The Guide to

Programming for Computer Scientists
(CS118)

Term 1, 2005-2006

Dr Stephen Jarvis

Contents

1 Preface

1.2

1.3

14
1.5
1.6
1.7

Course structure e e e
1.2.1 Lectures and seminars e
1.2.2 Coursework e e e
1.23 Classtest e e e
1.24 Addingitup e
Computing support e e e e e e e
1.3.1 Usercodes i e e e
1.3.2 Course webpage e
1.3.3 Javasources. e e e e e e e e e e e e e
Books e e e e e

2 Getting Started: Problem Sheet 1

2.1

2.2
2.3
2.4

3.1

3.2

3.3

UNIX . e e e e
211 Login o o e e e
2.1.2 Mall e e e e
2.1.3 Thelnternet e e
2.1.4 Newsand forums e e e
2.1.5 Editingfiles e
Editing, compiling and running Javacode Lo
2.2.1 Some easy Programs « o v e vt e b e e e e e e e e e e e e
Web-based course materialo L Lo
What next? e e e e e e
3 An Introduction to Programming
Designing computer programs Lo e e
3.1.1 TheDiagram 0 e e e e
3.1.2 Writing your own specifications o oL
Building computer programs Lo
3.2.1 Abstract and concrete
3.2.2 Translation e e
Testing computer programso e e e
3.3.1 Methodsoftesting

O © © © 00 3 33

s s e e
W NN = OO

15
15
15
16
16
17
17
17
18
19
20

4 CONTENTS

4 Introduction to the Robot-maze Environment 31
4.1 The robot-maze environmento Lo o o 31
4.2 Programming robot control programs 32

4.2.1 Specifying headings in the maze 33
4.2.2 Specifying directions relative to the robot heading 33
4.2.3 Sensing the squares around therobot 34
4.2.4 Sensing and setting the robot’s heading 34
4.2.5 Sensing the location of the robot and target 35
4.2.6 Specifying turns Lo 35
427 Moving therobot o 35
4.2.8 Generating random numbers 35
4.2.9 Detecting the start of a run and a change of maze 36

5 Coursework 1 (Part 1):

Simple Robots 37
5.1 Exercise 1 L e e e e e e e e 38
5.2 EXErcise 2 e e e e e e e e e e e e 39
5.3 Exercise 3 e e e e e e e 40
5.4 Exercise 4 e e e e e e e e e e 40
5.5 Exercise 5 e e e e e e e e e 42
5.6 Exercise 6 e e e e e e e e e e e e e 45
5.7 EXercise 7 o e e e e e e e e e e e e e 47
5.8 Exercise 8 e e e e e e e e 47
5.9 Exercise 9 L e e e e e e e e 48
5.10 Exercise 10 e e e e e e e e e e e 49
6 Coursework 1 (Part 2):
A Homing Robot 51
6.1 Exercise 11 L L e e e e e e e e 51
6.2 Exercise 12 L e e e e e e e 53
6.3 Exercise 13 L e e e e e e e 55
6.4 Exercise 14 L e e e e e e e e e 55
6.5 Exercise 15 L e e e e e e e e e 56
6.6 Exercise 16 e e e e e e e e e 56
6.7 Exercise 17 L e e e e e e e e e e 57
6.8 Exercise 18 L L e e e e e e e e 57
7 BOSS: Submitting your coursework 59
7.1 Registering L e e e e e e 59
7.2 Submitting your coursework L o 60
7.3 Receipts of submission 62
7.4 The marking process oL e 62
8 Coursework 2 (Part 1):
Smarter Robot Controllers 65
8.1 Exercise 19 L e e e e e e e e e 66
8.2 Exercise 20 e e e e e e e e 69
8.3 Exercise 21 L e e e e e e e e e e e 73
8.4 Exercise 22 L e e e e e e e e e e e 74

8.5 Exercise 23 e e e e e 75

8.6 Depth-first search in path finding oo 75
8.7 Exercise 24 e e e e e e e 76
8.8 Exercise 25 L e e 76
8.9 Summingup 7
Coursework 2 (Part 2):
The Grand Finale 79
9.1 The Grand Finale e 80
9.2 Route A e 81
93 Route B e e e 82
9.4 Submitting your coursework Lo Lo 83
9.5 Epilogue L 83
Problem Sheets 85
A.1 Problem Sheet 2: Simple statements 86
A1l Tdentifiers L. 86
A12 Datatypes o e 86
A.1.3 Arithmetic expressionso e 87
A.14 Boolean expressionso ..o e e e e 87
A.1.5 Precedence of operators Lo e 87
A.1.6 Writing strings and numbers Lo L. 88
ALT Strictness 88
A.1.8 Representable values o 89
A.2 Problem Sheet 3: Control structures 90
A21 idifstatements L. 90
A22 switchstatements 90
A23 whileanddo ... whileloops 91
A24 forloops i e e 91
A.2.5 Hard to spot mistakes L o oL 92
A.2.6 Correctness, preconditions and postconditions 92
A2.7 Seminars L e e 93
A.3 Problem Sheet 4: Methods, arguments, and scope 94
A3.1 Variablescope 94
A3.2 Arguments and return types.o 96
A.3.3 Anexercise in using methods oL L. 96
A34 OOP e 98
A.4 Problem Sheet 5: Arrays and recursion,
abstract classes and interfaceso L L o Lo L. 99
A4l Arrays 99
A42 Recursionrevisited oL L 100
A 4.3 Classes, abstract classes and interfaces 101
A.44 Programming with abstract classeso L. 101
A45 Inheritance L 102
A4.6 Imterfaces e 102

AT Seminars i i e e e e e e e e e e e e e e 102

CONTENTS

Chapter 1

Preface

1.1 What is this course all about?

The Programming for Computer Scientists course is designed to give you knowledge and
confidence in using a computer as a scientific tool. During the course you will have a
chance to work on control software. You will get to spend a good deal of time solving
software problems; your solutions to these problems will be implemented on a computer
and run in order for you to check the resulting behaviour.

Despite the slightly misleading title, Programming for Computer Scientists is not
simply about ‘programming’. Problem solving using computer software involves three
important steps - design, build and test. The exercises in this course encourage you to
look at each of these steps in turn. Each step must be carried out successfully if the
software which you are going to create is to be correct.

The laboratory exercises for this course are set in the context of getting a robot to
travel through a maze. This is what you will program; you will be able to see your progress
as the robot will either reach the end of the maze or not.

By the end of the course you will have learnt a number of skills: You will have
gained a great deal of experience in the art of software development, you will also know
what it means to plan and develop sophisticated Java code. The exercises also touch on
other interesting areas of computer science such as games programming, data structures,
algorithmics and artificial intelligence.

1.2 Course structure

1.2.1 Lectures and seminars

The course consists of two lectures per week (Monday 1-2pm and Thursday 3-4pm, both
in L3). The lectures are important. You cannot possibly know all the material which
the lectures will cover - even if you are a ninja programming guru - and the exam at the
end of the course will cover that material which was introduced during these lectures.
Lecture notes are supplied, but you will probably find that these do not make complete
sense outside the scope of the lectures - so don’t miss the lectures!

The first lecture will take place on Thursday of week 1 in room L3.

7

8 CHAPTER 1. PREFACE

You are also required to go to one seminar per week!. The seminar groups are posted
in the reception area of the computer science building (and also on the course web page);
you should check the lists to find out when and where your first seminar is. The seminars
are scheduled to begin on Thursday of week 1 (from 5pm).

The seminars serve two purposes. Firstly they allow you to interact with a seminar
tutor who will be an expert in the subject area and who will be able to guide you through
any difficult moments. Make good use of your seminar tutor as they are there to assist
you and answer any questions which you may have concerning this course. Secondly the
seminars are designed to test you, to make sure that you are keeping up with the course
material. To do this there are five problem sheets which you must complete.

The seminars and problem sheets are not optional. You will have to sign in at each
seminar and you must hand in your answers to you seminar tutor 24 hours before your
seminar begins. To do this you should prepare your solutions in advance and post them in
the CS118-marked submission letter box at the back of computer room 006 (in Computer
Science). At the end of the course your attendance and your submission of seminar
solutions will be noted and will contribute towards your final grade for this course.

Problem sheet 1 can be found in the ‘Getting Started’ chapter of this guide. The
remaining problem sheets can be found in Appendix A.

1.2.2 Coursework

This course is not merely an introduction to programming. Rather it is intended to
give you a modest taste of what problem solving using computer software is all about:
combining creativity with a rigorous, analytic approach to produce an end result which
can be relied upon to achieve its design goals. The fact that you will learn about the
Java programming language is simply an added bonus. This being the case, it is not
the purpose of the course to teach you about all the facilities of the Java programming
language; you may decide that further reading is useful to your studies, but the assessment
of your programs will be based on their correctness and clarity, rather than their ‘high-
tech’ programming style.

There are two pieces of coursework. The first coursework must be complete by
Wednesday 26 October (Week 5); the second must be complete by Friday 2 De-
cember (Week 10). Your work will be assessed as follows:

you will be required to come to the IBM lab in the Computer Science Department at set
times on the 26 October and 2 December to demonstrate your working program; here you
will be interviewed, during which you will be asked to explain how your code works as well
as being tested on some of the fundamentals of the coursework.

This may sound a little heavy, but I can assure you that if you have done the necessary
study and produced your own independent solutions then you will not have any problems.
A record of your work will be stored by the University of Warwick BOSS online sub-
mission system. This software allows us to record your progress, justify the mark which

!Don’t be confused by the fact that your timetable might have more than one CS118 seminar slot
marked on it. All this means is that they have printed all the seminar times, only one of these will apply
to you.

1.3. COMPUTING SUPPORT 9

you were awarded and detect plagiarism. Using this system also means that you don’t
have to hand in loads of paper, which is good for everyone.

More information regarding BOSS can be found at

www.dcs .warwick.ac.uk/boss/

1.2.3 Class test

There will be a class test on Monday 31 October. This will take place in the usual
lecture theatre and will include questions on all the course material up to that date. Your
mark for this test will contribute towards your final grade, so it is important that you
turn up to the test.

1.2.4 Adding it up

The coursework, seminars and class test will account for 40% of you final mark for this
course. The remaining 60% of the marks are taken from your two-hour end of year exam
which usually takes place in week 2 of term 3.

1.3 Computing support

1.3.1 User codes

Before you do anything computing-like, you need to get hold of a user code. Rather
confusingly you will be allocated two user accounts, one by the University I'T services and
one by the Department of Computer Science?.

The first thing you should do is get your IT services account. The University of
Warwick’s Online Enrolment System is now well established. This should mean that when
you collect your enrolment certificate (by going to www.warwick.ac.uk/enrolment) you
will also be asked to complete the on-line Computer Use Registration form, and as a
result will receive a username and password. This will give you access to the University’s
IT network and facilities; it will not however give you access to the computers in the
Computer Science Department.

Sometime after setting up your I'T services user code and account, you will be emailed
with your Computer Science account details®>. You should therefore check the mail on
your IT services account and when these details arrive you should make a note of your
CS user code and password and bring these with you the next time you come to the
Department. You are then ready to log on to the machines in Computer Science. Please
remember that the IT services and Computer Science accounts are different and although
they might have the same user code, they may well have different passwords. Please try
not to forget your password, you will find that it is a real pain if you do*.

2If you are doing a course such as Maths and Computing, you will probably end up with three accounts;
if you are doing Maths, Physics and Computing, may be you end up with four!

3You should expect this to be done before your first CS118 seminar.

4This year there is a £8000 charge for resetting your password.

10 CHAPTER 1. PREFACE

If all this business of getting an account seems too confusing to be true, do not panic.
Ask around to see if anyone else has worked it out and talk to them. Failing that, ask
one of the second years. Failing that, ask me.

1.3.2 Course web page

All the information in this guide (and more) can be found on the course web page:
www.dcs.warwick.ac.uk/people/academic/Stephen.Jarvis/cs118/

It is certainly worth bookmarking this page in your favourite web browser as it will be
very useful as the course progresses. The course web page contains:

e This Guide to CS118;

e All the lecture notes as they become available;

e Copies of the seminar sheets;

e A lecture summary, course overview and course syllabus;

e 'Trouble shooting information and handy hints for coursework and seminars;
e General systems information (including guides to UNIX etc.);

e Java resources including the robot-maze software.

Do take a look at the course web page from time to time as it will be updated periodically.

1.3.3 Java sources

Both the IT services computers and also the Computer Science computers have copies of
Java running on them. If you want to get hold of a copy for your home computer then
this is very easy. I would recommend that you get a copy of Java 2 version 1.5% as this is
the latest version. A download can be found at:

http://java.sun.com/j2se/1.5.0/download. jsp

There are Microsoft, Linux and Solaris versions of the software at this site and I have
found that installing the software is easy and should not take you more than about ten
minutes. Make sure you download J2SE(TM) Development kit 5.0 Update 5 as again, this
is the latest version.

I usually run Java on my laptop via a Command prompt window that you will find
on most versions of Microsoft Windows. The advantage of this is that the set-up then
looks just like a terminal window on one of the computers in the Department and all
the commands that you type in to each are the same. You will probably find that Java
installs to the directory c:\Program Files\Java\jdk1.5.0_05\bin.

STf you are running Java J2SE 4.2 then this will be fine.

1.4. BOOKS 11

The Java package for the robot-maze software which you will use during your course-
work can be found on the course web page. You can download all the necessary files
to the c:\Program Files\Java\jdk1.5.0_05\bin directory of your home computer and
then use them as described in these notes®. This is not something that you need to do
straightaway, but might be useful later in the course.

1.4 Books

Programming is a complicated business and there is no substitute for a well-written in-
troductory text book when you are starting out. Each year I try to select the most
appropriate Java books for this course. In making the selection I try to ensure that the
books will be understandable, will reflect the range of talents and abilities of the people
on the course, and will be useful later in your degree.

This said, it became apparent last year that many of the course books that you were
recommended cost a small fortune; the price of a small car to be precise. So this year we
have struck a deal with one of the publishers (Pearson) so that they are now offering a
value pack” whereby you can pick up a Java book (the Liang book below) and two further
books (Weiss - Data Structures and Problem Solving Using Java - £42.99, and Ayres -
Essence of Professional Issues in Computing - £22.99)® from the University book shop
for a little more than a night on the town (£87.99)°.

Anyway, if I were going to buy a good book from new then I would pick up one of:

o Introduction to Java Programming Comprehensive by Y Daniel Liang, published by
Prentice Hall, ISBN 0131489526 (£60.99 on Amazon.co.uk)?

e Understanding Java by Barry Cornelius, published by Addison Wesley, ISBN 0-201-
71107-9 (£40.99 on Amazon.co.uk or £20.99 second-hand)

o Core Java 2: Volume 1-Fundamentals by Cay S. Horstmann and Gary Cornell,
published by PH PTR and Sun Microsystems (£27.99 on Amazon.co.uk or second-
hand from £19.18)

6Everything will work fine if you just stick to using the bin directory, but probably what you really
want to do is set PATH and CLASSPATH variables so that you can access the Java compiler from any direc-
tory. There are lots of web links that tell you how to do this, one of which is http://www.cs.uscb.edu/
“teliot/Path and Classpath.htm

"Don’t get too excited...

8That you will need for some other courses this academic year.

9Depending on your constitution of course.

107 Jike this book very much, but here is some advice. This is about the 900th edition of this book and
it is the most expensive, which must mean that he is selling fewer books (but his mortgage is still the
same). This means that there are loads of second-hand books floating around. The hard up second and
third years will advertise these on the CS118 forum (see later notes); you can also get second-hand copies
from Amazon. At the time of writing I could pick up an International Edition for £30, a Comprehensive
edition by Liang and Frandsen for £29.99, a United States Edition (big writing, no words longer than
four letters) for £9.96, and an old, but nevertheless useful original Introduction to Java Programming for
£6.67. Please do not buy a copy for £61; although do try and get a fairly up-to-date version, i.e. for Java
2, 3, 4 or 5. If you need a new one then go for the value pack. If you don’t mind buying a second-hand
one then shop around. There will be a prize for the person who picks up the cheapest copy.

12 CHAPTER 1. PREFACE

The Liang book follows the lectures very closely so is your best bet if you are feeling
a bit unsure about this programming lark.

If you are already an established programmer and have spent, for example, a couple
of years programming in C or VB then you might like to buy the Cornelius book. He
explains things very well, though not necessarily in the same order as my lectures.

Finally if you already know Java and do not already have a copy, buy the Horstmann
and Cornell book. You get a lot of pages for your money, and it’s size alone will be enough
to impress all your friends.

You may already have a Java book. I guess the only reason that you might not want
to use this is if it is using Java 1.0. This is now pretty old and there are enough differences
to warrant splashing out and buying a new book. If you have a book that deals with Java
2 then you should be fine.

1.5 Practicalities

If you have any problems regarding CS118 matters you can come and find me in my office
(2.07) in the Computer Science department.

My email address is stephen. jarvis@dcs.warwick.ac.uk.

You will probably find that many of the issues which concern you are also experi-
enced by others on the course. The CS118 forum is an excellent term-time newsgroup
for discussion. This will also be the first place that important events/dates etc. are
announced.

1.6 And if it all starts to go wrong?

You may get to a point in this course where you just don’t know what is going on any
more. The golden rule is not to panic, get depressed or start supporting Arsenal football
club'!. There are a number of procedures in place to catch you before you fall, but you
have to be pro-active in finding help.

This year we are very lucky to have a lady called Zabin Visram to organise trou-
bleshooting classes. These will be held outside of the usual seminars and can be on any
topic of your choosing. If you are particularly confused about a topic after attending the
lectures and seminars, and having read the books, then you can email Zabin for some
additional help. Her email address is zabin@dcs.warwick.ac.uk.

The seminar tutors are usually pretty good at answering questions. You can find them
out of hours by asking the receptionist in Computer Science where their offices are. As
long as you don’t pester them every five minutes, I am sure they would be pleased to help
out. If you can not find them, you can of course come and find me.

11 Or Manchester United come to that. Still, with loony Rooney in the team we do not need to worry
about them winning the Premiership.

1.7 ACKNOWLEDGEMENTS 13

1.7 Acknowledgements

The robot-maze software which you will use in your coursework has an interesting history.
It started life at Queen Mary College, University of London as the brainchild of Tan
Page. When Ian moved to Oxford he and Colin Turnbull made extensive rewrites and
the robot-maze to this day exists as a means by which engineering students learn the C
programming language. Kevin Parrott, Alison Noble, Andrew Zisserman and myself ran
this software largely untouched at Oxford for a number of years. The new Java version
of the software is thanks to Phil Mueller from the University of Warwick (now himself at
Oxford), and the new exercises are courtesy of loannis Verdelis (formerly of Warwick and
now at Manchester University). I think you will agree that the result is a wonderfully
interactive way in which to learn the art of programming.

