MCSE:
SQL Server 2000

Design Study Guide

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

MCSE:
SQL Server™ 2000

Design Study Guide

Marc Israel
J. Steven Jones

..
San Francisco - Paris « Dilsseldorf « Soest « London SYBEX

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Associate Publisher: Neil Edde

Acquisitions and Developmental Editor: Jeff Kellum

Editor: Malka Geffen

Production Editor: Elizabeth Campbell

Technical Editors: Scott Warmbrand, Scott Sanford

Book Designer: Bill Gibson

Graphic Illustrator: Epic Studios, Tony Jonick

Electronic Publishing Specialist: Interactive Composition Corporation
Proofreaders: Laurie O’Connell, Nancy Riddiough, Jennifer Greiman, Suzanne Stein
Indexer: Ann Rogers

CD Coordinator: Christine Harris

CD Technician: Kevin Ly

Cover Designer: Archer Design

Cover Photographer: The Image Bank

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of
this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

First edition copyright © 2001 SYBEX Inc.
Library of Congress Card Number: 2001089819
ISBN: 0-7821-2942-0

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or
other countries.

Screen reproductions produced with FullShot99. FullShot99 © 1991-1999 Inbit Incorporated. All rights reserved.
FullShot is a trademark of Inbit Incorporated.

Microsoft ® Internet Explorer © 1996 Microsoft Corporation. All rights reserved. Microsoft, the Microsoft Internet
Explorer logo, Windows, Windows NT, and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

SYBEX is an independent entity from Microsoft Corporation, and not affiliated with Microsoft Corporation in any
manner. This publication may be used in assisting students to prepare for a Microsoft Certified Professional Exam.
Neither Microsoft Corporation, its designated review company, nor SYBEX warrants that use of this publication will
ensure passing the relevant exam. Microsoft is either a registered trademark or trademark of Microsoft Corporation in
the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive
terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release
software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software
manufacturer(s). The author and the publisher make no representation or warranties of any kind with regard to the
completeness or accuracy of the contents herein and accept no liability of any kind including but not limited to
performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged
to be caused directly or indirectly from this book.

Manufactured in the United States of America

10987654321

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

..
SYBEX

To Our Valued Readers:

In recent years, Microsoft’s MCSE program has established itself as the premier computer and net-
working industry certification. Nearly a quarter of a million IT professionals have attained MCSE sta-
tus in the NT 4 track. Sybex is proud to have helped thousands of MCSE candidates prepare for their
exams over these years, and we are excited about the opportunity to continue to provide people with
the skills they’ll need to succeed in the highly competitive IT industry.

For the Windows 2000 MCSE track, Microsoft has made it their mission to demand more of exam
candidates. Exam developers have gone to great lengths to raise the bar in order to prevent a paper-
certification syndrome, one in which individuals obtain a certification without a thorough under-
standing of the technology. Sybex welcomes this new philosophy as we have always advocated a com-
prehensive instructional approach to certification courseware. It has always been Sybex’s mission to
teach exam candidates how new technologies work in the real world, not to simply feed them answers
to test questions. Sybex was founded on the premise of providing technical skills to IT professionals,
and we have continued to build on that foundation, making significant improvements to our study
guides based on feedback from readers, suggestions from instructors, and comments from industry
leaders.

The depth and breadth of technical knowledge required to obtain Microsoft’s new Windows 2000
MCSE is staggering. Sybex has assembled some of the most technically skilled instructors in the indus-
try to write our study guides, and we’re confident that our Windows 2000 MCSE study guides will
meet and exceed the demanding standards both of Microsoft and you, the exam candidate.

Good luck in pursuit of your MCSE!

Neil Edde
Associate Publisher—Certification
Sybex Inc.

SYBEX Inc. 1151 Marina Village Parkway, Alameda, CA 94501
Tel: 510/523-8233 Fax: 510/523-2373 HTTP://www.sybex.com

. CA www.sybex.com

http://www.sybex.com

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this
book that are available now or in the future contain
programs and/or text files (the “Software”) to be used in
connection with the book. SYBEX hereby grants to you a
license to use the Software, subject to the terms that
follow. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX
unless otherwise indicated and is protected by copyright
to SYBEX or other copyright owner(s) as indicated in the
media files (the “Owner(s)”). You are hereby granted a
single-user license to use the Software for your personal,
noncommercial use only. You may not reproduce, sell,
distribute, publish, circulate, or commercially exploit the
Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s) of
any component software included on this media.

In the event that the Software or components include
specific license requirements or end-user agreements,
statements of condition, disclaimers, limitations or
warranties (“End-User License”), those End-User Licenses
supersede the terms and conditions herein as to that
particular Software component. Your purchase,
acceptance, or use of the Software will constitute your
acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you
further agree to comply with all export laws and
regulations of the United States as such laws and
regulations may exist from time to time.

Reusable Code in This Book

The authors created reusable code in this publication
expressly for reuse for readers. Sybex grants readers
permission to reuse for any purpose the code found in this
publication or its accompanying CD-ROM so long as all
three authors are attributed in any application containing
the reusable code, and the code itself is never sold or
commercially exploited as a stand-alone product.

Software Support

Components of the supplemental Software and any offers
associated with them may be supported by the specific
Owner(s) of that material but they are not supported by
SYBEX. Information regarding any available support may
be obtained from the Owner(s) using the information
provided in the appropriate read.me files or listed
elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to
offer support or decline to honor any offer, SYBEX bears
no responsibility. This notice concerning support for the
Software is provided for your information only. SYBEX is
not the agent or principal of the Owner(s), and SYBEX is
in no way responsible for providing any support for the
Software, nor is it liable or responsible for any support
provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The

Copyright ©2001 SYBEX, Inc., Alameda, CA

Software is not available from SYBEX in any other form
or media than that enclosed herein or posted to
www.sybex.com. If you discover a defect in the media
during this warranty period, you may obtain a
replacement of identical format at no charge by sending
the defective media, postage prepaid, with proof of
purchase to:

SYBEX Inc.

Customer Service Department

1151 Marina Village Parkway
Alameda, CA 94501

(510) 523-8233

Fax: (510) 523-2373

e-mail: info@sybex.com

WEB: HTTP://WWW.SYBEX.COM

After the 90-day period, you can obtain replacement
media of identical format by sending us the defective disk,
proof of purchase, and a check or money order for $10,
payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either
expressed or implied, with respect to the Software or its
contents, quality, performance, merchantability, or fitness
for a particular purpose. In no event will SYBEX, its
distributors, or dealers be liable to you or any other party
for direct, indirect, special, incidental, consequential, or
other damages arising out of the use of or inability to use
the Software or its contents even if advised of the
possibility of such damage. In the event that the Software
includes an online update feature, SYBEX further
disclaims any obligation to provide this feature for any
specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by
some states. Therefore, the above exclusion may not
apply to you. This warranty provides you with specific
legal rights; there may be other rights that you may have
that vary from state to state. The pricing of the book with
the Software by SYBEX reflects the allocation of risk and
limitations on liability contained in this agreement of
Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are
distributed as shareware. Copyright laws apply to both
shareware and ordinary commercial software, and the
copyright Owner(s) retains all rights. If you try a
shareware program and continue using it, you are
expected to register it. Individual programs differ on
details of trial periods, registration, and payment. Please
observe the requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be
copy-protected or encrypted. However, in all cases,
reselling or redistributing these files without authorization
is expressly forbidden except as specifically provided for
by the Owner(s) therein.

www.sybex.com

http://www.sybex.com

To my wife, Claire, and to our boys, Thibault and Quentin. Love and

tolerance are values you share. I love you.
—Marec Israel

Not a day goes by when I do not think of my wife, Tia. For you, my

darling.
—Steve Jones

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Acknowledgments

Like a piece of software, a book is seldom the work of only one man
or woman, but the work of a team of people, aiming at one goal: to teach
and bring enjoyment to the future reader. While the author is focused on
what to say, dozens of other people are helping him to say it well, from
editors to the art crew, in order to publish the best computer book. I
would like to acknowledge all the crew who worked with me on this book,
beginning with my co-author, Steve. Co-authoring is not an easy task when
you sit in the same office, but when 10,000 miles are between both
authors, it’s a tough challenge. I think trust did it all! And everybody at
Sybex trusted us, including Jeff, Elizabeth, Malka, and all those who I do
not know but who worked on this book. Be thanked beyond your wildest
dreams!

—Marc Israel

This book is my first and was a great experience. It was also more trying
and difficult than I had imagined. It would not have been possible without
the support and assistance of my wife, Tia, who put up with quite a few
late nights and weekends away from her and our children. I also have my
mother, Mary Jones, to thank for her limitless enthusiasm and support.
Her constant praise helped to keep me going when the writing was slow to
appear.

Writing with someone is always a difficult chore and writing when you
are physically removed is even more of a challenge. I’d like to thank my
co-author, Marc, for his efforts in working with Sybex and myself from
half a world away.

I also have to thank the IT staff at IQdestination for putting up with a
co-worker who was distracted at times and exhausted at others. Thanks to
Adam, Charles, Chris, Corey, Dave, Kevin, Matt, Michael, and Mindy.

—]J. Steven Jones

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction

TE

Microsoft’s Microsoft Certified Systems Engineer (MCSE) track for
Windows 2000 is the premier certification for computer industry profes-
sionals. Covering the core technologies around which Microsoft’s future
will be built, the MCSE Windows 2000 program is a powerful credential
for career advancement.

This book has been developed to give you the critical skills and knowl-
edge you need to prepare for one of the electives for the MCSE certifica-
tion program: Designing and Implementing Databases with Microsoft®
SOL Server™ 2000 Enterprise Edition (Exam 70-229).

This exam is also one of the required exams for the Microsoft Certified
Database Administrators (MCDBA). We have chosen to focus on the MCSE
track as that is by far the most popular of Microsoft’s certification tracks.
As of this printing, there were over 400,000 MCSEs, and roughly 20,000
MCDBAs. We will discuss all of the different tracks below.

Since the inception of its certification program, Microsoft has certified
over one million people. As the computer network industry grows in both
size and complexity, these numbers are sure to grow—and the need for
proven ability will also increase. Companies rely on certifications to verify
the skills of prospective employees and contractors.

Microsoft has developed its Microsoft Certified Professional (MCP)
program to give you credentials that verify your ability to work with
Microsoft products effectively and professionally. Obtaining your MCP
certification requires that you pass any one Microsoft certification exam.
Several levels of certification are available based on specific suites of
exams. Depending on your areas of interest or experience, you can obtain
any of the following MCP credentials:

Microsoft Certified System Engineer (MCSE) This certification track
is designed for network and systems administrators, network and
systems analysts, and technical consultants who work with Microsoft
Windows 2000 client and server software. You must take and pass
seven exams to obtain your MCSE.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

xxii Introduction

) Since this book covers one of the MCSE elective exams, we will discuss the
dv TE

“ MCSE certification in detail in this Introduction.

Microsoft Certified Database Administrator (MCDBA) This track is
designed for database administrators, developers, and analysts who
work with Microsoft SQL Server. As of this printing, you can take
exams on either SQL Server 7 or SQL Server 2000, but Microsoft is
expected to announce the retirement of SQL Server 7. You must take
and pass four exams to achieve MCDBA status.

)’ The Designing and Implementing Databases with Microsoft® SQL Ser-
‘d’“ ver™ 2000 Enterprise Edition exam is one of the MCDBA required exams.

Microsoft Certified Solution Developer (MCSD) This track is designed
for software engineers and developers and technical consultants who
primarily use Microsoft development tools. Currently, you can take
exams on Visual Basic, Visual C++, and Visual FoxPro. However, with
Microsoft’s pending release of Visual Studio 7, you can expect the
requirements for this track to change by the end of 2001. You must take
and pass four exams to obtain your MCSD.

Microsoft Certified Trainer (MCT) The MCT track is designed for
any IT professional who develops and teaches Microsoft-approved
courses. To become an MCT, you must first obtain your MCSE, MCSD,
or MCDBA; then you must take a class at one of the Certified Technical
Training Centers. You will also be required to prove your instructional
ability. You can do this in various ways: by taking a skills-building or
train-the-trainer class; by achieving certification as a trainer from any of
a number vendors; or by becoming a Certified Technical Trainer
through the Chauncey Group (www.chauncey.com/ctt.html). Last of
all, you will need to complete an MCT application.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction xxiii

As of March 1, 2001, Microsoft no longer offers MCSE NT 4 required exams.
Those who are certified in NT 4 have until December 31, 2001, to upgrade
their credentials to Windows 2000. Also, Microsoft has retired three other
certification tracks: MCP+Internet, MCSE+Internet, and MCP+Site Builder.
The topics and concepts that are tested in these certifications have been
incorporated into the MCSE and MCSD exames.

How Do You Become an MCSE?

Attaining MCSE certification has always been a challenge. In the past,
students have been able to acquire detailed exam information—even most
of the exam questions—from online “brain dumps” and third-party
“cram” books or software products. For the new MCSE exams, this is
simply not the case.

Microsoft has taken strong steps to protect the security and integrity of
the new MCSE track. Now, prospective MSCEs must complete a course
of study that develops detailed knowledge about a wide range of topics.

It supplies them with the true skills needed, derived from working with
Windows 2000 and related software products.

The new MCSE program is heavily weighted toward hands-on skills
and experience. Microsoft has stated that “nearly half of the core required
exams’ content demands that the candidate have troubleshooting skills
acquired through hands-on experience and working knowledge.”

Fortunately, if you are willing to dedicate the time and effort to learn
Windows 2000, you can prepare yourself well for the exams by using the
proper tools. By working through this book, you can successfully meet the
exam requirements.

This book is part of a complete series of Sybex MCSE Study Guides,
published by Sybex Inc., that together cover the core Windows 2000
requirements as well as the new Design exams and a number of the
electives needed to complete your MCSE track. Study Guide titles include
the following:

* MCSE: Windows 2000 Professional Study Guide, Second Edition,
by Lisa Donald with James Chellis (Sybex, 2001)

= MCSE: Windows 2000 Server Study Guide, Second Edition, by Lisa
Donald with James Chellis (Sybex, 2001)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

xxiv Introduction

= MCSE: Windows 2000 Network Infrastructure Administration
Study Guide, Second Edition, by Paul Robichaux with James Chellis
(Sybex, 2001)

= MCSE: Windows 2000 Directory Services Administration Study
Guide, Second Edition, by Anil Desai with James Chellis (Sybex,
2001)

= MCSE: Windows 2000 Network Security Design Study Guide, by
Gary Govanus and Robert King (Sybex, 2000)

= MCSE: Windows 2000 Network Infrastructure Design Study Guide,
by Bill Heldman (Sybex, 2000)

* MCSE: Windows 2000 Directory Services Design Study Guide, by
Robert King and Gary Govanus (Sybex, 2000)

= MCSE: SOL Server 2000 Administration Study Guide, by Lance
Mortensen, Rick Sawtell, and Joseph L. Jorden (Sybex, 2001)

= MCSE: Exchange 2000 Server Administration Study Guide, by
Walter Glen with James Chellis (Sybex, 2001)

* MCSE: Exchange 2000 Server Design Study Guide, by William
Heldman (Sybex, 2001)

= MCSE: Windows 2000 Migration Study Guide, by Todd Phillips
(Sybex, 2001)

) Please visit certification.sybex.comfor a complete list of our offerings,
dTE

“ including our Virtual Trainers, Virtual Test Centers, and Exam Notes.

Exam Requirements

Candidates for MCSE certification in Windows 2000 must pass seven
exams, including four core operating system exams, one design exam, and
two electives.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Core
Requirements

Windows 2000
Professional
(70-210)

Windows 2000
Server
(70-215)

Windows 2000
Network
Infrastructure
Administration
(70-216)

Windows 2000
Directory
Services

Administration
(70-217)

Plus one of
the following

Design
Requirement

Designing a
Windows 2000
Directory
Services
Infrastructure
(70-219)

Designing
Security for
Windows 2000
Network
(70-220)

Designing a
Windows 2000
Network
Infrastructure
(70-221)

Designing Web
Solutions with
Windows 2000
Server
Technologies
(70-226)

Plus two of
the following

Introduction xxv

Electives

Any of the
Design exams
not taken for

the Design
requirement

Any current
Elective exam.
Topics include

Exchange Server,
SQL Server, and
ISA Server

For a more detailed description of the Microsoft certification programs,
including a list of current and future MCSE electives, check Microsoft’s Train-
ing and Certification Web site at www.microsoft.com/trainingandservices.

The Designing and Implementing Databases with Microsoft®
SQL Server™ 2000 Enterprise Edition Exam

The Designing and Implementing Databases with SQL Server 2000
Certification exam covers concepts and skills required for the support of
SQL Server 2000. It emphasizes the following areas:

= Creating and maintaining tables

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

xxvi Introduction

* Implementing data integrity using rules, constraints, and keys
= Creating and maintaining indexes
= Creating views, defaults, stored procedures, and triggers

= Accessing and modifying data in SQL Server and remote data
sources

= Working with data in an XML format

= Using SQL Server utilities to import and export data in bulk
= Developing a security plan for a database

* Understanding locking and its impact on the server

= Tuning SQL Server query performance

If we had to create a single sentence to describe the test, it would be as
follows: The exam will test your knowledge of designing, creating, and
maintaining a database on SQL Server 2000. To pass the test, you need to
fully understand these topics.

)’ Microsoft provides exam objectives to give you a very general overview of

‘@TE possible areas of coverage on the Microsoft exams. For your convenience,
this study guide includes objective listings positioned within the text at
points where specific Microsoft exam objectives are discussed. Keep in
mind, however, that exam objectives are subject to change at any time with-
out prior notice and at Microsoft’s sole discretion. Please visit Microsoft's
Training and Certification Web site (www.microsoft.com/trainingand-
services) for the most current listing of exam objectives.

Types of Exam Questions

In an effort to both refine the testing process and protect the quality of its
certifications, Microsoft has focused its Windows 2000 exams on real
experience and hands-on proficiency. There is a higher emphasis on your
past working environments and responsibilities, and less emphasis on how
well you can memorize. In fact, Microsoft says an MCSE candidate should
have at least one year of hands-on experience.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

A JTE

\
\

,A‘I;bTE

Introduction xxvii

Microsoft will accomplish its goal of protecting the exams’ integrity by reg-
ularly adding and removing exam questions, limiting the number of ques-

tions that any individual sees in a beta exam, limiting the number of ques-

tions delivered to an individual by using adaptive testing, and adding new

exam elements.

Exam questions may be in a variety of formats: Depending on which
exam you take, you’ll see multiple-choice questions, as well as select-and-
place and prioritize-a-list questions. Simulations and case study—based for-
mats are included, as well. You may also find yourself taking what’s called
an adaptive format exam. Let’s take a look at the types of exam questions
and examine the adaptive testing technique, so that you’ll be prepared for
all of the possibilities.

For more information on the various exam question types, go to
www.microsoft.com/trainingandservices/default.asp?PagelD=
mcp&PageCall=tesinn&SubSite=examinfo.

MULTIPLE-CHOICE QUESTIONS

Multiple-choice questions come in two main forms. One is a straight-
forward question followed by several possible answers, of which one or
more is correct. The other type of multiple-choice question is more
complex and based on a specific scenario. The scenario may focus on a
number of areas or objectives.

SELECT-AND-PLACE QUESTIONS

Select-and-place exam questions involve graphical elements that you must
manipulate in order to successfully answer the question. For example,
you might see a diagram of a computer network, as shown in the follow-
ing graphic taken from the select-and-place demo downloaded from
Microsoft’s Web site.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction

Sample: Item 1 of 3 _|a] |

Time Remaining: 28:48 "

“ou are creating a new client/server network. You want to install both the client computers and the servers to
maximize the performance of each computer

Wyhich role should you choose for each computer on the network?

#+ Quick Drop
To answ
Place here Flace here
P P

~ -
[~ ,, .
-— Computerl: = d Computer2:
< Windows 95 Windows NT Server
" Pentium 120 Penrium 120
Application = T
m %%J// 32-MB RAM fg:%\\;é\}_// 128-M B Rk
SR =R
m)
I
Client g —
computer -] [Computer3:

Windows NT Server
Dual Pentium Pro 200

=
Click on Mext [or My

Next Help
I \

N
/1

£

L
=

N\

A typical diagram will show computers and other components next to
boxes that contain the text “Place here.” The labels for the boxes represent
various computer roles on a network, such as a print server and a file
server. Based on information given for each computer, you are asked to
select each label and place it in the correct box. You need to place all of
the labels correctly. No credit is given for the question if you correctly
label only some of the boxes.

In another select-and-place problem you might be asked to put a series
of steps or lines of code in order, by dragging item from boxes on the left
to boxes on the right, and placing them in the correct order. One other
type requires that you drag an item from the left and place it under an item
in a column on the right.

CASE STUDY-BASED QUESTIONS

Case study-based questions first appeared in the MCSD program. These
questions present a scenario with a range of requirements. Based on the

information provided, you answer a series of multiple-choice and select-
and-place questions. The interface for case study—based questions has a

number of tabs, each of which contains information about the scenario.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

.
INING

Introduction xxix

ADAPTIVE EXAM FORMAT

Microsoft presents many of its exams in an adaptive format. This format is
radically different from the conventional format previously used for
Microsoft certification exams. Conventional tests are static, containing a
fixed number of questions. Adaptive tests change depending on your
answers to the questions presented.

The number of questions presented in your adaptive test will depend on
how long it takes the exam to ascertain your level of ability (according to
the statistical measurements on which exam questions are ranked). To
determine a test-taker’s level of ability, the exam presents questions in an
increasing or decreasing order of difficulty.

Unlike the earlier test format, the adaptive test does not allow you to go
back to see a question again. The exam only goes forward. Once you enter
your answer, that’s it—you cannot change it. Be very careful before enter-
ing your answers. There is no time limit for each individual question (only
for the exam as a whole). Your exam may be shortened by correct answers
(and lengthened by incorrect answers), so there is no advantage to rushing
through questions.

Microsoft will regularly add and remove questions from the exams. This is
called item seeding. It is part of the effort to make it more difficult for indi-
viduals to merely memorize exam questions that were passed along by
previous test-takers.

Exam Question Development

Microsoft follows an exam-development process consisting of eight
mandatory phases. The process takes an average of seven months
and involves more than 150 specific steps. The MCP exam develop-
ment consists of the following phases:

Phase 1: Job Analysis Phase 1 is an analysis of all the tasks that make
up a specific job function, based on tasks performed by people who

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

XXX

Introduction

are currently performing that job function. This phase also identifies
the knowledge, skills, and abilities that relate specifically to the
performance area being certified.

Phase 2: Objective Domain Definition The results of the job analysis
phase provide the framework used to develop objectives. Develop-
ment of objectives involves translating the job-function tasks into a
comprehensive package of specific and measurable knowledge, skills,
and abilities. The resulting list of objectives—the objective domain—is
the basis for the development of both the certification exams and the
training materials.

Phase 3: Blueprint Survey The final objective domain is transformed
into a blueprint survey in which contributors are asked to rate each
objective. These contributors may be MCP candidates, appropriately
skilled exam-development volunteers, or Microsoft employees. Based
on the contributors’ input, the objectives are prioritized and weighted.
The actual exam items are written according to the prioritized
objectives. Contributors are queried about how they spend their time
on the job. If a contributor doesn’t spend an adequate amount of time
actually performing the specified job function, his or her data are
eliminated from the analysis. The blueprint survey phase helps
determine which objectives to measure, as well as the appropriate
number and types of items to include on the exam.

Phase 4: Item Development A pool of items is developed to measure
the blueprinted objective domain. The number and types of items to
be written are based on the results of the blueprint survey.

Phase 5: Alpha Review and Item Revision During this phase, a panel
of technical and job-function experts review each item for technical
accuracy. The panel then answers each item and reaches a consensus
on all technical issues. Once the items have been verified as being
technically accurate, they are edited to ensure that they are expressed
in the clearest language possible.

Phase 6: Beta Exam The reviewed and edited items are collected into
beta exams. Based on the responses of all beta participants, Microsoft

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction xxxi

performs a statistical analysis to verify the validity of the exam items
and to determine which items will be used in the certification exam.
Once the analysis has been completed, the items are distributed into
multiple parallel forms, or versions, of the final certification exam.

Phase 7: Item Selection and Cut-Score Setting The results of the beta
exams are analyzed to determine which items will be included in the
certification exam. This determination is based on many factors,
including item difficulty and relevance. During this phase, a panel of
job-function experts determine the cut score (minimum passing score)
for the exams. The cut score differs from exam to exam because it is
based on an item-by-item determination of the percentage of
candidates who answered the item correctly and who would be
expected to answer the item correctly.

Phase 8: Live Exam In the final phase, the exams are given to
candidates. MCP exams are administered by Prometric and Virtual
University Enterprises (VUE).

Tips for Taking the SQL Server 2000 Design Exam

Here are some general tips for achieving success on your certification
exam:

= Arrive early at the exam center so that you can relax and review
your study materials. During this final review, you can look over
tables and lists of exam-related information.

= Read the questions carefully. Don’t be tempted to jump to an early
conclusion. Make sure you know exactly what the question is
asking.

= Answer all questions. Remember, a guess is better than a blank
answer. Also, make sure that you can go back, and if you can’t, do
not go onto the next question without answering the previous one.
On simulations, do not change settings that are not directly related
to the question. Also, assume default settings if the question does
not specify or imply which settings are used.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

XXXii

Introduction

= For questions you’re not sure about, use a process of elimination to
get rid of the obviously incorrect answers first. This improves your
odds of selecting the correct answer when you need to make an
educated guess.

Exam Registration

You may take the Microsoft exams at any of more than 1,000 Authorized
Prometric Testing Centers (APTCs) and VUE Testing Centers around the
world. For the location of a testing center near you, call Prometric at 800-
755-EXAM (755-3926), or call VUE at 888-837-8616. Outside the United
States and Canada, contact your local Prometric or VUE registration
center.

Find out the number of the exam you want to take, and then register
with the Prometric or VUE registration center nearest to you. At this point,
you will be asked for advance payment for the exam. The exams are $100
each and you must take them within one year of payment. You can sched-
ule exams up to six weeks in advance or as late as one working day prior
to the date of the exam. You can cancel or reschedule your exam if you
contact the center at least two working days prior to the exam. Same-day
registration is available in some locations, subject to space availability.
Where same-day registration is available, you must register a minimum of
two hours before test time.

You may also register for your exams online at www.prometric.com or
www . vue. com.

When you schedule the exam, you will be provided with instructions
regarding appointment and cancellation procedures, ID requirements, and
information about the testing center location. In addition, you will receive
a registration and payment confirmation letter from Prometric or VUE.

Microsoft requires certification candidates to accept the terms of a
Non-Disclosure Agreement before taking certification exams.

Is This Book for You?

If you want to acquire a solid foundation in SQL Server 2000 Design,
and your goal is to prepare for the exam by learning how to use the

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction xxxiii

database program, this book is for you. You’ll find clear explanations of
the fundamental concepts you need to grasp, and plenty of help to achieve
the high level of professional competency you need to succeed in your
chosen field.

If you want to become certified as an MCSE, this book is definitely for
you. However, if you just want to attempt to pass the exam without
really understanding SQL Server 2000, this Study Guide is not for you.

It is written for people who want to acquire hands-on skills and in-depth
knowledge of SQL Server 2000, paying particular attention to the
published exam objectives.

How to Use This Book

What makes a Sybex Study Guide the book of choice for over 100,000

MCSEs? We took into account not only what you need to know to pass
the exam, but what you need to know to take what you’ve learned and

apply it in the real world. Each book contains the following:

Objective-by-objective coverage of the topics you need to know Each
chapter lists the objectives covered in that chapter, followed by detailed
discussion of each objective.

Assessment Test On the CD you’ll find an Assessment Test that you
should take. It is designed to help you determine how much you already
know about SQL Server 2000. Each question is tied to a topic discussed
in the book. Using the results of the Assessment Test, you can figure out
the areas where you need to focus your study. Of course, we do recom-
mend you read the entire book.

Exam Essentials To highlight what you learn, you’ll find a list of
Exam Essentials at the end of each chapter. The Exam Essentials section
briefly highlights the topics that need your particular attention as you
prepare for the exam.

Key Terms and Glossary Throughout each chapter, you will be intro-
duced to important terms and concepts that you will need to know for
the exam. These terms appear in italic within the chapters, and a list of
the Key Terms appears just after the Exam Essentials. At the end of the
book, a detailed Glossary gives definitions for these terms, as well as
other general terms you should know.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

XXXiv

2

P

Introduction

o

Review questions, complete with detailed explanations Each chapter is
followed by a set of Review Questions that test what you learned in the
chapter. The questions are written with the exam in mind, meaning that
they are designed to have the same look and feel of what you’ll see on
the exam. Question types are just like the exam, including multiple
choice, exhibits, select-and-place, and prioritize-a-list.

Hands-on exercises In each chapter, you’ll find exercises designed to
give you the important hands-on experience that is critical for your
exam preparation. The exercises support the topics of the chapter, and
they walk you through the steps necessary to perform a particular
function.

Real World Scenarios Because reading a book isn’t enough for you to
learn how to apply these topics in your every-day duties, we have pro-
vided Real World Scenarios in special sidebars. These explain when and
why a particular solution would make sense, in a working environment
you’d actually encounter.

Interactive CD Every Sybex Study Guide comes with a CD complete
with additional questions, flashcards for use with a palm device, and
the electronic book. Details are in the following section.

The topics covered in this Study Guide map directly to Microsoft’s official
exam objectives. Each exam objective is covered completely.

What's on the CD?

With this new member of our best-selling MCSE Study Guide series, we
are including quite an array of training resources. The CD offers numerous
simulations, bonus exams, and flashcards to help you study for the exam.
We have also included the complete contents of the study guide in
electronic form. The CD’s resources are described here:

The Sybex Ebook for the SQL Server 2000 Design Study Guide Many
people like the convenience of being able to carry their whole study
guide on a CD. They also like being able to search the text via computer
to find specific information quickly and easily. For these reasons, the
entire contents of this Study Guide are supplied on the CD, in PDF for-

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction xxxv

mat. We’ve also included Adobe Acrobat Reader, which provides the
interface for the PDF contents as well as the search capabilities.

The Sybex MCSE Edge Tests The Edge Tests are a collection of
multiple-choice questions that will help you prepare for your exam.
There are four sets of questions:

* Two bonus exams designed to simulate the actual live exam.

* An adaptive test simulator that will give the feel for how adaptive
testing works.

= All the questions from the Study Guide, presented in a test engine
for your review. You can review questions by chapter, by objec-
tive, or you can take a random test.

= The Assessment Test.

Here is a sample screen from the Sybex MCSE Edge Tests:

ACSE: Windows 2000
File Help
1:29:43 Item 20 of 75 I~ Mark

i You have been having proble s with the HE printer. You are not sure if the probler is with the peint
device or with the shared printer configuration. Which of the following steps can you take to bypass
ne twork printing?

" A Inthe Advanced tab of the printer Properties dialog box, configure the Print
Directly to the Printer option.

" B.Inthe General tab of the printer Properties dialog box, configure the Print
Directlyto the Printer option.

~ C.Inthe Advanced tab of the printer Properties dialog box, configure the Bypass
Metwork Printing option.

" D.Inthe General tab of the printer Properties dialog box, configure the Bypass
Metwork Printing option.

Previous

Answer

Sybex MCSE Flashcards for PCs and Palm Devices The “flashcard”
style of question offers an effective way to quickly and efficiently test
your understanding of the fundamental concepts covered in the exam.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

xxxvi Introduction

The Sybex MCSE Flashcards set consists of more than 150 questions
presented in a special engine developed specifically for this study guide
series. Here’s what the Sybex MCSE Flashcards interface looks like:

Windows 2000 Flashcards

Because of the high demand for a product that will run on Palm devices,
we have also developed, in conjunction with Land-] Technologies, a ver-
sion of the flashcard questions that you can take with you on your Palm
OS PDA (including Handspring’s Visor).

How Do You Use This Book?

This book provides a solid foundation for the serious effort of preparing
for the exam. To best benefit from this book, you may wish to use the
following study method:

1. Take the Assessment Test on the CD to identify your weak areas.

2. Study each chapter carefully. Do your best to fully understand the
information.

3. Complete all the hands-on exercises in the chapter, referring back to
the text as necessary so that you understand each step you take.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction xxxvii

) To do the exercises in this book, your hardware should meet the minimum
dv TE

hardware requirements for SQL Server 2000. Many of the exercises use the
Northwind database, which is included with SQL Server.

4. Read over the Real World Scenarios, to improve your understanding
of how to use what you learn in the book.

5. Study the Exam Essentials and Key Terms to make sure you are
familiar with the areas you need to focus on.

6. Answer the review questions at the end of each chapter. If you prefer
to answer the questions in a timed and graded format, install the
Edge Tests from the book’s CD and answer the chapter questions
there instead of in the book.

7. Take note of the questions you did not understand, and study the
corresponding sections of the book again.

8. Go back over the Exam Essentials and Key Terms.

9. Go through the Study Guide’s other training resources, which are
included on the book’s CD. These include electronic flashcards, the
electronic version of the chapter review question (try taking them by
objective), and the two bonus exams.

To learn all the material covered in this book, you will need to study
regularly and with discipline. Try to set aside the same time every day to
study, and select a comfortable and quiet place in which to do it. If you

work hard, you will be surprised at how quickly you learn this material.
Good luck!

Contacts and Resources

To find out more about Microsoft Education and Certification materials
and programs, to register with Prometric or VUE, or to obtain other useful
certification information and additional study resources, check the
following resources:

Microsoft Training and Certification Home Page
www.microsoft.com/trainingandservices

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

XXXviii

Introduction

This Web site provides information about the MCP program and
exams. You can also order the latest Microsoft Roadmap to Education
and Certification.

Microsoft TechNet Technical Information Network

www.microsoft.com/technet
800-344-2121

Use this Web site or phone number to contact support professionals and
system administrators. Outside the United States and Canada, contact
your local Microsoft subsidiary for information.

Palm Training Product Development: Land-]
www . Tand-j.com
407-359-2217

Land-] Technologies is a consulting and programming business cur-
rently specializing in application development for the Palm Personal
Digital Assistant. Land-J developed the Palm version of the Edge Tests,
which is included on the CD that accompanies this Study Guide.

Prometric
www . prometric.com
800-755-3936

Contact Prometric to register to take an MCP exam at any of more than
800 Prometric Testing Centers around the world.

Virtual University Enterprises (VUE)
www . vue . com
888-837-8616

Contact the VUE registration center to register to take an MCP exam at
one of the VUE Testing Centers.

MCP Magazine Online
www . mcpmag . com

Microsoft Certified Professional Magazine is a well-respected publica-
tion that focues on Windows certification. This site hosts chats and dis-
cussion forums, and tracks news related to the MCSE program. Some of
the services cost a fee, but they are well worth it.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Introduction xxxix

Windows 2000 Magazine
www . windows2000mag . com

You can subscribe to this magazine or read free articles at the Web site.
The study resource provides general information on Windows 2000.

Cramsession on Brainbuzz.com
cramsession.brainbuzz.com

Cramsession is an online community focusing on all IT certification
programs. In addition to discussion boards and job locators, you can
download one of a number of free cramsessions, which are nice supple-
ments to any study approach you take.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Database Logical
Modeling

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Define entities. Considerations include entity composition and

normalization.
Specify entity attributes.
Specify degree of normalization.

v Design entity keys. Considerations include FOREIGN KEY
constraints, PRIMARY KEY constraints, and UNIQUE
constraints.

Specify attributes that uniquely identify records.
Specify attributes that reference other entities.

v Design attribute domain integrity. Considerations include
CHECK constraints, data types, and nullability.

Specify scale and precision of allowable values for each
attribute.
Allow or prohibit NULL for each attribute.

Specify allowable values for each attribute.

b T
L3 | ([l
S R) |

ffn et ; i A ! s l 0 Cq'pyr;ig,h‘!©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

or many users, database design is a total mystery. Over
the years, database management systems became easier to use and were
included in office productivity tools. Databases were being created by
people unaware of what a database design is. With a system like SQL
Server, if the architecture of your database does not follow the rules of
relational systems, you will end up with an unusable application.
In this chapter, we will discuss:

= Designing a database system
= The Entity/Relationship model
= The relational model and the normalization process

* The denormalization process

Designing a Database System

Whatever its size, the development of a database system may be
split into five stages:

1. Planning and Analysis
2. Conceptual Design

3. Logical Design

4. Physical Design
5

. Implementation

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

A JTE

L
INING

Designing a Database System 3

This chapter focuses on the first three phases of designing. Phase four is
covered in Chapter 2. Phase 5 is discussed throughout the book, since it
concerns the development of database objects.

The planning and analysis phase is an investigation phase, during which
you are going to gather and analyze needed information. This stage is gen-
erally done with the help of users, and is crucial to the second phase.

You should involve users in the analysis phase because you do not know
their job as well as they do, and because they should agree that what you
are doing will work in the real world. You'll probably encounter difficulties
in involving users because they may not have time nor feel concerned.
Insist! Explain to them that you are working for them and that the time they
invest now with you will prevent lost time later due to an inadequate appli-
cation. Sometimes, people won’t want to meet with you because they are
intimidated; they fear to tell you that they dislike computers or fear you are
going to use computer words or idioms they won't understand. Users are
involved only up to the logical design; they do not need to be concerned
about DBMS systems or any computer related information.

The whole process of planning and analyzing information and building
a conceptual design can be a long and costly one. That’s the reason why
it’s often skipped, which is a huge a mistake! You can compare these two
steps to designing a house. Would you think of building your house with-
out blueprints? That’s the decision you make if you build a database with-
out analysis and conceptual design. A deficient or even non-existent con-
ceptual design leads to inaccurate logical design and an unusable physical
one. Of course, we know the real world is not perfect. The borders
between the analysis, conceptual, and logical designs are often blurred.
You go from one stage to the other, back and forth. That’s why several
methodologies or pieces of software will derive a conceptual design from a
logical one, helping you to create your logical design step by step.

It's always easier to modify the logical design than the physical one, once it
has been implemented. Spend time creating your design! Check it! Make
users validate it!

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

4 Chapter 1 - Database Logical Modeling

In fact, the conceptual and logical designs will generally be used as com-
munication tools since they present data and functions in an understand-
able manner, even for the computer illiterate. The conceptual design is
roughly made of two distinct models: the data model and the function
model. The data model defines the data stored in the database; the func-
tion model defines the queries that will be executed on the database.

@ Real World Scenario
The New Database Analysis

You are a senior database developer of a medium-size organization
and are called to analyze the future vacation and sick leave application
for the Human Resources department. As an employee, you probably
have ideas about information needed in this kind of application. But,
as you are not working for HR, you do not know all of the subtleties of
their jobs. The first step is to gather all necessary information, keeping
in mind that even minor facts for you could be critical for someone in
HR.

You make an appointment with Gary Pinkleton, the HR Manager, to
determine the information the HR employees need. Fortunately, Gary
is a well-organized guy, and he also invited Joan Winslow, the Office
Manager, to the meeting. Each of them prepared a document
summarizing the purpose of the application and the information that
is needed. Unfortunately, they dislike computers, as do many of the
HR employees, and you have to take that into account. They are paper
and people oriented! You thank them for the good job they’ve done,
and explain you would like to interview some HR employees in charge
of managing vacation and sick leave, just to understand the way they
work now. Then you will get back to them to discuss any issues met.

After gathering information through interviews, available documents,
artifacts, etc., you have to analyze it. Probably the most important
thing at that stage is to keep connected to the real world, being sure
the analyzed information is representative of the situation. During the
analysis stage, you have to organize, prioritize, and validate
information.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Entity/Relationship Model 5

Once you have all the necessary, accurate, and validated information,
you can create cases to show actions between users and the new
system and to describe the states of the system. Being able to identify
theses cases will help the conceptual and logical design because it will
enhance the relationships between specific information.

After a couple of weeks, you meet again with Gary and Joan. You
used Microsoft Visio to diagram your entity/relationship model and
explain to them how you see things working. They are impressed by
the simplicity of the diagram and the fact you clearly understood their
need. They are reassured about the new application because you have
not talked yet about computers or the way the application is to be
implemented, but they can sense how it will work and see that all the
necessary information is there.

Because you used what | call a user-oriented approach, they feel
reassured about the new computer system and confident in the fact
that the application will definitely help them do their jobs. On your
side, you know that, as they participate in its design, they are partly
responsible for the new system, so it will be easier to implement it in
the department.

)’ There is a classic confusion between the conceptual and the logical design.
‘d’“ The ER model refers to the conceptual design stage and the relational
model to the logical design stage. The ER model has been very popular
because it is easy to derive it to create the relational model. Both models
are discussed in the following sections.

The Entity/Relationship Model

Peter Chen first introduced the Entity/Relationship (ER) model in
1977. It has become very popular because an ER model is very simple to
create and read, and can be used directly to create a relational model and
transform its elements into database elements. The ER model translates

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

6 Chapter 1 - Database Logical Modeling

L
INING

your analyzed information into data requirements, and, as stated earlier,

is used to facilitate communications between the database architect and
the future users of the new system. An ER model is made of three different
elements:

= Entity, which represents real-world concepts, such as places, objects,
events, persons, orders, customers, and so on.

= Relationship, which represents associations between objects, such as
the fact that a customer may place an order.

= Arstribute, which describes the entity, such as the invoice date or the
customer first name.

In the next pages, you'll notice there is a difference between an entity and an
entity instance. An instance is an individual occurrence of an entity. In the
relational world, an entity is equivalent to a table and an instance to a row.

Deriving entities, attributes, and relationships from the analysis phase
may be an intricate process. What you need to do is to take every sentence
of your conceptual model and transform the nouns (subjects) into the enti-
ties, the adjectives or nouns (direct objects) into the attributes, and the
verbs into the relationships. Well, this may sound a little bit too easy, but
in fact, that’s a logical process.

Let’s look at an example. The HR Manager of your company asked you
to consider the following in your database (see previous design scenario

sidebar):

= An employee is defined by his/her employee ID, first name, last
name, hired date, and department.

= He/she applies for a vacation leave.

With these two statements, you discover two entities: Employee and
Vacation Leave, plus five attributes of the Employee entity:

= ID

= First Name
= Last Name
= Hire Date

= Department

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Entity/Relationship Model 7

You also discover one relationship: applies for (between Employee
and Vacation Leave). We do not have enough information to define what
a Vacation Leave is, but that’s a kind of data we’ll need to gather from the
HR Manager or any member of his/her team.

Let’s take a closer look at how to define entities and attributes first,
then how to define relationships between entities.

Defining Entities and Attributes

Microsoft

Exam
Objective

Define entities. Considerations include entity composition
and normalization.

= Specify entity attributes.

As stated earlier, entities define real-word concepts, and attributes
describe precisely these concepts. Peter Chen defines an entity as “a thing
that can be distinctly identified.” There are two interesting aspects of this
definition. First, he describes an entity as being a “thing.” It might be bet-
ter to say an entity can be a thing, a concept, an object, an event, or a per-
son, but on the whole, it is “something.” Second, he says that the entity
can be distinctly identified. That may be the most important part of the
concept. An item that does not have descriptive information and permits
its identification is not an entity! So while analyzing a new database appli-
cation, you should precisely describe and identify an item, so it has every
chance to be an entity.

An attribute is a noun or an adjective that identifies or describes an
entity. An attribute identifying an entity is called a key attribute. An
attribute describing an entity is called a non-key attribute. For example,
the employee ID is a key attribute of the employee entity. On the contrary,
the employee’s first name is a non-key attribute. We’ll see later in this
chapter that key attributes play an important role in relationships between
entities.

Take the example of your address book. Each address represents a per-
son or an organization you know—that’s an instance of the entity. Each
address owns different attributes: the contact’s first name, last name,
address, zip code, city, country, e-mail, phone number, and so on. If you
have ever used Microsoft Excel to store that kind of data, you’ve used the
spreadsheet format to create a table. An instance of the entity corresponds

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

8 Chapter 1 - Database Logical Modeling

/L
ING

to one row of this table and an attribute to one of its columns. From the
interview conducted during the analysis phase, you can easily define enti-
ties and attributes from all the sentences and information gathered.

