
Diagram illustrating user requests to an Elasticsearch cluster being
distributed by a load balancer. (Example for Wikipedia.)

Load balancing (computing)
In computing, load balancing refers
to the process of distributing a set of
tasks over a set of resources
(computing units), with the aim of
making their overall processing more
efficient. Load balancing can optimize
the response time and avoid unevenly
overloading some compute nodes
while other compute nodes are left
idle.

Load balancing is the subject of
research in the field of parallel
computers. Two main approaches
exist: static algorithms, which do not
take into account the state of the
different machines, and dynamic
algorithms, which are usually more
general and more efficient, but require
exchanges of information between the
different computing units, at the risk
of a loss of efficiency.

Problem overview
Nature of tasks

Size of tasks
Dependencies
Segregation of tasks

Static and dynamic algorithms
Static
Dynamic

Hardware architecture
Heterogenous machines
Shared and distributed memory
Hierarchy
Adaptation to larger architectures (scalability)

Fault tolerance

Approaches
Static distribution with full knowledge of the tasks: prefix sum
Static load distribution without prior knowledge

Round-robin scheduling

Contents

https://en.wikipedia.org/wiki/File:Elasticsearch_Cluster_August_2014.png
https://en.wikipedia.org/wiki/Elasticsearch
https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/System_resource
https://en.wikipedia.org/wiki/Parallel_computers

Randomized static
Others

Master-Worker Scheme
Non-hierarchical architecture, without knowledge of the system: work stealing

Principle
Efficiency

Use cases
Internet-based services

Round-robin DNS
DNS delegation
Client-side random load balancing
Server-side load balancers

Scheduling algorithms
Persistence
Load balancer features

Telecommunications
Shortest Path Bridging
Routing 1

Data center networks
Failovers

See also
References
External links

A load balancing algorithm always tries to answer a specific problem. Among other things, the nature of
the tasks, the algorithmic complexity, the hardware architecture on which the algorithms will run as well as
required error tolerance, must be taken into account. Therefore compromise must be found to best meet
application-specific requirements.

The efficiency of load balancing algorithms critically depends on the nature of the tasks. Therefore, the
more information about the tasks is available at the time of decision making, the greater the potential for
optimization.

A perfect knowledge of the execution time of each of the tasks allows to reach an optimal load distribution
(see algorithm of prefix sum).[1] Unfortunately, this is in fact an idealized case. Knowing the exact
execution time of each task is an extremely rare situation.

Problem overview

Nature of tasks

Size of tasks

https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Error_tolerance
https://en.wikipedia.org/wiki/Execution_time
https://en.wikipedia.org/wiki/Prefix_sum
https://en.wikipedia.org/wiki/Execution_time

For this reason, there are several techniques to get an idea of the different execution times. First of all, in the
fortunate scenario of having tasks of relatively homogeneous size, it is possible to consider that each of
them will require approximately the average execution time. If, on the other hand, the execution time is
very irregular, more sophisticated techniques must be used. One technique is to add some metadata to each
task. Depending on the previous execution time for similar metadata, it is possible to make inferences for a
future task based on statistics.[2]

In some cases, tasks depend on each other. These interdependencies can be illustrated by a directed acyclic
graph. Intuitively, some tasks cannot begin until others are completed.

Assuming that the required time for each of the tasks is known in advance, an optimal execution order must
lead to the minimization of the total execution time. Although this is an NP-hard problem and therefore can
be difficult to be solved exactly. There are algorithms, like job scheduler, that calculate optimal task
distributions using metaheuristic methods.

Another feature of the tasks critical for the design of a load balancing algorithm is their ability to be broken
down into subtasks during execution. The "Tree-Shaped Computation" algorithm presented later takes
great advantage of this specificity.

A load balancing algorithm is "static" when it does not take into account the state of the system for the
distribution of tasks. Thereby, the system state includes measures such as the load level (and sometimes
even overload) of certain processors. Instead, assumptions about the overall system are made beforehand,
such as the arrival times and resource requirements of incoming tasks. In addition, the number of
processors, their respective power and communication speeds are known. Therefore, static load balancing
aims to associate a known set of tasks with the available processors in order to minimize a certain
performance function. The trick lies in the concept of this performance function.

Static load balancing techniques are commonly centralized around a router, or Master, which distributes the
loads and optimizes the performance function. This minimization can take into account information related
to the tasks to be distributed, and derive an expected execution time.

The advantage of static algorithms is that they are easy to set up and extremely efficient in the case of fairly
regular tasks (such as processing HTTP requests from a website). However, there is still some statistical
variance in the assignment of tasks which can lead to overloading of some computing units.

Unlike static load distribution algorithms, dynamic algorithms take into account the current load of each of
the computing units (also called nodes) in the system. In this approach, tasks can be moved dynamically
from an overloaded node to an underloaded node in order to receive faster processing. While these
algorithms are much more complicated to design, they can produce excellent results, in particular, when the
execution time varies greatly from one task to another.