14

CHAPTER 1. PREFACE

Chapter 2

Getting Started: Problem Sheet 1

This chapter is intended for use during your first seminar session. Seminars will take
place both in the programming labs and also in the class room. It is important that you
know where you should be each week. For your first seminar you should meet in
the reception area of the Computer Science department building. You seminar
tutor will meet you and take you into one of the programming labs where you will spend
the hour working through the exercises in this chapter. If you are having problems with
user accounts then this is a chance to sort these out.

2.1 UNIX

All the computers in the Computer Science building run the UNIX operating system. This
is the third year that Red Hat, the version of UNIX that we use in Computer Science,
has been running on all the computers. This is good news as it means that as you move
between computer rooms everything should look pretty much the same.

You will certainly need to pick up some UNIX skills while you are at Warwick. One
way to start is to buy a copy of the excellent Introducing UNIX and Linuz by the very
distinguished authors Joy, Jarvis and Luck!. Indeed you might like to pick up a few copies
for Christmas presents, keep-sakes, birthdays, anniversaries, gifts for girl /boy friends etc...

Q I would suggest that you have a look at this book and study the chapter titled ‘Getting
Started’. I would personally ignore the direction to the text editor known as v: and also
the section on electronic mail using mailz. I did not write these sections and you will find
out about better alternatives later in this guide.

2.1.1 Login

When you log in to the computers you will enter the Red Hat windows environment.
There are a number of other Session environments that you can select from the log-in
screen, but this guide is written from the point of view of the Default session and so I can
assume no responsibility for problems outside of this domain.

L Introducing UNIX and Linuz, Mike Joy, Stephen Jarvis and Michael Luck, Palgrave MacMillan,
0-333-98763-2.

15

16 CHAPTER 2. GETTING STARTED: PROBLEM SHEET 1

2.1.2 Mail

Q There are a number of ways in which you can read mail in this environment. I'll list
three options below (and suggest you go down the first or second route). One thing to
note is that because this account is different from your IT services account the mailboxs
will also be different; so if someone mails your CS account, don’t expect it to show up at
your IT services account and vice versa.

e Route 1 - using Thunderbird: You can read your mail in your Computer Science
account through the Thunderbird mail client. Invoke Thunderbird by either typing
thunderbird & in a terminal window or by clicking the redhat icon at the bottom
left of the screen, and then following the links to the Internet and then selecting
Thunderbird Email.

The first time you run this mail client you will be asked for any import settings;
these you don’t need so you should just select the do not import option. Now you
will be directed to the Account Wizard to setup a new account. Select the Email
account option and click nezt. You are then required to enter your name and email
address, here you should just enter the details you were given when you obtained
your email address from the Department, then click next. In the next screen enter
the server information as follows: Select IM AP, enter mail.dcs.warwick.ac.uk
as both the incomming server and outgoing server and click nezt. Next, check that
your incomming User name is correct. Then name your account and click next to
review your settings and finish.

After asking for your password, Thunderbird should now be ready to use.

o Route 2 - KMail: 1f the above seems like too much work then you can use the
simple mail tool called KMail. You can start this by clicking on the kmail icon on
the desktop. You might like to send and receive a few emails just to get used to
using this mail system.

e Route 3 - a text-based tool: If you do not like the browser option or KMail then you
can use a text-based mailtool known as pine. You can run pine by first invoking a
terminal window (click on the button that looks like a screen) and then type pine
in the terminal window which appears.

2.1.3 The Internet

Q@ You can invoke a web browser (the default is Mozilla Firefox) by clicking on the globe-
and-mouse button at the bottom of your screen.

If you would like to use a different browser from Mozilla then click on the red-hat
button, select Internet and then More Internet Applications. Here you will find other
browser options such as Konqueror etc.

While you are here you should find the course web-page.

www.dcs.warwick.ac.uk/people/academic/Stephen.Jarvis/cs118/

2.2. EDITING, COMPILING AND RUNNING JAVA CODE 17

I would suggest that you Bookmark This Page.

2.1.4 News and forums

Q As well as reading your department email you should also keep an eye on the forums.
These are used as an efficient alternative to email; all important news and discussion
are to be found on the forums. You may wonder why these are used as well as email.
The reason is simply that if you want to send an important message to everyone in the
department then you could email it to everyone, which would mean about 1000 copies of
the same mail stored over 1000 different mail boxes, or you could send a single copy to a
forum and then ask everyone to read it. The department authorities obviously prefer the
latter.

Reading news via the forums

You can reach the Warwick forums from the University web page. Go to www.warwick
.ac.uk and click on Forum on the left-hand side. At the bottom-right of this page
you will see a link to Warwick Forums, follow this and then select Departments and
Computer Science and UGyearl (for the first year newsgroups)?.

You should make sure that you read the C5118 forum and also the misc forum. You
can shortcut to these pages using the following URLs:

http://forums.warwick.ac.uk/departments/computer-science/ugyeari/cs118/
http://forums.warwick.ac.uk/departments/computer-science/ugyearl/misc/

2.1.5 Editing files

Red Hat contains a number of text editing tools. One of these, called kedit, is available
from the desktop and will be our editor of choice. Other editing tools can be found from
the Red Hat window manager, or run from a terminal window (such as xemacs, which is
one of my favourites).

2.2 Editing, compiling and running Java code

Q Create a new file which contains the following text:

public class Hello

{
public static void main(Stringl[] args)
{
System.out.println("Hello World!");
}
}

2At some stage you may be asked to log in. You should use your IT services user code (i.e. your
University account) to do this

18 CHAPTER 2. GETTING STARTED: PROBLEM SHEET 1

Make sure you copy the program exactly (the capitalisation is important). Save the pro-
gram as Hello. java

Q Now compile the program. To do this you need to open a terminal window (select the
screen button from the window manager) in which you should type:

javac Hello.java
If the Java compiler detects any errors, then you must have typed the program incorrectly.
Correct any errors in the program by re-entering the editor, making corrections, and then
recompiling.
@ Run the program by typing:

java Hello

The program should display Hello World! Congratulations! You have just learnt how

to edit, compile and run a Java program?.

2.2.1 Some easy programs

© Edit the Hello. java program again and change the message so that it says something
else. You should be able to do this without knowing any Java. Save, compile and run it.

@ Create a new file called Age. java. Type the following program exactly as it is written:

import uk.ac.warwick.dcs.util.io.IO;
public class Age

{
public static void main(String[] args)
{
int age = I0.readint("Enter your age: ");
int doubleAge = age * 2;
System.out.println("How o0ld? That’s half way to "
+ doubleAge + "!");
}
}

3It is some bizarre tradition that when learning a new programming language, the first thing you start
with is the ‘Hello World!’ program. I have no idea why this is the case, but far be it for me to break
from decades of tradition...

2.3. WEB-BASED COURSE MATERIAL 19

You should note that when you make a new Java file it must always end with . java and

the name which follows the public class in the program file must be the same name as
the file.

This program uses the readint method of the uk.ac.warwick.dcs.util.io.I0 class.
This class is written especially to make input easier for you. You will not find readint
in any of your textbooks, but don’t worry, you will learn about it in lectures. Can you
work out roughly how the program works?

You may get some warning messages appear in the terminal window when you run this
program. If this is the case then just ignore them. This is something to do with the Java
set-up that we will not have to worry about later in the course.

Q The marks for this course might finally be weighted as follows: Coursework 30%; sem-
inars and written test 10%); final exam 60%.

Write a program called TotalMark. java that reads in the three marks (each out of 100)
and writes out the total weighted mark®.

2.3 Web-based course material

Q@ All the course material is available on the Web. Get a web browser running on your
computer and take a look at the page:

www.dcs.warwick.ac.uk/people/academic/Stephen.Jarvis/cs118/
Add this page to your bookmarks.

If you have not done so already then you might also like to try and read the CS118 forum
and post an introductory message®.

It is strongly recommended that you all spend several hours at a terminal during the first
two weeks of term getting familiar with UNIX, the text editor, the forums and mail etc.
In any event, you should also be spending several hours per week writing Java programs.
Copy examples out of your textbooks, customise them for your own use and experiment
by trying to write programs of your own. Learning to program is impossible without the
practical experience that is gained only by sitting down at a computer and doing it.

4There are a couple of things which you might like to investigate for this question - try and find out
more about Numeric Datatypes and Numeric Operators from the lecture notes or textbooks etc.
5Name, age, shoe size, earning potential, etc.

20 CHAPTER 2. GETTING STARTED: PROBLEM SHEET 1

2.4 What next?

Q This is the end of the first seminar session and if you have gone through the work and
signed in with your seminar tutor then you are free to go. I would just check that you
know when and where your next seminar session will take place®. I would also check that
you have a copy of the second problem sheet (it should be in Appendix A of this guide)
and that you know when and where you have to hand in your answers.

A useful thing to do if you get to the end of these exercises way before the end of the
seminar hour is to look at Chapter 4, and also the first part (exercises 1, 2 and 3) of
Chapter 5. This introduces you to the programming environment which you will use for
your coursework.

If you decide not to look at this now, then you should put this on your to-do list to
be completed by the end of week 2 (latest).

6Tt will not be in this lab!

Chapter 3

An Introduction to Programming

3.1 Designing computer programs

Designing a computer program is a complicated business. It requires a great deal of
creativity, a considerable understanding of the task or process being automated, a good
eye for accuracy and finally a large degree of patience.

In industry, the process of designing a computer program is separated from the task
of actually writing the program itself. This is because the skills required for each task
can be quite different.

The process of program design often starts with an idea supplied by a customer. The
customer may telephone you stating that they are considering automating a shampoo
bottling plant, and that they need a program to control the machinery. The program
designer’s task is then to write a document stating exactly what the customer requires,
which can then be passed on to the programmers and turned into code; this document is
called the program specification.

Writing a program specification is difficult, particularly because you need to pitch it
at exactly the right level. A specification which states

“Get some bottles, put some shampoo in and then put them in the boxes”

is probably not detailed enough for a programmer to successfully write a piece of code

which will do exactly what the customer is looking for. The programmer may (legiti-

mately) write some code which gets 2000 bottles at a time for example; this after all

meets the specification, though probably does not fit with the machinery available.
Alternatively, a specification which states

Line 10: Assign to the first variable the result of - If the first bottle is ready
and there is some shampoo in the machine or the green light is on then ...

may be too detailed for the programmer to have complete control over the implementa-
tion. The specification will probably also be extremely long and may, as here, contain
ambiguities.

So as you can see, writing a specification is not as straightforward as it first seems.

21

22 CHAPTER 3. AN INTRODUCTION TO PROGRAMMING

e

Figure 3.1: The geographical representation of the London underground

3.1.1 The Diagram

Consider the following example based on that found in the excellent book Using Z: Spec-
ification, Refinement and Proof by Jim Woodcock and Jim Davies:

Writing a specification at an appropriate level of abstraction is essential. A good ex-
ample of this is provided by the various maps of the London Underground. When the
first map was published in 1908, it was faithful to the geography of the lines: the shape of
the track and distance between stations were faithfully recorded. However, the purpose
of the map was to show travellers the order of stations on each line, and the various inter-
changes between lines; the fidelity of the map made it difficult to extract this information.
Figure 3.1 shows the geographical representation of the London underground.

The map was changed in 1933 to a more abstract representation which was rather
nicely named the Diagram. The draughtsman Harry Beck, who produced the imaginative
yet stunningly simple design, based the map on the circuit diagrams he drew for his day
job. All the detail concerning connectivity was maintained, though the simplification
meant that passengers could see at a glance the route to their destination. Abstraction
from superfluous detail - in this case the physical layout of the lines - was the key to the
usefulness of the Diagram. The Diagram can be seen in Figure 3.2.

The Diagram was, and still is, a good specification of the London Underground. It is

e Abstract. Since it only records logical layout, not the physical reality in all its detail.

e (Concise. Since it is printed on a single A5 piece of paper which is folded in such a

3.1. DESIGNING COMPUTER PROGRAMS 23

Hign Barmes Coxkrostars

Totterndge B Whatstone Caboaood
Wi Park rapr—

WS Fimerilay Arnos Growe

Firchiey Cantral [T

Eamt Finchiay Weood Geeen

Higngars

Figure 3.2: The Diagram, 1933; a more abstract description

way that it fits exactly into your pocket.
e Complete. As every station on the London Underground network is represented.

e Unambiguous. Since the meaning of the symbols used is explained, and the Diagram
is represented in simple geometric terms.

o Maintainable. Since it has been successfully maintained over the last 60 years,
reflecting the changes to the network as new stations and lines have been opened
and others have been closed.

o Comprehensible. It must be readily understood by the general public. This has
been the case as it has been regarded fondly by its users since 1933.

e (Cost-effective. Since it only cost five guineas to commission the specification from
the engineering draughtsman Harry Beck.

The Diagram gives its users a good conceptual model. It embodies a specification
structure that enables users to make sense out of a rather complex implementation. To
do this it uses abstract shapes, colours and compression. All lines are reduced to ninety
or forty-five degree angles and the central area, where there are more stations, is shown
in greater detail than the outlying parts, as if the Diagram were viewed through a convex
lens.

24 CHAPTER 3. AN INTRODUCTION TO PROGRAMMING

The Diagram is an excellent example of a specification. You may be interested to know
that it was first rejected by the Publicity Department of the London Underground, as the
abstract notation was thought to be too strange and incomprehensible for the ordinary
user of the Underground network.

3.1.2 Writing your own specifications

Of course not all specifications can be dealt with in a nice pictorial form such as the Dia-
gram. Most specifications in fact use Natural Language and/or some form of Mathematics
or Logic.

Natural Language is perhaps the easiest way to communicate ideas, as most of us
understand one language or another, English or Spanish for example. If you are to write
specifications in a natural language then you must make sure that the specification is
unambiguous. The specification for a shampoo bottling firm was unclear.

Line 10: Assign to the first variable the result of - If the first bottle is ready
and there is some shampoo in the machine or the green light is on then ...

We cannot be sure whether the ‘or’ goes with the ‘shampoo in the machine’ part of the
sentence, or with the ‘If the first bottle is ready and there is some shampoo in the machine’
part of the sentence.

We might make more sense of the definition by adding some mathematical notation (brack-
ets in this case),

Line 10: Assign to the first variable the result of - (If the first bottle is ready
and there is some shampoo in the machine) or (the green light is on) then ...

or by employing some logic

A = First bottle is ready
B = Shampoo is in the machine
C = Green light is on

Line 10: Assign to the first variable the result of - (A A B) v C)

This final example uses some Propositional logic; three propositions are defined (A, B
and C) and they are combined using the logical AND (A) and OR (V) operators. The
advantage that we see here is that the closer we move towards maths (or logic) the less
chance there is of introducing any ambiguities.

3.2 Building computer programs

Building a computer program is the task traditionally described as programming.

Despite many misconceptions, programming is not about sitting at a desk full of cans
of Coke and bashing out some obscure lines of text which resemble the programmer’s
thoughts on a particular problem. Programming is an exact and detailed science which
involves translating abstract specifications into more concrete implementations. The con-
crete implementation is traditionally known as program code.

3.2. BUILDING COMPUTER PROGRAMS 25

Specification:
Choose a number between
1and 100
Abstract level
Concrete level
Implementation 1: Implementation 2: Implementation 3:
Number 10 Random(between number 10 and number 30) Random(between number 1 and number 100)

Figure 3.3: Example of abstract- and concrete-level design

3.2.1 Abstract and concrete

So what exactly is all this talk about concrete and abstract?

You have seen already, in the description of a specification, that when we describe a
problem which we may want to computerise, we should choose carefully the level of detail
at which the problem is described. In writing a specification we must not get drawn in
to any nitty-gritty points which are not wholly in the domain of the problem itself. But
why do we make such a fuss about this, and does it really matter?

Well, yes it does. When we program it is desirable to have as much freedom as possible:
the freedom to choose our own programming language; choose our own structure and
individual style; and maybe reuse bits of programs, to save time or money for example.

In fact, it is possible to have many different programs which implement the same
specification. Consider figure 3.3 for example. Here we have a specification which states,
“Choose a number between 1 and 100”. There are three implementations of this specifi-
cation in the figure:

e The first program simply produces the number 10. This, you may think, does not
meet the specification given, but think about it carefully. The specification says
choose a number between 1 and 100, and the program does, it chooses the number
10. It chooses the number 10 each time the program is run of course, which is
probably not what the person who wrote the specification wanted to happen. But
the specification does not say that the number chosen should be different each time
the program is run, so effectively the program is a perfectly good implementation
of the specification.

e The second program produces a random number between 10 and 30. This also meets
the specification as the program certainly does choose a number between 1 and 100.
Again, this is probably not what the person who wrote the specification intended.

e The third program is probably what you would have expected. It randomly chooses
a number between 1 and 100. This also meets the specification and had the spec-
ification been written more carefully, stating, “...a different number in this range
should be chosen with equal chance each time the program is run...”, then this would
be the only valid implementation of the specification written above.

26 CHAPTER 3. AN INTRODUCTION TO PROGRAMMING

This may seem a little confusing. Why is it useful to have a number of possible com-
puter programs which implement a single abstract specification? The point is that it may
not matter to the customer exactly what the program does, provided that it is within the
bounds of the specification. Therefore, the programmer has flexibility when producing a
program, and the customer receives a program which meets their requirements. Everyone
wins.

Abstract specifications are useful as they allow customers who might be ordering a
computer system to write a collection of unambiguous requirements. They may pass this
specification to a number of different programmers and receive a number of different pro-
grams back. Although these programs may be different and may be written in a number
of different programming languages, on a number of different machines, they will all act
exactly as the specification states. The specification therefore acts as a contract between
the customer and the programmer, and a contract between the abstract description and
the concrete implementation.

3.2.2 Translation

Programming is the business of taking an abstract-level specification and translating it
into a concrete-level piece of code, and, as we have already seen, programmers may do
this translation in an assortment of different ways.

The translation between an abstract-level specification and a concrete-level design is
actually called refinement. Each of the programs in figure 3.3 is a valid refinement of the
specification.

Just as it is important to carefully write a specification, it is also important to make
sure that the program implementation is an accurate coding of the description in the
specification.

Usually a specification will have a number of complicated clauses, and may also span a
number of pages. Although the specification may be exact in its description, a programmer
may make a mistake when reading it and consequently code something different. For this
reason, some specification methods have complicated mathematical rules which translate
a piece of the specification (usually written mathematically) into the corresponding piece
of program code. These rules are known as refinement rules. You will learn more about
these if you choose to do the software specification course later in your degree.