Generally, the consultant or anyone in charge of the analysis of the new
database creates the entity/relationship diagram representing entities and
relationships. In an ER model, each entity is represented by a labeled rec-
tangle. The label is the name of the entity, which should always be a noun.
Each entity attribute is listed inside the adequate entity rectangle.

Some ER gurus do not agree on listing the attribute directly on the ER
model. In fact, there are different ways to represent entities, relation-
ships, and attributes. The diagrams presented there conform to what is
found in different Microsoft publications (official curriculum, books,
white papers, and so on.) It may not exactly conform to Peter Chen’s ER
historic representations, but it's less academic and more understandable
for a majority of people.

You can use Microsoft Visio 2000 to create an entity/relationship diagram,
and to derive the logical and physical models from that point. Visio 2000
manages metadata directly to automatically generate tables, relationships,
triggers, indexes, and so on from the diagrams. All the diagrams in this
chapter have been made with Visio 2000 using the Source ER Model tem-
plate, and all the examples are taken from the Pubs or Northwind databases
shipped with SQL Server 2000.

To illustrate this concept of entities and attributes, let’s take a look at a
part of the Northwind database, which is shipped with SQL Server 2000.
While developing the Northwind database, the following have been
extracted from the interview with the Purchase Manager of Northwind
Traders Inc.:

= Every product is shipped by a specific supplier.

= We have the address, phone number, and fax number of every sup-
plier. This is mandatory information because we must be able to
contact them anytime.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Entity/Relationship Model 9

= As far as the products are concerned, they are supplied by different
suppliers, knowing that one supplier can supply many different
products.

= For each product, we store its name, its price, the quantity per unit,
the units on stock, and the units on order based on the reorder level,
which is different for every product.

= Sometimes, we are forced to discontinue a product because it’s no
longer produced or we cannot sell it anymore.

From these few statements, we discover two entities: products and sup-
pliers, each of them having different attributes. Figure 1.1 illustrates enti-
ties and their associated attributes, plus the relationship.

FIGURE 1.1 Entities/Relationship/Attributes

Entity Entity name

Suppliers Products
SupplieriD ProductlD «—f§—— Key attribute
CompanyName | Relationship ProductName
ContactName SupplierlD
ContactTitle CategoryID
Address Supply =——————— QuantityPerUnit
City * UnitPrice
Region UnitsInStock
PostalCode UnitsOnOrder
Country ReorderLevel
Phone Discontinued
Fax
HomePage «——f—— Non-Key attribute

Using this kind of diagram, it becomes easy to communicate with users
and have them help you validate your architectural choices. But, as you
may have noticed, we find a relationship between both entities and key
attributes. Let’s now take a look at how we define these keys and relation-
ships.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

10 Chapter 1 - Database Logical Modeling

Defining Relationships and Keys

Microsoft Design entity keys. Considerations include FOREIGN KEY
Exam constraints, PRIMARY KEY constraints, and UNIQUE
Objective constraints.

= Specify attributes that uniquely identify records.

= Specify attributes that reference other entities.

The purpose of key attributes is to uniquely identify records and to
allow relationships to be created between entities. SQL Server allows you
to define keys and relationships in the physical model. These elements have
to be identified early in the logical modeling process.

Relationships

Relationships are complex elements. They represent associations between
entities and bind them with a set of defined rules. As stated earlier,
relationships are generally derived from verbs or verb phrases in the
conceptual model, but that’s only the first step. Relationships carry three
other main characteristics:

Direction indicates the source entity. For instance, a customer places an
order, so the relationship goes from the customer entity to the order entity.
The source of the relationship is often referred to as the parent entity and

the destination as the child entity. In the preceding example, the customer

entity is the parent and the order entity is the child. A relationship always

goes from a parent to one or more children.

Cardinality defines the number of instances of a specific entity that could
be associated with an instance(s) of another entity. For example, an
employee can apply for one or more vacation leaves. An employee may
apply for the first time (one); an older employee may have applied many
times (many).

Existence determines the precedence between entities. That is, the entity
that must exist before another entity is created. It may be optional or
mandatory. For example, the relationship between a vacation leave and an
employee is optional: the employee may apply for a vacation leave. But,
the relationship between an employee and a department is mandatory:
each employee belongs to one department.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

FIGURE 1.2

FIGURE 1.3

The Entity/Relationship Model 11

A relationship is represented by a line between both entities. The type of
line differs depending on the used methodology, the software, your univer-
sity teacher, the country you live in, the weather. To be honest, there are as
many notations as database experts. Let’s take three illustrated examples.

Figure 1.2 shows an arrow that indicates the direction of the relation-
ships, labeled with its name and the cardinality on both sides.

A relationship represented by a direction arrow

Suppliers Products

N
supply)

In this association, a supplier may supply many products, which is
represented by the “supply” relationship. The character 0 (zero) on the
supplier’s side indicates that a supplier can exist without related products.
The character N (many) on the products side indicates that a supplier may
supply many products. The direction of the arrow is natural and goes from
one to many.

Figure 1.3 (used by default by Visio 2000) says that the line should be
an arrow, with the arrowhead indicating the parent entity (the opposite of
the “natural” direction), labeled with its name and cardinality on the child
side.

A default Visio 2000 relationship

Suppliers Products

‘— supply ——

In Figure 1.3, the “supply” relationship represents the same association
as the preceding figure. The arrowhead indicates the parent entity, which is
the source of the relationship. In fact, you should not see an arrowhead

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

12 Chapter 1 - Database Logical Modeling

’a'/

A TE

FIGURE 1.4

but a starting point enlarging like a megaphone. The smallest side of the
arrowhead indicates the “one” side, while the largest side indicates the
“many” side. The asterisk character (*) on the “many” side indicates
the cardinality.

In Figure 1.4 (using crow’s feet) the vertical bar on the line indicates
the “one” side of the relationship and a crow’s foot indicates the “many”
side. The zero sign on the line indicates this is a one-to-zero-or-many
relationship.

The different types of relationships are discussed later in this chapter.

A relationship using a crow’s foot

Suppliers Products

—H——— supply —— 0. <

In Figure 1.4, the “supply” relationship is always the same. The double
vertical bar indicates the parent side. The first vertical bar next to the Sup-
pliers entity indicates that a supplier must exist for every product (manda-
tory). The second vertical bar (representing a 1) indicates that one supplier
(at most) must exist for every product. The crow’s foot next to the Prod-
ucts entity (representing many) indicates the child side. The 0 sign before
the crow’s foot indicates that it is a one-to-zero-or-many relationship,
meaning a supplier can be associated to zero, one, or many products.

On the physical side, SQL Server 2000 offers a diagram functionality
that uses different notations. Figure 1.5 shows you the physical implemen-
tation of the above example.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

FIGURE 1.5

FIGURE 1.6

FIGURE 1.7

The Entity/Relationship Model 13

SQL Server 2000 one-to-many relationship

[N

Products

Suppliers supply

As you can see, the relationship direction is illustrated by a key on the
“one” side and an infinity sign () on the “many” side. In the case of a
one-to-one relationship, the key sign is on both sides, like in Figure 1.6.

SQL Server 2000 one-to-one relationship

[LD
is managed by

Company CEO

In the above examples, you probably see that direction and existence
are quite straightforward characteristics, which can be discovered easily.
Cardinality is a little more complex, due to the different types of relation-
ships: one-to-one, one-to-many, and many-to-many.

One-to-One Relationship

A one-to-one relationship (Figure 1.7) occurs when one instance of the
parent entity is associated to one (at most) instance of the child entity. For
instance, every company has only one CEO, and a CEO cannot be CEO of
two different companies. It exists as a one-to-one relationship between the
company entity and the CEO entity. In such a relationship, the direction is
from the independent entity (the company) to the dependent entity (the
CEO).

A one-to-one relationship

Company CEO

is managed by

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

14 Chapter 1 - Database Logical Modeling

FIGURE 1.8

You may wonder what the use is of a one-to-one relationship. In this
example, if there is only one CEO per company, why not create only one
entity comprising all the necessary attributes? That is definitely the answer
that can be given in a majority of cases. But you may decide to logically
split information to keep entities small and manageable. This kind of rela-
tionship exists to take into account that some decisions are human and not
only mathematical.

One-to-Many Relationship

A one-to-many relationship (the most frequently used relationship) occurs
when one instance of the parent is associated to zero, one, or many
instances of the child entity. For instance, a customer may place many
orders. In this case, there is a one-to-many relationship between the
customer entity and the order entity. The direction of a one-to-many
relationship is always from the “one” side entity to the “many” side entity.
Figure 1.8 shows a one-to-many relationship.

A one-to-many relationship

Suppliers Products

—— supply —————
*

Figure 1.8 is equivalent to Figure 1.3. The asterisk represents the
“many” side. In this example, each supplier supplies zero or many
products.

Many-to-Many Relationship

A many-to-many relationship (Figure 1.9) occurs when one instance of the
parent is associated with zero, one, or many instances of the child entity
and when one instance of the child entity is associated with zero, one, or
many instances of the parent entity. Even if the description may sound
intricate, it’s quite a common situation. Consider when a customer places
an order. He/she can order many products and those products can be on
many orders. So, the relationship between the Orders entity and the
Products entity is a many-to-many relationship. Many-to-many

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

FIGURE 1.9

FIGURE 1.10

The Entity/Relationship Model 15

relationships cannot be directly implemented in a relational database, but
must be transformed into at least two one-to-many relationships, as we are
going to see in the next sections. In a many-to-many relationship, the
direction is arbitrary.

A many-to-many relationship

* 1>
4— contains/is contained in

Figure 1.9 shows a many-to-many relationship because an order con-
tains one or many products and a product can be contained in zero, one,
or many orders. That kind of relationship has to be resolved by inserting
an entity called an association entity. Figure 1.10 shows a solution to our
many-to-many relationship.

A resolved many-to-many relationship

Orders Order Details Products

*
4— is made of — — is referenced in—
*

By introducing the Order Details entity, we transform the many-to-
many relationship into two one-to-many relationships. The new diagram
shows that every order is made of one or many order details, and that each
product may be referenced by zero, one, or many order details. As you can
see, the original cardinality and existence are conserved by the new entity
and relationships. A majority of many-to-many relationships are resolved
that way.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

16 Chapter 1 - Database Logical Modeling

Recursive Relationship

A recursive relationship is an epiphenomenon of a one-to-one or one-to-
many relationship. A relationship is recursive when the source entity and
the destination entity are the same. For example, every employee reports to
his/her manager. But the manager is an employee, too. A recursive
relationship is illustrated in Figure 1.11.

FIGURE 1.11 Arecursive relationship

*

reports to
Employees

The previous figure shows that every employee reports to zero, one, or
many employees. This kind of relationship is very easy to handle, since it is
totally compatible with the relation model and SQL Server 2000.

Keys

Key attributes play a “key” role in relationships and in the relational
model. There are two major types of keys: primary and foreign. Let’s take
a look at what these keys are, what they are used for, and how they are
chosen.

Primary Key

The primary key is an attribute or a set of attributes identifying unique
instances of each entity. For example, the social security number identifies
every citizen of a country, or the invoice number identifies every invoice
created by a specific company. An entity may have multiple attributes or
sets of attributes that identify unique instances of each entity. Each of these
attributes or sets of attributes is called a candidate key. While an entity can
have more that one candidate key, it has only one primary key. The other
candidate keys are called alternate keys.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

P

A JTE

ING

The Entity/Relationship Model 17

If a key is made of multiple attributes, it is said to be composite.

Besides the fact of being an attribute or a set of attributes, a primary
key must have the following properties to uniquely identify every instance:

= Every attribute must have a value. That means that no attribute
composing the key can be NULL.

= The value of the key must be unique for every instance of the entity.
If the key is composite, every group of attribute values has to be
unique.

Some experts and gurus say that a primary key cannot be changed. In fact,
even if it is not a good practice to permit the modification of a primary key,
SQL Server 2000 permits it by default. You can forbid it by using triggers or
stored procedure, as we'll discover in the following pages.

The choice of the primary key may be complex and tricky, when no
obvious choice is possible or when multiple choices are possible. Let’s look
at two examples: an employee and a customer. An employee can be identi-
fied by different attributes: the combination of his/her first name and last
name, his/her employee ID, or his/her social security number. In a small
company, the combination of the first and last names could be a good
choice, but in a medium or large company with thousands of employees
this combination may not be unique. The social security number is a per-
fect choice for every company because every employee has one prior to
his/her hiring. Now, the SSN may not be an identified or a necessary
attribute, so having an employee ID automatically attributed by the system
could be a good choice. Both attributes are candidate keys.

The customer can be identified by his/her ID or the combination of
his/her name, address, and ZIP code, or you can create an increment ID to
automatically identify the customer. The ID is not always known at record
creation time, and the combination of name, address, and ZIP code creates
quite a large key (that is containing too many attributes and too many
characters). The last choice is sometimes called an artificial key because it
has no real meaning to the entity, except being a unique identifier. The
need for an artificial key arises when no attributes are really suitable or
when the candidate keys seem too large.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

18 Chapter 1 - Database Logical Modeling

/1

FIGURE 1.12

SQL Server 2000 addresses the problem of artificial keys with identity prop-
erty and UNIQUEIDENTIFIER datatypes. Read more about this in Chapter 3:
Creating and Maintaining Tables.

In general, the primary key is identified in the ER by underlining the
name of the attributes that compose the key and optionally listing it at the
beginning of the attributes list (if other attributes are listed, of course). As
you can see, Figure 1.12 is Figure 1.10 with the primary keys.

Defining the primary keys

Orders Order Details Products

OrderlD) OrderlD *) ProductiD
4— is made of 7 ProductiD — is referenced in—p,

Note that the primary key of the associate entity (Order Details) is a
composite key made of the primary keys of both parent entities. This is
generally the case in this many-to-many relationship situation, though the
primary key could be an artificial key, such as a counter.

SQL Server 2000 proposes to create a primary key through the primary key
constraint, enforcing the non-NULL and unique properties of such a key.
The creation of a primary key in SQL Server 2000 automatically creates an
index. The physical creation of a primary key is discussed in Chapter 4:
Implementing Data Integrity.

Primary keys are often noted as “PK” in diagrams. In SQL Server 2000,
they are defined with a small yellow key. Every entity should have a pri-
mary key. As we see in a following section, this is a basic requirement for
the first normal form.

Besides the primary key, the alternate keys can also be identified in the
ER diagram and the relational model. An alternate key is a candidate key,
so it may share the primary key characteristics: not NULL and uniqueness.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

FIGURE 1.13

The Entity/Relationship Model 19

The alternate keys may be enforced in SQL Server 2000 using the unique
constraints or unique indexes. The physical creation of a unique constraint
is discussed in Chapter 4: Implementing Data Integrity, and the unique
indexes are discussed in Chapter 5: Creating and Maintaining Indexes.

Besides the identifying entity instances, the primary key and eventually
the alternate keys are used to define relationship source, linked to foreign
keys.

Foreign Key

A foreign key is an attribute or a set of attributes that identifies the child
side of a relationship. A foreign key is in fact the “migrating” primary key
(or alternate key) of the parent entity. For example, if a customer entity is
identified by a customer ID attribute, that customer ID attribute will be
found in the order entity, since a relationship exists between customer and
order. In Figure 1.13, the Orders entity is associated by one-to-many
relationships with three different entities.

Primary and foreign keys

*

reports to —
Customers Orders Employees

* *
CustomerlD f¢—— place OrderlD manage —){ EmployeelD
% | CustomerlD Reports To
ship —{ EmployeelD
ShipperID

Shippers

ShipperlD

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

20 Chapter 1 - Database Logical Modeling

The three non-key attributes of the Orders entity are “migrated” pri-
mary keys of the other entities. As you can see, discovering a foreign key is
a straightforward process, once you know every primary key and every
relationship.

A foreign key is linked to a primary or alternate key. In SQL Server 2000, a
relationship is created through declarative integrity, with what is called a
constraint. A relationship is created by declaring a foreign key constraint
referencing either a primary key constraint or a unique constraint (alternate
key) as the source.

To finish with relationships and foreign keys, the last notion is that of
the “identifying relationship.” This is particularly useful if you use an ER
design software like Visio 2000. A relationship is said to be identifying if
the primary key of a child entity contains all the attributes of a foreign key.
If the primary key of the child entity does not contain all the attributes of a
foreign key, then the relationship is non-identifying.

In Visio 2000, as soon as you create an identifying relationship, the foreign
key is automatically included in the primary key.

Figure 1.14 shows you an extract of the Entity/Relationship diagram of
the Northwind database.

You may be used to more complicated or more complete diagrams due
to the fact that only keys are listed here. Adding non-key attributes is a
subject of discussion between experts. Some say that they should be
included, other say they should not be. Depending on the complexity of
your model, you may create different models or different levels allowing
the display of non-key attributes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Entity/Relationship Model 21

FIGURE 1.14 An extract of the ER model of the Northwind database

l—reponto—
Customers I Orders I Employees I Shippers I
CustomerlD §¢— place —{ OrderID — manage —p| EmployeelD ShipperID
*
CustomerlD Reports To
ship 4 EmployeelD
*| ShipperiD T
supply
*
Shippers OrderDetailsl Products I
ShipperlD are * OrderID * fare i— ProductsID
— -5 — reference —
made of | ProductlD in SupplieriD
CategoryID

*

are composed of

Categories I

CategorylD

Visio 2000 and SQL Server 2000 let you customize the display of your ER
model so that you can declare every attribute but display only the ones
necessary to your analysis.

Before switching to the relational model of our database, let’s spend
some time with integrity. Integrity rules are essential to a database system,
assuring that your data is correct and consistent.

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

http://www.sybex.com

22 Chapter 1 - Database Logical Modeling

Adding Data Integrity Rules

Microsoft Design attribute domain integrity. Considerations include
Exam CHECK constraints, data types, and nullability.
Objective

= Specify scale and precision of allowable values for each attribute.
= Allow or prohibit NULL for each attribute.

= Specify allowable values for each attribute.

Integrity is one of the cornerstones of the relational model and has been
over the years incorporated in every RDBMS (Relational Database Man-
agement System) on the market. There are four types of integrity:

= Domain integrity
= Entity integrity
= Referential integrity

= Enterprise integrity

Domain Integrity

A domain defines the possible values of an attribute. Domain integrity
rules govern these values. In a database system, the domain integrity is

defined by:
= The datatype and the length
* The NULL value acceptance

= The allowable values, through techniques like check constraints or
rules

= The default value

For example, if you define that the attribute Age, of an Employee entity,
is an integer, the value of every instance of that attribute must be numeric
and an integer. If you define this attribute as always positive, then a nega-
tive value is forbidden. The value of this attribute being mandatory indi-
cates that the attribute can be NULL. All these characteristics form the
domain integrity of this attribute.

Datatypes in a database system can be numerous. Over the years, the
storage need pushed RDBMS developers to introduce complex datatypes

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Entity/Relationship Model 23

to handle any case. Generally, datatypes can be divided into four types of
attributes:

Character Character attributes may have a fixed or a variable length,
but the maximum length is precisely defined. For example, a ZIP code
may be an attribute of five-character length.

Numeric Numeric attributes can be integers of different lengths, or
they can be real figures. In a computer, a numeric attribute can be two
types of real figures: floating point and fixed point. For a floating point,
the number of decimals is not known and the figure can be rounded to
any decimal. For a fixed point, the architect defines the scale, which is
the maximum number of decimals, and the precision, which is the max-
imum number of digits of the number. With these “precise” real figures,
no rounding errors can occur. They are very useful for storing money
values (for example, storing in the same entity values in dollars, Euros,
and yen, up to the fourth decimal) or a precise decimal value.

@:" Note that SQL Server 2000 proposes two “precise” real figures: numeric

ING and decimal. Before SQL Server 7, their internal implementation was a
little bit different. Since SQL Server 7, numeric and decimal figures are
synonymes.

Special Special attributes are, for example, datatypes like Boolean
(true or false), GUID (Globally Unique Identifier), or Variant. They
may be very useful for minimizing consumed space or providing
special features.

)’ We cover these special datatypes in detail in Chapter 3: Creating and Main-
‘d’“ taining Tables.

Binary Binary attributes can be anything besides character, numeric,
and special types, such as a photograph, a sound, a file, a movie, and a
binary string. These attributes are stored in the database in their binary
format, without any modification. The RDBMS does not know what
these binary data are, but knows they are a flow of binary digits.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

24 Chapter 1 - Database Logical Modeling

The datatypes depend precisely on the RDBMS that you are going to
use. But you can define in the conceptual model the global datatypes of
every attribute, allowing you to define the domain integrity. For example,
an attribute value can be implemented as one character allowing two val-
ues, Y and N, as a tiny integer allowing only 0 and 1, or as a bit, depend-
ing on the available features of your system. But you can define in the con-
ceptual and logical model phases that this attribute has to be Boolean.

Entity Integrity

The entity integrity states that every instance of an entity has to be
uniquely identified. The existence of the primary key is the core of the
entity integrity. If you defined a primary key for each entity, they follow
the entity integrity rule.

Referential Integrity

The referential integrity rules are enforced by the relationships between
entities. As a starting point, the referential integrity rules state that a child
instance cannot exist if there is no corresponding parent instance. For
example, an order cannot exist without a matching customer, or an order
detail cannot exist without the associated order.

Generally, referential integrity is defined by the following:

* You cannot delete a parent instance if one or many associated child
instances exist.

* You cannot insert a child instance if the associated parent instance
does not exist.

In other words: orphanage is impossible! Unfortunately, in the real world,
orphans exist. Referential integrity defines rules to manage orphanage:

= Insert a child instance rule.
= Delete a child instance rule.
= Update a primary key rule.
Insert Rules
The insert rules include the following:

Dependent A child instance can be inserted only if a matching parent
instance exists. This is generally the default rule.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Entity/Relationship Model 25

Default A child instance can always be inserted. If no matching parent
exists, then the foreign key is set to the default value or to NULL.

Automatic A child instance can always be inserted. If no matching
parent exists, then one is created automatically.

No Effect A child instance can always be inserted, even if no matching
parent exists. This situation leads to no referential integrity and to data
inconsistency!

Customized A child instance can only be inserted if specific con-
straints are met. Depending on the existence of the matching parent
instance, the custom function will follow the Dependent, the Default,
the Automatic, or the No Effect rule.

Delete Rules
Delete rules include the following:

Restrict A parent instance can be deleted if and only if no matching
child instance exists. This is generally the default.

Cascade The deletion of a parent instance triggers automatically the
deletion of all matching child instances.

Default The deletion of a parent instance triggers the update of the
foreign key of all matching child instances to a default or a NULL
value.

No Effect A parent instance can always be deleted, regardless of the
existence of child instances. This situation leads to no referential
integrity and to data inconsistency!

Customized A parent instance can only be deleted if specific con-
straints are met. Depending on the existence of the matching child
instance(s), the custom function will follow the Cascade, the Default, or
the No Effect rule.

Update Rules
Update rules include the following:

Restrict A parent instance’s primary key cannot be updated if at least
one child instance exists. This is generally the default rule.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

26 Chapter 1 - Database Logical Modeling

<

Cascade The update of a parent instance’s primary key triggers auto-
matically the update of the foreign key of all matching child instances to
the new value of the primary key.

Default The update of a parent instance’s primary key triggers the
update of the foreign key of all matching child instances to a default or
a NULL value.

No Effect A parent instance’s primary key can always be updated,
regardless of the existence of child instances. This situation leads to no
referential integrity and to data inconsistency!

Customized A parent instance’s primary key can only be updated if
specific constraints are met. Depending on the existence of the matching
child instance(s), the custom function will follow the Cascade, the
Default, or the No Effect rule.

In SQL Server 2000, only the Dependent insert rule, the Restrict or Cascade
delete rules, and the Restrict or Cascade update rules can be enforced with
foreign key and reference constraints.

@ Real World Scenario
Operation Order Issue

As a SQL Server freelance expert, you are called to design the new
customer relationship management system of Golf Line Inc., a small
company selling golf accessories through direct selling and the
Internet. Martha Jarvis, the CEO, wants to know the company’s cus-
tomers better. The golf players generally spend a lot of money on golf
accessories, and she wants to be able to know who these people are,
what they like and dislike, how much they spend every year, and so on.

You first meet Jon Albert, the in-house IT guy, who explains the
different existing systems. The invoicing database is an old Access
application, that slows down every day. So, you'll need to incorporate
invoicing facilities into the new system. The product database is
managed by SQL Server. Every week, the in-house product manager
receives new products from different suppliers, and decides with

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Entity/Relationship Model 27

Martha which products to add to their catalog and those to take out.
You'll need to use that product database in coordination with the new
application.

After a quick meeting with Martha and Jon, you are hired to design
and implement the new system. While designing it, you face classical
problems of relationship rules. The first one deals with the
Customer/Order relationship. You cannot create an order if matching
customers does not exist, and you cannot delete a customer with
matching orders.

You think about the Insert order situation. While entering a new order
in the system, what happens if the customer does not exist? Sure, the
front-end application will force the user to choose the customer first,
but that situation could happen during batch inserts. So, the order is
entered first and then the customer. If you decide to enforce the
Dependant insert rule, the order cannot be inserted. With the
Automatic insert rule, a new customer is automatically inserted,
allowing the order to be inserted. The last operation is the update of
this new customer.

Concerning the delete order, the problem may be a little more
complex. Martha told you she wanted to mail people who have not
ordered during the last six months, to be able to offer them special
discounts and promotions. But at the same time, she told you to get
rid of customers who have not been ordering for more than two years.
She wants to keep a live database. The problem is simple: if you
delete these customers, there will be inaccuracy in the orders, since
the customer ID of these customers do not exist anymore. The Restrict
delete rule does not work. If you implement the Cascade delete rule,
you are going to lose every order the customers placed and paid. So
you decide to implement a Customized delete rule: each time a
customer is “deleted” for aging reasons, it is moved to an archive
table, and the order is not impacted. This solution gives you the
advantage of keeping a table of live customers and keeping all the
information about the orders.

We all know that there are as many possible solutions to a problem as
there are the number of people you are asking for a solution. These rules

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

28 Chapter 1 - Database Logical Modeling

are there to meet all these possible solutions. Depending on your knowl-
edge of the skills of the architect, on the complexity of your solution, and
on the software you are using, you’ll choose whatever solution suits you.

Enterprise Integrity

The last type of integrity is enterprise integrity, also called business rules.
These rules, generally implemented through programmatic methods, like
stored procedures or triggers on the database server side, define the way
the company works. For example, you can state that a customer cannot
place a new order if he still owes more than $10,000, or that an order
greater than $200,000 has to be approved by the sales manager before
being shipped. Enterprise integrity is generally not defined in the data
model, but rather in the function model.

The Relational Model and the
Normalization Process

Microsoft Define entities. Considerations include entity composition
Exam and normalization.
Objective

= Specify degree of normalization.

So far, we have discussed the conceptual model of our database,
creating the ER model, entities, relationships, attributes, and attribute
properties. It is now time to skip to the logical model, creating what is
called the relational model. The relational model was first introduced by
E.F. Codd in 1970, while he was a researcher at IBM. At that time, this
model was revolutionary in the database world. In the relational model,
two-dimensional tables represent data. Each table refers directly to an
event, a person, and an object, like the entities we were talking about in
the previous pages. In this model, a database is a collection of tables.

The organization of these tables is called the logical model, or logical
view. The physical model, or physical view, is the real way data are stored
in the database system that may differ from one software to another.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Relational Model and the Normalization Process 29

) The physical model will be discussed in Chapter 2: Database Physical
Modeling.

Going from the ER model to the relational model is very easy, since the
first step is only a name change. Table 1.1 gives you the main differences
between the main database elements, depending on the model or the for-
mal names.

TABLE 1.1 Name Differences of Database Elements

ER Model Relational Model Formal Name Physical Model
Entity Table Relation Table

Entity Instance Row Tuple Record
Attribute Column Attribute Field

No real formal representation of the logical model exists, except the one
proposed by the ER model. So, you just transform entities in a table and
attributes in a column, and the diagram remains the same. Let’s first take a
look at the definition of the relational table.

The Relational Table

A relational table matches an ER entity. It defines the logical
representation of the data and follows six rules:

Every column is atomic. This is definitely one important rule as far as
relational tables are concerned. Being atomic means that a column con-
tains only one value that cannot be broken into smaller pieces.

? Atomicity examples are included in the section “First Normal Form” below.
dTE

Each column has a unique name. Each column matches an attribute,
and must have a unique name within a table. Two different columns
belonging to two different tables can have the same name.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

30 Chapter 1 - Database Logical Modeling

o
ING

Every value of a specific column is the same type. For the relational
model, this rule means that every value of a column belongs to the same
domain, and respects the domain integrity rule.

There are no duplicate rows. FEach row is identified by a primary key,
assuring its uniqueness. This rule states that every row can be accessed
just by knowing its primary key.

The rows are unordered. The physical order of rows is meaningless.
This property guarantees that the rows can be sorted in different ways,
depending on what you need.

The columns are unordered. As with the rows, column order is mean-
ingless. This property guarantees you can query the column of a table in
the order you wish.

SQL Server 2000, like many other RDBMS, allows you to create tables with-
out primary keys and with non-atomic columns. You can drive your car at
120 MPH downtown, but is it really a good idea? Concerning computer the-
ory, | do not know a lot of things that have lasted more than 30 years, like
the relational model. Therefore, it must be a good theory to still be the basis
for RDBMS.

As you see, moving from the ER model to the relational model is
straightforward if you just follow the previous rules. Nevertheless, while
building our logical design, we did not really care about rows. If we start
thinking about what happens when we “insert” data into the model, we
may discover that we have duplicates, or information redundancy, which is
information existing in more than one occurrence. That’s where the nor-
malization process arrives. Normalizing data is the process of eliminating
duplicated data by defining keys and creating new relationships and new
entities.

Like ER modeling, the normalization process is mathematical and quite
natural. A lot of database architects normalize their data without knowing
the formal rules. Once you know them, you may find this process quite
complex, but in fact, it’s straightforward if you use real-world data.

Each step of the normalization process starts with your logical model
and ends with a new, normalized model. Each of these models has a name:
First Normal Form, Second Normal Form, and so on. The model can

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Relational Model and the Normalization Process 31

include up to five normal forms (and even six if we consider the Boyce-
Codd Normal Form), but it’s been a common practice to stop at the Third
Normal Form. In addition, the Microsoft Exam does not address normal
forms beyond the third. In the following section, we will explain in detail
how to get from a non-normalized model to the Third Normal Form and
give you hints about the other three forms.

Normal Forms

Normal form theory is based on functional dependency between columns.
Column A is said to be functionally dependent on column B if each value
of B is associated with only one value of A. For example, an employee’s
last name is functionally dependent on the employee’s ID. Knowing an ID,
you are guaranteed to know the employee’s last name. In a relational table,
every column must be dependent on the primary key. As you will see, this
rule governs the normal forms.

Another concept is the full functional dependency. This concerns com-
posite keys. Column A is said to be fully functionally dependent on B (B
being a composite key) if A is functionally dependent on B and not on any
subset of B. In other words, the whole primary key is necessary to accu-
rately identify column A’s value. If this value can be identified accurately
with only a few columns from the primary key, then A is not fully func-
tionally dependent on the primary key.

Functional dependencies may be represented with the following
notation:

B— A

This means A is functionally dependent on B, or knowing a value of B
you know the matching value of A.

If A is functionally dependent on B, we also say that A is a determinant of B.

The goal of normal forms is to remove redundant data from relational
tables by splitting the tables into smaller tables, without losing any data.
It is necessary that the decomposition is lossless. That means that you can
easily come back to the base table by combining the new created tables
with a join.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

32 Chapter 1 - Database Logical Modeling

First Normal Form

FIGURE 1.15

A relational table is in First Normal Form (1NF) if:
* It has a primary key.
* Each column is atomic.
= There is no repeating group of columns.

As you can see, the rules have nothing to do with redundancy, but
almost follow some of the rules of relational tables. In fact, a table is said
to be relational if it is in 1NF.

You should now understand the principle of the primary. So, let’s have a
quick look at atomicity of columns. Imagine we create a table listing
authors and the books they have written. This is shown in Figure 1.15.

Non-atomic column

au_id | Titles |
M| 172-32-1178 Prolonged Data Deprivation: Four Case Studies
__|213-46-8915 The Busy Executive's Database Guide; You Can Combat Computer Stress!
_ |2358-95-7766 But Is It User Friendly?
__|267-41-2394 Caaoking with Computers; Surreptitious Balance Sheets; Sushi, Anvone?
__|274-80-9391 Straight Talk About Computers
_|a41-22-1782 <MLL =
___|409-56-7003 The Busy Executive's Database Guide
__|427-17-2319 Secrets of Silicon Yalley
| 4r2-2v-2349 Sushi, Anvone?
*

The Titles column can contain multiple values. For example, author
213-46-8915 wrote two books. He co-authored one of them with author
409-56-7008 (The Busy Executive’s Database Guide). It may become very
difficult to query such a table and find information about a specific book.
The first solution that comes to mind is to split the Titles column into two
columns, as shown in Figure 1.16.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Relational Model and the Normalization Process 33

FIGURE 1.16 Repeating group of columns

au id | Title1 | Title2 |
B |172-32-1176 Prolonged Data Deprivation: Four Case Studies “MULL=
_|213-46-8915 The Busy Executive's Database Guide “fou Can Combat Computer Stress!
_ | 238-95-7766 But Is It User Friendly? <MULL =
_ |267-41-2394 Cooking with Computers: Surrephitions Balance Shests Sushi, Anyone?
_ |274-50-9391 Straight Talk About Computers <MULL =
_|at1-zz2-17Ez <MLL <MULL >
_ |409-55-7003 The Busy Executive's Database Guide <MULL =
_ |427-17-2319 Secrets of Silicon valley <MULL =
_|47E-27-2349 Sushi, Anyone? <MULL =
*

The solution addresses the issue of atomicity, but does not solve the
query problem. It may be difficult, for example, to find if a specific title
has been written by one or many authors, or to know the number of
co-authors of one title. Worse, what if an author writes a third title?
Where are you going to store it? Well, you could create a third Title
column. But the problem would occur for the fourth, the fifth, and so
on. Furthermore, even if you create 20 Title columns, it would be a
waste of space for authors who only wrote one or two books.

If you want to put this table in 1NF, you could introduce a new column,
title_id, identifying each book, and create a composite primary key
(Figure 1.17).

FIGURE 1.17 Tablein INF

au_jd | itle_id | Title
| 172-32-1176 P33333 Prolonged Data Deprivation: Four Case Studies
__|213-46-8915 gU1032 The Busy Executive's Database Guide
_ |213-456-8915 BUZ075 You Can Combiat Computer Stress!
_|238-95-77ab PC1035 But Is It User Friendly?
_|2eT-41-2394 BU1111 Cooking with Computers: Surreptitious Balance Sheets
_ |267-41-2394 TZFFRT Sushi, Anyone?
__|274-80-9391 BU7E32 Straight Talk About Computers
__|409-56-7003 gU1032 The Busy Executive's Database Guide
_ |427-17-2319 PCEE0G Secrets of Silicon Walley
_ |472-27-2349 TEFFET Sushi, Anyone?
*

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

34 Chapter 1 - Database Logical Modeling

Now our table is in First Normal Form, since a primary key identifies
every row, and every column is atomic. The problems we talked about are
now solved: an author can write as many books he wishes, and it’s simple
to group the table by title to list every co-author.

Let’s use a more complex table to uncover problems that could arise
with a table in 1NFE. The table in Figure 1.18 illustrates the entity described
by the following:

* An author writes one or many books.
* Books are published by one publisher only.

= Books may be written by many authors, the royalties being shared
amongst co-authors.

= Each publisher’s head office is in a particular city.

» Every publisher may publish one or more books.

FIGURE 1.18 Royalties Table in First Normal Form

au_id [tite_id | rovaltyvper |pub_name | ity

b [172-32-1178 P53333 1o Mew Moon Books Bostan

_ |213-46-3915 BU1032 40 Algodata Infosvstems Berkeley
_|213-46-8915 BUZ07S 100 Mesw Moon Books Bostan
__|238-95-7766 PC1035 100 Algodata Infosvstems Berkeley
_|267-41-2394 BU1111 40 Algodata Infoswstems Berkeley
_|267-41-2394 TCI7eT 30 Binnet & Hardley ‘Washinghon
_ |2¥4-80-9391 BU7S32 100 Algodata Infosvstems Berkeley
___|409-56-7003 BU1032 &0 Algodata Infosvstems Berkeley
__|427-17-2319 PC3388 50 Algodata Infosvstems Berkeley
_|4ve-zr-z349 TCIFFT 30 Binnet & Hardley ‘Washinghon

*

The Royalties relational table, shown in Figure 1.18, is already in First
Normal Form. Nevertheless, it contains redundant data. For example, the
publisher_id or the title is repeated. Redundancy may cause anomalies dur-
ing data insertion, deletion, or update. For example:

* You cannot insert a new publisher until it has published at least one

book.

» If you delete a row, you are deleting information about an author
and a book, and you lose information about the publisher.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Relational Model and the Normalization Process 35

= If you update the city of a publisher, you have to update every row
of the author who has been published by this publisher.

We have to decompose this table to achieve Second Normal Form.

Second Normal Form

A relational table is in Second Normal Form (2NF) if:
= Itisin INE

= Every non-key column is fully functionally dependent on the
primary key.

In Figure 1.18, the Royalties table is in 1NF but not in 2NF because the
columns title and publisher_id depend only on the title_id and not on the
key (au_id, title_id). You can easily establish this fact if you study the func-
tional dependencies of the table:

(au_id, title_id)— royaltyper
title_id— pub_name, city
pub_name—> city

So, two non-key columns are not fully functionally dependent on the
primary key. That is, they do not depend on the entire primary key, but
only on one of its subsets. Decomposing a table in 1NF to achieve 2NF is a
logical process:

1. Identify all the determinant parts of the primary key and their
dependant columns.

2. Create a new table from every determinant and their dependant
columns.

3. The determinant becomes the primary key of the new table.

4. Delete the dependant columns from the source table. Do not delete
the determinant, since it will become the foreign key.

You may rename the source table if you wish to keep meaningful infor-
mation. To transform the Royalties table to 2NF, we create a new table,
named Titles, with the columns title_id, pub_name, and city. Title_id
becomes the primary key of this new table (Figure 1.19).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

36 Chapter 1 - Database Logical Modeling

FIGURE 1.19 The new Titles and Royalties tables in Second Normal Form

kitle_id |pub_name | gty
_b|BU1O3Z2 Algodata Infoswstems Berkeley
___|BuU1111 Algodata Infosystems Berkeley
__|BuzoFs Mew Moon Books Biostan
__|Burasz Algodata Infosystems Berkeley
_|PCi03s Algodata Infoswstems Berkeley
__|Picozas Algodata Infosystems Berkeley
_ |P53333 Mew Moon Books Biostan
| TCEEET Binnet & Hardley W' ashingkon

au id | kitle id | ronealbyvper
b [267-41-2394 TZFFFT a0
| 4VE-ET-234e TCFFFT 30
_|215-46-8915 BLI1O3Z 40
| 2A7F-41-2394 BL1111 40
_|4EF-17-2319 PiCE555 a0
| 409-56-7008 EU1032 &
_|172-32-11746 P53333 100
_|2135-46-8915 BLIZ07S 100
_|238-95-77ab PZ1035 100
_|&™-80-9391 BUFS32 100
*

Though the tables are in 2NF, update anomalies can still occur. For
example:

* You cannot insert a new publisher if you do not know the title_id of
at least one of the books published.

= If you delete a row in the Titles table, you lose the information
about the publisher at the same time. A publisher may disappear if
you delete its last published book referenced in the table.

To avoid these anomalies, the Titles table should be decomposed to
achieve the Third Normal Form.

Third Normal Form
A relational table is in Third Normal Form (3NF) if:

= Itisin 2NE

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

9TE

¢y

The Relational Model and the Normalization Process 37

= Every non-key column is functionally dependent only on the pri-
mary key. In other words, a non-key column cannot be dependent
on another non-key column.

In our example, the Royalties table is already in 3NF because the col-
umn royaltyper depends on both columns of the primary key: the royalty
percentage attributed to an author depends on the author and on the
book. Conversely, the table Titles is in 2NF but not in 3NF because the
city column may be determined both by the publisher name (pub_name)
and by the primary key. The functional dependencies of the table show this
straightforward situation:

title_id— pub_name
title_id— city

pub_name— city

The dependency between title_id and city is called transitive dependency. If
title_id— pub_name and pub_name— city, then title_id— city.

This relation table is nonetheless in 2NF because city is functionally
dependent on the primary key. A table can be decomposed to achieve 3NF
by doing the following:

1. Identify all the determinants amongst non-key columns and their
dependent columns.

2. Create a new table from every determinant identified and their
dependent columns. The determinant becomes the primary key of
the new table.

3. Delete the dependent columns from the source table. Do not delete
the determinant, since it will become the foreign key.

To achieve Third Normal Form in our example, we create a third table,
called Publishers, containing pub_name and city, with pub_name becom-
ing its primary key and deleting city from the Titles table (Figure 1.20).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

38 Chapter 1 - Database Logical Modeling

FIGURE 1.20 Publishers and Titles tables in Third Normal Form

kitle_id |pub_name |
p [BLIIO3Z Algodata Infosyskems
BU1111 Algodata Infosyskems
BUZ07S Mew Moon Books

BUTE3Z Algodata Infosyskems
PC1035 Algodata Infosyskems
PCEE35 Algodata Infosyskems
Pa3333 Mew Moon Books

TCFFT7 Binnet & Hardley

k]

pub_name | ity |
_b | Algodata Infosystems Berkeley
___|Binmet 2 Hardley Washington
| Mew Moon Books Bioston
*

Once in Third Normal Form, all the anomalies we encountered so far
disappear:

* You can insert a new publisher even if it has not published a book.

* If you delete a royalty, you are not losing information about the
publisher.

= The city of a publisher has to be updated in only one place.

* You may delete a row in the Titles table without simultaneously
losing the information about the publisher.

The normalized logical model of our database is illustrated in
Figure 1.21. It contains the three tables with the relationships and the
keys.

FIGURE 1.21 The normalized logical model

Publishers Titles Royalties
pub_name 4— publishes —— Htitle_id 4— generates —— au_id
* * .
city pub_name title_id
city
royaltyper

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Relational Model and the Normalization Process 39

3NF has many advantages. Amongst them, we find:
= Better data consistency.
= Data space is saved, because data occurs only once.
= Fewer anomalies.

In 99.99 percent of cases, 3NF is enough. Having achieved 3NF, you
may have achieved higher normalization. Nevertheless, after E.F. Codd
defined the first three normal forms, some gurus found issues in it. So,
higher normal forms have been introduced. Let’s have a very quick look
at these higher forms.

Advanced Normalization

The database community generally accepts three other levels of normal
forms. These levels concern tables containing at least three columns that
are all keys. These normal forms are the following;:

Boyce/Codd Normal Form Boyce/Codd Normal Form (BCNF) is a
more precise version of the 3NFE. It concerns a table that contains many
composite overlapping candidate keys and is based on the concept of
determinants. A relational table is in BCNF if and only if every
determinant is a candidate key.

e Review the definition of determinant and candidate key in the previous
P pages.

Fourth Normal Form Fourth Normal Form (4NF) is based on the con-
cept of multivalued dependency (MVD). A MVD can occur in a table
containing at least three columns. If one column has multiple rows
whose values are matching another column value of a single row, then
there is a MVD. A table is in 4NF if it is in BCNF and if every MVD is
also functionally dependent.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

40 Chapter 1 - Database Logical Modeling

) MVD is noted as ->>. A->>B means A multidetermines B. Given a table with
“ ITE three columns—A, B, and C—if a set of B values matching a pair of A and C
values depends only on the A value and not on the C value, then A->>B.

Fifth Normal Form Fifth Normal Form (5NF) is based on the concept
of join dependencies. Join dependency means that if a table is being
decomposed into three or more tables, it can be joined again to retain
its original state. A table is said to be in SNF if it cannot be decomposed
into smaller tables without the loss of data. In other words, if you add a
row to a table that is not in SNF, and if you decompose this table into
smaller tables and join these tables again, the result you obtain contains
spurious data.