Dependencies

Segregation of tasks

Static and dynamic algorithms

Static

Dynamic

https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Job_scheduler
https://en.wikipedia.org/wiki/Metaheuristic
https://en.wikipedia.org/wiki/Load_(computing)
https://en.wikipedia.org/wiki/Master/slave_(technology)

Dynamic load balancing architecture can be more modular since it is not mandatory to have a specific node
dedicated to the distribution of work. When tasks are uniquely assigned to a processor according to its state
at a given moment, it is unique assignment. If, on the other hand, the tasks can be permanently redistributed
according to the state of the system and its evolution, this is called dynamic assignment.[3] Obviously, a
load balancing algorithm that requires too much communication in order to reach its decisions runs the risk
of slowing down the resolution of the overall problem.

Parallel computing infrastructures are often composed of units of different computing power, which should
be taken into account for the load distribution.

For example, lower-powered units may receive requests that require a smaller amount of computation, or, in
the case of homogeneous or unknown request sizes, receive fewer requests than larger units.

Parallel computers are often divided into two broad categories: those where all processors share a single
common memory on which they read and write in parallel (PRAM model), and those where each
computing unit has its own memory (distributed memory model), and where information is exchanged by
messages.

For shared-memory computers, managing write conflicts greatly slows down the speed of individual
execution of each computing unit. However, they can work perfectly well in parallel. Conversely, in the
case of message exchange, each of the processors can work at full speed. On the other hand, when it comes
to collective message exchange, all processors are forced to wait for the slowest processors to start the
communication phase.

In reality, few systems fall into exactly one of the categories. In general, the processors each have an
internal memory to store the data needed for the next calculations, and are organized in successive clusters.
Often, these processing elements are then coordinated through distributed memory and message passing.
Therefore, the load balancing algorithm should be uniquely adapted to a parallel architecture. Otherwise,
there is a risk that the efficiency of parallel problem solving will be greatly reduced.

Adapting to the hardware structures seen above, there are two main categories of load balancing
algorithms. On the one hand, the one where tasks are assigned by “master” and executed by “workers”
who keep the master informed of the progress of their work, and the master can then take charge of
assigning or reassigning the workload in case of dynamic algorithm. The literature refers to this as "Master-
Worker" architecture. On the other hand, the control can be distributed between the different nodes. The
load balancing algorithm is then executed on each of them and the responsibility for assigning tasks (as well
as re-assigning and splitting as appropriate) is shared. The last category assumes a dynamic load balancing
algorithm.

Since the design of each load balancing algorithm is unique, the previous distinction must be qualified.
Thus, it is also possible to have an intermediate strategy, with, for example, "master" nodes for each sub-
cluster, which are themselves subject to a global "master". There are also multi-level organizations, with an

Hardware architecture

Heterogenous machines

Shared and distributed memory

Hierarchy

https://en.wikipedia.org/wiki/Modular
https://en.wikipedia.org/wiki/Computing_power
https://en.wikipedia.org/wiki/Parallel_random-access_machine
https://en.wikipedia.org/wiki/Distributed_memory
https://en.wikipedia.org/wiki/Shared-memory
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Distributed_memory
https://en.wikipedia.org/wiki/Message_passing
https://en.wikipedia.org/wiki/Master/slave_(technology)

Load balancing algorithm depending on divisibility of tasks

alternation between master-slave and distributed control strategies. The latter strategies quickly become
complex and are rarely encountered. Designers prefer algorithms that are easier to control.

In the context of algorithms that run over the very long term (servers, cloud...), the computer architecture
evolves over time. However, it is preferable not to have to design a new algorithm each time.

An extremely important parameter of a load balancing algorithm is therefore its ability to adapt to a scalable
hardware architecture. This is called the scalability of the algorithm. An algorithm is called scalable for an
input parameter when its performance remains relatively independent of the size of that parameter.

When the algorithm is capable of adapting to a varying number of computing units, but the number of
computing units must be fixed before execution, it is called moldable. If, on the other hand, the algorithm is
capable of dealing with a fluctuating amount of processors during its execution, the algorithm is said to be
malleable. Most load balancing algorithms are at least moldable.[4]

Especially in large-scale computing clusters, it is not tolerable to execute a parallel algorithm which cannot
withstand failure of one single component. Therefore, fault tolerant algorithms are being developed which
can detect outages of processors and recover the computation.[5]

If the tasks are independent of each other, and if their respective execution time and the tasks can be
subdivided, there is a simple and optimal algorithm.

By dividing the tasks in such a way as to give the same amount of computation to each processor, all that
remains to be done is to group the results together. Using a prefix sum algorithm, this division can be
calculated in logarithmic time with respect to the number of processors.

If, however, the tasks cannot be subdivided
(i.e., they are atomic), although optimizing
task assignment is a difficult problem, it is
still possible to approximate a relatively
fair distribution of tasks, provided that the
size of each of them is much smaller than
the total computation performed by each of
the nodes.[6]

Most of the time, the execution time of a
task is unknown and only rough
approximation are available. This
algorithm, although particularly efficient, is not viable for these scenarios.

Adaptation to larger architectures (scalability)

Fault tolerance

Approaches

Static distribution with full knowledge of the tasks: prefix sum

Static load distribution without prior knowledge

https://en.wikipedia.org/wiki/File:Load_Balancing_divisible_tasks.png
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Computing_cluster
https://en.wikipedia.org/wiki/Fault_tolerant
https://en.wikipedia.org/wiki/Prefix_sum
https://en.wikipedia.org/wiki/Logarithmic_time
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Prefix_sum

Even if the execution time is not known in advance at all, static load distribution is always possible.

