
1

Linux Administrators Security Guide
LASG - 0.1.0

By Kurt Seifried (seifried@seifried.org) copyright 1999, All rights reserved.
Available at: https://www.seifried.org/lasg/

This document is free for most non commercial uses, the license follows the table of contents,
please read it if you have any concerns. If you have any questions email seifried@seifried.org.
If you want to receive announcements of new versions of the LASG please send a blank email
with the subject line “subscribe” (no quotes) to lasg-announce-request@seifried.org.

2

Table of contents

License

Preface

Forward by the author

Contributing

What this guide is and isn't

How to determine what to secure and how to secure it

Safe installation of Linux
Choosing your install media
It ain't over 'til...

General concepts, server verses workstations, etc

Physical / Boot security
Physical access
The computer BIOS
LILO

The Linux kernel
Upgrading and compiling the kernel
Kernel versions

Administrative tools
Access

Telnet
SSH
LSH
REXEC
NSH
Slush
SSL Telnet
Fsh
secsh

Local
YaST
sudo
Super

Remote
Webmin
Linuxconf
COAS

3

System Files
/etc/passwd
/etc/shadow
/etc/groups
/etc/gshadow
/etc/login.defs
/etc/shells
/etc/securetty

Log files and other forms of monitoring
sysklogd / klogd

secure-syslog
next generation syslog

Log monitoring
logcheck
colorlogs
WOTS
swatch

Kernel logging
auditd

Shell logging
bash

Shadow passwords
Cracking passwords

Jack the ripper
Crack
Saltine cracker
VCU

PAM

Software Management
RPM
dpkg
tarballs / tgz
Checking file integrity

RPM
dpkg
PGP
MD5

Automatic updates
RPM

AutoRPM
rhlupdate
RpmWatch

dpkg
apt

4

tarballs / tgz
Tracking changes

installwatch
instmon

Converting formats
alien

File / Filesystem security
Secure file deletion

wipe (thomassr@erols.com)
wipe (durakb@crit2.univ-montp2.fr)

TCP-IP and network security
IPSec
IPv6
TCP-IP attack programs

HUNT Project

PPP security

Basic network service security
What is running and who is it talking to?
PS Output
Netstat Output
lsof

Basic network services config files
inetd.conf
TCP_WRAPPERS

Network services
Telnetd
SSHD

Fresh Free FiSSH
Tera Term
putty
mindterm
LSH

RSH, REXEC, RCP
Webmin
FTP

WuFTPD
Apache
SQUID
SMTP

Sendmail
Qmail
Postfix
Zmailer
DMail

5

POPD
WU IMAPD (stock popd)
Cyrus
IDS POP

IMAPD
WU IMAPD (stock imapd)
Cyrus

WWW based mail readers
Non Commercial

IMP
AtDot

Commercial
DmailWeb
WebImap

DNS
Bind
Dents

NNTP
INN
DNews

DHCPD
NFSD
tftp

utftpd
bootp
cu-snmp
Finger
Identd
ntpd
CVS
rsync
lpd

LPRng
pdq

X Window system
SAMBA

SWAT

File sharing methods
SAMBA
NFS
Coda
Drall
AFS

Network based authentication
NIS / NIS+
SRP
Kerberos

6

Encrypting services / data
Encrypting network services

SSL
HTTP - SSL
Telnet - SSL
FTP - SSL
Virtual private network solutions

IPSec
PPTP
CIPE
ECLiPt

Encrypting data
PGP
GnuPG
CFS

Sources of random data

Firewalling
IPFWADM
IPCHAINS
Rule Creation

ipfwadm2ipchains
mason
firewall.sh
Mklinuxfw

Scanning / intrusion testing tools
Host scanners

Cops
SBScan

Network scanners
Strobe
nmap
MNS
Bronc Buster vs. Michael Jackson
Leet scanner
Soup scanner
Portscanner

Intrusion scanners
Nessus
Saint
Cheops
Ftpcheck / Relaycheck
SARA

Firewall scanners
Firewalk

Exploits

Scanning and intrusion detection tools
Logging tools

7

Logcheck
Port Sentry

Host based attack detection
Firewalling
TCP_WRAPPERS
Klaxon
Host Sentry
Pikt

Network based attack detection
NFR

Host monitoring tools
check.pl
bgcheck
Sxid
Viperdb
Pikt
DTK

Packet sniffers
tcpdump
sniffit
Ethereal
Other sniffers

Virii, Trojan Horses, Worms, and Social Engineering
Disinfection of virii / worms / trojans
Virus scanners

AMaViS

Password storage
Gpasman

Conducting baselines / system integrity
Tripwire
L5
Gog&Magog
Confcollect
Backups

Conducting audits

Backups
Tar and Gzip
Noncommercial Backup programs for Linux

Amanda
afbackup

Commercial Backup Programs for Linux
BRU
Quickstart

8

CTAR
CTAR:NET
Backup Professional
PC ParaChute
Arkeia
Legato Networker

Pro's and Con's of Backup Media

Dealing with attacks

Denial of service attacks

Examples of attacks

Distribution specific tools
SuSE

Distribution specific errata and security lists
RedHat
Debian
Slackware
Caldera
SuSE

Internet connection checklist

Appendix A: Books and magazines

Appendix B: URL listing for programs

Appendix C: Other Linux security documentation

Appendix D: Online security documentation

Appendix E: General security sites

Appendix F: General Linux sites

Version History

9

License

Terms and Conditions for Copying, Distributing, and Modifying

Items other than copying, distributing, and modifying the Content with which this license was
distributed (such as using, etc.) are outside the scope of this license.

The 'guide' is defined as the documentation and knowledge contained in this file.

1. You may copy and distribute exact replicas of the guide as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of the guide a copy
of this License along with the guide. You may at your option charge a fee for the media
and/or handling involved in creating a unique copy of the guide for use offline, you may at
your option offer instructional support for the guide in exchange for a fee, or you may at your
option offer warranty in exchange for a fee. You may not charge a fee for the guide itself.
You may not charge a fee for the sole service of providing access to and/or use of the guide
via a network (e.g. the Internet), whether it be via the world wide web, FTP, or any other
method.

2. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to copy, distribute or modify the guide. These actions are
prohibited by law if you do not accept this License. Therefore, by distributing or translating
the guide, or by deriving works herefrom, you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or translating the guide.

NO WARRANTY

3. BECAUSE THE GUIDE IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE GUIDE, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE GUIDE "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK OF USE OF THE
GUIDE IS WITH YOU. SHOULD THE GUIDE PROVE FAULTY, INACCURATE, OR
OTHERWISE UNACCEPTABLE YOU ASSUME THE COST OF ALL NECESSARY
REPAIR OR CORRECTION.

4. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MIRROR AND/OR REDISTRIBUTE THE GUIDE AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE GUIDE, EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

10

Preface

Since this is an electronic document, changes will be made on a regular basis, and feedback is
greatly appreciated. The author is available at:

Kurt Seifried
seifried@seifried.org
(780) 453-3174

My Verisign Class 2 digital ID public key

-----BEGIN CERTIFICATE-----
MIIDtzCCAyCgAwIBAgIQO8AwExKJ74akljwwoX4BrDANBgkqhkiG9w0BAQQFADCB
uDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy
dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y
eS9SUEEgSW5jb3JwLiBCeSBSZWYuLExJQUIuTFREKGMpOTgxNDAyBgNVBAMTK1Zl
cmlTaWduIENsYXNzIDIgQ0EgLSBJbmRpdmlkdWFsIFN1YnNjcmliZXIwHhcNOTgx
MDIxMDAwMDAwWhcNOTkxMDIxMjM1OTU5WjCB6TEXMBUGA1UEChMOVmVyaVNpZ24s
IEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRydXN0IE5ldHdvcmsxRjBEBgNVBAsT
PXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9yeS9SUEEgSW5jb3JwLiBieSBSZWYu
LExJQUIuTFREKGMpOTgxJzAlBgNVBAsTHkRpZ2l0YWwgSUQgQ2xhc3MgMiAtIE1p
Y3Jvc29mdDEWMBQGA1UEAxQNS3VydCBTZWlmcmllZDEkMCIGCSqGSIb3DQEJARYV
c2VpZnJpZWRAc2VpZnJpZWQub3JnMFswDQYJKoZIhvcNAQEBBQADSgAwRwJAZsvO
hR/FIDH8V2MfrIU6edLc98xk0LYA7KZ2xx81hPPHYNvbJe0ii2fwNoye0DThJal7
bfqRI2OjRcGRQt5wlwIDAQABo4HTMIHQMAkGA1UdEwQCMAAwga8GA1UdIASBpzCA
MIAGC2CGSAGG+EUBBwEBMIAwKAYIKwYBBQUHAgEWHGh0dHBzOi8vd3d3LnZlcmlz
aWduLmNvbS9DUFMwYgYIKwYBBQUHAgIwVjAVFg5WZXJpU2lnbiwgSW5jLjADAgEB
Gj1WZXJpU2lnbidzIENQUyBpbmNvcnAuIGJ5IHJlZmVyZW5jZSBsaWFiLiBsdGQu
IChjKTk3IFZlcmlTaWduAAAAAAAAMBEGCWCGSAGG+EIBAQQEAwIHgDANBgkqhkiG
9w0BAQQFAAOBgQAwfnV6AKAetmcIs8lTkgp8/KGbJCbL94adYgfhGJ99M080yhCk
yNuZJ/o6L1VlQCxjntcwS+VMtMziJNELDCR+FzAKxDmHgal4XCinZMHp8YdqWsfC
wdXnRMPqEDW6+6yDQ/pi84oIbP1ujDdajN141YLuMz/c7JKsuYCKkk1TZQ==
-----END CERTIFICATE-----

I sign all my email with that certificate, so if it isn’t signed, it isn’t from me. Feel free to
encrypt email to me with my certificate, I’m trying to encourage world-wide secure email
(doesn’t seem to be working though).

To receive updates about this book please subscribe to the announcements email list, don't
expect an email everytime I release a new version of the guide (this list is for 'stable releases'
of the guide). Send an email to: lasg-announce-request@seifried.org with the Subject line
containing the word "subscribe" (no quotes) and you will automatically be placed on the list.
To unsubscribe send an email with the word “unsubscribe” (no quotes) in the Subject line.
Otherwise take a look at https://www.seifried.org/lasg/ once in a while to see if I announce
anything.

11

Forward by the author

I got my second (our first doesn’t count, a TRS-80 that died after a few months) computer in
Christmas of 1993, blew windows away 4 months later for OS/2, got a second computer in
spring of 1994, loaded Linux on it (Slackware 1.?) in July of 1994. I ran Slackware for about
2-3 years and switched to RedHat after being introduced to it, after 2-3 months of RedHat
exposure I switched over to it. Since then I have also earned an MCSE and MCP+Internet
(come to the dark side Luke...). Why did I write this guide? Because no-one else. Why is it
freely available online? Because I want to reach the largest audience possible.

I have also received help on this guide (both direct and indirect) from the Internet community
at large, many people have put up excellent security related webpages that I list, and mailing
lists like Bugtraq help me keep on top of what is happening. It sounds cliched (and god forbid
a journalist pick this up) but this wouldn't be possible without the open source community. I
thank you all.

12

Contributing

Contributions are welcome, especially URL’s for programs/resources that aren’t listed here
yet. As for actual contributions of written material I cannot accept those at yet for a variety of
reasons.

13

What this guide is and isn't

This guide is not a general security document. This guide is specifically about securing the
Linux operating system against general and specific threats. If you need a general overview of
security please go buy "Practical Unix and Internet Security" available at www.ora.com.
O'Reilly and associates, which is one of my favorite publisher of computer books (they make
nice T-shirts to) and listed in the appendix are a variety of other computer books I
recommend.

14

How to determine what to secure and how to secure it

Are you protecting data (proprietary, confidential or otherwise), are you trying to keep certain
services up (your mail server, www server, etc.), do you simply want to protect the physical
hardware from damage? What are you protecting it against? Malicious damage (8 Sun
Enterprise 10000's), deletion (survey data, your mom's recipe collection), changes (a hospital
with medical records, a bank), exposure (confidential internal communications concerning the
lawsuit, plans to sell cocaine to unwed mothers), and so on. What are the chances of a “bad”
event happening, network probes (happens to me daily), physical intrusion (hasn’t happened
to me yet), social engineering (“Hi, this is Bob from IT, I need your password so we can reset
it… .”).

You need to list out the resources (servers, services, data and other components) that contain
data, provide services, make up your company infrastructure, and so on. The following is a
short list:

• Physical server machines
• Mail server and services
• DNS server and services
• WWW server and services
• File server and services
• Internal company data such as accounting records and HR data
• Your network infrastructure (cabling, hubs, switches, routers, etc.)
• Your phone system (PBX, voicemail, etc.)

You then need to figure out what you want to protect it against:

• Physical damage (smoke, water, food, etc.)
• Deletion / modification of data (accounting records, defacement of your www site, etc.)
• Exposure of data (accounting data, etc.)
• Continuance of services (keep the email/www/file server up and running)
• Prevent others from using your services illegally/improperly (email spamming, etc.)

Finally what is the likelihood of an event occurring?

• Network scans – daily is a safe bet
• Social engineering – varies, usually the most vulnerable people tend to be the ones

targeted
• Physical intrusion – depends, typically rare, but a hostile employee with a pair of wire

cutters could do a lot of damage in a telecom closet
• Employees selling your data to competitors – it happens
• Competitor hiring skilled people to actively penetrate your network – no-one ever talks

about this one but it also happens

Once you have come up with a list of your resources and what needs to be done you can start
implementing security. Some techniques (physical security for servers, etc.) pretty much go
without saying, in this industry there is a baseline of security typically implemented
(passwording accounts, etc.). The vast majority of security problems are usually human

15

generated, and most problems I have seen are due to a lack of education/communication
between people, there is no technical ‘silver bullet’, even the best software needs to be
installed, configured and maintained by people.

Now for the stick. A short list of possible results from a security incident:
• Loss of data
• Direct loss of revenue (www sales, file server is down, etc)
• Indirect loss of revenue (email support goes, customers vow never to buy from you again)
• Cost of staff time to respond
• Lost productivity of IT staff and workers dependant on IT infrastructure
• Legal Liability (medical records, account records of clients, etc.)
• Loss of customer confidence
• Media coverage of the event

16

Safe installation of Linux

A proper installation of Linux is the first step to a stable, secure system. There are various tips
and tricks to make the install go easier, as well as some issues that are best handled during the
install (such as disk layout).

Choosing your install media

This is the #1 issue that will affect speed of install and to a large degree safety. My personal
favorite is ftp installs since popping a network card into a machine temporarily (assuming it
doesn't have one already) is quick and painless, and going at 1+ megabyte/sec makes for
quick package installs. Installing from CD-ROM is generally the easiest, as they are bootable,
Linux finds the CD and off you go, no pointing to directories or worrying about case (in the
case of an HD install). This is also original Linux media and you can be relatively sure it is
safe (assuming it came from a reputable source), if you are paranoid however feel free to
check the signatures on the files.

• FTP - quick, requires network card, and an ftp server (Windows box running
something like warftpd will work as well).

• HTTP – also fast, and somewhat safer then running a public FTP server for installs
• Samba - quick, good way if you have a windows machine (share the cdrom out).
• NFS - not as quick, but since nfs is usually implemented in most existing UNIX

networks (and NT now has an NFS server from MS for free) it's mostly painless. NFS
is the only network install supported by RedHat’s kickstart.

• CDROM - if you have a fast cdrom drive, your best bet, pop the cd and boot disk in,
hit enter a few times and you are done. Most Linux CDROM’s are now bootable.

• HardDrive - generally the most painful, windows kacks up filenames/etc, installing
from an ext2 partition is usually painless though (catch 22 for new users however).

It ain't over 'til...

So you've got a fresh install of Linux (RedHat, Debian, whatever, please, please, DO NOT
install really old versions and try to upgrade them, it's a nightmare), but chances are there is a
lot of extra software installed, and packages you might want to upgrade or things you had
better upgrade if you don't want the system compromised in the first 15 seconds of uptime (in
the case of BIND/Sendmail/etc.). Keeping a local copy of the updates directory for your
distributions is a good idea (there is a list of errata for distributions at the end of this
document), and making it available via nfs/ftp or burning it to CD is generally the quickest
way to make it available. As well there are other items you might want to upgrade, for
instance I use a chroot'ed, non-root version of Bind 8.1.2, available on the contrib server
(ftp://contrib.redhat.com/), instead of the stock, non-chrooted, run as root Bind 8.1.2 that ships
with RedHat Linux. You will also want to remove any software you are not using, and/or
replace it with more secure versions (such as replacing rsh with ssh).

17

General concepts, server verses workstations, etc

There are many issues that affect actually security setup on a computer. How secure does it
need to be? Is the machine networked? Will there be interactive user accounts (telnet/ssh)?
Will users be using it as a workstation or is it a server? The last one has a big impact since
"workstations" and "servers" have traditionally been very different beasts, although the line is
blurring with the introduction of very powerful and cheap PC's, as well as operating systems
that take advantage of them. The main difference in today's world between computers is
usually not the hardware, or even the OS (Linux is Linux, NT Server and NT Workstation are
close family, etc.), it is in what software packages are loaded (apache, X, etc) and how users
access the machine (interactively, at the console, and so forth). Some general rules that will
save you a lot of grief in the long run:

1. Keep users off of the servers. That is to say: do not give them interactive login shells,
unless you absolutely must.

2. Lock down the workstations, assume users will try to 'fix' things (heck, they might
even be hostile, temp workers/etc).

3. Use encryption wherever possible to keep plain text passwords, credit card numbers
and other sensitive information from lying around.

4. Regularly scan the network for open ports/installed software/etc that shouldn't be,
compare it against previous results..

Remember: security is not a solution, it is a way of life.

Generally speaking workstations/servers are used by people that don't really care about the
underlying technology, they just want to get their work done and retrieve their email in a
timely fashion. There are however many users that will have the ability to modify their
workstation, for better or worse (install packet sniffers, warez ftp sites, www servers, irc bots,
etc). To add to this most users have physical access to their workstations, meaning you really
have to lock them down if you want to do it right.

1. Use BIOS passwords to lock users out of the BIOS (they should never be in here, also
remember that older BIOS's have universal passwords.)

2. Set the machine to boot from the appropriate harddrive only.
3. Password the LILO prompt.
4. Do not give the user root access, use sudo to tailor access to privileged commands as

needed.
5. Use firewalling so even if they do setup services they won’t be accessible to the world.
6. Regularly scan the process table, open ports, installed software, and so on for change.
7. Have a written security policy that users can understand, and enforce it.
8. Remove all sharp objects (compilers, etc) unless needed from a system.

Remember: security in depth.

Properly setup, a Linux workstation is almost user proof (nothing is 100% secure), and
generally a lot more stable then a comparable Wintel machine. With the added joy of remote
administration (SSH/Telnet/NSH) you can keep your users happy and productive.

Servers are a different ball of wax together, and generally more important then workstations
(one workstation dies, one user is affected, if the email/www/ftp/etc server dies your boss

18

phones up in a bad mood). Unless there is a strong need, keep the number of users with
interactive shells (bash, pine, lynx based, whatever) to a bare minimum. Segment services up
(have a mail server, a www server, and so on) to minimize single point of failure. Generally
speaking a properly setup server will run and not need much maintenance (I have one email
server at a client location that has been in use for 2 years with about 10 hours of maintenance
in total). Any upgrades should be planned carefully and executed on a test. Some important
points to remember with servers:

1. Restrict physical access to servers.
2. Policy of least privilege, they can break less things this way.
3. MAKE BACKUPS!
4. Regularly check the servers for changes (ports, software, etc), automated tools are

great for this.
5. Software changes should be carefully planned/tested as they can have adverse affects

(like kernel 2.2.x no longer uses ipfwadm, wouldn't that be embarrassing if you forgot
to install ipchains).

Minimization of privileges means giving users (and administrators for that matter) the
minimum amount of access required to do their job. Giving a user "root" access to their
workstation would make sense if all users were Linux savvy, and trustworthy, but they
generally aren't (on both counts). And even if they were it would be a bad idea as chances are
they would install some software that is broken/insecure or other. If all a user access needs to
do is shutdown/reboot the workstation then that is the amount of access they should be
granted. You certainly wouldn't leave accounting files on a server with world readable
permissions so that the accountants can view them, this concept extends across the network as
a whole. Limiting access will also limit damage in the event of an account penetration (have
you ever read the post-it notes people put on their monitors?).

19

Physical / Boot security

Physical Access

This area is covered in depth in the "Practical Unix and Internet Security" book, but I'll give a
brief overview of the basics. Someone turns your main accounting server off, turns it back on,
boots it from a specially made floppy disk and transfers payroll.db to a foreign ftp site. Unless
your accounting server is locked up what is to prevent a malicious user (or the cleaning staff
of your building, the delivery guy, etc.) from doing just that? I have heard horror stories of
cleaning staff unplugging servers so that they could plug their cleaning equipment in. I have
seen people accidentally knock the little reset switch on power bars and reboot their servers
(not that I have ever done that). It just makes sense to lock your servers up in a secure room
(or even a closet). It is also a very good idea to put the servers on a raised surface to prevent
damage in the event of flooding (be it a hole in the roof or a super gulp slurpee).

The Computer BIOS

The computer's BIOS is on of the most low level components, it controls how the computer
boots and a variety of other things. Older bios's are infamous for having universal passwords,
make sure your bios is recent and does not contain such a backdoor. The bios can be used to
lock the boot sequence of a computer to C: only, i.e. the first harddrive, this is a very good
idea. You should also use the bios to disable the floppy drive (typically a server will not need
to use it), and it can prevent users from copying data off of the machine onto floppy disks.
You may also wish to disable the serial ports in users machines so that they cannot attach
modems, most modern computers use PS/2 keyboard and mice, so there is very little reason
for a serial port in any case (plus they eat up IRQ's). Same goes for the parallel port, allowing
users to print in a fashion that bypasses your network, or giving them the chance to attach an
external CDROM burner or harddrive can decrease security greatly. As you can see this is an
extension of the policy of least privilege and can decrease risks considerably, as well as
making network maintenance easier (less IRQ conflicts, etc.).

LILO

Once the computer has decided to boot from C:, LILO (or whichever bootloader you use)
takes over. Most bootloaders allow for some flexibility in how you boot the system, LILO
especially so, but this is a two edged sword. You can pass LILO arguments at boot time, the
most damaging (from a security point of view) being "imagename single" which boots
Linux into single user mode, and by default in most distributions dumps you to a root prompt
in a command shell with no prompting for passwords or other pesky security mechanisms.
Several techniques exist to minimize this risk.

delay=X
this controls how long (in tenths of seconds) LILO waits for user input before booting to the
default selection. One of the requirements of C2 security is that this interval be set to 0
(obviously a dual boot machines blows most security out of the water). It is a good idea to set
this to 0 unless the system dual boots something else.

20

prompt
forces the user to enter something, LILO will not boot the system automatically. This could be
useful on servers as a way of disabling reboots without a human attendant, but typically if the
hacker has the ability to reboot the system they could rewrite the MBR with new boot options.
If you add a timeout option however the system will continue booting after the timeout is
reached.

restricted
requires a password to be used if boot time options (such as "linux single") are passed to
the boot loader. Make sure you use this one on each image (otherwise the server will need a
password to boot, which is fine if you’re never planning to remotely reboot it).

password=XXXXX
requires user to input a password, used in conjunction with restricted, also make sure lilo.conf
is no longer world readable, or any user will be able to read the password.

Here is an example of lilo.conf from one of my servers (the password has been of course
changed).

boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=100
default=linux
image=/boot/vmlinuz-2.2.5
 label=linux
 root=/dev/hda1
 read-only

restricted
password=some_password

This boots the system using the /boot/vmlinuz-2.2.5 kernel, stored on the MBR of the
first IDE harddrive of the system, the prompt keyword would normally stop unattended
rebooting, however it is set in the image, so it can boot “linux” no problem, but it would ask
for a password if you entered “linux single”, so if you want to go into “linux single”
you have 10 seconds to type it in, at which point you would be prompted for the password
("some_password"). Combine this with a BIOS set to only boot from C: and password
protected and you have a pretty secure system.

21

The Linux kernel

Linux (GNU/Linux according to Stallman if you’re referring to a complete Linux distribution)
is actually just the kernel of the operating system. The kernel is the core of the system, it
handles access to all the harddrive, security mechanisms, networking and pretty much
everything. It had better be secure or you are screwed.

In addition to this we have problems like the Pentium F00F bug and inherent problems with
the TCP-IP protocol, the Linux kernel has it’s work cut out for it. Kernel versions are labeled
as X.Y.Z, Z are minor revision numbers, Y define if the kernel is a test (odd number) or
production (even number), and X defines the major revision (we have had 0, 1 and 2 so far). I
would highly recommend running kernel 2.2.x, as of May 1999 this is 2.2.9. The 2.2.x series
of kernel has major improvements over the 2.0.x series. Using the 2.2.x kernels also allows
you access to newer features such as ipchains (instead of ipfwadm) and other advanced
security features.

Upgrading and Compiling the Kernel

Upgrading the kernel consists of getting a new kernel and modules, editing /etc/lilo.conf,
rerunning lilo to write a new MBR. The kernel will typically be placed into /boot, and the
modules in /lib/modules/kernel.version.number/.

Getting a new kernel and modules can be accomplished 2 ways, by downloading the
appropriate kernel package and installing it, or by downloading the source code from
ftp://ftp.kernel.org/ (please use a mirror site), and compiling it.

Compiling a kernel is straightforward:

cd /usr/src
there should be a symlink called “linux” pointing to the directory containing the current
kernel, remove it if there is, if there isn’t one no problem. You might want to ‘mv’ the linux
directory to /usr/src/linux-kernel.version.number and create a link pointing /usr/src/linux at it.

Unpack the source code using tar and gzip as appropriate so that you now have a
/usr/src/linux with about 50 megabytes of source code in it. The next step is to create the
linux kernel configuration (/usr/src/linux.config), this can be achieved using “make
config”, “make menuconfig” or “make xconfig”, my preferred method is “make
menuconfig” (for this you will need ncurses and ncurses devel libraries). This is arguably the
hardest step, there are hundreds options, which can be categorized into two main areas:
hardware support, and service support. For hardware support make a list of hardware that this
kernel will be running on (i.e. P166, Adaptec 2940 SCSI Controller, NE2000 ethernet card,
etc.) and turn on the appropriate options. As for service support you will need to figure out
which filesystems (fat, ext2, minix ,etc.) you plan to use, the same for networking
(firewalling, etc.).

Once you have configured the kernel you need to compile it, the following commands makes
dependencies ensuring that libraries and so forth get built in the right order, then cleans out
any information from previous compiles, then builds a kernel, the modules and installs the
modules.

22

make dep (makes dependencies)
make clean (cleans out previous cruft)
make bzImage (make zImage pukes if the kernel is to big, and 2.2.x kernels tend to be pretty
big)
make modules (creates all the modules you specified)
make modules_install (installs the modules to /lib/modules/kernel.version.number/)

you then need to copy /usr/src/linux/arch/i386/boot/bzImage (zImage) to
/boot/vmlinuz-kernel.version.number. Then edit /etc/lilo.conf, adding a new entry for
the new kernel and setting it as the default image is the safest way (using the default=X
command, otherwise it will boot the first kernel listed), if it fails you can reboot and go back
to the previous working kernel. Run lilo, and reboot.

Kernel Versions

Currently we are in a stable kernel release series, 2.2.x. I would highly recommend running
the latest stable kernel (currently 2.2.9 as of May 1999) as there are several nasty security
problems (network attacks and denial of service attacks) that affect all kernels up to 2.0.35,
2.0.36 is patched, and the later 2.1.x test kernels to 2.2.3. Upgrading from the 2.0.x series of
stable kernels to the 2.2.x series is relatively painless if you are careful and follow instructions
(there are some minor issues but for most users it will go smoothly). Several software
packages must be updated, libraries, ppp, modutils and others (they are covered in the kernel
docs / rpm dependencies / etc.). Additionally keep the old working kernel, add an entry in
lilo.conf for it as "linuxold" or something similar and you will be able to easily recover in the
event 2.2.x doesn't work out as expected. Don't expect the 2.2.x series to be bug free, 2.2.9
will be found to contain flaws and will be obsoleted, like every piece of software in the world.

23

Administrative tools

Access

Telnet

Telnet is by far the oldest and well known remote access tool, virtually ever Unix ships with
it, and even systems such as NT support it. Telnet is really only useful if you can administer
the system from a command prompt (something NT isn’t so great at), which makes it perfect
for Unix. Telnet is incredibly insecure, passwords and usernames as well as the session data
flies around as plain text and is a favourite target for sniffers. Telnet comes with all Linux
distributions. You should never ever use stock telnet to remotely administer a system.

SSL Telnet

SSL Telnet is telnet with the addition of SSL encryption which makes it much safer and far
more secure. Using X.509 certificates (also referred to as personal certificates) you can easily
administer remote systems. Unlike systems such as SSH, SSL Telnet is completely GNU and
free for all use. You can get SSL Telnet server and client from: ftp://ftp.replay.com/.

SSH

SSH was originally free but is now under a commercial license, it does however have many
features that make it worthwhile. It supports several forms of authentication (password, rhosts
based, RSA keys), allows you to redirect ports, and easily configure which users are allowed
to login using it. SSH is available from: ftp://ftp.replay.com/. If you are going to use it
commercially, or want the latest version you should head over to: http://www.ssh.fi/.

LSH

LSH is a free implementation of the SSH protocol, LSH is GNU licensed and is starting to
look like the alternative (commercially speaking) to SSH (which is not free anymore). You
can download it from: http://www.net.lut.ac.uk/psst/, please note it is under development.

