
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 1

Latency-Guided On-Chip Bus Network Design
Milenko Drinić, Member, IEEE,Darko Kirovski, Member, IEEE,Seapahn Megerian,Member, IEEE,

and Miodrag Potkonjak,Member, IEEE

Abstract— Deep submicron technology scaling has two ma-
jor ramifications on the design process. First, reduced feature
size significantly increases wire delay, thus resulting in critical
paths being dominated by global interconnect rather than gate
delays. Second, ultra-high level of integration mandates design
of systems-on-chip that encompass numerous design blocks of
decreased functional granularity and increased communication
demands. The convergence of these two factors emphasizes the
importance of the on-chip bus network as one of the crucial
high-performance enablers for future systems-on-chip.

We have developed an on-chip bus network design method-
ology and corresponding set of tools which, for the first time,
close the synthesis loop between system and physical design.
The approach has three components: a communication profiler, a
bus network designer, and a fast approximate floorplanner. The
communication profiler collects run-time information about the
traffic between system cores. The bus network design component
optimizes the bus network structure by coordinating information
from the other two components. The floorplanner aims at
creating a feasible floorplan; it also sends feedback about the
most constrained parts of the network. We demonstrate the
effectiveness of our bus network design approach on a number
of multi-core designs.

Index Terms— Bus network design, latency, system synthesis,
on-chip communication.

I. I NTRODUCTION

A S applications have become more complex with in-
creased levels of hardware and software sharing (com-

munications, multimedia, video games, networking), designers
have striven for more gates on chip as well as simplified and
time-efficient design methodologies. Deep submicron (DSM)
as a technology and reuse as a design methodology have re-
cently emerged as means of overcoming the growing difficulty
of rapidly designing and verifying highly integrated systems-
on-chip. Due to design complexity and time-to-market pres-
sure, it is expected that future systems-on-chip are designed
as networks of virtual components. Virtual component (VC)
is a core wrapped with logic that enables it to I/O data to the
attached bus with an arbitrary bus protocol. Because of high
integration levels (100s of millions of transistors), the network
of cores is estimated to count hundreds of VCs, where each

Manuscript received March 20, 2004; revised November 11, 2004. This
work was supported by the IEEE.

M. Drinić is with Center for Software Excellence, Microsoft Corporation,
One Microsoft Way, Redmond, WA 98052. E-mail: mdrinic@microsoft.com

D. Kirovski is with Microsoft Research, One Microsoft Way, Redmond,
WA 98052, USA. E-mail: darkok@microsoft.com.

S. Megerian is with Department of Electrical & Computer Engineering,
Madison, WI 53706, USA. E-mail:megerian@ece.wisc.edu.

Miodrag Potkonjak is with the Computer Science Department, University
of California, Los Angeles, CA 90095, USA. E-mail: miodrag@cs.ucla.edu.

Copyright c© 2006 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

core is smaller than 50-100K gates. Wire latency in such cores
is estimated to less than 25% of the maximum on-chip delay.
This facilitates the timing closure within a core. The limitation
on the gate count enables the usage of traditional design
methodologies for VC design [1]. Such a design paradigm
does not pose significant restrictions to application design, as
most of the modern multimedia, graphics, and communications
applications use building blocks (e.g., controllers, DSP proces-
sors, Viterbi decoding, DCT, Huffman codec, Reed-Solomon
error correction, RSA and AES encryption).

Since decreased levels of module granularity in computation
result in higher communication costs, it is expected that the
performance of future core-based systems is greatly affected
by inter-core communication. Communication among cores in
DSM systems poses several design issues that can be classi-
fied as:(i) synchronization and(ii) performance optimization
problems. While latency insensitive synchronization between
cores can be resolved using relay stations and appropriate
communication protocols [2]–[4], to the best of our knowl-
edge, problems such as bus network design and core to bus
assignment have not been addressed to date.

In this paper, we present a novel system-level design frame-
work that, based on the communication profile of the mod-
ules involved, creates a single-chip bus network and assigns
cores to buses such that the overall processing throughput of
the system is maximized. The framework consists of three
components:(i) a communication profiler,(ii) a bus network
designer, and(iii) an approximate floorplanner. For a given set
of applications and a fixed number of pre-synthesized cores,
the designer initially simulates the communication behavior of
the system modules and creates a profile of the connectivity
and communication patterns among cores. The bus network
designer uses the communication profile to arrange on-chip
bus structures and core connectivity. Its goal is to create a
communication network which results in maximized expected
throughput. Note that the communication profiler provides
only estimates for actual communication delays on any specific
bus network. Therefore, the objective function is defined
heuristically.

The created bus network is then fed to the approximate
floorplanner which attempts to create a feasible layout. The
feasibility of the layout is measured by comparing bus wire-
lengths to an upper bound constraint. In case of an unsuc-
cessful search, the approximate floorplanner returns to the bus
network designer a list ofK best solutions with all unsatisfied
bus constraints. In the next iteration, the bus network designer
considers these solutions, their corresponding latencies, and
tries to rearrange the bus network such that at least one of these
solutions can be satisfied. The goal of the synthesis process is
to explore the solution space by toggling between infeasible

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 2

and feasible solutions and trying to find bus networks which
result in higher communication throughput.

The developed synthesis framework has been deployed in
optimizing performance in a number of core based designs
extrapolated from several applications running on the state-
of-the-art (30+ modules) systems-on-chip. Since the opti-
mization process estimates latencies and heuristically models
communication patterns, we have confirmed the throughput
improvement by simulating the communication of modules
using optimized and non-optimized (ad-hoc) bus networks.

A. Motivational Example

We present several design trade-offs involved in bus network
design using a design example presented in Fig. 1. Consider
eight coresC1, . . . , C8 which communicate with each other
in four control cycles as presented in Fig. 1(a). Buses are
connected using bridges. For simplicity and brevity, assume
that an instance of communication referred to as a control
cycle is a cycle on a bus necessary to complete transfer of
a data word between two cores, two bridges or a core and a
bridge connected to the same bus. Sending a message over
two bus bridges (three buses) takes three bus control cycles.
We have assumed a simple round robin arbitration scheme on
each bus. There exist more complex and more efficient bus
arbitration schemes. However, in cases when the number of
components attached to a single bus segment is limited as in
our case, round robin arbitration scheme yields comparable
results to more complex ones. The optimization goal is to
assign cores to buses, such that no bus has more than three
cores, and that all messages are delivered in as few control
cycles as possible.

A possible greedy approach would identify modules that
communicate most frequently among each other and assign
them to a single bus. An example of such a greedy strategy
would identify coresC1, C5, andC6, and assign them to a
single bus. The resulting core-to-bus assignment, presented in
Fig. 1(b-A), would takeseven bus control cyclesto deliver all
messages.