é If you are interested in going further than 5NF, | recommend that you read
An Introduction to Database Systems, by Chris Date (Addison Wesley, 7"
Edition, 1999). It's a little bit academic, but one of the best books on data-
base theory.

You may have thrown your book away after reading the definitions of
these last normal forms. This is really complicated material. Lots of data-
base specialists, if not all them, agree on the fact that most of the real-life
tables in 3NF are also in 4NF and 5NF, so achieving the 3NF is the only
requirement for a database. There may be less than a tenth of a percent of
tables that need a real 4NF or SNF analysis.

3NF guaranties that almost no redundancy remains in your database.
But is it a good idea? While the situation is theoretically ideal, it may
become unusable due to the number of tables and necessary joins to
retrieve specific information. So, while we’re at it, let’s introduce redun-
dancy into your 3NF database again!

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Denormalization Process 41

The Denormalization Process

Microsoft
Exam
Objective

FIGURE 1.22

Define entities. Considerations include entity composition

and normalization.

= Specify degree of normalization.

The whole database community agrees on the 3NF requirement for a

database. Nevertheless, if the result of the 3NF is the total or almost total
elimination of data redundancy, it can lead to poor performance. Consider
the relational model illustrated in Figure 1.22, directly extracted from the

Northwind database.

Relational model in 3NF

Customers Orders Order Details
CustomerID OrderID OrderiD
CompanyName CustomerID . ProductiD
ContactName EmployeelD ¢— contains - —
ContactTitle OrderDate UnitPrice
Address RequiredDate Quantity
City 44— places ShippedDate Discount
Region * | ShipVia
PostalCode Freight
Country ShipName
Phone ShipAddress
Fax ShipCity

ShipRegion

ShipPostalCode

ShipCountry

If you want to calculate the total turnover realized with a specific cus-
tomer, you must write a query that joins the three tables, calculate the

amount of every order detail, and total all the amounts. That query will
consume quite a lot of CPU time. Now consider adding the field Total-
Amount to the table Orders. We obtain the relational model illustrated in

Figure 1.23.

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

http://www.sybex.com

42 Chapter 1 - Database Logical Modeling

FIGURE 1.23

)

TE

Introducing a redundant calculated field

Customers Orders
CustomerID OrderiD
CompanyName CustomerID
ContactName EmployeelD
ContactTitle OrderDate
Address TotalAmount
City ¢—— places RequiredDate
Region P * ShippedDate
PostalCode ShipVia
Country Freight
Phone ShipName
Fax ShipAddress

ShipCity
ShipRegion
ShipPostalCode
ShipCountry

In Figure 1.23, the CompanyName column is required, which is why is it
bolded. All the other columns allow the NULL value.

Now, when you want to calculate the total turnover realized with a spe-
cific customer, you just have to join two tables and calculate a sum. You
could even add a field Total Turnover in the Customers table, if you need
frequent access to this information. The global idea of denormalization is
presented in this example: introducing redundancy to improve data access
performance.

While denormalization has advantages, it also has drawbacks, the worst
being the maintenance of redundant data. In the previous example, each
time an order detail is inserted, the total amount of the order has to be
calculated and updated in the order table, or in the customer table if you
decided to store it with the customer’s data. Data integrity is endangered
by denormalization, and update performance may decrease.

Data integrity is endangered because you have to guarantee that the
redundant data are up to date. For example, you may decide that the
Total Turnover column in the Customers table should be updated every
night by a batch process recalculating every value, or that its value should

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Denormalization Process 43

be calculated on the fly and cross-checked every night to correct possible
inaccuracies. On the other hand, if you have to update the Customers table
each time you insert a new order, you slow your insert query. Is the redun-
dancy worth it?

Denormalization is a dangerous game and is generally more an art than
a science. The techniques that are presented in this chapter give you an
idea of what you can do with denormalization. Each time you denormalize
your model, you must always thoroughly document your choice.

)’ One last word before switching to the denormalization techniques: some

‘@TE database architects or consultants always denormalize a model or will
advise you to do so, because they say that a model in 3NF cannot perform
well. This is not necessarily true. Never predict performance problems
before implementing the physical model because software and hardware
have progressed, and what was true five or six years ago may not necessar-
ily be true today. Also, every database is unique, and what is true for one
system may be not be true for another; the volume of data, the number of
users, the type of the server, of the network, the software used, and so on
could be different. It creates a combination that has to be studied precisely
before making any decision concerning de-normalization. Never denormal-
ize before implementing your physical model and the first performance test
is under full load.

We will cover the following denormalization techniques in the upcom-
ing sections:
* Adding a redundant column
* Adding a derived column

= Partitioning tables

Adding a Redundant Column

Adding a redundant column is probably the most straightforward and
logical denormalization technique. It consists of copying a column in a
child table to a parent table. It generally violates the Third Normal Form,
but it does help some queries to avoid a join. In the Pubs database,
consider the Titles and Roysched tables (Figure 1.24).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

44 Chapter 1 - Database Logical Modeling

FIGURE 1.24 Titles and Roysched tables

titles roysched

title_id title_id
lorange

title 4 hirange

type

pvupb_id royalty

price

advance

royalty

ytd_sales

notes

pubdate

The Roysched table contains the royalty range for each title. For exam-
ple, if the sales of title BU1032 are between 0 and 5000, then the royalty is
10 percent, and above 5001 it is 12 percent. Now to avoid querying that
table, the current value of royalty is inserted in the Titles table. Now, that
table is not achieving 3NF anymore because the royalty column is
functionally dependent on the title_id and ytd_sales columns. This column
is not part of the primary key, so the table is not in 3NF anymore.

With the loss of the 3NF, anomalies can occur. Here are two examples:

= If a user updates the value of the royalty column in the Roysched
table, he/she has to update the matching record in the Titles tables;
otherwise, data is inconsistent.

= If a user updates the value of the ytd_sales column in the Titles
table, he/she has to look for the corresponding royalty value in the
Roysched tables to update the royalty column.

To avoid these two situations, it is possible to create an update trigger
on each table to track updates of the royalty column of the Roysched table
and of the ytd_sales column of the Titles table. The trigger is a piece of
code fired during the update of one of the columns. Compared to a single
update, the trigger slows the overall update. That loss of performance may
be a minor drawback compared to the fact that each time a title is queried,
the user retrieves its royalty value without having to query another table or
to join that table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Denormalization Process 45

Triggers are discussed in Chapter 6: Creating and Maintaining Database
Objects.

Adding a Derived Column

FIGURE 1.25

Another useful technique of denormalization is the use of derived columns.
A derived column is a column whose values are calculated from the values
of one or many other columns of the same table or other tables. Adding
such a column generally violates the 3NF, since this column is functionally
dependent on non-key columns.

The simplest example is the computed column: In a Sales table, you
store the amount, the sales tax, and the net price, calculated from the
amount and the sales tax.

The Titles and Sales table in Figure 1.25 illustrates a more complicated
example.

Titles and Sales table

titles sales
title_id stor_id
title RN
type ¢ title_id
pub_id
price ord_date
advance aty
royalty payterms
ytd_sales
notes
pubdate

Each time you wish to know the year-to-date sales of a given book, you
need to query the Sales table and total the values of the gty column for
that book. It may be a long-running query if the sales table is big. To avoid
querying that table and totaling the values, the architect introduced the
ytd_sales column in the Titles table. Now each time you query the sales of
a given book, you just have to query the Titles column. Of course, as for

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

46 Chapter 1 - Database Logical Modeling

the redundant column, the value of that column needs to be maintained
dynamically to be consistent and accurate.

You can add triggers to the Sales table to update the ytd_sales column
of the Titles table each time a sales record is inserted, deleted, or updated.
This trigger will lower the performance and inserts, deletes, and updates.
But again, the performance gain of the data retrieval must outweigh the
performance loss of the insert, delete, and update operations.

Partitioning Tables

Partitioning a table is not really a denormalizing technique, but it is worth
mentioning because it can address particular performance issues. There are
two ways to partition a table: horizontally or vertically.

Vertical Partitioning

Vertical partitioning consists of cutting the table in two or more tables by
moving entire columns. Consider the example illustrated in Figure 1.26.

FIGURE 1.26 \Vertical partitioning

Publishers [puinfo |
pub_id 4—— has pub_id
1
pub_name logo
city pr_info
state
country

The Publishers table has been split into two tables. One (Publishers)
contains all the “basic” information, and the other (Pub_info) contains the
logo and the pr_info field. This split has been realized for two reasons:

= There is not a logo and a description for every publisher, so it
makes more sense to split mandatory information from optional
information.

= The fields in the Pub_info table are large binary objects (BLOB), and
the architect may want to store them in another disk or “table
space.”

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

The Denormalization Process 47

SQL Server 2000 allows you to store text and image columns on another
filegroup thanks to the clause TEXTIMAGE_ON of the CREATE TABLE state-
ment. See Chapter 2: Database Physical Modeling, for more information on
the CREATE TABLE statement.

Another interesting point concerning vertical partitioning is the table
width and the number of records per page. In SQL Server 2000, an 8K
page contains a certain number of records. The wider the table, the fewer
the records per page. The cache hit ratio may increase, the number of I/O
per operation may lower, and the SQL Server cache may be well used.

In splitting a table for performance purposes, you should consider keep-
ing the columns that are accessed more frequently in the “master” table
and moving the other columns to one or more “slave” tables. Then, a one-
to-one relationship between the master and each slave table guarantees the
referential integrity.

Horizontal Partitioning

Another classic way of partitioning a table consists of moving a certain
number of rows to one or many other tables. This is done during
archiving, for example. If you consider a Sales table, you can imagine that
every July the sales from July of last year to June of this year are archived.
This technique is fine to keep small tables for the transactional system,
while still allowing access to the archived data.

A view can be used to simulate a full view of archived and live data. With
the new feature of partitioned view of SQL Server 2000, this technique
becomes very interesting to achieve scaling out.

Other examples can be found in real-world applications, like splitting

customers from prospects, active customers from customers who have not
placed an order for more than 12 months, and so on.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

48 Chapter 1 - Database Logical Modeling

Summary

This chapter is the only entirely theoretical one of the book. It may
be hard to remember all the terms and concepts we have learned here. But
it’s the kind of information you will use all your database life long, because
you cannot create a good database application without keeping these con-
cepts in mind.

In this chapter, we covered the following;:

* Designing a database system
= The Entity/Relationship model
= The relational model and the normalization process

* The denormalization process

Exam Essentials

Know what makes a good database design. In the exam, you will be
judged on your real-world knowledge. Knowing what makes a good
database design will enable you to focus on the technical questions and
tricks.

Identify entities and attributes. The basis of ER modeling is the identi-
fication of entities and attributes. Having a thorough knowledge of
modeling will help you criticize the way a database is designed and will
help you to create a good design.

Identify the types of relationships. Even if one-to-one or one-to-many
relationships are obvious, you should know how to manage every type
of relationship, even many-to-many.

Know how to define key attributes. Candidate keys, primary keys,
and alternate keys are the identification keys of your entities. Foreign
keys are the basis of relationships. Defining them will allow you to
enforce entity and referential integrity.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Key Terms 49

Identify precisely all the integrity types. Integrity is the source of cor-
rect data. Know the four types of integrity, what they are used for, and
how they can be enforced to design a precise and optimal ER model.

Know how to normalize and denormalize an ER model. You should
have no problems with normal forms, at least up to the third. Denor-
malization techniques are commonly used and can appear in the exam.

Key Terms

Before you take the exam, be certain you are familiar with the fol-

lowing terms:

alternate keys
artificial key
attribute

binary attributes
business rules
candidate key
cardinality
conceptual design
denormalization
derived column
determinant
direction

domain

domain integrity
enterprise integrity
entity

entity integrity
ER model
existence

fixed point
floating point
foreign key

full functional dependency

Copyright ©2001 SYBEX, Inc., Alameda, CA

character attributes
Integrity

key attribute

logical design

logical model
many-to-many relationship
non-key attribute
normal form

Normal form theory
normalization process
Numeric attributes
one-to-many relationship
one-to-one relationship
physical model

primary key

referential integrity
Relational Database Manage-
ment Systems (RDBMS)
relational model
relational table
relationship

special attributes
transitive dependency

www.sybex.com

http://www.sybex.com

50 Chapter 1 - Database Logical Modeling

Review Questions

1. You are a developer for World Wide Importers. You are designing
the new shipment tracking system. You print your ER model to
show some selected users during the next phasing meeting (see

graphic).

Customers Orders Order Details
CuskomerID OrderID - OrderID
Companyhame " | customertn :‘ ProductID

" | contactiame B Employeell UnitPrice

" | ContactTitle " |crderDate Quantity

T | Address T RequiredDate Discount

T | ity | shippedDate

T Reqgion Shiptia

" |Pastalade T Freight

T | Country " | ShipName Shippers

" |Phane T Shipaddress ShipperID

_JFax __|shipcity CompanyName

— T ShipRegion Phone

T ShipPostalZode
" | ShipCountry -]

Suppliers Products
SupplierID] ProductID
CompanyMame ___|Productiame

T |Contactiame __|5upplierID

| ContactTitle | CateqoryID

| Address | QuantityPerUnit
Ciky __|UnitPrice

T Reqgion] nitsInSkock,

" | PostalCode ___|UnitsOnOrder

T | Country __|RearderLevel

" |Phane ___|Discontinued
Fax

: HomePage

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

http://www.sybex.com

Review Questions 51

What should you add to your model to ensure a useful meeting with
your end-users?

A. Attributes
B. Entities
C. Datatypes
D.

Relationships

2. Build a list: As a database consultant, you have been asked to
optimize a database model designed by the IT department of an
insurance company. The model comprises just entities and attributes.
You should follow a certain number of steps before producing an
optimized ready-to-implement model. What is the proper sequence
of steps to produce this model? Some elements may not be part of
the sequence.

Define primary keys

Denormalize the model

Define attributes

Normalize the model

Define alternate keys

Define entities

Define relationships

3. You are a developer for World Wide Importers. One developer of
your team is working on the Products entity. Each product is
imported by one supplier only. You need to record information on
every product and on every supplier. Your developer shows you the
structure of the table he designed and a data sample (see graphics on
next page).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

52

Chapter 1 - Database Logical Modeling

Column Mame | DataType |Length | allow Muls |
@ | ProductIC ink 4
| Productiame nvarchat 40
" |UnitPrice money g W
T Campanyhame rvarchar 40
| Address nvarchar 60 W
T ity rvarchar 15 W
" |PostalCode nvarchar 10 W
Caunkry rvarchar 15 W
ProductlD |ProductMame [UnitPrice [CompanyMame [address = [PostalCode [Country
|17 Alice Muttan 39 Pavlova, Ltd. 74 Rose St, Moonie Melbourne 3058 Australia
|3 Aniseed Syrup 10 Exotic Liquids 49 Gilbert St. Londan EC1 45D LK
| |40 Boston Crab Meat 15.4 Mew England Seafood Order Processing On Boston 02134 Usa
| |e0 Camembert Pierrok 34 Gai paturage Bat. B 3, rue des Al Annecy 74000 France
|18 Carnarvon Tigers 62.5 Pavlova, Ltd, 74 Rose St Moonie Melbourne 3058 Australia
| Chai 1a Exatic Liquids 49 Gilberk 5t, Londan EC1 450 LK
]z Chang 19 Exotic Liquids 49 Gilbert Sk, London EC1 43D LK,
N Chartreuse verte 1a Aux joveuy ecclésiasti 203, Rue des Franc Paris 75004 France

As a matter of fact, you discover that the table needs a little extra
work. In which normal form is it?

A. First
B. Second
C. Third
D. Boyce-Codd

You are developing a new customer care system for an insurance
company. Every customer will be assigned a unique customer ID
made of a combination of 7 characters and 8 figures. You expect to
have over one million customers, each signing an average of 2.5
policies. Furthermore, it is important to track every customer’s
questions and complaints. You expect over 10 questions and
complaints per customer. You want to minimize space used in your
database. What primary key are you going to define for the
customers table to minimize space and programming tasks?

A. An integer column, defined with an auto-numbering property

B. The customer ID

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 53

C. A unique identifier column, designed to generate a new globally
unique ID for every row

D. A big integer column, defined with an auto-numbering property

5. You are a database developer for a banking corporation. Recently,
one of the counter clerks “lost” a customer. This customer went to
the bank for a deposit, but the counter clerk could not find her by
her customer ID. In fact, after a few minutes’ search, he found her,
but with a wrong ID. After looking at the audit tables, it seemed
another counter clerk accidentally modified the customer ID. You
need to forbid the modification of the primary key to avoid any
other “loss” like this. In SQL Server 2000, what is the fastest way to
implement this feature, without modifying the existing front-end
application?

A. Alter the table to enable the CHECK PRIMARY KEY option.
B. Alter the table to disable the MODIFY PRIMARY KEY option.

C. Add an AFTER UPDATE trigger to the table that rolls back the
transaction in case of modification of the primary key value.

D. It is not possible to implement this feature in SQL Server.

6. The database application you developed last year for the insurance
company you are working with was performing well, until last
month when some users started to complain about some long-
running queries. Last month your company acquired another
insurance company and inserted all its existing customers and
policies into the database, increasing the volume of data by a
magnitude of 3. You have been asked to find the cheapest solution
to this performance problem before the end of the week. After
having analyzed what was happening, you have observed that only
10 percent of the data is used 90 percent of the time. In fact, data
older than 2 years are selected only in 0.5 percent of the time. What
is the solution you are going to implement?

A. Buy a new RAID 5 subsystem and spread the data all over the
disks.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

54 Chapter 1 - Database Logical Modeling

B. Change the server to a new 4-way machine.

C. It is not possible to enhance performance before the end of the
week. You need more time.

D. Split the data horizontally and store the archive table on another
disk.

7. The database application you developed last year for the regional
bank you are working with was performing well, until last month
when some users started to complain about some long-running
queries. Last month your company acquired another bank and
inserted all its existing customers and accounts into the database,
increasing the volume of data by a magnitude of 5. You have been
asked to find the cheapest solution to this performance problem
before the end of the week. After having analyzed what was
happening, you have observed that each time an employee was
gaining access to a customer record, the system was calculating the
amount of money of his account based on all the money transferred
since the beginning of the year. What is the solution you are going to
implement to hasten the access to the customer record?

A. Create a stored procedure that calculates the amount on the fly.

B. Denormalize the customer table to include the calculated amount
value, updated through a batch that runs every night.

C. Index the transfer table to fasten the join with the customers
table.

D. Create a temporary table in tempdb that stores the account’s
amount and query this table each time a customer is queried.

8. You are helping your town library develop their new computer
system to track members, books, and borrowed books. The manager
of the library is a computer addict but knows little of ER modeling.
She designed a Member table to store every member, assigning each
a unique ID. She designed a Book table to store every book of the
library, and a Borrowed table to assign every borrowed book to
members. Each member can only borrow three books at a time, can

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 55

keep them up to four weeks and must bring them back at the same
time. The proposed design is illustrated in the following graphic:

Book Borrowing Member

% |BookID - MemberID % [MemberI
Title :‘ BookID1 T | LastMame
Author BookID2 " |FirstMarne
Publisher BookIDa T | middlelnitial
ISEM BarrawedCrate T | Address
DateIn - ity

T ZipCads
MermberSince

What level of normal form is reached by this model?
A. None

B. INF

C. 2NF

D. 3NF

9. You are a SQL Server developer for Northwind Traders. Your users
complain about performance of the application when they query the
order amount per employee name and per customer name. After a
quick investigation, you discover that this is due to the number of
tables joined to calculate the amount. Your logical design is
represented in the graphic on the next page.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

56 Chapter 1 - Database Logical Modeling

Customers Orders Order Details
8 | CustornerIDr B | OrderID a |fpF——ca 8| SrderIl
T Cornpanyarme T | CustamerID :‘ B | PraductID
T | contactMame b — ErmployeeID UnitPrice
| ContactTitle T | orderbate Cuantity
| Address " | RequiredCrate Diiscount
= " | shippedDate

" | Region | Shiptia
| PostalCode | Freight
T | Country " | shiptame
" |Phone | ShipAddress
__|Fax | shipCity
— : ShipRegion j
Employees * rr———|
T | ErnployeeID -
T | LastMame :‘
| FirstMame
| Title
T | TiteOfCautesy
__|BinhDate
| HireDrate
T | Address
=
B Region
| PostalCode
: Country ﬂ

What can you do to optimize this query?

A. Create a new denormalized table containing the employee name,
the customer name, and the amount ordered, and create the
necessary trigger to maintain this table.

Create a stored procedure that performs the needed calculation.
Create new indexes on the Order Details table.
Create a view on the four tables.
10. You are a database developer for the local university. You need to
define a relationship between the students and the courses, knowing

a student can attend many courses and one course can be attended
by many students. You have the two entities illustrated in the

following graphic:

Students Courses
StudentID CourselD
FirstName CourseName
LastName

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 57

How can you implement this many-to-many relationship?

A. Insert a StudentID attribute in the Courses table and a CourselD
column in the Students table.

B. Create a new entity called StudentsCourses containing at least
two attributes, StudentID and CourselD, forming the primary
key.

C. Insert a StudentID attribute in the Course table.

D. Insert a CourselD attribute in the Students table.

11. One of the developers on your team asked you about a problem he
could not address. He needs to represent a hierarchy in the new HR
database. Every employee reports to a manager. Managers can
report to another manager and so on, up to the CEO. He explains to
you that there are five hierarchical levels in the company, so he
intends to create five entities representing every level. You think this
can lead to many problems, the first being the case of a promotion.
A promoted employee has to be moved from one level to an upper
level, and that could lead to consistency issues. What is the best
solution, using the ER model, to address such a hierarchy?

A. Use two tables, one containing the employee information and
one the hierarchy information.

B. It is impossible to address this problem in a relational database.

C. Keep a table for every hierarchical level and develop a series of
stored procedures to manage inserts, deletes, and updates.

D. Insert a ReportsTo column in the Employees table and create a

recursive relationship.

12. As an independent SQL Server expert, you have been chosen to
explain the ER modeling that the developers will to use to model the
needed data and business processes to users of the future loyalty
management system. You decide to define the basic objects of the
ER model. What are they? (Chose three.)

A. Entity
B. Relationship
C. Datatype

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

58 Chapter 1 - Database Logical Modeling

D. Attribute
E. Property

F. Columns

13. You are a SQL Server database developer for Northwind Traders.
You designed the Products, Categories, and Suppliers table
illustrated in the graphic below.

Suppliers Products Cateqgoties
F | SupplierID 7 |ProductID # | CategoryID

] Cornpanytane " | ProductMame CateqoryMane

" |ContactMame | SupplierID Descripkion

" | ContactTitle T CakegoryID Pickure

" |address | QuantityPerUnit

T ity " |UnitPrice

] Region " |UnitsInStack

" | Postalcode " |Unitsonorder

T Country " |ReorderLevel

" |Phane " |Discontinued

" |Fax —

T HomePage

What is the level of normalization of your model?
A. INF

B. 2NF
C. 3NF
D. BCNF

14. You are designing a new procurement database for a regional bank.
While defining the suppliers and orders relationship, you are faced
with the choice of what has to be done when a supplier is deleted
from the database. You must propose all the SQL Server possible
declarative choices to your customer. What are they? (Choose all
that apply.)

A. Restrict: You cannot delete a supplier if it is linked with existing
orders.

B. No Effect: You can delete a supplier even if it is linked with
existing orders.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Answers to Review Questions 59

C. Default: All foreign keys are defined to a default value if the
matching primary key is deleted.

D. Cascade: Every order is deleted if the linked supplier is deleted.
15. You are a database developer for an insurance company. Every
insurance policy is managed by one and only one product manager.

One product manager can manage many policies. How can you
represent that information in the database?

A. Include the manager ID in the Policies entity.
B. Include the policy ID in the Managers entity.

C. Create a relationship entity formed by the policy ID and the
manager ID.

D. Include the manager ID in the Policies entity and the policy ID in
the Managers entity.

Answers to Review Questions

1. D. Attributes and entities are represented in the diagram. End-users
do not need to be know about datatypes, but they do need to know
about relationships to fully understand the links between entities.

Define primary keys

Normalize the model

Define relationships

Denormalize the model

Defining primary keys first allows you to enforce entity integrity
and prepare the normalization process that is based on functional
dependency to the primary key. Normalizing the database leads
naturally to the definition of relationships. You will then have a
3NF model that you will only need to denormalize if needed.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

60 Chapter 1 - Database Logical Modeling

3. B. Some non-key attributes depend on other non-key attributes. For
example, Country depends on the supplier name and product ID.
This is a transitive dependency: if you have the product ID, you can
find the supplier name, and once you get the supplier name, you
can find the supplier country. So, if you know the product ID, you
know the supplier country. Country is not functionally dependent
only on the primary key, but also on the Company Name.

4. A. For one million rows, the integer is sufficient (it goes up to more
than 2 billion) and will consume only 4 bytes per row instead of 15
for the customer ID, 16 for the unique identifier, and 8 for the big
integer.

5. C. Options A and B do not exist. C is the only way to do it without
modifying the programming logic.

6. D. The 3NF seems to be the problem in the sense that there is too
much data in the table and the machine is probably not suited for
that volume of data. So, the cheapest solution is to split the table
horizontally and store older data on another disk to minimize the
volume of data in memory.

7. B. This is a classic problem of heavy calculation on a frequently
accessed table. The only solution is to denormalize the table with a
column updated through a batch or a trigger, depending on the
frequency of inserts and deletes.

8. A. The Borrowing table contains a repeating group. To be in First
Normal Form, the table should only contain one BookID column,
not three.

9. A. Creating a new table will give the best results since the infor-
mation will be immediately available. However, the information
should be updated through synchronous or asynchronous
mechanisms.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Answers to Review Questions 61

10. B. The only way to implement a many-to-many relationship in ER
modeling is by creating a new entity made of, at least, the primary
keys of the linked entities.

11. D. This is the classical hierarchy problem. In such a case, the only
solution is a recursive relationship, which handles the hierarchy.

12. A, B, and D. ER stands for Entity-Relationship, and an entity is
made of attributes.

13. B. This is a tricky question. At first sight, the model is in 3NF, but
there is a transitive dependency in the Suppliers table: ContactTitle
depends on ContactName and not only on SupplierID. You should
introduce a Contacts table to be in 3NE

14. A, B, and D. This is a tricky one. Options A and D are obvious, but
B is possible if you do not enforce the foreign key in the Orders

table. C is only possible through stored procedures or triggers.

15. A. This is a one-to-many relationship. Each policy can have only one
manager ID, so the manager ID must be part of the Policies table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Database Physical
Modeling

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Create and alter databases. Considerations include file groups,
file placement, growth strategy, and space requirements.

Specify space management parameters. Parameters
include autoshrink, growth increment, initial size, and
maxsize.

Specify file group and file placement. Considerations
include logical and physical file placement.

Specify transaction log placement. Considerations include
bulk load operations and performance.

{ “:ff
: ; o 1
i { i |
: AR 4 |
i { i 104
et
! | (IBE ¢ R ! o
g Liel 4 i i Sl
b] i ‘)._/' ";:." i i
% ¥ \ !:' :r" 1';“‘-." i
{ ".“) I ! -,_li, | llf ,V >"‘ §
Wl s
Hict I } v Vs & !
\ R \ < !
; AHRIRY [g
g A [Al W LV RS
Mishaky iUt by ‘ i }‘~_ ! ;v\xv!!";‘]
1R Ak MR TRy i s | A Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com
¥ M : < N Na oy W10 b= B *

http://www.sybex.com

f you read the first chapter, you should now have a good under-
standing of a logical data model. Creating such a model is a hard task, and
some other hard tasks await you on your journey to database application.
The second milestone, after the logical design, is the physical design of the
database. Of course, it would be too easy if you needed only to create the
database, create the tables, and load the data to run your application!

If your purpose is to create a 2MB database, the job won’t be a really
tough one. But if you intend to implement a system with a size of over
1GB that is used as a classic client/server application or as a Web applica-
tion hit by dozens, hundreds, or thousands of users, a good physical design
is as critical as a good logical design.

In this chapter you will learn:

* How to create and manage a database
* How to manage data and log files
= What filegroups are and how they are used

* How to increase your system performance by setting up a good
physical design

Creating and Managing a Database

Database creation is a tricky process: It is a straightforward state-
ment hiding a massive complexity. Database creation is straightforward
because you can create a database just by giving it a name in SQL Enter-
prise Manager or by running a CREATE DATABASE statement. The massive
complexity of database creation lies in the database file management,
which is a SQL Server particularity that has to be known and understood
if you want to take advantage of it.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 65

As is the case for many SQL Server operations, there are two ways to
create a database: with SQL Enterprise Manager or with Transact-SQL.
Let’s take a look at how to create a simple database, then we can go fur-
ther into its architecture.

Creating a Simple Database

Microsoft Create and alter databases. Considerations include file
Exam groups, file placement, growth strategy, and space
Objective requirements.

To create a database with SQL Enterprise Manager, right-click the
Databases folder and choose New Database. The Database Properties
dialog box appears (Figure 2.1), allowing you to name the database.

FIGURE 2.1 The Database Properties dialog box

Database Properties - FakeDB

General | Dats Files | Transastion Loa |

Name [FakeDB

Database

Status:

Owiner

Diate created

Size

Space available

Number of ussrs:
Backup

Last databass backup: Mare

Last iansaetion lag backup None
Maintenance

Maintenance plan Mare

Callation name: [[Gerver defauit) =l

oK Cancel | Help

To create a database with Transact-SQL, use the following statement:

CREATE DATABASE database_name

If you want to create the FakeDB database (as in Figure 2.1), run the
following statement in SQL Query Analyzer:

CREATE DATABASE FakeDB

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

66 Chapter 2 - Database Physical Modeling

’a/

A TE

Of course, with these processes, SQL Server creates a database made of
default file size and placements. While this is useful for quick and dirty data-
bases, it is not the brightest idea for the next killer Internet Web site. The
default size of the log file is TMB. The default size of the data file is that of
the model database.

Data and Log Files

o

A%’TE

FIGURE 2.2

A SQL Server database is made of at least two physical files: one data file
and one log file. The data file contains data and the log file contains the
transaction log (Figure 2.2).

It is no longer possible to create a database with the transaction log stored
in the data file as it was in versions of SQL Server before SQL Server 7.

Data and log files

Database

data
.MDF or .NDF

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 67

While at least one data file and one log file are needed to create a data-
base, the database can span multiple data files and multiple log files. Data-
base files are of one of these three types:

= Primary data file (extension .MDF). A database must have one
.MDF file. The primary data file contains the database system tables
and user tables.

= Secondary data file (extension .NDF). A database can have up to
32,766 .NDF files. The secondary data files contain the user and
system data not stored in the primary data file. Secondary data files
are optional.

= Log file (extension .LDF). A database can have up to 32,766 .LDF
files. The log file contains the transaction log.

) A SQL Server 2000 database can have up to 32,767 files of any type.
drz

In SQL Enterprise Manager, the Database Properties dialog box allows
you to define one or more data files and log files. To define a data file
while creating a database in the Database Properties dialog box, follow
these steps:

1. Click the Data Files tab.

2. Enter a physical file location and file name.
3. Enter an initial file size in MB.
4

. Define automatic growing options (they are defined in detail in the
“Size and Growth Options” section, later on in this chapter).

To define the log file(s) while creating a database, perform the same
actions as for the data file, but on the Transaction Log tab.

‘ By default, data and log files are placed in the C:\Program

P Files\Microsoft SQL Server\MSSQL\Data folder. If you installed named
instances and create the database on a named instance, replace MSSQL with
MSSQLS$7nstancename.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

68 Chapter 2 - Database Physical Modeling

With Transact-SQL, use the following statement to define the files and
their attributes:

CREATE DATABASE database_name
ON
[([NAME = Togical_file_name ,]
FILENAME = 'physical_file_name'
[,SIZE = sizel
[,MAXSIZE = { max_size | UNLIMITED }]
[,FILEGROWTH = growth_increment 1) [,...n 1]
[LOG ON
[([L NAME = Togical_file_name ,]
FILENAME = 'os_file_name'
[,SIZE = size]
[,MAXSIZE = { max_size | UNLIMITED }]
[,FILEGROWTH = growth_increment 1)[,...n 11]

Listing 2.1 creates a 200MB database named FakeDB, composed of one
100MB primary data file, a SOMB secondary file, and a SOMB log file.

Listing 2.1: Create Database statement
CREATE DATABASE FakeDB
ON
(NAME = FakeDB_datal,
FILENAME = 'd:\FakeDB_datal.mdf',
SIZE = 100MB,
MAXSIZE = 1GB,
FILEGROWTH = 10MB),
(NAME = FakeDB_dataz2,
FILENAME = 'd:\FakeDB_data2.mdf"',
SIZE = 50MB,
MAXSIZE = 1GB,
FILEGROWTH = 10MB)
LOG ON
(NAME = FakeDB_log,
FILENAME = 'e:\FakeDB_log.ldf",
SIZE = 50MB,
MAXSIZE = 2GB,
FILEGROWTH = 10%)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 69

You can generate the database creation script with the Generate SQL
Scripts utility, even if you created your database graphically with SQL Enter-
prise Manager. Right-click the database in SQL Enterprise Manager, then
chose All Tasks > Generate SQL Scripts. In the Generate SQL Scripts dialog
box, click the Options tab and check the Script database option. The gener-
ated script will contain the CREATE DATABASE statement.

Now you know a database is made of at least two files. It is easy to
guess the purpose of a data file, but it may be a little more complicated to
understand the purpose of the log file. It is essential, however, that you
fully understand the way it works and its uses in writing good SQL Server
applications.

First of all, every modification in a relational database management sys-
tem is (or may be) a transaction. A transaction is defined by the following
properties (referred to as the ACID properties):

Atomic All operations in a transaction are atomic, meaning if one
operation fails, the whole transaction fails.

Consistent Before the transaction, the database was in a consistent
state. After the transaction, it is back in a consistent state, but it may
have gone through an inconsistent state during the transaction. That is
why a transaction must comply with the third property, isolated.

Isolated A running transaction is isolated from the outside. Locking
provides this property.

Durable Once a transaction is validated (committed), the effects of the
transaction remain in the database forever. The transaction log provides
this property.

The transaction log records every modification made to a database:

from the INSERT, UPDATE, or DELETE operations to the data page alloca-
tion or file growth. In the following process, a modification query is any

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

70 Chapter 2 - Database Physical Modeling

query or operation resulting in the modification of any part of the data-
base: its data or its physical structure. The following shows the overall
process (Figure 2.3):

1.
2.

The user or the system issues a modification query.

The query processor asks the cache manager if the page to update is
already in cache. If it is not, it is read from the disk and written into
cache.

The query processor writes the modification in memory.

At the same time, it writes the statement in the transaction log. For
example, if the operation is an UPDATE statement, it updates the data
in memory and writes the UPDATE statement in the log.

Once the query processor has the confirmation that the statement
has been written in the transaction log (COMMIT) on the disk, the
modification is over.

FIGURE 2.3 DataRead and Write Log process

= —
x]
o . []
- M(?S;]:;t?gr?n 4— Read data Data
-
Write log Log

Note that once an operation is finished, its effect remains in the data
cache, but the statement is written in the transaction log on the disk. Now,
if you consider a one-million-row update is taking place, it is faster to
write the statement in the transaction log (one row) than to write each of
the one million rows.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

¢y

TE

Creating and Managing a Database 71

The transaction log guaranties the Durable property of every transac-
tion, since it is on disk. Think of your database transaction log as your life
insurance. You should protect it. If you lose your data and your transac-
tion log at the same time, you lose your database. But if RAID 1 protects
your transaction log, for instance, a disk crash does not affect your system.
And, if you lose your data and not your transaction log (because it is on
another physical disk), you can recover what’s been done since the last
back up of your database thanks to your transaction log.

It is beyond of the scope of this book to describe the data guarding protec-
tion measures you should take to safeguard your data. This subject is a
requirement of exam 70-228: Installing, Configuring, and Administering
Microsoft® SQL Server™ 2000 Enterprise Edition. Refer to Sybex’s MCSE:
SQL Server 2000 Administration Study Guide for more information.

Remembering How Queries are Processed

Two things you should always remember while working with SQL:
Data modification is always done in memory and the transaction log is
constantly written to the disk. Developers often write stored
procedures or applications for SQL Server without knowing how
queries are processed. The same applies for database architects and
database administrators. A thorough understanding of the log
functions should be a prerequisite to develop for SQL Server. You do
not need to understand how a motor is working to drive a car, but you
do not know any Indy car driver who does not know exactly how his
engine works. A Certified SQL Developer is equivalent to the Indy car
driver. If he does not know how to drive, he will go directly into the
wall at the first curve.

There is an important question to ask yourself concerning the use of the
database files: If the modification is done in memory and the transaction
log is constantly written to the disk, when is the modification written to

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

72 Chapter 2 - Database Physical Modeling

)

TE

the disk? The answer is that it depends. In fact, the frequency that data is
written back to the disk depends on the activity of the database and the
memory available.

Two processes are in charge of writing back dirty pages (pages in mem-
ory that contain modified data) to the disk:

* The checkpoint process depends on the number of transactions writ-
ten in the transaction log.

= The lazy writer process depends on the available pages in cache.

For many developers and administrators, the checkpoint process
depends on a particular database option called recovery interval,
which depends on the activity of the database. By default in SQL Ser-
ver 2000, the recovery interval value is 0, meaning that in case of a failure
of SQL Server, each database will recover in less than one minute. If
SQL Server stops unexpectedly, the transaction logs will not be well
closed, and when SQL Server restarts, all the transactions since the last
checkpoint are replayed. This recovery process takes less than one minute
per database, with a recovery interval value of 0. But SQL Server bases its
evaluation of the “real” recovery process duration on the number of trans-
actions written in the transaction log. So every #n transactions, the dirty
pages are written to the disk but still remain in memory as clean pages.

In the meantime, if the available pages between two checkpoints
decrease and fall below a predefined threshold, the lazy writer process
flushes pages from the memory to the disk (if they are dirty) to keep the
number of available pages always above the threshold. This threshold is
approximately 5 percent of the SQL Server cache.

In SQL Server 2000, the cache is unified. This means that there is no distinc-
tion between data and procedure cache, which is memory allocated to data
and to queries and stored procedures.

Throughout the book, keep in mind that updates, inserts, and deletes all

occur in memory. Now that you know how a database works, let’s look at
the details of its creation and management.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 73

Managing Databases

Microsoft Create and alter databases. Considerations include file
Exam groups, file placement, growth strategy, and space
Objective requirements.

= Specify space management parameters. Parameters include
autoshrink, growth increment, initial size, and maxsize.

The CREATE DATABASE statement contains many options. The following
pages discuss these options, starting with the filenames, locations, and
sizes, continuing with the collation and the shrinking of a database, and
finishing with the different possibilities of altering a database.

Filenames

When you define the filename, you also give the file a logical name. The
physical name and location are being defined in the Locate Database File
dialog box, as in Figure 2.4.

FIGURE 2.4 Defining a physical filename and location

Locate Database File

bl

=I-_1 Microsoft SAL Server
+-_1 80
—1-{_1 M550L
+-_] Binn
=0t

+-_1 Inztall

+-_] LOG
1 Microsoft Vizual Studio
1 Metkeeting
1 Outlock Express
|

1 PaintShop Pro &

1 PLUS!

1 Uriinztall Infarmation
1 “isio

1 "Windows Media Player
1 Windows NT

- -F-E - -E -

File name: FakeDB_Data MDF

Selected file: C:A\Program FileskMicrosoft SOL ServersbMSSALAD atabF

ok, | Cancel

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

74 Chapter 2 - Database Physical Modeling

These two names correspond to the NAME and FILENAME clause of the
CREATE DATABASE statement. The logical name of the file is used inside the
Transact-SQL statement to reference the file. The physical name of the file
is used at the operating system level.

) You cannot create data or log files in a compressed directory.
drz

The database and logical filenames can be a maximum of 128 charac-
ters long. The physical filenames (location and file name) can be a maxi-
mum of 260 characters long. Be careful not to create too big a hierarchy of
folders to store your data and log files; otherwise, their creation will fail.

e These lengths are the max lengths of the name and filename columns in the
P Sysdatabases and Sysaltfiles tables, which contain information about data-
bases and files.

Size and Growth Options

Each data and log file has three properties controlling their size and their
growth options:

= SIZE defines the initial size of the file. In SQL Enterprise Manager,
you define size in megabytes. With Transact-SQL, you can specify
kilobyte (KB), megabyte (MB), gigabyte (GB) or terabyte (TB), with
MB being the default. The size cannot be smaller than the size of the
model database (1MB, unless it has been changed).

= MAXSIZE defines the maximum size to which the file can grow. The
unit rules are the same for SIZE. MAXSIZE can be UNLIMITED, mean-
ing that the file can grow up to the disk size.

= FILEGROWTH defines the growth increment of the file. It cannot
exceed MAXSIZE and can be specified by Transact-SQL in (KB),
megabyte (MB), gigabyte (GB), terabyte (TB), or percent (%), with
MB being the default. In SQL Enterprise Manager, you can only
define the file growth in MB or in percent.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

\
\

,A‘IngE

Creating and Managing a Database 75

Keep the following pieces of advice in mind when considering these
options:

= Always define a “smart” size. It’s easy to leave the data file as 1TMB
and then let it grow. But first file fragmentation will occur, followed
by a drop in performance. Both consequences are the results of the
file chunk allocation. Each time the system inserts new data, if there
is not enough space in the data file, it increases the size of the file,
following the FILEGROWTH value. So SQL Server asks the file system
to allocate a new chunk of data to the files. That takes time, and the
new chunk is not necessarily contiguous to the other allocations.
The initial size of the file has to reflect the needed initial size plus the
expected growth for the months or years to come.

= Never allow a file to have an unlimited growth. It’s better to give a
limit, even if it’s a very high limit. With an upper limit, you have
more efficient space management and can monitor more easily the
number of space allocation errors (see the note about errors below).

= Define a “smart” value for FILEGROWTH. For example, if you create a
1GB file, do not define a 1MB file growth value. Instead, define a 50
or 100MB file growth value. Doing so, you limit file fragmentation
and minimize the file growth frequency. In general, a value between
5 and 20 percent of the initial size is a good choice.

The CREATE DATABASE statement presented in Listing 2.1 shows differ-
ent options of file growth. The data files grow by 10MB chunks and up to

1GB. The log file grows by chunks of 10 percent of the actual file size and
up to 2GB.

Historically, there is one error that has to be monitored if you defined the
maximum size of your file(s): 1105. The error message received is: Could
not allocate space for object objectname in database database-
name because the filegroupname filegroup is full. With

SQL Server 2000, you should also monitor error 9002 if you fixed the maxi-
mum size of the transaction log: The log file for database database-
name is full. Back up the transaction log for the database to
free up some log space.

In Exercise 2.1, we’ll create a database using Enterprise Manager.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

76 Chapter 2 .- Database Physical Modeling

Creating a Database with SQL Enterprise Manager
This exercise will walk you through creating a database with SQL
Enterprise Manager, defining files and growing options, and then
generating the SQL script.

1. Open SQL Enterprise Manager. Do this by choosing Start >
Programs > Microsoft SQL Server > Enterprise Manager.

2. In SQL Enterprise Manager, click the plus (+) sign next to Microsoft
SQL Servers to unfold the server groups list.

3. Click the plus (+) sign next to SQL Server Group to unfold the list of
server names belonging to the group named SQL Server Group.

4. On the left-hand side of your server name, you should see an icon
representing a small server and a white or green disk:

= If this icon represents a red square in a white disk, your server is
stopped. Start it by right-clicking your server name and choosing
Start.

= If this icon represents a green arrow in a white disk, your server is
started and you are not connected.

= If this icon represents a white arrow in a green disk, your server is
started and you are connected.

Click the plus (+) sign next to your server name to unfold the object
types list of your server.

