
MCSE:
SQL Server 2000
Design Study Guide

2942fm.qxd 7/16/01 2:36 PM Page i

http://www.sybex.com

MCSE:
SQL Server™ 2000
Design Study Guide

Marc Israel
J. Steven Jones

San Francisco • Paris • Düsseldorf • Soest • London

2942fm.qxd 7/16/01 2:36 PM Page iii

http://www.sybex.com

Associate Publisher: Neil Edde
Acquisitions and Developmental Editor: Jeff Kellum
Editor: Malka Geffen
Production Editor: Elizabeth Campbell
Technical Editors: Scott Warmbrand, Scott Sanford
Book Designer: Bill Gibson
Graphic Illustrator: Epic Studios, Tony Jonick
Electronic Publishing Specialist: Interactive Composition Corporation
Proofreaders: Laurie O’Connell, Nancy Riddiough, Jennifer Greiman, Suzanne Stein
Indexer: Ann Rogers
CD Coordinator: Christine Harris
CD Technician: Kevin Ly
Cover Designer: Archer Design
Cover Photographer: The Image Bank

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of
this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

First edition copyright © 2001 SYBEX Inc.

Library of Congress Card Number: 2001089819

ISBN: 0-7821-2942-0

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or
other countries.

Screen reproductions produced with FullShot99. FullShot99 © 1991-1999 Inbit Incorporated. All rights reserved.
FullShot is a trademark of Inbit Incorporated.

Microsoft ® Internet Explorer © 1996 Microsoft Corporation. All rights reserved. Microsoft, the Microsoft Internet
Explorer logo, Windows, Windows NT, and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

SYBEX is an independent entity from Microsoft Corporation, and not affiliated with Microsoft Corporation in any
manner. This publication may be used in assisting students to prepare for a Microsoft Certified Professional Exam.
Neither Microsoft Corporation, its designated review company, nor SYBEX warrants that use of this publication will
ensure passing the relevant exam. Microsoft is either a registered trademark or trademark of Microsoft Corporation in
the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive
terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release
software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software
manufacturer(s). The author and the publisher make no representation or warranties of any kind with regard to the
completeness or accuracy of the contents herein and accept no liability of any kind including but not limited to
performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged
to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2942fm.qxd 7/16/01 2:36 PM Page iv

http://www.sybex.com

SYBEX Inc. 1151 Marina Village Parkway, Alameda, CA 94501
Tel: 510/523-8233 Fax: 510/523-2373 HTTP://www.sybex.com

To Our Valued Readers:

In recent years, Microsoft’s MCSE program has established itself as the premier computer and net-
working industry certification. Nearly a quarter of a million IT professionals have attained MCSE sta-
tus in the NT 4 track. Sybex is proud to have helped thousands of MCSE candidates prepare for their
exams over these years, and we are excited about the opportunity to continue to provide people with
the skills they’ll need to succeed in the highly competitive IT industry.

For the Windows 2000 MCSE track, Microsoft has made it their mission to demand more of exam
candidates. Exam developers have gone to great lengths to raise the bar in order to prevent a paper-
certification syndrome, one in which individuals obtain a certification without a thorough under-
standing of the technology. Sybex welcomes this new philosophy as we have always advocated a com-
prehensive instructional approach to certification courseware. It has always been Sybex’s mission to
teach exam candidates how new technologies work in the real world, not to simply feed them answers
to test questions. Sybex was founded on the premise of providing technical skills to IT professionals,
and we have continued to build on that foundation, making significant improvements to our study
guides based on feedback from readers, suggestions from instructors, and comments from industry
leaders.

The depth and breadth of technical knowledge required to obtain Microsoft’s new Windows 2000
MCSE is staggering. Sybex has assembled some of the most technically skilled instructors in the indus-
try to write our study guides, and we’re confident that our Windows 2000 MCSE study guides will
meet and exceed the demanding standards both of Microsoft and you, the exam candidate.

Good luck in pursuit of your MCSE!

Neil Edde
Associate Publisher—Certification
Sybex Inc.

2942fm.qxd 7/16/01 2:36 PM Page v

http://www.sybex.com

The media and/or any online materials accompanying this
book that are available now or in the future contain
programs and/or text files (the “Software”) to be used in
connection with the book. SYBEX hereby grants to you a
license to use the Software, subject to the terms that
follow. Your purchase, acceptance, or use of the Software
will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX
unless otherwise indicated and is protected by copyright
to SYBEX or other copyright owner(s) as indicated in the
media files (the “Owner(s)”). You are hereby granted a
single-user license to use the Software for your personal,
noncommercial use only. You may not reproduce, sell,
distribute, publish, circulate, or commercially exploit the
Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s) of
any component software included on this media.

In the event that the Software or components include
specific license requirements or end-user agreements,
statements of condition, disclaimers, limitations or
warranties (“End-User License”), those End-User Licenses
supersede the terms and conditions herein as to that
particular Software component. Your purchase,
acceptance, or use of the Software will constitute your
acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you
further agree to comply with all export laws and
regulations of the United States as such laws and
regulations may exist from time to time.

Reusable Code in This Book

The authors created reusable code in this publication
expressly for reuse for readers. Sybex grants readers
permission to reuse for any purpose the code found in this
publication or its accompanying CD-ROM so long as all
three authors are attributed in any application containing
the reusable code, and the code itself is never sold or
commercially exploited as a stand-alone product.

Software Support

Components of the supplemental Software and any offers
associated with them may be supported by the specific
Owner(s) of that material but they are not supported by
SYBEX. Information regarding any available support may
be obtained from the Owner(s) using the information
provided in the appropriate read.me files or listed
elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to
offer support or decline to honor any offer, SYBEX bears
no responsibility. This notice concerning support for the
Software is provided for your information only. SYBEX is
not the agent or principal of the Owner(s), and SYBEX is
in no way responsible for providing any support for the
Software, nor is it liable or responsible for any support
provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The

Software is not available from SYBEX in any other form
or media than that enclosed herein or posted to
www.sybex.com. If you discover a defect in the media
during this warranty period, you may obtain a
replacement of identical format at no charge by sending
the defective media, postage prepaid, with proof of
purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
(510) 523-8233
Fax: (510) 523-2373
e-mail: info@sybex.com
WEB: HTTP://WWW.SYBEX.COM

After the 90-day period, you can obtain replacement
media of identical format by sending us the defective disk,
proof of purchase, and a check or money order for $10,
payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either
expressed or implied, with respect to the Software or its
contents, quality, performance, merchantability, or fitness
for a particular purpose. In no event will SYBEX, its
distributors, or dealers be liable to you or any other party
for direct, indirect, special, incidental, consequential, or
other damages arising out of the use of or inability to use
the Software or its contents even if advised of the
possibility of such damage. In the event that the Software
includes an online update feature, SYBEX further
disclaims any obligation to provide this feature for any
specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by
some states. Therefore, the above exclusion may not
apply to you. This warranty provides you with specific
legal rights; there may be other rights that you may have
that vary from state to state. The pricing of the book with
the Software by SYBEX reflects the allocation of risk and
limitations on liability contained in this agreement of
Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are
distributed as shareware. Copyright laws apply to both
shareware and ordinary commercial software, and the
copyright Owner(s) retains all rights. If you try a
shareware program and continue using it, you are
expected to register it. Individual programs differ on
details of trial periods, registration, and payment. Please
observe the requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be
copy-protected or encrypted. However, in all cases,
reselling or redistributing these files without authorization
is expressly forbidden except as specifically provided for
by the Owner(s) therein.

Software License Agreement: Terms and Conditions

2942fm.qxd 7/16/01 2:36 PM Page vi

http://www.sybex.com

To my wife, Claire, and to our boys, Thibault and Quentin. Love and

tolerance are values you share. I love you.

—Marc Israel

Not a day goes by when I do not think of my wife, Tia. For you, my

darling.

—Steve Jones

2942fm.qxd 7/16/01 2:36 PM Page vii

http://www.sybex.com

Acknowledgments

Like a piece of software, a book is seldom the work of only one man
or woman, but the work of a team of people, aiming at one goal: to teach
and bring enjoyment to the future reader. While the author is focused on
what to say, dozens of other people are helping him to say it well, from
editors to the art crew, in order to publish the best computer book. I
would like to acknowledge all the crew who worked with me on this book,
beginning with my co-author, Steve. Co-authoring is not an easy task when
you sit in the same office, but when 10,000 miles are between both
authors, it’s a tough challenge. I think trust did it all! And everybody at
Sybex trusted us, including Jeff, Elizabeth, Malka, and all those who I do
not know but who worked on this book. Be thanked beyond your wildest
dreams!

—Marc Israel

This book is my first and was a great experience. It was also more trying
and difficult than I had imagined. It would not have been possible without
the support and assistance of my wife, Tia, who put up with quite a few
late nights and weekends away from her and our children. I also have my
mother, Mary Jones, to thank for her limitless enthusiasm and support.
Her constant praise helped to keep me going when the writing was slow to
appear.

Writing with someone is always a difficult chore and writing when you
are physically removed is even more of a challenge. I’d like to thank my
co-author, Marc, for his efforts in working with Sybex and myself from
half a world away.

I also have to thank the IT staff at IQdestination for putting up with a
co-worker who was distracted at times and exhausted at others. Thanks to
Adam, Charles, Chris, Corey, Dave, Kevin, Matt, Michael, and Mindy.

—J. Steven Jones

2942fm.qxd 7/16/01 2:36 PM Page viii

http://www.sybex.com

Introduction

Microsoft’s Microsoft Certified Systems Engineer (MCSE) track for
Windows 2000 is the premier certification for computer industry profes-
sionals. Covering the core technologies around which Microsoft’s future
will be built, the MCSE Windows 2000 program is a powerful credential
for career advancement.

This book has been developed to give you the critical skills and knowl-
edge you need to prepare for one of the electives for the MCSE certifica-
tion program: Designing and Implementing Databases with Microsoft®
SQL Server™ 2000 Enterprise Edition (Exam 70-229).

This exam is also one of the required exams for the Microsoft Certified
Database Administrators (MCDBA). We have chosen to focus on the MCSE
track as that is by far the most popular of Microsoft’s certification tracks.
As of this printing, there were over 400,000 MCSEs, and roughly 20,000
MCDBAs. We will discuss all of the different tracks below.

Since the inception of its certification program, Microsoft has certified
over one million people. As the computer network industry grows in both
size and complexity, these numbers are sure to grow—and the need for
proven ability will also increase. Companies rely on certifications to verify
the skills of prospective employees and contractors.

Microsoft has developed its Microsoft Certified Professional (MCP)
program to give you credentials that verify your ability to work with
Microsoft products effectively and professionally. Obtaining your MCP
certification requires that you pass any one Microsoft certification exam.
Several levels of certification are available based on specific suites of
exams. Depending on your areas of interest or experience, you can obtain
any of the following MCP credentials:

Microsoft Certified System Engineer (MCSE) This certification track
is designed for network and systems administrators, network and
systems analysts, and technical consultants who work with Microsoft
Windows 2000 client and server software. You must take and pass
seven exams to obtain your MCSE.

2942fm.qxd 7/16/01 2:37 PM Page xxi

http://www.sybex.com

Since this book covers one of the MCSE elective exams, we will discuss the
MCSE certification in detail in this Introduction.

Microsoft Certified Database Administrator (MCDBA) This track is
designed for database administrators, developers, and analysts who
work with Microsoft SQL Server. As of this printing, you can take
exams on either SQL Server 7 or SQL Server 2000, but Microsoft is
expected to announce the retirement of SQL Server 7. You must take
and pass four exams to achieve MCDBA status.

The Designing and Implementing Databases with Microsoft® SQL Ser-
ver™ 2000 Enterprise Edition exam is one of the MCDBA required exams.

Microsoft Certified Solution Developer (MCSD) This track is designed
for software engineers and developers and technical consultants who
primarily use Microsoft development tools. Currently, you can take
exams on Visual Basic, Visual C++, and Visual FoxPro. However, with
Microsoft’s pending release of Visual Studio 7, you can expect the
requirements for this track to change by the end of 2001. You must take
and pass four exams to obtain your MCSD.

Microsoft Certified Trainer (MCT) The MCT track is designed for
any IT professional who develops and teaches Microsoft-approved
courses. To become an MCT, you must first obtain your MCSE, MCSD,
or MCDBA; then you must take a class at one of the Certified Technical
Training Centers. You will also be required to prove your instructional
ability. You can do this in various ways: by taking a skills-building or
train-the-trainer class; by achieving certification as a trainer from any of
a number vendors; or by becoming a Certified Technical Trainer
through the Chauncey Group (www.chauncey.com/ctt.html). Last of
all, you will need to complete an MCT application.

xxii Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxii

http://www.sybex.com

As of March 1, 2001, Microsoft no longer offers MCSE NT 4 required exams.
Those who are certified in NT 4 have until December 31, 2001, to upgrade
their credentials to Windows 2000. Also, Microsoft has retired three other
certification tracks: MCP+Internet, MCSE+Internet, and MCP+Site Builder.
The topics and concepts that are tested in these certifications have been
incorporated into the MCSE and MCSD exams.

How Do You Become an MCSE?

Attaining MCSE certification has always been a challenge. In the past,
students have been able to acquire detailed exam information—even most
of the exam questions—from online “brain dumps” and third-party
“cram” books or software products. For the new MCSE exams, this is
simply not the case.

Microsoft has taken strong steps to protect the security and integrity of
the new MCSE track. Now, prospective MSCEs must complete a course
of study that develops detailed knowledge about a wide range of topics.
It supplies them with the true skills needed, derived from working with
Windows 2000 and related software products.

The new MCSE program is heavily weighted toward hands-on skills
and experience. Microsoft has stated that “nearly half of the core required
exams’ content demands that the candidate have troubleshooting skills
acquired through hands-on experience and working knowledge.”

Fortunately, if you are willing to dedicate the time and effort to learn
Windows 2000, you can prepare yourself well for the exams by using the
proper tools. By working through this book, you can successfully meet the
exam requirements.

This book is part of a complete series of Sybex MCSE Study Guides,
published by Sybex Inc., that together cover the core Windows 2000
requirements as well as the new Design exams and a number of the
electives needed to complete your MCSE track. Study Guide titles include
the following:

� MCSE: Windows 2000 Professional Study Guide, Second Edition,
by Lisa Donald with James Chellis (Sybex, 2001)

� MCSE: Windows 2000 Server Study Guide, Second Edition, by Lisa
Donald with James Chellis (Sybex, 2001)

Introduction xxiii

2942fm.qxd 7/16/01 2:37 PM Page xxiii

http://www.sybex.com

� MCSE: Windows 2000 Network Infrastructure Administration
Study Guide, Second Edition, by Paul Robichaux with James Chellis
(Sybex, 2001)

� MCSE: Windows 2000 Directory Services Administration Study
Guide, Second Edition, by Anil Desai with James Chellis (Sybex,
2001)

� MCSE: Windows 2000 Network Security Design Study Guide, by
Gary Govanus and Robert King (Sybex, 2000)

� MCSE: Windows 2000 Network Infrastructure Design Study Guide,
by Bill Heldman (Sybex, 2000)

� MCSE: Windows 2000 Directory Services Design Study Guide, by
Robert King and Gary Govanus (Sybex, 2000)

� MCSE: SQL Server 2000 Administration Study Guide, by Lance
Mortensen, Rick Sawtell, and Joseph L. Jorden (Sybex, 2001)

� MCSE: Exchange 2000 Server Administration Study Guide, by
Walter Glen with James Chellis (Sybex, 2001)

� MCSE: Exchange 2000 Server Design Study Guide, by William
Heldman (Sybex, 2001)

� MCSE: Windows 2000 Migration Study Guide, by Todd Phillips
(Sybex, 2001)

Please visit certification.sybex.com for a complete list of our offerings,
including our Virtual Trainers, Virtual Test Centers, and Exam Notes.

Exam Requirements

Candidates for MCSE certification in Windows 2000 must pass seven
exams, including four core operating system exams, one design exam, and
two electives.

xxiv Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxiv

http://www.sybex.com

For a more detailed description of the Microsoft certification programs,
including a list of current and future MCSE electives, check Microsoft’s Train-
ing and Certification Web site at www.microsoft.com/trainingandservices.

The Designing and Implementing Databases with Microsoft®

SQL Server™ 2000 Enterprise Edition Exam

The Designing and Implementing Databases with SQL Server 2000
Certification exam covers concepts and skills required for the support of
SQL Server 2000. It emphasizes the following areas:

� Creating and maintaining tables

Introduction xxv

2942fm.qxd 7/16/01 2:37 PM Page xxv

http://www.sybex.com

� Implementing data integrity using rules, constraints, and keys

� Creating and maintaining indexes

� Creating views, defaults, stored procedures, and triggers

� Accessing and modifying data in SQL Server and remote data
sources

� Working with data in an XML format

� Using SQL Server utilities to import and export data in bulk

� Developing a security plan for a database

� Understanding locking and its impact on the server

� Tuning SQL Server query performance

If we had to create a single sentence to describe the test, it would be as
follows: The exam will test your knowledge of designing, creating, and
maintaining a database on SQL Server 2000. To pass the test, you need to
fully understand these topics.

Microsoft provides exam objectives to give you a very general overview of
possible areas of coverage on the Microsoft exams. For your convenience,
this study guide includes objective listings positioned within the text at
points where specific Microsoft exam objectives are discussed. Keep in
mind, however, that exam objectives are subject to change at any time with-
out prior notice and at Microsoft’s sole discretion. Please visit Microsoft’s
Training and Certification Web site (www.microsoft.com/trainingand-
services) for the most current listing of exam objectives.

Types of Exam Questions

In an effort to both refine the testing process and protect the quality of its
certifications, Microsoft has focused its Windows 2000 exams on real
experience and hands-on proficiency. There is a higher emphasis on your
past working environments and responsibilities, and less emphasis on how
well you can memorize. In fact, Microsoft says an MCSE candidate should
have at least one year of hands-on experience.

xxvi Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxvi

http://www.sybex.com

Microsoft will accomplish its goal of protecting the exams’ integrity by reg-
ularly adding and removing exam questions, limiting the number of ques-
tions that any individual sees in a beta exam, limiting the number of ques-
tions delivered to an individual by using adaptive testing, and adding new
exam elements.

Exam questions may be in a variety of formats: Depending on which
exam you take, you’ll see multiple-choice questions, as well as select-and-
place and prioritize-a-list questions. Simulations and case study–based for-
mats are included, as well. You may also find yourself taking what’s called
an adaptive format exam. Let’s take a look at the types of exam questions
and examine the adaptive testing technique, so that you’ll be prepared for
all of the possibilities.

For more information on the various exam question types, go to
www.microsoft.com/trainingandservices/default.asp?PageID=
mcp&PageCall=tesinn&SubSite=examinfo.

MULTIPLE-CHOICE QUESTIONS

Multiple-choice questions come in two main forms. One is a straight-
forward question followed by several possible answers, of which one or
more is correct. The other type of multiple-choice question is more
complex and based on a specific scenario. The scenario may focus on a
number of areas or objectives.

SELECT-AND-PLACE QUESTIONS

Select-and-place exam questions involve graphical elements that you must
manipulate in order to successfully answer the question. For example,
you might see a diagram of a computer network, as shown in the follow-
ing graphic taken from the select-and-place demo downloaded from
Microsoft’s Web site.

Introduction xxvii

2942fm.qxd 7/16/01 2:37 PM Page xxvii

http://www.sybex.com

A typical diagram will show computers and other components next to
boxes that contain the text “Place here.” The labels for the boxes represent
various computer roles on a network, such as a print server and a file
server. Based on information given for each computer, you are asked to
select each label and place it in the correct box. You need to place all of
the labels correctly. No credit is given for the question if you correctly
label only some of the boxes.

In another select-and-place problem you might be asked to put a series
of steps or lines of code in order, by dragging item from boxes on the left
to boxes on the right, and placing them in the correct order. One other
type requires that you drag an item from the left and place it under an item
in a column on the right.

CASE STUDY–BASED QUESTIONS

Case study–based questions first appeared in the MCSD program. These
questions present a scenario with a range of requirements. Based on the
information provided, you answer a series of multiple-choice and select-
and-place questions. The interface for case study–based questions has a
number of tabs, each of which contains information about the scenario.

xxviii Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxviii

http://www.sybex.com

ADAPTIVE EXAM FORMAT

Microsoft presents many of its exams in an adaptive format. This format is
radically different from the conventional format previously used for
Microsoft certification exams. Conventional tests are static, containing a
fixed number of questions. Adaptive tests change depending on your
answers to the questions presented.

The number of questions presented in your adaptive test will depend on
how long it takes the exam to ascertain your level of ability (according to
the statistical measurements on which exam questions are ranked). To
determine a test-taker’s level of ability, the exam presents questions in an
increasing or decreasing order of difficulty.

Unlike the earlier test format, the adaptive test does not allow you to go
back to see a question again. The exam only goes forward. Once you enter
your answer, that’s it—you cannot change it. Be very careful before enter-
ing your answers. There is no time limit for each individual question (only
for the exam as a whole). Your exam may be shortened by correct answers
(and lengthened by incorrect answers), so there is no advantage to rushing
through questions.

Microsoft will regularly add and remove questions from the exams. This is
called item seeding. It is part of the effort to make it more difficult for indi-
viduals to merely memorize exam questions that were passed along by
previous test-takers.

Exam Question Development

Microsoft follows an exam-development process consisting of eight
mandatory phases. The process takes an average of seven months
and involves more than 150 specific steps. The MCP exam develop-
ment consists of the following phases:

Phase 1: Job Analysis Phase 1 is an analysis of all the tasks that make
up a specific job function, based on tasks performed by people who

Introduction xxix

2942fm.qxd 7/16/01 2:37 PM Page xxix

http://www.sybex.com

are currently performing that job function. This phase also identifies
the knowledge, skills, and abilities that relate specifically to the
performance area being certified.

Phase 2: Objective Domain Definition The results of the job analysis
phase provide the framework used to develop objectives. Develop-
ment of objectives involves translating the job-function tasks into a
comprehensive package of specific and measurable knowledge, skills,
and abilities. The resulting list of objectives—the objective domain—is
the basis for the development of both the certification exams and the
training materials.

Phase 3: Blueprint Survey The final objective domain is transformed
into a blueprint survey in which contributors are asked to rate each
objective. These contributors may be MCP candidates, appropriately
skilled exam-development volunteers, or Microsoft employees. Based
on the contributors’ input, the objectives are prioritized and weighted.
The actual exam items are written according to the prioritized
objectives. Contributors are queried about how they spend their time
on the job. If a contributor doesn’t spend an adequate amount of time
actually performing the specified job function, his or her data are
eliminated from the analysis. The blueprint survey phase helps
determine which objectives to measure, as well as the appropriate
number and types of items to include on the exam.

Phase 4: Item Development A pool of items is developed to measure
the blueprinted objective domain. The number and types of items to
be written are based on the results of the blueprint survey.

Phase 5: Alpha Review and Item Revision During this phase, a panel
of technical and job-function experts review each item for technical
accuracy. The panel then answers each item and reaches a consensus
on all technical issues. Once the items have been verified as being
technically accurate, they are edited to ensure that they are expressed
in the clearest language possible.

Phase 6: Beta Exam The reviewed and edited items are collected into
beta exams. Based on the responses of all beta participants, Microsoft

xxx Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxx

http://www.sybex.com

performs a statistical analysis to verify the validity of the exam items
and to determine which items will be used in the certification exam.
Once the analysis has been completed, the items are distributed into
multiple parallel forms, or versions, of the final certification exam.

Phase 7: Item Selection and Cut-Score Setting The results of the beta
exams are analyzed to determine which items will be included in the
certification exam. This determination is based on many factors,
including item difficulty and relevance. During this phase, a panel of
job-function experts determine the cut score (minimum passing score)
for the exams. The cut score differs from exam to exam because it is
based on an item-by-item determination of the percentage of
candidates who answered the item correctly and who would be
expected to answer the item correctly.

Phase 8: Live Exam In the final phase, the exams are given to
candidates. MCP exams are administered by Prometric and Virtual
University Enterprises (VUE).

Tips for Taking the SQL Server 2000 Design Exam

Here are some general tips for achieving success on your certification
exam:

� Arrive early at the exam center so that you can relax and review
your study materials. During this final review, you can look over
tables and lists of exam-related information.

� Read the questions carefully. Don’t be tempted to jump to an early
conclusion. Make sure you know exactly what the question is
asking.

� Answer all questions. Remember, a guess is better than a blank
answer. Also, make sure that you can go back, and if you can’t, do
not go onto the next question without answering the previous one.
On simulations, do not change settings that are not directly related
to the question. Also, assume default settings if the question does
not specify or imply which settings are used.

Introduction xxxi

2942fm.qxd 7/16/01 2:37 PM Page xxxi

http://www.sybex.com

� For questions you’re not sure about, use a process of elimination to
get rid of the obviously incorrect answers first. This improves your
odds of selecting the correct answer when you need to make an
educated guess.

Exam Registration

You may take the Microsoft exams at any of more than 1,000 Authorized
Prometric Testing Centers (APTCs) and VUE Testing Centers around the
world. For the location of a testing center near you, call Prometric at 800-
755-EXAM (755-3926), or call VUE at 888-837-8616. Outside the United
States and Canada, contact your local Prometric or VUE registration
center.

Find out the number of the exam you want to take, and then register
with the Prometric or VUE registration center nearest to you. At this point,
you will be asked for advance payment for the exam. The exams are $100
each and you must take them within one year of payment. You can sched-
ule exams up to six weeks in advance or as late as one working day prior
to the date of the exam. You can cancel or reschedule your exam if you
contact the center at least two working days prior to the exam. Same-day
registration is available in some locations, subject to space availability.
Where same-day registration is available, you must register a minimum of
two hours before test time.

You may also register for your exams online at www.prometric.com or
www.vue.com.

When you schedule the exam, you will be provided with instructions
regarding appointment and cancellation procedures, ID requirements, and
information about the testing center location. In addition, you will receive
a registration and payment confirmation letter from Prometric or VUE.

Microsoft requires certification candidates to accept the terms of a
Non-Disclosure Agreement before taking certification exams.

Is This Book for You?

If you want to acquire a solid foundation in SQL Server 2000 Design,
and your goal is to prepare for the exam by learning how to use the

xxxii Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxxii

http://www.sybex.com

database program, this book is for you. You’ll find clear explanations of
the fundamental concepts you need to grasp, and plenty of help to achieve
the high level of professional competency you need to succeed in your
chosen field.

If you want to become certified as an MCSE, this book is definitely for
you. However, if you just want to attempt to pass the exam without
really understanding SQL Server 2000, this Study Guide is not for you.
It is written for people who want to acquire hands-on skills and in-depth
knowledge of SQL Server 2000, paying particular attention to the
published exam objectives.

How to Use This Book

What makes a Sybex Study Guide the book of choice for over 100,000
MCSEs? We took into account not only what you need to know to pass
the exam, but what you need to know to take what you’ve learned and
apply it in the real world. Each book contains the following:

Objective-by-objective coverage of the topics you need to know Each
chapter lists the objectives covered in that chapter, followed by detailed
discussion of each objective.

Assessment Test On the CD you’ll find an Assessment Test that you
should take. It is designed to help you determine how much you already
know about SQL Server 2000. Each question is tied to a topic discussed
in the book. Using the results of the Assessment Test, you can figure out
the areas where you need to focus your study. Of course, we do recom-
mend you read the entire book.

Exam Essentials To highlight what you learn, you’ll find a list of
Exam Essentials at the end of each chapter. The Exam Essentials section
briefly highlights the topics that need your particular attention as you
prepare for the exam.

Key Terms and Glossary Throughout each chapter, you will be intro-
duced to important terms and concepts that you will need to know for
the exam. These terms appear in italic within the chapters, and a list of
the Key Terms appears just after the Exam Essentials. At the end of the
book, a detailed Glossary gives definitions for these terms, as well as
other general terms you should know.

Introduction xxxiii

2942fm.qxd 7/16/01 2:37 PM Page xxxiii

http://www.sybex.com

Review questions, complete with detailed explanations Each chapter is
followed by a set of Review Questions that test what you learned in the
chapter. The questions are written with the exam in mind, meaning that
they are designed to have the same look and feel of what you’ll see on
the exam. Question types are just like the exam, including multiple
choice, exhibits, select-and-place, and prioritize-a-list.

Hands-on exercises In each chapter, you’ll find exercises designed to
give you the important hands-on experience that is critical for your
exam preparation. The exercises support the topics of the chapter, and
they walk you through the steps necessary to perform a particular
function.

Real World Scenarios Because reading a book isn’t enough for you to
learn how to apply these topics in your every-day duties, we have pro-
vided Real World Scenarios in special sidebars. These explain when and
why a particular solution would make sense, in a working environment
you’d actually encounter.

Interactive CD Every Sybex Study Guide comes with a CD complete
with additional questions, flashcards for use with a palm device, and
the electronic book. Details are in the following section.

The topics covered in this Study Guide map directly to Microsoft’s official
exam objectives. Each exam objective is covered completely.

What’s on the CD?

With this new member of our best-selling MCSE Study Guide series, we
are including quite an array of training resources. The CD offers numerous
simulations, bonus exams, and flashcards to help you study for the exam.
We have also included the complete contents of the study guide in
electronic form. The CD’s resources are described here:

The Sybex Ebook for the SQL Server 2000 Design Study Guide Many
people like the convenience of being able to carry their whole study
guide on a CD. They also like being able to search the text via computer
to find specific information quickly and easily. For these reasons, the
entire contents of this Study Guide are supplied on the CD, in PDF for-

xxxiv Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxxiv

http://www.sybex.com

mat. We’ve also included Adobe Acrobat Reader, which provides the
interface for the PDF contents as well as the search capabilities.

The Sybex MCSE Edge Tests The Edge Tests are a collection of
multiple-choice questions that will help you prepare for your exam.
There are four sets of questions:

� Two bonus exams designed to simulate the actual live exam.

� An adaptive test simulator that will give the feel for how adaptive
testing works.

� All the questions from the Study Guide, presented in a test engine
for your review. You can review questions by chapter, by objec-
tive, or you can take a random test.

� The Assessment Test.

Here is a sample screen from the Sybex MCSE Edge Tests:

Sybex MCSE Flashcards for PCs and Palm Devices The “flashcard”
style of question offers an effective way to quickly and efficiently test
your understanding of the fundamental concepts covered in the exam.

Introduction xxxv

2942fm.qxd 7/16/01 2:37 PM Page xxxv

http://www.sybex.com

The Sybex MCSE Flashcards set consists of more than 150 questions
presented in a special engine developed specifically for this study guide
series. Here’s what the Sybex MCSE Flashcards interface looks like:

Because of the high demand for a product that will run on Palm devices,
we have also developed, in conjunction with Land-J Technologies, a ver-
sion of the flashcard questions that you can take with you on your Palm
OS PDA (including Handspring’s Visor).

How Do You Use This Book?

This book provides a solid foundation for the serious effort of preparing
for the exam. To best benefit from this book, you may wish to use the
following study method:

1. Take the Assessment Test on the CD to identify your weak areas.

2. Study each chapter carefully. Do your best to fully understand the
information.

3. Complete all the hands-on exercises in the chapter, referring back to
the text as necessary so that you understand each step you take.

xxxvi Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxxvi

http://www.sybex.com

To do the exercises in this book, your hardware should meet the minimum
hardware requirements for SQL Server 2000. Many of the exercises use the
Northwind database, which is included with SQL Server.

4. Read over the Real World Scenarios, to improve your understanding
of how to use what you learn in the book.

5. Study the Exam Essentials and Key Terms to make sure you are
familiar with the areas you need to focus on.

6. Answer the review questions at the end of each chapter. If you prefer
to answer the questions in a timed and graded format, install the
Edge Tests from the book’s CD and answer the chapter questions
there instead of in the book.

7. Take note of the questions you did not understand, and study the
corresponding sections of the book again.

8. Go back over the Exam Essentials and Key Terms.

9. Go through the Study Guide’s other training resources, which are
included on the book’s CD. These include electronic flashcards, the
electronic version of the chapter review question (try taking them by
objective), and the two bonus exams.

To learn all the material covered in this book, you will need to study
regularly and with discipline. Try to set aside the same time every day to
study, and select a comfortable and quiet place in which to do it. If you
work hard, you will be surprised at how quickly you learn this material.
Good luck!

Contacts and Resources

To find out more about Microsoft Education and Certification materials
and programs, to register with Prometric or VUE, or to obtain other useful
certification information and additional study resources, check the
following resources:

Microsoft Training and Certification Home Page
www.microsoft.com/trainingandservices

Introduction xxxvii

2942fm.qxd 7/16/01 2:37 PM Page xxxvii

http://www.sybex.com

This Web site provides information about the MCP program and
exams. You can also order the latest Microsoft Roadmap to Education
and Certification.

Microsoft TechNet Technical Information Network
www.microsoft.com/technet
800-344-2121

Use this Web site or phone number to contact support professionals and
system administrators. Outside the United States and Canada, contact
your local Microsoft subsidiary for information.

Palm Training Product Development: Land-J
www.land-j.com
407-359-2217

Land-J Technologies is a consulting and programming business cur-
rently specializing in application development for the Palm Personal
Digital Assistant. Land-J developed the Palm version of the Edge Tests,
which is included on the CD that accompanies this Study Guide.

Prometric
www.prometric.com
800-755-3936

Contact Prometric to register to take an MCP exam at any of more than
800 Prometric Testing Centers around the world.

Virtual University Enterprises (VUE)
www.vue.com
888-837-8616

Contact the VUE registration center to register to take an MCP exam at
one of the VUE Testing Centers.

MCP Magazine Online
www.mcpmag.com

Microsoft Certified Professional Magazine is a well-respected publica-
tion that focues on Windows certification. This site hosts chats and dis-
cussion forums, and tracks news related to the MCSE program. Some of
the services cost a fee, but they are well worth it.

xxxviii Introduction

2942fm.qxd 7/16/01 2:37 PM Page xxxviii

http://www.sybex.com

Windows 2000 Magazine
www.windows2000mag.com

You can subscribe to this magazine or read free articles at the Web site.
The study resource provides general information on Windows 2000.

Cramsession on Brainbuzz.com
cramsession.brainbuzz.com

Cramsession is an online community focusing on all IT certification
programs. In addition to discussion boards and job locators, you can
download one of a number of free cramsessions, which are nice supple-
ments to any study approach you take.