REXEC

REXEC is one of the older remote UNIX utilities, it allows you to execute commands on a
remote system, however it is seriously flawed in that it has no real security model. Security is
achieved via the use of “rhosts” files, which specify which hosts/etc may run commands, this
however is prone to spoofing and other forms of exploitation. You should never ever use
stock REXEC to remotely administer a system.

Slush

Slush is based on OpenSSL and supports X.509 certificates currently, which for a large
organization is a much better (and saner) bet then trying to remember several dozen
passwords on various servers. Slush is GPL, but not finished yet (it implements most of the
required functionality to be useful, but has limits). On the other hand it is based completely in
open source software making the possibilities of backdoors/etc remote. Ultimately it could
replace SSH with something much nicer. You can get it from: http://violet.ibs.com.au/slush/.

24

NSH

NSH is a commercial product with all the bells and whistles (and I do mean all). It’s got built
in support for encryption, so it’s relatively safe to use (I cannot really verify this as it isn’t
open source). Ease of use is high, you cd //computername and that ‘logs’ you into that
computer, you can then easily copy/modify/etc. files, run ps and get the process listing for that
computer, etc. NSH also has a Perl module available, making scripting of commands pretty
simple, and is ideal for administering many like systems (such as workstations). In addition to
this NSH is available on multiple platforms (Linux, BSD, Irix, etc.). NSH is available from:
http://www.networkshell.com/, and 30 day evaluation versions are easily downloaded.

Fsh

Fsh is stands for “Fast remote command execution” and is similar in concept to rsh/rcp. It
avoids the expense of constantly creating encrypted sessions by bring up an encrypted tunnel
using ssh or lsh, and running all the commands over it. You can get it from:
http://www.lysator.liu.se/fsh/.

secsh

secsh (Secure Shell) provides another layer of login security, once you have logged in via ssh
or SSL telnet you are prompted for another password, if you get it wrong secsh kills off the
login attempt. You can get secsh at: http://www.leenux.com/scripts/.

Local

YaST

YaST (Yet Another Setup Tool) is a rather nice command line graphical interface (very
similar to scoadmin) that provides an easy interface to most administrative tasks. It does not
however have any provisions for giving users limited access, so it is really only useful for
cutting down on errors, and allowing new users to administer their systems. Another problem
is unlike Linuxconf it is not network aware, meaning you must log into each system you want
to manipulate.

sudo

Sudo gives a user setuid access to a program(s), and you can specify which host(s) they are
allowed to login from (or not) and have sudo access (thus if someone breaks into an account,
but you have it locked down damage is minimized). You can specify what user a command
will run as, giving you a relatively fine degree of control. If granting users access be sure to
specify the hosts they are allowed to log in from and execute sudo, as well give the full
pathnames to binaries, it can save you significant grief in the long run (i.e. if I give a user
setuid access to "adduser", there is nothing to stop them editing their path statement, and
copying "bash" into /tmp). This tool is very similar to super but with slightly less fine control.
Sudo is available for most distributions as a core package or a contributed package. Sudo is
available at: http://www.courtesan.com/sudo/ just in case your distribution doesn’t ship with it
Sudo allows you to define groups of hosts, groups of commands, and groups of users, making
long term administration simpler. Several /etc/sudoers examples:

25

Give the user ‘seifried’ full access
seifried ALL=(ALL) ALL

Create a group of users, a group of hosts, and allow then to shutdown the server as root
Host_Alias WORKSTATIONS=localhost, station1, station2
User_Alias SHUTDOWNUSERS=bob, mary, jane
Cmnd_Alias REBOOT=halt, reboot, sync
Runas_Alias REBOOTUSER=admin
SHUTDOWNUSERS WORKSTATIONS=(REBOOTUSER) REBOOT

Super

Super is one of the very few tools that can actually be used to give certain users (and groups)
varied levels of access to system administration. In addition to this you can specify times and
allow access to scripts, giving setuid access to even ordinary commands could have
unexpected consequences (any editor, any file manipulation tools like chown, chmod, even
tools like lp could compromise parts of the system). Debian ships with super, and there are
rpm's available in the contrib directory (buildhost is listed as "localhost", you might want to
find the source and compile it yourself). This is a very powerful tool (it puts sudo to shame),
but requires a significant amount of effort to implement properly, I think it is worth the effort
though. The head end distribution site for super is at: ftp://ftp.ucolick.org/pub/users/will/.

Remote

Webmin

Webmin is a (currently) a non commercial web based administrative tool. It’s a set of perl
scripts with a self contained www server that you access using a www browser, it has
modules for most system administration functions, although some are a bit temperamental.
One of my favourite features is the fact is that it holds it’s own username and passwords for
access to webmin, and you can customize what each user gets access to (i.e. user1 can
administer users, user2 can reboot the server, and user3 can fiddle with the apache settings).
Webmin is available at: http://www.webmin.com/.

Linuxconf

Linuxconf is a general purpose Linux administration tool that is usable from the command
line, from within X, or via it's built in www server. It is my preferred tool for automated
system administration (I primarily use it for doing strange network configurations), as it is
relatively light from the command line (it is actually split up into several modules). From
within X it provides an overall view of everything that can be configured (PPP, users, disks,
etc.). To use it via a www browser you must first run Linuxconf on the machine and add the
host(s) or network(s) you want to allow to connect (Conf > Misc > Linuxconf network
access), save changes and quit, then when you connect to the machine (by default Linuxconf
runs on port 98) you must enter a username and password, it only accepts root as the account,
and Linuxconf doesn't support any encryption, so I would have to recommend very strongly
against using this feature across public networks. Linuxconf ships with RedHat Linux and is
available at: http://www.solucorp.qc.ca/linuxconf/. Linuxconf also doesn't seem to ship with
any man pages/etc, the help is contained internally which is slightly irritating.

26

COAS

The COAS project (Caldera Open Administration System) is a very ambitious project to
provide an open framework for administering systems, from a command line (with semi
graphical interface), from within X (using the qt widget set) to the web. It abstracts the actual
configuration data by providing a middle layer, thus making it suitable for use on disparate
Linux platforms. Version 1.0 was just released, so it looks like Caldera is finally pushing
ahead with it. The COAS site is at: http://www.coas.org/.

27

System Files

/etc/passwd

The password file is arguably the most critical system file in Linux (and most other unices). It
contains the mappings of username, user ID and the primary group ID that person belongs to.
It may also contain the actual password however it is more likely (and much more secure) to
use shadow passwords to keep the passwords in /etc/shadow. This file MUST be world
readable, otherwise commands even as simple as ls will fail to work properly. The GECOS
field can contain such data as the real name, phone number and the like for the user, the home
directory is the default directory the user gets placed in if they log in interactively, and the
login shell must be an interactive shell (such as bash, or a menu program) and listed in
/etc/shells for the user to log in. The format is:

username:password:UID:GID:GECOS_field:home_directory:login_shell

/etc/shadow

The shadow file holes the username and password pairs, as well as account information such
as expiry date, and any other special fields. This file should be protected at all costs.

/etc/groups

The groups file contains all the group membership information, and optional items such as
group password (typically stored in gshadow on current systems), this file to must be world
readable for the system to behave correctly. The format is:

groupname:password:GID:member,member,member

A group may contain no members (i.e. it is unused), a single member or multiple members,
and the password is optional.

/etc/gshadow

Similar to the password shadow file, this file contains the groups, password and members.

/etc/login.defs

This file (/etc/logins.def) allows you to define some useful default values for various
programs such as useradd and password expiry. It tends to vary slightly across distributions
and even versions, but typically is well commented and tends to contain sane default values.

/etc/shells

The shells file contains a list of valid shells, if a user’s default shell is not listed here they may
not log in interactively. See the section on Telnetd for more information.

28

/etc/securetty

This file contains a list of tty’s that root can log in from. Console tty’s are usually /dev/tty1
through /dev/tty6. Serial ports (if you want to log in as root over a modem say) are
/dev/ttyS0 and up typically. If you want to allow root to login via the network (a very bad
idea, use sudo) then add /dev/ttyp1 and up (if 30 users login and root tries to login root will
be coming from /dev/ttyp31). Generally you should only allow root to login from
/dev/tty1, and it is advisable to disable the root account altogether.

29

Log files and other forms of monitoring

One integral part of any UNIX system are the logging facilities. The majority of logging in
Linux is provided by two main programs, sysklogd and klogd, the first providing logging
services to programs and applications, the second providing logging capability to the Linux
kernel. Klogd actually sends most messages to the syslogd facility but will on occasion pop
up messages at the console (i.e. kernel panics). Sysklogd actually handles the task of
processing most messages and sending them to the appropriate file or device, this is
configured from within /etc/syslog.conf. By default most logging to files takes place in
/var/log/, and generally speaking programs that handle their own logging (such as apache)
log to /var/log/progname/, this centralizes the log files and makes it easier to place them
on a separate partition (some attacks can fill your logs quite quickly, and a full / partition is no
fun). Additionally there are programs that handle their own interval logging, one of the more
interesting being the bash command shell. By default bash keeps a history file of commands
executed in ~username/.bash_history, this file can make for extremely interesting reading,
as oftentimes many admins will accidentally type their passwords in at the command line.
Apache handles all of it's logging internally, configurable from httpd.conf and extremely
flexible with the release of Apache 1.3.6 (it supports conditional logging). Sendmail handles
it's logging requirements via syslogd but also has the option (via the command line -X switch)
of logging all SMTP transactions straight to a file. This is highly inadvisable as the file will
grow enormous in a short span of time, but is useful for debugging. See the sections in
network security on apache and sendmail for more information.

sysklogd / klogd

In a nutshell klogd handles kernel messages, depending on your setup this can range from
almost none to a great deal if for example you turn on process accounting. It then passes most
messages to syslogd for actual handling, i.e. placement in a logfile. the man pages for
sysklogd, klogd and syslog.conf are pretty good with clear examples. One exceedingly
powerful and often overlooked ability of syslog is to log messages to a remote host running
syslog. Since you can define multiple locations for syslog messages (i.e. send all kern
messages to the /var/log/messages file, and to console, and to a remote host or multiple
remote hosts) this allows you to centralize logging to a single host and easily check log files
for security violations and other strangeness. There are several problems with syslogd and
klogd however, the primary ones being the ease of which once an attacker has gained root
access to deleting/modifying log files, there is no authentication built into the standard
logging facilities.

The standard log files that are usually defined in syslog.conf are:

/var/log/messages
/var/log/secure
/var/log/maillog
/var/log/spooler

The first one (messages) gets the majority of information typically, user login's,
TCP_WRAPPERS dumps information here, IP firewall packet logging typically dumps
information here and so on. The second typically records entries for events like users
changing their UID/GID (via su, sudo, etc.), failed attempts when passwords are required and
so on. The maillog file typically holds entries for every pop/imap connection (user login and

30

logout), and the header of each piece of email that goes in or out of the system (from whom,
to where, msgid, status, and so on). The spooler file is not often used anymore as the number
of people running usenet or uucp has plummeted, uucp has been basically replaced with ftp
and email, and most usenet servers are typically extremely powerful machines to handle a
full, or even partial newsfeed, meaning there aren't many of them (typically one per ISP or
more depending on size). Most home users and small/medium sized business will not (and
should not in my opinion) run a usenet server, the amount of bandwidth and machine power
required is phenomenal, let alone the security risks.

You can also define additional log files, for example you could add:

kern.* /var/log/kernel-log

And/or you can log to a separate log host:

*.emerg @syslog-host
mail.* @mail-log-host

Which would result in all kernel messages being logged to /var/log/kernel-log, this is useful
on headless servers since by default kernel messages go to /dev/console (i.e. someone logged
in at the machines). In the second case all emergency messages would be logged to the host
“syslog-host”, and all the mail log files would be sent to the “mail-log-host” server, allowing
you to easily maintain centralized log files of various services.

secure-syslog

The major problem with syslog however is that tampering with log files is trivial. There is
however a secure versions of syslogd, available at http://www.core-sdi.com/ssyslog/ (these
guys generally make good tools and have a good reputation, in any case it is open source
software for those of you truly paranoid). This allows you to cyrptographically sign logs and
other ensure they haven’t been tampered with, ultimately however an attacker can still delete
the log files so it is a good idea to send them to another host, especially in the case of a
firewall to prevent the hard drive being filled up.

next generation syslog

Another alternative is “syslog-ng” (Next Generation Syslog), which seems much more
customizable then either syslog or secure syslog, it supports digital signatures to prevent log
tampering, and can filter based on content of the message, not just the facility it comes from
or priority (something that is very useful for cutting down on volume). Syslog-ng is available
at: http://www.balabit.hu/products/syslog-ng.html.

Log monitoring

logcheck

logcheck will go through the messages file (and others) on a regular basis (invoked via
crontab usually) and email out a report of any suspicious activity. It is easily configurable
with several ‘classes’ of items, active penetration attempts which is screams about

31

immediately, bad activity, and activity to be ignored (for example DNS server statistics or
SSH rekeying). Logcheck is available from: http://www.psionic.com/abacus/logcheck/.

colorlogs

colorlogs will color code log lines allowing you to easily spot bad activity. It is of somewhat
questionable value however as I know very few people that stare at log files on an on-going
basis. You can get it at: http://www.resentment.org/projects/colorlogs/.

WOTS

WOTS collects log files from multiple sources and will generate reports or take action based
on what you tell it to do. WOTS looks for regular expressions you define and then executes
the commands you list (mail a report, sound an alert, etc.). WOTS requires you have perl
installed and is available from: http://www.vcpc.univie.ac.at/~tc/tools/.

swatch

swatch is very similar to WOTS, and the log files configuration is very similar. You can
download swatch from: ftp://ftp.stanford.edu/general/security-tools/swatch/

Kernel logging

auditd

auditd allows you to use the kernel logging facilities (a very powerful tool). You can log mail
messages, system events and the normal items that syslog would cover, but in addition to this
you can cover events such as specific users opening files, the execution of programs, of setuid
programs, and so on. If you need a solid audit trail then this is the tool for you, you can get it
at: ftp://ftp.hert.org/pub/linux/auditd/.

Shell logging

bash

I will also cover bash since it is the default shell in most Linux installations, and thus it's
logging facilities are generally used. bash has a large number of variables you can configure
at or during run time that modify how it behaves, everything from the command prompt style
to how many lines to keep in the log file.

HISTFILE
name of the history file, by default it is ~username/.bash_history

HISTFILESIZE
maximum number of commands to keep in the file, it rotates them as needed.

HISTSIZE
the number of commands to remember (i.e. when you use the up arrow key).

32

The variables are typically set in /etc/profile, which configures bash globally for all users,
the values can however be over-ridden by users with the ~username/.bash_profile file,
and/or by manually using the export command to set variables such as export EDITOR=emacs.
This is one of the reasons user directories should not be world readable, as the bash_history
file can contain a lot of valuable information to a hostile party. You can also set the file itself
non world readable, set your .bash_profile not to log, set the file non writeable (thus denying
bash the ability to write and log to it) or link it to /dev/null (this is almost always a sure sign
of suspicious user activity, or a paranoid user). For the root account I would highly
recommend setting the HISTFILESIZE and HISTSIZE to a low value such as 10.
Unfortunately you cannot really lock down normal user’s history files, you can set them so
the user cannot delete them etc, but unless you deny the user the export command, etc. they
will be able to get around having all their commands logged if they are competent. Ultimately,
letting users have interactive shell accounts on the server is a bad idea and should be as
heavily restricted as possible.

33

Shadow passwords

In all UNIX like operating systems there are several constants, and one of them is the file
/etc/passwd and how it works. For user authentication to work properly you need
(minimally) some sort of file(s) with UID to username mappings, GID to groupname
mappings, passwords for the users, and other misc. info. The problem with this is that
everyone needs access to the passwd file, everytime you do an ls it gets checked, so how do
you store all those passwords safely, yet keep them world readable? For many years the
solution has been quite simple and effective, simply hash the passwords, and store the hash,
when a user needs to authenticate take the password they enter it, hash it, if it matches it was
obviously the same password. The problem with this is that computing power has grown
enormously, and I can now take a copy of your passwd file, and try to brute force it open in a
reasonable amount of time. So to solve this several solutions exist:

• Use a 'better' hashing algorithm like MD5. Problem: can break a lot of things if they’re
expecting something else.

• Store the passwords elsewhere. Problem: the system/users still need access to them,
and it might cause some programs to fail if they are not setup for this.

Several OS's take the first solution, Linux has implemented the second for quite a while now,
it is called shadow passwords. In the passwd file your passwd is simply replaced by an 'x',
which tells the system to check your passwd against the shadow file. Anyone can still read the
passwd file, but only root has read access to the shadow file (the same is done for the group
file and it's passwords). Seems simple enough but until recently implementing shadow
passwords was a royal pain. You had to recompile all your programs that checked passwords
(login, ftpd, etc, etc) and this obviously takes quite a bit of effort. This is where RedHat shines
through, in it’s reliance on PAM.

To implement shadow passwords you must do two things. The first is relatively simple,
changing the password file, but the second can be a pain. You have to make sure all your
programs have shadow password support, which can be quite painful in some cases (this is a
very strong reason why more distributions should ship with PAM).

Because of RedHat's reliance on PAM for authentication, to implement a new authentication
scheme all you need to do it add a PAM module that understand it, and edit the config file for
whichever program (say login) allowing it to use that module to do authentication. No
recompiling, and a minimal amount of fuss and muss, right? In RedHat 6.0 you are given the
option during installation to choose shadow passwords, or you can implement them later via
the pwconv and grpconv utilities that ship with the shadow-utils package. Most other
distributions also have shadow password support, and implementation difficulty varies
somewhat. Now for an attacker to look at the hashed passwords they must go to quite a bit
more effort then simply copying the /etc/passwd file. Also make sure to occasionally run
pwconv and in order to ensure all passwords are in fact shadowed. Sometimes passwords will
get left in /etc/passwd, and not be sent to /etc/shadow as they should be by some utilities that
edit the password file.

34

Cracking passwords

In Linux the passwords are stored in a hashed format, however this does not make them
irretrievable, chances are you cannot reverse engineer the password from the resulting hash,
however you can hash a list of words and compare them. If the results match then you have
found the password, this is why good passwords are critical, and dictionary words are a
terrible idea. Even with a shadow passwords file the passwords are still accessible by the root
user, and if you have improperly written scripts or programs that run as root (say a www
based CGI script) the password file may be retrieved by attackers. The majority of current
password cracking software also allows running on multiple hosts in parallel to speed things
up.

Jack the ripper

An efficient password cracker available from: http://www.false.com/security/john/.

Crack

The original widespread password cracker (as far as I know), you can get it at:
http://www.users.dircon.co.uk/~crypto/.

Saltine cracker

Another password cracker with network capabilities, you can download it from:
http://www.thegrid.net/gravitino/products.html.

VCU

VCU (Velocity Cracking Utilities) is a windows based programs to aid in cracking passwords,
“VCU attempts to make the cracking of passwords a simple task for computer users of any
experience level.”. You can download it from: http://wilter.com/wf/vcu/.

I hope this is sufficient motivation to use shadow passwords and a stronger hash like MD5
(which RedHat 6.0 supports, I don’t know of other distributions supporting it).

35

PAM

"Pluggable Authentication Modules for Linux is a suite of shared libraries that enable the
local system administrator to choose how applications authenticate users." Straight from the
PAM documentation, I don't think I could have said it any better. But what does this actually
mean? Take a 'normal' program, say login, when a user connects to a tty (via modem or telnet)
a getty program answers the call (as it were) and usually starts up the 'login' program, login
then requests a username, followed by a password, which it checks against the /etc/passwd
file. So what happens if you have a spiffy new digital card authentication system? Well you
have to recompile login (and any other apps that will use it) so they support the new system.
As you can imagine this is quite laborious and prone to errors. PAM introduces a layer of
middleware (nice buzzword huh?) between the application and the actual authentication
mechanism. Once a program is PAM'ified, any authentication methods PAM supports will be
usable by the program. In addition to this PAM can handle account, and session data which is
something 'normal' authentication mechanisms don't do well. Using PAM for example you
can easily disallow login access by normal users between 6pm and 6am, thus preventing
security risks. By default RedHat systems are PAM aware, I'm not sure of any other
distributions that are, thus in RedHat all I have to do to say implement shadow passwords is
convert the password and group files, and possibly add one or two lines to some config files
(if they weren't already added). Essentially PAM gives you a great deal of flexibility when
handling user authentication, and will support other features in future such as transparent
chroot'ing of users (be they telneting in, or ftping). This kind of flexibility will be required if
Linux is to be an enterprise class operating system. Distributions that do not ship as "pam
aware" can be made so but it requires a lot of effort (you must recompile all your programs
with PAM support, install PAM, etc), it is probably easier to switch straight to a PAM'ified
distribution if this will be a requirement. PAM usually comes with complete documentation,
and if you are looking for a good overview you should visit:
http://www.sun.com/software/solaris/pam/.

36

Software Management

RPM

RPM is a software management tool originally created by RedHat, and later GNU'ed and
given to the public (http://www.rpm.org/). It forms the core of administration on most
systems, since one of the major tasks for any administrator is installing and keeping software
up to date. Various estimates place most of the blame for security break-ins on bad passwords,
and old software with known vulnerabilities. This isn't exactly surprising one would think, but
with the average server probably containing 200-400 software packages, one begins to see
why keeping software up to date can be a major task.

The man page for RPM is pretty bad, there is no nice way of putting it. The book "Maximum
RPM" (ISBN: 0-672-31105-4) on the other hand is really wonderful (freely available at
http://www.rpm.org/ in post script format). I would suggest this book for any RedHat
administrator, and can say safely that it is required reading if you plan to build RPM
packages. The basics of RPM are pretty self explanatory, packages come in an rpm format,
with a simple filename convention:

package_name-package_version-rpm_build_version-architecture.rpm

nfs-server-2.2beta29-5.i386.rpm would be “nfs-server”, version “2.2beta29” of “nfs-server”,
the fifth build of that rpm (i.e. it has been packaged and built 5 times, minor modifications,
changes in file locations, etc.), for the Intel architecture, and it’s an rpm file.

Command Function
-q Queries Packages / Database for info
-i Install software
-U Upgrades or Installs the software
-e Extracts the software from the system (removes)
-v be more Verbose
-h Hash marks, a.k.a. done-o-dial
Command Example Function
rpm -ivh package.rpm Install 'package.rpm', be verbose, show hash marks
rpm -Uvh package.rpm Upgrade 'package.rpm', be verbose, show hash marks
rpm -qf /some/file Check which package owns a file
rpm -qpi package.rpm Queries 'package.rpm', lists info
rpm -qpl package.rpm Queries 'package.rpm', lists all files
rpm -qa Queries RPM database lists all packages installed
rpm -e package-name Removes 'package-name' from the system (as listed by rpm -qa)

RedHat 5.1 ships with 528 packages, and RedHat 5.2 ships with 573, which when you think
about it is a heck of a lot of software (SuSE 6.0 ships on 5 CD's, I haven’t bothered to count
how many packages). Typically you will end up with 2-300 packages installed (more apps on
workstations, servers tend to be leaner, but this is not always the case). So which of these
should you install and which should you avoid if possible (like the r services packages). One
thing I will say, the RPM's that ship with RedHat distributions are usually pretty good, and
typically last 6-12 months before they are found to be broken.

There is a list of URL's and mailing lists where distribution specific errata is later on in this
document.

37

dpkg

The Debian package system is a similar package to RPM, however lacks some of the
functionality, although overall it does an excellent job of managing software packages on a
system. Combined with the dselect utility (being phased out) you can connect to remote sites,
scroll through the available packages, install them, run any configuration scripts needed (like
say for gpm), all from the comfort of your console. The man page for dpkg "man dpkg" is
quite extensive.

The general format of a Debian package file (.deb) is:

packagename_packageversion-debversion.deb

ncftp2_2.4.3-2.deb

Unlike rpm files .deb files are not labeled for architecture as well (not a big deal but
something to be aware of).

Command Function
-I Queries Package
-i Install software
-l List installed software (equiv. to rpm -qa)
-r Removes the software from the system
Command Example Function
dpkg -i package.deb Install package.deb
dpkg -I package.deb Lists info about package.deb (rpm -qpi)
dpkg -c package.deb Lists all files in package.deb (rpm -qpl)
dpkg -l Shows all installed packages
rpm -r package-name Removes 'package-name' from the system (as listed by dpkg -l)

Debian has 1500+ packages available with the system. You will learn to love dpkg
(functionally it has everything necessary, I just miss a few of the bells and whistles that rpm
has, on the other hand dselect has some features I wish rpm had).

There is a list of URL's and mailing lists where distribution specific errata is later on in this
document.

tarballs / tgz

Most modern Linux distributions use a package management system to install, keep track of
and remove software on the system. There are however many exceptions, Slackware does not
use a true package management system per se, but instead has precompiled tarballs (a
compressed tar file containing files) that you simply unpack from the root directory to install,
some of which have install script to handle any post install tasks such as adding a user. These
packages can also be removed, but functions such as querying, comparing installed files
against packages files (trying to find tampering, etc.) is pretty much not there. Or perhaps you
want to try the latest copy of X, and no-one has yet gotten around to making a nice .rpm or
.deb file, so you must grab the source code (also usually in a compressed tarball), unpack it
and install it. This present no more real danger then a package as most tarballs have MD5
and/or PGP signatures associated with them you can download and check. The real security
concern with these is the difficulty in sometimes tracking down whether or not you have a

38

certain piece of software installed, determining the version, and then removing or upgrading
it. I would advise against using tarballs if at all possible, if you must use them it is a good idea
to make a list of files on the system before you install it, and one afterwards, and then
compare them using 'diff' to find out what file it placed where. Simply run 'find /* >
/filelist.txt' before and 'find /* > /filelist2.txt' after you install the tarball, and
use 'diff -q /filelist.txt /filelist2.txt > /difflist.txt' to get a list of what
changed. Alternatively a 'tar -tf blah.tar' will list the contents of the file, but like most
tarballs you'll be running an executable install script/compiling and installing the software, so
a simple file listing will not give you an actual picture of what was installed/etc. Another
method for keeping track of what you have installed via tar is to use a program such as ‘stow’,
stow installs the package to a separate directory (/opt/stow/) for example and then creates
links from the system to that directory as appropriate. Stow requires that you have Perl
installed and is available from: http://www.gnu.ai.mit.edu/software/stow/stow.html.

Command Function
-t List files
-x Extract files
Command Example Function
tar -xf filename.tar untars filename.tar
tar -xt filename.tar lists files in filename.tar

Checking file integrity

Something I though I would cover semi-separately, checking the integrity of software that is
retrieved from remote sites. Usually people don’t worry, but recently ftp.win.tue.nl was
broken into, and the tcp_wrappers package (among others) was trojaned. 59 downloads
occurred before the site removed the offending packages and initiated damage control
procedures. You should always check the integrity of files you download from remote sites,
some day a major site will be broken into and a lot of people will suffer a lot of grief.

RPM

RPM packages can (and typically are) PGP signed by the author. This signature can be
checked to ensure the package has not been tampered with or is a trojaned version. This is
described in great deal in chapter 7 of “Maximum RPM” (online at http://www.rpm.org/), but
consists of adding the developers keys to your public PGP keyring, and then using the –K
option which will grab the appropriate key from the keyring and verify the signature. This
way to trojan a package and sign it correctly they would have to steal the developers private
PGP key and the password to unlock it, which should be near impossible.

dpkg

dpkg supports MD5, so you must somehow get the MD5 signatures through a trusted channel
(like PGP signed email). MD5 ships with most distributions.

PGP

Many tarballs are distributed with PGP signatures in separate ASCII files, to verify them add
the developers key to your keyring and then use PGP with the –o option. This way to trojan a
package and sign it correctly they would have to steal the developers private PGP key and the

39

password to unlock it, which should be near impossible. PGP for Linux is available from:
ftp://ftp.replay.com/.

MD5

Another way of signing a package is to create an MD5 checksum, the reason MD5 would be
used at all (since anyone could create a valid MD5 signature of a package) is that MD5 is
pretty much universal and not controlled by export laws. The weakness is you must somehow
distribute the MD5 signatures securely, this is usually done via email when a package is
announced (vendors such as Sun do this a lot for patches).

Automatic updates

RPM

There are a variety of tools available for automatic installation of rpm files.

ftp://ftp.kaybee.org/pub/linux/
AutoRPM is probably the best tool for keeping rpm’s up to date, simply put you point it at an
ftp directory, and it downloads and installs any packages that are newer then the ones you
have. Please keep in mind however if someone poisons your dns cache you will be easily
compromised, so make sure you use the ftp site’s IP address and not it’s name. Also you
should consider pointing it at an internal ftp site with packages you have tested, and have
tighter control over. AutoRPM requires that you install the libnet package Net::FTP for perl.

ftp://missinglink.darkorb.net/pub/rhlupdate/
rhlupdate will also connect to an ftp site and grab any needed updates, the same caveats apply
as above, and again it requires that you install the libnet package Net::FTP for perl.

http://www.iaehv.nl/users/grimaldo/info/scripts/
RpmWatch is a simple perl script that will install updates for you, note it will not suck down
the packages you need so you must mirror them locally, or make them accessible locally via
something like NFS or CODA .

dpkg

dpkg has a very nice automated installer called ‘apt’, in addition to installing software it will
also retrieve and install software required to fulfill dependencies, you can download it from:
http://www.debian.org/Packages/stable/admin/apt.html.

tarballs / tgz

No tools found, please tell me if you know of any (although beyond mirroring, automatically
unpacking and running “./configure ; make ; make install”, nothing really comes to
mind).