5. Right-click the Databases folder and choose New Database.
6. In the Name text box, type MyFirstDatabase.

7. Click the Data Files tab. Define an initial size of 10MB, allow a file
growth value of 56MB and a maximum file size of 100MB. Do not
change the file name and the location.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 77

EXERCISE 2.1 (continued)

Database Properties - MyFirstDatabase
General DataFiles } Transaetion Lag |

Database files

Location Tl size (ME) Fiegroun
FRIMARY

MyFirstDatabase D

Delete

File properties
¥ utematically grow fike

File growth Maximum file size

& In megabytes: 5 j Unreshicted file growth

By percent j & Restict fils growth (MB): [100 j

oK Cancel | Help

8. Click the Transaction Log tab. Define an initial size of 5MB, allow a
file growth value of TMB and a maximum file size of 50MB. Do not

change the file name and location.

Database Properties - MyFirstDatabase
General | Dats Files Transaction Log |

&Transaction log fles

Delete

File propetties
¥ Automatically grow file

File growth Masimu fle size

& | megabytes 1 A | Unresticted e ot

By percent j & Restict fils growth (MB): [50 j

oK Cancel Helps

9. Click the OK button.
10. Right-click the Databases folder and choose Refresh.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

78 Chapter 2 - Database Physical Modeling

EXERCISE 2.1 (continued)

11. Click the plus (+) sign next to the Databases folder to unfold the
databases list.

12. Click MyFirstDatabase to select the database, then right-click
MyFirstDatabase and choose View > Taskpad. The taskpad on the
right-hand side of SQL Enterprise Manager allows you to check the
space allocated.

MyFirstDatabase 10 Items

General

MyFirstDatabase 8

-

] Database

owner: SQL2000LT Mare Israel
Date created: 158/01/2001 18:41:10
Size: 15,00MB

Space available: 13,55MB

Database options: normal

Number of users: 1

) Maintenance

Last database backup: Mone
Last differential backup: Mone
Last transaction log backup: Mone
Maintenance plans: Mone

~) Space allocated

Data:

MyFirstDatabase_Data 10MB

Transaction log space: 4,99MB 4,7TMB

Total Used H Free

13. Right-click MyFirstDatabase and choose All Tasks > Generate SQL
Scripts.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

A

»

=

TE

Creating and Managing a Database 79

EXERCISE 2.1 (continued)

14. Click the Options tab. Activate the Script Database option.

15. Click the General tab and click the Preview button. After a couple of
seconds, the Generate SQL Script Preview dialog box appears and
presents you with the database creation script. You can copy the
script to the clipboard if you wish to analyze it in the Notepad or in
SQL Query Analyzer.

16. Click the Close button, then the Cancel button. You can close SQL
Enterprise Manager if you wish.

Most of the scripts and queries you'll see in this book can be opened and
executed with SQL Query Analyzer or OSQL.

Collation

In versions of SQL Server up to SQL Server 7, the character set (or code
page) was a server-wide parameter. On a server, every database used the
same set of characters. With SQL Server 2000, the character set, sort
order, and Unicode collation have been grouped in what is now called a
collation, which can be defined at the server, database, or even column
level. This means that a server can be installed to use the
Latinl_General_CI_AS collation (that is code page 1252, case insensitive,
accent sensitive), and a specific database can be created with the
Modern_Spanish_CS_AS collation. While this feature has many advantages
for administrators, such as the possibility to restore a database on a server
that has been backed up on another server installed with a different
collation, it has some drawbacks for the developers.

In the CREATE DATABASE statement or in the Database Properties dialog
box in SQL Enterprise Manager, it is possible to define the collation of the
database. Two types of collation names exist: Windows and SQL collation
names. Both can be used with the COLLATE clause.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

80 Chapter 2 - Database Physical Modeling

P Books OnLine, in the Transact-SQL Reference book, at the COLLATE chapter.
Open the Books OnLine by choosing Start > Programs > Microsoft SQL
Server > Books OnLine. You'll find the Transact-SQL Reference book in the
list on the left-hand side of the window.

% You'll find exhaustive information on collation names in the SQL Server

You can modify the collation used by a database with the ALTER DATA-
BASE statement under strong restrictions:

* You are the only user of the database.
= No schema bound object is dependent on the database collation.
= No name duplicates are created by the altering process.

If the collation choice is a good idea, it should be used cautiously. In
fact, a developer will now face two choices: changing collation or using
Unicode. In an international environment, Unicode is always a better
choice because you do not have to handle character translation. Even if
Unicode occupies twice the space (16 bits per character instead of 8 bits
with a single-byte character set), you do not have to ensure the proper
translation of characters between different collations. Furthermore, colla-
tion precedence rules are not easy to manage. Reserve this collation feature
only if you have to manage different servers using different locales.

Shrinking a Database and File

While a database can grow automatically, it can also shrink manually or
automatically, depending on the options you activated and space usage.
Automatic shrinking is one of the many database options that we will see
later in this chapter. You can manually shrink databases or files with
SQL Enterprise Manager or Transact-SQL.

Automatic Shrinking

Automatic shrinking is not enabled by default on any SQL Server editions
but Desktop, regardless of the OS used. Automatic shrinking is quite
simple: Every half hour, a special housekeeping process recovers ghost
records (records that have been logically deleted) and checks whether a
shrink is necessary by analyzing empty space.

If more than 25 percent of a file contains unused space, it is shrunk
automatically. The target size is either the initial file size or a size where 25
percent is unused space, whichever is greater.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

.
ING

Creating and Managing a Database 81

A file cannot be automatically shrunk to a smaller size than its initial one.

Let’s say, as an example, that you’ve created a 100MB file for your
database. This file fills up, and then increases by 10MB chunks. Having
reached 150MB, you archive half of the data, resulting in almost 50 per-
cent of unused space. The allocated space is now 82MB. The autoshrink
process shrinks the file to 110MB. Note that it’s not shrunk to its initial
size, because that would result in only 18 percent of free space.

To set this parameter in SQL Enterprise Manager, check the Autoshrink
check box in the Database Properties dialog box. With Transact-SQL, use
the ALTER DATABASE statement, like in the following example:

ALTER DATABASE MyFirstDB SET AUTO_SHRINK ON

For those of you who know SQL Server 7, note that SQL Server 2000 no
longer uses sp_dboption. In fact, this system-stored procedure is still sup-
ported, but only for backward compatibility.

You can disable autoshrink, just by turning OFF the previous option:

ALTER DATABASE MyFirstDB SET AUTO_SHRINK OFF

It is not a good idea to enable the autoshrink on a production database
because this process can occur anytime. As Murphy’s Law is always peep-
ing above you shoulder, you can be sure it will occur just in the middle of a
very busy day and will exhaust the resources on your server. Just monitor
database growth and unused space, and shrink your database only when
you need to and only when there is no activity on your server.

To turn on autoshrink, follow these steps (we will use the MyFirstData-
base database):

1. In SQL Enterprise Manager, right-click the MyFirstDatabase folder,
and click Properties.

2. Click the Options tab.
3. Check the Autoshrink property and click OK.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

82 Chapter 2 - Database Physical Modeling

FIGURE 2.5

Manually Shrinking a Database

A database can be shrunk with the DBCC SHRINKDATABASE statement. To
shrink a database, you have to give SQL Server the name of the database
you want to shrink and the free space target size, represented as a
percentage of the overall target size. The following example shrinks
MyFirstDatabase to retain only 20 percent of free space:

DBCC SHRINKDATABASE (MyFirstDB, 20)

You cannot shrink a database beneath its initial size, though you can
shrink a specific file beneath its initial size. The DBCC SHRINKDATABASE
statement can only be used to reclaim unused free space after a database
growth. The database shrinking process is “lossless,” which means that
you are not going to lose any data, since you cannot ask for an unreach-
able free space value. For example, if you have only 20 percent of free
unused space in your database, you cannot ask to reach 30 percent.

The shrinking process does not only shrink data and log files, it moves
data from one extent to another, or from one file to another one. Starting
from the end of each file, the process moves toward the beginning of the
file and moves any allocated extent to an unused extent in the same file or
in another available file until it leaves the necessary amount of unused
space or reaches the initial size of the file.

In the example illustrated in Figure 2.5, 44 percent of the space is used
before the shrinking process, leaving 56 percent of the overall size as
unused space (there are 18 extents and only eight are allocated). You want
to reduce this free space size to 20 percent.

Shrinking a database file with a target size

File before the shrinking

Freed space

1 1

Moving the allocated extent (intermediary process)

File after the shrinking

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

L
INING

Creating and Managing a Database 83

The basic theory behind database shrinking is quite simple, but it
becomes more complex when you consider that a database can be made of
multiple data and log files. Let’s look at an example to understand how the
shrinking process works.

Consider the FakeDB database as being made of two SOMB data files
that have grown to 100MB each and one log file of SOMB. The primary
data file contains 65MB of data, the secondary contains 40MB of data.
Consider these three cases:

= You want to shrink the database to 10 percent of free space. The
target size allows this value. Considering that SQL Server calculates
a target size of 72MB, it shrinks the file by moving the data inside
the file because 65MB of used space plus 7MB unused space solves
the problem.

* You want to shrink the database to 25 percent of free space. This
target is reachable. Considering that SQL calculates that it can
shrink the file to 8OMB, it will leave 60MB of data in this file and
move SMB to the secondary file.

This extent transfer from file to file is possible only if the considered files
belong to the same filegroup.

* You want to shrink the database to 40 percent of free space. The
primary file will not be shrunk because the target is bigger than the
available space.

If you shrink a database, you shrink the log files at the same time.
Unfortunately, a log file is not structured like a data file. That means, you
cannot “move” transactions around your log file like the system did with
the data. It has to be shrunk from the end. The two operations that apply
to a transaction log are log truncation and log shrinking:

= Log truncation concerns the deletion of the inactive portion of the
log, which are the transactions whose data has been checkpointed.
A checkpoint marks the writing of dirty pages to the disk. So, the
transactions before this checkpoint are useless (they have to be
backed up to be recovered in case of failure of the data disk, and
a log backup truncates the inactive portion of the log).

= Log shrinking means that part of the truncated inactive portion of
the log can be released to the operating system.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

84 Chapter 2 - Database Physical Modeling

As you will see in the “Space Management” section, a log file is split
into virtual log files, whose size and numbers depend on the log file size. A
log file can always be shrunk to an integer number of virtual log files. So,
if a 1GB log file is made of eight 128 MB files, it can be shrunk to 128,
256, 384, 512, 640, 768 or 896 MB, depending on its initial size and on
the start and end of the active portion of the log.

You may never predict with precision what the file size will really be,
but you may get a good idea if you run DBCC SHRINKDATABASE with just
the database name, like the following statement:

DBCC SHRINKDATABASE('mydb')
The result will look like the following:

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages

7 1 25600 25600 10400 10400
12800 12800 12800 12800
7 3 25600 25600 0 0

The previous table shows the possible results of the size reduction of
mydb files. The columns are as follows:

= DbId is the database ID (found in sysdatabases).
= FilelD is the file ID (found in sysaltfiles).

= CurrentSize is the current file size in 8KB pages. In the example,
the size of file numbers one and three is 200MB, and the size of file
number two is 100 MB.

Remember there are 1024KB in 1MB, so there are 128 pages in TMB.

= MinimumSize is the minimum size of the file, generally its initial size,
in 8KB pages. In the example, the files have been created at their
current size.

= UsedPages indicates the number of allocated 8KB pages. In the exam-
ple, file one uses 81.25MB, file two is full, and file three is empty.

= EstimatedPages indicates the minimum size the file could be shrunk
to, taking into account the allocated pages. In the example, all files
can be shrunk to their used pages.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 85

This result will help you determine if there is any free space in the files,
so you could use a suitable value for the DBCC SHRINKDATABASE statement.
But if you want to precisely shrink a file, you would use DBCC SHRINKFILE,
as we will see in the next section.

You can shrink a database directly in SQL Enterprise Manager:

1. Right-click the database you want to shrink.

2. Click All Tasks > Shrink Database.

3. Define the Maximum Free Space in Files After Shrinking.
4

Check the Move Pages to Beginning of the File Before Shrinking
option.

5. Click the OK button.

These options are shown in Figure 2.6. Note that you can schedule the
execution of the DBCC SHRINKDATABASE if you enable the Shrink the Data-
base Based on This Schedule option. If you do so, the operation will not be
done, but only scheduled.

FIGURE 2.6 Shrinking a database in SQL Enterprise Manager

Shrink Database - FakeDB x|

Databaze size

Space allocated: 13MB
] Space free: 11,63 MB [89%)
Shrink. action

—
=
1|
ey

b axirnurn free space in files after zhrinking:
v Move pages to beginning of file befare shrinking
Mote: Selecting thiz option may hinder performance.

Schedule
I Shink the database based on thiz schedule:

[s

Shirink. files
D atabaze files can be shrunk individually if more e
precize control is required.

0K | Cancel | Help |

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

86 Chapter 2 - Database Physical Modeling

You have two options when executing the DBCC SHRINKDATABASE
statement:

= NOTRUNCATE moves the pages to the beginning of files and does not
release the freed extents to the operating system.

= TRUNCATEONLY does not move any data inside the files. The shrinking
process starts from the end of the file and frees the unused extents
until it reaches the first allocated extent, regardless of the target per-
cent. This option simulates the functioning of the DBCC SHRINKDB of
SQL Server 6.5.

In Exercise 2.2, we will shrink a database using Enterprise Manager.

Increasing the Size and Shrinking a Database with SOL
Enterprise Manager
This exercise will walk you through managing your database size—
increasing and decreasing it—with Enterprise Manager.

1. Open SQL Enterprise Manager by choosing Start > Programs >
Microsoft SQL Server > Enterprise Manager. In SQL Enterprise
Manager, right-click the MyFirstDatabase folder, and click
Properties.

Click the Data Files tab.
In the Space Allocated cell of the first data file, type 20.
Click OK.

e > w N

In SQL Enterprise Manager, right-click the MyFirstDatabase folder,
and click All Tasks > Shrink Database.

6. In the Maximum Free Space in Files After Shrinking text box, type
80.

7. Check the Move Pages to Beginning of File Before Shrinking option.
8. Click OK.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 87

EXERCISE 2.2 (continued)

9. Click OK in the dialog box to indicate that the database has been
shrunk successfully.

10. In the Taskpad, note that the size of the MyFirstDatabase_Data file
has come back to its initial size.

Even though DBCC SHRINKDATABASE is a useful tool to reclaim unused
space, it is not powerful enough to free up space in a determined file or to
free up space beyond the initial size. The DBCC SHRINKFILE statement will
help you to do so.

Shrinking a File

The DBCC SHRINKFILE allows you to shrink a specified data or log file
directly to the desired size. For example, if you have a 200MB file in which
only 50MB are used, and you want to release 40MB, just run the
following line:

DBCC SHRINKFILE (myfile, 60)

There are two things you should remember when running this state-
ment:

1. You name the file by its logical name, so you must be in the
database context before running the statement. Just run USE mydb
first.

2. The specified value is the target size in megabytes. If you omit that
value and there is enough free space to allow the shrinking, the file
is shrunk to its initial size.

The target size may not be reached if there is too much data in the file.
In the previous example, if there were 70MB of data, the file would have a
size of 70MB instead of the 60MB asked for and without any warning.
The Query Analyzer result pane gives you an indication of what has been
done with the file.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

88 Chapter 2 - Database Physical Modeling

DbId

FileId CurrentSize MinimumSize UsedPages EstimatedPages

1 7680 256 6400 6400

The previous table shows the result of the size reduction of myfile. The
table contains the following columns:

DbId is the database ID (found in sysdatabases).
FileID is the file ID (found in sysaltfiles).

CurrentSize is the current file size in 8KB pages. In the example,
the file is 60MB.

MinimumSize is the minimum size of the file, generally its initial size,
in 8KB pages. In the example, the file has been created with a size of
2MB.

UsedPages indicates the number of allocated 8KB pages. In the
example, there are S0MB of data.

EstimatedPages indicates the minimum size the file could be shrunk
to, taking into account the allocated pages.

You have three options when executing the DBCC SHRINKFILE
statement:

EMPTYFILE allows you to empty the file by moving the data it con-
tains to another file of the same filegroup. After a file has been emp-
tied, it can be deleted with an ALTER DATABASE statement (see
below). You do not specify a target size if you want to empty a file.

NOTRUNCATE moves data at the beginning of the file but does not
release the freed space to the operating system.

TRUNCATEONLY shrinks the file to the last allocated extent and
releases the freed extents to the operating system.

The last two options work exactly the same way with DBCC SHRINKFILE
as with DBCC SHRINKDATABASE.
To shrink a file directly in SQL Enterprise Manager:

1.
2.
3.

Right-click the database you wish to shrink.
Click All Tasks > Shrink Database.
Click Files.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 89

4. Choose the file in the Database File drop-down box. The system will
give you information on the file, as in Figure 2.7.

FIGURE 2.7 Shrinking a file in SQL Enterprise Manager

Shrink File -- FakeDB_Data X|

== D atabasze file: FakeDB [ata
File details
Filegroup name: PRIMARY
File: 1D: 1
File type: [rata file
Location: C:AProgram Fileshhicrozoft SOL
Cumrent size: 20,00 MB
Space uzed: 1.00 kB
Shiink. action

* Compress pages and then tuncate free space from the file
" Truncate free space from the end of the file
" Emphy the file [data will migrate bo ather fles in the file group)

" Shirink file ta: 3

Drefer zhrink,

| -~
| —

(] | Cancel | Help

[Shiink the file later:

The different options presented in the dialog box correspond to
some DBCC SHRINKFILE options:

» Compress Pages and Then Truncate Free Space From the File is
the default option. It will truncate the file to the smallest possible
size.

* Truncate Free Space From the End of the File corresponds to
TRUNCATEONLY.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

90 Chapter 2 - Database Physical Modeling

* Empty the File (Data will Migrate to Other Files in the File
Group) corresponds to EMPTYFILE.

5. Click the OK button.

Note that you can schedule the execution of the DBCC SHRINKFILE if
you check the Shrink the File Later check box. If you do so, the operation
will not be done, but only scheduled.

In Exercise 2.3, we will shrink a file using Enterprise Manager.

Shrinking a Database File with SQL Enterprise Manager
This exercise will walk you through shrinking a file using SQL
Enterprise Manager.

1. Open SQL Enterprise Manager by choosing Start > Programs >
Microsoft SQL Server > Enterprise Manager. In SQL Enterprise
Manager, right-click the MyFirstDatabase folder, and click All
Tasks > Shrink Database.

2. Click the Files button.

3. Make sure the MyFirstDatabase_Data file is selected in the Data-
base File drop-down box.

4. Select the Shrink File To option and type 80 in the text box.
5. Click OK.

6. Click OK in the dialog box to indicate that the database file has been
shrunk successfully.

7. In the Taskpad, note that the MyFirstDatabase_Data file size is now
5MB.

Now that you’ve seen how to shrink a database, let’s take a look at how
you can alter a database.

Altering a Database

Altering a database means modifying its file structure by adding,
removing, or modifying files, or by changing its name. All three operations
can be done through SQL Enterprise Manager or with Transact-SQL. We

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

L
INING

9

¢y

TE

Creating and Managing a Database 91

will focus more on Transact-SQL, since the language is always the primary
focus of any process in the exam. SQL Enterprise Manager is mentioned
here, as it is the easiest way to do a specific operation. Knowing the
statements allows you to understand what’s happening behind the curtain.
Let’s start with file modification.

Modifying a File

Modifying a database file means changing its name, its size, its max size,
or its file growth increment. The following example increases the size of
the primary file of the FakeDB database:

ALTER DATABASE FakeDB
MODIFY FILE
(NAME = FakeDB_datal,
SIZE = 200MB)

The size value must be greater than the current file size. Otherwise, you'll
encounter error 5039: MODIFY FILE failed. Specified size is less
than current size.

The following example modifies, in one statement, the database name,
max size, and file growth increment:

ALTER DATABASE FakeDB
MODIFY FILE
(NAME = FakeDB_datal,
NEWNAME = FakeDB_Primary,
MAXSIZE = 1.5GB,
FILEGROWTH = 50MB)

The MODIFY FILE clause has a FILENAME property, like in CREATE
DATABASE, which allows for the modification of the physical name and loca-
tion of the file. This property can only be used for tempdb files and take
effect when SQL Server is restarted.

All these operations can be realized in SQL Enterprise Manager through
the Database Properties dialog box.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

92 Chapter 2 - Database Physical Modeling

1. In SQL Enterprise Manager, right-click the database name.
2. Click Properties.

3. In the Database Properties dialog box, click the Data Files or the
Transaction Log tab, depending on the file you want to modify.

4. Select the file you want to modify and modify the necessary
properties.

5. Click OK to validate your modification.

Increasing the database size can be done through increasing one or
more file sizes by adding new files.

Adding a File

Adding a file to a database is quite a simple process, since it is like creating
a file at the time of database creation. The following example adds a file to
the FakeDB database:

ALTER DATABASE FakeDB
ADD FILE
(NAME = FakeDB_data3,
FILENAME = 'd:\FakeDB_data3.mdf',
SIZE = 100MB,
MAXSIZE = 1GB,
FILEGROWTH = 10MB),

You can add a new file to an existing database in SQL Enterprise Man-
ager with the Database Properties dialog box:

1. In SQL Enterprise Manager, right-click the database name.
2. Click Properties.

3. In the Database Properties dialog box, click the Data Files or the
Transaction Log tab, depending on the file you want to add.

4. Click the empty File Name cell and type the new file logical name.

5. Define its location in the Location cell, type its size, and choose its
growing properties in the File Properties frame.

6. Click OK to validate your addition.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

L
ING

Creating and Managing a Database 93

Removing a File

You can remove a file from a database if and only if it is empty. You can
empty a file with DBCC SHRINKFILE and the EMPTYFILE property. The
following statements empty the third file from FakeDB and remove it:

DBCC SHRINKFILE ('FakeDB_data3', EMPTYFILE)

ALTER DATABASE FakeDB

REMOVE FILE FakeDB_data3

You can remove an empty file from an existing database in SQL Enter-
prise Manager with the Database Properties dialog box:

1. In SQL Enterprise Manager, right-click the database name.
2. Click Properties.

3. In the Database Properties dialog box, click the Data Files or the
Transaction Log tab, depending on the file you want to remove.

4. Select the file by clicking its row.
5. Click Delete.

6. Click OK to confirm your choice.

Once you've clicked the OK button, the file is physically deleted and cannot
be recovered!

7. Click OK or Cancel to close the dialog box.

Remember you can only remove a file if it is empty. If it contains data, you
obtain error 5042: The file 'filename' cannot be removed because it
is not empty.

Changing a Database Name

You can change a database name very easily. Two methods exist to do so:
ALTER DATABASE and sp_renamedb. The system-stored procedure uses
the ALTER DATABASE statement after doing some basic name checks and is

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

94 Chapter 2 - Database Physical Modeling

o

2

kept only for backward compatibility. The following example renames the
FakeDB database to TestDB:

sp_rename 'FakeDB', 'TestDB'
With the ALTER DATABASE statement, the syntax is almost as simple:

ALTER DABASE FakeDB MODIFY NAME=TestDB

It is not possible to rename a database through SQL Enterprise Manager.

So far, we have seen that a database is composed of data and log files.
Let’s look closer at these files to uncover their structure.

Space Management

Microsoft
Exam
Objective

Create and alter databases. Considerations include file
groups, file placement, growth strategy, and space
requirements.

= Specify space management parameters. Parameters include
autoshrink, growth increment, initial size, and maxsize.

A good understanding of SQL Server space management is necessary to
write and optimize queries. We have seen that there are three types of files:
primary, secondary, and log. While the structure of primary and secondary
files is almost the same, the log file is totally different. Let’s start with the
data files.

Data Files

Each data file is made of 64KB extents. Each extent is made of eight 8KB
pages. The page is the base allocation of a table or an index. Each time
you create a table or an index, its data is stored in a page.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 95

@"l‘ Even if a page is 8KB, that is 8,192 bytes, the maximum record length (text,
NING ntext, and image data types excluded) is 8,060 bytes. Furthermore, a record
must entirely fit in a page (text, ntext, and image data types excluded).

Figure 2.8 represents a data file, an extent, and a page. All the data files
are organized the same way, and all data is stored in pages. As we are
going to see, different types of pages exist, depending on the content. As
for the extents, the two types are uniform and mixed. Let’s have a look
first at these extents, then at the pages that compose them.

FIGURE 2.8 Datafile, extent, and page

Extent (64KB)
8 pages

data Page (8KB)

Datafile

Extents

A uniform extent is allocated entirely to one table or index. A mixed
extent is shared between different tables or indexes. Figure 2.9 represents
three extents, two mixed and one uniform extent. Extents one and two
are shared between three tables: T1, T2, and T3. Extent three is fully
allocated to T1.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

96 Chapter 2 - Database Physical Modeling

FIGURE 2.9 Mixed and uniform extents

Extent1 | T1 T T2 T3 T T1 T2 T2 J Mixed

Extent2 | T2 T T1 T T T2 Mixed

Extent3 | T1 T T1 T T T1 T T1 J Uniform

The process of extent allocation is quite simple: At the table or index
creation, the first eight pages allocated are in mixed extents. From the
ninth page allocation, the table or index is allocated uniform extents. You
can observe this phenomenon if you run the sp_spaceused stored proce-
dures in SQL Query Analyzer. Let’s create a table to demonstrate the
process:

CREATE TABLE BigTable(Coll Char(8000))

The BigTable table contains only one column, but as it is a char column,
each time you insert a record, that record fills the page. If you run
sp_spaceused BigTable, you obtain the following result:

Name rows reserved data 1index_size unused

BigTable 0 0 KB 0 KB 0 KB 0 KB

As you can see, for the moment, no page has been allocated yet. Before
inserting the first row, let me give you some explanation about the
columns:

= Rows contains the number of rows of the table.
= Reserved represents the number of kilobytes allocated to the table.

= Data represents the number of kilobytes allocated to the data.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 97

= Index_size represents the number of kilobytes allocated to the table
indexes.

= Unused shows the results of reserved-data-index_size and repre-
sents the unused allocated kilobytes.

All of these figures, rows excluded, are multiples of 8KB, since the page
is the base allocation.
If you insert one row in the BigTable table, for example:

INSERT BigTable VALUES ('FakeData')
the result of sp_spaceused is the following:

Name rows reserved data 1index_size unused

BigTable 1 16 KB 8 KB 8 KB 0 KB

As you can see, the table has one row, and two pages have been allo-
cated (16KB are reserved)—one data page and one index page. At the
extent level, a data page and an index page are very similar. Nevertheless,
an index on BigTable has not been created. So, why has an index page
been allocated? This allocation represents the IAM (Index Allocation
Map), as we are going to see in a few pages.

One important thing to note here is that, besides the index, only one
page has been allocated. It has been allocated to the table to store the
inserted record. Note that the record is 8000 characters wide, meaning
each record occupies one page. If you insert a second row in the BigTable
table, the result of sp_spaceused is the following:

Name rows reserved data 1index_size unused

BigTable 2 24 KB 16 KB 8 KB 0 KB

Now the data space used is 16KB, or two pages. If you insert six other
records in the table, the sp_spaceused stored procedure will give the
following result:

Name rows reserved data 1index_size unused

BigTable 8 72 KB 64 KB 8 KB 0 KB

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

98 Chapter 2 - Database Physical Modeling

As you can see, the first eight allocations are made on a page basis.
Each time SQL Server needs to assign space to a table, it allocates the first
free page in a mixed extent, if any are available. If no free page is avail-
able, it allocates a new extent and assigns one page to the table. Things
change from the ninth allocation. If you insert the ninth row in the
BigTable table, you obtain the following results for the sp_spaceused
stored procedure:

Name rows reserved data index_size unused

BigTable 9 136 KB 72 KB 8 KB 56 KB

One major modification occurred: One whole extent has been allocated,
even if only one page would have been enough. You see the reserved space
going from 72KB (eight data pages and one index page) to 136KB, which
is a 64KB increase (an extent). In the previous results, we have nine pages
in mixed extents (the first eight data pages and the IAM page) and one
page in one uniform extent. Subsequently, new pages will be allocated in
the uniform extent until it is fully used. Afterwards, a new uniform extent
will be allocated, and so on.

This allocation method is used to minimize the allocated space; small
tables are allocated only for the necessary pages. It is also used to minimize
the number of times the size of a bigger table has to be increased. Each
time the table needs space, it is allocated 64KB at one time.

In the previous example, a special kind of index called IAM was men-
tioned. This index is allocated its own page. We will now look at the dif-
ferent types of pages that exist in a SQL Server database.

Pages

So far, we know that a database is made of extents and pages. Eight
different types of pages exist in a database:

Data The real user or system data rows, except text, ntext, and image
data.

Index Index rows.
Text/Image Text, ntext, and image data.

IAM Index Allocation Map. Information about extents used by a
table or an index.

GAM, SGAM Global Allocation Map. Secondary Global Allocation
Map. Information about extents allocation.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

FIGURE 2.10

Creating and Managing a Database 99

PFS Page Free Space. Information about page allocation and the per-
centage of free space in each page.

BCM Bulk Changed Map. Information about extents that have been
modified since the last log backup.

DCM Differential Changed Map. Information about extents that have
been modified since the last database differential backup.

The first six of these types of pages are described in the following sec-
tions. The last two, totally new to SQL Server 2000, are beyond the scope
of this book, since they concern the modification tracking for backup pur-
poses. You can read more about BCM and DCM in the SQL Books
Online.

DATA ALLOCATION

A data and index page are composed of three parts:

= The 96-byte header contains information about the page, such as its
number, the table, and index it belongs to.

* The data rows space contains the rows of data.
= The row offset table tracks the start byte of each record in the page.

Figure 2.10 represents a SQL Server data page. The first row starts
immediately after the header, at byte 96 (the first byte of the page is byte 0,
the header is 96 bytes long, and the first available byte is byte 96). This
information is stored in the first slot of the offset table.

A data page

Page Header
Row 1

Row 2
Row 3

unused space

256 [134 | 96 Je—— Offset table

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

100 Chapter 2 - Database Physical Modeling

In Figure 2.10, the first row is 38 bytes long. So the second row starts at
byte 134. This figure is recorded in the second slot of the offset page, and
so on. When SQL Server reads a page, it goes to the header to discover the
position of every record in the page.

The position of the records in the page, while sequential at the beginning,
may change due to updates, deletes, and inserts. For example, if the second
record is updated so its size increases, it will not fit in the space it occupied.
It is then stored after the third record, but remains record number two. So
the offset table would store, for example, 96, 297, 256. There is now space
available between bytes 134 and 255.

Index pages are almost the same, except index entries take the place of
data rows. We cover indexes and index storage in Chapter 5: Creating and
Maintaining Indexes. Text/Image pages store text, ntext, and image
datatypes. We cover these data types and their storage in Chapter 3: Creat-
ing and Maintaining Tables.

Database pages can be studied in detail with the DBCC PAGE statement.
DBCC PAGE is an undocumented statement that is very useful in under-
standing data storage. You will not be asked any questions on this state-
ment in the test, but it is a good way to uncover SQL Server storage
strategies.

Run the following statement in the SQL Query Analyzer:

dbcc traceon(3604)

dbcc page('pubs', 1, 49, 1)
you obtain this result:

PAGE: (1:49)

m_pageld = (1:49) m_headerVersion = 1 m_type = 1
m_typeFlagBits = 0x0 m_Tlevel = 0 m_flagBits = 0x0
m_objId = 1977058079 m_indexId = 0 m_prevPage = (0:0)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 101

m_nextPage = (0:0) pminlen = 24

m_slotCnt = 23

m_freeCnt = 6010 m_freeData = m_reservedCnt = 0
m_Tsn = (5:242:2) m_xactReserved = 0 m_xdesId = (0:0)
m_ghostRecCnt = 0 m_tornBits = -2147483591

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED

PFS (1:1) = 0x60 MIXED_EXT ALLOCATED O_PCT_FULL

DIFF(1:6)= CHANGED ML (1:7) = NOT MIN_LOGGED

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VARIABLE_COLUMNS

19714631: 00180030 20383034 2d363934 33323237 0...408 496-7223
19714641: 34394143 01353230 00000009 00330005 CA94025....... 3.
19714651: 0030038 0058004e 2d323731 312d3233 8.7.N.X.172-32-1
19714661: 57363731 65746968 6e686f4a 316e6f73 176WhiteJohnsonl
19714671: 32333930 67694220 52206567 654d2e64 0932 Bigge Rd.Me

19714681: 206f6c6e 6b726150

OFFSET TABLE:
Row - Offset
22 (0x16) - 357 (0x165)
21 (0x15) - 448 (0x1c0)

2 (0x2) - 272 (0x110)
1 (Ox1) - 184 (0xb8)
0 (0x0) - 1585 (0x631)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

nlo Park

http://www.sybex.com

102 Chapter 2 - Database Physical Modeling

The page number may be different on your SQL Server installation, so if
you try to run the DBCC PAGE example statement directly, you may get a
different result.

The page header and the different information it contains is returned
first. Next you find the user data, starting with the first record of the table.
If you ran a SELECT * FROM authors statement, you would see the same
record, but presented in a more readable arrangement:

au_id au_lname au_fname phone

172-32-1176 White Johnson 408 496-7223

address city state zip contract

10932 Bigge Rd. Menlo Park CA 94025 1

The previous record has been presented on two lines for reading purposes,
but would appear on one line in SQL Query Analyzer.

From the DBCC PAGE result, you may note the column information is not
in the same order physically and logically. This is due to the record struc-
ture, which will be explained in Chapter 3.

Finally, the offset table presents the physical location in the page of
every record starting from the last one. Note that the first record is not on
byte 96 because it moved due to the creation of a clustered index.

DBCC PAGE is not a statement you are going to use every day. It’s just a
tool in your toolbox that can help you better understand SQL Server data
storage.

One final piece of information on record allocation is that if a row is
updated, three situations can occur:

= If the size of the row is smaller or equal after the update, then the
row stays at the same address.

= If the size of the row is bigger after the update and there is enough
space in the page to store it, then the row moves inside the page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 103

but its offset index occupies exactly the same space. So, if row
number two moves to row number 10 physically in the page, its
address will always be stored in the second slot.

= If the size of the row is bigger after the update and there is not
enough space in the page to store it, then the row moves to
another page, and a forwarding pointer is kept in the page to
avoid index update. If row number two was in page 15 and moves
to page 23 and becomes, in this page, row number four, then the
address 23:4 is stored in the second slot of page 15. If the row
moves another time, the forwarding pointer is updated. The
indexes remain stable.

If a row is deleted, it remains physically in the page, until the space it
occupied is used by another inserted or updated row, or until the house-
hold process (the same that shrinks automatically if the option is enabled)
runs. It runs every half hour under a normal load, but can be postponed
automatically if the server is under a very heavy load.

When a row is inserted, it is inserted in the first available slot in the
page, so the physical order of records inside a page does not necessarily
reflect the insert order of the records that page contains. A clustered index
modifies the behavior of inserts, as we will see in Chapter 5.

ALLOCATION TRACKING

Computers are just machines and they need to be told where they should
store information. If you put away the power cable of your laptop in the
first drawer of your office desk, you probably store in your memory that
you did so. When you need your power cable, your brain tells you
automatically that it is in the first drawer. Unfortunately, computers are
not so intelligent.

Each time a page or an extent is allocated, SQL Server must record that
allocation. The five types of pages that were introduced earlier do the allo-
cation tracking: File header, GAM, SGAM, PFS, and TAM. The first four
pages of every file are the header, the PFS, the GAM, and the SGAM (Fig-
ure 2.11). These pages manage the file information and allocation. Every
table and index has an IAM.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

104 Chapter 2 - Database Physical Modeling

FIGURE 2.11

First four pages of every file

File

Header PFS GAM SGAM

The first page of every data file is its header. It contains information
about the file like its size, its max size, its growth increment, etc. You can
see this in the following DBCC PAGE result:

File Header Data:

BindingID=10df082a-53e0-4024-809c-140aeb022990 File-

GroupId=2
FileIdProp=4 Size=128 MaxSize=25600
Growth=10 Perf=0

BackupLsn=[NULL]
MaxLsn=[NULL] FirstLsn=[NULL]
FirstCreateIndexLsn=[NULL] FirstUpdatelLsn=(5:86:1)

FirstNonloggedUpdateLsn=[NULL] CreatelLsn=(5:42:1)
DifferentialBaselLsn=(0:0:0)
DifferentialBaseGuid=00000000-0000-0000-0000-000000000000
MinSize=128 Status=0 UserShrinkSize=65535

The second page of every file is the PFS. PFS stands for Page Free Space.
It contains information about allocation and fill rate for the first 8,000
pages. If the file has more than 8,000 pages, there is a PFS every 8,000
pages with all the PFS linked together. The PFS allows the system to find
the first available page for an insert or for a page allocation. The following
result gives the content of a PFS:

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 105

PFS: Page Alloc Status @O0x190EE000

TABLE 2.1

= o0 o A O
O v v v v
—

1 1 1 1 1
A N N
A DSBS
O N v w
A N

o

:11)-(4:15)
:16)-(4:23)
124)-(4:127)

ALLOCATED O0_PCT_FULL
NOT ALLOCATED O_PCT_FULL

ALLOCATED O_PCT_FULL

ALLOCATED 100_PCT_FULL Mixed Ext

ALLOCATED O_PCT_FULL IAM Page Mixed Ext
NOT ALLOCATED O_PCT_FULL

ALLOCATED O0_PCT_FULL
NOT ALLOCATED O_PCT_FULL

The first number in every page address represents the file number, the
second figure represents the page number. For example, 4:5 means page
number five in file number four. In this example, we find out that the four
first pages are allocated (header, PFS, GAM, SGAM), that pages four and
five are not allocated (in fact, they are reserved for DCM and BCM), and
that pages six to seven are allocated. The 0_PCT_FULL information means
that less than 1 percent of the page is used. Pages eight and nine are
allocated, are in a mixed extent, and are full. Page 10 is an IAM (Index
Allocation Map). Pages 11 to 15 (the last five pages of the extent begin-
ning on page eight) are not allocated. Pages 16 to 23 (one full extent) are
allocated but almost empty, and all the other pages (from 24 to 127) are
not allocated.

The PFS content is presented in a readable way here, but is in reality a
bitmap containing one byte per page.

Pages two and three of every data file are reserved for GAM and
SGAM. The GAM, or Global Allocation Map, tells you whether an
extent (eight contiguous pages) contains allocated pages. Every GAM
tracks 64,000 extents. Every bit indicates whether the extension is free
or not: 1 means the extent is free, 0 means it is allocated. The SGAM, or
Secondary Global Allocation Map, is used with the GAM to show whether
an extent is mixed and contains at least one free page. Each extent refer-
ence follows the bit pattern indicated in Table 2.1.

GAM-SGAM Usage

GAM SGAM Extent

1 0 Free

0 0 Uniform extent or full mixed extent

0 1 Mixed extent with at least one free page

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

106 Chapter 2 .- Database Physical Modeling

If you run DBCC PAGE on the GAM of a file, you will obtain a result
similar to the following;:

GAM: Extent Alloc Status @0x191200C2
(4:0) - (4:16) = ALLOCATED
(4:24) - (4:120) = NOT ALLOCATED

In this result, ALLOCATED means 0 and NOT ALLOCATED means 1. Extents
starting on pages 0, 8 and 16 are allocated, which means they contain at
least one page. The others are free. Now, if you run DBCC PAGE on the
SGAM of a file, you may obtain the following results:

SGAM: Extent Alloc Status @0x1947EO0C2

(4:0) - (4:8) = NOT ALLOCATED
(4:8) - = ALLOCATED
(4:16) - (4:120) = NOT ALLOCATED

In this result, ALLOCATED means 0 and NOT ALLOCATED means O (very
logical, isn’t it?). So, the first extent (starting on page 0) is full (pages four
and five are free, but they are reserved). The second one (starting on
page eight) is a mixed extent with some free pages (pages 11 to 15 are not
allocated). The third one (starting on page 16) is a full mixed extent or a
uniform extent.

Last of all allocation pages, the IAM tracks page allocation for a spe-
cific table or index. Every table and every index has at least one IAM. The
IAM stores the first eight allocated pages (in mixed extents) and the
uniform allocated extents. The following DBCC PAGE result indicates the
different allocations for a table:

nIAM: Single Page Allocations @0x191A008E

STot 0 = (3:8) STot 1 = (3:10) Slot 2 = (3:11)
Slot 3 = (3:12) Slot 4 = (3:13) Slot 5 = (3:14)
STot 6 = (3:15) Slot 7 = (4:8)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 107

IAM: Extent Alloc Status Slot 1 @0x191A00C2

(3:0) - (3:8) = NOT ALLOCATED
(3:16) - = ALLOCATED
(3:24) - (3:120) = NOT ALLOCATED

The first eight pages have been allocated in file numbers three and four
(slot seven is in file four). The extent starting on page 16 is allocated to the
table. A single IAM can track 64,000 extents. So, if the table size needs to
go beyond that limit, a second TAM is allocated to the table and linked to
the first one.

The IAM is very important to every table, since it is the only way to
track its page allocations if it does not have a clustered index (see Chapter
5). The IAM address is stored in the sysindexes table. You can see this if
you run the following statement:

SELECT * FROM sysindexes WHERE id=OBJECT_ID('Customers')

If you run the previous SELECT statement in the Northwind database
(one of the sample databases installed with SQL Server), you obtain a five-
line result set. On line one (indid column value is one), you will find a col-
umn named FirstIAM containing the value 0x6E0000000100 (your own
value may vary). This is the address of the first IAM page of the
Customers table. All the addresses you find in sysindexes are displayed
using reverse polish notation. The first four words (6E000000) give you
the address in the file, while the last two words (0100) give you its num-
ber. You should read addresses from right to left in blocks of two. In our
example, the file number is 0001. The page address is 0000006E, that is
110 decimal. We now know that the first IAM page of the Customers table
is in file number one on page number 110, and so does the system that
tracks the data. Once the system has the IAM, it reads the IAM to discover
the allocated pages.

Log Files

Log files have nothing in common with data files. You may have found
that the data file structure is complicated, however, log files have a simple
structure. The complexity of data files is needed to track all the
modifications performed on data. In contrast, the log files are only written
to most of the time, truncated some of the time, and never, ever modified,
so the structure is simpler.

SQL Server 2000 uses a transaction log called a write-ahead log. Each
time a modification is done to any data, the system records a transaction.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

108 Chapter 2 - Database Physical Modeling

The process of working with data and log files is illustrated in Figure 2.3.
When a page is modified (remember every modification is done in cache,
then flushed to the disk during checkpoints), the transaction is written in
the log cache, then to the disk. So, the transaction is written to the log
ahead of the data file. That is why it is called a write-ahead log.

The transaction log can be represented as a table containing informa-
tion on all the modifications that have occurred in a database. This pseudo
table contains “log records,” which contain the definition of the statement
executed on the system. With the undocumented DBCC LOG statement, it is
possible to have a readable view of the log using

DBCC LOG('Northwind')

You obtain the following result (extract):

Current LSN Operation Context Trans. ID
0018:0117:0001 LOP_BEGIN_CKPT LCX_NULL 0000:0000
0018:0118:0001 LOP_END_CKPT LCX_NULL 0000:0000
0018:0119:0001 LOP_BEGIN_XACT LCX_NULL 0000:0edb
0018:0119:0002 LOP_DELETE_ROWS LCX_MARK_AS_GHOST 0000:0edb
0018:0119:0003 LOP_MODIFY_HEADER LCX_PFS 0000:0000
0018:0119:0004 LOP_SET_BITS LCX_PFS 0000:0000

0018:0119:0005 LOP_MODIFY_COLUMNS LCX_CLUSTERED 0000:0edb
0018:0119:0006 LOP_INSERT_ROWS LCX_INDEX_LEAF 0000:0edb
0018:0119:0007 LOP_DELTA_SYSIND LCX_CLUSTERED 0000:0edb

0018:0119:0008 LOP_COMMIT_XACT LCX_NULL 0000:0edb
0018:011b:0001 LOP_BEGIN_XACT LCX_NULL 0000:0edc
0018:011b:0002 LOP_MODIFY_HEADER LCX_PFS 0000:0edc
0018:011b:0003 LOP_EXPUNGE_ROWS LCX_INDEX_LEAF 0000:0000
0018:011b:0004 LOP_SET_BITS LCX_PFS 0000:0000
0018:011b:0005 LOP_COMMIT_XACT LCX_NULL 0000:0edc
)’ In the previous example, the Current LSN and Transaction ID values have
&TE been shortened to four characters from eight to allow the information to fit

on one line. For example, the LSN 0018:0117:0001 should read
00000018:00000117:0001, and the Transaction ID 0000:0edb should read
0000:00000edb.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

o

A%’TE

FIGURE 2.12

Creating and Managing a Database 109

Consider the following about the DBCC LOG result:

= It is not the SQL statements that are logged in the transaction log,

but the way it is executed by SQL Server. The previous log example
has been read after a simple column update. But updating an
indexed value may lead to many data and physical structure modifi-
cations.