Introduction xxxix

2942fm.qxd 7/16/01 2:37 PM Page xxxix

http://www.sybex.com

Database Logical
Modeling

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Define entities. Considerations include entity composition and

normalization.

� Specify entity attributes.
� Specify degree of normalization.

� Design entity keys. Considerations include FOREIGN KEY

constraints, PRIMARY KEY constraints, and UNIQUE

constraints.

� Specify attributes that uniquely identify records.
� Specify attributes that reference other entities.

� Design attribute domain integrity. Considerations include

CHECK constraints, data types, and nullability.

� Specify scale and precision of allowable values for each
attribute.

� Allow or prohibit NULL for each attribute.
� Specify allowable values for each attribute.

Chapter

1

2942C01.qxd 7/11/01 5:12 PM Page 1

http://www.sybex.com

For many users, database design is a total mystery. Over
the years, database management systems became easier to use and were
included in office productivity tools. Databases were being created by
people unaware of what a database design is. With a system like SQL
Server, if the architecture of your database does not follow the rules of
relational systems, you will end up with an unusable application.

In this chapter, we will discuss:

� Designing a database system

� The Entity/Relationship model

� The relational model and the normalization process

� The denormalization process

Designing a Database System

Whatever its size, the development of a database system may be
split into five stages:

1. Planning and Analysis

2. Conceptual Design

3. Logical Design

4. Physical Design

5. Implementation

2942C01.qxd 7/11/01 5:12 PM Page 2

http://www.sybex.com

This chapter focuses on the first three phases of designing. Phase four is
covered in Chapter 2. Phase 5 is discussed throughout the book, since it
concerns the development of database objects.

The planning and analysis phase is an investigation phase, during which
you are going to gather and analyze needed information. This stage is gen-
erally done with the help of users, and is crucial to the second phase.

You should involve users in the analysis phase because you do not know
their job as well as they do, and because they should agree that what you
are doing will work in the real world. You’ll probably encounter difficulties
in involving users because they may not have time nor feel concerned.
Insist! Explain to them that you are working for them and that the time they
invest now with you will prevent lost time later due to an inadequate appli-
cation. Sometimes, people won’t want to meet with you because they are
intimidated; they fear to tell you that they dislike computers or fear you are
going to use computer words or idioms they won’t understand. Users are
involved only up to the logical design; they do not need to be concerned
about DBMS systems or any computer related information.

The whole process of planning and analyzing information and building
a conceptual design can be a long and costly one. That’s the reason why
it’s often skipped, which is a huge a mistake! You can compare these two
steps to designing a house. Would you think of building your house with-
out blueprints? That’s the decision you make if you build a database with-
out analysis and conceptual design. A deficient or even non-existent con-
ceptual design leads to inaccurate logical design and an unusable physical
one. Of course, we know the real world is not perfect. The borders
between the analysis, conceptual, and logical designs are often blurred.
You go from one stage to the other, back and forth. That’s why several
methodologies or pieces of software will derive a conceptual design from a
logical one, helping you to create your logical design step by step.

It’s always easier to modify the logical design than the physical one, once it
has been implemented. Spend time creating your design! Check it! Make
users validate it!

Designing a Database System 3

2942C01.qxd 7/11/01 5:12 PM Page 3

http://www.sybex.com

In fact, the conceptual and logical designs will generally be used as com-
munication tools since they present data and functions in an understand-
able manner, even for the computer illiterate. The conceptual design is
roughly made of two distinct models: the data model and the function
model. The data model defines the data stored in the database; the func-
tion model defines the queries that will be executed on the database.

The New Database Analysis

You are a senior database developer of a medium-size organization
and are called to analyze the future vacation and sick leave application
for the Human Resources department. As an employee, you probably
have ideas about information needed in this kind of application. But,
as you are not working for HR, you do not know all of the subtleties of
their jobs. The first step is to gather all necessary information, keeping
in mind that even minor facts for you could be critical for someone in
HR.

You make an appointment with Gary Pinkleton, the HR Manager, to
determine the information the HR employees need. Fortunately, Gary
is a well-organized guy, and he also invited Joan Winslow, the Office
Manager, to the meeting. Each of them prepared a document
summarizing the purpose of the application and the information that
is needed. Unfortunately, they dislike computers, as do many of the
HR employees, and you have to take that into account. They are paper
and people oriented! You thank them for the good job they’ve done,
and explain you would like to interview some HR employees in charge
of managing vacation and sick leave, just to understand the way they
work now. Then you will get back to them to discuss any issues met.

After gathering information through interviews, available documents,
artifacts, etc., you have to analyze it. Probably the most important
thing at that stage is to keep connected to the real world, being sure
the analyzed information is representative of the situation. During the
analysis stage, you have to organize, prioritize, and validate
information.

4 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 4

http://www.sybex.com

Once you have all the necessary, accurate, and validated information,
you can create cases to show actions between users and the new
system and to describe the states of the system. Being able to identify
theses cases will help the conceptual and logical design because it will
enhance the relationships between specific information.

After a couple of weeks, you meet again with Gary and Joan. You
used Microsoft Visio to diagram your entity/relationship model and
explain to them how you see things working. They are impressed by
the simplicity of the diagram and the fact you clearly understood their
need. They are reassured about the new application because you have
not talked yet about computers or the way the application is to be
implemented, but they can sense how it will work and see that all the
necessary information is there.

Because you used what I call a user-oriented approach, they feel
reassured about the new computer system and confident in the fact
that the application will definitely help them do their jobs. On your
side, you know that, as they participate in its design, they are partly
responsible for the new system, so it will be easier to implement it in
the department.

There is a classic confusion between the conceptual and the logical design.
The ER model refers to the conceptual design stage and the relational
model to the logical design stage. The ER model has been very popular
because it is easy to derive it to create the relational model. Both models
are discussed in the following sections.

The Entity/Relationship Model

Peter Chen first introduced the Entity/Relationship (ER) model in
1977. It has become very popular because an ER model is very simple to
create and read, and can be used directly to create a relational model and
transform its elements into database elements. The ER model translates

The Entity/Relationship Model 5

2942C01.qxd 7/11/01 5:12 PM Page 5

http://www.sybex.com

your analyzed information into data requirements, and, as stated earlier,
is used to facilitate communications between the database architect and
the future users of the new system. An ER model is made of three different
elements:

� Entity, which represents real-world concepts, such as places, objects,
events, persons, orders, customers, and so on.

� Relationship, which represents associations between objects, such as
the fact that a customer may place an order.

� Attribute, which describes the entity, such as the invoice date or the
customer first name.

In the next pages, you’ll notice there is a difference between an entity and an
entity instance. An instance is an individual occurrence of an entity. In the
relational world, an entity is equivalent to a table and an instance to a row.

Deriving entities, attributes, and relationships from the analysis phase
may be an intricate process. What you need to do is to take every sentence
of your conceptual model and transform the nouns (subjects) into the enti-
ties, the adjectives or nouns (direct objects) into the attributes, and the
verbs into the relationships. Well, this may sound a little bit too easy, but
in fact, that’s a logical process.

Let’s look at an example. The HR Manager of your company asked you
to consider the following in your database (see previous design scenario
sidebar):

� An employee is defined by his/her employee ID, first name, last
name, hired date, and department.

� He/she applies for a vacation leave.

With these two statements, you discover two entities: Employee and
Vacation Leave, plus five attributes of the Employee entity:

� ID

� First Name

� Last Name

� Hire Date

� Department

6 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 6

http://www.sybex.com

You also discover one relationship: applies for (between Employee
and Vacation Leave). We do not have enough information to define what
a Vacation Leave is, but that’s a kind of data we’ll need to gather from the
HR Manager or any member of his/her team.

Let’s take a closer look at how to define entities and attributes first,
then how to define relationships between entities.

Defining Entities and Attributes

As stated earlier, entities define real-word concepts, and attributes
describe precisely these concepts. Peter Chen defines an entity as “a thing
that can be distinctly identified.” There are two interesting aspects of this
definition. First, he describes an entity as being a “thing.” It might be bet-
ter to say an entity can be a thing, a concept, an object, an event, or a per-
son, but on the whole, it is “something.” Second, he says that the entity
can be distinctly identified. That may be the most important part of the
concept. An item that does not have descriptive information and permits
its identification is not an entity! So while analyzing a new database appli-
cation, you should precisely describe and identify an item, so it has every
chance to be an entity.

An attribute is a noun or an adjective that identifies or describes an
entity. An attribute identifying an entity is called a key attribute. An
attribute describing an entity is called a non-key attribute. For example,
the employee ID is a key attribute of the employee entity. On the contrary,
the employee’s first name is a non-key attribute. We’ll see later in this
chapter that key attributes play an important role in relationships between
entities.

Take the example of your address book. Each address represents a per-
son or an organization you know—that’s an instance of the entity. Each
address owns different attributes: the contact’s first name, last name,
address, zip code, city, country, e-mail, phone number, and so on. If you
have ever used Microsoft Excel to store that kind of data, you’ve used the
spreadsheet format to create a table. An instance of the entity corresponds

Define entities. Considerations include entity composition

and normalization.

� Specify entity attributes.

The Entity/Relationship Model 7

2942C01.qxd 7/11/01 5:12 PM Page 7

http://www.sybex.com

to one row of this table and an attribute to one of its columns. From the
interview conducted during the analysis phase, you can easily define enti-
ties and attributes from all the sentences and information gathered.

Generally, the consultant or anyone in charge of the analysis of the new
database creates the entity/relationship diagram representing entities and
relationships. In an ER model, each entity is represented by a labeled rec-
tangle. The label is the name of the entity, which should always be a noun.
Each entity attribute is listed inside the adequate entity rectangle.

Some ER gurus do not agree on listing the attribute directly on the ER
model. In fact, there are different ways to represent entities, relation-
ships, and attributes. The diagrams presented there conform to what is
found in different Microsoft publications (official curriculum, books,
white papers, and so on.) It may not exactly conform to Peter Chen’s ER
historic representations, but it’s less academic and more understandable
for a majority of people.

You can use Microsoft Visio 2000 to create an entity/relationship diagram,
and to derive the logical and physical models from that point. Visio 2000
manages metadata directly to automatically generate tables, relationships,
triggers, indexes, and so on from the diagrams. All the diagrams in this
chapter have been made with Visio 2000 using the Source ER Model tem-
plate, and all the examples are taken from the Pubs or Northwind databases
shipped with SQL Server 2000.

To illustrate this concept of entities and attributes, let’s take a look at a
part of the Northwind database, which is shipped with SQL Server 2000.
While developing the Northwind database, the following have been
extracted from the interview with the Purchase Manager of Northwind
Traders Inc.:

� Every product is shipped by a specific supplier.

� We have the address, phone number, and fax number of every sup-
plier. This is mandatory information because we must be able to
contact them anytime.

8 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 8

http://www.sybex.com

� As far as the products are concerned, they are supplied by different
suppliers, knowing that one supplier can supply many different
products.

� For each product, we store its name, its price, the quantity per unit,
the units on stock, and the units on order based on the reorder level,
which is different for every product.

� Sometimes, we are forced to discontinue a product because it’s no
longer produced or we cannot sell it anymore.

From these few statements, we discover two entities: products and sup-
pliers, each of them having different attributes. Figure 1.1 illustrates enti-
ties and their associated attributes, plus the relationship.

F I G U R E 1 . 1 Entities/Relationship/Attributes

Using this kind of diagram, it becomes easy to communicate with users
and have them help you validate your architectural choices. But, as you
may have noticed, we find a relationship between both entities and key
attributes. Let’s now take a look at how we define these keys and relation-
ships.

Suppliers Products

*

SupplierID

CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone
Fax
HomePage

ProductName
SupplierID
CategoryID
QuantityPerUnit
UnitPrice
UnitsInStock
UnitsOnOrder
ReorderLevel
Discontinued

ProductID

Entity Entity name

Key attribute

Relationship

Supply

Non-Key attribute

The Entity/Relationship Model 9

2942C01.qxd 7/11/01 5:12 PM Page 9

http://www.sybex.com

Defining Relationships and Keys

The purpose of key attributes is to uniquely identify records and to
allow relationships to be created between entities. SQL Server allows you
to define keys and relationships in the physical model. These elements have
to be identified early in the logical modeling process.

Relationships

Relationships are complex elements. They represent associations between
entities and bind them with a set of defined rules. As stated earlier,
relationships are generally derived from verbs or verb phrases in the
conceptual model, but that’s only the first step. Relationships carry three
other main characteristics:

Direction indicates the source entity. For instance, a customer places an
order, so the relationship goes from the customer entity to the order entity.
The source of the relationship is often referred to as the parent entity and
the destination as the child entity. In the preceding example, the customer
entity is the parent and the order entity is the child. A relationship always
goes from a parent to one or more children.

Cardinality defines the number of instances of a specific entity that could
be associated with an instance(s) of another entity. For example, an
employee can apply for one or more vacation leaves. An employee may
apply for the first time (one); an older employee may have applied many
times (many).

Existence determines the precedence between entities. That is, the entity
that must exist before another entity is created. It may be optional or
mandatory. For example, the relationship between a vacation leave and an
employee is optional: the employee may apply for a vacation leave. But,
the relationship between an employee and a department is mandatory:
each employee belongs to one department.

Design entity keys. Considerations include FOREIGN KEY

constraints, PRIMARY KEY constraints, and UNIQUE

constraints.

� Specify attributes that uniquely identify records.

� Specify attributes that reference other entities.

10 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 10

http://www.sybex.com

A relationship is represented by a line between both entities. The type of
line differs depending on the used methodology, the software, your univer-
sity teacher, the country you live in, the weather. To be honest, there are as
many notations as database experts. Let’s take three illustrated examples.

Figure 1.2 shows an arrow that indicates the direction of the relation-
ships, labeled with its name and the cardinality on both sides.

F I G U R E 1 . 2 A relationship represented by a direction arrow

In this association, a supplier may supply many products, which is
represented by the “supply” relationship. The character 0 (zero) on the
supplier’s side indicates that a supplier can exist without related products.
The character N (many) on the products side indicates that a supplier may
supply many products. The direction of the arrow is natural and goes from
one to many.

Figure 1.3 (used by default by Visio 2000) says that the line should be
an arrow, with the arrowhead indicating the parent entity (the opposite of
the “natural” direction), labeled with its name and cardinality on the child
side.

F I G U R E 1 . 3 A default Visio 2000 relationship

In Figure 1.3, the “supply” relationship represents the same association
as the preceding figure. The arrowhead indicates the parent entity, which is
the source of the relationship. In fact, you should not see an arrowhead

Suppliers Products

supply

*

Suppliers Products

supply
0 N

The Entity/Relationship Model 11

2942C01.qxd 7/11/01 5:12 PM Page 11

http://www.sybex.com

but a starting point enlarging like a megaphone. The smallest side of the
arrowhead indicates the “one” side, while the largest side indicates the
“many” side. The asterisk character (*) on the “many” side indicates
the cardinality.

In Figure 1.4 (using crow’s feet) the vertical bar on the line indicates
the “one” side of the relationship and a crow’s foot indicates the “many”
side. The zero sign on the line indicates this is a one-to-zero-or-many
relationship.

The different types of relationships are discussed later in this chapter.

F I G U R E 1 . 4 A relationship using a crow’s foot

In Figure 1.4, the “supply” relationship is always the same. The double
vertical bar indicates the parent side. The first vertical bar next to the Sup-
pliers entity indicates that a supplier must exist for every product (manda-
tory). The second vertical bar (representing a 1) indicates that one supplier
(at most) must exist for every product. The crow’s foot next to the Prod-
ucts entity (representing many) indicates the child side. The 0 sign before
the crow’s foot indicates that it is a one-to-zero-or-many relationship,
meaning a supplier can be associated to zero, one, or many products.

On the physical side, SQL Server 2000 offers a diagram functionality
that uses different notations. Figure 1.5 shows you the physical implemen-
tation of the above example.

Suppliers Products

supply 0

12 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 12

http://www.sybex.com

F I G U R E 1 . 5 SQL Server 2000 one-to-many relationship

As you can see, the relationship direction is illustrated by a key on the
“one” side and an infinity sign (∞) on the “many” side. In the case of a
one-to-one relationship, the key sign is on both sides, like in Figure 1.6.

F I G U R E 1 . 6 SQL Server 2000 one-to-one relationship

In the above examples, you probably see that direction and existence
are quite straightforward characteristics, which can be discovered easily.
Cardinality is a little more complex, due to the different types of relation-
ships: one-to-one, one-to-many, and many-to-many.

One-to-One Relationship

A one-to-one relationship (Figure 1.7) occurs when one instance of the
parent entity is associated to one (at most) instance of the child entity. For
instance, every company has only one CEO, and a CEO cannot be CEO of
two different companies. It exists as a one-to-one relationship between the
company entity and the CEO entity. In such a relationship, the direction is
from the independent entity (the company) to the dependent entity (the
CEO).

F I G U R E 1 . 7 A one-to-one relationship

Company CEO

is managed by
11

The Entity/Relationship Model 13

2942C01.qxd 7/11/01 5:12 PM Page 13

http://www.sybex.com

You may wonder what the use is of a one-to-one relationship. In this
example, if there is only one CEO per company, why not create only one
entity comprising all the necessary attributes? That is definitely the answer
that can be given in a majority of cases. But you may decide to logically
split information to keep entities small and manageable. This kind of rela-
tionship exists to take into account that some decisions are human and not
only mathematical.

One-to-Many Relationship

A one-to-many relationship (the most frequently used relationship) occurs
when one instance of the parent is associated to zero, one, or many
instances of the child entity. For instance, a customer may place many
orders. In this case, there is a one-to-many relationship between the
customer entity and the order entity. The direction of a one-to-many
relationship is always from the “one” side entity to the “many” side entity.
Figure 1.8 shows a one-to-many relationship.

F I G U R E 1 . 8 A one-to-many relationship

Figure 1.8 is equivalent to Figure 1.3. The asterisk represents the
“many” side. In this example, each supplier supplies zero or many
products.

Many-to-Many Relationship

A many-to-many relationship (Figure 1.9) occurs when one instance of the
parent is associated with zero, one, or many instances of the child entity
and when one instance of the child entity is associated with zero, one, or
many instances of the parent entity. Even if the description may sound
intricate, it’s quite a common situation. Consider when a customer places
an order. He/she can order many products and those products can be on
many orders. So, the relationship between the Orders entity and the
Products entity is a many-to-many relationship. Many-to-many

Suppliers Products

supply

*

14 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 14

http://www.sybex.com

relationships cannot be directly implemented in a relational database, but
must be transformed into at least two one-to-many relationships, as we are
going to see in the next sections. In a many-to-many relationship, the
direction is arbitrary.

F I G U R E 1 . 9 A many-to-many relationship

Figure 1.9 shows a many-to-many relationship because an order con-
tains one or many products and a product can be contained in zero, one,
or many orders. That kind of relationship has to be resolved by inserting
an entity called an association entity. Figure 1.10 shows a solution to our
many-to-many relationship.

F I G U R E 1 . 1 0 A resolved many-to-many relationship

By introducing the Order Details entity, we transform the many-to-
many relationship into two one-to-many relationships. The new diagram
shows that every order is made of one or many order details, and that each
product may be referenced by zero, one, or many order details. As you can
see, the original cardinality and existence are conserved by the new entity
and relationships. A majority of many-to-many relationships are resolved
that way.

Orders ProductsOrder Details

is made of is referenced in
*

*

Orders Products

contains/is contained in
1..**

The Entity/Relationship Model 15

2942C01.qxd 7/11/01 5:12 PM Page 15

http://www.sybex.com

Recursive Relationship

A recursive relationship is an epiphenomenon of a one-to-one or one-to-
many relationship. A relationship is recursive when the source entity and
the destination entity are the same. For example, every employee reports to
his/her manager. But the manager is an employee, too. A recursive
relationship is illustrated in Figure 1.11.

F I G U R E 1 . 1 1 A recursive relationship

The previous figure shows that every employee reports to zero, one, or
many employees. This kind of relationship is very easy to handle, since it is
totally compatible with the relation model and SQL Server 2000.

Keys

Key attributes play a “key” role in relationships and in the relational
model. There are two major types of keys: primary and foreign. Let’s take
a look at what these keys are, what they are used for, and how they are
chosen.

Primary Key

The primary key is an attribute or a set of attributes identifying unique
instances of each entity. For example, the social security number identifies
every citizen of a country, or the invoice number identifies every invoice
created by a specific company. An entity may have multiple attributes or
sets of attributes that identify unique instances of each entity. Each of these
attributes or sets of attributes is called a candidate key. While an entity can
have more that one candidate key, it has only one primary key. The other
candidate keys are called alternate keys.

Employees

 *
reports to

16 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 16

http://www.sybex.com

If a key is made of multiple attributes, it is said to be composite.

Besides the fact of being an attribute or a set of attributes, a primary
key must have the following properties to uniquely identify every instance:

� Every attribute must have a value. That means that no attribute
composing the key can be NULL.

� The value of the key must be unique for every instance of the entity.
If the key is composite, every group of attribute values has to be
unique.

Some experts and gurus say that a primary key cannot be changed. In fact,
even if it is not a good practice to permit the modification of a primary key,
SQL Server 2000 permits it by default. You can forbid it by using triggers or
stored procedure, as we’ll discover in the following pages.

The choice of the primary key may be complex and tricky, when no
obvious choice is possible or when multiple choices are possible. Let’s look
at two examples: an employee and a customer. An employee can be identi-
fied by different attributes: the combination of his/her first name and last
name, his/her employee ID, or his/her social security number. In a small
company, the combination of the first and last names could be a good
choice, but in a medium or large company with thousands of employees
this combination may not be unique. The social security number is a per-
fect choice for every company because every employee has one prior to
his/her hiring. Now, the SSN may not be an identified or a necessary
attribute, so having an employee ID automatically attributed by the system
could be a good choice. Both attributes are candidate keys.

The customer can be identified by his/her ID or the combination of
his/her name, address, and ZIP code, or you can create an increment ID to
automatically identify the customer. The ID is not always known at record
creation time, and the combination of name, address, and ZIP code creates
quite a large key (that is containing too many attributes and too many
characters). The last choice is sometimes called an artificial key because it
has no real meaning to the entity, except being a unique identifier. The
need for an artificial key arises when no attributes are really suitable or
when the candidate keys seem too large.

The Entity/Relationship Model 17

2942C01.qxd 7/11/01 5:12 PM Page 17

http://www.sybex.com

SQL Server 2000 addresses the problem of artificial keys with identity prop-
erty and UNIQUEIDENTIFIER datatypes. Read more about this in Chapter 3:
Creating and Maintaining Tables.

In general, the primary key is identified in the ER by underlining the
name of the attributes that compose the key and optionally listing it at the
beginning of the attributes list (if other attributes are listed, of course). As
you can see, Figure 1.12 is Figure 1.10 with the primary keys.

F I G U R E 1 . 1 2 Defining the primary keys

Note that the primary key of the associate entity (Order Details) is a
composite key made of the primary keys of both parent entities. This is
generally the case in this many-to-many relationship situation, though the
primary key could be an artificial key, such as a counter.

SQL Server 2000 proposes to create a primary key through the primary key
constraint, enforcing the non-NULL and unique properties of such a key.
The creation of a primary key in SQL Server 2000 automatically creates an
index. The physical creation of a primary key is discussed in Chapter 4:
Implementing Data Integrity.

Primary keys are often noted as “PK” in diagrams. In SQL Server 2000,
they are defined with a small yellow key. Every entity should have a pri-
mary key. As we see in a following section, this is a basic requirement for
the first normal form.

Besides the primary key, the alternate keys can also be identified in the
ER diagram and the relational model. An alternate key is a candidate key,
so it may share the primary key characteristics: not NULL and uniqueness.

Orders ProductsOrder Details

is made of is referenced in
*

*OrderID OrderID
ProductID

ProductID

18 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 18

http://www.sybex.com

The alternate keys may be enforced in SQL Server 2000 using the unique
constraints or unique indexes. The physical creation of a unique constraint
is discussed in Chapter 4: Implementing Data Integrity, and the unique
indexes are discussed in Chapter 5: Creating and Maintaining Indexes.

Besides the identifying entity instances, the primary key and eventually
the alternate keys are used to define relationship source, linked to foreign
keys.

Foreign Key

A foreign key is an attribute or a set of attributes that identifies the child
side of a relationship. A foreign key is in fact the “migrating” primary key
(or alternate key) of the parent entity. For example, if a customer entity is
identified by a customer ID attribute, that customer ID attribute will be
found in the order entity, since a relationship exists between customer and
order. In Figure 1.13, the Orders entity is associated by one-to-many
relationships with three different entities.

F I G U R E 1 . 1 3 Primary and foreign keys

Customers EmployeesOrders

place manage*

*

*CustomerID OrderID EmployeeID

CustomerID
EmployeeID
ShipperID

Reports To

 *
reports to

Shippers

ShipperID

ship

The Entity/Relationship Model 19

2942C01.qxd 7/11/01 5:12 PM Page 19

http://www.sybex.com

The three non-key attributes of the Orders entity are “migrated” pri-
mary keys of the other entities. As you can see, discovering a foreign key is
a straightforward process, once you know every primary key and every
relationship.

A foreign key is linked to a primary or alternate key. In SQL Server 2000, a
relationship is created through declarative integrity, with what is called a
constraint. A relationship is created by declaring a foreign key constraint
referencing either a primary key constraint or a unique constraint (alternate
key) as the source.

To finish with relationships and foreign keys, the last notion is that of
the “identifying relationship.” This is particularly useful if you use an ER
design software like Visio 2000. A relationship is said to be identifying if
the primary key of a child entity contains all the attributes of a foreign key.
If the primary key of the child entity does not contain all the attributes of a
foreign key, then the relationship is non-identifying.

In Visio 2000, as soon as you create an identifying relationship, the foreign
key is automatically included in the primary key.

Figure 1.14 shows you an extract of the Entity/Relationship diagram of
the Northwind database.

You may be used to more complicated or more complete diagrams due
to the fact that only keys are listed here. Adding non-key attributes is a
subject of discussion between experts. Some say that they should be
included, other say they should not be. Depending on the complexity of
your model, you may create different models or different levels allowing
the display of non-key attributes.

20 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 20

http://www.sybex.com

F I G U R E 1 . 1 4 An extract of the ER model of the Northwind database

Visio 2000 and SQL Server 2000 let you customize the display of your ER
model so that you can declare every attribute but display only the ones
necessary to your analysis.

Before switching to the relational model of our database, let’s spend
some time with integrity. Integrity rules are essential to a database system,
assuring that your data is correct and consistent.

Customers EmployeesOrders

place manage
*

*

*

CustomerID OrderID EmployeeID

CustomerID
EmployeeID
ShipperID

Reports To

report to

Shippers

ShipperID

Order Details

OrderID

ProductID

Products

ProductsID

Shippers

ShipperID

Categories

CategoryID

ship

are
made of

are
referenced

in SupplierID
CategoryID

supply

*

*

*

are composed of

The Entity/Relationship Model 21

2942C01.qxd 7/11/01 5:12 PM Page 21

http://www.sybex.com

Adding Data Integrity Rules

Integrity is one of the cornerstones of the relational model and has been
over the years incorporated in every RDBMS (Relational Database Man-
agement System) on the market. There are four types of integrity:

� Domain integrity

� Entity integrity

� Referential integrity

� Enterprise integrity

Domain Integrity

A domain defines the possible values of an attribute. Domain integrity
rules govern these values. In a database system, the domain integrity is
defined by:

� The datatype and the length

� The NULL value acceptance

� The allowable values, through techniques like check constraints or
rules

� The default value

For example, if you define that the attribute Age, of an Employee entity,
is an integer, the value of every instance of that attribute must be numeric
and an integer. If you define this attribute as always positive, then a nega-
tive value is forbidden. The value of this attribute being mandatory indi-
cates that the attribute can be NULL. All these characteristics form the
domain integrity of this attribute.

Datatypes in a database system can be numerous. Over the years, the
storage need pushed RDBMS developers to introduce complex datatypes

Design attribute domain integrity. Considerations include

CHECK constraints, data types, and nullability.

� Specify scale and precision of allowable values for each attribute.

� Allow or prohibit NULL for each attribute.

� Specify allowable values for each attribute.

22 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 22

http://www.sybex.com

to handle any case. Generally, datatypes can be divided into four types of
attributes:

Character Character attributes may have a fixed or a variable length,
but the maximum length is precisely defined. For example, a ZIP code
may be an attribute of five-character length.

Numeric Numeric attributes can be integers of different lengths, or
they can be real figures. In a computer, a numeric attribute can be two
types of real figures: floating point and fixed point. For a floating point,
the number of decimals is not known and the figure can be rounded to
any decimal. For a fixed point, the architect defines the scale, which is
the maximum number of decimals, and the precision, which is the max-
imum number of digits of the number. With these “precise” real figures,
no rounding errors can occur. They are very useful for storing money
values (for example, storing in the same entity values in dollars, Euros,
and yen, up to the fourth decimal) or a precise decimal value.

Note that SQL Server 2000 proposes two “precise” real figures: numeric
and decimal. Before SQL Server 7, their internal implementation was a
little bit different. Since SQL Server 7, numeric and decimal figures are
synonyms.

Special Special attributes are, for example, datatypes like Boolean
(true or false), GUID (Globally Unique Identifier), or Variant. They
may be very useful for minimizing consumed space or providing
special features.

We cover these special datatypes in detail in Chapter 3: Creating and Main-
taining Tables.

Binary Binary attributes can be anything besides character, numeric,
and special types, such as a photograph, a sound, a file, a movie, and a
binary string. These attributes are stored in the database in their binary
format, without any modification. The RDBMS does not know what
these binary data are, but knows they are a flow of binary digits.

The Entity/Relationship Model 23

2942C01.qxd 7/11/01 5:12 PM Page 23

http://www.sybex.com

The datatypes depend precisely on the RDBMS that you are going to
use. But you can define in the conceptual model the global datatypes of
every attribute, allowing you to define the domain integrity. For example,
an attribute value can be implemented as one character allowing two val-
ues, Y and N, as a tiny integer allowing only 0 and 1, or as a bit, depend-
ing on the available features of your system. But you can define in the con-
ceptual and logical model phases that this attribute has to be Boolean.

Entity Integrity

The entity integrity states that every instance of an entity has to be
uniquely identified. The existence of the primary key is the core of the
entity integrity. If you defined a primary key for each entity, they follow
the entity integrity rule.

Referential Integrity

The referential integrity rules are enforced by the relationships between
entities. As a starting point, the referential integrity rules state that a child
instance cannot exist if there is no corresponding parent instance. For
example, an order cannot exist without a matching customer, or an order
detail cannot exist without the associated order.

Generally, referential integrity is defined by the following:

� You cannot delete a parent instance if one or many associated child
instances exist.

� You cannot insert a child instance if the associated parent instance
does not exist.

In other words: orphanage is impossible! Unfortunately, in the real world,
orphans exist. Referential integrity defines rules to manage orphanage:

� Insert a child instance rule.

� Delete a child instance rule.

� Update a primary key rule.

Insert Rules

The insert rules include the following:

Dependent A child instance can be inserted only if a matching parent
instance exists. This is generally the default rule.

24 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 24

http://www.sybex.com

Default A child instance can always be inserted. If no matching parent
exists, then the foreign key is set to the default value or to NULL.

Automatic A child instance can always be inserted. If no matching
parent exists, then one is created automatically.

No Effect A child instance can always be inserted, even if no matching
parent exists. This situation leads to no referential integrity and to data
inconsistency!

Customized A child instance can only be inserted if specific con-
straints are met. Depending on the existence of the matching parent
instance, the custom function will follow the Dependent, the Default,
the Automatic, or the No Effect rule.

Delete Rules

Delete rules include the following:

Restrict A parent instance can be deleted if and only if no matching
child instance exists. This is generally the default.

Cascade The deletion of a parent instance triggers automatically the
deletion of all matching child instances.

Default The deletion of a parent instance triggers the update of the
foreign key of all matching child instances to a default or a NULL
value.

No Effect A parent instance can always be deleted, regardless of the
existence of child instances. This situation leads to no referential
integrity and to data inconsistency!

Customized A parent instance can only be deleted if specific con-
straints are met. Depending on the existence of the matching child
instance(s), the custom function will follow the Cascade, the Default, or
the No Effect rule.

Update Rules

Update rules include the following:

Restrict A parent instance’s primary key cannot be updated if at least
one child instance exists. This is generally the default rule.

The Entity/Relationship Model 25

2942C01.qxd 7/11/01 5:12 PM Page 25

http://www.sybex.com

Cascade The update of a parent instance’s primary key triggers auto-
matically the update of the foreign key of all matching child instances to
the new value of the primary key.

Default The update of a parent instance’s primary key triggers the
update of the foreign key of all matching child instances to a default or
a NULL value.

No Effect A parent instance’s primary key can always be updated,
regardless of the existence of child instances. This situation leads to no
referential integrity and to data inconsistency!

Customized A parent instance’s primary key can only be updated if
specific constraints are met. Depending on the existence of the matching
child instance(s), the custom function will follow the Cascade, the
Default, or the No Effect rule.

In SQL Server 2000, only the Dependent insert rule, the Restrict or Cascade
delete rules, and the Restrict or Cascade update rules can be enforced with
foreign key and reference constraints.

Operation Order Issue

As a SQL Server freelance expert, you are called to design the new
customer relationship management system of Golf Line Inc., a small
company selling golf accessories through direct selling and the
Internet. Martha Jarvis, the CEO, wants to know the company’s cus-
tomers better. The golf players generally spend a lot of money on golf
accessories, and she wants to be able to know who these people are,
what they like and dislike, how much they spend every year, and so on.

You first meet Jon Albert, the in-house IT guy, who explains the
different existing systems. The invoicing database is an old Access
application, that slows down every day. So, you’ll need to incorporate
invoicing facilities into the new system. The product database is
managed by SQL Server. Every week, the in-house product manager
receives new products from different suppliers, and decides with

26 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 26

http://www.sybex.com

Martha which products to add to their catalog and those to take out.
You’ll need to use that product database in coordination with the new
application.

After a quick meeting with Martha and Jon, you are hired to design
and implement the new system. While designing it, you face classical
problems of relationship rules. The first one deals with the
Customer/Order relationship. You cannot create an order if matching
customers does not exist, and you cannot delete a customer with
matching orders.