Tracking changes

installwatch

40

installwatch monitor what a program does, and logs any changes it makes to the system to
syslog. It’s similar to the “time” program in that it runs the program in a wrapped form so that
it can monitor what happens, you run the program as “installwatch
/usr/src/something/make” for example (optionally you can use the “–o filename” to log
to a specific file). installwatch is available from:
http://datanord.datanord.it/~pdemauro/installwatch/.

instmon

instmon is run before and after you install a tarball / tgz package (or any package for that
matter). It generates a list of files changed that you can later use to undo any changes. It is
available from: http://hal.csd.auth.gr/~vvas/instmon/.

Converting Formats

Another way to deal with packages/etc. is to convert them. There are several utilities to
convert rpm files to tarballs, rpm’s to deb’s, and so on.

alien

alien is probably the best utility around for converting files, it handles rpm’s, deb’s and
tarballs very well. You can download it from: http://kitenet.net/programs/alien/.

41

File / Filesystem security

A solid house needs a solid foundation, otherwise it will collapse. In Linux's case this is the
ext2 (EXTended, version 2) filesystem. Pretty much your everyday standard UNIX-like
filesystem. It supports file permissions (read, write, execute, sticky bit, suid, guid and so on),
file ownership (user, group, other), and other standard things. Some of it's drawbacks are: no
journaling, and especially no Access Control Lists, which are rumored to be in the upcoming
ext3. On the plus side Linux has excellent software RAID, supporting Level 0, 1 and 5 very
well (RAID isn't security related, but it certainly is safety/stability related).

The basic utilities to interact with files are: ls, chown, chmod, and find. Others include ln (for
creating links), stat (tells you about a file) and many more. As for creating and maintaining
the filesystems themselves we have fdisk (good old fdisk), mkfs (MaKe FileSystem, format,
supports ext2, dos, minix, etc.), and fsck (FileSystem ChecK, scandisk that works).
So, what is it we are trying to prevent hostile people (usually users, and or network daemons
fed bad info) from doing? A Linux system can be easily compromised if access to certain files
is gained, for example the ability to read a non shadowed password file results in the ability to
run the encrypted passwords against crack, easily finding weak password, this is a common
goal of attackers coming in over the network (poorly written CGI scripts seem to be a
favorite). Alternatively if an attacker can write to the password file he/she can at the least
seriously disrupt the system, or (arguably worse) get whatever level of access they want.
These conditions are commonly caused by "tmp races", where a setuid program (one running
with root privileges) writes temporary files, typically in /tmp, however far to many do not
check for the existence of a file, thus allowing an attacker to make a hard link in /tmp pointing
to the password file, and when the setuid program is run, kaboom, /etc/passwd is wiped out or
possibly appended to. There are many more attacks similar to this, so how can we prevent
them?

Simple, set the file system up correctly when you install. The two common directories that
users have write access to are /tmp and /home, splitting these off onto separate partitions also
prevents users from filling up any critical filesystem (a full / is very bad indeed). A full /home
could result in users not being able to log in at all (why root is in /root). Putting /tmp and
/home on separate partitions is pretty much mandatory if users have shell access to the server,
putting /etc, /var, and /usr on separate partitions is also a very good idea.

The primary tools for getting information about files/filesystems are all relatively simple and
easy to use. df (shows disk usage) will also show inode usage (df -i, inodes contain
information about files, you can run out of these before you run out of disk space, resulting in
error messages of "disk full" when 'df' claims otherwise. This is similar to file allocation
entries in Windows, with vfat it actually stores names in 8.3 format, using multiple entries for
long filenames, with a max of 512 8.3 entries per directory, to many long filenames and the
directory is 'full'. du will tell you the size of directories, very useful for finding out where all
that disk space has disappeared to, usage is 'du' (lists everything in ./) or 'du dirname',
optionally -s for a summary which is useful for dirs like /usr/src/linux. To gain information
about specific files the primary tool is ls (similar to DOS's 'dir' command), 'ls' shows just
file/dir names, 'ls -l' shows information such as file perms, size and so on, and 'ls -la' shows
directories and files beginning in .'s, typical for config files/etc. ls has a few dozen options for
sorting based on size, date, in reverse order and so forth, 'man ls' for all the details. For details
on a particular file (creation date, last access, inode, etc) there is 'stat', it simply tells all the
vital statistics on a given file(s), very useful to see if a file is in use/etc.

42

To manipulate files and folders we have the typical utilities like cp, mv, rm (CoPy, MoVe and
ReMove), as well as tools for manipulating security information. chown is responsible for
CHanging OWNership of files, the user and group a given file belongs to (the group other is
always other, similar to Novell or NT's 'everyone' group). chmod (CHange MODe) changes a
files attributes, the basic ones being read, write and execute, as well there is setuid, setguid
(set user and group id the program is run as to the ones that own it, often times root), sticky
bit and so forth. With proper use of assigning users to groups, chmod and chown you can
emulate ACL's to a degree, but it is far less flexible then Sun/AIX/NT's file permissions
(although this is rumored for ext3). Please be especially careful with setuid/setguid as any
problems in that program/script can be magnified greatly.

I thought I would also mention find, it find's files, and can also filter based on
permissions/ownership. A couple of quick examples for hunting down those setuid/guid
programs:

find all setuid programs:
find / -perm +4000
find all setgid programs:
find / -perm +2000

The biggest part of file security however is user permissions. In Linux a file is 'owned' by 3
separate entities, a User, a Group, and Other (everyone else). You can set who is the user
owner, and who is the group owner by:
chown user:group object

where object is a file, directory, etc. If you want to deny execute access to all of the 3 owners
simply:
chmod x="" object

where x is a|g|u|o (All/User/Group/Other), force the permissions to be equal to "" (null,
nothing, no access at all) and object is a file, directory, etc. This is by far the quickest and
most effective way to rip out permissions and totally deny access to users/etc (="" forces it to
clear it). Remember that root can ALWAYS change file perms and view/edit/run the file,
Linux does not yet provide safety to users from root (which many would argue is a good
thing). Also whoever owns the directory the object is in (be they a user/group/other with
appropriate perms on the parent directory) can also potentially edit permissions (and since
root owns / it can make changes that can traverse down the filesystem to any location).

Secure file deletion

One thing many of us forget is that when you delete a file, it isn’t actually gone. Even if you
overwrite it, reformat the drive, or otherwise attempt to destroy it, chances are it can be
recovered, and typically data recovery services only cost a few thousand dollars, so it might
well be worth an attackers time and money to have it done. The trick is to scramble the data
by repeatedly flipping the magnetic bits (a.k.a. the 1’s and 0’s) so that when finished no traces
of the original data remain (i.e. magnetic bits still charged the same way they originally were).
Two programs (both called wipe) have been written to do just this.

43

wipe (durakb@crit2.univ-montp2.fr)

wipe securely deletes data by overwriting the file multiple times with various bit patterns, i.e.
all 0’s, then all 1’s. then alternating 1’s and 0’s and so forth. You can use wipe on files or on
devices, if used on files remember that filename’s, creation dates, permissions and so forth
will not be deleted, so make sure you wipe the device if you absolutely must remove all traces
of something. You can get wipe from: http://gsu.linux.org.tr/wipe/.

wipe (thomassr@erols.com)

This one also securely deletes data by overwriting the files multiple times, this one does not
however support for wiping devices. You can get it at:
http://users.erols.com/thomassr/zero/download/wipe/

44

TCP-IP and network security

TCP-IP was created in a time and place where security wasn't a very strong concern. Initially
the 'Internet' (then called Arpanet) consisted of very few hosts, all were academic sites, big
corporations or government in nature. Everyone knew everyone else, and getting on the
Internet was a pretty big deal. the TCP-IP suite of protocol is remarkably robust (it hasn't
failed yet), but unfortunately it has no real provisions for security, i.e. authentication,
verification, encryption and so on. Spoofing packets, intercepting packets, reading data
payloads, and so is remarkably easy in today's Internet. The most common attacks are denial
of service attacks since they are the easiest to execute and the hardest to defeat, followed by
packet sniffing, port scanning, and other related activities.

Hostnames don't always point at the right IP addresses and IP addresses don't always reverse
lookup to the right hostname. Do not use hostname based authentication if possible, as DNS
cache poisoning is relatively easy, relying on IP addresses for authentication reduces the
problem to one of spoofing, but is also inherently flawed. There are no mechanisms in wide
spread use to verify who sent data and who is receiving it (CIPE/IPv6 and VPN technology is
starting to gain momentum however).

You can start by denying inbound data that claims to originate from your network(s), as this
data is obviously spoofed, and to prevent your users from spoofing attacks you should block
all outbound data that is not from your IP addresses. This is relatively simple and easy to
manage but the vast majority of networks do not do it (I spent about a year pestering my ISP
before they started). If everyone on the Internet had egress filters (that is restricted outbound
traffic to that which is from their internal IP addresses) spoofing attacks would be impossible,
and thus tracing attackers back to source would be far easier. You should also block the
reserved networks (127.*, 10.*, etc.), I have noticed many attacks from the Internet with
packets labeled as from those IP's, if you use network address translation (like IPMASQ) and
do not have it properly firewalled you could be easily attacked, or used to relay an attack to a
third party.

If you must communicate securely with people consider using VPN technology, the 'best' is
probably IPSec, it is an open standard supported by all major vendors, and most major
vendors have actual working implementations. Please see Appendix B or the Encrypting
Services and Data section for more details.

IPSec

IPSec is encryption at the packet level, it not only provides encryption of data but can provide
authentication of the parties involved if you use a signed certificates (similar to signed PGP
keys). Several certificate vendors (Verisign, Thawte to name two) have plans to offer IPSec
certificate signing, so that you would know for a fact who you are dealing with, and also give
you the ability to implement a company wide certificate architecture. IPSec is covered fully
later in this document.

IPv6

IPv6 provides no security per se, but it does have built in hooks for future security
enhancements, IPSec support and so on. If used on a network it would of course make life

45

more difficult for an attacker as Ipv6 use is not yet widespread. If you want to learn more
visit: http://www.bieringer.de/linux/IPv6/. Linux currently supports Ipv6 pretty much
completely (one of the few OS’s that does).

TCP-IP attack programs

A variety of programs exist to cause TCP-IP disruption (most are Denial of Service attacks)
however there are a few general purpose ones that can be useful to administrators.

HUNT Project

Th HUNT Project is a set of tools for manipulating TCP-IP connections (typically on an
Ethernet LAN), that is it can reset connections, spy on them and do otherwise “naughty”
things. It also includes a variety of ARP based attacks and other mischievous sources of fun,
You can get HUNT at: http://www.cri.cz/kra/index.html.

46

PPP security

PPP provides TCP-IP (as well as IPX/SPX, and NetBEUI) connections over serial lines
(which can of course be attached to modems). It is the primary method most people use to
connect to the Internet (virtually all dial-up accounts are PPP). A PPP connection essentially
consists of two computing devices (computer, a Palm Pilot, a terminal server, etc) connected
over a serial link (usually via modems), both ends invoke PPP, authentication is handled (one
of several ways), and the link is brought up. PPP has no real support for encryption, so if you
require a secure link you must invest in some from of VPN software. Most systems invoke
PPP in a rather kludgy way, you 'log in' to the equipment (terminal server, etc) and then as
your login shell PPP is invoked, this of course means your username and password are sent in
clear text over the line, and you must have an account on that piece of equipment, in this case
PPP does not handle the authentication at all. A somewhat safer way of handling this is to use
PAP (Password Authentication Protocol), where the authentication is handled by PPP, so you
do not require a real account on the server, however the username and password is still sent in
clear text, but the system at least is somewhat safer. The third (and best) method for
authentication is to use CHAP (Challenge Handshake Authentication Protocol), each side
exchanges a public key, and uses it to encrypt data sent for the authentication, thus your
username and password are relatively safe from snooping, however actual data transfers are
sent normally. One caveat with CHAP, Microsoft's implementation uses DES instead of
MD5, making it slightly 'broken' if connecting with a Linux client, there are patches available
however to fix this. PPP ships with almost every Linux distribution as a core part of the OS,
the Linux PPP-HOWTO is available at: http://www.interweft.com.au/other/ppp-howto/ppp-
howto.html.

47

Basic network service security

What is running and who is it talking to?

You can’t start securing services until you know what is running. For this task ps and netstat
are invaluable, ps will tell you what is currently running (httpd, inetd, etc), netstat will tell you
what the status of ports are (at this point we’re interested in ports that are open and listening,
that is waiting for connections), and finally we can take a look at the various config files that
control services.

PS Output

The program ps shows us process status (information available in the /proc/ virtual
filesystem). The options most commonly used are -xau, which show pretty much all the
information you’d ever want to know, please note these options vary across UNIX systems,
Solaris, SCO, etc all behave differently (which is incredibly annoying). The following is
typical output from a machine.

USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
bin 320 0.0 0.6 760 380 ? S Feb 12 0:00 portmap
daemon 377 0.0 0.6 784 404 ? S Feb 12 0:00 /usr/sbin/atd
named 2865 0.0 2.1 2120 1368 ? S 01:14 0:01 /usr/sbin/named -u named -g named -
t /home/named
nobody 346 0.0 18.6 12728 11796 ? S Feb 12 3:12 squid
nobody 379 0.0 0.8 1012 544 ? S Feb 12 0:00 (dnsserver)
nobody 380 0.0 0.8 1012 540 ? S Feb 12 0:00 (dnsserver)
nobody 383 0.0 0.6 916 416 ? S Feb 12 0:00 (dnsserver)
nobody 385 0.0 0.8 1192 568 ? S Feb 12 0:00 /usr/bin/ftpget -S 1030
nobody 392 0.0 0.3 716 240 ? S Feb 12 0:00 (unlinkd)
nobody 1553 0.0 1.8 1932 1200 ? S Feb 14 0:00 httpd
nobody 1703 0.0 1.8 1932 1200 ? S Feb 14 0:00 httpd
root 1 0.0 0.6 776 404 ? S Feb 12 0:04 init [3]
root 2 0.0 0.0 0 0 ? SW Feb 12 0:00 (kflushd)
root 3 0.0 0.0 0 0 ? SW Feb 12 0:00 (kswapd)
root 4 0.0 0.0 0 0 ? SW Feb 12 0:00 (md_thread)
root 64 0.0 0.5 736 348 ? S Feb 12 0:00 kerneld
root 357 0.0 0.6 800 432 ? S Feb 12 0:05 syslogd
root 366 0.0 1.0 1056 684 ? S Feb 12 0:01 klogd
root 393 0.0 0.7 852 472 ? S Feb 12 0:00 crond
root 427 0.0 0.9 1272 592 ? S Feb 12 0:19 /usr/sbin/sshd
root 438 0.0 1.0 1184 672 ? S Feb 12 0:00 rpc.mountd
root 447 0.0 1.0 1180 644 ? S Feb 12 0:00 rpc.nfsd
root 458 0.0 1.0 1072 680 ? S Feb 12 0:00 /usr/sbin/dhcpd
root 489 0.0 1.7 1884 1096 ? S Feb 12 0:00 httpd
root 503 0.0 0.4 724 296 2 S Feb 12 0:00 /sbin/mingetty tty2
root 505 0.0 0.3 720 228 ? S Feb 12 0:02 update (bdflush)
root 541 0.0 0.4 724 296 1 S Feb 12 0:00 /sbin/mingetty tty1
root 1372 0.0 0.6 772 396 ? S Feb 13 0:00 inetd
root 1473 0.0 1.5 1492 1000 ? S Feb 13 0:00 sendmail: accepting connections on
port 25
root 2862 0.0 0.0 188 44 ? S 01:14 0:00 /usr/sbin/holelogd.named
/home/named/dev/log
root 3090 0.0 1.9 1864 1232 ? S 12:16 0:02 /usr/sbin/sshd
root 3103 0.0 1.1 1448 728 p1 S 12:16 0:00 su -
root 3104 0.0 1.3 1268 864 p1 S 12:16 0:00 -bash
root 3136 0.0 1.9 1836 1212 ? S 12:21 0:04 /usr/sbin/sshd

48

The interesting ones are: portmap, named, squid (and it’s dnsserver, unlinkd and ftpget
children processes), httpd, syslogd, sshd, rpc.mountd, rpc.nfsd, dhcpd, inetd, and sendmail
(this server appears to be providing gateway services, email and NFS file sharing). The easiest
way to learn how to read ps output is go over the ps man page and learn what the various
fields are (most are self explanatory, such as %CPU, some like SIZE are a bit obscure (SIZE
is the number of 4k memory ‘pages’ a program is using)). To figure out what the running
programs are a safe bet is ‘man <command_name>’, which almost always gives you the
manual page pertaining to that service (such as httpd). You will notice that services like telnet,
ftpd, identd and several others do not show up even though they are on, this is because they
are run from inetd, the ‘superserver’, to find these services look at /etc/inetd.conf, or your
netstat output.

Netstat Output

netstat tells us pretty much anything network related that you can imagine, however it is
especially good at listing active connections and sockets. Using netstat we can find which
ports on which interfaces are active. The following output is from a typical server using
netstat –an.

Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 24.108.11.200:80 205.253.183.122:3661 ESTABLISHED
tcp 0 0 0.0.0.0:1036 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN
tcp 0 0 10.0.0.10:53 0.0.0.0:* LISTEN
tcp 0 0 28.208.55.254:53 0.0.0.0:* LISTEN
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:25 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:2049 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:635 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:21 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN
udp 0 0 127.0.0.1:1031 0.0.0.0:*
udp 0 0 0.0.0.0:1029 0.0.0.0:*
udp 0 0 0.0.0.0:800 0.0.0.0:*
udp 0 0 0.0.0.0:1028 0.0.0.0:*
udp 0 0 10.0.0.10:53 0.0.0.0:*
udp 0 0 28.208.55.254:53 0.0.0.0:*
udp 0 0 127.0.0.1:53 0.0.0.0:*
udp 0 0 10.1.0.1:138 0.0.0.0:*
udp 0 0 10.1.0.1:137 0.0.0.0:*
udp 0 0 10.0.0.10:138 0.0.0.0:*
udp 0 0 10.0.0.10:137 0.0.0.0:*
udp 0 0 0.0.0.0:138 0.0.0.0:*
udp 0 0 0.0.0.0:137 0.0.0.0:*
udp 0 0 0.0.0.0:2049 0.0.0.0:*
udp 0 0 0.0.0.0:635 0.0.0.0:*
udp 0 0 0.0.0.0:514 0.0.0.0:*
udp 0 0 0.0.0.0:111 0.0.0.0:*
raw 0 0 0.0.0.0:1 0.0.0.0:*
raw 0 0 0.0.0.0:6 0.0.0.0:*

Numeric output is in my opinion easier to read, once you memorize /etc/services anyways.
The interesting fields for us are the first field, type of service, the fourth field which is the IP
address of the interface and the port, the foreign address (if not 0.0.0.0.* means someone is
actively talking to it), and the port state. The first line is a remote client talking to the web
server on this machine (port 80). We then see the www server listening on 0.0.0.0:80 which
means all interfaces, port 80, followed by the DNS server running on all 3 interfaces, a samba

49

server (139), a mail server (25), an NFS server (2049) and so on. You will notice the ftp
server (21) listed, even though it is run out of inetd, and not currently in use (i.e. no one is
actively ftping in), it is listed in the netstat output. This makes netstat especially useful for
finding out what is active on a machine, making an inventory of active and inactive network
related software on the server much easier.

lsof

lsof is a handy program similar in idea to ps, except that it prints out what files/etc are open,
which can include network sockets. Unfortunately your average lsof puts out a lot of
information, so you will need to use grep or redirect it through less to make sense of it.

squid 9726 root 4u inet 78774 TCP localhost:2074-
>localhost:2073 (ESTABLISHED)
squid 9726 root 5u inet 78777 TCP localhost:2076-
>localhost:2075 (ESTABLISHED)
squid 9726 root 6u inet 78780 TCP localhost:2078-
>localhost:2077 (ESTABLISHED)
squid 9726 root 7w CHR 1,3 6205 /dev/null
squid 9726 root 14u inet 78789 TCP host1:3128 (LISTEN)
squid 9726 root 15u inet 78790 UDP host1:3130
squid 9726 root 16u inet 78791 UDP host1:3130
squid 9726 root 12u inet 167524 TCP host1:3128->host2:3630
(ESTABLISHED)
squid 9726 root 17u inet 167528 TCP host1:3424-
>www.playboy.com:http (SYN_SENT)

Shows for example that we have squid running, listening on ports 3128 and 3130, the last two
lines for example shows an open connection from an internal host to squid, and the resulting
action squid takes to fulfill it (going to www.playboy.com). host1 is the squid server and
host2 is the client machine making the request. This is an invaluable tool for getting a precise
image of what is going on network wise with your server. You can get lsof with some
distributions, please not versions of lsof compiled for kernel version 2.0.x will not work with
kernel 2.2.x and vice versa, there were to many changes. The head end site for lsof is at:
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/.

50

Basic network services config files

There are several important config files that control what services Linux runs and how they
run. Unfortunately many of them are in differing locations depending on what/how you
installed Linux and the services. Typical locations are:

Inetd server config file:
/etc/inetd.conf

Initial start up files in various forms
/etc/rc.d/*
/etc/*

The best thing to do is figure out which services you want to run, and disable/remove the rest.
Please see the appropriate section in package management for your system (RPM, dpkg,
tarballs).

inetd.conf

inetd.conf is responsible for starting services, typically ones that do not need to run
continuously, or are session based (such as telnet, or ftpd). This is because the overhead of
running a service constantly (like telnet) would be higher then the occasional start up cost (or
firing in.telnetd up) when a user wants to use it. For some services (like DNS) that service
many quick connections the overhead of starting the service every few seconds would be
higher then constantly running it (also with services such as DNS and email time is critical, a
few seconds delay starting an ftp session won't hurt much). The man page for inetd.conf
covers the basics:

man inetd.conf

the service itself is called inetd and is run at boot time, so you can easily stop/start/reload it by
manipulating the inetd process. Whenever you make changes to inetd.conf you must restart
inetd to make the changes effective, killall -1 inetd will restart it properly. Lines in inetd.conf
can be commented out with a # as usual (this is a very simple and effective way of disabling
services like rexec). It is advisable to disable as many services in inetd.conf as possible,
typically the only ones in use will be ftp, pop and imap, telnet and r services should be
replaced with ssh, and services like systat/netstat and finger give away far to much
information. Access to programs started by inetd can be easily controlled by the use of
TCP_WRAPPERS.

TCP_WRAPPERS

Using tcp_wrappers makes securing your servers against outside intrusion is a lot simpler and
painless then you would expect. TCP_WRAPPERS is controlled from two files:

/etc/hosts.allow
/etc/hosts.deny

hosts.allow is checked first, and the rules are checked from first to last, when it finds a rule
that explicitly allows you in (i.e. a rule allowing your host, domain, subnet mask, etc) it lets
you connect to the service, if it fails to find any rules that pertain to you in hosts.allow, it then

51

goes to check hosts.deny for a rule denying you entry. Again it checks the rules in hosts.deny
from first to last, and the first rule it finds that denies you access (i.e. a rule disallowing your
host, domain, subnet mask, etc) means it doesn't let you in. If it fails to find a rule denying
you entry it then by default lets you. If you are paranoid like me the last rule (or only rule if
you are going to a default policy of non-optimistic security) should be:
in hosts.deny:

ALL: 0.0.0.0/0.0.0.0

which means all services, all locations, i.e. a default deny policy. You might also want to just
default deny access to say telnet, and leave ftp wide open to the world, to do this you would
have:

in hosts.allow:

in.telnetd: 10.0.0.0/255.255.255.0 # allow access from my internal
network of 10.*.*.*
in.ftpd: 0.0.0.0/0.0.0.0 # allow access from anywhere in the
world

in hosts.deny:
in.telnetd: 0.0.0.0/0.0.0.0 # deny access to telnetd from
anywhere

or if you wish to be really safe:
ALL: 0.0.0.0/0.0.0.0 # deny access to everything from everywhere

This may affect services such as ssh and nfs, so be careful!
You may wish to simply list all the services you are using separately:
in.telnetd: 0.0.0.0/0.0.0.0
ipop3d: 0.0.0.0/0.0.0.0

If you leave a service on that you shouldn't have in inetd.conf, and DO NOT have a default
deny policy, you could be up the creek. It is safer (and a bit more work, but in the long run
less work then rebuilding the server) to have default deny rules for firewalling and
tcp_wrappers, thus is you leave something on by accident, by default there will be no access
to it. If you install something that users need access and you forget to put allow rules in, they
will quickly complain that they can't get access and you will be able to rectify the problem
quickly. Better safe then sorry. The man pages for tcp_wrappers are very good and available
by:
man hosts.allow

and/or (they are the same man page):
man hosts.deny

One minor caveat with tcp_wrappers that recently popped up on Bugtraq, tcp_wrappers
interprets lines in hosts.allow and hosts.deny in the following manner:

strip off all \'s (line continuations), making all the lines complete (also note the max length of
a line is about 2k, better to use multiple lines in some cases).

strip out lines starting with #'s, i.e. all commented out lines. Thus:

52

this is a test
in.ftpd: 1.1.1.1 \
in.telnetd: 1.1.1.1

means the "in.telnetd: 1.1.1.1" line would be ignored to.

/etc/services

The services file is a list of port numbers, the protocol and the corresponding name. The
format is:

service-name port/protocol aliases #
optional comment

for example:

time 37/udp timserver
rlp 39/udp resource # resource location
name 42/udp nameserver
whois 43/tcp nicname # usually to sri-nic
domain 53/tcp
domain 53/udp

This file is used for example when you run 'netstat -a', and of course not used when you
run 'netstat -an'

53

Network services

Telnetd

Telnet was one of the first services on what is now the Internet, it allows you to login to a
remote machine interactively, issue commands and see their results. It is still the primary
default tools for remote administration in most environments, and has nearly universal support
(even NT has a telnet daemon and client). It is also one of the most insecure protocols,
susceptible to sniffing, hijacking, etc. If you have clients using telnet to come into the server
you should definitely chroot their accounts if possible, as well as restricting telnet to the hosts
they use with tcp_wrappers. The best solution for securing telnet is to disable it and use
SSL'ified telnet or ssh.

Problems with telnet include:

• Clear text authentication, username and password.
• Clear text of all commands.
• Password guessing attacks (minimal, will end up in the log files)

The best solution is to turn telnet off and use ssh. This is however not practical in all
situations. If you must use telnet then I strongly suggest firewalling it, have rules to allow
hosts/networks access to port 23, and then a general rule denying access to port 23, as well as
using tcp_wrappers (which is more efficient because the system only checks each telnet
connection and not every packet against the firewall rules) however using tcp_wrappers will
allow people to establish the fact that you are running telnet, it allows them to connect,
evaluates the connection, and then closes it if they are not listed as being allowed in.
An example of firewalling rules:

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 23
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 23
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 23

or in ipchains:

ipchains -A input -p all -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 23
ipchains -A input -p all -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 23
ipchains -A input -p all -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 23

An example of the same using tcp_wrappers:
In /etc/hosts.allow

in.telnetd: 10.0.0.0/255.0.0.0, some.trusted.host

And in /etc/hosts.deny

in.telnetd: ALL

There are several encrypted alternatives to telnet as mentioned before, ssh, SSLeay Telnet,
and other third party utils, I personally feel that the 'best' alternative if you are going to go to
the bother of ripping telnet out and replacing it with something better is to use ssh.

54

To secure user accounts with respect to telnet there are several things you can do. Number one
would be not letting root login via telnet, this is controlled by /etc/securetty and by default in
most distributions root is restricted to logging on from the console (a good thing). For a user
to successfully login their shell has to be valid (this is determined by the list of shells in
/etc/shells), so setting up user accounts that are allowed to login is simply a matter of setting
their shell to something listed in /etc/shells, and keeping users out as simple as setting their
shell to /bin/false (or something else not listed in /etc/shells. Now for some practical examples
of what you can accomplish by setting the user shell to things other then shells.

For an ISP that wishes to allow customers to change their password easily, but not allow them
access to the system (my ISP uses Ultrasparcs and refuses to give out user accounts for some
reason, I wonder why).

in /etc/shells list:
/usr/bin/passwd

and set the users shell to /usr/bin/passwd so you end
up with something like:
username:x:1000:1000::/home/username:/usr/bin/passwd

and voila, the user telnets to the server, is prompted for their username and password, and is
then prompted to change his password, if he does so successfully passwd then exits and he is
disconnected, if he is unsuccessful passwd exist and he gets disconnected. The following is a
transcript of such a setup when a user telnets in:

Trying 1.2.3.4…
Connected to localhost.
Escape character is '^]'.

Red Hat Linux release 5.2 (Apollo)
Kernel 2.2.5 on an i586
login: tester
Password:
Changing password for tester
(current) UNIX password:
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully
Connection closed by foreign host.

Telnet also displays a banner by default when someone connects. This banner typically
contains systems information like the name, OS, release and sometimes other detailed
information such as the kernel version. Historically this was useful if you had to work on
multiple OS's, however in today's hostile Internet it is generally more harmful then useful.
Telnetd displays the contents of the file /etc/issue.net (typically it is identical to
/etc/issue which is displayed on terminals and so forth), this file is usually recreated at boot
time in most Linux distributions, from the rc.local startup file. Simply edit the rc.local file,
either modifying what it puts into /etc/issue and /etc/issue.net, or comment out the
lines that create those files, then edit the files with some static information.

Typical Linux rc.local contents pertaining to /etc/issue and /etc/issue.net:

55

This will overwrite /etc/issue at every boot. So, make any changes you
want to make to /etc/issue here or you will lose them when you reboot.
echo "" > /etc/issue
echo "$R" >> /etc/issue
echo "Kernel $(uname -r) on $a $(uname -m)" >> /etc/issue

cp -f /etc/issue /etc/issue.net
echo >> /etc/issue

simply comment out the lines or remove the uname commands. If you absolutely must have
telnet enabled for user logins make sure you have a disclaimer printed:

This system is for authorized use only. Trespassers will be prosecuted.

something like the above. Legally you are in a stronger position if someone cracks into the
system or otherwise abuses your telnet daemon.

