C, D. A is wrong because main() is executed by a non-daemon thread. B is correct because
daemon threads are for the JVM’s infrastructure. Non-daemon threads are for programmers.
The JVM initially creates a non-daemon thread to run main(). C and D are both correct because
a thread’s daemon state is the same as that of its creating thread.

16. D. The JVM runs until the only threads are its own infrastructure-supporting daemon threads,
that is, until there are no more non-daemon threads.

17. D. Variables may not be synchronized. Making the variables volatile or static doesn’t address
the problem. Shared data in a multithreaded environment should be protected from corruption
by ensuring that all access to the data is via synchronized methods. Moreover, all methods
should synchronize on the same lock.

18. D. The only way to ensure that multithreaded code won’t deadlock is to be careful. There is no
single technique that can guarantee non-deadlocking code.

19. A, D. A method may synchronize only on the lock of the current object. A block may synchro-
nize on any object’s lock.

20. B. Your class should provide a run() method to implement the desired functionality. There is
no need to declare that it implements Runnable. Overriding start() is almost never a good
idea. You need to provide synchronized access to data only if that data might be corrupted by
other threads.

4419c07.fm Page 247 Thursday, February 17, 2005 5:47 PM

4419c07.fm Page 248 Thursday, February 17, 2005 5:47 PM

Chapter

8

The

java.lang

 and

java.util

 Packages

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

3.1 Develop code that uses the primitive wrapper classes

(such as Boolean, Character, Double, Integer, etc.) and/or

autoboxing and unboxing. Discuss the differences between

the String, StringBuilder, and StringBuffer classes.

�

3.4 Use standard J2SE APIs in the java.text package to

correctly format or parse dates, numbers, and currency

values for a specific locale, and, given a scenario, determine

the appropriate methods to use if you want to use the default

locale or a specific locale. Describe the purpose and use of the

java.util.Locale class.

�

3.5 Write code that uses standard J2SE APIs in the java.util

and java.util.regex packages to format or parse strings or

streams. For strings, write code that uses the Pattern and

Matcher classes and the String.split method. Recognize

and use regular expression patterns for matching (limited

to . (dot), * (star), + (plus), ?, \d, \s, \w, [], ()). The use of

*, +, and ? will be limited to greedy quantifiers, and the

parenthesis operator will be used only as a grouping

mechanism, not for capturing content during matching.

For streams, write code using the Formatter and Scanner

classes and the PrintWriter.format/printf methods. Recognize

and use formatting parameters (limited to %b, %c, %d, %f, %s)

in format strings.

�

6.1 Given a design scenario, determine which collection

classes and/or interfaces should be used to properly

implement that design, including the use of the

Comparable interface.

4419c08.fm Page 249 Thursday, February 17, 2005 6:05 PM

�

6.2 Distinguish between correct and incorrect overrides of

corresponding hashCode and equals methods, and explain

the difference between == and the equals method.

�

6.3 Write code that uses the generic versions of the Collections

API, in particular, the Set<E>, List<E>, Queue<E>, and

Map<K,V> interfaces and implementation classes. Recognize

the limitations of the non-generic Collections API and how to

refactor code to use the generic versions.

�

6.4 Develop code that makes proper use of type parameters

in class/interface declarations, instance variables, method

arguments, and return types. Write generic methods or

methods that make use of wildcard types, and understand

the similarities and differences between these two

approaches.

�

6.5 Use capabilities in the java.util package to write code to

manipulate a list by sorting, performing a binary search, or

converting the list to an array. Use capabilities in the java.util

package to write code to manipulate an array by sorting,

performing a binary search, or converting the array to a

list. Use the java.util.Comparator and java.lang.Comparable

interfaces to affect the sorting of lists and arrays. Furthermore,

recognize the effect of the "natural ordering" of primitive

wrapper classes and java.lang.String on sorting.

4419c08.fm Page 250 Thursday, February 17, 2005 6:05 PM

The

java.lang

 package contains classes that are central to the
operation of the Java language and environment. Very little can
be done without the

String

 class, for example, and the

Object

class is completely indispensable. The Java compiler automatically imports all the classes in the

java.lang

 package into every source file.
This chapter examines some of the most important pieces of the

java.lang

 package:
�

The

Object

 class
�

The

Math

 class
�

Strings
�

The wrapper classes

The wrapper classes, which were almost trivial through Java 1.4, got a bit more interesting
in 5.0 with the introduction of autoboxing and auto-unboxing.

This chapter also covers the collection classes of the

java.util

 package. Collections also
became more interesting in 5.0, thanks to a significant change to the language: generics. Col-
lections, including generic collections, will be covered in detail.

The chapter finishes with a look at how to scan and format text, using some of the more
sophisticated features of the

lang

 and

util

 packages.

The

Object

 Class

The

Object

 class is the ultimate ancestor of all Java classes. If a class does not contain the

extends

 keyword in its declaration, the compiler builds a class that extends directly from

Object

.
All the methods of

Object

 are inherited by every class. Three of these methods (

wait()

,

notify()

, and

notifyAll()

) support thread control, and they are discussed in detail in
Chapter 7, “Threads.” Two other methods,

equals()

 and

toString()

, provide little func-
tionality on their own. The intention is that programmers who develop reusable classes can
override

equals()

 and

toString()

 in order to provide useful class-specific functionality.
The signature of

equals()

 is

public boolean equals(Object object)

The method is supposed to provide “deep” comparison, in contrast to the “shallow” compar-
ison provided by the

==

 operator. To see the difference between the two types of comparisons,

4419c08.fm Page 251 Thursday, February 17, 2005 6:05 PM

252

Chapter 8 �

The java.lang and java.util Packages

consider the

java.util.Date

 class, which represents a moment in time. Suppose you have two
references of type

Date

:

d1

 and

d2

. One way to compare them is with the following line of code:

if (d1 == d2)

The comparison will be

true

 if the

reference

 in

d1

 is equal to the

reference

 in

d2

. Of course, this
is the case only when both variables refer to the same object.

Sometimes you want a different kind of comparison. Sometimes you don’t care whether

d1

and

d2

 refer to the same

Date

 object. Sometimes you

know

they are different objects. What you
care about is whether the two objects, which encapsulate day and time information, represent
the same moment in time. In this case, you don’t want the shallow reference-level comparison
of

==

; you need to look deeply into the objects themselves. The way to do that is with the

equals()

 method:

if (d1.equals(d2))

The version of

equals()

 provided by the

Object

 class is not very useful because it just does
an

==

 comparison. All classes should override

equals()

 so that it performs a useful compari-
son. That is just what most of the standard Java classes do: they compare the relevant instance
variables of two objects.

The purpose of the

toString()

 method is to provide a string representation of an object’s
state. This method is especially useful for debugging.

The

toString()

 method is similar to equals() in that the version provided by the Object
class is not especially useful—it just prints out the object’s class name, followed by a hash
code. Many JDK classes override toString() to provide more useful information. Java’s
string-concatenation facility makes use of this method, as you will see later in this chapter, in
the “String Concatenation the Easy Way” section.

The Object class provides a clone() method, which returns a copy of the current object. In
other words, the clone has the same class as the original, and all its data values are identical.
Thus all references in the clone point to the same objects as those pointed to in the original.

Object’s version of clone() is protected, so a class’ clone() may not be called by any
code anywhere. If you want a class’ clone() to be public, you need to insert something like
the following:

public Object clone()

 throws CloneNotSupportedException {

 return super.clone();

}

Notice the CloneNotSupportedException. It is not a runtime exception, so it must be dealt
with. Classes that override clone() generally declare that they implement java.lang.Cloneable,
which defines the single clone() method.

4419c08.fm Page 252 Thursday, February 17, 2005 6:05 PM

The Math Class 253

The Math Class
Java’s Math class contains a collection of methods and two constants that support mathematical
computation. The class is declared final, so you cannot extend it. The constructor is private,
so you cannot create an instance. Fortunately, the methods and constants are static, so they can
be accessed through the class name without having to construct a Math object. (See Chapter 3,
“Modifiers,” for an explanation of Java’s modifiers, including final, static, and private.)

The two constants of the Math class are Math.PI and Math.E. They are declared to be public,
static, final, and double.

The methods of the Math class cover a broad range of mathematical functionality, including
trigonometry, logarithms and exponentiation, and rounding. The intensive number-crunching
methods are often written as native methods to take advantage of any math-acceleration hard-
ware that might be present on the underlying machine.

You should know about the methods shown in Table 8.1.

T A B L E 8 . 1 Methods of the Math Class

Method Returns

int abs(int i) Absolute value of i

long abs(long l) Absolute value of l

float abs(float f) Absolute value of f

double abs(double d) Absolute value of d

double ceil(double d) The smallest integer that is not less than d (returns
as a double)

double exp(double a) e raised to the a power

double floor(double d) The largest integer that is not greater than d
(returns as a double)

double log(double a) Logarithm of a

int max(int i1, int i2) Greater of i1 and i2

long max(long l1, long l2) Greater of l1 and l2

float max(float f1, float f2) Greater of f1 and f2

4419c08.fm Page 253 Thursday, February 17, 2005 6:05 PM

254 Chapter 8 � The java.lang and java.util Packages

Strings
Java uses the String, StringBuffer, and StringBuilder classes to encapsulate strings of char-
acters. Java uses 16-bit Unicode characters to support a broader range of international alphabets
than would be possible with traditional 8-bit characters. Both strings and string buffers contain
sequences of 16-bit Unicode characters. The next several sections examine these two classes, as
well as Java’s string-concatenation feature.

The String Class

The String class contains an immutable string. Once an instance is created, the string it con-
tains cannot be changed. Numerous forms of constructors allow you to build an instance out
of an array of bytes or chars, a subset of an array of bytes or chars, another string, or a string

double max(double d1, double d2) Greater of d1 and d2

int min(int i1, int i2) Smaller of i1 and i2

long min(long l1, long l2) Smaller of l1 and l2

float min(float f1, float f2) Smaller of f1 and f2

double min(double d1, double d2) Smaller of d1 and d2

double pow(double a, double b) a raised to the b power

double random() Random number >= 0.0and < 1.0

int round(float f) Closest int to f

long round(double d) Closest long to d

double sin(double d) Sine of d

double cos(double d) Cosine of d

double tan(double d) Tangent of d

double sqrt(double d) Square root of d

T A B L E 8 . 1 Methods of the Math Class (continued)

Method Returns

4419c08.fm Page 254 Thursday, February 17, 2005 6:05 PM

Strings 255

buffer. Many of these constructors give you the option of specifying a character encoding, spec-
ified as a string. However, the Certification Exam does not require you to know the details of
character encodings.

Probably the most common string constructor simply takes another string as its input. This
constructor is useful when you want to specify a literal value for the new string:

String s1 = new String(“immutable”);

An even easier abbreviation could be

String s1 = “immutable”;

It is important to be aware of what happens when you use a string literal (“immutable” in
both examples). Every string literal is represented internally by an instance of String. Java
classes may have a pool of such strings. When a literal is compiled, the compiler adds an appro-
priate string to the pool. However, if the same literal already appeared as a literal elsewhere in
the class, then it is already represented in the pool. The compiler does not create a new copy.
Instead, it uses the existing one from the pool. This process saves on memory and can do no
harm. Because strings are immutable, a piece of code can’t harm another piece of code by mod-
ifying a shared string.

Earlier in this chapter, you saw how the equals() method can be used to provide a deep
equality check of two objects. With strings, the equals() method does what you would expect:
it checks the two contained collections of characters. The following code shows how this is done:

1. String s1 = “Compare me”;

2. String s2 = “Compare me”;

3. if (s1.equals(s2)) {

4. // whatever

5. }

Not surprisingly, the test at line 3 succeeds. Given what you know about how string literals
work, you can see that if line 3 is modified to use the == comparison, as shown here, the test still
succeeds:

1. String s1 = “Compare me”;

2. String s2 = “Compare me”;

3. if (s1 == s2) {

4. // whatever

5. }

The == test is true because s2 refers to the String in the pool that was created in line 1.
Figure 8.1 shows this graphically.

You can also construct a String by explicitly calling the constructor, as shown next; how-
ever, doing so causes extra memory allocation for no obvious advantage:

String s2 = new String(“Constructed”);

4419c08.fm Page 255 Thursday, February 17, 2005 6:05 PM

256 Chapter 8 � The java.lang and java.util Packages

When this line is compiled, the string literal “Constructed” is placed into the pool. At runtime,
the new String() statement is executed and a fresh instance of String is constructed, dupli-
cating the String in the literal pool. Finally, a reference to the new String is assigned to s2.
Figure 8.2 shows the chain of events.

Figure 8.2 shows that explicitly calling new String() results in the existence of two objects,
one in the literal pool and the other in the program’s space.

You just saw that if you create a new String instance at runtime, it will not be in the pool but
will be a new and distinct object. You can arrange for your new String to be placed into the pool
for possible re-use, or to re-use an existing identical String from the pool, by using the intern()
method of the String class. In programs that use a great many similar strings, this approach can
reduce memory requirements. More important, in programs that make a lot of String equality
comparisons, ensuring that all strings are in the pool allows you to use the == reference compar-
ison in place of the equals() method. The equals() method runs slower because it must do a
character-by-character comparison of the two strings, whereas the == operator compares only the
two memory addresses.

The String class includes several convenient methods, some of which transform a string.
For example, toUpperCase() converts all the characters of a string to uppercase. It is important
to remember that the original string is not modified. That would be impossible, because strings
are immutable. What really happens is that a new string is constructed and returned. Generally,
this new string will not be in the pool unless you explicitly call intern() to put it there.

F I G U R E 8 . 1 Identical literals

F I G U R E 8 . 2 Explicitly calling the string constructor

4419c08.fm Page 256 Thursday, February 17, 2005 6:05 PM

Strings 257

The methods in the following list are just some of the most useful methods of the String
class. There are more methods than those listed here, and some of those listed have overloaded
forms that take different inputs.

This list includes all the methods that you are required to know for the Certifi-
cation Exam, plus a few additional useful ones.

char charAt(int index) Returns the indexed character of a string, where the index of the
initial character is 0.

String concat(String addThis) Returns a new string consisting of the old string followed
by addThis.

int compareTo(String otherString) Performs a lexical comparison; returns an int that
is less than 0 if the current string is less than otherString, equal to 0 if the strings are identical,
and greater than 0 if the current string is greater than otherString.

boolean endsWith(String suffix) Returns true if the current string ends with suffix;
otherwise returns false.

boolean equals(Object ob) Returns true if ob instanceof String and the string
encapsulated by ob matches the string encapsulated by the executing object.

boolean equalsIgnoreCase(String s) Returns true if s matches the current string,
ignoring upper- and lowercase considerations.

int indexOf(int ch) Returns the index within the current string of the first occurrence of
ch. Alternative forms return the index of a string and begin searching from a specified offset.

int lastIndexOf(int ch) Returns the index within the current string of the last occurrence
of ch.

int length() Returns the number of characters in the current string.

String replace(char oldChar, char newChar) Returns a new string, generated by
replacing every occurrence of oldChar with newChar.

boolean startsWith(String prefix) Returns true if the current string begins with
prefix; otherwise returns false. Alternate forms begin searching from a specified offset.

String substring(int startIndex) Returns the substring, beginning at startIndex of
the current string and extending to the end of the current string. An alternate form specifies start-
ing and ending offsets.

String toLowerCase() Converts the executing object to lowercase and returns a new string.

String toString() Returns the executing object (not a copy).

String toUpperCase() Converts the executing object to uppercase and returns a new string.

String trim() Returns the string that results from removing whitespace characters from the
beginning and ending of the current string.

4419c08.fm Page 257 Thursday, February 17, 2005 6:05 PM

258 Chapter 8 � The java.lang and java.util Packages

The following code shows how to use two of these methods to modify a string. The original
string is “ 5 + 4 = 20”. The code first strips off the leading blank space and then converts the
addition sign to a multiplication sign:

1. String s = “ 5 + 4 = 20”;

2. s = s.trim(); // “5 + 4 = 20”

3. s = s.replace(‘+’, ‘x’); // “5 x 4 = 20”

After line 3, s refers to a string whose appearance is shown in the line 3 comment. Of course,
the modification has not taken place within the original string. Both the trim() call in line 2
and the replace() call of line 3 construct and return new strings; the address of each new string
in turn gets assigned to the reference variable s. Figure 8.3 shows this sequence graphically.

Figure 8.3 shows that the original string seems to be only modified, but it is actually replaced,
because strings are immutable. If much modification is required, then this process becomes very
inefficient—it stresses the garbage collector cleaning up all the old strings, and it takes time to
copy the contents of the old strings into the new ones. The next section discusses two classes that
alleviate these problems by representing mutable strings. These are the StringBuffer and
StringBuilder classes.

F I G U R E 8 . 3 Trimming and replacing

The StringBuffer and StringBuilder Classes

Java’s StringBuffer and StringBuilder classes represent strings that can be dynamically
modified.

The most commonly used StringBuffer constructor takes a String instance as input. You
can also construct an empty string buffer (probably with the intention of adding characters to
it later). An empty string buffer can have its initial capacity specified at construction time. The
three constructors are

StringBuffer() Constructs an empty string buffer.

StringBuffer(int capacity) Constructs an empty string buffer with the specified initial
capacity.

StringBuffer(String initialString) Constructs a string buffer that initially contains
the specified string.

4419c08.fm Page 258 Thursday, February 17, 2005 6:05 PM

Strings 259

A string buffer has a capacity, which is the longest string it can represent without needing to
allocate more memory. A string buffer can grow beyond this capacity as necessary, so usually
you do not have to worry about it. However, it is more efficient to declare a large initial capacity
when instantiating a string buffer to avoid the system calls required to allocate more memory.

The following list presents some of the methods that modify the contents of a string buffer.
All of them return the original string buffer:

StringBuffer append(String str) Appends str to the current string buffer. Alternative
forms support appending primitives and character arrays, which are converted to strings before
appending.

StringBuffer append(Object obj) Calls toString() on obj and appends the result to
the current string buffer.

StringBuffer insert(int offset, String str) Inserts str into the current string buffer
at position offset. There are numerous alternative forms.

StringBuffer reverse() Reverses the characters of the current string buffer.

StringBuffer setCharAt(int offset, char newChar) Replaces the character at posi-
tion offset with newChar.

StringBuffer setLength(int newLength) Sets the length of the string buffer to
newLength. If newLength is less than the current length, the string is truncated. If newLength is
greater than the current length, the string is padded with null characters.

The following code shows the effect of using several of these methods in combination:

1. StringBuffer sbuf = new StringBuffer(“12345”);

2. sbuf.reverse(); // “54321”

3. sbuf.insert(3, “aaa”); // “543aaa21”

4. sbuf.append(“zzz”); // “543aaa21zzz”

The method calls actually modify the string buffer they operate on (unlike the String class
example of the previous section). Figure 8.4 graphically shows what this code does.

F I G U R E 8 . 4 Modifying a string buffer

4419c08.fm Page 259 Thursday, February 17, 2005 6:05 PM

260 Chapter 8 � The java.lang and java.util Packages

The StringBuffer class does not override the version of equals() that it inherits from
Object. Thus the method returns true only when comparing references to the same single
object. If two distinct instances encapsulate identical strings, equals() will return false.

One last string buffer method that bears mentioning is toString(). You saw earlier in this
chapter that every class has one of these methods. Not surprisingly, the string buffer’s version
just returns the encapsulated string as an instance of class String. You will see in the next sec-
tion that this method plays a crucial role in string concatenation.

String buffers are threadsafe. If multiple threads make concurrent calls on a single string
buffer, the string buffer will not become internally corrupt no matter what combination of calls
is made. This is achieved through judicious synchronization of the class’ code.

The StringBuilder class was introduced in 5.0. It is nearly identical to StringBuffer, but
with one major difference: string builders are not threadsafe. If you want multiple threads to
have concurrent access to a mutable string, use a string buffer. If your mutable string will be
accessed only by a single thread, there is an advantage to using a string builder, which will gen-
erally execute faster than a string buffer.

Both StringBuffer and StringBuilder implement the java.lang.Appendable interface,
which specifies several overloaded forms of an append() method. Later in this chapter, in the
“Formatting Text” section, you’ll see how this interface is used.

String Concatenation the Easy Way

The concat() method of the String class and the append() method of the StringBuffer
class glue two strings together. Another way to concatenate strings is to use Java’s overloaded
+ operator. Similarly, another way to append a string is to use Java’s overloaded += operator.
However, don’t forget that you, the programmer, cannot define additional operator overloads.

String concatenation is useful in many situations—for example, in debugging print statements.
So, to print the value of a double called radius, all you have to do is this:

System.out.println(“radius = “ + radius);

This technique also works for object data types. To print the value of a Dimension called
dimension, all you need is

System.out.println(“dimension = “ + dimension);

It is important to understand how the technique works. At compile time, if either operand
of a + operator (that is, what appears on either side of a + sign) is a String object, then the com-
piler recognizes that it is in a string context. In a string context, the + sign is interpreted as calling
for string concatenation rather than arithmetic addition.

A string context is simply a run of additions, where one of the operands is a string. For example,
if variable a is a string, then the following partial line of code is a string context, regardless of the
types of the other operands:

a + b + c

4419c08.fm Page 260 Thursday, February 17, 2005 6:05 PM

Strings 261

The Java compiler treats the previous code as if it were the following:

new

StringBuffer().append(a).append(b).append(c).toString();

If any of the variables (a, b, or c) is a primitive, the append() method computes an appropriate
string representation. For an object variable, the append() method uses the string returned from
calling toString() on the object. The conversion begins with an empty string buffer, then appends
each element in turn to the string buffer, and finally calls toString() to convert the string buffer
to a string.

The following code implements a class with its own toString() method:

 1. class Abc {

 2. private int a;

 3. private int b;

 4. private int c;

 5.

 6. Abc(int a, int b, int c) {

 7. this.a = a;

 8. this.b = b;

 9. this.c = c;

10. }

11.

12. public String toString() {

13. return “a = “ + a + “, b = “ + b + “, c = “ + c;

14. }

15. }

Now the toString() method (lines 12–14) can be used by any code that wants to take
advantage of string concatenation. For example:

Abc theAbc = new Abc(11, 13, 48);

System.out.println(“Here it is: “ + theAbc);

The output is

Here it is: a = 11, b = 13, c = 48

To summarize the sequence of events for a string context:

1. An empty string buffer is constructed.

2. Each argument in turn is concatenated to the string buffer, using the append() method.

3. The string buffer is converted to a string with a call to toString().

That is all you need to know about string manipulation for the Certification Exam, and it’s
probably all you need to know to write effective and efficient code, too.

4419c08.fm Page 261 Thursday, February 17, 2005 6:05 PM

262 Chapter 8 � The java.lang and java.util Packages

The Wrapper Classes
Each Java primitive data type has a corresponding wrapper class. A wrapper class is simply a class
that encapsulates a single, immutable value. For example, the Integer class wraps up an int
value, and the Float class wraps up a float value. The wrapper class names do not perfectly
match the corresponding primitive data type names. Table 8.2 lists the primitives and wrappers.

All the wrapper classes can be constructed by passing the value to be wrapped into the appro-
priate constructor. The following code fragment shows how to construct an instance of each
wrapper type:

 1. boolean primitiveBoolean = true;

 2. Boolean wrappedBoolean =

 3. new Boolean(primitiveBoolean);

 4.

 5. byte primitiveByte = 41;

 6. Byte wrappedByte = new Byte(primitiveByte);

 7.

 8. char primitiveChar = ‘M’;

 9. Character wrappedChar = new Character(primitiveChar);

10.

T A B L E 8 . 2 Primitives and Wrappers

Primitive Data Type Wrapper Class

boolean Boolean

byte Byte

char Character

short Short

int Integer

long Long

float Float

double Double

4419c08.fm Page 262 Thursday, February 17, 2005 6:05 PM

The Wrapper Classes 263

11. short primitiveShort = 31313;

12. Short wrappedShort = new Short(primitiveShort);

13.

14. int primitiveInt = 12345678;

15. Integer wrappedInt = new Integer(primitiveInt);

16.

17. long primitiveLong = 12345678987654321L;

18. Long wrappedLong = new Long(primitiveLong);

19.

20. float primitiveFloat = 1.11f;

21. Float wrappedFloat = new Float(primitiveFloat);

22.

23. double primitiveDouble = 1.11111111;

24. Double wrappedDouble =

25. new Double(primitiveDouble);

There is another way to construct any of these classes, with the exception of Character: You
can pass into the constructor a String that represents the value to be wrapped. Most of these con-
structors throw NumberFormatException, because there is always the possibility that the string
will not represent a valid value. Only Boolean does not throw this exception; the constructor
accepts any String input and wraps a true value if the string (ignoring case) is true. The follow-
ing code fragment shows how to construct wrappers from strings:

 1. Boolean wrappedBoolean = new Boolean(“True”);

 2. try {

 3. Byte wrappedByte = new Byte(“41”);

 4. Short wrappedShort = new Short(“31313”);

 5. Integer wrappedInt = new Integer(“12345678”);

 6. Long wrappedLong = new Long(“12345678987654321”);

 7. Float wrappedFloat = new Float(“1.11f”);

 8. Double wrappedDouble = new Double(“1.11111111”);

 9. }

10. catch (NumberFormatException e) {

11. System.out.println(“Bad Number Format”);

12. }

The values wrapped inside two wrappers of the same type can be checked for equality by
using the equals() method discussed previously. For example, the following code fragment
checks two instances of Double:

1. Double d1 = new Double(1.01055);

2. Double d2 = new Double(“1.11348”);

4419c08.fm Page 263 Thursday, February 17, 2005 6:05 PM

264 Chapter 8 � The java.lang and java.util Packages

3. if (d1.equals(d2)) {

4. // Do something.

5. }

After a value has been wrapped, you may eventually need to extract it. For an instance
of Boolean, you can call booleanValue(). For an instance of Character, you can call
charValue(). The other six classes extend from the abstract superclass Number, which
provides methods to retrieve the wrapped value as a byte, a short, an int, a long, a float,
or a double. In other words, the value of any wrapped number can be retrieved as any numeric
type. The retrieval methods are
� public byte byteValue()

� public short shortValue()

� public int intValue()

� public long longValue()

� public float floatValue()

� public double doubleValue()

The wrapper classes are useful whenever it would be convenient to treat a piece of primitive
data as if it were an object. A good example is the Vector class, which is a dynamically growing
collection of objects of arbitrary type. The method for adding an object to a vector is

public boolean add(Object ob)

Using this method, you can add any object of any type to a vector; you can even add an array
(you saw why in Chapter 4, “Converting and Casting”). You cannot, however, add an int, a
long, or any other primitive to a vector. No special methods exist for doing so, and add(Object
ob) will not work because there is no automatic conversion from a primitive to an object. Thus,
the following code will not compile:

1. Vector vec = new Vector();

2. boolean boo = false;

3. vec.add(boo); // Illegal

The solution is to wrap the boolean primitive, as shown here:

1. Vector vec = new Vector();

2. boolean boo = false;

3. Boolean wrapper = new Boolean(boo);

4. vec.add(wrapper); // Legal

The wrapper classes are useful in another way: They provide a variety of utility methods, most
of which are static. For example, the static method Character.isDigit(char ch) returns a
boolean that tells whether the character represents a base-10 digit. All the wrapper classes except

4419c08.fm Page 264 Thursday, February 17, 2005 6:05 PM

The Wrapper Classes 265

Character have a static method called valueOf(String s), which parses a string and constructs
and returns a wrapper instance of the same type as the class whose method was called. So, for
example, Long.valueOf(“23”) constructs and returns an instance of the Long class that wraps
the value 23.

One set of static wrapper methods is the parseXXX() methods. These are Byte.parseByte(),
Short.parseShort(), Integer.parseInt(), Long.parseLong(), Float.parseFloat(), and
Double.parseDouble(). Each of these takes a String argument and returns the corresponding
primitive type. They all throw NumberFormatException.

Other static methods that are mentioned in the exam objectives are the getXXX() methods.
These are Boolean.getBoolean(), Integer.getInteger(), and Long.getLong(). Each of
these takes a String argument that is the name of a system property and returns the value of the
property. The return value is a primitive boolean or a wrapper Integer or Long that encapsu-
lates the property value, provided the property is defined, is not empty, and is compatible with the
respective type. Integer.getInteger() and Long.getLong() have overloaded forms that take
a second argument, which is a primitive of the respective type. The second argument is a default
value that is wrapped and returned in case the property is not defined, is empty, or is not com-
patible with the respective type.

All the wrapper classes provide toString() methods. In addition, the Integer and Long
classes provide toBinaryString(), toOctalString(), and toHexString(), which return
strings in base 2, 8, and 16.

All wrapper classes have an inconvenient feature: The values they wrap are immutable. After
an instance is constructed, the encapsulated value cannot be changed. It is tempting to try to
subclass the wrappers, so that the subclasses inherit all the useful functionality of the original
classes while offering mutable contents. Unfortunately, this strategy doesn’t work because the
wrapper classes are final.

To summarize the major facts about the primitive wrapper classes:
� Every primitive type has a corresponding wrapper class type.
� All wrapper types can be constructed from primitives. All except Character can also be

constructed from strings.
� Wrapped values can be tested for equality with the equals() method.
� Wrapped values can be extracted with various XXXValue() methods. All six numeric wrap-

per types support all six numeric XXXValue() methods.
� Wrapper classes provide various utility methods, including the static valueOf() and

parseXXX() methods, which parse an input string.
� Wrapped values cannot be modified.

Java’s wrapper classes are useful in situations where a primitive must act like an object: as
an element in a vector, for example, or as key or value in a Map. Unfortunately, dealing with
the wrapped value has historically been inconvenient.

Suppose, for instance, you want to add 10 to the Long referenced by wrappedWeight.
There is no way to modify the contents of the object, because wrapped values are final. Prior

4419c08.fm Page 265 Thursday, February 17, 2005 6:05 PM

266 Chapter 8 � The java.lang and java.util Packages

to release 5.0 2xs, if you wanted to perform calculations on wrapped values you had to do
something like this:

Double area(Double radius) {

 double r = radius.doubleValue();

 double a = Math.PI * r * r;

 return new Double(a);

}

This method is supposed to calculate the area of a circle, but two-thirds of its body is ded-
icated to unwrapping the argument and wrapping up the return value. Java 5.0 introduces
two very simple but convenient functions that unwrap wrapper objects and wrap up primi-
tives. These functions are called autoboxing and auto-unboxing (or, more briefly, boxing and
unboxing). These are compiler modifications that permit previously illegal combinations of
wrappers and primitives in operations, assignments, and method returns.

Boxing is the automatic assignment of a primitive value to a compatible wrapper type. You
can think of the primitive value as being stored in a box (the wrapper object). For example, as
of release 5.0 2xs you can make the following assignment:

Integer wrappedInt = 25;

You can think of the line above as an abbreviation for

Integer wrappedInt = new Integer(25);

The wrapper on the left-hand side of the equals sign must correspond exactly to the primitive
type on the right-hand side. Thus all of the following assignments are legal:

Boolean wboo = false;

Character wc = 'L';

Byte wb = 1;

Short ws = 1000;

Integer wi = 123456;

Long wl = 12345678L;

Float wf = 123.45f;

Double wd = 123.45;

However, the following assignment is illegal:

Double wd = 123;

The primitive value 123 is an int. It doesn’t matter that ints can be assigned to doubles (in
accordance with the primitive assignment conversion rules discussed in Chapter 4), because
boxing requires an exact match between the wrapper class and the primitive type. The line of
code above can be fixed by changing it to

Double wd = 123d;

4419c08.fm Page 266 Thursday, February 17, 2005 6:05 PM

The Wrapper Classes 267

which boxes a double into a Double. The following change, which boxes an int into an
Integer, also works:

Integer wi = 123;

Boxing also occurs when a method’s return type is a wrapper. You do not need to explic-
itly construct a returned wrapper object. For example, you can now get away with the
following:

Double area(double radius) {

 return Math.PI * radius * radius;

}

The Java 5.0 compiler also allows you to unbox a wrapped value. Unboxing is the automatic
extraction of a wrapped value. Unboxing happens when a wrapper object appears as an oper-
and in a boolean or numerical operation, as shown in the example below:

1. Integer wi = 234;

2. int times9 = wi * 9;

Line 1 uses boxing to construct a wrapper object. Line 2 multiplies the wrapper by a (prim-
itive) int. Prior to 5.0, line 2 would not have compiled, but in 5.0 the compiler emits code that
extracts (unboxes) the primitive value wrapped in wi and multiplies that value by 9.

We can now rewrite the area() method as follows:

Double area(Double radius) {

 return Math.PI * radius * radius;

}

This version of the method shows the power and convenience of boxing and unboxing. How-
ever, you should always be aware that the boxing and unboxing syntaxes are just abbreviations.
They do not eliminate the creation of wrapper objects or the extraction of wrapped values; they
just hide these operations from the untrained eye. Consider the following code:

Double rad;

for (rad=0d; rad<=1d; rad+=1.0e-9)

 System.out.println(area(rad));

This code calls area() one billion times. The loop’s increment step constructs (via the
boxing mechanism) one billion wrapper objects, which later are garbage collected; it also
extracts one billion wrapped values (via the unboxing mechanism). The radius() method
unboxes and boxes once during each of its one billion calls. The innocent-looking loop and
the innocent-looking method have phenomenally more overhead than equivalent code that
uses double primitives, but the overhead is visible only to people who understand the under-
lying mechanisms.

4419c08.fm Page 267 Thursday, February 17, 2005 6:05 PM

268 Chapter 8 � The java.lang and java.util Packages

The Collections Framework
Many programs need to keep track of groups of related data items. The most basic mechanism
for doing this is the array. Although they are useful for many purposes, arrays have some limi-
tations. For example, they provide only a very simple mechanism for storing and accessing data.
Moreover, their capacity must be known at construction time because there is no way to make
an array bigger or smaller. Java’s collections classes and interfaces support much more general-
ized data management.

Collections are a mechanism for manipulating object references. Although
arrays are capable of storing primitives or references, collections are not. If you
need to take advantage of collection functionality to manipulate primitives, you
have to wrap the primitives in the wrapper classes that were presented earlier
in this chapter.

Java’s Collections API is often referred to as a framework, which consists of several inter-
faces and a number of classes that implement those interfaces. The central interfaces are
� java.util.Collection

� java.util.List (which extends Collection)
� java.util.Set (which also extends Collection)
� java.util.Map (which doesn’t extend Collection)

There is more to the framework than just interfaces and classes. The framework also defines
semantics. In nontechnical speech, “semantics” means “meaning.” (When people argue about
the precise definition of a word, we say they are “quibbling about semantics.”) In technical
speech, the semantics of a method is an agreement about what the method is supposed to do.

For example, the Set interface has a method called addAll(). If you look up that method in
the API page for Set, you’ll see that the return type is boolean and the argument sequence is a
single Set. That’s not semantics, it’s just syntax: it tells you that any addAll() method in any
implementing class takes a Set and returns a boolean; but it doesn’t tell you what the method
does. To learn what the method does, you have to read the API’s explanatory comment: “Adds
all of the elements in the specified collection to this set if they’re not already present.” It’s the
comment that defines the semantics, by explaining what it means to call the method. All classes
that implement the interface will take the described action when the method is called. So now
you know the semantics of “semantics.”

Since the semantics of all the implementing classes are well defined (and easily found in the
API pages), if you think you might want to use a collection in a particular situation, your decision
process is straightforward. First you figure out which interface (List, Set, or Map) is appropriate
to your situation. Then you decide which implementing class to use. The class description in the
API page for each implementing class explains what makes the class different from the other
implementing classes. Since all implementers have pretty much the same functionality, they differ

4419c08.fm Page 268 Thursday, February 17, 2005 6:05 PM

The Collections Framework 269

mostly in their performance profiles. Some collections might execute very quickly, at the cost of
using lots of memory; in that case you have to decide whether time or memory is more important.
Other collections might execute quickly under certain conditions but not under other conditions.
In that case you need to think about which conditions are more likely to apply to your code.

A class or group of classes is considered threadsafe if any thread can call any method of any
instance at any time. The collections framework as a whole is not threadsafe. If you use collec-
tions in a multithreaded environment, you are responsible for protecting the integrity of the
encapsulated data, using the techniques that were presented in Chapter 7.

Now let’s look at the individual interfaces.

The Collection Superinterface and Iteration

The Set and List interfaces extend java.util.Collection. The Collection interface con-
tains about a dozen methods that describe common operations on groups of objects. These are
summarized in Table 8.3.

T A B L E 8 . 3 Commonly Used Methods of java.util.Collection

Method Description

add(Object x) Adds x to this collection

addAll(Collection c) Adds every element of c to this collection

clear() Removes every element from this collection

contains(Object x) Returns true if this collection contains x

containsAll(Collection c) Returns true if this collection contains every element of c

isEmpty() Returns true if this collection contains no elements

iterator() Returns an Iterator over this collection (see below)

remove(Object x) Removes x from this collection

removeAll(Collection c) Removes every element in c from this collection

retainAll(Collection c) Removes from this collection every element that is not in c

size() Returns the number of elements in this collection

toArray() Returns an array containing the elements in this collection

4419c08.fm Page 269 Thursday, February 17, 2005 6:05 PM

270 Chapter 8 � The java.lang and java.util Packages

If you look up the API page for java.util.Collection, you’ll see some strange things in
the method summaries. For example, the summary for addAll() is not exactly as it appears in
Table 8.3. It actually is

addAll(Collection<? Extends E> c)

In fact, the interface declaration itself is strange. At the top of the API page you won’t see the
expected

Interface Collection

You’ll actually see

Interface Collection<E>

The angle-bracket notation supports generic collections, which were introduced in Java 1.5.
Generics, including the new notation, are explained in detail below in their own section. For
now, you can ignore anything you see in the API pages that is enclosed in angle brackets.

The only method in Table 8.3 that isn’t straightforward is iterator(). This method returns
an extremely useful object called an Iterator, which helps you traverse the elements of a collec-
tion. Iterators implement the java.util.Iterator interface, which has only three methods:

boolean hasNext() Returns true if there are more elements.

Object next() Returns the next element.

void remove() Removes the last element returned by next().

The remove() method is rarely used. The most common way to use Iterators (and it is very
common when you use collections) is to call hasNext() in the control statement of a while
loop and to call next() in the body of the loop. Here’s a simple example:

1. public void dumpCollection(Collection c) {

2. System.out.println(“Collection has ” + c.size() +

3. “ elements.”);

4. Iterator iter = c.iterator();

5. while (iter.hasNext())

6. System.out.println(“Next element is ” +

7. iter.next());

8. }

An Iterator’s next() method returns its collection’s elements in a predictable order that is
dictated by the collection class. (We’ll look at iteration order in detail when we examine indi-
vidual implementing classes.) So the loop in lines 5–8 processes each element in order, whatever
that order might be.

Now let’s look in detail at the Java’s collection types: Lists, Sets, and Maps. We’ll also look
at two useful support classes: Collections and Arrays.

4419c08.fm Page 270 Thursday, February 17, 2005 6:05 PM

The Collections Framework 271

Lists

Lists are the most straightforward of Java’s collections. A List keeps it elements in the order in
which they were added. Each element of a List has an index, starting from 0. So you can think
of a List as something like an array that grows as needed (and can’t contain primitives).

The java.util.List interface contains a few methods in addition to those inherited from
the java.util.Collection superinterface. These include

void add(int index, Object x) Inserts x at index. The index of each subsequent ele-
ment is increased by 1, so indices remain sequential.

Object get(int index) Returns the element at index.

int indexOf(Object x) Returns the index of the first occurrence of x, or -1 if the List does
not contain x.

Object remove(int index) Removes the element at index. The index of each subsequent
element is reduced by 1, so indices remain sequential.

The most common class that implements List is Vector, which provides a straightforward
implementation of the interface. The methods of Vector are synchronized so that multiple
threads accessing a single instance don’t have to worry about corrupting the vector’s contents.
The following code stores the wrapped integers 101 through 110 in a Vector and then uses an
Iterator to retrieve and print them:

1. for (int i=101; i<=110; i++)

2. vec.add(i);

3.

4. Iterator iter = vec.iterator();

5. while (iter.hasNext())

6. System.out.println(iter.next());

Line 2 looks like it adds an int to the Vector, but don’t be deceived by appearances. Vectors
and other collections can’t store primitives; they store only object references. Line 2 takes advan-
tage of boxing to convert the int to the corresponding Integer. The code is equivalent to

vec.add(new Integer(i));

In addition to Vector, three other classes in java.util implement List. These are Stack,
ArrayList, and LinkedList. The first two are simple. Stack extends Vector, adding push(),
pop(), and peek() methods to support classic stack behavior. ArrayList is nearly identical to
Vector, but its methods are not synchronized.

LinkedList is an implementation that is intended to support the operations of classic
linked list and double-ended queue data structures. In addition to the methods of the
List interface, LinkedList has methods called addFirst(), addLast(), getFirst(),
getLast(), removeFirst(), and removeLast(). These let you append, retrieve, and
remove at either end of the List.

4419c08.fm Page 271 Thursday, February 17, 2005 6:05 PM

272 Chapter 8 � The java.lang and java.util Packages

Sets

You’ve seen that Lists are based on an ordering of their members. Sets have no concept of order.
A Set is just a cluster of references to objects.

Sets may not contain duplicate elements. If you try to add an object to a Set that already con-
tains that object, the add() call will return false and the Set will not be changed. A true return
value from add() means the Set did not formerly contain the object, but now it does.

Sets use the equals() method, not the == operator, to check for duplication of elements. So
you might be surprised by the following code:

1. void addTwice(Set set) {

2. set.clear();

3. Point p1 = new Point(10, 20);

4. Point p2 = new Point(10, 20);

5. set.add(p1);

6. set.add(p2);

7. System.out.println(set.size());

8. }

The Point class (in the java.awt package) is a very simple class that contains ints called
x and y. The class’ equals() method returns true if the two points being compared have iden-
tical x values and identical y values. The two Point instances created in lines 2 and 3 are distinct
but equal, so p1.equals(p2) is true. Since Sets use equals() to check for membership dupli-
cation, line 6 will not affect the Set, and line 7 will print out 1, not 2.

The java.util.Set interface extends java.util.Collection but does not add any addi-
tional methods. The two most commonly used implementing classes are java.util.HashSet
and java.util.TreeSet. The class names are unfortunate, since they refer to the classes’ under-
lying technologies (hash tables and red-black trees) and aren’t very descriptive to the majority of
programmers. It’s important to understand the difference between the two, and for that you need
to understand what it means to iterate over a Set.

When you use a List’s Iterator, the Iterator presents elements in their order of appearance in
the List. A List has an inherent sense of natural order, and it would make no sense to present
the elements in any other order. But a Set has no inherent order, so how should an Iterator per-
form? We can imagine three possibilities:

1. An Iterator could present elements in the order in which they were added to the Set.

2. An Iterator could present elements in an unpredictable random order.

3. An Iterator could present elements in some kind of sorted order.

Option 1 isn’t very useful, since Lists already present elements in the order in which they
were added. Option 2 is implemented by the HashSet class, and option 3 is implemented by the
TreeSet class.

When you iterate over a Hash Set, you can’t predict the order in which elements will be pre-
sented. This means that Hash Sets are appropriate only in situations where you don’t care about

4419c08.fm Page 272 Thursday, February 17, 2005 6:05 PM

The Collections Framework 273

the order. The API page for the HashSet class explains that no matter how many elements a
Hash Set contains, its basic operations (that is, its add(), remove(), and contains() methods)
will always execute in constant time.

When you iterate over a Tree Set, elements will always be presented in sorted order. (Whatever
that might mean! See below.) You might expect that there is a performance cost to be paid for
maintaining order. In fact, as you can read in the TreeSet API page, the amount of time required
to perform a basic operation on a Tree Set is proportional to the logarithm of the number of
elements in the set.

Don’t worry if you’ve forgotten your high school math. You don’t need to remem-
ber what a logarithm is. All you have to know is that as a Tree Set’s population
grows, the time to perform basic operations increases, but not drastically.

The TreeSet class implements the java.util.SortedSet interface, which extends
java.util.Set. The SortedSet interface provides several useful methods that support
dealing with sorted data. These include:

Object first() Returns this set’s first element.

Object last() Returns this set’s last element.

SortedSet headSet(Object thru) Returns a sorted set containing this set’s elements
through the specified element.

SortedSet tailSet(Object from) Returns a sorted set containing this set’s elements from
the specified element through the end.

SortedSet subSet(Object from, Object to) Returns a sorted set containing this set’s
elements from from through to.

So how do you choose which set to use? If you care about iteration order, use a Tree Set and
pay the time penalty. If iteration order doesn’t matter, use the higher-performance Hash Set.

But what exactly does iteration order mean? If a Tree Set contains only instances of Integer
or String, you would hope that elements would be presented in numerical or alphabetical order,
and indeed that’s what would happen. There is nothing magic about this result. Tree Sets rely
on all their elements implementing the java.lang.Comparable interface, which defines a
single method:

public int compareTo(Object x)

The method returns a positive number if the current object is “greater than” x, by whatever
definition of “greater than” the class itself wants to use. The method returns a negative number
if the current object is “less than” x, and 0 if the current object is “equal to” x. When you add
an object to a Tree Set, the Tree Set maintains ordering by calling compareTo() on its elements
and on the object being added.

There’s something strange going on here. Did you spot it? TreeSet implements Collection,
and Collection’s add() method has an argument of type Object. But the internals of TreeSet

4419c08.fm Page 273 Thursday, February 17, 2005 6:05 PM

274 Chapter 8 � The java.lang and java.util Packages

require that you add a Comparable, not an Object. This requirement isn’t enforced by the
compiler. You just have to know that you can store only Comparables, and if you forget,
you’ll get into trouble at runtime. You’re fine as long as your Tree Set contains only one ele-
ment. When you try to add a second element, the Tree Set needs to determine how the second
element compares to the first. The second element is cast to Comparable, and if the cast is ille-
gal, a ClassCastException is thrown. If that makes you uneasy about using Tree Sets, don’t
worry. The problem can be completely eliminated by using generics, which are discussed a little
later in this chapter.

Many of the core Java classes can reasonably be thought of as having an inherent order.
These all implement Comparable. So, for example, if you want to store some strings or wrap-
per instances in a Tree Set, you don’t need to worry about getting that ClassCastException
at runtime.

The following method generates random numbers, wraps them, and stores them in a Tree
Set. Then the Tree Set’s contents are printed out in their natural order.

 1. static void sortRandoms(int nRandoms)

 2. {

 3. TreeSet set = new TreeSet();

 4. for (int i=0; i<nRandoms; i++)

 5. set.add(Math.random());

 6.

 7. Iterator iter = set.iterator();

 8. while (iter.hasNext())

 9. System.out.println(iter.next());

 10. }

Once again, we have used boxing as a convenience for avoiding typing. Line 5 is equivalent to

 set.add(new Double(Math.random()));

Here is a sample of output from the method:

0.09753894845505195

0.14214429064845446

0.2406814471249824

0.3746330333848745

0.4430642976950666

Notice how the numbers appear in ascending order. The only effort we spent on ordering the
numbers was the thought process that went into deciding to use a Tree Set. If you’ve ever studied
sorting algorithms, you’ll understand how enormously useful it is to have a class that specializes
in sorting, leaving you free to think about other issues.

4419c08.fm Page 274 Thursday, February 17, 2005 6:05 PM

The Collections Framework 275

Maps

Maps are an important part of Java’s collections framework, but the java.util.Map class
doesn’t implement the java.util.Collection interface. So in one sense Maps are collections,
and in another sense they aren’t.

A Map combines two collections, called keys and values. The Map’s job is to associate
exactly one value with each key. You never add a single object to a Map; you add a key and the
corresponding value. When you retrieve data from a Map, a key is used to get to the value. A
good analogy for this process is a dictionary, where the keys are the words being defined and
the values are the definitions. Dictionaries aren’t perfect analogies, because a word might have
several dictionary definitions. But in a Map, every key appears exactly once and is associated
with exactly one value.

Here are the important methods of the Map interface:

Object put(Object key, Object value) Associates key and value. If the Map already
associates a value with key, the old value is removed and returned; otherwise it returns null.

Object get(Object key) Returns the value associated with key, or null if no value is asso-
ciated with key.

boolean containsKey(Object key) Returns true if the Map associates some value
with key.

void clear() Empties the Map.

Set keySet() Returns a Set containing the Map’s keys. Changes to the Map will be reflected
in the Set, and changes to the Set will affect the Map, so it’s not a good idea to modify the Set.

Collection values() Returns a collection containing the Map’s values. Changes to the
Map will be reflected in the collection, and changes to the collection will affect the Map, so it’s
not a good idea to modify the collection.

Suppose you are writing a software system for a hospital. Each patient has a unique medical
record ID, which is a string. Associated with each patient is an object that contains information
about the patient’s prescriptions; this object’s class is called Prescriptions. It would be nat-
ural to store the Prescriptions objects as values in a Map, using the medical record IDs as the
keys. Suppose the Map is called idToPrescriptions. Then to add Prescriptions object
scrips for patient id, you would call

idToPrescriptions.put(id, scrips);

To retrieve the prescriptions for the patient, you would do something like the following:

Prescriptions pres;

pres = (Prescriptions)idToPrescriptions.get(id);

4419c08.fm Page 275 Thursday, February 17, 2005 6:05 PM

276 Chapter 8 � The java.lang and java.util Packages

The cast is necessary because the get() method’s return type is Object. If it seems tedious to
cast every time you retrieve something from a Map, read on. Generics will soon make life easier.

In our example, the name of the Map (idToPrescriptions) explains both
the keys and the values of the Map. It’s always a good idea to use names that
are as descriptive as possible. Partially descriptive names, such as idMap or
prescriptionsMap, are especially irritating to people who have to figure out
your code. The Programmer Exam doesn’t test your skill at choosing names,
but it’s an essential skill in the professional world, and you can lose points on
the Developer Exam for poor naming.

Now suppose the hospital system has a billForMeds() method, whose arguments are a
patient ID and a Prescriptions object. To call this method for every patient, you would do
the following:

1. String id;

2. Prescriptions scrips;

3. Iterator iter;

4. iter = idToPrescriptions.keySet().iterator();

5. while (iter.hasNext()) {

6. id = (String)iter.next();

7. scrips = (Prescriptions)idToPrescriptions.get(id);

8. billForMeds(id, scrips);

9. }

Line 4 retrieves the Map’s key set (containing patient IDs) and then extracts an Iterator for the
key set. The loop retrieves each ID in turn (line 6), uses the ID to look up the Prescriptions object
(line 7), and then calls billForMeds() (line 8).

If the billForMeds() method didn’t require you to pass in the patient ID, you could ignore
the Map’s keys and iterate over the values instead:

1. Prescriptions scrips;

2. Iterator iter;

3. iter = idToPrescriptions.values().iterator();

4. while (iter.hasNext()) {

5. scrips = (Prescriptions)iter.next(id);

6. billForMeds(scrips);

7. }

Java’s two most important Map classes are java.util.HashMap and java.util.TreeMap.
In our discussion of Sets, you saw that “Hash” meant “unpredictable order” and “Tree” meant
“natural order.” This applies to Maps as well: specifically, to Map keys. A Hash Map’s keys (as
delivered by the keySet() method) are iterated in unpredictable order. A Tree Map’s keys are
iterated in natural order. Recall from the previous section that natural order is determined by

4419c08.fm Page 276 Thursday, February 17, 2005 6:05 PM

The Collections Framework 277

the Comparable interface; when you use a Tree Map, all keys must implement Comparable. In
our example, if it’s important for prescriptions to be processed in alphabetical order of patient
ID, then idToPrescriptions should be a Tree Map. If processing order isn’t important, the
Map should be a less-costly Hash Map.

The TreeMap class implements the java.util.SortedMap interface, which extends
java.util.Map. The SortedMap interface provides several useful methods that support
dealing with sorted data. These include:

Object first() Returns this set’s first key.

Object lastKey() Returns this set’s last key.

SortedMap headMap(Object toKey) Returns a sorted Map containing this Map’s mappings
with keys up through the specified key.

SortedMap tailMap(Object fromKey) Returns a sorted Map containing this Map’s map-
pings from the specified key through the last key.

SortedMap subMap(Object fromKey, Object toKey) Returns a sorted Map containing
this Map’s mappings from fromKey through toKey.

Maps check for key uniqueness the same way that Sets check for element uniqueness: they use
the equals() method, not the == operator. Let’s look at an example to see how this works. Recall
that the java.awt.Point class contains just an x and a y value. Suppose the Map pointToText
associates Strings with Points. How many entries does the Map contain after the following code
executes?

1. pointToText.clear();

2. Point p1 = new Point(1, 2);

3. pointToText.put(p1, “First”);

4. Point p2 = new Point(1, 2);

5. pointToText.put(p2, “Second”);

The Point objects created in lines 2 and 4 are unique but identical. That is, p1 == p2 is
false, but p1.equals(p2) is true. So the put() call on line 5 replaces the single entry that
was added on line 3, and at the end the Map contains only one entry.

Support Classes

The java.util package contains two support classes, called Collections and Arrays. These
provide static methods that operate on collections and arrays.

The methods of Collections tend to be advanced, beyond the scope of the Programmer’s
Exam. The simpler ones include

static boolean disjoint(Collection c1, Collection c2) Returns true if the two
collections have no elements in common.

static int frequency(Collection c, Object ob) Returns the number of elements in
c that are equal to ob.

4419c08.fm Page 277 Thursday, February 17, 2005 6:05 PM

278 Chapter 8 � The java.lang and java.util Packages

static Object max(Collection c) Returns the maximum element of c according to the
natural ordering of the elements.

static Object min(Collection c) Returns the maximum element of c according to the
natural ordering of the elements.

static void reverse(List list) Reverses the order of the elements in the specified List.

static void shuffle(List list) Randomly rearranges the List’s elements.

static void sort(List list) Rearranges the List’s elements into their natural order.

The methods of Arrays support sorting and searching of arrays. There is also a method that
converts an array to a list. The important methods of this class are

static void asList(Object[] arr) Returns a list representing array arr. Changing an
element in the List also changes the corresponding element of the array.

A Sortable, Reversible Vector

Here’s a scenario in which you will write a class that implements a Vector of Characters, with
additional properties.

The class should have a constructor that populates the Vector with a specified number of
instances of the Character class. These Characters should be random and unique. Provide
methods called sort() and reverse(), which should respectively sort and reverse the contents
of the Vector. Provide a main() method that demonstrates the functionality of the constructor
and of the sort() and reverse() methods. Remember to use generics! Here is a sample:

>java CleverVector

Initial State: CZqnWSNMyu

 Sorted: CMNSWZnquy

 Reversed: yuqnZWSNMC

A second run produces different output because the Vector is initialized with different random
Characters:

>java CleverVector

Initial State: DZBpUlPMbI

 Sorted: BDIMPUZblp

 Reversed: plbZUPMIDB

Without collections, initializing, sorting, and reversing would require a lot of original code.
With the proper use of the classes in the java.util package, these operations require only a
few lines each. One possible solution appears on your CD-ROM in the file solutions\Chapter_
08\CleverVector.java.

4419c08.fm Page 278 Thursday, February 17, 2005 6:05 PM

The Collections Framework 279

static void sort(byte[] arr) Rearranges the List’s elements into their natural order.
This method is extensively overloaded, with versions that take arrays of each primitive type, as
well as a version that takes an array of Object.

static int binarySearch(byte[] arr, byte key) Efficiently searches the array and
returns the index of key. The array’s elements must be sorted before the method is called. This
method is extensively overloaded, with versions that take arrays and keys of each primitive type,
as well as a version that takes an array of Object and an Object key.

static boolean equals(Object[] a1, Object[] a2) Returns true if the arrays have
the same length, and each element in a1 is equal to the corresponding element in a2.