You think about the Insert order situation. While entering a new order
in the system, what happens if the customer does not exist? Sure, the
front-end application will force the user to choose the customer first,
but that situation could happen during batch inserts. So, the order is
entered first and then the customer. If you decide to enforce the
Dependant insert rule, the order cannot be inserted. With the
Automatic insert rule, a new customer is automatically inserted,
allowing the order to be inserted. The last operation is the update of
this new customer.

Concerning the delete order, the problem may be a little more
complex. Martha told you she wanted to mail people who have not
ordered during the last six months, to be able to offer them special
discounts and promotions. But at the same time, she told you to get
rid of customers who have not been ordering for more than two years.
She wants to keep a live database. The problem is simple: if you
delete these customers, there will be inaccuracy in the orders, since
the customer ID of these customers do not exist anymore. The Restrict
delete rule does not work. If you implement the Cascade delete rule,
you are going to lose every order the customers placed and paid. So
you decide to implement a Customized delete rule: each time a
customer is “deleted” for aging reasons, it is moved to an archive
table, and the order is not impacted. This solution gives you the
advantage of keeping a table of live customers and keeping all the
information about the orders.

We all know that there are as many possible solutions to a problem as
there are the number of people you are asking for a solution. These rules

The Entity/Relationship Model 27

2942C01.qxd 7/11/01 5:12 PM Page 27

http://www.sybex.com

are there to meet all these possible solutions. Depending on your knowl-
edge of the skills of the architect, on the complexity of your solution, and
on the software you are using, you’ll choose whatever solution suits you.

Enterprise Integrity

The last type of integrity is enterprise integrity, also called business rules.
These rules, generally implemented through programmatic methods, like
stored procedures or triggers on the database server side, define the way
the company works. For example, you can state that a customer cannot
place a new order if he still owes more than $10,000, or that an order
greater than $200,000 has to be approved by the sales manager before
being shipped. Enterprise integrity is generally not defined in the data
model, but rather in the function model.

The Relational Model and the
Normalization Process

So far, we have discussed the conceptual model of our database,
creating the ER model, entities, relationships, attributes, and attribute
properties. It is now time to skip to the logical model, creating what is
called the relational model. The relational model was first introduced by
E.F. Codd in 1970, while he was a researcher at IBM. At that time, this
model was revolutionary in the database world. In the relational model,
two-dimensional tables represent data. Each table refers directly to an
event, a person, and an object, like the entities we were talking about in
the previous pages. In this model, a database is a collection of tables.

The organization of these tables is called the logical model, or logical
view. The physical model, or physical view, is the real way data are stored
in the database system that may differ from one software to another.

Define entities. Considerations include entity composition

and normalization.

� Specify degree of normalization.

28 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 28

http://www.sybex.com

The physical model will be discussed in Chapter 2: Database Physical
Modeling.

Going from the ER model to the relational model is very easy, since the
first step is only a name change. Table 1.1 gives you the main differences
between the main database elements, depending on the model or the for-
mal names.

TA B L E 1 . 1 Name Differences of Database Elements

ER Model Relational Model Formal Name Physical Model

Entity Table Relation Table
Entity Instance Row Tuple Record
Attribute Column Attribute Field

No real formal representation of the logical model exists, except the one
proposed by the ER model. So, you just transform entities in a table and
attributes in a column, and the diagram remains the same. Let’s first take a
look at the definition of the relational table.

The Relational Table

A relational table matches an ER entity. It defines the logical
representation of the data and follows six rules:

Every column is atomic. This is definitely one important rule as far as
relational tables are concerned. Being atomic means that a column con-
tains only one value that cannot be broken into smaller pieces.

Atomicity examples are included in the section “First Normal Form” below.

Each column has a unique name. Each column matches an attribute,
and must have a unique name within a table. Two different columns
belonging to two different tables can have the same name.

The Relational Model and the Normalization Process 29

2942C01.qxd 7/11/01 5:12 PM Page 29

http://www.sybex.com

Every value of a specific column is the same type. For the relational
model, this rule means that every value of a column belongs to the same
domain, and respects the domain integrity rule.

There are no duplicate rows. Each row is identified by a primary key,
assuring its uniqueness. This rule states that every row can be accessed
just by knowing its primary key.

The rows are unordered. The physical order of rows is meaningless.
This property guarantees that the rows can be sorted in different ways,
depending on what you need.

The columns are unordered. As with the rows, column order is mean-
ingless. This property guarantees you can query the column of a table in
the order you wish.

SQL Server 2000, like many other RDBMS, allows you to create tables with-
out primary keys and with non-atomic columns. You can drive your car at
120 MPH downtown, but is it really a good idea? Concerning computer the-
ory, I do not know a lot of things that have lasted more than 30 years, like
the relational model. Therefore, it must be a good theory to still be the basis
for RDBMS.

As you see, moving from the ER model to the relational model is
straightforward if you just follow the previous rules. Nevertheless, while
building our logical design, we did not really care about rows. If we start
thinking about what happens when we “insert” data into the model, we
may discover that we have duplicates, or information redundancy, which is
information existing in more than one occurrence. That’s where the nor-
malization process arrives. Normalizing data is the process of eliminating
duplicated data by defining keys and creating new relationships and new
entities.

Like ER modeling, the normalization process is mathematical and quite
natural. A lot of database architects normalize their data without knowing
the formal rules. Once you know them, you may find this process quite
complex, but in fact, it’s straightforward if you use real-world data.

Each step of the normalization process starts with your logical model
and ends with a new, normalized model. Each of these models has a name:
First Normal Form, Second Normal Form, and so on. The model can

30 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 30

http://www.sybex.com

include up to five normal forms (and even six if we consider the Boyce-
Codd Normal Form), but it’s been a common practice to stop at the Third
Normal Form. In addition, the Microsoft Exam does not address normal
forms beyond the third. In the following section, we will explain in detail
how to get from a non-normalized model to the Third Normal Form and
give you hints about the other three forms.

Normal Forms

Normal form theory is based on functional dependency between columns.
Column A is said to be functionally dependent on column B if each value
of B is associated with only one value of A. For example, an employee’s
last name is functionally dependent on the employee’s ID. Knowing an ID,
you are guaranteed to know the employee’s last name. In a relational table,
every column must be dependent on the primary key. As you will see, this
rule governs the normal forms.

Another concept is the full functional dependency. This concerns com-
posite keys. Column A is said to be fully functionally dependent on B (B
being a composite key) if A is functionally dependent on B and not on any
subset of B. In other words, the whole primary key is necessary to accu-
rately identify column A’s value. If this value can be identified accurately
with only a few columns from the primary key, then A is not fully func-
tionally dependent on the primary key.

Functional dependencies may be represented with the following
notation:

B → A

This means A is functionally dependent on B, or knowing a value of B
you know the matching value of A.

If A is functionally dependent on B, we also say that A is a determinant of B.

The goal of normal forms is to remove redundant data from relational
tables by splitting the tables into smaller tables, without losing any data.
It is necessary that the decomposition is lossless. That means that you can
easily come back to the base table by combining the new created tables
with a join.

The Relational Model and the Normalization Process 31

2942C01.qxd 7/11/01 5:12 PM Page 31

http://www.sybex.com

First Normal Form

A relational table is in First Normal Form (1NF) if:

� It has a primary key.

� Each column is atomic.

� There is no repeating group of columns.

As you can see, the rules have nothing to do with redundancy, but
almost follow some of the rules of relational tables. In fact, a table is said
to be relational if it is in 1NF.

You should now understand the principle of the primary. So, let’s have a
quick look at atomicity of columns. Imagine we create a table listing
authors and the books they have written. This is shown in Figure 1.15.

F I G U R E 1 . 1 5 Non-atomic column

The Titles column can contain multiple values. For example, author
213-46-8915 wrote two books. He co-authored one of them with author
409-56-7008 (The Busy Executive’s Database Guide). It may become very
difficult to query such a table and find information about a specific book.
The first solution that comes to mind is to split the Titles column into two
columns, as shown in Figure 1.16.

32 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 32

http://www.sybex.com

F I G U R E 1 . 1 6 Repeating group of columns

The solution addresses the issue of atomicity, but does not solve the
query problem. It may be difficult, for example, to find if a specific title
has been written by one or many authors, or to know the number of
co-authors of one title. Worse, what if an author writes a third title?
Where are you going to store it? Well, you could create a third Title
column. But the problem would occur for the fourth, the fifth, and so
on. Furthermore, even if you create 20 Title columns, it would be a
waste of space for authors who only wrote one or two books.

If you want to put this table in 1NF, you could introduce a new column,
title_id, identifying each book, and create a composite primary key
(Figure 1.17).

F I G U R E 1 . 1 7 Table in 1NF

The Relational Model and the Normalization Process 33

2942C01.qxd 7/11/01 5:12 PM Page 33

http://www.sybex.com

Now our table is in First Normal Form, since a primary key identifies
every row, and every column is atomic. The problems we talked about are
now solved: an author can write as many books he wishes, and it’s simple
to group the table by title to list every co-author.

Let’s use a more complex table to uncover problems that could arise
with a table in 1NF. The table in Figure 1.18 illustrates the entity described
by the following:

� An author writes one or many books.

� Books are published by one publisher only.

� Books may be written by many authors, the royalties being shared
amongst co-authors.

� Each publisher’s head office is in a particular city.

� Every publisher may publish one or more books.

F I G U R E 1 . 1 8 Royalties Table in First Normal Form

The Royalties relational table, shown in Figure 1.18, is already in First
Normal Form. Nevertheless, it contains redundant data. For example, the
publisher_id or the title is repeated. Redundancy may cause anomalies dur-
ing data insertion, deletion, or update. For example:

� You cannot insert a new publisher until it has published at least one
book.

� If you delete a row, you are deleting information about an author
and a book, and you lose information about the publisher.

34 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 34

http://www.sybex.com

� If you update the city of a publisher, you have to update every row
of the author who has been published by this publisher.

We have to decompose this table to achieve Second Normal Form.

Second Normal Form

A relational table is in Second Normal Form (2NF) if:

� It is in 1NF.

� Every non-key column is fully functionally dependent on the
primary key.

In Figure 1.18, the Royalties table is in 1NF but not in 2NF because the
columns title and publisher_id depend only on the title_id and not on the
key (au_id, title_id). You can easily establish this fact if you study the func-
tional dependencies of the table:

(au_id, title_id)→ royaltyper

title_id→ pub_name, city

pub_name→ city

So, two non-key columns are not fully functionally dependent on the
primary key. That is, they do not depend on the entire primary key, but
only on one of its subsets. Decomposing a table in 1NF to achieve 2NF is a
logical process:

1. Identify all the determinant parts of the primary key and their
dependant columns.

2. Create a new table from every determinant and their dependant
columns.

3. The determinant becomes the primary key of the new table.

4. Delete the dependant columns from the source table. Do not delete
the determinant, since it will become the foreign key.

You may rename the source table if you wish to keep meaningful infor-
mation. To transform the Royalties table to 2NF, we create a new table,
named Titles, with the columns title_id, pub_name, and city. Title_id
becomes the primary key of this new table (Figure 1.19).

The Relational Model and the Normalization Process 35

2942C01.qxd 7/11/01 5:12 PM Page 35

http://www.sybex.com

F I G U R E 1 . 1 9 The new Titles and Royalties tables in Second Normal Form

Though the tables are in 2NF, update anomalies can still occur. For
example:

� You cannot insert a new publisher if you do not know the title_id of
at least one of the books published.

� If you delete a row in the Titles table, you lose the information
about the publisher at the same time. A publisher may disappear if
you delete its last published book referenced in the table.

To avoid these anomalies, the Titles table should be decomposed to
achieve the Third Normal Form.

Third Normal Form

A relational table is in Third Normal Form (3NF) if:

� It is in 2NF.

36 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 36

http://www.sybex.com

� Every non-key column is functionally dependent only on the pri-
mary key. In other words, a non-key column cannot be dependent
on another non-key column.

In our example, the Royalties table is already in 3NF because the col-
umn royaltyper depends on both columns of the primary key: the royalty
percentage attributed to an author depends on the author and on the
book. Conversely, the table Titles is in 2NF but not in 3NF because the
city column may be determined both by the publisher name (pub_name)
and by the primary key. The functional dependencies of the table show this
straightforward situation:

title_id→ pub_name

title_id→ city

pub_name→ city

The dependency between title_id and city is called transitive dependency. If
title_id→ pub_name and pub_name→ city, then title_id→ city.

This relation table is nonetheless in 2NF because city is functionally
dependent on the primary key. A table can be decomposed to achieve 3NF
by doing the following:

1. Identify all the determinants amongst non-key columns and their
dependent columns.

2. Create a new table from every determinant identified and their
dependent columns. The determinant becomes the primary key of
the new table.

3. Delete the dependent columns from the source table. Do not delete
the determinant, since it will become the foreign key.

To achieve Third Normal Form in our example, we create a third table,
called Publishers, containing pub_name and city, with pub_name becom-
ing its primary key and deleting city from the Titles table (Figure 1.20).

The Relational Model and the Normalization Process 37

2942C01.qxd 7/11/01 5:12 PM Page 37

http://www.sybex.com

F I G U R E 1 . 2 0 Publishers and Titles tables in Third Normal Form

Once in Third Normal Form, all the anomalies we encountered so far
disappear:

� You can insert a new publisher even if it has not published a book.

� If you delete a royalty, you are not losing information about the
publisher.

� The city of a publisher has to be updated in only one place.

� You may delete a row in the Titles table without simultaneously
losing the information about the publisher.

The normalized logical model of our database is illustrated in
Figure 1.21. It contains the three tables with the relationships and the
keys.

F I G U R E 1 . 2 1 The normalized logical model

Publishers RoyaltiesTitles

publishes generates
* *

pub_name title_id au_id

title_idpub_name
city

royaltyper

city

38 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 38

http://www.sybex.com

3NF has many advantages. Amongst them, we find:

� Better data consistency.

� Data space is saved, because data occurs only once.

� Fewer anomalies.

In 99.99 percent of cases, 3NF is enough. Having achieved 3NF, you
may have achieved higher normalization. Nevertheless, after E.F. Codd
defined the first three normal forms, some gurus found issues in it. So,
higher normal forms have been introduced. Let’s have a very quick look
at these higher forms.

Advanced Normalization

The database community generally accepts three other levels of normal
forms. These levels concern tables containing at least three columns that
are all keys. These normal forms are the following:

Boyce/Codd Normal Form Boyce/Codd Normal Form (BCNF) is a
more precise version of the 3NF. It concerns a table that contains many
composite overlapping candidate keys and is based on the concept of
determinants. A relational table is in BCNF if and only if every
determinant is a candidate key.

Review the definition of determinant and candidate key in the previous
pages.

Fourth Normal Form Fourth Normal Form (4NF) is based on the con-
cept of multivalued dependency (MVD). A MVD can occur in a table
containing at least three columns. If one column has multiple rows
whose values are matching another column value of a single row, then
there is a MVD. A table is in 4NF if it is in BCNF and if every MVD is
also functionally dependent.

The Relational Model and the Normalization Process 39

2942C01.qxd 7/11/01 5:12 PM Page 39

http://www.sybex.com

MVD is noted as ->>. A->>B means A multidetermines B. Given a table with
three columns—A, B, and C—if a set of B values matching a pair of A and C
values depends only on the A value and not on the C value, then A->>B.

Fifth Normal Form Fifth Normal Form (5NF) is based on the concept
of join dependencies. Join dependency means that if a table is being
decomposed into three or more tables, it can be joined again to retain
its original state. A table is said to be in 5NF if it cannot be decomposed
into smaller tables without the loss of data. In other words, if you add a
row to a table that is not in 5NF, and if you decompose this table into
smaller tables and join these tables again, the result you obtain contains
spurious data.

If you are interested in going further than 5NF, I recommend that you read
An Introduction to Database Systems, by Chris Date (Addison Wesley, 7th

Edition, 1999). It’s a little bit academic, but one of the best books on data-
base theory.

You may have thrown your book away after reading the definitions of
these last normal forms. This is really complicated material. Lots of data-
base specialists, if not all them, agree on the fact that most of the real-life
tables in 3NF are also in 4NF and 5NF, so achieving the 3NF is the only
requirement for a database. There may be less than a tenth of a percent of
tables that need a real 4NF or 5NF analysis.

3NF guaranties that almost no redundancy remains in your database.
But is it a good idea? While the situation is theoretically ideal, it may
become unusable due to the number of tables and necessary joins to
retrieve specific information. So, while we’re at it, let’s introduce redun-
dancy into your 3NF database again!

40 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 40

http://www.sybex.com

The Denormalization Process

The whole database community agrees on the 3NF requirement for a
database. Nevertheless, if the result of the 3NF is the total or almost total
elimination of data redundancy, it can lead to poor performance. Consider
the relational model illustrated in Figure 1.22, directly extracted from the
Northwind database.

F I G U R E 1 . 2 2 Relational model in 3NF

If you want to calculate the total turnover realized with a specific cus-
tomer, you must write a query that joins the three tables, calculate the
amount of every order detail, and total all the amounts. That query will
consume quite a lot of CPU time. Now consider adding the field Total-
Amount to the table Orders. We obtain the relational model illustrated in
Figure 1.23.

Customers Order DetailsOrders

places

contains

*

*

CustomerID OrderID OrderID

ProductIDCustomerID
EmployeeID
OrderDate
RequiredDate
ShippedDate
ShipVia
Freight
ShipName
ShipAddress
ShipCity
ShipRegion
ShipPostalCode
ShipCountry

UnitPrice
Quantity
Discount

CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone
Fax

Define entities. Considerations include entity composition

and normalization.

� Specify degree of normalization.

The Denormalization Process 41

2942C01.qxd 7/11/01 5:12 PM Page 41

http://www.sybex.com

F I G U R E 1 . 2 3 Introducing a redundant calculated field

In Figure 1.23, the CompanyName column is required, which is why is it
bolded. All the other columns allow the NULL value.

Now, when you want to calculate the total turnover realized with a spe-
cific customer, you just have to join two tables and calculate a sum. You
could even add a field Total Turnover in the Customers table, if you need
frequent access to this information. The global idea of denormalization is
presented in this example: introducing redundancy to improve data access
performance.

While denormalization has advantages, it also has drawbacks, the worst
being the maintenance of redundant data. In the previous example, each
time an order detail is inserted, the total amount of the order has to be
calculated and updated in the order table, or in the customer table if you
decided to store it with the customer’s data. Data integrity is endangered
by denormalization, and update performance may decrease.

Data integrity is endangered because you have to guarantee that the
redundant data are up to date. For example, you may decide that the
Total Turnover column in the Customers table should be updated every
night by a batch process recalculating every value, or that its value should

Customers Orders

places
*

CustomerID OrderID

CustomerID
EmployeeID
OrderDate
TotalAmount
RequiredDate
ShippedDate
ShipVia
Freight
ShipName
ShipAddress
ShipCity
ShipRegion
ShipPostalCode
ShipCountry

CompanyName
ContactName
ContactTitle
Address
City
Region
PostalCode
Country
Phone
Fax

42 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 42

http://www.sybex.com

be calculated on the fly and cross-checked every night to correct possible
inaccuracies. On the other hand, if you have to update the Customers table
each time you insert a new order, you slow your insert query. Is the redun-
dancy worth it?

Denormalization is a dangerous game and is generally more an art than
a science. The techniques that are presented in this chapter give you an
idea of what you can do with denormalization. Each time you denormalize
your model, you must always thoroughly document your choice.

One last word before switching to the denormalization techniques: some
database architects or consultants always denormalize a model or will
advise you to do so, because they say that a model in 3NF cannot perform
well. This is not necessarily true. Never predict performance problems
before implementing the physical model because software and hardware
have progressed, and what was true five or six years ago may not necessar-
ily be true today. Also, every database is unique, and what is true for one
system may be not be true for another; the volume of data, the number of
users, the type of the server, of the network, the software used, and so on
could be different. It creates a combination that has to be studied precisely
before making any decision concerning de-normalization. Never denormal-
ize before implementing your physical model and the first performance test
is under full load.

We will cover the following denormalization techniques in the upcom-
ing sections:

� Adding a redundant column

� Adding a derived column

� Partitioning tables

Adding a Redundant Column

Adding a redundant column is probably the most straightforward and
logical denormalization technique. It consists of copying a column in a
child table to a parent table. It generally violates the Third Normal Form,
but it does help some queries to avoid a join. In the Pubs database,
consider the Titles and Roysched tables (Figure 1.24).

The Denormalization Process 43

2942C01.qxd 7/11/01 5:12 PM Page 43

http://www.sybex.com

F I G U R E 1 . 2 4 Titles and Roysched tables

The Roysched table contains the royalty range for each title. For exam-
ple, if the sales of title BU1032 are between 0 and 5000, then the royalty is
10 percent, and above 5001 it is 12 percent. Now to avoid querying that
table, the current value of royalty is inserted in the Titles table. Now, that
table is not achieving 3NF anymore because the royalty column is
functionally dependent on the title_id and ytd_sales columns. This column
is not part of the primary key, so the table is not in 3NF anymore.

With the loss of the 3NF, anomalies can occur. Here are two examples:

� If a user updates the value of the royalty column in the Roysched
table, he/she has to update the matching record in the Titles tables;
otherwise, data is inconsistent.

� If a user updates the value of the ytd_sales column in the Titles
table, he/she has to look for the corresponding royalty value in the
Roysched tables to update the royalty column.

To avoid these two situations, it is possible to create an update trigger
on each table to track updates of the royalty column of the Roysched table
and of the ytd_sales column of the Titles table. The trigger is a piece of
code fired during the update of one of the columns. Compared to a single
update, the trigger slows the overall update. That loss of performance may
be a minor drawback compared to the fact that each time a title is queried,
the user retrieves its royalty value without having to query another table or
to join that table.

royschedtitles

title_id title_id
lorange
hirangetitle

type
pub_id
price
advance
royalty
ytd_sales
notes
pubdate

royalty

44 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 44

http://www.sybex.com

Triggers are discussed in Chapter 6: Creating and Maintaining Database
Objects.

Adding a Derived Column

Another useful technique of denormalization is the use of derived columns.
A derived column is a column whose values are calculated from the values
of one or many other columns of the same table or other tables. Adding
such a column generally violates the 3NF, since this column is functionally
dependent on non-key columns.

The simplest example is the computed column: In a Sales table, you
store the amount, the sales tax, and the net price, calculated from the
amount and the sales tax.

The Titles and Sales table in Figure 1.25 illustrates a more complicated
example.

F I G U R E 1 . 2 5 Titles and Sales table

Each time you wish to know the year-to-date sales of a given book, you
need to query the Sales table and total the values of the qty column for
that book. It may be a long-running query if the sales table is big. To avoid
querying that table and totaling the values, the architect introduced the
ytd_sales column in the Titles table. Now each time you query the sales of
a given book, you just have to query the Titles column. Of course, as for

salestitles

title_id stor_id

ord_num

title_id
title
type
pub_id
price
advance
royalty
ytd_sales
notes
pubdate

ord_date
qty
payterms

The Denormalization Process 45

2942C01.qxd 7/11/01 5:12 PM Page 45

http://www.sybex.com

the redundant column, the value of that column needs to be maintained
dynamically to be consistent and accurate.

You can add triggers to the Sales table to update the ytd_sales column
of the Titles table each time a sales record is inserted, deleted, or updated.
This trigger will lower the performance and inserts, deletes, and updates.
But again, the performance gain of the data retrieval must outweigh the
performance loss of the insert, delete, and update operations.

Partitioning Tables

Partitioning a table is not really a denormalizing technique, but it is worth
mentioning because it can address particular performance issues. There are
two ways to partition a table: horizontally or vertically.

Vertical Partitioning

Vertical partitioning consists of cutting the table in two or more tables by
moving entire columns. Consider the example illustrated in Figure 1.26.

F I G U R E 1 . 2 6 Vertical partitioning

The Publishers table has been split into two tables. One (Publishers)
contains all the “basic” information, and the other (Pub_info) contains the
logo and the pr_info field. This split has been realized for two reasons:

� There is not a logo and a description for every publisher, so it
makes more sense to split mandatory information from optional
information.

� The fields in the Pub_info table are large binary objects (BLOB), and
the architect may want to store them in another disk or “table
space.”

Publishers pub_info

has
1

pub_id pub_id

logo
pr_info

pub_name
city
state
country

46 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 46

http://www.sybex.com

SQL Server 2000 allows you to store text and image columns on another
filegroup thanks to the clause TEXTIMAGE_ON of the CREATE TABLE state-
ment. See Chapter 2: Database Physical Modeling, for more information on
the CREATE TABLE statement.

Another interesting point concerning vertical partitioning is the table
width and the number of records per page. In SQL Server 2000, an 8K
page contains a certain number of records. The wider the table, the fewer
the records per page. The cache hit ratio may increase, the number of I/O
per operation may lower, and the SQL Server cache may be well used.

In splitting a table for performance purposes, you should consider keep-
ing the columns that are accessed more frequently in the “master” table
and moving the other columns to one or more “slave” tables. Then, a one-
to-one relationship between the master and each slave table guarantees the
referential integrity.

Horizontal Partitioning

Another classic way of partitioning a table consists of moving a certain
number of rows to one or many other tables. This is done during
archiving, for example. If you consider a Sales table, you can imagine that
every July the sales from July of last year to June of this year are archived.
This technique is fine to keep small tables for the transactional system,
while still allowing access to the archived data.

A view can be used to simulate a full view of archived and live data. With
the new feature of partitioned view of SQL Server 2000, this technique
becomes very interesting to achieve scaling out.

Other examples can be found in real-world applications, like splitting
customers from prospects, active customers from customers who have not
placed an order for more than 12 months, and so on.

The Denormalization Process 47

2942C01.qxd 7/11/01 5:12 PM Page 47

http://www.sybex.com

Summary

This chapter is the only entirely theoretical one of the book. It may
be hard to remember all the terms and concepts we have learned here. But
it’s the kind of information you will use all your database life long, because
you cannot create a good database application without keeping these con-
cepts in mind.

In this chapter, we covered the following:

� Designing a database system

� The Entity/Relationship model

� The relational model and the normalization process

� The denormalization process

Exam Essentials

Know what makes a good database design. In the exam, you will be
judged on your real-world knowledge. Knowing what makes a good
database design will enable you to focus on the technical questions and
tricks.

Identify entities and attributes. The basis of ER modeling is the identi-
fication of entities and attributes. Having a thorough knowledge of
modeling will help you criticize the way a database is designed and will
help you to create a good design.

Identify the types of relationships. Even if one-to-one or one-to-many
relationships are obvious, you should know how to manage every type
of relationship, even many-to-many.

Know how to define key attributes. Candidate keys, primary keys,
and alternate keys are the identification keys of your entities. Foreign
keys are the basis of relationships. Defining them will allow you to
enforce entity and referential integrity.

48 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 48

http://www.sybex.com

Identify precisely all the integrity types. Integrity is the source of cor-
rect data. Know the four types of integrity, what they are used for, and
how they can be enforced to design a precise and optimal ER model.

Know how to normalize and denormalize an ER model. You should
have no problems with normal forms, at least up to the third. Denor-
malization techniques are commonly used and can appear in the exam.

Key Terms

Before you take the exam, be certain you are familiar with the fol-
lowing terms:

alternate keys character attributes
artificial key Integrity
attribute key attribute
binary attributes logical design
business rules logical model
candidate key many-to-many relationship
cardinality non-key attribute
conceptual design normal form
denormalization Normal form theory
derived column normalization process
determinant Numeric attributes
direction one-to-many relationship
domain one-to-one relationship
domain integrity physical model
enterprise integrity primary key
entity referential integrity
entity integrity Relational Database Manage-
ER model ment Systems (RDBMS)
existence relational model
fixed point relational table
floating point relationship
foreign key special attributes
full functional dependency transitive dependency

Key Terms 49

2942C01.qxd 7/11/01 5:12 PM Page 49

http://www.sybex.com

Review Questions

1. You are a developer for World Wide Importers. You are designing
the new shipment tracking system. You print your ER model to
show some selected users during the next phasing meeting (see
graphic).

50 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 50

http://www.sybex.com

What should you add to your model to ensure a useful meeting with
your end-users?

A. Attributes

B. Entities

C. Datatypes

D. Relationships

2. Build a list: As a database consultant, you have been asked to
optimize a database model designed by the IT department of an
insurance company. The model comprises just entities and attributes.
You should follow a certain number of steps before producing an
optimized ready-to-implement model. What is the proper sequence
of steps to produce this model? Some elements may not be part of
the sequence.

Define primary keys

Denormalize the model

Define attributes

Normalize the model

Define alternate keys

Define entities

Define relationships

3. You are a developer for World Wide Importers. One developer of
your team is working on the Products entity. Each product is
imported by one supplier only. You need to record information on
every product and on every supplier. Your developer shows you the
structure of the table he designed and a data sample (see graphics on
next page).

Review Questions 51

2942C01.qxd 7/16/01 5:02 PM Page 51

http://www.sybex.com

As a matter of fact, you discover that the table needs a little extra
work. In which normal form is it?

A. First

B. Second

C. Third

D. Boyce-Codd

4. You are developing a new customer care system for an insurance
company. Every customer will be assigned a unique customer ID
made of a combination of 7 characters and 8 figures. You expect to
have over one million customers, each signing an average of 2.5
policies. Furthermore, it is important to track every customer’s
questions and complaints. You expect over 10 questions and
complaints per customer. You want to minimize space used in your
database. What primary key are you going to define for the
customers table to minimize space and programming tasks?

A. An integer column, defined with an auto-numbering property

B. The customer ID

52 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 52

http://www.sybex.com

C. A unique identifier column, designed to generate a new globally
unique ID for every row

D. A big integer column, defined with an auto-numbering property

5. You are a database developer for a banking corporation. Recently,
one of the counter clerks “lost” a customer. This customer went to
the bank for a deposit, but the counter clerk could not find her by
her customer ID. In fact, after a few minutes’ search, he found her,
but with a wrong ID. After looking at the audit tables, it seemed
another counter clerk accidentally modified the customer ID. You
need to forbid the modification of the primary key to avoid any
other “loss” like this. In SQL Server 2000, what is the fastest way to
implement this feature, without modifying the existing front-end
application?

A. Alter the table to enable the CHECK PRIMARY KEY option.

B. Alter the table to disable the MODIFY PRIMARY KEY option.

C. Add an AFTER UPDATE trigger to the table that rolls back the
transaction in case of modification of the primary key value.

D. It is not possible to implement this feature in SQL Server.

6. The database application you developed last year for the insurance
company you are working with was performing well, until last
month when some users started to complain about some long-
running queries. Last month your company acquired another
insurance company and inserted all its existing customers and
policies into the database, increasing the volume of data by a
magnitude of 3. You have been asked to find the cheapest solution
to this performance problem before the end of the week. After
having analyzed what was happening, you have observed that only
10 percent of the data is used 90 percent of the time. In fact, data
older than 2 years are selected only in 0.5 percent of the time. What
is the solution you are going to implement?

A. Buy a new RAID 5 subsystem and spread the data all over the
disks.

Review Questions 53

2942C01.qxd 7/11/01 5:12 PM Page 53

http://www.sybex.com

B. Change the server to a new 4-way machine.

C. It is not possible to enhance performance before the end of the
week. You need more time.

D. Split the data horizontally and store the archive table on another
disk.

7. The database application you developed last year for the regional
bank you are working with was performing well, until last month
when some users started to complain about some long-running
queries. Last month your company acquired another bank and
inserted all its existing customers and accounts into the database,
increasing the volume of data by a magnitude of 5. You have been
asked to find the cheapest solution to this performance problem
before the end of the week. After having analyzed what was
happening, you have observed that each time an employee was
gaining access to a customer record, the system was calculating the
amount of money of his account based on all the money transferred
since the beginning of the year. What is the solution you are going to
implement to hasten the access to the customer record?

A. Create a stored procedure that calculates the amount on the fly.

B. Denormalize the customer table to include the calculated amount
value, updated through a batch that runs every night.

C. Index the transfer table to fasten the join with the customers
table.

D. Create a temporary table in tempdb that stores the account’s
amount and query this table each time a customer is queried.

8. You are helping your town library develop their new computer
system to track members, books, and borrowed books. The manager
of the library is a computer addict but knows little of ER modeling.
She designed a Member table to store every member, assigning each
a unique ID. She designed a Book table to store every book of the
library, and a Borrowed table to assign every borrowed book to
members. Each member can only borrow three books at a time, can

54 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 54

http://www.sybex.com

keep them up to four weeks and must bring them back at the same
time. The proposed design is illustrated in the following graphic:

What level of normal form is reached by this model?

A. None

B. 1NF

C. 2NF

D. 3NF

9. You are a SQL Server developer for Northwind Traders. Your users
complain about performance of the application when they query the
order amount per employee name and per customer name. After a
quick investigation, you discover that this is due to the number of
tables joined to calculate the amount. Your logical design is
represented in the graphic on the next page.

Review Questions 55

2942C01.qxd 7/11/01 5:12 PM Page 55

http://www.sybex.com

What can you do to optimize this query?

A. Create a new denormalized table containing the employee name,
the customer name, and the amount ordered, and create the
necessary trigger to maintain this table.

B. Create a stored procedure that performs the needed calculation.

C. Create new indexes on the Order Details table.

D. Create a view on the four tables.

10. You are a database developer for the local university. You need to
define a relationship between the students and the courses, knowing
a student can attend many courses and one course can be attended
by many students. You have the two entities illustrated in the
following graphic:

Students Courses

StudentID
FirstName
LastName

CourseID
CourseName

56 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 56

http://www.sybex.com

How can you implement this many-to-many relationship?

A. Insert a StudentID attribute in the Courses table and a CourseID
column in the Students table.

B. Create a new entity called StudentsCourses containing at least
two attributes, StudentID and CourseID, forming the primary
key.

C. Insert a StudentID attribute in the Course table.

D. Insert a CourseID attribute in the Students table.

11. One of the developers on your team asked you about a problem he
could not address. He needs to represent a hierarchy in the new HR
database. Every employee reports to a manager. Managers can
report to another manager and so on, up to the CEO. He explains to
you that there are five hierarchical levels in the company, so he
intends to create five entities representing every level. You think this
can lead to many problems, the first being the case of a promotion.
A promoted employee has to be moved from one level to an upper
level, and that could lead to consistency issues. What is the best
solution, using the ER model, to address such a hierarchy?