In a round-robin algorithm, the first request is sent to the first server, then the next to the second, and so on
down to the last. Then it is started again, assigning the next request to the first server, and so on.

This algorithm can be weighted such that the most powerful units receive the largest number of requests
and receive them first.

Randomized static load balancing is simply a matter of randomly assigning tasks to the different servers.
This method works quite well. If, on the other hand, the number of tasks is known in advance, it is even
more efficient to calculate a random permutation in advance. This avoids communication costs for each
assignment. There is no longer a need for a distribution master because every processor knows what task is
assigned to it. Even if the number of tasks is unknown, it is still possible to avoid communication with a
pseudo-random assignment generation known to all processors.

The performance of this strategy (measured in total execution time for a given fixed set of tasks) decreases
with the maximum size of the tasks.

Of course, there are other methods of assignment as well:

Less work: Assign more tasks to the servers by performing less (the method can also be
weighted).
Hash: allocates queries according to a hash table.
Power of Two Choices: pick two servers at random and choose the better of the two
options.[7][8]

Master-Worker schemes are among the simplest dynamic load balancing algorithms. A master distributes
the workload to all workers (also sometimes referred to as "slaves"). Initially, all workers are idle and report
this to the master. The master answers worker requests and distributes the tasks to them. When he has no
more tasks to give, he informs the workers so that they stop asking for tasks.

The advantage of this system is that it distributes the burden very fairly. In fact, if one does not take into
account the time needed for the assignment, the execution time would be comparable to the prefix sum seen
above.

The problem of this algorithm is that it has difficulty to adapt to a large number of processors because of the
high amount of necessary communications. This lack of scalability makes it quickly inoperable in very
large servers or very large parallel computers. The master acts as a bottleneck.

However, the quality of the algorithm can be greatly improved by replacing the master by a task list which
can be used by different processors. Although this algorithm is a little more difficult to implement, it
promises much better scalability, although still insufficient for very large computing centers.

Round-robin scheduling

Randomized static

Others

Master-Worker Scheme

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Master/slave_(technology)
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Bottleneck_(software)
https://en.wikipedia.org/wiki/Round-robin_scheduling

Master-Worker and bottleneck

Another technique to overcome scalability problems when the time
needed for task completion is unknown is work stealing.

The approach consists of assigning to each processor a certain
number of tasks in a random or predefined manner, then allowing
inactive processors to "steal" work from active or overloaded processors. Several implementations of this
concept exist, defined by a task division model and by the rules determining the exchange between
processors. While this technique can be particularly effective, it is difficult to implement because it is
necessary to ensure that communication does not become the primary occupation of the processors instead
of solving the problem.

In the case of atomic tasks, two main strategies can be distinguished, those where the processors with low
load offer their computing capacity to those with the highest load, and those where the most loaded units
wish to lighten the workload assigned to them. It has been shown[9] that when the network is heavily
loaded, it is more efficient for the least loaded units to offer their availability and when the network is
lightly loaded, it is the overloaded processors that require support from the most inactive ones. This rule of
thumb limits the number of exchanged messages.

In the case where one starts from a single large task that cannot be divided beyond an atomic level, there is
a very efficient algorithm "Tree-Shaped computation",[10] where the parent task is distributed in a work
tree.

Initially, many processors have an empty task, except one that works sequentially on it. Idle processors
issue requests randomly to other processors (not necessarily active). If the latter is able to subdivide the task
it is working on, it does so by sending part of its work to the node making the request. Otherwise, it returns
an empty task. This induces a tree structure. It is then necessary to send a termination signal to the parent
processor when the subtask is completed, so that it in turn sends the message to its parent until it reaches the
root of the tree. When the first processor, i.e. the root, has finished, a global termination message can be
broadcast. At the end, it is necessary to assemble the results by going back up the tree.

The efficiency of such an algorithm is close to the prefix sum when the job cutting and communication time
is not too high compared to the work to be done. To avoid too high communication costs, it is possible to
imagine a list of jobs on shared memory. Therefore, a request is simply reading from a certain position on
this shared memory at the request of the master processor.

In addition to efficient problem solving through parallel computations, load balancing algorithms are widely
used in HTTP request management where a site with a large audience must be able to handle requests per
second.

Non-hierarchical architecture, without
knowledge of the system: work stealing

Principle

Efficiency

Use cases

Internet-based services

https://en.wikipedia.org/wiki/File:Master-Worker_and_bottleneck.png
https://en.wikipedia.org/wiki/Work_stealing
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Shared_memory
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/Work_stealing

One of the most commonly used applications of load balancing is to provide a single Internet service from
multiple servers, sometimes known as a server farm. Commonly load-balanced systems include popular
web sites, large Internet Relay Chat networks, high-bandwidth File Transfer Protocol (FTP) sites, Network
News Transfer Protocol (NNTP) servers, Domain Name System (DNS) servers, and databases.

Round-robin DNS is an alternate method of load balancing that does not require a dedicated software or
hardware node. In this technique, multiple IP addresses are associated with a single domain name; clients
are given IP in a round-robin fashion. IP is assigned to clients with a short expiration so the client is more
likely to use a different IP the next time they access the Internet service being requested.