3.3 Testing computer programs

Testing a computer program is an extremely important business. There are many exam-
ples which I can cite where software has failed due to inadequate testing. Rather than
bore you with a complete chronology, consider the following example:

The story of Ariane 5 is a good one. In the thrust direction control unit, code was
reused from Ariane 4. In this code, horizontal speed was represented by a 16 bit value.
But horizontal speed in Ariane 5 was greater, and caused an overflow, which raised an
exception. The specification said (very foolishly) that if an exception arose, the proces-
sor should be shut down and restarted. Shutting the processor down caused the thrust
direction to jump suddenly sideways, which broke the rocket in half.

3.3. TESTING COMPUTER PROGRAMS 27

Of course not every example of software failure will end in a disaster quite as catas-
trophic as this. However, the consequences of your code failing may prove to have just as
much of an impact on the results of a small company, or on the grade assigned to your
computing assignment, for example.

Testing is defined as the detection of failure; failure is the departure of the behaviour
of a program from its requirements. Unfortunately, it is not possible to show the absence
of failure by testing, as testing will only tell us whether a program fails in a particular
scenario or not. The purpose of testing is to eliminate as many problems in the code as
possible. This increases the programmer’s (and user’s) confidence in the piece of code.
As the number of failures detected in a program becomes less, the more you will feel that
the program exhibits the correct behaviour.

3.3.1 Methods of testing

The experimental science of software testing has been the subject of research for a number
of years. Consequently, there are a number of testing methods which are shown to be
effective. We will see, and use, a few of these methods in this course.

Test of logical paths of program

One useful activity when testing a program is to check all the logical paths through the
program. Consider the small example:

while (x < 10)

{
if (even(x))
{
System.out.println("The number is even \n");
}
else
{
System.out.println("The number is odd \n");
x=x + 1;
}
}

To test the logical paths of this short piece of code the user would need to design tests
to cover at least three cases: The case when x is greater than or equal to 10, in which
case the while loop would not be executed at all; the case when x is less than 10 and is
even, in which case you would expect The number is even to be printed at least once,
and finally the test when x is less than 10 and is odd, in which case you would expect The
number is odd to be printed at least once.

Forgetting one of these cases will mean that you have not tested part of the code; this
may be the piece of code which blows up, or wipes the hard disk, or Would you expect
any of the logical paths in the program to reveal an error in the above code?

28 CHAPTER 3. AN INTRODUCTION TO PROGRAMMING

Range of inputs

Another way to test the example program would have been to test the range of inputs.
If we can be sure that the program produces the right output for each valid (and even
invalid) input, then we can be a bit more sure that it does what we expect. We may for
example have tested the program with a negative value, a positive value and the value 0.

Boundary cases are also important. You may want to check that the computer deals
correctly with the highest possible number and the lowest possible number. Finally, you
may want to put some spurious values into the program — what happens when you type
in a character for example, or if you just press the enter key, or if you just sit on the
keyboard?!

Of course you have to select your range of inputs carefully. Selecting the numbers
137645813451875, 0.14643528745, -23 and 19, say, would not have found the infinite
loop in the program.

Systematic tests

It is all very well to test the logical paths of the program and the ranges of input, but it is
sometimes the sequence of operations in a program which causes it to break. For example,
the ‘landing-gear down’ and ‘increase throttle’ routines may both work exceptionally well
by themselves, but putting the landing-gear down and then increasing the throttle may
cause the plane to head towards the ground at a rapid speed. This is probably not what
you want.

It may be worth testing a sequence of operations in your program, testing all the
permutations of the routines a, b and ¢ for example, to make sure that one does not
exhibit any unexpected behaviour.

Random tests

Random testing is a perfectly legitimate activity, but do not expect it to consistently
come up with all the errors which may be detected by a logical or systematic approach.

A true random test of a program is actually quite difficult to achieve. It would probably
require a random number generator to choose between the routines in the program which
were to be tested. A random test would also require a similar random selection activity
to choose random input data to the program; of course the amount of data itself must
also be randomly chosen. So be careful when you use the term ‘random testing’.

Intuitive tests

The process that people often think of as random testing is actually called intuitive testing.

After you have spent some time programming you may become aware of common
errors which appear in programs. A program which stores and deletes a collection of
names will often be fooled if the first thing you ask it to do is to delete. Programs which
accept characters as input will often break if you feed in a control character.

Choosing cases like this to test your program is not a random activity - you are usually
selecting the tests based on your intuition as a programmer. So when you run a program
for the first time and select a number of seemingly random operations, you will probably

3.3. TESTING COMPUTER PROGRAMS 29

find yourself going through a number of cases which you expect to work, followed by one
or two cases in which you think the program may break.

These tests usually require a bit of thought, but you can come up with some interesting
results quite quickly.

Test rigs

A test rig is a piece of software which will run alongside the program to be tested. The
test rig may generate test data, supply tests, and record and calibrate the results as the
testing takes place. Test rigs are useful as they automate the testing process, removing
any possibility of human error. They also allow a large number of tests to be carried out
automatically; you may for example run the test rig over night, checking the results the
following morning.

Test rigs also allow large systems to be tested with relative ease. Programmers of large
systems, those used by banks for example, often use test rigs when they are modifying the
system. This means that the results before and after the modification can be compared
to make sure that the system is still operating correctly.

One thing which is slightly ironic about test rigs is that they themselves need testing,
perhaps with test rigs, which themselves...

You might try some of these test methods later in the course.

The method of testing you use will often be dictated by a number of factors. You may
not have time to carry out a logical or systematic test and an intuitive test will have to
do; it may be essential that you identify as many errors as possible, in which case random
and range testing might not be good enough. It is up to you as a programmer to weigh
up these factors to determine which method is appropriate given the situation.

30

CHAPTER 3. AN INTRODUCTION TO PROGRAMMING

Chapter 4

Introduction to the Robot-maze
Environment

The coursework exercises for this year’s CS118 course will be based on a simulated ‘robot-
maze’ environment. A small robot has been designed to be able to navigate its way
through mazes to find a target at some given location. This task resembles those used in
the classic learning experiments of the 1960s which included laboratory mice (and cheese,
mild electric shocks, mice of the opposite sex, etc). The objective of the robot (or mouse
as it was then) is to find the given target as rapidly and efficiently as possible, learning
the maze over several runs and so on.

Building a real robot and a real maze requires a combination of efficient sensors and
mechanics, sophisticated steering and speed control, clever maze exploration and naviga-
tion procedures and, no doubt, a good deal of glue. For the purpose of these exercises
we focus entirely on designing the maze exploration and navigation procedures. We make
no attempt to model the physics of a moving wheeled (or legged!) robot and concentrate
solely on the part of the problem which can best be solved with software.

4.1 The robot-maze environment

The simulated Robot-maze environment has the following characteristics:

e The robot moves through a simple square-block maze of the type illustrated in
Figure 4.1. The floor space of the maze is divided into squares of uniform size.
Each square is either occupied by a wall or is empty.

e The robot occupies exactly one non-wall square and moves in discrete steps, one
square at a time, north, south, east, or west. The robot cannot move diagonally.
If the robot attempts to move outside the boundary of the maze or into squares
occupied by walls it suffers a harmless collision (indicated by flashing red in the
simulation) and stays in the same square.

e The direction the robot moves in is determined by the way it is facing (its heading,
indicated by an arrow in the simulation). The robot can change the direction it is
facing by rotating on the spot. Each of these rotations are directed by the robot’s

31

32 CHAPTER 4. INTRODUCTION TO THE ROBOT-MAZE ENVIRONMENT

Bl CS118 Courseware - () 2001 Phil C. Milier — Build 20011126 -0 X

File Help
Rohot Controllers

RandomRobotContralier 4

Add Reload
I Controllers

Current Generatar
PrimGenerator

Prirets Algorithm, (z) Phil G. Mueller
Current Controller
RandomRobotController
Random contraller (pretty useless)

0 Runs

—g—
A
Speed

Start

New Maze Advanced...

Figure 4.1: The Robot-maze environment

control procedure - a method called controlRobot - which is run once before the
robot makes a move.

e A robot run begins at the top left-hand square of the maze. The run ends when
either the robot reaches the target or the user loses patience and stops the robot
manually (by pressing Reset). The target square is usually the bottom right-hand
corner of the maze, but this along with the robot start position can be modified by
the user.

During its execution the robot’s control program (which you are required to write) has
access to the following information:

e The direction the robot is currently facing;

e The status of the squares ahead, behind, left and to the right of the robot. Squares
are either walls, empty, or beenbefore squares which are empty squares the robot
has previously occupied during its current run through the maze. The boundaries
of the maze are treated as walls;

e The z and y co-ordinates of the square the robot is currently occupying, and those
of the target square;

e How many attempts the robot has made at solving the given maze.

4.2 Programming robot control programs

The simulated robot-maze environment is written in Java. The programs which you are
required to write for this course are also Java based which means that you will be writing
code which directly hooks into this robot-maze environment.

4.2. PROGRAMMING ROBOT CONTROL PROGRAMS 33

To allow this hook-up, there needs to be a common interface between the robot-maze
Java code and your own Java code. Essentially this means that you need to be talking
the same language; we define this language below.

The information listed below is important and you should make sure that you un-
derstand what it all means. If you are not clear on anything then you might like to talk
about it between yourselves. Understanding program interfaces like this is very important,
particularly if you are to use it to write your own program code.

4.2.1 Specifying headings in the maze

Four pre-defined constants are used to specify directions in the maze. These are
NORTH, EAST, SOUTH, WEST

where the maze follows the usual mapping convention of having NORTH upwards and EAST
to the right etc.

These elements of the interface language are concretely represented as Java int values.
This will be useful to know when you start referring to the types of these values in your
programs. One advantage of this scheme is that

NORTH+1 = EAST; EAST+1 = SOUTH; SOUTH+1 = WEST.

4.2.2 Specifying directions relative to the robot heading

Four pre-defined constants are also used to specify directions relative to the robot’s head-
ing. These are

LEFT, RIGHT, AHEAD, BEHIND
As with headings these are also of the type int and therefore
AHEAD+1 = RIGHT; RIGHT+1 = BEHIND; BEHIND+1 = LEFT

A fifth constant CENTRE is also defined, which can be useful as a ‘null’ or ‘give-up’ value
when communicating values between parts of complex control programs.

Do not be put off by the fact that these values have an int type. As far as the control
programmer (this is you) is concerned, all references to headings and directions are done
using the constant name (ie. RIGHT, NORTH etc.) and not the constant value used to
represent it. This is our first encounter with program abstraction.

As the values are defined as part of a Java interface, we need to prefix these values with
the name of the interface when they are used in the actual program code. The interface
is called TRobot and therefore any reference to the constant AHEAD in the code is in fact
done using IRobot.AHEAD. This might seem a bit quirky but you will soon get used to it.

34 CHAPTER 4. INTRODUCTION TO THE ROBOT-MAZE ENVIRONMENT

Figure 4.2: Example of sensing robot surroundings

4.2.3 Sensing the squares around the robot

The method robot.look(direction) takes a value specifying a direction relative to the
robot (e.g. IRobot.AHEAD or IRobot.LEFT etc.) and returns a value which indicates the
state of the corresponding square neighbouring the robot. The possible states are

TRobot .PASSAGE, IRobot.WALL, IRobot.BEENBEFORE

IRobot .PASSAGE indicates an empty square that has not yet been visited on the current
run through the maze. IRobot.BEENBEFORE indicates an empty square that has already
been visited during the current run through the maze. IRobot.WALL indicates a wall or
the edge of the maze.

Figure 4.2 shows a typical situation that might arise during a robot run. The robot is
located in the arrowed square, facing in the direction of the arrow, with squares visited
previously during the same run shaded in grey. The walls are in black. In this situation
robot.look would return the following values:

| Function call | Result |

robot.look (IRobot.AHEAD) IRobot.WALL
robot.look (IRobot.BEHIND) | IRobot.BEENBEFORE
robot.look(IRobot.LEFT) IRobot.WALL
robot.look (IRobot .RIGHT) IRobot . BEENBEFORE

If the robot chooses to turn right and then move forward one square, then a call to
the method robot.look (IRobot.AHEAD) would return IRobot.PASSAGE.

4.2.4 Sensing and setting the robot’s heading

The method robot.getHeading () returns the robot’s current heading in the maze. That
is either IRobot.NORTH, IRobot.SOUTH, IRobot.EAST or IRobot.WEST. In the exam-
ple in Figure 4.2 a call to the method robot.getHeading() would return the value
IRobot .EAST. There is a sister method called robot.setHeading(x), which can be used
to set the robot’s heading (where the parameter x is one of IRobot . NORTH, IRobot . SOUTH,
IRobot .EAST or IRobot.WEST).

4.2. PROGRAMMING ROBOT CONTROL PROGRAMS 35

4.2.5 Sensing the location of the robot and target

The methods robot.getLocationX() and robot.getLocationY() return the z and y
co-ordinates of the robot in the maze. The top left square in the maze is square (1,1).

The methods robot.getTargetLocation().x and robot.getTargetLocation() .y
return the z and y co-ordinates of the robot’s target. Note that these methods look
slightly different to those that sense the robot’s z and y position. This subtlety will be
explained later in the course.

4.2.6 Specifying turns

The method robot.face(direction) makes the robot turn in the direction specified (one
of IRobot.AHEAD, IRobot.BEHIND, IRobot.LEFT, or IRobot.RIGHT) relative to its cur-
rent heading. The turn is performed immediately and will be reflected in the results of
subsequent calls to robot.getHeading().

4.2.7 Moving the robot

The control software which you will build is polled. This means that the code you write
will be called by the robot-maze environment each time it is ready to move the robot.
This effectively switches control between the environment and your controller, and the
environment and your controller, and the environment and your controller etc.

The code which you write should therefore first point the robot in a suitable direction
and then signal to the environment for the robot to be moved. To move the robot you
make a call to the robot.advance() method.

4.2.8 Generating random numbers

The Java method Math.random() returns a random floating point number greater than
or equal to 0.0 and less than 1.0. The number returned is computed so as to ensure that
every number appears with equal probability.

To generate random numbers uniformly distributed between 0 and n you will need to
take the result, multiply it by n, round it to the nearest integer (using Math.round()),
and then cast the result to an int value, e.g.

int result = (int) Math.round(Math.random()*n);

So, the code

randno = (int) Math.round(Math.random()*3);

for example, will assign a random integer value between 0 and 3 inclusive (that is one of
four distinct possibilities) to the variable randno.

36 CHAPTER 4. INTRODUCTION TO THE ROBOT-MAZE ENVIRONMENT

4.2.9 Detecting the start of a run and a change of maze

The method robot.getRuns() returns a number (int) which corresponds to the the
number of previous runs which the robot has made on a given maze. After you have run
a robot through a maze you will notice that the current controller screen to the right of
the robot-maze environment displays 1 Run. This is the result of the robot.getRuns ()
method. You will find that this method is useful in the second coursework.

Chapter 5

Coursework 1 (Part 1):
Simple Robots

The first coursework for CS118 consists of two parts. You will need to complete both
parts if you are aiming for a top grade.

Your answers to this coursework must be completed by Wednesday 26 October
(Week 5). You will be asked to come in on that day and demonstrate that your code
works and that you have understood the material for each of the exercises. If we are not
able to mark your work on that day, for whatever reason, then you will receive no marks.

Your work will of course be marked for functionality, that is the program does what
it is supposed to do. It is also useful to remember that the work will be marked for pro-
gramming style, clarity, re-usability and use of techniques taught throughout the course.
This means that even if your code works wonderfully, you may not get fantastic marks
if it looks like a dog’s dinner. Likewise, if you do not finish all the exercises, but your
solutions look like a masterpiece, then you are likely to do well.

Cooperation, Collaboration and Cheating

If a submitted program is not entirely your own work, you will be required to state
this when the work is marked. Any and all collaboration between students must be
acknowledged, and may result in stricter marking of the work. Consultation of textbooks
is encouraged, but programs described elsewhere should not be submitted as your own,
even if alterations are made. It will be useful to quote here the University’s regulations
on the subject:

... ‘cheating’ means an attempt to benefit oneself, or another, by deceit or
fraud. This shall include deliberately reproducing the work of another person
or persons without acknowledgement. A significant amount of unacknowledged
copying shall be deemed to constitute prima facie evidence of deliberation, and
in such cases the burden of establishing otherwise shall rest with the candidate
against whom the allegation is made.

Therefore, it is as serious for a student to permit work to be copied as it is to copy work.
Any assistance you receive must be acknowledged. If in doubt, ask.

37

38 CHAPTER 5. COURSEWORK 1 (PART 1): SIMPLE ROBOTS

5.1 Exercise 1

To begin you need to copy the mouse-maze environment and the controller software to
your home directory. I suggest that you first create a ¢cs118 directory. Invoke a terminal
window and type in this window the UNIX command

mkdir cs118
and then change to this directory using the command cd cs118.

You should now use a web browser to go to the CS118 course web page (which should be
in your bookmarks if you have followed all the instructions in problem sheet 1.)

Under the Coursework section of this web page you will see that there are four links,
one of which says Maze software and one of which says Dumbo controller. Click on
these with your right mouse button and select the Save Link Target As option from the
menu. This will allow you to save the file. When you save these files, make sure you
double-click on the cs118 directory so that the file is saved to the appropriate place. The
Download Manager will confirm that the file has been saved and once you have done
this for both files, you can check that the files have been saved by typing 1s -al in your
terminal window.

You should find two new files in this directory. One of these files is a . jar file; this
postfix means that the file is a Java archive, an efficient ZIP-like file format which allows
all the component parts of the robot-maze environment (stored in this file) to take up as
little space as possible in your home directory. The other file is a . java file like those you
created in your first seminar. This . java file is the robot controller which interfaces with
the robot-maze environment software.

The result of the 1s -al command should look something like this’

—rW-———--- 1 saj dcsstaff 697 Aug 11 10:32 DumboController.java
—rW-———--- 1 saj dcsstaff 99539 Aug 11 10:32 maze-environment.jar

If you find that the file size of either of these files is zero (this is the number in the fifth
column), then something has gone wrong during the downloading. In this case you should
try downloading them once again.

You need to compile the .java file if you are to run it and in order for the con-
troller software to run along side the mouse-maze environment the two programs need to
be compiled together. This requires a small addition to the javac command which you
used in compiling your first Java programs. Type into you terminal window the command

javac -classpath maze-environment.jar DumboController.java

LIf you are doing this under Windoze then you may find that the maze environment file is saved
as a zip file. If this is the case then the best thing to do would be to rename this as a .jar file, i.e.
maze—environment.jar.

5.2. EXERCISE 2 39

This compiles the controller program DumboController. java into a corresponding class
file (DumboController.class). The compilation is performed in the context of the robot-
maze environment (through the -classpath maze-environment.jar extension) which is
just what we want.