Collections and Code Maintenance

There is no such thing as the “best implementation” of a collection. Using any kind of collection
involves several kinds of overhead penalty: memory usage, storage time, and retrieval time. No
implementation can optimize all three of these features. So, instead of looking for the best List
or the best hash table or the best Set, it is more reasonable to look for the most appropriate List,
Set, or hash table implementation for a particular programming situation.

As a program evolves, its data collections tend to grow. A collection that was created to hold
a little bit of data may later be required to hold a large amount of data, while still providing rea-
sonable response time. It is prudent from the outset to design code in such a way that it is easy to
substitute one collection implementation type for another. Java’s collections framework makes
this easy because of its emphasis on interfaces. This section presents a typical scenario.

Imagine a program that maintains data about shoppers who are uniquely identified by their
e-mail addresses. Such a program might use a Shopper class, with instances of this class stored
in some kind of Map, keyed by e-mail address. Suppose that when the program is first written,
it is known that there are and always will be only three shoppers. The following code fragment
constructs one instance for each shopper and stores the data in a hash map; then the Map is
passed to various methods for processing:

 1. private void getShoppers() {

 2. Shopper sh1 = getNextShopper();

 3. String email1 = getNextEmail();

 4. Shopper sh2 = getNextShopper();

 5. String email2 = getNextEmail();

 6. Shopper sh3 = getNextShopper();

 7. String email3 = getNextEmail();

 8.

 9. Map map = new HashMap(); // Very important!

10. map.put(email1, sh1);

11. map.put(email2, sh2);

12. map.put(email3, sh3);

13.

4419c08.fm Page 279 Thursday, February 17, 2005 6:05 PM

280 Chapter 8 � The java.lang and java.util Packages

14. findDesiredProducts(map);

15. shipProducts(map);

16. printInvoices(map);

17. collectMoney(map);

18. }

Note the declaration of map on line 9. The reference type on the left-hand side of the = sign
is Map, not HashMap (the interface, rather than the class). This is a very important difference
whose value will become clear later on. The four processing methods do not much concern us
here. Just consider their declarations:

private void findDesiredProducts(Map map) { ... }

private void shipProducts (Map map) { ... }

private void printInvoices (Map map) { ... }

private void collectMoney (Map map) { ... }

Imagine that each of these methods passes the hash map to other subordinate methods,
which pass it to still other methods; our program has a large number of processing methods.
Throughout the code, the argument types will be Map, not HashMap (again, the interface,
rather than the class).

As development proceeds, suppose it becomes clear that the getShoppers() method should
return the Map’s keys (which are the shoppers’ e-mail addresses) in a sorted array. Because there
are and always will be only three shoppers, there are and always will be only three keys to sort;
the easiest implementation is therefore as follows:

 1. private String[] getShoppers() { // New return type

 2. Shopper sh1 = getNextShopper();

 3. String email1 = getNextEmail();

 4. Shopper sh2 = getNextShopper();

 5. String email2 = getNextEmail();

 6. Shopper sh3 = getNextShopper();

 7. String email3 = getNextEmail();

 8.

 9. Map map = new HashMap();

10. map.put(email1, sh1);

11. map.put(email2, sh2);

12. map.put(email3, sh3);

13.

14. findDesiredProducts(map);

15. shipProducts(map);

16. printInvoices(map);

17. collectMoney(map);

18.

4419c08.fm Page 280 Thursday, February 17, 2005 6:05 PM

The Collections Framework 281

19. // New sorting code.

20. String[] sortedKeys = new String[3];

21. if (email1.compareTo(email2) < 0 &&

22. email1.compareTo(email3) < 0) {

23. sortedKeys[0] = email1;

24. if (email2.compareTo(email3) < 0)

25. sortedKeys[1] = email2;

26. else

27. sortedKeys[2] = email3;

28. }

29. else if (email2.compareTo(email3) < 0) {

30. sortedKeys[0] = email2;

31. if (email1.compareTo(email3) < 0)

32. sortedKeys[1] = email1;

33. else

34. sortedKeys[2] = email3;

35. }

36. else {

37. sortedKeys[0] = email3;

38. if (email1.compareTo(email2) < 0)

39. sortedKeys[1] = email1;

40. else

41. sortedKeys[2] = email2;

42. }

43. return sortedKeys;

44. }

The added code is fairly lengthy: 26 lines.

Beware of specs claiming that the size of anything is and always will be small.

Predictably, as soon as the code is developed and debugged, someone will decide that the
program needs to be expanded to accommodate 20 shoppers instead of the original three. The
new requirement suggests the need for a separate sorting algorithm, in its own separate method.
The new method will be called sortStringArray(). We won’t list it here, but you can imagine
that it involves a couple of loops and a lot of comparison and quite a bit of swapping of array
members. The next evolution of getShoppers() looks like this:

 1. private String[] getShoppers() {

 2. String[] keys = new String[20];

 3. Map map = new HashMap()

4419c08.fm Page 281 Thursday, February 17, 2005 6:05 PM

282 Chapter 8 � The java.lang and java.util Packages

 4. for (int i=0; i<20; i++) {

 5. Shopper s = getNextShopper();

 6. keys[i] = getNextEmail();

 7. map.put(keys[i], s);

 8. }

 9.

10. findDesiredProducts(map);

11. shipProducts(map);

12. printInvoices(map);

13. collectMoney(map);

14.

15. sortStringArray(keys);

16. return keys;

17. }

This code is much more modular and compact. However, it is still not mature. The next
requirement is that it has to be able to handle any number of shoppers, even a very large number.
At first glance, the solution seems very simple: just pass the number of shoppers into the method,
as shown here:

 1. private String[] getShoppers(int nShoppers) {

 2. String[] keys = new String[nShoppers];

 3. Map map = new HashMap()

 4. for (int i = 0; i < nShoppers; i++) {

 5. Shopper s = getNextShopper();

 6. keys[i] = getNextEmail();

 7. map.put(keys[i], s);

 8. }

 9.

10. findDesiredProducts(map);

11. shipProducts(map);

12. printInvoices(map);

13. collectMoney(map);

14.

15. sortStringArray(keys);

16. return keys;

17. }

This code seems fine until the number of shoppers crosses some threshold. Then the amount
of time spent sorting the keys (in the method sortStringArray(), called on line 15) becomes
prohibitive. Now is the time when the collections framework shows its true value. In particular,
you are about to see the value of referencing the Map with variables of type Map, rather than
HashMap (the interface, rather than the class).

4419c08.fm Page 282 Thursday, February 17, 2005 6:05 PM

The Collections Framework 283

Because the sorting method is now the bottleneck, it is reasonable to wonder whether a dif-
ferent kind of Map could solve the performance problem. It is time for a quick look at the API
pages for the classes that implement the Map interface. You’ll find a suitable alternative: the
TreeMap class. This implementation maintains its keys in sorted order and has a method for
returning them in sorted order. Because the keys are always sorted, there seems to be zero
overhead for sorting. Actually, the situation is not quite so good—there must be some extra
overhead (which you can hope will be slight) in the put() method, when the tree map stores
a new key. Before deciding that TreeMap is the right class to use, it is important to ascertain
that storing and retrieving data in the new collection will not cost an unreasonable amount
of time, even if the Map is very large.

First, what is the current cost of storing and retrieving in a hash map? The API page for
HashMap says that storage and retrieval take constant time, no matter what the size of the Map
might be. This is ideal; let’s hope the performance of a tree map will also be constant. If it is not
constant, it must still be acceptable when the data collection is large.

The API page for TreeMap says that the class “provides guaranteed log(n) time cost” for var-
ious operations, including storage and retrieval. This means that the time to store and retrieve
data grows with the logarithm of the size of the data set. Figure 8.5 shows a graph of the log-
arithm function.

The graph in the figure rises steadily, but at an ever-decreasing rate. The cost for accessing
a large tree map is only slightly greater than the cost for accessing a small one. Logarithmic
overhead is almost as good as constant overhead; it is certainly acceptable for the current
application.

F I G U R E 8 . 5 The logarithm function

y

x

y = log x

4419c08.fm Page 283 Thursday, February 17, 2005 6:05 PM

284 Chapter 8 � The java.lang and java.util Packages

Apparently, the TreeMap class is a very good substitute for the original HashMap class. Now
you see how easy it is to replace one collection implementation with another. Because all refer-
ences to the hash map are of type Map (the interface) rather than type HashMap (the class), only
one line of code needs to be modified: the line in which the hash map is constructed. That line
originally was

Map map = new HashMap();

All that is required is to call a different constructor:

Map map = new TreeMap();

Many data-processing methods pass references to the hash map back and forth among them-
selves. Not one of these methods needs to be modified at all. In fact, the only major change that
needs to be made is to dispense with the sortStringArray() method and the call to it, substi-
tuting the tree map’s intrinsic functionality. This modification is not directly relevant to the main
point of this example, which is how easy it is to replace one collection type with another. How-
ever, it is instructive to see how the modification is accomplished. The final code looks like this:

 1. private String[] getShoppers(int nShoppers) {

 2. Map map = new TreeMap();

 3. for (int i=0; i< nShoppers; i++) {

 4. map.put(getNextEmail(), getNextShopper());

 5. }

 6.

 7. findDesiredProducts(map);

 8. shipProducts(map);

 9. printInvoices(map);

10. collectMoney(map);

11.

12. String[] keys = new String[nShoppers];

13. Iterator iter = map.keySet().iterator();

14. int i = 0;

15. while (iter.hasNext())

16. keys[i++] = (String)iter.next();

17. return keys;

18. }

Here the Iterator on line 13 returns the elements of the hash map key set. Because the hash
map is an instance of TreeMap, the key set is guaranteed to be sorted.

This example shows the importance of referencing collections with variables of the interface
rather than the class type. If you do this, replacing one collection type with another type becomes
trivially easy.

4419c08.fm Page 284 Thursday, February 17, 2005 6:05 PM

Generic Collections 285

Generic Collections
If you have spent much time with Java’s collection classes, you know that putting an object into
a collection is a lot easier than getting it out again. This is because when you store an object you
take advantage of conversion, but when you retrieve you are obliged to cast. For example:

Vector myVec;

myVec = new Vector();

myVec.add(myDragon);

// … and later …

Dragon myOtherDragon = (Dragon)myVec.get(0);

Java Release 1.5 lets you avoid the cast in many situations. Generic collections (or just gener-
ics) are collections whose members are of a single type that is known to the compiler.

The 5.0 Collections framework is backward compatible with Java 1.4, which did
not support generics. This means that you don’t need to rewrite all your Java
1.4 code to use generics. Also, new code that you write in 5.0 doesn’t have to
use generics, though it’s almost always a good idea.

Generics provide two substantial benefits:
� Objects retrieved from generic collections need not be cast.
� The compiler ensures that objects of the wrong type are not stored in generics.

The first benefit is a convenience, because casting is a nuisance. The second benefit elim-
inates bugs before they happen, because the wrong object can never be stored in the wrong
collection.

To create a generic Vector that contains only dragons, you would use the following syntax:

1. Vector<Dragon> myVec;

2. myVec = new Vector<Dragon>();

The identifier between the angle brackets may be the name of any class or interface. The
declaration on line 1 says that myVec is not merely a Vector, but a Vector of dragons. You
can think of the <Dragon> notation as being part of the type, which is not Vector but rather
Vector<Dragon>. Notice that this notation also appears on line 2, where the Vector is con-
structed. If the angle-bracket notation is used in a variable’s declaration (as on line 1), then
that variable should be used to reference an object whose constructor also used the angle-
bracket notation (as on line 2). If you don’t follow this rule, you’ll get a compiler warning
(but your code will still compile).

The Vector of dragons constructed in lines 1 and 2 may contain only objects that are com-
patible with the Dragon class. The most common way to add to a Vector is to call the add()

4419c08.fm Page 285 Thursday, February 17, 2005 6:05 PM

286 Chapter 8 � The java.lang and java.util Packages

method. The compiler insists that the arguments of all add() calls made on myVec must be of
type Dragon or subclasses of Dragon. Assuming that class WaterDragon extends Dragon, the
following code compiles:

1. Vector<Dragon> myVec;

2. myVec = new Vector<Dragon>();

3. Dragon ulaShan = new Dragon();

4. myVec.add(ulaShan);

5. WaterDragon mangJiro = new WaterDragon();

6. myVec.add(mangJiro);

However, the following code does not compile:

1. Vector<Dragon> myVec;

2. myVec = new Vector<Dragon>();

3. String s = “fireproof”;

4. myVec.add(s);

Line 4 generates a compiler error.
When you retrieve a member of a generic vector, you may assign the retrieved value to a

variable of the vector’s type without casting. Thus the following code is legal:

1. Vector<Dragon> myVec;

2. myVec = new Vector<Dragon>();

3. Dragon ulaShan = new Dragon();

4. myVec.add(ulaShan);

5. Dragon d = myVec.get(0);

The compiler knows that myVec contains dragons, so on line 5 the cast that would otherwise be
required may be omitted.

Iterators may be generic. To declare a generic Iterator, you use the same angle-bracket notation
that you use to declare a generic vector:

Iterator<Dragon> driter;

When you call a generic Iterator’s next() method, the returned value may be assigned with-
out casting to a variable of the Iterator’s type. For example:

1. public void allDragonsSeekTreasure(Vector<Dragon> vec) {

2. Iterator<Dragon> driter = vec.iterator();

3. while (driter.hasNext()) {

4. Dragon d = driter.next();

5. d.seekTreasure();

6. }

7. }

4419c08.fm Page 286 Thursday, February 17, 2005 6:05 PM

Generic Collections 287

Notice the absence of casting on line 4. This code can be simplified to

1. public void allDragonsSeekTreasure(Vector<Dragon> vec) {

2. Iterator<Dragon> driter = vec.iterator();

3. while (driter.hasNext())

4. driter.next().seekTreasure();

5. }

To appreciate the benefits of generic vectors and Iterators, compare the version above to the
code that would be required without generics:

1. public void allDragonsSeekTreasure(Vector vec) {

2. Iterator driter = vec.iterator();

3. while (driter.hasNext())

4. ((Dragon)driter.next()).seekTreasure();

5. }

Now line 4 requires the more complicated casting syntax, and you have to get the paren-
theses right. Moreover, if vec contains an object that is not dragon-compatible, you will get
a ClassCastException at line 4. Then you will have track down the code where the incom-
patible object got added to the vector. With generics, you never get a ClassCastException,
because no incompatible objects can get added to the Vector.

The Vector class of our examples is just one of the classes that implement the List interface.
All the principles governing declaration, construction, and iteration of a Vector can also be
applied to any other class that implements List.

Sets can be generic. To declare and construct a generic Set, just use the angle-bracket syntax.
The following code creates a Set containing Strings:

Set<String> stringSet;

stringSet = new TreeSet<String>();

Notice that the second line assigns a tree set of strings to a reference whose type is a set of
strings. Generics obey the conversion rules that you learned about in Chapter 4. The types
declared in the angle brackets (String in this case) must be identical, but the types of the generic
collections (Set and TreeSet) may be different.

You can use a generic Iterator to retrieve the members of a generic set. The following method
uses a generic Iterator to compute the average length of the Strings in a generic Set:

public float meanStringLength(Set<String> stringSet) {

 float totalLengths = 0f;

 Iterator<String> iter = stringSet.iterator();

 while (iter.hasNext())

 totalLengths += iter.next().length();

 return totalLengths / stringSet.size();

}

4419c08.fm Page 287 Thursday, February 17, 2005 6:05 PM

288 Chapter 8 � The java.lang and java.util Packages

In addition to Lists and Sets, Maps also may be generic. To make a Map generic, you specify
a type for the keys and a second type for the values, as shown in the following example:

TreeMap<String, Dragon> nameToDragon;

nameToDragon = new TreeMap<String, Dragon>();

The code above creates a Tree Map whose keys are strings and whose values are dragons.
Note that the angle brackets in the declaration and constructor now contain two type names,
separated by a comma. The first type is the key type; the second is the value type.

The Iterators of the Map’s keys and values are generic:

Iterator<String> nameIter = nameToDragon.keySet().iterator();

Iterator<Dragon> dragonIter = nameToDragon.values().iterator();

Generic Lists, Sets, Maps, and Iterators provide a powerful compile-time check on your code,
by guaranteeing that only the right type of object can be stored. They also save your typing fingers
some effort by eliminating many casting operations. Your code can become even more concise
with the use of enhanced for loops, which are discussed two sections down. Before introducing
enhanced loops, let’s see how generic classes are described in the API pages.

Generics and the API Pages

Learning to use generic collections involves getting used to the angle-bracket notation. Angle
brackets show up in the API pages for Java’s generic classes and interfaces. In order to under-
stand the APIs, you need to be able to read them!

Let’s start with the page for the java.util.Set interface. (If there’s a computer nearby, you
might want to look at the page at this point.) Up to Java Release 1.4, the page header said

Interface Set

Now it says

Interface Set<E>

The E in angle brackets tell you that this interface is generic. That is, you can think of it as a Set
of something. Of what? Of whatever you like, but we’ll call it E. Throughout the API page, E
will stand for whatever type a programmer specifies in the declaration of the Set. E will show
up in the method summaries in a variety of ways.

Up to Java Release 1.4, the method summary for add() was

boolean add(Object o)

Now it’s

boolean add(E o)

4419c08.fm Page 288 Thursday, February 17, 2005 6:05 PM

Generic Collections 289

The new notation says that the argument to add() is no longer any Object but must be com-
patible with the type of the Set.

The notation for addAll() is even stranger. It used to be

boolean addAll(Collection c)

Now it’s

boolean addAll(Collection<? extends E> c)

So the argument of addAll() is no longer any collection at all. The ? extends E notation says
that the argument must be a generic collection whose type is compatible with E. ? refers to the
type of the argument collection. Don’t be confused by the extends keyword; it doesn’t mean
that the argument Collection’s type must extend E. It means the argument Collection’s type
must be compatible with E, as determined by the instanceof operator. So if E is a class, the
argument Collection’s type might be E or any subclass of E. If E is an interface, the argument
Collection’s type might be E, or any subinterface of E, or any class that implements E. The big
idea is that it must be legal, according to the rules of generics, to add every element of the argu-
ment Collection to the current Collection.

One last notation you will encounter on Set’s API page is

Iterator<E> iterator();

Here the angle brackets appear in the return type. This tells you that the method returns a
generic Iterator whose type is E.

The angle-bracket notation takes some getting used to, but once you are familiar with it you
will be able to fully understand the API pages. If you look at the source code for a generic col-
lection class, you’ll see that the notation is actually part of the language. If you want to create
your own generic class, you can do so by using the angle-bracket notation.

Generics and Enhanced For Loops

In Chapter 5, “Flow Control, Assertions, and Exception Handling,” you saw how Java’s enhanced
for loops can ease iteration over arrays. You have also just seen that generics can improve code
that iterates over collections. Here you will learn how enhanced for loops can make collection pro-
cessing even easier.

Almost all collection iteration is structured like this:

Iterator<SomeClass> iter = myCollection.iterator();

while (iter.hasNext())

 iter.next().doSomething();

Enhanced for loops let you abbreviate this structure by completely hiding the Iterator. As an
example, suppose you have a set containing Dragons:

HashSet<Dragon> dragons;

4419c08.fm Page 289 Thursday, February 17, 2005 6:05 PM

290 Chapter 8 � The java.lang and java.util Packages

If you want to call sitOnGold() on each dragon in the set, you can now do it like this:

for (Dragon d:dragons)

 d.sitOnGold();

The code above is identical to the following pre-Java 1.5 code:

Iterator iter = dragons.iterator();

while (iter.hasNext()) {

 Dragon d = (Dragon)iter.next();

 d.sitOnGold();

}

The Java 5.0 version is perfectly understandable (once you get used to the colon notation),
but it is shorter by 60 percent and eliminates the Iterator and the cast. The new syntax is

for (type varable_name : collection)

The type and variable name form a variable declaration whose scope is the statement or
block following the for statement. Each pass through the loop, the variable takes on a different
value; the values are the contents of the collection, presented in the order that an Iterator would
present them. (This is to be expected, since an Iterator is still created and used as the underlying
mechanism, even though it can’t be seen.)

The Collection that appears after the colon can be anything that implements the Collection
interface: a List (of which Vectors are the most common example), a Set, or the keys or values
of a Map.

The enhanced for loop, like generic collections, provides a way to write code that is cleaner,
less vulnerable to errors, and easier to read.

Scanning and Formatting Text
Java contains extensive facilities for dealing with text. The relevant classes reside in the java.lang
and java.util packages. Text can present special problems for programs and programmers. Text
contains meaning, which is expressed in language, and both meaning and language are very deep
concepts, intimately involved in what makes us human. No wonder computers have trouble deal-
ing with text!

The problems fall into two areas: how to extract meaning from existing text and how to create
new grammatically correct text that contains meaning. One way to address these problems is to
get a Ph.D. in computational linguistics and dedicate your life to figuring it all out. But if your goal
is just to pass the Programmer’s Exam, all you need to do is learn about Java’s facilities for scan-
ning and formatting text.

4419c08.fm Page 290 Thursday, February 17, 2005 6:05 PM

Scanning and Formatting Text 291

Scanning Text

Text scanning is the art of extracting information from text. This can be daunting because
human-language text is designed to have its information extracted by human minds. Release 5.0
helps the process by providing a class called java.util.Scanner.

The API page for this class calls it “A simple text scanner which can parse primitive types and
strings using regular expressions.” In this context, parse means to extract the types and strings
from their natural language context. The term simple is subject to debate. It’s easy enough to
figure out how to use the class, except for one detail: regular expressions.

Regular expressions are an extensive topic in their own right, dating back to the early days of
Unix. You can think of a regular expression as a string that encodes a description of a general text
pattern. For example, the regular expression \s+ represents one or more blank spaces. Encoding a
representation for a more sophisticated pattern, such as an optional sign followed by five to seven
digits that are optionally followed by a period, takes concentration and experience. If you look at
the description of regular expressions in the API (it’s on the page for java.util.regex.Pattern),
you’ll see that the spec is so extensive that you can’t possibly be required to know it by heart. So
you can treat this section as an overview to give you just the basic idea. As long as you can recognize
a very simple regular expression, you’ll do fine on the exam.

The description of regular expressions in the API is on the page for the Pattern
class in the java.util.regex package. This package also contains a class named
Matcher. A matcher is an engine that scans input, using a pattern to guide its
behavior. You rarely if ever use these classes directly. Instead, you use classes like
Scanner, which in turn use Pattern and Matcher.

A scanner breaks up an input string into tokens and delimiters. Tokens are parts of a string
that have meaning. Delimiters are text used to separate tokens. For example, if you’re trying to
extract the numeric values from the comma-separated string “12, 3.1415, 49”, then the tokens
are 12, 3.1415, and 49, because those are the parts of the string that convey meaning to you.
The commas are the delimiters.

The Scanner class has a large number of constructors. The simplest one is

public Scanner(String source)

The source is the string to be scanned for tokens. Other constructor versions specify different
text sources, such as files or input streams.

After a scanner instance in constructed, it must be told what delimiter or delimiters to use.
This is done by calling the scanner’s useDelimiter() method, passing in a regular expression
that represents the desired delimiters. For example, suppose your input string consists of integer
numbers, separated by x characters. You could set up your scanner as follows:

String scanMe = "123x2x3x4";

String delim = "x";

4419c08.fm Page 291 Thursday, February 17, 2005 6:05 PM

292 Chapter 8 � The java.lang and java.util Packages

Scanner scanner = new Scanner(scanMe);

scanner.useDelimiter(delim);

Now to extract tokens from scanMe, you can use the methods hasNext() and next().
These methods function just like their counterparts in Iterator, except that here next()
returns a string. The lines below extract tokens:

while (scanner.hasNext())

 System.out.println(scanner.next());

The output is

123

2

3

4

A regular expression can specify a class or group of characters. This is done by enclosing a
specification inside square brackets. The expression “[aeiou]” matches any of the letters a, e,
i, o, or u. Here’s a piece of code that uses this expression:

String scanMe = "abcdefghijkl";

String delim = "[aeoiu]";

Scanner scanner = new Scanner(scanMe);

scanner.useDelimiter(delim);

while (scanner.hasNext())

 System.out.println(scanner.next());

The output is:

bcd

fgh

jkl

You can specify a range of characters to be matched by using a hyphen. For example, “[a-e]”
matches any of a, b, c, d, or e.

There are several predefined classes. The ones to be aware of for the exam are

.Matches any character

\dMatches any digit (“0” - “9”)

\sMatches any whitespace character, such as space, tab, or newline

\wMatches any letter (“a” - “z” or “A” - “Z”) or digit

Note the backslashes, which tell the regular expression-processing code that the next character
has special rather than literal meaning. There’s a big difference between “d”, which recognizes the
fourth letter of the alphabet, and “\d”, which recognizes any digit.

4419c08.fm Page 292 Thursday, February 17, 2005 6:05 PM

Scanning and Formatting Text 293

Backslashes are tricky. Suppose you want to use “\s” as a delimiter-specifying regular
expression. The following code won’t work:

scanner.useDelimiter(“\s”);

In fact, this line won’t even compile! The regular expression processor isn’t the only kid on
the block that uses backslashes in literal strings. The Java compiler also does, and it doesn’t rec-
ognize “\s” as a legal escape sequence. The line above produces an “illegal escape character”
compiler error. The proper code is

scanner.useDelimiter(“\\s”);

The first backslash tells the compiler that the second backslash is to be accepted literally and
not as an instruction to treat the “s” in a special way. The compiler strips off the first backslash
and internally stores “\s”. It’s unfortunate that regular expression programming requires you to
think about this. Whenever a regular expression doesn’t do what you thought it would, ask your-
self if the literal string in your source code is the same as the string the expression processor uses.

Now suppose you want to scan an input string where the tokens might be separated by
groups of one or more “x” character. For example, the input might be “132xxxx555”. The
scanner as it stands won’t work: the output will have several blank lines between “132” and
“555”. This happens because the scanner sees those consecutive “x”s as delimiters between
empty tokens, each of which gets printed on its own line.

We need a delimiter-describing regular expression that represents one or more “x”s. The
string that does what we want is “x+”. The plus sign means one or more, so “x+” means one
or more “x”s. The “+” sign is called a quantifier. A quantifier is a symbol in a regular expression
that represents a sequence of input characters. The quantifiers you should know about for the
exam are these:

*Matches zero or more occurrences of the preceding pattern

+Matches one or more occurrences of the preceding pattern

?Matches zero or one occurrences of the preceding pattern

If you look at the regular expression spec (on the API page for java.util.regex.Pattern),
you’ll see that each of these quantifiers can be made to behave in a “greedy,” “reluctant,” or “pos-
sessive” way. The distinction is subtle, and the exam requires you to know only about the default
behavior, which is “greedy.” A greedy quantifier matches the largest possible character sequence.

You can use parentheses to group characters together and then apply a quantifier to the
group as a unit. So, for example, the expression “(ab)*” matches one or more occurrences of
“ab”, such as “ababab” and “abababababababab”.

The String class has a new method (since 5.0) called split() that uses a regular expression
to split a string into an array of substrings. The syntax is

public String[] split(String regex)

Scanners are a rich and powerful tool for extracting information from human-language text.
The information presented here just scratches the surface of what scanners can do for you.

4419c08.fm Page 293 Thursday, February 17, 2005 6:05 PM

294 Chapter 8 � The java.lang and java.util Packages

Formatting Text

Text formatting is the art of generating human-language text that presents data in easily read-
able and grammatically correct ways. Text formatting in the early releases of Java required large
amounts of custom coding. Later releases have included classes that relieve programmers of
much of the burden of inventing formatting algorithms. This relief comes at a price: some of the
classes have significant learning curves. Here we’ll look at how to use Java’s formatting classes
to format text in general and to perform special formatting for numbers, dates, and currency.

Sometimes appropriate formatting varies from place to place. For example, in the U.S. the
value of pi to five decimal places is written as 3.14159. But in much of Europe a comma is used
instead of a decimal point: 3,14159. Some of Java’s formatting classes are sensitive to regional
variations of customs.

A cultural or linguistic region is represented in Java by the java.util.Locale class. A
glance at the API page for Locale shows that the class has static instances named CANADA,
CHINA, UK, and so on. Thus it’s easy to get a locale instance for many regions of the world. To
get the locale for the current computer, call the static method Locale.getDefault(). (The
method doesn’t use magic or GPS to figure out where it is—the operating system knows its
locale, and the method asks the operating system.)

If you’re playing with locales, it’s useful to know about the getDisplay()
method. This returns the name of the country in human-recognizable form.
The getCountry() method just returns a two-letter code.

Java’s formatting methods generally have versions that use the default locale, with over-
loaded versions where you can specify a different locale. These overloaded versions are useful
for making sure that code produces reasonable text in locales other than the default.

Now let’s see how to format text in specific situations.

Formatting General Text

The java.util.Formatter class performs general-purpose string formatting. The most common
constructor is

Formatter(Appendable a)

Recall that both StringBuffer and StringBuilder implement the Appendable interface.
Remember that string builders are faster than string buffers but are not threadsafe.

An alternate constructor is

Formatter(Appendable a, Locale loc)

This version uses the specified locale as a guideline when performing region-specific formatting.
The API page for Formatter says that the class is “heavily inspired” by the C language’s

printf function. This doesn’t help you much if you haven’t programmed in C. In case you
haven’t, here’s the big idea: text to be formatted is specified by a string and a number of values.

4419c08.fm Page 294 Thursday, February 17, 2005 6:05 PM

Scanning and Formatting Text 295

The string contains invariant text and formatting instructions for the values. Let’s look at a simple
example:

StringBuilder sb = new StringBuilder();

Formatter f = new Formatter(sb);

boolean b = false;

f.format("The value is %b, so there.", b);

System.out.println(sb);

The output is

The value is false, so there.

The format() call uses its first argument as a guideline. Any text up to a special character
is appended literally to the string builder. The % sign is a special code that indicates that the
method’s second argument is to be formatted and inserted into the text. The argument index is
followed by a dollar sign ($), which is followed by formatting information. In the simplest cases,
the formatting information is a single letter. The format codes you need to know about for the
exam are these:

%b Formats a boolean value (wrapper or primitive)

%c Formats a character

%d Formats an integer

%f Formats a floating-point number

%s Formats an object, generally by calling its toString() method

Now you can see how our first example worked. The format string was appended verbatim
to the string builder until the %b code was reached. This meant that the method’s second argu-
ment was to be formatted as text representing a boolean value and appended to the string
builder. After that the remainder of the format string (since it has no more special characters)
was to be appended verbatim.

If a format string has more than one special character, the formatter expects the format()
method to have one argument for each special character. By default, these are formatted in their
order of appearance. For example, here’s a format string with two format codes and two addi-
tional arguments:

StringBuilder sb = new StringBuilder();

Formatter f = new Formatter(sb);

boolean b = false;

f.format("Would you like some %f? %b", Math.PI, true);

System.out.println(sb);

The output is

Would you like some 3.141593? true

4419c08.fm Page 295 Thursday, February 17, 2005 6:05 PM

296 Chapter 8 � The java.lang and java.util Packages

Actually, the special codes don’t need to match up one-for-one with the method arguments.
If you want to jumble the order, you can stick a number and then a dollar sign ($) immediately
after the % sign, as follows.

StringBuilder sb = new StringBuilder();

Formatter f = new Formatter(sb);

boolean b = false;

f.format("Would you like some %2$b? %1$f", Math.PI, true);

System.out.println(sb);

The $ notation says to use the specified argument rather than the next one. The output is

Would you like some true? 3.141593

So far you might not be very impressed with formatters, but that’s because you’ve seen only
the basics of what they can do, and if you just stick to the basics you aren’t much better off than
you are with ordinary string concatenation. After all, out last code example produces the same
output as the single line

System.out.println(“Would you like some ” +

 true + “? ” + Math.PI);

The real power of formatters comes into play when you make subtle adjustments to make
your strings more readable to us quirky humans. A very powerful readability feature of format-
ters is the field width specification. This is a number (it may be positive or negative) that dictates
how many characters wide a value’s representation will be. The field width comes right after the
% sign (just like the argument specifier but without the dollar sign). If the width is positive, the
value will be right-justified in a field of the specified width; if the width is negative, the value will
be left-justified. Here’s an example:

StringBuilder sb = new StringBuilder();

Formatter f = new Formatter(sb);

int a = 1234;

int b = 5;

f.format("a = %7d and b = %-7d!!!", a, b);

System.out.println(sb);

The output is

a = 1234 and b = 5 !!!

Notice that the value of a occupies the right end of its field, with the left end padded
with spaces. The value of b occupies the left end of its field, and the right end is padded with
spaces.

4419c08.fm Page 296 Thursday, February 17, 2005 6:05 PM

Scanning and Formatting Text 297

If the format code is %f, you’re formatting a floating-point value, and in addition to the over-
all width of the value, you can control the number of characters that will appear to the right of
the decimal point. The format of the specification is

%w.df

where w is the overall field with and d is the number of digits to the right of the decimal point.
The following code prints the value of PI to 18 digits of precision to the right of the decimal
point, in a 25-character field:

StringBuilder sb = new StringBuilder();

Formatter f = new Formatter(sb);

int a = 1234;

int b = 5;

f.format("PI is %25.18f!", Math.PI);

System.out.println(sb);

The output is

PI is 3.141592653589793000!

Incidentally, we mentioned that formatters are sensitive to locale variations. How would the
output of this code differ in, let’s say, France? There are two ways to find out. We could all go
to a nice Internet café in Paris and just find out. I’d love to do that, but since I’m writing to a
deadline I’ll propose the following alternative:

StringBuilder sb = new StringBuilder();

Formatter f = new Formatter(sb, Locale.FRANCE);

int a = 1234;

int b = 5;

f.format("PI is %25.18f!", Math.PI);

System.out.println(sb);

Now the output is

PI is 3,141592653589793000!

The decimal point has become a comma.
Quite often a formatted string is printed out and then discarded. In release 5.0 the PrintStream

class (of which System.out is an instance) has two format() methods, which write out formatted
text. One takes a format string, followed by a list of arguments. The other takes a locale, followed
by a format string and a list of arguments. The methods use a formatter to do the work. You might
find yourself writing something like this:

StringBuilder sb = new StringBuilder();

Formatter f = new Formatter(sb, aLocale);

4419c08.fm Page 297 Thursday, February 17, 2005 6:05 PM

298 Chapter 8 � The java.lang and java.util Packages

f.format(formatString, arg1, arg2);

System.out.println(sb);

You can simplify this code as

System.out.format(aLocale, formatString, arg1, arg2);

There is much more to learn about formatters, but this is as much as the exam requires you
to know, so we’ll move on to the issue of formatting dates and currency.

Formatting Dates

The java.util.Calendar class encapsulates an instant in time. You can obtain an instance
that represents the present moment by calling the static getInstance() method.

The java.util.Date class encapsulates an instant in time. To find out what time it is right now,
you use an indirect approach: you call the static getInstance() method of java.util.Calendar.
The Calendar class contains a Date instance, which can be retrieved by calling the getTime()
method. The following code prints out the current time:

Calendar cal = Calendar.getInstance();

System.out.println(cal.getTime());

The output is (well, was)

Mon Jan 17 21:09:57 PST 2005

That’s not bad for two lines of code, but there’s no easy way to vary the formatting. There
are ways to extract the underlying information from the date object, and if you do that you can
use a formatter to do your own formatting, but the java.text.DateFormat class makes life
much easier for you. Here is a very simple use of a date formatter:

Calendar cal = Calendar.getInstance();

Date date = cal.getTime();

DateFormat df = DateFormat.getDateInstance();

System.out.println(df.format(date));

The static getDateInstance() method returns a default formatter that is tuned for the
current locale. (The method name is misleading, since the return value is a date format, not
a date.) The formatter has a format() method that takes an instance of Date, which in our
case is extracted from a calendar.

The output is, or rather was

Jan 17, 2005

The output is a bit terse. Date formats support four levels of detail: short, medium, long,
and full. These styles are represented by the constants SHORT, MEDIUM, LONG, and FULL in the

4419c08.fm Page 298 Thursday, February 17, 2005 6:05 PM

Scanning and Formatting Text 299

DateFormat class. To obtain a formatter for the current locale that uses a specific style, pass
the style into the getDateInstance() call. Here’s a piece of code that prints out a date in
each of the four formats. (The locale is the U.S.)

int[] styles = { DateFormat.SHORT, DateFormat.MEDIUM,

 DateFormat.LONG, DateFormat.FULL };

Calendar cal = Calendar.getInstance();

Date date = cal.getTime();

for (int style:styles) {

 DateFormat df = DateFormat.getDateInstance(style);

 System.out.println(df.format(date));

}

Here’s the output:

1/17/05

Jan 17, 2005

January 17, 2005

Monday, January 17, 2005

Another form of getDateInstance() accepts a style and a locale. Here’s an example that
prints out each style for several locales:

int[] styles = { DateFormat.SHORT, DateFormat.MEDIUM,

 DateFormat.LONG, DateFormat.FULL };

Locale[] locales = { Locale.FRANCE,

 Locale.CHINA,

 Locale.ITALY };

Calendar cal = Calendar.getInstance();

Date date = cal.getTime();

for (Locale loc:locales) {

 System.out.format("\n%10s:\n", loc.getDisplayCountry());

 for (int style:styles) {

 DateFormat df = DateFormat.getDateInstance(style, loc);

 System.out.println(df.format(date) + "\n");

 }

}

4419c08.fm Page 299 Thursday, February 17, 2005 6:05 PM

300 Chapter 8 � The java.lang and java.util Packages

The output is

 France:

17/01/05

17 janv. 2005

17 janvier 2005

lundi 17 janvier 2005

 China:

05-1-17

2005-1-17

2005?1?17?

2005?1?17? ???

 Italy:

17/01/05

17-gen-2005

17 gennaio 2005

lunedi 17 gennaio 2005

Formatting Numbers and Currency

The java.text.NumberFormat class is useful for formatting numbers in general, and especially
numbers that represent currency.

Standard number formats vary somewhat from one region to another. The variation is slight
compared to variations among date formats, but it needs to be dealt with. Obviously, variations
in currency formats are significant. So it is not surprising that the behavior of the NumberFormat
class is affected by locale. Once again, a default instance of the formatting class is controlled by
the current locale; it is possible to use other instances that use other locales.

NumberFormat is actually an abstract superclass, so you never call its constructors. Instead you
call a static factory method. The factory methods you should know about for the exam are these:

public static NumberFormat getInstance() Returns a number formatter that uses the
current locale.

public static NumberFormat getInstance(Locale loc) Returns a number formatter
that uses the specified locale.

public static NumberFormat getCurrencyInstance() Returns a currency formatter
that uses the current locale.

public static NumberFormat getInstance(Locale loc) Returns a currency formatter
that uses the specified locale.

4419c08.fm Page 300 Thursday, February 17, 2005 6:05 PM

Scanning and Formatting Text 301

After you obtain an instance, you can call the format() method, passing in the value to be
formatted. For numbers, the value is an integer or floating-point number. For currency, the
value is an amount of money. The return value is a string.

Here’s a code example that demonstrates the use of commas and periods in formatting
numbers:

Locale[] locales = { Locale.US, Locale.ITALY };

for (Locale loc:locales) {

 NumberFormat f = NumberFormat.getInstance(loc);

 String formattedNumber = f.format(111123456.78911);

 System.out.format("%15s: %s\n", loc.getDisplayCountry(),

 formattedNumber);

}

The output is

 United States: 111,123,456.789

 Italy: 111.123.456,789

Notice the Italian format (actually it’s standard throughout most of Europe), which uses a
“decimal comma” to separate the tens digit from the tenths digit, and separates triples of digits
with a period. In most of the Americas the sense of the comma and period are reversed. Notice also
how, thanks to formatting, it’s easy to create output that lines up vertically in an easily readable
way. It would be possible but tedious to achieve the same result using System.out.println()
and string concatenation.

To format currency, call NumberFormat.getCurrencyInstance(). Pass in a locale if you
don’t want to use the default. Here’s an example that expresses 123.45 as an amount of local
currency for the U.S. and Taiwan:

Locale[] locales = { Locale.US, Locale.TAIWAN };

for (Locale loc:locales) {

 NumberFormat f = NumberFormat.getCurrencyInstance(loc);

 String formattedMoney = f.format(123.45);

 System.out.format("%15s: %s\n",

 loc.getDisplayCountry(),

 formattedMoney);

}

The output is

 United States: $123.45

 Taiwan: NT$123.45

4419c08.fm Page 301 Thursday, February 17, 2005 6:05 PM

302 Chapter 8 � The java.lang and java.util Packages

Summary
The java.lang package contains classes that are indispensable to Java’s operation, so all the
classes of the package are automatically imported into all source files. Some of the most impor-
tant classes in the package are
� Object

� Math

� String

� StringBuffer

� The wrapper classes

In a string context, addition operands are appended in turn to a string buffer, which is then
converted to a string; primitive operands are converted to strings, and objects are converted by
having their toString() methods invoked.

The wrapper classes encapsulate single immutable primitive values. Boxing and unboxing
ease the task of accessing the values.

The java.util package contains many utilities, but for the Certification Exam, the Collec-
tions framework is of primary interest. Collections provide ways to store and retrieve data in a
program. Different types of collections provide different semantics for storage, and different
collection implementations optimize different access and update behaviors. The use of collec-
tions is simplified by generics and the enhanced for loop.

Exam Essentials
Understand the common methods of the Math class. These methods perform basic number
crunching functions, including rounding, exponentiation, and trigonometry functions. They are
summarized in Table 8.1.

Understand the functionality of the wrapper classes. Each of the eight primitive types has a
corresponding wrapper class. Know how to use boxing and unboxing to access the wrapped
values.

Understand the functionality of the String class. The encapsulated text is immutable. Strings
are supported by the string literal pool.

Understand the functionality of the StringBuffer class. The encapsulated text is mutable.
String concatenation via the + operator is implemented with behind-the-scenes string buffers.

Know the main characteristics of each kind of Collections API: List, Set, and Map. Be
aware that List maintains order, Set prohibits duplicate members, and Map associates keys
with values.

4419c08.fm Page 302 Thursday, February 17, 2005 6:05 PM

Exam Essentials 303

Understand how collections test for duplication and equality. Collections use the equals()
method rather than the == operator.

Understand that collection classes are not threadsafe. Most implementation classes are not
threadsafe. You should assume that a collection class is not threadsafe unless its API documen-
tation explicitly states otherwise.

Understand why it is preferable for references to collections to have interface type rather than
class type. Be aware of the maintenance benefits when substituting one implementing class for
another.

Know how to use generic collections. Be able to use the angle-bracket notation.

Know how to iterate over collections using enhanced for loops. Be able to use the colon
notation.

Know how to scan and format text. Be able to use an instance of Scanner to parse text, using
regular expressions to describe delimiters. Know how to use the DateFormat and NumberFormat
classes to format date, number, and currency strings that are appropriate for any locale.

4419c08.fm Page 303 Thursday, February 17, 2005 6:05 PM

304 Chapter 8 � The java.lang and java.util Packages

Review Questions
1. Given a string constructed by calling s = new String(“xyzzy”), which of the calls modifies

the string?

A. s.append(“aaa”);

B. s.trim();

C. s.substring(3);

D. s.replace(‘z’, ‘a’);

E. s.concat(s);

F. None of the above

2. Which one statement is true about the following code?

1. String s1 = “abc” + “def”;

2. String s2 = new String(s1);

3. if (s1 == s2)

4. System.out.println(“== succeeded”);

5. if (s1.equals(s2))

6. System.out.println(“.equals() succeeded”);

A. Lines 4 and 6 both execute.

B. Line 4 executes and line 6 does not.

C. Line 6 executes and line 4 does not.

D. Neither line 4 nor line 6 executes.

3. Suppose you want to write a class that offers static methods to compute hyperbolic trigonometric
functions. You decide to subclass java.lang.Math and provide the new functionality as a set of
static methods. Which one statement is true about this strategy?

A. The strategy works.

B. The strategy works, provided the new methods are public.

C. The strategy works, provided the new methods are not private.

D. The strategy fails because you cannot subclass java.lang.Math.

E. The strategy fails because you cannot add static methods to a subclass.

4419c08.fm Page 304 Thursday, February 17, 2005 6:05 PM

Review Questions 305

4. Which one statement is true about the following code fragment?

1. import java.lang.Math;

2. Math myMath = new Math();

3. System.out.println(“cosine of 0.123 = “ +

4. myMath.cos(0.123));

A. Compilation fails at line 2.

B. Compilation fails at line 3 or 4.

C. Compilation succeeds, although the import on line 1 is not necessary. During execution, an
exception is thrown at line 3 or 4.

D. Compilation succeeds. The import on line 1 is necessary. During execution, an exception is
thrown at line 3 or 4.

E. Compilation succeeds and no exception is thrown during execution.

5. Which one statement is true about the following code fragment?

1. String s = “abcde”;

2. StringBuffer s1 = new StringBuffer(“abcde”);

3. if (s.equals(s1))

4. s1 = null;

5. if (s1.equals(s))

6. s = null;

A. Compilation fails at line 1 because the String constructor must be called explicitly.

B. Compilation fails at line 3 because s and s1 have different types.

C. Compilation succeeds. During execution, an exception is thrown at line 3.

D. Compilation succeeds. During execution, an exception is thrown at line 5.

E. Compilation succeeds. No exception is thrown during execution.

6. In the following code fragment, after execution of line 1, sbuf references an instance of the
StringBuffer class. After execution of line 2, sbuf still references the same instance.

1. StringBuffer sbuf = new StringBuffer(“abcde”);

2. sbuf.insert(3, “xyz”);

A. True

B. False

4419c08.fm Page 305 Thursday, February 17, 2005 6:05 PM

306 Chapter 8 � The java.lang and java.util Packages

7. In the following code fragment, after execution of line 1, sbuf references an instance of the
StringBuffer class. After execution of line 2, sbuf still references the same instance.

1. StringBuffer sbuf = new StringBuffer(“abcde”);

2. sbuf.append(“xyz”);

A. True

B. False

8. In the following code fragment, line 4 is executed.

1. String s1 = “xyz”;

2. String s2 = “xyz”;

3. if (s1 == s2)

4. System.out.println(“Line 4”);

A. True

B. False

9. In the following code fragment, line 4 is executed.

1. String s1 = “xyz”;

2. String s2 = new String(s1);

3. if (s1 == s2)

4. System.out.println(“Line 4”);

A. True

B. False

10. Suppose prim is an int and wrapped is an Integer. Which of the following are legal Java
statements? (Choose all that apply.)

A. prim = wrapped;

B. wrapped = prim;

C. prim = new Integer(9);

D. wrapped = 9;

11. Which of the following are legal? (Choose all that apply.)

A. List<String> theList = new Vector<String>;

B. List<String> theList = new Vector<String>();

C. Vector <String> theVec = new Vector<String>;

D. Vector <String> theVec = new Vector<String>();

4419c08.fm Page 306 Thursday, February 17, 2005 6:05 PM

Review Questions 307

12. Given the following,

Map<String> names = new HashMap<String>();

which of the following are legal? (Choose all that apply.)

A. Iterator<String> iter = names.iterator();

B. for (String s:names)

C. while (String s:names)

13. Which of the following are legal clone() methods in a class called Q13 that extends Object?

A. public Object clone() { return super.clone(); }

B. public Object clone()
 throws CloneNotSupportedException { return super.clone(); }

C. public Q13 clone() { return (Q13)super.clone(); }

D. public Q13 clone()
 throws CloneNotSupportedException { return (Q13)super.clone(); }

14. Which of the following classes implement java.util.List?

A. java.util.ArrayList

B. java.util.HashList

C. java.util.StackList

D. java.util.Stack

15. Which of the following are methods of the java.util.SortedSet interface?

A. first

B. last

C. headSet

D. tailSet

E. subSet

16. Which of the following are methods of the java.util.SortedMap interface?

A. first

B. last

C. headMap

D. tailMap

E. subMap

4419c08.fm Page 307 Thursday, February 17, 2005 6:05 PM

308 Chapter 8 � The java.lang and java.util Packages

17. Which line of code tells a scanner called sc to use a single digit as a delimiter?

A. sc.useDelimiter(“d”);

B. sc.useDelimiter(“\d”);

C. sc.useDelimiter(“\\d”);

D. sc.useDelimiter(“d+”);

E. sc.useDelimiter(“\d+”);

F. sc.useDelimiter(“\\d+”);

18. What happens when you try to compile and run this application?

 1. import java.util.*;

 2.

 3. public class Apple {

 4. public static void main(String[] a) {

 5. Set<Apple> set = new TreeSet<Apple>();

 6. set.add(new Apple());

 7. set.add(new Apple());

 8. set.add(new Apple());

 9. }

10. }

A. Compiler error.

B. An exception is thrown at line 6.

C. An exception is thrown at line 7.

D. An exception is thrown at line 8.

E. No exception is thrown.

19. Given arrays a1 and a2, which call returns true if a1 and a2 have the same length, and
a1[i].equals(a2[i]) for every legal index i?

A. java.util.Arrays.equals(a1, a2);

B. java.util.Arrays.compare(a1, a2);

C. java.util.List.compare(a1, a2);

D. java.util.List.compare(a1, a2);

20. Which of the following statements are true?

A. StringBuilder is generally faster than StringBuffer.

B. StringBuffer is generally faster than StringBuilder.

C. StringBuilder is threadsafe; StringBuffer is not.

D. StringBuffer is threadsafe; StringBuilder is not.

4419c08.fm Page 308 Thursday, February 17, 2005 6:05 PM

Answers to Review Questions 309

Answers to Review Questions
1. F. Strings are immutable.

2. C. Because s1 and s2 are references to two different objects, the == test fails. However, the
strings contained within the two String objects are identical, so the equals() test passes.

3. D. The java.lang.Math class is final, so it cannot be subclassed.

4. A. The constructor for the Math class is private, so it cannot be called. The Math class methods
are static, so it is never necessary to construct an instance. The import at line 1 is not required,
because all classes of the java.lang package are automatically imported.

5. E. A is wrong because line 1 is a perfectly acceptable way to create a String and is actually more
efficient than explicitly calling the constructor. B is wrong because the argument to the equals()
method is of type Object; thus any object reference or array variable may be passed. The calls on
lines 3 and 5 return false without throwing exceptions because s and s1 are objects of different
types.

6. A. The StringBuffer class is mutable. After execution of line 2, sbuf refers to the same object,
although the object has been modified.

7. A. The StringBuffer class is mutable. After execution of line 2, sbuf refers to the same object,
although the object has been modified.

8. A. Line 1 constructs a new instance of String and stores it in the string pool. In line 2, “xyz”
is already represented in the pool, so no new instance is constructed.

9. B. Line 1 constructs a new instance of String and stores it in the string pool. Line 2 explicitly
constructs another instance.

10. A, B, C, D. All four statements are legal, thanks to boxing and unboxing.

11. B, D. A and C are illegal, because a constructor call consists of a class name followed by paren-
theses. B and D add the parentheses. B assigns a Vector of Strings to a List of Strings, which is
a legal assignment conversion.

12. A, B. A is the way to get a generic Iterator over a generic Set. B uses the enhanced for loop to
iterate the Set’s elements. C is illegal because there is no such thing as an enhanced while loop.

13. B, D. The CloneNotSupportedException must be dealt with, so A and C are wrong. The ver-
sion being overridden (in Object) has return type Object, so prior to release 5.0 the return type
in D would be illegal; however, now that covariant returns are legal, D is allowed.

14. A, D. The HashList and StackList classes do not exist.

15. A, B, C, D , E. These methods all exist.

16. C, D , E. The SortedMap interface has firstKey() and lastKey() methods, but not first()
or last().

4419c08.fm Page 309 Thursday, February 17, 2005 6:05 PM

310 Chapter 8 � The java.lang and java.util Packages

17. C. The + sign matches one or more occurrences, so it won’t match just a single digit. The correct
string is “\d”; the extra escape is consumed by the Java compiler when it builds the literal string.

18. C. The Apple class doesn’t implement Comparable, so a tree set doesn’t know how to handle
it. The problem appears when the second Apple instance is added to the set, requiring the set to
perform a comparison between its two members. The add() method throws
ClassCastException.

19. A. The Arrays class has a static equals() method that compares arrays member by member.

20. A, D. StringBuffer is threadsafe, StringBuilder is fast.

4419c08.fm Page 310 Thursday, February 17, 2005 6:05 PM

Chapter

9

I/O and Streams

JAVA CERTIFICATION EXAM OBJECTIVES
COVERED IN THIS CHAPTER:

�

3.2 Given a scenario involving navigating file systems, reading

from files, or writing to files, develop the correct solution

using the following classes (sometimes in combination) from

java.io: BufferedReader,BufferedWriter, File, FileReader,

FileWriter and PrintWriter.

�

3.3 Develop code that serializes and/or de-serializes objects

using the following APIs from java.io: DataInputStream,

DataOutputStream, FileInputStream, FileOutputStream,

ObjectInputStream, ObjectOutputStream, and Serializable.

In addition, develop Serializable classes that correctly

declare and use transient variables and private readObject

and writeObject methods. Given a scenario and/or code

example, recognize when, if, and which constructors will be

called in an object's inheritance chain during deserialization.

4419c09.fm Page 311 Thursday, February 24, 2005 3:45 PM

Java’s Input/Output (I/O) structure is substantially based on the
concept of streams, which are classes that help you read and write
files and networks. The Programmer’s Exam requires you to know

about file I/O. This chapter covers all the I/O knowledge you need for the Programmer’s Exam
and also prepares you for Chapter 13, “Networking and RMI.”

This chapter begins with a look at how Java represents text, both inside and outside the Java
Virtual Machine (JVM). Then you’ll see how to read and write files byte by byte. After that
you’ll learn about using streams to perform more sophisticated I/O. The chapter ends with a dis-
cussion of object streams and serialization.

Text, UTF, and Unicode

Since files often contain text, we’ll start by discussing how Java represents text. In the early days
of computers, when memory was an expensive commodity, each character was represented by a
single byte. A standard called ASCII determined which of the 256 possible bit combinations rep-
resented which characters. With only 256 possible values, there was room for all American and
English characters but not much else. Some European characters were accommodated (accented
vowels and the like), but Asian, African, Middle Eastern, and Slavic alphabets were ignored.

Not surprisingly, many communities developed their own standards for mapping bytes to
characters. It became impossible to process a file correctly without knowing which standard it
used. For example, the bit pattern 01000001 represented A in the U.S. and Europe. In Armenia
it represented a letter that looks like a cursive Q, and in Tibet it represented a letter that looks
vaguely like a guillotine.

Clearly, 8 bits are not enough to represent all the characters of all the communities of our
planet. The Unicode standard was developed as a way to map characters to 16-bit values. Using
16 bits means that there are 65,536 possible characters that can be represented, so almost all
languages can be fully encoded. (Chinese, Japanese, and Korean, which have huge numbers of
characters, are not completely represented.)

Unicode is the encoding of the future, but it does not address a problem of the present: there
are billions of files in the world that use pre-Unicode 8-bit mappings. Moreover, 8-bit characters
are the norm for network communication. No modern programming language can succeed if it
ignores all these 8-bit characters, so Java uses a double strategy:
�

Programs may use UTF to read and write Unicode.
�

Programs may use readers and writers to convert between internal Unicode and external
8-bit encodings.

4419c09.fm Page 312 Thursday, February 24, 2005 3:45 PM

File Input and Output

313

UTF stands for UCS Transformation Format, and UCS in turn stands for Universal Character
Set. (Don’t worry: you will not be tested on your knowledge of these abbreviations.) UTF is a stan-
dard for compressing strings of Unicode text. As you study certain classes later in this chapter, you
will see that they have methods for reading and writing UTF. These methods convert between
external UTF and internal Unicode.