Each time an operation is done on the system it may be recorded as
a transaction. In this case, the transaction ID is recorded in the
transaction log to identify the committed transaction. This feature is
crucial to the automatic recovery process.

New log records are always added at the end of the log. No log
record can be updated. Log records may be deleted if the transaction
log is truncated or backed up.

Each log record is identified by a unique Log Sequence Number
(LSN).

For performance and internal management purposes, a transaction log
file is divided into virtual log files (Figure 2.12). The number and size of
virtual log files depend on the size of the log. SQL Server creates or resizes
these log files at the file creation or extension.

The minimum size for a virtual log file is 128KB. The size and the number of
virtual log files depend on the initial size of the log and the growth incre-
ment value.

Virtual log files

Virtual Log 1 Virtual Log 2 Virtual Log 3 Virtual Log 4

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

110 Chapter 2 .- Database Physical Modeling

oo
ING

FIGURE 2.13

If your transaction log size and growth increment are too small, after a cou-
ple of weeks in production, you may find a large number of small virtual log
files. These will likely slow down database performance. It is better to
choose an initial size close to the biggest needed size and a large growth
increment.

Log records are inserted in the file sequentially, starting with the first
virtual log. If you truncate the log by backing it up either automatically or
manually, the inactive part of the log is deleted. The inactive portion of a
transaction log is the portion that contains transactions with entries that
have been saved to disk. The system always keeps on disk what is called
the minimum recovery log. This is the active portion of a transaction log,
the one that will be applied in the event of a failure. The application of
these log entries to the database will bring the database back to the state it
was in before the failure. The beginning of this minimum recovery log is
called the min LSN (see Figure 2.13).

Transactions and checkpoint

T1
> .
1
1
T2 1
—} 1
1
1
T3 !
: 4
1
T4 .
—} .
1
1
T5 !
. »
1
T6 \ '
1
1
7o
; >
' T8
—
1
:
Checkpoint

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 111

Figure 2.13 represents some running transactions. When the checkpoint
process occurs, the committed data is flushed to the disk. In this example,
the data modified by transactions T1, T2, T4, and T6 are written to the
disk. The one modified by transactions T3, TS, T7, and T8 are not written
to the disk because the transactions are still running at checkpoint time. In
this case, the min LSN is the first LSN of transaction T3, since it is the old-
est running transaction. The transaction log could be truncated up to the
min LSN.

The min LSN may be in the middle of a virtual log, like in Figure 2.14,
but the start of the logical log is always the start of the virtual log file con-
taining the min LSN.

FIGURE 2.14 MinLSN and virtual logs

Virtual Log 1 Virtual Log 2 Virtual Log 3 Virtual Log 4

4

A 4 A 4 v

Start of MinLSN Last LSN
logical log

The log file is used in a round-robin fashion: Log records are added to
the end of the last used virtual log file. If the end of the physical file is
reached, the inserts continue at the beginning of the file, like in
Figure 2.15.

FIGURE 2.15 Round-robinlog

Virtual Virtual Log 2 Virtual Log 3 Virtual Log 4
Log 1
Last LSN Start of MinLSN
logical log

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

112 Chapter 2 - Database Physical Modeling

TE

If the inserts reach the start of the logical log, the physical file will grow
automatically if it has been configured to do so. If the file growth cannot
occur for some reason, the user trying to modify a record and insert rows
in the transaction log will receive error 9002: The log file for data-
base 'database name' is full. Back up the transaction log for
the database to free up some log space.

If the transaction log covers many files, SQL Server fills every file before it
goes back to the first virtual log.

@ Real World Scenario
The Write-ahead Paradigm

Let's imagine that you are a database developer and administrator for
a small regional bank. You are responsible for the SQL Server box. Its
performance must be optimized permanently, and you keep an eye
every day on different counters of the Windows 2000 Performance
Monitor. Recently, your bank has merged with another regional bank,
and the number of counter clerks has been multiplied by three,
increasing the stress on the server.

You use the Performance Monitor to observe what is happening on
the disks. The log disk is used at 100 percent, while the data disk is
used at only 65 percent on average, with peaks at 100 percent during
the checkpoint process. As you observe, the most severe impact is on
the transaction log disk because the application is heavily
transactional. Your log disk is an old 7200 RPM SCSI disk, and you
decide to upgrade it to a 15K RPM disk.

Having done that after normal work time, the next day you observe
that the log disk is used at 60 percent. Your goal is achieved. There are
two morals from this scenario: First, the Performance Monitor is the
tool to use to discover bottlenecks or potential bottlenecks when you
need to analyze what’s going on a SQL Server system. Second, the
disk capacity of the log, in terms of speed and bandwidth, is crucial to
performance. A good hardware design will lead faster to a well
performing application.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 113

One last thing concerning the log: Its use depends on the recovery
model. If not truncated, it grows indefinitely. In the previous versions of
SQL Server, the database option trunc. log on chkpt. meant that the
log was truncated from time to time, on every checkpoint. This option still
exists but it’s hidden behind the recovery model. To avoid filling up the
log, always adopt one of these two strategies:

* You choose the Simple recovery model so that the log is truncated
automatically. This can be done on a development or a test system,
never on a production server.

* You choose the Full or Bulk-logged recovery model and schedule the
log backup. Each time the log is backed up, its inactive portion is
truncated. It is the best practice on a production server. This may
mean extra work for the administrator, but also peace of mind in the
event of failure!

Database Options

When it is created, there are many options that can be set for a database.
Some options are readable and updateable through SQL Enterprise
Manager (Figure 2.16), but others can be manipulated only through
Transact-SQL.

FIGURE 2.16 The Database Options tab

MyFirstDatabase Properties
General | Data Fies | Transaction Log | Filegroups Options | Pemissions |
Access
I [figsificl aceesy
(o
i
I~ Beadonly
Recovery
Model Ful =
Settings
™ ANSI NULL defaul I fuig close
I Recursive tiggers I~ futo shink

[V Auto update statistics [V Auto create stafistics
[# Tom page detection ™ Use guoted identifiers

Compatibility

Level Database compatitilty level 50 =l

i3 e

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

114 Chapter 2 .- Database Physical Modeling

TABLE 2.2

In Transact-SQL, you may modify a database option with the ALTER
DATABASE statement or with the sp_dboption stored procedure:

ALTER DATABASE database
SET optionspec [,...n] [WITH termination]

Or

sp_dboption [[@dbname =] 'database']
[, [@ptname =] 'option_name']
[, [@ptvalue =] 'value']

Table 2.2 gives you the different values of optionspec, option_name,
and the SQL Enterprise Manager equivalent.

Database Options Value

Option Name

Optionspec

Option in SQL Enterprise Manager

ANSI null default

ANSI nulls
ANSI padding
ANSI warnings
arithabort

auto create statistics

auto update statistics

autoclose
autoshrink

concat null yields null

ANSI_NULL_DEFAULT ON |
OFF

ANSI_NULLS ON | OFF
ANSI_PADDINGS ON | OFF
ANSI_WARNINGS ON | OFF
ARITHABORT ON | OFF

AUTO_CREATE_STATISTICS
ON | OFF

AUTO_UPDATE_STATISTICS
ON | OFF

AUTO_CLOSE ON | OFF
AUTO_SHRINK ON | OFF

CONCAT_NULL_YIELDS_NULL
ON | OFF

Copyright ©2001 SYBEX, Inc., Alameda, CA

ANSI NULL default

N/A
N/A
N/A
N/A

auto create statistics

auto update statistics

autoclose
autoshrink

N/A

www.sybex.com

http://www.sybex.com

TABLE 2.2 Database Options Value (continued)

Creating and Managing a Database 115

Option Name

Optionspec

Option in SQL Enterprise Manager

cursor close on commit

dbo use only

default to local cursor

merge publish

numeric roundabort

offline

published

quoted identifier

read only

recursive triggers

select into/bulkcopy

single user

subscribed

torn page detection

trunc. log on chkpt.

CURSOR_CLOSE_ON_COMMIT
ON | OFF

RESTRICTED_USER

CURSOR_DEFAULT LOCAL |
GLOBAL

N/A

NUMERIC_ROUNDABORT ON |
OFF

OFFLINE | ONLINE
N/A

QUOTED_IDENTIFIER ON |
OFF

READ_ONLY | READ_WRITE

RECURSIVE_TRIGGERS ON |
OFF

Depending on the Recovery
Model

SINGLE_USER | MULTI_USER
N/A

TORN_PAGE_DETECTION ON |
OFF

Depending on the Recovery
Model

N/A

Restrict access, Members of
db_owner, dbcreator, or sysadmin

N/A

N/A

N/A

N/A
N/A

Use quoted identifier

Read-only

recursive triggers

Depending on the Recovery
Model

Restrict access, Single user
N/A

torn page detection

Depending on the Recovery
Model

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

http://www.sybex.com

116 Chapter 2 .- Database Physical Modeling

P

A

2

You can find the complete description of database options in the SQL
Server Books OnLine. You open them by choosing Start > Programs >
Microsoft SQL Server > Books OnLine.

For the recovery model concerned, Table 2.3 gives the matching values

for SELECT INTO/BULKCOPY and trunc.Tlog on chkpt.

TABLE 2.3 Recovery Model and Database Options

Model/Option SELECT INTO/BULKCOPY trunc.log on chkpt.
Full/RECOVERY FULL False False
Bulk_logged/RECOVERY True False
BULK_LOGGED

Simple/RECOVERY SIMPLE False True

To query the database options, you can run sp_dboption or use the

DATABASEPROPERTYEX function. The following stored procedure gives you
the options of the Northwind database:

Sp_dboptions 'Northwind'
The result is:

The following options are set:
autoclose

select into/bulkcopy

trunc. log on chkpt.

torn page detection
autoshrink

auto create statistics

auto update statistics

As you can see, only the SET options are listed. If you want to query a

specific option value, the DATABASEPROPERTYEX function is the best way to
do it. The result of the following statement is one, since the autoshrink
option is set:

SELECT DATABASEPROPERTYEX('Northwind', 'IsAutoShrink')

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Managing a Database 117

)ﬁ You can find the complete list of option names for the DATABASEPROPERTYEX
ITE function in the SQL Server Books OnLine.

The following examples show you which statements to run to execute
common operations:

= Restrict a database to one user:
ALTER DATABASE dbname SET SINGLE_USER

= Set a database in read-only mode:
ALTER DATABASE dbname SET READ_ONLY

= Set a database recovery model to Full:
ALTER DATABASE dbname SET RECOVERY FULL

= Set a database offline:
ALTER DATABASE dbname SET OFFLINE

Problems caused by other users occurred in previous versions of SQL
Server that may still occur if you use the sp_dboption stored procedure.
For example, if you want to set the database to single user, it fails if there
is at least another user besides you using the database. When you set an
option with the ALTER DATABASE statement, you can specify whether to
rollback all running transactions on the database. There are three options
that exist:

WITH ROLLBACK IMMEDIATE All the running transactions are
immediately rolled backed and the option is set.

WITH ROLLBACK AFTER 7 SECONDS All the transactions run-
ning after 7 seconds are rolled back and the option is set.

WITH NO_WAIT If the option cannot be set immediately due to run-
ning transactions, the option is not set.

The following statement will rollback all the running transactions and
set the Northwind database to single user:

ALTER DATABASE Northwind
SET SINGLE_USER
WITH ROLLBACK IMMEDIATE

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

118 Chapter 2 .- Database Physical Modeling

The last point about database options concerns the Level drop-down
box you find in the Compatibility section of the Database Properties dia-
log box in the Options tab (Figure 2.16).

The database compatibility level defines the level of SQL grammar that
can be used on the database. For example, if you run

SELECT
ProductID,
Sum(UnitPrice*Quantity*(1-Discount))
FROM [Order Details]
GROUP BY ProductID

in the Northwind database, the result set will be sorted in the ProductID
column if the database is in compatibility level 60 or 65 and won’t be
sorted in the ProductID column if it is in compatibility level 70 or 80. If
you upgrade your server from SQL Server 7 to SQL Server 2000, all the
databases but the master will be in compatibility level 70. The same
applies if you upgrade from SQL Server 6.5; all the databases will be in
compatibility level 65.

The compatibility level has been designed to minimize the impact of a
version upgrade on an existing application. In the previous example, a
developer may know that in SQL Server 6.5, the GROUP BY clause sorts the
result. So it does not add an ORDER BY clause, and the application works
fine. When you switch to compatibility level 80, the result may no longer
be sorted, and the application may behave unexpectedly. By lowering the
compatibility level, you can upgrade the server without having to upgrade
the application first.

The GROUP BY Compatibility Side Effects

| remember a few months ago, encountering a vicious side effect of
the compatibility level after an upgrade for one of my customers. This
customer was in a hurry to upgrade his SQL Server 6.5 database, so
we did not take the time to test every feature of the application.
Instead, we tested only the major features, as identified by the
customer, after having changed the compatibility level.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

9

¢y

TE

Creating and Managing a Database 119

A few weeks later the customer called, and while very satisfied with
the upgrade, he explained that one report, for different product
values, was sometimes giving strange results. In fact, the report was a
kind of “cross-table.” Products were in rows and monthly sales were
in columns. Sometimes, the report was correct, other times the report
had only one value for a product row, but each product was repeated
twelve times.

The procedure to build this report was quite complicated, using
different temporary tables. So, | had to test the procedure step-by-step
to understand the flow of the application. After two hours of testing, |
decided to analyze some of the SQL queries with the SQL Query
Analyzer. | found that depending on the amount of data, the studied
period, the number of products, and so on, the query optimizer was
either using an order strategy for the GROUP BY clause or a hash-
coding one. Adding the ORDER BY clause to the query solved all the
problems with this report.

Test your application thoroughly before changing the compatibility level of
the databases after an upgrade.

SQL Server 2000 is SQL Server version 8, so the database default com-
patibility level is eight, except for the upgraded databases. You have to be
aware of the inherent risk of a compatibility level change. You will find all
the differences between compatibility levels in the SQL Server Books
Online if you search for the sp_dbcmptievel stored procedure.

The master database always has a compatibility level 80.

To query or change the compatibility level of a database, you can use
SQL Enterprise Manager or the sp_dbcmptlevel stored procedure. For
example,

sp_dbcmptTevel 'Northwind'

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

120 Chapter 2 - Database Physical Modeling

gives you the following result:

The current compatibility Tevel is 80.
And

sp_dbcmptTevel 'Northwind', 65

sets the compatibility level of the Northwind database to 65.

At this point, you should have a good understanding of how databases
are created and are built. The next section will deal with filegroups. This
chapter has talked about files, but filegroups can also be used, for perfor-
mance or management reasons, to place data on specific disks.

Filegroups

Microsoft Create and alter databases. Considerations include file
Exam groups, file placement, growth strategy, and space
Objective requirements.

= Specify file group and file placement. Considerations include
logical and physical file placement.

Filegroups are groups of data files, allowing explicit placement of
tables, indexes, text, image, and ntext columns. There are two types of
filegroups:

Primary The primary filegroup created by default contains all system
tables’ allocation and some or all user tables.

User-defined User-defined filegroups may contain user tables and are
created during database creation or modification.

Figure 2.17 represents a database containing four files and three file-
groups. The primary filegroup contains one file, the DataFG filegroup con-

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Filegroups 121

tains two files that can be placed on different physical disks, and the
IndexFG filegroup contains one file.

FIGURE 2.17 Datafiles and filegroups

Primary
Sales_data1l.mdf
DataFG
Sales_data2.ndf Sales_data3.ndf
IndexFG
Sales_data4.ndf

The creation of filegroups is generally driven by performance considera-
tions. Some systems may improve their performance using filegroups by
placing different filegroups on different physical devices.

Creating Filegroups

Filegroups are created in SQL Enterprise Manager when you create or
alter a database, or with Transact-SQL with the FILEGROUP clause of the
CREATE DATABASE or ALTER DATABASE statement.

Figure 2.18 represents the Database Properties dialog box for the Sales
database whose structure is shown in Figure 2.17.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

122 Chapter 2 - Database Physical Modeling

FIGURE 2.18 Creating data files and filegroups

Datahase Properties - Sales

General DataFiles } Transaetion Lag |

Database files

File Mame Location Initial size [ME] Filegioup |
Sales_Datal C:\Sales_Datal MDF 100 PRIM&RY
Sales_Data2 C:\Sales_Data2 NDF 500 SalesFG

Sales_Data2 “\Sales_Data3 NDF 500 SalesFG

atad NDF IndexFG

Delete

File properties
 utomatically grow fils
File growth Masimu fls size

@ |n megabytes: 100 j & Unrestiicted file growth

€ By percent j " Festrict flle arowth (ME) j

i3 Corcel | Heb |

The following is the matching CREATE DATABASE statement:

CREATE DATABASE Sales
ON PRIMARY
(NAME = 'Sales_Datal',
FILENAME = 'C:\Sales_Datal.MDF' ,
SIZE = 100,
FILEGROWTH = 10),
FILEGROUP SalesFG
(NAME = 'Sales_Data2',
FILENAME = 'D:\Sales_Data2.NDF' ,
SIZE = 500,
FILEGROWTH = 50),
(NAME = 'Sales_Data3',
FILENAME = 'E:\Sales_Data3.NDF' ,
SIZE = 500,
FILEGROWTH = 50),
FILEGROUP IndexFG
(NAME = 'Sales_Data4',
FILENAME = 'F:\Sales_Data4.NDF' ,
SIZE = 500,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

FIGURE 2.19

Filegroups 123

FILEGROWTH = 100)

LOG ON (NAME = 'SALES_Log',
FILENAME = 'G:\SALES_Log.LDF' ,
SIZE = 500,

FILEGROWTH = 10%)

In this example, files are placed on different physical disks to split I/Os
among them. The purpose of the filegroups in this example is to physically
separate the data and indexes onto different drives. User data may be
placed on the SalesFG filegroup and the indexes on the IndexFG filegroup.
Furthermore, as the SalesFG filegroup is made up of two files, the data is
evenly distributed on these two files, so the I/Os are split amongst two
disks.

By default there is one filegroup marked as “default,” and all tables or
indexes are placed on this filegroup if not otherwise and explicitly
requested. The Primary filegroup is the default filegroup. You can change
the default filegroup with SQL Enterprise Manager or Transact-SQL.
Figure 2.19 shows the different filegroups of the Sales database and the
Default column.

Filegroups in SQL Enterprise Manager

Sales Properties
General | Data Files | Transaction Log Filegtoups | Optians | Pemissions |

Filegroups

Mame Files FRead-Only Default
IndexFG 1
FRIMARY 1
SalesFG 2

Delete

i3 Corcel | Heb |

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

124 Chapter 2 - Database Physical Modeling

The following is the matching ALTER DATABASE statement that will set
the SalesFG to the default filegroup:

ALTER DATABASE Sales

MODIFY FILEGROUP SalesFG DEFAULT

- You can add or remove files to or from an existing filegroup, but you can
‘d’“ not change the filegroup to which a file has been allocated once the file has
been created.

In Exercise 2.4, we will add a file and filegroup to an existing database.

Adding a File and a Filegroup to an Existing Database

1. In SQL Enterprise Manager, right-click the MyFirstDatabase folder,
and click Properties.

2. Click the Data Files tab.

3. In the empty File Name line of the Database files table, type
MyFDB_Data2.

4. Atthe end of the linge, in the Filegroup cell, type DataFG.

5. Repeat the operation for the file MyFDB_Data3, and the filegroup
IndexFG.

6. Click OK.

7. You can go back in the Database Properties dialog box to note that
the files and the filegroups have been created.

8. Generate the SQL Script of the database creation (see Exercise 2.1).

Some other operations are possible with filegroups. You can create a
filegroup before allocating any files to it:

ALTER DATABASE Sales
ADD FILEGROUP Sales99FG

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Filegroups 125

You can remove a filegroup only if it does not contain any files:

ALTER DATABASE Sales
REMOVE FILEGROUP Sales99FG

You can put a filegroup in read-only mode to disallow any modification
to the data while still allowing updates to the system tables. This can be
useful in giving access to a read-only database while keeping open the
possibility to manage permissions and security access. The following
statement puts the SalesFG filegroup in read-only mode, then puts it back
into read-write mode:

ALTER DATABASE Sales
MODIFY FILEGROUP SalesFG READONLY

ALTER DATABASE Sales
MODIFY FILEGROUP SalesFG READWRITE

You must have exclusive access to a database to put one of its files in read-
only mode. With exclusive access, no connection can be opened on that
database, except yours.

The last thing we will look at concerning filegroup updates is the ability
to change a filegroup’s name. This operation is very simple, as you can see
in the following example:

ALTER DATABASE Sales
MODIFY FILEGROUP SalesFG NAME = NewSalesFG

You just have to give the old name after the MODIFY FILEGROUP clause
and the new one after the NAME = option.

Maintenance and Performance

Filegroups are not easy to use. They require more administrative tasks and
more analysis, so you must justify their needs. Filegroups carry with them
four particular features:

= The ability to place a table or an index on a particular filegroup.

= The ability to place an image, text, or ntext column on a specific
filegroup.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

126 Chapter 2 .- Database Physical Modeling

= The ability to assign many files to one filegroup.
= The ability to back up a filegroup on its own.

As a rule of thumb, filegroups may be used in one of the following four
cases:

Physically separating tables and indexes By placing a table on one file-
group and its indexes on another, SQL Server accesses indexes with one
thread and the data with another one. The same thing may happen if
you put a table in a filegroup made of multiple files, each of them being
placed on a different physical disk. If the table is accessed sequentially,
the performance may increase. But on the whole, RAID 0, 5, or 0+1 is
generally a better solution.

@’l‘ If you split tables and indexes on two different filegroups, each filegroup
NING cannot be backed up independently!

Isolating big tables You can use filegroups to separate archived data
from live data. Archived tables tend to get bigger and bigger. They can
have a negative impact on performance if they are among the live data.
Imagine having your current sales and last five years’ sales data in the
same table. If by mistake, you run a SELECT query grouping by product
without a date restriction clause, you’ll end up with a long-running
query. Splitting the table is a good idea. If your archive and current sales
tables are in the same filegroup, you may also end up with data frag-
mentation. A good practice may be to put your archive data in another
filegroup or even in another database.

Isolating binary data Binary data is always a source of questions. Stor-
ing images or videos in a database is a major concern for many develop-
ers. If you decide to store this kind of data directly in the database, you
may end up with some strange data allocation and with a serious per-
formance impact if you do not think about your storage strategy. In the
previous section, we talked about pages and extents. Character and
numerical data are stored in data pages, while image and text data are
stored in text/image pages.

The problem comes from the size of this text/image data. If, for
instance, you store employees’ names, addresses, phone numbers,
and social security numbers plus the employees’ photographs, their

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

File Placement and Performance 127

photographs will occupy more space than the character/numeric data.
Or, it may be that the image data is used in only 10 percent of the cases,
so the image data will “spoil” data space. You can then put this data on
its own filegroup. The character/numerical data will be together, and
the number of accessed pages may be less than if it were stored with the
image data.

Ability to back up a portion of a database From an administrator’s
point of view, using a filegroup may help with backup issues. For very
large databases, it may not be possible to back up the whole database.
Filegroups solve that problem by allowing data backups for only a sub-
set of the database.

Another point is the ability to store a table in a filegroup and back up
the filegroup independently from the database. This feature solves the
problem people had in SQL Server 6.5 of wanting to back up and
restore one table at a time.

While filegroups may be a good way to enhance performance and solve

physical data storage issues, data and log file placement should be taken
into consideration as well. This is the discussion in the last section of this
chapter.

File Placement and Performance

Microsoft
Exam
Objective

Create and alter databases. Considerations include file
groups, file placement, growth strategy, and space
requirements.

= Specify file group and file placement. Considerations include log-
ical and physical file placement.

= Specify transaction log placement. Considerations include bulk
load operations and performance.

Do you know the difference between a good and a poor database physi-

cal design? In most cases, it lies in the file placement and the disk subsys-
tem. Unfortunately for developers, they are not generally asked what they

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

128 Chapter 2 - Database Physical Modeling

need in a server to run their application. They often have to work with the
existing servers in the company.

Powerful Hardware for a Powerful SQL Server

In my humble opinion, file placement and disk subsystems are almost
always underestimated. Over the years, Microsoft has been renowned
for desktop application but was in the past a poor competitor in the
database systems arena. Facing Oracle, DB/2, and Informix was a big
challenge, so many developers and administrators saw SQL Server as
a “mega” Microsoft Access and a “micro” Oracle system. Many
people thought this RDBMS could be as good as Oracle! People also
said Windows 2000/SQL servers are small compared to Unix/Oracle
boxes and cost only a tenth of the Unix/Oracle solution, so they
cannot be that good!

SQL Server is seldom installed on very powerful servers with
gigabytes of RAM, eight CPUS, and dozens of disks in RAID 5. The real
good news is that if you set up a powerful box for SQL Server, it
behaves at least as fast as Oracle and is as reliable. TPC benchmarks
show SQL Server is a very powerful solution. Unfortunately for Oracle
administrators, it is not as complicated as Oracle and therefore needs
less maintenance. Most of the complicated tasks done by Oracle
administrators are done automatically by SQL Server. SQL Server
administrators spend their time on more “intelligent” tasks. My
purpose is not to degrade Oracle administrators, but to have them
face reality. If they consider SQL Server as a true RDBMS and dig into
what'’s behind the GUI, they probably will discover a product as
complicated and powerful as Oracle.

If you ask for a powerful box with disk resources, RAM, and multiple
CPUs, and if you design your physical design efficiently, neither you
nor your users will regret it.

When you design a machine to run SQL Server, you take into considera-
tion what types of applications you will be running on it. The choices that
you make when designing a system include the hardware for the server as

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

File Placement and Performance 129

well as the software configuration of file placement. The types of access
that are made by the applications will influence the design.
Let’s take two basic examples:

* In an OnLine Transaction Processing (OLTP) application, most data
is accessed through one or many indexes, and many inserts are
performed. The transaction log is heavily used. Given these
statements, one could place heavily read tables (like products and
categories) on their own fast read-access disk subsystem, heavily
inserted tables (like sales and customers) on their own fast write-
access disk subsystem, and the log file on a fast write-access disk
subsystem with a high availability feature. One possible solution is
to put data files on a RAID § disk subsystem and the log file on a
RAID 1 15K RPM disk subsystem.

* In a Decision Support System (DSS) application, most data is read
sequentially, and updates are done by batch. The transaction log is
important during batch updates, not during normal day operation.
The data could be placed on a RAID 5 disk subsystem and the log
on a single fast disk.

These are just a few of the possible solutions. One would need to ana-
lyze more precisely the application to decide which is the best disk subsys-
tem to implement.

Data Placement

Performance placement is an important item in the database physical
design strategy. It is not only the size of the database that dictates the file
placement and the filegroup creation, but also other elements like number
of users, number of transactions per second, transaction throughput, and
type of operations should be taken into consideration.

Nothing replaces experience, but some rules may help you design a data
placement strategy:

Always place data on striped disks Of course, if your database is
10MB this rule may not apply, and working with one disk may be fine.
But the more disks the better. If you know that a SCSI 10K-RPM disk
can handle approximately 100 I/O requests per second, you understand
that with five disks, you can service 500 I/O requests per second. For
SQL Server, the disk throughput is not an issue: The max number of I/O

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

130 Chapter 2 .- Database Physical Modeling

per second is much more important. RAID 0 is the best disk stripping
strategy for data files. Unfortunately, it is also risky on a production
site. RAID 0+1 may be an answer, or RAID 3, since it’s cheaper.

Use hardware RAID rather than filegroups You can simulate RAID
with filegroups and multiple disks, but it is better to spend a little more
money on a good RAID controller than recreating RAID with file-
groups. With filegroups, you may end up with more problems than
solutions. Ask your system administrator to optimize your RAID con-
troller by setting the read/write cache. The Performance Monitor will
help you discover the read/write ratio on your disk subsystem and help
you to set the controller with the optimal value.

Identify your access patterns Know how your users access data.
Depending on their access patterns, the indexes, and the read/write
ratio, you may decide to use multiple filegroups over multiple disks or
just use a single filegroup. For example, the reference tables of an e-
commerce database system can be placed on a RAID 5 disk subsystem
and the frequently updated table on RAID 0+1. If the same database is
used internally for just a few hundred inserts per day, all the tables can
be placed on a RAID § array. Now, if your system is heavily updated,
you will need to calculate more precisely the numbers of I/O needed to
determine the type of disk system you need, but that subject is beyond
the scope of this book.

The purpose of this discussion is not to make your company spend a lot
of money on disks, but to make you understand that disk systems and file
placement are important to performance and are generally driven by com-
mon sense. Work closely with your system administrator to learn about
RAID subsystems and their characteristics. As a developer, you probably
won’t be responsible for disk subsystem choices. But you will be the per-
son who knows precisely the query that ran on the system as well as the
access patterns, so your insights are invaluable. Exchange your point of
view with your DBA—he will be grateful to you.

Log File Placement

Transaction logs are also stored in files and deserve a little consideration.
Furthermore, remember that the database transaction log is its life

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

File Placement and Performance 131

insurance. If you lose the database, all the transactions remain in the
transaction log. As for data files, the following rules may help you choose
a good file placement.

Always store the transaction log on its own physical disk The disk is
the most fragile component of a server. If your disk crashes and if you
stored both data and log files on the same disk, then you have lost
everything, and the only solution you have is to go to your last backup.
If you separate your data and log files and you lose your data disk, you
may still back up your log and recover all the transactions executed
since the last backup.

Even on a small system, always follow this rule. This is a basic security
rule. Nobody likes losing his or her work. Separating the data from the
log increases your chance to recover your data in case of failure.

Protect your log file disk If you can afford it, protect your log file by
mirroring it. With mirror protection, the other side of the mirror contin-
ues to work in case of disk failure, offering high availability to your
users.

Use the fastest available disks for your log files Log files are written
most of the time. During batch updates, bulk inserts, or just heavy
OLTP operations, log disks are stressed a lot. In this kind of environ-
ment, the faster the transactions, the better! With very fast disks (10 or
15K RPM is a must), you are sure that your transactions will be written
in a few milliseconds and that the log will not be the bottleneck.

RAID 0 is not useful at all for log files, and RAID 5 has too much over-
head. Remember that log files are written sequentially, which means
that all writings and readings are sequential. If you spread your file on
many disks on a RAID 0 array, only one will be working at a time. And
if you use RAID 3, each time you write a new transaction, the system
will need to recalculate and write the RAID parity. So a fast RAID 1
system is the best choice.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

132 Chapter 2 - Database Physical Modeling

Summary

design. While discovering key elements, we dug into details to help you

In this chapter you learned how to create a SQL Server database

understand the hidden complexity of SQL Server.
This chapter particularly focused on:

Key Terms

= Creating and managing a database

= Creating and managing data and log files

* Creating and managing filegroups

= Assessing performance enhancement with filegroups

= Assessing performance enhancement with data and log files

placement

Before you take the exam, be certain you are familiar with the fol-

lowing terms:

ACID

Bulk Changed Map
character set
checkpoint

collation

compatibility level
Differential Changed Map
extent

filegroup

Global Allocation Map
Index Allocation Map

Copyright ©2001 SYBEX, Inc., Alameda, CA

lazy writer

Log Sequence Number
mixed extent

page

Page Free Space
primary data file
secondary data file
Secondary Global Allocation Map
transaction
transaction log
uniform extent

www.sybex.com

http://www.sybex.com

Review Questions 133

Exam Essentials

Know the CREATE and ALTER DATABASE statements syntax.
Know all the possible parameters of these statements. In the exam, you
may find questions on database growth or database creation.

Identify the data usage to design the physical structure of the database.
If you know how data is going to be used, you can choose a RAID sys-
tem or a multiple disk structure.

Identify performance issues with data file and log placement. File-
groups, file placement, and transaction log placement can have a dra-
matic impact on database performance. Make sure you understand the
basic principles of file placement.

Know the database options and specifically the recovery model. Data-
base options have evolved since SQL Server 4.21! Knowing the features
offered by the different options and the different recovery models will
give you a better understanding of database functionality.

Review Questions

1. You are in charge of the Policies database for an insurance company.
When you created the Policies database two years ago, it was
500MB. Then it grew to 1.3GB. Recently, you archived last year’s
data, freeing almost 40 percent of the database. Nevertheless, the
database files still occupy 1.3GB. You would like to recover a part
of the freed database space. You want to check if autoshrinking is
on. What is the fastest way to check it?

A. sp_configure Policies, 'autoshrink'

B. SELECT DATABASEPROPERTYEX('Policies', 'IsAutoShrink')
C. sp_helpdb 'Policies'

D. SELECT DATABASEPROPERTY('Policies', 'AutoShrink')

2. As a Microsoft SQL Server DBA, you have been called to analyze
the performance loss of the SQL server of an international bank.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

134 Chapter 2 .- Database Physical Modeling

This customer is using SQL Server to record every credit card
operation. At peak hours, the system handles some 500 transactions
per second, but on average is serving around 50 transactions per
second. For a couple of days, the system engineer sees the number of
transactions decreased to around 40 transactions per second, and
the bank has had complaints from major stores in the region that
the credit card sales quite randomly take longer than they should.
Sometimes, the transaction is very fast, even at peak hours,
sometimes it is very slow, even between peak hours.

You take a look a the Performance Monitor and monitor the
checkpoint pages/second counter. You discover that every fifteen
minutes a checkpoint occurs, the checkpoint uses almost 90 percent
of the system resources and lasts around 50 seconds. During that
time, the number of transactions falls down to less than 10 per
second. Which server options may be responsible for that delay in
the checkpoint process?

A. Lazy writes per second
B. Recovery interval

C. Lightweight pooling
D.

Priority boost

3. You are working for a international group of consultants. Your
office in Kuala Lumpur just sent you a database backup you have
restored on your SQL Server test box. It works fine until you try to
unite the customer table of your New York database and the
customer table of your Kuala Lumpur database. You discover some
strange characters in the result. You run the following query in
SQL Query Analyzer:

SELECT DATABASEPROPERTYEX('CustomersNY', 'Collation')
SELECT DATABASEPROPERTYEX('CustomersKL', 'Collation')

You obtain the following result:

SQL_Latinl_General_CP1_CS_AS

Thai_CI_AI

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 135

You discover the accented letters issue is due to a difference in
collation between the databases. How can you solve this issue?

A. By installing the Thai collation on the server
B. By modifying the collation of the CustomersKL database

C. By modifying the char and varchar columns of both databases to
Unicode

D. By restoring the Kuala Lumpur database while forcing the
collation

4. You are a database developer for Northwind Traders. The
marketing department ordered a new server for the sales analysis
database. The marketing manager explains to you that her
department needs to do some thorough analysis of sales data to find
customer patterns for the next marketing campaign.

After gathering user requirements, you analyze the volume of data.
The database size will be approximately of 1.5GB, 80 percent of
which is occupied by the sales table. For data retrieval performance
reasons, this table will be heavily indexed. The database will be
primarily used for data reading and calculation. The server on which
you will install the database has four disks with two SCSI
controllers. How are you going to create the database to maximize
performance?

A.

CREATE DATABASE Marketing
ON PRIMARY
(NAME = MarketingData,
FILENAME = N'c:\data\MarketingData.mdf',
SIZE = 2GB,
MAXSIZE = 4GB,
FILEGROWTH = 50MB)
LOG ON
(NAME = MarketinglLog,
FILENAME = N'd:\data\MarketinglLog.1df',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

136 Chapter 2 .- Database Physical Modeling

B.

CREATE DATABASE Marketing
ON PRIMARY
(NAME = MarketingSystemData,
FILENAME = N'c:\data\MarketingDatal.mdf"',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),
(NAME = MarketingDatal,
FILENAME = N'd:\data\MarketingData2.ndf"',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),
(NAME = MarketingData2,
FILENAME = N'e:\data\MarketingData3.ndf"',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),
LOG ON
(NAME = MarketinglLog,
FILENAME = N'f:\data\MarketinglLog.1df',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB)

C.

CREATE DATABASE Marketing
ON PRIMARY
(NAME = MarketingSystemData,
FILENAME = N'c:\data\MarketingSystemData.mdf',
SIZE = 2,
MAXSIZE = 4,
FILEGROWTH = 1),
FILEGROUP MarketingFGl
(NAME = MarketingDatal,
FILENAME = N'd:\data\MarketingDatal.ndf"',
SIZE = 2,
MAXSIZE = 4,
FILEGROWTH = 1),

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions

LOG ON
(NAME = MarketinglLog,
FILENAME = N'f:\data\MarketinglLog.1df',
SIZE = 1,
MAXSIZE = 2,
FILEGROWTH = 1)

D.

CREATE DATABASE Marketing
ON PRIMARY
(NAME = MarketingSystemData,
FILENAME = N'c:\data\MarketingSystemData.mdf',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),
FILEGROUP MarketingFG1l
(NAME = MarketingDatal,
FILENAME = N'd:\data\MarketingDatal.ndf"',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),
FILEGROUP MarketingFG2
(NAME = MarketingData2,
FILENAME = N'e:\data\MarketingData2.ndf',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),
LOG ON
(NAME = MarketinglLog,
FILENAME = N'f:\data\MarketinglLog.1df',
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

137

http://www.sybex.com

138 Chapter 2 - Database Physical Modeling

5. You developed a database for managing the consultants’ time and
invoicing for a consulting firm. You created the database last year
with the following statement:

CREATE DATABASE Consultants
ON PRIMARY
(NAME = ConsultantsData,
FILENAME = N'c:\data\ConsultantsData.mdf',
SIZE = 100,
MAXSIZE = 200,
FILEGROWTH = 10)
LOG ON
(NAME = ConsultantsLog,
FILENAME = N'c:\data\ConsultantsLog.1df',
SIZE = 50,
MAXSIZE = 100,
FILEGROWTH = 10)

The data size is now 150MB. You archive 50 percent of the data.
You want the database to decrease to its initial size. What statement
will you run to do so immediately?

A.

DBCC SHRINKFILE(ConsultantsData, NOTRUNCATE)
B.

ALTER DATABASE Consultants SET AUTO_SHRINK ON
C.

DBCC SHRINKDATABASE(Consultants, 25)

D.

DBCC SHRINKDATABASE(Consulants, 100)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 139

6. Your database is split onto two disks, as indicated by the following
statement:
CREATE DATABASE MyDatabase
ON PRIMARY
(NAME = MyDatabaseData,
FILENAME = N'c:\data\MyDatabaseData.mdf',
SIZE = 100,
MAXSIZE = 200,
FILEGROWTH = 10)
LOG ON
(NAME = MyDatabaselog,
FILENAME = N'd:\data\MyDatabaselog.1df"',
SIZE = 50,
MAXSIZE = 100,
FILEGROWTH = 10)

You need to move the data file from drive C to drive E. Order the
following statements correctly to achieve this move. Some
statements may be useless.

ALTER DATABASE MyDatabase

REMOVE FILE MyDatabaseData

DBCC SHRINKDATABASE(MyDataBase) EMPTYFILE MyDatabaseData

ALTER DATABASE MyDatabase

ADD FILE

(NAME = MyDatabaseDatal,

FILENAME = N'e:\data\MyDatabaseDatal.mdf',

SIZE = 100,

MAXSIZE = 200,

FILEGROWTH = 10)

DROP FILE MyDatabaseData

DBCC SHRINKFILE(MyDatabaseData, EMPTYFILE)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

140 Chapter 2 - Database Physical Modeling

7. You are a database developer for Northwind Traders. The ordering
management database has been set up on a server with two disks.
Data has been placed on the C drive and the log file on the D drive,
as shown in the statement below:

CREATE DATABASE Orders
ON PRIMARY
(NAME = OrdersData,
FILENAME = N'c:\data\OrdersData.mdf"',
SIZE = 500,
MAXSIZE = 1000,
FILEGROWTH = 50)
LOG ON
(NAME = OrderslLog,
FILENAME = N'd:\data\OrdersLog.1df',
SIZE = 50,
MAXSIZE = 100)

Your users complain about the slow performance of the ordering
application. You discover there is a bottleneck on the C drive due to
large read processes. You add one disk to the server (E drive) and
would like to split data among the C and E drives. How could you
achieve this goal?

A. Create a new data file on the E drive for the Orders database.
The system will automatically split data among the two files.

B. Create a new data file on the E drive for the Orders database,
then a new filegroup containing the C and E drives. From here,
the system will balance new inserts among both drives.

C. Itis not possible to achieve this goal without a RAID controller.
D. Define the E and C drives as a RAID 0 partition with the
Windows 2000 disk management tool.
8. The transaction log is said to be a write-ahead log. Why?
A. Because transactions are written on disk before the data

B. Because it is only written and cannot be read, except during the
automartic recovery process

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 141

C. Because transactions are kept in memory ahead of data

D. Because transactions are written in the transaction log before
they are finished

9. A power failure occurred while the database was operating.
Unfortunately, the UPS did not function properly and did not stop
the SQL server in a proper manner. Once power comes back, what
do you have to do to your server to recover the transactions that
have been committed but not checkpointed?

A. You need to back up the transaction log, restore the database
from the last full database backup, and then restore all the
transaction logs plus the one you just backed up.

B. Nothing. SQL Server will recover automatically, rolling back
pending transactions and rolling forward committed ones.

C. Nothing. All transactions since the last checkpoint are lost, the
effects of the others are in the database.

D. Run ROLL FORWARD ALL TRANSACTION.

10. You are a database developer for a winery. You have developed an
employee management databases. The database has been created
with the following statement:

CREATE DATABASE EmpTloyees
ON PRIMARY
(NAME = EmployeesData,
FILENAME = N'c:\data\EmployeesData.mdf"',
SIZE = 50MB,
MAXSIZE = 100MB,
FILEGROWTH = 5MB)
LOG ON
(NAME = EmpTloyeeslog,
FILENAME = N'd:\data\EmployeeslLog.1ldf"',
SIZE = 20)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

142 Chapter 2 - Database Physical Modeling

11.

12.

One morning, a user calls you to inform you that he received a
message reading “Could not allocate space for object.” What is the
most likely cause of that message?

A. The transaction log is full.

B. The D drive is full

C. The database is corrupted.

D. The data file has reached is maximum size and is full.

You created a 1GB database with a 250MB transaction log. After a
couple of days in production, you observe that the transaction log
size used is almost stable, around 10MB. You decide to monitor
activity on the database with the Performance Monitor to check
whether there is transactional activity. In fact, a lot of inserts,

deletes, and updates are run against the database. What is the most
likely cause of the transaction log stability?

A. The transaction log is backed up every day.

B. The recovery model is set to Simple.

C. The recovery model is set to Bulk-logged.

D. The truncate log option is set.

You are a developer for World Wide Importers. You are setting up
the new ERP database. After having created a SO0MB database and
a couple of tables, you run the sp_spaceused stored procedure and

obtain the following result:
reserved data index_size unused

536 KB 152 KB 280 KB 104 KB

How come the reserved space is not S00MB?

A. SQL Server 2000 is only allocating space when objects need it.
B. This is a display bug corrected by Service Pack 1.

C. This is only the system data reserved space.

D. You may have run the stored procedure in the wrong database.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 143

13. You need to do a maintenance job on the customers database you
are managing and developing for a local bank branch. You want to
make sure nobody besides you will work on this database. What can
you do to prevent other users from using this database?

A. Run sp_dboption 'single user', on

B. Run sp_configure 'single user', on

C. Run SET DATABASE Customers SINGLE USER

D. Run ALTER DATABASE Customers SET SINGLE_USER

14. You are managing a SQL server for an Internet Application Service
Provider (ASP). The server contains many databases for different
customers. Some databases are no longer used. They need to be
deleted from the system to reclaim their disk space. You decide to
delete Basel, Base2, and Base 3; what statement will you run to
achieve the deletion as fast as possible?

A.