Let us consider the communication overlap among modules
as part of our heuristic assignment strategy. First, we define
a Communication-Connectivity GraphCCG as an undirected
weighted graph with a set of nodesC representing cores and
a set of edgesE representing existence of communication
between two cores. Next, we defineweight ωS of a control
cycle S as the cardinality of the set of communications that
occur at control cycleS. Weightw(E) of an edgeE(Ci, Cj)
in a CCG is defined as a sum of weights:

w(E) =
∑

S∈CS

ωS (1)

of all control cyclesCS at which coresCi andCj communi-
cate. ACCG that corresponds to the communication pattern
in the design example is presented in Fig. 1(c).

The goal of assigning a set of modulesM that (i) com-
municate frequently with each other and(ii) communicate to
other cores{C−M} at control cycles at which no other core
communicates amongM , can be modeled in the following

way. We define abusB as a partition of cores fromC,B ∈ C.
Next, we define anobjective functionOF (B) of a busB as
the sum of edge weights among coresCi, Cj ∈ B minus the
sum of edges adjacent to nodes inB andC −B:

OF (B) =
∑

Ci,Cj∈B

i 6=j

w(E(Ci, Cj))

−
∑

Ci∈B
Cj∈C−B

w(E(Ci, Cj)) (2)

We heuristically denote a particular core-to-bus assignment
asα-optimalwith respect to the above mentioned optimization
goal, if it represents a K-partitioning ofC into K buses with
maximal:

OF =
K∑

i=1

OF (Bi) (3)

The objective function for core-to-bus assignment presented
in Fig. 1(b-A) yieldsOF = −15. The corresponding partitions
of the associatedCCG are presented in Fig. 1(c-A).

Exhaustive search has identified the solution depicted in
Fig. 1(b-C) asα-optimal, resulting inOF = 3, and onlyfour
control cyclesrequired to deliver all messages among modules.
Hence, even on such a small example we have demonstrated
that optimal core-to-bus assignment, which involves a number
of often counterintuitive trade-off considerations, may signif-
icantly improve on-chip communication performance. In this
manuscript, we discuss a method for building and modeling of
the communication profile of a core-based system, we intro-
duce a viable set of heuristic objectives (α-optimality) which
aim at considering the trade-offs involved in bus network
design, and finally, we present interactive algorithms which
enable effective search for theα-optimal core connectivity.

II. RELATED WORK

A. The Effect of Deep Submicron on Design Strategies

While semiconductor researchers are announcing 0.04-
micron nominal channel length technologies [1], [5], [6] as
well as gate oxide implants as thick as a few atoms, both
EDA community is taking steps to address the emerging
synthesis problems associated with such technologies. For
example, Intel has already announced that it has built a
new SRAM chip with 500 million transistors using 65-nm
technology. The chip is scheduled for production starting
in 2005. Aggressive deep submicron (DSM) manufacturing
technologies are expected to result in:(i) significant increase
of wire latency due to increased RC (delay of a 0.1 micron
wide interconnect is an order of magnitude greater than that of
a 0.5 micron wire) [7],(ii) increased noise resulting in higher
likelihood of signal crosstalk and delay uncertainty [8],(iii)
current leakage through the gate oxide [9], and(iv) increased
power dissipation [10]. Although most of the posed problems
can be addressed at lower levels of design abstraction, the
problem of increased wire latencies has significant impact

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 3

C1 C3

C4 C5

C7 C8

C1 C5

C6 C5

C1 C2

C6 C8

C6 C1

Control
cycle

1 2 3 4

a) Communication schedule between cores

C1 C7

C8

C6

C5C4

C3

C2

C1 C2

C3

C4

C5

C6 C7

C8

C2 C3

C4

C1

C6

C5 C7

C8

C1 C2

C3

C4

C6

C5 C7

C8

2

3

3

2

2

2

3
1

C1 C7

C8

C6

C5C4

C3

C2

2

3

3

2

2

2

3
1

C1 C7

C8

C6

C5C4

C3

C2

2

3

3

2

2

2

3
1

Solution
(A)

Solution
(B)

Solution
(C)

Solution (C)Solution (B)Solution (A)

c) Communication-Connectivity Graphs for the three different core-to-bus assignments

b) Three different core-to-bus assignments.

Solution (A): OF=(0-8)+(5-11)+(2-3)=-15
Solution (B): OF=(5-3)+(5-6)+(2-3)=0
Solution (C): OF=(5-3)+(3-4)+(5-3)=3

d) Objective function computation for the
three different core-to-bus assignments.

Bridge

Fig. 1. An example of system throughput performance obtained for three different core to bus assignments.

on the higher level design stages. At lower design levels,
researchers have explored ways of improving interconnect
performance by topology optimization [11], buffer insertion
and sizing [12], [13], bus driver improvements [14], and
optimal wire sizing [15]. As interconnect delay is estimated
to dominate (up to 80% of) the circuit’s critical path, high-
level and logic synthesis optimization methods, which take
into account this phenomenon, have to be deployed [1], [16].
Addressing the impact of slow interconnects at higher design
stages requires interactive collaboration between the high-level
design tools and placement and routing tools [1]. For example,
such collaboration can result in floor and wire planning based
on RTL descriptions [17]. A different path in high-level design
for DSM is exploration of communication protocols and core
I/O wrappers for functional insensitiveness to interconnect
delays [2]–[4], [18]. An important problem of high-level
design is the communication architecture synthesis. A number
of approaches to solving this problem have emphasized the
minimization of the application response time [19], core to bus
assignments and network protocols for an improved commu-
nication throughput [20], [21], integration of communication
protocol selection with hardware/software partitioning and co-
simulation [22], [23], and guaranteeing quality of service for
networks on silicon [24].

B. Floorplanning for DSM

Floorplanning in general, refers to finding the best physical
placement of modules in a design, subject to area, wiring and
other metrics. The traditional heuristic approaches to floor-
planning are based on the min-cut method [25], [26], force-
directed guidance [27], [28], rectangular dualization [29], and
simulated annealing [30], [31]. A good survey of floorplanning
techniques and involved trade-offs is presented in [32].

Recent advancements in floorplanning for DSM include a
variation of the force-directed method that improves the pre-
vious results by considering several different forces to reduce

cell overlaps and improve area. It has been demonstrated that
the Wong-Liu floorplanning algorithm can be combined with
module placement and interconnect route planning using more
accurate interconnect cost models. Finally, the integration of
floorplanning and high level synthesis can be used to improve
storage requirements and data transfer performance of the
system.

C. On-Chip Bus Standards

On-chip bus design has attracted little attention among
academic researchers. However, there is a number of industrial
initiatives, mainly within the VSI Alliance to initiate a set of
guidelines for on-chip bus and bus wrapper design. The target
of possible standardization is ease of attaching cores with
arbitrary bus protocols to system buses. IBM has proposed an
open on-chip bus architecture, CoreConnect, compliant with
the VSI proposal. Similarly, the Parallel Intermodule (PI) bus
has been proposed to address the demands of real-time and
fault tolerant applications [33].