Java’s various reader and writer classes allow Java applications to take advantage of 8-bit
text in files and on the Web. They are presented in the “Streams, Readers, and Writers” section
later on in this chapter.

File Input and Output

Java’s

java.io.File

 and

java.io.RandomAccessFile

 classes provide functionality for navi-
gating the local file system, describing files and directories, and accessing files in non-sequential
order. (Accessing files sequentially is done with streams, readers, and writers, which are described
later in this chapter.) All file access begins with the creation of an instance of one of these classes.

The

File

 Class

The

java.io.File

 class represents the name of a file or directory that might exist on the host
machine’s file system. The simplest form of the constructor for this class is

File(String pathname);

It is important to know that constructing an instance of

File

 does not create a file on the
local file system. Calling the constructor simply creates an instance that encapsulates the spec-
ified string. Of course, if the instance is to be of any use, most likely it should encapsulate a
string that represents an existing file or directory, or one that will shortly be created. However,
at construction time no checks are made.

It is even possible to create a

File

 instance that uses the wrong file-naming semantics. The
class accepts both the forward-slash separator used by Unix and the drive-letter-plus-backslash-
separator notation used by Windows.

There are two other versions of the

File

 constructor:

File(String dir, String subpath);

File(File dir, String subpath);

Both versions require you to provide a directory and a relative path (the

subpath

 argument)
within that directory. In one version, you use a string to specify the directory; in the other, you
use an instance of

File

. (Remember that the

File

 class can represent a directory as well as a
file.) You might, for example, execute the following code on a Unix machine:

1. File f1 =

2. new File(“/tmp”, “xyz”); // Assume /tmp is a dir

3. File f2 = new File(f1, “Xyz.java”);

4419c09.fm Page 313 Thursday, February 24, 2005 3:45 PM

314

Chapter 9 �

I/O and Streams

You might execute the following code on a Windows platform:

1. File f1 =

2. new File(“C:\\a”); // Assume C:\a is a dir

3. File f2 = new File(f1, “Xyz.java”);

(In line 2, the first backslash is an escape character that ensures the second backslash is accepted
literally.)

Of course, there is no theoretical reason why you could not run the first example on a Windows
machine and the second example on a Unix platform. Up to this point, you are doing nothing
more than constructing objects that encapsulate strings. In practice, however, nothing is gained
from using the wrong pathname semantics. Eventually, if you try to access a file via a

File

instance that uses the wrong semantics, you’ll get a

FileNotFoundException

.
After constructing an instance of

File

, you can make several method calls on it. Some of
these calls simply do string manipulation on the file’s pathname, and others access or modify the
local file system.

The major methods that support navigation are as follows:

boolean exists()

Returns

true

 if the file or directory exists; otherwise returns

false

.

String getAbsolutePath()

Returns the absolute (that is, not relative) path of the file or
directory.

String getCanonicalPath()

Returns the canonical path of the file or directory. This method
is similar to

getAbsolutePath()

, but the symbols

.

 and

..

 are resolved.

String getName()

Returns the name of the file or directory. The name is the last element of
the path.

String getParent()

Returns the name of the directory that contains the

File

.

boolean isDirectory()

Returns

true

 if the

File

 object describes a directory that exists on
the file system.

boolean isFile()

Returns

true

 if the

File

 object describes a file that exists on the file system.

String[] list()

Returns an array containing the names of the files and directories within
the

File

 instance, which

File

 must describe a directory, not a file.

Some non-navigation methods are as follows:

boolean canRead()

Returns

true

 if the file or directory may be read.

boolean canWrite()

Returns

true

 if the file or directory may be modified.

boolean createNewFile()

Creates a new empty disk file as described by the current object,
if such a file does not already exist. Returns

true

 if the file was created.

boolean delete()

Attempts to delete the file or directory.

long length()

Returns the length of the file.

4419c09.fm Page 314 Thursday, February 24, 2005 3:45 PM

File Input and Output

315

boolean mkdir()

Attempts to create a directory whose path is described by the current
instance of

File

.

boolean renameTo(File

newname

)

Renames the file or directory. This method returns

true

 if the renaming succeeded; otherwise it returns

false

.

The following program uses some of the navigation methods to create a recursive listing of
a directory. The application expects the directory to be specified in the command line. The list-
ing appears in a text area within a frame:

 1. import java.awt.*;

 2. import java.io.File;

 3.

 4. public class Lister extends Frame {

 5. TextArea ta;

 6.

 7. public static void main(String args[]) {

 8. // Get path or dir to be listed.

 9. // Default to cwd if no command line arg.

10. String path = “.”;

11. if (args.length >= 1)

12. path = args[0];

13.

14. // Make sure path exists and is a directory.

15. File f = new File(path);

16. if (!f.isDirectory()) {

17. System.out.println(path +

18. “ doesn’t exist or not dir”);

19. System.exit(0);

20. }

21.

22. // Recursively list contents.

23. Lister lister = new Lister(f);

24. lister.setVisible(true);

25. }

26.

27. Lister(File f) {

28. setSize(300, 450);

29. ta = new TextArea();

30. ta.setFont(new Font(

31. “Monospaced”, Font.PLAIN, 14));

32. add(ta, BorderLayout.CENTER);

4419c09.fm Page 315 Thursday, February 24, 2005 3:45 PM

316

Chapter 9 �

I/O and Streams

33. recurse(f, 0);

34. }

35.

36. // Recursively list the contents of dirfile.

37. // Indent 5 spaces for each level of depth.

38.

39. void recurse(File dirfile, int depth) {

40. String contents[] = dirfile.list();

41. // For each child ...

42. for (int i=0; i<contents.length; i++) {

43. // Indent

44. for (int spaces=0; spaces<depth; spaces++)

45. ta.append(“ “);

46. // Print name

47. ta.append(contents[i] + “\n”);

48. File child = new File(dirfile, contents[i]);

49. if (child.isDirectory())

50. // Recurse if dir

51. recurse(child, depth+1);

52. }

53. }

54. }

Figure 9.1 shows a sample of this program’s output.
The program first checks for a command-line argument (lines 10–12). If one is supplied, it

is assumed to be the name of the directory to be listed; if there is no argument, the current work-
ing directory will be listed. Note the call to

isDirectory()

 on line 16. This call returns

true

only if

path represents an existing directory.
After establishing that the thing to be listed really is a directory, the code constructs an

instance of Lister, which makes a call to recurse(), passing in the File to be listed in the
parameter dirfile.

The recurse() method makes a call to list() (line 40) to get a listing of the contents of the
directory. Each file or subdirectory is printed (line 47) after appropriate indentation (five spaces per
level, lines 44 and 45). If the child is a directory (tested on line 49), its contents are listed recursively.

The Lister program shows one way to use the methods of the File class to navigate the
local file system. These methods do not modify the contents of files in any way; to modify a file,
you must use either the RandomAccessFile class or Java’s stream, reader, and writer facilities.
All these topics are covered in the sections that follow, but first, here is a summary of the key
points concerning the File class:
� An instance of File describes a file or directory.
� The file or directory might or might not exist.
� Constructing/garbage collecting an instance of File has no effect on the local file system.

4419c09.fm Page 316 Thursday, February 24, 2005 3:45 PM

File Input and Output 317

F I G U R E 9 . 1 Sample listing

The RandomAccessFile Class

One way to read or modify a file is to use the java.io.RandomAccessFile class. This class pre-
sents a model of files that is incompatible with the stream/reader/writer model described later
in this chapter. The stream/reader/writer model was developed for general I/O, whereas the
RandomAccessFile class takes advantage of a particular behavior of files that is not found in
general I/O devices.

With a random-access file, you can seek to a desired position within a file and then read or
write a desired amount of data. The RandomAccessFile class provides methods that support
seeking, reading, and writing.

The constructors for the class are as follows:

RandomAccessFile(String file, String mode)

RandomAccessFile(File file, String mode)

The mode string should be either “r” or “rw”. Use “r” to open the file for reading only, and use
“rw” to open for both reading and writing. In revision 5.0 two more modes were introduced:
“rws” and “rwd.” With a mode of “rws” the file is opened for reading and writing, and any
changes to the file’s content or metadata take place immediately. (Metadata is all the data that
describes a file: its permission modes, ownership, last-modified time, etc.) With the “rwd” mode,

4419c09.fm Page 317 Thursday, February 24, 2005 3:45 PM

318 Chapter 9 � I/O and Streams

the file is opened for reading and writing, and changes to the files content, but not its metadata,
take place immediately.

The second form of the constructor is useful when you want to use some of the methods of the
File class before opening a random-access file, so that you already have an instance of File at
hand when it comes time to call the RandomAccessFile constructor. For example, the following
code fragment constructs an instance of File in order to verify that the string path represents a
file that exists and may be written. If this is the case, the RandomAccessFile constructor is called;
otherwise an exception is thrown:

1. File file = new File(path);

2. if (!file.isFile() ||

3. !file.canRead() ||

4. !file.canWrite())

5. throw new IOException();

6. RandomAccessFile raf = new RandomAccessFile(file, “rw”);

When the named file does not exist, constructing a RandomAccessFile is different from con-
structing an ordinary File. In this situation, if the random-access file is constructed in read-only
mode, a FileNotFoundException is thrown. If the random-access file is constructed in read-
write mode, then a zero-length file is created.

After a random-access file is constructed, you can seek to any byte position within the file and
then read or write. Pre-Java systems (the C standard I/O library, for example) have supported
seeking to a position relative to the beginning of the file, the end of the file, or the current position
within the file. Java’s random-access files support only seeking relative to the beginning of the file;
but methods exist that report the current position and the length of the file, so you can effectively
perform the other kinds of seeking as long as you are willing to do the arithmetic.

The methods that support seeking are as follows:

long getFilePointer() throws IOException Returns the current position within the
file, in bytes. Subsequent reading and writing will take place starting at this position.

long length() throws IOException Returns the length of the file, in bytes.

void seek(long position) throws IOException Sets the current position within the
file, in bytes. Subsequent reading and writing will take place starting at this position. Files start
at position 0.

The following code is a subclass of RandomAccessFile that adds two new methods to sup-
port seeking from the current position or the end of the file. The code illustrates the use of the
methods just listed:

 import java.io.*;

 class GeneralRAF extends RandomAccessFile {

 public GeneralRAF(File path, String mode)

4419c09.fm Page 318 Thursday, February 24, 2005 3:45 PM

File Input and Output 319

 throws IOException {

 super(path, mode);

 }

 public GeneralRAF(String path, String mode)

 throws IOException {

 super(path, mode);

 }

 public void seekFromEnd(long offset)

 throws IOException {

 seek(length() - offset);

 }

 public void seekFromCurrent(long offset)

 throws IOException {

 seek(getFilePointer() + offset);

 }

 }

The whole point of seeking, of course, is to read from or write to a desired position within
a file. All the reading and writing methods advance the current file position. Files are ordered
collections of bytes, and the RandomAccessFile class has several methods that support read-
ing and writing of bytes. However, the bytes in a file often combine to represent richer data for-
mats. For example, two bytes could represent a Unicode character; four bytes could represent
a float or an int.

The more common methods that support byte reading and writing are as follows:

int read() throws IOException Returns the next byte from the file (stored in the low-order
eight bits of an int) or -1 if at the end of the file.

int read(byte dest[]) throws IOException Attempts to read enough bytes to fill array
dest[]. It returns the number of bytes read, or -1 if at the end of the file.

int read(byte dest[], int offset, int len) throws IOException Attempts to read
len bytes into array dest[], starting at offset. It returns the number of bytes read, or -1 if at
the end of the file.

void write(int b) throws IOException Writes the low-order byte of b.

void write(byte b[]) throws IOException Writes all of byte array b[].

void write(byte b[], int offset, int len) throws IOException Writes len bytes
from byte array b[], starting at offset.

4419c09.fm Page 319 Thursday, February 24, 2005 3:45 PM

320 Chapter 9 � I/O and Streams

Random-access files support reading and writing of all primitive data types. Each read or write
operation advances the current file position by the number of bytes read or written. Table 9.1 pre-
sents the various primitive-oriented methods, all of which throw IOException.

When a random-access file is no longer needed, it should be closed:

void close() throws IOException

The close() method releases non-memory system resources associated with the file.
To summarize, random-access files offer the following functionality:

� Seeking to any position within a file
� Reading and writing single or multiple bytes
� Reading and writing groups of bytes, treated as higher-level data types
� Closing

T A B L E 9 . 1 Random-Access File Methods for Primitive Data Types

Read Method Write Method

boolean readBoolean() void writeBoolean(boolean b)

byte readByte() void writeByte(int b)

short readShort() void writeShort(int s)

char readChar() void writeChar(int c)

int readInt() void writeInt(int i)

long readLong() void writeLong(long l)

float readFloat() void writeFloat(float f)

double readDouble() void writeDouble(double d)

int readUnsignedByte() None

int readUnsignedShort() None

String readLine() None

String readUTF() void writeUTF(String s)

4419c09.fm Page 320 Thursday, February 24, 2005 3:45 PM

Streams, Readers, and Writers 321

Streams, Readers, and Writers
Java’s stream, reader, and writer classes view input and output as ordered sequences of bytes.
Of course, dealing strictly with bytes would be tremendously bothersome, because data appears
sometimes as bytes, sometimes as ints, sometimes as floats, and so on. You have already seen
how the RandomAccessFile class allows you to read and write all of Java’s primitive data
types. The readInt() method, for example, reads four bytes from a file, pieces them together,
and returns an int. Java’s general I/O classes provide a similar structured approach:
� A low-level output stream receives bytes and writes bytes to an output device.
� A high-level filter output stream receives general-format data, such as primitives, and writes

bytes to a low-level output stream or to another filter output stream.
� A writer is similar to a filter output stream but is specialized for writing Java strings in units

of Unicode characters.
� A low-level input stream reads bytes from an input device and returns bytes to its caller.
� A high-level filter input stream reads bytes from a low-level input stream, or from another

filter input stream, and returns general-format data to its caller.
� A reader is similar to a filter input stream but is specialized for reading UTF strings in units

of Unicode characters.

The stream, reader, and writer classes are not very complicated. The easiest way to review
them is to begin with the low-level streams.

Low-Level Streams

Low-level input streams have methods that read input and return the input as bytes. Low-
level output streams have methods that are passed bytes and write the bytes as output. The
FileInputStream and FileOutputStream classes are excellent examples.

The two most common file input stream constructors are
� FileInputStream(String pathname)

� FileInputStream(File file)

After a file input stream has been constructed, you can call methods to read a single byte, an
array of bytes, or a portion of an array of bytes. The functionality is similar to the byte-input
methods you have already seen in the RandomAccessFile class:

int read() throws IOException Returns the next byte from the file (stored in the low-order
eight bits of an int) or -1 if at the end of the file.

int read(byte dest[]) throws IOException Attempts to read enough bytes to fill array
dest[]. It returns the number of bytes read or -1 if at the end of the file.

4419c09.fm Page 321 Thursday, February 24, 2005 3:45 PM

322 Chapter 9 � I/O and Streams

int read(byte dest[], int offset, int len) throws IOException Attempts to read
len bytes into array dest[], starting at offset. It returns the number of bytes read or -1 if at the
end of the file.

The following code fragment illustrates the use of these methods by reading a single byte into
byte b, then enough bytes to fill byte array bytes[], and finally 20 bytes into the first 20 loca-
tions of byte array morebytes[]:

 byte b;

 byte bytes[] = new byte[100];

 byte morebytes[] = new byte[50];

 try {

 FileInputStream fis = new FileInputStream(“fname”);

 b = (byte) fis.read(); // Single byte

 fis.read(bytes); // Fill the array

 fis.read(morebytes, 0, 20); // 1st 20 elements

 fis.close();

 }

 catch (IOException e) { }

The FileInputStream class has a few very useful utility methods:

int available() throws IOException Returns the number of bytes that can be read
without blocking.

void close() throws IOException Releases non-memory system resources associated
with the file. A file input stream should always be closed when no longer needed.

long skip(long nbytes) throws IOException Attempts to read and discard nbytes
bytes. Returns the number of bytes actually skipped.

It is not surprising that file output streams are almost identical to file input streams. The com-
monly used constructors are
� FileOutputStream(String pathname)

� FileOutputStream(File file)

There are methods to support writing a single byte, an array of bytes, or a subset of an array
of bytes:

void write(int b) throws IOException Writes the low-order byte of b.

void write(byte bytes[]) throws IOException Writes all members of byte array
bytes[].

void write(byte bytes[], int offset, int len) throws IOException Writes len
bytes from array bytes[], starting at offset.

The FileOutputStream class also has a close() method, which should always be called
when a file output stream is no longer needed.

4419c09.fm Page 322 Thursday, February 24, 2005 3:45 PM

Streams, Readers, and Writers 323

In addition to the two classes described earlier, the java.io package has other low-level
input and output stream classes:

InputStream and OutputStream These are the superclasses of the other low-level stream
classes. They can be used for reading and writing network sockets.

ByteArrayInputStream and ByteArrayOutputStream These classes read and write arrays
of bytes. Byte arrays are certainly not hardware I/O devices, but the classes are useful when you
want to process or create sequences of bytes.

PipedInputStream and PipedOutputStream These classes provide a mechanism for syn-
chronized communication between threads.

High-Level Streams

It is all very well to read bytes from input devices and write bytes to output devices, if bytes are
the unit of information you are interested in. However, more often than not the bytes to be read
or written constitute higher-level information such as an int or a String.

Java supports high-level I/O with high-level streams. The most common of these (and
the ones covered in this chapter) extend from the superclasses FilterInputStream and
FilterOutputStream. High-level input streams do not read from input devices such as files
or sockets; rather, they read from other streams. High-level output streams do not write to
output devices but to other streams.

A good example of a high-level input stream is the data input stream. This class has only one
constructor:
� DataInputStream(InputStream instream)

The constructor requires you to pass in an input stream. This instance might be a file input
stream (because FileInputStream extends InputStream), an input stream from a socket,
or any other kind of input stream. When the instance of DataInputStream is called on to
deliver data, it will make some number of read() calls on instream, process the bytes, and
return an appropriate value. The commonly used input methods of the DataInputStream
class are as follows:

boolean readBoolean() throws IOException

byte readByte() throws IOException

char readChar () throws IOException

double readDouble () throws IOException

float readFloat () throws IOException

int readInt() throws IOException

long readLong() throws IOException

short readShort() throws IOException

String readUTF() throws IOException

There is, of course, a close() method.

4419c09.fm Page 323 Thursday, February 24, 2005 3:45 PM

324 Chapter 9 � I/O and Streams

When creating chains of streams, it is recommended that you close all streams
when you no longer need them, making sure to close the streams in the reverse
of the order in which they were constructed.

The following code fragment illustrates a small input chain:

 try {

 // Construct the chain

 FileInputStream fis = new FileInputStream(“fname”);

 DataInputStream dis = new DataInputStream(fis);

 // Read

 double d = dis.readDouble();

 int i = dis.readInt();

 String s = dis.readUTF();

 // Close the chain

 dis.close(); // Close dis first, because it

 fis.close(); // was created last

 }

 catch (IOException e) { }

Figure 9.2 shows the hierarchy of the input chain.
The code expects that the first 8 bytes in the file represent a double, the next 4 bytes repre-

sent an int, and the next who-knows-how-many bytes represent a UTF string. This means that
the code that originally created the file must have been writing a double, an int, and a UTF
string. The file need not have been created by a Java program, but if it was, the easiest approach
would be to use a data output stream.

The DataOutputStream class is the mirror image of the DataInputStream class. The con-
structor is DataOutputStream(OutputStream ostream).

The constructor requires you to pass in an output stream. When you write to the data output
stream, it converts the parameters of the write methods to bytes and writes them to ostream.
The commonly used output methods of the DataOutputStream class are as follows:

void writeBoolean(boolean b) throws IOException

void writeByte(int b) throws IOException

void writeBytes(String s) throws IOException

void writeChar(int c) throws IOException

void writeDouble(double d) throws IOException

4419c09.fm Page 324 Thursday, February 24, 2005 3:45 PM

Streams, Readers, and Writers 325

void writeFloat(float b) throws IOException

void writeInt(int i) throws IOException

void writeLong(long l) throws IOException

void writeShort(int s) throws IOException

void writeUTF(String s) throws IOException

All these methods convert their input to bytes in the obvious way, with the exception of
writeBytes(), which writes out only the low-order byte of each character in its string. As
usual, there is a close() method. Again, chains of output streams should be closed in reverse
order from their order of creation.

F I G U R E 9 . 2 A chain of input streams

With these methods in mind, you can now write code that creates a file like the one read in
the previous example. In that example, the file contained a double, an int, and a String. The
file might be created as follows:

4419c09.fm Page 325 Thursday, February 24, 2005 3:45 PM

326 Chapter 9 � I/O and Streams

 try {

 // Create the chain

 FileOutputStream fos = new FileOutputStream(“txt”);

 DataOutputStream dos = new DataOutputStream(fos);

 // Write

 dos.writeDouble(123.456);

 dos.writeInt(55);

 dos.writeUTF(“The moving finger writes”);

Creating a Custom Input Stream

In this exercise, you will create your own input stream and use it in a chain. You will create a
class called ChecksumInputStream, which reads and delivers bytes while maintaining a check-
sum of all bytes read since the instance was created. The checksum is a long; every time a byte
is read into the stream, its value is added to the checksum.

The class you create should extend the InputStream abstract class. The constructor for your
class should take a single argument of type InputStream; this will be the source of data for the
new class. Provide the byte-reading method that is abstract in the superclass; it should return
just the data read by making the corresponding call on the data source stream while maintain-
ing the checksum. Also provide a getChecksum() method.

The class you create should be able to function in a chain of input streams. Your main() method
should test this functionality by creating a chain of three streams, with your new class in the
middle. Use the following code in main() to create the chain of streams:

FileInputStream fis = new FileInputStream("Ch12.data");

ChecksumInputStream cis = new ChecksumInputStream(fis);

DataInputStream dis = new DataInputStream(cis);

A sample solution appears on your CD-ROM in the solutions\Chapter_9 directory, which also
contains a data file, Ch9.data, for testing your solution. To use the data file, first read 300 doubles
from the data input stream dis. Then read 300 ints from dis. Print out the checksum found in dis,
in hexadecimal (base-16) format. (This is easy: the java.lang.Long class has a method called
toHexString().) The result will tell you what the ChecksumInputStream just did.

4419c09.fm Page 326 Thursday, February 24, 2005 3:45 PM

Streams, Readers, and Writers 327

 // Close the chain

 dos.close();

 fos.close();

 }

 catch (IOException e) { }

In addition to data input streams and output streams, the java.io package offers several
other high-level stream classes. The constructors for all high-level input streams require you to
pass in the next-lower input stream in the chain; it will be the source of data read by the new
object. Similarly, the constructors for the high-level output streams require you to pass in the
next-lower output stream in the chain; the new object will write data to this stream. Some of the
high-level streams are listed here:

BufferedInputStream and BufferedOutputStream These classes have internal buffers so
that bytes can be read or written in large blocks, thus minimizing I/O overhead.

PrintStream This class can be asked to write text or primitives. Primitives are converted to
character representations. The System.out and System.err objects are examples of this class.
The class has a println() method that outputs a string followed by a newline character. It also
has a format() method that prints formatted text. Text formatting is covered in Chapter 8,
“The java.lang and java.util packages.”

PushbackInputStream This class allows the most recently read byte to be put back into the
stream, as if it had not yet been read. This functionality is very useful for certain kinds of parsers.

It is possible to create stream chains of arbitrary length. For example, the following code
fragment implements a data input stream that reads from a buffered input stream, which in turn
reads from a file input stream:

 FileInputStream f = new FileInputStream(“text”);

 BufferedInputStream b = new BufferedInputStream(f);

 DataInputStream d = new DataInputStream(b);

The chain that this code creates is shown in Figure 9.3.

Readers and Writers

Readers and writers are like input and output streams: The low-level varieties communicate
with I/O devices, and the high-level varieties communicate with low-level varieties. What makes
readers and writers different is that they are exclusively oriented to Unicode characters.

4419c09.fm Page 327 Thursday, February 24, 2005 3:45 PM

328 Chapter 9 � I/O and Streams

F I G U R E 9 . 3 A longer chain

A good example of a low-level reader is the FileReader class. Its commonly used construc-
tors are
� FileReader(String pathname)

� FileReader(File file)

Of course, any file passed into these constructors must genuinely contain UTF strings.
The corresponding writer is the FileWriter class:

� FileWriter(String pathname)

� FileWriter(File file)

4419c09.fm Page 328 Thursday, February 24, 2005 3:45 PM

Streams, Readers, and Writers 329

The other low-level reader and writer classes are as follows:

CharArrayReader and CharArrayWriter Read and write char arrays.

PipedReader and PipedWriter Provide a mechanism for thread communication.

StringReader and StringWriter Read and write strings.

The low-level readers all extend from the abstract Reader superclass. This class offers the
now-familiar trio of read() methods for reading a single char, an array of chars, or a subset
of an array of chars. Note, however, that the unit of information is now the char, not the byte.
The three methods are

int read() throws IOException Returns the next char (stored in the low-order 16 bits of
the int return value) or -1 if at the end of input.

int read(char dest[]) throws IOException Attempts to read enough chars to fill
array dest[]. It returns the number of chars read or -1 if at the end of input.

int read(char dest[], int offset, int len) throws IOException Attempts to
read len chars into array dest[], starting at offset. It returns the number of chars read or
-1 if at the end of input.

The low-level writers all extend from the abstract Writer superclass. This class provides
methods that are a bit different from the standard trio of write() methods:

void write(int ch) throws IOException Writes the char that appears in the low-order
16 bits of ch.

void write(String str) throws IOException Writes the string called str.

void write(String str, int offset, int len) throws IOException Writes the
substring of str that begins at offset and has length len.

void write(char chars[]) throws IOException Writes the char array chars[].

void write(char chars[], int offset, int len) throws IOException Writes len
chars from array chars[], beginning at offset.

The high-level readers and writers all inherit from the Reader or Writer superclass, so they also
support the methods just listed. As with high-level streams, when you construct a high-level reader
or writer, you pass in the next-lower object in the chain. The high-level classes are as follows:

BufferedReader and BufferedWriter These classes have internal buffers so that data can
be read or written in large blocks, thus minimizing I/O overhead. They are similar to buffered
input streams and buffered output streams.

InputStreamReader and OutputStreamWriter These classes convert between streams of
bytes and sequences of Unicode characters. By default, the classes assume that the streams use the
platform’s default character encoding; alternative constructors provide any desired encoding.

4419c09.fm Page 329 Thursday, February 24, 2005 3:45 PM

330 Chapter 9 � I/O and Streams

LineNumberReader This class views its input as a sequence of lines of text. A method called
readLine() returns the next line, and the class keeps track of the current line number.

PrintWriter This class is similar to PrintStream, but it writes chars rather than bytes.

PushbackReader This class is similar to PushbackInputStream, but it reads chars rather
than bytes.

The following code fragment chains a line number reader onto a file reader. The code prints
each line of the file, preceded by a line number:

 1. try {

 2. FileReader fr = new FileReader(“data”);

 3. LineNumberReader lnr = new LineNumberReader(fr);

 4. String s;

 5.

 6. while ((s = lnr.readLine()) != null) {

 7. System.out.println(lnr.getLineNumber() +

 8. “ : “ + s);

 9. }

10. lnr.close();

11. fr.close();

12. }

13. catch (IOException x) { }

Figure 9.4 shows the reader chain implemented by this code.

Encodings

The preceding discussion has carefully avoided a crucial point. Consider a file reader, which
reads bytes from a file and returns strings of Unicode. How does the reader know how to trans-
late an 8-bit character on the disk into a 16-bit character inside the JVM? Similarly, how does
a file writer know how to translate a 16-bit Unicode character into an 8-bit byte?

The whole idea of readers and writers is that they connect the world inside the JVM, where
characters are strictly 16-bit Unicode, to the external world, where text is historically presented
as ordered sequences of bytes. Bytes represent different characters depending on where they
appear in the world. Only 256 bit combinations are available in a byte; different languages and
cultures map these combinations to different characters, and thus to different Unicode values.
Readers and writers are sensitive to these linguistic and cultural differences.

An encoding is a mapping between 8-bit characters and Unicode. Figure 9.5 shows a few of
the encodings that have been established by the Unicode Consortium. The figure is not drawn
to scale. Note that some encodings are quite small (Greek requires only 144 Unicode values),
whereas others are huge (more than 50,000 values for various Chinese, Japanese, and Korean
characters; in the 8-bit world, such a character is represented by a sequence of multiple bytes).

4419c09.fm Page 330 Thursday, February 24, 2005 3:45 PM

Streams, Readers, and Writers 331

F I G U R E 9 . 4 A chain of readers

F I G U R E 9 . 5 Selected character encodings

4419c09.fm Page 331 Thursday, February 24, 2005 3:45 PM

332 Chapter 9 � I/O and Streams

For an informative look at all Unicode mappings, see http://www.unicode.org.
This is an outstanding website, with a minimum of extraneous graphic design
and a maximum of well-organized, clearly presented information.

Most modern operating systems know what part of the world they are operating in—they are
given this information when they are installed. The machine’s locale is accessible to the JVM.
By default, the encoding used by a reader or writer is the one appropriate to the machine’s
locale. However, readers and writers have forms of constructors that allow you to specify any
desired locale. (You specify a locale by providing a string that identifies it.)

When the data written by a writer is to be read within the same locale, you don’t need to con-
sider what encoding to use; the default encoding will be appropriate. On the other hand, it may
be that the data will cross a locale boundary. The writer might be connected to a socket, which
communicates with a machine in a different locale. Or perhaps the writer is writing to a file on
a floppy disk that will be carried across a boundary. In such cases, the people involved must
agree on an encoding; the common practice is to use the U.S. ASCII encoding. For programmers
in the United States, this is conveniently the default. Others must specify this encoding when
constructing readers and writers. The strings that denote encoding names are determined by
standards committees, so they are not especially obvious or informative. For example, the U.S.
ASCII encoding name is not USASCII as you might expect, but rather ISO8859-1.

Object Streams and Serialization
As you have seen, data input and output streams allow you to read and write primitives and
strings, rather than individual bytes. Object streams go one step beyond data streams by allow-
ing you to read and write entire objects.

The process of writing an object is called serialization. To serialize an object, first create
an instance of java.io.ObjectOutputStream. This class, like DataOutputStream, expects
to be chained onto a lower-level byte-oriented stream such as a file output stream or a socket’s
output stream. The method below uses an object stream to store a string buffer in a file named
sbuf.ser.

void writeStringBuffer(StringBuffer writeMe)

 throws IOException {

 FileOutputStream fos = new FileOutputStrem(“sbuf.ser”);

 ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeObject(writeMe);

 oos.close();

 fos.close();

}

4419c09.fm Page 332 Thursday, February 24, 2005 3:45 PM

Object Streams and Serialization 333

The .ser filename suffix is conventional for files containing serialized objects. To read the
stored object back into a program, you can do the following:

StringBuffer readStringBuffer()

 throws IOException, ClassNotFoundException {

 FileInputStream fis = new FileInputStream (“sbuf.ser”);

 ObjectInputStream ois = new ObjectInputStream(fis);

 StringBuffer sb = (StringBuffer)ois.readObject();

 ois.close();

 fis.close();

 return sb;

}

Notice that the value returned by readObject() is of type Object, so it must be cast. The
object read in is identical to the one that was written out in the previous code example.

The ObjectOutputStream class has a writeUTF() method, as well as writeByte(),
writeShort(), and all other write-primitive methods that also appear in data output streams.
The ObjectInputStream class has corresponding reading methods. So if you want to create a
file that contains serialized primitives and strings as well as serialized objects, you can do it with
a single output stream.

When you use object streams, it’s important to know what information gets serialized and what
does not. It is only an object’s data that is serialized, not its class definition. Moreover, not all data
is written. Static fields are not, because it would not be appropriate to change a static variable,
which is shared by all instances of a class, just because one instance of the class got deserialized. (To
deserialize is to convert a serialized representation into a replica of the original object.) Transient
fields are also not serialized. This provides a level of security in situations where you are concerned
that sensitive variable values, serialized onto the network or into a file, might be read by hostile par-
ties. By declaring a variable to be transient, you tell the JVM not to serialize that variable.

You might expect that private data would not be serialized, but in fact object streams pay no
attention to access modes. All non-static non-transient fields are written to object output streams,
regardless of whether they are public, private, default, or protected.

When an object is serialized, it will probably be deserialized by a different JVM. Any JVM
that tries to deserialize an object must have access to that object’s class definition. In other
words, if the class is not already loaded, its class file must appear in the new JVM’s classpath.
If this is not the case, readObject() will throw an exception.

When an object output stream serializes an object that contains references to other object,
every referenced object is serialized along with the original object. For example, consider a Vec-
tor that contains Bytes:

Vector<Byte> vec = new Vector<Byte>();

vec.add(new Byte(11));

vec.add(new Byte(22));

vec.add(new Byte(33));

4419c09.fm Page 333 Thursday, February 24, 2005 3:45 PM

334 Chapter 9 � I/O and Streams

F I G U R E 9 . 6 A Vector and its references

The Vector contains three references and can be diagrammed as shown in Figure 9.6.
When an object output stream writes the Vector of Figure 9.6, the three Bytes are also seri-

alized. If instead of Bytes the Vector contains objects that have references to still other objects,
those other objects would also be serialized. In the terminology of serialization, when an object
is serialized, its entire graph is serialized. An object’s graph is the object itself, plus all the objects
it references, plus all the objects those objects reference, and so on. When an object input stream
deserializes an object, the entire graph is deserialized.

Not all objects may be serialized, though this is not obvious from a casual glance at the API
page for ObjectOutputStream. The method summary entry for writeObject() says

public void writeObject(Object obj)

However, if you look at the method detail section for writeObject(), you’ll see that it
throws NotSerializableException if “some object to be serialized does not implement the
java.io.Serializable interface.” So even though the method declares that its argument is
an object, it contains code that checks for the precondition that the argument must be an
instanceof Serializable, and it throws the exception if the precondition is not met. Even
if the object being passed into the method implements Serializable, the exception might
still be thrown. Since the object’s entire graph is serialized, all objects referenced by the object
must implement Serializable, and all objects referenced by those objects must do the same,
and so on.

Recall from Chapter 5, “Flow Control, Assertions, and Exception Handling,” in
the discussion on assertions, that assertions should not be used to check pre-
conditions in public methods. Fortunately, writeObject() respects this rule.

You probably recognize the Serializable interface from your reading of the API pages.
Most of the core Java classes implement it. All the wrapper classes do so, and so do the collec-
tion classes. In fact, the only core Java classes that do not implement Serializable are ones
that should not be serialized. For example, it would make no sense to try to serialize a thread,
because a thread’s state is tightly bound to the current JVM’s thread scheduler. So it wouldn’t

11

22

33

Vector

Byte

Byte

Byte

4419c09.fm Page 334 Thursday, February 24, 2005 3:45 PM

Object Streams and Serialization 335

really be helpful or meaningful to serialize a thread. Likewise, the low-level output and input
streams of the java.io package don’t implement Serializable because they interact with the
underlying hardware.

When you create a class that might be serialized, the class should implement Serializable.
This is easy, because the interface doesn’t define any methods at all. All you need to do is type
implements java.io.Serializable in your class declaration, and you’re finished. Empty
interfaces such as Serializable are known as tagging interfaces. They identify implementing
classes as having certain properties, without requiring those classes to actually implement any
methods. Arrays of primitives or serializable objects are themselves serializable.

Deserializing involves a lot of tricky business behind the scenes. The object input stream creates
a blank instance of the object being deserialized and then sets its field values. In order for this to
happen, a bizarre condition must apply. Think about the class hierarchy of the object being dese-
rialized. The object itself implements Serializable; the object’s parent class might or might not
implement Serializable. As you work your way up the inheritance hierarchy, you eventually get
to the first superclass that is not itself serializable. That superclass must have a no-args constructor.
Often the first non-serializable superclass is Object, which does have the right kind of constructor.
If the condition isn’t met, readObject() throws java.io.InvalidClassException. The excep-
tion message says, “no valid constructor.”

A serializable class may dictate how it is serialized and deserialized by implementing the fol-
lowing two methods:

private void writeObject(ObjectOutputStream oos)

 throws IOException

private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException

Notice the private access. When an object output stream executes its writeObject() method,
it checks to see if the object has a writeObject() method matching the above signature. If this
is the case, the stream bypasses its default behavior (which is to serialize the object’s non-static
non-transient fields) and just calls the object’s writeObject() method. Similarly, when an object
input stream executes its readObject() method, it checks to see if the object has a readObject()
method matching the above signature, and if so the ordinary deserialization process is bypassed
in favor of a call to the readObject() method.

If a class wants its writeObject() method to take special action in addition to, rather than
instead of, the default serialization behavior, it can call the output stream’s defaultWriteObject()
method, which serializes the object’s non-static non-transient fields. As you might expect, the
ObjectInputStream class has a defaultReadObject() method, which deserializes the cur-
rent object from the object input stream. Here’s an example of a serializable class that provides
its own serialization code:

Import java.io.*;

class DoItMyself implements Serializable {

4419c09.fm Page 335 Thursday, February 24, 2005 3:45 PM

336 Chapter 9 � I/O and Streams

 private String id;

 protected int n;

 transient byte notMe;

 private void writeObject(ObjectOutputStream oos)

 throws IOException {

 oos.writeUTF(“The password is swordfish”);

 oos.defaultWriteObject();

 }

 private void readObject(ObjectInputStream ois)

 throws IOException, ClassNotFoundException {

 String password = ois.readUTF();

 if (!password.equals(“The password is swordfish”))

 throw new SecurityException(“Bad password”);

 ois.defaultReadObject();

 }

}

When an instance of this class is serialized, the object output stream notices that the instance
has a writeObject() method with the appropriate signature. This method is called. A password
string is serialized. Then the output stream’s defaultWriteObject() is called, and default seri-
alization is performed.

When an object input stream tries to deserialize an instance of DoItMyself, the stream detects
the existence of a readObject() method with the appropriate signature, so the method is called.
The serialized password is checked. If it’s not the expected value, a security exception is thrown.
(SecurityException is runtime, so it doesn’t need to be declared.) If the password is okay, a call
to defaultReadObject() causes normal deserialization of the object’s fields.

This class could avoid calling defaultWriteObject() and defaultReadObject() by
explicitly serializing and deserializing the variables id and n. That would require only a slight
extra effort, compared to the code actually shown in the example. However, if the class had a
large number of fields, the benefit of calling the default behavior would be obvious.

Another way to provide custom serialization and deserialization is to implement a subinter-
face of Serializable, called Externalizable. (Notice that since Externalizable extends
Serializable, the implements Serializable precondition in writeObject() is met by any
object that implements Externalizable.

Externalizable contains two method signatures:

void writeExternal(ObjectOutput out)

 throws IOException

void readExternal(ObjectInput in)

 throws IOException, ClassNotFoundException

4419c09.fm Page 336 Thursday, February 24, 2005 3:45 PM

Object Streams and Serialization 337

ObjectOutput and ObjectInput are interfaces that are implemented by ObjectOutputStream
and ObjectInputStream. They define, respectively, writeObject() and readObject() meth-
ods. Here is an example of a class that performs its own serialization, protecting the password field
by reversing it before writing it out:

import java.io.*;

public class Account implements Externalizable {

 private String ownerName;

 private String password;

 private float balance;

 private String reverse(String reverseMe) {

 String reversed = "";

 for (int i=reverseMe.length()-1; i>=0; i--)

 reversed += reverseMe.charAt(i);

 return reversed;

 }

 public void writeExternal(ObjectOutput outStream)

 throws IOException {

 outStream.writeObject(ownerName);

 outStream.writeObject(reverse(password));

 outStream.writeObject(new Float(balance));

 }

 public void readExternal(ObjectInput inStream)

 throws IOException, ClassNotFoundException {

 ownerName = (String)inStream.readObject();

 String reversedPassword =

 (String)inStream.readObject();

 password = reverse(reversedPassword);

 balance = ((Float)inStream.readObject()).floatValue();

 }

}

When an instance of this class is passed to an object output stream, the default serialization
procedure is bypassed; instead, the stream calls the instance’s writeExternal() method. When
an object input stream reads a serialized instance of Account, a call is made to the no-args con-
structor for the Account class; this constructor must be public. Then the newly constructed
object receives a readExternal() call so that it can reconstitute its serialized values.

4419c09.fm Page 337 Thursday, February 24, 2005 3:45 PM

338 Chapter 9 � I/O and Streams

Notice that the readObject() mechanism of ObjectInputStream relies on the existence of
a no-args constructor for any class that implements Externalizable. If an externalizable class
has no no-args constructor, the readObject() method will throw
java.io.InvalidClassException.

Summary
This chapter has covered the following concepts of Java’s I/Of support:
� Inside the JVM, text is represented by 16-bit Unicode. In files, some text is represented by

UTF, which translates directly to Unicode. Other text is represented by old-style 8-bit
encodings; Readers and Writers translate between these encodings and 16-bit Unicode.

� The File class is useful for navigating the local file system.
� The RandomAccessFile class lets you read and write at arbitrary places within a file.
� Input streams, output streams, readers, and writers provide a mechanism for creating input

and output chains. Streams operate on bytes, readers and writers operate on chars.
� Object input and output streams support serialization and deserialization of objects.

Exam Essentials
Know the methods of the File class that provide navigation tools. The most useful naviga-
tion methods are exists(), isDirectory(), isFile(), and list(). Others are described at the
beginning of this chapter.

Know how to use a RandomAccessFile for reading and writing and how to seek to a given
point in the file. Understand and recognize the methods that read various kinds of data and
the methods that position the file.

Understand that FilterInputStream classes need an InputStream object as a constructor argu-
ment, whereas FilterOutputStream classes need an OutputStream object as a constructor
argument. Because filter streams are subclasses of the basic streams, filters can be joined in
sequences.

Know how the various write methods encode data when writing with either a FileOutputStream
or a RandomAccessFile. FileOutputStream writes bytes, or arrays of bytes, only. The
RandomAccessFile can write the primitive data types directly. It does so using the JVM’s stan-
dard data format: 1 byte for byte and boolean, 2 bytes for char and short, 4 bytes for int
and float, and 8 bytes for long and double.

Understand the relationship between platform encoding standards, Unicode, streams, readers,
writers, and the Unicode standard used in the JVM. Underlying platforms generally use 8-bit
formats for keyboard, screen, and file I/O. This behavior is most closely represented by streams.
By contrast, readers and writers use 16-bit Unicode. Unicode is also used in the JVM, so it
makes sense that the JVM should read from readers and write to writers.

4419c09.fm Page 338 Thursday, February 24, 2005 3:45 PM

Review Questions 339

Review Questions
1. Which of the statements below are true? (Choose all that apply.)

A. UTF characters are all 8 bits.

B. UTF characters are all 16 bits.

C. UTF characters are all 24 bits.

D. Unicode characters are all 16 bits.

E. Bytecode characters are all 16 bits.

F. None of the above.

2. Which of the statements below are true? (Choose all that apply.)

A. When you construct an instance of File, if you do not use the file-naming semantics of the
local machine, the constructor will throw an IOException.

B. When you construct an instance of File, if the corresponding file does not exist on the local
file system, one will be created.

C. When an instance of File is garbage collected, the corresponding file on the local file system
is deleted.

D. None of the above.

3. Which of the statements below are true? (Choose all that apply.)

A. To change the current working directory, call the setWorkingDirectory() method of the
File class.

B. To change the current working directory, call the cd() method of the File class.

C. To change the current working directory, call the changeWorkingDirectory() method of
the File class.

D. None of the above.

4. How do you use the File class to list the contents of a directory?

A. String[] contents = myFile.list();

B. File[] contents = myFile.list();

C. StringBuilder[] contents = myFile.list();

D. The File class does not provide a way to list the contents of a directory.

5. How many bytes does the following code write to file dest?

1. try {

2. FileOutputStream fos = newFileOutputStream(“dest”);

3. DataOutputStream dos = new DataOutputStream(fos);

4. dos.writeInt(3);

5. dos.writeDouble(0.0001);

4419c09.fm Page 339 Thursday, February 24, 2005 3:45 PM

340 Chapter 9 � I/O and Streams

6. dos.close();

7. fos.close();

8. }

9. catch (IOException e) { }

A. 2

B. 8

C. 12

D. 16

E. The number of bytes depends on the underlying system.

6. What does the following code fragment print out at line 9?

1. FileOutputStream fos = new FileOutputStream(“xx”);

2. for (byte b=10; b<50; b++)

3. fos.write(b);

4. fos.close();

5. RandomAccessFile raf = new RandomAccessFile(“xx”, “r”);

6. raf.seek(10);

7. int i = raf.read();

8. raf.close()

9. System.out.println(“i = “ + i);

A. The output is i = 30.

B. The output is i = 20.

C. The output is i = 10.

D. There is no output because the code throws an exception at line 1.

E. There is no output because the code throws an exception at line 5.

7. A file is created with the following code:

1. FileOutputStream fos = new FileOutputStream(“datafile”);

2. DataOutputStream dos = new DataOutputStream(fos);

3. for (int i=0; i<500; i++)

4. dos.writeInt(i);

4419c09.fm Page 340 Thursday, February 24, 2005 3:45 PM

Review Questions 341

You would like to write code to read back the data from this file. Which solutions will work?
(Choose all that apply.)

A. Construct a FileInputStream, passing the name of the file. Onto the FileInputStream,
chain a DataInputStream, and call its readInt() method.

B. Construct a FileReader, passing the name of the file. Call the file reader’s readInt() method.

C. Construct a PipedInputStream, passing the name of the file. Call the piped input stream’s
readInt() method.

D. Construct a RandomAccessFile, passing the name of the file. Call the random access file’s
readInt() method.

E. Construct a FileReader, passing the name of the file. Onto the FileReader, chain a
DataInputStream, and call its readInt() method.

8. Which of the following is true?

A. Readers have methods that can read and return floats and doubles.

B. Readers have methods that can read and return floats.

C. Readers have methods that can read and return doubles.

D. Readers have methods that can read and return ints.

E. None of the above.

9. You execute the following code in an empty directory. What is the result?

1. File f1 = new File(“dirname”);

2. File f2 = new File(f1, “filename”);

A. A new directory called dirname is created in the current working directory.

B. A new directory called dirname is created in the current working directory. A new file called
filename is created in directory dirname.

C. A new directory called dirname and a new file called filename are created, both in the
current working directory.

D. A new file called filename is created in the current working directory.

E. No directory is created, and no file is created.

10. What is the result of attempting to compile and execute the following code fragment? Assume
that the code fragment is part of an application that has write permission in the current working
directory. Also assume that before execution, the current working directory does not contain a
file called datafile.

 1. try {

 2. RandomAccessFile raf = new

 3. RandomAccessFile(“datafile” ,”rw”);

 4. BufferedOutputStream bos = new

4419c09.fm Page 341 Thursday, February 24, 2005 3:45 PM

342 Chapter 9 � I/O and Streams

 5. BufferedOutputStream(raf);

 6. DataOutputStream dos = new

 7. DataOutputStream(bos);

 8. dos.writeDouble(Math.PI);

 9. dos.close();

10. bos.close();

11. raf.close();

12. }

13. catch (IOException e) { }

A. The code fails to compile.

B. The code compiles but throws an exception at line 4.

C. The code compiles and executes but has no effect on the local file system.

D. The code compiles and executes; afterward, the current working directory contains a file
called datafile.

11. Suppose you are writing a class that will provide custom serialization. The class implements
java.io.Serializable (not java.io.Externalizable). What access mode should the
writeObject() method have?

A. public

B. protected

C. default

D. private

12. Suppose you are writing a class that will provide custom deserialization. The class implements
java.io.Serializable (not java.io.Externalizable). What access mode should the
readObject() method have?

A. public

B. protected

C. default

D. private

13. Suppose class A extends Object; class B extends A; and class C extends B. Of these, only class C
implements java.io.Serializable. Which of the following must be true in order to avoid an
exception during deserialization of an instance of C?

A. A must have a no-args constructor.

B. B must have a no-args constructor.

C. C must have a no-args constructor.

D. There are no restrictions regarding no-args constructors.

4419c09.fm Page 342 Thursday, February 24, 2005 3:45 PM

Review Questions 343

14. Suppose class A extends Object; Class B extends A; and class C extends B. Of these, only class C
implements java.io.Externalizable. Which of the following must be true in order to avoid
an exception during deserialization of an instance of C?

A. A must have a no-args constructor.

B. B must have a no-args constructor.

C. C must have a no-args constructor.

D. There are no restrictions regarding no-args constructors.

15. Given the following class:

public class Xyz implements java.io.Serializable {

 public int iAmPublic;

 private int iAmPrivate;

 static int iAmStatic;

 transient int iAmTransient;

 volatile int iAmVolatile;

 . . .

}

Assuming the class does not perform custom serialization, which fields are written when an
instance of Xyz is serialized? (Choose all that apply.)

A. iAmPublic

B. iAmPrivate

C. iAmStatic

D. iAmTransient

E. iAmVolatile

16. What method of the java.io.File class can create a file on the hard drive?

A. newFile()

B. makeFile()

C. makeNewFile()

D. createFile()

E. createNewFile()

17. Which of the following are true? (Choose all that apply.)

A. System.out has a println() method.

B. System.out has a format() method.

C. System.err has a println() method.

D. System.err has a format () method.

4419c09.fm Page 343 Thursday, February 24, 2005 3:45 PM

344 Chapter 9 � I/O and Streams

18. What happens when you try to compile and run the following application?

 1. import java.io.*;

 2.

 3. public class Xxx {

 4. public static void main(String[] args) {

 5. try {

 6. File f = new File("xxx.ser");

 7. FileOutputStream fos = new FileOutputStream(f);

 8. ObjectOutputStream oos = new ObjectOutputStream(fos);

 9. oos.writeObject(new Object());

10. oos.close();

11. fos.close();

12. }

13. catch (Exception x) { }

14. }

15. }

A. Compiler error at line 9.

B. An exception is thrown at line 9.

C. An exception is thrown at line 10.

D. No compiler error and no exception.

19. Which of the following are valid mode strings for the RandomAccessFile constructor? (Choose
all that apply.)

A. “r”

B. “ro”

C. “rw”

D. “rws”

E. “rwd”

20. Which of the following are valid arguments to the DataInputStream constructor?

A. File

B. FileReader

C. FileInputStream

D. RandomAccessFile

4419c09.fm Page 344 Thursday, February 24, 2005 3:45 PM

Answers to Review Questions 345

Answers to Review Questions
1. D. UTF characters are as big as they need to be. Unicode characters are all 16 bits. There is no

such thing as a bytecode character; bytecode is the format generated by the Java compiler.

2. D. A, B, and C are all false. The File constructor doesn’t check the file-naming semantics.
Construction and garbage collection of a File have no effect on the local file system.

3. D. The File class does not provide a way to change the current working directory.

4. A. The list() method returns an array of strings.

5. C. The writeInt() call writes out an int, which is 4 bytes long; the writeDouble() call writes
out a double, which is 8 bytes long. The total is 12 bytes.

6. B. All the code is perfectly legal, so no exceptions are thrown. The first byte in the file is 10, the
next byte is 11, the next is 12, and so on. The byte at file position 10 is 20, so the output is i = 20.

7. A, D. Option A chains a data input stream onto a file input stream. D simply uses the
RandomAccessFile class. B fails because the FileReader class has no readInt() method;
readers and writers handle only text. C fails because the PipedInputStream class has nothing
to do with file I/O. (Piped input and output streams are used in inter-thread communication.)
E fails because you cannot chain a data input stream onto a file reader. Readers read chars,
and input streams handle bytes.

8. E. Readers and writers deal only with character I/O.

9. E. Constructing an instance of the File class has no effect on the local file system.

10. A. Compilation fails at lines 4 and 5, because there is no constructor for
BufferedOutputStream that takes a RandomAccessFile object as a parameter. You can be
sure of this even if you are not familiar with buffered output streams, because random-access
files are completely incompatible with the stream/reader/writer model.

11. D. Default serialization is bypassed only if the writeObject() method has private access.

12. D. Default deserialization is bypassed only if the readObject() method has private access.

13. B. The lowest-level non-serializable superclass of the object being deserialized must have a no-args
constructor.

14. C. An externalizable object must have a no-args constructor.

15. A, B, E. Default serialization writes all non-static non-transient fields.

16. E. The createNewFile() method creates a new empty file.

17. A, B, C, D. Both System.out and System.err are instances of PrintStream, which has a
println() method and (as of version 5.0) a format() method.

4419c09.fm Page 345 Thursday, February 24, 2005 3:45 PM

346 Chapter 9 � I/O and Streams

18. B. The writeObject() method is declared to take an Object argument. At runtime, there is a
precondition check to make sure the argument implements Serializable, which Object
doesn’t do.

19. A, C, D, E. Only “ro” is not valid. “r” opens for reading only. “rw” opens for reading and
writing. “rws” opens for reading and writing, with immediate updating of data and metadata
changes. “rwd” opens for reading and writing, with immediate updating of data (but not
metadata) changes.

20. C. A DataInputStream reads bytes from its data source, which must be an InputStream. The
only valid option is C, FileInputStream.

4419c09.fm Page 346 Thursday, February 24, 2005 3:45 PM

PART

II

The Sun Certified
Developer’s Exam

4419c10.fm Page 347 Thursday, February 24, 2005 4:36 PM

4419c10.fm Page 348 Thursday, February 24, 2005 4:36 PM

Chapter

10

About the
Developer’s Exam

4419c10.fm Page 349 Thursday, February 24, 2005 4:36 PM

The Sun Certified Java Developer’s (SCJD) exam is the most diffi-
cult of the Java certification exams. It is a performance test, mean-
ing that candidates perform realistic tasks, rather than answering

simple objective questions. When you sign up for the exam, you will be given a specification for
a Java application that you are to implement. Most of your grade depends on how well you
implement the spec.

This chapter explains the mechanics of taking the exam and gives an overview of the Java tech-
nologies you need to know in order to pass. The chapters that follow review those technologies.

To discourage collaboration and cheating, there are a large number of project specs. Individual
candidates are assigned individual specs by a random process. The specs are treated as highly
confidential information, and very few people have access to them. The good news is that all
of them were developed by your two authors, and one of your authors is also the lead assessor
for the exam. So you can be sure of two things:

1.

No other author has seen all the specs, so the best they can do is guess at what’s important.
You’ve come to the right book!

2.

Everything you read in the following chapters will be important, because we’re the only
authors who

don’t

need to guess.

Of course, we can’t get too specific. Our goal here isn’t to give away any answers. Our goal
is help you become competent in the necessary skills.

The Developer exam is a performance exam. This means that instead of answering clear-cut
questions, you will be given a programming assignment. In the remainder of this book, our
approach will be different from the one used in the chapters that covered the Sun Certified Java
Programmer (SCJP) exam material. There won’t be any more review questions. Instead, at the
end of each chapter you’ll find a Chapter Review Lab. These labs are programming exercises
designed to give you experience in the techniques presented in the chapter. As with the Real
World Scenarios of the earlier chapters, suggested solutions appear on your CD-ROM, in the

solutions

 directory, in subdirectories whose names correspond to the chapter names.

Are You Ready?

The Developer exam has one prerequisite: you must already be a Sun Certified Java Program-
mer. If you have already passed the Programmer exam, or if you are confident that you can pass
when the time comes, read on. If not…read on anyway! There’s no bad time for learning.

4419c10.fm Page 350 Thursday, February 24, 2005 4:36 PM

Formalities of the Exam

351

The exam tests your ability to create an application, given a spec. If you have done that kind
of thing before, you know that a finished product is much more than a program that works. In
order to pass the exam, you need to write code that can be understood by other people; you need
to create a program that can be easily used by other people; and you need to create Javadoc
pages for all your classes. A theoretical knowledge of the Java language won’t be enough; you
can pass only if you have experience at putting that knowledge to use. We can imagine a profile
for a candidate with ideal experience. You match the profile if
�

You write Java code at least three days a week.
�

Your code includes Javadoc comments.
�

You have written classes and applications based only on written instructions.
�

You have created simple GUIs and have thought about GUI ease-of-use issues.
�

You have written multithreaded applications.
�

You frequently use collections.
�

You have written a client/server application.