Another more effective technique for load-balancing using DNS is to delegate www.example.org as a
sub-domain whose zone is served by each of the same servers that are serving the website. This technique
works particularly well where individual servers are spread geographically on the Internet. For example:

one.example.org A 192.0.2.1
two.example.org A 203.0.113.2
www.example.org NS one.example.org
www.example.org NS two.example.org

However, the zone file for www.example.org on each server is different such that each server resolves
its own IP Address as the A-record.[11] On server one the zone file for www.example.org reports:

@ in a 192.0.2.1

On server two the same zone file contains:

@ in a 203.0.113.2

This way, when a server is down, its DNS will not respond and the web service does not receive any
traffic. If the line to one server is congested, the unreliability of DNS ensures less HTTP traffic reaches that
server. Furthermore, the quickest DNS response to the resolver is nearly always the one from the network's
closest server, ensuring geo-sensitive load-balancing. A short TTL on the A-record helps to ensure traffic is
quickly diverted when a server goes down. Consideration must be given the possibility that this technique
may cause individual clients to switch between individual servers in mid-session.

Another approach to load balancing is to deliver a list of server IPs to the client, and then to have client
randomly select the IP from the list on each connection.[12][13] This essentially relies on all clients
generating similar loads, and the Law of Large Numbers[13] to achieve a reasonably flat load distribution
across servers. It has been claimed that client-side random load balancing tends to provide better load
distribution than round-robin DNS; this has been attributed to caching issues with round-robin DNS, that in
case of large DNS caching servers, tend to skew the distribution for round-robin DNS, while client-side
random selection remains unaffected regardless of DNS caching.[13]

Round-robin DNS

DNS delegation

Client-side random load balancing

https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Server_farm
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_News_Transfer_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Round-robin_DNS
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Domain_name
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Law_of_Large_Numbers

With this approach, the method of delivery of list of IPs to the client can vary, and may be implemented as a
DNS list (delivered to all the clients without any round-robin), or via hardcoding it to the list. If a "smart
client" is used, detecting that randomly selected server is down and connecting randomly again, it also
provides fault tolerance.

For Internet services, a server-side load balancer is usually a software program that is listening on the port
where external clients connect to access services. The load balancer forwards requests to one of the
"backend" servers, which usually replies to the load balancer. This allows the load balancer to reply to the
client without the client ever knowing about the internal separation of functions. It also prevents clients
from contacting back-end servers directly, which may have security benefits by hiding the structure of the
internal network and preventing attacks on the kernel's network stack or unrelated services running on other
ports.

Some load balancers provide a mechanism for doing something special in the event that all backend servers
are unavailable. This might include forwarding to a backup load balancer or displaying a message
regarding the outage.

It is also important that the load balancer itself does not become a single point of failure. Usually, load
balancers are implemented in high-availability pairs which may also replicate session persistence data if
required by the specific application.[14] Certain applications are programmed with immunity to this
problem, by offsetting the load balancing point over differential sharing platforms beyond the defined
network. The sequential algorithms paired to these functions are defined by flexible parameters unique to
the specific database.[15]

Numerous scheduling algorithms, also called load-balancing methods, are used by load balancers to
determine which back-end server to send a request to. Simple algorithms include random choice, round
robin, or least connections.[16] More sophisticated load balancers may take additional factors into account,
such as a server's reported load, least response times, up/down status (determined by a monitoring poll of
some kind), number of active connections, geographic location, capabilities, or how much traffic it has
recently been assigned.

An important issue when operating a load-balanced service is how to handle information that must be kept
across the multiple requests in a user's session. If this information is stored locally on one backend server,
then subsequent requests going to different backend servers would not be able to find it. This might be
cached information that can be recomputed, in which case load-balancing a request to a different backend
server just introduces a performance issue.[16]

Ideally, the cluster of servers behind the load balancer should not be session-aware, so that if a client
connects to any backend server at any time the user experience is unaffected. This is usually achieved with
a shared database or an in-memory session database like Memcached.

One basic solution to the session data issue is to send all requests in a user session consistently to the same
backend server. This is known as "persistence" or "stickiness". A significant downside to this technique is
its lack of automatic failover: if a backend server goes down, its per-session information becomes

Server-side load balancers

Scheduling algorithms

Persistence

https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/TCP_and_UDP_port
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Round-robin_scheduling
https://en.wikipedia.org/wiki/Memcached
https://en.wikipedia.org/wiki/Failover

inaccessible, and any sessions depending on it are lost. The same problem is usually relevant to central
database servers; even if web servers are "stateless" and not "sticky", the central database is (see below).

Assignment to a particular server might be based on a username, client IP address, or be random. Because
of changes of the client's perceived address resulting from DHCP, network address translation, and web
proxies this method may be unreliable. Random assignments must be remembered by the load balancer,
which creates a burden on storage. If the load balancer is replaced or fails, this information may be lost, and
assignments may need to be deleted after a timeout period or during periods of high load to avoid
exceeding the space available for the assignment table. The random assignment method also requires that
clients maintain some state, which can be a problem, for example when a web browser has disabled storage
of cookies. Sophisticated load balancers use multiple persistence techniques to avoid some of the
shortcomings of any one method.