A. Use two tables, one containing the employee information and
one the hierarchy information.

B. It is impossible to address this problem in a relational database.

C. Keep a table for every hierarchical level and develop a series of
stored procedures to manage inserts, deletes, and updates.

D. Insert a ReportsTo column in the Employees table and create a
recursive relationship.

12. As an independent SQL Server expert, you have been chosen to
explain the ER modeling that the developers will to use to model the
needed data and business processes to users of the future loyalty
management system. You decide to define the basic objects of the
ER model. What are they? (Chose three.)

A. Entity

B. Relationship

C. Datatype

Review Questions 57

2942C01.qxd 7/11/01 5:12 PM Page 57

http://www.sybex.com

D. Attribute

E. Property

F. Columns

13. You are a SQL Server database developer for Northwind Traders.
You designed the Products, Categories, and Suppliers table
illustrated in the graphic below.

What is the level of normalization of your model?

A. 1NF

B. 2NF

C. 3NF

D. BCNF

14. You are designing a new procurement database for a regional bank.
While defining the suppliers and orders relationship, you are faced
with the choice of what has to be done when a supplier is deleted
from the database. You must propose all the SQL Server possible
declarative choices to your customer. What are they? (Choose all
that apply.)

A. Restrict: You cannot delete a supplier if it is linked with existing
orders.

B. No Effect: You can delete a supplier even if it is linked with
existing orders.

58 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 58

http://www.sybex.com

C. Default: All foreign keys are defined to a default value if the
matching primary key is deleted.

D. Cascade: Every order is deleted if the linked supplier is deleted.

15. You are a database developer for an insurance company. Every
insurance policy is managed by one and only one product manager.
One product manager can manage many policies. How can you
represent that information in the database?

A. Include the manager ID in the Policies entity.

B. Include the policy ID in the Managers entity.

C. Create a relationship entity formed by the policy ID and the
manager ID.

D. Include the manager ID in the Policies entity and the policy ID in
the Managers entity.

Answers to Review Questions

1. D. Attributes and entities are represented in the diagram. End-users
do not need to be know about datatypes, but they do need to know
about relationships to fully understand the links between entities.

2.

Defining primary keys first allows you to enforce entity integrity
and prepare the normalization process that is based on functional
dependency to the primary key. Normalizing the database leads
naturally to the definition of relationships. You will then have a
3NF model that you will only need to denormalize if needed.

Define primary keys

Normalize the model

Define relationships

Denormalize the model

Answers to Review Questions 59

2942C01.qxd 7/11/01 5:12 PM Page 59

http://www.sybex.com

3. B. Some non-key attributes depend on other non-key attributes. For
example, Country depends on the supplier name and product ID.
This is a transitive dependency: if you have the product ID, you can
find the supplier name, and once you get the supplier name, you
can find the supplier country. So, if you know the product ID, you
know the supplier country. Country is not functionally dependent
only on the primary key, but also on the Company Name.

4. A. For one million rows, the integer is sufficient (it goes up to more
than 2 billion) and will consume only 4 bytes per row instead of 15
for the customer ID, 16 for the unique identifier, and 8 for the big
integer.

5. C. Options A and B do not exist. C is the only way to do it without
modifying the programming logic.

6. D. The 3NF seems to be the problem in the sense that there is too
much data in the table and the machine is probably not suited for
that volume of data. So, the cheapest solution is to split the table
horizontally and store older data on another disk to minimize the
volume of data in memory.

7. B. This is a classic problem of heavy calculation on a frequently
accessed table. The only solution is to denormalize the table with a
column updated through a batch or a trigger, depending on the
frequency of inserts and deletes.

8. A. The Borrowing table contains a repeating group. To be in First
Normal Form, the table should only contain one BookID column,
not three.

9. A. Creating a new table will give the best results since the infor-
mation will be immediately available. However, the information
should be updated through synchronous or asynchronous
mechanisms.

60 Chapter 1 � Database Logical Modeling

2942C01.qxd 7/11/01 5:12 PM Page 60

http://www.sybex.com

10. B. The only way to implement a many-to-many relationship in ER
modeling is by creating a new entity made of, at least, the primary
keys of the linked entities.

11. D. This is the classical hierarchy problem. In such a case, the only
solution is a recursive relationship, which handles the hierarchy.

12. A, B, and D. ER stands for Entity-Relationship, and an entity is
made of attributes.

13. B. This is a tricky question. At first sight, the model is in 3NF, but
there is a transitive dependency in the Suppliers table: ContactTitle
depends on ContactName and not only on SupplierID. You should
introduce a Contacts table to be in 3NF.

14. A, B, and D. This is a tricky one. Options A and D are obvious, but
B is possible if you do not enforce the foreign key in the Orders
table. C is only possible through stored procedures or triggers.

15. A. This is a one-to-many relationship. Each policy can have only one
manager ID, so the manager ID must be part of the Policies table.

Answers to Review Questions 61

2942C01.qxd 7/11/01 5:12 PM Page 61

http://www.sybex.com

Database Physical
Modeling

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Create and alter databases. Considerations include file groups,

file placement, growth strategy, and space requirements.

� Specify space management parameters. Parameters
include autoshrink, growth increment, initial size, and
maxsize.

� Specify file group and file placement. Considerations
include logical and physical file placement.

� Specify transaction log placement. Considerations include
bulk load operations and performance.

Chapter

2

2942C02.qxd 7/11/01 5:13 PM Page 63

http://www.sybex.com

If you read the first chapter, you should now have a good under-
standing of a logical data model. Creating such a model is a hard task, and
some other hard tasks await you on your journey to database application.
The second milestone, after the logical design, is the physical design of the
database. Of course, it would be too easy if you needed only to create the
database, create the tables, and load the data to run your application!

If your purpose is to create a 2MB database, the job won’t be a really
tough one. But if you intend to implement a system with a size of over
1GB that is used as a classic client/server application or as a Web applica-
tion hit by dozens, hundreds, or thousands of users, a good physical design
is as critical as a good logical design.

In this chapter you will learn:

� How to create and manage a database

� How to manage data and log files

� What filegroups are and how they are used

� How to increase your system performance by setting up a good
physical design

Creating and Managing a Database

Database creation is a tricky process: It is a straightforward state-
ment hiding a massive complexity. Database creation is straightforward
because you can create a database just by giving it a name in SQL Enter-
prise Manager or by running a CREATE DATABASE statement. The massive
complexity of database creation lies in the database file management,
which is a SQL Server particularity that has to be known and understood
if you want to take advantage of it.

2942C02.qxd 7/11/01 5:13 PM Page 64

http://www.sybex.com

As is the case for many SQL Server operations, there are two ways to
create a database: with SQL Enterprise Manager or with Transact-SQL.
Let’s take a look at how to create a simple database, then we can go fur-
ther into its architecture.

Creating a Simple Database

To create a database with SQL Enterprise Manager, right-click the
Databases folder and choose New Database. The Database Properties
dialog box appears (Figure 2.1), allowing you to name the database.

F I G U R E 2 . 1 The Database Properties dialog box

To create a database with Transact-SQL, use the following statement:

CREATE DATABASE database_name

If you want to create the FakeDB database (as in Figure 2.1), run the
following statement in SQL Query Analyzer:

CREATE DATABASE FakeDB

Create and alter databases. Considerations include file

groups, file placement, growth strategy, and space

requirements.

Creating and Managing a Database 65

2942C02.qxd 7/11/01 5:13 PM Page 65

http://www.sybex.com

Of course, with these processes, SQL Server creates a database made of
default file size and placements. While this is useful for quick and dirty data-
bases, it is not the brightest idea for the next killer Internet Web site. The
default size of the log file is 1MB. The default size of the data file is that of
the model database.

Data and Log Files

A SQL Server database is made of at least two physical files: one data file
and one log file. The data file contains data and the log file contains the
transaction log (Figure 2.2).

It is no longer possible to create a database with the transaction log stored
in the data file as it was in versions of SQL Server before SQL Server 7.

F I G U R E 2 . 2 Data and log files

Database

data
.MDF or .NDF

Log
.LDF

66 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 66

http://www.sybex.com

While at least one data file and one log file are needed to create a data-
base, the database can span multiple data files and multiple log files. Data-
base files are of one of these three types:

� Primary data file (extension .MDF). A database must have one
.MDF file. The primary data file contains the database system tables
and user tables.

� Secondary data file (extension .NDF). A database can have up to
32,766 .NDF files. The secondary data files contain the user and
system data not stored in the primary data file. Secondary data files
are optional.

� Log file (extension .LDF). A database can have up to 32,766 .LDF
files. The log file contains the transaction log.

A SQL Server 2000 database can have up to 32,767 files of any type.

In SQL Enterprise Manager, the Database Properties dialog box allows
you to define one or more data files and log files. To define a data file
while creating a database in the Database Properties dialog box, follow
these steps:

1. Click the Data Files tab.

2. Enter a physical file location and file name.

3. Enter an initial file size in MB.

4. Define automatic growing options (they are defined in detail in the
“Size and Growth Options” section, later on in this chapter).

To define the log file(s) while creating a database, perform the same
actions as for the data file, but on the Transaction Log tab.

By default, data and log files are placed in the C:\Program
Files\Microsoft SQL Server\MSSQL\Data folder. If you installed named
instances and create the database on a named instance, replace MSSQL with
MSSQL$instancename.

Creating and Managing a Database 67

2942C02.qxd 7/11/01 5:13 PM Page 67

http://www.sybex.com

With Transact-SQL, use the following statement to define the files and
their attributes:

CREATE DATABASE database_name

ON

[([NAME = logical_file_name ,]

FILENAME = ‘physical_file_name’

[,SIZE = size]

[,MAXSIZE = { max_size | UNLIMITED }]

[,FILEGROWTH = growth_increment]) [,...n]]

[LOG ON

[([NAME = logical_file_name ,]

FILENAME = ‘os_file_name’

[,SIZE = size]

[,MAXSIZE = { max_size | UNLIMITED }]

[,FILEGROWTH = growth_increment])[,...n]]]

Listing 2.1 creates a 200MB database named FakeDB, composed of one
100MB primary data file, a 50MB secondary file, and a 50MB log file.

Listing 2.1: Create Database statement

CREATE DATABASE FakeDB

ON

(NAME = FakeDB_data1,

FILENAME = ‘d:\FakeDB_data1.mdf’,

SIZE = 100MB,

MAXSIZE = 1GB,

FILEGROWTH = 10MB),

(NAME = FakeDB_data2,

FILENAME = ‘d:\FakeDB_data2.mdf’,

SIZE = 50MB,

MAXSIZE = 1GB,

FILEGROWTH = 10MB)

LOG ON

(NAME = FakeDB_log,

FILENAME = ‘e:\FakeDB_log.ldf’,

SIZE = 50MB,

MAXSIZE = 2GB,

FILEGROWTH = 10%)

68 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 68

http://www.sybex.com

You can generate the database creation script with the Generate SQL
Scripts utility, even if you created your database graphically with SQL Enter-
prise Manager. Right-click the database in SQL Enterprise Manager, then
chose All Tasks ➢ Generate SQL Scripts. In the Generate SQL Scripts dialog
box, click the Options tab and check the Script database option. The gener-
ated script will contain the CREATE DATABASE statement.

Now you know a database is made of at least two files. It is easy to
guess the purpose of a data file, but it may be a little more complicated to
understand the purpose of the log file. It is essential, however, that you
fully understand the way it works and its uses in writing good SQL Server
applications.

First of all, every modification in a relational database management sys-
tem is (or may be) a transaction. A transaction is defined by the following
properties (referred to as the ACID properties):

Atomic All operations in a transaction are atomic, meaning if one
operation fails, the whole transaction fails.

Consistent Before the transaction, the database was in a consistent
state. After the transaction, it is back in a consistent state, but it may
have gone through an inconsistent state during the transaction. That is
why a transaction must comply with the third property, isolated.

Isolated A running transaction is isolated from the outside. Locking
provides this property.

Durable Once a transaction is validated (committed), the effects of the
transaction remain in the database forever. The transaction log provides
this property.

The transaction log records every modification made to a database:
from the INSERT, UPDATE, or DELETE operations to the data page alloca-
tion or file growth. In the following process, a modification query is any

Creating and Managing a Database 69

2942C02.qxd 7/11/01 5:13 PM Page 69

http://www.sybex.com

query or operation resulting in the modification of any part of the data-
base: its data or its physical structure. The following shows the overall
process (Figure 2.3):

1. The user or the system issues a modification query.

2. The query processor asks the cache manager if the page to update is
already in cache. If it is not, it is read from the disk and written into
cache.

3. The query processor writes the modification in memory.

4. At the same time, it writes the statement in the transaction log. For
example, if the operation is an UPDATE statement, it updates the data
in memory and writes the UPDATE statement in the log.

5. Once the query processor has the confirmation that the statement
has been written in the transaction log (COMMIT) on the disk, the
modification is over.

F I G U R E 2 . 3 Data Read and Write Log process

Note that once an operation is finished, its effect remains in the data
cache, but the statement is written in the transaction log on the disk. Now,
if you consider a one-million-row update is taking place, it is faster to
write the statement in the transaction log (one row) than to write each of
the one million rows.

Modification
operation Read data

Write log

Data

Log

70 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 70

http://www.sybex.com

The transaction log guaranties the Durable property of every transac-
tion, since it is on disk. Think of your database transaction log as your life
insurance. You should protect it. If you lose your data and your transac-
tion log at the same time, you lose your database. But if RAID 1 protects
your transaction log, for instance, a disk crash does not affect your system.
And, if you lose your data and not your transaction log (because it is on
another physical disk), you can recover what’s been done since the last
back up of your database thanks to your transaction log.

It is beyond of the scope of this book to describe the data guarding protec-
tion measures you should take to safeguard your data. This subject is a
requirement of exam 70-228: Installing, Configuring, and Administering
Microsoft® SQL Server™ 2000 Enterprise Edition. Refer to Sybex’s MCSE:
SQL Server 2000 Administration Study Guide for more information.

Remembering How Queries are Processed

Two things you should always remember while working with SQL:
Data modification is always done in memory and the transaction log is
constantly written to the disk. Developers often write stored
procedures or applications for SQL Server without knowing how
queries are processed. The same applies for database architects and
database administrators. A thorough understanding of the log
functions should be a prerequisite to develop for SQL Server. You do
not need to understand how a motor is working to drive a car, but you
do not know any Indy car driver who does not know exactly how his
engine works. A Certified SQL Developer is equivalent to the Indy car
driver. If he does not know how to drive, he will go directly into the
wall at the first curve.

There is an important question to ask yourself concerning the use of the
database files: If the modification is done in memory and the transaction
log is constantly written to the disk, when is the modification written to

Creating and Managing a Database 71

2942C02.qxd 7/11/01 5:13 PM Page 71

http://www.sybex.com

the disk? The answer is that it depends. In fact, the frequency that data is
written back to the disk depends on the activity of the database and the
memory available.

Two processes are in charge of writing back dirty pages (pages in mem-
ory that contain modified data) to the disk:

� The checkpoint process depends on the number of transactions writ-
ten in the transaction log.

� The lazy writer process depends on the available pages in cache.

For many developers and administrators, the checkpoint process
depends on a particular database option called recovery interval,
which depends on the activity of the database. By default in SQL Ser-
ver 2000, the recovery interval value is 0, meaning that in case of a failure
of SQL Server, each database will recover in less than one minute. If
SQL Server stops unexpectedly, the transaction logs will not be well
closed, and when SQL Server restarts, all the transactions since the last
checkpoint are replayed. This recovery process takes less than one minute
per database, with a recovery interval value of 0. But SQL Server bases its
evaluation of the “real” recovery process duration on the number of trans-
actions written in the transaction log. So every n transactions, the dirty
pages are written to the disk but still remain in memory as clean pages.

In the meantime, if the available pages between two checkpoints
decrease and fall below a predefined threshold, the lazy writer process
flushes pages from the memory to the disk (if they are dirty) to keep the
number of available pages always above the threshold. This threshold is
approximately 5 percent of the SQL Server cache.

In SQL Server 2000, the cache is unified. This means that there is no distinc-
tion between data and procedure cache, which is memory allocated to data
and to queries and stored procedures.

Throughout the book, keep in mind that updates, inserts, and deletes all
occur in memory. Now that you know how a database works, let’s look at
the details of its creation and management.

72 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 72

http://www.sybex.com

Managing Databases

The CREATE DATABASE statement contains many options. The following
pages discuss these options, starting with the filenames, locations, and
sizes, continuing with the collation and the shrinking of a database, and
finishing with the different possibilities of altering a database.

Filenames

When you define the filename, you also give the file a logical name. The
physical name and location are being defined in the Locate Database File
dialog box, as in Figure 2.4.

F I G U R E 2 . 4 Defining a physical filename and location

Create and alter databases. Considerations include file

groups, file placement, growth strategy, and space

requirements.

� Specify space management parameters. Parameters include
autoshrink, growth increment, initial size, and maxsize.

Creating and Managing a Database 73

2942C02.qxd 7/11/01 5:13 PM Page 73

http://www.sybex.com

These two names correspond to the NAME and FILENAME clause of the
CREATE DATABASE statement. The logical name of the file is used inside the
Transact-SQL statement to reference the file. The physical name of the file
is used at the operating system level.

You cannot create data or log files in a compressed directory.

The database and logical filenames can be a maximum of 128 charac-
ters long. The physical filenames (location and file name) can be a maxi-
mum of 260 characters long. Be careful not to create too big a hierarchy of
folders to store your data and log files; otherwise, their creation will fail.

These lengths are the max lengths of the name and filename columns in the
Sysdatabases and Sysaltfiles tables, which contain information about data-
bases and files.

Size and Growth Options

Each data and log file has three properties controlling their size and their
growth options:

� SIZE defines the initial size of the file. In SQL Enterprise Manager,
you define size in megabytes. With Transact-SQL, you can specify
kilobyte (KB), megabyte (MB), gigabyte (GB) or terabyte (TB), with
MB being the default. The size cannot be smaller than the size of the
model database (1MB, unless it has been changed).

� MAXSIZE defines the maximum size to which the file can grow. The
unit rules are the same for SIZE. MAXSIZE can be UNLIMITED, mean-
ing that the file can grow up to the disk size.

� FILEGROWTH defines the growth increment of the file. It cannot
exceed MAXSIZE and can be specified by Transact-SQL in (KB),
megabyte (MB), gigabyte (GB), terabyte (TB), or percent (%), with
MB being the default. In SQL Enterprise Manager, you can only
define the file growth in MB or in percent.

74 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 74

http://www.sybex.com

Keep the following pieces of advice in mind when considering these
options:

� Always define a “smart” size. It’s easy to leave the data file as 1MB
and then let it grow. But first file fragmentation will occur, followed
by a drop in performance. Both consequences are the results of the
file chunk allocation. Each time the system inserts new data, if there
is not enough space in the data file, it increases the size of the file,
following the FILEGROWTH value. So SQL Server asks the file system
to allocate a new chunk of data to the files. That takes time, and the
new chunk is not necessarily contiguous to the other allocations.
The initial size of the file has to reflect the needed initial size plus the
expected growth for the months or years to come.

� Never allow a file to have an unlimited growth. It’s better to give a
limit, even if it’s a very high limit. With an upper limit, you have
more efficient space management and can monitor more easily the
number of space allocation errors (see the note about errors below).

� Define a “smart” value for FILEGROWTH. For example, if you create a
1GB file, do not define a 1MB file growth value. Instead, define a 50
or 100MB file growth value. Doing so, you limit file fragmentation
and minimize the file growth frequency. In general, a value between
5 and 20 percent of the initial size is a good choice.

The CREATE DATABASE statement presented in Listing 2.1 shows differ-
ent options of file growth. The data files grow by 10MB chunks and up to
1GB. The log file grows by chunks of 10 percent of the actual file size and
up to 2GB.

Historically, there is one error that has to be monitored if you defined the
maximum size of your file(s): 1105. The error message received is: Could
not allocate space for object objectname in database database-
name because the filegroupname filegroup is full. With
SQL Server 2000, you should also monitor error 9002 if you fixed the maxi-
mum size of the transaction log: The log file for database database-
name is full. Back up the transaction log for the database to
free up some log space.

In Exercise 2.1, we’ll create a database using Enterprise Manager.

Creating and Managing a Database 75

2942C02.qxd 7/11/01 5:13 PM Page 75

http://www.sybex.com

E X E R C I S E 2 . 1

Creating a Database with SQL Enterprise Manager
This exercise will walk you through creating a database with SQL
Enterprise Manager, defining files and growing options, and then
generating the SQL script.

1. Open SQL Enterprise Manager. Do this by choosing Start ➢
Programs ➢ Microsoft SQL Server ➢ Enterprise Manager.

2. In SQL Enterprise Manager, click the plus (+) sign next to Microsoft
SQL Servers to unfold the server groups list.

3. Click the plus (+) sign next to SQL Server Group to unfold the list of
server names belonging to the group named SQL Server Group.

4. On the left-hand side of your server name, you should see an icon
representing a small server and a white or green disk:

� If this icon represents a red square in a white disk, your server is
stopped. Start it by right-clicking your server name and choosing
Start.

� If this icon represents a green arrow in a white disk, your server is
started and you are not connected.

� If this icon represents a white arrow in a green disk, your server is
started and you are connected.

Click the plus (+) sign next to your server name to unfold the object
types list of your server.

5. Right-click the Databases folder and choose New Database.

6. In the Name text box, type MyFirstDatabase.

7. Click the Data Files tab. Define an initial size of 10MB, allow a file
growth value of 5MB and a maximum file size of 100MB. Do not
change the file name and the location.

76 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 76

http://www.sybex.com

E X E R C I S E 2 . 1 (c o n t i n u e d)

8. Click the Transaction Log tab. Define an initial size of 5MB, allow a
file growth value of 1MB and a maximum file size of 50MB. Do not
change the file name and location.

9. Click the OK button.

10. Right-click the Databases folder and choose Refresh.

Creating and Managing a Database 77

2942C02.qxd 7/11/01 5:13 PM Page 77

http://www.sybex.com

E X E R C I S E 2 . 1 (c o n t i n u e d)

11. Click the plus (+) sign next to the Databases folder to unfold the
databases list.

12. Click MyFirstDatabase to select the database, then right-click
MyFirstDatabase and choose View ➢ Taskpad. The taskpad on the
right-hand side of SQL Enterprise Manager allows you to check the
space allocated.

13. Right-click MyFirstDatabase and choose All Tasks ➢ Generate SQL
Scripts.

78 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 78

http://www.sybex.com

E X E R C I S E 2 . 1 (c o n t i n u e d)

14. Click the Options tab. Activate the Script Database option.

15. Click the General tab and click the Preview button. After a couple of
seconds, the Generate SQL Script Preview dialog box appears and
presents you with the database creation script. You can copy the
script to the clipboard if you wish to analyze it in the Notepad or in
SQL Query Analyzer.

16. Click the Close button, then the Cancel button. You can close SQL
Enterprise Manager if you wish.

Most of the scripts and queries you’ll see in this book can be opened and
executed with SQL Query Analyzer or OSQL.

Collation

In versions of SQL Server up to SQL Server 7, the character set (or code
page) was a server-wide parameter. On a server, every database used the
same set of characters. With SQL Server 2000, the character set, sort
order, and Unicode collation have been grouped in what is now called a
collation, which can be defined at the server, database, or even column
level. This means that a server can be installed to use the
Latin1_General_CI_AS collation (that is code page 1252, case insensitive,
accent sensitive), and a specific database can be created with the
Modern_Spanish_CS_AS collation. While this feature has many advantages
for administrators, such as the possibility to restore a database on a server
that has been backed up on another server installed with a different
collation, it has some drawbacks for the developers.

In the CREATE DATABASE statement or in the Database Properties dialog
box in SQL Enterprise Manager, it is possible to define the collation of the
database. Two types of collation names exist: Windows and SQL collation
names. Both can be used with the COLLATE clause.

Creating and Managing a Database 79

2942C02.qxd 7/11/01 5:13 PM Page 79

http://www.sybex.com

You’ll find exhaustive information on collation names in the SQL Server
Books OnLine, in the Transact-SQL Reference book, at the COLLATE chapter.
Open the Books OnLine by choosing Start ➢ Programs ➢ Microsoft SQL
Server ➢ Books OnLine. You’ll find the Transact-SQL Reference book in the
list on the left-hand side of the window.

You can modify the collation used by a database with the ALTER DATA-
BASE statement under strong restrictions:

� You are the only user of the database.

� No schema bound object is dependent on the database collation.

� No name duplicates are created by the altering process.

If the collation choice is a good idea, it should be used cautiously. In
fact, a developer will now face two choices: changing collation or using
Unicode. In an international environment, Unicode is always a better
choice because you do not have to handle character translation. Even if
Unicode occupies twice the space (16 bits per character instead of 8 bits
with a single-byte character set), you do not have to ensure the proper
translation of characters between different collations. Furthermore, colla-
tion precedence rules are not easy to manage. Reserve this collation feature
only if you have to manage different servers using different locales.

Shrinking a Database and File

While a database can grow automatically, it can also shrink manually or
automatically, depending on the options you activated and space usage.
Automatic shrinking is one of the many database options that we will see
later in this chapter. You can manually shrink databases or files with
SQL Enterprise Manager or Transact-SQL.

Automatic Shrinking

Automatic shrinking is not enabled by default on any SQL Server editions
but Desktop, regardless of the OS used. Automatic shrinking is quite
simple: Every half hour, a special housekeeping process recovers ghost
records (records that have been logically deleted) and checks whether a
shrink is necessary by analyzing empty space.

If more than 25 percent of a file contains unused space, it is shrunk
automatically. The target size is either the initial file size or a size where 25
percent is unused space, whichever is greater.

80 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 80

http://www.sybex.com

A file cannot be automatically shrunk to a smaller size than its initial one.

Let’s say, as an example, that you’ve created a 100MB file for your
database. This file fills up, and then increases by 10MB chunks. Having
reached 150MB, you archive half of the data, resulting in almost 50 per-
cent of unused space. The allocated space is now 82MB. The autoshrink
process shrinks the file to 110MB. Note that it’s not shrunk to its initial
size, because that would result in only 18 percent of free space.

To set this parameter in SQL Enterprise Manager, check the Autoshrink
check box in the Database Properties dialog box. With Transact-SQL, use
the ALTER DATABASE statement, like in the following example:

ALTER DATABASE MyFirstDB SET AUTO_SHRINK ON

For those of you who know SQL Server 7, note that SQL Server 2000 no
longer uses sp_dboption. In fact, this system-stored procedure is still sup-
ported, but only for backward compatibility.

You can disable autoshrink, just by turning OFF the previous option:

ALTER DATABASE MyFirstDB SET AUTO_SHRINK OFF

It is not a good idea to enable the autoshrink on a production database
because this process can occur anytime. As Murphy’s Law is always peep-
ing above you shoulder, you can be sure it will occur just in the middle of a
very busy day and will exhaust the resources on your server. Just monitor
database growth and unused space, and shrink your database only when
you need to and only when there is no activity on your server.

To turn on autoshrink, follow these steps (we will use the MyFirstData-
base database):

1. In SQL Enterprise Manager, right-click the MyFirstDatabase folder,
and click Properties.

2. Click the Options tab.

3. Check the Autoshrink property and click OK.

Creating and Managing a Database 81

2942C02.qxd 7/11/01 5:13 PM Page 81

http://www.sybex.com

Manually Shrinking a Database

A database can be shrunk with the DBCC SHRINKDATABASE statement. To
shrink a database, you have to give SQL Server the name of the database
you want to shrink and the free space target size, represented as a
percentage of the overall target size. The following example shrinks
MyFirstDatabase to retain only 20 percent of free space:

DBCC SHRINKDATABASE (MyFirstDB, 20)

You cannot shrink a database beneath its initial size, though you can
shrink a specific file beneath its initial size. The DBCC SHRINKDATABASE
statement can only be used to reclaim unused free space after a database
growth. The database shrinking process is “lossless,” which means that
you are not going to lose any data, since you cannot ask for an unreach-
able free space value. For example, if you have only 20 percent of free
unused space in your database, you cannot ask to reach 30 percent.

The shrinking process does not only shrink data and log files, it moves
data from one extent to another, or from one file to another one. Starting
from the end of each file, the process moves toward the beginning of the
file and moves any allocated extent to an unused extent in the same file or
in another available file until it leaves the necessary amount of unused
space or reaches the initial size of the file.

In the example illustrated in Figure 2.5, 44 percent of the space is used
before the shrinking process, leaving 56 percent of the overall size as
unused space (there are 18 extents and only eight are allocated). You want
to reduce this free space size to 20 percent.

F I G U R E 2 . 5 Shrinking a database file with a target size

File before the shrinking

Moving the allocated extent (intermediary process)

File after the shrinking

Freed space

82 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 82

http://www.sybex.com

The basic theory behind database shrinking is quite simple, but it
becomes more complex when you consider that a database can be made of
multiple data and log files. Let’s look at an example to understand how the
shrinking process works.

Consider the FakeDB database as being made of two 50MB data files
that have grown to 100MB each and one log file of 50MB. The primary
data file contains 65MB of data, the secondary contains 40MB of data.
Consider these three cases:

� You want to shrink the database to 10 percent of free space. The
target size allows this value. Considering that SQL Server calculates
a target size of 72MB, it shrinks the file by moving the data inside
the file because 65MB of used space plus 7MB unused space solves
the problem.

� You want to shrink the database to 25 percent of free space. This
target is reachable. Considering that SQL calculates that it can
shrink the file to 80MB, it will leave 60MB of data in this file and
move 5MB to the secondary file.

This extent transfer from file to file is possible only if the considered files
belong to the same filegroup.

� You want to shrink the database to 40 percent of free space. The
primary file will not be shrunk because the target is bigger than the
available space.

If you shrink a database, you shrink the log files at the same time.
Unfortunately, a log file is not structured like a data file. That means, you
cannot “move” transactions around your log file like the system did with
the data. It has to be shrunk from the end. The two operations that apply
to a transaction log are log truncation and log shrinking:

� Log truncation concerns the deletion of the inactive portion of the
log, which are the transactions whose data has been checkpointed.
A checkpoint marks the writing of dirty pages to the disk. So, the
transactions before this checkpoint are useless (they have to be
backed up to be recovered in case of failure of the data disk, and
a log backup truncates the inactive portion of the log).

� Log shrinking means that part of the truncated inactive portion of
the log can be released to the operating system.

Creating and Managing a Database 83

2942C02.qxd 7/11/01 5:13 PM Page 83

http://www.sybex.com

As you will see in the “Space Management” section, a log file is split
into virtual log files, whose size and numbers depend on the log file size. A
log file can always be shrunk to an integer number of virtual log files. So,
if a 1GB log file is made of eight 128MB files, it can be shrunk to 128,
256, 384, 512, 640, 768 or 896MB, depending on its initial size and on
the start and end of the active portion of the log.

You may never predict with precision what the file size will really be,
but you may get a good idea if you run DBCC SHRINKDATABASE with just
the database name, like the following statement:

DBCC SHRINKDATABASE(‘mydb’)

The result will look like the following:

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages

---- ------ ----------- ----------- --------- --------------

7 1 25600 25600 10400 10400

7 2 12800 12800 12800 12800

7 3 25600 25600 0 0

The previous table shows the possible results of the size reduction of
mydb files. The columns are as follows:

� DbId is the database ID (found in sysdatabases).

� FileID is the file ID (found in sysaltfiles).

� CurrentSize is the current file size in 8KB pages. In the example,
the size of file numbers one and three is 200MB, and the size of file
number two is 100 MB.

Remember there are 1024KB in 1MB, so there are 128 pages in 1MB.

� MinimumSize is the minimum size of the file, generally its initial size,
in 8KB pages. In the example, the files have been created at their
current size.

� UsedPages indicates the number of allocated 8KB pages. In the exam-
ple, file one uses 81.25MB, file two is full, and file three is empty.

� EstimatedPages indicates the minimum size the file could be shrunk
to, taking into account the allocated pages. In the example, all files
can be shrunk to their used pages.

84 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 84

http://www.sybex.com

This result will help you determine if there is any free space in the files,
so you could use a suitable value for the DBCC SHRINKDATABASE statement.
But if you want to precisely shrink a file, you would use DBCC SHRINKFILE,
as we will see in the next section.

You can shrink a database directly in SQL Enterprise Manager:

1. Right-click the database you want to shrink.

2. Click All Tasks ➢ Shrink Database.

3. Define the Maximum Free Space in Files After Shrinking.

4. Check the Move Pages to Beginning of the File Before Shrinking
option.

5. Click the OK button.

These options are shown in Figure 2.6. Note that you can schedule the
execution of the DBCC SHRINKDATABASE if you enable the Shrink the Data-
base Based on This Schedule option. If you do so, the operation will not be
done, but only scheduled.

F I G U R E 2 . 6 Shrinking a database in SQL Enterprise Manager

Creating and Managing a Database 85

2942C02.qxd 7/11/01 5:13 PM Page 85

http://www.sybex.com

You have two options when executing the DBCC SHRINKDATABASE
statement:

� NOTRUNCATE moves the pages to the beginning of files and does not
release the freed extents to the operating system.

� TRUNCATEONLY does not move any data inside the files. The shrinking
process starts from the end of the file and frees the unused extents
until it reaches the first allocated extent, regardless of the target per-
cent. This option simulates the functioning of the DBCC SHRINKDB of
SQL Server 6.5.

In Exercise 2.2, we will shrink a database using Enterprise Manager.

E X E R C I S E 2 . 2

Increasing the Size and Shrinking a Database with SQL
Enterprise Manager

This exercise will walk you through managing your database size—
increasing and decreasing it—with Enterprise Manager.

1. Open SQL Enterprise Manager by choosing Start ➢ Programs ➢
Microsoft SQL Server ➢ Enterprise Manager. In SQL Enterprise
Manager, right-click the MyFirstDatabase folder, and click
Properties.