III. G LOBAL DESIGN FLOW

The complexity of modern application-specific systems has
resulted in design flows which consist of a number of stages.
The two most widely accepted design flows are the golden
model and the waterfall model. The golden model is a copy
of the design specification at some level of abstraction (usually
RTL) at which most of the changes are performed [34]. The
underlying concept behind the waterfall design process is a
progression through various levels of abstraction with the
intent of fully characterizing each level before moving to the
next level. Designing for DSM involves a number of alterations
to the traditional design flows [1]. Most of the changes are
related to performing higher level design stages (such as
logic synthesis) with approximation of effects caused by DSM
[17]. Since obtaining those effects requires computing at least

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 4

an approximate layout, commonly the design flow becomes
iterative and interactive.

In this paper, we present a novel system-level design
framework which, based on the communication profile of
involved modules, creates a single-chip bus network and
assigns cores to buses such that the overall processing through-
put of the system is maximized. The framework consists
of three components:(i) a communication profiler, (ii) a
bus network designer, and (iii) an approximate floorplanner.
The global design flow of this framework is presented in
Fig. 2. For a given set of applications and a fixed number
of pre-synthesized cores, the designer initially simulates the
communication behavior of the system modules and creates a
profile (CCG) of the connectivity and communication patterns
among cores. The communication profiler takes into account
temporal correlation of communication patterns among cores.
Based on this communication profile, the design flow enters a
synthesis loop which toggles between bus network design and
approximate floorplanning.

The bus network designer rearranges the bus network by:

• removing or adding bridges between buses, or
• reassigning cores from one bus to another.

Its goal is to create core connectivity which results in max-
imized expected communication throughput. This objective is
estimated heuristically by considering communication delays
and overlap. Communication delay is proportional to the
number of bridges (or replicators [2]–[4]) along the message
path.

The created bus network (i.e., core connectivity) is then
fed to the approximate floorplanning tool which attempts
to create a feasible layout. The feasibility of the layout is
measured by comparing bus wirelengths to an upper bound
constraint. The approximation floorplanning tool is based on
a modified simulated annealing algorithm which throughout
its search memorizes a poolΠ(K) of K best solutions. In
case of unsuccessful search, the tool returns to the bus net-
work designer, the listΠ(K) of solutions with all unsatisfied
wirelength constraints. In the next iteration, the bus network
designer considers the poolΠ(K) of best solutions and tries
to rearrange the bus network such that at least one of these
solutions can be satisfied.

The designer starts the loop with an initial bus network
solution which has a feasible layout and results in relatively
low-quality performance. The goal of the synthesis process is
to explore the solution space by toggling between infeasible
and feasible solutions and try to find bus networks which result
in higher communication throughput.

As the complexities of behavioral specifications increase,
both design flows are becoming more vulnerable to the engi-
neering change (EC) process due to the demand for updating
design solutions. To address this issue, we have developed a
generic EC methodology, applicable to all design stages, which
facilitates constraint manipulation to augment the design with
flexibility for future changes [35]. The EC is conducted by
searching for a correction that induces minimal perturbation
of the optimized solution.

Applications

Communication
profiling

CCG

Network designer

Partitioned CCG

EngineeringChange Pre-processing

Approximate Floorplanner

Success?

Pool of solutions
and their unsatisfied

constraints

NO

Verification of system performance
using communication profiling

YES

Current solution -
latency estimation

Fig. 2. Global design flow of the interactive bus network design process.

IV. PRELIMINARIES

In order to position our work, in this subsection, we
present the related hardware and communication model, and
outline our communication profiling methodology. The generic
hardware model that we have adopted, assumes the following
set of constraints: cores have the property of being hard, i.e.,
with constant layout, and hence, with specific location of
their bus interface. Cores are connected with buses of limited
maximal length. This limitation is posed by the maximum
length of the bus transaction control cycle. The bus network
is switched using a topology of bus bridges, where a bus
bridge is a crossover of maximally four buses with associated
synchronization and buffering logic [2]–[4]. The area of a bus
bridge is approximated at 5% of an average core size per
bridge port. Such approximation stems from the complexity
of modern bus interfaces [36]. Bus arbitration is performed
statically with priorities being assigned using the round robin
arbitration scheme [37]. We allow all interconnect optimiza-
tions targeted for DSM (see Section II). Bus latency is modeled
using a second order polynomial of the wirelength adopted
from. Message routing across the bus network is assumed to
be deadlock free.

A. Communication Profiling

One of the crucial components of our synthesis framework
is the communication profiler. A completely accurate com-
munication information could be obtained if one conducted
extensive, time consuming simulations for a given application
over the set of all possible configurations of a bus network.
Even if such a simulation was conducted, the very next set of

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 5

input data could change communication patterns. Therefore,
we decided to employ statistical techniques. Our goal is to
estimate the chances that a given bus architecture is capable
of executing a given application under the user specified
timing constraints. This estimate is formed by extracting a
CCG. The CCG is extracted assuming dedicated connectivity
and distribution of each piece of communication data over
a number of bus control cycles. Similar ideas have been
widely used in synthesis literature [38]. In addition to our
experimental results (Section VI), we justify our approach
using at least three conceptual and intuitive reasons:

(i) majority of applications have high ratio of computation
versus communication in terms of the number of oper-
ations normalized with the number of transfers between
blocks;

(ii) this type of systems typically has bursty communication
so that small timing fluctuations do not change the
communication overlap patterns; and

(iii) strict timing constraints and deployed synchronization
mechanisms further facilitate high predictability of rel-
ative timing of data transfers.

The communication profiler is executed as a pre-processing
step with a goal to summarize the essential statistics of
communication patterns of the implemented application. The
input to the communication profiler is an instance of the com-
munication model of our target system. The model consists of
two types of cores: masters and slaves. The communication
of a slave is modeled with the following operators:{init:ID},
{done:ID}, and a patternP of {receive:ID:length}, {nop},
and {send:ID:length} signals, where ID represents a unique
identifier of a core and length denotes the burstiness of the
signal in control cycles. The communication of a master is
modeled as a semi-infinite stream of statistically modeled
multiplexed signals:{init:ID}, {done:ID}, and patternsPi,
(i = 1, k), where each patternPi is defined as in the case
of a slave core. Both masters and slaves stall at{init:ID},
{done:ID}, and {receive:ID:length}. In our experiments, we
have used traffic patterns extracted and extrapolated from the
MediaBench benchmark suite [39]. An example of a simple
communication between a master and a slave is shown in Fig.
3.

������

�����

�	
�

	�	��
� �����
�������� �����
���� ��� ����	���
��������

�����

�����

Fig. 3. An example of a simple communication between a master and a slave.
The master initiates the transfer, sends a packet, closes the communication
channel and waits for an acknowledgment.