You can now run the robot-maze environment by typing

java -jar maze-environment.jar &

The & by the way, frees the window so that you can still use it for other business.
Admire the baroque elegance of the highly sophisticated computer graphics in the robot-
maze environment program. To make it look more maze-like, click on the Generators
button and then on the PrimGenerator in the window above. You will see that this fills
the Current Generator information panel. If you now click on the New Maze button at
the bottom right you will get a new maze (generated through an application of Prim’s
algorithm).

Now that you have a maze you need a robot. Click on the Controllers button and
select the RandomRobotController. You will see that this configures the Current
Controller information panel.

The RandomRobotController is a pre-installed piece of controller software which
drives the direction-choosing capabilities of a basic robot. Before clicking on the Start
button to test the robot, set the Speed gauge to the far right of the screen.

When the robot is running you will see that it exhibits some unusual behaviour. First
you will see the direction change, as indicated by the blue arrow. You will also notice
that it leaves a trail (of been-before squares) as it moves through the maze. Every now
and then the robot crashes into a wall (indicated in red), this is because the controller
which is being used to drive the robot makes no allowance for where the walls are in the
maze.

You should familiarise yourself with this environment. See what happens when you
increase the speed, try generating new mazes, try editing mazes with your mouse, try
moving the location of the target, try changing the dimensions of the maze.

5.2 Exercise 2

One of the nice features of the robot-maze environment is the ability to experiment with
different controller software. The DumboController which you compiled earlier can be
loaded into the environment by clicking Controllers followed by Add.

This will provide you with a directory menu from which you should double click on
your cs118 directory. Here you will find your DumboController.class file which you
can then highlight and Open.

You will see that this adds the DumboController to your list of robot controllers. You
will use this same process to load all the robot controllers which you write during this
first piece of coursework.

If you click on the DumboController in the robot controllers menu, the environment

40 CHAPTER 5. COURSEWORK 1 (PART 1): SIMPLE ROBOTS

will switch between controllers. Run the new robot controller to see if you can work out
where RandomRobotController and DumboController differ. Try to characterise
the strategies which they appear to follow. You may find find it helpful to test the robots
on different mazes.

It may become obvious that it is not always easy to see exactly what strategies these
robot controllers appear to follow. It is often quite difficult to reverse engineer from the
behaviour to the specification. Similarly, it is not good practice to have a specification-less
program, as if the user is in any doubt as to the behaviour of part of the program, this
problem can be easily resolved by consulting the specification.

5.3 Exercise 3

Use a text editor to look at the source code in the file DumboController. java. The
method controlRobot is the controller part of the code. If you have not already worked
it out, study the code and see if you can detect what strategy this control program
implements.

Note the use of the import statement at the top of the program. This is the statement
which connects the robot-maze environment with the controller code. The behaviour of
this interface was described in Chapter 4 and you might like to go back to this chapter
and just check what each of the robot methods and constants do.

Talk with your friends about this code. Is it clear to you which parts of the code are
‘pure’ Java and which parts come from the interface to the robot-maze environment?

5.4 Exercise 4

Q@ An order is received from an existing customer for a modified dumbo robot:

‘Could we have a modified robot controller that still chooses directions ran-
domly, but avoids crashing into walls.’

This description can be identified as the specification of requirements for the new robot
which the customer requires.

A good software developer will set about solving this problem in a systematic and
logical fashion; for example, using the processes of Design, Build and Test which were
described in Chapter 3.

Designing a new piece of software requires a complete understanding of the problem
to hand; you cannot write a program for a problem which you do not understand. To
help work out what the specification states, we will break the description up into its
constituent parts.

e The text describes the modified robot as ‘still choosing directions randomly’. This
would suggest that the part of the robot control program which chooses a random
number and then converts this to a direction should stay as it is.

5.4. EXERCISE 4 41

e The text also states that the robot should ‘avoid crashing into walls’. Sometimes
the existing robot controller chooses a random direction which will point the robot
towards a wall. What you need to do is filter out these occurrences. This will involve
looking to see if the direction chosen does point the robot towards a wall, and if so,
choosing another direction.

A software developer would be right in thinking that the existing controlRobot method
in the DumboController. java file can be reused; there are many similarities between
the existing robot controller which you studied in exercise 3 and the new robot con-
troller. Your answer to this exercise should therefore be based on the code found in
DumboController. java.

The main difference between the old controller and the new one is that the new con-
troller will prevent the robot from crashing into walls.

Design question 1: How do you think you can detect if the robot is about to crash into
a wall? Hint: look at section 4.2.3 of The Guide.

Once you have discovered how to detect for collisions, you will need to ensure that the
robot controller keeps choosing directions for the robot until a non-wall direction is found.

Design question 2: How do you plan to do this? Hint: look at the lecture notes and
any Java books you have to find out more about loops.

Once you have designed the program you are ready to build the new robot con-
troller. The new robot controller can be built by making modifications to the existing
controlRobot method in the DumboController.java file. The changes require about
two lines of code, so there is no need to get carried away, or indeed too daunted by the
programming task ahead!

After saving the DumboController. java file, you should compile the code using the
command

javac -classpath maze-environment.jar DumboController.java

to generate a new DumboController.class file. Once you have eliminated any fatal,
compiler-detectable errors, a new class file will be created. The new class file will be
detected by the robot-maze software and it will ask you whether you would like to reload
this new class; you should press Yes; you can now test your new solution.

Before you finish this exercise, consider how you would convince the customer that you
have tested the program and that it fully meets the customer’s requirements. Document
your test strategy (in a paragraph or two) so that we can discuss your approach with you.

When you have the program working, copy your DumboController. java file to the
file Ex4.java. This will ensure that you have a copy of the file which can be marked on
Wednesday 26 October. If you fail to to this, for whatever reason, you will not gain marks
for this exercise.

42 CHAPTER 5. COURSEWORK 1 (PART 1): SIMPLE ROBOTS

5.5 Exercise 5

Now that the robot no longer crashes into walls, it is easier for your customer to monitor
the robot’s behaviour. As a result, you receive an email stating that they have noticed
some rather unexpected behaviour

While testing the current robot your customer noticed that although it seems to choose
directions randomly, some directions appear to be selected more often than others.

This is a difficult trait to investigate by hand. You could try running your robot slowly
and making a note of the directions it chooses, but this is rather painful (and life is too
short for such tedium?). An alternative approach is to add a logging mechanism, so that
the robot keeps a record of which direction is selected each time it moves. The idea is
that from this log of movements you will be able to analyse the behaviour of the robot
for a particular maze.

The following output is taken from a working solution to this exercise:

I’'m
I’'m
I’'m
I’'m
I’'m

forward at a deadend
forward down a corridor
forward down a corridor
forward at a junction

going
going
going
going

I'm
I'm

going
going
going

backwards at
backwards at
backwards at

a deadend
a junction
a deadend

I’'m
I’'m
I’'m
I’'m
I’'m
I’'m
I’'m
I’'m
I’'m
I’'m
I’'m
I'm
I’'m
I’'m
I’'m

forward at a junction
backwards down a corridor
forward at a junction
backwards at a deadend
forward at a junction
forward down a corridor
forward down a corridor
backwards at a deadend
forward down a corridor
forward down a corridor
forward at a junction
backwards at a deadend
right at a junction
forward down a corridor
right at a junction

going
going
going
going
going
going
going
going
going
going
going
going
going
going
going

You will see that the first thing that the robot detects (as it begins the exploration of the
maze) is that it is at a dead-end and therefore the only thing that it can do in this case
is move forward (see figure 5.1).

Once it has done this, it then detects that it is in a corridor and therefore it decides
to move forward. The same thing occurs for the third move.

After three moves the robot finds itself at a junction, here it decides to go forward
once more, at which point it reaches a dead-end and can go nowhere but backwards.

2Unless of course you are an Arsenal supporter in which case you are used to this.

5.5. EXERCISE 5 43

Figure 5.1: Coverage through an example maze.

You can follow the route of the robot until the reset button was pressed. You will see
that the robot is not particularly efficient (as it is operating in just the same way as the
robot in exercise 4) but it does print out an accurate log which itself might be useful at
a later date.

It is always simpler to write more complicated software such as this as a series of
smaller tasks. We will be building on the results of our previous exercises, so make sure
that any programming which you do is done in the file DumboController. java.

Consider the first problem of outputting the text which identifies the direction in which
the robot is heading, the

I’m going forward
part of the output.

For the robot controller to print a log of this direction chosen, you need to include an in-
struction to output text. You have already seen such an instruction in the exercises in your
first problem sheet. You might want to remind yourself how the System.out.println
instruction works. Try adding a simple System.out.println instruction to your robot
controller, one that says “I’m going ”, or something similar. Compile and run the new
robot controller to observe its effect.

Now that your controller outputs some text, you are ready to modify the program so
that it outputs the forward, backwards, left or right as required. Producing this out-
put is quite simple using the System.out.println instruction; the trick is deciding which
of System.out.println("forward"); or System.out.println("backwards"); etc. is
required.

Let’s consider the sub-problem of recording the direction chosen. One way to do this
is to is to add an extra variable to the program, heading say, in which we store an L
when the direction chosen is LEFT and an R when the direction chosen is RIGHT etc. As
the value we want to store is a character, the heading variable is declared as

char heading;

44 CHAPTER 5. COURSEWORK 1 (PART 1): SIMPLE ROBOTS

Once the variable has been declared, we need to ensure that the correct value is assigned
to the variable. When the LEFT direction is chosen we can assign the character L, e.g.

heading = ’L’;

The same statement applies - with slight modification - to the three other possible direc-
tions.

Now we have a record of the direction selected, to convert this to the corresponding
output we simply inspect the variable at a suitable place in the program and execute a
corresponding System.out.println statement as required?.

Design a program which prints the direction the robot is going in. Make sure that you
answer the following questions in your design:

Design question 1: Where in the control program do you want to declare the variable
‘heading’?

Design question 2: What value is this variable initialised to?
Design question 3: Where in the code is this variable assigned a value?

Design question 4: Where in the code is this value inspected and a corresponding piece
of text printed out?

These may seem like obvious questions to ask (and the answers may be surprisingly
trivial), but asking such questions does encourage you to write correct programs. Once
you have designed this part of the program, it may be worth building it and running some
tests to make sure that things are working correctly.

Now you are ready to work on the final part of the software; detecting whether the
robot is at a dead-end, in a corridor, at a junction or at a crossroads. Answer the following
questions as part of your design:

Design question 5: How is it possible for the robot to detect whether it is at a dead-end,
in a corridor, at a junction or at a crossroads?

Design question 6: Is there a corresponding method in the maze-environment package
which allows this detection to take place? Hint: see section 4.2.3.

Design hint 1: You might like to add an additional variable to you code, walls say, in
which you store the number of walls surrounding the robot. Once you have done this you
will want to answer the following design questions:

3This could be done using four if (heading==...) System... but it would be tidier to use a
switch statement in this part of the code.

5.6. EXERCISE 6 45

Design question 7: Where in the control program do you want to declare this variable?

Design question 8: Where in the control program do you initialise this variable and to
what value is it initially set?

Design question 9: What criteria must be fulfilled if values are to be assigned to this
variable?

Design question 10: Where in the code is this value inspected and what is the result
of this?

This should allow you to establish a design for the second part of this program. Build
the code and design some test criteria. You might want to look at how you would test
the logical paths of your code - this was previously discussed in section 3.3 of The Guide.

It is worth noting that the additional code should be about twenty lines long.

Once you have thoroughly tested your solution so that you are happy that it meets
the required behaviour®, copy your solution to Ex5. java.

5.6 Exercise 6

Q Using the logging from the previous exercise, determine whether the customer was
correct in stating that the robot chooses some directions more often than others.

Hint: Notice how often the robot goes LEFT compared to how often it goes RIGHT,
and how often the robot chooses to go AHEAD compared to how often it goes BEHIND. You
may find it helpful to run the controller on different mazes.

Investigating the bias in choice of directions is difficult by hand. However, what we
can do is use some additional code to analyse the log which the robot prints out.

We have been supplied with some analysis software (by our sceptical customer). Pro-
vided that your logging output from the previous exercise is correct, this software will
count the number of times the robot heads in each of the four directions.

You should download this analysis software from the course web page. Here you will
find a link to the file called count. Right click on this file and Save Link Target As to
save the file in your cs118 directory, where you have stored your answers to the exercises
and the maze environment. Check that the file has been downloaded properly by typing
the command 1s -al in a terminal window and inspecting the size of the file.

The count program will examine your output from Exercise 5 and produce a summary
of the moves of the robot. For this reason, your output from Exercise 5 must be precisely
formatted, otherwise the analysis will not work properly. To run the maze environment

4paying careful attention to the layout of the logging output
5it should be 337 bytes

46 CHAPTER 5. COURSEWORK 1 (PART 1): SIMPLE ROBOTS

alongside the count program you should type
java -jar maze-environment.jar | ./count

The | ./count part of the command tells the computer to send your output to the count
program to be analysed®.

If you have done everything correctly then the robot should exhibit the same behaviour
as before, but will output some different information on the console. This will be the
analyser’s output, and will look something like:

Summary of moves: Forward=1 Left=0 Right=0 Backwards=0
Summary of moves: Forward=2 Left=0 Right=0 Backwards=0
Summary of moves: Forward=3 Left=0 Right=0 Backwards=0
Summary of moves: Forward=4 Left=0 Right=0 Backwards=0
Summary of moves: Forward=4 Left=0 Right=0 Backwards=1
Summary of moves: Forward=4 Left=0 Right=0 Backwards=2
Summary of moves: Forward=4 Left=0 Right=0 Backwards=3
Summary of moves: Forward=5 Left=0 Right=0 Backwards=3
Summary of moves: Forward=5 Left=0 Right=0 Backwards=4
Summary of moves: Forward=6 Left=0 Right=0 Backwards=4
Summary of moves: Forward=7 Left=0 Right=0 Backwards=4
Summary of moves: Forward=8 Left=0 Right=0 Backwards=4
Summary of moves: Forward=9 Left=0 Right=0 Backwards=4

Examine whether the summary is actually consistent with the robot’s moves. If you
find that the output seems wrong, it is most likely that the log of movements you printed
for the previous exercise has not been formatted correctly. Perhaps you have forgotten to
add a space character, or your output has a typing error...

There is a lesson here in always paying careful attention to the program specification.
It might appear a minor problem to forget a space in a log of robot movements, or you
might decide that the output looks nicer formatted slightly differently. Either way you
are dicing with death. Of course when a human looks at the output of your program then
they can make allowances for slight variations in output. When the output is read by
another computer program however, then we might not have this same flexibility. And
of course how are we to know who is going to process the output, it could be a human
today and another computer program tomorrow. So rather than risk things going wrong
we just stick to the specification. This way we have met our side of the agreement, and
if something screws up then this is (hopefully) someone else’s problem (legal case, prison
sentence or whatever).

If you run tests on a number of mazes for a sufficiently long period of time, then you
might notice some pattern in the directions the robot chooses. You should find that the
directions chosen by the DumboController are indeed random, but that the directions

6For more information about this see the excellent Introducing UNIX and Linuz by some very well
known authors; did I say that you should buy a copy of this book...?

5.7. EXERCISE 7 47

are not chosen with the same probability’.

Investigate the definitions of the Math.random() and Math.round() methods from
the Java API®. Using this information state the probability of the robot choosing the
directions left, right, ahead and behind.

Hint: The Java APIs are an excellent source of code that tens of thousands of pro-
grammers draw upon every day. They provide a repository of program code that you
can use to construct more complex code. A word of warning though; just because some-
one else has written the code, doesn’t mean that when you employ it you are excused
the task of understanding exactly what that code does. Using the Math.random() and
Math.round () methods does indeed allow the robot to generate random directions, but
probably not in the same way that you first thought.

5.7 Exercise 7

Q After further discussion with your customer they submit a revised specification.

‘Could we have a modified robot controller that chooses directions randomly
with equal probability? The robot should still avoid crashing into walls and
should still print a log of its movements.’

You should base your solution to this exercise on your answer to Exercise 5. So make
sure that you continue working on the DumboController. java file and copy your solution
to Ex7. java when you have finished.

Hint: Review your answer to exercise 6. Consider removing the Math.round() call and
using the output of the random number generator directly in your selection statements.

5.8 Exercise 8

Q Use the same method of design, build and test which you followed in Exercise 7 to
further modify DumboController so that it meets the following customer requirements:

‘The robot should only change direction if to carry on ahead would cause a
collision. As before, when DumboController chooses a direction, it should
select randomly from all directions which won’t cause a collision. Directions
should be chosen with equal probability and a log should be kept of the robot’s
movements.’

If you did not spot this in Exercise 2 then this is the difference between the DumboController and
the RandomRobotController.

8For details see http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html#random()
and http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Math.html#round(double).

48 CHAPTER 5. COURSEWORK 1 (PART 1): SIMPLE ROBOTS

You should base your solution on your answer to exercise 7, so again modify the code in
the file DumboController. java. The modification you are required to make is again very
small. These are the design questions which you need to consider:

Design question 1: How will you instruct the robot controller to check if there is a
wall ahead before it decides to change direction?

Design question 2: What should the controller do if there is a wall ahead of the robot?
Design question 3: What should the controller do if there is not a wall ahead?

Design question 4: Does your controller program work the very first time it is run?
What is the initial value of the variable direction?

Copy your answer from DumboController. java to the file Ex8. java. You will notice
that you are building and testing your code using the file DumboController. java. This
is intended as this allows you to develop code in one file and then use the files Ex*. java
as backups, for marking purposes, and as the code which you finally ship to the customer.

5.9 Exercise 9

Q Using your answer to Exercise 8, further modify the controller in DumboController. java.
This time, as well as displaying all the previous characteristics, the robot controller should
also choose a new direction randomly, on average every 1 in 8 moves, irrespective of
whether there is a wall ahead or not.

There are two design questions which need to be considered:

Design question 1: How will you get your robot controller to choose a new direction
on average every 1 in 8 moves? Hint: you have given this some thought in Exercise 6.

Design question 2: How will you incorporate this into the existing code? Can you
combine this new code with your existing if statement by employing some logic? Hint:
look at the lecture notes and your textbooks for information on logical operators in Java.

Once you have established your design, build the new robot controller. Again, your
solution should modify no more than two lines of the controller program, so do not get
too carried away.

One example of the resulting behaviour will be that a robot which is travelling for-
wards in a straight line will occasionally change direction. It may choose to go backwards,
continue on its original path forwards, or choose a left or a right turn if these are available.
Can this version of DumboController be expected to reach the target if given enough
time? Test your solution on some suitable examples.