56

SSHD

SSH is a secure protocol and set of tools to replace some common (insecure) ones. It was
designed from the beginning to offer a maximum of security, and is designed for remote
access of servers in a secure manner. SSH can be used to secure any network based traffic, by
setting it up as a 'pipe', i.e. binding it to a certain port at both ends, this is quite kludgy but
good for such things as using X across the Internet, in addition to this the server components
runs on most UNIX systems, and NT, and the client components runs on pretty much
anything. Unfortunately SSH is no longer free, however there is a project to create a free
implementation of the SSH protocol.

There aren't any problems with SSH per se like there are with telnet, all session traffic is
encrypted except of course and key exchange is done securely (alternatively you can preload
keys at either end to prevent them from being transmitted), SSH typically runs as a daemon,
and can easily be locked down by using the sshd_config file. You can also run sshd out of
inetd, and thus use tcp_wrappers, and by default the ssh rpm's from ftp.replay.com have
tcp_wrappers check option compiled into them. Thus using "sshd: blahblah" in hosts.allow
and hosts.deny allows you to easily restrict access to ssh. Please note earlier versions of ssh
do contain bugs, and sites have been hacked (typically with man in the middle attacks or
problems with buffer overflows in the ssh code), but later version of ssh address these
problems.

The firewalling rules for ssh are pretty much identical to telnet, and there is of course
tcp_wrappers, the problem with tcp_wrappers being that an attacker connects to the port, but
doesn't get a daemon, HOWEVER they know that there is something on that port, whereas
with firewalling they don't even get a connection to the port. The following is an example of
allowing people to ssh from internal machines, and a certain C class on the internet (say the C
class your ISP uses for it's dial-up pool of modems).

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 22
ipfwadm -I -a accept -P tcp -S isp.dial.up.pool/24 -D 0.0.0.0/0 22
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 22

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 22
ipchains -A input -p tcp -j ACCEPT -s isp.dial.up.pool/24 -d 0.0.0.0/0 22
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 22

Or via tcp_wrappers:
hosts.allow:
sshd: 10.0.0.0/255.0.0.0, isp.dial.up.pool/255.255.255.0

hosts.deny:
sshd: 0.0.0.0/0.0.0.0

In addition to this ssh has a wonderful configuration file, in /etc/sshd/sshd_config by default
in the RPM's available on ftp.replay.com. You can easily restrict who is allowed to login,
which hosts, and what type of authentication they are allowed to use. The default
configuration file is relatively safe but following is a more secure one with explanations.
Please note all this info can be obtained by a 'man sshd' which is one of the few well written
man pages out there.

57

Port 22
runs on port 22, the standard
ListenAddress 0.0.0.0
listens to all interfaces, you might only want to bind a firewall
internally, etc
HostKey /etc/ssh/ssh_host_key
where the host key is
RandomSeed /etc/ssh/ssh_random_seed
where the random seed is
ServerKeyBits 768
how long the server key is
LoginGraceTime 300
how long they get to punch their credentials in
KeyRegenerationInterval 3600
how often the server key gets regenerated
PermitRootLogin no
permit root to login? hell no
IgnoreRhosts yes
ignore .rhosts files in users dir? hell yes
StrictModes yes
ensures users don't do silly things
QuietMode no
if yes it doesn't log anything. yikes. we wanna log logins/etc.
X11Forwarding no
forward X11? shouldn't have to on a server
FascistLogging no
maybe we don't wanna log toto much.
PrintMotd yes
print the message of the day? always nice
KeepAlive yes
ensures sessions will be properly disconnected
SyslogFacility DAEMON
who's doing the logging?
RhostsAuthentication no
allow rhosts to be used for authentication? the default is no
but nice to say it anyways
RhostsRSAAuthentication no
is authentication using rhosts or /etc/hosts.equiv sufficient
not in my mind. the default is yes so lets turn it off.
RSAAuthentication yes
allow pure RSA authentication? this one is pretty safe
PasswordAuthentication yes
allow users to use their normal login/passwd? why not.
PermitEmptyPasswords no
permit accounts with empty password to log in? hell no

Other useful sshd_config directives include:
AllowGroups - explicitly allow groups (/etc/group) to login using ssh
DenyGroups - explicitly disallows groups (/etc/groups) from logging in
AllowUsers - explicitly allow users to login in using ssh
DenyUsers - explicitly blocks users from logging in
AllowHosts - allow certain hosts, the rest will be denied
DenyHosts - blocks certain hosts, the rest will be allowed
IdleTimeout time - time in minutes/hours/days/etc, forces a logout
by SIGHUP'ing the process.

Fresh Free FiSSH

58

Most of us still have to sit in front of windows workstations, and ssh clients for windows are a
pain to find. Fresh Free FiSSH is a free ssh client for Windows 95/NT 4.0, although not yet
completed. I would recommend keeping your eye on it though if you are like me and have
many Windows workstations, the URL is: http://www.massconfusion.com/ssh/.

Tera Term

Tera Term is a free Telnet client for Windows, and has an add on DLL to enable ssh support.
Tera Term is available from: http://hp.vector.co.jp/authors/VA002416/teraterm.html. The add
on DLL for SSH support is available from: http://www.zip.com.au/~roca/ttssh.html.

putty

putty is a Windows SSH client, pretty good, and completely free, and also small (184k
currently). You can download it from: ftp://rak.isternet.sk/mnt/rhcd/misc/putty/.

mindterm

mindterm is a free java ssh client, you can get it at: http://www.mindbright.se/mindterm/.

LSH

LSH is a free implementation of the SSH protocol (both client and server), LSH is GNU
licensed and is starting to look like the alternative (commercially speaking) to SSH (which is
not free anymore). You can download it from: http://www.net.lut.ac.uk/psst/, please note it is
under development.

59

RSH, REXEC, RCP

R services such as rsh, rcp, rexec and so forth are very insecure. There is simply no other
way to state it. Their basis of security is based on the hostname/IP address of the machine
connecting, which can easily be spoofed, or using techniques such as DNS poisoning
otherwise compromised. By default they are not all disabled, please do so immediately. Edit
/etc/inetd.conf and look for rexec, rsh and so on, and comment them out, followed by a
"killall -1 inetd" to restart inetd.

If you absolutely must run these services use tcp_wrappers to restrict access, it's not much but
it will help. Also make sure you firewall them as tcp_wrappers will allow an attacker to see
that they are running, which might result in a spoofed attack, something tcp_wrappers cannot
defend against if done properly. Access to the various R services is controlled via rhosts files,
usually each user has their own rhosts file, unfortunately this is susceptible to packet
spoofing. The problem with r services is also that once there is a minor security breach that
can be used to modify files, editing a users (like root's) rhost file makes it very easy to crack a
system wide open.

If you need remote administration tools that are easy to use and similar to rsh/etc I would
recommend nsh (Network SHell) or SSH, they both support encryption, and a much higher
level of security. Alternatively using VPN software will reduce some of the risk as you can
deny packet spoofers the chance to compromise your system(s) (part of IPSec is
authentication of sender and source, which is almost more important then encrypting the data
in some cases).

60

Webmin

Webmin is one of the better remote administration tools for Linux, written primarily in Perl it
is easy to use and easy to setup. You can assign different 'users' (usernames and passwords are
held internally by webmin) varying levels of access, for example you could assign bob access
to shutdown the server only, and give john access to create/delete and manipulate users only.
In addition to this it works on most Linux platforms and a variety of other UNIX platforms.
The main 'problem' with webmin is somewhat poor documentation in some areas of usage,
and the fact that the username/password pair are sent in clear text over the network (this is
minimized slightly by the ability to grant access to only certain hosts(s) and networks. Most
importantly it makes the system more accessible to non technical people who must administer
systems in such a way that you do not have to grant them actual accounts on the server.
Webmin is available at: http://www.webmin.com/webmin/, and is currently free. Webmin
defaults to running on port 10000 and should be firewalled:

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 10000
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 10000
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 10000

or in ipchains:

ipchains -A input -p all -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 10000
ipchains -A input -p all -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 10000
ipchains -A input -p all -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 10000

61

FTP

WuFTPD

FTP used to be the most used protocol on the Internet by sheer data traffic until it was
surpassed by HTTP a few years ago (yes, there was a WWW free Internet once upon a time).
FTP does one thing, and it does it well, transferring of files between systems (well that's not
entirely true, for mirroring of date rsync beats the socks off of ftp). The protocol itself is
insecure, passwords, data, etc is transferred in cleartext and can easily be sniffed, however
most ftp usage is 'anonymous', so this isn't a huge problem. One of the main problems
typically encountered with ftp sites is improper permissions on directories that allow people to
use the site to distribute their own data (typically copyrighted material, etc). Again as with
telnet you should use an account for ftping that is not used for administrative work since the
password will be flying around the network in clear text.
Problems with ftp in general include:

• Clear text authentication, username and password.
• Clear text of all commands.
• Password guessing attacks (minimal, will end up in the log files)
• Improper server setup and consequent abuse of gained privileges
• Several nasty Denial of Service attacks still exist in WU-FTPD

Securing FTP isn't to bad, between firewalling and tcp_wrappers you can restrict access based
on IP address / hostname quite well. In addition ftp runs chrooted by default for anyone
logging in as anonymous, or an account defined as guest. With some work amount of work
you can set all users that are ftping in to be chrooted to say their home directory. You can also
run an ftp daemon that encrypts the data (such as the SSL add on package/etc) however this
means your ftp clients must speak the encryption protocol and this isn't always to practical.
Also make very sure you have no publicly accessible directories on your ftp server that are
both readable and writeable, otherwise people will exploit it to distribute their own stuff
(typically warez or porn).
An example of firewalling rules:

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 21
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 21
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 21

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 21
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 21
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 21

An example of the same using tcp_wrappers:
In /etc/hosts.allow
in.ftpd: 10.0.0.0/255.0.0.0, some.trusted.host

And in /etc/hosts.deny
in.ftpd: ALL

62

There are several encrypted alternatives to ftp as mentioned before, SSLeay FTPD, and other
third party utils. Since most ftp accounts are not used as admin accounts (BAD IDEA!), and
hopefully run chrooted, the security risk is minimized. Now that we have hopefully covered
all the network based parts of ftp, lets go over securing the user accounts and environment.
The main mechanism for user security in ftpd is the use of chroot. For example by default all
people logging in as anonymous have /home/ftp/ set as their 'root'. They cannot get out of this
and say look at the contents of /home/ or /etc/. The same can be applied to groups of users
and/or individuals, for example you could set all users to be chroot'ed to /home/ when they ftp
in, or in extreme cases of user privacy (say on a www server hosting multiple domains) set
each user chroot'ed to within their own home directory. This is accomplished through the use
of /etc/ftpaccess and /etc/passwd (man ftpaccess has all the info). I will give a few examples
of what needs to be done to accomplish this since it can be quite confusing at first. As well
ftpd checks /etc/ftpusers and if the user attempting to login is listed in that file (like root
should be) it will not let the user login via ftp.

To chroot users as they login into the ftp server is rather simple, but poorly documented. The
ftp server check ftpaccess for 'guestgroup's, which are simply "guestgroup some-group-on-
the-system" i.e. "guestgroup badusers", and the groupname needs to be defined in /etc/group
and have members added. As well you need to edit their passwd file line so that the ftp server
knows where to dump them. And since they are now chrooted into that directory on the
system, they do not have access to /lib, etc so you must copy certain files into their dir for
things like ls to work properly (always a nice touch).

Setting up a user (billybob) so that he can ftp in, and ends up chroot'ed in his home directory
(because he keeps threatening to take the sysadmin possum hunting). In addition to this
billybob can telnet in and change his password, but nothing else because he keeps trying to
run ircbots on the system. The system he is on uses shadowed passwords, so that's why there
is an 'x' in billybob's password field.

First off billybob needs a properly setup user account:
billybob:x:500:500:Billy Bob:/home/billybob/./:/usr/bin/passwd

this means that the ftp server will chroot billybob into /home/billybob/ and chdir him into
what is now / (/home/billybob to the rest of us). The ftpaccess man file covers this bit ok, and
of course /usr/sbin/passwd needs to be listed in /etc/shells

Secondly for the ftp server to know that he is being chrooted he needs to be a member of a
group (badusers, ftppeople, etc) that is defined in /etc/group. And then that group must be
listed in /etc/ftpaccess.

Now you need to copy some libs/binaries otherwise billybob won't be able to do a whole lot
once he has ftp'ed in. The files needed are available as packages (usually called “anonftp”),
once this is installed the files will be copied to /home/ftp/, you will notice there is an
etc/passwd, this is simply uses to map UID's to usernames, if you want billybob to see his
username and not UID, add a line for him (i.e. copy his line from the real /etc/passwd to this
one). The same applies to the group file.

without "billybob:*:500:500:::" in /home/billybob/etc/passwd:
drwxr-xr-x 2 500 500 1024 Jul 14 20:46 billybob

63

and with the line added:
drwxr-xr-x 2 billybob 500 1024 Jul 14 20:46 billybob

and with a line for billybob's group added to the group file:
drwxr-xr-x 2 billybob billybob 1024 Jul 14 20:46 billybob

Billybob can now ftp into the system, upload and download files from /home/billybob to his
hearts content, change his password all on his own, and do no damage to the system, nor
download the passwords file or other nasty things.

FTP is also a rather special protocol in that the clients connect to port 21 (typically) on the ftp
server, and then port 20 of the ftp server connects to the client and that is the connection that
the actual data is sent over. This means that port 20 has to make outgoing connections, keep
this in mind when setting up a firewall either to protect ftp servers or clients using ftp. As well
there is 'passive' ftp and usually used by www browsers/etc, and involves incoming
connections to the ftp server on high port numbers (instead of using 20 they agree on
something else). If you intend to have a public ftp server put up a machine that JUST does the
ftp serving, and nothing else, preferably outside of your internal LAN (see Practical Unix and
Internet Security for discussions of this 'DMZ' concept).

64

Apache

What can I say about securing Apache? Not much actually. By default Apache runs as the
user 'nobody', giving it very little access to the system, and by and large the Apache team has
done an excellent job of avoiding buffer overflows/etc. In general most www servers simply
retrieve data off of the system and send it out, most of the danger come not from Apache but
from sloppy programs that are executed via Apache (CGI's, server side includes, etc).
If going with Apache I would recommend using the 1.3 series unless you have some strange
reason for sticking to 1.2, the active development is now on 1.3, and includes many new
features from security, usability, stability and performance viewpoints. Most servers based
upon Apache (RedHat Secure Server, Stronghold, etc.) are generally just as bug free but there
are occasionally problems.

If you want to be paranoid I would suggest running Apache in a chrooted environment, this
however is sometimes more trouble then it is worth. Doing this will break a great many
things. You must also install numerous libraries, perl, and any other utilities that your apache
server will be using, as well as any configuration files you wish to have access to. Any CGI
scripts and other things that interact with the system will be somewhat problematic and
generally harder to troubleshoot.

The simplest way to setup apache chrooted is to simply install it and move/edit the necessary
files. A good idea is to create a directory (such as /chroot/apache/), preferably on a
separate filesystem from /, /usr, etc (symlinks, accidental filling of partitions, etc...), and then
create a file structure under it for apache. The following is an example, simply replace
/chroot-http/ with your choice. You must of course execute these steps as root for it to work.
RPM supports this with the --root dir directive, simply install apache and the needed libs
using rpm (thus gaining it's support for dependencies/etc, making your life easier).

Apache logs requests and so forth internally, so you don't have to worry about setting up
holelogd or any other strangeness in order to get your log files behaving.

About the simplest way to secure apache and insure that it doesn't have unnecessary access to
your filesystem is to create a /www/ or similar directory and place ALL the websites,
webcontent, cgi's and so forth under it. Then you can simply set access.conf up to deny any
access to /, and enable access to /www/ and it's various cgi-bin directories.

Example for access.conf:

<Directory />
Options None
AllowOverride None
</Directory>

<Directory /www >
Options Indexes FollowSymLinks Includes
AllowOverride None
</Directory>

Access to directories can also be controlled easily, Apache supports the defining and
placement of files (usually referred to as htaccess files) that can control access based on
username and password, IP of origin, and so forth. This is defined in srm.conf:

65

AccessFileName .htaccess

The format of this file is covered in the apache documentation, and is identical to directives
you would place in access.conf (well almost). User authentication via username and password
is also covered in depth at: http://www.apacheweek.com/features/userauth/.

You will also want to prevent people from viewing the .htaccess file(s), place this in your
srm.conf:

<Files .htaccess>
order allow,deny
deny from all
</Files>

This will disallow the viewing of any file called '.htaccess'.

Apache ruins on port 80, tcp usually, and if it is for internal use only (an Intranet, or www
based control mechanism for a firewall server say) you should definitely firewall it.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 80
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 80
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 80

or in ipchains:

ipchains -A input -p all -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 80
ipchains -A input -p all -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 80
ipchains -A input -p all -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 80

66

SQUID

SQUID is a powerful and fast Object Cache. It proxies FTP and WWW sessions, basically
giving it many of the properties of an FTP and a WWW server, but it only reads and writes
files within it's cache directory (or so we hope), making it relatively safe. Squid would be very
hard to use to actually compromise the system it is on, in addition to it running as a non root
user (typically 'nobody'), so generally it's not much to worry about. Your main worry with
squid should be improper configuration, for example if squid is hooked up to your internal
network (as is usually the case), and the internet (again, very common), it could actually be
used to reach internal hosts (even if they are using non routed IP addresses). Hence proper
configuration of squid is very important.

The simplest way to make sure this doesn't happen is to use squid's internal configuration and
only bind it to the internal interface(s), not letting the outside world attempt to use it as a
proxy to get at your internal LAN, in addition to this firewalling it is a good idea. Squid can
also be used as an HTTP accelerator, perhaps you have an NT WWW Server on the internal
network that you want to share with the world, in this case things get a bit harder to configure
but it is possible to do relatively securely. Fortunately squid has very good ACL's (Access
Control Lists) built into the squid.conf file, allowing you to lock down access by names, ip's,
networks, time of day, actual day (perhaps you allow unlimited browsing on the weekends for
people that actually come in to the office). Remember however that the more complicated an
ACL is, the slower squid will be to respond to requests.

The ACL's work by defining rules, and then applying those rules, for example:

acl internalnet 10.0.0.0/255.0.0.0
http_access allow internalnet
http_access deny all

Which defines "internalnet" as being anything with a source of 10.0.0.0/255.255.255.0,
allowing it access to the http caching port, and denying everything else. Remember that rules
are read in the order given, just like ipfwadm, allowing you to get very complex (and make
mistakes if you are not careful). Always start with the specific rules followed by more general
rules, and remember to put blanket denials after specific allowals, otherwise it might make it
through. It's better to accidentally deny something then to let it though, as you'll find out about
denials (usually from annoyed users) faster then things that get through (when annoyed users
notice accounting files from the internal www server appearing on the Internet). The squid
configuration files (squid.conf) is well commented (to the point of overkill) and also has a
decent man page.

Another useful example is blocking ads, so to block them you can add the following to
squid.conf:

acl ads dstdomain ads.blah.com
http_access deny ads

The acl declaration is simply a pattern, be it a destination domain name, source domain name,
regex and so on, the http_access directive actually specifies what to do with it (deny, allow,
etc). Properly setup this is an extremely powerful tool to restrict access to the WWW,
unfortunately it does have one Achilles heel, it doesn't support user based authentication and

67

control (not that many product do in any case). Remember that like any set of rules they are
read from top to bottom, so put your specific denials and allowals first, and then the more
general rules. The squid.conf file should be well commented and self explanatory, the squid
FAQ is at: http://squid.nlanr.net/Squid/FAQ/FAQ.html.

One important security issue most people overlook with squid is the log files it keeps. By
default squid may or may not log each request it handles (depends on the config file), from
http://www.nsa.gov/ to “http://members.porn.com/cgi-
bin/access&member=johndoe&password=booboo”. You definitely want to disable the access
logs unless you want to keep a close eye on what people view on the Internet (legally this is
questionable, check with your lawyers), the directive is “cache_access_log” and to disable it
set it to “/dev/null”, this logs ALL accesses, and ICP queries (inter-cache communications).
The next big one is the “cache_store_log”, which is actually semi useful for generating
statistics on how effective your www cache is, it doesn’t log who made the request, simply
what the status of objects in the cache is, so in this case you would see the pictures on
playboys site being repeatedly served, to disable it set it to “none”. The “cache_log” should
probably be left on, it contains basic debugging info such as when the server was started and
when it was stopped, to disable it set it to “/dev/null”. Another, not very well documented log
files is the “cache_swap_log” file, which keeps a record of what is going on with the cache,
and will also show you the URL’s people are visiting (but not who/etc), setting this to
“/dev/null” doesn’t work (in fact squid pukes out severely) and setting it to “none” simply
changes the filename from “log” to “none”. The only way to stop it is to link the file to
“/dev/null” (by default the root of the www cache files /log), and also to link the “log-last-
clean” to “/dev/null” (although in my quick tests it doesn’t appear to store anything you can’t
be sure otherwise). So to summarize:

in squid.conf:

cache_access_log /dev/null
cache_store_log none
cache_log /dev/null

and link:
/var/spool/squid/log to /dev/null
/var/spool/squid/log-last-clean to /dev/null

or whichever directory holds the root of your www cache (the 00 through 0F directories).

Another important issue that gets forgotten is the ICP (Internet Cache Protocol) component of
squid. The only time you will use ICP is if you create arrays or chains of proxy servers. If like
me you have only the one proxy server you should definitely disabled ICP. This is easily done
by setting the ICP port in squid.conf from the default “3130” to “0”. You should also firewall
port 3128 (the default squid port that clients bind to) from the Internet:

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 3128
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 3128
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 3128

or in ipchains:

68

ipchains -A input -p all -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 3128
ipchains -A input -p all -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 3128
ipchains -A input -p all -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 3128

69

SMTP

Sendmail

Sendmail is another one of those services most of us have a love/hate relationship with. We
hate to admin it and we'd love to replace it. This is usually not possible, as sendmail has many
features and stability, with the downside being it runs as. Newer mailer packages such as
qmail, address these problems however they also suffer problems, qmail lacks certain features
(anti spam/UBE) that sendmail has, as well as a no binary distribution clause (actually you
can make binary distributions but the restrictions are very heavy and you must gain the
authors permission, which he will probably not grant if you do not follow his restrictions to
the letter).

Sendmail has earned itself a very bad reputation for security, however I find it hard to blame
software when I find systems running versions of sendmail like 8.6.x, we are now up to 8.9.1.
The root of the problem is that almost everyone runs sendmail (estimates say %70 of all
Internet email passes through a sendmail box on it's journey), so as soon as a bug is found,
finding a system to exploit isn't all that hard. The last few releases of sendmail have been
quite good, no root hacks, etc, and with the new anti spam features sendmail is finally to come
of age. More information on Sendmail and source code is available from:
http://www.sendmail.org/.

Chroot'ing sendmail is a good option, but a lot of work, and since it runs as root, rather
debatable as to the effectiveness of this (since root can break out of a chrooted jail). I find that
by keeping sendmail up to date, you can pretty much account yourself safe, of course if a new
exploit comes out and the patch takes 24 hours we're up poop creek, the same applies to any
piece of software though. Also by using Sendmail's advanced anti spam features you can
effectively block 99% of all spam coming to you, and prevent other from using your system to
relay spam.

Keeping sendmail up to date is relatively simple, I would recommend minimally version 8.9.3
(the 8.9 series has more anti-spam features, 8.8.7 has most of these features as well assuming
you have a properly setup sendmail.cf). Most distributions ship 8.8.x, although the newer
releases are generally shipping the 8.9.x. You can also get the source from ftp.sendmail.org,
but compiling sendmail is not for the faint of heart or those that do not have a chunk of time
to devote to it.

Sendmail only needs to be accessible from the outside world if you are actually using it to
receive mail from other machines and deliver the mail locally. If you only want to run
sendmail so that local mail delivery works (i.e. a stand alone workstation, test server or other)
and so mail can easily be sent to other machines simply firewall off sendmail, or better, do not
run it in daemon mode. Sendmail can be run in a queue flushing node, where it simply 'wakes'
up once in a while and processes local mail, either delivering it locally, or sending it off on it's
way across the 'net. To set Sendmail to run in queue mode:

edit /etc/rc.d/init.d/sendmail
and change the line:
daemon /usr/sbin/sendmail -bd -q1h
to:
daemon /usr/sbin/sendmail -q1h

70

note if you use your system to send lots of email you may wish
to set the queue flush time lower, perhaps -q15m (15 minutes)
now outbound and system internal mail will behave just fine,
which unless you run a mail server, is perfect.

Now for all those wonderful anti-spam features in sendmail. Sendmail's configuration files
consist of (this applies to Sendmail 8.9.x):

/etc/sendmail.cf
Primary config file, also tells where other config files are

/etc/mail/
You can define the location of configuration files in sendmail.cf, typically people place them
in /etc/ or /etc/mail/ (which keeps it a little less cluttered).

access
Access list database, allows you to reject email from certain sources (IP or domain), and
control relaying easily. My access file looks like this:
10.0.0 RELAY
spam.com REJECT

which means 10.0.0.* (hosts on my internal network) are allowed to use the email server to
send email to wherever they want, and that all email to or from *.spam.com is rejected. There
are lists online of known spammers, typically they are 5-10,000 entries long, this can
seriously impede sendmail performance (as each connection is checked against this list), on
the other hand having your sendmail machine used to send spam is even worse.

aliases
aliases file, allows you to control delivery of mail local to the system, useful for backing up
incoming users email to a separate spool. SmartList uses this file to get mail sent to lists
delivered to the programs that actually process them.

domaintable
domain table (adding domains) that you handle, useful for virtual hosting.

majordomo
configuration file for majordomo, I would personally recommend SmartList over Majordomo.

sendmail.cw
file containing names of hosts for which we receive email, useful if you host more then one
domain.

sendmail.hf
location of help file (telnet to port 25 and type in "HELP")

virtusertable
Virtual user table, maps incoming users, i.e. maps sales@example.org to john@example.org.

Sendmail 8.9.x (and previous versions) do not really support logging of all email very nicely
(something required in today's world for legal reasons by many companies). This is one
feature being worked on for the release of Sendmail 8.10.x. Until then there are 2 ways of

71

logging email, the first is somewhat graceful and logs email coming IN to users on a per user
basis. The second method is not graceful and involves a simple raw log of all SMTP
transactions into a file, you would have to write some sort of processor (probably in perl) to
make the log useful.

Mail (incoming SMTP connections to be more precise) is first filtered by the access file, in
here we can REJECT mail from certain domains/IP’s, and RELAY mail from certain hosts
(i.e. your internal network of windows machines). Any local domains you actually host mail
for will need to go into sendmail.cw. Assuming mail has met the rules and is queued for
local delivery the next file that gets checked is virtusertable, this is a listing of email addresses
mapped to the account name/other email address. i.e.:
seifried@seifried.org alias-seifried
listuser@seifried.org listuser
@seifried.org mangled-emails

The last rule is a catch all so mangled email addresses do not get bounced, and instead sent to
a mailbox. Then the aliases file is checked, if an entry is found it does what it says to,
otherwise it attempts to deliver the mail to a local users mailbox, my aliases file entry for
seifried is:
alias-seifried: seifried, "/var/backup-spool/seifried"

This way my email gets delivered to my normal mailbox, and to a backup mailbox (in case I
delete an email I really didn't mean to), or god forbid, Outlook decides to puke someday and
hose my mailboxes. This would also be useful for corporations, as you now have a backup of
all incoming email on a per user basis, and can allow them (or not) to access the file
containing the backed up mail.

One caveat, when using a catch all rule for a domain (i.e. @seifried.org) you must create an
alias for EACH account, and for mailing lists. Otherwise when it looks through the list and
doesn't find a specific entry (for say mailing-list@seifried.org) it will send it to the mailbox
specified by the catch all rule. For this reason alone you might not wish to use a catch all rule.

The second method is very simple, you simply start sendmail with the -X option and specify a
file to log all transactions to. This file will grow very large very quickly, I would NOT
recommend using this method to log email unless you absolutely must.

Firewalling sendmail is straightforward, it runs on port 25, tcp:

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 25
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 25
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 25

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 25
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 25
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 25

QMAIL

72

Qmail (like postfix) was created as a direct response to perceived flaws in Sendmail. Qmail is
GPL with a no binary distribution clause meaning you must install it from source code. Very
little code in Qmail runs as root, and it is very modular compared to sendmail (which is a
pretty monolithic piece of code). You can download it from: http://www.qmail.org/.

Postfix

Postfix was written by Wietse Venema, who is also responsible for TCP_WRAPPERS.
Postfix is somewhat ore modern then Sendmail or Qmail in the way it attempts to deliver
email, and was written to be very secure. Like most IBM products it has a very funky license,
but appears to be mostly open source and free. Postfix is available at: http://www.postfix.org/.

Zmailer
Zmailer is a GPL mailer available at: http://www.zmailer.org/. It has crypto hooks and
generally looks like it is well built.

DMail

DMail is a commercial mail server, and is not open source. You can download a trial version
from: http://netwinsite.com/dmail_first.htm.