If you match this profile, you are definitely ready to take the exam. If you don’t match the
profile very closely, rest assured that this book will cover all the topics you need to know about;
however, it would be a good idea to practice what you learn before you take the exam.

Sun offers a five-day course called Java Programming Language Workshop
that is well suited to preparing students for this certification. The course
is numbered SL-285; you can view the course description by pointing your
browser to

http://suned.sun.com

. Sun also offers courses specific to major
areas of the exam, but these are not defined as certification courses. You may
also wish to browse SL-320, GUI Construction with Java Foundation Classes,
and SL-301, Distributed Programming with Java Technology, which treats

RMI in detail.

Formalities of the Exam

Taking the Developer exam is a process. Here’s what you do:

1.

Register. You can do this on the Web at

www.sun.com/training/certification/java

.
Be prepared to pay $250. You’ll be given instructions on how to do the other steps.

2.

Download the assignment. This consists of an HTML file and a data file. The HTML file
describes an application that you are to write. The application reads and writes the data file.

3.

Write the application. No rush. You have a year.

4.

Submit your work.

4419c10.fm Page 351 Thursday, February 24, 2005 4:36 PM

352

Chapter 10 �

About the Developer’s Exam

5.

Take an essay exam. This happens at a testing center, like the Programmer exam. The cost
was included in your fee.

6.

Wait for your results. Be patient. All work is assessed in detail, and sometimes there are
backlogs. You’ll get your results within 30 days of taking the exam.

Of course, from your point of view the most important part is developing the application.
Most of the rest of this chapter is devoted to telling you about the assignment…in as much detail
as Sun will allow us.

The Project Assignment

The most important thing for you to know is that there are lots of ways to fail the Developer exam.
One way, of course, is to submit poor work so that your total score is below the minimum passing
grade. The other ways are easily avoidable, though for some reason some people tragically don’t
avoid them. These can be summed up by the saying, “Must means must.” There are numerous
places in the assignment specs that say, “You must….” Your spec will explain that if you don’t
do exactly whatever it is you’re told you must do, you will fail. For example, you will receive spe-
cific instructions regarding the directory tree that you submit, including the location and name of
the directory containing your source code. If your source code isn’t exactly where it’s supposed to
be, you’ll fail. It won’t matter if your application is so great that it glows in the dark, because the
assessor won’t run your application. Assessment of your project ends the moment any violation
of any “must” specifications is detected. So remember…must means must.

The next most important thing for you to know about the assignment is that your spec comes
from a large pool of documents. Sun created this pool of specs in order to ensure that collabo-
ration is likely to lower your grade. If you borrow code from someone else, that code probably
implements the wrong assignment. Since you are graded on how well you implement your own
spec, collaboration most likely will have a disastrous effect on your score. Resist the temptation
to use someone else’s work; instead, get good enough that you can pass all on your own.

There is a common structure to all the specs in the pool. No matter which assignment you
get, your project will consist of three parts:
�

A GUI front end, called the “client”
�

A server back end, accessing a data file that is provided to you
�

Communication between the client and the server

Your finished project will look like Figure 10.1.
The client must be built from Swing components. Chapter 11, “Swing Components,” and

Chapter 12, “Layout Managers,” discuss what you need to know to create your front end. Earlier
in this book Chapter 9, “I/O and Streams,” discussed file access , which will be at the heart of your
server. Your client and server will communicate via your choice of object streams or RMI. You
read about object streams in Chapter 9; Chapter 13, “Networking,” explains using object
streams for your network communication and introduces RMI. Be aware that RMI is a huge
topic, and it would take a thick book to cover it fully.

4419c10.fm Page 352 Thursday, February 24, 2005 4:36 PM

The Essay Exam

353

F I G U R E 1 0 . 1

The assignment

In addition to all the programming you have to do, you will be required to submit API pages
for your classes, created using Javadoc. Chapter 14, “Putting It All Together,” covers several
miscellaneous topics, including the Javadoc tool.

Before we dive into the technical information of the next four chapters, let’s look at the
follow-up essay exam and the grading process.

The Essay Exam

The follow-up essay exam requires you to do something you might not have done for a very long
time: write essays. Like the assignment specs, the essay topics are selected from a pool, so you’ll
probably get different essay questions from the ones your colleagues get.

Did you hate writing essays in high school? Do you believe that one of the benefits
of graduating from high school is a lifetime of freedom from writing any more of them?
Don’t panic! And if English isn’t your native language, please don’t worry. You won’t
be graded on spelling or grammar style. You don’t have to worry about organization,
because the essay topics are very narrow, and there won’t be very much information for
you to organize. You can’t go wrong if you keep in mind what it is that the assessors want
to see in your essays.

The assessors want to see two things. First, of course, they want to make sure you know
the information you are being asked about. Second, they want confirmation that you, hav-
ing walked into a testing center and shown a photo ID, are really the person who submitted
a project under your name. (Remember, you take the follow-up exam

after

 submitting your
project.) There is no way to prevent you from paying someone else to write your project, but
people who do so are likely to be unfamiliar with the details of the project. Some of the
essays questions ask you to briefly describe certain design choices that you made. For example,
you know that for your client/server communication, you may choose either object streams
or RMI. In the follow-up exam, you might be asked to write an essay describing which pro-
tocol you chose and why. Of course, the “why” part is a test of your technical knowledge.
The “which” part is an honesty test. Nobody in their right mind could possibly implement
RMI communication and then accidentally say they used object streams. Equally, nobody
would use object streams and then say they used RMI. If your answer to any “describe how
your project does such-and-such” question doesn’t match your actual project, you automat-
ically fail.

Data File

Server
GUI Client

Object streams or RMI

4419c10.fm Page 353 Thursday, February 24, 2005 4:36 PM

354

Chapter 10 �

About the Developer’s Exam

The essay questions don’t require you to do any unreasonable memorization. For example,
you won’t be asked to list the names of all the custom exception classes you created. You’ll only
be asked to write about implementations details that would stick in your mind because you took
the time to implement them. To be safe, consider reviewing your source code the day before you
take the follow-up exam.

Grading

Grading of your exam begins when you complete the essay exam. Your essays and your project
submission are sent to an assessor, along with information about which project spec was assigned
to you.

Your project is to be submitted as a single jar file archive. The examiner begins by extracting
this archive and making sure that you have provided the required files (source, class, data, and
documentation) and that these files are in the required directory locations within the archive. If
anything is missing or in the wrong place, your project fails. As with any automatic failure cri-
terion (these are the “must means must” criteria in your project spec), if you fail, then the asses-
sor immediately stops assessing your project. Misplaced files are the most tragic way to fail the
Developer exam.

Next, the assessor reads the essays that you wrote for the follow-up exam. If your project
doesn’t match the description in the essays, you get a failing grade.

Now the deduction phase of grading begins. You are initially given a perfect score of 400
points. As the assessors find problems with your project, they deduct points according to some
very extensive and specific guidelines. Sun recognizes that grading the Developer exam requires
assessors to make judgments about the quality of various parts of your work. Every effort has
been made to make the deductions as objective as possible.

During the deduction phase, the assessor executes your application, reads your source code,
and inspects your Javadoc API pages. This happens in no particular order. When it’s done, if
your score is 320 or better you pass.

We can’t tell you what the deductions are; Sun rightly keeps that information proprietary.
However, we can tell you that the deductions fall into seven broad categories, which in turn
have sub- and sub-sub-categories:

General Considerations

Covers miscellaneous factors such as readability and maintainability
of your source code. These are reviewed in Chapter 14.

Documentation

Covers your source-code comments and your Javadoc pages. You’ll get some
guidelines in Chapter 14.

Object-Oriented Design

Covers your knowledge of Java’s object-oriented facilities, as well as
your ability to use them well. The object-oriented facilities were presented in Chapter 6. You’ll
get some general programming suggestions in Chapter 14.

GUI

Covers the appearance, behavior, and ease-of-use of your GUI. We look at GUIs in
Chapters 10 and 11.

4419c10.fm Page 354 Thursday, February 24, 2005 4:36 PM

Grading

355

Locking

This refers to the safety and efficiency of your multithreaded code. Your server must
be capable of handling multiple client connections, so you will be using the thread concepts you
learned in Chapter 7, “Threads.” Chapter 14 will provide some advanced information about
threads.

Data Store

Data Store and Network Server together refer to your server code. Data Store is the
code that interacts with the data file. File issues were covered in Chapter 9.

Network Server

This is the code that interacts with the client, and it is discussed in Chapter 13.

The deduction system has an interesting consequence. It doesn’t provide a way to account for
extra credit. This is deliberate on Sun’s part. It’s important in any performance exam to keep
grading as uniform as possible. Extra credit work is, by its nature, work that goes beyond the
restrictions of the assignment. It’s impossible to anticipate all the different creative ways people
can do this, so it’s impossible to develop fair scoring criteria for extra credit work.

So you can’t gain points for extra work. However, and this is very important, you can

lose

points for extra work. For example, you might create a class that sends the user an e-mail mes-
sage every time the server executes a transaction. That sort of thing is definitely above and
beyond the requirements of any of the specs in the pool. If you neglect to create a Javadoc page
for the extra class, or if the source is difficult to understand, you’ll lose points just as you
would for a required class. If you do extra credit work, the best you can do is break even.

Since the details of the scoring sub-categories and sub-sub-categories are a secret, you don’t
get much information with your score. If you pass, you are told your total score, plus a break-
down of your score in each of the seven categories (general considerations, documentation,
object-oriented design, GUI, locking, data store, and network server). If you don’t pass, you’ll
also receive a brief note that explains in general terms the area in which you lost the most points.
This explanation will be more specific than just the name of the category…you could figure that
out from the category score breakdown. Hopefully the explanation will be enough to direct you
to the part of your code that needs attention, so that you can do some fixing and then resubmit
your project. However, Sun obviously can’t be too specific about what you need to do, since
that would be telling you how to pass.

Rather than worry about what happens if you fail, assume you have what it takes to learn
all you need in order to pass. Read on!

4419c10.fm Page 355 Thursday, February 24, 2005 4:36 PM

4419c10.fm Page 356 Thursday, February 24, 2005 4:36 PM

Chapter

11

Swing Components

4419c11.fm Page 357 Thursday, February 24, 2005 4:39 PM

Two topics on the Developer’s Exam are so extensive that they
cannot possibly be fully explained in a single chapter, or even sev-
eral chapters. These topics are Swing, which is discussed in this

chapter and in Chapter 12, “Layout Managers,” and RMI, which is discussed in Chapter 13,
“Object Streams and RMI.” The goal of this book is to give you a solid conceptual foundation
in Swing and RMI, without exhaustively presenting those topics. Later, perhaps when you have
downloaded your assignment, you will probably find it useful to read some single-topic books
to help you develop your GUI and your network communication.

Our Swing foundation takes up two chapters. In this chapter you’ll look at the most common
Swing components, one by one. In the next chapter, you’ll learn about using layout managers
to create a unified GUI whose components have appropriate sizes and locations.

This chapter begins with a strategy for approaching your GUI design. Then you’ll learn about
some methods that are common to all Swing component classes. After that we’ll examine con-
tainer, button, text, and menu components. We’ll finish with the two most complex Swing com-
ponent types:

JTable

 and

JTree

.

A Strategy for Designing the GUI

There’s no need to worry if you don’t have much experience in creating GUIs. The Developer’s
Exam recognizes that there are lots of ways to put together a graphical interface. There is no one
“correct” GUI. You will not be graded on your talents as a graphics designer. Moreover, you
are not expected to have mastered all the conventions and principles that are second nature to
an experienced, full-time GUI programmer. Even if you have no GUI development experience
at all, you can’t go very wrong by applying common sense. The worst that can happen is that
you might lose some points. A submission with a poor GUI that does well in other areas is very
likely to pass.

The next four sections present a simple four-step approach to help you organize your GUI
thinking. The four steps are

1.

Identify needed components.

2.

Isolate regions of behavior.

3.

Sketch the GUI.

4.

Choose layout managers.

Let’s look at these steps in detail.

4419c11.fm Page 358 Thursday, February 24, 2005 4:39 PM

A Strategy for Designing the GUI

359

Step 1: Identify Needed Components

Before you think about what your GUI will

look like

, it’s important to think about what it will

do

. Swing’s various component classes are designed to support a range of functionality, and
there is little functional overlap. Usually there is exactly one component that is the appropriate
choice for providing any desired behavior; any other component would be not just less conve-
nient, but wildly inappropriate.

For example, suppose you want to create a GUI that lets users specify a flavor of ice cream.
The flavor can be chocolate, vanilla, or strawberry. Swing’s combo box component (supported
by the

javax.swing.JComboBox

 class) is ideal. Of course, you could use a text field instead and
require users to type in the desired flavor, but that approach would have two huge disadvan-
tages. First, your users would have no way of knowing which flavors were available; they would
just have to remember them. Second, users would have to spell each flavor correctly. So the
choice of a text field rather than a combo box isn’t just inferior, it’s spectacularly bad.

This chapter presents most of Swing’s component classes. As you read their descriptions,
think about the situations for which each class would be appropriate.

Step 2: Isolate Regions of Behavior

Often it takes several components to support a single task. For example, consider the compo-
nents of a text-processing GUI that support selection of a font. A font is determined by a family,
a style, and a size. So a GUI for choosing a font would require three combo boxes, as well as
some kind of “make it so” button.

After you decide which components to use, you need to group those components into regions
of behavior. A good rule of thumb is that if components are functionally related, they should
also be visually related (that is, close to one another). So the combo boxes and the “make it so”
button of our font example should be close to one another. (Other rules of thumb are presented
in Chapter 14, “Putting It All Together.”)

Some regions of behavior might contain only a single component; others might contain many.
When you figure out which components should be visually related (and not before!), you are
ready to sketch your GUI.

Step 3: Sketch the GUI

At this point you know what components will appear in your GUI, and you know which of
those components should appear near one another to form functional groups. You are now
ready to make a preliminary sketch. There is more to this than meets the eye.

Figure 11.1 shows a sketch for a simple mail-reader GUI. The interface requires an area
where you can review your directory tree of sorted mail in folders; this has been placed to the
left. An area at the bottom of the frame will display status messages on the current attempt to
send or retrieve mail. A dynamic display area for the list of pending incoming mail is located
to the right of the tree structure and on top of another dynamic area that displays the current
mail item.

4419c11.fm Page 359 Thursday, February 24, 2005 4:39 PM

360

Chapter 11 �

Swing Components

F I G U R E 1 1 . 1

Mail client window

Figure 11.1 is incomplete. A GUI sketch must do more than show the sizes and locations of
components. The sketch must also show how component geometry changes when the GUI is
resized. This is very important, because some components or regions should be allowed to grow
horizontally but prevented from growing vertically. Others should be allowed to grow vertically
but prevented from growing horizontally. Still others should be allowed to grow freely both
horizontally and vertically, and some components should never change size. And no matter how
a GUI’s components change size, their spatial relationships with one another should always
make sense.

Fortunately, Java’s layout managers take care of most of the tedium of enforcing resizing
policies. Layout managers are essential to building a useful GUI, and they are a broad enough
topic that they deserve their own chapter (Chapter 12). For now, be aware that it’s not enough
to sketch a static picture of your intended GUI; you have to think about how the GUI should
react to resizing.

To continue our example, let’s think about what should happen to the components of
Figure 11.1, when a user resizes the main window as shown in Figure 11.2.

We need to consider the fate of each of the four screen regions: the folders area along the left
edge, the status bar along the bottom, and the unread-mail and current-mail regions.

We can assume that the folders area is just as wide as it needs to be. When the window
resizes, the folders area should not become wider or narrower. However, it should always
grow vertically.

Pending mail areaMail folders area

Mail Client

Status bar Current mail item

4419c11.fm Page 360 Thursday, February 24, 2005 4:39 PM

A Strategy for Designing the GUI

361

The status bar, on the other hand, is just as tall as it needs to be (that is, tall enough to display
a few lines of text). When the window resizes, the status bar should not become taller or shorter.
However, it should always grow horizontally, so as to fill the entire width of the window.

The unread-mail and current-mail regions are stacked one on top of the other. When the win-
dow becomes wider or narrower, these regions should grow or shrink horizontally. (Remember,
the folders area does

not

 become wider or narrower, and that horizontal space has to go some-
where.) What about vertical resizing? There are several ways to go. One simple approach is to
assume that the (upper) unread-mail region is just as tall as it needs to be, so when the window
resizes vertically the extra space should be allocated to the (lower) current-mail region.

Of course, there are other ways to allocate growth. The important thing is to consider your
users’ intentions or desires when they resize a window. Which functional region do they want
to cause to grow or shrink? Usually there is one work area on which the user’s attention will be
concentrated. In our example we assumed this would be the current-mail region. This region
should grow or shrink in both directions.

The next chapter will explain how to implement resizing behavior. For now, let’s look at the
Swing components.

F I G U R E 1 1 . 2

Mail client window resized

Mail Client

taller

Current mail item widens
and takes up all "surplus" height

Taller folder area,
but not wider

Pending area
widens only

wider
Wider status bar,

but not taller

4419c11.fm Page 361 Thursday, February 24, 2005 4:39 PM

362

Chapter 11 �

Swing Components

Step 4: Choose Layout Managers

Layout managers are objects that manage the size and location of components. In Java you don’t
directly program component geometry; you choose a layout manager and let it take care of the
details.

Layout managers are discussed in detail in Chapter 12, so for now let’s just say that the work
of designing a GUI includes deciding how to use layout managers.

Common Swing Methods

Some properties are common to nearly all component types. These include size, location,
foreground and background color, font, and enabled state. The methods that support these
properties are described in the following sections. AWT programmers will recognize these
methods from the

java.awt.Component

 class, because the Swing components inherit from

java.awt.Component

.

getSize()

 and

setSize()

The

getSize()

 method returns the size of a component. The return type is

Dimension

, which
has public data members

height

 and

width

, whose units are pixels.
The

setSize()

 method takes two

int

 arguments:

width

 and

height

; an overloaded form
takes a single

Dimension

 object. If you have tried calling this method, you know that doing so
is usually futile. A layout manager generally overrides the size and position you attempt to give
a component. In fact, the

setSize()

 method exists mostly for the use of layout managers. The
major exceptions to this rule are the

JFrame

 and

JDialog

 classes, which are not under the thumb
of a layout manager and are perfectly willing to have you set their size or bounds.

getLocation()

 and

setLocation()

These methods access and set the location of a component in pixel units relative to the top-left
corner of the component. The return type of

getLocation()

 is

Point

. The

setLocation()

method’s argument list requires either width and height

int

s or a single

Point

 object.
Calling

setLocation()

 is like calling

setSize()

: usually a layout manager overrides the
location you try to set, but you can always set the location of a

JFrame

 or

JDialog

.

setForeground()

 and

setBackground()

These methods set a component’s foreground and background color. The argument is an instance
of

java.awt.Color

. The foreground color is used for rendering the component’s decorations and
text label (if the component uses any text). The background color is used for rendering the com-
ponent’s background.

4419c11.fm Page 362 Thursday, February 24, 2005 4:39 PM

Basic Swing Components

363

setFont()

The

setFont()

 method dictates which font a component will use for rendering any text it might
display. The

setFont()

 method takes one argument of type

Font

 whose constructor takes three
arguments: a font family, a style, and a size. The family is a string. Different platforms offer dif-
ferent fonts, but you can always count on

“Serif”

,

“SansSerif”

, and

“Monospaced”

 a fixed-
width font such as Courier). The style may be

Font.PLAIN

,

Font.BOLD

,

Font.ITALIC

, or the bit-
wise combination

Font.BOLD|Font.ITALIC

. The size argument defines the point size of the font.

setEnabled()

The

setEnabled()

 method determines whether a component may respond to user input. The
method takes a single

boolean

 argument. A disabled component changes its appearance to a
slightly grayed-out look. A component should be disabled if the application is in a state that can-
not accept input from the component.

Disabling is preferable to the two commonly seen alternatives:
�

Leave the component enabled. When the user uses the component, display some sort of
“unavailable” message.

�

Remove unusable components from the screen until they become usable, thus creating a
visually unstable control area.

Judicious use of

setEnabled()

 calls helps create a GUI that clearly reflects the application’s
state to the user.

Basic Swing Components

The Swing component classes can be found in the

javax.swing

 package. The component class
names all begin with the letter

J

. The remainder of the class name is the name of the component,
with each word starting with a capital letter. For example, a scroll bar is represented by the

javax.swing.JScrollBar class.
Swing components cannot be combined with AWT components. However, certain non-

component AWT classes are essential to Swing. All Swing components are subclasses of
java.awt.Container, and most of them emit events from the java.awt.event package.
In addition, all the AWT layout managers work perfectly well with Swing components.

One way to approach the daunting number of components is to divide them into three
categories:
� Container components
� Ordinary components
� Menu components

Let’s begin by looking at the container components.

4419c11.fm Page 363 Thursday, February 24, 2005 4:39 PM

364 Chapter 11 � Swing Components

Container Components

Container components are components that can contain other components (including other con-
tainers). Containers use layout managers to determine the size and position of their child compo-
nents. The code examples in this chapter all use the very basic FlowLayout manager. If you are
unfamiliar with this class, for now just be aware that it arranges contained components in an
evenly spaced row.

The container components that we will cover here are
� JFrame

� JPanel

JFrame

A JFrame is an independent window that can be moved around on the screen independently of
any other GUI windows. Any application that requires a GUI must use one or more frames to con-
tain the desired components. The following code displays an empty JFrame:

1. import javax.swing.*;

2.

3. public class FrameDemo {

4. public static void main(String[] args) {

5. JFrame f = new JFrame("Frame Demo");

6. f.setSize(350, 250);

7. f.setVisible(true);

8. }

9. }

Line 5 demonstrates a constructor whose argument is a string that is to appear in the frame’s
banner. Line 6 is necessary because a newly constructed JFrame has zero width and zero height and
must be given a nonzero size before it can be seen. You can set the size explicitly, as in line 6, or you
can call the pack() method, which sizes the frame to fit the preferred sizes and layouts of its
contained components. Line 7 is necessary because a newly constructed JFrame is not visible on
the screen. If, at some point, you want to remove a visible frame from the screen, you can call
setVisible(false).

Figure 11.3 shows the frame created by this application.
Of course, an empty frame is not very useful. Frames are intended to be populated with child

components. Readers familiar with Java’s AWT know that the AWT frame implementation (the
java.awt.Frame class) is a container to which child components can be directly added. The
JFrame class is different in that it is not a container. You access the container portion of the
frame by calling the JFrame’s getContentPane() method. The following application displays
a frame whose content pane contains three buttons. (In order to demonstrate the content pane,
we have to get a bit ahead of ourselves by using a layout manager and the JButton class. We
will explain these soon.)

4419c11.fm Page 364 Thursday, February 24, 2005 4:39 PM

Basic Swing Components 365

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class ContentDemo {

 5. public static void main(String[] args) {

 6. JFrame f = new JFrame("Content Pane Demo");

 7. f.setSize(350, 250);

 8. Container cont = f.getContentPane();

 9. cont.setLayout(new FlowLayout());

10. for (int i=1; i<=3; i++)

11. cont.add(new JButton("Button #" + i));

12. f.setVisible(true);

13. }

14. }

F I G U R E 1 1 . 3 An empty JFrame

F I G U R E 1 1 . 4 Using a JFrame’s content pane

4419c11.fm Page 365 Thursday, February 24, 2005 4:39 PM

366 Chapter 11 � Swing Components

Note line 9, which sets a layout manager for the content pane rather than for the frame, and
line 11, which adds buttons to the content pane rather than to the frame. Figure 11.4 shows the
result of running this application.

JFrame emits Window events to notify listeners when the frame iconifies, de-iconifies, is
first displayed, and so on. Clicking a frame’s “close” button (the X button in the upper-right
corner on a Windows platform) does not automatically cause the frame to close. Instead, the
click invokes the windowClosing() method to all of the frame’s Window listeners. One lis-
tener must explicitly remove the frame from the screen; otherwise the user’s click will have
no effect.

JPanel

A JPanel is a blank rectangular component that can contain other components. Each panel uses
a layout manager to determine the position and size of its child components. The following appli-
cation adds two panels to a frame. Each panel contains three buttons. For better visibility, the upper
panel is light gray and the lower panel is white. The application uses a Grid layout manager, which
is covered in detail in the next chapter:

import java.awt.*;

import javax.swing.*;

public class PanelDemo {

 public static void main(String[] args) {

 JFrame f = new JFrame("Content Pane Demo");

 f.setSize(350, 250);

 Container cont = f.getContentPane();

 cont.setLayout(new GridLayout(2,1));

 for (int i=0; i<2; i++) {

 JPanel pan = new JPanel();

 pan.setBackground(i==0 ? Color.lightGray : Color.white);

 for (int j=0; j<3; j++)

 pan.add(new JButton("Button"));

 cont.add(pan);

 }

 f.setVisible(true);

 }

 }

Figure 11.5 shows this application’s frame.

4419c11.fm Page 366 Thursday, February 24, 2005 4:39 PM

Basic Swing Components 367

F I G U R E 1 1 . 5 JPanel example

JPanels do not emit any important events.

Ordinary Components

In this section, we’ll discuss eight ordinary components. They are ordinary in the sense that they
are the components in which the user directly inputs data, in contrast to containers. We will
review the following component types:
� JLabel

� JButton

� JCheckBox

� JRadioButton

� JScrollBar

� JTextField

� JTextArea

� JComboBox

JLabel

The simplest component type is the JLabel, which displays a single line of text and/or an image.
JLabels do not respond to user input and do not emit events. The following application dis-
plays a label in a frame, as shown in Figure 11.6.

import java.awt.*;

import javax.swing.*;

4419c11.fm Page 367 Thursday, February 24, 2005 4:39 PM

368 Chapter 11 � Swing Components

public class LabelDemo {

 public static void main(String[] args) {

 JFrame f = new JFrame("Label Demo");

 f.setSize(350, 250);

 Container cont = f.getContentPane();

 cont.setLayout(new FlowLayout());

 cont.add(new Label("This is a JLabel"));

 f.setVisible(true);

 }

}

F I G U R E 1 1 . 6 JLabel example

JButton

The JButton class implements a simple pushbutton. The button can display a text label, an icon, or
both. When the user clicks the button, Action events are sent to all registered Action listeners.

The following application builds a frame that contains two buttons:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ButtonDemo extends JFrame {

 private JButton helloBtn, goodbyeBtn;

 public static void main(String[] args) {

 (new ButtonDemo()).setVisible(true);

 }

 ButtonDemo() {

 super("Button Demo");

4419c11.fm Page 368 Thursday, February 24, 2005 4:39 PM

Basic Swing Components 369

 setSize(350, 250);

 Container cont = getContentPane();

 cont.setLayout(new FlowLayout());

 helloBtn = new JButton("Hello");

 goodbyeBtn = new JButton("Goodbye");

 cont.add(helloBtn);

 cont.add(goodbyeBtn);

 ButtonListener listener = new ButtonListener();

 helloBtn.addActionListener(listener);

 goodbyeBtn.addActionListener(listener);

 }

 class ButtonListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == helloBtn) // Which

 System.out.println("Hello"); // button

 else // was

 System.out.println("Goodbye"); // pushed?

 }

 }

}

JButtons send Action events. The ActionListener interface contains only one method:
public void actionPerformed(ActionEvent). This example creates a single Action listener
and registers it with each of two buttons. Note the convenience of defining ButtonListener as
an inner class. Its functionality is isolated, but it can still access the helloBtn private variable
of the creating instance of the enclosing class. This makes it easy for the listener to determine
which button was pressed.

Figure 11.7 shows the output of this application.

F I G U R E 1 1 . 7 JButton example

4419c11.fm Page 369 Thursday, February 24, 2005 4:39 PM

370 Chapter 11 � Swing Components

JCheckBox

The JCheckBox class implements a check box that can be selected and deselected. The following
code creates a frame that contains two check boxes:

import java.awt.*;

import javax.swing.*;

public class CheckBoxDemo {

 public static void main(String[] args) {

 JFrame frame = new JFrame("CheckBox Demo");

 frame.setSize(350, 250);

 Container cont = frame.getContentPane();

 cont.setLayout(new FlowLayout());

 cont.add(new JCheckBox("Charge my acct"));

 cont.add(new JCheckBox("Gift wrap"));

 cont.add(new JButton("Submit"));

 frame.setVisible(true);

 }

}

This application does not register any listeners with the check boxes, even though the JCheckBox
class emits Action and Item events; it is usually unnecessary or inappropriate to catch check-box
events. Usually check boxes are used to input a number of binary options, which are later submitted
to the application using a button. The example application shows two check boxes that might
appear in the GUI for any online shopping application. The user decides whether to charge the order
to an account and whether the order should be gift-wrapped. After these decisions have been made,
the user clicks the Submit button to indicate that the application should process the order. In gen-
eral, the actionPerformed() method of some button will read the state of a GUI’s check boxes.

Figure 11.8 shows the GUI built by this application.

F I G U R E 1 1 . 8 JCheckBox example

4419c11.fm Page 370 Thursday, February 24, 2005 4:39 PM

Basic Swing Components 371

JRadioButton

Radio buttons are typically used in groups to present exclusive selection. The name comes
from the station buttons of older car radios: at any moment, exactly one button is pushed in,
and pushing in a new button causes the old button to pop out. The JRadioButton class is
generally used with the ButtonGroup class, which has an add(AbstractButton) method.
When a radio button is selected, any other button in the same button group is automatically
deselected.

The following application creates three radio buttons:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class RadioDemo {

 5.

 6. public static void main(String[] args) {

 7. JFrame frame = new JFrame("Radio Demo");

 8. frame.setSize(350, 250);

 9. Container cont = frame.getContentPane();

10. cont.setLayout(new FlowLayout());

11. ButtonGroup btnGroup = new ButtonGroup();

12. JRadioButton rbtn = new JRadioButton("Rare", true);

13. btnGroup.add(rbtn);

14. cont.add(rbtn);

15. rbtn = new JRadioButton("Medium");

16. btnGroup.add(rbtn);

17. cont.add(rbtn);

18. rbtn = new JRadioButton("Well Done");

19. btnGroup.add(rbtn);

20. cont.add(rbtn);

21. frame.setVisible(true);

22. }

23. }

Figure 11.9 shows this application’s GUI. Because the three radio buttons are added to a but-
ton group (lines 13, 16, and 19), they exhibit radio behavior: Selecting one of them causes the
previously selected one to become deselected.

Radio buttons, like check boxes, can send Action and Item events. However, as with check
boxes, listening for these events is generally not appropriate. A group of radio buttons is often
found near an Apply button; the appropriate approach is to read the state of the radio buttons
when the user clicks Apply.

4419c11.fm Page 371 Thursday, February 24, 2005 4:39 PM

372 Chapter 11 � Swing Components

F I G U R E 1 1 . 9 JRadioButton example

JScrollBar

A JScrollBar is a component that lets the user enter an adjustable pseudo-analog value.
Scroll bars can be oriented horizontally or vertically; the constants JScrollBar.HORIZONTAL
and JScrollBar.VERTICAL can be passed into various constructor forms to determine
orientation.

The following application creates one horizontal scroll bar. The simple Flow layout manager
that we have used so far in this chapter does not do a very good job of displaying scroll bars,
so we will use the more sophisticated Border layout manager. If you are not familiar with it, stay
tuned until Chapter 12:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ScrollBarDemo extends JFrame {

 public static void main(String[] args) {

 (new ScrollBarDemo()).setVisible(true);

 }

 ScrollBarDemo() {

 super("Scroll Bar Demo");

 setSize(350, 250);

 Container cont = getContentPane();

 JScrollBar sbar = new JScrollBar(JScrollBar.HORIZONTAL);

 cont.add(sbar, BorderLayout.NORTH);

 BarListener listener = new BarListener();

 sbar.addAdjustmentListener(listener);

 }

4419c11.fm Page 372 Thursday, February 24, 2005 4:39 PM

Basic Swing Components 373

 class BarListener implements AdjustmentListener {

 public void adjustmentValueChanged(AdjustmentEvent e) {

 System.out.println("Val = " + e.getValue());

 }

 }

}

Scroll bars send Adjustment events to registered Adjustment listeners. In this example, the
listener is an instance of the BarListener inner class.

The ScrollBarDemo application produces the GUI shown in Figure 11.10.

F I G U R E 1 1 . 1 0 JScrollBar example

JTextField and JTextArea

The JTextField and JTextArea components support single-line and multiline text entry. Both
classes extend javax.swing.text.JTextComponent, which provides methods for accessing and
modifying the component’s text. The API page for JTextComponent includes a good description
of text functionality.

Both JTextField and JTextArea send Key events when they receive keyboard input. In addi-
tion, JTextField sends Action events when the user presses Enter. The following application con-
tains one of each component; the JTextArea displays information about events in the JTextField.
Once again, the Flow layout manager is inappropriate for the components we want to demonstrate,
so we use a Border layout manager:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class TextDemo extends JFrame

 implements ActionListener, KeyListener {

 private JTextField field;

4419c11.fm Page 373 Thursday, February 24, 2005 4:39 PM

374 Chapter 11 � Swing Components

 private JTextArea area;

 public static void main(String[] args) {

 (new TextDemo()).setVisible(true);

 }

 TextDemo() {

 super("TextDemo");

 setSize(350, 250);

 Container cont = getContentPane();

 field = new JTextField("Type here");

 field.addKeyListener(this);

 field.addActionListener(this);

 cont.add(field, BorderLayout.NORTH);

 area = new JTextArea();

 cont.add(area, BorderLayout.CENTER);

 }

 public void keyPressed(KeyEvent e) { }

 public void keyReleased(KeyEvent e) { }

 public void keyTyped(KeyEvent e) {

 area.append("KEY: " + e.getKeyChar() + '

 }

 public void actionPerformed(ActionEvent e) {

 area.append("ACTION: " + field.getText() + '

 }

}

Figure 11.11 shows this application’s frame after several keystrokes have been typed into the
JTextField.

F I G U R E 1 1 . 1 1 JTextField and JTextArea example

4419c11.fm Page 374 Thursday, February 24, 2005 4:39 PM

Basic Swing Components 375

JComboBox

The JComboBox component combines the functionality of a text field and a drop-down list. With
a JComboBox, you can present users with a preset list of options while giving them the alternative
of entering an option that does not appear on the list. This component emits Action events when
the user presses the Enter key and Item events when the user selects a preset item.

The following application displays a simple JComboBox:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class ComboDemo extends JFrame {

 5. public static void main(String[] args) {

 6. (new ComboDemo()).setVisible(true);

 7. }

 8.

 9. ComboDemo() {

10. super("ComboDemo");

11. setSize(350, 250);

12. Container cont = getContentPane();

13. cont.setLayout(new FlowLayout());

14. String[] initialVals = {"Dragon", "Ghost", "Unicorn"};

15. JComboBox combo = new JComboBox(initialVals);

16. combo.setEditable(true);

17. cont.add(combo);

18. }

19. }

Note line 16, which calls setEditable() on the combo box. Without this call, the component
does not support typing but just implements a simple drop-down list. Figure 11.12 shows this appli-
cation’s GUI. Note that the figure shows the value “Centaur,” which has been typed in by the user.

F I G U R E 1 1 . 1 2 JComboBox example

4419c11.fm Page 375 Thursday, February 24, 2005 4:39 PM

376 Chapter 11 � Swing Components

Menu Components

Menu components allow the programmer to organize Swing components in menus instead of plac-
ing all the components in the user’s view. The JMenuBar component implements a menu bar that
occupies the top portion of a JFrame and can contain drop-down menus. To insert a JMenuBar into
a JFrame, call setJMenuBar(theMenuBar) on the JFrame.

To populate a menu bar, construct a number of instances of JMenu and install them in the
menu bar by calling theMenuBar.add(theMenu). The JMenu constructor takes as an argument
the string that will appear on the menu bar.

The menus in a menu bar must themselves be populated with menu items. The most common
type of menu item is the JMenuItem, which is a simple text item. You can also add separators,
check boxes, radio buttons, and submenus to a menu. If you want check boxes or radio buttons,
however, don’t use JCheckBox or JRadioButton—instead use the JCheckBoxMenuItem and
JRadioButtonMenuItem classes.

The following application creates two menus, populates them, and installs them into a menu
bar. The second menu contains a plain menu item, a separator, a check box item, two radio
items, and a submenu:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class MenuDemo {

 5.

 6. public static void main(String[] args) {

 7. JFrame frame = new JFrame("Menu");

 8.

 9. JMenuBar mbar = new JMenuBar(); // Create menu bar

10.

11. JMenu fileMenu = new JMenu("File"); // Create file menu

12. fileMenu.add(new JMenuItem("New"));

13. fileMenu.add(new JMenuItem("Exit"));

14. mbar.add(fileMenu);

15.

16. JMenu sampleMenu = new JMenu("Sample"); // Create sample menu

17. sampleMenu.add(new JMenuItem("Plain"));

18. sampleMenu.insertSeparator(1);

19. sampleMenu.add(new JCheckBoxMenuItem("Check"));

20. ButtonGroup group = new ButtonGroup();

21. JRadioButtonMenuItem radioMI;

22. for (int i=0; i<2; i++) {

23. radioMI = new JRadioButtonMenuItem("Radio" + i);

24. group.add(radioMI);

4419c11.fm Page 376 Thursday, February 24, 2005 4:39 PM

JTable 377

25. sampleMenu.add(radioMI);

26. }

27. JMenu subMenu = new JMenu("SubOptions");

28. subMenu.add(new JMenuItem("AAA"));

29. subMenu.add(new JMenuItem("BBB"));

30. subMenu.add(new JMenuItem("CCC"));

31. sampleMenu.add(subMenu);

32. mbar.add(sampleMenu);

33.

34. frame.setJMenuBar(mbar); // Install menu bar

35. frame.setSize(350, 250);

36. frame.setVisible(true);

37. }

38. }

Note the ButtonGroup that is created at line 20. This class can accommodate both radio
buttons and radio button menu items.

Figure 11.13 shows this application’s GUI.

F I G U R E 1 1 . 1 3 Menu example

JTable
A first glance at javax.swing.JTable is overwhelming: the description is huge. A second glance
is worse: numerous obscure event classes and listener interfaces are involved in ways that are not
clear at all from reading the API page.

Fortunately, most of the methods never need to be called, and most of the events are just for
the class’ internal parts to communicate with one another. Still, you need a way to understand
which parts of the class can sensibly be manipulated. The way to really understand JTable is
to understand the Model-View-Controller design pattern.

4419c11.fm Page 377 Thursday, February 24, 2005 4:39 PM

378 Chapter 11 � Swing Components

You may already have come across the term Model-View-Controller (MVC) in other contexts:
it’s a standard pattern and has been around for a long time. Unfortunately, its exact meaning
depends on whose book you’re reading. For the purpose of understanding JTable, it’s impor-
tant to know what MVC means to the designers of Swing.

In Swing, a component’s model is the data that the component presents to a user. A text
field’s model is the text it contains. A combo box’s model is the list of values it displays when
pulled down. The Swing components we have studied so far have all had simple models, so it
hasn’t been necessary to discuss them. (But if you check the APIs, you’ll see that some of these
components have methods called getModel(), indicating the presence of a model lurking some-
where inside the class.)

In Swing, a component’s view is the region of the screen dedicated to displaying the current
state of the model, plus the software that supports displaying the model. So a view consists of
code and pixels. A component’s controller is the region of the screen dedicated to modifying the
state of the model, along with the software that supports this activity. So a controller also con-
sists of code and pixels. Sometimes a view and a controller share pixels. For example, in any text
component, the screen region where the component displays its model’s text is the same region
where the user enters new text.

This book isn’t going to tell you everything about JTable—there’s too much to tell. Here
you’ll get enough of the basics to get you through your exam project. We’ll start by saying that
when you use a JTable, you get to choose the level of complexity on which you will operate.
Broadly speaking, the levels available to you are these:

1. Use only the methods of the JTable class. Use the standard table model.

2. Create your own table model class by extending AbstractTableModel.

3. Create your own table model class by implementing TableModel.

4. Create your own renderer and editor classes.

Level 1 is the simplest way to use a JTable. You don’t get a lot of control. The table’s appear-
ance is standard. You can change the model by calling the table’s setValueAt() method, whose
arguments are a row number, a column number, and a value. Operating at this level is fine for
many applications that just need to display data, but many programmers prefer the additional
flexibility (with small additional cost) of level 2.

At level 2, you control the table’s contents by extending the
javax.swing.table.AbstractTableModel class. The abstract class provides all the glue that
connects the model to its view and controller; all you need to do is implement a few simple meth-
ods to control the model’s data. We’ll look at how to do this in a moment, but first let’s look
at levels 3 and 4.

Most people use the level 3 approach by mistake. They see that JTable has a number of
methods (as well as a constructor) that require a TableModel, so they go ahead and imple-
ment that interface. This is usually unnecessary work. TableModel defines methods for main-
taining the model’s data and for communicating with the table’s other parts. The javax.swing
.table.AbstractTableModel class implements TableModel, providing perfectly good meth-
ods for handling the internal communication. If you stick to level 2, you don’t have to reinvent
code; you just have to implement the functionality that is unique to your application. Occasionally
situations may call for the level 3 approach, but the Developer’s Exam isn’t one of those situations.

4419c11.fm Page 378 Thursday, February 24, 2005 4:39 PM

JTable 379

On level 4 you modify the table’s view and controller. Swing uses the term renderer to refer
to code that implements view functionality and the term editor to refer to code that implements
controller functionality. If you check out the API page for the javax.swing.table package,
you’ll find interfaces called TableCellEditor and TableCellRenderer. Level 4 is beyond the
scope of this book and beyond what you’ll need for your exam assignment.

Let’s get back to level 2, where you subclass AbstractTableModel. This class contains three
abstract methods, so to create your own model class you need only implement three methods:
� public int getRowCount()

� public int getColumnCount()

� public Object getValueAt(int rowNum, int colNum)

The first two methods return the number of rows and columns in the table. The getValueAt()
method does the real work of supplying data. Simple model classes use two-dimensional arrays of
strings to store values. Note, however, that the method’s return type is Object, not String. In
general, returned values will really be strings, but if they aren’t then the table’s view code will
usually call their toString() method. Thus if it’s more convenient to store data as instances of
Integer or StringBuffer or some other class, you don’t need to worry about converting to
a string.

There are a few methods that the AbstractTableModel implements that you can easily
override. These are
� public String getColumnName(int colNum)

� public boolean isCellEditable(int rowNum, int colNum)

� public void setValueAt(Object value, int rowNum, int colNum)

If you override getColumnName(), you can provide custom names for your table’s columns.
These names appear as column headers. Conveniently, column names stay in place when a table
scrolls vertically. (We’ll see how to make a scrolling table a little later on.)

By default, a table’s cells are not editable. That is, if a uses clicks on a cell and starts typing,
nothing happens. The table determines which cells may be editable by calling the model’s
isCellEditable() method. The version in AbstractTableModel always returns false. If
you provide your own implementation, you can make editable any cells you like. Usually, an
entire column is monolithically editable or not editable.

If you want to be able to change the model’s data programmatically (versus by user typing),
you can override setValueAt(). Doing this is very slightly fraught with danger. It is clear that
your implementation of this method should modify the class’ data. It isn’t obvious that the method
needs to do something extra. When the data changes, a model’s obligation is to notify other parts
of the component (certainly the view needs to know, and possibly the controller as well). JTable
has a complicated mechanism for communication among its various parts. Fortunately, the
complexity is handled by the AbstractTableModel class. (Another good reason for operat-
ing on level 2 and staying away from level 3!) All you need to do, after your setValueAt()
code stores the new value, is to call fireTableCellUpdated(), passing in the row and col-
umn numbers of the changed cell. If you look at JTable’s API page, you’ll see that there are
seven methods whose names begin with fire. Throughout Swing, such methods are used to
support a component’s internal communication. Usually you should stay away from them.

4419c11.fm Page 379 Thursday, February 24, 2005 4:39 PM

380 Chapter 11 � Swing Components

If a cell is editable, the model’s setValueAt() method is called by when the user hits the
Enter key (with keyboard input focused on the editable cell).

That’s really all there is to creating your own model class. To create a table that uses a custom
model, create an instance of the model class and pass it into the JTable constructor. Let’s look
at an example.

The following model class has a constructor whose argument is a set containing strings. The
corresponding table has two columns. The first column contains the strings, sorted in alphabet-
ical order. The second column contains the string lengths.

 1. import java.util.*;

 2. import javax.swing.*;

 3. import javax.swing.table.*;

 4.

 5. public class StringLengthTableModel extends AbstractTableModel {

 6. private String[] strings;

 7.

 8. public StringLengthTableModel(String[] strings) {

 9. this.strings = strings;

10. }

11.

12. public int getRowCount() {

13. return strings.length;

14. }

15.

16. public int getColumnCount() {

17. return 2;

18. }

19.

20. public Object getValueAt(int row, int col) {

21. if (col == 0)

22. return strings[row];

23. else

24. return strings[row].length();

25. }

26.

27. public String getColumnName(int col) {

28. return (col == 0) ? "String" : "Length";

29. }

30.

4419c11.fm Page 380 Thursday, February 24, 2005 4:39 PM

JTable 381

31. public static void main(String[] args) {

32. JFrame frame = new JFrame();

33. String[] strings = { "January", "February", "March",

34. "April", May", "June",

35. "July", "August", September",

36. "October", "November", "December" };

37. StringLengthTableModel model =

38. new StringLengthTableModel(strings);

39. JTable table = new JTable(model);

40. frame.getContentPane().add(table);

41. frame.setSize(500, 250);

42. frame.setVisible(true);

43. }

44. }

On line 24, in getValueAt(), the return value is an int, which at first glance is not com-
patible with the return type, which is Object. Line 24 relies on boxing to convert the int to an
instance of Integer.

Lines 37 and 38 construct an instance of the model. Line 39 constructs an instance of JTable
that uses the new model. Figure 11.14 shows the result.

You can see that the model works, but the table’s size and location in the window are a bit
clumsy. That’s okay. Chapter 12 will explain how to use layout managers to control the posi-
tion and location of components.

Often a table contains more data than can fit in the available screen space. In these situations
you can put the table inside a JScrollPane, which provides intelligent scrolling for the com-
ponents it contains. Scrolling a table requires a bit of intelligence because when the user scrolls
vertically, you want only the table’s body to move; the column headers should stay put. Fortu-
nately, JScrollPane knows what should and what should not scroll.

F I G U R E 1 1 . 1 4 A JTable with a custom model

Accessible
TableColumnModelListener

ListSelectionListener

ScrollableCellEditorListener

TableModelListener

4419c11.fm Page 381 Thursday, February 24, 2005 4:39 PM

382 Chapter 11 � Swing Components

The JScrollPane constructor takes a single argument, which is the component to be scrolled.
To change our code example to use a JScrollPane, just replace line 40 with the following:

JScrollPane sp = new JScrollPane(table);

getContentPane().add(sp);

Figure 11.15 shows the result, with the frame made sufficiently short to require insertion of
a vertical scrollbar.

Figure 11.16 shows the same GUI, but scrolled to the bottom of the table.

F I G U R E 1 1 . 1 5 A scrolling JTable

F I G U R E 1 1 . 1 6 A scrolling JTable, scrolled to the bottom

JTree
Like a JTable, a JTree is complex enough to warrant its own library of support classes. It is
becoming more widely used in GUI designs, typically as a drill-down or focus-oriented control-
ler, or as an indexing tool for things like e-mail messages and, of course, files.

But JTree is not as well-defined a listener as JTable, because it implements only the Scrollable
and Accessible interfaces. The primary use for a JTree is outlining any data structure that lends
itself to hierarchical order. It could be used to diagram, say, the operations of a recursive descent
parser, but it is more readily useful as an indexing tool.

Trees consist of a series of nodes rooted in a single root node, from which other nodes called
child nodes extend. A node that cannot have children is called a leaf node; otherwise it is called
a branch node. A node is principally identified two ways: by its path, the route that links it back
to the root; and by its row, the area it uses for display (similar to a List element).

Aside from defining user actions for adding and removing nodes, the most common event type
associated with a tree is selection. In the trouble-ticket system, for example, you might want to
associate a different display or action with each kind of node you present. If a user clicks a child
of the Reporter node, you might want to display contact information for that person, or perhaps
limit the table display to the trouble items reported by that person. To get the visual effect first,
you can mock up a tree using the DefaultMutableTreeNode class.

4419c11.fm Page 382 Thursday, February 24, 2005 4:39 PM

JTree 383

F I G U R E 1 1 . 1 7 Updating a tree outline with table data

It might also make sense for the table model to alter the node population of the tree using the
data it receives to update the tabular view. A tree model could listen to property changes issued
by the table model. The table model could filter the data before firing it, or the tree model could
filter the table data. Or, instead of adding this work to either class, where the fit is arbitrary, you
could instead perform the translation work through an event adapter, whose only job is creating
tree data out of table data. Keeping the two models separated this way makes it possible to keep
changes in the bootstrap code and out of the component code. Figure 11.17 is a logical diagram
of this interaction.

Creating a reusable mock-up of a tree display can take a little doing. Rather than embed
some static data in a demo class that makes a JTree, we decided to take an extra step and write
one that could accept input in the form of a property file. Property files present data in the form
of key-value pairs, where the key is always a String (and in the example, so are the values). Our
file sample looks like this:

Location=Chicago New York Parkersburg

Reporter=Padula Hunter Gant Anonymous

Engineer=Wort Brown Carrigan None

Category=Network Office Workstation

You treat the key as a parent node and the values as children, once the file contents are read
in. To do that, we created (in the following code) a class called TreeSetup to take any file that’s
written as a “bundle” of properties and convert it to a series of parent and children elements:

import java.io.*;

import java.util.*;

import javax.swing.tree.*;

/**

 * TreeSetup converts a properties file into a set

 * of parent and child nodes. Each key in the file

 * becomes a parent, and each value is a child to its

Name

Ben

Jill

Pat

Age

28

34

21

Location

Boston

New York

Victorville

Gender

M

F

M

parse()

Personnel
Location

Boston
New York

Victorville
Name

Ben

Jill
Pat

etc.

4419c11.fm Page 383 Thursday, February 24, 2005 4:39 PM

384 Chapter 11 � Swing Components

 * key.

 *

 * @author The CJ2CSG Guys

 */

public class TreeSetup

{

 private PropertyResourceBundle prb;

 private String filename;

 /**

 * Accepts a String filename and converts it to a

 * PropertyResourceBundle.

 *

 * @see java.util.PropertyResourceBundle

 */

 public TreeSetup(String filename) {

 this.filename = filename;

 FileInputStream fis = null;

 try {

 fis = new FileInputStream(filename);

 prb = new PropertyResourceBundle(fis);

 }

 catch (FileNotFoundException fnfe) {

 System.err.println(filename + “ was not found”);

 System.exit(1);

 }

 catch (IOException ioe) {

 ioe.printStackTrace();

 System.err.println(

 “Error trying to open input stream”);

 System.exit(1);

 }

 }

 /**

 * Returns a Vector of String values, given

 * a String key as a parameter.

 */

 public Vector getChildren(String node) {

4419c11.fm Page 384 Thursday, February 24, 2005 4:39 PM

JTree 385

 StringTokenizer st = null;

 Vector vec = new Vector();

 String children = prb.getString(node);

 st = new StringTokenizer(children);

 while (st.hasMoreTokens()) {

 vec.addElement(st.nextToken());

 }

 return vec;

 }

 /**

 * Returns a Vector of Strings representing

 * each key found.

 */

 public Vector getParents() {

 Enumeration enum = null;

 Vector vec = new Vector();

 enum = prb.getKeys();

 while (enum.hasMoreElements()) {

 Object key = (String)enum.nextElement();

 vec.addElement(key);

 }

 return vec;

 }

}

The Vector returned by getParents() contains all the keys in the file. Passing each element of
that Vector, as a String, into getChildren() will then return a Vector containing the key’s val-
ues. Finally, we write (in the next code sample) a SampleTree class to create a DefaultTreeModel
by passing the property filename as a parameter to the TreeSetup constructor and using that
object to create DefaultMutableTreeNode instances:

import java.util.*;

import javax.swing.*;

import javax.swing.tree.*;

public class SampleTree

{

 private DefaultMutableTreeNode[] nodes;

 private TreeSetup tsu;

4419c11.fm Page 385 Thursday, February 24, 2005 4:39 PM

386 Chapter 11 � Swing Components

 private DefaultMutableTreeNode root;

 private DefaultTreeModel dtm;

 public SampleTree(String schema) {

 root = new DefaultMutableTreeNode(“Trouble Fields”);

 tsu = new TreeSetup(schema);

 Enumeration enum = tsu.getParents().elements();

 while (enum.hasMoreElements()) {

 String category = (String)enum.nextElement();

 DefaultMutableTreeNode parent;

 parent = new DefaultMutableTreeNode(category);

 root.add(parent);

 Enumeration enum2;

 enum2 = tsu.getChildren(category).elements();

 while (enum2.hasMoreElements()) {

 String child = (String)enum2.nextElement();

 parent.add(new DefaultMutableTreeNode(child));

 }

 }

 dtm = new DefaultTreeModel(root, false);

 }

 public DefaultTreeModel getSampleTreeModel() {

 return dtm;

 }

 public static void main(String args[]) {

 if (args.length == 0) {

 System.out.println(“Provide a valid property “ +

 “file name and try again”);

 System.exit(1);

 }

 SampleTree st = new SampleTree(args[0]);

 DefaultTreeModel tm = st.getSampleTreeModel();

 JTree jt = new JTree(tm);

 JScrollPane jsp = new JScrollPane(jt);

4419c11.fm Page 386 Thursday, February 24, 2005 4:39 PM

JMenus and Actions 387

 JFrame jf = new JFrame(“Sample Tree”);

 jf.getContentPane().add(jsp);

 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 jf.pack();

 jf.setVisible(true);

 }

}

The resulting work takes the sample file listed earlier and displays it in a JTree like the one
in Figure 11.18.

The work here was neither trivial nor difficult, but the result is a tool for creating any two-
tier tree display quickly from a file—well worth the effort for a prototype tool.

F I G U R E 1 1 . 1 8 A JTree that displays the contents of the file sample

JMenus and Actions
The Swing library seems particularly thoughtful when it comes to providing conveniences for
common GUI-based tasks. It’s easy to create a single action as an object and bind its behavior
to a ready-made Swing widget. Action objects encapsulate their behavior so that multiple wid-
gets can reference them. An icon on a toolbar, a menu choice, or even a KeyStroke can all use
the same object for processing. Using KeyStroke objects goes beyond the requirements of the
Developer’s Exam, but they can make the GUI friendlier for users who favor keyboard input
over the mouse.

Classes must meet the same requirements as ActionListener in order to implement Action
(or subclass AbstractAction). Action implementations are different in that they allow for direct
containment by a JComponent, although only JMenu, JToolBar, and JPopupMenu know how to
contain, display, and listen to them. Here’s a simple look at creating an Action and binding it to
a menu (the result of the following code is shown in Figure 11.19):

import java.awt.event.*;

import javax.swing.*;

4419c11.fm Page 387 Thursday, February 24, 2005 4:39 PM

388 Chapter 11 � Swing Components

/**

 * This subclass of AbstractAction serves as a prototype

 * for creating simple Action objects. No provision is

 * made for icons - just a String value so the containing

 * component has something to display.