5.10. EXERCISE 10 49

Make a copy of your solution to this exercise by typing

cp DumboController. java Ex9.java

5.10 Exercise 10

You may have decided while doing the previous exercises that there are many alternative
solutions to these problems; you would of course be right. Which solution you ultimately
choose is a matter of taste, though later in your programming career you may well find
that in-house styles or programming templates dictate the approach which you use.

Think about an alternative approach to solving one of the previous exercises. Why is
your alternative solution better and why?

50 CHAPTER 5. COURSEWORK 1 (PART 1): SIMPLE ROBOTS

Chapter 6

Coursework 1 (Part 2):
A Homing Robot

In this part of the coursework we get to grips with some slightly more difficult pro-
gramming tasks, consider the problem of ensuring that software is working correctly, and
experiment with additional elements of the Java language.

The main aim of the exercises in this chapter is to guide you through building a robot
controller which will make the robot home in on the target. The robot controllers which
we have built so far will ensure that the robot eventually reaches the target; however,
they will not direct the robot in any meaningful way. The target is reached because the
robot chooses directions randomly and if enough random moves are made then the robot
will eventually find the target. The trouble with this method is that it may take a long
time for the robot to reach the target, particularly if the maze is very large.

If the robot controller is able to sense where the target is located, then a better search
technique can be applied. Rather than the robot moving randomly, it could attempt to
move closer to the target. This is roughly this technique which we will follow in this
chapter.

6.1 Exercise 11

Before you begin building the homing robot, it is worth noting some of the programming
errors which you may encounter.

Use your text editor to study the robot controller in the file Broken. java which can
be down-loaded from the course web page. This robot controller, submitted as an answer
to Exercise 4 in Part 1, has two programming errors that the compiler cannot detect. You
can compile the code using the command

javac -classpath maze-environment.jar Broken.java

and then load the Broken controller into the robot-maze environment in the usual way.
When you try and run the robot you will find that it stalls; it seems not to move and when
you press the Reset button this is confirmed when it reports that no moves have been
made. It is clear that in this case the robot does not meet the customers requirements.
We will work through the problems together. First look at the line

51

52 CHAPTER 6. COURSEWORK 1 (PART 2): A HOMING ROBOT

direction = robot.look(IRobot.EAST);

If you study the details of the method robot.look in Section 4.2.3 of The Guide, then
you will find that it returns a result IRobot .WALL, IRobot .BEENBEFORE, etc. The variable
direction will be assigned that value.

The first question to ask yourself is ‘is this correct? Is it right to set the direction
variable to IRobot .WALL or IRobot .BEENBEFORE, etc? The answer really depends on what
you want to do with that variable. We are given a clue as to its use later on in the program

robot.face(direction);

This seems to suggest that once the direction is chosen, the robot is then faced in that
direction before the robot is finally moved. So now you should ask yourself what happens
when the robot tries to face IRobot.WALL or IRobot .BEENBEFORE?

Whatever the answer is, and I am not really sure, the programmer is using the methods
robot.look and robot.face in a way which makes no sense according to the programming
interface. What this means is that these methods are strictly defined and serve the purpose
of interfacing between the controller software and the robot-maze environment. If these
methods are used differently than intended then we can not be sure how these methods
will behave.

This might not seem particularly interesting, or indeed important, but adhering to the
interface specification is crucial if your programs are to work correctly. Even if you have
a good feeling about the way in which a method works outside of this specification - and
this is justified by a few test calls - if you are using a method differently from the way in
which it is specified then you are playing with fire. The method may work well for the
first 100 calls and then blow up on the 101st call. Then you are in trouble.

In this example I think the programmer just read the interface specification wrong
and decided that a call to robot.look(IRobot.EAST) was probably a reasonable thing
to do. This is an error which is going to occur a lot in these exercises and you may well
be the one who falls into this trap.

You might (reasonably) have expected the compiler to signal an error in this exam-
ple. After all, the method robot.look is expecting something of type IRobot.AHEAD,
TRobot .LEFT, etc. and is passed something of type IRobot.NORTH, IRobot.SOUTH, etc.
But the Java compiler is oblivious to the problem. As far as the compiler is concerned,
both these abstract types look the same. Both are represented in the program as integer
values, and so any type-checking that the compiler performs will just ensure that the
value assigned to the variable direction and passed to the function robot.look is an
int - which it is.

This problem is an interesting example of the difference between a syntax error (which
the Java compiler can detect) and a semantic error (which the Java compiler cannot).

There is one other semantic error in the code. See if you can spot where it is and
once you have detected it, correct the program so that it runs in accordance with the

6.2. EXERCISE 12 23

specification of Exercise 4.

To make sure that you have a corrected copy of the robot controller as a back-up, copy
the file Broken. java to Ex11.java. Now let’s go back to the task of building a homing
robot...

(11

X (n,n)

Figure 6.1: The robot homing towards a target that is north-east would choose to go
ahead or right as opposed to behind or left. Note the relationship between the z- and
y-coordinates of the robot and the target.

6.2 Exercise 12

The controller of the homing robot which we are going to build is based on four separate
units of additional controller code: we will call these northController, southController,
eastController and westController. The names of these control units refer to the
heading of the robot at any given step. So, if for example the robot is heading NORTH, it
will use the northController to decide on the next move to make, and so on.

Our new homing robot will choose a direction based on its current heading and the
location of the target relative to its current position. For instance, if the robot is heading
NORTH and the target is to the north of it, as in Figure 6.1, then it makes sense for
the robot to select AHEAD in preference to BEHIND. Based on this assumption, you will
construct controller code to determine whether the target is to the north, south, east or
west of the robot, and then build four additional controllers based on the robot heading
that will guide the robot closer to the target. Essentially what the robot is trying to do is
‘sense’ the target and move towards it if at all possible. A scheme that seems inherently
sensible, at least at the outset.

It is possible to decide whether the target is to the north of the robot by examining the
y-coordinate of the robot and the target!. If the robot’s y-coordinate is greater than that

!The coordinates begin (1,1) at the top left-hand corner of the maze and increase to (n,n) at the
bottom right-hand corner of the maze (the default maze is 15 by 15).

54 CHAPTER 6. COURSEWORK 1 (PART 2): A HOMING ROBOT

of the target, then the target is north of the robot. Similarly, if the robot’s y-coordinate
is less than that of the target, then the target is to the south. If the y-coordinates of both
the robot and target are the same, then you will find that both the robot and target are
on the same latitude.

O Add a new method called isTargetNorth to the file Broken. java. The method should
take one parameter (the robot itself?) and should return 1 if the target is north of the
robot, -1 if the target is south of the robot and 0 otherwise.

The method should look something like

private byte isTargetNorth(IRobot robot)
{
byte result ...
// returning 1 for ‘yes’, -1 for ‘no’ and O for ‘same latitude’

return result;

3

and should not be more than about five lines long.

First sketch your solution on paper, answering the following design questions as you
go along:

Design question 1: Where in the Broken. java file should you locate this new method?

Design question 2: How can you determine the relative positions of the robot and the
target?

Design question 3: What parts of the robot interface can help you in this calculation?

Once your code compiles correctly, you should consider how to go about testing it. Is
it possible to develop some exhaustive tests to cover all eventualities? You might want
to look back to section 3.3 of The Guide to see what testing technique would me more
appropriate.

Consider adding some appropriate System.out.println statements, and running the
robot slowly to examine whether the output makes sense. You might find that moving
the target and the robot will help you test more cases. Be prepared to talk about how
you tested your solution and why you tested it in that way.

Save your solution as Ex12. java.

2You will need this parameter if you are to check the y-coordinate of both the robot and target.

6.3. EXERCISE 13 95

6.3 Exercise 13

Q Use your isTargetNorth method as a basis for a second method called isTargetEast.
This should return 1 if the target is to the east of the robot, -1 if the target is to the west
of the target, and 0 otherwise.

Once you have thoroughly tested your solution, save it to Ex13. java.

6.4 Exercise 14

© We will now consider the case when the homing robot is heading NORTH.

Using the two methods that you developed in Exercises 12 and 13, it is possible to
calculate where the target is relative to the current position of the robot. As in Figure 6.1,
if we detect that the target is to the north-east of the robot, it makes sense to direct it
either ahead or right. That is, as long as there is not a wall in either (or both) of these
directions.

Create a northController method that exhibits the following behaviour:

Whenever the robot is heading NORTH, the controller should return a direction
that will head the robot towards the target if at all possible. This means that:
i) if it can select direction that will move the robot closer to the target then it
should do so; i) it should not lead the robot into a wall; 74) if the robot has
the choice of more than one route, then it should randomly choose between
them.

Before trying to write the software, you must have a clear understanding as to what this
specification means exactly.

Design question 1: What should the robot controller do if travelling AHEAD or RIGHT
will move the robot towards the target, and these passages are not blocked by walls?

Design question 2: What should the robot controller do if travelling AHEAD or RIGHT
will move the robot towards the target, and there is a wall ahead of the robot but not to
the right?

Design question 3: What should the robot controller do if travelling AHEAD or RIGHT
will move the robot towards the target, and there is a wall to the right of the robot but

not ahead?

Try to design your code on paper first. You might find it useful to create a table of
the scenarios that the robot might encounter and use this when designing your code.

Save your solution as Ex14. java. Remember, no file, no marks.

56 CHAPTER 6. COURSEWORK 1 (PART 2): A HOMING ROBOT

6.5 Exercise 15

Q@ Now that the controller code is becoming more complex, it is important that we test
it to see that it meets the desired functionality.

To help with testing, we have constructed a test harness that you can use to test your
northController?® code.

To access the test harness you need to first download it from the course web page;
you will see that it is named ControlTest.class and it should be saved to the same
directory as your source code.

To call this test harness you need to add a couple of lines of code to your program.
The first thing you should do is add a call to the test harness (ControlTest.test) just
before your robot faces its newly chosen direction and advances, i.e.

ControlTest.test(direction,ControlTest.NORTHCONTROLLER,robot) ;
robot.face(direction);
robot .advance () ;

This test-calling code will check each direction that your robot selects and compare it
against a working solution.

Next you need to add some code that will print the log of test results at the end of
the robot’s run. You should include the code

public void reset()
{
ControlTest.printResults();

}

to your Explorer class (outside the definition of the controlRobot method, yet within
the brackets of the Explorer code).

These modifications will allow you to test the behaviour of your northController
method. You should ensure that your robot passes these tests (indicated by a status
report of ok) before you move on to the next question. Example test reports can be
found on the course web page.

Don’t take this testing too lightly. If you were a customer buying the controller code
then you would be pretty careful to check that it works, particularly if you are paying
good money for it. To make the exercise more realistic there will be a pint penalty* for
any code that it found to be faulty.

6.6 Exercise 16

Q Complete the corresponding eastController, westController, and southController
methods for the cases when the robot is facing in these respective directions.

3and also the eastController, southController and westController
4To be redeemed at the bar by Dr Jarvis at a time of his pleasing.

6.7. EXERCISE 17 57

You will notice some obvious similarities between the code that you wrote for Exercise
14 and the code needed for these three new methods. There are alternative ways of tack-
ling this exercise: you might decide to cut-and-paste your northController three times
and make appropriate modifications; a more sophisticated solution would be to extract
the common components and encapsulate these as separate utility functions. This second
approach is usually a better way of proceeding as it makes the modification of the code
(for an upgrade at a later date, for example) easier to achieve. To recognise this fact,
more marks will be awarded to solutions that create utility methods for common code
blocks.

Make sure that you test® your code before saving your solution to Ex16. java.

6.7 Exercise 17

Q This is the cool bit of the first coursework®. You should now modify the robot con-
troller so that it uses the four northController, eastController, southController
and westController methods that you constructed for Exercises 14 and 16.

The robot should use the method appropriate to the direction in which it is currently
heading - so for example, if the robot it heading EAST then the eastController method
should be called. These methods should then return the optimal direction, which the
robot should then take.

This exercise should not be that difficult as you have done most of the hard work
already. Save your solution as Ex17. java.

6.8 Exercise 18

Q Can the homing robot always be expected to find the target? Carefully justify your
answer.

It is interesting that developing a smarter control algorithm does not actually provide us
with a better robot. The random robot is preferable to the homing robot in the sense
that it will eventually reach the target, albeit after a very long wait.

Also of interest is the fact that specifying and ordering a homing robot seemed sensible.
It is quite possible that a customer, wanting a more sophisticated robot, would request
such behaviour, unaware that the resulting robot would not reach the target in some
cases.

An answer to this sort of problem is to build a prototype. Software developers will
often produce some small cheap code to model a potential solution to a coding problem.
The code does not need to be shown to the customer, as in itself it is not important.
What is important is the input and output behaviour that the code exhibits. A customer

5Yeah, yeah, testing bloody testing! You are probably bored to death with this testing mantra by
now. However, I predict that at least 50% of people’s code will not work at this stage in this coursework.
You will not know this yet, because you can’t be bothered to really test your code, but you will find out
later when you try and put the methods together and find that your robot barfs.

6cool my arse, I can hear you thinking...

58 CHAPTER 6. COURSEWORK 1 (PART 2): A HOMING ROBOT

will be shown the prototype and asked to inspect the behaviour. It is at this point that
the customer can say, ‘hang on, this was not what I thought it would do!’

Prototypes are an excellent way of developing potentially expensive software. They
ensure that when a customer pays twenty million pounds for some code, it turns out to
be what they wanted.

It is quite possible to write prototypes in the Java programming language, but it is
often argued that other languages are better suited to the task. For example, functional
programming languages are favoured for the speed at which software can be developed
and the size of the resulting code. They do not produce particularly fast code, but then
again at the prototyping stage this probably does not matter. If you are doing the CS
course you will be introduced to functional programming languages shortly.

This is the end of the first coursework. This work will be tested on Wednesday
26 October (Week 5) in the IBM Lab of the Computer Science building. If you have
time, you might like to look through chapters 5 and 6 again just to make sure that you
have fulfilled the requirements. Once you have done this you will be required to formally
submit your work. Please read the next chapter to see how this is done.

Chapter 7

BOSS: Submitting your coursework

The Department of Computer Science at Warwick has a very sophisticated tool which is
used for handling the submission of practical work. There are a number of reasons for
using this tool:

e it avoids the impracticality of three hundred people all trying to print out and hand
in their coursework at exactly the same time;

e it provides receipts for submitted coursework so we (and you) can be sure that your
work has been handed in;

e it allows us to check whether the work has been handed in on time;
e it provides a way of archiving your work;

e it allows post-submission tests to be run on your solutions so that we can detect
plagiarism.

You will find that this tool is used for most of the large courses in Computer Science.
In order to use the system you must first register.

7.1 Registering

You must register with the BOSS system before you can submit your work. Ideally you
should try and do this a couple of days before the first deadline, this will ensure that if
there are any problems with your registration then they can be sorted out in time. When
your work is submitted it is time-stamped and marks automatically deducted if it is late
—so if it is late because you did not do your BOSS registration in time, then tough.

You run the BOSS submission system through a web browser. In my experience it
works best when you are using Mozilla, but you might want to try using another browser,
particularly if you are submitting your coursework from home.

The Web address for the BOSS system is

https://secure.dcs.warwick.ac.uk/B0SSonline

99

60 CHAPTER 7. BOSS: SUBMITTING YOUR COURSEWORK

A4 The Web-based BOSS Online Submission System - Mozilla

File Edit View Go Bookmarks Tods Window Help

} [= 3
& &’ Re\auad “ A/se(uve.d(s.warw\(k.a(.uk/BDSSunhne/mdeJésaamh = v

ZhHome ‘QBaakmavks £ Red Hat Network ﬁsuppan Gshap ﬁPmducts ﬁTvammg

BOSS

Choose client

g For students to test and submit
0 Student:
coursework,
For faculty to moderate, marc and

0 Staff: U

manage Courses.

THE UNIVERSITY OF

WARWICK

!
S & 2 6 [e [—

Figure 7.1: Boss on-line.

which should take you to a screen like that in Figure 7.1.

To register you first need to click on the Student button which will take you to the
Student client login screen. To the left you will see the New user or forgot password?
button which you should press.

Now type in your University ID and Surname in the appropriate text boxes and press
Submit. Your submit password will (rather confusingly) be mailed to your IT services
account. So once you have registered with the BOSS system you will have to log in to
your IT services account to collect it.

Once you have this password you can log in to the submission system. I suggest that
the first thing you do is change your password to something you are likely to remember.
This can be done using the Change password button to the left of the BOSS screen.
If you have any problems with registration or the system itself then there are some help
pages which you can consult. If the answer to your question is not there then please mail
boss@dcs.warwick.ac.uk for assistance.

7.2 Submitting your coursework

For the first piece of CS118 coursework you are required to submit a number of files.
If you have followed the instructions carefully then you should have files Ex4. java,
Ex5. java, Ex7. java, Ex8. java and Ex9. java for part 1, and files Ex12. java, Ex13. java,
Ex14.java, Ex15. java, Ex16. java and Ex17. java for part 2.

Before you submit these files you should edit them to ensure that the class name of
each corresponds to the file name; that is, the file Ex4. java has the line

7.2. SUBMITTING YOUR COURSEWORK 61

public class Ex4
and similarly for the rest.
It is easy to check whether you have done this right. Try compiling the files, e.g.
javac -classpath maze-environment.jar Ex4.java
:j';lvac —-classpath maze-environment.jar Ex17.java
and if they compile successfully then the files are ready to submit!.
To submit the files you need to be running the on-line submission system (see above),
in which you select the Submit or test and assignment option. The submission process

is made up of four easy steps. First select the CS118 course code, then Coursework 1,
then Part 1 (see Figure 7.2).

4 The Web-basad BOSS Online Subimission System - Mozilla <>

BOSS

o Step 1/4 - Choose Problem:

Please select a module, an assessment, and a problem.

Choose problem,..

0 Subrit or st ar
assignment
CS120: Programming Laboretory
CS123: Functiona, Frogramring
C5126: Desicr of Ifomarion Sinuctures
CS203: Automata end Fomal Languages
OHeh C5205: Logic for Computer St entists J

—
OLigon

Coursewo'k 2

0 Change password

Part

Figure 7.2: Boss on-line: submission step 1.

At the bottom of the screen you will find a Confirm button, press this to go on to the
next step. Next you need to choose the files that you want to submit. For this example
we choose file Ex7. java (see Figure 7.3 — left).

A confirmation screen will give you the details of the file/s that you wish to submit
(see Figure 7.3 — right).

Tt is important to get this right as when you come to get your work tested on the 26 October you
will be required to run these files.

62 CHAPTER 7. BOSS: SUBMITTING YOUR COURSEWORK

h4The Web-based BOSS Online Submission System - Mozilla <2> | 4 The Web-based BOSS Online Submission System - Mozilla <2>
v '

o Step 2/4 - Choose Files: o Step 3/4 - Choose action:

Youhave chosen to submit or test your solution for:
Choose files... Module: CS118: Programiring fer Computer Scientists Chaises..