2. Click the Data Files tab.

3. In the Space Allocated cell of the first data file, type 20.

4. Click OK.

5. In SQL Enterprise Manager, right-click the MyFirstDatabase folder,
and click All Tasks ➢ Shrink Database.

6. In the Maximum Free Space in Files After Shrinking text box, type
80.

7. Check the Move Pages to Beginning of File Before Shrinking option.

8. Click OK.

86 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 86

http://www.sybex.com

E X E R C I S E 2 . 2 (c o n t i n u e d)

9. Click OK in the dialog box to indicate that the database has been
shrunk successfully.

10. In the Taskpad, note that the size of the MyFirstDatabase_Data file
has come back to its initial size.

Even though DBCC SHRINKDATABASE is a useful tool to reclaim unused
space, it is not powerful enough to free up space in a determined file or to
free up space beyond the initial size. The DBCC SHRINKFILE statement will
help you to do so.

Shrinking a File

The DBCC SHRINKFILE allows you to shrink a specified data or log file
directly to the desired size. For example, if you have a 200MB file in which
only 50MB are used, and you want to release 40MB, just run the
following line:

DBCC SHRINKFILE (myfile, 60)

There are two things you should remember when running this state-
ment:

1. You name the file by its logical name, so you must be in the
database context before running the statement. Just run USE mydb
first.

2. The specified value is the target size in megabytes. If you omit that
value and there is enough free space to allow the shrinking, the file
is shrunk to its initial size.

The target size may not be reached if there is too much data in the file.
In the previous example, if there were 70MB of data, the file would have a
size of 70MB instead of the 60MB asked for and without any warning.
The Query Analyzer result pane gives you an indication of what has been
done with the file.

Creating and Managing a Database 87

2942C02.qxd 7/11/01 5:13 PM Page 87

http://www.sybex.com

DbId FileId CurrentSize MinimumSize UsedPages EstimatedPages

---- ------ ----------- ----------- --------- --------------

7 1 7680 256 6400 6400

The previous table shows the result of the size reduction of myfile. The
table contains the following columns:

� DbId is the database ID (found in sysdatabases).

� FileID is the file ID (found in sysaltfiles).

� CurrentSize is the current file size in 8KB pages. In the example,
the file is 60MB.

� MinimumSize is the minimum size of the file, generally its initial size,
in 8KB pages. In the example, the file has been created with a size of
2MB.

� UsedPages indicates the number of allocated 8KB pages. In the
example, there are 50MB of data.

� EstimatedPages indicates the minimum size the file could be shrunk
to, taking into account the allocated pages.

You have three options when executing the DBCC SHRINKFILE
statement:

� EMPTYFILE allows you to empty the file by moving the data it con-
tains to another file of the same filegroup. After a file has been emp-
tied, it can be deleted with an ALTER DATABASE statement (see
below). You do not specify a target size if you want to empty a file.

� NOTRUNCATE moves data at the beginning of the file but does not
release the freed space to the operating system.

� TRUNCATEONLY shrinks the file to the last allocated extent and
releases the freed extents to the operating system.

The last two options work exactly the same way with DBCC SHRINKFILE
as with DBCC SHRINKDATABASE.

To shrink a file directly in SQL Enterprise Manager:

1. Right-click the database you wish to shrink.

2. Click All Tasks ➢ Shrink Database.

3. Click Files.

88 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 88

http://www.sybex.com

4. Choose the file in the Database File drop-down box. The system will
give you information on the file, as in Figure 2.7.

F I G U R E 2 . 7 Shrinking a file in SQL Enterprise Manager

The different options presented in the dialog box correspond to
some DBCC SHRINKFILE options:

� Compress Pages and Then Truncate Free Space From the File is
the default option. It will truncate the file to the smallest possible
size.

� Truncate Free Space From the End of the File corresponds to
TRUNCATEONLY.

Creating and Managing a Database 89

2942C02.qxd 7/11/01 5:13 PM Page 89

http://www.sybex.com

� Empty the File (Data will Migrate to Other Files in the File
Group) corresponds to EMPTYFILE.

5. Click the OK button.

Note that you can schedule the execution of the DBCC SHRINKFILE if
you check the Shrink the File Later check box. If you do so, the operation
will not be done, but only scheduled.

In Exercise 2.3, we will shrink a file using Enterprise Manager.

E X E R C I S E 2 . 3

Shrinking a Database File with SQL Enterprise Manager
This exercise will walk you through shrinking a file using SQL
Enterprise Manager.

1. Open SQL Enterprise Manager by choosing Start ➢ Programs ➢
Microsoft SQL Server ➢ Enterprise Manager. In SQL Enterprise
Manager, right-click the MyFirstDatabase folder, and click All
Tasks ➢ Shrink Database.

2. Click the Files button.

3. Make sure the MyFirstDatabase_Data file is selected in the Data-
base File drop-down box.

4. Select the Shrink File To option and type 80 in the text box.

5. Click OK.

6. Click OK in the dialog box to indicate that the database file has been
shrunk successfully.

7. In the Taskpad, note that the MyFirstDatabase_Data file size is now
5MB.

Now that you’ve seen how to shrink a database, let’s take a look at how
you can alter a database.

Altering a Database

Altering a database means modifying its file structure by adding,
removing, or modifying files, or by changing its name. All three operations
can be done through SQL Enterprise Manager or with Transact-SQL. We

90 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 90

http://www.sybex.com

will focus more on Transact-SQL, since the language is always the primary
focus of any process in the exam. SQL Enterprise Manager is mentioned
here, as it is the easiest way to do a specific operation. Knowing the
statements allows you to understand what’s happening behind the curtain.
Let’s start with file modification.

Modifying a File

Modifying a database file means changing its name, its size, its max size,
or its file growth increment. The following example increases the size of
the primary file of the FakeDB database:

ALTER DATABASE FakeDB

MODIFY FILE

(NAME = FakeDB_data1,

SIZE = 200MB)

The size value must be greater than the current file size. Otherwise, you’ll
encounter error 5039: MODIFY FILE failed. Specified size is less
than current size.

The following example modifies, in one statement, the database name,
max size, and file growth increment:

ALTER DATABASE FakeDB

MODIFY FILE

(NAME = FakeDB_data1,

NEWNAME = FakeDB_Primary,

MAXSIZE = 1.5GB,

FILEGROWTH = 50MB)

The MODIFY FILE clause has a FILENAME property, like in CREATE
DATABASE, which allows for the modification of the physical name and loca-
tion of the file. This property can only be used for tempdb files and take
effect when SQL Server is restarted.

All these operations can be realized in SQL Enterprise Manager through
the Database Properties dialog box.

Creating and Managing a Database 91

2942C02.qxd 7/11/01 5:13 PM Page 91

http://www.sybex.com

1. In SQL Enterprise Manager, right-click the database name.

2. Click Properties.

3. In the Database Properties dialog box, click the Data Files or the
Transaction Log tab, depending on the file you want to modify.

4. Select the file you want to modify and modify the necessary
properties.

5. Click OK to validate your modification.

Increasing the database size can be done through increasing one or
more file sizes by adding new files.

Adding a File

Adding a file to a database is quite a simple process, since it is like creating
a file at the time of database creation. The following example adds a file to
the FakeDB database:

ALTER DATABASE FakeDB

ADD FILE

(NAME = FakeDB_data3,

FILENAME = ‘d:\FakeDB_data3.mdf’,

SIZE = 100MB,

MAXSIZE = 1GB,

FILEGROWTH = 10MB),

You can add a new file to an existing database in SQL Enterprise Man-
ager with the Database Properties dialog box:

1. In SQL Enterprise Manager, right-click the database name.

2. Click Properties.

3. In the Database Properties dialog box, click the Data Files or the
Transaction Log tab, depending on the file you want to add.

4. Click the empty File Name cell and type the new file logical name.

5. Define its location in the Location cell, type its size, and choose its
growing properties in the File Properties frame.

6. Click OK to validate your addition.

92 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 92

http://www.sybex.com

Removing a File

You can remove a file from a database if and only if it is empty. You can
empty a file with DBCC SHRINKFILE and the EMPTYFILE property. The
following statements empty the third file from FakeDB and remove it:

DBCC SHRINKFILE (‘FakeDB_data3’, EMPTYFILE)

ALTER DATABASE FakeDB

REMOVE FILE FakeDB_data3
You can remove an empty file from an existing database in SQL Enter-

prise Manager with the Database Properties dialog box:

1. In SQL Enterprise Manager, right-click the database name.

2. Click Properties.

3. In the Database Properties dialog box, click the Data Files or the
Transaction Log tab, depending on the file you want to remove.

4. Select the file by clicking its row.

5. Click Delete.

6. Click OK to confirm your choice.

Once you’ve clicked the OK button, the file is physically deleted and cannot
be recovered!

7. Click OK or Cancel to close the dialog box.

Remember you can only remove a file if it is empty. If it contains data, you
obtain error 5042: The file ‘filename’ cannot be removed because it
is not empty.

Changing a Database Name

You can change a database name very easily. Two methods exist to do so:
ALTER DATABASE and sp_renamedb. The system-stored procedure uses
the ALTER DATABASE statement after doing some basic name checks and is

Creating and Managing a Database 93

2942C02.qxd 7/11/01 5:13 PM Page 93

http://www.sybex.com

kept only for backward compatibility. The following example renames the
FakeDB database to TestDB:

sp_rename ‘FakeDB’, ‘TestDB’

With the ALTER DATABASE statement, the syntax is almost as simple:

ALTER DABASE FakeDB MODIFY NAME=TestDB

It is not possible to rename a database through SQL Enterprise Manager.

So far, we have seen that a database is composed of data and log files.
Let’s look closer at these files to uncover their structure.

Space Management

A good understanding of SQL Server space management is necessary to
write and optimize queries. We have seen that there are three types of files:
primary, secondary, and log. While the structure of primary and secondary
files is almost the same, the log file is totally different. Let’s start with the
data files.

Data Files

Each data file is made of 64KB extents. Each extent is made of eight 8KB
pages. The page is the base allocation of a table or an index. Each time
you create a table or an index, its data is stored in a page.

Create and alter databases. Considerations include file

groups, file placement, growth strategy, and space

requirements.

� Specify space management parameters. Parameters include
autoshrink, growth increment, initial size, and maxsize.

94 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 94

http://www.sybex.com

Even if a page is 8KB, that is 8,192 bytes, the maximum record length (text,
ntext, and image data types excluded) is 8,060 bytes. Furthermore, a record
must entirely fit in a page (text, ntext, and image data types excluded).

Figure 2.8 represents a data file, an extent, and a page. All the data files
are organized the same way, and all data is stored in pages. As we are
going to see, different types of pages exist, depending on the content. As
for the extents, the two types are uniform and mixed. Let’s have a look
first at these extents, then at the pages that compose them.

F I G U R E 2 . 8 Data file, extent, and page

Extents

A uniform extent is allocated entirely to one table or index. A mixed
extent is shared between different tables or indexes. Figure 2.9 represents
three extents, two mixed and one uniform extent. Extents one and two
are shared between three tables: T1, T2, and T3. Extent three is fully
allocated to T1.

Page (8KB)

Extent (64KB)
8 pages

data

Datafile

.

.

.

Creating and Managing a Database 95

2942C02.qxd 7/11/01 5:13 PM Page 95

http://www.sybex.com

F I G U R E 2 . 9 Mixed and uniform extents

The process of extent allocation is quite simple: At the table or index
creation, the first eight pages allocated are in mixed extents. From the
ninth page allocation, the table or index is allocated uniform extents. You
can observe this phenomenon if you run the sp_spaceused stored proce-
dures in SQL Query Analyzer. Let’s create a table to demonstrate the
process:

CREATE TABLE BigTable(Col1 Char(8000))

The BigTable table contains only one column, but as it is a char column,
each time you insert a record, that record fills the page. If you run
sp_spaceused BigTable, you obtain the following result:

Name rows reserved data index_size unused

--------- ----- --------- ----- ----------- -------

BigTable 0 0 KB 0 KB 0 KB 0 KB

As you can see, for the moment, no page has been allocated yet. Before
inserting the first row, let me give you some explanation about the
columns:

� Rows contains the number of rows of the table.

� Reserved represents the number of kilobytes allocated to the table.

� Data represents the number of kilobytes allocated to the data.

Mixed

Mixed

Uniform

Extent 1 T1 T1 T2 T3 T1 T1 T2 T2

Extent 2 T2 T1 T1 T1 T1 T2

Extent 3 T1 T1 T1 T1 T1 T1 T1 T1

96 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 96

http://www.sybex.com

� Index_size represents the number of kilobytes allocated to the table
indexes.

� Unused shows the results of reserved-data-index_size and repre-
sents the unused allocated kilobytes.

All of these figures, rows excluded, are multiples of 8KB, since the page
is the base allocation.

If you insert one row in the BigTable table, for example:

INSERT BigTable VALUES (‘FakeData’)

the result of sp_spaceused is the following:

Name rows reserved data index_size unused

--------- ----- --------- ----- ----------- ------

BigTable 1 16 KB 8 KB 8 KB 0 KB

As you can see, the table has one row, and two pages have been allo-
cated (16KB are reserved)—one data page and one index page. At the
extent level, a data page and an index page are very similar. Nevertheless,
an index on BigTable has not been created. So, why has an index page
been allocated? This allocation represents the IAM (Index Allocation
Map), as we are going to see in a few pages.

One important thing to note here is that, besides the index, only one
page has been allocated. It has been allocated to the table to store the
inserted record. Note that the record is 8000 characters wide, meaning
each record occupies one page. If you insert a second row in the BigTable
table, the result of sp_spaceused is the following:

Name rows reserved data index_size unused

--------- ----- --------- ----- ----------- ------

BigTable 2 24 KB 16 KB 8 KB 0 KB

Now the data space used is 16KB, or two pages. If you insert six other
records in the table, the sp_spaceused stored procedure will give the
following result:

Name rows reserved data index_size unused

--------- ----- --------- ----- ----------- ------

BigTable 8 72 KB 64 KB 8 KB 0 KB

Creating and Managing a Database 97

2942C02.qxd 7/11/01 5:13 PM Page 97

http://www.sybex.com

As you can see, the first eight allocations are made on a page basis.
Each time SQL Server needs to assign space to a table, it allocates the first
free page in a mixed extent, if any are available. If no free page is avail-
able, it allocates a new extent and assigns one page to the table. Things
change from the ninth allocation. If you insert the ninth row in the
BigTable table, you obtain the following results for the sp_spaceused
stored procedure:

Name rows reserved data index_size unused

--------- ----- --------- ----- ----------- ------

BigTable 9 136 KB 72 KB 8 KB 56 KB

One major modification occurred: One whole extent has been allocated,
even if only one page would have been enough. You see the reserved space
going from 72KB (eight data pages and one index page) to 136KB, which
is a 64KB increase (an extent). In the previous results, we have nine pages
in mixed extents (the first eight data pages and the IAM page) and one
page in one uniform extent. Subsequently, new pages will be allocated in
the uniform extent until it is fully used. Afterwards, a new uniform extent
will be allocated, and so on.

This allocation method is used to minimize the allocated space; small
tables are allocated only for the necessary pages. It is also used to minimize
the number of times the size of a bigger table has to be increased. Each
time the table needs space, it is allocated 64KB at one time.

In the previous example, a special kind of index called IAM was men-
tioned. This index is allocated its own page. We will now look at the dif-
ferent types of pages that exist in a SQL Server database.

Pages

So far, we know that a database is made of extents and pages. Eight
different types of pages exist in a database:

Data The real user or system data rows, except text, ntext, and image
data.

Index Index rows.

Text/Image Text, ntext, and image data.

IAM Index Allocation Map. Information about extents used by a
table or an index.

GAM, SGAM Global Allocation Map. Secondary Global Allocation
Map. Information about extents allocation.

98 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 98

http://www.sybex.com

PFS Page Free Space. Information about page allocation and the per-
centage of free space in each page.

BCM Bulk Changed Map. Information about extents that have been
modified since the last log backup.

DCM Differential Changed Map. Information about extents that have
been modified since the last database differential backup.

The first six of these types of pages are described in the following sec-
tions. The last two, totally new to SQL Server 2000, are beyond the scope
of this book, since they concern the modification tracking for backup pur-
poses. You can read more about BCM and DCM in the SQL Books
Online.

DATA ALLOCATION

A data and index page are composed of three parts:

� The 96-byte header contains information about the page, such as its
number, the table, and index it belongs to.

� The data rows space contains the rows of data.

� The row offset table tracks the start byte of each record in the page.

Figure 2.10 represents a SQL Server data page. The first row starts
immediately after the header, at byte 96 (the first byte of the page is byte 0,
the header is 96 bytes long, and the first available byte is byte 96). This
information is stored in the first slot of the offset table.

F I G U R E 2 . 1 0 A data page

Offset table

Page Header

Row 1

Row 2

Row 3

unused space

256 134 96

Creating and Managing a Database 99

2942C02.qxd 7/11/01 5:13 PM Page 99

http://www.sybex.com

In Figure 2.10, the first row is 38 bytes long. So the second row starts at
byte 134. This figure is recorded in the second slot of the offset page, and
so on. When SQL Server reads a page, it goes to the header to discover the
position of every record in the page.

The position of the records in the page, while sequential at the beginning,
may change due to updates, deletes, and inserts. For example, if the second
record is updated so its size increases, it will not fit in the space it occupied.
It is then stored after the third record, but remains record number two. So
the offset table would store, for example, 96, 297, 256. There is now space
available between bytes 134 and 255.

Index pages are almost the same, except index entries take the place of
data rows. We cover indexes and index storage in Chapter 5: Creating and
Maintaining Indexes. Text/Image pages store text, ntext, and image
datatypes. We cover these data types and their storage in Chapter 3: Creat-
ing and Maintaining Tables.

Database pages can be studied in detail with the DBCC PAGE statement.
DBCC PAGE is an undocumented statement that is very useful in under-
standing data storage. You will not be asked any questions on this state-
ment in the test, but it is a good way to uncover SQL Server storage
strategies.

Run the following statement in the SQL Query Analyzer:

dbcc traceon(3604)

dbcc page(‘pubs’, 1, 49, 1)
you obtain this result:
PAGE: (1:49)

PAGE HEADER:

Page @0x19714000

m_pageId = (1:49) m_headerVersion = 1 m_type = 1

m_typeFlagBits = 0x0 m_level = 0 m_flagBits = 0x0

m_objId = 1977058079 m_indexId = 0 m_prevPage = (0:0)

100 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 100

http://www.sybex.com

m_nextPage = (0:0) pminlen = 24 m_slotCnt = 23

m_freeCnt = 6010 m_freeData = 2136 m_reservedCnt = 0

m_lsn = (5:242:2) m_xactReserved = 0 m_xdesId = (0:0)

m_ghostRecCnt = 0 m_tornBits = -2147483591

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED

PFS (1:1) = 0x60 MIXED_EXT ALLOCATED 0_PCT_FULL

DIFF(1:6)= CHANGED ML (1:7) = NOT MIN_LOGGED

DATA:

Slot 0, Offset 0x631

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VARIABLE_COLUMNS

19714631: 00180030 20383034 2d363934 33323237 0...408 496-7223

19714641: 34394143 01353230 00000009 00330005 CA94025.......3.

19714651: 003f0038 0058004e 2d323731 312d3233 8.?.N.X.172-32-1

19714661: 57363731 65746968 6e686f4a 316e6f73 176WhiteJohnson1

19714671: 32333930 67694220 52206567 654d2e64 0932 Bigge Rd.Me

19714681: 206f6c6e 6b726150 nlo Park

...

OFFSET TABLE:

Row - Offset

22 (0x16) - 357 (0x165)

21 (0x15) - 448 (0x1c0)

...

2 (0x2) - 272 (0x110)

1 (0x1) - 184 (0xb8)

0 (0x0) - 1585 (0x631)

Creating and Managing a Database 101

2942C02.qxd 7/11/01 5:13 PM Page 101

http://www.sybex.com

The page number may be different on your SQL Server installation, so if
you try to run the DBCC PAGE example statement directly, you may get a
different result.

The page header and the different information it contains is returned
first. Next you find the user data, starting with the first record of the table.
If you ran a SELECT * FROM authors statement, you would see the same
record, but presented in a more readable arrangement:

au_id au_lname au_fname phone

----------- --------- ---------------------

172-32-1176 White Johnson 408 496-7223

address city state zip contract

---------------- ----------- ------ ------ --------

10932 Bigge Rd. Menlo Park CA 94025 1

The previous record has been presented on two lines for reading purposes,
but would appear on one line in SQL Query Analyzer.

From the DBCC PAGE result, you may note the column information is not
in the same order physically and logically. This is due to the record struc-
ture, which will be explained in Chapter 3.

Finally, the offset table presents the physical location in the page of
every record starting from the last one. Note that the first record is not on
byte 96 because it moved due to the creation of a clustered index.

DBCC PAGE is not a statement you are going to use every day. It’s just a
tool in your toolbox that can help you better understand SQL Server data
storage.

One final piece of information on record allocation is that if a row is
updated, three situations can occur:

� If the size of the row is smaller or equal after the update, then the
row stays at the same address.

� If the size of the row is bigger after the update and there is enough
space in the page to store it, then the row moves inside the page

102 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 102

http://www.sybex.com

but its offset index occupies exactly the same space. So, if row
number two moves to row number 10 physically in the page, its
address will always be stored in the second slot.

� If the size of the row is bigger after the update and there is not
enough space in the page to store it, then the row moves to
another page, and a forwarding pointer is kept in the page to
avoid index update. If row number two was in page 15 and moves
to page 23 and becomes, in this page, row number four, then the
address 23:4 is stored in the second slot of page 15. If the row
moves another time, the forwarding pointer is updated. The
indexes remain stable.

If a row is deleted, it remains physically in the page, until the space it
occupied is used by another inserted or updated row, or until the house-
hold process (the same that shrinks automatically if the option is enabled)
runs. It runs every half hour under a normal load, but can be postponed
automatically if the server is under a very heavy load.

When a row is inserted, it is inserted in the first available slot in the
page, so the physical order of records inside a page does not necessarily
reflect the insert order of the records that page contains. A clustered index
modifies the behavior of inserts, as we will see in Chapter 5.

ALLOCATION TRACKING

Computers are just machines and they need to be told where they should
store information. If you put away the power cable of your laptop in the
first drawer of your office desk, you probably store in your memory that
you did so. When you need your power cable, your brain tells you
automatically that it is in the first drawer. Unfortunately, computers are
not so intelligent.

Each time a page or an extent is allocated, SQL Server must record that
allocation. The five types of pages that were introduced earlier do the allo-
cation tracking: File header, GAM, SGAM, PFS, and IAM. The first four
pages of every file are the header, the PFS, the GAM, and the SGAM (Fig-
ure 2.11). These pages manage the file information and allocation. Every
table and index has an IAM.

Creating and Managing a Database 103

2942C02.qxd 7/11/01 5:13 PM Page 103

http://www.sybex.com

F I G U R E 2 . 1 1 First four pages of every file

The first page of every data file is its header. It contains information
about the file like its size, its max size, its growth increment, etc. You can
see this in the following DBCC PAGE result:

File Header Data:

...

BindingID=10df082a-53e0-4024-809c-140aeb022990 File-
GroupId=2

FileIdProp=4 Size=128 MaxSize=25600

Growth=10 Perf=0
BackupLsn=[NULL]

MaxLsn=[NULL] FirstLsn=[NULL]

FirstCreateIndexLsn=[NULL] FirstUpdateLsn=(5:86:1)

FirstNonloggedUpdateLsn=[NULL] CreateLsn=(5:42:1)

DifferentialBaseLsn=(0:0:0)

DifferentialBaseGuid=00000000-0000-0000-0000-000000000000

MinSize=128 Status=0 UserShrinkSize=65535

The second page of every file is the PFS. PFS stands for Page Free Space.
It contains information about allocation and fill rate for the first 8,000
pages. If the file has more than 8,000 pages, there is a PFS every 8,000
pages with all the PFS linked together. The PFS allows the system to find
the first available page for an insert or for a page allocation. The following
result gives the content of a PFS:

File
Header PFS GAM SGAM

0 1 2 3

104 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 104

http://www.sybex.com

PFS: Page Alloc Status @0x190EE000

(4:0) -(4:3) = ALLOCATED 0_PCT_FULL

(4:4) -(4:5) = NOT ALLOCATED 0_PCT_FULL

(4:6) -(4:7) = ALLOCATED 0_PCT_FULL

(4:8) -(4:9) = ALLOCATED 100_PCT_FULL Mixed Ext

(4:10)- = ALLOCATED 0_PCT_FULL IAM Page Mixed Ext

(4:11)-(4:15) = NOT ALLOCATED 0_PCT_FULL

(4:16)-(4:23) = ALLOCATED 0_PCT_FULL

(4:24)-(4:127)= NOT ALLOCATED 0_PCT_FULL

The first number in every page address represents the file number, the
second figure represents the page number. For example, 4:5 means page
number five in file number four. In this example, we find out that the four
first pages are allocated (header, PFS, GAM, SGAM), that pages four and
five are not allocated (in fact, they are reserved for DCM and BCM), and
that pages six to seven are allocated. The 0_PCT_FULL information means
that less than 1 percent of the page is used. Pages eight and nine are
allocated, are in a mixed extent, and are full. Page 10 is an IAM (Index
Allocation Map). Pages 11 to 15 (the last five pages of the extent begin-
ning on page eight) are not allocated. Pages 16 to 23 (one full extent) are
allocated but almost empty, and all the other pages (from 24 to 127) are
not allocated.

The PFS content is presented in a readable way here, but is in reality a
bitmap containing one byte per page.

Pages two and three of every data file are reserved for GAM and
SGAM. The GAM, or Global Allocation Map, tells you whether an
extent (eight contiguous pages) contains allocated pages. Every GAM
tracks 64,000 extents. Every bit indicates whether the extension is free
or not: 1 means the extent is free, 0 means it is allocated. The SGAM, or
Secondary Global Allocation Map, is used with the GAM to show whether
an extent is mixed and contains at least one free page. Each extent refer-
ence follows the bit pattern indicated in Table 2.1.

TA B L E 2 . 1 GAM-SGAM Usage

GAM SGAM Extent

1 0 Free
0 0 Uniform extent or full mixed extent
0 1 Mixed extent with at least one free page

Creating and Managing a Database 105

2942C02.qxd 7/11/01 5:13 PM Page 105

http://www.sybex.com

If you run DBCC PAGE on the GAM of a file, you will obtain a result
similar to the following:

GAM: Extent Alloc Status @0x191200C2

(4:0) - (4:16) = ALLOCATED

(4:24) - (4:120) = NOT ALLOCATED

In this result, ALLOCATED means 0 and NOT ALLOCATED means 1. Extents
starting on pages 0, 8 and 16 are allocated, which means they contain at
least one page. The others are free. Now, if you run DBCC PAGE on the
SGAM of a file, you may obtain the following results:

SGAM: Extent Alloc Status @0x1947E0C2

(4:0) - (4:8) = NOT ALLOCATED

(4:8) - = ALLOCATED

(4:16) - (4:120) = NOT ALLOCATED

In this result, ALLOCATED means 0 and NOT ALLOCATED means 0 (very
logical, isn’t it?). So, the first extent (starting on page 0) is full (pages four
and five are free, but they are reserved). The second one (starting on
page eight) is a mixed extent with some free pages (pages 11 to 15 are not
allocated). The third one (starting on page 16) is a full mixed extent or a
uniform extent.

Last of all allocation pages, the IAM tracks page allocation for a spe-
cific table or index. Every table and every index has at least one IAM. The
IAM stores the first eight allocated pages (in mixed extents) and the
uniform allocated extents. The following DBCC PAGE result indicates the
different allocations for a table:

nIAM: Single Page Allocations @0x191A008E

Slot 0 = (3:8) Slot 1 = (3:10) Slot 2 = (3:11)

Slot 3 = (3:12) Slot 4 = (3:13) Slot 5 = (3:14)

Slot 6 = (3:15) Slot 7 = (4:8)

106 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 106

http://www.sybex.com

IAM: Extent Alloc Status Slot 1 @0x191A00C2

(3:0) - (3:8) = NOT ALLOCATED

(3:16) - = ALLOCATED

(3:24) - (3:120) = NOT ALLOCATED

The first eight pages have been allocated in file numbers three and four
(slot seven is in file four). The extent starting on page 16 is allocated to the
table. A single IAM can track 64,000 extents. So, if the table size needs to
go beyond that limit, a second IAM is allocated to the table and linked to
the first one.

The IAM is very important to every table, since it is the only way to
track its page allocations if it does not have a clustered index (see Chapter
5). The IAM address is stored in the sysindexes table. You can see this if
you run the following statement:

SELECT * FROM sysindexes WHERE id=OBJECT_ID(‘Customers’)

If you run the previous SELECT statement in the Northwind database
(one of the sample databases installed with SQL Server), you obtain a five-
line result set. On line one (indid column value is one), you will find a col-
umn named FirstIAM containing the value 0x6E0000000100 (your own
value may vary). This is the address of the first IAM page of the
Customers table. All the addresses you find in sysindexes are displayed
using reverse polish notation. The first four words (6E000000) give you
the address in the file, while the last two words (0100) give you its num-
ber. You should read addresses from right to left in blocks of two. In our
example, the file number is 0001. The page address is 0000006E, that is
110 decimal. We now know that the first IAM page of the Customers table
is in file number one on page number 110, and so does the system that
tracks the data. Once the system has the IAM, it reads the IAM to discover
the allocated pages.

Log Files

Log files have nothing in common with data files. You may have found
that the data file structure is complicated, however, log files have a simple
structure. The complexity of data files is needed to track all the
modifications performed on data. In contrast, the log files are only written
to most of the time, truncated some of the time, and never, ever modified,
so the structure is simpler.

SQL Server 2000 uses a transaction log called a write-ahead log. Each
time a modification is done to any data, the system records a transaction.

Creating and Managing a Database 107

2942C02.qxd 7/11/01 5:13 PM Page 107

http://www.sybex.com

The process of working with data and log files is illustrated in Figure 2.3.
When a page is modified (remember every modification is done in cache,
then flushed to the disk during checkpoints), the transaction is written in
the log cache, then to the disk. So, the transaction is written to the log
ahead of the data file. That is why it is called a write-ahead log.

The transaction log can be represented as a table containing informa-
tion on all the modifications that have occurred in a database. This pseudo
table contains “log records,” which contain the definition of the statement
executed on the system. With the undocumented DBCC LOG statement, it is
possible to have a readable view of the log using

DBCC LOG(‘Northwind’)

You obtain the following result (extract):

Current LSN Operation Context Trans. ID

-------------- ------------------ ----------------- ----------

0018:0117:0001 LOP_BEGIN_CKPT LCX_NULL 0000:0000

0018:0118:0001 LOP_END_CKPT LCX_NULL 0000:0000

0018:0119:0001 LOP_BEGIN_XACT LCX_NULL 0000:0edb

0018:0119:0002 LOP_DELETE_ROWS LCX_MARK_AS_GHOST 0000:0edb

0018:0119:0003 LOP_MODIFY_HEADER LCX_PFS 0000:0000

0018:0119:0004 LOP_SET_BITS LCX_PFS 0000:0000

0018:0119:0005 LOP_MODIFY_COLUMNS LCX_CLUSTERED 0000:0edb

0018:0119:0006 LOP_INSERT_ROWS LCX_INDEX_LEAF 0000:0edb

0018:0119:0007 LOP_DELTA_SYSIND LCX_CLUSTERED 0000:0edb

0018:0119:0008 LOP_COMMIT_XACT LCX_NULL 0000:0edb

0018:011b:0001 LOP_BEGIN_XACT LCX_NULL 0000:0edc

0018:011b:0002 LOP_MODIFY_HEADER LCX_PFS 0000:0edc

0018:011b:0003 LOP_EXPUNGE_ROWS LCX_INDEX_LEAF 0000:0000

0018:011b:0004 LOP_SET_BITS LCX_PFS 0000:0000

0018:011b:0005 LOP_COMMIT_XACT LCX_NULL 0000:0edc

In the previous example, the Current LSN and Transaction ID values have
been shortened to four characters from eight to allow the information to fit
on one line. For example, the LSN 0018:0117:0001 should read
00000018:00000117:0001, and the Transaction ID 0000:0edb should read
0000:00000edb.

108 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 108

http://www.sybex.com

Consider the following about the DBCC LOG result:

� It is not the SQL statements that are logged in the transaction log,
but the way it is executed by SQL Server. The previous log example
has been read after a simple column update. But updating an
indexed value may lead to many data and physical structure modifi-
cations.

� Each time an operation is done on the system it may be recorded as
a transaction. In this case, the transaction ID is recorded in the
transaction log to identify the committed transaction. This feature is
crucial to the automatic recovery process.

� New log records are always added at the end of the log. No log
record can be updated. Log records may be deleted if the transaction
log is truncated or backed up.

� Each log record is identified by a unique Log Sequence Number
(LSN).

For performance and internal management purposes, a transaction log
file is divided into virtual log files (Figure 2.12). The number and size of
virtual log files depend on the size of the log. SQL Server creates or resizes
these log files at the file creation or extension.

The minimum size for a virtual log file is 128KB. The size and the number of
virtual log files depend on the initial size of the log and the growth incre-
ment value.

F I G U R E 2 . 1 2 Virtual log files

Virtual Log 1 Virtual Log 2 Virtual Log 3 Virtual Log 4

Creating and Managing a Database 109

2942C02.qxd 7/11/01 5:13 PM Page 109

http://www.sybex.com

If your transaction log size and growth increment are too small, after a cou-
ple of weeks in production, you may find a large number of small virtual log
files. These will likely slow down database performance. It is better to
choose an initial size close to the biggest needed size and a large growth
increment.

Log records are inserted in the file sequentially, starting with the first
virtual log. If you truncate the log by backing it up either automatically or
manually, the inactive part of the log is deleted. The inactive portion of a
transaction log is the portion that contains transactions with entries that
have been saved to disk. The system always keeps on disk what is called
the minimum recovery log. This is the active portion of a transaction log,
the one that will be applied in the event of a failure. The application of
these log entries to the database will bring the database back to the state it
was in before the failure. The beginning of this minimum recovery log is
called the min LSN (see Figure 2.13).

F I G U R E 2 . 1 3 Transactions and checkpoint

Checkpoint

T1

T2

T3

T4

T5

T6

T7

T8

110 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 110

http://www.sybex.com

Figure 2.13 represents some running transactions. When the checkpoint
process occurs, the committed data is flushed to the disk. In this example,
the data modified by transactions T1, T2, T4, and T6 are written to the
disk. The one modified by transactions T3, T5, T7, and T8 are not written
to the disk because the transactions are still running at checkpoint time. In
this case, the min LSN is the first LSN of transaction T3, since it is the old-
est running transaction. The transaction log could be truncated up to the
min LSN.