 *

 * @author The CJ2CSG Guys

 */

public class SampleAction extends AbstractAction

{

 private String message;

 /**

 * Passes the supplied String to the parent class;

 * also maintains a copy locally.

 */

 public SampleAction(String output) {

 super(output);

 message = output;

 }

 /**

 * Sends the Action message to stdout.

 */

 public void actionPerformed(ActionEvent ae) {

 System.out.println(message);

 }

 /**

 * A bootstrap test. Adds the object to a JMenu.

 */

 public static void main(String args[]) {

 SampleAction sa = new SampleAction(args[0]);

 JFrame jf = new JFrame(“Action Test”);

 JMenuBar jmb = new JMenuBar();

 jf.setJMenuBar(jmb);

 JMenu jm = new JMenu(“Sample”);

 jmb.add(jm);

 jm.add(sa);

4419c11.fm Page 388 Thursday, February 24, 2005 4:39 PM

Panes 389

 jf.setSize(100,100);

 jf.setVisible(true);

 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

}

Take another look at the TreeSetup class from the last section. This same code could be used
to create a quick menu prototype, using a file that lists Menus as keys and MenuItems as values.
It wouldn’t have much interesting functionality, but it would provide a quick means for choos-
ing how to visually arrange menu items.

It makes sense to rename TreeSetup to something more general, such as WidgetSetup, to
suggest wider usage. As practice, write a SampleMenu class that reads from a menu property file
and builds a GUI menu for you.

F I G U R E 1 1 . 1 9 Adding an Action to a JMenu

Panes
Swing panes all provide some form of containment service. The services they provide vary widely,
from delegated layout managers (content pane) to specialized layout managers (JSplitPane,
JScrollPane) and dialog boxes (JOptionPane, JTabbedPane, JFileChooser) to embedded lay-
ers that have no class of their own (the “glass pane” in the JFrame). The content pane is some-
thing everyone who writes a Swing application must use, and JFileChooser is a straightforward
class, so we briefly discuss here two of the panes you might not think to use: JSplitPane and
JOptionPane.

JSplitPane

As the name suggests, a JSplitPane holds two other components and provides an adjustable
divider service. A JSplitPane is not a layout manager subclass, but it contains layout behavior
just the same: it has its own rules regarding minimumSize and preferredSize requests from the
components it contains. JSplitPane looks at minimumSize on a resize request, ensuring that
one component does not encroach on the other’s needed space. The range of the divider’s loca-
tion is normally fixed by the minimum sizes of the components in the pane, but it is adjustable.

4419c11.fm Page 389 Thursday, February 24, 2005 4:39 PM

390 Chapter 11 � Swing Components

Other properties of JSplitPane include

orientation HORIZONTAL_SPLIT or VERTICAL_SPLIT

dividerSize In pixels

dividerLocation Current position

minimumDividerLocation Left/bottom minimum size

maximumDividerLocation Right/top minimum size

Now you’re ready to put the tree, table, and simple menu together for a first look, which you
can create with the following code:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.tree.*;

/** A bootstrap class that combines our table and tree,

 * in a split pane, along with a trivial menu that is

 * backed by an Action.

 *

 * @author The CJ2CSG Guys

 */

public class Prototype

{

 public static void main(String args[]) {

 JFrame jf = new JFrame(“SplitPane Test”);

 TroubleTicketModel ttm = new TroubleTicketModel();

 JTable jta = new JTable(ttm);

 SampleTree st = new SampleTree(“sample”);

 DefaultTreeModel tm = st.getSampleTreeModel();

 JTree jtr = new JTree(tm);

 SampleAction sa = new SampleAction(“PROTOTYPE”);

 JMenuBar jmb = new JMenuBar();

 jf.setJMenuBar(jmb);

 JMenu jm = new JMenu(“Sample”);

 jmb.add(jm);

 jm.add(sa);

4419c11.fm Page 390 Thursday, February 24, 2005 4:39 PM

Panes 391

 JSplitPane jsp = new

 JSplitPane(JSplitPane.HORIZONTAL_SPLIT, jtr, jta);

 jf.getContentPane().add(jsp, BorderLayout.WEST);

 jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 jf.setSize(650,200);

 jf.setVisible(true);

 }

}

The result is shown in Figure 11.20. You didn’t spend time refining appearances in this first
round, but now you have a quick look at your elements. Most of the adjustments to appearance
can be made in the bootstrap code, amounting to less focus on changing class behavior and
more on experimenting with it.

F I G U R E 1 1 . 2 0 Menu, table, and tree together in one JFrame

JOptionPane

The JOptionPane class encapsulates several conventional dialog-box formats, but with one
clear advantage: You don’t need to declare a Frame and bind to it (more on that in a moment).

JOptionPane defines five message types:
� ERROR_MESSAGE

� INFORMATION_MESSAGE

� WARNING_MESSAGE

� QUESTION_MESSAGE

� PLAIN_MESSAGE

Each of these types maps to a prepared display format. These formats can be associated one
of two ways: using a confirmation request that locks the underlying frame (a modal dialog) or
using a dismiss-on-demand style that does not interfere with the application (a nonmodal dialog).
These behaviors are respectively enabled by the static methods showConfirmDialog() and
showMessageDialog().

4419c11.fm Page 391 Thursday, February 24, 2005 4:39 PM

392 Chapter 11 � Swing Components

Add the following code snippets to the Prototype class as a way to experiment, and compare
your perception of speed before and after these changes. The dialogs that pop up are depicted in
Figure 11.21:

...

JOptionPane.showMessageDialog(null, “Tree created”,

 “Program Note”, JOptionPane.INFORMATION_MESSAGE);

...

JOptionPane.showConfirmDialog(null, “Load the GUI?”,

 “Roll Call!”, JOptionPane.YES_NO_CANCEL_OPTION,

 JOptionPane.QUESTION_MESSAGE);

...

F I G U R E 1 1 . 2 1 JOptionPane’s information (a) and question (b) dialogs

Summary
A simple, four-step plan to design a GUI includes identifying the needed components, isolating
regions of behavior, sketching the GUI, and choosing layout managers.

Some properties are common to nearly all Swing components. These include size, location,
foreground and background color, font, and enabled state. There are public methods for each
component to set and get each of these properties.

The categories of Swing components are container components, ordinary components,
and menu components. Containers include JFrame, JPanel, and JPane. Ordinary compo-
nents include JLabel, JButton, JCheckBox, JRadioButton, JScrollBar, JTextField,
JTextArea, and JComboBox. The menu components include JMenu, JMenuBar, JMenuItem,
JCheckBoxMenuItem, and JRadioButtonMenuItem.

JTables have three core internal models, including TableModel, TableColumnModel, and
ListenerSelectionModel. It’s also possible (and simpler) to subclass AbstractTableModel
and use it as a JTable constructor argument.

The primary use for a JTree is implementing any data structure that lends itself to a hierar-
chy. Trees consist of a root node and child nodes (leaf nodes and branch nodes).

a b

4419c11.fm Page 392 Thursday, February 24, 2005 4:39 PM

Summary 393

Chapter Review Lab

A Custom Table Model Class

In this exercise you will create your own table model class. The model should support a table
with 10 rows and 10 columns. The cell at row r and column c should display the value r × c. In
other words, it’s a multiplication table for 0 times 0 through 9 times 9. The column headers
should be the values 0 through 9. A good size for your frame is 800 × 200 pixels.

The cells in the rightmost column and the bottom row should be blank and editable. The user
should type in the correct values for these cells.

The GUI should display the table and a button labeled Check. When the user clicks the button,
the application should print out the number of cells that the user correctly filled in.

If you’re not familiar with layout managers, you might run into a problem. If you just create a
table and a button and add them to a frame’s content pane, you’ll see only one of the compo-
nents. To work around this, insert the following line of code immediately after you create the
frame (before you add the components):

frame.getContentPane().setLayout(new java.awt.FlowLayout());

Your model class should extend AbstractTableModel. It should also implement ActionListener,
so that it can receive notification from the Check button. One possible solution appears on your
CD-ROM, in the file solutions\Chapter11\MultiplicationTableModel.java.

When you test your application, be sure to hit the Enter key after you type the last value into the
last cell. Otherwise, the table will not send a setValueAt() call to the model, and the model will
not detect the value you typed in.

4419c11.fm Page 393 Thursday, February 24, 2005 4:39 PM

4419c11.fm Page 394 Thursday, February 24, 2005 4:39 PM

Chapter

12

Layout Managers

4419c12.fm Page 395 Tuesday, February 22, 2005 9:27 AM

In Chapter 11, “Swing Components,” we covered the basic look
and feel of some of the basic Swing components. A sophisticated
GUI, such as the one you will be required to create for your Devel-

oper’s Exam project, consists of a number of interrelated components positioned so as to make
the application easy to understand and use.

Java practically insists that you use layout managers to control the size and position of your
GUI components. This requirement can be irritating, but it has the benefit of forcing program-
mers to think about the dynamic resizing behavior of their user interfaces. In this chapter we will
examine the standard layout managers of the

java.awt

 package: Flow, Grid, Border, Card, and
GridBag. Note that these classes can lay out Swing components as well as AWT components.

Layout Manager Theory

The AWT toolkit includes five main layout manager classes:
�

Flow
�

Grid
�

Border
�

Card
�

GridBag

You might expect that there would be a common abstract superclass, called something like

LayoutManager

, from which these five layout managers would inherit common functionality.
In fact, the common ancestor is

java.awt .LayoutManager

. However, it is an interface, not
a class, because the layout managers are so different from one another that they have nothing
in common except a handful of method names. (There is also a

java.awt .LayoutManager2

subinterface, which the GridBag, Border, and Card layout managers implement.)

Layout managers work in partnership with containers. To understand layout managers, it is
important to understand what a container is and what happens when a component gets inserted
into a container. The next two sections explore these topics.

Swing GUIs reside in

JFrame

s or in

JApplet

s. For simple applications, you just add your com-
ponents to your frame; for simple applets, you just put your components into your applet. (In both
cases, you might wonder how the components end up where they do; layout managers are lurking
in the background, taking care of details.) For more complicated GUIs, it is convenient to divide
the frame or applet into smaller regions. These regions might constitute, for example, a toolbar or
a matrix of radio buttons. In Java, GUI subregions are implemented most commonly with the

JPanel

 container. Panels, like frames and applets, can contain other components: buttons, check

4419c12.fm Page 396 Tuesday, February 22, 2005 9:27 AM

Layout Manager Theory

397

boxes, scroll bars, text areas, text fields, and of course other panels. Complicated GUIs sometimes
have very complicated containment hierarchies of panels within panels within panels, and so on,
down through many layers of containment.

In most object-oriented windowing systems, including Java, the term

hierar-
chy

 is ambiguous. When discussing classes, hierarchy refers to the structure of
inheritance from superclass to subclass. When discussing GUIs, hierarchy can
refer to the containment structure of GUI components, such as applets, frames,

panels, buttons, and so on.

The GUI in Figure 12.1 is a moderate-size frame for specifying a color. You can see at a
glance that the panel contains labels, scroll bars, text fields, and buttons. You have probably
guessed that the frame also contains some panels, even though they cannot be seen. In fact, the
frame contains five panels, not counting the frame’s content pane. Each of the six containers
(the five panels, plus the content pane) has its own layout manager: There are four instances of
Grid layout managers, one Flow layout manager, and one Border layout manager.

Figure 12.2 schematically shows the frame’s containment hierarchy. A Java GUI programmer
must master the art of transforming a proposed GUI into a workable and efficient containment
hierarchy. This skill comes with experience, once the fundamentals are understood. The Java
Developer’s Certification Exam does not require you to develop any complicated containments,
but it does require you to understand the fundamentals.

F I G U R E 1 2 . 1

A GUI with several levels of containment

The code that implements the color chooser in Figure 12.1 is listed here:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class Hier extends JFrame {

 5. Hier() {

 6. super("Containment Hierarchy Demo");

 7. Container cont = getContentPane();

 8. // Build upper panel with 3 horizontal "strips".

 9. String strings[] = {"Red:", "Green:", "Blue:"};

10. JPanel upperPan = new JPanel();

11. upperPan.setLayout(new GridLayout(1, 3, 20, 0));

4419c12.fm Page 397 Tuesday, February 22, 2005 9:27 AM

398

Chapter 12 �

Layout Managers

12. for (int i=0; i<3; i++) {

13. // Add strips.

14. // Each strip is a panel within upperPan.

15. JPanel levelPan = new JPanel();

16. levelPan.setLayout(new GridLayout(3, 1, 0, 10));

17. levelPan.add(new Label(strings[i]));

18. levelPan.add(new

 JScrollBar(JScrollBar.HORIZONTAL));

19. levelPan.add(new JTextField("0"));

20. upperPan.add(levelPan);

21. }

22. cont.add(upperPan, BorderLayout.CENTER);

23. // Build lower panel containing 3 buttons.

24. JPanel lowerPan = new JPanel();

25. lowerPan.add(new JButton("Apply"));

26. lowerPan.add(new JButton("Reset"));

27. lowerPan.add(new JButton("Cancel"));

28. cont.add(lowerPan, BorderLayout.SOUTH);

29. pack();

30. }

31.

32. public static void main(String[] args) {

33. (new Hier()).setVisible(true);

34. }

35. }

F I G U R E 1 2 . 2

Containment hierarchy

JFrame’s content pane

JPanel

JPanel

Button Button Button

JPanel JPanel JPanel

JScrollBar JScrollBar JScrollBar

JLabel JLabel JLabel

JTextField JTextField JTextField

4419c12.fm Page 398 Tuesday, February 22, 2005 9:27 AM

Layout Manager Theory

399

As you can see from the listing, no code specifies exactly where the labels, scroll bars, text
fields, buttons, or panels should go or what size they should be. Instead, each container (the con-
tent pane of the

JFrame

, as well as the various

JPanel

s) uses its default layout manager or is
specifically assigned a non-default layout manager.

After each container is constructed and possibly assigned a new layout manager, the container
is populated with the components it is to contain. For example, the lower

JPanel

, constructed in
line 24, is populated with

JButton

s in lines 25, 26, and 27 (using its default layout manager).
Finally, the now-populated panel is added to the container that is to hold it (line 28).
Each panel in the sample code is built in four steps:

1.

Construct the panel.

2.

Give the panel a layout manager.

3.

Populate the panel.

4.

Add the panel to its own container.

When a container is constructed (step 1), it is given a default layout manager. For panels, the
default is a Flow layout manager, and step 2 can be skipped if this is the desired manager. In step
3, populating the panel involves constructing components and adding them to the panel; if any
of these components is itself a panel, steps 1–4 must be executed recursively.

There is a version of the

JPanel

 constructor whose single argument is a layout manager,
which of course is assigned to the panel. So lines 15 and 16 above could be abbreviated as

JPanel levelPan = new JPanel(new GridLayout(3, 1, 0, 10));

A container delegates to its layout manager the job of determining where components will be
placed and (optionally) how they will be resized. If the container is subsequently resized, the lay-
out manager again lays out the container’s components (probably with different results, because
it has a different area to work with). This “conference” between the container and the layout
manager is the subject of the next section.

Component Size and Position

Components know where they are and how big they are. That is to say, the

java.awt.Component

class, which is a superclass of all AWT and Swing components, has instance variables called

x

,

y

,

width

, and

height

. The

x

 and

y

 variables specify the position of the component’s upper-left cor-
ner (as measured from the upper-left corner of the container that contains the component), and

width

 and

height

 are in pixels. Figure 12.3 illustrates the

x

,

y

,

width

, and

height

 of a text area
inside a panel inside a frame.

A component’s position and size can be changed by calling the component’s

setSize()

method. It seems reasonable to expect that the following code, which calls

setSize()

 on a
button, would create two fairly big buttons:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

4419c12.fm Page 399 Tuesday, February 22, 2005 9:27 AM

400

Chapter 12 �

Layout Managers

 4. public class Disa extends JFrame {

 5. public static void main(String[] args) {

 6. JFrame frame = new JFrame();

 7. JPanel panel = new JPanel();

 8. for (int i=0; i<2; i++) {

 9. JButton btn = new JButton("We're enormous!");

10. btn.setSize(300, 300);

11. panel.add(btn);

12. }

13. frame.getContentPane().add(panel);

14. frame.setSize(450, 70);

15. frame.setVisible(true);

16. }

17. }

If you have tried something like this, you know that the result is disappointing. A screen shot
appears in Figure 12.4.

F I G U R E 1 2 . 3

Position and size

F I G U R E 1 2 . 4

Disappointing buttons: too large

4419c12.fm Page 400 Tuesday, February 22, 2005 9:27 AM

Layout Policies

401

It seems that line 10 should force the buttons to be 300 pixels wide by 300 pixels tall. In fact,
the buttons are just the size they would be if line 10 were omitted or commented out.

Line 10 has no effect because after it executes, the button is added to a panel (line 11). Eventually
(after a fairly complicated sequence of events), the panel calls on its layout manager to enforce its
layout policy on the button. The layout manager decides where and how big the button should be;
in this case, the layout manager wants the button to be just large enough to accommodate its label.
When this size has been calculated, the layout manager calls

setBounds()

 on the button, clobber-
ing the work you did in line 10.

In general, it is futile to call

setBounds()

 on a component, because layout managers always
get the last word; that is, their call to

setBounds()

 happens after yours. There are ways to defeat
this functionality, but they tend to be complicated, difficult to maintain, and not in the spirit of
Java. Java’s GUI system wants you to let the layout managers do the layout work. In order to
build a sophisticated GUI, you have to be familiar with the layout policies of the available layout
managers. These policies are covered in the next several sections.

Layout Policies

Every Java component has a

preferred size

 that expresses how big the component would like to
be, barring conflict with a layout manager. Preferred size is generally the smallest size necessary
to render the component in a visually meaningful way. For example, a button’s preferred size is
the size of its label text, plus a little border of empty space around the text, plus the shadowed dec-
orations that mark the boundary of the button. Thus a button’s preferred size is “just big enough.”

When a layout manager lays out its container’s child components, it has to balance two con-
siderations: the layout policy and each component’s preferred size. First priority goes to enforcing
layout policy. If honoring a component’s preferred size would mean violating the layout policy,
then the layout manager overrules the component’s preferred size.

Understanding a layout manager means understanding where it will place a component and
also how it will treat a component’s preferred size. The next several sections discuss the layout
managers: Flow, Grid, Border, Card, and GridBag.

The Flow Layout Manager

The Flow layout manager arranges components in horizontal rows. It is the default manager
type for panels and applets, so it is usually the first layout manager that programmers encoun-
ter. It is a common experience for new Java developers to add a few components to an applet
and wonder how they came to be arranged so neatly. The following code is a good example:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class Flow extends JFrame {

 5. public static void main(String[] args) {

4419c12.fm Page 401 Tuesday, February 22, 2005 9:27 AM

402

Chapter 12 �

Layout Managers

 6. JFrame frame = new JFrame();

 7. Container cont = frame.getContentPane();

 8. cont.setLayout(new FlowLayout());

 9. cont.add(new JLabel("Name: "));

10. cont.add(new JTextField("Beowulf "));

11. cont.add(new JButton("OK"));

12. frame.setSize(450, 90);

13. frame.setVisible(true);

14. }

15. }

The resulting frame is shown in Figure 12.5.
If the same three components appear in a narrower frame, as shown in Figure 12.6, there is

not enough space for all three to fit in a single row.
The Flow layout manager fits as many components as possible into the top row and spills the

remainder into a second row. The components always appear, left to right, in the order they
were added to their container.

If the frame is thinner still, as in Figure 12.7, then the Flow layout manager creates still
another row.

F I G U R E 1 2 . 5

Simple frame using the Flow layout manager

F I G U R E 1 2 . 6

A narrower frame using the Flow layout manager

F I G U R E 1 2 . 7

A very narrow frame using the Flow layout manager

4419c12.fm Page 402 Tuesday, February 22, 2005 9:27 AM

Layout Policies

403

Within every row the components are evenly spaced, and the cluster of components is cen-
tered. The alignment (sometimes called

justification

) of the clustering can be controlled by pass-
ing a parameter to the

FlowLayout

 constructor. The possible values are

FlowLayout.LEFT

,

FlowLayout.CENTER

, and

FlowLayout.RIGHT

. The code that follows explicitly constructs a
Flow layout manager to right-justify four buttons:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class FlowRight extends JFrame {

 5. public static void main(String[] args) {

 6. JFrame frame = new JFrame();

 7. Container cont = frame.getContentPane();

 8. cont.setLayout(new FlowLayout(FlowLayout.RIGHT));

 9. for (int i=1; i<=4; i++)

10. cont.add(new JButton("Button #" + i));

11. frame.setSize(470, 90);

12. frame.setVisible(true);

13. }

14. }

Figure 12.8 shows the resulting frame.
Figure 12.9 shows the frame of the previous figure, resized to be somewhat narrower.
By default, the Flow layout manager leaves a gap of five pixels between components in both the

horizontal and vertical directions. You can change this default by calling an overloaded version of
the

FlowLayout constructor, passing in the desired horizontal and vertical gaps. All layout man-
agers have this capability.

F I G U R E 1 2 . 8 A right-justifying Flow layout manager

F I G U R E 1 2 . 9 A narrow right-justifying Flow layout manager

4419c12.fm Page 403 Tuesday, February 22, 2005 9:27 AM

404 Chapter 12 � Layout Managers

The Grid Layout Manager

The Flow layout manager always honors a component’s preferred size. The Grid layout manager
takes the opposite extreme: when it performs a layout in a given space, it ignores a component’s
preferred size.

The Grid layout manager subdivides its territory into a matrix of rows and columns. The num-
ber of rows and number of columns are specified as parameters to the manager’s constructor:

public GridLayout(int nRows, int nColumns)

Each row and each column in a Grid layout will be the same size; the overall area available
to the layout is divided equally among the number of rows and among the number of columns.

The following code uses a Grid layout manager to divide a frame into five rows and three col-
umns and then puts a component in each grid cell:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class Grid extends JFrame {

 5. public static void main(String[] args) {

 6. JFrame frame = new JFrame();

 7. Container cont = frame.getContentPane();

 8. cont.setLayout(new GridLayout(5, 3));

 9. for (int row=0; row<5; row++) {

10. cont.add(new JLabel("Label " + row));

11. cont.add(new JButton("Button " + row));

12. cont.add(new JTextField("Text Field " + row));

13. }

14. frame.setSize(470, 140);

15. frame.setVisible(true);

16. }

17. }

Note that the constructor in line 8 creates five rows and three columns, not the other way
around. After so many years of programming with Cartesian coordinates, it is probably second
nature for most programmers to specify horizontal sorts of information before the comma and
vertical sorts of information after the comma. The GridLayout constructor uses “row-major”
notation, which sometimes confuses people.

If you specify zero for either rows or columns, then the grid will size itself based on the number
of components and the other dimension.

As you can see in Figure 12.10, every component is exactly the same size. Components
appear in the order in which they were added, from left to right, row by row.

If the same components are laid out in a taller, narrower frame, then every component is
proportionally taller and narrower, as shown in Figure 12.11.

4419c12.fm Page 404 Tuesday, February 22, 2005 9:27 AM

Layout Policies 405

F I G U R E 1 2 . 1 0 Grid layout

F I G U R E 1 2 . 1 1 Tall, narrow Grid layout

Grid layout managers behave strangely when they manage very few components (that is,
significantly fewer than the number of rows times the number of columns) or very many com-
ponents (that is, more than the number of rows times the number of columns).

The Border Layout Manager

The Border layout manager is the default manager for a JFrame’s content pane, so sooner or
later you must come to grips with it. It enforces a very useful layout policy, but it is less intuitive
than either the Flow or Grid manager.

The Flow layout manager always honors a component’s preferred size; the Grid layout manager
never does. The Border layout manager does something in between. The Border layout manager
divides its territory into five regions: North, South, East, West, and Center. Each region may be
empty or may contain one component (that is, no region is required to contain a component, but
the regions can contain only one component).

The component at North gets positioned at the top of the container, and the component at
South gets positioned at the bottom. The layout manager honors the preferred height of the
North and South components and forces them to be exactly as wide as the container.

The North and South regions are useful for toolbars, status lines, and any other controls that
ought to be as wide as possible but no higher than necessary. Figure 12.12 shows a frame that

4419c12.fm Page 405 Tuesday, February 22, 2005 9:27 AM

406 Chapter 12 � Layout Managers

uses a Border layout manager to position a toolbar at North and a status line at South. The font
of the status line is very large to illustrate that the height of each region is dictated by the preferred
height of the component in the region. The panel that contains the toolbar buttons has its back-
ground set to black so you can see where it is. (For simplicity, the toolbar is just a panel containing
a few buttons. Remember we said that you can put only a single component in each region? Well,
if that component is a container, then you can get multiple components displayed.)

Figure 12.13 shows what happens if the same code is used but the frame is larger. Notice that
the toolbar is still at the top and the status line is still at the bottom. The toolbar and the status
line are as tall as they were in Figure 11.12, and they are automatically as wide as the frame.

F I G U R E 1 2 . 1 2 Border layout for a toolbar and a status line

F I G U R E 1 2 . 1 3 Larger Border layout for a toolbar and a status line

The code that produced these screen shots is as follows:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class Border extends JFrame {

4419c12.fm Page 406 Tuesday, February 22, 2005 9:27 AM

Layout Policies 407

 5. public static void main(String[] args) {

 6. JFrame frame = new JFrame();

 7. Container cont = frame.getContentPane();

 8.

 9. // Build, populate, and add toolbar.

10. JPanel toolbar = new JPanel();

11. toolbar.setBackground(Color.black);

12. toolbar.add(new JButton("This"));

13. toolbar.add(new JButton("Is"));

14. toolbar.add(new JButton("The"));

15. toolbar.add(new JButton("Toolbar"));

16. cont.add(toolbar, BorderLayout.NORTH);

17.

18. // Add status line.

19. JTextField status = new JTextField("Status.");

20. Font font = new Font("Monospaced", Font.BOLD, 48);

21. status.setFont(font);

22. cont.add(status, BorderLayout.SOUTH);

23.

24. frame.setSize(400, 375);

25. frame.setVisible(true);

26. }

27. }

Notice that in lines 16 and 22, an overloaded form of the add() method is used. The Border
layout manager is not affected by the order in which you add components. Instead, you must spec-
ify which of the five regions will receive the component you are adding. The overloaded version
of add() takes two parameters: first the component being added and second an Object. Proper
use of the Border layout manager requires that the second parameter be a constant defined in the
BorderLayout class itself. The five constants that you should know about are these:
� BorderLayout.NORTH

� BorderLayout.SOUTH

� BorderLayout.EAST

� BorderLayout.WEST

� BorderLayout.CENTER

These constants are of type String. You can use the string values rather than the constants,
simply by passing in one of the literal strings North, South, East, West, or Center. However,
this approach is less robust than using the constants, because it does not protect you against
spelling errors. For example, if you accidentally type BorderLayout.SUOTH, the compiler will
flag your error at compile time. If you use the literal value and make the corresponding typo,
the compiler sees Suoth, which is a valid string, and does not produce a compiler error.

4419c12.fm Page 407 Tuesday, February 22, 2005 9:27 AM

408 Chapter 12 � Layout Managers

The East and West regions are almost the opposite of North and South: in East and West,
a component gets to be its preferred width but has its height constrained. Here a component
extends vertically up to the bottom of the North component (if there is one) or to the top of
the container (if there is no North component). A component extends down to the top of the
South component (if there is one) or to the bottom of the container (if there is no South com-
ponent). Figures 12.14 through 12.17 show frames that use a Border layout manager to lay out
two scroll bars, one at East and one at West. In Figure 12.14, there are no components at North
or South to contend with.

In Figure 12.15 there is a label at North.

F I G U R E 1 2 . 1 4 East and West

F I G U R E 1 2 . 1 5 East and West, with North

4419c12.fm Page 408 Tuesday, February 22, 2005 9:27 AM

Layout Policies 409

F I G U R E 1 2 . 1 6 East and West, with South

F I G U R E 1 2 . 1 7 East and West, with both North and South

In Figure 12.16 there is a label at South. The label has white text on a black background so
that you can see exactly where the South region is.

In Figure 12.17, there are labels at both North and South. The labels have white text on a
black background so that you can see exactly where the North and South regions are.

The code that generated these four images is listed here. There is only one application. The
code, as shown, generates Figure 12.17 (both North and South); lines 17 and 24 were judiciously
commented out to generate the other figures:

 1. import java.awt.*;

 2. import javax.swing.*;

4419c12.fm Page 409 Tuesday, February 22, 2005 9:27 AM

410 Chapter 12 � Layout Managers

 3.

 4. public class EastWest extends JFrame {

 5. public static void main(String[] args) {

 6. JFrame frame = new JFrame();

 7. Container cont = frame.getContentPane();

 8.

 9. cont.add(new JScrollBar(), BorderLayout.WEST);

10. cont.add(new JScrollBar(), BorderLayout.EAST);

11.

12. JLabel topLabel = new JLabel("This is North");

13. topLabel.setOpaque(true);

14. topLabel.setFont(new Font("Serif", Font.PLAIN, 36));

15. topLabel.setForeground(Color.white);

16. topLabel.setBackground(Color.black);

17. cont.add(topLabel, BorderLayout.NORTH);

18.

19. JLabel bottomLabel = new JLabel("This is South");

20. bottomLabel.setOpaque(true);

21. bottomLabel.setFont(new Font("Monospaced",

 Font.PLAIN, 18));

22. bottomLabel.setForeground(Color.white);

23. bottomLabel.setBackground(Color.black);

24. cont.add(bottomLabel, BorderLayout.SOUTH);

25.

26. frame.setSize(400, 375);

27. frame.setVisible(true);

28. }

29. }

The fifth region that a Border layout manager controls is called Center. Center is simply
the part of a container that remains after North, South, East, and West have been allocated.
Figure 12.18 shows a frame with buttons at North, South, East, and West and a text area at
Center.

The code that generated Figure 12.18 is as follows:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class Center extends JFrame {

 5. public static void main(String[] args) {

 6. JFrame frame = new JFrame();

 7. Container cont = frame.getContentPane();

4419c12.fm Page 410 Tuesday, February 22, 2005 9:27 AM

Layout Policies 411

 8.

 9. cont.add(new JButton("N"), BorderLayout.NORTH);

10. cont.add(new JButton("S"), BorderLayout.SOUTH);

11. cont.add(new JButton("E"), BorderLayout.EAST);

12. cont.add(new JButton("W"), BorderLayout.WEST);

13.

14. JTextArea ta = new JTextArea();

15. for (int i=0; i<10; i++)

16. ta.append("Center Text Area Line " + i + "

17. cont.add(ta, BorderLayout.CENTER);

18.

19. frame.setSize(400, 375);

20. frame.setVisible(true);

21. }

22. }

In line 17, the text area is added to the Center region. When adding a component to Center,
it is legal, although unwise, to omit the second parameter to the add() call. In the Java 2 plat-
form, the Border layout manager will assume that you mean Center; however, in older versions,
the behavior was unpredictable and typically resulted in the component’s being entirely invisi-
ble. Generally, it is easier for other people to understand your code if you explicitly specify the
region, as in line 17.

Figures 12.19 and 12.20 show what happens to the Center region in the absence of various
regions. The frames are generated by commenting out line 9 (for Figure 12.19) and lines 10–12
(for Figure 12.20). The figures show that Center (the text area) is simply the area that is left over
after space has been given to the other regions.

F I G U R E 1 2 . 1 8 The Center region

4419c12.fm Page 411 Tuesday, February 22, 2005 9:27 AM

412 Chapter 12 � Layout Managers

F I G U R E 1 2 . 1 9 Center, no North

F I G U R E 1 2 . 2 0 Center, no South, East, or West

The Card Layout Manager

The Card layout manager lays out its components in time rather than in space. At any moment,
a container using a Card layout manager is displaying one or another of its components; all the
other components are unseen. A method call to the Card layout manager can tell it to display
a different component. All the components (which are usually panels) are resized to occupy the
entire container. The result is similar to a tabbed panel without the tabs.

4419c12.fm Page 412 Tuesday, February 22, 2005 9:27 AM

Layout Policies 413

When you use a Card layout, you have a couple of options for controlling which component
is displayed and when. The Card layout gives the components that it manages a sequence, and
you can ask it to display the first or last component in that sequence explicitly. In addition, you
can ask for the next or previous component in the sequence. In this way, you can cycle through
the components easily.

The second way to control component display is to give each component a name. If you take
this approach, the Card layout allows you to select the component to be displayed using that
name. This approach is much like an API equivalent of selecting a pane from a tabbed pane
based on the label that it displays.

Adding Components to a Card Layout

To add components to a Card layout, you simply add them to the appropriate container. This
process is like any other layout. You need to be aware of two things that influence the exact
way that you add your components. First, the order in which you add the components deter-
mines the order in which they will be cycled by the Card layout manager, should you choose
to use this feature. Second, if you want to select particular components for display using the
“by name” feature mentioned in the previous paragraph, then you must supply a name when
adding the component. (Obviously, the name should not be shared by any other component in
the same container.)

To add a named component , simply use the String object that represents that name in the
second argument of the add method, like this:

JPanel p = new JPanel();

p.setLayout(new CardLayout());

JButton b = new JButton(“A Component”);

p.add(b, “Button-B”);

If you examine the API for the Container class, you’ll see that there is another add method
that takes a string as the first argument and the Component as the second. You can use this
method, and it works. However, the API says that the add(Component, Object) version is
“strongly preferred.”

Selecting the Displayed Component

The Card layout manager provides five methods that can be used to select the component that
is to be displayed:
� void first(Container)

� void last(Container)

� void next(Container)

� void previous(Container)

� void show(Container, String)

4419c12.fm Page 413 Tuesday, February 22, 2005 9:27 AM

414 Chapter 12 � Layout Managers

The first four of these methods are straightforward; first and last cause the display to
select the first or last added component, respectively. Similarly, the methods next and previous
cause the displayed component to be cycled based on the order in which the components were
originally added to the container.

The final method, show(), selects a particular component based on the textual name that was
given to the component when the component was added to the container. To use this method,
naturally, you must provide a name for the component. You do so by using the method

add(Component, Object)

to add the component to its container and ensuring that the names given to the components are
unique for that container.

Let’s look at an example. Note especially the underlined lines, where components are added
and displayed:

 import java.awt.*;

 import java.awt.event.*;

 import javax.swing.*;

 public class CardDemo extends JPanel {

 private JPanel cardPanel = new JPanel();

 private CardLayout cardLayout = new CardLayout();

 private JPanel controlPanel = new JPanel();

 private JButton firstButton = new JButton("First");

 private JButton lastButton = new JButton("Last");

 private JButton nextButton = new JButton("Next");

 private JButton prevButton = new JButton("Prev");

 private JTextField selectText = new JTextField(" ");

 public CardDemo() {

 setLayout(new BorderLayout());

 cardPanel.setLayout(cardLayout);

 JPanel p = new JPanel();

 p.setLayout(new BorderLayout());

 p.add(new Label("This is panel One"),

 BorderLayout.CENTER);

 p.add(new Button("dummy button one"),

4419c12.fm Page 414 Tuesday, February 22, 2005 9:27 AM

Layout Policies 415

 BorderLayout.WEST);

 cardPanel.add(p, "1");

 p = new JPanel();

 p.setLayout(new BorderLayout());

 p.add(new Label("This is panel Two"),

 BorderLayout.CENTER);

 p.add(new Button("dummy button two"),

 BorderLayout.NORTH);

 cardPanel.add(p, "2");

 p = new JPanel();

 p.setLayout(new BorderLayout());

 p.add(new Label("This is panel Three"),

 BorderLayout.CENTER);

 p.add(new Button("dummy button three"),

 BorderLayout.SOUTH);

 cardPanel.add(p, "3");

 p = new JPanel();

 p.setLayout(new BorderLayout());

 p.add(new Label("This is panel Four"),

 BorderLayout.CENTER);

 p.add(new Button("dummy button four"),

 BorderLayout.EAST);

 cardPanel.add(p, "4");

 add(cardPanel, BorderLayout.CENTER);

 firstButton.addActionListener(

 new ActionListener() {

 public void actionPerformed(ActionEvent e){

 cardLayout.first(cardPanel);

 }

 }

);

 lastButton.addActionListener(

 new ActionListener() {

 public void actionPerformed(ActionEvent e){

 cardLayout.last(cardPanel);

4419c12.fm Page 415 Tuesday, February 22, 2005 9:27 AM

416 Chapter 12 � Layout Managers

 }

 }

);

 nextButton.addActionListener(

 new ActionListener() {

 public void actionPerformed(ActionEvent e){

 cardLayout.next(cardPanel);

 }

 }

);

 prevButton.addActionListener(

 new ActionListener() {

 public void actionPerformed(ActionEvent e){

 cardLayout.previous(cardPanel);

 }

 }

);

 selectText.addActionListener(

 new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 cardLayout.show(cardPanel,

 selectText.getText().trim());

 }

 }

);

 JPanel cp1 = new JPanel();

 JPanel cp2 = new JPanel();

 cp1.add(firstButton);

 cp1.add(prevButton);

 cp1.add(nextButton);

 cp1.add(lastButton);

 cp2.add(new Label("Enter Panel Number: "));

 cp2.add(selectText);

4419c12.fm Page 416 Tuesday, February 22, 2005 9:27 AM

Layout Policies 417

 controlPanel.setLayout(new BorderLayout());

 controlPanel.add(cp1, BorderLayout.NORTH);

 controlPanel.add(cp2, BorderLayout.SOUTH);

 add(controlPanel, BorderLayout.SOUTH);

 }

 public static void main(String args[]) {

 JFrame f = new JFrame("CardLayout Example");

 CardDemo card = new CardDemo();

 f.getContentPane().add(card, BorderLayout.CENTER);

 f.pack();

 f.setVisible(true);

 }

 }

The GridBag Layout Manager

The GridBag layout manager is by far the most powerful layout manager. It can perform the
work of the Flow, Grid, and Border layout managers if appropriately programmed and is capable
of much more, often without the need for nesting multiple panels as is so often required with the
other layout managers.

The GridBag layout manager divides its container into an array of cells, but (unlike the
cells of a Grid layout manager) different cell rows can have different heights, and different cell
columns can have different widths. A component can occupy part or all of a region that is
based on either a single cell or a rectangle made up of multiple cells. A GridBag layout man-
ager requires a lot of information to know where to put a component. A helper class called
GridBagConstraints is used to hold all the layout position information. When you add a
component, you use the add(Component, Object) version of the add() method, passing an
instance of GridBagConstraints as the Object parameter.

Designing a Layout with GridBag

Although the GridBag layout manager is powerful, it is sometimes considered hard to use. This
perception stems mostly from two things. First, the supplied documentation, although precise
and complete from a technical point of view, does not describe much more than the API. An
explanation of the principles of operation is noticeably missing. Second, some aspects of the
control of the GridBag layout manager are confusing. Specifically, you will notice that the row
and column sizing controls are typically mixed in with the individual component controls. To
use the GridBag layout manager easily and confidently, you need to first understand the prin-
ciples that drive it and then worry about the API that you must use.

4419c12.fm Page 417 Tuesday, February 22, 2005 9:27 AM

418 Chapter 12 � Layout Managers

Three levels of control are applied to a GridBag layout to make up the final layout in the
container. The sizes of the various rows and columns, along with the way they stretch when
the container is resized, must be considered. Also, the cell (or cells) that provides the target
space for each component is determined. The final control determines how each component is
stretched to fit or, if it isn’t, how the component is positioned within the target space.

The API governing each of these aspects is built into a single mechanism based around the
GridBagConstraints class. This class can be confusing, so we will discuss each of the principles
of control separately as much as possible. As we do so, we will describe how the API controls this
behavior. Finally, we will look at the interactions between these various controls and distill some
generalizations that will be useful to you both when designing layouts and when answering
examination questions.

Controlling the Rows and Columns

The row and column behavior of a GridBag layout has three aspects. The first is the number
of rows and columns present. Typically, this total is determined by the number of rows and
columns you ask to add components into. So, for example, if you place components at X coor-
dinates 0, 1, 2, and 3, then you will find four columns in the container.

There is another way to specify that you want a particular number of rows or columns. The
GridBag layout manager has two public variables called columnWidths and rowHeights. These
are arrays of int values. If the columnWidths array contains four elements, then there will be (at
least) four columns in the layout. The rowHeights array affects the row count similarly. If you
use these arrays, then the layout will contain at least as many rows as the size of the rowHeights
array, and similarly the column count will be influenced by the size of the columnWidths array.

The second aspect is the default size of a row or column. The default height of a row is nor-
mally the preferred height of the tallest component in the row. Similarly, the default width of
a column is the width of the widest component in the column. If you provided either or both of
the columnWidths and rowHeights arrays, and if the value specified in the array for that par-
ticular row or column is greater than that calculated from the components, the array value will
be used instead. That’s easy enough, isn’t it?

The final aspect of rows and columns is the stretchiness that occurs when the container is
resized. It is governed by a property called weight. The rest of this section discusses row and
column count, size, and weight.

Let’s look at a trivial example that demonstrates controlling both the number of columns and
the default size of those columns (it’s hard to avoid having both at the same time, of course). The
following example code creates a GridBag layout of three rows and three columns:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4. public class GB1 extends JPanel {

 5. private JPanel tallPanel = new JPanel();

 6. private JPanel tallPanel2 = new JPanel();

 7.

4419c12.fm Page 418 Tuesday, February 22, 2005 9:27 AM

Layout Policies 419

 8. public GB1() {

 9. tallPanel.setLayout(new GridLayout(3, 1));

10. tallPanel.add(new Button("Press"));

11. tallPanel.add(new Button("Any"));

12. tallPanel.add(new Button("One"));

13.

14. tallPanel2.setLayout(new GridLayout(3, 1));

15. tallPanel2.add(new Button("Don't"));

16. tallPanel2.add(new Button("Press"));

17. tallPanel2.add(new Button("These"));

18.

19. setLayout(new GridBagLayout());

20.

21. GridBagConstraints c = new GridBagConstraints();

22. c.gridx = 0; c.gridy = 0;

23. add(new JButton("topleft"), c);

24. c.gridx = 1;

25. add(new JButton("topmiddle"), c);

26. c.gridx = 2;

27. add(new JButton("topright"), c);

28.

29. c.gridx = 0; c.gridy = 1;

30. add(new JButton("lefthandsidemiddle"), c);

31. c.gridx = 1;

32. add(tallPanel, c);

33.

34. c.gridy = 2; // note, sets _y_

35. add(new JButton("bottomcenter"), c);

36. c.gridx = 2;

37. add(tallPanel2, c);

38. }

39.

40. public static void main(String args[]) {

41. JFrame f = new JFrame("GridBag 1 example");

42. f.getContentPane().add(new GB1());

43. f.pack();

44. f.setVisible(true);

45. }

46. }

This code results in a display like the one in Figure 12.21.

4419c12.fm Page 419 Tuesday, February 22, 2005 9:27 AM

420 Chapter 12 � Layout Managers

Notice how each component that is added is positioned using a GridBagConstraints
object—actually the same object but with different values. The GridBagConstraints object
is used to specify all the controlling parameters for a GridBag layout and is provided each time
a component is added. The GridBag layout itself copies the values, so it’s quite all right to reuse
the constraints object for each component you add.

Let’s look at the behavior for a moment. We’ve said that this example produces three rows
and three columns, and yet it might not be obvious where those row and column boundaries are.
The diagram in Figure 12.22 shows these boundaries.

You will see that two cells of the layout are unused, at 0, 2 (the bottom-left corner) and
2, 1 (right side, halfway down). This is not a problem, because the GridBag layout manager cal-
culates the number of rows and columns required.

Each component in this layout was positioned explicitly using the gridx and gridy elements
of the GridBagConstraints object. You do not always have to work quite this hard, but for
now, it is easier to understand what is happening if you do. Therefore, we will continue to use
this approach for a while longer.

Notice that each row has a height, determined by the tallest component that it contains; sim-
ilarly, the width of each row is based on the widest component. For components that are smaller
in one dimension or the other than the space available to them, you’ll see that the component is
left at its natural size and is placed in the middle of the available space. Although this behavior is
the default, you will see later how to change it, too.

So, the remaining question to address is, what happens if the container is resized? We didn’t
specify any stretchiness for these rows and columns, so all that happens is that the space is
wasted—actually, it is distributed evenly around the whole layout, as shown in Figure 12.23.

F I G U R E 1 2 . 2 1 GridBag layout example

F I G U R E 1 2 . 2 2 Row and column boundaries in the GridBag layout example

4419c12.fm Page 420 Tuesday, February 22, 2005 9:27 AM

Layout Policies 421

F I G U R E 1 2 . 2 3 GridBag layout example with an enlarged window

Often you will want to use this extra space, and doing so involves two steps. As we just said,
components that are smaller than the available cell sit in the middle of the available space. If we
enlarge the space, we must also change that behavior. We’ll look at that technique shortly; for
now, let’s see how to enlarge the space. We will modify the program so that the center row and
center column are allocated all the available space when the container is enlarged. To do this,
we specify a nonzero value for the weight applied to the row and column.

The curious thing about weight is that it is specified using the members weightx and weighty
in the GridBagConstraints object, so a value is specified for every component. This is odd
because the value applies to the row or column, not to the individual component. To deal with
this approach, be careful to specify a weightx in only one component in each column (weightx
controls horizontal stretchiness) and a weighty in only one component in each row. We will
modify our earlier example so that the right column and bottom row stretch to use up the avail-
able space. Rather than reprint the entire program to show the two areas of modification, we’ll
just show you the parts that relate to adding components to the layout:

21. GridBagConstraints c = new GridBagConstraints();

22. c.gridx = 0; c.gridy = 0;

23. add(new JButton("topleft"), c);

24. c.gridx = 1;

25. add(new JButton("topmiddle"), c);

26. c.gridx = 2;

27. c.weightx = 1.0; // This col is stretchy

28. add(new JButton("topright"), c);

29. c.weightx = 0.0; // No other col stretches

30.

31. c.gridx = 0; c.gridy = 1;

32. add(new JButton("lefthandsidemiddle"), c);

4419c12.fm Page 421 Tuesday, February 22, 2005 9:27 AM

422 Chapter 12 � Layout Managers

33. c.gridx = 1;

34. add(tallPanel, c);

35.

36. c.gridy = 2; // sets _y_

37. add(new JButton("bottomcenter"), c);

38. c.gridx = 2;

39. c.weighty = 1.0; // This row is stretchy

40. add(tallPanel2, c);

41. c.weighty = 0.0; // No other row stretches

You’ll see that the components added at lines 28 and 40 have had weight applied to them. Don’t
forget: although this weight is carried on the back of a component, it applies to the row or column
being added to and not to the component. So, at line 28, we’re really setting a weightx value of 1
on column 2 (the last column), and similarly at line 40, we’re setting a weighty value on row 2.

The effect of this change, after enlarging the window and adding the grid boundary lines, is
shown in Figure 12.24.

Two questions remain. First, what is the significance of the value “1.0” that was set as the
weight—what would be the effect of other values? Second, how can you make more than one row
or column stretch? It turns out that these two questions are related. If you apply weight values to
more than one row or column, then the available space is divided among those rows or columns.
Exactly how it is divided is determined by the weight values.

The weight values you specify represent a proportion of the whole space; the width (in the
case of columns) gained is the ratio of a column’s weight to the total of all column weights. If
you have three columns with weights of 9, 9, and 18, respectively, then the first two will each
get one-fourth of the total width gain: 9 / (9 + 9 + 18). The third column will get one-half of the
extra space for itself. Similarly, if you specify the same weight for each (7, 7, and 7, for instance),
then each column will gain one-third of the total space gained. The same calculations hold true
for vertical stretch by rows.

Weights can be any number. They do not have to add to 1.0 or 100, but it is generally reasonable
to use weights that add to 100 (or thereabouts) so that you can consider the values to be percent-
ages. Just bear in mind that doing so is not required.

Although it is usual to set weights for rows and columns by using a GridBagConstraints
object when a component is added, this is neither the only nor perhaps the best way to do so.
Instead, you can use the public variables rowWeights and columnWeights. These variables are
both arrays of double values and will act as minimum weights for each row or column. It makes
little sense from a style point of view to specify weights for a row or column by means of data
passed when adding a component to a cell.

Using the rowWeights and columnWeights arrays has two advantages. First, it makes much
more sense to set the weights this way. Second, and more important, it lets you set a weight on a
row or column that might not have any one component uniquely in that row or column. Using
these arrays in conjunction with the rowHeights and columnWidths arrays allows you to simplify
the code of many layouts and to avoid the use of dummy components (a technique you sometimes
see used in complex GridBag layouts).

4419c12.fm Page 422 Tuesday, February 22, 2005 9:27 AM

Layout Policies 423

F I G U R E 1 2 . 2 4 GridBag layout example with weights applied and an enlarged window

We have spent a long time on this discussion, so let’s summarize what you’ve learned
so far:
� The number of rows and columns in a GridBag layout is the greater of the number of cells

that are used or the size of the rowHeights and columnWidths arrays if these exist.
� The default size of each row and column is the size of its tallest or widest component,

respectively, or the value in the relevant entry in the rowHeights or columnWidths array
if the array exists and specifies a larger size than the default would otherwise be.

� Stretchiness of rows and columns is controlled by weight.
� Stretchiness is applied using the weightx (for a column) and weighty (for a row) values

of the GridBagConstraints object or by using the rowWeights and columnWeights
arrays.

� Although weightx and weighty values exist for every component that is added, the values
are meant for the row or column to which the component is added, not for the component
itself. You should set a nonzero value for at most one component per row and one per col-
umn. (Note that you might have a component with both weightx and weighty set; rows
and columns are independent things.) Using the rowWeights and columnWeights arrays
can simplify this process considerably.

� The amount of stretch in a row or column is calculated as the total stretch divided in the
same ratio as the individual weight values relative to the total weight for that axis. In math
terms, if the weights are w1, w2, and w3, and the total stretch available is s, then the stretch
applied to each column will be s1, s2, and s3 where s1 = s ∴ w1 / (w1 + w2 + w3) and s2
= s ∴ w2 / (w1 + w2 + w3) and s3 = s ∴ w3 / (w1 + w2 + w3).

The next aspect we will look at is how a component is positioned when the target region in
which it is located is larger than the component itself.

4419c12.fm Page 423 Tuesday, February 22, 2005 9:27 AM

424 Chapter 12 � Layout Managers

Controlling Component Position and Stretch in a Cell

You saw in the previous example that a component that occupies an oversized cell is normally
placed in the center of the space, at its preferred size. Both of these features are controllable.
Using a feature called anchor, you can control where the component is placed within its avail-
able space. Using a feature called fill, you can determine whether a component stretches to fill
the available space, either horizontally, vertically, or both. Let’s look at several examples. We
will start with this code:

 1. import java.awt.*;

 2. import java.awt.event.*;

 3. import javax.swing.*;

 4.

 5. public class GB2 extends JPanel {

 6. public GB2() {

 7. Font bigfont = new Font("Serif", Font.PLAIN, 36);

 8. setLayout(new GridBagLayout());

 9. GridBagConstraints c = new GridBagConstraints();

10.

11. c.gridx = 0; c.gridy = 0;

12. addButton("TL", bigfont, c);

13. c.gridx = 1;

14. addButton("Top Middle", bigfont, c);

15. c.gridx = 2;

16. addButton("TR", bigfont, c);

17.

18. c.gridx = 0; c.gridy = 1;

19. addButton("ML", bigfont, c);

20. c.gridx = 2; // note skipped over x=1, y=1

21. addButton("MR", bigfont, c);

22.

23. c.gridx = 0; c.gridy = 2;

24. addButton("BL", bigfont, c);

25. c.gridx = 1;

26. addButton("Bottom Middle", bigfont, c);

27. c.gridx = 2;

28. addButton("BR", bigfont, c);

29.

30. Font smallfont = new Font("SansSerif", Font.PLAIN, 10);

31. c.gridx = 1; c.gridy = 1;

32. addButton("x", smallfont, c);

4419c12.fm Page 424 Tuesday, February 22, 2005 9:27 AM

Layout Policies 425

33. }

34.

35. private void addButton(String label, Font font,

36. GridBagConstraints gbc)

37. {

38. JButton btn = new JButton(label);

39. btn.setFont(font);

40. add(btn, gbc);

41. }

42.

43. public static void main(String args[]) {

44. JFrame f = new JFrame("GridBag Example 2");

45. f.getContentPane().add(new GB2(),

 BorderLayout.CENTER);

46. f.pack();

47. f.setVisible(true);

48. }

49. }

When run, this code produces the output shown in Figure 12.25. Notice that the little button
in the middle simply lies in the center of the space available to it.

Let’s look at the positions this component can occupy if we set different anchor values for
it. The names of the anchor values are based on compass point names and are defined in the
GridBagConstraints class as: NORTH, SOUTH, EAST, WEST, NORTHWEST, SOUTHWEST, NORTHEAST,
SOUTHEAST, and CENTER. The default value for anchor, and the one exemplified in Figure 12.25,
is CENTER. Now we’ll make a small modification to the example program to see what happens
if we change this anchor value. The modified programs are almost identical to the previous
one, except that an additional constraint value is set on the small button to define the anchor.
Figures 12.26, 12.27, and 12.28 show anchor values of NORTHWEST, SOUTHEAST, and EAST
respectively. The effect of the anchor will be clear from these three examples without showing
all the possible values.

F I G U R E 1 2 . 2 5 GridBag layout example showing an unfilled, centered component

4419c12.fm Page 425 Tuesday, February 22, 2005 9:27 AM

426 Chapter 12 � Layout Managers

F I G U R E 1 2 . 2 6 GridBag layout example showing an unfilled component with a
NORTHWEST anchor

F I G U R E 1 2 . 2 7 GridBag layout example showing an unfilled component with a
SOUTHEAST anchor

F I G U R E 1 2 . 2 8 GridBag layout example showing an unfilled component with an EAST
anchor

Now let’s examine the fill feature. We’ll start with the same code we used before, but instead
of setting anchor values for the small button, we will set fill values. There are four fill values
to choose from, and as with anchor values, they are defined in the GridBagConstraints class. The
values are NONE (the default), HORIZONTAL, VERTICAL, and BOTH. In the current example, we can give
the button’s anchor a default value and its fill a value of GridBagConstraints.HORIZONTAL to
get the effect shown in Figure 12.29.

Figures 12.30 and 12.31 respectively show what happens if we change the fill value to
VERTICAL and BOTH.

4419c12.fm Page 426 Tuesday, February 22, 2005 9:27 AM

Layout Policies 427

F I G U R E 1 2 . 2 9 GridBag layout example showing a component with HORIZONTAL fill

F I G U R E 1 2 . 3 0 GridBag layout example showing a component with VERTICAL fill

F I G U R E 1 2 . 3 1 GridBag layout example showing a component with BOTH fill

You can see that the effects of fill somewhat nullify the effects of anchor. That is, if a com-
ponent is stretched to fill its cell horizontally, then the anchor cannot move it left, right, or center.
Similarly, if the component fills its cell vertically, then trying to anchor it to the top, middle, or
bottom is meaningless. So, if you have a fill value of HORIZONTAL, then anchor values of WEST,
CENTER, and EAST would all produce the same effect. If fill is BOTH, the anchor value has no
effect and should most sensibly be left at its default (CENTER).

Controlling the Cell Size for a Component

When you design a GUI using a GridBag layout manager, you sometimes find that components
do not fit neatly into a simple grid, but the layout still presents the general idea of rows and col-
umns. Consider the layout in Figure 12.32.

4419c12.fm Page 427 Tuesday, February 22, 2005 9:27 AM

428 Chapter 12 � Layout Managers

F I G U R E 1 2 . 3 2 GridBag layout example showing components overlapping multiple
rows and columns

F I G U R E 1 2 . 3 3 GridBag layout example showing boundaries of rows and columns

This example has five rows and four columns, although several of the components extend
over more than one of each. Figure 12.33 has been modified to show the boundaries of the rows
and columns more clearly.