The communication profiler collects run-time information
according to the definitions presented in Subsection I-A.
Weight w(E) of a CCG edgeE(Ci, Cj) is computed as a
sum of vector sums, where each vector sum is computed per
Ci − Cj transaction.

w(E) =
∑

S∈CS

D∑

i=−D

ωSi · pdf(i) (4)

The vector sum is computed as apdf()-weighted sum of
constraints in the preceding and succeedingD control cycles
to the control cycleS at which the transaction occurs. The
CCG, which is built during a single run of the communication
profiler, is post-processed by removing edges with small
weights, typically smaller than the median of all weights in the
CCG minus one standard deviation. By design, we maintain
the network connected at all design stages (Subsection V-A).
Therefore, we can safely remove low weight edges, improve
tool’s runtime and maintain valid connectivity of the bus
network.

The intuition behind the use of a weighting function,pdf(),
is similar to the intuition used in force directed scheduling
[38]. In this scheduling algorithm, the first step is to determine
ASAP and ALAP schedules. Force directed scheduling uses
thepdf with uniform distribution of each operation between its
ASAP and ALAP times as an estimate as to when a particular
operation will eventually be scheduled. Note, that the activity
at actual control steps heavily depends on the allocated hard-
ware. However, the estimation is often reasonably accurate. If
we replace the scheduling of an operation with the scheduling
of transfers by using a bus network, it is easy to see that
the use of thepdf facilitates robustness of estimation. The
pdf distributes the weight over a certain time period such
that the time fluctuations of the communication overlap are
captured. While a number o differentpdfs can be used, we
have chosen a normalized Gaussian probability distributions
in our methodology.

V. L ATENCY-GUIDED DESIGN OFON-CHIP BUS

NETWORKS

A. Network design techniques

In this subsection, we present the bus network designer. We
start by introducing and formally defining the bus network
design problem, and discussing its complexity. The main part
of the section presents the algorithm for network design,
followed by the description of the output it provides to the
synthesis-driven floorplanner.

A typical system-on-chip is composed of a number of
independent subsystems (cores) that exchange data. The goal
of the bus network design algorithm is to create a bus network
and a core to bus assignment such that the overall throughput
of the system is maximized. In the first run of the algorithm,
its input consists of a set of cores, a communication profile
of the system applications represented as aCCG, and an
initial ad-hoc solution (a starting bus network and bus-to-core
assignment with a floorplan). In the subsequent runs, the ad-
hoc solution as an input is replaced with the information from
the floorplanner which quantifies the constraints that cannot be
satisfied with respect to the solution obtained in the previous
run of the bus network designer.

We start the formal description of the problem with a
series of related definitions. We first define an extension to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 6

theCCG, theHyperedge Communication-Connectivity Graph
hCCG as an undirectional graph where aHypernodehN is
a collection of nodes inCCG and aBus HyperedgeBhE
is a hyperedge that encompasses at mostQ hypernodes, i.e.,
the maximum number of buses attached to a bridge. We
define a relationhN ∝ BhE whenhN is covered byBhE.
HypernodehN is semi-free, if it belongs to only oneBhE.
HypernodehN is seizedif hN ∝ BhEi and hN ∝ BhEj ,
whereBhEi 6= BhEj . According to its definition, anhCCG
formally describes a bus architecture. WhilehN represents
a bus segment,BhE represents a bridge and its relation to
adjacent busses. AChain of BhEsis a set ofBhEs such that
there exists noBhE that does not overlap with anotherBhE in
the chain. AhCCGis connected, if there exists a chain ofBhEs
which encloses all nodes ofCCG. HypernodehN is valid, if
it satisfies the relation|hN | ≤ M . An hCCG is valid, if and
only if (i) it is composed of validhNs, (ii) if any two BhE
overlap in maximum onehN, (iii) if no hN belongs to more
than twoBhEs, and(iv) if hCCG is connected. An example
of a valid hCCGand its corresponding bus structure is shown
in Fig. 4.

It is important to stress that technology-specific limitations
for a desired control cycle (parasitic capacitance of the bus
segment) are reflected through three design constraints:(i)
λmax - maximum length of a bus segment,(ii) M - maximum
number of cores that can be attached to a bus segment
(hypernode cardinality|hN | ≤ M), and (iii) Q - maximum
number of bus segments attached to a single brigde/router.

C1 C2

C3

C4

C5

C6 C7

C8

C1 C7

C8

C6

C5C4

C3

C2

2

3

3

2

2

2

3
1

a) Hyper-Communication-Connectivity Graph

Bus Hyper-Edge

Hyper-Node

b) Corresponding bus structure

Fig. 4. An example of ahCCGand its corresponding bus structure.

We formally define the trade-offs involved in generation of
bus networks and core to bus assignment using an objective
functionOF (its simplified version is presented in Subsection
I-A, Equation 3):

OF =
|CCG|∑

i=1


 ∑

Cj ,Ck∈hNi

w(E(Cj , Ck))−

∑

∀Cj∈hNi

Ck∈hCCG−hNi

w(E(Cj , Ck)) · |π(Cj , Ck)| · Φj,k


 (5)

whereπ(Cj , Ck) represents the routing path between coresCj

andCk, and|π(Cj , Ck)| represents the path length (latency is
modeled proportional to the number of bridges betweenCj

and Ck). More formally, |π(Cj , Ck)| is equal to the number

of BhEs in the routing chain that connects thehN(s) which
containCj andCk. Φj,k is defined as the sum of bus segment
workloads on the path fromCj to Ck (Cj → Ck):

Φj,k =
∑

∀hN∈Cj→Ck

φ(hN). (6)

A workload φ(hN) of a bus segmenthN is defined as
the percentage of time when the bus segment is in use by
cores associated to it.φ(hN) is determined from the statistical
behavior of each core for a given application workload. As
with other parameters of the communication profile,φ(hN)
is an estimate based on the corresponding CCG.

The objective function has been derived with the following
set of incentives:(i) cores which communicate frequently
should be placed on the same bus,(ii) cores attached to
different buses should communicate through as few as possible
bridges, and(iii) congestion of individual buses should be
minimized. Important features of the objective function are
its global system’s performance1 characterization andem-
pirical correlation to system’s throughput (see Section VI).
The search for anα-optimal design (maximized OF) can be
abstracted as follows.
Problem: Balanced Partitioning of an hCCG.
Input: An hCCG hypergraph and a real numbera.
Question: Is there a balanced partitioning of hCCG into a set
of hNs which results into a valid hCCG such that its OF is
greater thana?

The problem of Balanced Partitioning of an hCCG is com-
putationally intractable as it can be straightforwardly restricted
by imposing M = 2 and simplifying OF as presented
in Subsection I-A, to the NP-complete balanced partitioning
problem [40]. To address this difficult problem, we have used
simulated annealing as a search algorithm. The algorithm is
illustrated using the pseudo-code in Fig. 5.

The developed components of the algorithm that have been
augmented into a traditional simulated annealing search engine
are: a selection of atomic solution alterations,moves, and an
engineering change pre-processing. We first describe the set of
movefunctions. Moves can be classified into two categories:
moving CCG nodesC across hypernodeshN and modifying
hCCG hyperedgesBhEs. Moves do not affect the underlying
CCG structure.