Another solution is to keep the per-session data in a database. This is generally bad for performance
because it increases the load on the database: the database is best used to store information less transient
than per-session data. To prevent a database from becoming a single point of failure, and to improve
scalability, the database is often replicated across multiple machines, and load balancing is used to spread
the query load across those replicas. Microsoft's ASP.net State Server technology is an example of a session
database. All servers in a web farm store their session data on State Server and any server in the farm can
retrieve the data.

In the very common case where the client is a web browser, a simple but efficient approach is to store the
per-session data in the browser itself. One way to achieve this is to use a browser cookie, suitably time-
stamped and encrypted. Another is URL rewriting. Storing session data on the client is generally the
preferred solution: then the load balancer is free to pick any backend server to handle a request. However,
this method of state-data handling is poorly suited to some complex business logic scenarios, where session
state payload is big and recomputing it with every request on a server is not feasible. URL rewriting has
major security issues, because the end-user can easily alter the submitted URL and thus change session
streams.

Yet another solution to storing persistent data is to associate a name with each block of data, and use a
distributed hash table to pseudo-randomly assign that name to one of the available servers, and then store
that block of data in the assigned server.

Hardware and software load balancers may have a variety of special features. The fundamental feature of a
load balancer is to be able to distribute incoming requests over a number of backend servers in the cluster
according to a scheduling algorithm. Most of the following features are vendor specific:

Asymmetric load
A ratio can be manually assigned to cause some backend servers to get a greater share of
the workload than others. This is sometimes used as a crude way to account for some
servers having more capacity than others and may not always work as desired.

Priority activation
When the number of available servers drops below a certain number, or load gets too high,
standby servers can be brought online.

TLS Offload and Acceleration
TLS (or its predecessor SSL) acceleration is a technique of offloading cryptographic
protocol calculations onto a specialized hardware. Depending on the workload,
processing the encryption and authentication requirements of an TLS request can become
a major part of the demand on the Web Server's CPU; as the demand increases, users will
see slower response times, as the TLS overhead is distributed among Web servers. To

Load balancer features

https://en.wikipedia.org/wiki/DHCP
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Web_proxy
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/ASP.net
https://en.wikipedia.org/wiki/HTTP_cookie
https://en.wikipedia.org/wiki/URL_rewriting
https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/TLS_acceleration
https://en.wikipedia.org/wiki/Transport_Layer_Security

remove this demand on Web servers, a balancer can terminate TLS connections, passing
HTTPS requests as HTTP requests to the Web servers. If the balancer itself is not
overloaded, this does not noticeably degrade the performance perceived by end users.
The downside of this approach is that all of the TLS processing is concentrated on a
single device (the balancer) which can become a new bottleneck. Some load balancer
appliances include specialized hardware to process TLS. Instead of upgrading the load
balancer, which is quite expensive dedicated hardware, it may be cheaper to forgo TLS
offload and add a few web servers. Also, some server vendors such as Oracle/Sun now
incorporate cryptographic acceleration hardware into their CPUs such as the T2000. F5
Networks incorporates a dedicated TLS acceleration hardware card in their local traffic
manager (LTM) which is used for encrypting and decrypting TLS traffic. One clear benefit
to TLS offloading in the balancer is that it enables it to do balancing or content switching
based on data in the HTTPS request.

Distributed Denial of Service (DDoS) attack protection
Load balancers can provide features such as SYN cookies and delayed-binding (the
back-end servers don't see the client until it finishes its TCP handshake) to mitigate SYN
flood attacks and generally offload work from the servers to a more efficient platform.

HTTP compression
HTTP compression reduces the amount of data to be transferred for HTTP objects by
utilising gzip compression available in all modern web browsers. The larger the response
and the further away the client is, the more this feature can improve response times. The
trade-off is that this feature puts additional CPU demand on the load balancer and could
be done by web servers instead.

TCP offload
Different vendors use different terms for this, but the idea is that normally each HTTP
request from each client is a different TCP connection. This feature utilises HTTP/1.1 to
consolidate multiple HTTP requests from multiple clients into a single TCP socket to the
back-end servers.

TCP buffering
The load balancer can buffer responses from the server and spoon-feed the data out to
slow clients, allowing the web server to free a thread for other tasks faster than it would if it
had to send the entire request to the client directly.

Direct Server Return
An option for asymmetrical load distribution, where request and reply have different
network paths.

Health checking
The balancer polls servers for application layer health and removes failed servers from the
pool.

HTTP caching
The balancer stores static content so that some requests can be handled without
contacting the servers.

Content filtering
Some balancers can arbitrarily modify traffic on the way through.

HTTP security
Some balancers can hide HTTP error pages, remove server identification headers from
HTTP responses, and encrypt cookies so that end users cannot manipulate them.

Priority queuing
Also known as rate shaping, the ability to give different priority to different traffic.

Content-aware switching
Most load balancers can send requests to different servers based on the URL being
requested, assuming the request is not encrypted (HTTP) or if it is encrypted (via HTTPS)
that the HTTPS request is terminated (decrypted) at the load balancer.

Client authentication
Authenticate users against a variety of authentication sources before allowing them
access to a website.

https://en.wikipedia.org/wiki/Distributed_denial_of_service
https://en.wikipedia.org/wiki/SYN_cookies
https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/HTTP_compression
https://en.wikipedia.org/wiki/HTTP_caching
https://en.wikipedia.org/wiki/Priority_queuing
https://en.wikipedia.org/wiki/Rate_shaping

Programmatic traffic manipulation
At least one balancer allows the use of a scripting language to allow custom balancing
methods, arbitrary traffic manipulations, and more.