To achieve this effect of component cells that span multiple rows and/or columns, the
GridBagConstraints object provides fields called gridwidth and gridheight. Let’s look
at the code that produced this example, and you will see these fields in action:

 1. import java.awt.*;

 2. import javax.swing.*;

 3.

 4.

 5. public class CellSize extends JPanel {

 6. public CellSize () {

 7. setLayout(new GridBagLayout());

 8. GridBagConstraints c = new GridBagConstraints();

 9.

10. // show entire cell region for all components

11. c.fill = GridBagConstraints.BOTH;

12. c.gridx = 0; c.gridy = 0;

13. c.gridwidth = 1;

14. c.gridheight = 1;

15. add(new JButton(), c);

16.

17. c.gridx = 1; c.gridy = 0;

4419c12.fm Page 428 Tuesday, February 22, 2005 9:27 AM

Layout Policies 429

18. c.gridwidth = 3;

19. c.gridheight = 1;

20. add(new JButton(), c);

21.

22. c.gridx = 0; c.gridy = 1;

23. c.gridwidth = 1;

24. c.gridheight = 1;

25. add(new JScrollBar(JScrollBar.VERTICAL,

26. 0, 10, 0, 100), c);

27.

28. c.gridx = 1; c.gridy = 1;

29. c.gridwidth = 2;

30. c.gridheight = 2;

31. add(new JButton(), c);

32.

33. c.gridx = 3; c.gridy = 1;

34. c.gridwidth = 1;

35. c.gridheight = 3;

36. add(new JScrollBar(JScrollBar.VERTICAL,

37. 0, 10, 0, 250), c);

38.

39. c.gridx = 0; c.gridy = 2;

40. c.gridwidth = 1;

41. c.gridheight = 1;

42. add(new JButton(), c);

43.

44. c.gridx = 0; c.gridy = 3;

45. c.gridwidth = 2;

46. c.gridheight = 1;

47. add(new JButton(), c);

48.

49. c.gridx = 0; c.gridy = 4;

50. c.gridwidth = 1;

51. c.gridheight = 1;

52. add(new JScrollBar(JScrollBar.HORIZONTAL,

53. 0, 10, 0, 100), c);

54.

55. c.gridx = 1; c.gridy = 4;

56. c.gridwidth = 1;

57. c.gridheight = 1;

58. add(new JScrollBar(JScrollBar.HORIZONTAL,

4419c12.fm Page 429 Tuesday, February 22, 2005 9:27 AM

430 Chapter 12 � Layout Managers

59. 0, 10, 0, 100), c);

60.

61. c.gridx = 2; c.gridy = 4;

62. c.gridwidth = 1;

63. c.gridheight = 1;

64. add(new JScrollBar(JScrollBar.HORIZONTAL,

65. 0, 10, 0, 100), c);

66.

67. c.gridx = 3; c.gridy = 4;

68. c.gridwidth = 1;

69. c.gridheight = 1;

70. add(new JScrollBar(JScrollBar.HORIZONTAL,

71. 0, 10, 0, 100), c);

72.

73. }

74.

75. public static void main(String args[]) {

76. JFrame f = new JFrame("GridBag Example 4");

77. f.getContentPane().add(new CellSize(),

 BorderLayout.CENTER);

78. f.pack();

79. f.setVisible(true);

80. }

81. }

Notice that at line 11 the fill value has been set to BOTH and is left at this setting for all uses
of the GridBagConstraints object. As a result, all components will be stretched to fill their
cells; this is the case even if the cell extends over multiple rows or columns. This way, you can
see more easily where the boundaries of the cells are.

The next point about this code is that it is considerably longer than it needs to be. For every com-
ponent that is added, the settings of gridx, gridy, gridwidth, and gridheight are explicitly set
just before the add() method is called. You do so even when a value is not being changed, simply
to make it easier to see how each value is set without having to scan up and down too far.

Compare the code with the screen shot in Figure 12.33. You will see the correspondence
between gridwidth and the number of columns a component spans, and between gridheight
and the number of rows a component spans. For example, the right button at the top of the lay-
out is created by lines 17–20 of the code. At line 18, gridwidth is set to 3, and Figure 12.33
shows that the button extends across three columns.

Similarly, the large central button is set up by lines 28–31. Notice that the gridwidth and
gridheight values are set to 2. Figure 12.33 shows that the button is two columns wide and
two rows high.

One aspect warrants further mention. At row 3, column 2, there is a blank space. This is per-
fectly acceptable, although it is unlikely to happen in a real GUI layout. If you work through all

4419c12.fm Page 430 Tuesday, February 22, 2005 9:27 AM

Layout Policies 431

the positions, gridwidth values, and gridheight values, you will see that no component has
been placed in, or overlaps, that region.

That’s about it for spanning multiple rows and columns. It’s not really difficult, although it
may have seemed that way before. Now, let’s look at a convenient shorthand mechanism that
the GridBag layout offers.

GridBag’s Shorthand

You have undoubtedly seen two features used in GridBag layout examples: RELATIVE and
REMAINDER. These settings provide a shorthand mechanism designed to reduce typing when
you’re coding a GridBag layout. They can also simplify maintenance of some types of layout.

If you think back to the earlier examples, you will recall seeing many lines setting values for
gridx and gridy. Very often, the value being set was greater by one than the current value; this
is often the case in real layouts, too. If you add your components in an orderly fashion, then you
will probably set up the component in row zero, column zero first; then do column one, column
two; and so on. You could do so by using code like this:

c.gridx++;

instead of the explicit numeric assignment used earlier.
In many cases, if you are filling a layout completely, from top-left to bottom-right, one row

at a time, then the shorthand mechanism of RELATIVE and REMAINDER will help. Let’s look at
a simple example:

 import java.awt.*;

 import javax.swing.*;

 public class Shorthand extends JPanel {

 public Shorthand () {

 setLayout(new GridBagLayout());

 GridBagConstraints c = new GridBagConstraints();

 c.fill = GridBagConstraints.BOTH;

 c.weightx = 1;

 add(new JButton("1"), c);

 add(new JButton("2"), c);

 add(new JButton("3"), c);

 add(new JButton("4"), c);

 c.gridwidth = GridBagConstraints.REMAINDER;

 add(new JButton("5"), c);

 c.gridwidth = 1;

 c.weightx = 0;

 add(new JButton("A"), c);

 add(new JButton("B"), c);

4419c12.fm Page 431 Tuesday, February 22, 2005 9:27 AM

432 Chapter 12 � Layout Managers

 add(new JButton("C"), c);

 c.gridwidth = GridBagConstraints.REMAINDER;

 add(new JButton("D"), c);

 c.gridwidth = 1;

 add(new JButton("a"), c);

 c.gridwidth = GridBagConstraints.RELATIVE;

 add(new JButton("b"), c);

 c.gridwidth = GridBagConstraints.REMAINDER;

 add(new JButton("c"), c);

 c.gridwidth = 1;

 }

 public static void main(String args[]) {

 JFrame f = new JFrame("GridBag Example 5");

 Shorthand sh = new Shorthand();

 f.getContentPane().add(sh, BorderLayout.CENTER);

 f.pack();

 f.setVisible(true);

 }

 }

The output of this program is shown in Figure 12.34.
Notice that when the GridBagConstraints object is constructed, its values are mostly left

constant. Notably, we never set any value for gridx or gridy; in fact, these values remain at
their default—RELATIVE—throughout the program. It’s important to realize that the X and Y
control in this example is done entirely with the gridwidth value.

We use the value REMAINDER in the gridwidth field to indicate the last component on each
line. After each line end, we set gridwidth back to 1, because failing to do so would cause every
component to be on a line of its own for the rest of the layout.

The button labeled b is interesting, too. You will see that we set a value for gridwidth of
RELATIVE for this button. As a result, it fills the space from its own starting point to the start
of the last column. The documentation describes the component as being the “last but one.” This
effect can be useful when you are creating a workspace area and want to have a row of buttons
either under it or down the right side, as you might for a toolbar.

F I G U R E 1 2 . 3 4 GridBag layout example using the RELATIVE and REMAINDER shorthands

4419c12.fm Page 432 Tuesday, February 22, 2005 9:27 AM

Other Layout Options 433

Clearly, this way of using the GridBag layout can make the code much simpler, although in
some layouts it might still be easier to read the code if you explicitly state the X and Y coordinate
values for each component as you add it. You will have to use your own judgment on this point.

This concludes our discussion of the GridBag layout and of the AWT suite of five layout
managers.

Other Layout Options
The five layout managers of the AWT package will support most layout schemes you might
want to implement. However, it is useful to know a little about the other options. If you are in
a situation where Flow, Grid, Border, Card, and GridBag will not create the layout you need,
your choices are
� To find a layout manager from another source
� To create your own layout manager
� To use no layout manager

Finding a third-party layout manager might be simple or hard, depending on the particular
behavior you want. Several have been described in books, and more are available as freeware,
as shareware, or in commercial graphics libraries for Java.

It is beyond the scope of this book to show you how to concoct your own layout manager,
but for simple layout policies it is not especially difficult to do so. The advantage of creating a
custom layout manager over setting a container’s layout manager to null is that you no longer
have to write code to detect resizing of the container; you just write code to implement the lay-
out policy, and the system will make the right calls at the right time. Writing your own layout
manager class involves implementing the LayoutManager interface (or possibly the
LayoutManager2 interface).

You always have the option of using no layout manager at all. To do this, just call

myContainer.setLayout(null);

If a container has no layout manager, it honors each component’s x, y, width, and height
values. Thus, you can call setBounds() on a component, add() it to a container that has no
layout manager, and have the component end up where you expect it to be. This approach is
tempting, but we hope the first part of this chapter has convinced you that layout managers are
simple and efficient to work with. Moreover, if your container resides in a larger container (a
frame, for example) that gets resized, your layout may need to be redone to save components
from being overlaid or clipped away. People who set a container’s layout manager to null find
that they have to write code to detect when the container resizes, and more code to do the right
thing when resizing occurs. Doing so ends up being more complicated than creating your own
layout manager.

4419c12.fm Page 433 Tuesday, February 22, 2005 9:27 AM

434 Chapter 12 � Layout Managers

Summary
Layout managers provide a layer of geometrical support that relieves you of having to specify
the size and position of each GUI component you create. The trade-off is that you must be aware
of the layout policy implemented by each of the various layout managers. You are forced to
think in terms of layout policy, rather than in terms of size and position.

This chapter has discussed the five AWT layout managers: Flow, Grid, Border, Card, and Grid-
Bag. Each implements a distinct layout policy that dictates size, position, and resizing behavior of
components. Alternatives to using the layout managers presented here include using a different
manager, creating your own, and setting the layout manager to null.

Not Quite a Border Layout

In this lab you will create and test a subclass of JFrame whose appearance is slightly different
from an ordinary frame that uses a Border layout manager.

In an ordinary frame, the components at the top and bottom edges extend the entire width of
the frame. Any components along the left and right edges do not extend all the way to the top
or all the way to the bottom of the frame, since they yield to the top and bottom components.
In other words, the top and bottom components get the corners.

Your subclass will reverse this geometry: the left and right components will extend all the way to
the top and all the way to the bottom of the frame. In other words, the left and right components
will get the corners, while the top and bottom components will have to be slightly narrower than
the entire width of the frame.

There are some sophisticated ways to solve the problem, such as using a GridBag layout man-
ager or creating your own layout manager class, but there is also a very simple approach that
appears on your CD-ROM in the directory solutions\Chapter_12.

You will use enums to specify the locations of the components to be contained by your frame
subclass. Create an enum called Side with four constants, named TOP, BOTTOM, LEFT, and RIGHT.

Your JFrame subclass’ constructor should take a single argument: a generic map from Side to
java.awt.Component. (Recall that java.awt.Component is the superclass of all Swing compo-
nent classes.) So your constructor will look something like this:

public SidePriorityFrame(Map <Edge, Component> edgeToComponent)

The map may contain up to four elements, since the enum contains four constants. If, for example,
the map contains the key Side.TOP, then the value associated with that key will be the component
that should go at the top of your frame.

4419c12.fm Page 434 Tuesday, February 22, 2005 9:27 AM

Chapter

13

Object Streams
and RMI

4419c13.fm Page 435 Tuesday, February 22, 2005 1:26 PM

In Chapter 10, “About the Developer’s Exam,” and Chapter 11,
“Swing Components,” you learned about using Swing to create
a GUI. In Chapter 12, “Layout Managers,” you learned how to

read and write files. Now it’s time to learn how to connect these two seemingly unrelated tasks.
Your Developer’s Exam project requires you to create a GUI that displays and modifies the

contents of a file. To complicate matters, the GUI and the file are running on separate machines
that are connected by a network. Your spec calls the file-management program the “server,”
and the GUI program is called the “client.” There might be multiple clients, all simultaneously
trying to get the server’s attention.

Clearly, some kind of networking code must be written for the server and client programs.
The assignment lets you use object streams or Remote Method Invocation (RMI). This chapter
presents both technologies. We’ll begin with some concepts that are common to both: sockets
and object serialization.

RMI is a huge topic, requiring an entire book for full coverage. Our goal here is not to
present it in its entirety, but rather to give you a solid conceptual foundation.

Sockets and Streams

Most networking Java programs communicate using sockets and TCP. These technologies have
been around for several decades, so by now they are dependable. Through the 1980s, networking
was an arcane field; there was a lot to know, it was easy to make mistakes, and bugs were very
hard to fix. Fortunately, Java has encapsulated the arcane functionality in the

java.net.Socket

and

java.net.ServerSocket

 classes, which are quite easy to use.
If you decide to use object streams for your project’s network communication, you will be

constructing instances of

Socket

 and

ServerSocket

. RMI uses sockets, so if you choose RMI,
the

Socket

 and

ServerSocket

 instances will be created and used invisibly. In either case, it’s
important to know how these classes work.

TCP: A Reliable Protocol

Computers communicate with one another by transmitting sequences of 0s and 1s. A

protocol

 is
an agreement among programmers concerning the meanings of different bit sequences and the
appropriate responses to bit sequences. For example, HTTP describes the bit sequences that web
clients should send to web servers in order to request web pages and other services; the protocol
also describes the formats of all the various responses that web servers might issue.

4419c13.fm Page 436 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams

437

TCP is a low-level protocol with a single goal: reliability. A

reliable protocol

 is one in
which every message sent from one computer to another is eventually received without any
distortion or omission. Reliable protocols are necessary because most computer communica-
tion takes place over telephone lines, which are vulnerable to the environment in many ways.
With TCP, the receiver of a message is given a lot of information regarding the message’s
structure. If the message does not match the expected structure, the receiver can request that
part or all of the message be retransmitted. Of course, reliability has its price: verifying the
structure of each message takes time.

Many higher-level protocols use TCP for transferring data. SMTP, HTTP, and FTP all use
TCP. If you choose to implement your exam project using object streams, you will concoct your
own higher-level protocol over TCP. If you decide to use RMI, your RMI calls will use TCP in
a way that will be invisible to you.

Sockets and Ports

TCP uses two abstractions called

sockets

 and

ports

. They are called abstractions because there
are no actual physical sockets or ports involved. The names are just metaphors that do a mod-
erately good job of describing how to use TCP.

From the point of view of writing Java code, you can think of a socket as being an object that
knows how to exchange data with another computer, using TCP.

Servers are capable of offering a variety of services. For example, the two most commonly used
services are e-mail and the World Wide Web. Servers keep track of the services they offer by asso-
ciating each service with a number, known as the

port number

. A client that wants to make use
of a server needs to know the desired port number, as well as the hostname or IP address of the
server. For example, when you point your browser to

www.sybex.com

, your computer connects
to port 80 on server

sybex.com

 (because 80 is the standard port number for web servers). Servers
that exchange e-mail with

sybex.com

 will connect to a different port (one that supports e-mail
exchange) on the same server.

Now let’s see how to write Java code that connects to a server.

Client Sockets in Java

The

java.net.Socket

 class contains code that knows how to find and communicate with a
server. The communication uses TCP, so it is reliable. To create a socket instance, use one of the
constructors described on the API page. By far the most useful form is

public Socket(String servername, int portNumber)

The constructor throws

IOException

 if the connection cannot be made.
Once the constructor returns, the socket is ready to communicate. You do not directly read

from or write to a socket. Instead, the socket provides you with an input stream and an output
stream, which can be used for reading and writing bytes, as shown in Figure 13.1.

4419c13.fm Page 437 Tuesday, February 22, 2005 1:26 PM

438

Chapter 13 �

Object Streams and RMI

F I G U R E 1 3 . 1

A socket and its streams

The following code constructs a socket connected to port 1234 on a server named

mangfalo

,
then reads and prints out a byte sent by the server, and then sends a byte to the server:

try {

 // Make the socket.

 Socket sock = new Socket(“mangfalo”, 1234);

 // Get the streams.

 OutputStream ostr = sock.getOutputStream();

 InputStream istr = sock.getInputStream();

 // Read & print.

 System.out.println(istr.read());

 // Transmit.

 ostr.write(7);

 // Clean up.

 istr.close();

 ostr.close();

 sock.close();

}

catch (IOException x) {

 System.out.println(“Stress: “ + x.getMessage());

}

Network JVM

Input Stream

Ouput Stream

0110110101101

1111001001011

Socket

4419c13.fm Page 438 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams

439

The code assumes that when server

mangfalo

 receives a connection from a client on port
1234, it sends a single byte and then gets ready to receive a single byte. All communication code
assumes a willing participant at the other end of the connection.

Notice the clean-up code, which closes the streams and then the socket.

In this code example, and in the others that follow in this chapter, you will
always see the output stream accessed before the input stream. The order
shouldn’t make a difference, but some versions of Java have a bug that makes
communication fail if you call a socket’s

getInputStream()

 method before you

call

getOutputStream()

.

Actually, people hardly ever write code that directly reads and writes a socket’s streams. The
streams deal with very low-level data: their methods can handle only single bytes, arrays of bytes,
or pieces of arrays of bytes.

Does this situation remind you of anything? Recall from Chapter 12 that disk files are
sequences of bytes. The bytes can be accessed (one by one, or as arrays, or as pieces of arrays)
with the

FileInputStream

 and

FileOutputStream

 classes, but this is hardly ever done. Instead,
more sophisticated streams are chained onto the raw streams. For example, a DataOutputStream
can be chained onto a FileOutputStream, so that

int

s,

float

s, other primitives, and UTF
strings can be written.

Fortunately, the higher-level input and output streams that you learned about in Chapter 12
can be chained onto the input and output streams of a socket, as shown in Figure 13.2.

F I G U R E 1 3 . 2

A socket with chained streams

The following code reads a UTF string from the server and then writes a

double

:

try {

 // Make the socket.

 Socket sock = new Socket(“mangfalo”, 1234);

Network JVM

Input Stream bytes

data

data

DataInputStream

Ouput Stream
Socket

bytes DataOutputStream

4419c13.fm Page 439 Tuesday, February 22, 2005 1:26 PM

440

Chapter 13 �

Object Streams and RMI

 // Get the streams.

 OutputStream ostr = sock.getOutputStream();

 DataOutputStream dostr = new DataOutputStream(ostr);

 InputStream istr = sock.getInputStream();

 DataInputStream distr = new DataInputStream(istr);

 // Read & print.

 System.out.println(distr.readUTF());

 // Transmit.

 dostr.writeDouble(Math.PI);

 // Clean up.

 dostr.close();

 ostr.close();

 distr.close();

 istr.close();

 sock.close();

}

catch (IOException x) {

 System.out.println(“Stress: “ + x.getMessage());

}

Of course, this code works only if server

mangfalo

 cooperates by transmitting a UTF string
and then preparing to receive a

double

. Writing server code in Java is easy, as you’ll see in the
next section.

Server Sockets in Java

From a programmer’s point of view, the main difference between a client and a server has to do
with initiation. A client always gets to assume that a server is available. You can see this assump-
tion at work when you construct a

Socket

 instance: the constructor automatically connects to
the specified server’s specified port.

A server, on the other hand, makes itself available and then waits for clients to initiate con-
nections. This is done with an abstraction called a

server socket

, which in Java is represented by
the java.net.ServerSocket class. The most useful form of the ServerSocket constructor is

public ServerSocket(int portNumber)

4419c13.fm Page 440 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams

441

The constructor throws

IOException

 if it gets into trouble. To make the new object available
for client connections, call its

accept()

 method, which returns an instance of

Socket

, as shown
below:

try {

 ServerSocket ss = new ServerSocket(1234);

 Socket sock = ss.accept();

 . . .

}

catch (IOException x) {

 System.out.println(“Stress: “ + x.getMessage());

}

There is no way to know how long the

accept()

 call will take. It depends on how promptly
a client wants to take advantage of the service that the code just made available on port 1234
of server

mangfalo

. Once a client connects, the

accept()

 method constructs and returns an
instance of Socket. The subsequent server code can use the socket’s input and output streams
directly for byte communication, or higher-level streams can be chained to support communi-
cation of higher-level data. Thus, once a client has connected to the server, writing server code
is just like writing client code.

Using sockets is a bit like using telephones in the following sense. At first the situation is asym-
metrical. One person (analogous to the server) is hanging out at home, willing to communicate but
not paying much attention to the phone. Another person (corresponding to the client), initiates a
dialog by dialing their phone. The “server’s” phone rings. The moment the “server” picks up the
ringing phone, the two people are in identical situations, communicating with identical equipment.
Similarly, server and client code starts out looking different: the server constructs a ServerSocket
and calls

accept()

, while the client constructs a Socket. However, once the connection is estab-
lished, both sides use identical equipment (a socket and its streams) to communicate.

When a

ServerSocket

 instance executes an

accept()

 call, the method blocks until a client
connects. Blocking is an extremely important concept. A method

blocks

 if, when realizing that
a necessary resource is unavailable, the method gives up the processor until the resource becomes
available. In the case of

accept()

, the necessary resource is the client. Clearly the method can’t
proceed until a client appears. In Java, methods block by calling

wait()

, which puts the current
thread in a waiting state as you saw in Chapter 7, “Threads.” In a properly designed program,
another thread will eventually detect the presence of the desired resource; that thread will notify
the waiting thread.

TCP allows multiple clients to be connected to a single port on a server. (On a popular web
or mail server, the number of clients on a port at any moment can be quite large.) Often the most
sensible thing for a server to do after

accept()

 returns is to create a new thread to deal with

4419c13.fm Page 441 Tuesday, February 22, 2005 1:26 PM

442

Chapter 13 �

Object Streams and RMI

the new client, leaving the current thread free to accept more client connections. For example,
a server might rely on a class called

ServiceGiver

, which implements

java.lang.Runnable

.
The class’ constructor can store a socket on which communication is to take place, for which
the

run()

 method provides the communication:

import java.net.*;

import java.io.*;

class ServiceGiver implements Runnable {

 private Socket sock;

 ServiceGiver(Socket sock) {

 this.sock = sock;

 }

 public void run() {

 try {

 OutputStream ostr = sock.getOutputStream();

 InputStream istr = sock.getInputStream();

 // Do something with the streams.

 . . .

 }

 catch (IOException x) {

 System.out.println(“Stress: “ + x.getMessage());

 }

 }

}

A server can use the

ServiceGiver

 class like this:

try {

 ServerSocket ss = new ServerSocket(1234);

 while (true) {

 Socket sock = ss.accept();

 ServiceGiver sg = new ServiceGiver(sock);

 (new Thread(sg)).start();

 }

}

catch (IOException x) {

 System.out.println(“Stress: “ + x.getMessage());

}

4419c13.fm Page 442 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams

443

The thread that calls

accept()

 is almost always waiting for new client connections; it is
unavailable only for the brief time required to pass a newly connected socket to a

ServiceGiver

instance.

Object Streams and Serialization

As you have seen, data streams allow you to read and write primitives and strings, rather than
individual bytes. Object streams go one step beyond data streams by allowing you to read and
write entire objects.

The process of writing an object is called serialization. To serialize an object, first create an
instance of java.io.ObjectOutputStream. This class, like DataOutputStream, expects to be
chained onto a lower-level byte-oriented stream such as a file output stream or a socket’s output
stream. The method below uses an object stream to store a string buffer in a file named sbuf.ser.

void writeStringBuffer(StringBuffer writeMe)

 throws IOException {

 FileOutputStream fos = new FileOutputStream(“sbuf.ser”);

 ObjectOutputStream oos = new ObjectOutputStream(fos);

 oos.writeObject(writeMe);

 oos.close();

 fos.close();

}

The .ser filename extension is conventional for files containing serialized objects.
To read the stored object back into a program, you can do the following:

StringBuffer readStringBuffer()

 throws IOException, ClassNotFoundException {

 FileInputStream fis = new FileInputStream (“sbuf.ser”);

 ObjectInputStream ois = new ObjectInputStream(fis);

 StringBuffer sb = (StringBuffer)ois.readObject();

 ois.close();

 fis.close();

 return sb;

}

Notice that the value returned by readObject() is of type Object, so it must be cast. The
object read in is identical to the one that was written out in the previous code example.

The ObjectOutputStream class has a writeUTF() method, as well as writeByte(),
writeShort(), and all other write-primitive methods that also appear in data output streams.
The ObjectInputStream class has corresponding reading methods. So if you want to create a file
that contains serialized primitives and strings as well as serialized objects, you can do it with a
single output stream.

4419c13.fm Page 443 Tuesday, February 22, 2005 1:26 PM

444 Chapter 13 � Object Streams and RMI

When you use object streams, it’s important to know what information gets serialized and
what does not. It is only an object’s data that is serialized, not its class definition. Moreover, not
all data is written. Static fields are not, because it would not be appropriate to change a static
variable, which is shared by all instances of a class, just because one instance of the class got
reserialized. Transient fields are also not serialized. This provides a level of security in situations
where you are concerned that sensitive variable values, serialized onto the network or into a file,
might be read by hostile parties. By declaring a variable to be transient, you tell the JVM not to
serialize that variable.

You might expect that private data would not be serialized, but in fact object streams pay no
attention to access modes. All non-static non-transient fields are written to object output streams,
regardless of whether they are public, private, default, or protected.

When an object is serialized, it will probably be deserialized by a different JVM. Any JVM
that tries to deserialize an object must have access to that object’s class definition. In other
words, if the class is not already loaded, its class file must appear in the new JVM’s classpath.
If this is not the case, readObject() will throw an exception.

When an Object Output Stream serializes an object that contains references to another object,
every referenced object is serialized along with the original object. For example, consider a Vector
that contains bytes:

Vector<Byte> vec = new Vector<Byte>();

vec.add(new Byte(“11”));

vec.add(new Byte(“22”));

vec.add(new Byte(“33”));

The Vector contains three references, and it can be diagrammed as shown in Figure 13.3.
When an Object Output Stream writes the Vector of Figure 13.3, the three bytes are also seri-

alized. If instead of bytes the Vector contained objects that had references to still other objects,
those other objects would also be serialized. In the terminology of serialization, when an object is
serialized, its entire graph is serialized. An object’s graph is the object itself, plus all the objects it
references, plus all the objects those objects reference, and so on. When an object input stream
deserializes an object, the entire graph is deserialized.

F I G U R E 1 3 . 3 A Vector and its references

11

22

33

Vector

Byte

Byte

Byte

4419c13.fm Page 444 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams 445

Serializable Objects

Not all objects may be serialized, though this is not obvious from a casual glance at the API page
for ObjectOutputStream. The method summary entry for writeObject() says

public void writeObject(Object obj)

However, if you look at the method detail section for writeObject(), you’ll see that it
throws NotSerializableException if “some object to be serialized does not implement
the java.io.Serializable interface.” So even though the method declares that its argu-
ment is an object, it contains code that checks for the precondition that the argument must
be an instanceof Serializable and throws the exception if the precondition is not met.
Even if the object being passed into the method implements Serializable, the exception
might still be thrown. Since the object’s entire graph is serialized, all objects referenced by
the object must implement Serializable, and all objects referenced by those objects must
do the same, and so on.

Recall from Chapter 5, “Flow Control, Assertions, and Exception Handling,” in
the discussion on assertions, that assertions should not be used to check pre-
conditions in public methods. Fortunately, writeObject() respects this rule.

You probably recognize the Serializable interface from your reading of the API pages.
Most of the core Java classes implement it. All the wrapper classes do so, and so do the collec-
tion classes. In fact, the only core Java classes that do not implement Serializable are ones
that should not be serialized. For example, it would make no sense to try to serialize a thread,
because a thread’s state is tightly bound to the current JVM’s thread scheduler. So it wouldn’t
really be helpful or meaningful to serialize a thread. Likewise, the low-level output and input
streams of the java.io package don’t implement Serializable because they interact with the
underlying hardware.

When you create a class that might be serialized, the class should implement Serializable.
This is easy, because the interface doesn’t define any methods at all. All you need to do is type
implements java.io.Serializable in your class declaration, and you’re finished. Empty
interfaces such as Serializable are known as tagging interfaces. They identify implementing
classes as having certain properties, without requiring those classes to actually implement any
methods. Arrays of primitives or serializable objects are themselves serializable.

Serializable has a subinterface called Externalizable, which you can implement if you
want to customize the way a class is serialized. Notice that since Externalizable extends
Serializable, the implements Serializable precondition in writeObject() is met by any
object that implements Externalizable.

Externalizable contains two method signatures:

void writeExternal(ObjectOutput out)

 throws IOException

void readExternal(ObjectInput in)

 throws IOException, ClassNotFoundException

4419c13.fm Page 445 Tuesday, February 22, 2005 1:26 PM

446 Chapter 13 � Object Streams and RMI

ObjectOutput and ObjectInput are interfaces that are implemented by ObjectOutputStream
and ObjectInputStream. They define, respectively, writeObject() and readObject() methods.

Implementing Externalizable is useful when you don’t trust the environment in which
serialized instances of your class will be stored. If you’re concerned that hostile parties might be
able to read sensitive fields of your class, you have the option of encrypting those fields. (You
also can choose not to serialize sensitive fields at all, but that is more easily accomplished by
declaring them to be transient.) For example, the following class performs its own serializa-
tion, protecting the password field by reversing it before writing it out.

import java.io.*;

public class Account implements Externalizable {

 private String ownerName;

 private String password;

 private float balance;

 private String reverse(String reverseMe) {

 String reversed = "";

 for (int i=reverseMe.length()-1; i>=0; i--)

 reversed += reverseMe.charAt(i);

 return reversed;

 }

 public void writeExternal(ObjectOutput outStream)

 throws IOException {

 outStream.writeObject(ownerName);

 outStream.writeObject(reverse(password));

 outStream.writeObject(new Float(balance));

 }

 public void readExternal(ObjectInput inStream)

 throws IOException, ClassNotFoundException {

 ownerName = (String)inStream.readObject();

 String reversedPassword =

 (String)inStream.readObject();

 password = reverse(reversedPassword);

 balance = ((Float)inStream.readObject()).floatValue();

 }

}

4419c13.fm Page 446 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams 447

When an instance of this class is passed to an Object Output Stream, the default serialization
procedure is bypassed; instead, the stream calls the instance’s writeExternal() method. When
an Object Input Stream reads a serialized instance of Account, a call is made to the no-args con-
structor for the Account class. Then the newly constructed object receives a readExternal()
call so that it can reconstitute its serialized values.

Notice that the readObject() mechanism of ObjectInputStream relies on the existence of
a no-args constructor for any class that implements Externalizable. If an externalizable class
has no no-args constructor, the readObject() method will throw
java.io.InvalidClassException.

Remote Control Using Object Streams

If you decide to use object streams for your project, you need to build a mechanism for one JVM
to tell another JVM what to do. Your client JVM will be displaying the Swing GUI, which will
capture commands from the user. The commands will involve retrieving or modifying the con-
tents of the database file, which is under the control of the server JVM.

The straightforward way to build a remote-control system is to create a class that represents
a command. The client can issue commands to the server by writing an instance of a command
object to an Object Output Stream that is connected to the server. The server can interpret the
command object, take appropriate action, and if necessary send some kind of response object
back to the client.

In this section we’ll develop the code for a very simple remote-control system. We’ll create
a server that can add and subtract floats on behalf of a client. Of course, the client is perfectly
capable of doing its own arithmetic; the goal here is to provide an example that’s simple enough
that the communication between client and server is clear.

Let’s start by developing an object that can encapsulate a request from the client. We’ll call
the class Command. It should contain the floats to be added or subtracted, as well as a field that
specifies what operation should be performed. Without enums, it would probably make sense
to use an int to encode the desired operation. But since enums are available, we should make
use of them. Here is an enum that describes the server’s various services:

enum Operation {

 ADD, SUBTRACT, DONE;

}

In addition to ADD and SUBTRACT, the enum has a DONE value that tells the server that the cli-
ent is done. On receiving this value, the server can close its streams.

The Command class is straightforward:

import java.io.*;

4419c13.fm Page 447 Tuesday, February 22, 2005 1:26 PM

448 Chapter 13 � Object Streams and RMI

class Command implements Serializable {

 private Operation operation;

 private float[] operands;

 Command(Operation operation) {

 this.operation = operation;

 }

 Command(Operation operation, float[] operands) {

 this.operation = operation;

 this.operands = operands;

 }

 Operation getOperation() {

 return operation;

 }

 float[] getOperands() {

 return operands;

 }

}

Fortunately, enums are serializable, so the Command class’ entire graph is serializable.
The Server class is an application that creates a server socket on port 7654. (The port number

was assigned arbitrarily. Numbers through 1024 are reserved for assignment by a standards com-
mittee. Numbers greater than 1024 are uncontrolled and may be used freely.) The server waits for
a client connection, then spawns a thread to service the connection, and then goes back to waiting
for connections. We’ll look first at the Server class and then at the service-providing thread class.

Here’s the Server class:

import java.io.*;

import java.net.*;

public class Server {

 public static void main(String[] args) {

 try {

 ServerSocket ss = new ServerSocket(7654);

 while (true) {

 Socket sock = ss.accept();

 ServiceGiver sg = new ServiceGiver(sock);

 sg.start();

 }

4419c13.fm Page 448 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams 449

 }

 catch (IOException x) {

 System.out.println("Server Stress: " +

 x.getMessage());

 }

 }

}

There is nothing difficult about the Server class. Its main() is structured just like the example
in the Server Socket discussion earlier in this chapter, in the “Server Sockets in Java” section.
There is nothing in the code to indicate what kind of service is performed, and that’s a good
sign: it indicates that functionality has been nicely partitioned. The Server class takes care of
establishing connections, while the ServiceGiver class provides service on those connections.

Here is the ServiceGiver code:

import java.io.*;

import java.net.*;

class ServiceGiver extends Thread {

 private Socket sock;

 ServiceGiver(Socket sock) {

 this.sock = sock;

 }

 public void run() {

 try {

 // Build object streams.

 OutputStream os = sock.getOutputStream();

 ObjectOutputStream oos = new ObjectOutputStream(os);

 InputStream is = sock.getInputStream();

 ObjectInputStream ois = new ObjectInputStream(is);

 // Provide service.

 while (true) {

 Command command = (Command)ois.readObject();

 float[] operands = command.getOperands();

 switch (command.getOperation()) {

 case ADD:

 Float result = operands[0] + operands[1];

 oos.writeObject(result);

 break;

4419c13.fm Page 449 Tuesday, February 22, 2005 1:26 PM

450 Chapter 13 � Object Streams and RMI

 case SUBTRACT:

 result = operands[0] - operands[1];

 oos.writeObject(result);

 break;

 case DONE:

 oos.close();

 ois.close();

 os.close();

 is.close();

 sock.close();

 return;

 }

 }

 }

 catch (IOException x) {

 System.out.println("IO Stress: " + x.getMessage());

 }

 catch (ClassNotFoundException x) {

 System.out.println("Class Stress: " +

 x.getMessage());

 }

 }

}

This class follows the structure of the example given earlier in this chapter, in the “Server
Sockets in Java” section. There it was suggested that a service-providing class should implement
Runnable. In the example here the code is quite simple, so it’s sufficient to extend Thread.

The constructor caches the socket that is to receive service. All service takes place in the
run() method, which loops on reading a Command object from the input stream, extracting the
Operation from the Command object, and taking appropriate action. Recall that Operation is
an enum, so here you see an example of switching on an enum value.

Let’s finish this example by looking at simple client that connects to a server and then
commands the server to perform each of its operations:

import java.io.*;

import java.net.*;

public class Client {

 public static void main(String[] args) {

 try {

 test(args[0]); // args[0] is server name

4419c13.fm Page 450 Tuesday, February 22, 2005 1:26 PM

Sockets and Streams 451

 }

 catch (IOException x) {

 System.out.println("IO Stress: " + x.getMessage());

 }

 catch (ClassNotFoundException x) {

 System.out.println("Class Stress: " +

 x.getMessage());

 }

 }

 private static void test(String serverName)

 throws IOException, ClassNotFoundException {

 // Connect to server.

 Socket sock = new Socket(serverName, 7654);

 // Build object streams.

 OutputStream os = sock.getOutputStream();

 ObjectOutputStream oos = new ObjectOutputStream(os);

 InputStream is = sock.getInputStream();

 ObjectInputStream ois = new ObjectInputStream(is);

 // Test addition.

 float[] addUs = {12.3f, 56.7f};

 Command command = new Command(Operation.ADD, addUs);

 oos.writeObject(command);

 Float result = (Float)ois.readObject();

 System.out.println("Addition result: " + result);

 // Test subtraction.

 float[] subtractUs = {3.14159f, 1.11111f};

 command = new Command(Operation.SUBTRACT, subtractUs);

 oos.writeObject(command);

 result = (Float)ois.readObject();

 System.out.println("Subtraction result: " + result);

 // Done.

 command = new Command(Operation.DONE);

 oos.writeObject(command);

 oos.close();

 ois.close();

4419c13.fm Page 451 Tuesday, February 22, 2005 1:26 PM

452 Chapter 13 � Object Streams and RMI

 os.close();

 is.close();

 sock.close();

 }

}

The Client application assumes that the server’s hostname is supplied on the command line.
The main() method calls test(), which commands the server to add, then subtract, and then
be done.

The server and client are able to function together because each is aware of the other’s
requirements and behavior. These define a little protocol, which can be summarized as follows:

1. The client initiates all communication, by sending a Command instance to the server.

2. When the server receives an ADD or SUBTRACT command, it responds with a float.

3. When the server receives a DONE command, it closes the connection without responding.

If you decide to use object streams for your project, your protocol will be much more intri-
cate than the one shown here, but its structure will be similar: the client will initiate communi-
cation by sending something to the server, which will do something with the database and then
send a response.

So far in this chapter you’ve seen how object streams are a good foundation for a system in
which a client giver orders to a server. The drawback is that your code has to take care of a siz-
able number of implementation details. In particular
� Your client has to know the port number on the server.
� Your server and client have to deal with sockets, low-level streams, and object streams.
� Your client cannot directly issue commands to the server. You have to create a class to

represent a command and its parameters.

Now we can turn our attention to your alternative to object streams: RMI.

Remote Method Invocation
Java’s Remote Method Invocation (RMI) facility lets you make method calls on objects that
exist outside your JVM. RMI hides many of the details that you have to take care of when you
use object streams, including knowledge of the server port number, socket and stream mainte-
nance, and the need for a command class.

RMI is extensive, and this chapter can’t go into full detail. Our goal is to give you an over-
view. Let’s start by looking at the main idea of RMI: remote references.

Remote References

The goal of RMI is to support remote calls in a way that resembles as much as possible the expe-
rience of making local calls.

4419c13.fm Page 452 Tuesday, February 22, 2005 1:26 PM

Remote Method Invocation 453

When you make a call on a local object—that is, on an object in the same JVM as the code mak-
ing the call—you use a reference to the local object. RMI provides remote references, which act
as references to remote objects. Remote references don’t really point to remote objects, though
they do a good job of sustaining that illusion. They really point to local objects called stubs. A stub
is a local object that supports RMI by communicating with a remote object.

You make an RMI call by making a call on a stub. The stub is in communication with the host
that owns the remote object. The stub sends the method arguments to the remote object and tells
it to execute the appropriate method. The remote object executes the method; if there is a return
value or if an exception is thrown, the remote object transmits the return value or exception back
to the stub. Figure 13.4 shows the relationship between the stub and the remote object.

Using RMI is easy: you just use a remote reference to make calls on a stub, and the stub takes
care of the work. You don’t even have to write the stub code; it’s written for you by the rmic
(RMI compiler) tool, as you’ll see shortly. The difficulty of RMI lies not in using it but in setting
it up. You need to do meticulous work on both the server and client sides. In the next section
you’ll learn the details of writing and running an RMI application.

F I G U R E 1 3 . 4 A stub and a remote object

RMI Step by Step

An RMI application is a partner dance between a client and a server. When it’s done right it
looks easy, because both partners are well prepared. In this section, we’ll describe a six-step plan
for creating and executing client and server code.

The steps are

1. Create the remote interface.

2. Create the remote class.

3. Create the stub.

4. Create the remote server.

5. Create the client.

6. Start the programs.

Stub Remote Object

args

Client JVM Server JVM

return val
or exception

args

return val
or exception

4419c13.fm Page 453 Tuesday, February 22, 2005 1:26 PM

454 Chapter 13 � Object Streams and RMI

Each step is described below in its own section. We’ll develop a simple example that mimics
the object-stream example you saw earlier in the chapter.

 Step 1: Create the Remote Interface

A remote interface is an interface that describes the remotely accessible methods of a remote
object. A remote object and the stub that communicates with it both implement the remote
interface.

Recall that RMI clients use remote references, which point to stubs. The type of a remote
reference is a remote interface. So a client makes RMI calls by calling the remote interface’s
methods on the remote reference. Later on you’ll see how that’s done. For now, be aware that
the first step is to create an interface that lists the remote object’s remotely accessible methods.

All remote interfaces must extend java.rmi.Remote, which is a tagging interface. Recall
that a tagging interface has an empty method list, so a class can implement Remote without
actually providing any method implementations.

All methods in a remote interface must throw java.rmi.RemoteException, in addition to
any other specified exceptions. The stub throws RemoteException if something goes wrong
with the connection to the server. This means that in all client code, all RMI calls must catch
RemoteException or deal with it by some other means.

RMI uses serialized objects to send method arguments from a client to a server and to send
return values and exceptions back to a client from a server. Thus all arguments, return values,
and exceptions must be serializable. You don’t need to worry about exceptions, because
java.lang.Exception implements Serializable, but you do have to pay attention to all
arguments and return values. RMI can deal with primitive arguments and return values, so
what you really need to remember about a remote interface’s methods is that all object-type
arguments and return values must be serializable.

In our discussion of object streams, you saw example code in which a server could add or
subtract two floats, returning a float value. The argument floats were passed to the server in an
array. Here we begin converting that example to RMI. Following is a remote interface that
describes the remote services:

import java.rmi.*;

public interface MathServices extends Remote {

 public float add(float[] addUs)

 throws RemoteException;

 public float subtract(float[] subtractUs)

 throws RemoteException;

}

Notice that this interface fulfills its two requirements: it extends Remote, and its methods
throw RemoteException. Now let’s see how the remote interface is used.

4419c13.fm Page 454 Tuesday, February 22, 2005 1:26 PM

Remote Method Invocation 455

Step 2: Create the Remote Class

The remote interface is implemented by the remote class and the stub. Here we’ll look at the remote
class. This class is constructed by the server and then made available for remote invocation.

There are two requirements on a remote class:
� It must extend java.rmi.server.UnicastRemoteObject.
� It must implement the remote interface.

The remote class is the workhorse of an RMI system. It is the class whose methods provide
services to clients. Here is a remote class whose methods provide the services of our mathemat-
ical example:

import java.rmi.*;

import java.rmi.server.*;

public class Mathematician

 extends UnicastRemoteObject

 implements MathServices {

 public Mathematician() throws RemoteException { }

 public float add(float[] addUs)

 throws RemoteException {

 return addUs[0] + addUs[1];

 }

 public float subtract(float[] subtractUs)

 throws RemoteException {

 return subtractUs[0] - subtractUs[1];

 }

}

The only tricky part of this class is the constructor. The no-args constructor of the superclass
(java.rmi.server.UnicastRemoteObject) throws java.rmi.RemoteException, so a sub-
class must explicitly provide a constructor that also throws this exception, even if the construc-
tor’s body does nothing.

Now let’s see how to make a stub.

Step 3: Create the Stub

A stub must be created for every class whose methods are to be made available for RMI calling.
The stub and the remote class both implement the remote interface. On the client side, a remote
reference points to an instance of the stub. Stubs are also used on the server side.

4419c13.fm Page 455 Tuesday, February 22, 2005 1:26 PM

456 Chapter 13 � Object Streams and RMI

Stubs are created by using the rmic tool, not by writing and compiling Java source code. rmic
resides in the JDK’s bin directory, so it’s already in your path if you can compile and execute. To
create a stub, type rmic remote_class_name.

To learn all of rmic’s command-line arguments, type rmic.

In our case, the remote class name is Mathematician, so the corresponding stub is created
by typing rmic Mathematician.

If a remote class is in a package, the class’ full name must be provided. So for example if
Mathematician were in a package called services, then you would type rmic
services.Mathematician.

The output from rmic is a classfile whose name is the remote class name with _Stub appended
at the end. So in our example the stub is called Mathematician_Stub.

Now the three essential pieces have been created: the remote interface, the remote class, and
the stub. The next step is to create server and client code.

Step 4: Create the Server

An RMI server is an application that creates one or more remote objects and makes them available
to clients. Creating an RMI server is not completely straightforward, because of the need to inter-
act with the RMI registry.

The RMI registry is a program that associates names with RMI services. A server specifies
a name for every remote object it provides. A client accesses a remote object by specifying the
server and the service name. In general, the names in the registry are descriptive of the services
they represent. Choosing good service names is as important as choosing good variable names.

The RMI registry is a process separate from any individual JVM. It must be running before
any Java applications try to interact with it. To start the registry, type rmiregistry on a com-
mand line. The program resides in the Java bin directory.

On a single machine, multiple Java applications can offer services through a single registry. An
application accesses the registry via the java.rmi.Naming class, all of whose public methods are
static. To associate a name with a remote object, a server should call Naming.rebind(), which
has the following signature:

public static void rebind(String name, Remote obj)

The name argument is the name by which clients will access the remote object. The obj argu-
ment is the remote object itself; its type is Remote rather than Object because a remote object
implements a remote interface, which extends Remote. You can look up the other methods of
the Naming class in the API; it’s possible to bind a new object to a name and to unbind a name
(that is, to tell the registry that the name no longer corresponds to the object). A server continues
to run as long as at least one remote object is bound.

4419c13.fm Page 456 Tuesday, February 22, 2005 1:26 PM

Remote Method Invocation 457

An RMI server performs two tasks:

1. Create an instance of the remote object.

2. Bind the remote object to a name.

Here is a server for our example. The service name is brainiac.

import java.io.*;

import java.rmi.*;

public class MathServer {

 public static void main(String[] args) {

 try {

 Mathematician m = new Mathematician();

 Naming.rebind("brainiac", m);

 }

 catch (RemoteException x) {

 System.out.println("Remote Exception stress " + x);

 }

 catch (IOException x) {

 System.out.println("Other IOException stress " + x);

 }

 }

}

Recall that remote objects extend UnicastRemoteObject, so their constructors throw
RemoteException. The Naming.rebind() call throws various subclasses of IOException.

Servers must always be prepared to handle multiple clients. You saw in the object streams
server example that it’s a good strategy for a server to spawn off a service thread as soon as pos-
sible after receiving a client connection on a server socket. With RMI you have no access to the
server socket, but you still need to take precautions. No matter how many clients concurrently
call a remote method, there is still only one object executing the method. If the method accesses
critical data of the object, you need to use the techniques of Chapter 7 to protect the data.

Step 5: Create the Client

A client obtains a remote reference by contacting the RMI registry on the server machine. This
is done by calling the static lookup() method of the Naming class. The signature of lookup() is

public static Remote lookup(String name)

Something seems to be missing from the signature. The object name is provided, but not the
server hostname. How does the RMI infrastructure know which host to contact?

4419c13.fm Page 457 Tuesday, February 22, 2005 1:26 PM

458 Chapter 13 � Object Streams and RMI

The name argument actually specifies both the server hostname and the object name, in a
URL format. The format of this string is

rmi://server_hostname/object_name

The object name must be a name that has been bound to an object in the server’s registry. It
is optionally legal to omit everything except the object name. In this case the RMI infrastructure
uses the local host as a server. This is very convenient for debugging, since you can develop code
on a single machine.

The return type of Naming.lookup() is Remote, which is the superclass of the remote inter-
face. The returned value should be cast to the remote interface type.

After the remote reference is obtained, calls made on the remote reference are automatically
sent to the server. From a programmer’s point of view the only difference between an ordinary
call and an RMI call is that all RMI calls throw RemoteException. Here is a client application
that uses RMI to remotely call the add() and subtract() methods of the brainiac service:

import java.io.*;

import java.rmi.*;

public class MathClient {

 public static void main(String[] args) {

 try {

 // Get remote reference.

 String url = “rmi://” + args[0] + “/brainiac”;

 MathServices ms = (MathServices)Naming.lookup(url);

 // Add.

 float[] addUs = { 12.34f, 56.78f };

 float sum = ms.add(addUs);

 System.out.println("Sum = " + sum);

 // Subtract.

 float[] subtractUs = { 99.99f, 76.54f };

 float difference = ms.subtract(subtractUs);

 System.out.println("Difference = " + difference);

 }

 catch (NotBoundException x) {

 System.out.println("Name stress " + x);

 }

 catch (RemoteException x) {

 System.out.println("Remote Exception stress " + x);

 }

4419c13.fm Page 458 Tuesday, February 22, 2005 1:26 PM

Summary 459

 catch (IOException x) {

 System.out.println("Other IOException stress " + x);

 }

 }

}

The user supplies the remote server’s hostname on the command line.
At this point all necessary code has been written. All that remains is to deploy and execute

the client and server applications.

Step 6: Start the Programs

Before you start the programs that constitute an RMI application, you need to make sure that
the right files are present on the right machines. Remember that the remote interface and the
stub must be deployed on both the server and the client.

The various programs must be started up in the following order:

1. The server’s RMI registry

2. The server

3. The client or clients

The RMI registry must be started first. If it is not running when the server application calls
Naming.rebind(), an exception will be thrown. The server should be started next, so that the
desired remote objects will be available when clients call Naming.lookup(). Clients should be
the last applications to be started.

Summary
This chapter has discussed your two options for client/server communication: object streams
and RMI.

Object streams use Java’s Socket and ServerSocket classes. Although they are straightfor-
ward to use, choosing this design forces you to create a protocol and some kind of command class.

RMI, which is built on top of object streams, relieves you of many low-level tasks, including
protocol design and command class maintenance. However, with RMI you take on some high-
level tasks, including interaction with the RMI registry, as well as creation and deployment of
stub classes.

Both approaches have advantages and disadvantages. If you are familiar with all the costs
and benefits, you will be able to make a well-informed decision when the time comes to choose
which strategy you will use in your project.

4419c13.fm Page 459 Tuesday, February 22, 2005 1:26 PM

460 Chapter 13 � Object Streams and RMI

Chapter Review Lab

In this exercise you will create a weather station client/server application that produces weather
reports. When clients contact the server they can request a forecast or a temperature. Of course,
the point of this exercise is to practice network programming in Java, so the weather reports
don’t need to be based on reality. Feel free to choose forecasts at random from a group of strings
like Rainy or Sunny or Oobleck. Generate random numbers for the temperatures.

Implement two solutions: one that uses object streams and one that uses RMI. This work will
give you exposure to both technologies, so you’ll be able to make a good choice when you
decide which one to use in your project.

One possible solution set appears on your CD-ROM in solutions\Chapter_13.

4419c13.fm Page 460 Tuesday, February 22, 2005 1:26 PM

Chapter

14

Putting It All Together

4419c14.fm Page 461 Tuesday, February 22, 2005 1:31 PM

At this point you have the big picture. You know how to create a
server that accesses data in a disk file. You know how to create
a Swing GUI client. You know how to connect the server and the

client, using object streams or RMI. This chapter discusses a number of small, unrelated issues
that can affect your grade on the Developer’s Exam in big ways. These issues are Javadoc, thread-
ing, extra credit, object streams vs. RMI, common-sense GUI design, and the

jar

 tool.

Javadoc

Your code is required to provide Javadoc API pages for all the public parts of your classes. These
pages are generated by the

javadoc

 tool, which shares a lot of code with the compiler. To create
your pages, make sure all your public data and methods are commented with Javadoc-style
comments. Then run

javadoc

 on your source.
By default,

javadoc

 documents all the public and protected features of a class, even if they
don’t have Javadoc-style comments. Consider a class with no Javadoc comments at all, just a
pair of variables and a method:

package xyz;

import java.util.*;

public class VectorOfStrings extends Vector<String> {

 public int x;

 public int y;

 public String toString() {

 return "Vector-o-Strings";

 }

}

javadoc

 processes source files, so to generate an API for this class you type

javadoc
VectorOfStrings.java

.
The result is 13 professional-looking HTML files, including an index, a package overview

(not that there’s anything else in the package), and a page for the class. The class page displays
the class hierarchy, the list of implemented interfaces, field/constructor/method summaries, and
field/constructor/method details. In fact,

javadoc

 automatically generates everything anyone
could want from a class page, except for an overall class description and detailed information

4419c14.fm Page 462 Tuesday, February 22, 2005 1:31 PM

Javadoc

463

about the fields, constructors, and methods. This information has to be provided by the pro-
grammer, in the form of Javadoc comments.

A Javadoc comment begins with

/**

 and continues through the next

*/

. A Javadoc com-
ment just before a class definition becomes that class’ description in the API page. A Javadoc
comment just before a field or method becomes that field or method’s description. Here’s our

VectorOfStrings

 class with an added class description:

package xyz;

import java.util.*;

import java.io.*;

/**

A Vector that contains strings and has very little to offer.

*/

public class VectorOfStrings extends Vector<String> {

 public int x;

 public int y;

 public String getString(int n) throws IOException {

 if (Math.random() > 0.5)

 throw new IOException();

 return "Vector-o-Strings";

 }

}

You can make a class description fancier by adding tags. These are special codes that appear
inside the Javadoc comments that cause special formatting. For example, you might want a run
of text to appear in a fixed-width font; this is generally done when referring to code. In our
example, “Vector” should be in program font. To do this, insert

<code>

 before the text run and

</code>

 after the run:

/**

A <code>Vector</code> that contains strings and has very little to offer.

*/

You can render a run of text in italics by inserting

<i>

 before the run and

<\i>

 after the run.
So if the

VectorOfStrings

 class really has

very

 little to offer, you can use this comment:

/**

A <code>Vector</code> that contains strings and has <i>very</i> little to offer.

*/

4419c14.fm Page 463 Tuesday, February 22, 2005 1:31 PM

464

Chapter 14 �

Putting It All Together

Another family of tags begins with

@

 and extends to the end of the line. The

@

 tags are

@author

@version

@see

@return

@param

@throws

The first three of these tags are for commenting a class. The last three appear in method com-
ments. Here’s a fully commented

VectorOfStrings

 class that uses one of each kind of tag you’ve
seen so far:

package xyz;

import java.util.*;

import java.io.*;

/**

A <code>Vector</code> that contains strings and has <i>very</i> little to offer.

@author Philip Heller

@version 1096.1

@see java.util.List

*/

public class VectorOfStrings extends Vector<String> {

 /**

 Just an int.

 */

 public int x;

 /**

 Just another int.

 */

 public int y;

 /**

 @return Returns a constant string that isn’the

 quite the class name.

 @param <code>n</code> is ignored.

 @throws IOException about half the time,

 randomly.