The min LSN may be in the middle of a virtual log, like in Figure 2.14,
but the start of the logical log is always the start of the virtual log file con-
taining the min LSN.

F I G U R E 2 . 1 4 Min LSN and virtual logs

The log file is used in a round-robin fashion: Log records are added to
the end of the last used virtual log file. If the end of the physical file is
reached, the inserts continue at the beginning of the file, like in
Figure 2.15.

F I G U R E 2 . 1 5 Round-robin log

Start of
logical log

Virtual
Log 1

Virtual Log 2 Virtual Log 3 Virtual Log 4

MinLSNLast LSN

Start of
logical log

Virtual Log 1 Virtual Log 2 Virtual Log 3 Virtual Log 4

MinLSN Last LSN

Creating and Managing a Database 111

2942C02.qxd 7/11/01 5:13 PM Page 111

http://www.sybex.com

If the inserts reach the start of the logical log, the physical file will grow
automatically if it has been configured to do so. If the file growth cannot
occur for some reason, the user trying to modify a record and insert rows
in the transaction log will receive error 9002: The log file for data-
base ‘database name’ is full. Back up the transaction log for
the database to free up some log space.

If the transaction log covers many files, SQL Server fills every file before it
goes back to the first virtual log.

The Write-ahead Paradigm

Let’s imagine that you are a database developer and administrator for
a small regional bank. You are responsible for the SQL Server box. Its
performance must be optimized permanently, and you keep an eye
every day on different counters of the Windows 2000 Performance
Monitor. Recently, your bank has merged with another regional bank,
and the number of counter clerks has been multiplied by three,
increasing the stress on the server.

You use the Performance Monitor to observe what is happening on
the disks. The log disk is used at 100 percent, while the data disk is
used at only 65 percent on average, with peaks at 100 percent during
the checkpoint process. As you observe, the most severe impact is on
the transaction log disk because the application is heavily
transactional. Your log disk is an old 7200 RPM SCSI disk, and you
decide to upgrade it to a 15K RPM disk.

Having done that after normal work time, the next day you observe
that the log disk is used at 60 percent. Your goal is achieved. There are
two morals from this scenario: First, the Performance Monitor is the
tool to use to discover bottlenecks or potential bottlenecks when you
need to analyze what’s going on a SQL Server system. Second, the
disk capacity of the log, in terms of speed and bandwidth, is crucial to
performance. A good hardware design will lead faster to a well
performing application.

112 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 112

http://www.sybex.com

One last thing concerning the log: Its use depends on the recovery
model. If not truncated, it grows indefinitely. In the previous versions of
SQL Server, the database option trunc. log on chkpt. meant that the
log was truncated from time to time, on every checkpoint. This option still
exists but it’s hidden behind the recovery model. To avoid filling up the
log, always adopt one of these two strategies:

� You choose the Simple recovery model so that the log is truncated
automatically. This can be done on a development or a test system,
never on a production server.

� You choose the Full or Bulk-logged recovery model and schedule the
log backup. Each time the log is backed up, its inactive portion is
truncated. It is the best practice on a production server. This may
mean extra work for the administrator, but also peace of mind in the
event of failure!

Database Options

When it is created, there are many options that can be set for a database.
Some options are readable and updateable through SQL Enterprise
Manager (Figure 2.16), but others can be manipulated only through
Transact-SQL.

F I G U R E 2 . 1 6 The Database Options tab

Creating and Managing a Database 113

2942C02.qxd 7/11/01 5:13 PM Page 113

http://www.sybex.com

In Transact-SQL, you may modify a database option with the ALTER
DATABASE statement or with the sp_dboption stored procedure:

ALTER DATABASE database

SET optionspec [,...n] [WITH termination]

Or

sp_dboption [[@dbname =] ‘database’]

[, [@optname =] ‘option_name’]

[, [@optvalue =] ‘value’]

Table 2.2 gives you the different values of optionspec, option_name,
and the SQL Enterprise Manager equivalent.

TA B L E 2 . 2 Database Options Value

Option Name Optionspec Option in SQL Enterprise Manager

ANSI null default ANSI NULL default

ANSI nulls ANSI_NULLS ON | OFF N/A

ANSI padding ANSI_PADDINGS ON | OFF N/A

ANSI warnings ANSI_WARNINGS ON | OFF N/A

arithabort ARITHABORT ON | OFF N/A

auto create statistics auto create statistics

auto update statistics auto update statistics

autoclose AUTO_CLOSE ON | OFF autoclose

autoshrink AUTO_SHRINK ON | OFF autoshrink

concat null yields null N/ACONCAT_NULL_YIELDS_NULL
ON | OFF

AUTO_UPDATE_STATISTICS
ON | OFF

AUTO_CREATE_STATISTICS
ON | OFF

ANSI_NULL_DEFAULT ON |
OFF

114 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 114

http://www.sybex.com

TA B L E 2 . 2 Database Options Value (continued)

Option Name Optionspec Option in SQL Enterprise Manager

cursor close on commit N/A

dbo use only RESTRICTED_USER

default to local cursor N/A

merge publish N/A N/A

numeric roundabort N/A

offline OFFLINE | ONLINE N/A

published N/A N/A

quoted identifier Use quoted identifier

read only READ_ONLY | READ_WRITE Read-only

recursive triggers recursive triggers

select into/bulkcopy

single user SINGLE_USER | MULTI_USER Restrict access, Single user

subscribed N/A N/A

torn page detection torn page detection

trunc. log on chkpt. Depending on the Recovery
Model

Depending on the Recovery
Model

TORN_PAGE_DETECTION ON |
OFF

Depending on the Recovery
Model

Depending on the Recovery
Model

RECURSIVE_TRIGGERS ON |
OFF

QUOTED_IDENTIFIER ON |
OFF

NUMERIC_ROUNDABORT ON |
OFF

CURSOR_DEFAULT LOCAL |
GLOBAL

Restrict access, Members of
db_owner, dbcreator, or sysadmin

CURSOR_CLOSE_ON_COMMIT
ON | OFF

Creating and Managing a Database 115

2942C02.qxd 7/11/01 5:13 PM Page 115

http://www.sybex.com

You can find the complete description of database options in the SQL
Server Books OnLine. You open them by choosing Start ➢ Programs ➢
Microsoft SQL Server ➢ Books OnLine.

For the recovery model concerned, Table 2.3 gives the matching values
for SELECT INTO/BULKCOPY and trunc.log on chkpt.

TA B L E 2 . 3 Recovery Model and Database Options

Model/Option SELECT INTO/BULKCOPY trunc.log on chkpt.

Full/RECOVERY FULL False False
Bulk_logged/RECOVERY True False
BULK_LOGGED
Simple/RECOVERY SIMPLE False True

To query the database options, you can run sp_dboption or use the
DATABASEPROPERTYEX function. The following stored procedure gives you
the options of the Northwind database:

Sp_dboptions ‘Northwind’

The result is:

The following options are set:

autoclose

select into/bulkcopy

trunc. log on chkpt.

torn page detection

autoshrink

auto create statistics

auto update statistics

As you can see, only the SET options are listed. If you want to query a
specific option value, the DATABASEPROPERTYEX function is the best way to
do it. The result of the following statement is one, since the autoshrink
option is set:

SELECT DATABASEPROPERTYEX(‘Northwind’, ‘IsAutoShrink’)

116 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 116

http://www.sybex.com

You can find the complete list of option names for the DATABASEPROPERTYEX
function in the SQL Server Books OnLine.

The following examples show you which statements to run to execute
common operations:

� Restrict a database to one user:
ALTER DATABASE dbname SET SINGLE_USER

� Set a database in read-only mode:
ALTER DATABASE dbname SET READ_ONLY

� Set a database recovery model to Full:
ALTER DATABASE dbname SET RECOVERY FULL

� Set a database offline:
ALTER DATABASE dbname SET OFFLINE

Problems caused by other users occurred in previous versions of SQL
Server that may still occur if you use the sp_dboption stored procedure.
For example, if you want to set the database to single user, it fails if there
is at least another user besides you using the database. When you set an
option with the ALTER DATABASE statement, you can specify whether to
rollback all running transactions on the database. There are three options
that exist:

WITH ROLLBACK IMMEDIATE All the running transactions are
immediately rolled backed and the option is set.

WITH ROLLBACK AFTER n SECONDS All the transactions run-
ning after n seconds are rolled back and the option is set.

WITH NO_WAIT If the option cannot be set immediately due to run-
ning transactions, the option is not set.

The following statement will rollback all the running transactions and
set the Northwind database to single user:

ALTER DATABASE Northwind

SET SINGLE_USER

WITH ROLLBACK IMMEDIATE

Creating and Managing a Database 117

2942C02.qxd 7/11/01 5:13 PM Page 117

http://www.sybex.com

The last point about database options concerns the Level drop-down
box you find in the Compatibility section of the Database Properties dia-
log box in the Options tab (Figure 2.16).

The database compatibility level defines the level of SQL grammar that
can be used on the database. For example, if you run

SELECT

ProductID,

Sum(UnitPrice*Quantity*(1-Discount))

FROM [Order Details]

GROUP BY ProductID

in the Northwind database, the result set will be sorted in the ProductID
column if the database is in compatibility level 60 or 65 and won’t be
sorted in the ProductID column if it is in compatibility level 70 or 80. If
you upgrade your server from SQL Server 7 to SQL Server 2000, all the
databases but the master will be in compatibility level 70. The same
applies if you upgrade from SQL Server 6.5; all the databases will be in
compatibility level 65.

The compatibility level has been designed to minimize the impact of a
version upgrade on an existing application. In the previous example, a
developer may know that in SQL Server 6.5, the GROUP BY clause sorts the
result. So it does not add an ORDER BY clause, and the application works
fine. When you switch to compatibility level 80, the result may no longer
be sorted, and the application may behave unexpectedly. By lowering the
compatibility level, you can upgrade the server without having to upgrade
the application first.

The GROUP BY Compatibility Side Effects

I remember a few months ago, encountering a vicious side effect of
the compatibility level after an upgrade for one of my customers. This
customer was in a hurry to upgrade his SQL Server 6.5 database, so
we did not take the time to test every feature of the application.
Instead, we tested only the major features, as identified by the
customer, after having changed the compatibility level.

118 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 118

http://www.sybex.com

A few weeks later the customer called, and while very satisfied with
the upgrade, he explained that one report, for different product
values, was sometimes giving strange results. In fact, the report was a
kind of “cross-table.” Products were in rows and monthly sales were
in columns. Sometimes, the report was correct, other times the report
had only one value for a product row, but each product was repeated
twelve times.

The procedure to build this report was quite complicated, using
different temporary tables. So, I had to test the procedure step-by-step
to understand the flow of the application. After two hours of testing, I
decided to analyze some of the SQL queries with the SQL Query
Analyzer. I found that depending on the amount of data, the studied
period, the number of products, and so on, the query optimizer was
either using an order strategy for the GROUP BY clause or a hash-
coding one. Adding the ORDER BY clause to the query solved all the
problems with this report.

Test your application thoroughly before changing the compatibility level of
the databases after an upgrade.

SQL Server 2000 is SQL Server version 8, so the database default com-
patibility level is eight, except for the upgraded databases. You have to be
aware of the inherent risk of a compatibility level change. You will find all
the differences between compatibility levels in the SQL Server Books
Online if you search for the sp_dbcmptlevel stored procedure.

The master database always has a compatibility level 80.

To query or change the compatibility level of a database, you can use
SQL Enterprise Manager or the sp_dbcmptlevel stored procedure. For
example,

sp_dbcmptlevel ‘Northwind’

Creating and Managing a Database 119

2942C02.qxd 7/11/01 5:13 PM Page 119

http://www.sybex.com

gives you the following result:

The current compatibility level is 80.

And

sp_dbcmptlevel ‘Northwind’, 65

sets the compatibility level of the Northwind database to 65.
At this point, you should have a good understanding of how databases

are created and are built. The next section will deal with filegroups. This
chapter has talked about files, but filegroups can also be used, for perfor-
mance or management reasons, to place data on specific disks.

Filegroups

Filegroups are groups of data files, allowing explicit placement of
tables, indexes, text, image, and ntext columns. There are two types of
filegroups:

Primary The primary filegroup created by default contains all system
tables’ allocation and some or all user tables.

User-defined User-defined filegroups may contain user tables and are
created during database creation or modification.

Figure 2.17 represents a database containing four files and three file-
groups. The primary filegroup contains one file, the DataFG filegroup con-

Create and alter databases. Considerations include file

groups, file placement, growth strategy, and space

requirements.

� Specify file group and file placement. Considerations include
logical and physical file placement.

120 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 120

http://www.sybex.com

tains two files that can be placed on different physical disks, and the
IndexFG filegroup contains one file.

F I G U R E 2 . 1 7 Data files and filegroups

The creation of filegroups is generally driven by performance considera-
tions. Some systems may improve their performance using filegroups by
placing different filegroups on different physical devices.

Creating Filegroups

Filegroups are created in SQL Enterprise Manager when you create or
alter a database, or with Transact-SQL with the FILEGROUP clause of the
CREATE DATABASE or ALTER DATABASE statement.

Figure 2.18 represents the Database Properties dialog box for the Sales
database whose structure is shown in Figure 2.17.

Primary

Sales_data1.mdf

DataFG

Sales_data2.ndf Sales_data3.ndf

IndexFG

Sales_data4.ndf

Filegroups 121

2942C02.qxd 7/11/01 5:13 PM Page 121

http://www.sybex.com

F I G U R E 2 . 1 8 Creating data files and filegroups

The following is the matching CREATE DATABASE statement:

CREATE DATABASE Sales

ON PRIMARY

(NAME = ‘Sales_Data1’,

FILENAME = ‘C:\Sales_Data1.MDF’ ,

SIZE = 100,

FILEGROWTH = 10),

FILEGROUP SalesFG

(NAME = ‘Sales_Data2’,

FILENAME = ‘D:\Sales_Data2.NDF’ ,

SIZE = 500,

FILEGROWTH = 50),

(NAME = ‘Sales_Data3’,

FILENAME = ‘E:\Sales_Data3.NDF’ ,

SIZE = 500,

FILEGROWTH = 50),

FILEGROUP IndexFG

(NAME = ‘Sales_Data4’,

FILENAME = ‘F:\Sales_Data4.NDF’ ,

SIZE = 500,

122 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 122

http://www.sybex.com

FILEGROWTH = 100)

LOG ON (NAME = ‘SALES_Log’,

FILENAME = ‘G:\SALES_Log.LDF’ ,

SIZE = 500,

FILEGROWTH = 10%)

In this example, files are placed on different physical disks to split I/Os
among them. The purpose of the filegroups in this example is to physically
separate the data and indexes onto different drives. User data may be
placed on the SalesFG filegroup and the indexes on the IndexFG filegroup.
Furthermore, as the SalesFG filegroup is made up of two files, the data is
evenly distributed on these two files, so the I/Os are split amongst two
disks.

By default there is one filegroup marked as “default,” and all tables or
indexes are placed on this filegroup if not otherwise and explicitly
requested. The Primary filegroup is the default filegroup. You can change
the default filegroup with SQL Enterprise Manager or Transact-SQL.
Figure 2.19 shows the different filegroups of the Sales database and the
Default column.

F I G U R E 2 . 1 9 Filegroups in SQL Enterprise Manager

Filegroups 123

2942C02.qxd 7/11/01 5:13 PM Page 123

http://www.sybex.com

The following is the matching ALTER DATABASE statement that will set
the SalesFG to the default filegroup:

ALTER DATABASE Sales

MODIFY FILEGROUP SalesFG DEFAULT

You can add or remove files to or from an existing filegroup, but you can
not change the filegroup to which a file has been allocated once the file has
been created.

In Exercise 2.4, we will add a file and filegroup to an existing database.

E X E R C I S E 2 . 4

Adding a File and a Filegroup to an Existing Database

1. In SQL Enterprise Manager, right-click the MyFirstDatabase folder,
and click Properties.

2. Click the Data Files tab.

3. In the empty File Name line of the Database files table, type
MyFDB_Data2.

4. At the end of the line, in the Filegroup cell, type DataFG.

5. Repeat the operation for the file MyFDB_Data3, and the filegroup
IndexFG.

6. Click OK.

7. You can go back in the Database Properties dialog box to note that
the files and the filegroups have been created.

8. Generate the SQL Script of the database creation (see Exercise 2.1).

Some other operations are possible with filegroups. You can create a
filegroup before allocating any files to it:

ALTER DATABASE Sales

ADD FILEGROUP Sales99FG

124 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 124

http://www.sybex.com

You can remove a filegroup only if it does not contain any files:

ALTER DATABASE Sales

REMOVE FILEGROUP Sales99FG

You can put a filegroup in read-only mode to disallow any modification
to the data while still allowing updates to the system tables. This can be
useful in giving access to a read-only database while keeping open the
possibility to manage permissions and security access. The following
statement puts the SalesFG filegroup in read-only mode, then puts it back
into read-write mode:

ALTER DATABASE Sales

MODIFY FILEGROUP SalesFG READONLY

ALTER DATABASE Sales

MODIFY FILEGROUP SalesFG READWRITE

You must have exclusive access to a database to put one of its files in read-
only mode. With exclusive access, no connection can be opened on that
database, except yours.

The last thing we will look at concerning filegroup updates is the ability
to change a filegroup’s name. This operation is very simple, as you can see
in the following example:

ALTER DATABASE Sales

MODIFY FILEGROUP SalesFG NAME = NewSalesFG

You just have to give the old name after the MODIFY FILEGROUP clause
and the new one after the NAME = option.

Maintenance and Performance

Filegroups are not easy to use. They require more administrative tasks and
more analysis, so you must justify their needs. Filegroups carry with them
four particular features:

� The ability to place a table or an index on a particular filegroup.

� The ability to place an image, text, or ntext column on a specific
filegroup.

Filegroups 125

2942C02.qxd 7/11/01 5:13 PM Page 125

http://www.sybex.com

� The ability to assign many files to one filegroup.

� The ability to back up a filegroup on its own.

As a rule of thumb, filegroups may be used in one of the following four
cases:

Physically separating tables and indexes By placing a table on one file-
group and its indexes on another, SQL Server accesses indexes with one
thread and the data with another one. The same thing may happen if
you put a table in a filegroup made of multiple files, each of them being
placed on a different physical disk. If the table is accessed sequentially,
the performance may increase. But on the whole, RAID 0, 5, or 0+1 is
generally a better solution.

If you split tables and indexes on two different filegroups, each filegroup
cannot be backed up independently!

Isolating big tables You can use filegroups to separate archived data
from live data. Archived tables tend to get bigger and bigger. They can
have a negative impact on performance if they are among the live data.
Imagine having your current sales and last five years’ sales data in the
same table. If by mistake, you run a SELECT query grouping by product
without a date restriction clause, you’ll end up with a long-running
query. Splitting the table is a good idea. If your archive and current sales
tables are in the same filegroup, you may also end up with data frag-
mentation. A good practice may be to put your archive data in another
filegroup or even in another database.

Isolating binary data Binary data is always a source of questions. Stor-
ing images or videos in a database is a major concern for many develop-
ers. If you decide to store this kind of data directly in the database, you
may end up with some strange data allocation and with a serious per-
formance impact if you do not think about your storage strategy. In the
previous section, we talked about pages and extents. Character and
numerical data are stored in data pages, while image and text data are
stored in text/image pages.

The problem comes from the size of this text/image data. If, for
instance, you store employees’ names, addresses, phone numbers,
and social security numbers plus the employees’ photographs, their

126 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 126

http://www.sybex.com

photographs will occupy more space than the character/numeric data.
Or, it may be that the image data is used in only 10 percent of the cases,
so the image data will “spoil” data space. You can then put this data on
its own filegroup. The character/numerical data will be together, and
the number of accessed pages may be less than if it were stored with the
image data.

Ability to back up a portion of a database From an administrator’s
point of view, using a filegroup may help with backup issues. For very
large databases, it may not be possible to back up the whole database.
Filegroups solve that problem by allowing data backups for only a sub-
set of the database.

Another point is the ability to store a table in a filegroup and back up
the filegroup independently from the database. This feature solves the
problem people had in SQL Server 6.5 of wanting to back up and
restore one table at a time.

While filegroups may be a good way to enhance performance and solve
physical data storage issues, data and log file placement should be taken
into consideration as well. This is the discussion in the last section of this
chapter.

File Placement and Performance

Do you know the difference between a good and a poor database physi-
cal design? In most cases, it lies in the file placement and the disk subsys-
tem. Unfortunately for developers, they are not generally asked what they

Create and alter databases. Considerations include file

groups, file placement, growth strategy, and space

requirements.

� Specify file group and file placement. Considerations include log-
ical and physical file placement.

� Specify transaction log placement. Considerations include bulk
load operations and performance.

File Placement and Performance 127

2942C02.qxd 7/11/01 5:13 PM Page 127

http://www.sybex.com

need in a server to run their application. They often have to work with the
existing servers in the company.

Powerful Hardware for a Powerful SQL Server

In my humble opinion, file placement and disk subsystems are almost
always underestimated. Over the years, Microsoft has been renowned
for desktop application but was in the past a poor competitor in the
database systems arena. Facing Oracle, DB/2, and Informix was a big
challenge, so many developers and administrators saw SQL Server as
a “mega” Microsoft Access and a “micro” Oracle system. Many
people thought this RDBMS could be as good as Oracle! People also
said Windows 2000/SQL servers are small compared to Unix/Oracle
boxes and cost only a tenth of the Unix/Oracle solution, so they
cannot be that good!

SQL Server is seldom installed on very powerful servers with
gigabytes of RAM, eight CPUS, and dozens of disks in RAID 5. The real
good news is that if you set up a powerful box for SQL Server, it
behaves at least as fast as Oracle and is as reliable. TPC benchmarks
show SQL Server is a very powerful solution. Unfortunately for Oracle
administrators, it is not as complicated as Oracle and therefore needs
less maintenance. Most of the complicated tasks done by Oracle
administrators are done automatically by SQL Server. SQL Server
administrators spend their time on more “intelligent” tasks. My
purpose is not to degrade Oracle administrators, but to have them
face reality. If they consider SQL Server as a true RDBMS and dig into
what’s behind the GUI, they probably will discover a product as
complicated and powerful as Oracle.

If you ask for a powerful box with disk resources, RAM, and multiple
CPUs, and if you design your physical design efficiently, neither you
nor your users will regret it.

When you design a machine to run SQL Server, you take into considera-
tion what types of applications you will be running on it. The choices that
you make when designing a system include the hardware for the server as

128 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 128

http://www.sybex.com

well as the software configuration of file placement. The types of access
that are made by the applications will influence the design.

Let’s take two basic examples:

� In an OnLine Transaction Processing (OLTP) application, most data
is accessed through one or many indexes, and many inserts are
performed. The transaction log is heavily used. Given these
statements, one could place heavily read tables (like products and
categories) on their own fast read-access disk subsystem, heavily
inserted tables (like sales and customers) on their own fast write-
access disk subsystem, and the log file on a fast write-access disk
subsystem with a high availability feature. One possible solution is
to put data files on a RAID 5 disk subsystem and the log file on a
RAID 1 15K RPM disk subsystem.

� In a Decision Support System (DSS) application, most data is read
sequentially, and updates are done by batch. The transaction log is
important during batch updates, not during normal day operation.
The data could be placed on a RAID 5 disk subsystem and the log
on a single fast disk.

These are just a few of the possible solutions. One would need to ana-
lyze more precisely the application to decide which is the best disk subsys-
tem to implement.

Data Placement

Performance placement is an important item in the database physical
design strategy. It is not only the size of the database that dictates the file
placement and the filegroup creation, but also other elements like number
of users, number of transactions per second, transaction throughput, and
type of operations should be taken into consideration.

Nothing replaces experience, but some rules may help you design a data
placement strategy:

Always place data on striped disks Of course, if your database is
10MB this rule may not apply, and working with one disk may be fine.
But the more disks the better. If you know that a SCSI 10K-RPM disk
can handle approximately 100 I/O requests per second, you understand
that with five disks, you can service 500 I/O requests per second. For
SQL Server, the disk throughput is not an issue: The max number of I/O

File Placement and Performance 129

2942C02.qxd 7/11/01 5:13 PM Page 129

http://www.sybex.com

per second is much more important. RAID 0 is the best disk stripping
strategy for data files. Unfortunately, it is also risky on a production
site. RAID 0+1 may be an answer, or RAID 5, since it’s cheaper.

Use hardware RAID rather than filegroups You can simulate RAID
with filegroups and multiple disks, but it is better to spend a little more
money on a good RAID controller than recreating RAID with file-
groups. With filegroups, you may end up with more problems than
solutions. Ask your system administrator to optimize your RAID con-
troller by setting the read/write cache. The Performance Monitor will
help you discover the read/write ratio on your disk subsystem and help
you to set the controller with the optimal value.

Identify your access patterns Know how your users access data.
Depending on their access patterns, the indexes, and the read/write
ratio, you may decide to use multiple filegroups over multiple disks or
just use a single filegroup. For example, the reference tables of an e-
commerce database system can be placed on a RAID 5 disk subsystem
and the frequently updated table on RAID 0+1. If the same database is
used internally for just a few hundred inserts per day, all the tables can
be placed on a RAID 5 array. Now, if your system is heavily updated,
you will need to calculate more precisely the numbers of I/O needed to
determine the type of disk system you need, but that subject is beyond
the scope of this book.

The purpose of this discussion is not to make your company spend a lot
of money on disks, but to make you understand that disk systems and file
placement are important to performance and are generally driven by com-
mon sense. Work closely with your system administrator to learn about
RAID subsystems and their characteristics. As a developer, you probably
won’t be responsible for disk subsystem choices. But you will be the per-
son who knows precisely the query that ran on the system as well as the
access patterns, so your insights are invaluable. Exchange your point of
view with your DBA—he will be grateful to you.

Log File Placement

Transaction logs are also stored in files and deserve a little consideration.
Furthermore, remember that the database transaction log is its life

130 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 130

http://www.sybex.com

insurance. If you lose the database, all the transactions remain in the
transaction log. As for data files, the following rules may help you choose
a good file placement.

Always store the transaction log on its own physical disk The disk is
the most fragile component of a server. If your disk crashes and if you
stored both data and log files on the same disk, then you have lost
everything, and the only solution you have is to go to your last backup.
If you separate your data and log files and you lose your data disk, you
may still back up your log and recover all the transactions executed
since the last backup.

Even on a small system, always follow this rule. This is a basic security
rule. Nobody likes losing his or her work. Separating the data from the
log increases your chance to recover your data in case of failure.

Protect your log file disk If you can afford it, protect your log file by
mirroring it. With mirror protection, the other side of the mirror contin-
ues to work in case of disk failure, offering high availability to your
users.

Use the fastest available disks for your log files Log files are written
most of the time. During batch updates, bulk inserts, or just heavy
OLTP operations, log disks are stressed a lot. In this kind of environ-
ment, the faster the transactions, the better! With very fast disks (10 or
15K RPM is a must), you are sure that your transactions will be written
in a few milliseconds and that the log will not be the bottleneck.

RAID 0 is not useful at all for log files, and RAID 5 has too much over-
head. Remember that log files are written sequentially, which means
that all writings and readings are sequential. If you spread your file on
many disks on a RAID 0 array, only one will be working at a time. And
if you use RAID 5, each time you write a new transaction, the system
will need to recalculate and write the RAID parity. So a fast RAID 1
system is the best choice.

File Placement and Performance 131

2942C02.qxd 7/11/01 5:13 PM Page 131

http://www.sybex.com

Summary

In this chapter you learned how to create a SQL Server database
design. While discovering key elements, we dug into details to help you
understand the hidden complexity of SQL Server.

This chapter particularly focused on:

� Creating and managing a database

� Creating and managing data and log files

� Creating and managing filegroups

� Assessing performance enhancement with filegroups

� Assessing performance enhancement with data and log files
placement

Key Terms

Before you take the exam, be certain you are familiar with the fol-
lowing terms:

ACID lazy writer
Bulk Changed Map Log Sequence Number
character set mixed extent
checkpoint page
collation Page Free Space
compatibility level primary data file
Differential Changed Map secondary data file
extent Secondary Global Allocation Map
filegroup transaction
Global Allocation Map transaction log
Index Allocation Map uniform extent

132 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 132

http://www.sybex.com

Exam Essentials

Know the CREATE and ALTER DATABASE statements syntax.
Know all the possible parameters of these statements. In the exam, you
may find questions on database growth or database creation.

Identify the data usage to design the physical structure of the database.
If you know how data is going to be used, you can choose a RAID sys-
tem or a multiple disk structure.

Identify performance issues with data file and log placement. File-
groups, file placement, and transaction log placement can have a dra-
matic impact on database performance. Make sure you understand the
basic principles of file placement.

Know the database options and specifically the recovery model. Data-
base options have evolved since SQL Server 4.21! Knowing the features
offered by the different options and the different recovery models will
give you a better understanding of database functionality.

Review Questions

1. You are in charge of the Policies database for an insurance company.
When you created the Policies database two years ago, it was
500MB. Then it grew to 1.3GB. Recently, you archived last year’s
data, freeing almost 40 percent of the database. Nevertheless, the
database files still occupy 1.3GB. You would like to recover a part
of the freed database space. You want to check if autoshrinking is
on. What is the fastest way to check it?

A. sp_configure Policies, ‘autoshrink’

B. SELECT DATABASEPROPERTYEX(‘Policies’, ‘IsAutoShrink’)

C. sp_helpdb ‘Policies’

D. SELECT DATABASEPROPERTY(‘Policies’, ‘AutoShrink’)

2. As a Microsoft SQL Server DBA, you have been called to analyze
the performance loss of the SQL server of an international bank.

Review Questions 133

2942C02.qxd 7/11/01 5:13 PM Page 133

http://www.sybex.com

This customer is using SQL Server to record every credit card
operation. At peak hours, the system handles some 500 transactions
per second, but on average is serving around 50 transactions per
second. For a couple of days, the system engineer sees the number of
transactions decreased to around 40 transactions per second, and
the bank has had complaints from major stores in the region that
the credit card sales quite randomly take longer than they should.
Sometimes, the transaction is very fast, even at peak hours,
sometimes it is very slow, even between peak hours.

You take a look a the Performance Monitor and monitor the
checkpoint pages/second counter. You discover that every fifteen
minutes a checkpoint occurs, the checkpoint uses almost 90 percent
of the system resources and lasts around 50 seconds. During that
time, the number of transactions falls down to less than 10 per
second. Which server options may be responsible for that delay in
the checkpoint process?

A. Lazy writes per second

B. Recovery interval

C. Lightweight pooling

D. Priority boost

3. You are working for a international group of consultants. Your
office in Kuala Lumpur just sent you a database backup you have
restored on your SQL Server test box. It works fine until you try to
unite the customer table of your New York database and the
customer table of your Kuala Lumpur database. You discover some
strange characters in the result. You run the following query in
SQL Query Analyzer:

SELECT DATABASEPROPERTYEX(‘CustomersNY’, ‘Collation’)

SELECT DATABASEPROPERTYEX(‘CustomersKL’, ‘Collation’)

You obtain the following result:
--

SQL_Latin1_General_CP1_CS_AS

Thai_CI_AI

134 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 134

http://www.sybex.com

You discover the accented letters issue is due to a difference in
collation between the databases. How can you solve this issue?

A. By installing the Thai collation on the server

B. By modifying the collation of the CustomersKL database

C. By modifying the char and varchar columns of both databases to
Unicode

D. By restoring the Kuala Lumpur database while forcing the
collation

4. You are a database developer for Northwind Traders. The
marketing department ordered a new server for the sales analysis
database. The marketing manager explains to you that her
department needs to do some thorough analysis of sales data to find
customer patterns for the next marketing campaign.

After gathering user requirements, you analyze the volume of data.
The database size will be approximately of 1.5GB, 80 percent of
which is occupied by the sales table. For data retrieval performance
reasons, this table will be heavily indexed. The database will be
primarily used for data reading and calculation. The server on which
you will install the database has four disks with two SCSI
controllers. How are you going to create the database to maximize
performance?

A.

CREATE DATABASE Marketing
ON PRIMARY

(NAME = MarketingData,
FILENAME = N’c:\data\MarketingData.mdf’,
SIZE = 2GB,
MAXSIZE = 4GB,
FILEGROWTH = 50MB)

LOG ON
(NAME = MarketingLog,
FILENAME = N’d:\data\MarketingLog.ldf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB)

Review Questions 135

2942C02.qxd 7/11/01 5:13 PM Page 135

http://www.sybex.com

B.

CREATE DATABASE Marketing
ON PRIMARY

(NAME = MarketingSystemData,
FILENAME = N’c:\data\MarketingData1.mdf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),

(NAME = MarketingData1,
FILENAME = N’d:\data\MarketingData2.ndf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),

(NAME = MarketingData2,
FILENAME = N’e:\data\MarketingData3.ndf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),

LOG ON
(NAME = MarketingLog,
FILENAME = N’f:\data\MarketingLog.ldf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB)

C.

CREATE DATABASE Marketing
ON PRIMARY

(NAME = MarketingSystemData,
FILENAME = N’c:\data\MarketingSystemData.mdf’,
SIZE = 2,
MAXSIZE = 4,
FILEGROWTH = 1),

FILEGROUP MarketingFG1
(NAME = MarketingData1,
FILENAME = N’d:\data\MarketingData1.ndf’,
SIZE = 2,
MAXSIZE = 4,
FILEGROWTH = 1),

136 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 136

http://www.sybex.com

LOG ON
(NAME = MarketingLog,
FILENAME = N’f:\data\MarketingLog.ldf’,
SIZE = 1,
MAXSIZE = 2,
FILEGROWTH = 1)

D.