Firewall
Firewalls can prevent direct connections to backend servers, for network security reasons.

Intrusion prevention system
Intrusion prevention systems offer application layer security in addition to
network/transport layer offered by firewall security.

Load balancing can be useful in applications with redundant communications links. For example, a
company may have multiple Internet connections ensuring network access if one of the connections fails. A
failover arrangement would mean that one link is designated for normal use, while the second link is used
only if the primary link fails.

Using load balancing, both links can be in use all the time. A device or program monitors the availability of
all links and selects the path for sending packets. The use of multiple links simultaneously increases the
available bandwidth.

The IEEE approved the IEEE 802.1aq standard May 2012,[17] also known as Shortest Path Bridging
(SPB). SPB allows all links to be active through multiple equal cost paths, provides faster convergence
times to reduce down time, and simplifies the use of load balancing in mesh network topologies (partially
connected and/or fully connected) by allowing traffic to load share across all paths of a network.[18][19]

SPB is designed to virtually eliminate human error during configuration and preserves the plug-and-play
nature that established Ethernet as the de facto protocol at Layer 2.[20]

Many telecommunications companies have multiple routes through their networks or to external networks.
They use sophisticated load balancing to shift traffic from one path to another to avoid network congestion
on any particular link, and sometimes to minimize the cost of transit across external networks or improve
network reliability.

Another way of using load balancing is in network monitoring activities. Load balancers can be used to
split huge data flows into several sub-flows and use several network analyzers, each reading a part of the
original data. This is very useful for monitoring fast networks like 10GbE or STM64, where complex
processing of the data may not be possible at wire speed.[21]

Load balancing is widely used in data center networks to distribute traffic across many existing paths
between any two servers.[22] It allows more efficient use of network bandwidth and reduces provisioning
costs. In general, load balancing in datacenter networks can be classified as either static or dynamic.

Static load balancing distributes traffic by computing a hash of the source and destination addresses and
port numbers of traffic flows and using it to determine how flows are assigned to one of the existing paths.
Dynamic load balancing assigns traffic flows to paths by monitoring bandwidth use on different paths.

Telecommunications

Shortest Path Bridging

Routing 1

Data center networks

https://en.wikipedia.org/wiki/Firewall_(networking)
https://en.wikipedia.org/wiki/Intrusion_prevention_system
https://en.wikipedia.org/wiki/Failover
https://en.wikipedia.org/wiki/IEEE_802.1aq
https://en.wikipedia.org/wiki/Network_topology#Mesh
https://en.wikipedia.org/wiki/Network_congestion
https://en.wikipedia.org/wiki/Reliability_(computer_networking)
https://en.wikipedia.org/wiki/Network_monitoring
https://en.wikipedia.org/wiki/10_Gigabit_Ethernet
https://en.wikipedia.org/wiki/Wire_speed
https://en.wikipedia.org/wiki/Data_center

Dynamic assignment can also be proactive or reactive. In the former case, the assignment is fixed once
made, while in the latter the network logic keeps monitoring available paths and shifts flows across them as
network utilization changes (with arrival of new flows or completion of existing ones). A comprehensive
overview of load balancing in datacenter networks has been made available.[22]

Load balancing is often used to implement failover—the continuation of a service after the failure of one or
more of its components. The components are monitored continually (e.g., web servers may be monitored
by fetching known pages), and when one becomes unresponsive, the load balancer is informed and no
longer sends traffic to it. When a component comes back online, the load balancer starts rerouting traffic to
it. For this to work, there must be at least one component in excess of the service's capacity (N+1
redundancy). This can be much less expensive and more flexible than failover approaches where each
single live component is paired with a single backup component that takes over in the event of a failure
(dual modular redundancy). Some RAID systems can also utilize hot spare for a similar effect.[23]

Affinity mask
Application Delivery Controller
Autoscaling
Cloud computing
Cloud load balancing
Common Address Redundancy Protocol
Edge computing
Network Load Balancing
SRV record

1. Sanders, Peter; Mehlhorn, Kurt; Dietzfelbinger, Martin; Dementiev, Roman (11 September
2019). Sequential and parallel algorithms and data structures : the basic toolbox. ISBN 978-
3-030-25208-3.

2. Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
(30 August 2016). "Estimation Accuracy on Execution Time of Run-Time Tasks in a
Heterogeneous Distributed Environment" (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC50
38664). Sensors. 16 (9): 1386. Bibcode:2016Senso..16.1386L (https://ui.adsabs.harvard.ed
u/abs/2016Senso..16.1386L). doi:10.3390/s16091386 (https://doi.org/10.3390%2Fs1609138
6). PMC 5038664 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038664).
PMID 27589753 (https://pubmed.ncbi.nlm.nih.gov/27589753). S2CID 391429 (https://api.se
manticscholar.org/CorpusID:391429).

3. Alakeel, Ali (November 2009). "A Guide to Dynamic Load Balancing in Distributed
Computer Systems" (https://www.researchgate.net/publication/268200851). International
Journal of Computer Science and Network Security (IJCSNS). 10.