4419c14.fm Page 464 Tuesday, February 22, 2005 1:31 PM

Thread Issues

465

 */

 public String getString(int n) throws IOException {

 if (Math.random() > 0.5)

 throw new IOException();

 return "Vector-o-Strings";

 }

}

As you can see,

@return

 is for documenting a method’s return value,

@param

 is for docu-
menting an argument, and

@throws

 is for documenting exceptions. Use these codes to provide
descriptions of all return values, all arguments, and all exceptions in all public methods. Since
your assignment doesn’t require you to document your protected fields or methods, use the

-public

 command-line flag to tell

javadoc

 to ignore all nonpublic features.

Thread Issues

Your server is required to be multithreaded. That is, it has to perform appropriately when
servicing multiple simultaneous clients. There are several issues that you should keep in mind
when designing this part of your project.

First, it’s impossible to thoroughly test multithreaded code. With threads, some bugs manifest
themselves only when a careless thread is granted the Java Virtual Machine (JVM) processor at a
particular moment. Since you have no control over when the thread scheduler swaps in a new
thread, you can’t possibly test every scenario. So no matter how thoroughly you may have exer-
cised your code, there might still be bugs lurking in the depths.

So if you can’t simulate every possible condition, you need to

imagine

 every possible con-
dition. You need to go through every possible combination of “If thread A is waiting to execute
a synchronized method of object X, while thread B owns the lock of X because it’s running X’s
so-and-so method….” If your multithreading code is at all convoluted, the number of combi-
nations is staggering, and the scenarios are so complicated that it’s difficult to think clearly
about them. Your only chance is to make sure your threading design is straightforward. Can
you explain it to someone else without referring to your source code or your comments? If not,
it’s too complex to hold easily in your mind. And if it’s that complex, you won’t be able to
think through every possible scenario.

It’s possible that a very complicated threading design actually works flawlessly under all con-
ditions. Nevertheless, the complexity will still bring your grade down. Your assignment spec can
be implemented with a moderately simple threading model, and any additional complexity is
unnecessary. It isn’t enough to observe the absence of deadlocks. You need to convince yourself
that deadlocks are impossible.

The second issue concerns thread priorities. Recall from Chapter 7, “Threads,” that priorities
are vaguely defined. At best, a thread’s priority influences how much processor time that thread
will receive, over a statistically large number of thread switches. If your thread code deadlocks and
you solve the problem by adjusting a priority, you’re moving in the wrong direction. There is no

4419c14.fm Page 465 Tuesday, February 22, 2005 1:31 PM

466

Chapter 14 �

Putting It All Together

guarantee that two JVMs will treat priorities the same way. So if you have a complicated priority
scheme, throw it away. Your deadlock is likely to appear on a different machine; it would be tragic
if it appeared while your project was being graded. All deadlocks should be resolved by redesign-
ing your waiting and notifying structure, not by adjusting priorities.

The third issue concerns waiting and notifying. It’s important to make threads wait on appro-
priate objects. Imagine a server that provides a large number of clients with multithreaded access
to a large number of resources. Never mind what the resources are or what the clients do with
them. Each client connects to the server, then does

something

 with a single resource, then pos-
sibly does something with a different resource, and so on until the client closes the connection.
Clearly, while a client is doing its thing with a resource, other clients should not have access to
that resource. The obvious way to enforce this in Java is to have a client acquire some object’s
lock while accessing the resource; another client that wants the same resource will have to exe-
cute

wait()

 until the first client finishes its work and calls

notify()

. This is what

wait()

 and

notify()

 are for.
The question is, on what object should

wait()

 and

notify()

 be called? There are two pos-
sibilities. First, all threads could wait on a single object. This is a very simple approach, easy to
understand and easy to implement. However, it has a serious drawback. Suppose thread A is
accessing object X. The thread acquires the overall lock and begins to do its thing. Now suppose
thread B wants to access some different object Y. There’s only one lock, and thread A owns it.
Thread B can’t proceed until thread A is finished, even though it’s perfectly safe to do so. The
server slows down more and more as more clients connect, needlessly preventing one another
from getting much work done. The system might as well not be multithreaded, since only one
thread can proceed at a time.

The alternative is to provide a lock for every resource. Now a client thread needs to wait only
if the desired resource is unavailable. The server is much more efficient. In particular, it has the vir-
tue that all clients immediately get to make progress, even if that progress is slow. From a client’s
perspective, immediate slow progress is much better than no progress at all.

The only drawback to providing a lock for every resource is that your code can become com-
plicated. But it doesn’t have to. It’s possible to create a server that locks appropriately without
being too complex to think about.

Extra Credit

This point was made in Chapter 10, “About the Developer’s Exam,” but it bears repeating:

there’s no extra credit

. The Developer’s Exam assessors report that many candidates submit
work that goes far beyond the requirements of the spec. Usually this is gratifying; it’s good to
know that people take pride in their work. However, the scoring guidelines don’t provide a
way to acknowledge the extra work by awarding extra credit points.

The only way extra work can affect your grade is downward. Suppose you add some brilliant
functionality to your client GUI. If the code is poorly commented, if it’s difficult to read, or if its

4419c14.fm Page 466 Tuesday, February 22, 2005 1:31 PM

RMI or Object Streams?

467

public methods don’t have Javadoc comments, your assessor is obligated to reduce your score,
no matter how impressive your GUI is.

If your extra work is less than brilliant, your risk is greater. Now it’s not just the implemen-
tation that can bring your grade down. The new functionality itself is subject to scrutiny. If, for
example, you add GUI controls that make your client frame hard to use, you’ll lose points.

This isn’t to say that creativity is unimportant. Creativity is vital, but it must be expressed
appropriately. Your Developer’s Exam project isn’t an appropriate place. It’s okay to submit a
boring project. You’ll have plenty of opportunities throughout your career to express your bril-
liance in ways that can be appreciated.

RMI or Object Streams?

Object streams are an appropriate design choice for simple client/server systems. As complexity
increases, Remote Method Invocation (RMI) becomes increasingly appropriate. There are two
reasons for this.

First, object streams require a custom protocol. You need to invent a command object that tells
the server what service is required, and you need a way for the client to supply arguments and
receive results. This is easy if there are only a few services (as there will be in your project). How-
ever, as the server’s services become increasingly broad, the cost of implementing the expanding
protocol increases. With RMI, you just add more methods to the remote interface and then imple-
ment them on the server and call them in the client.

Second, RMI can be invoked from non-Java systems. It isn’t easy or fun, but sometimes it’s
necessary. An object-stream server is not likely to be useful to a non-Java client, because only
Java knows how to serialize and deserialize Java objects.

Somewhere between simple-enough-for-object-streams and complicated-enough-for-RMI is
an area of overlap where either technology can be justified. Your project lies in this area. This
is why you can choose object streams or RMI according to your taste, and neither is considered
better. You won’t gain or lose points for either choice.

So which should you choose?
If you have experience with one of the technologies but not the other, consider using

the one you’re not familiar with. The exam is a good opportunity to gain new experience.
If you find you don’t like using the unfamiliar technology, you can always fall back on the
familiar one.

On the other hand, if you’re equally experienced or inexperienced in RMI and object
streams, RMI is probably more beneficial to you in the long run. Your choice won’t affect
your grade, but RMI experience looks better on a resume than object stream experience.
Commercial applications (that is, those written by enterprises that have money to pay their
programmers) increasingly use J2EE. J2EE is a jumble of technologies that includes JavaServer
Pages, Enterprise JavaBeans, and much more. RMI is part of J2EE, so RMI experience is
appealing to hiring managers.

4419c14.fm Page 467 Tuesday, February 22, 2005 1:31 PM

468

Chapter 14 �

Putting It All Together

Common-Sense GUI Design

You could spend years mastering the principles of modern GUI design. You probably don’t
want to make that kind of commitment, though, and the exam expects you only to show good
common sense. You can’t get into much trouble if you remember that the goal of a GUI is to
make life easier for your users. With that in mind, we’ll review three principles that are easy to
understand and easy to implement: standardization, resizing, and disabling the impossible.

The first principle is standardization. Look at several programs that you use frequently: a
web browser or a mail reader, for example. What features do they have in common? Do they
share these features with many other less-used programs?

It’s difficult to find a successful program that

doesn’t

have most of the following:
�

A menu bar at the top of the main frame
�

A File menu at the far-left end of the menu bar
�

One or more toolbars below the menu bar
�

A work area below the toolbar(s)
�

A status bar at the bottom of the main frame

Standardized features are good because they put expected functionality in expected places.
People who approach your application for the first time can expend their energy learning how
to use the unique parts of the program. If I try to use your program to create a new file of what-
ever type your program creates, and I don’t find a New… menu item at the top of a File menu
at the left end of a menu bar at the top of a main frame, then I have to spend time figuring out
where you put the file-creation functionality. Every time I want to create a new file, my com-
fortable habit of looking in the File menu fails me. I would prefer to spend my time using your
program to get useful work done.

This does not mean that you should implement all standard features whenever you create
a GUI. Rather, if your GUI provides standard functions, then the controls for those features
should appear in standard places. For example, every GUI needs a way to quit, and the Exit
menu item goes at the bottom of the File menu. So you have to provide a menu bar to hold the
File menu, which holds the Exit menu item. But not every GUI requires a status bar. You need
to provide one only if your program generates helpful status information. Similarly, you might
not need a toolbar. So the rule of thumb is, if your GUI supports standard functionality, then
that functionality should be controlled in a standard way.

The second principle concerns resizing. You saw in Chapter 12, “Layout Managers,” that
Java provides sophisticated layout managers to ensure appropriate resizing of components. If
components are too large, screen space is wasted. If components are too small, they are difficult
to use.

But what makes a component too large or too small? Generally the best size for a component
is its preferred size. Often components that aren’t their preferred size look odd. This is especially

4419c14.fm Page 468 Tuesday, February 22, 2005 1:31 PM

Common-Sense GUI Design

469

true of text components, whose preferred height is determined by the font and preferred width
is determined by the label. Consider the dialog created by the following code:

 JDialog dialog = new JDialog();

 Container cont = dialog.getContentPane();

 cont.setLayout(new GridLayout(1, 2));

 cont.add(new JLabel("Name:"));

 cont.add(new JTextField(10));

The dialog is shown in Figure 14.1.
If you look closely at the text field, you’ll see that it isn’t quite as wide as they could be.

There’s a small area of wasted space between the label and the text field. The wasted space looks
worse if the dialog becomes wider, as in Figure 14.2.

Figure 14.2 shows the downside of using a Grid layout manager for this dialog. When a user
resizes the dialog, their intention is to get more space for typing in a name. They don’t need a
wider label, but that’s exactly what they get, thanks to the Grid layout manager’s blindly fair
policy of sharing all new pixels among all child components.

It’s even worse when the dialog becomes taller as well as wider. Look at Figure 14.3.

F I G U R E 1 4 . 1

Slightly wrong component size

F I G U R E 1 4 . 2

Truly wrong component size

F I G U R E 1 4 . 3

Extremely wrong component size

4419c14.fm Page 469 Tuesday, February 22, 2005 1:31 PM

470

Chapter 14 �

Putting It All Together

In addition to the width problem, this dialog now has a height problem. The text field has
become taller, but the font hasn’t grown. The text looks lost and forlorn in the middle of all that
white background.

As a general principle, it isn’t enough to think about the size of a component at the moment
it is displayed. You need to consider the consequences of resizing. In our example, a more sophis-
ticated layout scheme is called for:

 JDialog dialog = new JDialog();

 Container cont = dialog.getContentPane();

 cont.setLayout(new GridBagLayout());

 GridBagConstraints gbc = new GridBagConstraints();

 gbc.gridx = 0;

 gbc.gridy = 0;

 gbc.gridwidth = 1;

 gbc.gridheight = 1;

 gbc.weightx = 0;

 cont.add(new JLabel("Name: "), gbc);

 gbc.gridx = 1;

 gbc.gridwidth = 1;

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.weightx = 100;

 cont.add(new JTextField(" "), gbc);

Now even in its initial appearance the label’s width is appropriate, as seen in Figure 14.4.
When the dialog resizes, the components stay the right size, as seen in Figure 14.5.

F I G U R E 1 4 . 4

Appropriate component size

F I G U R E 1 4 . 5

Appropriate component size, after resizing

4419c14.fm Page 470 Tuesday, February 22, 2005 1:31 PM

Common-Sense GUI Design

471

Our last principle of GUI design can be called “disabling the impossible.” A GUI should
make it impossible for a user to configure a request that the GUI can’t fulfill. As a very simple
example, think about typing a credit card number into a web page. What should you type after
the first four digits? A space? A hyphen? The next digits? Have you ever guessed wrong and had
to wait for an error-message page that tells you to type again, without explaining the required
format? Then you have to remember what format you typed into the original page, which by
now is gone forever. It would be better if the error-message page told you why your format was
wrong. It would be even better if the original form page told you what format was expected. It
would be best if the original form page made it impossible to type a bad format, either by accept-
ing all formats or, best of all, by clearly prompting you as in Figure 14.6.

In the figure, it’s obvious that the groups of digits are separated by hyphens, and it’s equally
obvious that the user shouldn’t type any hyphens, because they’re already there. The ultimate
in user-friendliness would be if the text field accepted only digits as input.

As another example, consider a form for ordering ice cream. Suppose the online ice cream
stand offers only chocolate, vanilla, and strawberry. Figure 14.7 would be the wrong way to
prompt for input.

What happens if the user types an unavailable flavor or misspells an available flavor, as in
the figure? This kind of GUI usually flashes a dialog box that says something irritating like,
“Flavor unavailable, please try again.” The design is a waste of the user’s time. The GUI should
make it impossible to specify an unavailable flavor or to misspell an available one. Since the
program obviously has access to the list of available flavors, it should present users with all
legal options and allow them to choose from those options. This can be done with a combo box
if there are a lot of options or with a group of radio buttons as shown in Figure 14.8.

F I G U R E 1 4 . 6

User-friendly credit card input

F I G U R E 1 4 . 7

A wrong way to prompt for a flavor

F I G U R E 1 4 . 8 One right way to prompt for a flavor

4419c14.fm Page 471 Tuesday, February 22, 2005 1:31 PM

472 Chapter 14 � Putting It All Together

Now there’s no possibility of misspelling, because the GUI doesn’t require typing. There’s no
possibility of requesting a flavor that isn’t sold at this virtual ice cream stand, because only the avail-
able flavors are displayed. Users have no way to request a service that the GUI doesn’t provide.

Most error dialogs in most GUIs complain about invalid input. When your GUI code includes
an error dialog, ask yourself whose fault the error is. It might really be your fault, for creating the
conditions for the user to make an invalid request.

There is much more that could be said about creating great GUIs, but our purpose here isn’t
to make you the world’s greatest user interface designer. We’re just here to get you a good grade
on your exam, and you’ll be fine if you keep in mind the principles of standardization, resizing,
and disabling the impossible.

Using the jar Tool
A jar file is a Java archive file. Its format is compatible with zip files and tar files. The jar command
resides in the Java bin directory. You invoke it by typing a command line, for example:

jar -cvf sources.jar *.java

The -cvf is a cluster of options. The c is the most important option; it says that a new jar file
is to be created. jar can create, extract, list the contents of, or update an archive file. To specify
which operation is be performed, the first argument (after the optional hyphen) must be c, x,
t, or u. Think of these four as primary options. The remaining options are secondary; they tell
jar how to do its job.

Table 14.1 shows some of jar’s secondary options.
The -v option means that jar prints out detailed information about every file it adds to or

extracts from the archive file. The -0 option, which is used only when creating or updating, over-
rides jar’s compression algorithm, which is compatible with zip’s algorithm and produces nearly
the same degree of compression. The -M option, also used only when creating or updating, tells
jar not to create a manifest file inside the archive. A manifest is a file that provides information
about the jar file’s contents; by default jar creates one automatically for you.

The -f and -m options each require that you specify a filename in the command line. The -f
specifies the name of the archive file to be created, extracted, listed, or updated. The -m option is
used when you create your own manifest file, which you do when you want to make an executable
archive.

Notice in our example that the option letters are clustered together, sharing a single hyphen.
That’s the preferred syntax. After the cluster (-cvf) come any filenames required by options
in the cluster. In our case the f option requires a filename; jar will create an archive named
sources.jar. The .jar extension is customary. If you use .zip, your archive can be read by
all zip-compatible tools.

4419c14.fm Page 472 Tuesday, February 22, 2005 1:31 PM

Using the jar Tool 473

After the last jar or manifest filename required by a secondary option, the command line
ends with a list of content filenames (*.java in our example). These are the files to be inserted
into or extracted from the archive. You don’t need to specify them if you’re doing a listing or
an extraction; if no filenames appear, then jar will list or extract everything in the archive. If
you’re doing a create, then the listed files will be copied into the new archive. If you’re doing
an update, the listed files will be copied into an existing archive. If a directory name appears
in the list, the directory’s contents are processed recursively.

A jar file may appear in a classpath, in place of a directory name. Thus if you create several
packages containing numerous class files, you can ship them to your customers in a single jar
archive. Your customers can use them without extracting the archive, which is a messy alter-
native to keeping everything isolated inside the jar file.

Leaving class files in a jar is slightly less efficient than extracting them, because the JVM must
extract and decompress them before they can be loaded. However, this inefficiency is slight and
is incurred only once per file; after a class is loaded, its description is inside the JVM and the file
need never be touched again.

If a jar file contains an application’s main class, you can make the jar executable. This is a
nice convenience for your users, because with an executable jar they don’t have to remember the
name of the main class. To run an executable jar file, you just use the -jar option and name the
file on the java command line, like this:

 java -jar the_executable_archive.jar

To make an executable jar, first create a manifest that tells which class file is the main class.
To do this, create a text file that contains a line like the following:

Main-Class: x.y.MyMainClass

T A B L E 1 4 . 1 Secondary jar Options

Option Requires Filename Function

-v no Verbose

-0 (zero) no Don’t compress

-M no Don’t create a manifest

-f yes Specifies jar file to create, extract, etc.

-m yes Specifies manifest file

4419c14.fm Page 473 Tuesday, February 22, 2005 1:31 PM

474 Chapter 14 � Putting It All Together

Note that you specify the class name, not the class filename, so there’s no .class suffix. Be
sure to specify the entire class name, including package prefixes (x.y. in this example). The text
file can have any name at all. It is not inserted into the jar file. Instead, the jar program reads
it and copies its information into the manifest file, which the jar program creates.

Now build your jar file, using the -m option to tell jar which file to look in for manifest
information. For example, if your Main-Class line is in a file called manny.txt, your command
line would be

jar -cvfm my_archive.jar manny.txt *.class

The jar program reads the main class declaration in manny.txt and builds a manifest inside
the jar, containing the main class declaration and a bit of extra information. Inside the jar a
directory named META-INF is created, and in META-INF is a plain-text file called MANIFEST.MF.
Here’s what MANIFEST.MF looks like for our example:

Manifest-Version: 1.0

Created-By: 1.5.0 (Sun Microsystems Inc.)

Main-Class: MyMainClass

Ease of use is an important part of software quality. A little familiarity with the jar program
can significantly increase the ease of use of your project.

Summary
In the previous chapters you’ve read about the GUI, I/O, and communication technologies that
you will need to complete your project. This chapter has reviewed some smaller miscellaneous
concepts: you’ve read about Javadoc, threading, extra credit, object streams vs. RMI, common-
sense GUI design, and the jar tool.

That’s all you need! At this point you’re ready to download your assignment and get to work.
Good luck!

4419c14.fm Page 474 Tuesday, February 22, 2005 1:31 PM

Appendix

A

Practice Exam

4419Appendix.fm Page 475 Friday, February 25, 2005 9:26 AM

476

Appendix A �

Practice Exam

Questions

1.

Given the following:

public enum Wallpaper {
 BROWN, BLUE, YELLOW;

}

Which of the following are legal?

A.

enum PatternedWallpaper extends Wallpaper {
 STRIPES, DOTS, PLAIN;
}

B.

Wallpaper wp = Wallpaper.BLUE;

C.

Wallpaper wp =
 new Wallpaper(Wallpaper.BLUE);

D.

void aMethod(Wallpaper wp) {
 System.out.println(wp);
}

E.

int hcode =
 Wallpaper.BLUE.hashCode();

2.

Given the following:

package pack;

class Sploo {
 public int a;
 public static int b;
 int c;
 static int d;

 public void eee() { }
 public static void fff() { }

}

Which of the following features of class

Sploo

 may be accessed by a class, in package

pack

, as
a result of the following import?

import static pack.Sploo.*;

A.

a

B.

b

C.

c

D.

d

E.

eee()

F.

fff()

4419Appendix.fm Page 476 Friday, February 25, 2005 9:26 AM

Questions

477

3.

Given the following:

public abstract class Abby {

 abstract provideMe();

}

public class SubAbby extends Abby { }

Which statements are true?

A.

Abby

 generates a compiler error.

B.

Sub

Abby

 generates a compiler error.

C.

If Sub

Abby

 were declared abstract, it would compile without error.

D.

If

SubAbby

 were declared abstract, it could be instantiated.

E.

Abby

 is a legal type for variables.

4.

Given the following code:

class Xxx {

 int[] ages;

 int[] heights = new int[10];

}

A.

Which statements are true?

B.

ages

 is initialized to

null

.

C.

ages

 is initialized to a reference to an array with zero elements.

D.

heights

 is initialized to

null

.

E.

heights

 is initialized to a reference to an array with zero elements.

F.

heights

 is initialized to a reference to an array with 10 elements.

5.

Given a class with a public variable

theTint

 of type

Color

, which of the following methods are
consistent with the JavaBeans naming standards?

A.

public Color getColor()

B.

public Color getTint()

C.

public Color getTheTint()

D.

public Color gettheTint()

E.

public Color get_theTint()

6.

Which of the following statements are true regarding the following method?

void callMe(String… names) { }

A.

It doesn’t compile.

B.

Within the method,

names

 is an array containing

String

s.

C.

Within the method,

names

 is a list containing

String

s.

D.

The method may be called only from within the enclosing class.

4419Appendix.fm Page 477 Friday, February 25, 2005 9:26 AM

478

Appendix A �

Practice Exam

7.

Given the following:

public class Food { }

public class Fruit extends Food { }

public class Citrus extends Fruit { }

public class Pomelo extends Citrus { }

public class SuperDuper {

 public Fruit feedMe() { return new Fruit(); }

}

public class Subby extends SuperDuper {

 public ????? feedMe() { return new Pomelo (); }

}

Which of the following are legal return types for

feedMe()

 in class

Subby

?

A.

Object

B.

Food

C.

Fruit

D.

Citrus

E.

Pomelo

8.

Given the following class:

class A extends java.util.Vector {

 private A(int x) { super(x); }

}

Which statements are true?

A.

The compiler creates a default constructor with public access.

B.

The compiler creates a default constructor with protected access.

C.

The compiler creates a default constructor with default access.

D.

The compiler creates a default constructor with private access.

E.

The compiler does not create a default constructor.

9.

Which of the following types are legal arguments of a

switch

 statement?

A.

enum

s

B.

bytes

C. longs

D. floats

E. strings

4419Appendix.fm Page 478 Friday, February 25, 2005 9:26 AM

Questions 479

10. Given the following:

int[] ages = { 9, 41, 49 };

int sum = 0;

Which of the following are legal ways to add the elements of the array?

A. for (int i=0; i<ages.length; i++)
 sum += ages[i];

B. for (int i=0; i<=ages.length; i++)
 sum += ages[i];

C. for (int i:ages)
 sum += i;

D. sum += ages[int i:ages];

11. Which lines check that x is equal to four? Assume assertions are enabled at compile time and
runtime.

A. assert x == 4;

B. assert x != 4;

C. assert x == 4 : “x is not 4”;

D. assert x != 4 : “x is not 4”;

12. Which are appropriate uses of assertions?

A. Checking preconditions in a private method

B. Checking postconditions in a private method

C. Checking preconditions in a public method

D. Checking postconditions in a public method

13. EOFException and ObjectStreamException both extend IOException. NotSerializable-
Exception extends ObjectStreamException. AWTException does not extend any of these. All
are checked exceptions. Suppose class AClass has a method callMe() whose declaration is

void callMe() throws ObjectStreamException

Which of the following may appear in a subclass of AClass?

A. void callMe()

B. void callMe() throws IOException

C. void callMe()
 throws NotSerializableException

D. void callMe()
 throws ObjectStreamException,
 AWTException

4419Appendix.fm Page 479 Friday, February 25, 2005 9:26 AM

480 Appendix A � Practice Exam

14. ObjectStreamException extends IOException. NotSerializableException extends
ObjectStreamException. AWTException does not extend any of these. All are checked
exceptions. The callMe() method throws NotSerializableException.What does the
following code print out? Choose all lines that are printed.

try {

 callMe();

 System.out.println(“I threw”);

}

catch (ObjectStreamException x) {

 System.out.println(“Object stream”);

}

catch (IOException x) {

 System.out.println(“IO”);

}

catch (Exception x) {

 System.out.println(“Exception”);

}

finally {

 System.out.println(“Finally”);

}

A. I threw

B. Object Stream

C. IO

D. Exception

E. Finally

15. While testing some code that you are developing, you notice that an ArrayIndexOutOf-
BoundsException is thrown. What is the appropriate reaction?

A. Enclose the offending code in a try block, with a catch block for
ArrayIndexOutOfBoundsException that does nothing.

B. Enclose the offending code in a try block, with a catch block for
ArrayIndexOutOfBoundsException that prints out a descriptive message.

C. Declare that the method that contains the offending code throws
ArrayIndexOutOfBoundsException.

D. None of the above.

4419Appendix.fm Page 480 Friday, February 25, 2005 9:26 AM

Questions 481

16. How is IllegalArgumentException used? (Choose all correct options.)

A. It is thrown by the JVM when a method is called with incompatible argument types.

B. It is thrown by the JVM to indicate arithmetic overflow.

C. It is thrown by certain methods of certain core Java classes to indicate that preconditions
have been violated.

D. It should be used by programmers to indicate that preconditions of public methods have
been violated.

E. It should be used by programmers to indicate that preconditions of nonpublic methods have
been violated.

17. Suppose shorty is a short and wrapped is a Short. Which of the following are legal Java state-
ments? (Choose all correct options.)

A. shorty = wrapped;

B. wrapped = shorty;

C. shorty = new Short((short)9);

D. shorty = 9;

18. Which of the following statements are true? (Choose all correct options.)

A. StringBuilder encapsulates a mutable string.

B. StringBuilder is threadsafe.

C. StringBuffer is threadsafe.

D. StringBuffer is generally faster than StringBuilder.

19. Suppose you know that a file named aaa was created by a Java program that used a
DataOutputStream. The file contains 10 doubles, followed by a UTF string. Which
of the following code snippets read the string correctly? Assume all code exists in an
environment that legally handles IOException. (Choose all correct options.)

A. RandomAccessFile raf =
 new RandomAccessFile("aaa", "r");
 for (int i=0; i<10; i++)
 raf.readDouble();
 String s = raf.readUTF();

B. RandomAccessFile raf =
 new RandomAccessFile("aaa", "r");
 raf.seek(10*8);
 String s = raf.readUTF();

C. FileReader fr = new FileReader(fr);
 for (int i=0; i<10*8; i++)
 fr.read();
 String s = fr.readUTF();

4419Appendix.fm Page 481 Friday, February 25, 2005 9:26 AM

482 Appendix A � Practice Exam

D. FileInputStream fis = new FileInputStream(“aaa”);
 DataInputStream dis = new DataInputStream(fis);
 for (int i=0; i<10; i++)
 dis.readDouble();
 String s = dis.readUTF();

E. FileInputStream fis = new FileInputStream(“aaa”);
 DataInputStream dis = new DataInputStream(fis);
 dis.seek(10*8);
 String s = dis.readUTF();

20. Suppose you want to read a file that was not created by a Java program. The file contains lines
of 8-bit text, and the 8-bit encoding represents the local character set, as represented by the cur-
rent default locale. The lines are separated by newline characters. Which strategy reads the file
and produces Java strings?

A. Create a RandomAccessFile instance and use its readText() method.

B. Create a RandomAccessFile instance and use its readUTF() method.

C. Create a FileReader instance. Pass it into the constructor of LineNumberReader. Use
LineNumberReader’s readLine() method.

D. Create a FileInputStream instance. Pass it into the constructor of LineNumberReader.
Use LineNumberReader’s readLine() method.

E. Create a FileInputStream instance. Pass it into the constructor of DataInputStream. Use
DataInputStream’s readLine() method.

21. What interfaces can be implemented in order to create a class that can be serialized? (Choose all
that apply.)

A. No interfaces need to be implemented. All classes can be serialized.

B. Have the class declare that it implements java.io.Serializable. There are no methods in
the interface.

C. Have the class declare that it implements java.io.Serializable, which defines two
methods: readObject and writeObject.

D. Have the class declare that it implements java.io.Externalizable, which defines two
methods: readObject and writeObject.

E. Have the class declare that it implements java.io.Externalizable, which defines two
methods: readExternal and writeExternal

22. Suppose you are writing a class that will provide custom deserialization. The class implements
java.io.Serializable (not java.io.Externalizable). What access mode should the
readObject() method have?

A. public

B. protected

C. default

D. private

4419Appendix.fm Page 482 Friday, February 25, 2005 9:26 AM

Questions 483

23. Suppose you want to create a class that compiles and can be serialized and deserialized without
causing an exception to be thrown. Which statements are true regarding the class? (Choose all
correct options.)

A. If the class implements java.io.Serializable and does not implement
java.io.Externalizable, it must have a no-args constructor.

B. If the class implements java.io.Externalizable, it must have a no-args constructor.

C. If the class implements java.io.Serializable and does not implement
java.io.Externalizable, its nearest superclass that doesn’t implement Serializable
must have a no-args constructor.

D. If the class implements java.io.Externalizable, its nearest superclass that doesn’t
implement Externalizable must have a no-args constructor.

24. Suppose you want to use a DateFormat to format an instance of Date. What factors influence
the string returned by DateFormat’s format() method?

A. The operating system

B. The style, which is one of SHORT, MEDIUM, or LONG

C. The style, which is one of SHORT, MEDIUM, LONG, or FULL

D. The locale

25. How do you generate a string representing the value of a float f in a format appropriate for
a locale loc?

A. NumberFormat nf =
 NumberFormat.getInstance(loc);
String s = nf.format(f);

B. NumberFormat nf =
 new NumberFormat(loc);
String s = nf.format(f);

C. NumberFormat nf =
 NumberFormat.getInstance();
String s = nf.format(f, loc);

D. NumberFormat nf =
 new NumberFormat(loc);
String s = nf.format(f, loc);

26. Given the following code:

1. String scanMe = “aeiou9876543210AEIOU”;

2. Scanner scanner = new Scanner(scanMe);

3. String delim = ?????; // WHAT GOES HERE?

4. scanner.useDelimiter(delim);

5. while (scanner.hasNext())

6. System.out.println(scanner.next());

4419Appendix.fm Page 483 Friday, February 25, 2005 9:26 AM

484 Appendix A � Practice Exam

What code at line 3 produces the following output?

aeiou

AEIOU

A. String delim = “d+”;

B. String delim = “\d+”;

C. String delim = “\\d+”;

D. String delim = “d*”;

E. String delim = “\d*”;

F. String delim = “\\d*”;

27. Which line prints double d in a left-justified field that is 20 characters wide, with 15 characters
to the right of the decimal point?

A. System.out.format("%20.5f", d);

B. System.out.format("%20.15f", d);

C. System.out.format("%-20.5f", d);

D. System.out.format("%-20.15f", d);

28. Suppose MyThread extends java.lang.Thread, and MyRunnable implements java.lang
.Runnable (but does not extend Thread). Both classes have no-args constructors. Which of the
following cause a thread in the JVM to begin execution? (Choose all correct options.)

A. (new MyThread()).start();

B. (new MyThread()).run();

C. (new MyRunnable()).run();

D. (new Thread(new MyRunnable()))

E. .start();

29. What will be the outcome when the following application is executed?

public class ThreadTest {

 public void newThread() {

 Thread t = new Thread() {

 public void run() {

 System.out.println("Going to sleep");

 try {

 sleep(5000);

 } catch (InterruptedException e) {}

 System.out.println("Waking up");

 }

 };

 t.start();

 try {

4419Appendix.fm Page 484 Friday, February 25, 2005 9:26 AM

Questions 485

 t.join();

 } catch (InterruptedException e) {}

 System.out.println("All done");

 }

 public static void main(String [] args) {

 new ThreadTest().newThread();

 }

}

A. The code prints “Going to sleep,” then “Waking up,” and then “All done.”

B. The code prints “All done,” then “Going to sleep,” and then “Waking up.”

C. The code prints “All done” only.

D. The code prints “Going to sleep” and then “Waking up.”

E. The code does not compile.

30. Given the following class:

class Classy {

 synchronized void notStaticMethod() {

 for (long n=0; n<100000000000L; n++)

 System.out.println(n);

 }

 synchronized static void staticMethod() {

 for (long n=0; n<100000000000L; n++)

 System.out.println(n);

 }

}

Suppose thread A and thread B both have references to each of two instances of Classy. These
references are named classy1 and classy2. Which statements are true? (Choose all correct
options.)

A. If thread A is executing classy1.staticMethod(), then thread B may not execute
classy1.staticMethod().

B. If thread A is executing classy1.staticMethod(), then thread B may not execute
classy2.staticMethod().

C. If thread A is executing classy1.notStaticMethod(), then thread B may not execute
classy1.staticMethod().

D. If thread A is executing classy1.notStaticMethod(), then thread B may not execute
classy1.notStaticMethod().

E. If thread A is executing classy1.notStaticMethod(), then thread B may not execute
classy2.notStaticMethod().

4419Appendix.fm Page 485 Friday, February 25, 2005 9:26 AM

486 Appendix A � Practice Exam

31. Suppose threads aThread and bThread are both accessing a shared object named sharedOb,
and aThread has just executed:

sharedOb.wait();

What code can bThread execute in order to get aThread out of the waiting state, no matter what
other conditions prevail?

A. aThread.notify();

B. aThread.notifyAll();

C. aThread.interrupt();

D. sharedOb.notify();

E. sharedOb.notifyAll();

32. Suppose class Car has public variables forceOnGasPedal and forceOnBrakePedal, and a
public method respondToPedalChanges(). Class Driver manipulates an instance of Car by
changing the variables and then calling the method. Which statements are true? (Choose all
that apply.)

A. The Car and Driver classes are loosely coupled.

B. The Car and Driver classes are tightly coupled.

C. This degree of coupling is desirable.

D. This degree of coupling is undesirable.

33. Suppose class Home has methods chopWood() and carryWater(); it also has a method called
chopWoodAndCarryWater(), which just calls the other two methods. Which statements are
true? (Choose all that apply.)

A. chopWoodAndCarryWater() is an example of appropriate cohesion.

B. chopWoodAndCarryWater() is an example of inappropriate cohesion.

C. chopWoodAndCarryWater() is an example of appropriate coupling.

D. chopWoodAndCarryWater() is an example of inappropriate coupling.

34. Suppose class Lemon extends class Citrus. Given the following code:

Lemon lem = new Lemon();

Citrus cit = new Citrus();

Which lines compile without error? (Choose all that apply.)

A. lem = cit;

B. cit = lem;

C. lem = (Lemon)cit;

D. cit = (Citrus)lem;

E. cit = (Object)lem;

4419Appendix.fm Page 486 Friday, February 25, 2005 9:26 AM

Questions 487

35. Suppose classes Lemon and Grapefruit extend class Citrus. Which statements are true regard-
ing the following code?

1. Grapefruit g = new Grapefruit();

2. Citrus c = (Citrus)g;

3. Lemon lem = (Lemon)c;

A. The cast in line 2 is not necessary.

B. Line 3 causes a compiler error.

C. The code compiles, and throws an exception at line 3.

D. The code compiles and runs without throwing any exceptions.

36. Suppose class aaa.Aaa has a method called callMe(). Suppose class bbb.Bbb, which extends
aaa.AAA, wants to override callMe(). Which access modes for callMe() in aaa.AAA will
allow this?

A. public

B. protected

C. default

D. private

37. What happens when you try to compile the following code and run the Zebra application?

class Animal {

 float weight;

 Animal(float weight) {

 this.weight = weight;

 }

}

class Zebra extends Animal {

 public static void main(String[] args) {

 Animal a = new Animal(222.2f);

 Zebra z = new Zebra();

 }

}

A. Class Animal generates a compiler error.

B. Class Zebra generates a compiler error.

C. The code compiles without error. The application throws an exception when the Animal
constructor is called.

D. The code compiles without error. The application throws an exception when the Zebra
constructor is called.

E. The code compiles and runs without error.

4419Appendix.fm Page 487 Friday, February 25, 2005 9:26 AM

488 Appendix A � Practice Exam

38. Given the following code:

1. class Xyz {

2. float f;

3. Xyz() {

4. ??? // What goes here?

5. }

6. Xyz(float f) {

7. this.f = f;

8. }

9. }

What code at line 4 results in a class that compiles?

A. super();

B. this(1.23f);

C. this(1.23f); super();

D. super(1.23f); this(1.23f);

39. What relationship does the extends keyword represent?

A. “is a”

B. “has a”

C. Polymorphism

D. Multivariance

E. Overloading

40. When should objects stored in a Set implement the java.util.Comparable interface?

A. Always

B. When the Set is generic

C. When the Set is a HashSet

D. When the Set is a TreeSet

E. Never

41. Given the following class:

class Xyzzy {

 int a, b;

 public boolean equals(Object x) {

 Xyzzy that = (Xyzzy)x;

 return this.a == that.a;

 }

4419Appendix.fm Page 488 Friday, February 25, 2005 9:26 AM

Questions 489

Which methods below honor the hash code contract?

A. public int hashCode() { return a; }

B. public int hashCode() { return b; }

C. public int hashCode() {
 return a+b;
}

D. public int hashCode() {
 return a*b;
}

E. public int hashCode() {
 return (int)Math.random();
}

42. Give the following declarations:

Vector plainVec;

Vector<String> fancyVec;

If you want a vector in which you know you will only store strings, what are the advantages of
using fancyVec rather than plainVec?

A. Attempting to add anything other than a string to fancyVec results in a compiler error.

B. Attempting to add anything other than a string to fancyVec causes a runtime exception to
be thrown.

C. Attempting to add anything other than a string to fancyVec causes a checked exception to
be thrown.

D. Adding a string to fancyVec takes less time than adding one to plainVec.

E. The methods of fancyVec are synchronized.

43. The declaration of the java.util.Collection interface is

interface Collection <E>

The addAll() method of that interface takes a single argument, which is a reference to a
collection whose elements are compatible with E. What is the declaration of the addAll()
method?

A. public boolean addAll(Collection c)

B. public boolean
 addAll(Collection c extends E)

C. public boolean
 addAll(Collection ? extends E)

D. public boolean
 addAll(Collection<? extends E> c)

4419Appendix.fm Page 489 Friday, February 25, 2005 9:26 AM

490 Appendix A � Practice Exam

44. The java.util.Arrays class has a binarySearch(int[] arr, int key) method. Which
statements are true regarding this method? (Choose all that apply.)

A. The method is static.

B. The return value is the index in the array of key.

C. The elements of the array must be sorted when the method is called.

D. After the method returns, the elements of the array are sorted, even if they weren’t sorted
before the call.

45. Given the following class:

package ocean;

public class Fish {

 protected int size;

 protected void swim() { }

}

Which of the following may appear in a subclass of Fish named Tuna that is not in the ocean
package?

A. void swim() { }

B. public void swim() { }

C. size = 12;

D. (new Tuna()).size = 12;

46. Given the following class:

public class App {

 public static void main(String[] args) {

 System.out.println(args.length);

 }

}

Assuming App.class is stored in an appropriate location in file appjar.jar, what is printed
when you type the following command line?

java -cp appjar.jar -ea App 1 2 3 4

A. 4

B. 5

C. 6

D. 7

E. 8

F. 9

4419Appendix.fm Page 490 Friday, February 25, 2005 9:26 AM

Questions 491

47. Given the following classes:

public class Wrapper {

 public int x;

}

public class Tester {

 private static void bump(int n, Wrapper w) {

 n++;

 w.x++;

 }

 public static void main(String[] args) {

 int n = 10;

 Wrapper w = new Wrapper();

 w.x = 10;

 bump(n, w);

 // Now what are n and w.x?

 }

}

When the application runs, what are the values of n and w.x after the call to bump() in the
main() method?

A. n is 10, w.x is 10

B. n is 11, w.x is 10

C. n is 10, w.x is 11

D. n is 11, w.x is 11

48. When does the string created on line 2 become eligible for garbage collection?

1. String s = “aaa”;

2. String t = new String(s);

3. t += “zzz”;

4. t = t.substring(0);

5. t = null;

A. After line 3

B. After line 4

C. After line 5

D. The string created on line 2 does not become eligible for garbage collection in this code.

4419Appendix.fm Page 491 Friday, February 25, 2005 9:26 AM

492 Appendix A � Practice Exam

49. Suppose you want to run the following command line on a Windows system:

java -classpath somewhere;elsewhere aaa.bbb.MyApplication

On a Unix system the command line would be:

java -classpath somewhere:elsewhere aaa.bbb.MyApplication

Assume the CLASSPATH variable is not set. Which must be true in order for the application to run?

A. Class MyApplication must contain the statement package aaa.bbb;.

B. Class MyApplication must be in a directory named aaa and must contain the statement
package bbb;.

C. Class MyApplication must contain either the statement package somewhere.aaa.bbb; or
the statement package elsewhere.aaa.bbb;.

D. The file MyApplication.class must be found either in somewhere\aaa\bbb or in
elsewhere\aaa\bbb. (Substitute forward slashes for backslashes on a Unix system.)

50. What is -15 % -10?

A. 0

B. 5

C. 10

D. -5

E. -10

4419Appendix.fm Page 492 Friday, February 25, 2005 9:26 AM

Answers 493

Answers
1. B, D, E. A and C are illegal because an enum may not be extended or instantiated. B is a legal

use of one of the enum’s constants. D legally passes an enum into a method. E legally calls a
method that all enums inherit from Object.

2. B, D, F. A static import does not apply to non-static features, so A, C, and E are ruled out. Since
the class performing the import is in the same package as Sploo, all static features (data and
methods) that have public, protected, or default access are imported into the importing class’
namespace.

3. B, C, E. Abby is a valid class; it contains an abstract method, so the class must also be abstract.
SubAbby must be declared abstract because it doesn’t provide an implementation for the abstract
method of its parent class. An abstract class may not be instantiated but is a legal type for variables.

4. A, E. ages is a reference, so in the absence of initialization code it is initialized to null.
heights is initialized; the array contains 10 floats that are initialized to 0f.

5. C. The method’s name is get followed by the name of the variable. The variable name’s first
character is converted to uppercase.

6. B. The method declaration demonstrates standard use of a variable argument list, which is
accessed inside the method as an array.

7. C, D, E. Covariant returns are legal in 5.0, so in addition to the exact return type of the super-
class’ version, any subclass of that type is also legal.

8. E. The compiler creates a default constructor only if a class has no explicit constructors.

9. A, B. The only legal arguments of switch statements are enums and primitives that are com-
patible with ints.

10. A, C. A is the standard pre-5.0 way to add the elements. B throws an exception because it loops
one time too many. C uses the enhanced for loop notation. D uses an illegal made-up notation.

11. A, C. The boolean that follows the assert keyword is the condition that must be met. The
condition may optionally be followed by a colon, followed by a message that is displayed if the
assertion fails.

12. A, B, D. Assertions are appropriate for checking postconditions in all methods and for check-
ing preconditions in most methods. They are not appropriate for checking preconditions in pub-
lic methods, however, because public methods are often called in environments where assertions
are not enabled.

13. A, C. All exceptions declared by an overriding method must be compatible with types thrown
by the overridden version.

4419Appendix.fm Page 493 Friday, February 25, 2005 9:26 AM

494 Appendix A � Practice Exam

14. B, E. When the exception is thrown, the current pass through the try block is abandoned, so “I
threw” isn’t printed. The first catch block that is compatible with the exception’s type is executed.
This is the block for ObjectStreamException, which is a superclass of the thrown type. Only one
catch block is executed per thrown exception; execution then continues at the Finally block,
which prints “Finally”.

15. D. Since ArrayIndexOutOfBoundsException is a runtime exception, it indicates a faulty
algorithm that should not be released. The only appropriate response is to find and fix the bug.

16. C, D. The purpose of IllegalArgumentException is to indicate a precondition violation in
a public method. The core Java classes use it this way, and so should we. The JVM does not
throw IllegalArgumentException.

17. A, B, C, D. All four statements are legal. A and C are examples of unboxing, which allows
assignment from a wrapper to a primitive. B is an example of boxing, which allows assignment
from a primitive to a wrapper. D is assignment of a literal int to a short, which is legal because
the right-hand side of the assignment is a literal rather than a variable.

18. A, C. StringBuilder is nearly identical to StringBuffer. The main differences are that
StringBuilder is not threadsafe, and its methods are generally faster than those of StringBuffer.

19. A, B, D. A and B correctly use a random access file. A reads and discards the leading doubles;
B just seeks past them. C doesn’t work because readers are for files that contain only 8-bit text;
they don’t work on UTF files. D and E use a file input stream. D correctly reads and discards the
leading doubles and then reads the UTF string. E doesn’t work because the DataInputStream
class doesn’t have a seek() method.

20. C. For a file that contains only 8-bit text, use a reader. By default, a reader interprets 8-bit text
according to the current default locale. Readers read their input character by character; to assemble
the characters into lines of text, chain on a LineNumberReader and call its readLine() method.

21. B, E. There are two ways to ensure that a class can be serialized: you can implement Serializable,
which is a tagging interface that defines no methods, or you can implement Externalizable, which
defines the readExternal and writeExternal methods.

22. D. Default deserialization is only bypassed if the readObject() method has private access.

23. B, C. If a class implements Externalizable, it must have a no-args constructor. If a class
implements Serializable and does not implement java.io.Externalizable, its nearest
non-externalizable superclass must have a no-args constructor.

24. C, D. Date formatting is determined by the locale and by the style. Style constants are defined
as static ints in the DateFormat class: SHORT, MEDIUM, LONG, and FULL.

25. A. NumberFormat instances should be obtained by calling the static getInstance() method,
not by calling a constructor. To format a number, pass the number (and no other arguments)
into the NumberFormat’s format() method.

4419Appendix.fm Page 494 Friday, February 25, 2005 9:26 AM

Answers 495

26. C. The goal is to create a regular expression that matches the run of digits in the middle of
scanMe. The “d” in a regular expression indicates “digit.” Two escaping backslashes are neces-
sary: one is consumed by the Java compiler when it compiles the literal string. The second tells
the useDelimiter() method that the “d” is a special character. The “+” quantifier matches one
or more occurrences, which is what we want. The “*” quantifier matches zero or more occur-
rences; there are zero digits between the vowels, and that is considered a “*” match, so using
“\\d*” splits the string into “a”, “e”, “i”, etc.

27. D. The minus sign in the format string causes left-justification. The number to the right of the
decimal point in the format string controls the number of digits to the right of the decimal point
in the output.

28. A, D. A is correct because the start() method of Thread (which is inherited by MyThread)
causes a thread to begin execution of the thread object’s run() method. Calling run() directly
as in B and C just causes the run() method to execute in the current thread. D creates a new
thread whose target is an instance of MyRunnable; this is the typical way to use the Runnable
interface.

29. A. With the call to join() after the new thread is created and started, the main thread will wait
for the new thread to finish its execution before continuing any processing after the call to join().

30. A, B, D. There are three locks to consider: the class lock, which controls access to the static syn-
chronized method, and the individual object locks, which control access to the non-static synchro-
nized methods. A and B are true because staticMethod() is controlled by the class lock. C is false
because classy1.notStaticMethod() is controlled by classy1’s object lock, while classy1
.staticMethod() is controlled by the class lock. D is true because both threads are trying to exe-
cute code controlled by classy1’s object lock. E is false because thread A is executing code con-
trolled by classy1’s object lock, while thread B wants to execute code controlled by classy2’s
object lock.

31. C, E. The notify() and notifyAll() methods affect the threads that are waiting for the object
on which the call is made. In other words, you notify the object, not the thread. So A and B don’t
work. When a thread is interrupted, it leaves the wait state and enters the InterruptedException
handler, so C is correct. D does not work because there might be multiple threads waiting for
sharedOb. E works because it guarantees that all waiting objects are moved out of the waiting state.

32. B, D. Tightness of coupling expresses the degree to which one class relies on knowledge of the
internals of another class. Tight coupling is undesirable because if class Car changes the way it
stores its data, class Driver (and any other similarly coupled classes) needs to be rewritten.

33. B. Cohesion is the degree to which a class or method resists being broken down into smaller pieces;
it is a desirable quality. chopWoodAndCarryWater() can obviously be broken down into its two
constituent parts, so it has inappropriate cohesion. This question does not concern coupling, which
is an object’s reliance on knowledge of the internals of another entity’s implementation.

34. B, C, D. A cast is required when assigning from a superclass to a subclass, so A requires a cast
but B does not. The cast in C is required; the cast in D is not but does no harm. The cast in E
turns the right-hand side of the assignment into an Object, which may not be assigned to a
Citrus without a cast.

4419Appendix.fm Page 495 Friday, February 25, 2005 9:26 AM

496 Appendix A � Practice Exam

35. A, C. Line 2 is an assignment from a subclass to a superclass, so the cast is not necessary. Line 3
compiles because it obeys the compile-time casting rules. At runtime, the JVM notices that the class
of the object referenced by c is not compatible with the Lemon class, so an exception is thrown.

36. A, B. Public and protected methods may be overridden by any class. A default method may be
overridden only if the subclass is in the same package as the superclass.

37. B. Class Animal has no no-args constructor. Class Zebra has no constructor at all, so the compiler
creates one that just calls the superclass’ no-args constructor. Since there is no such constructor,
compilation fails.

38. A, B. A legally invokes the superclass’ no-args constructor. The call is unnecessary, since the
compiler inserts it in the absence of a call to any other superclass constructor. B legally invokes
the constructor at line 6. C and D are illegal because in a constructor any call to super() or
this() must be the first line of the constructor; so there’s no room for both, in either order.

39. A. Java’s extends and implements keywords represent the “is a” relationship between types.

40. D. TreeSet stores its elements in natural order, which is determined by casting the elements to
Comparable and invoking their compareTo() methods. If you add an element that isn’t com-
parable to a tree set, you’ll eventually get an exception.

41. A, E. The hash code contract states that if two objects are equal, they must have equal hash
codes. In this case two objects are equal if their a values are equal. If two such objects have dif-
ferent b values, then answers B, C, and D will return unequal hash codes for equal objects, which
violates the contract. E always returns 0; it’s strange and inefficient, but it doesn’t violate the
contract.

42. A. fancyVec is a generic collection, so the compiler checks the types of arguments to add().

43. D. The notation Collection<? extends E> c means that c is a generic collection whose type
is compatible with type E.

44. A, B, C. The method is static, and it returns the index of key. The array must be sorted before
the method is invoked.

45. B, C. A is illegal because it attempts to override the swim() method with a more restricted
access mode. B overrides with a less-restricted access mode, which is legal. C is legal because it
accesses protected superclass data of the current instance. D is illegal because it accesses pro-
tected superclass data of a different instance.

46. A. The args array contains command-line arguments that are not directives to the java com-
mand. Only the strings “1”, “2”, “3”, and “4” are passed into args, so args.length is 4.

47. C. Primitives are passed by value, so bump() increments a copy of n, not n itself. Object refer-
ences are also passed by value, so bump() uses a copy of w, not w itself; since that copy points to
the same object as the one pointed to by w, changes made in bump() are permanent.

48. A. Line 3 creates a new string that contains “aaazzz” and assigns t to point to that new string.
At that moment there are no references to the string created on line 2 (“aaa”), so it becomes eligible
for garbage collection.

4419Appendix.fm Page 496 Friday, February 25, 2005 9:26 AM

Answers 497

49. A, D. Since the application class name is aaa.bbb.MyApplication, it must declare that it is a
member of package aaa.bbb. The class file must appear in a subdirectory named aaa\bbb in one
of the directories of the classpath.

50. D. 15 % 10 is 5, so the magnitude of the result is 5. The sign of the result is the sign of the left-
hand operand, so the result is -5.

4419Appendix.fm Page 497 Friday, February 25, 2005 9:26 AM

4419Appendix.fm Page 498 Friday, February 25, 2005 9:26 AM

Glossary

4419Gloss.fm Page 499 Tuesday, February 22, 2005 1:36 PM

500

Glossary

A

access modifier

Access modifiers dictate which classes are allowed to use a feature.

anonymous class

A class without a name is called an anonymous class. An anonymous
class can be declared to extend another class or to implement a single interface. The syntax
does not allow you to do both at the same time, nor to implement more than one interface
explicitly.

arithmetic promotion

Automatic conversion to an

int

 of a

byte

,

short

, or

char

 arithmetic
operand.

assertion

Assertions provide a convenient mechanism for verifying that a class’ methods are
called correctly. This mechanism can be enabled or disabled at runtime. Typically assertions are
enabled during development and testing and disabled in the field.

assignment conversion

Conversion of a primitive or reference value to a new type, during
execution of the assignment operator.

autoboxing

The automatic assignment of a primitive value to a compatible wrapper type. Aka

boxing

.

auto-unboxing

The automatic assignment of a wrapper type to a compatible primitive value.
Aka

unboxing

.

automatic variable

A variable defined in the scope of a method. It ceases to exist when the
method returns. Contrast with instance variables, whose lifetime is the life of the enclosing class.

B

bitwise operators

Operators that operate on

int

 and

long

 data. Bit

n

 of the result is a function
only of bit(s)

n

 of the operand(s). Java’s

bitwise operators

 are inversion, AND, XOR, and OR.

blocking

A thread blocks when, on detection that it cannot proceed because of the absence of
a needed resource, it gives up the CPU.

boxing

The automatic assignment of a primitive value to a compatible wrapper type. Aka

autoboxing

.

C

casting

Explicit data type conversion using the cast operator:

(

newtype

)

.

catch

 block

A block of code that deals with an exception that might arise during execution of
the

try

 block.

4419Gloss.fm Page 500 Tuesday, February 22, 2005 1:36 PM

Glossary

501

character literal

An explicitly specified value for a

char

 variable. The value is enclosed in single
quotes.

checked exception

Exceptions that describe unavoidable environmental problems encoun-
tered by a program. They must be handled by the

try-catch

 mechanism or by declaring that
the method calling the exception-throwing methods throws the same exceptions.

class invariant

A constraint on a class’s state that must be met before and after execution of
any nonprivate method of a class. (Private methods might be used to restore the required state
after execution of a nonprivate method.)

class variable

A

static variable

, created when the class is loaded and destroyed when the class
is unloaded. There is only one copy of a class variable, and it exists regardless of the number of
instances of the class, even if the class is never instantiated.

compilation units

Three top-level elements known as

compilation units

 may appear in a file.
None of these elements is required. If they are present, then they must appear in the following
order: package declaration, import statements, class/interface/enum definitions.

concatenation

The joining together of string objects.

concurrency

Apparent simultaneous execution of multiple threads. The simultaneity is
actually an illusion caused by the rapid swapping of the threads in and out of the CPU.

conditional operator

The

?:

 operator. Also called the

ternary operator

.

constants

An enum’s constants are the values declared in its first statement.

container components

Swing components that can contain other components (including
other containers).

conversion

Implicit change of date type.

coupling

An object’s reliance on knowledge of the internals of another entity’s implementation.

D

deadlock

A waiting thread is deadlocked when the condition for which it is waiting never
arises.

default access

One of Java’s four access modes. It may be assigned to a class, a variable, or
a method when no access modifier is explicitly provided. A feature with default access is acces-
sible to any class in the same package as the class that owns the feature.

default constructor

A constructor created by the compiler when a class has no explicitly
programmed constructors. It invokes the default constructor of the superclass.

default package

An unnamed package, consisting of all classes in the current working directory
that do not contain a package declaration.