73

POPD

WU IMAPD (stock popd)

POP and IMAP are fundamentally related but very different, so I have split them apart. POP
stands for “Post Office Protocol” and simply allows you to list messages, retrieve them, and
delete them. There are many POP servers for Linux available, the stock one that ships with
most distributions if perfect for the majority of users. The main problems with POP are
similar to many other protocols, in that usernames and passwords are transmitted in the clear,
making it a very good target for packet sniffing. POP can be SSL’ified, however not all mail
clients support SSL secured POP. Most POP servers come configured to use
TCP_WRAPPERS, which is an excellent method for restricting access. Please see the earlier
section on TCP_WRAPPERS for more information. POP runs as root (since it must access
user mailboxes) and there have been a number of nasty root hacks in various POP servers in
the past. POP runs on ports 109 and 110 (109 is basically obsolete though), using the tcp
protocol. The Washington University IMAPD server also comes with a pop server and is
generally the ‘stock’ pop server that ships with most Linux distributions. You can get it from:
http://www.washington.edu/imap/.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 110
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 110
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 110

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 110
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 110
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 110

Cyrus

Cyrus is an imap (it also supports pop and kpop) server aimed at ‘closed’ environments. That
is to say that the users will not have any access to the mail server other then by imap or pop
protocols. This allows Cyrus to store the mail in a much more secure manner and allows for
easier management of larger installations. Cyrus is GNU licensed and available from:
http://andrew2.andrew.cmu.edu/cyrus/imapd/.

IDS POP

IDS (It Doesn’t Suck) POP is a lighter popd replacement aimed at smaller installations. It is
GPL and available from: http://www.nodomainname.net/software/ids-pop/.

74

IMAPD

WU IMAPD (stock imapd)

IMAP is POP on steroids. It allows you to easily maintain multiple accounts, have multiple
people access one account, leave mail on the server, just download the headers, or bodies and
no attachments, and so on. IMAP is ideal for anyone on the go or with serious email needs.
The default POP and IMAP servers that most distributions ship (bundled together into a single
package named imapd oddly enough) fulfill most needs.

IMAP also starts out as root, although imapd typically drops to the privilege of the user
accessing it, and cannot be easily set to run as a non root user since they have to open
mailboxes (and in IMAP’s case create folders, files, etc. in the user’s home directory), so they
cannot drop privileges as soon as one would like. Nor can they easily be chrooted (IMAP
needs access to /var/spool/mail, and IMAP needs access to the user’s home directory). The
best policy is to keep the software up to , and if at all possible firewall pop and imap from the
outside world, this works well if no-one is on the road and needs to collect their email via the
Internet. Washington University (WU) IMAPD is available from:
http://www.washington.edu/imap/.

IMAP runs on port 143 and most IMAPD servers support TCP_WRAPPERS, making it
relatively easy to lock down.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 143
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 143
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 143

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 143
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 143
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 143

Cyrus

Cyrus is an imap (it also supports pop and kpop) server aimed at ‘closed’ environments. That
is to say that the users will not have any access to the mail server other then by imap or pop
protocols. This allows Cyrus to store the mail in a much more secure manner and allows for
easier management of larger installations. Cyrus is GNU licensed and available from:
http://andrew2.andrew.cmu.edu/cyrus/imapd/.

75

WWW based mail readers

One of the better solutions is to use a www based mail client, these can usually be run under a
secure www server with minimal extra work, and have the added bonus of letting users check
email safely from locations that would normally make checking email difficult (while on
vacation in Europe for example). Unfortunately the majority of www based mail reading
clients stink, and the good ones cost an arm and a leg.

Non Commercial

IMP

IMP requires the Horde module (available on the same site) and a www server capable of
PHP3 support. You can download IMP and Horde from: http://www.horde.org/imp/.

AtDot

AtDot is GNU licensed and written in Perl. It has several modes of operation making it
suitable for a variety of www based email solutions (hotmail style providers, ISP’s, etc.). You
can download it from: http://www.nodomainname.net/software/atdot/.

Commercial

DmailWeb

http://netwinsite.com/dmailweb/index.htm

WebImap

http://netwinsite.com/webimap/index.htm

76

DNS

Bind

DNS is an extremely important service for IP networks, I would not hesitate to say probably
the MOST important network service (without no-one can find anything). It also requires
connections coming in from the outside world, and due to the nature and structure of DNS the
information DNS servers claim to have may not be true. The main provider of DNS server
software (named, the de facto standard) is currently looking at adding a form of DNS
information authentication (basically using RSA to cyrptographically sign the data, proving it
is 'true').

Most distributions are finally shipping bind 8.x, however none (to my knowledge) have
shipped it setup for non root, chrooted use by default. Making the switch is easy however:

-u
specifies which UID bind will switch to once it is bound to port 53 (I like to use a user called
'named' with no login permissions, similar to 'nobody').

-g
specifies which GID bind will switch to once it is bound to port 53 (I like to use a group
called 'named', similar to 'nobody').

-t
specifies the directory that bind will chroot itself to once started. /home/named is a good bet,
in this directory you should place all the libraries and config files bind will require.

An even easier way of running bind chroot'ed is to download the bind-chroot package,
available as a contrib package for most distributions, and install it. Before installation you will
need a user and group called named (which is what the bind server changes it UID/GID to),
simply use groupadd and useradd to create the user/group. Some packages uses holelogd to
log bind information to /var/log/messages (as bind would normally do), if this isn’t available
you will have to install it be hand which is a chore. In addition to this the default
configuration file for bind is usually setup securely (i.e. you cannot query bind for the version
information).

Another aspect of bind is the information it contains about your network(s). When a person
queries a DNS server for information they typically send a small request for one piece of
information, i.e.: what is the IP address for www.seifried.org? And there are domain transfers,
where a DNS server requests all the information for say seifried.org, and grabs it and can then
make it available to other (in the case of a secondary DNS server). This is potentially very
dangerous, it can be as or more dangerous then shipping a company phone directory to
anyone that calls up and asks for it. Bind version 4 didn't really have much security, you could
limit transfers to certain server, but not selectively enough to be truly useful. This has changed
in Bind 8, documentation is available at http://www.isc.org/bind.html. To make a long story
short in Bind 8 there are global settings and most of these can also be applied on a per domain
basis. You can easily restrict transfers AND queries, log queries, set maximum data sizes, and
so on. Remember, when restricting zone queries you must secure ALL name servers (master
and the secondaries), as you can transfer zones from a secondary just as easily as a master.

77

Here is a relatively secure named.conf file (stolen from the bind-chroot package at
ftp.tux.org):

options {
 // The following paths are necessary for this chroot
 directory "/var/named";
 dump-file "/var/tmp/named_dump.db"; // _PATH_DUMPFILE
 pid-file "/var/run/named.pid"; // _PATH_PIDFILE
 statistics-file "/var/tmp/named.stats"; // _PATH_STATS
 memstatistics-file "/var/tmp/named.memstats"; // _PATH_MEMSTATS
 // End necessary chroot paths
 check-names master warn; /* default. */
 datasize 20M;
};

zone "localhost" {
 type master;
 file "master/localhost";
 check-names fail;
 allow-update { none; };
 allow-transfer { any; };
};

zone "0.0.127.in-addr.arpa" {
 type master;
 file "master/127.0.0";
 allow-update { none; };
 allow-transfer { any; };
};

// Deny and log queries for our version number except from localhost
zone "bind" chaos {
 type master;
 file "master/bind";
 allow-query {localhost; };
};

zone "." {
 type hint;
 file "named.zone";
};

zone "example.org" {
 type master;
 file "zones/example.org";

allow-transfer {
 10.2.1.1;
 10.3.1.1;

};
};

Bind runs on port 53, using both udp and tcp, udp is used for normal domain queries (it's
lightweight and fast), tcp is used for zone transfers and large queries (say dig
www.microsoft.com). Thus firewalling tcp is relatively safe and will definitely stop any zone

78

transfers, but the occasional DNS query might not work. It is better to use named.conf to
control zone transfers.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 53
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 53
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 53

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 53
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 53
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 53

would block zone transfers and large queries, the following would block normal queries (but
not zone transfers, so if locking it down remember to use both sets of rules)

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 53
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 53
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 53

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 53
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 53
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 53

Dents

Dents is a GPL DNS server, currently in testing stages (release 0.0.3). Dents is being written
from the ground up with support for SQL backends, integration with SNMP, uses CORBA for
it’s internals. All in all it should give Bind a serious run for the money, I plan to test and
evaluate it, but until then you’ll just have to try it yourself. Dents is available at:
http://www.dents.org/.

79

NNTP

INN

The usenet server INN has had a long and varied history, for a long period there were no
official releases and it seemed to be in a state of limbo, however it is back for good now it
would seem. The server software is responsible for handling a potentially enormous load, if
you take a full newsfeed the server must process several hundred articles per second, some
several kilobytes in size. It must index these articles, write them to disk, and hand them out to
clients that request them. INN itself is relatively secure, since it handles data with a directory
and generally doesn't have access outside of that, however as with any messaging system if
you use it for private/confidential material you must be careful. INN is currently maintained
by ISC and is available at: http://www.isc.org/inn.html.

One of the main security threats with INN is resource starvation on the server, if someone
decides to flood your server with bogus articles, or there is a sudden surge of activity you
might be in trouble if capacity is lacking. INN has had several bad security holes in past, but
with today's environment the programmers seem to have chased down and eliminated all of
them (none have surfaced recently). It is highly recommended (for more then security reasons
alone) that you place the news spool on a separate disk system, let alone partition, you might
also wish to use ulimit to restrict the amount of memory available so that it cannot bring the
server to it's knees.

As for access you should definitely not allow public access, any news server that is publicly
accessible will be quickly hammered by people using it to read news, send spam and the like.
Restrict reading of news to your clients/internal network, and if you are really worried force
people to login. Client access to INN is controlled via the nnrp.access file, you can specify
IP address(s), domain names and domains (such as *.me.com), as well as there access levels
(read and post), the newsgroups they do or don't have access to and you can also specify a
username and password, but since this is linked to the host/domain it gets somewhat messy.

example of nnrp.access:

:: -no - : -no- :!
denies access from all sites, for all actions (post and read), to all
groups.
.me.com::Read Post:::
hosts in me.com have full access to all groups
.them.com::Read:::, !me.*
hosts in them.com have read access to everything but the me hierarchy
.aol.com:Read Post:myname:mypassword:
give me access from my AOL account using a username and password

If you are going to run a news server I highly recommend the O'Reilly book "Managing
Usenet", as Usenet is similar to Sendmail, a total beast to get running smoothly and keep
happy.

News should be firewalled as most servers typically server an internal group, and access
connections from one or two upstream feeds:

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 119
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 119

80

ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 119

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 119
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 119
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 119

DNews

http://netwinsite.com/dnews.htm

81

DHCPD

DHCPD is something all network admins should use. It allows you to serve information to
clients regarding their network settings/etc, typically meaning that the only client setup
needed for networking is leaving the defaults and turning the machine on. It also allows you
to reconfigure client machines easily (say move from using 10.0.1.0 to 10.0.2.0, or a new set
of DNS servers). In the long run (and short run even) DHCP will save you enormous amounts
of work, money and stress. I run it at home with only 8 client machines and have found life to
be much easier. DHCPD is maintained by the ISC and is at: http://www.isc.org/dhcp.html.

I also highly recommend you run DHCPD version 2.x (3.x is in pre alpha stages), it's got a lot
of new features, and is easier to setup and work with. The absolute latest version(s) of this
tend to be a bit neurotic however, be warned it is beta software. Definitely firewall DHCPD
off from the Internet. DHCP traffic should only be on local segments, possibly forwarded to a
DHCP server on another segment, but the only DHCP traffic you would see coming over the
Internet would be an attack/DOS (they might reserve all your IP's, thus leaving your real
clients high and dry). If you are forwarding DHCP traffic over the Internet, DON'T. This is a
really bad idea for a variety of reasons (primarily performance / reliability, but security as
well).

I recommend the DHCPD server be only a DHCP server, locked up somewhere (if you rely
on DHCP for your network and the DHCP server fails your network is in serious trouble),
allowed to do it's job quietly, if you need to span subnets (i.e. you have multiple ethernet
segments, only one of which has a DHCP server physically connected to it) use a DHCP relay
(NT has one built in, the DHCP software for Linux has the capability, etc.). There are also
several known problems with NT and DHCP, NT RAS has a rather nasty habit of sucking up
IP addresses like crazy (I have seen an NT server grab 64 and keep them indefinitely),
because it is trying to reserve IP's for the clients that will be dialing in/etc. Either turn NT's
RAS off, or put it on it's own subnet, the MAC address it sends to the DHCP server is very
strange (and spells out RAS in the first few bytes) and is not easy to map out.
Chroot'ing DHCPD

DHCPD consists of 2 main executables:
• dhcpd - the DHCP
• dhcrelay - a DHCP relay (to relay requests to a central DHCP server since DHCP is

based on broadcasts, which typically don't (and shouldn't) span routers/etc.

DHCPD requires 2 libraries:
• /lib/ld-linux.so.2
• /lib/libc.so.6

A config file:
• /etc/dhcpd.conf - configuration info, location of boot files, etc.

And a few other misc. files:
• /etc/dhcpd.leases - a list of active leases
• a startup file, you can modify the one it comes with or roll your own

82

The simplest way to setup named chrooted is to simply install dhcpd (latest one preferably)
and move/edit the necessary files. A good idea is to create a directory (such as
/chroot/dhcpd/), preferably on a separate filesystem from /, /usr, etc (symlinks...), and then
create a file structure under it for dhcpd. The following is an example, simply replace
/chroot/dhcpd/ with your choice. You must of course execute these steps as root for it to work.

Install bind so we have the appropriate files
#
rpm -i dhcpd-2.0b1pl0-1.i386.rpm
#
Create the directory structure
#
cd /chroot/dhcpd/ # or wherever
mkdir ./etc
mkdir ./usr/sbin
mkdir ./usr
mkdir ./var/dhcpd
mkdir ./var
mkdir ./lib
#
Start populating the files
#
cp /usr/sbin/dhcpd ./usr/sbin/dhcpd
cp /etc/dhcpd.conf ./etc/dhcpd.conf
cp /etc/rc.d/init.d/dhcpd ./etc/dhcpd.init
cp /etc/rc.d/init.d/functions ./etc/functions
#
Now to get the latest libraries, change as appropriate
#
cp /lib/ld-linux.ld-linux.so.2 ./lib/
cp /lib/libc.so.6 ./lib/
#
And create the necessary symbolic links so that they behave
Remember that named thinks /chroot-dns/ is /, so use relative links

Then modify or create your startup script.

Once this is done simply remove the original startup file and create a symlink from where it
was pointing to the new one, and dhcpd will behave 'normally' (that is it will be automatically
started at boot time), while in fact it is separated from your system. You may also wish to
remove the 'original' DHCPD files laying about, however this is not necessary.

If you have done the above properly you should have a /chroot/dhcpd/ (or other dir if you
specified something different) that contains everything required to run dhcpd.
And a ps -xau should show something like:

USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
root 6872 0.0 1.7 900 532 p0 S 02:32 0:00 ./usr/sbin/dhcpd
-d -q
root 6873 0.0 0.9 736 288 p0 S 02:32 0:00 tee
./etc/dhcpd.log

DHCPD should definitely be firewalled from external hosts as there is no reason an external
host should be querying your DHCP server for IP’s/etc, in addition to this making it available
to the outside world could result in an attacker starving the DHCP server of addresses
assuming you use a dynamic pool(s) of addresses, you could be out of luck for your internal

83

network, and learning about the structure of your internal network. DHCP runs on port 67,
udp because the amounts of data involved are small and a fast response is critical.

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 67
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 67
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 67

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 67
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 67
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 67

84

NFSD

NFS stands for Network File System and is just that, it is a good way to distribute filesystems,
read only and read/write, while maintaining a degree of security and control assuming your
network is enclosed and secure. NFS is primarily meant for use in a high bandwidth
environment (i.e. a LAN) where security risks are not high, or the information being shared is
not sensitive (i.e. a small trusted LAN behind a firewall exchanging CAD/CAM diagrams, or
a large university lab using nfs to mount /usr/. If you need a high level of security, i.e.
encrypted data between hosts, NFS is not the best choice. I personally use it at across my
internal LAN (this machine has 2 interfaces, guess which one is heavily firewalled), to share
file systems containing rpm's, this website, etc. Safer alternatives include SAMBA (free) and
now IBM is porting AFS to Linux (costly but AFS is a sweet hunk of code).

NFS has a few rudimentary security controls, the first one would be firewalling, using NFS
across a large, slow public network like the Internet just isn't a good idea in any case, so
firewall off port 2049, UDP. Since NFS runs as a set of daemons, tcp_wrappers are of no use
unless NFS is compiled to support them. The config file for NFS actually has quite a few
directives, the bulk of which deal with user id and group id settings (map everyone to nobody,
perhaps map all the engineering clients to 'engineer', etc, etc) but no real mechanisms for
authentication (your client claims to be UID 0, this is why root's id is squashed by default to
nobody). NFS read only exports are pretty safe, you only have to worry about the wrong
people getting a look at your info (if it is sensitive) and or creating a denial of service attack
(say you have a directory world readable/etc for sharing kernel source, and some gomer starts
sucking down data like crazy...). Writeable exports are a whole other ball game, and should be
used with extreme caution, since the only 'authentication' is based on IP/hostname (both easily
spoofable), and UID (you to can run Linux and be UID 0). Bounce a client down with a DOS
attack, grab their IP, mount the writeable share and go to town. You say "but they'd have to
know the IP and UID", packet sniffing is not rocket science folks, nor is 'showmount'.
So, how do we go about securing NFS? The first is to firewall it, especially if the machine is
multi-homed, with an interface connected to a publicly accessible network (the Internet, the
student lab, etc.). If you plan to run NFS over a publicly accessible network it better be read
only, and you will be far better off with a different product then NFS. The second and most
interesting part is the /etc/exports file. This controls what you allow clients to do, and how
they do it.

A sample exports file.

#
Allow a workstation to edit web content
/www 10.0.0.11(rw,no_root_squash)
#
Another share to allow a user to edit a web site
/www/www.bobo.org 10.0.0.202(rw,no_root_squash)
#
Public ftp directory
/home/ftp *.example.org(ro,all_squash)

The structure of the exports file is pretty simple, directory you wish to export, client (always
use IP’s, hostnames can easily be faked), and any options. The client can be a single IP
(10.0.0.1), hostname (gomer.poncho.net), a subnet (10.0.0.0/255.255.255.0), or a wildcard
(*.bigdaddy.mil). Some of the more interesting (and useful) directives for the exports file are:

85

secure - the nfs session must originate from a privileged port, i.e. root HAS to
be the one trying to mount the dir. This is useful if the server you are
exporting to is secured well.

ro - a good one, Read Only, enough said.
noaccess - used to cut off access, i.e. export /home/ but do a noaccess on /home/root
root_squash - squashes root's UID to the anonymous user UID/GID (usually 'nobody'), very
useful if you are exporting dirs to servers with admins you do not 100% trust (root can almost
always read any file.... HINT)
no_root_squash - useful if you want to go mucking about in exported dirs as root to fix
things (like permissions on your www site)
squash_uids and squash_gids - squash certain UID(s) or GID(s) to the anonymous user, in
RedHat a good example would be 500-10000 (by default RedHat starts adding users and
groups at 500), allowing any users with lower UID's (i.e. special accounts) to access special
things.
all_squash - a good one, all privileges are revoked basically and everyone is a guest.
anonuid and anongid - specifically set the UID / GID of the anonymous user (you might
want something special like 'anonnfs').

The man exports page is actually quite good.

Beyond this there isn't much you can do to secure NFS apart from ripping it out and putting
some other product in (like AFS, Coda, etc). NFS is good, every flavor of UNIX supports it,
and is very easy to setup, work with and maintain. It's also 'old faithful', been around a long
time. Just check "Practical Unix and Internet Security", they also state in bold not to use NFS
if security is a real issue.

NFS should be restricted from the outside world, it runs on port 2049, udp, as well as using
RPC which runs on port 111, udp/tcp, and makes use of mountd which runs on port 635, udp.
Replace the 2049 with 111, and 635 udp and tcp to secure those services (again the best idea
is a blanket rule to deny ports 1 to 1024, or better yet a default policy of denial).

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 2049
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 2049
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 2049

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 2049
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 2049
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 2049

86

tftp

tftp (Trivial File Transfer Protocol) is used for devices that require information from a
network server, typically at boot time. It is an extremely simple form of ftp, with most of the
security and advanced commands stripped off, it basically allows a device to retrieve (and
upload) files from a server in a very simple manner. tftp is almost exclusively used for
diskless workstations, router configuration data, and any device that boots up, and requires
information it cannot store permanently. As such it presents a rather large security hole, just
imagine if someone were to connect to your tftp server and grab the boot file for your main
Cisco router. Additionally tftp defaults to granting complete access to the file system,
traditionally this meant people would scan large blocks of hosts, and retrieve the
/etc/passwd file among others. Fortunately modern versions of tftp can be locked down,
they accept a directory name that they essentially limit access to, and TCP_WRAPPERS can
be used to limit access to certain hosts only. By default tftp (at least for RedHat) defaults to
giving access only to the /tftpboot directory (which usually doesn't exist, so create it if you
need it). It is a very good idea to keep the tftp directory as separate form the system as
possible. This is done by specifying the directory or directories you want tftp to have access to
after the tftp command in inetd.conf. Th following example starts tftp normally and grants
it access to the /tftpboot directory and the /kickstart directory.

tftp dgram udp wait root /usr/sbin/tcpd in.tftpd /tftpboot
/kickstart

Also remember tftp uses UDP, so a 'ps xau' won't necessarily show who is logged in or what
they are doing (as opposed to ftp which shows up) unless they are currently downloading a
file (since most tftp applications resolve around small files it is unlikely you will catch
someone in the act as it were). The best place to monitor tftp is from syslog, but even then tftp
doesn't log IP addresses or anything truly useful. The following is some ps output, and some
syslog output of an active tftp session.

nobody 744 0.0 0.6 780 412 ? R 14:31 0:00 in.tftpd
/tftpboot

Apr 21 14:31:15 hostname tftpd[744]: tftpd: trying to get file: testfile
Apr 21 14:31:15 hostname tftpd[744]: tftpd: serving file from /tftpboot

TFTP can be easily restricted using TCP_WRAPPERS and firewalling, tftp runs on port 69,
UDP so simply restrict access to that needed by your various diskless workstations, routers
and the like, it is also a good idea to block all tftp traffic at your network borders, as there is
no need for a machine to remote boot using tftp across the Internet/etc. Also tftp runs as the
user nobody, but since no authentication is done and all devices accessing the tftp server are
doing so as 'nobody' file level security is pretty well useless. All in all a very insecure
protocol. TFTP runs on port 69, udp.

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 69
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 69
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 69

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 69
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 69

87

ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 69

utftpd

utftpd is a secure replace for the stock tftpd, it provides much finer access control and support
for some other interesting features (such as revision control). You can also base access on the
clients IP address, meaning your router configurations and diskless workstation configurations
can be kept separate and discrete from each other. utftpd is GPL licensed and available at:
http://www.nrw.net/uwe/utftpd.html.

88

bootp

bootp is basically the precursor to dhcpd, it has less options and less configurability, but
basically does the same tasks, helping devices boot up on the network and giving them the
information they need. I would not recommend running bootp unless you have some truly
ancient equipment that chokes on a DHCP server. If someone really wants me to write some
more on this email me and I will. Otherwise I will consider bootp to be of historical interest
only.

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 69
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 69
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 69

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 69
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 69
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 69

89

cu-snmp

SNMP (Simple Network Management Protocol) was designed to let heterogeneous systems
and equipment talk to each other, report data and allow modifications to there settings over a
TCP-IP network. For example an SNMP enabled device (such as a Cisco router) can be
monitored/configured from an SNMP client, and you can easily write scripts to say alert you
if denied packets/second rises above 20. Unfortunately SNMP has no security built into it.
SNMPv1, originally proposed in RFC 1157 (May 1990) and section 8 (Security
Considerations) reads thusly: "Security issues are not discussed in this memo.". I think that
about sums it up. In 1992/1993 SNMPv2 was released, and did contain security
considerations however these security considerations were dropped later on when they were
shown to be completely broken. Thus we end up today with SNMPv2 and no security.
Currently the only way to protect your SNMP devices consists of setting the community name
to something hard to guess (but it is very easy to sniff the wire and find the name), and
firewall/filter SNMP so that only the hosts that need to talk to each other can (which leaves
you open to spoofing). Brute force community name attacks are easy to do and usually
effective, and there are several tools specifically for monitoring SNMP transmissions and
cracking open an SNMP community, it is a pretty dangerous world out there. These risks are
slightly mitigated by the usefulness of SNMP, if properly supported and implemented it can
make network administration significantly easier. In almost every SNMP implementation the
default community name is "public" (this goes for Linux, NT, etc), you must change this, to
something obscure (your company name is a bad idea). Once a person has your community
name they can conduct an "snmpwalk" and take over your network. SNMP runs over UDP on
ports 161 and 162, block this at all entrances to your network (the backbone, the dialup pool,
etc). If a segment of network does not have SNMP enabled devices or an SNMP console you
should block SNMP to and from that network. This is your only real line of defense with
SNMP. Additionally the use of IPSec (or other VPN software) can greatly reduce the risk
from sniffing. The RFC's for SNMPv3 however go extensively into security (especially RFC
2274, Jan 1998) so there is hope for the future. If you are purchasing new SNMP
aware/enabled products make sure they support SNMPv3, as you then have a chance at real
security.

There are no specific problems with cu-snmpd per se, apart from the general SNMP problems
I have covered. The cu-snmp tools and utilities only support SNMPv1 and SNMPv2, so
remember to be careful when using them on or across untrusted networks as your main line of
security (the community name) will be out in the open for anyone to see.

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 161:162
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 161:162
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 161:162

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 161:162
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0
161:162
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 161:162

90

Finger

Finger is one of those things most admins just disable and ignore. It is a useful tool on
occasion, but if you want to allow other admins to figure out which of your users is currently
trying to crack their machines, use identd. Finger lets out way to much info, and is a favorite
tool for initial probes and data gathering on targets. There have also been several nasty DOS
attacks released, basically consisting of sending hundreds of finger requests and in certain
configurations just watching the server croak. Please don't run finger. Many distributions ship
with it enabled, but to quote inetd.conf from RedHat:

Finger, systat and netstat give out user information which may be
valuable to potential "system crackers." Many sites choose to disable
some or all of these services to improve security.

If you still have the urge that you absolutely must run it use -u to deny finger @host requests
that are only ever used to gather information for future attacks. Disable finger, really. Fingerd
has also been the cause of a few recent and very bad denial of service attacks, especially if
you run NIS with large maps, DO NOT, repeat NOT run fingerd. Cfingerd (configurable
fingerd) is a great replacement for the stock fingerd, it was built with security in mind, runs as
a non root user typically, and users can easily configure it so they aren’t fingurable. Cfingerd
is available from: http://ftp.bitgate.com/cfingerd/. Finger runs on port 79, and cfingerd runs on
port 2003, both use tcp.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 79
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 79
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 79

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 79
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 79
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 79

91

Identd

The identd service is used to map users/processes to ports in use. For example most irc servers
attempt to find out who is connecting to them by doing an identd lookup, which basically
consists of asking the identd what information it has about a port number, and can range from
nothing (if no-one is using that particular port) to a username, groupname, process id, and
other interesting information. The default setting in most distributions is that identd is on (it is
polite to run it, irc servers and newer versions of sendmail check identd responses), and will
only hand out the username. The primary use of identd is to allow remote systems some
means of tracking down users that are connecting to their servers, irc, telnet, mail, or other,
for authentication purposes (not a good idea since it is very easy to fake. The local university
here in Edmonton requires identd if you want to telnet into any of the main shell servers,
primarily so they can track down compromised accounts quickly. Identd is a useful tool, but
generally only on machines with users you do not trust (i.e. shell account servers). It is also a
two edged sword, while it gives out information useful for tracking down attackers (definitely
people you want to boot off of your servers) it can also be used to gain information about
users on your system, leading to their accounts being compromised. I would suggest only
running identd on servers with shell accounts/etc.

Identd supports quite a few features, and can be easily set to run as a non root user.
Depending on your security policies you may not want to give out very much information, or
you might want to give out as much as possible. Simply tack the option on in inetd.conf, after
in.identd (the defaults are -l -e -o).

-p port
-a address
Can be used to specify which port and address it binds to (in the case of a machine with IP’s
aliased, or multiple interfaces), this is generally only useful if you want internal machines to
connect, since external machines will probably not be able to figure out what port you
changed it to.

-u uid
-g gid
Are used to set the user and group that identd will drop it's privileges to after connecting to
the port, this will result in it being far less susceptible to compromising system security. As
for handling the amount of information it gives out:

-o
Specifies that identd will not return the operating system type, and simply say "UNKNOWN",
a very good option.

-n
Will have identd return user numbers (i.e. UID) and not the username, which still gives them
enough information to tell you and allow you to track the user down easily, without giving
valuable hints to would be attackers.

-N
Allows users to make a ~/.noident file, which will force identd to return "HIDDEN-USER"
instead of information.

-F format

92

Enables you to specify far more information then is standard, everything from user name and
number to the actual PID, command name, and command name and arguments that were
given! This I would only recommend for internal use, as it is a lot of information attackers
could find useful.