DELETE Basel
GO
DELETE Base2
GO
DELETE Base3

B.

EXEC sp_dropdatabase Basel
EXEC sp_dropdatabase Base2
EXEC sp_dropdatabase Base3

C.
DROP DATABASE Basel, Base2, Base3
D.
DROP DATABASE 'Base¥%'
15. You are a SQL Server developer for a winery. You created a

database to track the efficiency of workers during the vine harvest.
The database has been created with the next statement.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

144 Chapter 2 - Database Physical Modeling

CREATE DATABASE Efficiency
ON PRIMARY
(NAME = EfficiencyData,
FILENAME = N'c:\data\EfficiencyData.mdf',
SIZE = 200,
MAXSIZE = 400,
FILEGROWTH = 10)
LOG ON
(NAME = Efficiencylog,
FILENAME = N'd:\data\EfficiencylLog.1df"',
SIZE = 50,
MAXSIZE = 100,
FILEGROWTH = 10)

You frequently monitor the database and observe the that data file is
380MB. You decide to increase its maximum size to SO0MB to
avoid any interruption of operation. Which statement will do the

job?
A.

ALTER DATABASE Efficiency
MODIFY FILE
(NAME = EfficiencyData,
MAXSIZE = 500MB)

B.

ALTER FILE EfficiencyData
(MAXSIZE = 500MB)

C.
INCREASE FILE EfficiencyData TO 500MB
D.

sp_filemaxsize EfficiencyData, 500

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Answers to Review Questions 145

Answers to Review Questions

1.

B. Option A is syntactically incorrect, and the sp_configure stored
procedure gives you information about server configuration, not
database configuration. C may be correct, but you have to dig

into one of the columns to find the information. D is incorrect,

first because the DATABASEPROPERTY function is provided in SQL Ser-
ver 2000 only for backward compatibility and because Autoshrink
is not the option’s name. D is a tricky possible answer.

. B. Option A is not a server option. C is responsible for fiber

scheduling, and D is responsible for increasing the process priority.
There is a direct correlation between the checkpoint process and the
recovery interval.

C. Option A is irrelevant because all collations are available for SQL
Server storage. B will modify future inserted data, not the one stored
in the database. D is impossible.

D. You use the four disks to create three different data files with
three different filegroups for table and index placement. The last
disk is for the log.

C. Option A shrinks the file but does not release the freed space to
the operating system because of the NOTRUNCATE keyword. B sets the
autoshrink option to on, but will not immediately shrink the
database. In the DBCC SHRINKDATABASE statement, the figure
indicates the percentage of free space after the shrink. Twenty-five
percent of free space will do the job, because only 75MB (50 percent
of 150) remains in the database.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

146 Chapter 2 .- Database Physical Modeling

10.

11.

ALTER DATABASE MyDatabase

ADD FILE

(NAME = MyDatabaseDatal,

FILENAME = N'e:\data\MyDatabaseDatal.mdf',

SIZE = 100,

MAXSIZE = 200,

FILEGROWTH = 10)

DBCC SHRINKFILE(MyDatabaseData, EMPTYFILE)

ALTER DATABASE MyDatabase

REMOVE FILE MyDatabaseData

To move data from one file to another, you have to add a new file if
it does not exist, then empty the first file, then drop it.

B. SQL Server 2000 automatically balances data I/Os among
multiple files belonging to the same filegroup.

A. Transaction log records are written to the disk before the
associated modified data pages are written to the disk.

B. The automatic recovery process rolls forward all committed
transactions between the last checkpoint and the crash and rolls
back any pending transactions that have not been committed.

D. The transaction log has unlimited growth; if its drive was full, the
error would have read that the transaction log is full (error 9002).
The data file has a defined maximum size. It’s likely this file is full.

B. Option A could not explain that the log space used is stable; if the
transaction log was backed up every day, its size will increase, then
decrease. With the bulk-logged recovery model, every transaction is
logged, so the transaction log size should increase. The truncate log
option does not exist. The existing option is trunc.1og on chkpt.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Answers to Review Questions 147
12. A. SQL Server is allocated at least 8KB per table and index, and
allocates pages as object space needs increase.

13. D. Option A would have been good if it was not lacking the
database name. Options B and C are syntactically incorrect.

14. C. Option C is the only option with correct syntax. The others do
not exist.

15. A. All the other possibilities do not exist!

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and
Maintaining Tables

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Create and alter database objects. Objects include constraints,
indexes, stored procedures, tables, triggers, user-defined
functions, and views.

Specify table characteristics. Characteristics include
cascading actions, CHECK constraints, clustered, defaults,
FILLFACTOR, foreign keys, nonclustered, primary key, and
UNIQUE constraints.

v Alter database objects to support replication and partitioned
views.

Support merge, snapshot, and transactional replication
models.

v Troubleshoot failed object creation.

el el) 5

bWt Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

http://www.sybex.com

his chapter focuses on the table, the basic storage object. In
this chapter you will learn:

* How to create and manage a table
= How to create and manage datatypes
* How to create and manage table extended properties

* How data is stored and managed

)’ This chapter focuses on table creation and maintenance. All other objects,
‘d’“ which are part of the same objectives, are covered in Chapters 4, 5, and 6.

Creating and Altering a Table

Microsoft Create and alter database objects. Objects include
Exam constraints, indexes, stored procedures, tables, triggers,
Objective user-defined functions, and views.
= Specify table characteristics. Characteristics include cascading

actions, CHECK constraints, clustered, defaults, FILLFACTOR, for-
eign keys, nonclustered, primary key, and UNIQUE constraints.

Troubleshoot failed object creation.

Once you have designed a database and created an Entity/Relationship
model, creating the tables will be straightforward. Table creation is a sim-
ple process, but can become very complex if you add constraint rules, as

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 151

we are going to see in the next chapter. In this chapter, we will focus on
simple table creation and management.

Creating a Table

A table is a set of rows and columns. Columns define the attributes of our
ER model.

Creating a Simple Table

To start with a basic example, let’s consider the Customers table of the
Northwind database (Figure 3.1).

FIGURE 3.1 The Customer table

CustomerID
CompanyMarme
ConkacktMame
ZonkackTitle
Address

Ciky

Region
PostalCode
Counkry

Phone

Fax

The Transact-SQL statement that created this table is shown in
Listing 3.1.

Listing 3.1: Creating the Customers Table
CREATE TABLE Customers (

CustomerID nchar (5) NOT NULL ,
CompanyName nvarchar (40) NOT NULL ,
ContactName nvarchar (30) NULL ,
ContactTitle nvarchar (30) NULL ,
Address nvarchar (60) NULL ,
City nvarchar (15) NULL ,
Region nvarchar (15) NULL ,
PostalCode nvarchar (10) NULL ,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

152 Chapter 3 - Creating and Maintaining Tables

Country nvarchar (15) NULL ,
Phone nvarchar (24) NULL ,
Fax nvarchar (24) NULL

)

This statement is quite simple, but it illustrates the basic table creation.
The CREATE TABLE statement has the following syntax:

CREATE TABLE tablename
({columnname datatype} [NULL | NOT NULL] [,...n]

)

The table creation in SQL Enterprise Manager is even simpler:
1. Open the database folder.
2. Right-click the Tables folder, and click New Table.

The Customers table created in the SQL Enterprise Manager window
would look like Figure 3.2.

FIGURE 3.2 The Customer table in Design Mode

Tﬁ 2:Design Table 'Customers’ in ‘Northwind' of _ 1Ol x|
e IECEIEET:
ColumnMame | DataType |Length| Allow Nulls | -
| b | CustomerID nchar 5
L ComparnyMarne rvarchar 40
| |ContackMame revarchar 30 W
| |ContactTitle revarchar 30 v
| |Address nevarchar &0 v
| |city rvarchar 15 W
| |Region rvarchar 15 W
| |PostalCode revarchar 10 W
| |Country revarchar 15 W
| |Phane nevarchar 24 v
| |Fax rvarchar 24 v j
Columnz
Description

Default Yalue

Formula
Caollation <database default =

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 153

In the Design windows, you find the same characteristics we have in the
CREATE TABLE statement:

Column Name

The column name must conform to the rules of the identifier (see sidebar
below), which identifies every column in a table. Every column name must
be unique within a table.

Identifier Rules

A database object name is its identifier. Every name must conform to
the rules of the identifier. An identifier must be less than 128
characters. There are two classes of identifier: regular and delimited.
The rules are the following:

= Regular

= The first character must be a letter or the underscore (_) , “at”
sign (@), or number sign (#).

= Subsequent characters must be letters, numbers, underscores,
“at” signs, number signs, or dollar signs ($).

= The identifier cannot be a Transact-SQL reserved key word.

= The identifier cannot contain space or special characters.

= Examples include: Customer, @_Balance, and #Test$Mode.
= Delimited

= The identifier is delimited by double quotation marks (“) or
square brackets ([]).

= An identifier that does not conform to regular identifier rules
must be delimited.

= An identifier that conforms to regular identifier rules may be
delimited.

= Examples include: [Order Details], [Color], and “My Table.”

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

154 Chapter 3 - Creating and Maintaining Tables

Datatype

Every column has a datatype, except the computed columns, as you’ll see
in a couple of pages. Datatypes are part of entity integrity. Defining an
integer column prevents any value except an integer to be stored. SQL
Server 2000 has system and user-defined datatypes. They are described in
the “Columns and Datatype” section.

Allow NULLs

The value of a specific column may or may not be required. In the
Customers table (Listing 3.1), the CustomerID column does not allow
NULL values. During an insert, this column must have a value if you want
the insert to be successful.

Defining a column as NOT NULL means that a value is required. On the
other hand, if you define a column as NULL, it means that a value is not
required and, as a consequence, if that column has no value, it will be
NULL. In this case, NULL means unknown.

The NULL value plays a significant role in RDBMSs. A NULL value is
different from a zero or an empty string. For example, the average of the
four following values: one, two, NULL, and three is two, and is not 1.5. In
fact, if you ask how many values there are, the system will answer there
are only three. NULL does not count! So, the average is two. This is pretty
important for count and average function.

In Transact-SQL, if you do not specify the column nullability, i.e. you
do not indicate NULL or NOT NULL, its real nullability depends on the ANST
null default database option. To check your database default, run the
following;:

SELECT DATABASEPROPERTYEX('databasename', 'IsAnsiNullDefault')
If the result is one, ANSI null default is on, if it is zero, the option is
off.

To set it on, run the following:

ALTER DATABASE databasename
SET ANSI_NULL_DEFAULT ON

To set if off, run the following;:

ALTER DATABASE databasename
SET ANSI_NULL_DEFAULT OFF

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 155

If this option is on, a column allows NULL value by default, unless
otherwise defined. If it is off, it does not allow NULL value. In fact,
SQL Server 2000 defaults to NOT NULL and the ANSI SQL-92 to NULL,
so the option governs the way SQL Server works, on a database basis.

Since there are two other session-wide set options (SET ANSI_NULL_DFLT_ON
and SET ANSI_NULL_DFLT_OFF) in addition to the ANSI NULL default data-
base option that may modify SQL Server default behavior, it is best to
always specify the column nullability in the CREATE or ALTER DATABASE
statements.

Creating a Simple Table with SQL Enterprise Manager
This exercise will walk you through creating a table with SQL
Enterprise Manager and generating the corresponding Transact-SQL
script.

1. Create a database named TestTable of default collation, size, and
placement. (See Chapter 2 for directions on how to create a new
database with SQL Enterprise Manager.)

2. Once the TestTable database is created, open the TestTable data-
base folder by clicking the plus sign (+) on the left of its name.

3. Right-click the Tables folder, and choose New Table.

4. Fill in the columns description with the information from the follow-

ing graphic:
Column Mame | Data Type |Length | Allow Mulls | -
p |MemberID ink 4
" |LastMame warchar 50
" |FirstName warchar 30 W
T DeparkrnentIh ink 4
: Fhone char 10 T ﬂ

5. Once you have entered the columns’ characteristics, click the Save
button.

6. In the Choose Name dialog box, type Members, then click the OK
button.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

156 Chapter 3 - Creating and Maintaining Tables

EXERCISE 3.1 (continued)

7. Close the New Table window.

8. Right-click the Members table (in the right pane of the SQL Enter-
prise Manager window) and choose All tasks > Generate SQL
Scripts.

9. Click the Preview button to study the generated script.

10. Close the windows, once finished.

Unique Identifiers

There are many ways to make your table’s rows uniquely identified. The
IDENTITY and ROWGUIDCOL properties are probably the easiest ones.

Identity

Identity is just the name of SQL Server’s auto-numbering property. It
allows the creation of automatic incrementing values in columns. It is
possible to choose the seed (the first created value) and the increment (the
value added automatically to the last one each time a new record is
inserted). The following example comes from the Northwind database.
The Orders table contains an Identity column starting at one and counting
by steps of one:

CREATE TABLE Orders (
OrderID int IDENTITY (1, 1) NOT NULL ,
CustomerID nchar (5) NULL
)

With such a property, the first row will automatically have an OrderID
of one, the second of two, and so on.

When you insert a new row, a new identity value is automatically cre-
ated. If you delete that row, the identity value it used will never be reused
automatically by the system. If you run the following script in SQL Query
Analyzer:

CREATE TABLE Test
(coll int IDENTITY(1, 1))
GO

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 157

INSERT Test DEFAULT VALUES
INSERT Test DEFAULT VALUES
DELETE Test WHERE coll=2

INSERT Test DEFAULT VALUES
INSERT Test DEFAULT VALUES

SELECT * FROM Test
You will obtain the following result:

coll

As you can see, the value two has been deleted and is not reused. A
gap is created since SQL Server always inserts the next available value.
If you try to insert an explicit value in an Identity column, you obtain
error 8101: An explicit value for the identity column in table
'"tablename' can only be specified when a column 1list is used
and IDENTITY_INSERT is ON. As you can see, the IDENTITY_INSERT
option can be set to ON to allow explicit inserts in the Identity column. If
you run the following script in the SQL Query Analyzer:

SET IDENTITY_INSERT Test ON
INSERT Test(coll) VALUES (2)

SELECT * FROM Test

You will obtain the following result:

coll

Note that value two has been reinserted, not where it was, but at the
end of the table. If you want a sorted result set, you need to add the ORDER
BY clause to the SELECT statement.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

158 Chapter 3 - Creating and Maintaining Tables

One classic question about identity is generally: How can I know the
last identity value inserted? There are three possible answers:

@@IDENTITY This global variable returns the last identity value
inserted in the current session across all scopes. A scope is a stored pro-
cedure, a trigger, a function, or a batch. For example, an insert in a
table fires the table insert trigger, which inserts a record in a table that
has an identity column. The INSERT statement and the trigger are in two
different scopes. So if you run SELECT @@IDENTITY after the previous
INSERT statement, you will obtain the value of the identity generated by
the INSERT statement inside the trigger (see Listing 3.2).

IDENT_CURRENT IDENT_CURRENT is a function that returns the last
inserted identity value in a specific table in any session and any scope.

SCOPE_IDENTITY SCOPE_IDENTITY is a function that returns the
last inserted identity in the current session and scope.

Listing 3.2: Comparisons of @@IDENTITY, IDENT_CURRENT,
and SCOPE_IDENTITY

SET NOCOUNT ON

GO

IF OBJECT_ID(C'T1') IS NOT NULL
DROP TABLE T1

IF OBJECT_ID('T2') IS NOT NULL

DROP TABLE T2

GO

CREATE TABLE T1

(coll 1int IDENTITY(1,1))
CREATE TABLE T2

(col2 int IDENTITY(250,50))
GO

CREATE TRIGGER InsT1l

ON T1
FOR INSERT

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 159

AS
INSERT T2 DEFAULT VALUES
GO

INSERT T1 DEFAULT VALUES

SELECT [@@IDENTITY]=@@IDENTITY

SELECT [IDENT_CURRENT('T1')]=IDENT_CURRENT('T1')
SELECT [IDENT_CURRENT('T2')]=IDENT_CURRENT('T2"')
SELECT [SCOPE_IDENTITY()]=SCOPE_IDENTITY()

If you run Listing 3.2 in SQL Query Analyzer, you obtain the following
result:

@@IDENTITY

Inserting a record in table T1 inserts a new record in table T2. T1 iden-
tity value is one, and T2 identity value is 250. The results show us the fol-
lowing;:

= @@IDENTITY returns 250 because it is the last identity value in the
current session in any scope.

= IDENT_CURRENT('T1') returns one because it is the last identity
value inserted in table T1.

= IDENT_CURRENT('T2") returns 250 because it is the last identity
value inserted in table T2.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

160 Chapter 3 - Creating and Maintaining Tables

= SCOPE_IDENTITY() returns one because it is the last identity value
inserted in the current session and in the current scope.

If you open a new session (click the New Query button in
SQL Query Analyzer or press Ctrl-N) and run the last four SELECT
statements of Listing 3.2, you’ll obtain the following result:

@@IDENTITY

These results show us the following:

= @@IDENTITY returns NULL because in the current session, no identity
has been inserted.

= IDENT_CURRENT('T1") returns one because it is the last identity
value inserted in table T1, in any session and any scope.

= IDENT_CURRENT('T2") returns 250 because it is the last identity
value inserted in table T2, in any session and any scope.

= SCOPE_IDENTITY()returns NULL because in the current session, no
identity has been inserted.

4 If the seed and the increment values are not supplied in the IDENTITY
P property, their default value is one. So, IDENTITY and IDENTITY(1,1) are
synonymes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 161

A table can have only one identity column. This identity must be an
integer so the chosen datatype for the column must be one the following;:
TINYINT, SMALLINT, INT, BIGINT, DECIMAL(p, 0) or NUMERIC(p,O0).

When defining an identity, you can specify it as NOT FOR REPLICATION. This
keyword means that the column will retain its value in the replicated table.
When you insert a column in the publishing table, SQL Server automatically
assigns the identity value. When the row is replicated, the identity value
may change in the subscribing table, unless it has been created with the
NOT FOR REPLICATION clause.

If a table has an identity column, you can query it without knowing its
name using the IDENTITYCOL keyword. If you run the following SELECT
statement:

SELECT IDENTITYCOL, LastName, FirstName FROM Employees

SQL Server returns the EmployeelD and LastName and FirstName
columns because the EmployeelD column is an identity column, and a
table can only have one identity column.

Uniqueldentifier

With the advent of mobile computing and disconnected networks, identity
does not guarantee uniqueness among multiple sites. Developers needed a
“more” unique value to offer the multiple sites uniqueness: The
UNIQUEIDENTIFIER datatype and the ROWGUIDCOL property are used to
indicate that a column is a globally unique identifier (GUID). A GUID is a
128-bit number, such as 9CCDD2B9-CC41-4AC9-91CE-7CB4E1F445EB.
When automatically generated by the system, it is guaranteed to be unique.
The following statement creates a table with a GUID column:

CREATE TABLE Company (
CompanyID uniqueidentifier ROWGUIDCOL NOT NULL ,
CompanyName nvarchar (40) NOT NULL

)

In this example, the ROWGUIDCOL value is not automatically generated
and its uniqueness is not enforced. If you want the value to be computer-
generated, you need to use the NEWID() function, like in the following
modified example:

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

162 Chapter 3 - Creating and Maintaining Tables

CREATE TABLE TestCompany (
CompanyID uniqueidentifier ROWGUIDCOL
DEFAULT NEWID() NOT NULL ,
CompanyName nvarchar (40) NOT NULL
)

If you insert a row with INSERT Company(CompanyName) VALUES
('Sybex'), and query the content of the table afterwards, you’ll obtain the
following result:

CompanyID CompanyName

3E9ABF51-9296-4BF0-BD99-F98003550402 Sybex

If you insert another record, you’ll end up with a totally different GUID
value. GUIDs generated with the NEWID function are guaranteed to be
unique. In the CREATE TABLE statement, the RONGUIDCOL keyword is not
necessary to create a globally unique identifier. The property is actually
enforced by the UNIQUEIDENTIFIER datatype.

Creating and Managing a GUID Column
This exercise walks you through creating a table containing a globally
unique identifier column.

1. Run SQL Query Analyzer. Do this by choosing Start > Programs >
Microsoft SQL Server > Query Analyzer.

2. In the Connect to SQL Server dialog box, type . (dot) in the SQL
Server combo box. Choose your authentication method and click
OK.

3. Click Query > Change Database.

4. In the SQL Database dialog box, click TestTable and then the OK
button.

5. In the Query window, type the following code:

CREATE TABLE Company (
CompanyID uniqueidentifier ROWGUIDCOL
DEFAULT NEWID() NOT NULL ,
CompanyName nvarchar (40) NOT NULL
)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 163

EXERCISE 3.2 (continued)

6. Click Query > Execute. If you do not obtain the message, The com-
mand(s) completed successfully, check the statement syntax
and run it until you obtain this message.

7. Click Edit > Clear Window.

8. In the Query window, type INSERT Company (CompanyName) VALUES
('Sybex'), and run the query by clicking Query > Execute.

9. Click Edit > Clear Window, and type SELECT * FROM Company to check
that the row has been inserted and the GUID has been generated.

10. You can insert other rows of you wish, executing steps eight and
nine with different company names, to see varying values of GUID.

With the ROWGUIDCOL property set, the column can be queried with the
ROWGUIDCOL keyword in the SELECT statement, like in the following example:

SELECT ROWGUIDCOL FROM Company
WHERE CompanyName='Sybex'

Uniqueldentifier and Identity are both used to generate a unique ID for
every row. Use Identity whenever you need unique values within a single
table and Uniqueldentifier when you need unique values within a group of
tables or servers.

Collation

We first met collation with the database creation. Each character column
of a table can have a different collation, that is, a different character set or
sort order, as in the following example:

CREATE TABLE Orders (

OrderID int IDENTITY(1, 1) NOT NULL ,

CustomerID char(5) COLLATE Latinl_General_CI_AS NULL ,
EmployeeID int NULL ,

ShipName nvarchar(40),

ShipAddress varchar(60) COLLATE Latinl_General_CI_ASNULL ,)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

164 Chapter 3 - Creating and Maintaining Tables

In the previous example, the COLLATE keyword introduces the collation
used for the column. CustomerID and ShipAddress use the Latin1
_General_CI_AS collation, which is code page 1252, and case-insensitive,
accent-sensitive dictionary sort order.

P information on collation names in the SQL Server Books Online and in the
Transact-SQL Reference book, in the ColTate chapter.

é/ See Chapter 2 for collation and code page definition. You'll find exhaustive

Note that no collation has been defined for the ShipName column. That
means this column uses the database collation. Defining the collation
down to the column can be very useful for an international database, but
tricky when the time comes for data restitution or management.

Unicode is a Better Choice than Collation

Unicode columns (NCHAR, NVARCHAR, or NTEXT datatypes) and the
database default collation is a better choice than creating different
collations for different columns. The result with Unicode will be the
same; it will assure your use of double the amount of space, but will
be easier to manage.

The only interesting case of collation use in columns could come from
a database where you lack storage space. But once you use more than
one collation, you'll have faced collation precedence rules, which are
far from easy. Furthermore, the need for more than one collation
generally comes from international data exchange, but using different
collations may prevent databases from working well together, or at
least may make data exchange more complex. Think twice before
going in that direction.

Collation can be implemented directly using the COLLATE keyword in
the CREATE TABLE statement for every column needing a different
collation, or by using the SQL Enterprise Manager (located in Start >
Programs > Microsoft SQL Server), which is an easier and more readable
way, as illustrated in Figure 3.3.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 165

FIGURE 3.3 Collation choice in SQL Enterprise Manager

dho.Customers.ContacktMame

\i_) Please specify a collakion:

" 201 Collakion

| [

* \Windows Collation

" Binary Sort
{* Dickionary Sork

[Case Sensitive
v Accent Sensitive
[Kana Sensitive
[‘Width Sensitive

Reskore Default
Ik | Zancel | Help |

Filegroup
Another point concerning tables is that they can be placed on a specific
filegroup. In the previous chapter, we met filegroups for the first time. A
filegroup is a logical entity containing one or more data files. By explicitly
placing a table in a filegroup, you allow that table to be stored in a specific
file or files, and then on a specific disk. I see your grin. You’re wondering;:
What’s the point of placing a table on a specific disk or file? I'll show you
in the following three examples.

The first is the one I call the archive problem. An OLTP database tends
to grow indefinitely. But at the same time, it is the main source of data for
OLAP databases. The invoicing application inserts fresh data every day in
the database and inserts its data every day or so in the company data
warehouse. But while the data warehouse needs to keep all the historic

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

166 Chapter 3 - Creating and Maintaining Tables

FIGURE 3.4

data, it’s generally not the case for the invoicing database. The problem is
then how to handle the historic invoicing records? The answer is archiving.
But where to archive? The answer may be: in another filegroup. Figure 3.4
shows two filegroups. The Primary filegroup contains live data and the
Historic one contains archived data.

Four tables and two filegroups

Products

| Customers

| Invoices Histo Invoices

-l o

Primary Historic
Data1.mdf Data2.ndf

~ s @ .

To achieve such file placement, the following statements have to be run:

CREATE TABLE Products (..) ON Primary
CREATE TABLE Customers (..) ON Primary
CREATE TABLE Invoices (..) ON Primary
CREATE TABLE [Histo Invoices] (..) ON Historic

What is the advantage of such a split? Well, simply to keep the sales
table from becoming too big. It’s likely that in the invoicing database you
do not need paid invoicing older than three months, for example. But you
need to keep these invoices for data warehousing purposes. To ease the
query of this information and the joins with the Customers and Products
table, it is simpler to keep it in the same database. But to avoid old

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

FIGURE 3.5

Creating and Altering a Table 167

information getting messed up with live data and increasing the fragmenta-
tion risk, it’s best to put this data in its own filegroup.

The second example concerns the use of multiple threads. Consider that
you have the file placement illustrated in Figure 3.5.

Four files and one filegroup

Sales

-l - -

SalesFG

Data1.mdf Data2.ndf Data3.ndf Datad.ndf

Your SQL server is running on a server with four different physical
disks, and the sales data is located on four different files. If you run a
query that scans the sales table, SQL Server 2000 can perform parallel
scans of the sales table. A separate thread is allocated for every disk con-
taining the table. In the example, four threads will be allocated to scan the
Sales table. The same kind of feature could be obtained if a query joins
two tables stored on two different disks: a different thread will scan both
tables.

The last example concerns another server with a database that is used
for a busy Order Entry system. This system inserts over 1,000,000 rows
each day into the Orders table along with four to five reads from the
Products table for each insert. If the Orders table is placed in its own file-
group on a separate disk drive from the Products table, the read operations
will not interfere with the insert operations. A separate thread is used to
access each filegroup, and thus, each table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

168 Chapter 3 - Creating and Maintaining Tables

Using Filegroups
This exercise will walk you through creating a database using a new
filegroup and a table placed on this filegroup.

1. In SQL Enterprise Manager, right-click the Databases folder and
choose New Database. (If SQL Entreprise Manager is not open,
open it by choosing Start > Programs > Microsoft SQL Server >
Enterprise Manager.)

2. In the Name text box, type DBFilegroup.

3. Click the Data files tab. Under the data file row, click in the File
Name cell and type Data2.

4. In the Filegroup cell for the Data2 file, type FG1.
5. Click the OK button.

6. Open the DBFilegroup folder, right-click the Tables folder, and click
New Table.

7. Define columns’ characteristics as in the following graphic:

Column Mame | DataType |Lenath | Allow Mulls | « |
PrajectID ink 4
~ |Mame warchar 50
StartDate smalldatetime 4
" |EndDate smalldatetime 4 W
T cost money g W x|

8. Click the Table and Index Properties button.
9. In the Table Filegroup combo box, choose FG1.
10. Click the Close button.

11. Save the table and name it Projects, then close the New Table win-
dow.

12. Right-click the Projects table in the right pane of the SQL Enterprise
Manager window and choose Open Table > Return all rows.

13. Insert five rows by typing values in the table column.

14. Close the window.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

/L
INING

Creating and Altering a Table 169

EXERCISE 3.3 (continued)

15. Open Query Analyzer, if it is not opened, by clicking Tools >
SQL Query Analyzer, and check that you are in the DBFilegroup
database.

16. Type sp_help 'projects' and check that it is located on the FG1
filegroup.

In some cases, the performance effect gained by using filegroups can be
obtained with RAID 0 (disk striping without parity) or RAID 5 (disk striping
with parity). With today’s system, consider using RAID disk subsystems first
instead of filegroups to enhance performance. If you can afford multiple
RAID arrays, then filegroups can even further enhance performance.

The table initial placement on a specific filegroup can be made at table
creation. If no specific filegroup is chosen, the default table is placed on
the default filegroup.

You are allowed to change the table placement in SQL Enterprise Manager,
but that can be a very costly process. As there is no direct way to change
the table placement, SQL Enterprise Manager creates a new temporary
table on the filegroup, moves all the data to that temporary table, and
changes all the referential integrity rules before dropping the source table
and renaming the temporary table.

The ON keyword introduces the filegroup name, as shown in the syntax
below:

CREATE TABLE tabTlename
(<column_definitions>

) ON filegroupname

In SQL Enterprise Manager, the table placement may be defined in the
table Properties dialog box, as shown in Figure 3.6.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

170 Chapter 3 - Creating and Maintaining Tables

FIGURE 3.6 Defining the table filegroup

| %]

Selected table:
Owner: | f7 dba j
Table name: |Orders
Table Identity Column: |OrderID ﬂ
Table ROW/SLID Column: | |
Table Filegroup: |5alesFG j
Text Filegroup: |PRIM.¢\RV j
Description: J

-

Claze Help

Altering a Table

Microsoft
Exam
Objective

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

= Specify table characteristics. Characteristics include cascading
actions, CHECK constraints, clustered, defaults, FILLFACTOR,
foreign keys, nonclustered, primary key, and UNIQUE constraints.

Alter database objects to support replication and

partitioned views.

Troubleshoot failed object creation.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 171

Nobody’s perfect, especially when it comes to database structure.
Things change, needs change, users change, and therefore database design
may change. That’s the reason you’ll probably have to alter a table. Here
we will discuss the standard modifications that can be made to an existing
table.

Altering an Existing Column

ING

Changing a column structure obeys very precise rules. While you can find
all of them in the Books Online, it’s important to remember the following
one. The altered columns cannot be:

= Of TEXT, IMAGE, NTEXT or TIMESTAMP datatypes

= The ROWGUIDCOL column

= A computed column or used in a computed column
= A replicated column

= Used in an index, except for character and binary datatype, and if
the type is not changed and the size is not decreased

= Decreased in size if values would be truncated (error 8152) or over-
flow would occur (error 220)

= Used in statistics

= A primary or foreign key

Many other modifications are allowed from SQL Enterprise Manager, but it
is generally because a temporary table is used in the background. So, any
other modification than those listed above can be very costly in terms of
time and knowledge if done through SQL Enterprise Manager. The methods
used by Enterprise Manager may use more resources than you would like,
so be careful when making table modifications through Enterprise Manager.
While it is nice to use the GUI and have it shield the user from the code
required to make the change, there is quite a bit of knowledge that can be
gained by making these modifications using T-SQL.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

172 Chapter 3 - Creating and Maintaining Tables

The basic syntax of column alteration is the following:

ALTER COLUMN columnname
{ new_datatype [(precision [, scale])]
[COLLATE < collation_name >]
[NULL | NOT NULL]
| {ADD | DROP } ROWGUIDCOL }

Based on this syntax, you can see there are four types of column alter-
ation.
Change Its Data Type

The new datatype must be implicitly convertible from the old one.

é To find out which implicit datatype conversions are allowed, search for the
CAST or CONVERT functions in the Books Online. You'll find a table that

shows you which implicit datatype conversions are allowed or forbidden.

The following example gives you the initial table and two allowed
datatype alterations:

CREATE TABLE Altered

(C1 1int,
C2 varchar (50))
GO

ALTER TABLE Altered ALTER COLUMN C1 tinyint
ALTER TABLE Altered ALTER COLUMN C2 varchar (25)

As you can see, datatypes are demoted here: The INT becomes a
TINYINT, and the VARCHAR is reduced to 25 characters. Since this is only
possible if no data is lost, you know that datatype promotion, a lossless
alteration, is always possible. Datatype demotion is only possible if no
data loss occurs.

Change Its Collation

Changing the column collation is definitely not a bright idea if it already
contains some data. Changing the collation may change the character set

and the sort order, so data may be lost and the result of some query may
change.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 173

If you create the following table:

CREATE TABLE AlterCollation

(C1 varchar (30) COLLATE Latinl_General_CI_AS,
C2 varchar (30) COLLATE Latinl_General_CI_AS)
GO

And insert the following record:

INSERT AlterCollation
VALUES ('prét-a-porter francais', 'prét-a-porter
francais')

When you run SELECT * FROM AlterCollation, you obtain the following
result:

prét-a-porter francais prét-a-porter francais
Now if you change the collation of the second column:

ALTER TABLE AlterCollation
ALTER COLUMN C2 varchar (30) COLLATE THAI_CI_AS

And run SELECT * FROM AlterCollation again, you now have:
C1 C2

prét-a-porter francais pr?t-?-porter fran?ais

The accented letters and special characters have been lost during the
collation change because there are no matching characters in the Thai
character set.

Test your collation change before running it into production. You could have
astonishing results and you will be the first to blame!

Change Its Nullability

Changing the nullability is altering a NOT NULL column so that it allows
NULL values, or vice versa. If you want a NULL column to disallow NULL

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

174 Chapter 3 - Creating and Maintaining Tables

values, you must first be sure that your column does not have any NULLs.
The following query will help you:

SELECT * FROM MyTable WHERE NullColumn IS NULL

If the result set is empty, you can change the nullability of the column. If
it contains at least one NULL value, you must first update it to change the
nullability of the column.

In the following example, you create a table, and then alter it:

CREATE TABLE AlterNull
(C1 varchar (30) NOT NULL)
GO

ALTER TABLE AlterNull ALTER COLUMN C1 varchar (30) NULL

Note that to change the nullability of the column, you have to specify
the datatype even if you do not change it.

Change the Fact That It is a ROWGUIDCOL

The last possible alteration concerns the definition of the RONGUIDCOL. As
seen before, a table can have only one ROWGUIDCOL column. If you want to
define or change it, you must first delete any reference to the GUID, then
define another Uniqueldentifier column as being the new ROWGUIDCOL. The
following statement drops the ROWGUIDCOL property of the Company table.

ALTER TABLE Company
ALTER COLUMN CompanyID DROP ROWGUIDCOL

Note it does not drop the column itself. Once the statement is success-
fully run, the table has no ROWGUIDCOL anymore. It is then possible to add
it again:

ALTER TABLE Company

ALTER COLUMN CompanyID ADD ROWGUIDCOL

Adding a Column

Adding a column is a straightforward as well as a tricky process. It is
straightforward because adding a column is easily done with the ADD
keyword in the ALTER DATABASE statement. It is tricky because if the table
contains data and the added column does not allow NULL values, it
should have a default value.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Creating and Altering a Table 175

If you want to store the e-mail address of every employee, you can add
a column to the Employees table of the Northwind database by running
the following statement:

ALTER TABLE Employees ADD Email varchar(40) NULL

Pay attention to the fact that we specified that the column should allow
NULL values. If you forget that property or ask explicitly for a NOT NULL
value, you will obtain the error 4901: ALTER TABLE only allows columns
to be added that can contain nulls or have a DEFAULT definition
specified. Column 'Email' cannot be added to table 'Employees'
because it does not allow nulls and does not specify a DEFAULT
definition.

To add a column to a table containing data and fill this column with a
default value, use the DEFAULT constraint statement (this constraint is
detailed in the next chapter), as in the following example:

ALTER TABLE Employees
ADD Email varchar(40) NOT NULL DEFAULT 'Unknown'

If you query the Employees table, with SELECT LastName, Email FROM
EmpTloyees, you check that every Email value has been initialized with the
Unknown value:

LastName Email

Davolio Unknown
Fuller Unknown
Leverling Unknown
Peacock Unknown
Buchanan Unknown
Suyama Unknown
King Unknown
Callahan Unknown
Dodsworth Unknown

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

176 Chapter 3 - Creating and Maintaining Tables

Dropping a Column

Dropping a column is as simple as adding one, except you cannot drop
just any column. You cannot drop a column if:

= It is replicated.

= It is part of an index.

= It is part of a constraint.
= It is bound to a rule.

If your column is not any of the above, then you just have to run the
ALTER TABLE statement with the DROP COLUMN clause, as in the following
example:

ALTER TABLE Employees DROP COLUMN Email

Since the beginning of this section, you’ve encountered different
datatypes. Every table column should have a datatype. The next section
will deal with the different datatypes provided by SQL Server 2000 and
the different features it offers to create and manage your own datatypes.

Columns and Datatypes

A table is made of one or many columns as well as named attributes
or fields. In SQL Server 2000, every column must either have a defined
datatype or be a computed column.

There are 27 datatypes provided by default by SQL Server; these are
called system datatypes. Users can create their own datatypes, based on the
system datatypes. Datatypes are used to define the column storage as well
as the parameters of stored procedures and user-defined functions, and
variables in Transact-SQL scripts. In the following pages, we are going to
take a closer look at datatypes and the way they interact with column
tables.

System Datatypes

SQL Server provides the base for all other datatypes under the name of
system datatypes. Table 3.1 gives you a quick overview of these system
datatypes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

TABLE 3.1

Columns and Datatypes 177

SQL Server System Datatypes
Datatype Min and Max Size Description
Values
Bigint -283 10 253-1 8 bytes Integer type new to
SQL 2000, allowing
storage of large
integer values.
Binary 8,000 bytes Exact size as Raw Binary data.
max defined by
the length
attribute
Bit 1 byte Allows storage of
Boolean values.
Even if it occupies
one byte, this byte
can be shared
among 8 bit
columns. Storing
from 1 to 8 bit
columns consumes
only one byte.
Char 8,000 charac- Exact size as Fixed-length
ters max defined by character type.
the length
attribute
Datetime From January 1, 8 bytes Date and time
1753 To December value.
31, 9999
Decimal -10% to +10%8+1 From5to 17 Synonym to
bytes, Numeric.

Copyright ©2001 SYBEX, Inc., Alameda, CA

depending on
the precision

www.sybex.com

http://www.sybex.com

178 Chapter 3 - Creating and Maintaining Tables

TABLE 3.1 SQL Server System Datatypes (continued)

Datatype Min and Max Size Description
Values
Float -1.79 10%% to 8 bytes Floating point
1.79 10%% number.
Image 2GB max Variable Often called BLOB,
Binary Large
Object, this
datatype allows
the storage of
binary data whose
size may exceed
8000 bytes.
Int -2,147,483,648 4 bytes Integer.
to 2,147,483,647
Money -25% 10 +2%-1 8 bytes Monetary data
value. Preci-
sion goes
down to the
fourth decimal
place (a ten-
thousandth).
Nchar Up to 4,000 Exact size as Fixed-size
characters defined by Unicode
the length character.
attribute

Ntext 2GB max - 2%0-1 Variable Unicode

characters character
type.

Numeric -10% to +10%8+1 From5to 17 Fixed precision
bytes, and scale
depending numeric value.
on the
precision

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

http://www.sybex.com

TABLE 3.1

Columns and Datatypes 179

SQL Server System Datatypes (continued)
Datatype Min and Max Size Description
Values
Nvarchar 4,000 characters Variable Unicode vari-
max able character.
Real -3.40 10% to 4 bytes Floating point
+3.40 10%® numeric value.
Rowversion 8 bytes Binary data
unique within a
database.
Smalldatetime From January 4 bytes Date and time
1, 1900 to value with an
June 6, 2079 accuracy to one
minute.
Smallint -32,768 to 32,767 2 bytes Integer.
Smallmoney -214,748.3648 4 bytes Monetary data
to 214,748.3647 value. Precision
goes down to the
fourth decimal
place (a ten-
thousandth).
Sql_variant Variable A universal
datatype that
stores any other
datatype value,
except text, ntext
and timestamp.
Table Variable Type used to

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

store a result set.
It is not possible

to define a table

type column.

http://www.sybex.com

180 Chapter 3 - Creating and Maintaining Tables

TABLE 3.1

SQL Server System Datatypes (continued)

Datatype Min and Max Size Description
Values
Text 2GB - 2391 Variable Character type.
characters
Timestamp 8 bytes Synonym of
rowversion.
Tinyint 0 to 255 1 byte Unsigned Integer.
Uniqueldentifier 16 bytes Globally
Unique
Identifier.
Varbinary 8,000 bytes max Variable Variable-length
binary data.
Varchar 8,000 characters Variable Variable-length

max character data.

System datatypes can be grouped into six families.

Exact Numeric

Integers are represented through four types: TINYINT, SMALLINT, INT and
BIGINT. Note that TINYINT is an unsigned value.

NUMERIC and DECIMAL datatypes represent fixed precision and scale
numeric values. In SQL Server 2000, both types are synonyms. When you
define a column of either type, you must supply the precision and scale.
Precision represents the total of digits in the number (from 1 to 38). Scale
represents the total of decimal digits in the number. For example, a column
of DECIMAL (9, 4) can store numbers containing up to nine digits, with a
max of four decimal digits. Values such as 123,456,789 and 12,345.6789
are both valid in this context.

MONEY and SMALLMONEY are used to represent currency values. Note that
these monetary datatypes are Euro compatible.

The BIT datatypes may have three values: zero, one, or NULL. This
datatype uses a byte that can be shared by multiple byte columns of the
same table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

9TE

¢y

Columns and Datatypes 181

Approximate Numeric

FLOAT and REAL are floating point numbers.

Date and Time

DATETIME and SMALLDATETIME are used to store date and time values.

A DATETIME value is stored as two four-byte integer values. The first
integer represents the number of days before or after January 1, 1900. The
second integer represents the number of milliseconds after midnight.

A SMALLDATETIME value is less accurate than a DATETIME value. It is
stored as two two-byte integer values. The first integer represents the num-
ber of days after January 1, 1900. The second one represents the number
of seconds after midnight.

Note that it is physically impossible to store a date without a time or a
time without a date. Nevertheless, if you only insert a date, the time value
will be zero (meaning midnight). If you only insert a time, the date
value will be zero (meaning January 1, 1900).

Character Strings

CHAR and VARCHAR are single-byte characters. NCHAR and NVARCHAR are
double-byte Unicode characters. These four types are limited respectively
to 8,000 and 4,000 characters (8,000 bytes). You have to declare the
length of the character string. The default length is one. The CHAR and
NCHAR datatypes are fixed-length types. That means that they occupy the
whole space even if they are not using it. For example, a CHAR(15) column
will always consume 15 bytes, even if it uses only one or two bytes. On the
other hand, variable-length types, like VARCHAR and NVARCHAR, use only the
space they really occupy plus a two-byte overhead per value.

Use fixed-length strings for values not varying in size, like zip codes, and
variable-length strings for values varying in size, like first names or cities.

TEXT and NTEXT types are similar to a Memo field. Each time you need
to store a large volume of text (above 8,000 bytes), the TEXT and NTEXT
types may be the solution. TEXT and NTEXT fields may be stored in the
same data page as the other fields or in one or many separate pages. These
storage options are described in the “Table Storage” section.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

182 Chapter 3 - Creating and Maintaining Tables

Binary Strings
BINARY and VARBINARY datatypes are used to store binary strings whose
length is less than 8,000 bytes. The same rules apply to binary strings (as
far as storage is concerned) and character strings.
The IMAGE type is used to store any binary data that may be larger than
8,000 bytes, like images, video, sound, files, etc.

Storage of BLOBs

Binary Large Objects (BLOBs) are one of the weakest parts of SQL
Server. No insert, update, or delete methods exist in SQL Server to
handle such data. SQL Server manages their storage intelligently, but
leaves the manipulation methods to the client APl (OLE-DB, ODBC or
DB-Library).

One nice feature has been added to index image columns when they
contain files like Microsoft Word documents or Excel spreadsheets.
But to store or retrieve this kind of file, it is always necessary to create
a temporary storage area. If you need to manage multiple files or
multimedia documents, you have to carefully study your needs to
decide whether you should store this information in the database or
just store their relative path in the database and keep the storage
outside of SQL Server.

)’ For more information on image data management with ADO, look for Man-
‘d’“ aging Long Data Types in the Books Online.