4. Asghar, Sajjad; Aubanel, Eric; Bremner, David (October 2013). "A Dynamic Moldable Job
Scheduling Based Parallel SAT Solver". 2013 42nd International Conference on Parallel
Processing: 110–119. doi:10.1109/ICPP.2013.20 (https://doi.org/10.1109%2FICPP.2013.20).
ISBN 978-0-7695-5117-3. S2CID 15124201 (https://api.semanticscholar.org/CorpusID:1512
4201).

Failovers

See also

References

https://en.wikipedia.org/wiki/Failover
https://en.wikipedia.org/wiki/N%2B1_redundancy
https://en.wikipedia.org/wiki/Dual_modular_redundancy
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/Hot_spare
https://en.wikipedia.org/wiki/Affinity_mask
https://en.wikipedia.org/wiki/Application_Delivery_Controller
https://en.wikipedia.org/wiki/Autoscaling
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Cloud_load_balancing
https://en.wikipedia.org/wiki/Common_Address_Redundancy_Protocol
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Network_Load_Balancing
https://en.wikipedia.org/wiki/SRV_record
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-030-25208-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038664
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/2016Senso..16.1386L
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3390%2Fs16091386
https://en.wikipedia.org/wiki/PMC_(identifier)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038664
https://en.wikipedia.org/wiki/PMID_(identifier)
https://pubmed.ncbi.nlm.nih.gov/27589753
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:391429
https://www.researchgate.net/publication/268200851
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FICPP.2013.20
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7695-5117-3
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:15124201

5. Punetha Sarmila, G.; Gnanambigai, N.; Dinadayalan, P. (2015). "Survey on fault tolerant —
Load balancing algorithmsin cloud computing". 2nd International Conference on Electronics
and Communication Systems (ICECS): 1715–1720. doi:10.1109/ECS.2015.7124879 (http
s://doi.org/10.1109%2FECS.2015.7124879). ISBN 978-1-4799-7225-8. S2CID 30175022 (ht
tps://api.semanticscholar.org/CorpusID:30175022).

6. Sanders, Peter; Mehlhorn, Kurt; Dietzfelbinger, Martin; Dementiev, Roman (11 September
2019). Sequential and parallel algorithms and data structures : the basic toolbox. ISBN 978-
3-030-25208-3.

7. "NGINX and the "Power of Two Choices" Load-Balancing Algorithm" (https://web.archive.or
g/web/20191212194243/https://www.nginx.com/blog/nginx-power-of-two-choices-load-balan
cing-algorithm/). nginx.com. 2018-11-12. Archived from the original (https://www.nginx.com/b
log/nginx-power-of-two-choices-load-balancing-algorithm/) on 2019-12-12.

8. "Test Driving "Power of Two Random Choices" Load Balancing" (https://web.archive.org/we
b/20190215173140/https://www.haproxy.com/blog/power-of-two-load-balancing/).
haproxy.com. 2019-02-15. Archived from the original (https://www.haproxy.com/blog/power-o
f-two-load-balancing/) on 2019-02-15.

9. Eager, Derek L; Lazowska, Edward D; Zahorjan, John (1 March 1986). "A comparison of
receiver-initiated and sender-initiated adaptive load sharing". Performance Evaluation. 6 (1):
53–68. doi:10.1016/0166-5316(86)90008-8 (https://doi.org/10.1016%2F0166-5316%2886%
2990008-8). ISSN 0166-5316 (https://www.worldcat.org/issn/0166-5316).

10. Sanders, Peter (1998). "Tree Shaped Computations as a Model for Parallel Applications".
Workshop on Application Based Load Balancing (Alv '98), München, 25. - 26. März 1998 -
Veranst. Vom Sonderforschungsbereich 342 "Werkzeuge und Methoden für die Nutzung
Paralleler Rechnerarchitekturen". Ed.: A. Bode: 123. doi:10.5445/ir/1000074497 (https://doi.
org/10.5445%2Fir%2F1000074497).

11. IPv4 Address Record (A) (http://www.zytrax.com/books/dns/ch8/a.html)
12. Pattern: Client Side Load Balancing (https://gameserverarchitecture.com/2015/10/pattern-cli

ent-side-load-balancing/)
13. MMOG Server-Side Architecture. Front-End Servers and Client-Side Random Load

Balancing (http://ithare.com/chapter-vib-server-side-architecture-front-end-servers-and-client
-side-random-load-balancing/)

14. "High Availability" (http://www.linuxvirtualserver.org/HighAvailability.html).
linuxvirtualserver.org. Retrieved 2013-11-20.

15. Ranjan, R (2010). "Peer-to-peer cloud provisioning: Service discovery and load-balancing".
Cloud Computing.

16. "Load Balancing 101: Nuts and Bolts" (https://web.archive.org/web/20171205223948/https://
f5.com/resources/white-papers/load-balancing-101-nuts-and-bolts). F5 Networks. 2017-12-
05. Archived from the original (https://f5.com/resources/white-papers/load-balancing-101-nut
s-and-bolts) on 2017-12-05. Retrieved 2018-03-23.

17. Shuang Yu (8 May 2012). "IEEE APPROVES NEW IEEE 802.1aq™ SHORTEST PATH
BRIDGING STANDARD" (http://standards.ieee.org/news/2012/802.1aq.html). IEEE.
Retrieved 2 June 2012.