In the first category, we distinguish two differentmove
actions: (i) SwapNodes(Ci, hNi, Cj , hNj) node swapping
between hypernodes and(ii) MoveNode(Ci, hNi, hNj) node
transfer from one hypernodehNi to anotherhNj . If |hNi|
is equal to one before theMoveNode(Ci, hNi, hNj) op-
eration, hypernodehNi can be removed from the list of
hypernodes. BothSwapNodes() and MoveNode() are not
performed if the resultinghCCG is not valid. Examples of
the SwapNodes() and MoveNode() moves are illustrated
using Figures 6 and 7.

The second category of movesMoveBhE()modifies hy-
peredges and thus, the bus network structure. There are

1We interpret the global system performance in this context as the fulfill-
ment of strict timing requirements and the overall communication throughput
of the resulting network.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 7

T = T0; currentPartition = initialPartition
EngineeringChangeProcedure(FloorplanConstraints)
While (T > TF)

currentPartition = bestPartition
While (cumulative improvement≥ σ)

a = random()
Case(a > const1) :

currentPartition.SwapNodes(random())
Case(a < const1)&(a > const2) :

currentPartition.MoveNode(random())
Case(a < const2) :

currentPartition.MoveBhE(random())
δ = currentSum−OF ()
If (δ < 0) then Accept modified currentPartition
elseAccept modified currentPartition with

probability p = e−
δ
T

End while
Decrease temperature

End while

Fig. 5. Pseudo-code of the simulated annealing algorithm for balanced
partitioningCCG.

C1 C7

C8

C6

C5C4

C3

C2

2

3

3

2

2

2

3
1

C1 C7

C8

C6

C5C4

C3

C2

2

3

3

2

2

2

3
1

a) Before the move

Selected
Nodes

a) After the move

hN[1]
hN[2]

hN[3]

hN[2]

hN[1]
hN[3]

Fig. 6. An example of anSwapNodes(C1, hN2, C4, hN1) move.

three possible alternations of this move. The first one is a
removal of a selectedBhE. In this case, otherBhEs at an
ε-distance equal to one, pseudo-randomly acquire all semi-
free hypernodes from the removedBhE (see Fig. 8(2)). We
define ε-distance of a hypernodehN , hN ∝ BhE, as a set
of hypernodes covered byBhEs which are included in all
chains of lengthε starting fromBhE. The second variant of
MoveBhE() is regrouping as illustrated in Fig. 8(3). Here,
the set HN of all seized hN ∝ BhE is released from
BhE and a semi-freehNx from anotherBhEx is seized by
HN to create a new hyperedgeBhEy = hNx ∪ HN . The
third variant (see Fig. 8(4)) ofMoveBhE()creates two new
hyperedgesBhEx andBhEy from a parent hyperedgeBhE

C1 C7

C8

C6

C5C4

C3

C2

2

3

3

2

2

2

3
1

C1 C7

C8

C6

C5C4

C3

C2

2

3

3

2

2

2

3
1

b) After the movea) Before the move
Selected node

hN[1]

hN[2] hN[2]

hN[1]hN[3] hN[3]

Fig. 7. An example of aMoveNode(C6, hN2, hN3) move.

by pseudo-random bipartitioning ofBhE. If there exists only
one seizedhN ∝ BhE, one of the partitions with only semi-
free hypernodes is regrouped with a pseudo-randomly selected
hyperedgeBhEz 6= BhE. MoveBhE()is only performed on
higher search temperatures since it significantly changes the
structure of thehCCG. MoveBhE()by construction preserves
the validness ofhCCG. Examples of all three variants of
MoveBhE()and their corresponding bus structures are depicted
in Fig. 8.

Although some moves (e.g.,MoveBhE()) impact a bus
network more than others (e.g.,SwapNodes()and MoveN-
ode()), in order to fully preserve the integrity of the simulated
annealing optimization mechanisms, at all temperatures of the
annealing process, all deployed moves were applied in the
same proportion. This decision was further accentuated by the
observation that computationally the most expensive compo-
nent of simulated annealing is the random number generation
which can be kept low, if all moves are equally likely at
all temperatures. Finally, note that at different temperatures
different subsets of moves were used.

selected bus
hyperedge

1) Starting position

2) Removing BhE

3) Regrouping

4) Inserting BhE

a
b

c

d

e

f

g

h

i

j

a
b

c

d
e

f

g h i’’

j’’

i’

j’

a
b

c

d
e

f
g

i

j

a
b

c

d
e

f
g h i

j

h

hypernode

bus
hyperedge

a d

b c

e

f

g

i

j

h

a d

b c

e

f

g

i

j

h

a d

b c

e

f

g

i

j

h

a d

b c

e

f

g

i’

i’’
h

j’

j’’

Fig. 8. An example of anMoveBhEmove.

The interactivity of the bus network designer and the
approximate floorplanner is enabled through an engineering
change (EC) procedureEngineeringChangeProcedure(). The
goal of this procedure is to mark the feasible portion of the bus
network as unchangeable and to reduce the solution space and
thus, search time for the new iteration of simulated annealing.
Due to brevity, we do not present the developed EC technique
as the key concepts have been adopted from a generic EC
methodology [35].

The developed EC process restricts certain subdomains
of the solution space by adding constraints based on floor-
planner’s report. This report contains quantitative information
about the satisfiability of constraints posed by the output of the
balanced partitioning ofhCCG. The EC technique defines the
likelihood p(object) to participate in amoveaction for each
node C ∈ hCCG and hyperedgeBhE ∈ hCCG. A core
and/or a busobject, that often violated theλmax technology
dependent parameter, is set with highp(object). The bus
network designer outputs the final bus connectivity and core
to bus assignment (the set of hypernodeshN ∈ hCCG,
hyperedgesBhE ∈ hCCG, and nodesC ∈ hCCG of
the partitionedhCCG) to the approximate floorplanner for
technology parameter evaluation.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 8

B. Synthesis-Driven Floorplanning

In this subsection, we present the approximate floorplanner.
First, we characterize the contribution of our floorplanning
algorithm. Then, we formally define the problem and the input
and output data structures. Finally, we discuss the technical
details of our algorithm and its implementation.

The quality of the resulting bus network is highly depend-
able on the information the floorplanner tools is providing via
its feedback to the network designer. Therefore, we designed
the floorplanner tool such that it better addresses the require-
ments of a bus network design. It considers higher granularity
blocks rather than gates. Its primary goal is to optimize the
length of the bus network and the length of each individual
bus segment as opposed to optimizing individual wire length.
One of the main features of our floorplanner is that it collects
statistics during its runtime. Each move and each snapshot of
the current floorplan are a potential indication of the actual
distance from the solution that satisfies the given constraints.
This information is essential for the network design tool such
that the global design flow converges toward a solution of good
quality.