Special
SQL_VARIANT offers the possibility to store almost anything in a column,
parameter, or variable. If a column is defined as SQL_VARIANT, some rows
may contain integer values, some others character values, and so on. The
SQL_VARIANT value is converted to a base datatype to allow manipulation.
The TABLE datatype allows the creation of a temporary result set that
can be used as a parameter of a stored procedure or used with table-valued
user-defined functions. However, it cannot be used for table columns. It
simplifies some operations by avoiding the use of Tempdb.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

.
INING

Columns and Datatypes 183

The TIMESTAMP and ROWVERSION datatypes are synonyms. TIMESTAMP is
a little bit tricky in Transact-SQL because it has nothing to see with the
SQL-92 timestamp. That’s the reason why SQL Server 2000 introduces the
new ROWVERSION datatype. In fact, the SQL-92 timestamp is synonymous
to the Transact-SQL DATETIME type.

There is a slightly tricky difference between the TIMESTAMP and ROWVERSION
datatypes. You can create a timestamp column without defining its name,
as in CREATE TABLE T1(C1l char(10), timestamp).In this case, SQL
Server creates a column named Timestamp. This behavior cannot be repro-
duced with ROWVERSION.

The ROWVERSION is used to automatically stamp the version of a row.
This kind of column may be used by OLE-DB or ODBC to implement
optimistic locking.

The UNIQUEIDENTIFIER, which was described earlier in the chapter, per-
mits the creation of globally unique identifiers among all the SQL servers
in the world!

Synonyms

TABLE 3.2

To be SQL-92 compliant, SQL Server offers synonyms to datatypes. Table
3.2 lists all the datatype synonyms that can be used in column, parameter,
or variable definition.

Datatype Synonyms

Synonym System Datatype
binary varying varbinary
char varying varchar
character char
character char(1l)
character(n) char(n)
character varying(n) varchar(n)
dec decimal
double precision float
float[(n)] forn =1-7 real
float[(n)] forn =8-15 float
integer int

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

184 Chapter 3 - Creating and Maintaining Tables

TABLE 3.2 Datatype Synonyms (continued)

Synonym System Datatype
national character(n) nchar(n)
national char(n) nchar(n)
national character varying(n) nvarchar(n)
national char varying(n) nvarchar(n)
national text ntext

Note that the synonym is used for the creation of the column. Once
created, if you generate the SQL Script of the object, the base datatype is
used. There is no record that a synonym was used instead of its base data.
Synonyms have only been implemented to guarantee the SQL-92 compli-
ancy. They are not available in SQL Enterprise Manager.

User-defined Datatypes

It is possible to create your own datatypes, based on the system datatypes.
The advantage of a user-defined datatype is to create a repository for
developers, so they all use the same datatypes for the same type of
columns. For example, you could create a SSN datatype to store social
security numbers, so every developer uses the same type of storage.

You can attach a default value and a validation rule to a user-defined
datatype. Once done, the column inherits this validation rule and default
value.

The creation of a datatype in Transact-SQL is done with the stored pro-
cedure sp_addtype. The following example creates a zip code datatype
based on a char(5) system datatype:

sp_addtype zipcode, 'char(5)', NULL

Note the quotation marks around the system datatype. They are required
each time the system datatype has embedded space or a punctuation mark.
If forgotten, you will have a syntax error.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Columns and Datatypes 185

The same thing can be done with SQL Enterprise Manager:
1. In SQL Enterprise Manager, open the concerned database folder.

2. Right-click User Defined Data Types and click New User Defined
Data Type.

3. Type the name of the new datatype, choose its type, its length and its
nullability, then click OK.

FIGURE 3.7 Creating a user-defined datatype with SQL Enterprise Manager

User-Defined Data Type Properties - SQL200 | x|
General l
% MHarme: |2ipcode
Cata type: | char ﬂ
Length:]
Allow NULLz v
Rule: |[r'u:|ne] j
Default: | [riie] ﬂ
Ok | Cancel | Help |

Figure 3.7 shows the User-Defined Data Type Properties dialog box. In
this dialog box, besides the four basic characteristics of a datatype (name,
type, length, and nullability), you find the attached rule and default and a
Where Used button, to know which table columns use this type. Figure 3.8
shows the Where Used window of the ID user-defined datatype of the Pubs
database.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

186 Chapter 3 - Creating and Maintaining Tables

FIGURE 3.8 Where Used dialog box

General

The fallowing columis use this user-defined data type:

id. authorz. au_id
id titleauthar. au_id

Ok | Cancel |

There is no easy way to obtain the same information directly in
Transact-SQL, except by querying the Syscolumns and Sysobjects system
tables.

It is impossible to create a user-defined datatype based on another user-

TE defined datatype. It must always be based on a system datatype.

)

Creating and Managing User-defined Datatypes
This exercise will walk you through creating and using user-defined
datatypes in a new table.

1. In SQL Enterprise Manager, open the Databases folder, then the
TestTable database folder. If SQL Enterprise Manager is not open,
open it by choosing Start > Programs > Microsoft SQL Server >
Enterprise Manager.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Columns and Datatypes 187

2. Right-click the User Defined Data Types folder and choose New
User Defined Data Type.

In the Name text box, type Zipcode.

From the Data Type drop-down box, choose char.
In the Length textbox, type 5.

Check the Allow NULLs box and click OK.

N o g > w

Repeat steps two through six to create a Phone datatype as a
Char(10) allowing Nulls, and an ID datatype as bigint not allowing
Nulls.

8. Create the following table:

Column Mame | DataType |Length | Allow Mulls |i|
EmployesID 1D (higint) g
" |LastMamme warchar 50
~ |FirstMame warchar 30 W
" |address warchar 100
T Ziprode Ziprade (char) 5
T ity warchar 30 W
T |state char 2 W
" |Phone Phore (char) 10 W |

9. Name it Employees, save it, and close the window. You can try to
enter data in this table to check that the system datatypes are well
enforced behind the user-defined datatypes.

Dropping a user-defined datatype is possible if it is referenced in tables,
stored procedures, or user-defined functions. The sp_droptype stored pro-
cedure does all the work, as in the following example:

sp_droptype zipcode

In SQL Enterprise Manager, just right-click the datatype you want to
delete, click Delete, then click Drop All.

The datatype definition is stored in the Systypes system table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

188 Chapter 3 - Creating and Maintaining Tables

Computed Columns

.
NING

Computed columns were first introduced in SQL Server 7. They are virtual
columns, not physically stored in the database but still parts of a table
structure, and whose values are calculated on the fly. A computed column
is based on the values of one or many other columns of the same table.
The expression of a computed column can be another column (non-
computed), a constant, a function, a global variable, or any combination
of these elements connected by arithmetic or Boolean operators. It cannot

be a subquery.
The following example creates a Total computed column based on the

Price and Qty columns:

CREATE TABLE Orders
(OrderID int NOT NULL,
CustomerID int NOT NULL,
ProductID int NOT NULL,
Price money NOT NULL,
Qty smallint NOT NULL,
Total AS Price * Qty)

Computed columns may generate unexpected behavior. For example, if you
create the following column C3 AS C2/C1, if Cl is equal to zero, C3 cannot

be calculated and a divide-by-zero error occurs. If this happens, you cannot
choose the C3 column in a SELECT statement until you correct the error.

You cannot, of course, insert just any values in the computed column.
With the previous table, the following code inserts three records:

INSERT INTO Orders(OrderID, CustomerID, ProductID, Price, Qty)
VALUES(1, 1, 1, 12, 5)

INSERT INTO Orders(OrderID, CustomerID, ProductID, Price, Qty)
VALUES(2, 2, 2, 14, 10)

INSERT INTO Orders(OrderID, CustomerID, ProductID, Price, Qty)
VALUES(3, 3, 3, 5, 6)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Columns and Datatypes 189

The following is the result of running SELECT * FROM Orders:
OrderID CustomerID ProductID Price Qty Total

1 1 1 12.0000 5 60.0000
2 2 2 14.0000 10 140.0000
3 3 3 5.0000 6 30.0000

Remember that the computed column is not stored, so retrieving its
values involves some extra CPU work. Computed columns in SQL
Server 2000 may be indexed. Chapter 5 describes the indexing rules for
computed columns.

Creating and Managing Computed Columns
This exercise will walk you through creating and using a computed
column in a new table.

1. Open SQL Query Analyzer by choosing Start > Programs >
Microsoft SQL Server > Query Analyzer, and check that you are in
the TestTable database.

2. Type the following code:

CREATE TABLE Royalty
(AuthorID int NOT NULL,
TitleID int NOT NULL,
BookPrice money NOT NULL,
QtySold smallint NOT NULL,
Royalty AS
CASE
WHEN QtySo1d<2000 then BookPrice*QtySold*0.06
WHEN QtySo1d<4000 then BookPrice*QtySold*0.08
ELSE BookPrice*QtySold*0.10
END)

3. Execute the code by clicking the Green arrow in the Query Analyzer
toolbar.

4. Clear the window by clicking the Clear button in the Query Analyzer
toolbar, then type the following statement:

INSERT Royalty(AuthorID, TitleID, BookPrice, QtySold)
VALUES (1, 1, 15, 2500)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

190 Chapter 3 - Creating and Maintaining Tables

Extended

EXERCISE 3.5 (continued)

5. Execute the code by clicking the green arrow in the Query Analyzer
toolbar.

6. Clear the window, then type and run SELECT * FROM Royalty and
check that the computed column is displayed with the right result.

A computed column cannot be used as a Default or Foreign Key constraint,
which seems quite obvious.

Now that we have seen all the basics of tables and datatypes, let’s jump
to a totally new subject in SQL Server 2000 called the extended properties.
They enable you to create and manage your own properties for your tables
and columns.

Properties

New to SQL Server 2000 is the ability to create extended properties.
This feature allows the creation of custom properties on almost every data-
base object. An extended property is a SQL_VARIANT storage area that can
be created on databases, users, user-defined datatypes, tables, views, stored
procedures, user-defined functions, defaults, rules, columns, parameters,
indexes, constraints, and triggers.

If you designed a table in SQL Enterprise Manager, you probably saw
an extended property without recognizing it. The Description property (see

Figure 3.9) of the Design Table window is an extended property created by
default.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Extended Properties 191

FIGURE 3.9 Description of a field

i 2:Design Table ‘Customers’ in 'Nur:z - O] x|
B iR 7 =g B [
ColumnMame | DataType |Lenath| Allow ulls | -
MR | CustomerID nchar 5
- ComparyMarme narchar 40
- ConkactMame rvarchar 30 W ﬂ
Columns l

{ Descripkion nigue ID based on the customer's name :}

erault vwalle

Farmula
Callation <database defaulk =

In fact, the Description field is presented in the GUIL, but it attaches an

extended property to the column only if you fill it.
The management of extended properties in Transact-SQL is not really
easy or convenient. Extended properties are managed through three

system-stored procedures:

= Sp_addextendedproperty adds a new extended property to a data-
base object.

= Sp_updateextendedproperty updates an existing extended property.
= Sp_dropextendedproperty drops an existing extended property.

These three stored procedures and extended properties are based on
three object levels. Table 3.3 shows you the supported objects and levels.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

192 Chapter 3 - Creating and Maintaining Tables

TABLE 3.3 ObjectLevels

Level 0 Level 1 Level 2
User Default N/A
Function Column, parameter,
constraint,
Rule N/A
Schema-bound function Column, parameter,
constraint
Schema-bound view Column, index,
INSTEAD OF trigger
Stored procedure Parameter
Table Column, index, con-
straint, trigger
View Column, INSTEAD OF
trigger
User-defined datatype N/A N/A

These levels are quite simple to understand if you consider the following
example: If you want to add an extended property to a table column, you
need to supply the name of the table and of the column, plus the name of
the user owning the object (which is the table in this case). We find these
levels in the extended properties stored procedure syntax.

If we want to create a Description property for the CustomerID col-
umn, as in Figure 3.9, the stored procedure to execute would be:

sp_addextendedproperty 'Description’,
'"Unique ID based on the customer''s name',

'user', 'dbo',
"table', 'Customers',
"column', 'CustomerID'

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

\
\

-

Extended Properties 193

The real name of the Description property appearing in SQL Enterprise
Manager is MS_Description.

Note the level types in this example. They are used as they appear in
Table 3.3. If you want to reach a level two object, you must specify the
level zero and level one objects as well. The three stored procedures share
the same parameters.

Properties are stored in the Sysproperties table.

To know the value of an extended property, you can query the
Sysproperties table directly or use the fn_Tistextendedproperty func-
tion. The following example lists the extended properties of all the
columns of the Customers table:

select * from
::fn_listextendedproperty (default,
'user', 'dbo',
"table', 'Customers',
"column', default)

The result is the following;:

objtype objname name value

COLUMN CustomerID MS_Description Unique ID based..
COLUMN CompanyName MS_Description Name of the Company
COLUMN ContactName MS_Description Name of the primary..

If you run this query on your system, the results may vary, depending on
the extended properties you add to the columns.

In the fn_1istextendedproperty function, the first parameter is the
property name you are looking for. If you specify default, you are asking
the system to list every property. You can use default to tell the system that
you want every property or object for every parameter. The following

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

194 Chapter 3 - Creating and Maintaining Tables

statement gives you all the database level properties of the current data-
base:

select * from ::fn_listextendedproperty
(default, default, default,
default, default, default, default)

The next example gives you all the table level properties for all tables in
the current database:

select * from ::fn_listextendedproperty
(default, 'user', 'dbo',
"table', default, default, default)

You may be pleased to know that Query Analyzer offers a graphical
way to manage extended properties. In the Object Browser, open your
database folder, then the User Tables folder. Right-click an object name
(table, column, index, and so on) and choose Extended Properties to dis-
play the Extended Property dialog box (see Figure 3.10).

FIGURE 3.10 Extended Property dialog box

Extended Property x|

Object name: Marthwind. dbo. Customers

Walue | g

sielifag) Customers information

aK | Cancel | Apply | Befresh | Help |

The dialog box illustrated in Figure 3.10 shows the extended properties
of the object but not the ones that belong to the object’s objects. For

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Table Storage 195

example, Figure 3.10 displays the table properties but not the table’s col-
umn properties.

Extended properties offer a convenient way to store information about
database objects. You could use them to store display recommendations
for a column, comments for a stored procedure, explanations about devel-
opment choice for a user-defined function, and so on.

Extended Properties and Metadata

The days of the integration of extended properties in metadata
information are gone. The metadata repository offers you the ability
to comment on database objects. It would have been nice if the
metadata could have retrieved the extended properties information.
Unfortunately, it is not the case. Let’s hope future development
products or future versions of the Microsoft Repository will use
extended properties.

Before going into greater details concerning the implementation of
declarative integrity rules in the next chapter, the following section lets you
in on the secrets of data storage. This information, if not necessary to cre-

ate tables, gives you insights to SQL Server and helps you to design more
intelligent tables.

Table Storage

In Chapter 2, you discovered file, extent, and page allocation. In this
chapter, we go a little bit further to understand how SQL Server works to
store records. You will discover:

= How records are stored and physically managed

= How text, ntext, and image columns are stored and physically man-
aged

Each time a record is inserted in a table, it goes in an allocated page
where the system has enough space to store it. The way the record is

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

196 Chapter 3 - Creating and Maintaining Tables

physically stored varies depending on the datatypes it is made of. Let’s first
consider records containing no text, ntext, or image columns.

Record Storage

FIGURE 3.11

Records are stored in 8KB data pages. The record max length is 8060
bytes, not including text, ntext, and image columns. You can have a look
at Figure 2.10 to remind you of the record allocations within a page. Now,
Figure 3.11 shows you the physical storage structure of a record.

A record’s physical structure

Block § Block

Row Header I Fixed-length Data I Null IVariabIe

I Variable-length Data

A record is divided into five zones:

= The row header, which is 4 bytes long, contains information about
the row.

= The fixed-length data zone contains the data of the fixed-length
columns (char, int, real, etc.).

= The null block contains the nullability value of every nullable col-
umn.

= The variable block contains the stored variable-length data length.

= The variable-length data zone contains the data of the variable
length columns (varchar, varbinary, etc.).

Note that the physical structure does not match the column order you
defined: Fixed-length columns are grouped together at the beginning of the
row, while variable-length columns are grouped at the end of the row. You
can check this structure by running DBCC PAGE.

For example, the Authors table of the Pubs database has been created
with the following statement:

CREATE TABLE authors (
au_id id NOT NULL ,
au_Tlname varchar (40) NOT NULL ,
au_fname varchar (20) NOT NULL ,
phone char (12) NOT NULL,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

¢y

Table Storage 197

address varchar (40) NULL ,
city varchar (20) NULL ,
state char (2) NULL ,

zip char (5) NULL ,
contract bit NOT NULL

)

Id is a user-defined datatype corresponding to a VARCHAR(11).
TE

So the physical structure of the records of the Authors table will group
columns the following way: Phone, State, Zip, Contract, Au_id,
Au_Iname, Au_fname, Address, and City. The first record of the Authors
table contains the following column values:

au_id = 172-32-1176
au_Tname = White

au_fname = Johnson

phone = 408 496-7223
address = 10932 Bigge Rd.
city = Menlo Park
state = CA

zip = 94025

contract =1

If we query the physical page content with DBCC PAGE, we obtain the
following result (excerpt):

Slot 0 Offset 0x631

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VARIABLE_COLUMNS

194d0631: 00180030 20383034 2d363934 33323237 0...408 496-7223
194d0641: 34394143 01353230 00000009 00330005 CA94025....... 3.
194d0651: 003f0038 0058004e 2d323731 312d3233 8.7.N.X.172-32-1
194d0661: 57363731 65746968 6e686f4a 316e6f73 176Whitelohnsonl
194d0671: 32333930 67694220 52206567 654d2e64 0932 Bigge Rd.Me
194d0681: 206f6cbe 6b726150 nlo Park

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

198 Chapter 3 - Creating and Maintaining Tables

This gives you the bytes as they are found in the page for the first
record (slot 0) at the address 0x631. As you can see, the row data starts at
the fifth byte by the phone number (408 496-7223) as we expected, since
it is the first fixed-length column. (In Figure 3.11, you can see that fixed-
length columns are stored first.) Then we find the state, the zip code, and
the contract value.

After the null and variable blocks, the data starts again with the Au_id
(172-31-176), since it is the first variable-length column. It continues by
the last name, first name, address, and city. All of the records of all the
pages follow the same storage rules.

Text, ntext, and Image Storage

Text, ntext, and image columns are managed differently from other
columns. As their size can be greater than that of a page, these columns are
stored in image pages—and only page pointers are stored in the physical
record structure. SQL Server 2000 introduced the new text in row
option to be able to store text, ntext, and image data directly in the row.

In this section, | will call a BLOB column any text, ntext, or image column.

The behavior of the text in row option is straightforward:

= When set to OFF, every BLOB column is stored in an image B-Tree
structure, and the address of the root node—a 16-byte address—is
stored in the row. If a table has multiple BLOB columns, there are as
many pointers as columns.

= When set to ON, every BLOB column is stored in the row if it fits in
the page and if its size is less than the predefined maximum size, or
it is stored in its own B-Tree structure.

To set this option to ON, use the sp_tableoption stored procedure:
sp_tableoption tablename, 'text in row', 'on'

To set it to OFF, replace ON with OFF. If you set the option with the ON
keyword, the BLOB columns will be stored in the row if they are less
than 256 bytes long and fit in the page. If you want the maximum length
to be different than 256 bytes, you can define it by changing its value from

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Table Storage 199

24 to 7,000, instead of using the ON keyword. The following example tells
SQL Server to store the Categories BLOB columns in the row if they are
less than 2,000 bytes long:

sp_tableoption 'Categories', 'text in row', '2000'

Let’s see what happens when BLOB columns are stored according to
their option values.

Text in Row OFF

By default, BLOB values are stored in their own structures called image
pages (see Chapter 2). These pages are arranged in a B-Tree structure to
optimize data access.

) B-Tree stands for Balanced Tree. Used also in Index storage systems, it is a
drz

tree structure whose management algorithm keeps it balanced; that is, the
length of every branch (from root to leaf) is the same whatever data you are
looking for. There are major differences between balanced and binary trees.

Here’s an example illustrating the storage process. The Categories table
of the Northwind database has the following structure:

CREATE TABLE [dbo].[Categories] (
[CategoryID] [int] IDENTITY (1, 1) NOT NULL ,
[CategoryName] [nvarchar] (15) NOT NULL ,
[Description] [ntext] NULL ,
[Picture] [image] NULL

)

This table has two BLOB columns: Description and Picture, the first
one being ntext and the second image. In every row you find two 16-byte
pointers. The following result of running DBCC PAGE shows the first record
of this table:

Slot 0 Offset 0x60

Record Type = PRIMARY_RECORD

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

200 Chapter 3 - Creating and Maintaining Tables

FIGURE 3.12

Record Attributes = NULL_BITMAP VARIABLE_COLUMNS

191e2060: 00080030 00000001 03000004 35002500 0............ %.5
191e2070: 42804580 76006500 72006500 67006100 .E.B.e.v.e.r.a.g
191e2080: 73006500 eb000000 00000000 00005f00 .e.s.........
191e2090: 01000100 ec000000 00000000 00005f00

191e20a0: 03000100 oo ...
CategoryID =1

CategoryName = Beverages
Description = [TextPointer]

TextTimeStamp = 15400960 RowId = (1:95:1)

Picture = [TextPointer]

TextTimeStamp = 15466496 RowId = (1:95:3)

In the record structure, the CategoryID column is the only fixed-length
column, which means that it’s before the Null and Variable blocks. Then,
after the CategoryName column, you find two addresses: The first one
indicates the Description column content is in page 95 in slot 1, and the
second one indicates the Picture column content is in page 95 in slot 1.

The BLOB addresses are always 16 bytes long and point to a root node
managing the blocks in which the real data is stored. The logical structure
of a BLOB column storage is illustrated in Figure 3.12.

BLOB storage structure

Record
Root
Block 1 Block 2 Block 3

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Table Storage 201

The address points to a root node that contains the pointer to data
blocks. If we go to page 95 slot 1, we find the following information:

Blob fragment at: Page (1:95) Slot 1 Length: 84 Type: 4
(LARGE_ROOT_2)

Blob Id: 15400960 Level: 0 MaxLinks: 5 CurLinks: 1
Child fragment at Page (1:95) Slot 0 Offset: 86

This shows us that this slot is occupied by an 84-byte structure
(Length: 84 Type: 4 (LARGE_ROOT_2)) indicating the real address of the
BLOB content: Child fragment at Page (1:95) Slot O Offset: 86.
The system finds the content on page 95 at slot 0. The Description value
for this row is contained in a single data block.

If we now go to page 95 slot 3, we find the following information:

BTob fragment at: Page (1:95) Slot 3 Length: 84 Type: 4
(LARGE_ROOT_2)

Blob Id: 15466496 Level: O MaxLinks: 5 CurLinks: 2
Child fragment at Page (1:97) Slot 0 Offset: 8080
Child fragment at Page (1:95) Slot 2 Offset: 10746

This root node indicates that the Picture data of the first row is made of
two blocks (Child fragments): the first one on page 97 slot 0, and the last
one on page 95 slot 2. This structure is illustrated on Figure 3.13.

FIGURE 3.13 First record storage structure of the Categories table

Category Record Description | Picture
Address Address

Page 95 Page 95

Root Root

Page 95 | Page 97 Page 95
Data Data Data
Block Block 1 Block 2

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

202 Chapter 3 - Creating and Maintaining Tables

FIGURE 3.14

This storage structure is used if the BLOB size is between 64 bytes and
32KB. If the BLOB data is less that 64-bytes long, it is stored in the root
node structure. If it is bigger than 32KB, SQL Server creates an intermedi-
ate node between the root node and the data block to create a bigger
B-Tree structure, as in Figure 3.14.

Storage structure of a BLOB column whose size is over 32KB

Record

Root

. !

Intermediate Node Intermediate Node

| , I i , I

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

One important fact to note is whatever the size of a BLOB value, the
page containing the field content may be shared with other fields’ values or
nodes. In our previous example, page 95 contains different nodes and dif-
ferent BLOB columns. So, using page space as necessary optimizes BLOB
space. The only exception concerns intermediate nodes that are contained
in their own page for each row.

Text in Row ON

The sp_tableoption stored procedure allows you to define the limit under
which the BLOB data may be placed in the row if there is enough space in
the page and above which they are always placed in image pages. Three
cases could occur:

There is enough space in the page to hold the BLOB data. The prob-
lem is simple. The BLOB data is handled like a variable string and uses
just enough storage space. So if the limit is 2,000 bytes and the text
string is 500 bytes long, it will only use 500 bytes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Table Storage 203

There is not enough space in the page to hold the BLOB data. This
situation could occur because SQL Server evaluates the row size with-
out taking into account the BLOB size. It writes the row and then writes
the BLOB data at the end of the row in their definition orders, if there is
more than one BLOB column. If there is not enough space in the page
to hold the BLOB, SQL Server tries to write the root node structure (72
bytes instead of 84, if it is placed in row) or parts of the root structure
(at least 24 bytes). Then the data itself is stored in image pages.

The BLOB data is larger than the defined limit. This situation is quite
similar to the previous one. Only the root structure, or parts of the root
structure, is written in the row, and the data is stored in image pages.

In the case of multiple BLOB columns in a single table, depending on
the BLOB values and on the page available space, some columns may be in
row and some may be in image pages.

Filegroups
The last aspect about BLOBs concerns their filegroup location. By default,
BLOB data is stored in the table filegroup. The TEXTIMAGE_ON keyword
allows storing BLOB columns in a specific filegroup. The following
example places the text and image columns of the Categories table in the
BLOBFg filegroup, while the table rows are placed in the Primary
filegroup:
CREATE TABLE [dbo].[Categories] (
[CategoryID] [int] IDENTITY (1, 1) NOT NULL ,
[CategoryName] [nvarchar] (15) NOT NULL ,
[Description] [ntext] NULL ,
[Picture] [image] NULL
) ON Primary TEXTIMAGE_ON BLOBFg

This feature allows you to split BLOB data as well as character and
numerical data, while avoiding data external fragmentation. BLOB data is
generally larger than the rest of the data, so image page allocation occupies
more space, producing big physical gaps between data pages.

Consider placing your BLOB columns on a distinct filegroup if you
intend to store a large amount of BLOB data or if you access this data
quite infrequently.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

204 Chapter 3 - Creating and Maintaining Tables

Summary

In this chapter you learned how to create and manage database
tables. You discovered the details of how tables are structured and created,
using system or user-defined datatypes.

This chapter particularly focused on:

= Creating and managing a simple table

= Using row identifiers

= Placing tables or columns on filegroups

= Altering, adding, and dropping table columns
= Understanding system datatypes

= Creating and managing user-defined datatypes
= Creating and managing extended properties

= Data storage

Key Terms

Before you take the exam, be certain you are familiar with the following

terms:
B-Tree GUID
collation identifier
computed column identity
default nullability
extended property rule
filegroup scope
global variable session
globally unique identifier user-defined datatype

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 205

Exam Essentials

Perfectly know the CREATE and ALTER TABLE statements syntax.
Know all the possible parameters of these statements. In the exam you
may find tricky questions about table and column creation.

Know how to create automatic identifying columns. Identity and
Uniqueldentifier are convenient ways to create automatic columns, and
know their limits, advantages, and drawbacks.

Know how to create and bind user-defined datatypes. User-defined
datatypes offer a way to set domain integrity. Know how to create and
manage them.

Know the image and text datatypes management. Images are binary
large objects. Due to their size and type, they cannot be handled like
character or numeric data.

Understand the row storage. Tables are stored in pages. A good
understanding of data storage helps you comprehend table creation and
management.

Review Questions

1. You are one of the database developers working for Contoso, Inc.
You are developing the new customer relationship management
database. You are working on the customer table, which has the
following script:

CREATE TABLE Customers (
CustomerID nchar (5) NOT NULL IDENTITY(1, 1),
LastName nvarchar (40) NOT NULL ,
FirstName nvarchar (30) NULL ,
MiddleInitial nvarchar (3) NULL,
ContactTitle nvarchar (30) NULL ,
Address nvarchar (60) NULL ,
City nvarchar (15) NULL ,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

206 Chapter 3 - Creating and Maintaining Tables

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL ,

CONSTRAINT PK_Customers PRIMARY KEY CLUSTERED
(CustomerID)

During your test of the table, you insert 988 test rows in a batch.
The last used identity value is 988. You insert a new row, test the
identity value with @@identity, and obtain the value 55. What is
most likely the cause of this situation?

A. There is a trigger for the insert on the Customers table that
inserts a record in another table having a different identity value.
The value is given by this insert.

B. The identity column has been reseeded to start at 535.

C. You deleted the row whose CustomerID was 55 and, while
you inserted a new customer, SQL Server reused that value to
avoid “holes” in the table.

D. The identity value column is corrupted, and you need to run
DBCC CHECKIDENT to correct inaccuracies.

2. You are developing an employee database for World Wide
Importers. You need to store a short job description for every
employee. The length of these job descriptions varies and is less than
500 characters for 90 percent of them, but some can go up to
10,000 characters. What is the best solution for storing the job
descriptions while consuming the least amount of space?

A. Use two varchar columns, one with a max length of 2,000 and
one with a max length of 8,000. Depending on the real length,
you will use one or both columns.

B. Use a varchar column with a max length of 10,000.
C. Use a text column on a separate filegroup.

D. Use an in-row text column.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 207

3. Asa freelance SQL Server developer, you have been asked by one of
your customers to increase the capacity of part of its ordering
system. For the moment, the Orders table is using an identity value
as the OrderID. This column is a small integer. You need to change
it to an integer to support the increase. Which statement will change
the datatype of that column?

A. ALTER COLUMN Orders.OrderID integer
B. ALTER TABLE Orders ALTER COLUMN OrderID integer
C. ALTER TABLE Orders (OrderID 1integer)
D. ALTER COLUMN OrderID integer FROM Orders

4. You are working as a SQL Server developer for a large retail
company. Each time a retail store places an order to the central
warehouse, the total order amount has to be calculated from the

price and quantity of products ordered. The concerned tables are
shown in the following graphic.

Orders ¥———ocny OrderDetails
% [OrderID DetailCrderID
7 | RetailerID " |orderin

CrderDate ~ |RetailerID
GrandTotal ~ |ProductiD
SalesTax B by
| UnitPrice
~ |5alesTax

You want the GrandTotal value to be calculated automatically when
the order is validated. What are the three solutions you could use to
achieve the expected result?

A. Make the GrandTotal column a calculated column.
B. Use an insert trigger to calculate the GrandTotal.

C. Calculate the GrandTotal in the client application and store it in
the table.

D. Use a stored procedure to perform the insert and calculate the
GrandTotal value in the stored procedure.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

208 Chapter 3 - Creating and Maintaining Tables

5. You are currently developing a product management system for
Northwind Traders. The product managers need to store one or
more photographs of each product for marketing purposes as well
as a complete description of every product. For performance
reasons, you want to place the products’ descriptions and
photographs on separate filegroups. From the following scripts,
choose the one that best suits this need.

A.

CREATE TABLE dbo.Products (
ProductID int IDENTITY (1, 1)

NOT NULL PRIMARY KEY,
ProductName nvarchar (40) NOT NULL,
SupplierID int NULL,
CategoryID int NULL,
QuantityPerUnit nvarchar (20) NULL,
UnitPrice money NULL,
UnitsInStock smallint NULL,
UnitsOnOrder smallint NULL,
ReorderLevel smallint NULL,
Discontinued bit NOT NULL,
ProductDescription ntext,
ProductPhoto image
) ON [PRIMARY] TEXTIMAGE_ON IMAGEFG

B.
CREATE TABLE dbo.Products (

ProductID int IDENTITY (1, 1)

NOT NULL PRIMARY KEY,
ProductName nvarchar (40) NOT NULL,
SuppTierID int NULL,
CategoryID int NULL,
QuantityPerUnit nvarchar (20) NULL,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions

UnitPrice money NULL,

UnitsInStock smallint NULL,

UnitsOnOrder smallint NULL,

ReorderLevel smallint NULL,

Discontinued bit NOT NULL,

ProductDescription ntext ON IMAGEFG
) ON [PRIMARY]

CREATE TABLE ProductsPhoto (
ProductID int
REFERENCES Products(ProductID),
ProductPhoto image ON IMAGEFG,
PhotolLegend varchar(100)
) ON [PRIMARY]

C.
CREATE TABLE dbo.Products (

ProductID int IDENTITY (1, 1)
NOT NULL PRIMARY KEY,

ProductName nvarchar (40) NOT NULL,
SupplierID int NULL,
CategoryID int NULL,
QuantityPerUnit nvarchar (20) NULL,
UnitPrice money NULL,
UnitsInStock smallint NULL,
UnitsOnOrder smallint NULL,
ReorderLevel smallint NULL,
Discontinued bit NOT NULL,
ProductDescription ntext

) ON [PRIMARY] TEXTIMAGE_ON IMAGEFG

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

209

http://www.sybex.com

210 Chapter 3 - Creating and Maintaining Tables

CREATE TABLE ProductsPhoto (
ProductID int
REFERENCES Products(ProductID),
ProductPhoto image,
PhotolLegend varchar(100)
) ON IMAGEFG

D.
CREATE TABLE dbo.Products (

ProductID int IDENTITY (1, 1)

NOT NULL PRIMARY KEY,
ProductName nvarchar (40) NOT NULL,
SupplierID int NULL,
CategoryID int NULL,
QuantityPerUnit nvarchar (20) NULL,
UnitPrice money NULL,
UnitsInStock smallint NULL,
UnitsOnOrder smallint NULL,
ReorderLevel smallint NULL,
Discontinued bit NOT NULL,
ProductDescription ntext

ON IMAGEFG,
ProductPhoto image ON IMAGEFG

) ON [PRIMARY]

6. You ran the following script to create the Suppliers table:
CREATE TABLE SuppTiers(

SupplierID int IDENTITY (1, 1) NOT NULL ,
CompanyName nvarchar (40) NOT NULL ,
ContactName nvarchar (30) NULL ,
ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 211

City nvarchar (15) NULL ,
State nvarchar (15) NULL ,
PostalCode nvarchar (10) NULL ,
Country nvarchar (15) NULL ,
Phone nvarchar (24) NULL ,
Fax nvarchar (24) NULL ,
HomePage ntext NULL

) ON PRIMARY

You obtained the following execution error:
Incorrect syntax near the keyword 'PRIMARY'.

What is the reason for this error and what can you do to correct it?

A. State is a reserved keyword. Change it to Region and rerun the
script.

B. The table Suppliers already exists in the database. Change its
name and rerun the script.

C. Primary is a reserved keyword. Put it into square brackets and
rerun the script.

D. The ON PRIMARY clause should be placed before the closing
brackets. Put it inside the brackets and rerun the script.

7. You created the table shown in the following graphic.

Computers
| Column Marme | Condensed Type | Mullable | Identicy « |
MachinelD ink MOT MULL W
Brand warchar(30) MOT MULL
Processar warchar(30) MOT MULL
RAM int MOT MULL |

After a couple of months, you want to reuse the identity value 23,
which has been deleted. Choose the required steps from those

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

212 Chapter 3 - Creating and Maintaining Tables

presented, and place them in the right order to insert new records
and reuse the deleted identity value.

Statements

Possibilities

INSERT Computers

VALUES(23, 'Compaq', 'Pentium II', 64)

SET IDENTITY_INSERT ON

COMMIT TRAN

UPDATE Computers SET MachineID=23

WHERE MachineID=@@IDENTITY

SET IDENTITY_INSERT Computers OFF

SET IDENTITY_INSERT Computers ON

INSERT Computers

VALUES(DEFAULT, 'Compaq', 'Pentium II', 64)

BEGIN TRAN

8. You run the following script:
CREATE TABLE tb1Events (

EventID int IDENTITY (1, 1) NOT NULL ,
EventType nvarchar (10) NULL ,
EventTitle nvarchar (100) NULL ,
EventDescription nvarchar (4000) NULL ,
EventLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL ,
EventEndDate smalldatetime NULL ,

What happens with the table creation?
A. SQL Server issues a warning and creates the table.

B. SQL Server issues an error and does not create the table.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 213

C. SQL Server issues a warning and does not create the table.

D. SQL Server creates the table without any warning.

9. You are developer for a winery. You create the following table:
CREATE TABLE Region (
RegionID int NOT NULL,
RegionDescription nchar (50),
)
What is the nullability of the RegionDescription column?
A. NULL
B. It depends on the ANSI_NULLS option.
C. NOT NULL

D. It depends on the ANST NULL DEFAULT database option value.

10. You are a database developer for a regional bank. One of the
databases in production contains the Employees table. This table
contains a column designed to store the phone extension of every
employee. Some of them do not have an extension, so the column
allows NULL values. Nevertheless, the telephone system has been
changed, and every employee is now assigned an extension. What
line of code would you run to modify the Extension column?

A.
ALTER TABLE Employees

ALTER COLUMN Extension Char (3) NULL

B.
ALTER TABLE Employees

ALTER COLUMN Extension NULL

C.
ALTER COLUMN Employees.Extension NULL

D.
ALTER COLUMN Employees.Extension

Char (3) NULL

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

214 Chapter 3 - Creating and Maintaining Tables

11.

What is the script you are going to use?

Tﬁ 2:Design Table 'Tasks" in "Morthwind

[e

A LEL

You want to create the table illustrated in the following graphic.

=10l x|
=3 & [

Colurnn Mame | Data Type |Length | Allawe Mulls | -
M | TaskiD ink 4
- EmployeslD ink 4
| TaskMame warchar 50
StartDate smalldatetime 4
Durakion smallint z ﬂ
Colurnis
Descripkion
Identity Yes
Identity Seed 1
Idenkity Increment 1
Formula
A.

CREATE TABLE Tasks (
TaskID int IDENTITY(1, 1),
EmployeelD 1int,
TaskName varchar (50),
StartDate smalldatetime NULL
Duration smallint NULL)

Copyright ©2001 SYBEX, Inc., Alameda, CA

www.sybex.com

http://www.sybex.com

Review Questions 215

B.

CREATE TABLE Tasks (
TaskID int IDENTITY(1, 1) NOT NULL

PRIMARY KEY CLUSTERED,
EmployeeID int NOT NULL ,
TaskName varchar (50) NOT NULL ,
StartDate smalldatetime NULL ,
Duration smallint NULL)

C.
CREATE TABLE Tasks (
TaskID int
PRIMARY KEY CLUSTERED
IDENTITY(1, 1),
EmployeelD int,
TaskName varchar (50),
StartDate smalldatetime NULL ,
Duration smallint NULL)
D.
CREATE TABLE Tasks (

TaskID int,

EmployeelD int,

TaskName varchar (50),
StartDate smalldatetime,

Duration smallint)

12. You are a developer for World Wide Importers. You are currently
developing a database designed to manage imported products. Some
of these products have to be stored at a maximum temperature of
-30° C, some may be stored at -18° C, some at 0° C, and some at
4° C. This information has to be stored with each product. You
want to minimize the space used by every row. Which datatype are
you going to choose for this storage temperature?

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

216 Chapter 3 - Creating and Maintaining Tables

13.

14.

TINYINT
SMALLINT
NUMERIC(2,0)

O 0 & >

INT

You are a developer for a winery. A previous developer has created a
series of user-defined datatypes that she stored in the model
database. All these types are now in each database. In one of the
databases, you need to modify a datatype called Telephone. This is a
char(10), and you need to change it to varchar(15). Which statement
or action will be needed to reach your goal?

A. ALTER TYPE 'Telephone' varchar(15)

B. sp_altertype 'telephone', 'varchar(15)'

C. Alter all tables that use the type, drop it, then recreate it.

D. sp_changetype 'telephone', 'varchar(15)'

You are a database developer for an international law firm. You are
working on a new product database for the international offices.
The company’s headquarters is in San Diego, and it has the
following five offices outside of the U.S.: Paris, Singapore, Sydney,
Sao Paulo, and Johannesburg. Each of these offices uses their local
language. The application you are developing is a brand new one
and should accommodate all the company languages without any

loss, since all the data will be consolidated in San Diego. Choose
two possible solutions to handle this multi-language requirement.

A. Use Unicode for all character columns.
B. Use a different collation on each location.
C. Use the same collation on each location.

D. Use only text columns.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Review Questions 217

15. You are working on a new database system for Northwind Traders.
The company has ten offices around the world, and each of them
will run the new system. Each office can select new products to sell
on the foreign markets managed by the other offices. Each product
needs to have a unique identifier given automatically by the system
across all databases. You decide to use the Uniqueldentifier datatype
to offer this uniqueness feature. What column definition will create
the ProductID column with the Uniqueldentifier feature?

A.

ProductID

B. ProductID
C.
D. ProductID

ProductID

uniqueidentifier NOT NULL
uniqueidentifer newid()
uniqueidentifier DEFAULT newid()

uniqueidentifier AS newid()

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

218 Chapter 3 - Creating and Maintaining Tables

Answers to Review Questions

1. A. The last identity value in any scope is stored in @@Identity. It is
likely that the table has a trigger that inserts a new row in another
table.

2. D. Option A, while possible, is not convenient for lengthy values. B
is impossible since the maximum length of a varchar column is
8,000. C would be possible, but a separate filegroup is useless,
because you would consume more space than with the in-row
storage. D is the best answer since a majority of rows will have
enough space to store the value in the row.

3. B. This is the only correct syntax.

4. B, C, and D. A computed column cannot reference columns in other
tables.

5. C. Option A would have been good if only one photograph per
product was necessary. B and D are wrong since the test and image
column locations are decided with the TEXT_IMAGE ON clause.

6. C. State could be a keyword in a future version of SQL Server, as
indicated in the Books Online. It may be a good idea not to use it,
even though it will work with SQL Server 2000. If the Suppliers
table existed, the error message would not be an incorrect syntax
error. The ON PRIMARY clause is after the closing bracket, but
PRIMARY should be placed between square brackets because it is a
reserved key word (PRIMARY KEY).

7. | Statements

SET IDENTITY_INSERT Computers ON

INSERT Computers

VALUES(23, 'Compaq', 'Pentium II', 64)

SET IDENTITY_INSERT Computers OFF

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

10.

11.

12.

13.

14.

15.

Answers to Review Questions 219

You cannot insert or update an explicit value in an identity column
unless you set the IDENTITY_INSERT option to ON beforehand.

A. The maximum length of the record is 8265 bytes, which is bigger
than the maximum authorized size of 8060 bytes. Nevertheless, due
to the fact that some columns are nvarchar, the table is created with
a warning indicating that the insert or update of a row in this table
will fail if the resulting row length exceeds 8060 bytes.

D. The ANSI_NULLS option concerns only the SQL-92 compliancy
behavior of comparison operators. Only the ANST NULL DEFAULT
database option, the ANSI_DEFAULTS, and the ANSI_NULL_DFLT_ON
options have an impact on the implicit nullability of columns.

A. The right way to alter a column is to alter the table. Options C
and D are syntactically incorrect. When you want to alter a column
property, like the nullability, you need to redefine all of its current
properties. Option B lacks the actual column datatype.

B. Option A lacks the primary key and the NOT NULLSs; option C
lacks the NOT NULL; option D lacks the NOT NULLSs, the NULLs,
the identity, and the primary key.

B. Option A, TINYINT, would be great for space consumption;
unfortunately, it is unsigned. Option B, SMALLINT, offers the smallest
space consumption, while allowing signed values.

C. Unfortunately, you need to make sure the datatype is not used. If
you run the sp_droptype stored procedure, SQL Server will give you
the list of all the tables using the concerned datatype.

A, B. Different languages mean different character sets. The only
way to be sure the data is stored and read with the right character
set is to use different collations or use Unicode. The only drawback
of Unicode is that it uses 2 bytes per character.

C. Options B and D are syntactically incorrect. Option A creates the
column but does not give an automatic value.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Implementing Data
Integrity

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Create and alter database objects. Objects include constraints,
indexes, stored procedures, tables, triggers, user-defined
functions, and views.

Specify table characteristics. Characteristics include
cascading actions, CHECK constraints, clustered, defaults,
FILLFACTOR, foreign keys, nonclustered, primary key, and
UNIQUE constraints.

v Alter database objects to support replication and partitioned
views.