18. Peter Ashwood-Smith (24 Feb 2011). "Shortest Path Bridging IEEE 802.1aq Overview" (http
s://web.archive.org/web/20130515115628/http://meetings.apnic.net/__data/assets/pdf_file/0
012/32007/APRICOT_SPB_Overview.pdf) (PDF). Huawei. Archived from the original (http://
meetings.apnic.net/__data/assets/pdf_file/0012/32007/APRICOT_SPB_Overview.pdf)
(PDF) on 15 May 2013. Retrieved 11 May 2012.

19. Jim Duffy (11 May 2012). "Largest Illinois healthcare system uproots Cisco to build $40M
private cloud" (http://www.pcadvisor.co.uk/news/internet/3357242/largest-illinois-healthcare-
system-uproots-cisco-build-40m-private-cloud/). PC Advisor. Retrieved 11 May 2012.
"Shortest Path Bridging will replace Spanning Tree in the Ethernet fabric."

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FECS.2015.7124879
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4799-7225-8
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:30175022
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-030-25208-3
https://web.archive.org/web/20191212194243/https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/
https://www.nginx.com/blog/nginx-power-of-two-choices-load-balancing-algorithm/
https://web.archive.org/web/20190215173140/https://www.haproxy.com/blog/power-of-two-load-balancing/
https://www.haproxy.com/blog/power-of-two-load-balancing/
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0166-5316%2886%2990008-8
https://en.wikipedia.org/wiki/ISSN_(identifier)
https://www.worldcat.org/issn/0166-5316
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.5445%2Fir%2F1000074497
http://www.zytrax.com/books/dns/ch8/a.html
https://gameserverarchitecture.com/2015/10/pattern-client-side-load-balancing/
http://ithare.com/chapter-vib-server-side-architecture-front-end-servers-and-client-side-random-load-balancing/
http://www.linuxvirtualserver.org/HighAvailability.html
https://web.archive.org/web/20171205223948/https://f5.com/resources/white-papers/load-balancing-101-nuts-and-bolts
https://en.wikipedia.org/wiki/F5_Networks
https://f5.com/resources/white-papers/load-balancing-101-nuts-and-bolts
http://standards.ieee.org/news/2012/802.1aq.html
https://web.archive.org/web/20130515115628/http://meetings.apnic.net/__data/assets/pdf_file/0012/32007/APRICOT_SPB_Overview.pdf
http://meetings.apnic.net/__data/assets/pdf_file/0012/32007/APRICOT_SPB_Overview.pdf
http://www.pcadvisor.co.uk/news/internet/3357242/largest-illinois-healthcare-system-uproots-cisco-build-40m-private-cloud/

Server routing for load balancing with full auto failure recovery (http://www.udaparts.com/doc
ument/articles/snpisec.htm)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Load_balancing_(computing)&oldid=1047892244"

This page was last edited on 3 October 2021, at 03:31 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

20. "IEEE Approves New IEEE 802.1aq Shortest Path Bridging Standard" (http://www.techpowe
rup.com/165594/IEEE-Approves-New-IEEE-802.1aq-Shortest-Path-Bridging-
Standard.html). Tech Power Up. 7 May 2012. Retrieved 11 May 2012.

21. Mohammad Noormohammadpour, Cauligi S. Raghavendra Minimizing Flow Completion
Times using Adaptive Routing over Inter-Datacenter Wide Area Networks (https://www.resea
rchgate.net/publication/323723167_Minimizing_Flow_Completion_Times_using_Adaptive_
Routing_over_Inter-Datacenter_Wide_Area_Networks) IEEE INFOCOM 2018 Poster
Sessions, DOI:10.13140/RG.2.2.36009.90720 6 January 2019

22. M. Noormohammadpour, C. S. Raghavendra, "Datacenter Traffic Control: Understanding
Techniques and Trade-offs," (https://www.researchgate.net/publication/321744877_Datacent
er_Traffic_Control_Understanding_Techniques_and_Trade-offs) IEEE Communications
Surveys & Tutorials, vol. PP, no. 99, pp. 1-1.

23. Failover and load balancing (https://www.ibm.com/support/knowledgecenter/en/SSVJJU_6.
4.0/com.ibm.IBMDS.doc_6.4/ds_ag_srv_adm_dd_failover_load_balancing.html) IBM 6
January 2019

External links

http://www.udaparts.com/document/articles/snpisec.htm
https://en.wikipedia.org/w/index.php?title=Load_balancing_(computing)&oldid=1047892244
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
http://www.techpowerup.com/165594/IEEE-Approves-New-IEEE-802.1aq-Shortest-Path-Bridging-Standard.html
https://www.researchgate.net/publication/323723167_Minimizing_Flow_Completion_Times_using_Adaptive_Routing_over_Inter-Datacenter_Wide_Area_Networks
https://www.researchgate.net/publication/321744877_Datacenter_Traffic_Control_Understanding_Techniques_and_Trade-offs
https://www.ibm.com/support/knowledgecenter/en/SSVJJU_6.4.0/com.ibm.IBMDS.doc_6.4/ds_ag_srv_adm_dd_failover_load_balancing.html