In general I would advise disabling identd, primarily due to the number of denial of service
attacks it is susceptible to. You should only run it if you want to make the lives of other
administrators easier, in tracking down which of your users are being bad. There are however
other versions of identd available, some with security enhancements (I do not endorse these as
I have yet to test them):

http://insecurity.net/ - Paul's secure identd written in perl
http://www.ojnk.nu/~odin/ - ojnk identd
http://www.tildeslash.org/nullidentd.html - null identd
http://www.ajk.tele.fi/~too/sw/ - fake identd
http://p8ur.op.het.net/midentd/ - midentd

Identd runs on port 113 using tcp, and typically you will only need if you want to IRC (many
irc networks require an identd response), or be nice to systems running daemons (such as
tcp_wrapped telnet, or sendmail) that do identd lookups on connections.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 113
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 113
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 113

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 113
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 113
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 113

93

ntpd

NTP (Network Time Protocol) is rather simple in it’s mission, it keeps computers clocks in
synchronization. So what? Try comparing log files from 3 separate servers if their clocks are
out of synch by a few minutes. NTP simply works by a client connecting to a time server,
working out the delay between them (on a local LAN it might be only 1-2ms, across the
internet it might be several hundred ms), and then it asks for the time and sets it’s own clock.
Additionally servers can be ‘clustered’ to keep themselves synchronized, the chances of 3 or
more servers losing track of what time it is (also called ‘drift’) is relatively low. The time
signal is typically generated by an atomic clock or GPS signal, measured by a computer, these
are ‘stratum 1’ time servers, below them are stratum 2 time servers that typically are publicly
accessible, a company might maintain it’s own stratum 3 time servers if they have sufficient
need, and so on. The data NTP exchanges is of course not terribly sensitive, it’s a time signal,
however if an attacker were able to tamper with it all sorts of nastiness could result, log files
might be rendered unusable, accounts might be expired early, cron jobs that backup your
server might run in prime time causing delays, etc. Thus it is a good idea to run your own time
server(s), and set the maximum adjustment they will make to only a few seconds (they
shouldn’t drift very much in any case). If you are really paranoid, or have a great number of
clients you should consider buying a GPS time unit, they come in all shapes and sizes, from a
1U rack mount job that plugs directly into your LAN to ISA and PCI cards that plug into a
server and have an antenna. It is a good idea to firewall off your timeserver, as a denial of
service attack would be detrimental to your network, in addition to this if possible you should
use the encryption available in ntpd, based on DES it is generally sufficient to thwart most
attackers. NTP is available from: http://www.eecis.udel.edu/~ntp/. There usually are no man
pages with ntpd or xntpd (wonderful huh) but documentation can be found in /usr/doc/name/
typically, or at: http://www.eecis.udel.edu/~ntp/ntp_spool/html/index.htm. NTP runs on port
123 using udp and tcp, firewalling it is relatively simple:

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 123
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 123
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 123
ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 123
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 123
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 123

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 123
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 123
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 123
ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 123
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 123
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 123

94

CVS

CVS allows multiple developers to work together on large source code projects and maintain
a large code base in a somewhat sane manner. CVS's internal security mechanisms are rather
simple (and some would say weak) on their own, and I would have to agree. CVS's
authentication is typically achieved over the network using pserver, usernames are sent in
clear text, and passwords are trivially hashed (no security really). To get around this you have
several good options. In a Unix environment probably the simplest method is to use SSH to
tunnel connections between the client machines and the server, "Tim TimeWaster" (Tim
Hemel) has written an excellent page covering this that I won't bother to rehash, and it is
available at: http://cuba.xs4all.nl/~tim/scvs/. A somewhat more complicated approach (but
better in the long run for large installations) is to kerberize the CVS server and clients,
typically large networks (especially in university environments) already have an established
Kerberos infrastructure. Details on kerberizing CVS are available at:
http://www.cyclic.com/cyclic-pages/security.html. Apart from that I would strongly urge
firewalling CVS unless you are using it for some public purpose (such as an open source
project across the Internet).

Another tool for securing CVS that just appeared is “cvsd”, a wrapper for pserver that
chroot’s and/or suid’s it to a harmless user. cvsd is available at:
http://cblack.mokey.com/cvsd/ in rpm format and a source tarball.

There are other less obvious concerns you should be aware of, when dealing with source code
you should be very to ensure no Trojan horses or backdoors are emplaced. In an open source
project this is relatively simple, review the code people submit, especially if it is a publicly
accessible effort, such as the Mozilla project. Other concerns might be destruction of the
source code, make sure you have back ups. CVS uses port 2401, tcp.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 2401
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 2401
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 2401

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 2401
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 2401
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 2401

95

rsync

rsync is an extremely efficient method for mirroring files, be it source code files of a CVS
tree, a web site, or even this document. rsync preserves file permissions, links, file times and
more, in addition to this it supports an anonymous mode (which incidentally I use for the
mirroring of this document) that makes life very easy for all concerned. The rsync program
itself can act as the client (run from a command line or script) and as the server (typically run
from inetd.conf). The program itself is quite secure, it does not require root privileges to run
as a client nor as the server (although it can if you really want it to), and can chroot itself to
the root directory of whatever is being mirrored (this however requires root privileges and can
be more dangerous then it is worth). You can also map the user id and group id it will access
the system as (the default is nobody for most precompiled rsync packages and is probably the
best choice). In non anonymous mode rsync supports usernames and passwords, that are
encrypted quite strongly using 128 bit MD4. The "man rsyncd.conf" page quite clearly
covers setting up rsync as a server and making it relatively safe. The default configuration file
is /etc/rsyncd.conf, and has a global section, and module sections (basically each shared
out directory is a module).

rsyncd.conf example:

motd file = /etc/rsync.motd # specifies a file to be displayed, legal
disclaimer, etc
max connections = 5 # maximum number of connections so you don't
get flooded
[pub-ftp]
 comment = public ftp area # simple comment
 path = /home/ftp/pub # path to the directory being exported

read only = yes # make it read only, great for exported
directories

chroot = yes # chroot to /home/ftp/pub
uid = nobody # explicitly set the UID
gid = nobody # explicitly set the GID

[secret-stuff]
comment = my secret stuff
path = /home/user/secret # path to my stuff
list = no # hide this module when asked for a

list
secrets file = /etc/rsync.users # password file
auth users = me, bob, santa # list of users I trust to see my

secret stuff
hosts allow = 1.1.1.1, 2.2.2.2 # list of hosts to allow

As you can see rsync is quite configurable, and generally quite secure, the exception being the
actual file transfers which are not encrypted in any way. If you need security I suggest you
use SSH to tunnel a connection, or some VPN solution like FreeS/WAN. Also make sure you
are running rsync 2.3.x or higher as a potential root compromise was found in 2.2.x. Rsync is
available at: http://rsync.samba.org/. Rsync runs on port 873, tcp.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 873
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 873
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 873

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 873

96

ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 873
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 873

97

lpd

lpd is the UNIX facility for printing (Line Printer Daemon). It allows you to submit printjobs,
run them through filters, manage the print queues, and so on. lpd can accept print jobs locally,
or over the network, and access various parts of the system (printers, logging daemons, etc),
hence making it a potential security hole. Historically lpd has been the source of several nasty
root hacks, however it seems to have been mostly fixed now, there are still many potential
denial of service attacks though due to it’s function (something simple like submitting huge
printjobs and running the printer out of paper). Fortunately lpd is slowly being phased out
with the advent of network aware printers, however there is still a huge of printing done via
lpd. lpd access is controlled via /etc/hosts.equiv, and /etc/hosts.lpd. You should also
firewall lpd from the outside world, and if you need to send printjobs across public networks,
remember anyone can read them, so a VPN solution is a good idea. lpd runs on port 515 using
tcp. The hosts.lpd file should contain a list of hosts (workstation1.yourdomain.org, etc), one
per line that are allowed to use the lpd services on the server, you might as well use
ipfwadm/ipchains.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 515
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 515
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 515

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 515
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 515
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 515

LPRng

An alternative to the stock lpd is “LPRng” (LPR Next Generation), it provides new
enhancements and also supports a higher level of security. LPRng supports Kerberos and PGP
based authentication, as well as a restrictions files, /etc/lpd.perms, which allows you to control
access based on user, group, authentication, IP, and so on, allowing for extremely flexible and
secure configurations. LPRng has excellent documentation and is available at:
http://www.astart.com/lprng/LPRng.html.

pdq

pdq is another LPD replacement, no real emphasis on enhanced security but it does seem to
offer some improvements management and performance wise over the stock LPD. You can
get pdq from: http://feynman.tam.uiuc.edu/pdq/.

98

X Window System

The X Window System provides a network transparent method for sharing graphical data, or
more specifically for exporting the display of a program to a remote (or the local) host. Using
it you can run a powerful 3d rendering package on your SGI origin 2000 and display it on a
486. Essentially it's the granddaddy to all this 'thin client' hype that is becoming very popular
nowadays. It was created by MIT, and at the time security was not much of a concern, this of
course has led to more then a few nasty bugs being found, as well the level of control X is
given (it handles keystrokes, mouse movements, draws the screen, etc) means if it is
compromised very bad things can happen. This data, if sent over the network (i.e. the X
program being run is displaying on a remote host) can easily be logged, so sensitive
information (like an xterm being used to login to another remote system) is vulnerable. In
addition to these problems the authentication protocol that X uses is relatively weak (although
it has been improved). Running a graphical xemacs session on a server 3 timezones away
however can be a very handy thing.

X is very predictable in port usage, almost all implementations and installations of X use port
6000 for the first session and increment by one for other sessions, thus making it quite easy to
scan for. If you are not going to be using X to display program running on remote systems I
suggest strongly you firewall port 6000. Control over who/what is allowed to connect to the X
server can be accomplished several ways.

ipfwadm -I -a accept -P tcp -S 10.0.0.0/8 -D 0.0.0.0/0 6000:6100
ipfwadm -I -a accept -P tcp -S some.trusted.host -D 0.0.0.0/0 6000:6100
ipfwadm -I -a deny -P tcp -S 0.0.0.0/0 -D 0.0.0.0/0 6000:6100

or

ipchains -A input -p tcp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 6000:6100
ipchains -A input -p tcp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0
6000:6100
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 6000:6100

xhost

xhost simply allows you to specify which machines are, or aren't allowed to connect to the X
server, this is a very simplistic security mechanism and is not really suitable in any modern
environment, however used in conjunction with other mechanisms it can help. The command
is quite simple: 'xhost +hostname.com' adds hostname.com, 'xhost -hostname.com'
removes hostname.com from the list, you must also specify 'xhost -' to turn on the access
control list, or else everyone is let in by default.

mkxauth

mkxauth is definitely a step up, it helps create .Xauthority files, and merge them, which are
used to specify hostnames and the related magic cookies (basically a token used to gain
access). These cookies can then be used to gain access to a remote X host (you essentially
have a copy of the cookie on each end) and are transferred either plain text (insecure) or DES
encrypted (quite secure). Using this method you can be relatively safe and secure. Xauthority
files can also be used in conjunction with Kerberos, removing the necessity to copy
Xauthority files around and keep them in synchronization. Hosts authenticate to each other

99

through a central Kerberos key server(s) in an encrypted fashion, this method is most
appropriate for large installations/etc. mkxauth has an excellent man page 'man mkxauth' and
more generalized details are available in the Xsecurity man page (not sure how common this
name page is) 'man Xsecurity'.

SSH

SSH can be used to create a tunnel between hosts (or more specifically between two X
servers), thus encrypting the channel, providing authentication, and generally making things
safer. The following web page explains it in detail:
http://csociety.ecn.purdue.edu/~sigos/projects/ssh/forwarding/.

100

Samba

SAMBA is one of the best things since sliced bread, that is if you want to share files and
printers between Windows and *NIX. It is also somewhat misunderstood, and suffers heavily
from interaction with various (sometimes broken) Windows clients. SAMBA has a great
many kludges that attempt to make it somewhat sane, but can lead to what looks like broken
behavior sometimes. SAMBA simply gives access to the filesystem VIA SMB (Server
Message Block), the protocol Windows uses to share files and printers. It verifies the
username and password given (if required) and then gives access to the files according to the
file permissions and so forth that are set. I'm only going to cover Samba 2.x, Samba 1.x is
pretty old and obsolete.

Samba 2.x is controlled via smb.conf, typically in /etc (man smb.conf). In
/etc/smb.conf you have 4 main areas of configuration switches: [globals] , [printers] ,
[homes], and each [sharename] has it's own configuration (be it a printer or drive share).
There are a hundred or so switches, the smb.conf man page covers them exhaustively. Some
of the important (for security) ones are:

security = xxxx where xxxx is share, server or domain, share security is per share, with a
password that everyone uses to get at it, server means the samba server itself authenticates
users, either via /etc/password, or smbpasswd. If you set it to domain, samba authenticates
the user via an NT domain controller, thus integrating nicely into your existing NT network
(if you have one).

guest account = xxxx where xxxx is the username of the account you want the guest user
to map to. If a share is defined as public then all requests to it are handled as this user.

hosts allow = xxxx where xxxx is a space separated list of hosts / IP blocks allowed to
connect to the server.

hosts deny = xxxx where xxxx is a space separated list of hosts / IP blocks not allowed to
connect to the server.

interfaces = xxxx where xxxx is a space separated list of IP blocks that samba will bind to

I would also highly recommend installing and using SWAT (samba Web Administration
Tool) as it will cut down on the mistakes/etc that you are liable to make. Samba and SWAT
are available at: http://www.samba.org/ and ship with almost every distribution.

SWAT

SWAT is a very nice administration tool to setup your smb.conf. The main problem is that is
requires you to use the root account and password to ‘log’ in, and runs as a separate process
out of inetd.conf, so there is no easy way to encrypt it, and as far as I can tell no way to grant
others users administrative access to SWAT. Having said that however it is a good tool for
cutting down on mistakes made while editing smb.conf. You can also run SWAT with the –a
switch, meaning no password will be required, and using TCP_WRAPPERS to restrict access
to certain workstations (although you’d still be open to IP spoofing), essentially SWAT was
not meant as a secure administrative tool, but it is useful. SWAT comes with samba (usually)

101

and is available at: http://www.samba.org/, a demo of SWAT is online at:
http://anu.samba.org/cgi-bin/swat/.

102

File sharing methods

I thought I should also give a brief overview of the various file sharing methods that exist for
Linux, show you the pro’s and con’s as it were.

SAMBA

Samba is the best option (performance wise, security wise, etc.) for sharing files with
Windows client machines, I would not really recommend it for sharing files between Linux
machines.

NFS

NFS is not very secure, but it is easy to use, and can be made relatively safe if the
environment it is in is not to hostile. I would not recommend this as a method for sharing
files/etc if security is a concern (which arguably means you shouldn’t use it for diskless
workstations, but such is life).

Coda

An advanced network filesystem, not very fun to implement. http://www.coda.cs.cmu.edu/.

Drall

An https based systems for sharing files among machines securely.
http://www.edlund.org/projects/drall/index.html.

AFS

A high end, commercial file sharing application for large installations. The FAQ is available
at: http://www.angelfire.com/hi/plutonic/afs-faq.html.

103

Network Based Authentication

NIS / NIS+

NIS and NIS+ (formally known as “yellow pages”) stands for Network Information Service.
Essentially NIS and NIS+ provide a means to distribute password files, group files, and other
configuration files across many machines, providing account and password synchronization
(among other services). NIS+ is essentially NIS with several enhancements (mostly security
related), otherwise they are very similar. To use NIS you set up a master NIS server that will
contain the records and allow them to be changed (add users, etc), this server can distribute
the records to slave NIS machines that contain a read only copy of the records (but they can
be promoted to master and set read/write if something bad happens). Clients of the NIS
network essentially request portions of the information and copy it directly into their
configuration files (such as /etc/passwd), thus making them accessible locally. Using NIS you
can provide several thousand workstations and servers with identical sets of usernames, user
information, passwords and the like, significantly reducing administration nightmares.
However this is part of the problem, in sharing this information you make it accessible to
attackers, which is something NIS+ attempts to resolve, the problem is NIS+ is an utter
nightmare to set up. An alternative strategy would be to use some sort of VPN support (like
FreeS/WAN, doesn’t it seem to solve almost any problem?) and encrypt the data before it gets
onto the network. There is an NIS / NIS+ howto at:
http://metalab.unc.edu/LDP/HOWTO/NIS-HOWTO.html, and O’Reilly has an excellent book
on the subject. NIS / NIS+ runs over RPC which uses port 111, both tcp and udp. This should
definitely be blocked at your network border, but will not totally protect NIS / NIS+.

ipfwadm -I -a accept -P udp -S 10.0.0.0/8 -D 0.0.0.0/0 111
ipfwadm -I -a accept -P udp -S some.trusted.host -D 0.0.0.0/0 111
ipfwadm -I -a deny -P udp -S 0.0.0.0/0 -D 0.0.0.0/0 111

or

ipchains -A input -p udp -j ACCEPT -s 10.0.0.0/8 -d 0.0.0.0/0 111
ipchains -A input -p udp -j ACCEPT -s some.trusted.host -d 0.0.0.0/0 111
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -d 0.0.0.0/0 111

Since NIS and NIS+ are RPC services they tend to user higher port numbers (i.e. above 1024)
in a somewhat random fashion, making firewalling of it rather painful. The best solutions is to
place your NIS server(s) on machines internally that are blocked completely from talking to
the Internet, inbound and outbound.

SRP

SRP is a relative newcomer, however it has several advantages over some of the older
programs. SRP is free for non commercial use and does not use encryption per se to secure
the data, so exporting it outside of the US isn’t as much of a problem. SRP uses one way
hashes and provides authentication of both parties. The disadvantage is that SRP only
encrypts the login (username and password) so any data transferred (such as the telnet session
or ftp sites) are vulnerable. You can get SRP from: http://srp.stanford.edu/srp/. SRP currently
has Telnet and FTP support (for windows as well) although SRP enabling other protocols is
relatively straightforward.

104

Kerberos

Kerberos is a modern network authentication system based on the idea of handing a user a
ticket once they have authenticated to the Kerberos server (similar to NT’s use of tokens).
Kerberos is available from: http://web.mit.edu/kerberos/www/. The Kerberos FAQ is
available at: http://www.nrl.navy.mil/CCS/people/kenh/kerberos-faq.html. Kerberos is
appropriate for large installations as it scales better and is more secure then NIS / NIS+.
Kerberizing programs such as telnet, imap and pop can be achieved with some effort,
Windows clients with Kerberos support are harder to find however.

105

Encrypting services / data

Encrypting network services

Virtually all network traffic is unencrypted and easily read by an attacker. If someone cracks a
machine on your internet and installs a password sniffer (basically your common packet
sniffer with a filter) your entire network can be compromised in a matter of hours. One ISP
that shall remain nameless placed co-hosted customer machines on the same LAN, using a
normal ethernet hub, meaning all machines could see each others traffic (users retrieving
email via pop, telnet sessions, etc). This is one of the major reasons why encrypting data
traffic is a good idea.

Various mechanisms exist and/or are being developed to encrypt network data traffic, at
various levels of the network stack. Some schemes only encrypt the data sent (such as PGP
encrypted email), some encrypt the session (SSL), and some encrypt the data payload of the
packets (IPSec and other VPN's). Ultimately the best solution will be IPSec (my opinion), as
it requires no modifications to the applications, and provides for a very high level of security
between computers. Currently there are no widely used data encryption solutions, as
Microsoft does not support many, which is a serious hindrance to any mass solution (to be fair
Microsoft does have beta IPSec support, but it is not ready yet). The best scheme currently
available is SSL, Secure Sockets Layer, originally proposed by Netscape. SSL encrypts the
data at the session level, thus is your application supports SSL and the server supports SSL
you are in luck. Most www browsers, some email/news readers, and a few ftp and telnet
clients support SSL currently, for Linux most services can be SSL'ified. SSL does however
require clients with SSL capabilities, something you won't be able to get most people to
support, which means SSL'ified services are typically restricted to within an organization. The
SSL libraries are available at http://www.openssl.org/.

SSL

HTTP - SSL

The most common www server, Apache, has very good SSL support, which can be
downloaded free of charge outside the US (US patents on RSA/etc mean you have to pay
royalties within the US, so the free software is illegal) from http://www.apache-ssl.org/. There
are many commercial www servers that support SSL, the majority also based off of Apache,
such as RedHat Secure Server, Stronghold, and so forth.

Telnet - SSL

A drop in replacement for telnet, SSLtelnet and MZtelnet provide a much higher level of
security then plain old telnet, although SSLtelnet and MZtelnet are not as flexible as SSH,
they are perfectly free (i.e. GNU licensed) which SSL is not. The server and client packages
are available as tarballs at: ftp://ftp.uni-mainz.de/pub/internet/security/ssl/, and as RPM
packages at ftp://ftp.replay.com/pub/replay/linux/redhat/.

FTP - SSL

Also a drop in replacement for your favorite ftpd (probably WuFTPD), also available as a set
of patches for WuFTPD. This is highly appropriate as most servers have many users that

106

require ftp access. The tarball is available at: ftp://ftp.uni-mainz.de/pub/internet/security/ssl/,
and as RPM packages at ftp://ftp.replay.com/pub/replay/linux/redhat/.

Virtual private network solutions

IPSec

IPSec is a proposed (and now implemented in some operating systems) standard for IP level
encryption. Linux IPSec support varies, with some distributions shipping it, but the majority
do not (US export laws are one major reason). IPSec operates using public key cryptography,
keys are exchanged and keyservers are also available (pluto, photuris, etc.). One major
problem with IPSec is that the protocol has not been fully ratified as of yet, so
implementations can vary. The main Linux IPSec effort (FreeS/WAN) is hosted at:
http://www.xs4all.nl/~freeswan/ and since it is headed up by Canadians (my home and native
land) it is fully exportable to anywhere in the world that allows the use of strong crypto
(exceptions being France, China, Libya, etc). They just released version 1.0, and there is
support for the 2.2.x series of kernels. The primary problems with FreeS/WAN currently (in
my opinion) is the way tunnels and routing are handled is somewhat klunky, but they are
working on it and making excellent progress.

PPTP (Point to Point Tunneling Protocol)

PPTP is a proprietary protocol created by Microsoft for VPN solutions. To date it has been
shown to contain numerous and massive flaws. However if you need to integrate Linux into a
PPTP environment all is not lost, http://www.moretonbay.com/vpn/pptp.html contains a
Linux implementation of PPTP.

CIPE (Cyrpto IP Encapsulation)

CIPE is a free IP level encryption scheme, meant for use between routers. It is appropriate for
'bridging' networks securely together over insecure networks (like the Internet). The official
cite for CIPE is at: http://sites.inka.de/~W1011/devel/cipe.html. I would however recommend
FreeS/WAN as a better long term solution.

ECLiPt Secure Tunnel (currently in beta)

Another GNU licensed solution for Linux VPN's. Currently in beta (and not recommended for
mass use) but I thought I should mention it anyways since it seems to be a serious effort. The
official page is at: http://eclipt.uni-klu.ac.at/projects/est/. Again I would have to recommend
FreeS/WAN as a better long term solution.

Encrypting Data

Several encryption programs are also available to encrypt your data, some at the file level
(PGP, GnuPG, etc.) and some at the drive level (Cryptographic File System for example).
These systems are very appropriate for the storage of secure data, and to some degree for the
transmission of secure data (although both ends will require the correct software, compatible
versions, and an exchange of public keys will somehow have to take place) which is
unfortunately an onerous task for most people. In addition to this you have no easy way of
trusting someone's public key unless you receive it directly from them (such as at a key

107

signing party), or unless it is signed by someone else you trust (but how do you get the trusted
signer's key securely?). Systems for drive encryption such as CFS (Cryptographic FileSystem)
are typically easy to implement, and only require the user to provide a password or key of
some form to access their files.

PGP (Pretty Good Privacy)

The granddaddy of public encryption, this is by far one of the most popular programs as it is
supported under Unix, Windows and Macintosh. Unfortunately it has now been
commercialized, which has resulted in a loss of quality for users. I personally believe any
software used to encrypt or otherwise secure data MUST be open source or how else can you
be sure it is secure. PGP is now sold by Network Associates and I cannot in good faith
recommend it as a security mechanism for the secure storage and transmission of files. PGP is
available for download from ftp://ftp.replay.com/.

GnuPG (Gnu Privacy Guard)

The alternative to PGP, GnuPG (GPG) is a direct replacement that is fully opensource and
GNU licensed (as if the name didn't give it away). This tool is available at:
http://www.gnupg.org/, as source code or precompiled binaries for windows, and RPM's.

CFS (CryptoGraphic Filesystem)

CFS allows you to keep data on your harddrive in an encrypted format, and is significantly
easier to use then a file encryption program (such as PGP) if you have many files and
directories you want to keep away from curious people. The official distribution site is at:
http://www.cryptography.org/, and RPM's are available at:
ftp://ftp.replay.com/pub/replay/linux/redhat/, and Debian binaries are at:
http://www.debian.org/Packages/stable/otherosfs/cfs.html.

Sources of random data

In order for encryption to be effective, especially on a large scale such as IPSec across many
hosts, good sources of random, cyrptographically secure data are needed. In Linux we have
/dev/random and /dev/urandom which are good but not always great. Part of the equation is
measuring 'random' events, manipulating that data and then making it available (via
(u)random). These random events include: keyboard and mouse input, interrupts, drive reads,
etc, however as hard drives ship with more and more cache (IBM Deskstars come with 4
megabytes cache on the drive), and more and more server have no keyboard/mouse being
used the sources of data become harder to find, some sources like network activity are not
entirely appropriate because the attacks may be able to measure it as well (granted this would
be a very exotic attack, but enough to worry people nonetheless). There are several sources of
random data that can be used (or at least they appear random), radioactive decay and radio
frequency manipulations are two popular ones. Unfortunately the idea of sticking a
radioactive device in a computer makes most people nervous. And using manipulated radio
frequencies is prone to error, and the possibility of outside manipulation.

108

Firewalling

Firewalling is the practice of filtering TCP-IP traffic, typically at the point where your
network connects to another (i.e. the Internet, a customers LAN or other) network, that may
be untrusted (in the case of the Internet) or perhaps even trusted (another floor of your
building). Like firewalls in a large building, a network firewall can prevent and even block the
spread of an attack.

Linux has had firewalling capacity for quite a while now in the form of ipfwadm, which was a
very simplistic packet level filter, but quite effective and good enough for most people. With
the advent of kernel 2.1+ this has been replaced with ipchains which is quite a bit more
sophisticated. Both are still basic packet filters however and do not allow for advanced
features such as stateful inspection or some types of proxying connections, however Linux
does support IPMASQ, an advanced form of NAT (Network Address Translation). IPMASQ
allows you to hook up a network of computers to the Internet, but proxy their connections at
the packet level, thus all traffic appears to be coming and going to one machine (the Linux
IPMASQ box), which affords a high degree of protection to the internal network. As an added
bonus the clients on the internal network require NO proxy configuration, as long as the
Linux IPMASQ server is configured correctly things will work quite well.

Both ipchains and ipfwadm provide the following basic capabilities:

• blocking / allowing data to pass through based on IP/port/interface source / destination
• masquerading of connections, based on IP/port/interface source / destination

In addition to which ipchains supports:

• port forwarding
• creation of chains, for more intricate rules and conditions, easier to maintain
• quality of service (QOS) routing, useful on low speed connections or otherwise saturated

connections
• specification of IP/port/interface as well as inverse specification (using the !)

The Firewall-HOWTO and "man <command>" (ipchains or ipfwadm) page both cover in great
detail the mechanics for setting up rules, but don't really cover the strategy for firewalling
safely. Your first choice to make is whether to go with default deny or default allow policies,
followed by which services and hosts you wish to allow and block.

When deciding policy you should choose a policy that will default to denying everything
unless specifically allowed through (that is if there is a failure it will hopefully be minimized
via default policies) or a policy that allows everything and blocks certain services/hosts. I
typically use a policy of default denial as it can accommodate mistakes and changes more
safely then a policy that defaults to allowing data through. Case in point, you have a server
secured via firewalling, currently running apache, you install WU-FTPD on it for internal use
(so people can upload files) at 3 am, you forget to change the firewall rules. If you have
chosen a policy of default allowal anyone on the Internet can access the ftp server, and silly
you, you installed an old version which allowed someone to compromise the machine. If on

109

the other hand you go with a policy of default denial they would not have access to the ftp
server, and neither would your users, but you would find out quite quickly.

I have decided to not cover specific firewalling rules in this section, for each network service I
will provide examples, as to properly firewall a protocol you need to understand how it
behaves. There is a huge difference between firewalling www and ftp for inbound and
outbound access for example. Some general concepts/rules:

IPFWADM

Ipfwadm is a solid packet filter for Linux, although it lacks a lot of features available in
Ipchains. Ipfwadm only supports 3 targets for a packet, accept deny or reject, whereas
ipchains rules can be targeted at 6 built in targets, or a user defined target. Ipfwadm is really
only appropriate for a simple IP level firewall, ipmasquerading and if you plan to use
FreeS/WAN (which currently does not support kernel 2.2.x). The basic options are: specify a
direction (in out or both, useful with the interface flag), input rules, output rules, forwarding
rules (say you have multiple interfaces, also covers the masquerading rules) and masquerade
rules which control the behavior of masquerading (timeouts, etc). You can insert, append and
delete rules, set default policies, and list all the rules, unlike ipchains you only have the 3
targets (ACCEPT, DENY, REJECT). Other then that it is very similar to ipchains, with some
minor variations. The following is a script appropriate for a server bridging 2 networks
(10.0.0.x on eth0, 10.0.0.1 and 192.168.0.x on eth1, 192.168.0.1) with a mail server running.