At the heart of the floorplanning task lies the rectangle
packing problem: given a set of rectanglesC of arbitrary di-
mensions, place them with no overlap in the smallest possible
bounding rectangle. The arrangement of rectanglesC repre-
sents their floorplanF . One of the main problems associated
with rectangle packing is that in two dimensions, rectangle
placement solutions are continuous and infinite. To address
this issue, we use the sequence pair based representation
introduced in [31] which provides a compact representation
that is proven to be P-admissible. We formally define our
latency-guided approximate floorplanning problems as:

Problem: Approximate latency-guided floorplanning.
Input: A set of coresC = {Ci|i = 1, . . . , |C|}, a set of
bridgesBhE = {BhEi|i = 1, . . . , |BhE|}, an hCCG, a bus
length constraintλmax, and a real number MaxArea.
Question: Is there a floorplan F of C such thatArea(F) ≤
Max Area and ∀hNi ∈ hCCG, Length(hNi) ≤ λmax.

Due to the computational intractability of the rectangle
packing problem [11], we have developed a variant of a
traditional simulated annealing based approach to search the
solution space described above. The algorithm is illustrated
using the pseudo-code in Fig. 9.

At each step in our simulated annealing process, we calcu-
late the minimum area required by each solution instance using
the method presented in [31]. As each moduleMi ∈ C ∪ B,
is assigned an exact placement coordinateMi(xi, yi) in the
plane. To estimate bus lengths, we use 1/2 the perimeter of
the smallest bounding box (BBi) of each bushNi ∈ hCCG.
The objective function that simulated annealing optimizes is
a linear combination of the area and bus length requirements.
By varying the coefficients of this function, one can increase
or decrease the degree of importance of each constraint. The
equation below illustrates the estimated cost that is optimized
during the floorplanning process:

T = T0; M = C ∪B; currentF loorplan = Initial F loorplan(M)
EngineeringChangeProcedure(hCCG)
While (T > TF)

currentF loorplan = bestF loorplan
While (cumulative improvement≥ σ)

a = random(LongestBus, ShortestBus)
Case(a > Const) : currentF loorplan.Greedy Move()
Case(a ≤ Const) : curerntF loorplan.Enabling Move()
Current Area = Area(currentF loorplan)
For each hNi ∈ hCCG

If (Length(hNi) > λmax)
Add BBi to violated constraints list

End For

Current Cost = b · Current Area + d ·
|CCG(hN)|∑

i=1

BBi

Decision: Accept or reject currentFloorplan.
If Current Cost ≥ min(Cost(Πi ∈ Π(K)

Add currentFloorplan toΠ(K).
End while
Decrease temperature

End while

Fig. 9. Pseudo-code of the simulated annealing algorithm for approximate
latency-guided floorplanning.

Fpl Cost = b · Current Area + d ·
|CCG(hN)|∑

i=1

BBi, (7)

where constantsb andd are determined empirically.
The floorplanning tool outputs several important statistics

to the network designer. During simulated annealing, we keep
track of theK best solutions encountered (Π(K)). For each
solutionΠi ∈ Π(K), we report the area and the violated bus
constraints. In addition to the best solution instances found,
we also report the overall percentage of instances that each
bus constraint has violated.

The standard simulated annealing process is augmented with
solution transformation actions,moves. We define two types
of moves: greedy and enabling moves. Depending on the
lengths of the shortest and the longest buses, we assign the
probabilities of taking either the greedy or enabling move.

In the greedymove, we select the longest bus and try to
improve the placement of its modules. We calculate the center-
of-massCm of the bus by averaging thex andy coordinates
of each external connection of the bus. We then calculate a
force vectorV for the module that has the longest Manhattan
distance fromCm. V is used to update the sequence pair
strings such that the selected module is moved in the direction
of V in proportion to the magnitude|V |.

Similarly, in theenablingmove, we select the shortest bus
and try to relax the placement of its modules. We calculate
the center-of-massCm and force vectorV as described above
with the exception of selecting the module closest to theCm.
We update the sequence pair strings such that the selected
module moves in the opposite direction ofV in proportion to
the magnitude of|V |.

A special case in both the greedy and the enabling moves
arises when a bridge is selected to be moved. In this case,
the force calculated for the bridge is an average of the forces
acting on the bridge from all buses connected to the bridge.
An example of a resulting floorplan which satisfies given bus

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 9

wirelength constraints for a design with 100 cores is shown
in Fig. 10.

Fig. 10. An example of a resulting floorplan for a design with 100 cores.

C. Discussion

There is a number of other possible algorithmic approaches
besides simulated annealing that can be applied to problems
defined in Subsections V-A and V-B. Many types of heuristic,
iterative improvement, probabilistic, integer linear and non-
linear programming and other types of algorithms can be
easily envisioned and realized for the addressed task. We
decided to use a probabilistic approach mainly because of the
complex structure of interacting constraints and complexity of
modeling. The second aspect on which our decision was made
is that simulation and extraction of estimation based on hCCG
are time consuming. Therefore, even if run-time intensive
optimization is conducted, the overall additional overhead to
the overall approach is relatively low.

VI. EXPERIMENTAL RESULTS

We have demonstrated the effectiveness of our synthesis
paradigm on a set of synthetic designs. The design benchmark
has been assembled using a library of intellectual property
cores from [41]. The cores varied from controllers, crypto and
DSP processors and functions, signal modulators, multimedia
codecs, communications and peripherals ASICs, voice codecs,
etc. The area for each core was estimated based on the core’s
gate count.

Currently, there are no established benchmarks for synthesis
of systems on chips. Very few applications are available in
public domain. We were able to obtain two large communi-
cation applications from our industrial partners. However, we
are bound by non-disclosure agreements so we are not able to
publish the obtained results. In order to circumvent this prob-
lem, we decided to extrapolate applications from MediaBench
benchmark suite [39]. The extrapolation was conducted in the
following way. We identified manually functional blocks that

were targeted for implementation on a single core. Each block
represented a single node in a hCCG. Then, we increased the
number of blocks. Next, we connected new hCCG nodes to the
remainder of the hCCG as well as one to another. The edges
were added in such a way that each new hCCG node hadm

n
% more edges with proportionally more weight, wherem and
n were the existing number of edges and nodes respectively.

The final step was the aggregation of multiple original and
extrapolated single applications. That was accomplished by
adding a single edge between two atomic applications. The
edge had a weight that is proportional to the original output
of the application with higher output. While, obviously, the
synthetic applications were not complete replacements for
generic system on chip applications, the developed model did
have statistically similar properties. Application requirements
were determined based on a statistical model of an application,
however, with certain requirements for general-purpose, DSP,
crypto, communications, and speech processing.

We demonstrate our approach on computationally intensive
applications where the ratio of computation to communication
is relatively high and where strict throughput and synchro-
nization timing constraints are imposed. While, in principle,
one can envision ways to generalize the approach to reactive,
control-dominated and other types of applications, it is not
clear to what extent the proposed approach would be effec-
tive. Therefore, we restrict our attention to computationally
intensive application, such as one found in MediaBench [39].