4419Gloss.fm Page 501 Tuesday, February 22, 2005 1:36 PM

502

Glossary

E

encapsulation

The aggregation into a class of data and behavior.

enclosing class

A class that contains an inner class within its scope.

enum

A compilation unit similar to a class but using the

enum

 declaration. Used for typesafe
enumeration.

enumerated constants

A design pattern in which state or similar values are represented by
arbitrarily assigned primitives. Prone to bugs.

error

A nonrecoverable condition, similar to an exception, but arising from problems in the
JVM rather than in the environment.

event

A change in state, usually due to user input in a GUI component.

event listener

An object that receives notification (via a method call) of an event.

exception

A condition that prevents normal execution of a method. Represented by

java.lang.Event

 and its subclasses.

exception chaining

Handling an exception by creating and throwing a new exception of a
different type. The new exception contains a reference to the original one.

F

feature

A class, a method, or a variable.

floating-point literal

An explicit value that can be assigned to a

float

 or

double

 variable. A
floating-point literal expresses a number that contains one or more of the following: a decimal
point; the letter

E

 or

e

, indicating scientific notation; the suffix

F

 or

f

, indicating a

float

 literal;
or the suffix

D

 or

d

, indicating a

double

 literal.

framework

A group of interfaces that define the semantics of some functionality, along with
the classes that implement that functionality.

G

garbage collector

A thread that reclaims inaccessible memory. Memory that represents an
object is considered inaccessible when there are no references to the object.

generic collection

A collection that performs compile-time type checking on the objects it
contains.

4419Gloss.fm Page 502 Tuesday, February 22, 2005 1:36 PM

Glossary

503

graph

An object, as well as all objects referenced by that object, as well as all objects referenced by

those

 objects, etc. When an object is passed to an Object Output Stream, its entire graph is serialized.

I

identifier

The name of a variable, method, class, or label. Keywords and reserved words may
not be used as identifiers. An identifier must begin with a letter, a dollar sign ($), or an under-
score (_); subsequent characters may be letters, dollar signs, underscores, or digits.

inheritance

The availability to a child class of a parent class’ data and methods.

inner class

A class defined within the scope of another class, known as the enclosing class.

instance variable

A variable defined in the scope of a class. Its lifetime is the lifetime of the
enclosing instance of the class.

integral literal

An explicitly specified integral value, consisting of an optional sign followed
by a sequence of digits.

iterator

An object that returns the elements of a collection one by one.

J

jar file

A Java archive file, generally created by the

jar

 tool. The file format is compatible with
the zip and tar formats.

K

keyword A word whose meaning is defined by the programming language.

L

late binding Runtime determination of how to perform a method call.

List An ordered collection of data, represented by the java.util.List interface.

listener An object that receives notification when another object, which is typically a GUI
component, sends an event. An object becomes a listener by implementing a listener interface
and registering with the event source.

4419Gloss.fm Page 503 Tuesday, February 22, 2005 1:36 PM

504 Glossary

lock An entity that permits access to the synchronized instance methods of an object or
to the synchronized static methods of a class. At any moment, at most one thread may own
a lock.

M

manifest A file within a jar file that describes the jar’s contents. Useful for creating execut-
able jars.

Map A collection that associates unique keys with values. Represented by the java.util.Map
interface.

member class See inner class.

member variable See instance variable.

metadata Data associated with a file but not part of the file’s contents, such as creation date
and owner.

method-call conversion A conversion that happens when a value of one type is passed as an
argument to a method that expects a different type.

model-delegate A design pattern in which each view can visually describe the model according
to the set or subset of data it is most interested in.

modifiers Java keywords that give the compiler information about the nature of code, data,
or classes.

monitor Any object that has synchronized code.

N

narrowing conversion Conversion of a primitive value to a narrower type.

O

object equality A definition of equality, implemented by the equals() method, wherein two
possibly distinct objects are considered equal if their variables are equal.

object reference A handle for accessing an object.

4419Gloss.fm Page 504 Tuesday, February 22, 2005 1:36 PM

Glossary 505

overloading Reuse of a same method name with different arguments and perhaps a different
return type.

overriding Reuse of a method name in a subclass, with identical arguments and compatible
return type.

P

package A group of related classes, interfaces, and enums.

port number A number that identifies a service on a TCP/IP server.

postcondition A constraint that must be met on return from a method. Postcondition violations
should be indicated with assertions.

post-decrement The post-decrement operator is positioned after an expression and reduces
the value of the expression by 1.

post-increment The post-increment operator is positioned after an expression and increases
the value of the expression by 1.

precondition A constraint that must be met on entry of a method. Precondition violations in
nonpublic methods should be indicated with assertions. Precondition violations in public
methods should be indicated with runtime exceptions.

pre-decrement The pre-decrement operator is positioned before an expression and reduces
the value of the expression by 1.

preferred size The default size of a GUI component, barring conflict with a layout manager.

pre-increment The pre-increment operator is positioned before an expression and increases
the value of the expression by 1.

primitive A non-object data type. Java’s primitive types are boolean, byte, short, char,
int, long, float, and double.

priority An integer from 1 to 10 that determines the amount of CPU time allocated to a thread
over a statistically significant amount of time. Higher priority corresponds to more CPU time.
Implementation may vary among JVMs.

private access One of Java’s four access modes. A private feature may be accessed only by the
class that owns the feature.

property In the JavaBeans naming convention, a property XXX of an object is data accessed
by the object’s getXXX() method and modified by the object’s writeXXX() method.

4419Gloss.fm Page 505 Tuesday, February 22, 2005 1:36 PM

506 Glossary

protected access One of Java’s four access modes. A protected feature may be accessed by
classes in the same package as the class that owns the feature, as well as by subclasses of the class
that owns the feature, regardless of the subclass’ package.

protocol An agreement among programmers regarding the interchange of data between two
programs, typically in a client/server relationship.

public access One of Java’s four access modes. A public feature may be accessed by any class.

R

reference A handle for accessing an object. Similar to a pointer.

reliable protocol A low-level protocol in which all data is eventually delivered to its destination.

remote interface In RMI, an interface that describes the services offered by a remote object.

Remote Method Invocation (RMI) A method call in which the calling object and the executing
object reside on different JVMs.

remote reference A reference to an object on a different JVM. Used by RMI.

reserved words Words that may not be used as identifiers, even though they are not keywords
and have no meaning in the programming language.

runtime exception An exception that describes a condition that should never arise in a correct
program, such as the use of a null reference or integer division by zero. Represented by subclasses
of java.lang.RuntimeException.

S

serialization Writing an object, along with its graph of references, to an Object Output Stream.

Set An unordered collection in which all members are unique. Sets implement the java.util.Set
interface.

signed data type A numeric primitive type that may take both positive and negative values.
All Java’s numeric types except char are signed.

static A static feature belongs to a class, rather than to an individual instance of a class.

static initializer Code that appears inside curly brackets that are preceded by the static key-
word, but not inside a method. Static initializer code is run when a class is loaded.

4419Gloss.fm Page 506 Tuesday, February 22, 2005 1:36 PM

Glossary 507

string literal A sequence of characters enclosed in double quotes.

stub An object that implements a remote interface and communicates with a remote object.
Generated by the rmic tool.

synchronized code Code that may be executed only if the executing thread holds the lock of
the object that owns the code.

T

tagging interface An interface that defines no methods.

ternary operator The ?: operator. Also called the conditional operator.

threadsafe A class or group of classes is considered threadsafe if any thread can call any
method of any instance at any time.

thread scheduler The part of the JVM that determines which thread is running at any given time.

throw To present an exception or error to the JVM, terminating normal execution through
the current block or method.

transient A transient variable is not stored as part of its object’s persistent state.

try block A block of code that might throw an exception and is preceded by the try keyword.

typesafe enumeration A design pattern in which state or similar values are represented by
instances of a dedicated class. When properly implemented, the pattern makes it impossible to
represent illegal or undefined values. Java’s enums provide language-level support for typesafe
enumerations.

U

Unicode A standard for representing characters with 16-bit patterns.

unsigned data type A numeric primitive type that may not take negative values. Java’s char
type is signed.

unary operator An operator that takes one operand.

unboxing The automatic assignment of a wrapper type to a compatible primitive value. Aka
auto-unboxing.

4419Gloss.fm Page 507 Tuesday, February 22, 2005 1:36 PM

508 Glossary

W

waiting state A nonexecuting thread state, entered when a thread executes an object’s
wait() method and terminated when the object’s notify() or notifyAll() method is
invoked.

weight A GridBag property that determines the amount of space allocated to a component
when its container resizes.

widening conversion Conversion from a narrower to a wider numeric data type.

wrapper class A class that encapsulates a single, immutable value. Each Java primitive data
type has a corresponding wrapper class.

Y

yield To voluntarily give up the CPU. A thread yields by executing its yield() method.

4419Gloss.fm Page 508 Tuesday, February 22, 2005 1:36 PM

Index

Note to the Reader:

 Throughout this index

boldfaced

 page numbers indicate primary discussions of
a topic.

Italicized

 page numbers indicate illustrations.

Symbols

& (ampersands)
for bitwise operator, 52–56
precedence of, 39
for short-circuit logical operator,

58–60

<> (angle brackets) for collections, 269, 288–289
* (asterisks)

for multiplication,

43–45

for comments, 463
with import statements, 5
precedence of, 38
in regular expressions, 293

@ (at signs) in Javadoc, 464
^ (carets)

for bitwise operator, 52–56
precedence of, 39

: (colons)
for conditional operator, 60–61
precedence of, 39

, (commas)
in for loops,

134

in numbers, 300
{} (curly braces)

for arrays, 13
for blocks, 131
for synchronization, 228

. (decimal points) in numbers, 300
$ (dollar signs) in formatting, 296
" (double quote) character, 10
= (equals signs)

for assignment, 61–62
for comparisons, 49–50, 52
precedence of, 38–39
for string equality, 255

! (exclamation points)
for complement operator,

41–42

for equality comparisons, 52
precedence of, 38

> (greater than signs)
for comparisons, 49–50
precedence of, 38

< (less than signs)
for comparisons, 49–50
precedence of, 38

- (minus signs)
for assignment, 61–62
for incrementing, 41
for minus operator,

41

precedence of, 38
in regular expressions, 292
for subtraction,

46–48

() (parentheses)
for cast operator,

42–43

for catch blocks, 140
% (percent signs)

in formatting, 295–297
for modulo operator,

45–46

,

45

precedence of, 38
+ (plus signs)

for addition,

46–48

for assignment, 61–62
for incrementing,

40–41

for plus operator,

41

precedence of, 38
in regular expressions, 293
for string concatenation, 46–47, 260

? (question marks)
for conditional operator, 60–61
precedence of, 39
in regular expressions, 293

‘ (single quote) character, 10
/ (slashes)

for comments, 463
for division,

43–45

precedence of, 38
[] (square brackets)

for arrays, 12
in regular expressions, 292

~ (tildes)
for bitwise inversion,

41

precedence of, 38
| (vertical bars)

for bitwise operator, 52–56
precedence of, 39
for short-circuit logical operator,

58–60

4419Book.fm Page 509 Tuesday, March 8, 2005 12:32 PM

510

abs method – available method

A

abs method, 253
abstract modifier,

81–82

,

82

AbstractTableModel class, 378–379
accept method, 441–443
access modifiers,

73

default,

75–76

,

76

defined, 500
for member classes,

187

private,

74–75

protected,

76–78

public,

74

for subclasses and method privacy,

78–79

,

79

Accessible interface, 382
accessing method variables,

188–189

Account class, 337, 446–447
ActionListener interface, 369, 387
actionPerformed method

in ActionListener, 369
in SampleAction, 388–389

actions
for button components,

368–369

for menu components,

387–389

,

389

add method
in ButtonGroup, 371
in Card layout manager, 415
in Collection, 269
in Container, 413
in List, 271
in Mathematician, 455
in MathServices, 454
in Set, 272
in Vector, 102

addAll method
in Collection, 269–270
in Set, 268, 289

addButton method, 425
addFirst method, 271
addition,

46–48

addLast method, 271
ampersands (&)

for bitwise operator, 52–56
precedence of, 39
for short-circuit logical operator,

58–60

anchor values in GridBag layout manager,

425–427

,

426–427

AND operators
bitwise,

52–56

Boolean,

56–57

short-circuit,

58–60

angle brackets (<>) for collections, 269, 288–289

anonymous classes,

189–190

construction of,

190–191

defined, 500
example,

192–193

API pages, 283,

288–289

append method,

259–260

archive files,

472–474

arguments
for anonymous classes,

191

passing,

22–24

variable-length lists of,

180

arithmetic operators,

43

addition and subtraction,

46–48

error conditions with,

48–49

modulo,

45–46

,

45

multiplication and division,

43–45

precedence of, 38
promotion in,

49

,

49

,

108–109

, 500
ArithmeticException class, 43, 144
ArrayList class, 271
arrays,

11–14

indexes for,

144–145

multi-dimensional,

14–15

,

14–15

sorting and searching,

278–279

Arrays class,

278–279

ASCII standard, 312, 332
asList method, 278
assert keyword, 150
assertions,

150

and compilation,

150–151

defined, 500
exam essentials,

154–155

practicing with,

153–154

review questions,

156–165

runtime enabling,

151

summary,

154

working with,

152–153

assignment conversions,

103–107

,

104–106

, 500
assignment operators

precedence of, 39
working with,

61–62

asterisks (*)
for multiplication,

43–45

for comments, 463
with import statements, 5
precedence of, 38
in regular expressions, 293

at signs (@) in Javadoc, 464
auto-unboxing,

266–267

, 500
autoboxing,

266–267

, 500
automatic variables, 20, 500
available method, 322

4419Book.fm Page 510 Tuesday, March 8, 2005 12:32 PM

backslashes (\) – check boxes

511

B

backslashes (\)
in escape sequences, 10
in regular expressions, 292–293

backspace character, 10
BarListener class, 373
binarySearch method, 279
binding methods,

178–179

bitwise operators
defined, 500
inversion,

41

precedence of, 39
working with,

52–56

blocked threads, 217,

218

blocking
defined, 500
server sockets, 441
threads,

223–224

,

224

blocks
in loop structures, 131
try/catch,

140–143

Boolean class, 262
boolean data type, 7

converting, 105
formatting, 296
wrappers for, 262

Boolean operators
comparison,

56–57

complement,

41–42

Border class, 406–407
Border layout manager,

405–411

,

406

,

408–409

,

411–412

BOTH fill value, 426,

427

boundary conditions, 170
boxing,

266–267

, 500
branch nodes, 382
break statements

in loops,

137

in switch constructs, 139
BufferedInputStream class, 327
BufferedOutputStream class, 327
BufferedReader class, 329
BufferedWriter class, 329
ButtonDemo class, 368–369
ButtonGroup class, 371
ButtonListener class, 369
buttons,

368–369

,

369

Byte class, 262
byte data type, 7–8

converting, 105–106

initializing, 21
wrappers for, 262

ByteArrayInputStream class, 323
ByteArrayOutputStream class, 323
byteValue method, 264

C

Calendar class,

298–300

canRead method, 314
canWrite method, 314
Card layout manager,

412–417

CardDemo class, 414–417
carets (^)

for bitwise operators, 52–56
precedence of, 39

case sensitivity of identifiers, 6
case statements, 139
cast operator,

42–43

casting, 102
defined, 500
exam essentials,

120

object references,

115–120

,

116–118

primitives,

109–111

,

112

review questions,

121–128

summary,

120

catch blocks,

140–143

, 500
categories in developer’s exam, 354–355
ceil method, 253
cell size, component,

427–431

,

428

CellSize class, 428–430
Center class, 410–411
CENTER justification in Flow layout manager,

403
Center region in Border layout manager,

405–411

,

411–412

chaining
exceptions, 147
readers, 330,

331

streams, 324,

325

, 327,

328

, 439,

439

char data type and characters, 7–8
converting, 105–106
formatting, 296
initializing, 21
literals, 10, 501
wrappers for, 262

Character class, 262
CharArrayReader class, 329
CharArrayWriter class, 329
CharAt method, 257
check boxes,

370

,

370

4419Book.fm Page 511 Tuesday, March 8, 2005 12:32 PM

512

CheckBoxDemo class – constants, enumerated

CheckBoxDemo class, 370
checked exceptions,

144–145

, 501
child nodes, 382
class invariants

for assertions, 151–152
defined, 501

ClassCastException class, 274, 287
classes

access modifiers for,

73–79

,

76

,

79

,

187

anonymous,

189–192

constructors for,

181–183

contracts and naming conventions for,

193–195

enum,

195–200

exam essentials,

201–202
for exceptions, 147–148
inner. See inner classes
locks for, 234
member, 187–188
paths for, 19
review questions, 203–212
summary, 200–201
variables and initialization in, 20–21, 501

CLASSPATH environment variable, 19
ClassRoom class, 51
clear method

in Collection, 269
in Map, 275

Client class, 74–75, 450–452
client sockets, 437–440, 438–439
clone method, 252
Cloneable class, 252
close method

in FileInputStream, 322
in FileOutputStream, 322
in RandomAccessFile, 320

cohesion in object-oriented implementation, 171
Collection interface, 268–270
collections

generic, 285–290
List interface, 271
maintaining, 279–284, 283
Map class, 275–277
Set interface, 272–274

Collections class, 277–278
colons (:)

for conditional operator, 60–61
precedence of, 39

columns, GridBag layout manager for, 418–423,
420–421, 423

columnWeights variable, 422–423
columnWidths variable, 418, 422–423
combo boxes, 375, 375

ComboDemo class, 375
Command class, 447–448
commas (,)

in for loops, 134
in numbers, 300

comments in Javadoc, 463
Comparable interface, 273–274
compareTo method, 257, 273
comparison operators, 49–50

Boolean, 56–57
equality, 52
instanceof, 50–52
ordinal, 50
precedence of, 38

compilation and assertions, 150–151
compilation units, 4, 501
complement operator, 41–42
Complex class, 74–75
Component class, 399
components

layout managers for, 399–401, 400
cell size, 427–431, 428
position and stretch, 424–427, 425–427

in Swing
container, 364–367, 365, 367
JButton, 368–369, 369
JCheckBox, 370, 370
JComboBox, 375, 375
JLabel, 367–368, 368
JRadioButton, 371, 372
JScrollBar, 372–373, 373
JTextArea, 373–374, 374
JTextField, 373–374, 374
menu, 376–377, 377, 387–389, 389
methods for, 362–363
panes, 389–392, 391–392
summary, 392
table, 377–382, 381–382
tree, 382–387, 383, 387

concat method, 257, 260–261
concatenation of strings, 46–47, 260–261, 501
concurrency, 501
conditional operators

defined, 501
precedence of, 39
working with, 60–61

conditions
for assertions, 151–152
in do loops, 132
in for loops, 132–133
in while loops, 130–131

constant interfaces, 17–18
constants, enumerated, 197–199, 501

4419Book.fm Page 512 Tuesday, March 8, 2005 12:32 PM

construction – dividerSize property 513

construction
of anonymous classes, 190–191
of arrays, 11–12
of inner classes, 185–187

constructors, 181–182
invoking, 181
overloading, 182–183

Consumer class, 226, 229
Container class, 363
containers

for Card layout manager, 413
defined, 501
in Swing, 364–367, 365, 367

contains method, 269
containsAll method, 269
containsKey method, 53, 275
ContentDemo class, 365
context, comparing, 52
continue statement, 136–137
contracts, 193–195
controllers in MVC design, 378
conversions

casting, 42–43, 109–111, 112
defined, 501
exam essentials, 120
explicit and implicit, 102–103
object method-call, 115
object reference, 112–115, 113–114
of primitives, 103

arithmetic promotion, 108–109
assignment, 103–107, 104–106
casting, 109–111, 112
method call, 107–108

review questions, 121–128
summary, 120

cos method, 254
CounterThread class, 215
coupling in object-oriented implementation, 171,

501
covariant return types, 178
createNewFile method, 314
curly braces ({})

for arrays, 13
for blocks, 131
for synchronization, 228

currency, formatting, 300–301

D
daemon threads, 219
data store category in developer’s exam, 355

data types
cast operator for, 42–43
conversions. See conversions
primitive, 7–9

DataInputStream class, 323–327
DataOutputStream class, 324–327
Date classes, 5, 252, 298–300
DateFormat class, 298–299
dates, formatting, 298–300
dead threads, 217–218
Deadlock class, 236–238
deadlocks with threads, 236–238, 501
decimal literals, 10
decimal points (.) in numbers, 300
declaring

anonymous classes, 191
arrays, 11–12
exceptions, 143

DecoratedRectangle class, 179–180
decrement operators, 40–41
default access modifier, 75–76, 76, 501
default constructors, 181, 501
default mode, 73
default packages, 501
default statements, 139
DefaultMutableTreeNode class, 382, 385
defaultReadObject method, 335–336
DefaultTreeModel class, 386
defaultWriteObject method, 335–336
delete method, 314
delimiters

in regular expressions, 293
in text scanning, 291

deserialization, 333
developer’s exam, 350

essay part, 353–354
extra credit on, 466–467
formalities of, 351–352
grading, 354–355
knowledge requirements in,

350–351
practice, 476–497
project assignment in, 352–353, 353

digits in regular expressions, 292
dimensions of arrays, 14–15, 14–15
Disa class, 400
disabling the impossible principle, 471
disjoint method, 277
dispatching exceptions, 143–144
DisplayedRectangle class, 176, 178
dividerLocation property, 390
dividerSize property, 390

4419Book.fm Page 513 Tuesday, March 8, 2005 12:32 PM

514 division – File class

division
process, 43–45
by zero, 48

do loops, 132
documentation

in developer’s exam, 354
Javadoc pages, 462–465

DoItMyself class, 335–336
dollar signs ($) in formatting, 296
Double class, 262
double data type, 7–9

converting, 105–106
wrappers for, 262

double indirection, 23
double quote (") character, 10
doubleValue method, 264
DownCounter class, 216

E
E constant, 253
East region in Border layout manager, 405–411,

408–409, 412
EastWest class, 410
editors in Swing, 379
eligible threads, 215
empty for loops, 134
enabling assertions, 151
encapsulation in object-oriented implementation,

169–170, 502
enclosing classes, 502
encodings, file, 330–332, 331
endsWith method, 257
enhanced for loops, 135–136, 289–290
enum classes, 195–200, 502
enumerated constants, 197–199, 502
EOFException class, 149
equality, comparison operators for, 52
equals method, 52

in Arrays, 279
contract for, 193–194
defining, 53
for maps, 277
operation of, 251–252
in Set, 272
in StringBuffer, 260
for strings, 255–257
for wrapper classes, 263–264

equals signs (=)
for assignments, 61–62
for comparisons, 49–50, 52

precedence of, 38–39
for string equality, 255

equalsIgnoreCase method, 257
ERROR_MESSAGEs, 391
errors and error conditions, 48–49, 502
escape sequences

in regular expressions, 293
for special characters, 10

essay part of developer’s exam, 353–354
evaluation order of operators, 39, 62
event listeners, 502
events, 502
exam. See developer’s exam
Exception class, 147
exceptions, 140

catching, 140–143
chaining, 147, 502
classes for, 147–148
declaring, 143
defined, 502
dispatching, 143–144
exam essentials, 154–155
finally blocks for, 145–146
kinds of, 144–145, 145
with overriding, 148–150
review questions, 156–165
summary, 154
throwing, 146–147

exclamation points (!)
for complement operator, 41–42
for equality comparisons, 52
precedence of, 38

execution
order of, 62
thread, 214–217

exists method, 314
exp method, 253
explicit conversions, 102–103
expressions

in for loops, 133–134
regular, 291–293

extends clause, 172
Externalizable interface, 336, 445–446
extra credit on developer’s exam, 466–467

F
features, 72

defined, 502
with modifiers, 89

File class, 313–316, 317

4419Book.fm Page 514 Tuesday, March 8, 2005 12:32 PM

file I/O – getChildren method 515

file I/O
encodings for, 330–332, 331
exam essentials, 338
File class, 313–316, 317
high-level streams, 323–327, 325
low-level streams, 321–323
RandomAccessFile class, 317–320
readers and writers, 327–330
review questions, 339–346
serialization, 332–338, 334
summary, 338

FileInputStream class, 321–322
FileOutputStream class, 321–322
FileReader class, 328
FileWriter class, 328
fill feature, 426–427, 427
final modifier, 80–81
finalize method, 26
finally blocks, 145–146
fireTableCellUpdated method, 379
first method

in Card layout manager, 414–415
in SortedMap, 277
in SortedSet, 273

Float class, 262
float data type and floating-point numbers, 7–9

converting, 105–106
defined, 502
formatting, 296
initialization of, 21
literals, 11
wrappers for, 262

floatValue method, 264
floor method, 253
Flow class, 401–402
flow control, 130

exam essentials, 154–155
loop constructs

break in, 137
continue in, 136–137
do, 132
for, 132–136
while, 130–131

review questions, 156–165
selection statements, 137–138

if/else constructs, 138
switch constructs, 139

summary, 154
Flow layout manager, 401–403, 402–403
FlowRight class, 403
fonts, 363
for loops, 132–134

comma separators in, 134

empty, 134
enhanced, 135–136
generic collections with, 289–290

format method, 297–298
Formatter class, 294–298
formatting

dates, 298–300
numbers and currency, 300–301
text, 294–298

formfeed character, 10
forName method, 184
fourthRoot method, 21
FrameDemo class, 364
frames, 364–366, 365
frameworks, 268, 502
frequency method, 277
friendly mode, 73
FULL constant, 298–299
fundamentals, 4

argument passing, 22–24
arrays, 11–15, 14–15
classes, 19–21
exam essentials, 27–28
garbage collection, 24–26
importing, 15–19
keywords and identifiers, 5–6
literals, 9–11
primitive data types, 7–9
review questions, 29–35
source files, 4–5
summary, 26–27

G
garbage collection, 24–26, 502
GB1 class, 418–420
GB2 class, 424–425
gc methods, 26
general considerations category in developer’s

exam, 354
GeneralRAF class, 318–319
generic collections, 285–290, 502
get method

in HashMap, 53
in List, 271
in Map, 275–276

getAbsolutePath method, 314
getCanonicalFile method, 140–142
getCanonicalPath method, 314
getCause method, 147
getChildren method, 384–385

4419Book.fm Page 515 Tuesday, March 8, 2005 12:32 PM

516 getColumnCount method – import statements

getColumnCount method
in AbstractTableModel, 379
in StringLengthTableModel, 380

GetColumnName method
in AbstractTableModel, 379
in StringLengthTableModel, 380

getContentPane method, 364
getCurrencyInstance method, 300–301
getDateInstance method, 298–300
getDefault method, 294
getFilePointer method, 318
getFirst method, 271
getInputStream method, 439
getInstance method

in Calendar, 298
in NumberFormat, 300

getLast method, 271
getLocation method, 362
getMessage method, 147
getModel method, 378
getName method, 184, 314
getOperands method, 448
getOperation method, 448
getOutputStream method, 439
getParent method

in ClassRoom, 51
in File, 314

getParents method, 384–385
getPriority method, 219
getRowCount method

in AbstractTableModel, 379
in StringLengthTableModel, 380

getShoppers method, 279–282
getSize method, 362
getState method, 195–196
getString method, 463, 465
getTime method, 298
getValueAt method

in AbstractTableModel, 379
in StringLengthTableModel, 380–381

getXXX methods, 265
grading of developer’s exam, 354–355
graphs, 503
greater than signs (>)

for comparisons, 49–50
precedence of, 38

Grid class, 404
Grid layout manager, 404–405, 405
GridBag layout manager, 417

for cell size, 427–431, 428
for layout design, 417–418
for position and stretch, 424–427, 425–427

for rows and columns, 418–423, 420–421, 423
shorthand for, 431–433, 432

GridBagConstraints class, 417–418, 420–422, 426
gridheight variable, 428–431
gridwidth variable, 428–431
gridx variable, 420
gridy variable, 420
groups in regular expressions, 292
GUI design, 359

common-sense, 468–472, 469–471
component requirements in, 359
in developer’s exam, 354
layout managers in, 362
regions of behavior in, 359
sketching in, 359–361, 360–361

H
“has a” relations, 170, 172
hashCode method, 193–195
HashMap class, 276–277, 283–284
HashSet class, 272–273
hasNext method

in Iterator, 270
in Scanner, 292

headMap method, 277
headSet method, 273
heap

object allocation on, 25
for processes, 24

height variable, 399
hexadecimal literals, 10
Hier class, 397–398
hierarchy

of classes, 113, 114
of exceptions, 145, 145
in layout managers, 397–398, 397–398

high-level streams, 323–327, 325
HORIZONTAL fill value, 426–427, 427
hyphens (-). See minus signs (-)

I
I/O. See file I/O
identifiers, 5–6, 503
if/else constructs, 138
immutable strings, 254–255
implicit conversions, 102–103
import statements, 5

4419Book.fm Page 516 Tuesday, March 8, 2005 12:32 PM

importing – java.io package 517

importing
process, 15–19
static, 86–87

increment operators, 40–41
indexes, array, 144–145
indexOf method

in List, 271
in String, 257

INFORMATION_MESSAGEs, 391
inheritance

in classes, 113, 114
defined, 503
in exceptions, 145, 145

init method, 78
initialization

of anonymous classes, 192
of arrays, 13
of variables, 20–21

initializers, static, 85–86
inner classes, 183–185

anonymous, 189–192
constructing, 185–187
defined, 503
defined inside methods, 188–189
member classes, 187–188

InputStream class, 323
InputStreamReader class, 329
insert method, 259
instance methods, 84
instance variables, 503
instanceof operator, 50–52, 143
int data type and integers, 7–8

converting, 105–106
formatting, 296
initializing, 21
literals, 10, 503
wrappers for, 262

Integer class, 262
interfaces

constant, 17–18
remote, 454
tagging, 335, 445

interrupt method, 217, 222
InterruptException class, 222
intValue method, 264
InvalidClassException class, 335, 338, 447
inversion operator (~), 41
invoking

constructors, 181
overloaded methods, 174–175
overridden methods, 179–180

IOException class, 141, 144, 441

“is a” relations, 170, 172
isArray method, 52
isCellEditable method, 379
isDigit method, 264
isDirectory method, 314–316
isEmpty method, 269
isFile method, 314
Iterator interface, 270
iterator method, 269–270
iterators, 503

J
jar files, 503
jar tool, 472–474
java.awt package

Component class, 399
Container class, 363
LayoutManager class, 396
Point class, 272

java.awt.event package, 363
.java extension, 4
java.io package

BufferedInputStream class, 327
BufferedOutputStream class, 327
BufferedReader class, 329
BufferedWriter class, 329
ByteArrayInputStream class, 323
ByteArrayOutputStream class, 323
CharArrayReader class, 329
CharArrayWriter class, 329
DataInputStream class, 323–327
DataOutputStream class, 324–327
File class, 313–316, 317
FileInputStream class, 321–322
FileOutputStream class, 321–322
FileReader class, 328
FileWriter class, 328
InputStream class, 323
InputStreamReader class, 329
InvalidClassException class, 335, 338, 447
LineNumberReader class, 330
ObjectOutputStream class, 332–334, 443
OutputStream class, 323
OutputStreamWriter class, 329
PipedInputStream class, 323
PipedOutputStream class, 323
PipedReader class, 329
PipedWriter class, 329
PrintStream class, 327
PrintWriter class, 330

4419Book.fm Page 517 Tuesday, March 8, 2005 12:32 PM

518 java.lang package – late binding

PushbackInputStream class, 327
PushbackReader class, 330
RandomAccessFile class, 317–320
Serializable class, 334–335, 445
StringReader class, 329
StringWriter class, 329

java.lang package, 251
Cloneable class, 252
Comparable interface, 273–274
exam essentials, 302–303
Exception class, 147
Math class, 80, 253–254
Object class, 214–216, 251–252
review questions, 304–310
RuntimeException class, 144, 147
String class, 254–258, 256
StringBuffer class, 258–260
StringBuilder class, 260
summary, 302
Thread class, 214
Throwable class, 140–141
Vector class, 115
wrapper classes, 262–267

java.net package
ServerSocket class, 436
Socket class, 436–437

Java Programming Language Workshop, 351
java.rmi package, 454
java.sql package, 5
java.text package

DateFormat class, 298–299
NumberFormat class, 300–301

java.util package
ArrayList class, 271
Arrays class, 278–279
Calendar class, 298–300
Collection interface, 268–270
Collections class, 277–278
Date class, 5, 252, 298–300
exam essentials, 302–303
Formatter class, 294–298
HashMap class, 276–277
HashSet class, 272–273
Iterator interface, 270
LinkedList class, 271
List interface, 271
Locale class, 294
Map class, 275–277
review questions, 304–310
Scanner class, 291–293
Set interface, 272–274
SortedMap interface, 277

SortedSet interface, 273
Stack class, 271
summary, 302
TreeMap class, 276–277
TreeSet interface, 272–273

java.util.regex package
Matcher class, 291
Pattern class, 291

Java Virtual Machine (JVM), 179
JavaBeans naming convention, 195
Javadoc pages, 462–465
javax.swing package. See Swing components
JButton components, 368–369, 369
JCheckBox components, 370, 370
JComboBox components, 375, 375
JFrame components, 364–366, 365
JLabel components, 367–368, 368
JMenu components, 376
JMenuBar components, 376
JMenuItem components, 376
JOptionPane components, 391–392, 392
JPanel components, 366–367, 367
JRadioButton components, 371, 372
JScrollBar components, 363, 372–373, 373
JScrollPane components, 381–382
JSplitPane components, 389–391, 391
JTable components, 377–382, 381–382
JTextArea components, 373–374, 374
JTextField components, 373–374, 374
JTree components, 382–387, 383, 387
justification with Flow layout manager, 403
JVM (Java Virtual Machine), 179

K
keyboard input with text fields, 373
keys in Map, 275
keySet method, 275
keywords, 5–6, 503

L
LabelDemo class, 368
labels, 367–368, 368
last method

in Card layout manager, 414–415
in SortedSet, 273

lastIndexOf method, 257
lastKey method, 277
late binding, 178–179, 503

4419Book.fm Page 518 Tuesday, March 8, 2005 12:32 PM

layout managers – MIN_PRIORITY constant 519

layout managers
alternatives for, 433
Border, 405–411, 406, 408–409, 411–412
Card, 412–417
chapter lab, 434
component size and position in, 399–401, 400
Flow, 401–403, 402–403
Grid, 404–405, 405
GridBag. See GridBag layout manager
in GUI design, 362
overview, 396–399, 397–398
policies for, 401
summary, 434

LayoutManager class, 396
leaks in garbage collection, 25
LEFT justification with Flow layout manager, 403
length method

in File, 314
in RandomAccessFile, 318
in String, 257

less than signs (<)
for comparisons, 49–50
precedence of, 38

lifetimes of variables, 20–21
LightState class, 197–199
LineNumberReader class, 330
linguistic regions for text, 294, 297
LinkedList class, 271
List interface, 271, 503
list method, 314
listeners, 503
Lister class, 315–316, 317
literals, 9–11

in assignment conversions, 106–107
string, 11, 255–256, 256

Locale class, 294
locks

for classes, 234
defined, 504
in developer’s exam, 355
for threads, 227–229, 227, 466

log method, 253
logical operators

bitwise, 52–56
Boolean, 56–57
short-circuit, 58–60

Long class, 262
LONG constant, 298–299
long data type, 7–9

converting, 105–106
wrappers for, 262

longValue method, 264
lookup method, 457–458

loop constructs
break in, 137
continue in, 136–137
do, 132
for, 132–136
while, 130–131

low-level streams, 321–323

M
Mailbox class, 225–231
main() method, 19–20
MalformedURLException class, 149
manifests, 472–474, 504
Map class, 275–277, 504
Matcher class, 291
Math class, 80, 253–254
MathClient class, 458–459
Mathematician class, 455
MathServer class, 457
MathServices interface, 454
max method

in Collections, 278
in Math, 253–254

MAX_PRIORITY constant, 219
maximumDividerLocation property, 390
MEDIUM constant, 298–299
member classes, 187–188
member variables

access modifiers for, 73–79, 76, 79
lifetime of, 20

menu components, 376–377, 377, 387–389, 389
MenuDemo class, 376–377
metadata, 504
method-call conversions, 107–108, 504
method variables

accessing, 188–189
initializing, 20

methods, 172–173
access modifiers for, 73–79, 76, 79
classes defined inside of, 188–189
with exceptions, 148–150
late binding, 178–179
overloading, 173–175
overriding, 78–79, 79, 175–178
synchronizing parts of, 238–239
variable-length argument lists for, 180

min method
in Collections, 278
in Math, 254

MIN_PRIORITY constant, 219

4419Book.fm Page 519 Tuesday, March 8, 2005 12:32 PM

520 minimumDividerLocation property – ObjectOutput interface

minimumDividerLocation property, 390
minimumSize property, 389
minus signs (-)

for assignment operator, 61–62
for increment operator, 41
for minus operator, 41
precedence of, 38
in regular expressions, 292
for subtraction, 46–48

mkdir method, 315
model-delegate pattern, 504
Model-View-Controller (MVC) design pattern,

377–378
models in Swing, 378
modes in file opening, 317–318
modifiers

abstract, 81–82, 82
access. See access modifiers
defined, 504
exam essentials, 90
features with, 89
final, 80–81
native, 87–88
overview, 72
review questions, 91–99
static, 82–87
summary, 90
synchronized, 89
transient, 88
volatile, 88

modulo operator, 45–46, 45
monitor states, 224
monitors

defined, 504
for threads, 225–227, 225

multi-dimension arrays, 14–15, 14–15
multiplication, 43–45
multithreaded programs, 214
MVC (Model-View-Controller) design pattern,

377–378

N
name method, 198–200
names

in importing, 15–16
naming conventions, 193–195
overloading, 173–175

NaN (Not a Number) value, 9, 48–49
narrowing conversions, 105

casting for, 109–111, 112
defined, 504

native modifier, 87–88
NegativeArraySizeException class, 144
nested classes. See inner classes
network server category in developer’s exam, 355
new line character, 10
new operation, 24
next method

in Card layout manager, 414–415
in Iterator, 270
in Scanner, 292

no-arguments constructors, 181
nodes in trees, 382
non-running threads, 217
NONE fill value, 426
North region in Border layout manager, 405–411,

406, 408–409, 412
Not a Number (NaN) value, 9, 48–49
notifications for threads, 229–236, 229, 466
notify method, 222, 224, 229–234, 251
notifyAll method, 224, 234–236, 251
NotSerializableException class, 334
NullPointerException class, 59
NumberFormat class, 300–301
NumberFormatException class, 142, 263
numbers

cast operator for, 42–43
conversions. See conversions
formatting, 300–301
primitive data types for, 7–9

O
Object class, 214–216, 251–252
object locks for threads, 227–229, 227
object method-call conversions, 115
object-oriented implementation, 169

constructors in, 181–183
coupling and cohesion in, 171
in developer’s exam, 354
encapsulation in, 169–170
exam essentials, 201–202
methods in, 172–173

late binding, 178–179
overloading, 173–175
overriding, 175–178
variable-length argument lists for, 180

re-use in, 170–171
relationships in, 172
review questions, 203–212
summary, 200–201

ObjectInput interface, 337
ObjectOutput interface, 337

4419Book.fm Page 520 Tuesday, March 8, 2005 12:32 PM

ObjectOutputStream class – ports and sockets 521

ObjectOutputStream class, 332–334, 443
objects

comparing, 49–50
equality of, 504
formatting, 296
references to

in argument passing, 22
casting, 115–120, 116–118
converting, 112–115, 113–114
defined, 504
initializing, 21

serializable, 445–447
streams. See streams

octal literals, 10
operands, promotion of, 49, 49
operators

arithmetic, 43–49, 45
assignment, 61–62
bitwise, 52–56
comparison, 49–52, 56–57
conditional, 60–61
evaluation order of, 39
exam essentials, 64
overloading, 46, 174
overview, 38–39
review questions, 65–70
short-circuit logical, 58–60
summary, 62–64
unary, 40–43

option panes, 391–392, 392
OR operator

bitwise, 52–56
Boolean, 56–57
short-circuit, 58–60

order
of notifications, 233–234
of operators, 39, 62

ordinal comparison operators, 50
orientation property, 390
out-of-bounds array indexes, 144–145
OutputStream class, 323
OutputStreamWriter class, 329
overflow, 44, 48
overloading, 173

methods
constructors, 182–183
defined, 505
invoking, 174–175
purpose of, 173–174

operators, 46, 174
overriding methods, 175–176

access in, 78–79, 79

defined, 505
exceptions with, 148–150
invoking, 179–180
purpose of, 176–178

P
pack method, 364
package keyword, 4
package mode, 73
packages, 505
pane components, 387–389, 389
PanelDemo class, 366–367
panels, 366–367, 367
parentheses ()

for cast operator, 42–43
for catch blocks, 140

parseXXX methods, 265
parsing text, 291
passing arguments

for anonymous classes, 191
by reference and value, 22–24

paths
for classes, 19
in trees, 382

Pattern class, 291
peek method, 271
percent signs (%)

in formatting, 295–297
for modulo operator, 45–46, 45
precedence of, 38

PI constant, 253
PipedInputStream class, 323
PipedOutputStream class, 323
PipedReader class, 329
PipedWriter class, 329
PLAIN_MESSAGEs, 391
plus signs (+)

for addition, 46–48
for assignment, 61–62
for incrementing, 40–41
for plus operator, 41
precedence of, 38
in regular expressions, 293
for string concatenation, 46–47, 260

Point class, 272
Point3D class, 194
policies for layout managers, 401
pop method, 271
port numbers, 437, 505
ports and sockets, 437

4419Book.fm Page 521 Tuesday, March 8, 2005 12:32 PM

522 position of components – remote interfaces

position of components
GridBag layout manager for, 424–427,

425–427
in layout managers, 399–401, 400

post-increment and post-decrement operators, 40,
505

postconditions for assertions, 151–152, 505
pow method, 254
practice exam, 476–497
pre-increment and pre-decrement operators, 40,

505
precedence of operators, 38–39
preconditions for assertions, 151–152, 505
preferred size

for components, 401
defined, 505
in GUI design, 468–469

preferredSize property, 389
previous method, 414–415
primitive data types, 7–9

conversions with, 103
arithmetic promotion in, 108–109
assignment, 103–107, 104–106
casting, 109–111, 112
method call, 107–108

defined, 505
random-access file methods for, 320
references to, 23

printStackTrace method, 141, 147
PrintStream class, 297–298, 327
PrintWriter class, 330
priorities, thread, 219, 465–466, 505
private access modifier, 74–75, 505
project assignment in developer’s exam, 352–353,

353
promotion, arithmetic, 49, 49, 108–109
prompts in GUI design, 471–472, 471
properties, 505
protected access modifier, 76–78, 506
protocols, 436–437, 506
Prototype class, 390–391
public access modifier, 74, 506
push method, 271
PushbackInputStream class, 327
PushbackReader class, 330
put method, 275

Q
quantifiers in regular expressions, 293
question marks (?)

for conditional operator, 60–61

precedence of, 39
in regular expressions, 293

QUESTION_MESSAGEs, 391

R
radio buttons, 371, 372
RadioDemo class, 371
random method, 254
RandomAccessFile class, 317–320
ranges

of data types, 8–9
in regular expressions, 292

re-use in object-oriented implementation, 170–171
read method

in DataInputStream, 323
in FileInputStream, 321–322
in RandomAccessFile, 319–320
in Reader, 329

readers, 327–330
readExternal method

in Account, 337, 446–447
in Externalizable, 336, 445

reading mode in file opening, 317–318
readObject method, 333, 335–338, 443–444, 446
readStringBuffer method, 333, 443
ready threads, 218, 218
rebind method, 456–457, 459
Rectangle class, 176, 179–180
recurse method, 316
redisplay method, 176
references

comparing, 52
conversions, 112–115, 113–114
defined, 506
initializing, 21
passing arguments by, 22–24
to primitives, 23

regional values for text, 294, 297
regions in Border layout manager, 405–411, 406,

408–409, 411–412
regular expressions, 291–293
relationships in object-oriented implementation,

172
RELATIVE feature, 431–432, 432
reliable protocols, 436–437, 506
REMAINDER feature, 431–432, 432
remainder operator, 45–46, 45
remote classes for RMI, 455
remote control, object streams for, 447–452
Remote interface, 454
remote interfaces, 454, 506

4419Book.fm Page 522 Tuesday, March 8, 2005 12:32 PM

Remote Method Invocation – shift operators 523

Remote Method Invocation. See RMI (Remote
Method Invocation) facility

remote references, 452–453, 453, 506
RemoteException class, 454
remove method

in Collection, 269
in Iterator, 270
in List, 271

removeAll method, 269
removeFirst method, 271
removeLast method, 271
renameTo method, 315
renderers in Swing, 379
replace method, 257–258
reserveACopy method, 151–152
reserved words, 5–6, 506
resizing in GUI design, 468–470, 469–470
resume method, 222
retainAll method, 269
return character, 10
reverse method

in Account, 337, 446
in Collections, 278
in StringBuffer, 259

RIGHT justification with Flow layout manager, 403
right shift operations, 49, 49
RMI (Remote Method Invocation) facility, 452

vs. object streams, 467
references in, 452–453, 453
steps in, 453–454

class creation, 455
client creation, 457–459
interface creation, 454
server creation, 456–457
starting programs, 459
stub creation, 455–456

summary, 459
rmic tool, 456
rmiRegistry command, 456
root nodes in trees, 382
round method, 254
rowHeights variable, 418, 422–423
rows, GridBag layout manager for, 418–423,

420–421, 423
rowWeights variable, 422–423
run method

in ServiceGiver, 442, 449–450
for threads, 215–217

Runnable interface, 216
running threads, 217–218, 218
runtime enabling of assertions, 151
runtime exceptions, 144–145, 506
RuntimeException class, 144, 147

S
SampleAction class, 388–389
SampleTree class, 385–387
Scanner class, 291–293
scanning text, 291–293
schedulers, thread, 214–215
scroll bars, 372–373, 373
Scrollable interface, 382
ScrollBarDemo class, 372–373
searching arrays, 278–279
seek method, 318
seekFromCurrent method, 319
seekFromEnd method, 319
Seeking Lock state, 227–228, 227
selection statements, 137–138

if/else constructs, 138
switch constructs, 139

.ser extension, 333, 443
Serializable interface, 334–335
serializable objects, 445–447
serialization

defined, 506
in file I/O, 332–338, 334
of streams, 443–444, 444

Server class, 448–449
server sockets, 440–443
servers

in developer’s exam, 355
for RMI, 456–457

ServerSocket class, 436, 440–441
ServiceGiver class, 442, 449–450
Set interface, 272–274, 506
setBackground method, 362
setBounds method, 401, 433
setCharAt method, 259
setDaemon method, 219
setEnabled method, 363
setFont method, 363
setForeground method, 362
setInvisible method, 364
setJMenuBar method, 376
setLayout method, 433
setLength method, 259
setLocation method, 362
setPriority method, 219
setSize method, 362, 399
setValueAt method, 378–380
shift operators

precedence of, 38
promotions with, 49, 49

4419Book.fm Page 523 Tuesday, March 8, 2005 12:32 PM

524 short-circuit logical operators – suspended method

short-circuit logical operators
precedence of, 39
working with, 58–60

Short class, 262
SHORT constant, 298–299
short data type, 7–8

converting, 105–106
wrappers for, 262

Shorthand class, 431–433
shortValue method, 264
show method, 414–415
showConfirmDialog method, 391
showMessageDialog method, 391
shuffle method, 278
signed data types, 8, 506
sin method, 254
single quote (’) character, 10
single-threaded programs, 214
size

of arrays, 12–13
of components, 399–401, 400, 427–431, 428
in GUI design, 468–470, 469–470

size method, 269
sketching in GUI design, 359–361, 360–361
skip method, 322
slashes (/)

for comments, 463
for division, 43–45
precedence of, 38

sleep method, 222
sleeping threads, 217, 218, 222, 223
Socket class, 436–437
sockets, 436

client, 437–440, 438–439
and ports, 437
server, 440–443
summary, 459
in TCP, 436–437

sort method, 278–279
SortedMap interface, 277
SortedSet interface, 273
sorting arrays, 278–279
sortRandoms method, 274
source files, 4–5
South region in Border layout manager, 405–411,

406, 409, 412
special characters, 10
split method, 293
sqrt method, 254
square brackets ([])

for arrays, 12
in regular expressions, 292

Stack class, 271
stack for processes, 24
stack traces, 141–142
standardized features in GUI design, 468
start method, 214–217
startsWith method, 257
statements in for loops, 133–134
states of threads, 217–218, 218
static features, 506
static import facility, 16–17, 86–87
static initializers, 85–86, 506
static inner classes, 187–188
static modifier, 82–85
static variables, 20
status lines, 406, 406
stop method, 217
StrangeSync class, 238–239
streams, 332–338, 334

chapter review lab, 460
high-level, 323–327, 325
low-level, 321–323
for remote control, 447–452
vs. RMI, 467
serializable objects in, 445–447
serialization of, 443–444, 444
sockets for. See sockets
summary, 459

stretch in cells, 424–427, 425–427
String class, 254–258, 256
StringBuffer class, 258–260
StringBuilder class, 260
StringLengthTableModel class, 379–380
StringReader class, 329
strings

concatenating, 46–47, 260–261
literals, 11, 507
String class, 254–258, 256
StringBuffer class, 258–260
StringBuilder class, 260

StringWriter class, 329
stubs, 453, 453, 455–456, 507
subclasses, access modifiers for, 78–79, 79
subMap method, 277
subSet method, 273
substring method, 257
subtract method

in Mathematician, 455
in MathServices, 454

subtraction, 46–48
Suit enum, 199–200
super method, 181–183
suspended method, 222

4419Book.fm Page 524 Tuesday, March 8, 2005 12:32 PM

suspended threads – toString methods 525

suspended threads, 217, 218
suspending threads, 222
Swing components

chapter review lab, 393
container, 364–367, 365, 367
JButton, 368–369, 369
JCheckBox, 370, 370
JComboBox, 375, 375
JLabel, 367–368, 368
JRadioButton, 371, 372
JScrollBar, 372–373, 373
JTextArea, 373–374, 374
JTextField, 373–374, 374
menu, 376–377, 377, 387–389, 389
methods for, 362–363
panes, 389–392, 391–392
summary, 392
table, 377–382, 381–382
tree, 382–387, 383, 387

switch constructs, 139
synchronized code, 507
synchronized keyword, 89, 228
synchronizing

parts of methods, 238–239
threads, 227–229, 227

T
tab character, 10
table components, 377–382, 381–382
TableCellEditor interface, 379
TableCellRenderer interface, 379
tagging interfaces, 335, 445, 507
tags in Javadoc, 463–464
tailMap method, 277
tailSet method, 273
tan method, 254
targets, thread, 216
TCP sockets, 436–437
ternary operator, 60–61, 507
test method, 451–452
TestRectangle class, 177
text

formatting, 294–298
representation of, 312–313
scanning, 291–293

text areas, 373–374, 374
text fields, 373–374, 374
TextDemo class, 373–374
third-party layout managers, 433

this keyword
implicit, 84
in inner classes, 185–187
in overloaded constructors, 182–183

Thread class, 214–216
thread schedulers, 214–215, 507
threads, 214

blocking, 223–224, 224
class locks for, 234
daemon, 219
deadlocks with, 236–238
exam essentials, 240
execution by, 214–217
garbage collector, 26
issues with, 465–466
monitor states, 224
monitors for, 225–227, 225
object locks and synchronization for, 227–229,

227
priorities, 219, 465–466
review questions, 241–247
sleeping, 222, 223
states of, 217–218, 218
summary, 239–240
suspending, 222
for synchronizing methods, 238–239
waiting and notifying for, 229–236, 229, 466
yielding, 220–221, 220

threadsafe classes, 269, 507
throw keyword, 147, 507
Throwable class, 140–141
throwing exceptions, 146–147
throws keyword, 143
tildes (~)

for bitwise inversion, 41
precedence of, 38

toArray method, 269
toBinaryString method, 265
toHexString method, 265
tokens in text scanning, 291
toLowerCase method, 257–258
toOctalString method, 265
toolbars, 406, 406
toString methods, 251

benefits of, 47, 252
for enums, 198–200
in Formatter, 295–296
for objects, 296
in StringBuffer, 260
in StringBuilder, 261
in VectorOfStrings, 462
for wrapper classes, 265

4419Book.fm Page 525 Tuesday, March 8, 2005 12:32 PM

526 toUpperCase method – zero, division by

toUpperCase method, 256–257
TrafficLight class, 195–196
transient modifier, 80, 88, 507
tree components, 382–387, 383, 387
TreeMap class, 276–277, 283–284
TreeSet interface, 272–273
TreeSetup class, 384–385
trim method, 257–258
try blocks, 140–143, 507
two’s complement numbers, 8
typesafe enumeration, 197–198, 507

U
UCS Transformation Format (UTF), 312–313
unary operators, 40–43

defined, 507
precedence of, 38

unboxing, 266–267, 507
underflow, 44
UnicastRemoteObject class, 454
Unicode, 10, 312–313

defined, 507
encodings for, 330–332, 331

unsigned data types, 8, 507
useDelimiter method, 291
UTF (UCS Transformation Format), 312–313

V
valueOf method, 265
values

in Map, 275
passing arguments by, 22–24

values method, 275
variable-length argument lists, 180
variables

access modifiers for. See access modifiers
in classes, 20–21

Vector class, 115, 271, 333–334, 334, 444, 444
VectorOfStrings class, 462–465
vertical bars (|)

for bitwise operator, 52–56
precedence of, 39
for short-circuit logical operator, 58–60

VERTICAL fill value, 426, 427
views in MVC design, 378
volatile modifier, 80, 88

W
wait method, 222, 224, 229–234, 251
waiting threads, 229–234, 229, 466, 508
WARNING_MESSAGEs, 391
weight property, 508
weights of columns, 418, 421–423
weightx variable, 421, 423
weighty variable, 421, 423
West region in Border layout manager, 405–411,

408–409, 412
while loops, 130–131
whitespace in regular expressions, 292
widening conversions, 105–106, 105–106, 508
width in text formatting, 296
width variable, 399
wrapper classes, 262–267, 508
write method

in DataOutputStream, 324–325
in FileOutputStream, 322
in RandomAccessFile, 319
in Writer class, 329

writeExternal method
in Account, 337, 446–447
in Externalizable, 336, 445

writeObject method, 334–337, 445–446
writers, 327–330
writeStringBuffer method, 332, 443
writeUTF method, 333, 443
writing mode in file opening, 317–318

X
x variable, 399
XOR operator

bitwise, 52–56
Boolean, 56–57

Y
y variable, 399
yield method, 220–221
yielding threads, 220–221, 220, 508

Z
zero, division by, 48

4419Book.fm Page 526 Tuesday, March 8, 2005 12:32 PM

	Complete Java 2 Certification Study Guide
	Cover

	Contents
	Introduction
	Assessment Test
	Chapter 1 Language Fundamentals
	Chapter 2 Operators and Assignments
	Chapter 3 Modifiers
	Chapter 4 Converting and Casting
	Chapter 5 Flow Control, Assertions, and Exception Handling
	Chapter 6 Objects and Classes
	Chapter 7 Threads
	Chapter 8 The java.lang and java.util Packages
	Chapter 9 I/O and Streams
	Chapter 10 About the Developer's Exam
	Chapter 11 Swing Components
	Chapter 12 Layout Managers
	Chapter 13 Object Streams and RMI
	Chapter 14 Putting It All Together
	Appendix A Practice Exam
	Glossary
	Index
	Team DDU