#!/bin/bash
#
Flush all the rule sets first
#
ipfwadm -f -I
ipfwadm -f -O
ipfwadm -f -F
#
Allow forwarding between the two networks and otherwise deny it for
security
#
ipfwadm -F -a accept -P all -S 10.0.0.0/24 -i eth0 -D 192.168.0.0/24
ipfwadm -F -a accept -P all -S 192.168.0.0/24 -i eth1 -D 10.0.0.0/24
ipfwadm -F -p deny
#
And of course we have to allow those packets in
#
ipfwadm -I -a accept -P tcp -S 10.0.0.0/24 -i eth0 -D 192.168.0.0/24
ipfwadm -I -a accept -P tcp -S 192.168.0.0/24 -i eth1 -D 10.0.0.0/24
#
Let them access the mail server port on the server but nothing else
#
ipfwadm -I -a accept -P tcp -S 10.0.0.0/24 -i eth0 -D 10.0.0.1 25
ipfwadm -I -a accept -P tcp -S 192.168.0.0/24 -i eth0 -D 192.168.0.1 25
ipfwadm -I -p deny

There is not time you should choose ipfwadm over ipchains, FreeS/WAN now supports the
2.2.x series of kernels.

110

IPCHAINS

Several new things in IPCHAINS, you can create chains of rules (hence the name) and link
them together, making administration of firewalls far easier. Ipchains supports more targets
then ipfwadm, you can point a rule at: ACCEPT, DENY, REJECT, MASQ, REDIRECT, or
RETURN or a user defined chain. As such it is very powerful, for example I could redirect all
packets bound for port 80 (i.e. any www traffic) going through my gateway machine to be
redirected to local port 3128, the squid proxy server. You can also use this in conjunction with
quality of service routing, the example given in ipfwadm's documentation is that of
prioritizing traffic going over a PPP link, you can give telnet traffic a much higher priority
then say ftp, reducing latency problems caused by a saturated link. Typically I create an
/etc/rc.d/init.d/ipchains-sh (or wherever appropriate) and call it immediately after the
networking is brought up, this leaves a small time in which the server is vulnerable, but
minimally so since no network daemons are running. The following script is appropriate for a
gateway with 2 interfaces running, the reason I have used the DENY instead of REJECT
target is so that the packet is dropped and not responded to in any way, this slows down
network scans (as they wait for the packet to timeout instead of receiving a response) and
gives away less information. I would also advise against logging data unless you have a
significant amount of drive space available, for each packet I send (several bytes) many bytes
of drive space is used up to create a log entry, making it easy to overwhelm syslog and/or
your drive space on a fast connection. The ipchains homepage is at:
http://www.rustcorp.com/linux/ipchains/.

#!/bin/bash
#
This script sets up firewall rules appropriate for a server with 2
interfaces
running as a gateway
This script needs to be edited if you plan to use it.
We assume the internal machines call all talk to the gateway, so no rules
block
internal traffic
#
A couple of variables
#
ETH0 is the IP address on ETH0 (the external interface)
ETH0NET is the network
ETH0NETMASK is the network mask
TRUSTEDHOST1 is a trusted host (for webmin/ssh)
TRUSTEDHOST2 is a trusted host (for webmin/ssh)
ETH1IP is the IP address on ETH1 (internal interface)
ETH1NET is the network
ETH1NETMASK is the network mask
#
ETH0IP=1.1.1.1
ETH0NET=1.1.1.0
ETH0NETMASK=24
TRUSTEDHOST1=1.5.1.1
TRUSTEDHOST2=1.5.1.2
ETH1IP=10.0.0.1
ETH1NET=10.0.0.0
ETH1NETMASK=24
#
PATH=/sbin
FLUSH ALL RULES

111

ipchains -F input
ipchains -F output
ipchains -F forward
ANTI-SPOOFING
ipchains -A input -p all -j DENY -s 10.0.0.0/8 -i eth0 -d 0.0.0.0/0
ipchains -A input -p all -j DENY -s 127.0.0.0/8 -i eth0 -d 0.0.0.0/0
ipchains -A input -p all -j DENY -s 192.168.0.0/16 -i eth0 -d 0.0.0.0/0
ipchains -A input -p all -j DENY -s 172.16.0.0/16 -i eth0 -d 0.0.0.0/0
ipchains -A input -p all -j DENY -s $ETH0IP -i eth0 -d 0.0.0.0/0
ICMP FIRST
ipchains -A input -p icmp -j ACCEPT -s $ETH0NET/$ETH0NETMASK -i eth0 -d
0.0.0.0/0
ipchains -A input -p icmp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0
SSH
ipchains -A input -p tcp -j ACCEPT -s $TRUSTEDHOST1 -i eth0 -d 0.0.0.0/0 22
ipchains -A input -p tcp -j ACCEPT -s $TRUSTEDHOST2 -i eth0 -d 0.0.0.0/0 22
BLOCKING 1:1023
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 1:1023
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 1:1023
BLOCKING OTHER THINGS
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 1109
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 1524
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 1600
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 2003
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 2049
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 2105
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 3001
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 3001
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0
3128:3130
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0
3128:3130
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 3306
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 3306
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 4444
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0
6000:6100
ipchains -A input -p udp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0
6000:6100
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 6667
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 7000
WEBMIN
ipchains -A input -p tcp -j ACCEPT -s $TRUSTEDHOST1 -i eth0 -d 0.0.0.0/0
10000
ipchains -A input -p tcp -j ACCEPT -s $TRUSTEDHOST2 -i eth0 -d 0.0.0.0/0
10000
ipchains -A input -p tcp -j DENY -s 0.0.0.0/0 -i eth0 -d 0.0.0.0/0 10000
FORWARD RULES
ipchains -P forward DENY
ipchains -A forward -p all -j MASQ -s $ETH1NET/$ETH1NETMASK -d 0.0.0.0/0

Rule Creation

ipfwadm2ipchains

A simple script that converts ipfwadm rules to ipchains rules, making migration a snap. The
script is available at: http://users.dhp.com/~whisper/ipfwadm2ipchains/

mason

112

Mason is an automated firewall rule generator for ipfwadm and ipchains. You load it up and it
monitors the packets flowing through the machine, then based on that creates a set of rules to
allow that type of access. A good tool for first time firewall admins, available from:
http://users.dhp.com/~whisper/mason/.

firewall.sh

A dialog based script that walks you through creation of firewall rules, nicely done and good
for new users or admins with RSI, available from: http://devplanet.fastethernet.net/.

Mklinuxfw

Mklinuxfw is a perl tool that aims to provide a variety of interfaces (CGI, KDE, command
line, etc.) to creation of firewall rules. It currently supports a CGI interface and GTK is in
progress. You can download it from:
http://www.madhouse.org.uk/~red/framepage.phtml?/mklinuxfw/index.html.

113

Scanning / intrusion testing tools

Over the last few years the number of security tools for Windows and UNIX has risen
dramatically, even more surprising is the fact that most of them are freely available on the
Internet. I will only cover the free tools since most of the commercial tools are ridiculously
expensive, are not open source, and in many cases have been shown to contain major security
flaws (like storing passwords in clear text after installation). In any case any serious
cracker/hacker will have these tools at their disposal, so why shouldn't you?

There are several main categories of tools, ones that scan hosts from within that host, ones
that scan other hosts and report back variously what OS they are running (using a technique
called TCP-IP fingerprinting), services that are available and so on, at the top of the food
chain are the intrusion tools that actually attempt to execute exploits, and report back if they
worked or not, lastly I include the exploits category, while not strictly an intrusion tool per se
they do exist and you should be aware of them.

Host scanners

Cops

Cops is extremely obsolete and it’s original home on CERT’s ftp site is gone.

Tiger

Tiger is obsolete but I thought I’d mention it for historical accuracy, Texas Agricultural and
Mechanical University used to require that a UNIX host pass tiger before it was allowed to
connect to the network from offsite. You can get it from:
ftp://net.tamu.edu/pub/security/TAMU/.

SBScan

SBScan is an up and coming host based scanner, it looks for a variety of problems such as bad
rhosts files, open ports, passwordless accounts, and scans the network for other types of
naughtiness. SBScan is available from: http://sy.tsx.org/.

check.pl

check.pl is a nice perl program that checks file and directory permissions, and will tell you
about any suspicious or ‘bad’ ones (setuid, setgid, writeable directories, etc). Very useful but
it tends to find a lot of false positives. It’s available at: http://opop.nols.com/proggie.html.

Network scanners

Strobe

Strobe is one of the older port scanning tools, quite simply it attempts to connect to various
ports on a machine(s) and reports back the result (if any). It is simple to use and very fast, but
doesn't have any of the features newer port scanners have. Strobe is available for almost all
distributions as part of it, or as a contrib package, the source is available at:
ftp://suburbia.net/pub/.

114

Nmap

Nmap is a newer and much more featured host scanning tool. It features advanced techniques
such as TCP-IP fingerprinting, a method by which the returned TCP-IP packets are examined
and the host OS is deduced based on various quirks present in all TCP-IP stacks. Nmap also
supports a number of scanning methods, from normal TCP scans (simply trying to open a
connection as normal) to stealth scanning and half open SYN scans (great for crashing
unstable TCP-IP stacks). This is arguably one of the best port scanning programs available,
commercial or otherwise. Nmap is available at: http://www.insecure.org/nmap/index.html.

MNS

http://www.thegrid.net/gravitino/products.html

Bronc Buster vs. Michael Jackson

http://www.thegrid.net/gravitino/products.html

Leet scanner

http://www.thegrid.net/gravitino/products.html

Soup scanner

http://www.thegrid.net/gravitino/products.html

Portscanner

Portscanner is a nice little portscanner (surprise!), that has varying levels of outputs making it
easy to use in scripts, and by humans. It’s opensource and free to use, you can get it at:
http://www.ameth.org/~veilleux/portscan.html.

Intrusion Scanners

Nessus

Nessus is relatively new, but is fast shaping up to be the best intrusion scanning tool. It has a
client/server architecture, the server currently only runs on Linux, and clients are available for
Linux, Windows and there is a Java client. Communication between the server and client is
ciphered for added security, all in all a very slick piece of code. Nessus supports port
scanning, and attacking, based on IP addresses or host name(s). It can also search through
network DNS information and attack related hosts at your bequest. Nessus is relatively slow
in attack mode, which is hardly surprising, but it currently has over 200 attacks, and a plug in
language so you can write your own. Nessus is available from http://www.nessus.org/.

Saint

115

Saint is the sequel to Satan, a network security scanner made (in)famous by the media a few
years ago (there were great worries that bad people would take over the Internet using it).
Saint also uses a client/server architecture, but uses a www interface instead of a client
program. Saint produces very easy to read and understand output, with security problems
graded by priority (although not always correctly), and also supports add in scanning modules
making it very flexible. Saint is available from: http://www.wwdsi.com/saint/.

Cheops

While not a scanner per se, it is useful for detecting a hosts OS and dealing with a large
number of hosts quickly. Cheops is a "network neighborhood" on steroids, it builds a picture
of a domain, or IP block, what hosts are running and so on. It is extremely useful for
preparing an initial scan as you can locate interesting items (HP printers, Ascend routers, etc)
quickly. Cheops is available at: http://www.marko.net/cheops/.

Ftpcheck / Relaycheck

Two simple utilities that scan for ftp servers and mail servers that allow relaying, good for
keeping tabs on naughty users installing services they shouldn’t (or simply misconfiguring
them), available from: http://david.weekly.org/code/.

SARA

Security Auditor’s Research Assistant (SARA) is a tool similar in function to SATAN and
Saint. SARA supports multiple threads for faster scans, stores it’s data in a database for ease
of access and generates nice HTML reports. SARA is free for use and is available from:
http://home.arc.com/sara/.

Firewall scanners

Firewalk

Firewalk is a program that uses a traceroute style of packets to scan a firewall and attempt to
deduce the rules in place on that firewall. By sending out packets with various time to lives
and seeing where they die or are refused a firewall can be tricked into revealing rules. There is
no real defense against this apart from silently denying packets instead of sending a rejection
message which hopefully will reveal less. I would advise utilizing this tool against your
systems as the results can help you tighten up security. Firewalk is available from:
http://www.packetfactory.net/firewalk/.

Exploits

I won't cover exploits specifically, since there are hundreds if not thousands of them floating
around for Linux. I will simply cover the main archival sites.

http://www.rootshell.com/

One of the primary archive sites for exploits, it has almost anything and everything,
convenient search engine and generally complete exploits.

116

117

Scanning and intrusion detection tools

If the last section has you worried you should be. There are however many defenses, active
and passive against those types of attacks. The best ways to combat network scans are keep
software up to date, only run what is needed, and heavily restrict the rest through the use of
firewalls and other mechanisms. Luckily in Linux these tools are free and easily available,
again I will only cover opensource tools, since the idea of a proprietary firewall/etc is rather
worrying. The first line of defense should be a robust firewall, followed by packet filters on
all Internet accessible machines, liberal use of TCP-WRAPPERS, logging and more
importantly automated software to examine the logs for you (it is unfeasible for an
administrator to read log files nowadays).

Logging Tools

Port Sentry (beta)

The third component to the Abacus suite, it detects and logs port scans, including stealthy
scans (basically anything nmap can do it should be able to detect). Port Sentry can be
configured to block the offending machine (in my opinion a bad idea as it could be used for a
denial of service attack on legitimate hosts), making completion of a port scan difficult. As
this tool is in beta I would recommend against using it, however with some age it should
mature into a solid and useful tool. Port Sentry is available at:
http://www.psionic.com/abacus/portsentry/.

Host based attack detection

Firewalling

Most firewalls support logging of data, and ipfwadm/ipchains are no exception, using the -l
switch you get a syslog entry for each packet, using automated filters (Perl is good for this)
you can detect trends/hostile attempts and so on. Since most firewalls (UNIX based, and
Cisco in any case) log via the syslog facility, you can easily centralize all your firewall packet
logging on a single host (with a lot of harddrive space hopefully).

TCP-WRAPPERS

Wietse's TCP-WRAPPERS allow you to restrict connections to various services based on IP
address and so forth, but even more importantly it allows you to configure a response, you can
have it email you, finger the offending machine, and so on (use with caution however).
TCP_WRAPPERS comes standard with most distributions and is available at:
ftp://ftp.porcupine.org/pub/security/.

Klaxon

While mostly obsoleted by TCP-WRAPPERS and firewall logging, klaxon can still be useful
for detecting port scans/etc if you don't want to totally lock down the machine. Klaxon is
available at: ftp://ftp.eng.auburn.edu/pub/doug/.

Host Sentry (pre release software)

118

While this software is not yet ready for mass consumption I thought I would mention it
anyways as it is part of a larger project (the Abacus project, http://www.psionic.com/abacus/).
Basically Host Sentry builds a profile of user accesses and then compares that to current
activity in order to flag any suspicious activity. Host Sentry is available at:
http://www.psionic.com/abacus/hostsentry/.

Pikt

Pikt is an extremely interesting tool, it is actually more of a scripting language aimed at
system administration then a simple program. Pikt allows you to do things such as killing off
idle user processes, enforcing mail quotas, monitor the system for suspicious usage patterns
(off hours, etc), and much more. About the only problem with Pikt will be a steep learning
tools, as it uses it’s own scripting language, but ultimately I think mastering this language will
pay off if you have many systems to administer (especially since Pikt runs on Solaris, Linux
and FreeBSD currently). Pikt is available at: http://pikt.uchicago.edu/pikt/.

Network based attack detection

NFR

NFR (Network Flight Recorder) is much more then a packet sniffer, it actually logs data and
in real time detects attacks, scans and so on. This is a very powerful tool and requires a
significant investment of time, energy and machine power to run, but it is at the top of the
food chain for detection. NFR is available at: http://www.nfr.com/.

119

Host monitoring tools

Monitoring your server(s) and host(s) is important for a variety of reasons, from tracking
down break-ins to legal requirements. Remember, an ounce of prevention is worth a pound of
cure. There are a variety of general monitoring tools available in the Logging section from
syslog to auditd (which allows you to audit users opening files, running programs, etc). I
strongly suggest you use them. As well there are a number of more specific programs to
monitor system status and prevent users from doing things they shouldn’t.

bgcheck

bgcheck runs in background and checks the process table for items that should be running (i.e.
irc bots, password crackers, etc.). You can download it from: http://blue.dhs.org/bgcheck/.

Sxid

Sxid checks setuid and setgid for changes, generates MD5 signatures of the files and generally
allows you to track any changes made. You can get it at: ftp://marcus.seva.net/pub/sxid/.

Viperdb

Viperdb checks setuid/setgid programs and folders and will notify you of any changes as well
as restricting access to them if any changes are made, it’s available for download from:
http://www.resentment.org/projects/viperdb/.

Pikt

Pikt is covered in the previous section and can be used to monitor user activity. I would
recommend it for large installations as it is extremely flexible and powerful. Pikt is available
at: http://pikt.uchicago.edu/pikt/.

DTK

The Deception ToolKit is a set of programs that emulate well known services in order to
provide a false set of readings to attackers. The hope is to confuse and slow down attackers by
leading them to false conclusions, you can download DTK from: http://all.net/dtk/.

120

Packet sniffers

Packet sniffing is the practice of capturing network data not destined for your machine,
typically for the purpose of viewing confidential/sensitive traffic such as telnet sessions or
people reading their email. Unfortunately there is no real way to detect a packet sniffer since
it is a passive activity, however by utilizing network switches and fiber optic backbones
(which are very difficult to tap) you can minimize the threat.

tcpdump

The granddaddy of packet sniffers for Linux, this tool has existed as long as I can remember,
and is of primary use for debugging network problems. It is not very configurable and lacks
advanced features of newer packet sniffers, but it can be useful. Most distributions ships with
tcpdump.

sniffit

My favorite packet sniffer, sniffit is very robust, has nice filtering capabilities, will convert
data payloads into ASCII text for easy reading (like telnet sessions), and even has a graphical
mode (nice for monitoring overall activity/connections). Sniffit is available at:
http://sniffit.rug.ac.be/sniffit/sniffit.html.

Ethereal

A nice looking network protocol analyzer (a.k.a. a souped up sniffer), that has an interface
very similar to NT’s network monitor, and always for easy viewing of data payloads for most
network protocols (tftp, http, Netbios, etc). It is based on GTK, thus meaning you will
probably have to be running gnome to use it. I haven'’ tested it yet (but intend to), and it is
available at: http://ethereal.zing.org/.

Other sniffers

There are a variety of packet sniffers for Linux, based on the libpcap library among others,
here is a short list:

http://www.mtco.com/~whoop/ksniff/ksniff.html - KSniff
http://ksniffer.veracity.nu/ - Ksniffer
http://mojo.calyx.net/~btx/karpski.html - karpski
http://www.ozemail.com.au/~peterhawkins/gnusniff.html - Gnusniff
http://elektra.porto.ucp.pt/snmpsniff/ - SNMP Sniffer

121

Virii, Trojan Horses, Worms, and Social Engineering

Linux is not susceptible to virii in the same ways that a Dos/Windows or Mac platform is. In
UNIX security controls are a fundamental part of the operating system, things like not
allowing users to write promiscuously to any location in memory that they choose to,
something that Dos/Windows and the Mac allow. To be fair there are viruses for UNIX,
however the only Linux one I have seen was called "bliss", had an uninstall option ("--
uninstall-please") and had to be run as root to be effective. Or to quote an old Unix favorite "if
you don't know what an executable does, don't run it as root". Worms are much more
prevalent in the UNIX world, the first major occurrence being the Morris Internet worm
which exploited a vulnerability in sendmail. Current worms for Linux exploit broken versions
of imapd, sendmail, WU-FTPD and other daemons, the simplest fix is to keep up to date, and
not make daemons accessible unless necessary. These attacks can be very successful
especially if they find a network(s) that are not up to date, but typically their effectiveness
fades out as people upgrade their daemons. In general I would not specifically worry about
these two items, and there is definitely no need to buy anti virus software for Linux.

Social engineering on the other hand can be very effective, as no matter how many safe
guards, security probes and patches you apply, humans can provide a wonderfully weak link
to exploit. Case in point:

A customer bet me I couldn't crash his NT server (the bet was pizza and beer). The main
problem in attacking his NT server was I had no idea what it's name or IP address was. Now I
could have scanned the ISP's network using tools like ntinfosec, nbtstat and the like to look
for likely netbios names, this would have taken several hours and annoyed the ISP's security
officer (who I know quite well). The simplest solution was to ask the helpdesk. "Well you
know I shouldn't be telling you this" and I was given his IP address after claiming I needed to
fix the server. One mangled ping packet after business hours and I got my free pizza and beer.
"Hi this is Bob from the IT department, we need to reinitialize all the accounts so please
change your password to "temporary"". You get the idea. This is by far one of the more
difficult threats to protect against, the only real answer is user education, which doesn't work
very well (case in point the Melissa macro virus, many users have been told not to open
documents with macros yet they did).

Worms have a long and proud tradition in the UNIX world, by exploiting known security
holes (generally, very few exploit new/unknown holes), and replicating they can quickly
mangle a network(s). There are several worms currently making their way around Linux
machines, mostly exploiting old Bind 4.x and old IMAP software, defeating them is as easy as
keeping software up to date.

Trojan horses are also popular, recently ftp.win.tue.nl was broken into and the tcp_wrappers
package (among others) was modified to email passwords to an anonymous account. This was
detected when someone checked the PGP signature of the package and found that it wasn't
quite kosher. Moral of the story? Use software from trusted sites, and check the PGP
signature(s).

122

Disinfection of virii / worms / trojans

Back up your data, format and reinstall the system from known good media. Once an attacker
has root on a Linux system they can literally do anything, from compromising gcc/egcs to
loading interesting kernel modules at boot time. Do not run untrusted software as root. Check
the PGP signatures on files you download, etc. An ounce of prevention will pretty much block
the spread of virii, worms and trojans under Linux.

The easiest method for dealing with virii and the like is to use system integrity tools such as
tripwire, L5, and Gog&Magog, you will be able to easily find which files have been
compromised and restore/replace/update them.

Virus Scanners

As stated above virii aren’t a real concern in the Linux world, however virus scanners that run
on Linux can be useful. Filtering email / other forms of content at the gateways to your
network can provide an extra line of strong defense since the platforms providing the defense
against the threat cannot be compromised by that threat.

AMaViS

AMaViS uses third party scanning software (such as McAfee) to scan incoming email for
virii. You can get AMaViS at: http://aachalon.de/AMaViS/.

123

Password storage

This is something many people don’t think about much. How can you securely store
passwords? The most obvious method is to memorize them, this however has it’s drawbacks,
if you administer 30 different sites you generally want to have 30 different passwords, and a
good password is 8+ characters in length and generally not the easiest thing to remember.
This leads to many people using the same passwords on several systems (come on, admit it).
One of the easiest methods is to write passwords down, this a BIG NO-NO, you’d be
surprised what people find lying around, and what they find if they are looking for it. A better
option is to store passwords in an encrypted format, usually electronically on your computer
or palm pilot, this way you only have to remember one password to unlock the rest which you
can then use. Something as simple as PGP or GnuPG can be used to accomplish this.

Gpasman

Gpasman is an application that requires gtk (relatively easily to install on a non Gnome
system, just load up the gtk libs), and encrypts your passwords using the rc2 algorithm. Upon
startup of the program you type in your master password, and assuming it is correct) you are
presented with a nice list of your user accounts, sites, passwords and a comment field.
Gpasman is available at: http://www.student.wau.nl/~olivier/gpasman/.

124

Conducting baselines / system integrity

One major oversight made by a lot of people when securing their machines is that they forget
to create a baseline of the system, that is a profile of the system, it's usage of resources, and so
on in normal operation. For example something as simple as a "netstat -a -n > netstat-
output" can give you a reference to latter check against and see if any ports are open that
should not be. Memory usage and disk usage are also good things to keep an eye on, a sudden
surge in memory usage could result in the system being starved of resources, likewise for disk
usage, it might be a user accident, a malicious user, or a worm program that has compromised
your system and is now scanning other systems. Various tools exist to measure memory and
disk usage: vmstat, free, df, du, all of which are covered by their respective man pages.

At the very minimum make a full system backup, and regularly backup config files and log
files, this can also help you pinpoint when an intrusion occurred (user account "rewt" was
added after the April 4th backup, but isn't in the March 20th backup). Once a system is
compromised typically a "rootkit" is installed, these consist of trojaned binaries, and are near
impossible to remove safely, you are better of formatting the disk and starting from scratch.
There is of course a notable exception to this rule, if you were diligent and used file/directory
integrity tools such as L5 you will be able to pinpoint the affected files easily and deal with
them.

Tripwire

Tripwire is no longer a open source tool, I have absolutely NO problems with commercial
software, but when you expect me to rely on a program to provide security, when I (nor
anyone else really) can easily view the source (it is available under some special license
agreement, probably an NDA) I must decline. Tripwire costs $70 approximately for Linux,
and is only available as an RPM package aimed at (tripwire is $500 for other operating
systems), which is rather on the high side for a piece of software that can easily be replaced
with alternatives such as L5. Tripwire is available at: http://www.tripwiresecurity.com/.

L5

There is an alternative to tripwire however, L5, available at: ftp://avian.org/src/hacks/, it is
completely free and very effective. I would definitely recommend this tool.

Gog&Magog

Gog&Magog creates a list of system file properties, owner, permissions, an MD5 signature of
the file and so (similar to tripwire). You can then have it automatically compare this and
ensure any changed files/etc come to your attention quickly. As well it makes recovering from
a break in simpler as you’ll know which files were compromised. You can download
Gog&Magog from: http://www.multimania.com/cparisel/gog/.

confcollect

confcollect is a simple script that collects system information such as routing tables, rpm’s
installed and the like. You can download it from: http://www.skagelund.com/confcollect/

125

Backups

Something people forget about, but you can compare the current files to old backups, many
backup formats (Tape, floppy, CDR, etc.) can be made read only, so a backup of a newly
installed system provides a good benchmark to compare things to. The utility “diff” and
“cmp” can be used to compare files against each other. See the backup session for a full
listing of free and commercial software.

126

Conducting audits

So you've secured your machines, and done all the things that needed to be done. So how do
you make sure it's actually doing what it is supposed to do, or prove to someone that it is as
secure as you say it is? Well you conduct an audit. This can be as simple as reviewing the
installed software, configuration files and other settings, or as complex as putting together or
hiring a tiger team (or ethical hackers, or whatever buzzword(s) you prefer) to actively try and
penetrate your security. If they can't then you did your job well (or they suck), and if they do
get in, you know what needs to be fixed (this is also a good method to get an increased
security budget, show how vulnerable you are to the CIO).

There are also many free tools and techniques you can use to conduct a self audit and ensure
that the systems react as you think they should (we all make errors, but catching them quickly
and correcting them is part of what makes a great administrator). Tools such as nmap, nessus,
crack, and so forth can be quickly employed to scan your network(s) and host(s), finding any
obvious problems quickly. I also suggest you go over your config files every once in a while
(for me I try to 'visit' each server once a month, sometimes I discover a small mistake, or
something I forgot to set previously). Keeping systems in a relative state of synchronization (I
just recently finished moving ALL my customers to Kernel 2.2.x, ipchains) which will save
you a great deal of time and energy.

Using the tools mentioned earlier in “Conducting baselines” you can check file integrity using
tripwire, L5, backups or other methods. Another tool that is useful for check binaries is the
“strings” commands, it shows readable information in binary files, and is especially useful if
someone forgot to run “strip” on their binaries after compiling them (people have gotten lucky
and gotten the directory from which the exploit was compiled, allowing them to trace down
the exact user).

127

Backups

I don't know how many times I can tell people, but it never ceases to amaze me how often
people are surprised by the fact that if they do not backup their data, if the drive craters out on
them, or they hit 'delete' without thinking it will be gone. Always backup your system, even if
it's just the config files, you'll save yourself time and money in the long run.
To backup your data under Linux there are many solutions, all with various pro's and con's.
There are also several industrial strength backup programs, the better ones support network
backups which are a definite plus in a large non-homogenous environment .

Tar and Gzip

Oldies but still goldies, tar and gzip. Why? Because like vi you can darn near bet the farm on
the fact that any UNIX system will have tar and gzip. They may be slow, klunky and starting
to show their age, but it's a universal tool that will get the job done. I find with Linux the
installation of a typical system takes 15-30 minutes depending on the speed of the
network/cdrom, configuration another 5-15 (assuming I have backups or it is very simple) and
data restoration takes as long as it takes (definitely not something you should rush). Good
example: I recently backed up a server and then proceeded to blow the filesystem away (and
remove 2 physical HD's that I no longer needed), I then installed RedHat 5.2, and
reconfigured all 3 network cards, apache (for about 10 virtual sites), Bind and several other
services in about 15 minutes. If I had done it from scratch it would have taken me several
hours. Simply:

tar -cvf archive-name.tar dir1 dir2 dir3....

to create the tarball of all your favorite files (typically /etc, /var/spool/mail/, /var/log/, /home,
and any other user/system data), followed by a:
gzip -9 archive-name.tar
to compress it as much as possible (granted harddrive space is cheaper then a politicians
promise but compressing it makes it easier to move around). You might want to use bzip,
which is quite a bit better then gzip at compressing text, but it is quite a bit slower. I typically
then make a copy of the archive on a remote server, either by ftping it or emailing it as an
attachment if it's not to big (i.e. the backup of a typical firewall is around 100k or so of config
files).

Non Commercial Backup Programs for Linux

Amanda

Amanda is a client/server based network backup programs with support for most unices and
Windows (via SAMBA). Amanda is BSD style licensed and available from:
http://www.amanda.org/.

afbackup

Afbackup is another client/server with a generally GPL license with one minor exception,
development of the server portion on Windows is forbidden. Afbackup has server support for
Linux, HP-UX and Solaris, and has clients for that and windows. You can download it at:
ftp://ftp.zn-gmbh.com/pub/linux/.

128

Burt

Burt is a Tcl/Tk based set of extensions that allow for easy backups of Unix workstations, this
allows it to run on pretty much any system. Burt is a client/server architecture and appears
pretty scalable, it is available at: http://www.cs.wisc.edu/~jmelski/burt/.