Assessment; Coursework | @ Submit
@ Submitortestan }
assimmen Prablem: Pat |

0 Subnit o test an
[[a} Nge PAssOr assignment
Oticp Norw choase the s you want o use O Change passior
01 ozoul |des03/stuctest3/cs118EX7 jave Biowse... 0 Help
Bronse... 0

— Logout
Go buck to: Brm_ml
O Clocsing ol e | The ollowing acions are avalble for this partiulr problem,

Browse. . Go back to:
0Chovsing fes Please select what you want fo doz
M Choosing problemn
Suomtsalution | Pk diferent fles
Do you want to elect more files” Click here

Figure 7.3: Boss on-line: submission steps 2 and 3.

If at any stage you get a warning message, for example:
WARNING: According to our records you are not registered for this module

then my advice is just to ignore it.

The final stages of submission require you to formally submit your solution (see Figure
7.4 — left) — at which point you will be informed as to whether your work is late or not —
after which your file will be copied to the BOSS file server (see Figure 7.4 — right).

Remember, you must be sure to submit all the files.

7.3 Receipts of submission

Once you have submitted your coursework you will be emailed (to your IT services ac-
count...) receipts of submission, one for each of the submitted files. Do not delete these
as they are your only evidence that you have submitted the work.

7.4 The marking process
On Wednesday 26 October (and again later in term) you will be invited into the depart-

ment to have your coursework marked by one of the seminar tutors. The marking times
will be announced nearer the time but the procedure is this:

The seminar group which you are in will be allocated a 1 hour marking slot.
You must get your work marked during this hour otherwise it will not get

7.4. THE MARKING PROCESS 63

hAThe Web-tased BOSS Online Submission System - Moila <2 Bkl hdThe Web-based BOSS Online Submission System - Mozilla <2>

BOSS | BOSS

¢ Step 4/4 - Submit solution: o Main:

Your files were copied and submitted to the server,
Submission complete.

You are user: 9876097
Submit... Main..,
O Submit

O Submtortestin
issignmen

@ Sunmit ortest

assignment 0 Change passwart Please select the action you want to perform by clicking on one of the buttons on the left hand
panel

0 Cenge pussword Olich
OHely OLogt
O Logout

The official deadline has expired. This will be regarded as a late submission, logout : e
Go back to:

Ate you sure you wish fo subimit?
@ Caoosing preblem HE UNCVERSITY OF

/
Submit soluton Cancel WA MICK

Figure 7.4: Boss on-line: submission steps 4 and finish.

marked at all®2. In order to avoid a crush at the beginning of each hour you
should turn up at a time during that hour that corresponds to your surname
- Abbott in the first five minutes, Jarvis about 20 minutes through the hour,
Wenger at the end of the hour, etc.

This might seem like a completely anal procedure but if it goes right it means that your
coursework is marked within about 15 minutes. If it does not go right - because people
turn up early or late - it means that you could be in a queue for up to three hours. This
did happen a few years ago and since then we have tried to be a bit more organised about
things.

The marking process itself is simple. You will be asked to explain your answers to
some carefully selected questions; you will be asked to talk us through some of the code;
you will also need to run some of your code to prove that it works.

As this takes place the person marking your work will be noting down your marks.
This is a completely transparent procedure, so if you are in any doubt as to why a mark
was awarded you can just ask. At the end the marks are tallied up and a preliminary
mark awarded. You are asked to sign the mark sheet to indicate that you are happy with
this preliminary mark. Then you are free to go.

You should take this opportunity to get some direct feedback on your work. If you
have lost marks, make sure you find out why. Talk to the marker and see what he/she
thinks of the work, where improvements can be made etc. All this will be very useful
when it comes to you starting the second coursework.

2A seminar tutor will be at the door ensuring that all marking is done at the appropriate time; if, for
whatever reason, you feel you can not make your allocated time, you must let me know beforehand.

64 CHAPTER 7. BOSS: SUBMITTING YOUR COURSEWORK

Provided there are no problems with your work - like we find out you copied someone
- then this preliminary mark will be converted to your final mark. If you do not hear
anything within three weeks of this marking session you can assume that this is the final
mark for this piece of work.

I hope you will agree when the time comes that this is a fair and transparent way of
marking your work. You are directly involved in the marking process, you have a chance
to discuss the marking with the examiner and are completely free to question any marks
awarded. It is only once you and the marker are in agreement on a representative mark
that you need leave.

Chapter 8

Coursework 2 (Part 1):
Smarter Robot Controllers

In the second coursework you are required to develop sophisticated robot controllers which
adopt a more systematic approach to exploring a maze and that learn. In the first part
of this coursework we will initially build a controller that systematically searches a dense
maze (one that does not contain loops). In such mazes the empty squares form a network
(or tree) of corridors one square wide. There are additional exercises at the end of Part
1 whereby we extend this controller so that it is able to deal with loopy mazes’.

For the second part of the coursework you will be asked to create a robot controller
that learns from its previous runs. This means that the more a robot explores (the same
maze), the quicker it gets at finding the target.

To complete these exercises you will need to be familiar with the use of arrays in Java.
You will find plenty of examples dedicated to the use of arrays in the lecture notes; you
will also find good coverage of arrays in the recommended course textbooks.

The control programs which you will write will be more complicated than those from
the earlier chapters. As such, you will find that they are much more manageable if you
split them up by writing components as separate methods. As a rough guide you should
aim to keep each individual method below 30 lines in length. Similarly, you will almost
certainly find it worth your while packaging useful bits of program from earlier questions
(e.g. choosing a random direction etc.) into methods for later re-use.

In these exercises you are also required to develop your own Java class(es) from scratch.
This is an important part of code design and you will find that you can reuse some of
these classes in the solutions to the questions in Chapter 9. It is important not to shy
away from the inclusion of your own classes. Apart from anything else, it will ensure that
you gain a better grade when your solutions are marked.

This coursework, like the first, is split into two parts. You will find that you are guided
through the first part of the coursework but not the second. The reason for this is that
Part 2 is intended to be tricky and I am not expecting everyone to complete the work. If
you finish up to and including Exercise 21 of Part 1, then you will not fail the coursework
component of the CS118 course. If your aspirations are to get one of the top grades in
this course then you will want to try and complete the latter stages of Part 1 and also

!Mathematically this means extending our robot from one that explores trees to one that explores
graphs.

65

66 CHAPTER 8. COURSEWORK 2 (PART 1): SMARTER ROBOT CONTROLLERS

Part 2. Even if you do not complete these remaining exercises, you may find that you pick
up marks for a partial solution (or even a non-working solution), so it is worth having a
go at these questions if you have time.

All your solutions must be complete by Friday 2 December (Week 10). You
should remind yourself of the rules for coursework by taking a quick look at the first page
of Chapter 5.

8.1 Exercise 19

Q An entirely new Explorer robot controller is going to be built; this should be done in
a file called Explorer. java. This new controller should ensure that the robot meets the
following specification:

e The robot should never reverse direction except at dead ends.
e At corners it should turn left or right so as to avoid collisions.

e At junctions it should, if possible, turn so as to move into a square that it has not
previously explored, choosing randomly if there are more than one. If this is not
possible it should randomly choose a direction that doesn’t cause a collision.

e Similar behaviour to junctions should be exhibited at crossroads: the robot should
select an unexplored exit if possible, selecting randomly between the exits if more
than one is possible. If there are no unexplored exits then the robot should randomly
choose a direction that doesn’t cause a collision.

As the specification suggests, there are four cases to consider, the direction chosen if the
robot is: at a dead end; travelling down a corridor; at a junction; and at a crossroads.

We can tell which of these cases we need to consider at any one time by developing a
method called nonwallExits, running it and observing the result.

Design step 1: Add a method nonwallExits to your Explorer. java file which returns
the number of non-WALL squares (exits) adjacent to the square currently occupied by the
robot. You will need to use the robot.look method and check all four directions. As a
guide, your solution should not be more than ten lines of Java code.

You should check that you have not made any syntax errors by compiling your solu-
tion. You will need to make sure that you have incorporated the import statement at
the beginning of the file, you will also need an Explorer class which includes an empty
controlRobot method as well as the new nonwallExits method. E.g.

8.1. EXERCISE 19 67

import uk.ac...

public class Explorer

{
public void controlRobot(IRobot robot) {}

private int nonwallExits (IRobot robot) // Your new method

{

After some debugging you will find that the compiler no longer complains. Of course you
cannot run this program yet as the controller code does not do anything.

If the nonwallExits method returns a result that is less than two, then the robot is
at a dead end; if the robot is travelling down a corridor, then the number of non-wall
exits will be exactly two; if the number of non-wall exits is three then the controller has
detected that the robot is at a junction; and finally, if the number of non-wall exits is four
then the robot is at a crossroads. See Figure 8.1 for details.

A sensible way to proceed with the development of the explorer robot is to design
the method controlRobot so that it detects which of these four cases it is dealing with.
If the robot is travelling along a corridor, then the control method can pass control to
a subsidiary method which determines what to do in this case. Likewise, the dead-end,
junction and crossroad cases can be developed in the same way.

Design step 2: Modify the controlRobot method so that it records the result of calling
the nonwallExits method. Store the result in a variable called exits.

Design step 3: Now extend the controlRobot method so that it passes control to four
sensibly named subsidiary methods depending on the value of the exits variable.

You will probably want these four subsidiary methods to return direction values to
your controller. Your controller therefore, will need to introduce a variable direction
and assign the result of calling the subsidiary method to that. E.g.

direction = deadEnd(robot);

The controlRobot method will need to execute the commands robot.face(direction)
and robot.advance () before it terminates.

You can compile your changes to check for any syntax errors. You will need to include
empty definitions of your subsidiary methods if the compilation is to succeed. The next
task is to write the four subsidiary methods. We will look at each of these in turn.

68 CHAPTER 8. COURSEWORK 2 (PART 1): SMARTER ROBOT CONTROLLERS

nonwallExits Maze type
=1 Deadend I
=2 Corridor
=3 Junction I I
=4 Crossroad

Figure 8.1: There is a clear relationship between the number of non-wall exits and the
situation which the Explorer robot finds itself in; this is demonstrated in the above figure.

Design step 4: Dead ends — What should the robot do if it is at a dead end? Well, you
are nearly right. It should turn round and head back in the direction it came from in all
but one case - when it is at the start. Write the first of the four subsidiary methods to
deal with the case when the robot is at a dead end. This will not require too much code
as all you need to do is get the robot to find the one and only non-wall route.

Design step 5: Corridors — If the robot is travelling down a corridor, or is at a corner,
then control should be passed to the corridor subsidiary method. This method will ensure
that when in a corridor the robot will not crash into walls (of course) and that it will not
reverse direction and go back on itself, since it only does this at dead ends. Write this
second subsidiary method; again it should not be longer than about ten lines of code.

Design step 6: Junctions — At a junction the robot controller should select a PASSAGE
exit if one exists. This ensures that the robot explores new parts of the maze in preference
to exploring parts of the maze which it has already visited. If there are no passage exits
the robot should choose randomly between all non-wall exits.

8.2. EXERCISE 20 69

Design step 7: Crossroads — The final subsidiary method is the control code for cross-
roads. This should exhibit similar behaviour to that of the junction controlling method:
selecting an unexplored exit if possible, selecting randomly between these unexplored ex-
its if more than one is possible and, if there are no unexplored exits, randomly selecting
a direction that doesn’t cause a collision.

You might find it useful to define an additional passageExits method. This will be
similar to your nonwallExits method but instead it will return the number of passage
exits in relation to the robot position.

Implementing the junction and crossroad control methods then becomes simple. If
there are one or more PASSAGE exits then the controller should choose one of the passages
randomly; if there are no PASSAGE exits then the controller should choose randomly be-
tween all non-wall exits.

When you have completed the code you should compile it to remove all the errors. When
you have finished this you should have a new Explorer.class file which can be loaded
into the robot-maze environment. Test your robot controller carefully to ensure that it
meets the specification.

When you are satisfied that it works correctly, be sure to save the Explorer. java file
in Ex19. java otherwise you will receive no marks for this exercise.

8.2 Exercise 20

Q You will notice that the explorer robot is very good when it comes to searching areas of
the maze which it has not been to before. However, when part of the maze is thoroughly
searched it is unfortunate that the robot goes into random mode. It would be better if
the robot were able to follow its path back to the point at which it chose between one
unexplored path or another. This would enable the robot to backtrack to a previously
encountered junction and follow any previously unexplored exits.

This is the behaviour of the robot controller which will be built in the next two exercises
of this chapter. In order to do this, the controller Explorer.java will be modified so
that, whenever a junction is encountered which the robot has not previously encountered
in its current run, its location and the direction the robot arrived from are recorded. This
information will then be used in the implementation of a backtracking routine.

Design step 1: You can easily detect whether a junction or crossroads has already been
visited during a robot run by counting the number of adjacent BEENBEFORE squares. If
there are more than one, the robot Explorer must have visited the junction or crossroads
at least once before.

Write a method called beenbeforeExits that is similar to the method passageExits
which you defined in exercise 19. This method will return the number of BEENBEFORE
squares adjacent to the robot.

70 CHAPTER 8. COURSEWORK 2 (PART 1): SMARTER ROBOT CONTROLLERS

Design step 2: The recording of junction and crossroad information? will be imple-
mented in a separate class which should be named RobotData. This new class can be
included as part of the Explorer. java file and should contain local state information for
each junction the robot encounters.

When a junction is reached your robot should store the z and y-coordinates (to uniquely
identify it) and the direction which the robot arrived from when it first encountered this
junction. This information can be stored in three arrays

private static int maxJunctions = 10000; // Max. number likely to occur

private static int junctionCounter; // No. of junctions/crossroads stored

private int[] juncX; // X-coordinates of the junctions/crossroads
private int[] juncY; // Y-coordinates of the junctions/crossroads
private int[] arrived; // Direction the robot first arrived from

and an implementation which looked like this would be quite adequate. However, you
might decide that an array of JunctionRecorder objects or something similar would be
a better implementation (and indeed it would).

The coordinates and arrived-from direction for the #-th freshly unencountered junction
will be stored in the i-th elements of the arrays. You can do this by using an integer
variable (junctionCounter, say) to count the number of junctions for which information
has been recorded.

On the first pass of a new run junctionCounter should be set to 0. This can be done
by observing the robot.getRuns() method which allows the control program to detect
when it is computing the first run through a maze (see section 4.2.9). This value alone is
not enough as it will remain 0 throughout the robot’s first run through the maze. What
you need to do is include a counter which counts the number of times the controller code
is polled. A combination of these values will allow you to detect the first move in a first
run through a new maze.

The code for this might look something like:

2From here on in the text I will refer to junctions/crossroads simply as junctions. Those smart ones
amongst you will have realised that there is in fact no difference in the treatment of the two.

8.2. EXERCISE 20 71

public class Explorer
{

private int pollRun = 0; // Incremented after each pass
private RobotData robotData; // Data store for junctions

public void controlRobot(IRobot robot) {
// On the first move of the first run of a new maze
if ((robot.getRuns() == 0) && (pollRun == 0))

robotData = new RobotData(); //reset the data store

pollRun++; // Increment pollRun so that the data is not
// reset each time the robot moves

where the constructor code for RobotData does something sensible — such as setting
junctionCounter to zero, for example.

Complete and insert this code into the Explorer. java file.

This is a tricky part of the Explorer code as you are having to manage the introduction
of your new RobotData class as well as interfacing with the maze-environment itself. In
order to pull this off you need to add the method

public void reset() { robotData.resetJunctionCounter(); }

to the Explorer class in which you are developing your controller code, and then add to
your RobotData class the method

public void resetJunctionCounter() { junctionCounter = 0; }

What this does is ensure that when you press the Reset button in the maze-environment
your junctionCounter variable will be reset?.

Design step 3: Now modify the controlRobot method so that each time the robot ar-
rives at a previously unencountered junction the coordinates and the direction the robot
arrived from are stored in the junctionCounter elements of each array. Remember to
increase the junctionCounter by 1.

A nice way to carry out this recording of junction information is to extend the RobotData
class so that it includes a recordJunction method. This method might take three pa-
rameters: the z-coordinate of the junction (which you can access by making a call to

3You must follow these instructions otherwise you will get into trouble in the next exercise.

72 CHAPTER 8. COURSEWORK 2 (PART 1): SMARTER ROBOT CONTROLLERS

B e e — et P BT | sy | 1 1] ol T R N

Fll2 Heche

o HALLL CanliARA S

okd | 144 |
1 Camrollers @EE

LT Ganessiar

IRINTECHEE |

CieTent Candnedkr

i

Figure 8.2: The robot has passed through three junctions. The information which is
stored in your new RobotData class includes the x- and y-coordinates of these junctions
as well as the directions the robot arrived at these junctions from.

robot.getLocationX()); the y-coordinate of the junction (which you can access by mak-
ing a call to robot.getLocationY()); and the robot heading (which you can access by
calling robot .getHeading()).

Design step 4: When you have completed these modifications, test that the information
recorded is correct by printing it out on the screen (using a printJunction() method)
and comparing it with the simulation display.

If you are in any doubt as to what the result of this exercise is then consider the
following scenario: In figure 8.2 we see that the robot has passed through three junctions.
In this case one would expect the robot to record (and print using the printJunction()
method) the following information:

Junction 1 (x=5,y=1) heading EAST
Junction 2 (x=7,y=1) heading EAST
Junction 3 (x=7,y=5) heading SOUTH

In order to verify that the output of your program is correct in relation to the move-
ment of the robot, you will have to run your robot very slowly. Reset your robot every
now and then and trace through the route of the robot and the output you get from
printJunction(), just to make sure that the information which you record is correct.

Save your answer to this exercise as Ex20.java. Remember, no file, no marks.

8.3. EXERCISE 21 73

8.3 Exercise 21

QO Modify the Explorer robot so that it uses the information it records to perform a
systematic search for the target. The specification for the new robot is as follows:

e Initially the robot will ezplore.

e When the robot is explore-ing it behaves like the original Explorer robot except
that when it reaches a dead end or a junction that it has already encountered in the
same run, it should reverse direction and backtrack.

e If the robot encounters a junction with unexplored exits while backtrack-ing it should
choose one of these exits randomly and ezplore down it.

e If the robot encounters a junction with no unexplored exits while backtrack-ing
it should backtrack in the direction from which it came when it first reached the
junction. This behaviour is termed ‘backtracking through’ a junction.

All this may sound complicated but it is not. What the robot controller is really doing
here is switching between two states, the ezploring state and the backtracking state. This
switch can be implemented as a state variable of the Explorer class,

private int explorerMode; // 1 = explore, 0 = backtrack

for example.