The experimental results are presented using Table I.
Columns 1-4 describe the tangible properties of each sys-
tem: application emphasis, estimated number of gates [41],
number of buses, and number of bridges. Columns 5 and 6
quantify the run-time properties of the synthesis framework:
the number of complete iterations of the bus network design
and floorplanning loop and the elapsed total run-time of the
semi-automated process. The last two columns represent the
following properties of the obtained solution:(i) optimized
system throughput as a multiple of the throughput obtained
by the initial ad-hoc system which is fed as a starting solution
to the bus network designer and(ii) the median ratio of
idle cycle time on the system buses. During our experiments,
we have explored different strategies for selecting the initial
solution: greedy heuristic, random elimination, and biased
random elimination. Greedy heuristic starts with complete
solution where we assign a dedicated interconnect between
any two blocks that exchange data. It consequently at each step
eliminates interconnect with the smallest amount of traffic and
assigns its traffic to bus network that are able to accommodate
additional traffic and have the highest utilization ratio. In
the first variant of random elimination, we randomly selected
which interconnect to eliminate and to which to assign traffic.
In the second variant, biased random elimination, the selec-
tion of interconnect for elimination and traffic reassignment
was also random. However, the probabilities for elimination
were inversely proportional to traffic and the probabilities
for assigning traffic were directly proportional to the traffic.
Both of the randomized strategies were augmented with restart
strategies. The termination criteria was that in 100 consecutive
attempts no additional improvement with the respect to the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 10

Design Cores Gate Buses Bridges Synthesis loop α-optimal Solution Properties
Specification count Iter. Time Throughput Median bus

idle time ratio

DSP+crypto 13 1M 4 2 3 15min 1.46 0.45
GPP+communications 30 1.8M 11 4 4 1h 1.57 0.71

GPP+DSP 75 4.2M 21 7 5 5h 2.03 0.43
Communications+speech 100 5.4M 31 12 5 11h 3.11 0.79

DSP+speech 125 7.5M 41 15 5 17h 2.17 0.40
GPP+peripherals+communications 150 9.6M 47 18 7 21h 2.42 0.43

GPP+crypto+peripherals 200 15M 62 23 9 35h 3.16 0.67

TABLE I

QUANTIFICATION OF THROUGHPUT IMPROVEMENTS USING THE DEVELOPED BUS NETWORK DESIGNER FOR A NUMBER OF BENCHMARK DESIGNS

EXTRAPOLATED FROM REAL-LIFE APPLICATIONS [39].

best current solution was detected. Different initial solutions
had no effect to the quality of the final solution. An example
of a design and its resulting bus network is shown in Fig. 11.
The throughput improvement for various designs ranged from
46% to 216%. We reported the throughput improvement with
respect to the initial solution that yielded the best throughput.
Run-times per synthesis loop were increasing from 15 minutes
to 35 hours for designs that ranged from 1 million (13 cores
and 2 bridges) to 15 million (200 cores and 23 bridges) gates.

������

���������

�	
�� ��	
�
��� ���� ���

�
�����
��� ����

�������

�
�
�
�
��� ���!

��"���

#
$����

��� !%�%
��$����

��#&
$���$

'	���(
��$����

#
)*
$��
��+

#
)*
$��
��+

,

,

Fig. 11. An example of a design (labelled DSP+crypto in Table I) with 13
cores, 4 buses, and 2 bridges.

VII. C ONCLUSION

In order to address the two major ramifications of DSM
on the design process: increased interconnect delay and de-
sign reuse using blocks with decreased functional granularity
and increased communication demands, we have developed a
methodology for the design of on-chip bus network structures.
The design methodology closes the synthesis loop between
system and physical design by performing the following three

procedures. First, the communication among cores is profiled
to obtain run-time information about the traffic. Next, the
bus network designer creates and optimizes the bus network
structure by coordinating information from the profiler and the
approximate floorplanner. The latter, as the final component
of the design, aims at creating a feasible floorplan. In the
case of an infeasible solution, the approximate floorplanner
communicates the information about the most constrained
parts of the network back to the bus network designer. The
efficiency of the presented design methodology has been
demonstrated on a set of multi-core designs extrapolated from
a multimedia benchmark suite.

REFERENCES

[1] D. Sylvester and K. Keutzer, “Rethinking deep-submicron circuit de-
sign,” Computer, vol. 32, no. 11, pp. 25–33, 1999.

[2] L. Carloni, K. McMillan, A. Sladanha, and A. Sangiovanni-Vincentinelli,
“A methodology for correct-by-construction latency insensitive design,”
International Conference on Computer Aided Design, pp. 309–15, 1999.

[3] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang, “Q-
modules: Internally clocked delay-insensitive modules,”Transactions on
Computers, vol. C-37, no. 9, pp. 1005–8, 1988.

[4] J. T. Udding, “A formal model for defining and classifying delay-
insensitive circuits,”Distributed Computing, vol. 1, no. 4, pp. 197–204,
1986.

[5] B. Davari, “CMOS technology: Present and future,”Symposium on VLSI
Circuits, pp. 5–10, 1999.

[6] K. Goto, T. Sugii, and J. Matsuo, “High performance 0.04µm PMOS-
FET,” Fujitsu Scientific and Technical Journal, vol. 34, no. 2, pp. 135–
41, 1998.

[7] R. Ho, K. Mai, H. Kapaida, and M. Horowitz, “Interconnect scaling
implications for CAD,” International Conference on Computer Aided
Design, pp. 425–9, 1999.

[8] H. Zhou and D. F. Wong, “Global routing with crosstalk constraints,”
Design Automation Conference, pp. 374–7, 1998.

[9] M. C. Johnson, D. Somasekhar, and K. Roy, “Leakage control with
efficient use of transistor stacks in single threshold CMOS,”Design
Automation Conference, pp. 442–5, 1999.

[10] J. Abraham, “Power calculation and modeling in deep submicron,”
International Symposium on Low Power Electronics and Design, pp.
124–6, 1998.

[11] J. Crenshaw, M. Sarrafzadeh, P. Banerjee, and P.Prabhakaran, “An
incremental floorplanner,”Ninth Great Lakes Symposium on VLSI, pp.
248–51, 1999.

[12] C. Alpert, A. Devgan, and S. Quay, “Buffer insertion for noise and delay
optimization,” Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 11, pp. 1633–45, 1998.

[13] J. L. Wong, A. Davoodi, V. Khandelwal, A. Srivastava, and M. Potkon-
jak, “Wire-length prediction using statistical techniques,”International
Conference on Computer Aided Design (ICCAD), pp. 702–5, 2004.

[14] J. Hu and S. S. Sapatneker, “FAR-DS: Full-plane AWE routing with
driver sizing,” Design Automation Conference, pp. 84–9, 1999.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, NO. , DATE 11

[15] J. Cong and L. He, “Optimal wiresizing for interconnects with multiple
sources,”ACM Transaction on Design Automation of Electronic Systems,
vol. 1, no. 4, pp. 478–511, 1996.