CREATE DATABASE Marketing
ON PRIMARY

(NAME = MarketingSystemData,
FILENAME = N’c:\data\MarketingSystemData.mdf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),

FILEGROUP MarketingFG1
(NAME = MarketingData1,
FILENAME = N’d:\data\MarketingData1.ndf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),

FILEGROUP MarketingFG2
(NAME = MarketingData2,
FILENAME = N’e:\data\MarketingData2.ndf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB),

LOG ON
(NAME = MarketingLog,
FILENAME = N’f:\data\MarketingLog.ldf’,
SIZE = 500MB,
MAXSIZE = 2000MB,
FILEGROWTH = 50MB)

Review Questions 137

2942C02.qxd 7/11/01 5:13 PM Page 137

http://www.sybex.com

5. You developed a database for managing the consultants’ time and
invoicing for a consulting firm. You created the database last year
with the following statement:

CREATE DATABASE Consultants

ON PRIMARY

(NAME = ConsultantsData,

FILENAME = N’c:\data\ConsultantsData.mdf’,

SIZE = 100,

MAXSIZE = 200,

FILEGROWTH = 10)

LOG ON

(NAME = ConsultantsLog,

FILENAME = N’c:\data\ConsultantsLog.ldf’,

SIZE = 50,

MAXSIZE = 100,

FILEGROWTH = 10)

The data size is now 150MB. You archive 50 percent of the data.
You want the database to decrease to its initial size. What statement
will you run to do so immediately?

A.

DBCC SHRINKFILE(ConsultantsData, NOTRUNCATE)

B.

ALTER DATABASE Consultants SET AUTO_SHRINK ON

C.

DBCC SHRINKDATABASE(Consultants, 25)

D.

DBCC SHRINKDATABASE(Consulants, 100)

138 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 138

http://www.sybex.com

6. Your database is split onto two disks, as indicated by the following
statement:
CREATE DATABASE MyDatabase

ON PRIMARY

(NAME = MyDatabaseData,

FILENAME = N’c:\data\MyDatabaseData.mdf’,

SIZE = 100,

MAXSIZE = 200,

FILEGROWTH = 10)

LOG ON

(NAME = MyDatabaseLog,

FILENAME = N’d:\data\MyDatabaseLog.ldf’,

SIZE = 50,

MAXSIZE = 100,

FILEGROWTH = 10)

You need to move the data file from drive C to drive E. Order the
following statements correctly to achieve this move. Some
statements may be useless.

ALTER DATABASE MyDatabase

REMOVE FILE MyDatabaseData

DBCC SHRINKDATABASE(MyDataBase) EMPTYFILE MyDatabaseData

ALTER DATABASE MyDatabase

ADD FILE

(NAME = MyDatabaseData1,

FILENAME = N’e:\data\MyDatabaseData1.mdf’,

SIZE = 100,

MAXSIZE = 200,

FILEGROWTH = 10)

DROP FILE MyDatabaseData

DBCC SHRINKFILE(MyDatabaseData, EMPTYFILE)

Review Questions 139

2942C02.qxd 7/11/01 5:13 PM Page 139

http://www.sybex.com

7. You are a database developer for Northwind Traders. The ordering
management database has been set up on a server with two disks.
Data has been placed on the C drive and the log file on the D drive,
as shown in the statement below:

CREATE DATABASE Orders

ON PRIMARY

(NAME = OrdersData,

FILENAME = N’c:\data\OrdersData.mdf’,

SIZE = 500,

MAXSIZE = 1000,

FILEGROWTH = 50)

LOG ON

(NAME = OrdersLog,

FILENAME = N’d:\data\OrdersLog.ldf’,

SIZE = 50,

MAXSIZE = 100)

Your users complain about the slow performance of the ordering
application. You discover there is a bottleneck on the C drive due to
large read processes. You add one disk to the server (E drive) and
would like to split data among the C and E drives. How could you
achieve this goal?

A. Create a new data file on the E drive for the Orders database.
The system will automatically split data among the two files.

B. Create a new data file on the E drive for the Orders database,
then a new filegroup containing the C and E drives. From here,
the system will balance new inserts among both drives.

C. It is not possible to achieve this goal without a RAID controller.

D. Define the E and C drives as a RAID 0 partition with the
Windows 2000 disk management tool.

8. The transaction log is said to be a write-ahead log. Why?

A. Because transactions are written on disk before the data

B. Because it is only written and cannot be read, except during the
automatic recovery process

140 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 140

http://www.sybex.com

C. Because transactions are kept in memory ahead of data

D. Because transactions are written in the transaction log before
they are finished

9. A power failure occurred while the database was operating.
Unfortunately, the UPS did not function properly and did not stop
the SQL server in a proper manner. Once power comes back, what
do you have to do to your server to recover the transactions that
have been committed but not checkpointed?

A. You need to back up the transaction log, restore the database
from the last full database backup, and then restore all the
transaction logs plus the one you just backed up.

B. Nothing. SQL Server will recover automatically, rolling back
pending transactions and rolling forward committed ones.

C. Nothing. All transactions since the last checkpoint are lost, the
effects of the others are in the database.

D. Run ROLL FORWARD ALL TRANSACTION.

10. You are a database developer for a winery. You have developed an
employee management databases. The database has been created
with the following statement:

CREATE DATABASE Employees

ON PRIMARY

(NAME = EmployeesData,

FILENAME = N’c:\data\EmployeesData.mdf’,

SIZE = 50MB,

MAXSIZE = 100MB,

FILEGROWTH = 5MB)

LOG ON

(NAME = EmployeesLog,

FILENAME = N’d:\data\EmployeesLog.ldf’,

SIZE = 20)

Review Questions 141

2942C02.qxd 7/11/01 5:13 PM Page 141

http://www.sybex.com

One morning, a user calls you to inform you that he received a
message reading “Could not allocate space for object.” What is the
most likely cause of that message?

A. The transaction log is full.

B. The D drive is full

C. The database is corrupted.

D. The data file has reached is maximum size and is full.

11. You created a 1GB database with a 250MB transaction log. After a
couple of days in production, you observe that the transaction log
size used is almost stable, around 10MB. You decide to monitor
activity on the database with the Performance Monitor to check
whether there is transactional activity. In fact, a lot of inserts,
deletes, and updates are run against the database. What is the most
likely cause of the transaction log stability?

A. The transaction log is backed up every day.

B. The recovery model is set to Simple.

C. The recovery model is set to Bulk-logged.

D. The truncate log option is set.

12. You are a developer for World Wide Importers. You are setting up
the new ERP database. After having created a 500MB database and
a couple of tables, you run the sp_spaceused stored procedure and
obtain the following result:
reserved data index_size unused

------------ ---------- -------------- -----------

536 KB 152 KB 280 KB 104 KB

How come the reserved space is not 500MB?

A. SQL Server 2000 is only allocating space when objects need it.

B. This is a display bug corrected by Service Pack 1.

C. This is only the system data reserved space.

D. You may have run the stored procedure in the wrong database.

142 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 142

http://www.sybex.com

13. You need to do a maintenance job on the customers database you
are managing and developing for a local bank branch. You want to
make sure nobody besides you will work on this database. What can
you do to prevent other users from using this database?

A. Run sp_dboption ‘single user’, on

B. Run sp_configure ‘single user’, on

C. Run SET DATABASE Customers SINGLE USER

D. Run ALTER DATABASE Customers SET SINGLE_USER

14. You are managing a SQL server for an Internet Application Service
Provider (ASP). The server contains many databases for different
customers. Some databases are no longer used. They need to be
deleted from the system to reclaim their disk space. You decide to
delete Base1, Base2, and Base 3; what statement will you run to
achieve the deletion as fast as possible?

A.

DELETE Base1
GO
DELETE Base2
GO
DELETE Base3

B.

EXEC sp_dropdatabase Base1
EXEC sp_dropdatabase Base2
EXEC sp_dropdatabase Base3

C.

DROP DATABASE Base1, Base2, Base3

D.

DROP DATABASE ‘Base%’

15. You are a SQL Server developer for a winery. You created a
database to track the efficiency of workers during the vine harvest.
The database has been created with the next statement.

Review Questions 143

2942C02.qxd 7/11/01 5:13 PM Page 143

http://www.sybex.com

CREATE DATABASE Efficiency

ON PRIMARY

(NAME = EfficiencyData,

FILENAME = N’c:\data\EfficiencyData.mdf’,

SIZE = 200,

MAXSIZE = 400,

FILEGROWTH = 10)

LOG ON

(NAME = EfficiencyLog,

FILENAME = N’d:\data\EfficiencyLog.ldf’,

SIZE = 50,

MAXSIZE = 100,

FILEGROWTH = 10)

You frequently monitor the database and observe the that data file is
380MB. You decide to increase its maximum size to 500MB to
avoid any interruption of operation. Which statement will do the
job?

A.

ALTER DATABASE Efficiency
MODIFY FILE

(NAME = EfficiencyData,
MAXSIZE = 500MB)

B.

ALTER FILE EfficiencyData
(MAXSIZE = 500MB)

C.

INCREASE FILE EfficiencyData TO 500MB

D.

sp_filemaxsize EfficiencyData, 500

144 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 144

http://www.sybex.com

Answers to Review Questions

1. B. Option A is syntactically incorrect, and the sp_configure stored
procedure gives you information about server configuration, not
database configuration. C may be correct, but you have to dig
into one of the columns to find the information. D is incorrect,
first because the DATABASEPROPERTY function is provided in SQL Ser-
ver 2000 only for backward compatibility and because Autoshrink
is not the option’s name. D is a tricky possible answer.

2. B. Option A is not a server option. C is responsible for fiber
scheduling, and D is responsible for increasing the process priority.
There is a direct correlation between the checkpoint process and the
recovery interval.

3. C. Option A is irrelevant because all collations are available for SQL
Server storage. B will modify future inserted data, not the one stored
in the database. D is impossible.

4. D. You use the four disks to create three different data files with
three different filegroups for table and index placement. The last
disk is for the log.

5. C. Option A shrinks the file but does not release the freed space to
the operating system because of the NOTRUNCATE keyword. B sets the
autoshrink option to on, but will not immediately shrink the
database. In the DBCC SHRINKDATABASE statement, the figure
indicates the percentage of free space after the shrink. Twenty-five
percent of free space will do the job, because only 75MB (50 percent
of 150) remains in the database.

Answers to Review Questions 145

2942C02.qxd 7/11/01 5:13 PM Page 145

http://www.sybex.com

6.

To move data from one file to another, you have to add a new file if
it does not exist, then empty the first file, then drop it.

7. B. SQL Server 2000 automatically balances data I/Os among
multiple files belonging to the same filegroup.

8. A. Transaction log records are written to the disk before the
associated modified data pages are written to the disk.

9. B. The automatic recovery process rolls forward all committed
transactions between the last checkpoint and the crash and rolls
back any pending transactions that have not been committed.

10. D. The transaction log has unlimited growth; if its drive was full, the
error would have read that the transaction log is full (error 9002).
The data file has a defined maximum size. It’s likely this file is full.

11. B. Option A could not explain that the log space used is stable; if the
transaction log was backed up every day, its size will increase, then
decrease. With the bulk-logged recovery model, every transaction is
logged, so the transaction log size should increase. The truncate log
option does not exist. The existing option is trunc.log on chkpt.

ALTER DATABASE MyDatabase

ADD FILE

(NAME = MyDatabaseData1,

FILENAME = N’e:\data\MyDatabaseData1.mdf’,

SIZE = 100,

MAXSIZE = 200,

FILEGROWTH = 10)

DBCC SHRINKFILE(MyDatabaseData, EMPTYFILE)

ALTER DATABASE MyDatabase

REMOVE FILE MyDatabaseData

146 Chapter 2 � Database Physical Modeling

2942C02.qxd 7/11/01 5:13 PM Page 146

http://www.sybex.com

12. A. SQL Server is allocated at least 8KB per table and index, and
allocates pages as object space needs increase.

13. D. Option A would have been good if it was not lacking the
database name. Options B and C are syntactically incorrect.

14. C. Option C is the only option with correct syntax. The others do
not exist.

15. A. All the other possibilities do not exist!

Answers to Review Questions 147

2942C02.qxd 7/11/01 5:13 PM Page 147

http://www.sybex.com

Creating and
Maintaining Tables

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Create and alter database objects. Objects include constraints,

indexes, stored procedures, tables, triggers, user-defined

functions, and views.

� Specify table characteristics. Characteristics include
cascading actions, CHECK constraints, clustered, defaults,
FILLFACTOR, foreign keys, nonclustered, primary key, and
UNIQUE constraints.

� Alter database objects to support replication and partitioned

views.

� Support merge, snapshot, and transactional replication
models.

� Troubleshoot failed object creation.

Chapter

3

2942C03.qxd 7/13/01 5:30 PM Page 149

http://www.sybex.com

This chapter focuses on the table, the basic storage object. In
this chapter you will learn:

� How to create and manage a table

� How to create and manage datatypes

� How to create and manage table extended properties

� How data is stored and managed

This chapter focuses on table creation and maintenance. All other objects,
which are part of the same objectives, are covered in Chapters 4, 5, and 6.

Creating and Altering a Table

Once you have designed a database and created an Entity/Relationship
model, creating the tables will be straightforward. Table creation is a sim-
ple process, but can become very complex if you add constraint rules, as

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

� Specify table characteristics. Characteristics include cascading
actions, CHECK constraints, clustered, defaults, FILLFACTOR, for-
eign keys, nonclustered, primary key, and UNIQUE constraints.

Troubleshoot failed object creation.

2942C03.qxd 7/13/01 5:30 PM Page 150

http://www.sybex.com

we are going to see in the next chapter. In this chapter, we will focus on
simple table creation and management.

Creating a Table

A table is a set of rows and columns. Columns define the attributes of our
ER model.

Creating a Simple Table

To start with a basic example, let’s consider the Customers table of the
Northwind database (Figure 3.1).

F I G U R E 3 . 1 The Customer table

The Transact-SQL statement that created this table is shown in
Listing 3.1.

Listing 3.1: Creating the Customers Table

CREATE TABLE Customers (

CustomerID nchar (5) NOT NULL ,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Creating and Altering a Table 151

2942C03.qxd 7/13/01 5:30 PM Page 151

http://www.sybex.com

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL

)

This statement is quite simple, but it illustrates the basic table creation.
The CREATE TABLE statement has the following syntax:

CREATE TABLE tablename

({columnname datatype} [NULL | NOT NULL] [,...n]

)

The table creation in SQL Enterprise Manager is even simpler:

1. Open the database folder.

2. Right-click the Tables folder, and click New Table.

The Customers table created in the SQL Enterprise Manager window
would look like Figure 3.2.

F I G U R E 3 . 2 The Customer table in Design Mode

152 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 152

http://www.sybex.com

In the Design windows, you find the same characteristics we have in the
CREATE TABLE statement:

Column Name

The column name must conform to the rules of the identifier (see sidebar
below), which identifies every column in a table. Every column name must
be unique within a table.

Identifier Rules

A database object name is its identifier. Every name must conform to
the rules of the identifier. An identifier must be less than 128
characters. There are two classes of identifier: regular and delimited.
The rules are the following:

� Regular

� The first character must be a letter or the underscore (_) , “at”
sign (@), or number sign (#).

� Subsequent characters must be letters, numbers, underscores,
“at” signs, number signs, or dollar signs ($).

� The identifier cannot be a Transact-SQL reserved key word.

� The identifier cannot contain space or special characters.

� Examples include: Customer, @_Balance, and #Test$Mode.

� Delimited

� The identifier is delimited by double quotation marks (“) or
square brackets ([]).

� An identifier that does not conform to regular identifier rules
must be delimited.

� An identifier that conforms to regular identifier rules may be
delimited.

� Examples include: [Order Details], [Color], and “My Table.”

Creating and Altering a Table 153

2942C03.qxd 7/13/01 5:30 PM Page 153

http://www.sybex.com

Datatype

Every column has a datatype, except the computed columns, as you’ll see
in a couple of pages. Datatypes are part of entity integrity. Defining an
integer column prevents any value except an integer to be stored. SQL
Server 2000 has system and user-defined datatypes. They are described in
the “Columns and Datatype” section.

Allow NULLs

The value of a specific column may or may not be required. In the
Customers table (Listing 3.1), the CustomerID column does not allow
NULL values. During an insert, this column must have a value if you want
the insert to be successful.

Defining a column as NOT NULL means that a value is required. On the
other hand, if you define a column as NULL, it means that a value is not
required and, as a consequence, if that column has no value, it will be
NULL. In this case, NULL means unknown.

The NULL value plays a significant role in RDBMSs. A NULL value is
different from a zero or an empty string. For example, the average of the
four following values: one, two, NULL, and three is two, and is not 1.5. In
fact, if you ask how many values there are, the system will answer there
are only three. NULL does not count! So, the average is two. This is pretty
important for count and average function.

In Transact-SQL, if you do not specify the column nullability, i.e. you
do not indicate NULL or NOT NULL, its real nullability depends on the ANSI
null default database option. To check your database default, run the
following:

SELECT DATABASEPROPERTYEX(‘databasename’, ‘IsAnsiNullDefault’)

If the result is one, ANSI null default is on, if it is zero, the option is
off.

To set it on, run the following:

ALTER DATABASE databasename

SET ANSI_NULL_DEFAULT ON

To set if off, run the following:

ALTER DATABASE databasename

SET ANSI_NULL_DEFAULT OFF

154 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 154

http://www.sybex.com

If this option is on, a column allows NULL value by default, unless
otherwise defined. If it is off, it does not allow NULL value. In fact,
SQL Server 2000 defaults to NOT NULL and the ANSI SQL-92 to NULL,
so the option governs the way SQL Server works, on a database basis.

Since there are two other session-wide set options (SET ANSI_NULL_DFLT_ON
and SET ANSI_NULL_DFLT_OFF) in addition to the ANSI NULL default data-
base option that may modify SQL Server default behavior, it is best to
always specify the column nullability in the CREATE or ALTER DATABASE
statements.

E X E R C I S E 3 . 1

Creating a Simple Table with SQL Enterprise Manager
This exercise will walk you through creating a table with SQL
Enterprise Manager and generating the corresponding Transact-SQL
script.

1. Create a database named TestTable of default collation, size, and
placement. (See Chapter 2 for directions on how to create a new
database with SQL Enterprise Manager.)

2. Once the TestTable database is created, open the TestTable data-
base folder by clicking the plus sign (+) on the left of its name.

3. Right-click the Tables folder, and choose New Table.

4. Fill in the columns description with the information from the follow-
ing graphic:

5. Once you have entered the columns’ characteristics, click the Save
button.

6. In the Choose Name dialog box, type Members, then click the OK
button.

Creating and Altering a Table 155

2942C03.qxd 7/13/01 5:30 PM Page 155

http://www.sybex.com

E X E R C I S E 3 . 1 (c o n t i n u e d)

7. Close the New Table window.

8. Right-click the Members table (in the right pane of the SQL Enter-
prise Manager window) and choose All tasks ➢ Generate SQL
Scripts.

9. Click the Preview button to study the generated script.

10. Close the windows, once finished.

Unique Identifiers

There are many ways to make your table’s rows uniquely identified. The
IDENTITY and ROWGUIDCOL properties are probably the easiest ones.

Identity

Identity is just the name of SQL Server’s auto-numbering property. It
allows the creation of automatic incrementing values in columns. It is
possible to choose the seed (the first created value) and the increment (the
value added automatically to the last one each time a new record is
inserted). The following example comes from the Northwind database.
The Orders table contains an Identity column starting at one and counting
by steps of one:

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL ,

CustomerID nchar (5) NULL

)

With such a property, the first row will automatically have an OrderID
of one, the second of two, and so on.

When you insert a new row, a new identity value is automatically cre-
ated. If you delete that row, the identity value it used will never be reused
automatically by the system. If you run the following script in SQL Query
Analyzer:

CREATE TABLE Test

(col1 int IDENTITY(1, 1))

GO

156 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 156

http://www.sybex.com

INSERT Test DEFAULT VALUES

INSERT Test DEFAULT VALUES

DELETE Test WHERE col1=2

INSERT Test DEFAULT VALUES

INSERT Test DEFAULT VALUES

SELECT * FROM Test

You will obtain the following result:

col1

1

3

4

As you can see, the value two has been deleted and is not reused. A
gap is created since SQL Server always inserts the next available value.
If you try to insert an explicit value in an Identity column, you obtain
error 8101: An explicit value for the identity column in table
‘tablename’ can only be specified when a column list is used
and IDENTITY_INSERT is ON. As you can see, the IDENTITY_INSERT
option can be set to ON to allow explicit inserts in the Identity column. If
you run the following script in the SQL Query Analyzer:

SET IDENTITY_INSERT Test ON

INSERT Test(col1) VALUES (2)

SELECT * FROM Test

You will obtain the following result:

col1

1

3

4

2

Note that value two has been reinserted, not where it was, but at the
end of the table. If you want a sorted result set, you need to add the ORDER
BY clause to the SELECT statement.

Creating and Altering a Table 157

2942C03.qxd 7/13/01 5:30 PM Page 157

http://www.sybex.com

One classic question about identity is generally: How can I know the
last identity value inserted? There are three possible answers:

@@IDENTITY This global variable returns the last identity value
inserted in the current session across all scopes. A scope is a stored pro-
cedure, a trigger, a function, or a batch. For example, an insert in a
table fires the table insert trigger, which inserts a record in a table that
has an identity column. The INSERT statement and the trigger are in two
different scopes. So if you run SELECT @@IDENTITY after the previous
INSERT statement, you will obtain the value of the identity generated by
the INSERT statement inside the trigger (see Listing 3.2).

IDENT_CURRENT IDENT_CURRENT is a function that returns the last
inserted identity value in a specific table in any session and any scope.

SCOPE_IDENTITY SCOPE_IDENTITY is a function that returns the
last inserted identity in the current session and scope.

Listing 3.2: Comparisons of @@IDENTITY, IDENT_CURRENT,

and SCOPE_IDENTITY

SET NOCOUNT ON

GO

IF OBJECT_ID(‘T1’) IS NOT NULL

DROP TABLE T1

IF OBJECT_ID(‘T2’) IS NOT NULL

DROP TABLE T2

GO

CREATE TABLE T1

(col1 int IDENTITY(1,1))

CREATE TABLE T2

(col2 int IDENTITY(250,50))

GO

CREATE TRIGGER InsT1

ON T1

FOR INSERT

158 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 158

http://www.sybex.com

AS

INSERT T2 DEFAULT VALUES

GO

INSERT T1 DEFAULT VALUES

SELECT [@@IDENTITY]=@@IDENTITY

SELECT [IDENT_CURRENT(‘T1’)]=IDENT_CURRENT(‘T1’)

SELECT [IDENT_CURRENT(‘T2’)]=IDENT_CURRENT(‘T2’)

SELECT [SCOPE_IDENTITY()]=SCOPE_IDENTITY()

If you run Listing 3.2 in SQL Query Analyzer, you obtain the following
result:

@@IDENTITY

250

IDENT_CURRENT(‘T1’)

1

IDENT_CURRENT(‘T2’)

250

SCOPE_IDENTITY()

1

Inserting a record in table T1 inserts a new record in table T2. T1 iden-
tity value is one, and T2 identity value is 250. The results show us the fol-
lowing:

� @@IDENTITY returns 250 because it is the last identity value in the
current session in any scope.

� IDENT_CURRENT(‘T1’) returns one because it is the last identity
value inserted in table T1.

� IDENT_CURRENT(‘T2’) returns 250 because it is the last identity
value inserted in table T2.

Creating and Altering a Table 159

2942C03.qxd 7/13/01 5:30 PM Page 159

http://www.sybex.com

� SCOPE_IDENTITY() returns one because it is the last identity value
inserted in the current session and in the current scope.

If you open a new session (click the New Query button in
SQL Query Analyzer or press Ctrl-N) and run the last four SELECT
statements of Listing 3.2, you’ll obtain the following result:

@@IDENTITY

NULL

IDENT_CURRENT(‘T1’)

1

IDENT_CURRENT(‘T2’)

250

SCOPE_IDENTITY()

NULL

These results show us the following:

� @@IDENTITY returns NULL because in the current session, no identity
has been inserted.

� IDENT_CURRENT(‘T1’) returns one because it is the last identity
value inserted in table T1, in any session and any scope.

� IDENT_CURRENT(‘T2’) returns 250 because it is the last identity
value inserted in table T2, in any session and any scope.

� SCOPE_IDENTITY()returns NULL because in the current session, no
identity has been inserted.

If the seed and the increment values are not supplied in the IDENTITY
property, their default value is one. So, IDENTITY and IDENTITY(1,1) are
synonyms.

160 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 160

http://www.sybex.com

A table can have only one identity column. This identity must be an
integer so the chosen datatype for the column must be one the following:
TINYINT, SMALLINT, INT, BIGINT, DECIMAL(p, 0) or NUMERIC(p,0).

When defining an identity, you can specify it as NOT FOR REPLICATION. This
keyword means that the column will retain its value in the replicated table.
When you insert a column in the publishing table, SQL Server automatically
assigns the identity value. When the row is replicated, the identity value
may change in the subscribing table, unless it has been created with the
NOT FOR REPLICATION clause.

If a table has an identity column, you can query it without knowing its
name using the IDENTITYCOL keyword. If you run the following SELECT
statement:

SELECT IDENTITYCOL, LastName, FirstName FROM Employees

SQL Server returns the EmployeeID and LastName and FirstName
columns because the EmployeeID column is an identity column, and a
table can only have one identity column.

UniqueIdentifier

With the advent of mobile computing and disconnected networks, identity
does not guarantee uniqueness among multiple sites. Developers needed a
“more” unique value to offer the multiple sites uniqueness: The
UNIQUEIDENTIFIER datatype and the ROWGUIDCOL property are used to
indicate that a column is a globally unique identifier (GUID). A GUID is a
128-bit number, such as 9CCDD2B9-CC41-4AC9-91CE-7CB4E1F445EB.
When automatically generated by the system, it is guaranteed to be unique.

The following statement creates a table with a GUID column:

CREATE TABLE Company (

CompanyID uniqueidentifier ROWGUIDCOL NOT NULL ,

CompanyName nvarchar (40) NOT NULL

)

In this example, the ROWGUIDCOL value is not automatically generated
and its uniqueness is not enforced. If you want the value to be computer-
generated, you need to use the NEWID() function, like in the following
modified example:

Creating and Altering a Table 161

2942C03.qxd 7/13/01 5:30 PM Page 161

http://www.sybex.com

CREATE TABLE TestCompany (

CompanyID uniqueidentifier ROWGUIDCOL

DEFAULT NEWID() NOT NULL ,

CompanyName nvarchar (40) NOT NULL

)

If you insert a row with INSERT Company(CompanyName) VALUES
(‘Sybex’), and query the content of the table afterwards, you’ll obtain the
following result:

CompanyID CompanyName

------------------------------------ ------------

3E9ABF51-9296-4BF0-BD99-F98003550402 Sybex

If you insert another record, you’ll end up with a totally different GUID
value. GUIDs generated with the NEWID function are guaranteed to be
unique. In the CREATE TABLE statement, the ROWGUIDCOL keyword is not
necessary to create a globally unique identifier. The property is actually
enforced by the UNIQUEIDENTIFIER datatype.

E X E R C I S E 3 . 2

Creating and Managing a GUID Column
This exercise walks you through creating a table containing a globally
unique identifier column.

1. Run SQL Query Analyzer. Do this by choosing Start ➢ Programs ➢
Microsoft SQL Server ➢ Query Analyzer.

2. In the Connect to SQL Server dialog box, type . (dot) in the SQL
Server combo box. Choose your authentication method and click
OK.

3. Click Query ➢ Change Database.

4. In the SQL Database dialog box, click TestTable and then the OK
button.

5. In the Query window, type the following code:

CREATE TABLE Company (
CompanyID uniqueidentifier ROWGUIDCOL

DEFAULT NEWID() NOT NULL ,
CompanyName nvarchar (40) NOT NULL

)

162 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 162

http://www.sybex.com

E X E R C I S E 3 . 2 (c o n t i n u e d)

6. Click Query ➢ Execute. If you do not obtain the message, The com-
mand(s) completed successfully, check the statement syntax
and run it until you obtain this message.

7. Click Edit ➢ Clear Window.

8. In the Query window, type INSERT Company(CompanyName) VALUES
(‘Sybex’), and run the query by clicking Query ➢ Execute.

9. Click Edit ➢ Clear Window, and type SELECT * FROM Company to check
that the row has been inserted and the GUID has been generated.

10. You can insert other rows of you wish, executing steps eight and
nine with different company names, to see varying values of GUID.

With the ROWGUIDCOL property set, the column can be queried with the
ROWGUIDCOL keyword in the SELECT statement, like in the following example:

SELECT ROWGUIDCOL FROM Company

WHERE CompanyName=’Sybex’

UniqueIdentifier and Identity are both used to generate a unique ID for
every row. Use Identity whenever you need unique values within a single
table and UniqueIdentifier when you need unique values within a group of
tables or servers.

Collation

We first met collation with the database creation. Each character column
of a table can have a different collation, that is, a different character set or
sort order, as in the following example:

CREATE TABLE Orders (

OrderID int IDENTITY(1, 1) NOT NULL ,

CustomerID char(5) COLLATE Latin1_General_CI_AS NULL ,

EmployeeID int NULL ,

ShipName nvarchar(40),

ShipAddress varchar(60) COLLATE Latin1_General_CI_AS NULL ,)

Creating and Altering a Table 163

2942C03.qxd 7/13/01 5:30 PM Page 163

http://www.sybex.com

In the previous example, the COLLATE keyword introduces the collation
used for the column. CustomerID and ShipAddress use the Latin1
_General_CI_AS collation, which is code page 1252, and case-insensitive,
accent-sensitive dictionary sort order.

See Chapter 2 for collation and code page definition. You’ll find exhaustive
information on collation names in the SQL Server Books Online and in the
Transact-SQL Reference book, in the Collate chapter.

Note that no collation has been defined for the ShipName column. That
means this column uses the database collation. Defining the collation
down to the column can be very useful for an international database, but
tricky when the time comes for data restitution or management.

Unicode is a Better Choice than Collation

Unicode columns (NCHAR, NVARCHAR, or NTEXT datatypes) and the
database default collation is a better choice than creating different
collations for different columns. The result with Unicode will be the
same; it will assure your use of double the amount of space, but will
be easier to manage.

The only interesting case of collation use in columns could come from
a database where you lack storage space. But once you use more than
one collation, you’ll have faced collation precedence rules, which are
far from easy. Furthermore, the need for more than one collation
generally comes from international data exchange, but using different
collations may prevent databases from working well together, or at
least may make data exchange more complex. Think twice before
going in that direction.

Collation can be implemented directly using the COLLATE keyword in
the CREATE TABLE statement for every column needing a different
collation, or by using the SQL Enterprise Manager (located in Start ➢
Programs ➢ Microsoft SQL Server), which is an easier and more readable
way, as illustrated in Figure 3.3.

164 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 164

http://www.sybex.com

F I G U R E 3 . 3 Collation choice in SQL Enterprise Manager

Filegroup

Another point concerning tables is that they can be placed on a specific
filegroup. In the previous chapter, we met filegroups for the first time. A
filegroup is a logical entity containing one or more data files. By explicitly
placing a table in a filegroup, you allow that table to be stored in a specific
file or files, and then on a specific disk. I see your grin. You’re wondering:
What’s the point of placing a table on a specific disk or file? I’ll show you
in the following three examples.

The first is the one I call the archive problem. An OLTP database tends
to grow indefinitely. But at the same time, it is the main source of data for
OLAP databases. The invoicing application inserts fresh data every day in
the database and inserts its data every day or so in the company data
warehouse. But while the data warehouse needs to keep all the historic

Creating and Altering a Table 165

2942C03.qxd 7/13/01 5:30 PM Page 165

http://www.sybex.com

data, it’s generally not the case for the invoicing database. The problem is
then how to handle the historic invoicing records? The answer is archiving.
But where to archive? The answer may be: in another filegroup. Figure 3.4
shows two filegroups. The Primary filegroup contains live data and the
Historic one contains archived data.

F I G U R E 3 . 4 Four tables and two filegroups

To achieve such file placement, the following statements have to be run:

CREATE TABLE Products (…) ON Primary

CREATE TABLE Customers (…) ON Primary

CREATE TABLE Invoices (…) ON Primary

CREATE TABLE [Histo Invoices] (…) ON Historic

What is the advantage of such a split? Well, simply to keep the sales
table from becoming too big. It’s likely that in the invoicing database you
do not need paid invoicing older than three months, for example. But you
need to keep these invoices for data warehousing purposes. To ease the
query of this information and the joins with the Customers and Products
table, it is simpler to keep it in the same database. But to avoid old

Products

Customers

Invoices Histo Invoices

Primary

Data1.mdf

Historic

Data2.ndf

166 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 166

http://www.sybex.com

information getting messed up with live data and increasing the fragmenta-
tion risk, it’s best to put this data in its own filegroup.

The second example concerns the use of multiple threads. Consider that
you have the file placement illustrated in Figure 3.5.

F I G U R E 3 . 5 Four files and one filegroup

Your SQL server is running on a server with four different physical
disks, and the sales data is located on four different files. If you run a
query that scans the sales table, SQL Server 2000 can perform parallel
scans of the sales table. A separate thread is allocated for every disk con-
taining the table. In the example, four threads will be allocated to scan the
Sales table. The same kind of feature could be obtained if a query joins
two tables stored on two different disks: a different thread will scan both
tables.

The last example concerns another server with a database that is used
for a busy Order Entry system. This system inserts over 1,000,000 rows
each day into the Orders table along with four to five reads from the
Products table for each insert. If the Orders table is placed in its own file-
group on a separate disk drive from the Products table, the read operations
will not interfere with the insert operations. A separate thread is used to
access each filegroup, and thus, each table.

Sales

SalesFG

Data1.mdf Data2.ndf Data3.ndf Data4.ndf

Creating and Altering a Table 167

2942C03.qxd 7/13/01 5:30 PM Page 167

http://www.sybex.com

E X E R C I S E 3 . 3

Using Filegroups
This exercise will walk you through creating a database using a new
filegroup and a table placed on this filegroup.

1. In SQL Enterprise Manager, right-click the Databases folder and
choose New Database. (If SQL Entreprise Manager is not open,
open it by choosing Start ➢ Programs ➢ Microsoft SQL Server ➢
Enterprise Manager.)