Design step 1: Add the explorerMode variable to your code and set it in your control
code so that when the robot begins a new run the mode is appropriately initialised®.

We now need to implement two controllers, exploreControl for the exploring and
backtrackControl for the backtracking. The robot will be able to switch between these
states depending on the situation.

Design step 2: The method exploreControl is pretty much the same code as you used
in the previous exercise. You should define a new method called exploreControl in your
Explorer class. When you have done this, cut the explorer code out of controlRobot
and paste it into exploreControl. You will find that the controlRobot method then
contains just the basic control code which detects if it is a new run etc. and of course, a
call to the new exploreControl method.

To complete the exploreControl method you also need to add the code which sets
the explorerMode switch to zero when you reach a dead end.

Design step 3: The backtrackControl method will require a call to a searchJunction
method (which should also be defined as part of your RobotData class) which is used to

4The robot should start off in explorer mode. You can ensure that this is the case by adding an
appropriate line of code just after your call to new RobotData() ;. To ensure that you get the same effect
when the Reset button is pressed, you should also add this line of code to the reset () method which
you introduced in the previous exercise.

74 CHAPTER 8. COURSEWORK 2 (PART 1): SMARTER ROBOT CONTROLLERS

search the RobotData for a junction which has already been encountered. This will re-
turn the direction which the robot was travelling when it originally arrived at the junction.

Write the method searchJunction which, when given the 2~ and y-coordinates of the
robot, will return the robot’s heading when it first encountered this particular junction.
What will this method return if it is called when the robot is at a junction which it has
not previously encountered?

Design step 4: Your backtracking control method can now be written. Start by intro-
ducing a new method backtrackControl, below your exploreControl method, in the
Explorer class. Design your backtrack control method so that it calculates the number
of non-wall exits in relation to the robot’s position - this is a similar framework to the
exploreControl function.

If the number of non-wall exits is greater than two, then the robot is at a junc-
tion/crossroads. The backtracking control method then needs to detect if there are any
passageExits at this junction: if there are, then the robot must switch back into ex-
plorer mode and then proceed down one of these unexplored paths (choosing randomly
between them if there are more than one); if there are no passage exits then the robot
must exit the junction the opposite way to which it FIRST entered the junction. You
can use the searchJunction method to determine the initial heading of the robot when
it first entered the junction — the controller should calculate the reverse of this and head
the robot in that direction®.

If the number of non-wall exits is two or less, then the backtracking method should
use the existing methods which select a direction at a corridor and select a direction at a
dead end respectively.

Design step 5: There is one further design step which you need to make and that is to
consider what the controller should do when the robot is at the very first square.

If you have any doubts as to what all this means then talk to your seminar tutor. Time
will be set aside in the seminars to discuss these set of problems.

Save your answer to this exercise as Ex21. java. No file; no marks.

8.4 Exercise 22

@ Will the robot Explorer always find the target using this strategy? Can you place a
limit on the length of time it will take Explorer to find the target? Explain your answers.

The last three questions are intended to be difficult and therefore allow the best
programmers to shine. You therefore have a number of options: you could ignore Exercises
23, 24 and 25 and move on to Part 2, this is perfectly acceptable; you might decide to
try and answer these remaining questions from Part 1, this is fine, but make sure you

5See Section 4.2.4.

8.5. EXERCISE 23 75

Figure 8.3: Representing the maze as a search tree

leave some time for Part 2 as this will be worth more marks in the long run; you might
decide to retire gracefully, this is also perfectly acceptable, although you might want to
go back and make sure your code works correctly and is well commented etc. Whatever
you decide, the remaining exercises are for the brave. Good luck.

8.5 Exercise 23

Q In a ‘real life’ situation it may be highly desirable to minimise the amount of data
storage required by the control program. Re-implement your robot controller so that the
systematic search strategy of the Explorer robot does not require the location of each
junction to be recorded.

Save your solution to Ex23. java.

8.6 Depth-first search in path finding

Throughout this chapter you have been working on the solution to a well-documented
search problem. These sorts of problems are ubiquitous, cropping up everywhere in Arti-
ficial Intelligence and in other areas of Computer Science.

Imagine taking our maze and picking it up from the robot’s start position. You can
lift the maze up so that it hangs like a mobile; it will look like an inverted tree (see
Figure 8.3). You will notice that each path through the maze becomes a branch in the
tree, terminating at a leaf when a dead end is reached. The target will appear on one of
the branches in the tree.

Consider what happens when the explorer robot searches the maze. First it will choose
one path of the maze. The robot will thoroughly search the part of the maze which this
path leads to; any unexplored exits will be searched until, if the target is not detected,
the robot backtracks to the junction at which the initial choice was made.

This procedure is analogous to searching one part of the maze-tree. Given that one
initial path is as likely to be as good as any other, searching the tree requires picking an
alternative at every node in the tree and working forward from that alternative. Other

76 CHAPTER 8. COURSEWORK 2 (PART 1): SMARTER ROBOT CONTROLLERS

alternatives at the same level are ignored as long as there is a hope of reaching the target
using the original choice. This search strategy is known as a depth-first search.

The search proceeds to the bottom of the tree if the target is not found; it then backs
up to the nearest ancestor node with an unexplored alternative. If this path does not
work out then the procedure will move still further back up the tree seeking another
viable decision point to move forward from. This process continues until the target is
reached or all possible paths in the tree are exhausted.

There are many other search techniques which are used to solve this and similar
problems in Computer Science. Some of these search techniques will be more efficient,
others will be more suited to finding the shortest path. Special-case procedures also exist
which are appropriate when facing an adversary. These procedures use game trees and
are common in computer programs that play board games such as chess for example.

8.7 Exercise 24

Q Currently our Explorer robot uses a depth-first search. This is all very well as long
as our maze is non-loopy — as soon as a loop is introduced the exploring algorithm breaks®.

Modify your Explorer robot so that it is able to navigate mazes with single loops.

Save your solution to Ex24. java.

8.8 Exercise 25

Q Extend your answer to the previous exercise so that your robot can navigate mazes
with multiple loops.

Save your solution to Ex25. java.

Solving loopy mazes has been the subject of much research” and as you might expect,
someone has already contemplated the problem of navigating around a maze with multiple
loops. Indeed a nice solution to this problem was originally published in Recreations
Mathematique (Volume 1, 1882)% by M. Trémaux.

6You can test this out for yourself.

"From longer ago than you might think — from the ancient Minoans in Crete in about 2000BC, to
our very own upper-class and bored Royalty, with nothing better to do than frolic around in daft clothes
and in houses large enough to host a maze in their outside privy.

8 An excellent read for those lonely afternoons on the Arsenal terraces. You might try asking for it in
the library.

8.9. SUMMING UP 7

8.9 Summing up

You have now reached the end of the first set of exercises of coursework 2. Getting this
far in the exercises will probably be enough to ensure that you get a pass grade for the
practical component of the Programming for Computer Scientists course (providing your
code works, has comments, looks nice etc.) Before you go off and celebrate, you must
ensure that you submit a copy of the file Ex21. java®.

To do this you should change the class name at the top of the file from Explorer
to Ex21 so that it compiles correctly. Then follow the submission instructions found in
chapter 7.

9And Ex23.java, Ex24.java and Ex25. java if you have done them.

78 CHAPTER 8. COURSEWORK 2 (PART 1): SMARTER ROBOT CONTROLLERS

Chapter 9

Coursework 2 (Part 2):
The Grand Finale

The exercises in this chapter are designed to test the very best of you. Although it should
be said that it is possible to get a good grade in the practical component of the CS118
course without having done the exercises in this chapter; this means that if you do not
get a chance to finish this part then you should not panic. You may however find the
exercises interesting and decide that you have time to attempt some or all of the questions
provided. Even if you do not complete the exercises, you might get some marks for trying.
So even if your robot is a bit wonky, you may still gain credit for a part solution.

In this second part of coursework 2 you are required to design, build and test a
learning robot. You will receive much less step-by-step guidance and as a result I expect
to see lots of exciting and innovative solutions. Your solutions will be marked on design,
programming style and of course correctness!.

The programs which you will write for this section are probably the most interesting
in this course. You will produce some very clever robot controllers as answers to the
questions. It can also be very satisfying to watch the more advanced robots in action.

As a consequence of the work being more difficult, you will receive extra credit for any
work you do from Chapter 8. It is very difficult to quantify exactly what this means in
terms of your marks, as other factors such as programming style, reusability, etc. will play
a part. However, you might like to think of these exercises as constituting the difference
between an A grade and a B grade in your coursework (depending on where the grade
boundaries are drawn?).

This year there will also be a prize for the person who develops the best solution®.
While this prize is unlikely to be the model solutions to the CS118 exam, or dinner with
Kylie Minogue or John Prescott, it is perhaps the only thing the Department will give

you®.

'If your program works then you can be assured of at least 60% of the marks, if you have a smart
design then you will bank a further 20%, and if you have programmed like a coding god then you can
expect the remaining 20% of the marks.

2and whether I have received your cheque or not.

3Yes I did say this last year and it is true that there was some problem with the delivery of this prize.
In fact the prize got stuck at Bangkok customs.

4except for a small certificate and tonnes of grief over the next three years.

79

80 CHAPTER 9. COURSEWORK 2 (PART 2): THE GRAND FINALE

Sl C5118 Courseware -(c) 2001 Phil G. Miiller - Build 20011126 o[
File Help
Robot Controllers
I Controllers
Current Generator
PrirGenerator
Prinis Algorithm. (e) Phil G. Mueller
Current Cantraller
GrandFinale
Folled Contraller Implementation
0 Runs
.....................
Speed
Reset

Figure 9.1: A trace of the GrandFinale robot the first run through the maze.

9.1 The Grand Finale

Q@ You receive a call from NASA. They have seen your robot in action and plan to use some
of your code in their next mission®. However, while it is clear that your robot searches
in a very sophisticated way, NASA point out that it does not learn from its mistakes®.
What they would like is a robot that learns.

The aim of this last part is to build a learning robot that can use information
gathered during previous runs through a maze to find a target at increasing speed.

The plan is to build on the solution to exercise 21. The robot will search the maze (in
its Explorer-like way) the first time the robot is run through a maze (as it did in exercise
21) but, the second time” the robot is run, it will use its virtual map (its memory if you
like) to find the target more quickly. What you would expect the robot to do the second
time round is exclude the routes through the maze which went nowhere and instead select
those which it knows will take it towards the target.

An example of this behaviour is demonstrated in figures 9.1 and 9.2. In figure 9.1 we
see the trace of the robot the first time it is run through a fairly extensive maze. As you
would expect it is fairly thorough about the areas which it explores, finally however it
reaches the target.

When the robot is run again, shown in figure 9.2, the robot can use the information
which it stored about the maze during the first run to direct its search for the target. As
you see it needs far less exploration the second time round. The aim of the second part
of coursework 2 is to model this behaviour.

5Heaven forbid.
6Unlike NASA, of course.
“or more

9.2. ROUTE A 81

Sl C5118 Courseware -(c) 2001 Phil G. Miiller - Build 20011126 o[
File Help
Robot Controllers
I Controllers
Current Generator
PrirGenerator
Prinis Algorithm. (e) Phil G. Mueller
Current Cantraller
GrandFinale
Folled Contraller Implementation
3R
.....................
Speed
Reset

Figure 9.2: A trace of the GrandFinale robot the second time it runs through the maze.

There is more than one way of doing this and in order to provide you with some
(modest) assistance I shall describe two approaches which you might like to take. I do
not mind which of these you go for, if any.

9.2 Route A

© Modify Explorer so that it records the junctions (if any) that each known junction’s
exit(s) lead to. Test that your program stores the correct information by temporarily
modifying it to print the information on the screen and comparing the results with the
layout of small test mazes. The information gathered should be retained between runs in
the same maze.

You may wish to experiment with the use of complex data structures or arrays of
arrays to record this information in a conveniently accessible form. Figure 9.3 shows
the sort of data structure which you will need and the extra information which you are
likely to store. Note that as well as storing the direction from which the robot entered
a junction, the controller also stores the junction which taking a LEFT, RIGHT, BEHIND or
FORWARD path would lead to.

In the figure you will see that the array index at which the information relating to a
particular junction is stored, provides a very convenient means of identifying that junc-
tion. Since these identifying integers will be positive (or zero), exits which have yet to be
explored can be represented as a negative number. Remember that a method is provided
which tells you whether you are computing the first run in a maze, and using this you
can detect whether the maze has changed since the previous runs.

The second task is to design, build and test a method which uses the information

82 CHAPTER 9. COURSEWORK 2 (PART 2): THE GRAND FINALE

Junction 0 Junction 1

e L
mr

An example section of maze

Information stored for

direction SOUTH direction EAST controllersin chapter 7
forward -1 forward -1
New information required
left 1 left -1 for controllersin chapter 8
right -100 right -1
behind -200 & behind 0
Array Index / 0 1 2

Leadsto junction Value representing ‘yet unexplored’

Junction reached by turning left
Value representing ‘there is no exit’
Value representing ‘ start of maze'

Array structure storing junction information

Figure 9.3: Storing more junction information.

collected by the controller to compute a route between the start and end of the maze.

My advice here is to think first and implement second! Consider how you might repre-
sent and compute such a route. Give yourself time to think. Go away from the computer,
with pencil and paper (or coffee, or beer, whatever...) to design a good scheme. Then try
to implement and test your ideas. If inspiration fails to strike even after thinking hard,
your seminar tutor will be able to offer a hint or two. There are quite a number of possible
methods which you could use, and each can be implemented as a computer program in
many different ways. So, don’t panic if your solution sounds completely different to that
offered by the seminar tutor - the chances are that you are both right.

Save your working implementation to this exercise in the file GrandFinale. java.

9.3 Route B

Q There is a solution to this problem which many perceive as simpler to that presented
in Route A. This route is based on your answer to exercise 23 and so you might like to
remind yourself what that was about.

It is possible to store the arrived-from direction and not the x- and y-coordinates of
the robot and still build a learning robot. What you need to do in this case is treat the
arrived-from directions as a stack of values.

The analogy which is often introduced when describing stacks in Computer Science
is a pile of dinner plates. If you imagine this pile, then plates can only be introduced at
the top of the pile (if you want to avoid any lifting) and similarly taking a plate (in this
lazy way) means taking one from the top as opposed to anywhere else in the pile. This
method of putting things on and taking things off is described as last in first out, and
Computer Scientists use the terms pushing items onto the stack and poping them off.

9.4. SUBMITTING YOUR COURSEWORK 83

You can use a stack to record the arrived-from directions of the robot. Each time the
robot arrives at a junction the arrived-from direction should be pushed onto the stack;
when the robot is backtracking the arrived-from directions should be popped off the top
of the stack.

If you use this approach you will find that by the time the robot reaches the target
the stack will contain a route to the target. The trick is to then use this stack the next
time round to direct the robot straight to the target.

Save your working implementation to this exercise in the file GrandFinale. java.

9.4 Submitting your coursework

The files which should be submitted for the second coursework are Ex21.java and also
GrandFinale.java; if you have managed to complete some or all of the additional ex-
ercises at the end of Part 1 then you should also submit one or more of Ex22. java,
Ex24.java and Ex25. java.

In order to make the marking of your work easier, you should make sure that the class
names correspond to the file names - that is, file Ex21. java contains the definition

public class Ex21
and similarly for the other files.

To submit the work you should follow the instructions documented in chapter 7. The
marking of this coursework will take place on Friday 2 December (Week 10). Be

there or be square®.

9.5 Epilogue

This coursework has touched on a number of different areas of Computer Science. You
have learnt something about specifications and refinement, you have learnt something
about programming and software testing. You will have also touched on data structures
and algorithms, and also AL

There is much to learn in the remainder of your degree course but this should give you
an idea as to how all these areas fit together and how important each is in its own right.

Programming is a complicated business and you are not going to have mastered it
in ten weeks. It is a bit like learning to drive - you have probably crashed a few times
already, or at least come off the road - and you will get better the more you do. By the
summer many of you will be taking up well paid summer jobs fixing peoples’ Java code.
This may sound hard to believe right now, but each year it is the same; the only thing
that changes is that the wages go up!

8In fact, be there or get no marks.

84 CHAPTER 9. COURSEWORK 2 (PART 2): THE GRAND FINALE

Appendix A

Problem Sheets

g P2 g g g 3 g P2 g g
3 3 3 3 3 3 3 3 3 3
~ ~ ~ ~ ~ Fy ~ ~ ~ ~
- [N w IN Ul o ~ o) © 5
1 Test
2 4
3 5
Note:
Deadline for coursework 1 - Wednesday week 5 (27 October)
Deadline for coursework 2 — Friday week 10 (3 December) Seminar sheet

Class test - Monday week 6 - (1 November)

Figure A.1: A term planner for CS118, including the deadlines for the two pieces of
coursework and also the date of the class test.

The first problem sheet is found in Chapter 2. The seminars for the CS118 course
begin on Thursday week 1 (see Computer Science notice boards for details). Because of
the way the seminars are timetabled, a seminar-week begins on a Thursday at 5pm and
ends on a Thursday at 2pm. You can see how the seminar-weeks relate to the problem
sheets in the term planner found in figure A.1.

The term planner shows that you should all have finished the first problem sheet by the
end of Thursday week 2 at 2pm. The second seminar-week begins on Thursday of week
2 at 5pm and so on. The first problem sheet is to do in the seminar itself; the remaining
sheets should be completed before the seminar and handed in so that the seminar tutors

85

86 APPENDIX A. PROBLEM SHEETS

can monitor your progress.

You will see from the term planner that there is some respite in the timetable. This
will allow us to schedule trouble-shooting sessions for the coursework. If you think that
you would like to talk about the coursework (or the marking, or whatever...) before the
deadline then you should make sure you talk to your seminar tutor. If there is no interest
then the seminar tutors may will not hold classes in seminar-weeks 4, 5 and 9.

Seminar week 6 is dedicated to the class test which you will have done at the beginning
of that week. In this seminar you will run through the solutions to these exercises and
also receive your mark.

A.1 Problem Sheet 2: Simple statements

A.1.1 Identifiers
Which of the following are not valid identifiers?
1. hello
2. hello2
3. hello_3
4. 4hello
5. _hello
6. hllo

7. $100

For discussion: The textbook which you are using will probably have a set style which
is used for the definition of identifiers. Can you work out what that style is? Is there a
minimum or maximum length prescribed or do you think that some other rule is used for
deciding what a good identifier should look like?

A.1.2 Data types

1. What are the eight primitive data types in Java?
2. What does primitive mean in this context?

3. For each primitive datatype suggest something from the real world that it would be
good at representing.

A.1. PROBLEM SHEET 2: SIMPLE STATEMENTS 87

A.1.3 Arithmetic expressions
Write the following as expressions in Java.