Design and create constraints and views.

v Troubleshoot failed object creation.

: H 1
i { 3 |
f : 5 '," i
¥ i v 104
o L5 o8
' | b=t £.§ th o
t) b A ,»‘;‘; ‘x
| i > 3 |)/ "’. b ,‘;’-" '." :
|) & \ !:' :r" 1';“‘-." i
{ ""‘ 1} | Eai l,[G| ’!, g' Wy :
kA L) PR
: a1 } v R i 2
\ 1<t \ -4 !
Y \ 3 ’ I N 4]
- 1 G A T t
BRI ! Rl A il
1R Ak MR TRy i s | A Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com
¥ M : < N Na oy W10 b= B *

http://www.sybex.com

he previous chapter focused on table creation. This one
defines data integrity, which is the way you implement rules in the table
structure to guarantee the data is correct. In this chapter you will learn
about:

* Data integrity implementation

* Default values management

* Check rules management

* Primary key and unique constraints

= Foreign key and relationships

Data Integrity

We first met data integrity in Chapter 1. Data integrity defines
rules for data accuracy and correctness. If, for example, a column is
defined with an integer datatype, SQL Server prevents users from entering
character data. On the other hand, a developer may design an Age column
to prevent negative numbers. These simple rules, which could in certain
cases become quite complicated, are data integrity rules.

Integrity Types

Four different types of data integrity are generally accepted in relational
databases:

Domain Domain integrity defines the valid data for a specific column.
It is enforced by restricting the datatypes, format, or range of possible
values.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Data Integrity 223

Entity Entity integrity defines each row as unique for each table. In
other words, a row can exist only once in a specific table.

Referential Referential integrity protects the relationship between
tables during row inserts, updates, and deletes. Referential integrity may
prevent users from:

= Inserting records in a related table if there are no matching records
in the parent table

= Deleting records in a parent table if there is at least one matching
record in the related table

= Updating the relationship key in a parent table if is there is at least
one matching record in the related table

Enterprise Enterprise integrity defines business rules that describe the
processes in your organization.

Integrity Implementation

In every RDBMS, the four previous integrity types can be enforced in two
ways:

Declarative Integrity With declarative integrity, integrity rules are part
of the table schema. In SQL Server 2000, declarative integrity may be
enforced with the following objects and features:

= Datatypes

= Nullability

= DEFAULT constraint

= CHECK constraint

= PRIMARY KEY constraint
= UNIQUE constraint

= UNIQUE indexes

= FOREIGN KEY constraint

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

224 Chapter 4 - Implementing Data Integrity

TABLE 4.1

Procedural Integrity With procedural integrity, integrity rules are
defined through external code objects, such as stored procedures or
triggers. In SQL Server 2000, procedural integrity may be enforced with
the following objects:

= Defaults

= Rules

= Triggers

= Stored procedures

The integrity implementation type you use has an impact on row inserts,
updates, and deletes. Declarative integrity rules are always checked before
the insert, update, or delete. That means, if one declarative integrity rule is
violated, the operation is cancelled before the row has been inserted,
updated, or deleted. Procedural integrity rules are generally checked after
the insert, update, or delete occurred. The only exception to this last rule
concerns INSTEAD OF triggers (see Chapter 6). If there are declarative and
procedural integrity rules on a table, declarative rules are checked first and
may prevent procedure rules from being checked.

Table 4.1 shows you ways to implement integrity rules.

Implementing Integrity Types

Integrity Declarative Procedural

Type Implementation Implementation

Domain Datatype, nullability Default
DEFAULT constraint Rule

CHECK constraint

Entity PRIMARY KEY constraint Stored procedure
UNIQUE constraint Trigger
UNIQUE index

Referential FOREIGN KEY constraint Stored procedure
Trigger

Enterprise N/A Stored procedure
Trigger

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Data Integrity 225

Triggers vs. Constraints

Every time | give a SQL Server programming course, the same
question arises. Are constraints better than triggers? There is not a
single answer, but the following rules apply any time:

= Always use constraints to enforce integrity whenever possible:
= Enforce domain integrity with CHECK constraints.

= Enforce entity integrity with PRIMARY KEY or UNIQUE constraints,
or a UNIQUE index.

= Enforce referential integrity with FOREIGN KEY constraints.
= Use triggers only in the following cases:

= Domain integrity: The column values must be validated against
one or many columns in another table.

= Referential integrity: The needed cascading rule is more
complex than the one proposed with FOREIGN KEY constraints.
For example, each time a customer is deleted, his orders are
moved to an archive table.

= Whenever the rule that must be applied cannot be done through
constraints.

Remember, constraints are part of the table schema. They are checked
after AFTER triggers and are more efficient than stored procedures and
triggers. So, when you need to enforce data integrity, always think of
constraints first.

Declarative integrity is enforced through the CREATE TABLE or ALTER
TABLE statements. Integrity rules can be defined at column or a table level.
The following items show the different possible cases:

= Column-level constraint definition at table creation:
CREATE TABLE tablename
(columname datatype [CONSTRAINT constraintname]
columnconstrainttype [,...]

= Table-level constraint definition at table creation:
CREATE TABLE tablename
(columname datatype [,...],
[CONSTRAINT constraintname] tableconstrainttype

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

226 Chapter 4 - Implementing Data Integrity

= Column-level constraint definition at table modification:
ALTER TABLE tablename
ADD columname datatype [CONSTRAINT constraintname]
columnconstrainttype [,...]

= Table-level constraint at table modification:
ALTER TABLE tablename
[WITH CHECK | WITH NOCHECK] ADD
[CONSTRAINT constraintname] tableconstrainttype

With the CHECK and FOREIGN KEY constraints, specifying WITH CHECK
(this is the default) tells SQL Server to check existing values. Specify-
ing WITH NOCHECK tells SQL Server not to check existing values but
only check future inserts and updates.

To drop any constraint, use the following statement:
ALTER TABLE tablename DROP [CONSTRAINT] constraintname

You can disable CHECK and FOREIGN KEY constraints during massive
inserts or updates, then re-enable them. To disable one, many, or all
constraints, use the following syntax:

ALTER TABLE tablename
NOCHECK CONSTRAINT {ALL | constraintname [,...]}

To re-enable one, many, or all constraints use the following syntax:

ALTER TABLE tablename
CHECK CONSTRAINT {ALL | constraintname [,...]}

You may have noticed that when creating a constraint, specifying the
name is optional. If you do not give a name to your constraint, SQL Server
will name it automatically. If you wish to find a constraint name, you can
run the sp_helpconstraint stored procedure, as in the following example:

sp_helpconstraint authors

Note that you have to be in the right database to execute this stored
procedure. When you open the SQL Query Analyzer, you may not be in
the right database. Check the database drop-down box and choose the
right database.

You obtain three different result sets, the first giving the object name (to
check you are working on the right object), the second giving the con-

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Default Values 227

straint list, and the third giving the list of tables referenced by the table
foreign keys:

Object Name

authors

constraint_type constraint_name ...

CHECK on column au_id CK__authors__au_id__77BFCB91
CHECK on column zip CK__authors__zip_ 79A81403
DEFAULT on column phone DF__authors__phone__ 78B3EFCA
PRIMARY KEY (clustered) UPKCL_auidind

Table is referenced by foreign key

pubs.dbo.titleauthor: FK__titleauth__au_id__0519C6AF

The second result set has more columns than are presented here. You
will find the defined columns for PRIMARY KEY, FOREIGN KEY, and UNIQUE
constraints, as well as the CHECK and DEFAULT constraints.

After defining the integrity basis, let’s move to the implementation
details of each integrity implementation type, starting with domain
integrity and the default values.

Default Values

Amongst column characteristics, we find nullability and default val-
ues. These two features define the value inserted in a column when it is not
specified in an INSERT statement. Three cases can occur when the column
value is not given in the INSERT statement:

* When the column is defined as accepting NULL values and has no
default value, the column value is NULL.

* When the column is defined as not accepting NULL values and has no
default value, an error occurs.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

228 Chapter 4 - Implementing Data Integrity

= When the column has a default value, whether it has been defined to
accept or not accept NULL values, the column value is the default
value.

SQL Server 2000 has two ways to implement default values in columns:
the default constraint and the default object.

Default Constraint

The default constraint can be created at the time of table creation, added
after table creation, or dropped. Each column can only have one default
constraint.

){ TIMESTAMP, IDENTITY, and ROWGUIDCOL columns cannot have a default con-
“ TE straint, since their value definition is already automatic.

Defining the Default Constraint at Table Creation

The default constraint is defined in the CREATE TABLE statement at
the column level. The following lines of code give you the basic
SQL Server 2000 syntax of the default constraint definition:

CREATE TABLE tablename(
columnname datatype [NULL | NOT NULL]
[CONSTRAINT constraintname] DEFAULT expression
[,---D

The default expression can be a constant; a system function, such as
GETDATE(); a system global variable, such as @@trancount; or a user-
defined function (see Chapter 6).

‘ The list of system functions can be found in the Books Online in the Trans-
act-SQL Reference book, in the Functions/System functions section. To open
the Books Online, choose Start > Programs > Microsoft SQL Server >
Books Online. To open a specific book, click on the plus sign (+) next to the
book name.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

o
ING

Default Values 229

The name of another column cannot be used in the default expression.

Listing 4.1 creates a table with default values.

Listing 4.1: CREATE TABLE Statement with Default
Constraints

CREATE TABLE Orders (

)

OrderID int IDENTITY (1, 1) NOT NULL,
CustomerID nchar (5),
EmployeeID int NULL,
OrderDate datetime NULL
CONSTRAINT DF_Orders_OrderDate DEFAULT GETDATE(),
RequiredDate datetime NULL,
ShippedDate datetime NULL,
ShipVia int NULL,
Freight money NULL
CONSTRAINT DF_Orders_Freight DEFAULT O,
ShipName nvarchar (40),
ShipAddress nvarchar (60),
ShipCity nvarchar (15),
ShipRegion nvarchar (15),
ShipPostalCode nvarchar (10),
ShipCountry nvarchar (15)

In this example, the OrderDate column has the current system date and
time as its default value, and the Freight column has 0 as its default value.
As you can see, defining a default constraint at table creation is rather
straightforward.

The CONSTRAINT keyword, which allows you to name the default constraint,
remains in the syntax to maintain compatibility with earlier SQL Server ver-
sions. If you do not add this word, the constraint will be automatically
named by SQL Server as DF_tabTename_columnname_randomnumber.

In SQL Enterprise Manager, you can define default values directly in the
columns’ properties (see Figure 4.1).

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

230 Chapter 4 - Implementing Data Integrity

FIGURE 4.1 Defining a column default value

Tﬁ'j 2:Design Table 'Orders’ in "MyFirstDatabase' on' -0l x|
B = 8 <O
Colurnn Mame | Data Type |Length | Allow Mulls | -~
| |OrderID int 4
|| CustomerID nchar 5 W
___|EmployesID int 4 W
i3 OrderDate datetime a W
| |RequiredDate datetime g W j
Coluring

Diesrripbion

(Default Walue (getdate()))

Farrnula

This is equivalent to defining the value in the default value in the
CREATE TABLE statement.

Defining the Default Constraint for an Existing Table

If you want to add a Default constraint to an existing table, two types of
situations can happen:

* You add a default constraint to an existing column.
* You add a new column with a default constraint.

The first case is simple. Adding a default to an existing column is possi-
ble only if the column does not already have a default value and is not a
TIMESTAMP, IDENTITY or ROWGUIDCOL. The syntax to add a default con-
straint to an existing column is the following;:

ALTER TABLE tablename ADD [CONSTRAINT constraintname]
DEFAULT expression FOR columnname

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Default Values 231

In the previous example, we add a default constraint on the ShipCoun-
try column of the Orders table (see Listing 4.1 for the CREATE TABLE state-
ment of the Orders table):

ALTER TABLE Orders ADD DEFAULT 'USA' For ShipCountry

Adding this default value does not impact existing rows. It will be
applied only to future inserts.

The second case is also simple, but may have side effects. The syntax
for adding a new column with a default constraint is as follows:

ALTER TABLE tablename ADD columnname datatype
[NULL | NOT NULL] [CONSTRAINT constraintname]
DEFAULT expression [WITH VALUES] [,...]

Note the CONSTRAINT keyword is optional. As in the CREATE TABLE
statement, SQL Server will automatically name the constraints if no
name is specified. The WITH VALUES statement manages the values inserted
in existing rows. Table 4.2 shows you the behavior of the new column on
existing rows:

TABLE 4.2 Behavior of existing rows with the WITH VALUES keyword
Nullability WITH VALUES Behavior for existing rows
NOT NULL Specified or not The column is filled with the default value
NULL Specified The column is filled with the default value
NULL Not Specified The column is filled with NULL

The following example adds the Total column with the default value of
0 to the Orders table:

ALTER TABLE Orders ADD Total money NULL DEFAULT O WITH VALUES

With the WITH VALUES option, the Total column is filled with 0. Other-
wise, if the option has not been specified and since the NULL is included in
the ALTER TABLE statement, the column would have been filled with NULL
values.

Adding a default constraint with SQL Enterprise Manager is done in
Design mode: in the right-pane where the table names are listed, right-click
the table, and choose Design. You can then add a new column or add a
default constraint to an existing column (see Figure 4.1). Note that WITH
VALUES cannot be specified in SQL Enterprise Manager, so the nullability
of the column specifies the behavior for existing rows.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

232 Chapter 4 - Implementing Data Integrity

Default Object

Default objects offer another way of defining a default value for a column.
Default objects, called “defaults,” have been in SQL Server since the very
first version. Defaults are not really part of declarative integrity because
they are not part of the table structure; they are actually part of the
database schema, which is the overall definition of every database object.
Defaults play the role of global variables that can be bound, or assigned,
to columns or to user-defined datatypes.

The CREATE DEFAULT statement is used to create defaults:

CREATE DEFAULT default AS constant_expression

Once created, the default can be bound to a column with the following
stored procedure:

sp_binddefault defaultname, tablename.columnname
Or, it can be bound to a user-defined datatype with the following:
sp_binddefault defaultname, datatypename [, futureonly]

The futureonly flag indicates that the existing columns of the con-
cerned datatype will not inherit the new default value. This flag can only
be used when binding a default to a datatype, not to a column.

DEFAULT constraints are preferred over column-bound default objects.
Remember, it's advised to used declarative integrity whenever possible over
procedural integrity.

The following example creates a default value named CalifDef and
binds it to the ShipRegion of the Order table (see Listing 4.1):

CREATE DEFAULT CalifDef AS 'CA'
GO
sp_bindefault 'CalifDef', 'Orders.ShipRegion'

The same operation could be done through the Defaults folder of
SQL Enterprise Manager. This folder gives you the complete list of defined
defaults, allows you to modify and drop existing defaults, and modify or
drop existing bindings.

You can drop an existing default by executing DROP DEFAULT default-
name, but only if it is not bound to any columns or user-defined datatypes.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Default Values 233

To unbind a default from a column, execute the sp_undbindefault stored
procedure:

sp_unbindefault tablename.columnname
To unbind a default from a user-defined datatype, run the following:
sp_unbindefault datatypename [, futureonly]

As for sp_bindefault, the futureonly flag indicates that all columns
using this user-defined datatype are not affected by the unbinding, so they
retain their default value.

Note that you cannot bind a default to a column defined with a default
constraint or alter the table to add a default constraint to a column having
a bound default.

Default Objects vs. Default Constraints

If default objects work like default constraints, you may ask yourself
whether defaults are necessary. First, defaults are a backward
compatibility feature, which means that they exist in SQL Server 2000
because they were present in previous versions. Second, they allow
you to share the same default values among different columns. But
their real purpose lies in their datatype binding. Binding a default to a
datatype means that when you define a column of that datatype, the
column automatically inherits the bound default.

Consider using default objects only when binding to datatypes;
otherwise, use default constraints. As a rule of thumb, always
consider constraints first!

Defining and Testing Default Values
This exercise will walk you through creating a table with different
default values, and inserting and selecting records to check the values
that have been used.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

234 Chapter 4 - Implementing Data Integrity

Check

EXERCISE 4.1 (continued)

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools > SQL Query Analyzer or
by choosing Start > Programs > Microsoft SQL Server > Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):
CREATE TABLE Events (
EventID int IDENTITY (1, 1) NOT NULL ,
EventType nvarchar (10) NOT NULL DEFAULT 'Party',
EventTitle nvarchar (100) NULL ,
EventDescription ntext NULL ,
EventlLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL DEFAULT GETDATE(),
EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,
GETDATE()),
EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER
)

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert a row by typing the following line of code:
INSERT Events DEFAULT VALUES

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

6. Select the inserted row by typing the following line of code:
SELECT * FROM Events

Default values are one part of domain integrity. In SQL Server, you can
define constraints and rules to make sure that the data is part of a given
range of values or follows a specific format.

Datatypes and default values enforce domain integrity. Check rules
limit the possible values that can be entered into a column and in doing so,
contribute to the domain integrity. Check constraints and rules are the two

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Check 235

possible implementations of this feature. Generally, they limit the values
allowed by defining;:

= A range or ranges of acceptable values
= A list of values

= A pattern to follow, such as a phone number mask or a social secu-
rity number

Check constraints are a declarative integrity feature and rules are a pro-
cedural feature. Both can be bound to columns or to user-defined
datatypes. As mentioned for defaults, use check constraints instead of rules
except for when defining user-defined datatypes. Let’s take a close look
now at check constraints.

Check Constraints

Check constraints are part of the table definition. They can be defined at
table creation, at table modification, and dropped at any time. They can be
disabled or enabled when needed. A column can have more than one check
constraint. They are validated in their creation order during inserts and
updates.

Check constraints:

= Must evaluate to a Boolean expression, such as a WHERE expression

= Can reference other columns of the same table

Defining a Check Constraint at Table Creation

Check constraints are part of the CREATE TABLE statement and can be
defined at column or table level. To reference other columns, the check
constraint has to be defined at table level. Column level definition is as
follows:

CREATE TABLE tablename
(columname datatype [CONSTRAINT constraintname]
CHECK [NOT FOR REPLICATION] (Togical_expression)
At table level, the definition is:
CREATE TABLE tablename
(columname datatype [,...],
[CONSTRAINT constraintname]
CHECK [NOT FOR REPLICATION] (logical_expression)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

236 Chapter 4 - Implementing Data Integrity

The following listing presents the Orders table with a few different
check constraints.

Listing 4.2: CREATE TABLE Statement with Check
Constraints

CREATE TABLE Orders (

)

OrderID int IDENTITY (1, 1) NOT NULL,
CustomerID nchar (5)
CHECK (CustomerID LIKE '[A-Z][A-Z][A-Z][A-Z][A-Z]'),
EmployeeID int NULL,
OrderDate datetime NULL
CHECK (OrderDate BETWEEN '01/01/70' AND GETDATE()),
RequiredDate datetime NULL,
ShippedDate datetime NULL,
ShipVia int NULL
CHECK (ShipVvia IN (1, 2, 3, 4)),
Freight money NULL
CHECK (Freight>=0),
ShipName nvarchar (40),
ShipAddress nvarchar (60),
ShipCity nvarchar (15),
ShipRegion nvarchar (15),
ShipPostalCode nvarchar (10),
ShipCountry nvarchar (15),
CHECK (RequiredDate>OrderDate)

This CREATE TABLE statement generates four column-level constraints
and two table-level constraints, as shown by the result from the execution
of sp_helpconstraint Orders:

constraint_type constraint_name

CHECK Table Level CK__Orders__44FF419A

CHECK on column CustomerID CK__Orders__Customer__412EBOB6
CHECK on column Freight CK__Orders__Freight__440B1D61

CHECK on column OrderDate CK__Orders__OrderDat__4222D4EF
CHECK on column ShipVia CK__Orders__ShipVia__4316F928

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Check 237

Note that SQL Server gives the following type of name automatically to
the check constraints:

= CK_tablename_randomnumber for table level constraints

= CK_tablename_columnname_randomnumber for column level
constraints

If we take a closer look at Listing 4.2, we see:

* The CustomerID column must follow the pattern [A-Z][A-Z][A-
Z]|A-Z][A-Z], that must be composed of five letters. For example,
ALFKI is a valid value, while A4FK?7 is not valid. This kind of check
constraint follows the LIKE comparison rules (see Chapter 7 for
more on LIKE rules).

* The OrderDate column must be between today and January 1,
1970.

* The ShipVia column must be only one of the four defined values in
the list.

= The Freight columns must be a positive number.
= The RequiredDate must be greater than the OrderDate.

As you can see, check constraints referencing more than one column
must be declared at table level. If you had tried to define the table level
constraints at column level with the following:

RequiredDate datetime NULL
CHECK (RequiredDate>0OrderDate)

you would have obtained error 8141: Column CHECK constraint for col-
umn ‘RequiredDate’ references another column, table ‘Orders.’

Defining a Check at Table Modification

Adding a check constraint to an existing table may not be possible due to
existing data. By default, existing data is checked against the new check
constraint. If at least one row does not comply with the constraint, the
new check constraint creation fails.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

238 Chapter 4 - Implementing Data Integrity

You can add a check constraint at column level when defining a new
column for the table like this:

ALTER TABLE tablename
ADD columname datatype [CONSTRAINT constraintname]
CHECK [NOT FOR REPLICATION] (Togical_expression) [,...]

To define a new check constraint for an existing column, use the follow-
ing syntax:

ALTER TABLE tablename
[WITH CHECK | WITH NOCHECK] ADD

[CONSTRAINT constraintname 1]

CHECK [NOT FOR REPLICATION] (Togical_expression)
The following example adds two constraints to the Orders table:
ALTER TABLE Orders

ADD CHECK (EmployeeID>0)
ALTER TABLE Orders
ADD CHECK (ShippedDate>OrderDate)

As we’ve seen previously, by default, existing data is checked against the
new check constraints. If you want the new constraint to apply only to
future inserts and updates, add the constraint with the WITH NOCHECK key-
word before the ADD clause.

Creating and Using a Check Constraint
This exercise will walk you through modifying a table to add a check
constraint and verifying that the constraint is enforced.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools > SQL Query Analyzer or by
choosing Start > Programs > Microsoft SQL Server > Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):
ALTER TABLE Events
ADD CHECK (EventDate>=GETDATE())

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Rules

Check 239

EXERCISE 4.2 (continued)

4. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):
INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)

VALUES(DEFAULT, 'This is my Event', 'This will be great
fun', 'US', '12/12/1999', '01/01/2012')

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

You should obtain error 547 because the inserted row conflicts with
the check constraint.

6. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):
INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, 'This is my Event', 'This will be great
fun', 'US', '12/12/2012', '01/01/2012')

7. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

8. Select the inserted row by typing the following line of code:
SELECT * FROM Events

Rules are a backward compatibility feature used to define validation rules
that can be bound to table columns or to user-defined datatypes. Like
default objects, rules are created on their own before being bound to
another object. The creation of a rule is done with the CREATE RULE
statement:

CREATE RULE rulename AS condition_expression

Once created, the rule can be bound to a column with the following
syntax:

sp_bindrule rulename, tablename.columnname

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

240 Chapter 4 - Implementing Data Integrity

Or, it can be bound to a user-defined datatype:
sp_bindrule rulename, datatypename [, futureonly]

The futureonly flag indicates that the existing columns of the con-
cerned datatype will not inherit the new rule. This flag can only be used
when binding a rule to a datatype, not to a column.

A column can have only one rule bound to it, but you can bind a rule to
a column defined with a check constraint. Both will be evaluated, starting
with the constraint.

The following example creates a rule for date checking and binds it to
the OrderDate columns of the Orders table:

CREATE RULE ActiveDate AS

@Date BETWEEN '01/01/70' AND GETDATE()
AS
sp_bindrule ActiveDate, 'Orders.OrderDate’

Expressions used in rules follow the same guidelines as check conditions
and are similar to a WHERE clause expression, except you cannot reference
any other database columns in rules. If you compare the syntax of the
CHECK statement and a rule expression, two main differences are apparent:

1. The rule expression uses a variable (beginning with an at @ sign)
that will be replaced by the column value when attached to the
column.

2. A rule expression cannot reference table columns.

The second point is the biggest behavioral difference between check
constraints and rules: rules are equivalent to column-level check con-
straints only! Just as for defaults, check constraints are preferred to rules.

Now that you know how default constraints, defaults, rules, and check
constraints work as part of domain integrity checking, let’s take a look at
entity integrity beginning with primary keys.

Primary Keys

Primary keys form the basic functionality for entity integrity check-
ing. A primary key uniquely identifies each row and is formed by one or

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Primary Keys 241

more columns in the table. In SQL Server 2000, the definition of a primary
key automatically creates a unique index on the non-null columns that
form the key. A table can have only one primary key (see Chapter 1 for a
formal definition of keys).

A primary key can be created during table creation or table modifica-
tion. You cannot modify an existing primary key in Transact-SQL. The fol-
lowing restrictions apply to the definition of primary key columns:

= All the columns participating in the primary key definition must be
defined as NOT NULL.

= In absence of index type specification, the supporting index is clus-
tered (see Chapter 5).

Defining a Primary Key Constraint at Table Creation

The basic definition of the primary key is quite simple, since the only
required parameter(s) is the column name(s). The optional parameters are
very similar to those of an index. The optional parameters are discussed in
detail in Chapter 5.

= Column-level primary key constraint definition:

CREATE TABLE tablename
(columname datatype [CONSTRAINT constraintname]
PRIMARY KEY [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[ON {filegroup | DEFAULT}] [,...]

= Table-level primary key constraint definition:

CREATE TABLE tablename
(columname datatype [,...],
[CONSTRAINT constraintname]
PRIMARY KEY [CLUSTERED | NONCLUSTERED]
{ Ccolumn [ASC | DESC] [,...n 1)) }
[WITH FILLFACTOR = fillfactor]
[ON { filegroup | DEFAULT } 1]

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

242 Chapter 4 - Implementing Data Integrity

A single column primary key can be defined at column level or at
table level. A multi-column primary key has to be defined at table level.
Listing 4.3 gives you the definition of a single-column primary key
definition for the Orders table.

Listing 4.3: Partial CREATE TABLE Statement with
Column-level Primary Constraint

CREATE TABLE Orders (
OrderID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,
CustomerID nchar (5)

)

This statement creates a clustered primary key on the OrderID column,
at column level, as shown in the sp_helpconstraint 'orders' execution
result:

constraint_type constraint_name constraint_keys

PRIMARY KEY (clustered) PK__ Orders_ 571DF1D5 OrderID

As you can see from this result, the default primary key name begins
with PK_ followed by the table name and random figures and letters, and
the key is supported by a clustered index. We could have given the index a
specific name by using the CONSTRAINT keyword, as shown in this example:

OrderID int IDENTITY (1, 1) NOT NULL
CONSTRAINT OrdersPK PRIMARY KEY

Listing 4.4 gives you another version of a primary key definition,
defined at the table level.

Listing 4.4: CREATE TABLE Statement with Table-level
Primary Key Constraint

CREATE TABLE Orders (
OrderID int IDENTITY (1, 1) NOT NULL,
CustomerID nchar (5),
EmployeeID int NULL,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Primary Keys 243

OrderDate datetime NULL
RequiredDate datetime NULL,
ShippedDate datetime NULL,
ShipVia int NULL
Freight money NULL
ShipName nvarchar (40),
ShipAddress nvarchar (60),
ShipCity nvarchar (15),
ShipRegion nvarchar (15),
ShipPostalCode nvarchar (10),
ShipCountry nvarchar (15),
PRIMARY KEY NONCLUSTERED (OrderID) WITH FILLFACTOR=90
)

In the above version, the primary key is defined as a non-clustered
index with a fillfactor of 90, which means that data pages are filled to only
90 percent.

You can find complete information on indexes in Chapter 5.

Once created, uniqueness of the key is enforced by the index. Trying to
insert a duplicate primary key leads to the error 2627: Violation of PRI-
MARY KEY constraint 'PK_Orders_571DF1D5'. Cannot insert dupli-
cate key in object 'Orders'. The statement has been terminated.

In SQL Enterprise Manager, primary key definition is even simpler. In
the Design Table window, select the primary key column (hold the CTRL
key to select multiple columns) by right-clicking the columns and choosing
Set Primary Key. A small key appears next to the chosen columns, as in
Figure 4.2.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

244 Chapter 4 - Implementing Data Integrity

FIGURE 4.2 Primary key definition in SQL Enterprise Manager

Tﬁ 3:Design Table ‘Orders” in "MyFirstDatabas - |O ﬂ
B & i 8 <O
ColumnMame | DataType |Length | allow Mulls | i‘
ink 4

ZustomerID nchar 5 W
EmployeslD int 4 W j

Columns

Description

Identity Wes
Identity Seed 1
Identity Increment 1

Formula

Note that the same operation can be performed in SQL Enterprise
Manager.

Creating and Using a Primary Key Constraint
This example will walk you through creating a table with a primary key
and using this table to check that the constraint is enforced.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools > SQL Query Analyzer or by
choosing Start > Programs > Microsoft SQL Server > Query Ana-

lyzer.
2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

DROP TABLE Events
GO

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Primary Keys 245

EXERCISE 4.3 (continued)

CREATE TABLE Events (

EventID int NOT NULL PRIMARY KEY,

EventType nvarchar (10) NOT NULL DEFAULT 'Party',

EventTitle nvarchar (100) NULL ,

EventDescription ntext NULL ,

EventLanguage nvarchar (2) NULL ,

EventDate smalldatetime NULL DEFAULT GETDATE()

CHECK (EventDate>=GETDATE()),

EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,
GETDATE()),

EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER
)

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert a row by typing the following lines of code:

INSERT INTO Events(EventID, EventType, EventTitle,
EventDescription, EventLanguage, EventDate, EventEndDate)
VALUES(1, DEFAULT, 'This is my Event', 'This will be great
fun', 'US', '12/12/2012', '01/01/2012"')

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

6. Run the same statement another time by highlighting these lines
with the mouse and press the green arrow or CTRL-E to execute the
query.

It conflicts with the primary key constraint since you tried to insert
the same EventID and an error is returned.

Defining a Primary Key at Table Modification

You can add a primary key to an existing table, but it can be created only
if the values already inserted in the column key are unique.
You can add a primary key while adding a column, at column level:

ALTER TABLE tablename
ADD columname datatype [CONSTRAINT constraintname]
PRIMARY KEY [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[ON {filegroup | DEFAULT} 1 [,...]

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

246 Chapter 4 - Implementing Data Integrity

The only way to add a primary key to an existing column is at table
level:

ALTER TABLE tablename
ADD
[CONSTRAINT constraintname]
PRIMARY KEY [CLUSTERED | NONCLUSTERED]
{ Ccolumn [ASC | DESC] [,...n 1) }
[WITH FILLFACTOR = fillfactor]
[ON { filegroup | DEFAULT }]

The same parameters are used in table modification as in table creation.
The following example drops the existing primary key and adds a new pri-
mary key to the Orders table:

ALTER TABLE Orders DROP CONSTRAINT PK_Orders_571DF1D5
GO
ALTER TABLE Orders ADD PRIMARY KEY(OrderID)

If you run this statement and duplicate values exist in the column, you
will first encounter error 1505: CREATE UNIQUE INDEX terminated
because a duplicate key was found for index ID 1. Most signifi-
cant primary key is '1', and then error 1750: Could not create con-
straint. See previous errors. The statement has been
terminated.

Using a primary key constraint is the preferred technique to implement
a primary key in a table. But, as discussed in Chapter 1, a table can also
hold alternate keys. These keys can be implemented as unique constraints,
as we see in the next section.

Unique Constraints

As their name implies, unique constraints enforce the uniqueness of
rows. While a table can have only one primary key constraint, it can have
many unique constraints. That is the first difference between primary key
and unique constraints. The second difference concerns nullability. Unique
constraints can be created on columns defined as NULL. Nevertheless these
columns cannot contain more than one null value, because two null values

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Unique Constraints 247

are considered equal as far as unique constraints are concerned. As pri-
mary keys, unique constraints can be referenced by foreign key constraints
to define relationships.

Defining a Unique Constraint at Table Creation

Unique constraint creation syntax is equivalent to the primary key creation
syntax:

* Column-level unique constraint definition:

CREATE TABLE tablename
(columname datatype [CONSTRAINT constraintname]
UNIQUE [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[ON {filegroup | DEFAULT} 1 [,...]

= Table-level unique constraint definition:

CREATE TABLE tablename
(columname datatype [,...],
[CONSTRAINT constraintname]
UNIQUE [CLUSTERED | NONCLUSTERED]
{ Ccolumn [ASC | DESC] [,...n 1)) }
[WITH FILLFACTOR = fillfactor]
[ON { filegroup | DEFAULT }]

As with primary keys, a single-column unique constraint can be created
at column or table level, and a multi-column unique constraint can only be
created at table level.

Listing 4.5 gives you an example of one column-level unique constraint
and one table-level constraint.

Listing 4.5: CREATE TABLE Statement with Unique
Constraints

CREATE TABLE Customers (
CustomerID nchar (5) NOT NULL PRIMARY KEY CLUSTERED,
CompanyName nvarchar (40) NOT NULL ,
ContactName nvarchar (30) NULL ,

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

248 Chapter 4 - Implementing Data Integrity

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL UNIQUE,

Fax nvarchar (24) NULL ,

UNIQUE NONCLUSTERED (CompanyName, ContactName)
)

The two unique constraints created in Listing 4.5 are named UQ fol-
lowed by the table name and a random number, as shown in the partial
result of the sp_helpconstraint 'customers' procedure execution:

constraint_type constraint_name constraint_keys

UNIQUE (non-clustered) UQ Customers_6FE99F9F CompanyName,
UNIQUE (non-clustered) UQ_Customers_70DDC3D8 Phone

Note that both constraints are non-clustered. Even though when we
defined the unique constraint on the Phone column, the type of index was
not explicitly indicated.

Once created, if you try to insert a duplicate value in the column
defined as unique, you obtain error 2627: Violation of UNIQUE KEY
constraint ' UQ Customers_70DDC3D8'. Cannot insert duplicate
key in object 'Customers'. The statement has been terminated.

A unique constraint is supported by a unique index (see Chapter 3),
that enforces the uniqueness of the values. The index name is the con-
straint name.

Unique constraints can be defined in SQL Enterprise Manager. Open
the table in design mode and open its properties window. The unique con-
straints can be defined in the Indexes/Keys tab, as in Figure 4.3.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Unique Constraints 249

FIGURE 4.3 Unique constraint definition in SQL Enterprise Manager

Tables] Felationships Indexes/Keys | Check Constraints

Table name: Cuskarmers
Selected index: U Cuskamers_ GFE99FIF
Type: Unique Mew | Celete |
Index name: |UQ_Custamers_6FE99F9F
Column name | Crder | =
Campanyhame j Ascending
ConkackMamne Ascending
Index Filegroup: |PRIMF\R‘.’ ﬂ
[v Create UNIGLE Fill Factar:
f+ Constraink 0 a4
~
Index B -
[Create as CLUSTERED
-
Fermner | Aide
)‘ Note that uniqueness of a column or of a group of columns can be enforced
‘d“ through a constraint or an index. The only difference between them is the

ability to define a relationship with the constraint. Unique indexes alone can
not be defined as part of a relationship.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

250 Chapter 4 - Implementing Data Integrity

Creating and Using a Unique Constraint
This exercise will walk you through creating a table with a unique
constraint and inserting records to check that the constraint is correctly
enforced.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools > SQL Query Analyzer or
by choosing Start > Programs > Microsoft SQL Server > Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

DROP TABLE Events
GO
CREATE TABLE Events (
EventID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,
EventType nvarchar (10) NOT NULL DEFAULT 'Party',
EventTitle nvarchar (100) NULL UNIQUE,
EventDescription ntext NULL ,
EventLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL DEFAULT GETDATE() CHECK
(EventDate>=GETDATE()),
EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,
GETDATE()),
EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER
)

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert a row by typing the following lines of code:

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, 'This is my Event', 'This will be great
fun', 'US', '12/12/2012', '01/01/2012"')

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

6. Run the same statement another time by highlighting these lines
with the mouse and press the green arrow or CTRL-E to execute the
query.

It conflicts with the unique constraint since you tried to insert the
same EventTitle.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

Unique Constraints 251

EXERCISE 4.4 (continued)

7. Insert another row by typing the following lines of code:

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, NULL, 'This will be great fun', 'US',
'12/12/2012', '01/01/2012")

8. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

The row is inserted even if EventTitle is NULL.

9. Run the same statement one more time by highlighting these lines
with the mouse and press the green arrow or CTRL-E to execute the

query.

It conflicts with the unique constraint since you tried to insert
another null value in the EventTitle column.

Defining a Unique Constraint at Table Modification

You can add a unique constraint to an existing table, but it can be created
only if the values already inserted in the column forming the constraint are
unique.

You can add a unique constraint while adding a column at column
level:

ALTER TABLE tablename
ADD columname datatype [CONSTRAINT constraintname]
UNIQUE [CLUSTERED | NONCLUSTERED]
[WITH FILLFACTOR = fillfactor]
[ON {filegroup | DEFAULT}] [,...]

The only way to add a constraint to an existing column is at table level:

ALTER TABLE tablename
ADD [CONSTRAINT constraintname]
UNIQUE [CLUSTERED | NONCLUSTERED]
{ Ccolumn [ASC | DESC] [,...n 1) }
[WITH FILLFACTOR = fillfactor]
[ON { filegroup | DEFAULT } 1]

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

252 Chapter 4 - Implementing Data Integrity

The same parameters are used in table modification as in table creation.
The following example drops the existing unique constraint and adds a
new unique constraint to the Orders table:

ALTER TABLE Customers DROP CONSTRAINT
UQ_Customers_70DDC3D8

GO

ALTER TABLE Customers ADD UNIQUE(Phone)

If you run this statement and there are duplicate values in the column,
you will first receive error 1505: CREATE UNIQUE INDEX terminated
because a duplicate key was found for index ID 2. Most signifi-
cant primary key is '1', and then error 1750: Could not create con-
straint. See previous errors. The statement has been
terminated. Note that these two errors are the same as the errors for pri-
mary key creation failure.

Unique and primary key constraints are useful where enforcing entity
integrity. The last type of declarative integrity we are going to discuss is
referential integrity with foreign key constraint.

Foreign Keys and Relationships

FIGURE 4.4

Foreign keys and relationships have been discussed theoretically in
Chapter 1. In SQL Server 2000, relationships are declaratively defined
with foreign key constraints. As with all other constraints, a foreign key
can be created at table creation or added afterwards.

Figure 4.4 shows three tables of the Northwind database and the two
relationships between these tables.

Relationships and keys in the Northwind database

Copyright ©2001 SYBEX, Inc., Alameda, CA

Suppliers Products Categories
2 |5upplierID % |PraductID F | CategoryID

T CompanyMarme " |Productiame CategoryMame

T | contactMame T SupplierI0 Description

T | ContactTite T CategoryID Picture

T |Address T QuantityPerUnit

T | ity " |UnitPrice

T Region "~ |unitsIngtack

" |PostalCade " |Unitsonorder

T Counkry " |RearderLevel

" |Phane " |Discontinued

T |Fax —

: HornePage

www.sybex.com

http://www.sybex.com

Foreign Keys and Relationships 253

A foreign key constraint can reference columns defined as the primary
key or unique constraints only, and only in the same database. A foreign
key behaves like a check constraint, since it limits its values to that of the
primary key or unique column values to which it is linked. In Figure 4.4,
a new product can be inserted only if its supplier ID already exists in the
Suppliers table.

Defining a Foreign Key Constraint at Table Creation

A foreign key can be defined on one or more columns. A one-column
foreign key can be declared at column or table level in the CREATE TABLE
statement. A multi-column foreign key can only be declared at table level:

= Column-level foreign key constraint definition at table creation:

CREATE TABLE tablename
(columname datatype [CONSTRAINT constraintname]
[FOREIGN KEY]
REFERENCES ref_table [(ref_column)]
[ON DELETE { CASCADE | NO ACTION } 1]
[ON UPDATE { CASCADE | NO ACTION }]
[NOT FOR REPLICATION] [,...]

= Table-level foreign key constraint definition at table creation:

CREATE TABLE tablename
(columname datatype [,...],

[CONSTRAINT constraintname]
FOREIGN KEY [C column [,...n])]
REFERENCES ref_table [(ref_column [,...n]1)]

[ON DELETE { CASCADE | NO ACTION }]
[ON UPDATE { CASCADE | NO ACTION }]
[NOT FOR REPLICATION]

Listing 4.6 creates the relationships between the Products and the Sup-
pliers tables and between the Products and Categories tables with column-
level constraints.

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

254 Chapter 4 - Implementing Data Integrity

Listing 4.6: CREATE TABLE Statement with Foreign Key
Column-level Constraints

CREATE TABLE Products (
ProductID int IDENTITY (1, 1) NOT NULL ,
ProductName nvarchar (40) NOT NULL ,
SuppTlierID int NULL REFERENCES Suppliers (SupplierID),
CategoryID int NULL REFERENCES Categories (CategoryID),
QuantityPerUnit nvarchar (20) NULL ,
UnitPrice money NULL,
UnitsInStock smallint NULL,
UnitsOnOrder smalTlint NULL,
ReorderLevel smallint NULL,
Discontinued bit NOT NULL,

)

) The FOREIGN KEY keyword is optional in column-level foreign key con-
“.Egrz

“ straints, as you can note from the previous example.

The same result can be obtained with table-level constraints, as shown
in Listing 4.7.

Listing 4.7: CREATE TABLE Statement with Foreign Key
Table-level Constraints

CREATE TABLE Products (
ProductID int IDENTITY (1, 1) NOT NULL ,
ProductName nvarchar (40) NOT NULL ,
SuppTlierID int NULL,
CategoryID int NULL,
QuantityPerUnit nvarchar (20) NULL ,
UnitPrice money NULL,
UnitsInStock smalTlint NULL,
UnitsOnOrder smallint NULL,
ReorderLevel smallint NULL,
Discontinued bit NOT NULL,
CONSTRAINT FK_Products_Categories

FOREIGN KEY (CategoryID)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

il
INING

Foreign Keys and Relationships 255

REFERENCES Categories (CategoryID),
CONSTRAINT FK_Products_Suppliers

FOREIGN KEY (SupplierID)

REFERENCES Suppliers (SupplierID)

The brackets around the column name in the FOREIGN KEY clause are
mandatory, even if the foreign key is defined on one column. If you forgot
them, the system will fire an incorrect syntax error.

The columns referenced by the foreign key statement have to be pri-
mary keys or members of a unique constraint, otherwise you obtain error
1776 at creation: There are no primary or candidate keys in the
referenced table 'Categories' that match the referencing column
Tist in the foreign key 'FK__Products_ Categories'.

As with other constraints, the CONSTRAINT keyword and the name definition
are not compulsory.

The following shows the result of running sp_helpconstraint for the
table created in Listing 4.5:

constraint_type constraint_name del_act upd_act
FOREIGN KEY FK_Products_Categories No Action No Action
FOREIGN KEY FK_Products_Suppliers No Action No Action

status_enabled status_for_replication

EnabTed Is_For_Replication
Enabled Is_For_Replication

constraint_keys

CategoryID REFERENCES Northwind.dbo.Categories (CategoryID)
SuppTlierID REFERENCES Northwind.dbo.Suppliers (SupplierID)

Copyright ©2001 SYBEX, Inc., Alameda, CA www.sybex.com

http://www.sybex.com

256 Chapter 4 - Implementing Data Integrity

P

A JTE

)

TE

This result is given in three different blocks because it could not fit in one
block on the page.

If we take the first foreign key, we read that there is no delete or update
action. That means that cascading updates and deletes are not enforced.
The constraint is enforced (enabled), and it is not defined for replication.

We have seen in Chapter 1 that a foreign key protects the creation of
orphans; that is, it is impossible to insert a row in a child table if it has
no corresponding row in the parent table. In the previous example
(Listing 4.6), if you try to insert a new row in the Products table and give
a CategorylID that does not exist in the Category table, you obtain
error 547: INSERT statement conflicted with COLUMN FOREIGN KEY
constraint 'FK_Products_Categories'. The conflict occurred in
database 'Northwind', table 'Category', column 'CategoryID'.
The statement has been terminated.

In error 547, SQ