[16] A. Salek, J. Lou, and M. Pedram, “An integrated logical and physical
design flow for deep submicron circuits,”Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 18, no. 9, pp.
1305–15, 1999.

[17] R. Otten and R. Brayton, “Embedded tutorial: Planning for perfor-
mance,”Design and Automation Conference, pp. 122–7, 1998.

[18] S. Yoo, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A. A. Jerraya, “A
generic wrapper architecture for multi-processor SoC cosimulation and
design,”Proceedings of International Workshop on Hardware-Software
Codesign, pp. 195–200, 2001.

[19] T.-Y. Yen and W. Wolf, “Communication synthesis for distributed em-
bedded systems,”International Conference on Computer Aided Design,
pp. 288–95, 1995.

[20] M. Drinic, D. Kirovski, S. Meguerdichian, and M. Potkonjak, “Latency-
driven design of multi-purpose systems-on-chip,”ACM-IEEE Design
Automation Conference, pp. 27–30, 2001.

[21] D. Kirovski, C. Lee, M. Potkonjak, and W. Mangione-Smith,
“Application-driven synthesis of core-based systems,”IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 18, no. 9, pp. 1316–26, 1999.

[22] P. Gerin, S. Yoo, G. Nicolescu, and A. Jerraya, “Scalable and flexible
cosimulation of SoC designs with heterogeneous multi-processor target
architectures,”Asia South Pacific Design Automation, pp. 63–8, 2001.

[23] P. V. Knudsen and J. Madsen, “Integrating communication protocol
selection with partitioning in hardware/software codesign,”International
Symposium on Systems Synthesis, pp. 111–6, 1998.

[24] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, “Networks
on silicon: Combining best-effort and guaranteed service,”Proceedings
of the conference on Design, Automation and Test in Europe, p. 423,
2002.

[25] D. Lapotin and S. Director, “Mason: A global floorplanning approach
for VLSI design,”Transactions on Computer-Aided Design of Integrated
Circuit Systems, vol. 5, no. 4, pp. 477–89, 1986.

[26] D. Wong and C. Liu, “Floorplan design of VLSI circuits,”Algorithmica,
vol. 4, pp. 263–91, 1989.

[27] J. Gu and K. F. Smith, “A structured approach to vlsi circuit design,”
IEEE Computer, pp. 9–22, 1989.

[28] K. Udea, H. Kitazawa, and I. Harada, “CHAMP: Chip floor plan for
hierarchical VLSI layout design,”Transactions on Computer Aided
Design of Integrated Circuit Systems, vol. 4, no. 1, pp. 12–22, 1985.

[29] E. Kuh and T. Ohtsuki, “Recent advances in VLSI layout,”IEEE
Proceedings, vol. 78, no. 2, pp. 237–62, 1990.

[30] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated
annealing,”Science, vol. 220, pp. 671–80, 1983.

[31] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle-
packing-based module placement,”International Conference on Com-
puter Aided Design, pp. 472–9, 1995.

[32] N. A. Sherwani,Algorithms for VLSI Physical Design Automation.
Dordrecht, Netherlands: Kluwer Academic Publishers, 1993.

[33] T. Gore, “PI-bus-making single-chip real-time solutions a reality,”Real-
Time Magazine (no.4), Real-Time Consult, pp. 6–10, 1995.

[34] J. Gateley, “Sun microsystems integrates emulation into the SPARC
processor and workstation design process,”ASIC & EDA, 1994.

[35] D. Kirovski, M. Drinic, and M. Potkonjak, “Engineering change pro-
tocols for behavioral and system synthesis,”IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 8, pp. 1145–55, 2005.

[36] G. Bischoff, K. Brace, S. Jain, and R. Razdan, “Formal implementation
verification of the bus interface unit for the Alpha 21264 microproces-
sor,” International Conference on Computer Design, pp. 6–24, 1997.

[37] E. Macii and M. Poncino, “Automatic synthesis of easily scalable bus
arbiters with dynamic priority assignment strategies,”Computers &
Electrical Engineering, vol. 24, no. 3–4, pp. 223–8, 1998.

[38] Z. Zhang, Y. Fan, M. Potkonjak, and J. Cong, “Gradual relaxation
techniques with applications to behavioral synthesis.”

[39] C. Lee, M. Potkonjak, and W. Mangione-Smith, “Mediabench: a tool for
evaluating and synthesizing multimedia and communications systems,”
International Symposium on Microarchitecture, pp. 330–5, 1997.

[40] M. Garey and D. Johnson,Computers and intractability: a guide to the
theory of NP-completeness. W.H. Freeman, 1979.

[41] Available online at http://www.mentor.com/inventra/cores/catalog/index.html,
2000.

Milenko Drinic Milenko Drinić received his Ph.D. degree in computer science
from the University of California, Los Angeles in 2003. In 2003 he joined
Microsoft Research, Redmond, WA. His research interests include: static
analysis, static and dynamic code optimization, data compression, system,
security intellectual property protection, and VLSI CAD.

Darko Kirovski Darko Kirovski received his Ph.D.
degree in computer science from the University of
California, Los Angeles, in 2001. Since April 2000
he has been a researcher at Microsoft Research. His
research interests include: system security, multime-
dia processing, and embedded system design. He has
received the 1999 Microsoft Graduate Research Fel-
lowship, the 2000 ACM/IEEE Design Automation
Conference Graduate Scholarship, the 2001 ACM
Outstanding Ph.D. Dissertation Award in Electronic
Design Automation, and the Best Paper Award at

the ACM Multimedia 2002. Contact info: Microsoft Research, One Microsoft
Way, Redmond, WA 98052, USA. Email:darkok@microsoft.com

Seapahn MegerianSeapahn Megerian received the BS degree in computer
science and engineering in 1998 and the MS degree in computer science in
1999 from UCLA. He received the PhD degree in computer science from the
University of California at Los Angeles in 2004. He is an assistant professor
in the ECE Department at the University of Wisconsin at Madison. His main
research areas are distributed embedded systems and wireless sensor networks.
In addition, his research includes design automation of high performance
communication architectures, computational security, and intellectual property
protection

Miodrag Potkonjak Miodrag Potkonjak received his Ph.D. degree in Elec-
trical Engineering and Computer Science from University of California,
Berkeley in 1991. In 1991, he joined Computer & Communication Research
Laboratories, NEC USA, Princeton, NJ. Since 1995, he has been with
Computer Science Department at UCLA, until 1998 as Assistant Professor,
then as Associate Professor, and since July 2000 as Professor.

He received the NSF CAREER award, OKAWA foundation award, UCLA
TRW SEAS Excellence in Teaching Award and a number of best paper
awards. He has published a book and more than 250 papers in leading CAD
and VLSI design, real-time systems, multimedia, signal processing, computa-
tional security, and communications, journals and conferences. He holds five
patents. His research interests are focused on complex distributed systems,
including embedded systems, computer aided design, ad hoc sensor networks,
computational security, practical optimization and modeling techniques, and
intellectual property protection.