1. An expression for the volume of a rectangular room in terms of its length, width
and height;

2. The age of a cat in cat-years in terms of its actual age. (A cat is said to age 15
cat-years in its first year of life and 4 cat-years for each subsequent year. You may
assume the cat is at least 1 year old.)

3. ¢ = —3(b+/b? — dac) (Hint: Math.sqrt(x) calculates the square root of x.)

Example: a good answer to 1 is: volume = length x width x height

For discussion: The Math reference in the question above is to the Java math library. One
of the advantages of a language such as Java is the existence of an extensive set of library
files (in Java called the API). See if you can find the Math library in the Java API.

A.1.4 Boolean expressions
If

boolean finished=false;
boolean negative=true;
boolean error=false;

state whether each of the expressions below is valid, and if so whether it evaluates to true
or false.

1. finished && negative

2. error || finished && negative
3. 1(5<7)&& (6>=5)

4. (5=6) | |true

5. finished && true && (6)

Example: 1 is valid and would evaluate to: false

A.1.5 Precedence of operators

What is the value of x after each statement is performed?

1. x = 5+2%6;

2. x = 2%2+3*%4-3Y,3;

3. x = 2% (2+3%4)-3%3;

4. x = (4-(3x(2-(2+7%(1-4)))));

Example: the answer to 1 is: 17

88 APPENDIX A. PROBLEM SHEETS

A.1.6 Writing strings and numbers

Given that int x = 2;, what would be the output produced by the following lines of
code:

1. System.out.println(x);

2. System.out.println("x");

3. System.out.println(x + 3);

4. System.out.println("x" + "3");

5. System.out.println("x + 3 = " + x + 3);

Example: the answer to 1 is: 2

A.1.7 Strictness

In order to answer this question you will have to revise the definitions of strict and non-
strict from the lecture notes (or from your text book if you have not yet sat through
lecture 3).

If int x = 0;, what is the result of the following statements:

1. (x !'=0) & ((100/x) !'= 2)
2. (x '=0) & ((100/x) != 2)
3. (x> 2) & (x++ < 2)
4. (x > 2) & (x++ < 2)
5. (x >2) | (x++ < 2)
6. (x>2) || (x++ < 2)

7. (x == 0) || (x++ < 2)

Example: the answer to 1 is: The program blows up!

For discussion: What do you think are the major benefits of including lazy operators into
a programming language? Do you think that it is a sensible thing to do, or can you think
of any reasons as to why is might not be such a good idea?

A.1. PROBLEM SHEET 2: SIMPLE STATEMENTS 89

A.1.8 Representable values

Without using you lecture notes, work out what the range of representable values are for
the following data types:

1. byte
2. int
3. long
4. short
Example: the answer to 1 is: -128 to +127

For discussion: Why do you think Java has so many primitive numeric types? Why not
just have an int and float and have done with it?

90 APPENDIX A. PROBLEM SHEETS

A.2 Problem Sheet 3: Control structures

A.2.1 if statements

Given that int x=5 and boolean okay=false what will be the output of the following
fragments of code:

a) c)
if (x>5) System.out.println("yes"); if (x>7)
else System.out.println("no"); if (x==9)
System.out.println("if");
b) else
if (x<=4) System.out.println("dangling else");
{ System.out.println("hello");
if (x>=6)
{ System.out.println("one"); d)
b if (x<7)
else if (x==5) System.out.println("two"); { if (x==9)
else System.out.println("three"); System.out.println("if");
} }
else System.out.println("four"); else

System.out.println("dangling else");
System.out.println("hello");

e)

if (okayl|(!(!(true)))) if (okayl|(true&&! (okay))

&& (falsel | (true&&false&&true)))System.out.println("one");

else if (okayl|(true&&! (okay))&&(falsel | (true&&

Ifalse&&true))){}else System.out.println("one");

Example: the answer to a) is: no

For discussion: The layout of the control statements in this question varies. Does it make
a difference how you go about presenting your code or do you think that it doesn’t really
matter? Would the introduction of some extra brackets (i.e. { and }) have helped you
understand how the code in any of these questions worked?

A.2.2 switch statements

The following is an example of a simple user interface:

Type 1 to Delete
2 to Send
3 to Save
4 to Quit

Given that the user’s option has already been read into an int called option, write a
switch statement that prints out a message asking if they are certain. For example if

A.2. PROBLEM SHEET 3: CONTROL STRUCTURES 91

option equals 2 then the switch statement should print: Are you sure you want to send?
If option is not in the range 1-4 then it should write the message: Please type 1, 2, 3 or 4.

For discussion: The use of the break statement is sometimes confusing. Are you com-
pletely sure that you know how this statement works?

A.2.3 while and do ... while loops

1. What is the difference between a while and a do ... while loop? Which have
you decided to use in your answer to chapter 5 exercise 47

2. Write some code that repeatedly reads in an int option and only stops if the value
4 (Quit) is entered. Interaction with the code should look like this:

Enter an option: 3
Enter an option: 7
Enter an option: 4
Goodbye!

3. A student needs to keep track of his finances. Write some code that will allow him
to enter his current balance and then repeatedly subtract amounts as he spends
money. If at any time his balance is less than his overdraft limit (of 400 pounds)
then program must issue him with a warning and then stop. The following is an
example interaction with the code:

Enter opening balance: 134.34

Enter amount spent: 115.99

Enter amount spent: 87.40

Enter amount spent: 350.00

Warning: your balance is now -419.05. Put some money in the bank!

One way to be sure that the code you have written for this exercises is correct is to test
it! It is very easy writing code on paper - but very difficult to convince people that it is
right if you have not bothered to type it in and run it. If you are avoiding time in front
of the computer then you are doing yourself a disservice. Nag nag...

A.2.4 for loops

1. Write a for loop that reads in an integer from the user and then writes out that
number of *s. For example:

Enter the number of stars you want: 5

* ¥ X X *

92 APPENDIX A. PROBLEM SHEETS

If the user enters zero or less then it should write no *s.

2. Write a for loop that calculates the factorial of a number. The factorial of an integer
n is the number 1x2x*...xn —1x%n, so the factorial of 5 would be 1%2x3%4x5 = 120.

A.2.5 Hard to spot mistakes

What is wrong with the following bits of code?

a) int x=0; d) int x=0;
while (x<10); do
{ System.out.println(x); { System.out.println("x=");
X+t System.out.println(x) ;
} }
while (x<10);
b) switch(choice)
case 1: e) for (int x=0; x<10; x++)
System.out.println("choice = 1"); { System.out.println("outer loop");

case 2:
System.out.println("choice = 2");
default:
System.out.println("neither");

for (int x=0; x<10; x++)
System.out.println("inner loop");
System.out.println(x);

3

c) if (a=10)
{ a= 10+ +b; }

A.2.6 Correctness, preconditions and postconditions

One problem with conditionals in any language is knowing when each part of the code
is executed. In complex programs this can be difficult and one way to ensure that your
programs are correct is to use pre- and post-conditions.

Explain the terms precondition and postcondition using the following code to illustrate
your answer. What can you say about the conditions under which p1, p2, p3 and p4 are
executed and what can you say about their effect on the state of the program? In this
exercise you can ignore any overflow errors.

if (a>=0)

{ a=a+1; } \\ pt
else if ((a<=0)&(b>0))

{ a=a-1; } \\ p2
else if ((a<0)&(b>0))

{ b=b+1; } \\ p3

else if ((b>a)&((b+1)==a))
{ b=b-1; } \\ p4

A.2. PROBLEM SHEET 3: CONTROL STRUCTURES 93
A.2.7 Seminars

This is the end of the third problem sheet and you are now not scheduled to have a seminar
until seminar-week 6. You should have mixed feelings about this; great no seminars for a
couple of weeks, but how am I going to know whether what I am doing in the coursework
is correct?

If you would like a seminar next week (which would probably involve discussing the
first coursework) then you must let your seminar tutor know. You might also like to think
about the topics which you would like to discuss and let him /her know beforehand.

Make sure you agree at the end of this seminar whether you will be having a seminar
next week and if so where it will be held (you might like to meet in the lab for example).

94 APPENDIX A. PROBLEM SHEETS

A.3 Problem Sheet 4: Methods, arguments, and scope

A.3.1 Variable scope

What, if anything, is wrong with the following code? If the code does not work, suggest
how to fix it. If the program executes, what is it’s output?

a)
public static void main(Stringl[] args)
{
int n = I0.readint("Enter size: ");
for (int n = 0; n < 10; n++)
{
System.out.println(n) ;
}
}

b)
public static void main(Stringl[] args)
{
int n = I0.readint("Enter size: ");
for (int i = 0; 1 < n; i++)
{
System.out.println(n);
}
System.out.println(i);
}

c)
public class Test2
{

public static void MyMethod()
{
System.out.println(n) ;
n=n+1;

}

public static void main(String[] args)
{
int n = I0.readint("Enter size: ");
MyMethod () ;
System.out.println(n);
}

A.3. PROBLEM SHEET 4: METHODS, ARGUMENTS, AND SCOPE

d)
public class Test2
{

public static void MyMethod(int n)
{
System.out.println(n);
n=mn+1;

}

public static void main(Stringl[] args)
{
int n = I0.readint("Enter size: ");
MyMethod (n) ;
System.out.println(n) ;
}
}

e)
public class Test2
{

public static void MyMethod(int n)
{

n=n+1;
System.out.println(n);
b

public static void main(String[] args)
{
int n = I0.readint("Enter size: ");
MyMethod (n) ;
System.out.println(n);
}
}

f)
public class Test2

{
public static void MyMethod(int n)
{

n=n+1;
System.out.println(n);
}

public static void main(String[] args)

95

96 APPENDIX A. PROBLEM SHEETS

{
{
int n = I0.readint("Enter size: ");
System.out.println(n);
}
for (int n = 3; n > 0; n—)
{
MyMethod (n) ;
}
int n = 0;
System.out.println(n);
}

For discussion: Are you sure that you know what is meant by scope? Scoping rules are
responsible for lots of compilation errors when programming and therefore it is important
that you know what you are doing in this regard.

A.3.2 Arguments and return types

Imagine that you are developing Java methods to solve a number of small programming
problems. When you declare a method there are three important considerations: What
the method should be called; what it’s return value should be; what argument values it
should take.

Suggest solutions to each of these criteria for the following coding problems:

1. Code which will perform multiplication;

2. Code which will print your birthday (Eg. 2 7 1981);
3. Code which will perform factorial;

4. Code which will always produce the number 2000;
5. Code which will always print your name;

6. Code to average your assignment marks.

A.3.3 An exercise in using methods

This exercise is on the simulation of hardware circuits. It will involve building methods for
logic gates. If you are not familiar with these you should look them up in any reasonable
book on logic or computer hardware. Once you have constructed methods for the logic
gates, you will construct a larger piece of hardware - a half adder.

Given the following code:

A.3. PROBLEM SHEET 4: METHODS, ARGUMENTS, AND SCOPE

public class Test2

{
public static void PrintTruthTable(byte x, byte y, byte v)

{

97

System.out.println("X =" + x + " Y=" +y + "V ="+ v);
}
public static void main(String[] args)
{
for (byte x=0; x<=1; x++)
for (byte y=0; y<=1; y++)
{
PrintTruthTable(x,y,AND(x,y));
}
}
}
1. Write the code for the logic gate AND so that the program will execute and produce
the output:
X=0Y=0V=20
X=0Y=1V-=0
X=1Y=0V-=0
X=1Y=1V-=1

2. Add methods for the logic gates OR, Exclusive-0OR, NAND and NOT.

3. The sum part for a binary half-adder can be constructed using AND, OR and NOT

gates using the following formula

SUM = (x . y’) + (x> . vy,

where . refers to an AND, + to an OR and ’ to a NOT. Write a new method which

produces a SUM for a half adder.

4. The carry part for a half adder can be constructed using an OR and NOT gates using

the following formula

CARRY = (x’ + y’)’.

Write a method which produces a CARRY for a half adder.

5. Modify PrintTruthTable so that it is able to print a truth table for a half adder:

98 APPENDIX A. PROBLEM SHEETS

X=0Y=0S=0C=0
X=0Y=1S8S=1C=0
X=1Y=0S8=1C=0
X=1Y=18S=0C-=1

PrintTruthTable should lose no functionality. So think carefully about what you
need to do to extend the method.

You should test your solutions before arriving at your seminar. You seminar tutors have
been instructed to pick on people, you will not be able to blag your way through a solution.
An organised student will have planned the answers to these questions, tested them on
the computer and then printed them out for the seminar class. Are you one of these
students?

A.3.4 OOP

We have now made the paradigm shift from procedural programming to object oriented
programming. If we are looking for a crude way to describe what this means then we
might say that we are extending the type system of our programming language so that
it now not only includes primitive types (int and char etc.) but more complex (object)
types as well.

Objects are a pretty smart idea as they not only include data (like a primitive datatype)
but they also include the operations (methods) which can be applied to that data.

For discussion: Think about this difference between primitive and object types. If
you know any other programming languages do you know whether they include these two
styles of datatype? Can you see any advantages/disadvantages to having object types as
well as primitive types?

A.4. PROBLEM SHEET 5: ARRAYS AND RECURSION,ABSTRACT CLASSES AND INTERFACE

A.4 Problem Sheet 5: Arrays and recursion,
abstract classes and interfaces

There are a lot of questions on this last seminar sheet and so you might find that you
don’t have time to do all of them. This does not mean that you should just pick and
choose those questions which you like the look of, rather you should do the exercises that
correspond to the material which you have covered in the lectures up to this point in time.
For example, you might find that you have not yet covered interfaces in the lectures yet;
if this is the case then do not do the interface-related question.

Any exercises which you do not cover in the seminar should be done in your own time.
It is important not to just ignore these exercises as you may find that they come up in
the exam.

A.4.1 Arrays

The following code is a simple procedural type program which sets up an array with fifteen
integer values, and also provides a search method for finding a single integer within the
array.

import uk.ac.warwick.dcs.util.io.IO;

public class ArrayExample

{
public static boolean search(int[] a, int x)
{
for (int i = 0; i < a.length; i++)
{
if (a[i] == x) return true;
}
return false;
}

public static void main(String[] args)
{

int input = IO.readint("Enter the number you want to find");
int myArray[] = {1,5,67,4,456,67,23,7,24,7,86,23,67,4,75%};

if (search(myArray,input)) System.out.println("Found it!");
else System.out.println("Sorry it’s not there!");

1. Is the array myArray passed to the search method by value or by reference? What
are the differences between these two modes of variable passing?

2. Write another method called largestValue which returns the largest value in the

100 APPENDIX A. PROBLEM SHEETS

array. Hint: you now only need one parameter value - the array itself; set the return
type to int; and consider what the range of integer values is in Java.

3. Further modify the code so that it has the method smallestValue which finds the
smallest value in the array.

4. Finally modify the program so that it finds the largest interval between two elements
in the array. So if the array is [7,1,9,2], the largest interval

max(abs(7 — 1), abs(7 —9), abs(7 — 2),abs(1,9), abs(1,2), abs(9, 2))

is 8. Write a program which produces this result by some efficient means (abs gives
the absolute difference; this is written Math.abs(x) in Java).

A.4.2 Recursion revisited

We can implement the array searching method recursively. If you think about it all we
are doing when we search an array is check the first element, stop if we have found what
we are looking, and carry on searching a slightly smaller array if the element is not yet
found.

public static boolean searchRecurse(int[] a, int x)
{
if (a[0] == x) return true;
else
{
a = chop(a);
if (a.length == 0) return false;
else return searchRecurse(a,x);
}
}

private static int[] chop (int[] sourceArray)

{
int targetArray[] = new int[sourceArray.length-1];
System.arraycopy(sourceArray, 1, targetArray, O, sourceArray.length-1);
return targetArray;

}

The method called chop simply takes an array and chops the first element off the
front. So chop([4,6,78,43]) returns the array [6,78,43]. The method search has now
been rewritten so that it works recursively. First it checks the first element in the array.
If this is the element which is being searched for then it returns true. If it is not, then the
array is chopped (thus losing the first element) and the search continues on the slightly
smaller array. Of course, if the array has been chopped down to length zero, then there
are no more elements to search and the method returns false.

A.4. PROBLEM SHEET 5: ARRAYS AND RECURSION,ABSTRACT CLASSES AND INTERFACE

1. Using the same idea as searchRecurse rewrite your smallestValue method to
smallestValueRecurse. There are (at least) two ways to do this:

You might like to add an extra parameter variable to your new method which rep-
resents the smallest value which you have seen so far. This accumulating parameter
will contain the smallest value at the end of the recursion.

Alternatively you might like to write a destructive method which compares each
element in the array with the last (ala.length-1]) value, swapping the values if
the one at the end is larger. This will ensure that at the end of the recursion, the
smallest value is in the last element in the array.

2. Write a similar recursive method for finding the largest value in the array.

3. Now use these two methods to re-implement the interval program above. If you have
implemented destructive methods in parts 1 and 2 what extra does your program
need to do?

A.4.3 Classes, abstract classes and interfaces
Describe the differences between the following:

1. A Class, as seen throughout the CS118 course;

2. An Abstract Class;

3. An Interface.

Give an example where each might be used. You should illustrate your examples with
some outline code.

A.4.4 Programming with abstract classes
Recall the Java code for the abstract class Player

abstract class Player
{

private char piece;

Player(char c)
{ piece = c; }

public char playingWith()
{ return piece; }

public abstract int chooseRow(Board b);

public abstract int chooseColumn(Board b);

102 APPENDIX A. PROBLEM SHEETS

Write a definition for an abstract class which satisfies the header below
abstract class Exercise2Player extends Player

Is it possible to extend this class hierarchy further with a definition which satisfies the
header

abstract class YetAnotherPlayer extends Exercise2Player

A.4.5 Inheritance
What does it mean when we say that Class B inherits method M from Class A?

What does method overriding mean? Illustrate your answer with some example code.

Multiple inheritance is something which Java does not allow. What is multiple inheritance
and why might the designers of Java have decided that it was not such a good idea?

A.4.6 Interfaces

Design an interface which meets the following specification.

Communication between computers is often described as taking place over a
Channel. Channels can either have high-priority (signified by the value 1) or
low-priority (signified by the value 0). As well as a priority value, a channel
also has a number of operations: send - which takes a message (String) and
returns a value which denotes whether the send was successful or not; receive
- which takes no arguments and returns a message; setPriority - which will
set the internal priority of the system to the argument value supplied (a 1 or a
0); viewPriority - which takes no arguments and returns the internal priority
value.

A.4.7 Seminars

This is the end of the seminar sheets. If you would like a seminar next week, to cover
material from the second coursework for example, then make sure you let your seminar
tutor know. You might decide to meet in the lab and ask him/her to look through your
code and comment on your solutions.