Commercial Backup Programs for Linux

BRU

RedHat ships with a nice backup program (well a demo version anyways) called BRU
(Backup and Restore Utility), this thing has been in the Linux world since as long as Linux
Journal (they have had ads in there since the beginning). This program affords a relatively
complete set of tools in a nice unified format, with command line and a graphical front end
(easy to automate in other words). It supports full, incremental and differential backups, as
well as catalogs, and can write to a file or tape drive, basically a solid, simple, easy to use
backup program, and it ships with RedHat Linux (one license), so if you bought RedHat you
should have a copy to play with. BRU is available at http://www.estinc.com/features.html.

Quickstart

Quickstart is more aimed at making an image of the system so that when the hard drive
fails/etc. you can quickly re-image a blank disk and have a working system. It can also be
used to 'master' a system and then load other systems quickly (as an alternative to say
RedHat's kickstart). It's reasonably priced as well and garnered a good revue in Linux Journal
(Nov 1998, page 50). You can get it at: http://www.estinc.com/qsdr.html.

Backup Professional

http://www.unitrends.com/bp.html

CTAR

http://www.unitrends.com/ctar.html

CTAR:NET

http://www.unitrends.com/ctarnet.html

PC ParaChute

http://www.unitrends.com/pcpara.html

Arkeia

Arkeia is a very powerful backup program with a client - server architecture that supports
many platforms. This is an 'industrial' strength product and appropriate for heterogeneous

129

environments, it was reviewed in Linux Journal (April 1999, page 38) and you can download
a shareware version online and give it a try, the URL is: http://www.arkeia.com/.

Legato Networker

Legato Networker is another enterprise class backup program, with freely available (but
unsupported) Linux clients. Legato Networker is available at:
http://www.legato.com/Products/html/legato_networker.html and the Linux clients are
available from: http://feral.com/networker.html.

Pro's and Con's of Backup Media

There are more things to back data up onto then you can drive a range rover over but here are
some of the more popular/sane alternatives:

Name of
Media

Pro's Cons

Hard
Drive

It's fast. It's cheap. It's
pretty reliable. ($20-$30 USD
per gig)

It might not be big enough, and they
do fail, usually at the worst
possible time. Harder to take
offsite as well. RAID is a viable
option though. 20 gig drives are
$350 USD now.

CDROM Not susceptible to EMP, and
everyone in the developed
world has a CDROM drive. Media
is also pretty sturdy and
cheap ($2 USD per 650 Megs or
so)

CDROM's do have a finite shelf life
of 5-15 years, and not all
recordables are equal. Keep away
from sunlight, and make sure you
have a CDROM drive that will read
them.

Tape It's reliable, you can buy BIG
tapes, tape carousels and tape
robots, and they're getting
cheap enough for almost
everyone to own one.

Magnetic media, finite life span and
some tapes can be easily damaged
(you get what you pay for), also
make sure the tapes can be read on
other tape drives (in case the
server burns down....).

Floppies I'm not kidding, there are
rumors some people still use
these to backup data.

It's a floppy. Whaddya think?

Zip
Drives

I have yet to damage one, nor
have my cats. They hold 100
megs which is good enough for
most single user machines.

Not everyone has a zip drive, and
they are magnetic media.

Jazz
Drives

1 or 2 gig removable
harddrives, my SCSI one
averages 5 meg/sec writes.

They die. I'm on my third drive. The
platters also have a habit of going
south if used heavily.

Syquest 1.6 gigs, sealed platter, same
as above.

Sealed cartridges are more reliable.
Company did recently declare
bankruptcy though. No warranty
service.

LS120 120 Megs, and cheap, gaining
in popularity.

Slooooooooow. I'm not kidding. 120
megs over a floppy controller to
something that is advertised as "up
to 3-4 times faster then a floppy
drive".

130

Printer Very long shelf life. requires
a standard Mark 1 human being
as a reading device. Handy for
showing consultants and as
reference material. Cannot be
easily altered.

You wanna retype a 4000 entry
password file? OCR is another option
as well.

131

Dealing with attacks

Dealing with an attack depends on several factors, is the attack in progress? Did you discover
your company plan being sent out by the mail server to a hotmail address? Did you get called
in to find a cluster of dead servers? What are your priorities? Restoring service? Ensuring
confidential data is safe? Prosecuting the attacker(s)? Several things to keep in mind:

• Most admins will not respond very positively to news their site is being used as a base of
attack, i.e. it's a waste of time usually.

• Most sites usually don't want to report attacks (successful or not) due to the potential
embarrassment and related public relations problems.

• Most quick attacks, denial of service attacks and the like are spoofed. Tracking down the
real attacker is very difficult and resource intensive.

• Even if all goes well there is a chance law enforcement will seize your equipment as
evidence, and hold it, not something to be taken lightly.

• Do you know how the attacker got in (i.e. NFR recorded it), if so you might just want to
plug the holes and go on.

Also before you deal with an attack, you should consult your company policy, if you don't
have one consult your manager, the legal department, etc. It's also a good idea to have a game
plan to deal with attacks (i.e. the mail server is first priority, checking fileservers is number
two, who to notify, etc) will prevent a lot of problems when it happens (be prepared). The
book “Practical Unix and Internet Security” covers this topic in great detail so I’m not going
to rehash it, go buy the book.

An excellent whitepaper on this is also available, see Appendix D, “How to Handle and
Identify Network Probes”.

132

Denial of service attacks

One mess I didn’t want to venture into but must it seems. Denial of service (DOS) attacks are
by far the most annoying and troublesome attacks, since in general they cannot be blocked, no
matter how fast you flush your SYN connection tables, or limit CPU time for users, enough
attacks fast enough will cause grief. Generally speaking there are two types of DOS attacks,
local and remote, local are the easiest to deal with since once you figure out which user
account is responsible you may terminate it/etc. Remote DOS attacks are typically spoofed
from a wide variety of addresses, making firewalling ineffective (or they simply spoof as from
a location you actually need to talk to, such as a customer’s site).

133

Examples of attacks

Without going into to much detail and helping the black hats I want to give a few examples of
attacks, to show how innocuous looking things can be problematic and other complicate your
life.

Ping flooding (a.k.a. smurfing)

Simply flooding a network with data is an old fashioned but effective tactic, made worse by
the fact most networks have faulty firewall configurations. By pinging the network address of
a remote network (say a cablemodem ISP) you can receive several hundred ping replies for
each ping packet you send. Now if you spoof the IP address and label the outgoing packets as
from a network you do not like you can have someone else's improperly setup network do the
dirty work and flood the victim.

DNS cache poisoning

Since so many services rely on DNS to work properly it provides a wonderful part of the
network to attack. Subverting the information in DNS servers is easier then it should be, and
you can insert false data if successful. For example if I convinced your name server that
updates.redhat.com actually pointed at updates.badpeople.com, I could probably trick you into
downloading and installing my software. This of course is negated by the fact RedHat PGP
signs their packages, but do you check those signatures? As well, if you use an automated tool
such as autorpm it will happen without user intervention, the compromised packages are
downloaded and installed, all I have to do is watch my ftp log and then exploit the sites that
download packages. If I managed to convince your mail server that othercompany.com was
actually one of my servers I could not only receive email you send to othercompany.com, I
could read the email, and perhaps send it along with minor modifications (like add an extra 0
to the cost of your bid).

134

Distribution specific tools

SuSE

One of SuSE's employees (Marc Heuse) has written a few useful utilities for SuSE Linux,
available at: http://www.suse.de/~marc/. The first one is called "Harden SuSE" and basically
goes about removing sharp objects, tightening up file permissions, turning off daemons and so
on. The second one "SuSE security check" is a set of shell scripts that check the password file
for sanity, lists out all installed packages once a month and so on.

135

Distribution specific errata and security lists

RedHat

Errata
http://www.redhat.com/support/docs/errata.html
Security
http://www.redhat.com/support/docs/errata.html
Mailing lists
http://archive.redhat.com/

Debian

Errata
http://www.debian.org/distrib/packages/
Security
http://www.debian.org/security/
Mailing lists
http://www.debian.org/MailingLists/subscribe/

Slackware

Errata
ftp://ftp.cdrom.com/pub/linux/slackware-current/ChangeLog.txt
Security
ftp://ftp.cdrom.com/pub/linux/slackware-current/ChangeLog.txt
Mailing Lists
NO URL

Caldera

Errata
http://www.calderasystems.com/support/download.html
Security
http://www.calderasystems.com/news/security/index.html
Mailing Lists
http://www.calderasystems.com/support/forums.html

SuSE

Errata
http://www.suse.de/e/patches/
Security
http://www.suse.de/security/
Mailing Lists
http://www.suse.com/Mailinglists/index.html

136

TurboLinux

Errata
http://www.turbolinux.com/support/solutions.html
Security
http://www.turbolinux.com/support/solutions.html
Mailing Lists
NO URL

Stampede GNU/Linux

Errata
ftp://ftp.stampede.org/current/README.CHANGES
Security
ftp://ftp.stampede.org/current/README.CHANGES
Mailing Lists
http://www.stampede.org/maillists.php3

Mandrake

Errata
http://www.linux-mandrake.com/en/fupdates.html
Security
http://www.linux-mandrake.com/en/fupdates.html
Mailing Lists
http://www.linux-mandrake.com/en/flists.html

LinuxPPC

Errata
NO URL
Security
NO URL
Mailing Lists
http://lists.linuxppc.org/

Linux Pro

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

137

LinuxWare

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

MKLinux

Errata
NO URL
Security
NO URL
Mailing Lists
http://www.mklinux.org/mailinglists.html

Yggdrasil

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

Connectiva

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

138

DLD

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

Eagle Linux M68K

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

Eurielec

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

Kheops Linux

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

MNIS Linux

Errata
NO URL
Security
NO URL
Mailing Lists
NO URL

139

Internet connection checklist

The following is a checklist for people attaching as computer to the Internet (PPP, *DSL,
Cablemodem, etc). This is by no means comprehensive, but it should help.

Turn off all unneeded daemons and network software – disable telnet, ftp, ntalk, auth, pop,
imap, etc. unless you plan to use it. If it’s turned off it’s much less of a risk.

Use ipfwadm/ipchains to firewall services if possible, if you firewall by default this will also
greatly slow down any scans people execute on your machines. Generally speaking services
such as NFS / Samba, imap and pop will only need to be accessible to internal users, blocking
external access greatly simplifies matters.

Use TCP_WRAPPERS to secure the services you leave on, where possible restrict access to
internal clients or certain Internet clients for services such as imap, pop, and ftp. Also
Remember that most distributions ship with nfs configured to use TCP_WRAPPERS, and
SSH can use TCP_WRAPPERS as well. This allows you to easily centralize access control to
services.

Update all software (especially network software) to the latest versions, check the errata /
security pages that apply to your distribution.

Use a system integrity tool such as L5 of Gog&Magog to establish a list and signatures of
your current (known good) files. If you are broken into later this will make your life easier.

Run penetration tests from an external site, i.e. run nmap / strobe, nessus and similar tools
against your machine to ensure it is properly locked up. Remember, the bad guys have these
tools, so you should use them to.

Keep software / access lists / etc. up to date. Audit your log files using tools like logcheck on
a regular basis.

Use tools like Pikt if possible to monitor and prevent system problems (i.e. users with huge
mail boxes).

If you need a truly detailed audit log install auditd and enable kernel auditing for events such
as the opening of files and running of programs. Make sure you have plenty of disk space.

140

Appendix A: Books and magazines

Sendmail - http://www.oreilly.com/catalog/sendmail2/
Linux Network Admin Guide (NAG) - http://www.oreilly.com/catalog/linag/
Running Linux - http://www.oreilly.com/catalog/runux2/noframes.html
DNS & BIND - http://www.oreilly.com/catalog/dns3/
Apache - http://www.oreilly.com/catalog/apache2/
Learning The Bash Shell - http://www.oreilly.com/catalog/bash2/
Building Internet Firewalls - http://www.oreilly.com/catalog/fire/
Computer Crime - http://www.oreilly.com/catalog/crime/
Computer Security Basics - http://www.oreilly.com/catalog/csb/
Cracking DES - http://www.oreilly.com/catalog/crackdes/
Essential System Administration - http://www.oreilly.com/catalog/esa2/
Linux in a nutshell - http://www.oreilly.com/catalog/linuxnut2/
Managing NFS and NIS - http://www.oreilly.com/catalog/nfs/
Managing Usenet - http://www.oreilly.com/catalog/musenet/
PGP - http://www.oreilly.com/catalog/pgp/
Practical Unix and Internet Security - http://www.oreilly.com/catalog/puis/
Running Linux - http://www.oreilly.com/catalog/runux2/
Using and Managing PPP - http://www.oreilly.com/catalog/umppp/
Virtual Private Networks - http://www.oreilly.com/catalog/vpn2/

RedHat/SAMS also publish several interesting books:
Maximum RPM (available as a postscript document on www.rpm.org)
RedHat User's Guide (available as HTML on ftp.redhat.com)

SNMP, SNMPv2 and RMON - W. Stallings (ISBN: 0-201-63479-1)

Magazines:
Linux Journal (of course, monthly)
Sys Admin (intelligent articles, monthly)
Perl Journal (quarterly)
Information Security - http://www.infosecuritymag.com/

141

Appendix B: URL listing for programs

Table of contents

License

Preface

Forward by the author

Contributing

What this guide is and isn't

How to determine what to secure and how to secure it

Safe installation of Linux

General concepts, server verses workstations, etc

Physical / Boot security

The Linux kernel
ftp://ftp.kernel.org/ - Linux kernel source code

Administrative tools
ftp://ftp.replay.com/ - SSH
http://www.net.lut.ac.uk/psst/ - LSH
ftp://ftp.replay.com/ - SSL Telnet
http://violet.ibs.com.au/slush/ - Slush
http://www.networkshell.com/ - NSH
http://www.lysator.liu.se/fsh/ - Fsh
http://www.leenux.com/scripts/ - secsh
http://www.courtesan.com/sudo/ - sudo
ftp://ftp.ucolick.org/pub/users/will/ - super
http://www.webmin.com/ - Webmin
http://www.solucorp.qc.ca/linuxconf/ - Linuxconf
http://www.coas.org/ COAS

System Files

Log files and other forms of monitoring
http://www.core-sdi.com/ssyslog/ - secure syslog
http://www.balabit.hu/products/syslog-ng.html - next generation syslog
http://www.psionic.com/abacus/logcheck/ - logcheck
http://www.resentment.org/projects/colorlogs/ - colorlogs
http://www.vcpc.univie.ac.at/~tc/tools/ - WOTS
ftp://ftp.stanford.edu/general/security-tools/swatch/ - swatch
ftp://ftp.hert.org/pub/linux/auditd/ - auditd

142

Shadow passwords
http://www.false.com/security/john/ - Jack the ripper
http://www.users.dircon.co.uk/~crypto/ - Crack
http://www.thegrid.net/gravitino/products.html - Saltine cracker
http://wilter.com/wf/vcu/ - VCU

PAM
http://www.sun.com/software/solaris/pam/ - PAM

Software Management
http://www.rpm.org/ - RPM
http://www.gnu.ai.mit.edu/software/stow/stow.html - stow
ftp://ftp.replay.com/ - PGP
ftp://ftp.kaybee.org/pub/linux/ - AutoRPM
ftp://missinglink.darkorb.net/pub/rhlupdate/ - rhlupdate
http://www.iaehv.nl/users/grimaldo/info/scripts/ - RpmWatch
http://www.debian.org/Packages/stable/admin/apt.html - apt
http://datanord.datanord.it/~pdemauro/installwatch/ - installwatch
http://hal.csd.auth.gr/~vvas/instmon/ - instmon
http://kitenet.net/programs/alien/ - alien

File / Filesystem security
http://gsu.linux.org.tr/wipe/ - wipe (durakb@crit2.univ-montp2.fr)
http://users.erols.com/thomassr/zero/download/wipe/ - wipe (thomassr@erols.com)

TCP-IP and network security
http://www.bieringer.de/linux/IPv6/ - Ipv6
http://www.cri.cz/kra/index.html – HUNT Project

PPP security
http://www.interweft.com.au/other/ppp-howto/ppp-howto.html - PPP HOWTO

Basic network service security
ftp://vic.cc.purdue.edu/pub/tools/unix/lsof/ - lsof

Basic network services config files

Network services
http://www.massconfusion.com/ssh/ - Fresh Free FiSSH
http://hp.vector.co.jp/authors/VA002416/teraterm.html - TeraTerm
http://www.zip.com.au/~roca/ttssh.html - TeraTerm SSH DLLs
ftp://rak.isternet.sk/mnt/rhcd/misc/putty/ - putty
http://www.mindbright.se/mindterm/ - mindterm
http://www.webmin.com/webmin/ - Webmin
http://www.apacheweek.com/features/userauth/ - Apache User Authentication
http://squid.nlanr.net/Squid/FAQ/FAQ.html - SQUID FAQ
http://www.sendmail.org/ - Sendmail
http://www.qmail.org/ - Qmail
http://www.postfix.org/ - Postfix

143

http://www.zmailer.org/ - Zmailer
http://netwinsite.com/dmail_first.htm – DMail
http://www.washington.edu/imap/ - WU IMAPD (stock popd)
http://andrew2.andrew.cmu.edu/cyrus/imapd/ - Cyrus
http://www.nodomainname.net/software/ids-pop/ - IDS POP
http://www.washington.edu/imap/ - WU IMAPD (stock imapd)
http://andrew2.andrew.cmu.edu/cyrus/imapd/ - Cyrus
http://www.horde.org/imp/ - IMP
http://www.nodomainname.net/software/atdot/ - AtDot
http://netwinsite.com/dmailweb/index.htm - DmailWeb
http://netwinsite.com/webimap/index.htm - WebImap
http://www.isc.org/bind.html - BIND
http://www.dents.org/ - Dents
http://www.isc.org/inn.html - INN
http://netwinsite.com/dnews.htm - DNews
http://www.isc.org/dhcp.html – DHCPD
http://www.nrw.net/uwe/utftpd.html - utftpd
http://ftp.bitgate.com/cfingerd/ - Configurable Finger Daemon
http://insecurity.net/ - Paul's secure identd written in perl
http://www.ojnk.nu/~odin/ - ojnk identd
http://www.tildeslash.org/nullidentd.html - null identd
http://www.ajk.tele.fi/~too/sw/ - fake identd
http://p8ur.op.het.net/midentd/ - midentd
http://www.eecis.udel.edu/~ntp/ NTP
http://cuba.xs4all.nl/~tim/scvs/ - Secure CVS documentation
http://cblack.mokey.com/cvsd/ - CVSD
http://rsync.samba.org/ - Rsync
http://www.astart.com/lprng/LPRng.html - LP Next Generation
http://feynman.tam.uiuc.edu/pdq/ - pdq
http://csociety.ecn.purdue.edu/~sigos/projects/ssh/forwarding/ - Forwarding X via ssh
http://www.samba.org/ - SAMBA
http://anu.samba.org/cgi-bin/swat/ - SWAT Demo

File sharing methods
http://www.coda.cs.cmu.edu/ - CODA
http://www.edlund.org/projects/drall/index.html - Drall
http://www.angelfire.com/hi/plutonic/afs-faq.html – AFS

Network based authentication
http://metalab.unc.edu/LDP/HOWTO/NIS-HOWTO.html - NIS / NIS+ Howto
http://srp.stanford.edu/srp/ - SRP
http://web.mit.edu/kerberos/www/ - Kerberos

Encrypting services / data
http://www.openssl.org/ - OpenSSL
http://www.apache-ssl.org/ - Apache SSL
ftp://ftp.uni-mainz.de/pub/internet/security/ssl/ - SSL Telnet
ftp://ftp.replay.com/pub/replay/linux/redhat/ - SSL Telnet RPMs
ftp://ftp.uni-mainz.de/pub/internet/security/ssl/ - SSL FTP
ftp://ftp.replay.com/pub/replay/linux/redhat/ - SSL FTP RPMs

144

http://www.xs4all.nl/~freeswan/ - FreeS/WAN, Linux IPSec
http://www.moretonbay.com/vpn/pptp.htm - Linux PPTP
http://sites.inka.de/~W1011/devel/cipe.html - CIPE
http://eclipt.uni-klu.ac.at/projects/est/ - ECLiPt
ftp://ftp.replay.com/ - PGP
http://www.gnupg.org/ - GnuPG
http://www.cryptography.org/ - CFS
ftp://ftp.replay.com/pub/replay/linux/redhat/ - CFS RPMs
http://www.debian.org/Packages/stable/otherosfs/cfs.html - CFS debs

Firewalling
http://www.rustcorp.com/linux/ipchains/ - IPCHAINS
http://users.dhp.com/~whisper/ipfwadm2ipchains/ - IPFWADM 2 IPCHAINS
http://users.dhp.com/~whisper/mason/ - Mason
http://devplanet.fastethernet.net/ - firewall.sh
http://www.madhouse.org.uk/~red/framepage.phtml?/mklinuxfw/index.html - Mklinuxfw

Scanning / intrusion testing tools
ftp://net.tamu.edu/pub/security/TAMU/ - Tiger
http://sy.tsx.org/ - SBScan
http://opop.nols.com/proggie.html - check.pl
ftp://suburbia.net/pub/ - Strobe
http://www.insecure.org/nmap/index.html - Nmap
http://www.thegrid.net/gravitino/products.html - MNS
http://www.thegrid.net/gravitino/products.html - Bronc Buster vs. Michael Jackson
http://www.thegrid.net/gravitino/products.html - Leet scanner
http://www.thegrid.net/gravitino/products.html - Soup scanner
http://www.ameth.org/~veilleux/portscan.html - Portscanner
http://www.nessus.org/ - Nessus
http://www.wwdsi.com/saint/ - Saint
http://www.marko.net/cheops/ - Cheops
http://david.weekly.org/code/ - Ftpcheck & Relaycheck
http://home.arc.com/sara/ - SARA
http://www.packetfactory.net/firewalk/ - Firewalk
http://www.rootshell.com/ - Exploit code

Scanning and intrusion detection tools
http://www.psionic.com/abacus/portsentry/ - Port Sentry
ftp://ftp.porcupine.org/pub/security/ - TCP_WRAPPERS
ftp://ftp.eng.auburn.edu/pub/doug/ - Klaxon
http://www.psionic.com/abacus/hostsentry/ - Host Sentry
http://pikt.uchicago.edu/pikt/ - Pikt
http://www.nfr.com/ - NFR

Host monitoring tools
http://blue.dhs.org/bgcheck/ - bgcheck
ftp://marcus.seva.net/pub/sxid/ - Sxid
http://www.resentment.org/projects/viperdb/ - Viperdb
http://pikt.uchicago.edu/pikt/ - Pikt
http://all.net/dtk/ - DTK

145

Packet sniffers
http://sniffit.rug.ac.be/sniffit/sniffit.html - sniffit
http://ethereal.zing.org/ - Ethereal
http://www.mtco.com/~whoop/ksniff/ksniff.html - KSniff
http://ksniffer.veracity.nu/ - Ksniffer
http://mojo.calyx.net/~btx/karpski.html - karpski
http://www.ozemail.com.au/~peterhawkins/gnusniff.html - Gnusniff
http://elektra.porto.ucp.pt/snmpsniff/ - SNMP Sniffer

Virii, Trojan Horses, Worms, and Social Engineering
http://aachalon.de/AMaViS/ - AMaViS

Password storage
http://www.student.wau.nl/~olivier/gpasman/ - Gpasman

Conducting baselines / system integrity
http://www.tripwiresecurity.com/ - Tripwire
ftp://avian.org/src/hacks/ - L5
http://www.multimania.com/cparisel/gog/ - Gog&Magog
http://www.skagelund.com/confcollect/ - confcollect

Conducting audits

Backups
http://www.amnda.org/ - Amanda
ftp://ftp.zn-gmbh.com/pub/linux/ - afbackup
http://www.cs.wisc.edu/~jmelski/burt/ - Burt
http://www.estinc.com/features.html - BRU
http://www.estinc.com/qsdr.html - Quickstart
http://www.unitrends.com/bp.html - Backup Professional
http://www.unitrends.com/ctar.html - CTAR
http://www.unitrends.com/ctarnet.html - CTAR:NET
http://www.unitrends.com/pcpara.html - PC ParaChute
http://www.arkeia.com/ - Arkeia
http://www.legato.com/Products/html/legato_networker.html - Legato Networker Linux client
http://feral.com/networker.html - Legato Networker server

Dealing with attacks

Denial of service attacks

Examples of attacks

Distribution specific tools
http://www.suse.de/~marc/ - Harden SuSE
http://www.suse.de/~marc/ - SuSE Security Check

Distribution specific errata and security lists
URLs listed in section clearly.

146

147

Appendix C: Other Linux security documentation

Firewalling and Proxy Server HOWTO
http://metalab.unc.edu/LDP/HOWTO/Firewall-HOWTO.html

Linux IPCHAINS HOWTO
http://metalab.unc.edu/LDP/HOWTO/IPCHAINS-HOWTO.html

Linux Security HOWTO
http://metalab.unc.edu/LDP/HOWTO/Security-HOWTO.html

Linux Shadow Password HOWTO
http://metalab.unc.edu/LDP/HOWTO/Shadow-Password-HOWTO.html

The Linux CIPE + Masquerading mini-HOWTO
http://metalab.unc.edu/LDP/HOWTO/mini/Cipe+Masq.html

Firewall Piercing mini-HOWTO
http://metalab.unc.edu/LDP/HOWTO/mini/Firewall-Piercing.html

Quota mini-HOWTO
http://metalab.unc.edu/LDP/HOWTO/mini/Quota.html

Secure POP via SSH mini-HOWTO
http://metalab.unc.edu/LDP/HOWTO/mini/Secure-POP+SSH.html

The VPN HOWTO (using SSH)
http://metalab.unc.edu/LDP/HOWTO/mini/VPN.html

RedHat Knowledge Base
http://www.redhat.com/cgi-bin/support?faq

Linux Security Site
http://www.linux-security.org/

148

Appendix D: Online security documentation

Bugtraq Archives
http://www.geek-girl.com/bugtraq/

CERT Incident Reporting Guidelines
http://www.cert.org/tech_tips/incident_reporting.html

SECURITY RISK ANALYSIS AND MANAGEMENT
http://www.norman.com/local/whitepaper.htm

An Introduction to Information Security
http://www.certicom.com/ecc/wecc1.htm

Site Security Handbook
http://sunsite.cnlab-switch.ch/ftp/doc/standard/rfc/21xx/2196

How to Handle and Identify Network Probes
http://www.network-defense.com/papers/probes.html

IANA Port Numbers
http://rlz.ne.mediaone.net/linux/papers/port_numbers

Free Firewall and related tools (large)
http://sites.inka.de/sites/lina/freefire-l/index_en.html

Internet FAQ Consortium (You want FAQ’s? We got FAQ’s!)
http://www.faqs.org/

149

Appendix E: General security sites

SecurityPortal, has a Linux section
http://www.securityportal.com/

Open Security Solutions
http://www.opensec.net/

SANS
http://www.sans.org/

Security Mailing Lists
http://www.iss.net/vd/mail.html

Computer Security Information
http://www.alw.nih.gov/Security/security.html

150

Appendix F: General Linux sites

Linux.com
http://www.linux.com/

Linux.org
http://www.linux.org/

151

Version history

0.0.1 Initial draft, structure decided, basic information from older writings inserted.
04/01/1999

0.0.2 Major spell checking, formatting changes. The book covers most major topics
generally and with RedHat specific instructions. Added ipchains examples
where ipfwadm examples are given. 04/03/1999

0.0.3 Started Appendix B (www sites/etc.) and the glossary. Polished up some
sections, added some new ones. Table of contents created. 04/07/1999

0.0.4 General cleanup, added sections on Encryption, IPSec and the like. 04/11/1999

0.0.5 Intrusion scanning tools and detection, packet sniffing, added some new
sections. Edited some older section in need of cleanup. Got rid of unnecessary
graphics which removed about 200k (currently half the bulk). 04/12/1999

0.0.6 Added audits and baselines, inn, CVS, rsync, added some new tools in various
sections (ssh, etc.). 04/16/1999

0.0.7 Added some new section titles (Network Based Authentication, X Window
System, PAM, etc.), finished some other sections (PPP, Linuxconf, etc) and
added some more commercial backup programs. Added a whole whack of
Linux vendors. Tools like YaST, super, Linuxconf also added. 04/19/1999

0.0.8 Added some more sections (dpkg, tarballs/tgz's, tftp, etc.), added some more
tools. Actually installed Debian 2.1 and spent a few days playing with it. Now
to experience Slackware for 0.0.9. Some minor reorganization (SAMBA is it's
own subject now as well as Novell connectivity). 04/22/1999

0.0.9 Major reorganization, finished up most sections. Major grammar and spell
checking. Put in consistent firewall examples. Added page numbers (wheee).
Skipped the release to get 0.1.0 out. New license, polishing, etc. New sections
on dealing with attacks, and types of attacks, etc. Officially released to the
world. 04/27/1999

0.0.95 Removed the Security Consultants sections, possible conflict of interest and no
method of vetting them. Added a whole lot of new tools. Removed the word
“RedHat” many times and made the guide somewhat more neutral. 05/08/1999

0.0.98 Added many more tools, started adding some commercial tools in areas other
then the backup section. More spell and grammar checking. Added some new
sections (password storage, denial of service attacks, etc.) and did some tidying
up of the structure. Major updates to squid and the admin tools. Rewrote the
administrative tools section. 15/5/1999

0.1.0 Fixed the URL section at the end, tidied up various sections. Added the
“Internet connection” checklist. Added about 60+ new programs and apps.
Added secure file deletion, software management tools, several new scanning

152

and probe detection tools. New whitepaper section listing good security
documents, and a URL listing by section at the end. Added several new
appendices listing Linux sites, security sites, whitepapers and more. 29/5/1999