2. In the Name text box, type DBFilegroup.

3. Click the Data files tab. Under the data file row, click in the File
Name cell and type Data2.

4. In the Filegroup cell for the Data2 file, type FG1.

5. Click the OK button.

6. Open the DBFilegroup folder, right-click the Tables folder, and click
New Table.

7. Define columns’ characteristics as in the following graphic:

8. Click the Table and Index Properties button.

9. In the Table Filegroup combo box, choose FG1.

10. Click the Close button.

11. Save the table and name it Projects, then close the New Table win-
dow.

12. Right-click the Projects table in the right pane of the SQL Enterprise
Manager window and choose Open Table ➢ Return all rows.

13. Insert five rows by typing values in the table column.

14. Close the window.

168 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 168

http://www.sybex.com

E X E R C I S E 3 . 3 (c o n t i n u e d)

15. Open Query Analyzer, if it is not opened, by clicking Tools ➢
SQL Query Analyzer, and check that you are in the DBFilegroup
database.

16. Type sp_help ‘projects’ and check that it is located on the FG1
filegroup.

In some cases, the performance effect gained by using filegroups can be
obtained with RAID 0 (disk striping without parity) or RAID 5 (disk striping
with parity). With today’s system, consider using RAID disk subsystems first
instead of filegroups to enhance performance. If you can afford multiple
RAID arrays, then filegroups can even further enhance performance.

The table initial placement on a specific filegroup can be made at table
creation. If no specific filegroup is chosen, the default table is placed on
the default filegroup.

You are allowed to change the table placement in SQL Enterprise Manager,
but that can be a very costly process. As there is no direct way to change
the table placement, SQL Enterprise Manager creates a new temporary
table on the filegroup, moves all the data to that temporary table, and
changes all the referential integrity rules before dropping the source table
and renaming the temporary table.

The ON keyword introduces the filegroup name, as shown in the syntax
below:

CREATE TABLE tablename

(<column_definitions>

) ON filegroupname

In SQL Enterprise Manager, the table placement may be defined in the
table Properties dialog box, as shown in Figure 3.6.

Creating and Altering a Table 169

2942C03.qxd 7/13/01 5:30 PM Page 169

http://www.sybex.com

F I G U R E 3 . 6 Defining the table filegroup

Altering a Table

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

� Specify table characteristics. Characteristics include cascading
actions, CHECK constraints, clustered, defaults, FILLFACTOR,
foreign keys, nonclustered, primary key, and UNIQUE constraints.

Alter database objects to support replication and

partitioned views.

Troubleshoot failed object creation.

170 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 170

http://www.sybex.com

Nobody’s perfect, especially when it comes to database structure.
Things change, needs change, users change, and therefore database design
may change. That’s the reason you’ll probably have to alter a table. Here
we will discuss the standard modifications that can be made to an existing
table.

Altering an Existing Column

Changing a column structure obeys very precise rules. While you can find
all of them in the Books Online, it’s important to remember the following
one. The altered columns cannot be:

� Of TEXT, IMAGE, NTEXT or TIMESTAMP datatypes

� The ROWGUIDCOL column

� A computed column or used in a computed column

� A replicated column

� Used in an index, except for character and binary datatype, and if
the type is not changed and the size is not decreased

� Decreased in size if values would be truncated (error 8152) or over-
flow would occur (error 220)

� Used in statistics

� A primary or foreign key

Many other modifications are allowed from SQL Enterprise Manager, but it
is generally because a temporary table is used in the background. So, any
other modification than those listed above can be very costly in terms of
time and knowledge if done through SQL Enterprise Manager. The methods
used by Enterprise Manager may use more resources than you would like,
so be careful when making table modifications through Enterprise Manager.
While it is nice to use the GUI and have it shield the user from the code
required to make the change, there is quite a bit of knowledge that can be
gained by making these modifications using T-SQL.

Creating and Altering a Table 171

2942C03.qxd 7/13/01 5:30 PM Page 171

http://www.sybex.com

The basic syntax of column alteration is the following:

ALTER COLUMN columnname
{ new_datatype [(precision [, scale])]

[COLLATE < collation_name >]

[NULL | NOT NULL]

| {ADD | DROP } ROWGUIDCOL }

Based on this syntax, you can see there are four types of column alter-
ation.

Change Its Data Type

The new datatype must be implicitly convertible from the old one.

To find out which implicit datatype conversions are allowed, search for the
CAST or CONVERT functions in the Books Online. You’ll find a table that
shows you which implicit datatype conversions are allowed or forbidden.

The following example gives you the initial table and two allowed
datatype alterations:

CREATE TABLE Altered

(C1 int,

C2 varchar (50))

GO

ALTER TABLE Altered ALTER COLUMN C1 tinyint

ALTER TABLE Altered ALTER COLUMN C2 varchar (25)

As you can see, datatypes are demoted here: The INT becomes a
TINYINT, and the VARCHAR is reduced to 25 characters. Since this is only
possible if no data is lost, you know that datatype promotion, a lossless
alteration, is always possible. Datatype demotion is only possible if no
data loss occurs.

Change Its Collation

Changing the column collation is definitely not a bright idea if it already
contains some data. Changing the collation may change the character set
and the sort order, so data may be lost and the result of some query may
change.

172 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 172

http://www.sybex.com

If you create the following table:

CREATE TABLE AlterCollation

(C1 varchar (30) COLLATE Latin1_General_CI_AS,

C2 varchar (30) COLLATE Latin1_General_CI_AS)

GO

And insert the following record:

INSERT AlterCollation

VALUES (‘prêt-à-porter français’, ‘prêt-à-porter
français’)

When you run SELECT * FROM AlterCollation, you obtain the following
result:

C1 C2

------------------------------ ---------------------------

prêt-à-porter français prêt-à-porter français

Now if you change the collation of the second column:

ALTER TABLE AlterCollation

ALTER COLUMN C2 varchar (30) COLLATE THAI_CI_AS

And run SELECT * FROM AlterCollation again, you now have:

C1 C2

------------------------------ ---------------------------

prêt-à-porter français pr?t-?-porter fran?ais

The accented letters and special characters have been lost during the
collation change because there are no matching characters in the Thai
character set.

Test your collation change before running it into production. You could have
astonishing results and you will be the first to blame!

Change Its Nullability

Changing the nullability is altering a NOT NULL column so that it allows
NULL values, or vice versa. If you want a NULL column to disallow NULL

Creating and Altering a Table 173

2942C03.qxd 7/13/01 5:30 PM Page 173

http://www.sybex.com

values, you must first be sure that your column does not have any NULLs.
The following query will help you:

SELECT * FROM MyTable WHERE NullColumn IS NULL

If the result set is empty, you can change the nullability of the column. If
it contains at least one NULL value, you must first update it to change the
nullability of the column.

In the following example, you create a table, and then alter it:

CREATE TABLE AlterNull

(C1 varchar (30) NOT NULL)

GO

ALTER TABLE AlterNull ALTER COLUMN C1 varchar (30) NULL

Note that to change the nullability of the column, you have to specify
the datatype even if you do not change it.

Change the Fact That It is a ROWGUIDCOL

The last possible alteration concerns the definition of the ROWGUIDCOL. As
seen before, a table can have only one ROWGUIDCOL column. If you want to
define or change it, you must first delete any reference to the GUID, then
define another UniqueIdentifier column as being the new ROWGUIDCOL. The
following statement drops the ROWGUIDCOL property of the Company table.

ALTER TABLE Company

ALTER COLUMN CompanyID DROP ROWGUIDCOL

Note it does not drop the column itself. Once the statement is success-
fully run, the table has no ROWGUIDCOL anymore. It is then possible to add
it again:

ALTER TABLE Company

ALTER COLUMN CompanyID ADD ROWGUIDCOL

Adding a Column

Adding a column is a straightforward as well as a tricky process. It is
straightforward because adding a column is easily done with the ADD
keyword in the ALTER DATABASE statement. It is tricky because if the table
contains data and the added column does not allow NULL values, it
should have a default value.

174 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 174

http://www.sybex.com

If you want to store the e-mail address of every employee, you can add
a column to the Employees table of the Northwind database by running
the following statement:

ALTER TABLE Employees ADD Email varchar(40) NULL

Pay attention to the fact that we specified that the column should allow
NULL values. If you forget that property or ask explicitly for a NOT NULL
value, you will obtain the error 4901: ALTER TABLE only allows columns
to be added that can contain nulls or have a DEFAULT definition
specified. Column ‘Email’ cannot be added to table ‘Employees’
because it does not allow nulls and does not specify a DEFAULT
definition.

To add a column to a table containing data and fill this column with a
default value, use the DEFAULT constraint statement (this constraint is
detailed in the next chapter), as in the following example:

ALTER TABLE Employees

ADD Email varchar(40) NOT NULL DEFAULT ‘Unknown’

If you query the Employees table, with SELECT LastName, Email FROM
Employees, you check that every Email value has been initialized with the
Unknown value:

LastName Email

-------------------- ---------------

Davolio Unknown

Fuller Unknown

Leverling Unknown

Peacock Unknown

Buchanan Unknown

Suyama Unknown

King Unknown

Callahan Unknown

Dodsworth Unknown

Creating and Altering a Table 175

2942C03.qxd 7/13/01 5:30 PM Page 175

http://www.sybex.com

Dropping a Column

Dropping a column is as simple as adding one, except you cannot drop
just any column. You cannot drop a column if:

� It is replicated.

� It is part of an index.

� It is part of a constraint.

� It is bound to a rule.

If your column is not any of the above, then you just have to run the
ALTER TABLE statement with the DROP COLUMN clause, as in the following
example:

ALTER TABLE Employees DROP COLUMN Email

Since the beginning of this section, you’ve encountered different
datatypes. Every table column should have a datatype. The next section
will deal with the different datatypes provided by SQL Server 2000 and
the different features it offers to create and manage your own datatypes.

Columns and Datatypes

A table is made of one or many columns as well as named attributes
or fields. In SQL Server 2000, every column must either have a defined
datatype or be a computed column.

There are 27 datatypes provided by default by SQL Server; these are
called system datatypes. Users can create their own datatypes, based on the
system datatypes. Datatypes are used to define the column storage as well
as the parameters of stored procedures and user-defined functions, and
variables in Transact-SQL scripts. In the following pages, we are going to
take a closer look at datatypes and the way they interact with column
tables.

System Datatypes

SQL Server provides the base for all other datatypes under the name of
system datatypes. Table 3.1 gives you a quick overview of these system
datatypes.

176 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 176

http://www.sybex.com

TA B L E 3 . 1 SQL Server System Datatypes

Datatype Min and Max Size Description

Values

Bigint -263 to 263-1 8 bytes

Binary Raw Binary data.

Bit 1 byte

Char

Datetime 8 bytes

Decimal -1038 to +1038+1 Synonym to
Numeric.

From 5 to 17
bytes,
depending on
the precision

Date and time
value.

From January 1,
1753 To December
31, 9999

Fixed-length
character type.

Exact size as
defined by
the length
attribute

8,000 charac-
ters max

Allows storage of
Boolean values.
Even if it occupies
one byte, this byte
can be shared
among 8 bit
columns. Storing
from 1 to 8 bit
columns consumes
only one byte.

Exact size as
defined by
the length
attribute

8,000 bytes
max

Integer type new to
SQL 2000, allowing
storage of large
integer values.

Columns and Datatypes 177

2942C03.qxd 7/13/01 5:30 PM Page 177

http://www.sybex.com

TA B L E 3 . 1 SQL Server System Datatypes (continued)

Datatype Min and Max Size Description

Values

Float 8 bytes

Image 2GB max Variable

Int 4 bytes Integer.

Money -263 to +263-1 8 bytes

Nchar

Ntext Variable

Numeric -1038 to +1038+1 Fixed precision
and scale
numeric value.

From 5 to 17
bytes,
depending
on the
precision

Unicode
character
type.

2GB max - 230-1
characters

Fixed-size
Unicode
character.

Exact size as
defined by
the length
attribute

Up to 4,000
characters

Monetary data
value. Preci-
sion goes
down to the
fourth decimal
place (a ten-
thousandth).

-2,147,483,648
to 2,147,483,647

Often called BLOB,
Binary Large
Object, this
datatype allows
the storage of
binary data whose
size may exceed
8000 bytes.

Floating point
number.

-1.79 10308 to
1.79 10308

178 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 178

http://www.sybex.com

TA B L E 3 . 1 SQL Server System Datatypes (continued)

Datatype Min and Max Size Description

Values

Nvarchar Variable

Real 4 bytes

Rowversion 8 bytes

Smalldatetime 4 bytes

Smallint -32,768 to 32,767 2 bytes Integer.

Smallmoney 4 bytes

Sql_variant Variable

Table Variable Type used to
store a result set.
It is not possible
to define a table
type column.

A universal
datatype that
stores any other
datatype value,
except text, ntext
and timestamp.

Monetary data
value. Precision
goes down to the
fourth decimal
place (a ten-
thousandth).

-214,748.3648
to 214,748.3647

Date and time
value with an
accuracy to one
minute.

From January
1, 1900 to
June 6, 2079

Binary data
unique within a
database.

Floating point
numeric value.

-3.40 1038 to
+3.40 1038

Unicode vari-
able character.

4,000 characters
max

Columns and Datatypes 179

2942C03.qxd 7/13/01 5:30 PM Page 179

http://www.sybex.com

TA B L E 3 . 1 SQL Server System Datatypes (continued)

Datatype Min and Max Size Description

Values

Text Variable Character type.

Timestamp 8 bytes

Tinyint 0 to 255 1 byte Unsigned Integer.

UniqueIdentifier 16 bytes

Varbinary 8,000 bytes max Variable

Varchar Variable

System datatypes can be grouped into six families.

Exact Numeric

Integers are represented through four types: TINYINT, SMALLINT, INT and
BIGINT. Note that TINYINT is an unsigned value.

NUMERIC and DECIMAL datatypes represent fixed precision and scale
numeric values. In SQL Server 2000, both types are synonyms. When you
define a column of either type, you must supply the precision and scale.
Precision represents the total of digits in the number (from 1 to 38). Scale
represents the total of decimal digits in the number. For example, a column
of DECIMAL (9, 4) can store numbers containing up to nine digits, with a
max of four decimal digits. Values such as 123,456,789 and 12,345.6789
are both valid in this context.

MONEY and SMALLMONEY are used to represent currency values. Note that
these monetary datatypes are Euro compatible.

The BIT datatypes may have three values: zero, one, or NULL. This
datatype uses a byte that can be shared by multiple byte columns of the
same table.

Variable-length
character data.

8,000 characters
max

Variable-length
binary data.

Globally
Unique
Identifier.

Synonym of
rowversion.

2GB - 230-1
characters

180 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 180

http://www.sybex.com

Approximate Numeric

FLOAT and REAL are floating point numbers.

Date and Time

DATETIME and SMALLDATETIME are used to store date and time values.
A DATETIME value is stored as two four-byte integer values. The first

integer represents the number of days before or after January 1, 1900. The
second integer represents the number of milliseconds after midnight.

A SMALLDATETIME value is less accurate than a DATETIME value. It is
stored as two two-byte integer values. The first integer represents the num-
ber of days after January 1, 1900. The second one represents the number
of seconds after midnight.

Note that it is physically impossible to store a date without a time or a
time without a date. Nevertheless, if you only insert a date, the time value
will be zero (meaning midnight). If you only insert a time, the date
value will be zero (meaning January 1, 1900).

Character Strings

CHAR and VARCHAR are single-byte characters. NCHAR and NVARCHAR are
double-byte Unicode characters. These four types are limited respectively
to 8,000 and 4,000 characters (8,000 bytes). You have to declare the
length of the character string. The default length is one. The CHAR and
NCHAR datatypes are fixed-length types. That means that they occupy the
whole space even if they are not using it. For example, a CHAR(15) column
will always consume 15 bytes, even if it uses only one or two bytes. On the
other hand, variable-length types, like VARCHAR and NVARCHAR, use only the
space they really occupy plus a two-byte overhead per value.

Use fixed-length strings for values not varying in size, like zip codes, and
variable-length strings for values varying in size, like first names or cities.

TEXT and NTEXT types are similar to a Memo field. Each time you need
to store a large volume of text (above 8,000 bytes), the TEXT and NTEXT
types may be the solution. TEXT and NTEXT fields may be stored in the
same data page as the other fields or in one or many separate pages. These
storage options are described in the “Table Storage” section.

Columns and Datatypes 181

2942C03.qxd 7/13/01 5:30 PM Page 181

http://www.sybex.com

Binary Strings

BINARY and VARBINARY datatypes are used to store binary strings whose
length is less than 8,000 bytes. The same rules apply to binary strings (as
far as storage is concerned) and character strings.

The IMAGE type is used to store any binary data that may be larger than
8,000 bytes, like images, video, sound, files, etc.

Storage of BLOBs

Binary Large Objects (BLOBs) are one of the weakest parts of SQL
Server. No insert, update, or delete methods exist in SQL Server to
handle such data. SQL Server manages their storage intelligently, but
leaves the manipulation methods to the client API (OLE-DB, ODBC or
DB-Library).

One nice feature has been added to index image columns when they
contain files like Microsoft Word documents or Excel spreadsheets.
But to store or retrieve this kind of file, it is always necessary to create
a temporary storage area. If you need to manage multiple files or
multimedia documents, you have to carefully study your needs to
decide whether you should store this information in the database or
just store their relative path in the database and keep the storage
outside of SQL Server.

For more information on image data management with ADO, look for Man-
aging Long Data Types in the Books Online.

Special

SQL_VARIANT offers the possibility to store almost anything in a column,
parameter, or variable. If a column is defined as SQL_VARIANT, some rows
may contain integer values, some others character values, and so on. The
SQL_VARIANT value is converted to a base datatype to allow manipulation.

The TABLE datatype allows the creation of a temporary result set that
can be used as a parameter of a stored procedure or used with table-valued
user-defined functions. However, it cannot be used for table columns. It
simplifies some operations by avoiding the use of Tempdb.

182 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 182

http://www.sybex.com

The TIMESTAMP and ROWVERSION datatypes are synonyms. TIMESTAMP is
a little bit tricky in Transact-SQL because it has nothing to see with the
SQL-92 timestamp. That’s the reason why SQL Server 2000 introduces the
new ROWVERSION datatype. In fact, the SQL-92 timestamp is synonymous
to the Transact-SQL DATETIME type.

There is a slightly tricky difference between the TIMESTAMP and ROWVERSION
datatypes. You can create a timestamp column without defining its name,
as in CREATE TABLE T1(C1 char(10), timestamp). In this case, SQL
Server creates a column named Timestamp. This behavior cannot be repro-
duced with ROWVERSION.

The ROWVERSION is used to automatically stamp the version of a row.
This kind of column may be used by OLE-DB or ODBC to implement
optimistic locking.

The UNIQUEIDENTIFIER, which was described earlier in the chapter, per-
mits the creation of globally unique identifiers among all the SQL servers
in the world!

Synonyms

To be SQL-92 compliant, SQL Server offers synonyms to datatypes. Table
3.2 lists all the datatype synonyms that can be used in column, parameter,
or variable definition.

TA B L E 3 . 2 Datatype Synonyms

Synonym System Datatype

binary varying varbinary
char varying varchar
character char
character char(1)
character(n) char(n)
character varying(n) varchar(n)
dec decimal
double precision float
float[(n)] for n = 1-7 real
float[(n)] for n = 8-15 float
integer int

Columns and Datatypes 183

2942C03.qxd 7/13/01 5:30 PM Page 183

http://www.sybex.com

TA B L E 3 . 2 Datatype Synonyms (continued)

Synonym System Datatype

national character(n) nchar(n)
national char(n) nchar(n)
national character varying(n) nvarchar(n)
national char varying(n) nvarchar(n)
national text ntext

Note that the synonym is used for the creation of the column. Once
created, if you generate the SQL Script of the object, the base datatype is
used. There is no record that a synonym was used instead of its base data.
Synonyms have only been implemented to guarantee the SQL-92 compli-
ancy. They are not available in SQL Enterprise Manager.

User-defined Datatypes

It is possible to create your own datatypes, based on the system datatypes.
The advantage of a user-defined datatype is to create a repository for
developers, so they all use the same datatypes for the same type of
columns. For example, you could create a SSN datatype to store social
security numbers, so every developer uses the same type of storage.

You can attach a default value and a validation rule to a user-defined
datatype. Once done, the column inherits this validation rule and default
value.

The creation of a datatype in Transact-SQL is done with the stored pro-
cedure sp_addtype. The following example creates a zip code datatype
based on a char(5) system datatype:

sp_addtype zipcode, ‘char(5)’, NULL

Note the quotation marks around the system datatype. They are required
each time the system datatype has embedded space or a punctuation mark.
If forgotten, you will have a syntax error.

184 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 184

http://www.sybex.com

The same thing can be done with SQL Enterprise Manager:

1. In SQL Enterprise Manager, open the concerned database folder.

2. Right-click User Defined Data Types and click New User Defined
Data Type.

3. Type the name of the new datatype, choose its type, its length and its
nullability, then click OK.

F I G U R E 3 . 7 Creating a user-defined datatype with SQL Enterprise Manager

Figure 3.7 shows the User-Defined Data Type Properties dialog box. In
this dialog box, besides the four basic characteristics of a datatype (name,
type, length, and nullability), you find the attached rule and default and a
Where Used button, to know which table columns use this type. Figure 3.8
shows the Where Used window of the ID user-defined datatype of the Pubs
database.

Columns and Datatypes 185

2942C03.qxd 7/13/01 5:30 PM Page 185

http://www.sybex.com

F I G U R E 3 . 8 Where Used dialog box

There is no easy way to obtain the same information directly in
Transact-SQL, except by querying the Syscolumns and Sysobjects system
tables.

It is impossible to create a user-defined datatype based on another user-
defined datatype. It must always be based on a system datatype.

E X E R C I S E 3 . 4

Creating and Managing User-defined Datatypes
This exercise will walk you through creating and using user-defined
datatypes in a new table.

1. In SQL Enterprise Manager, open the Databases folder, then the
TestTable database folder. If SQL Enterprise Manager is not open,
open it by choosing Start ➢ Programs ➢ Microsoft SQL Server ➢
Enterprise Manager.

186 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 186

http://www.sybex.com

2. Right-click the User Defined Data Types folder and choose New
User Defined Data Type.

3. In the Name text box, type Zipcode.

4. From the Data Type drop-down box, choose char.

5. In the Length textbox, type 5.

6. Check the Allow NULLs box and click OK.

7. Repeat steps two through six to create a Phone datatype as a
Char(10) allowing Nulls, and an ID datatype as bigint not allowing
Nulls.

8. Create the following table:

9. Name it Employees, save it, and close the window. You can try to
enter data in this table to check that the system datatypes are well
enforced behind the user-defined datatypes.

Dropping a user-defined datatype is possible if it is referenced in tables,
stored procedures, or user-defined functions. The sp_droptype stored pro-
cedure does all the work, as in the following example:

sp_droptype zipcode

In SQL Enterprise Manager, just right-click the datatype you want to
delete, click Delete, then click Drop All.

The datatype definition is stored in the Systypes system table.

Columns and Datatypes 187

2942C03.qxd 7/13/01 5:30 PM Page 187

http://www.sybex.com

Computed Columns

Computed columns were first introduced in SQL Server 7. They are virtual
columns, not physically stored in the database but still parts of a table
structure, and whose values are calculated on the fly. A computed column
is based on the values of one or many other columns of the same table.

The expression of a computed column can be another column (non-
computed), a constant, a function, a global variable, or any combination
of these elements connected by arithmetic or Boolean operators. It cannot
be a subquery.

The following example creates a Total computed column based on the
Price and Qty columns:

CREATE TABLE Orders

(OrderID int NOT NULL,

CustomerID int NOT NULL,

ProductID int NOT NULL,

Price money NOT NULL,

Qty smallint NOT NULL,

Total AS Price * Qty)

Computed columns may generate unexpected behavior. For example, if you
create the following column C3 AS C2/C1, if C1 is equal to zero, C3 cannot
be calculated and a divide-by-zero error occurs. If this happens, you cannot
choose the C3 column in a SELECT statement until you correct the error.

You cannot, of course, insert just any values in the computed column.
With the previous table, the following code inserts three records:

INSERT INTO Orders(OrderID, CustomerID, ProductID, Price, Qty)

VALUES(1, 1, 1, 12, 5)

INSERT INTO Orders(OrderID, CustomerID, ProductID, Price, Qty)

VALUES(2, 2, 2, 14, 10)

INSERT INTO Orders(OrderID, CustomerID, ProductID, Price, Qty)

VALUES(3, 3, 3, 5, 6)

188 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 188

http://www.sybex.com

The following is the result of running SELECT * FROM Orders:

OrderID CustomerID ProductID Price Qty Total

-------- ----------- ---------- -------- ----- -----------

1 1 1 12.0000 5 60.0000

2 2 2 14.0000 10 140.0000

3 3 3 5.0000 6 30.0000

Remember that the computed column is not stored, so retrieving its
values involves some extra CPU work. Computed columns in SQL
Server 2000 may be indexed. Chapter 5 describes the indexing rules for
computed columns.

E X E R C I S E 3 . 5

Creating and Managing Computed Columns
This exercise will walk you through creating and using a computed
column in a new table.

1. Open SQL Query Analyzer by choosing Start ➢ Programs ➢
Microsoft SQL Server ➢ Query Analyzer, and check that you are in
the TestTable database.

2. Type the following code:

CREATE TABLE Royalty
(AuthorID int NOT NULL,
TitleID int NOT NULL,
BookPrice money NOT NULL,
QtySold smallint NOT NULL,
Royalty AS

CASE
WHEN QtySold<2000 then BookPrice*QtySold*0.06
WHEN QtySold<4000 then BookPrice*QtySold*0.08
ELSE BookPrice*QtySold*0.10

END)

3. Execute the code by clicking the Green arrow in the Query Analyzer
toolbar.

4. Clear the window by clicking the Clear button in the Query Analyzer
toolbar, then type the following statement:

INSERT Royalty(AuthorID, TitleID, BookPrice, QtySold)
VALUES (1, 1, 15, 2500)

Columns and Datatypes 189

2942C03.qxd 7/13/01 5:30 PM Page 189

http://www.sybex.com

E X E R C I S E 3 . 5 (c o n t i n u e d)

5. Execute the code by clicking the green arrow in the Query Analyzer
toolbar.

6. Clear the window, then type and run SELECT ** FROM Royalty and
check that the computed column is displayed with the right result.

A computed column cannot be used as a Default or Foreign Key constraint,
which seems quite obvious.

Now that we have seen all the basics of tables and datatypes, let’s jump
to a totally new subject in SQL Server 2000 called the extended properties.
They enable you to create and manage your own properties for your tables
and columns.

Extended Properties

New to SQL Server 2000 is the ability to create extended properties.
This feature allows the creation of custom properties on almost every data-
base object. An extended property is a SQL_VARIANT storage area that can
be created on databases, users, user-defined datatypes, tables, views, stored
procedures, user-defined functions, defaults, rules, columns, parameters,
indexes, constraints, and triggers.

If you designed a table in SQL Enterprise Manager, you probably saw
an extended property without recognizing it. The Description property (see
Figure 3.9) of the Design Table window is an extended property created by
default.

190 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 190

http://www.sybex.com

F I G U R E 3 . 9 Description of a field

In fact, the Description field is presented in the GUI, but it attaches an
extended property to the column only if you fill it.

The management of extended properties in Transact-SQL is not really
easy or convenient. Extended properties are managed through three
system-stored procedures:

� Sp_addextendedproperty adds a new extended property to a data-
base object.

� Sp_updateextendedproperty updates an existing extended property.

� Sp_dropextendedproperty drops an existing extended property.

These three stored procedures and extended properties are based on
three object levels. Table 3.3 shows you the supported objects and levels.

Extended Properties 191

2942C03.qxd 7/13/01 5:30 PM Page 191

http://www.sybex.com

TA B L E 3 . 3 Object Levels

Level 0 Level 1 Level 2

User Default N/A

Function Column, parameter,
constraint,

Rule N/A

Schema-bound function Column, parameter,
constraint

Schema-bound view Column, index,
INSTEAD OF trigger

Stored procedure Parameter

Table Column, index, con-
straint, trigger

View Column, INSTEAD OF
trigger

User-defined datatype N/A N/A

These levels are quite simple to understand if you consider the following
example: If you want to add an extended property to a table column, you
need to supply the name of the table and of the column, plus the name of
the user owning the object (which is the table in this case). We find these
levels in the extended properties stored procedure syntax.

If we want to create a Description property for the CustomerID col-
umn, as in Figure 3.9, the stored procedure to execute would be:

sp_addextendedproperty ‘Description’,

‘Unique ID based on the customer’’s name’,

‘user’, ‘dbo’,

‘table’, ‘Customers’,

‘column’, ‘CustomerID’

192 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 192

http://www.sybex.com

The real name of the Description property appearing in SQL Enterprise
Manager is MS_Description.

Note the level types in this example. They are used as they appear in
Table 3.3. If you want to reach a level two object, you must specify the
level zero and level one objects as well. The three stored procedures share
the same parameters.

Properties are stored in the Sysproperties table.

To know the value of an extended property, you can query the
Sysproperties table directly or use the fn_listextendedproperty func-
tion. The following example lists the extended properties of all the
columns of the Customers table:

select * from

::fn_listextendedproperty (default,

‘user’, ‘dbo’,

‘table’, ‘Customers’,

‘column’, default)

The result is the following:

objtype objname name value

-------- ------------ --------------- --------------------

COLUMN CustomerID MS_Description Unique ID based…

COLUMN CompanyName MS_Description Name of the Company

COLUMN ContactName MS_Description Name of the primary…

If you run this query on your system, the results may vary, depending on
the extended properties you add to the columns.

In the fn_listextendedproperty function, the first parameter is the
property name you are looking for. If you specify default, you are asking
the system to list every property. You can use default to tell the system that
you want every property or object for every parameter. The following

Extended Properties 193

2942C03.qxd 7/13/01 5:30 PM Page 193

http://www.sybex.com

statement gives you all the database level properties of the current data-
base:

select * from ::fn_listextendedproperty

(default, default, default,

default, default, default, default)

The next example gives you all the table level properties for all tables in
the current database:

select * from ::fn_listextendedproperty

(default, ‘user’, ‘dbo’,

‘table’, default, default, default)

You may be pleased to know that Query Analyzer offers a graphical
way to manage extended properties. In the Object Browser, open your
database folder, then the User Tables folder. Right-click an object name
(table, column, index, and so on) and choose Extended Properties to dis-
play the Extended Property dialog box (see Figure 3.10).

F I G U R E 3 . 1 0 Extended Property dialog box

The dialog box illustrated in Figure 3.10 shows the extended properties
of the object but not the ones that belong to the object’s objects. For

194 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 194

http://www.sybex.com

example, Figure 3.10 displays the table properties but not the table’s col-
umn properties.

Extended properties offer a convenient way to store information about
database objects. You could use them to store display recommendations
for a column, comments for a stored procedure, explanations about devel-
opment choice for a user-defined function, and so on.

Extended Properties and Metadata

The days of the integration of extended properties in metadata
information are gone. The metadata repository offers you the ability
to comment on database objects. It would have been nice if the
metadata could have retrieved the extended properties information.
Unfortunately, it is not the case. Let’s hope future development
products or future versions of the Microsoft Repository will use
extended properties.

Before going into greater details concerning the implementation of
declarative integrity rules in the next chapter, the following section lets you
in on the secrets of data storage. This information, if not necessary to cre-
ate tables, gives you insights to SQL Server and helps you to design more
intelligent tables.

Table Storage

In Chapter 2, you discovered file, extent, and page allocation. In this
chapter, we go a little bit further to understand how SQL Server works to
store records. You will discover:

� How records are stored and physically managed

� How text, ntext, and image columns are stored and physically man-
aged

Each time a record is inserted in a table, it goes in an allocated page
where the system has enough space to store it. The way the record is

Table Storage 195

2942C03.qxd 7/13/01 5:30 PM Page 195

http://www.sybex.com

physically stored varies depending on the datatypes it is made of. Let’s first
consider records containing no text, ntext, or image columns.

Record Storage

Records are stored in 8KB data pages. The record max length is 8060
bytes, not including text, ntext, and image columns. You can have a look
at Figure 2.10 to remind you of the record allocations within a page. Now,
Figure 3.11 shows you the physical storage structure of a record.

F I G U R E 3 . 1 1 A record’s physical structure

A record is divided into five zones:

� The row header, which is 4 bytes long, contains information about
the row.

� The fixed-length data zone contains the data of the fixed-length
columns (char, int, real, etc.).

� The null block contains the nullability value of every nullable col-
umn.

� The variable block contains the stored variable-length data length.

� The variable-length data zone contains the data of the variable
length columns (varchar, varbinary, etc.).

Note that the physical structure does not match the column order you
defined: Fixed-length columns are grouped together at the beginning of the
row, while variable-length columns are grouped at the end of the row. You
can check this structure by running DBCC PAGE.

For example, the Authors table of the Pubs database has been created
with the following statement:

CREATE TABLE authors (

au_id id NOT NULL ,

au_lname varchar (40) NOT NULL ,

au_fname varchar (20) NOT NULL ,

phone char (12) NOT NULL,

Row Header Fixed-length Data Null
Block

Variable
Block Variable-length Data

196 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 196

http://www.sybex.com

address varchar (40) NULL ,

city varchar (20) NULL ,

state char (2) NULL ,

zip char (5) NULL ,

contract bit NOT NULL

)

Id is a user-defined datatype corresponding to a VARCHAR(11).

So the physical structure of the records of the Authors table will group
columns the following way: Phone, State, Zip, Contract, Au_id,
Au_lname, Au_fname, Address, and City. The first record of the Authors
table contains the following column values:

au_id = 172-32-1176

au_lname = White

au_fname = Johnson

phone = 408 496-7223

address = 10932 Bigge Rd.

city = Menlo Park

state = CA

zip = 94025

contract = 1

If we query the physical page content with DBCC PAGE, we obtain the
following result (excerpt):

Slot 0 Offset 0x631

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VARIABLE_COLUMNS

194d0631: 00180030 20383034 2d363934 33323237 0...408 496-7223

194d0641: 34394143 01353230 00000009 00330005 CA94025.......3.

194d0651: 003f0038 0058004e 2d323731 312d3233 8.?.N.X.172-32-1

194d0661: 57363731 65746968 6e686f4a 316e6f73 176WhiteJohnson1

194d0671: 32333930 67694220 52206567 654d2e64 0932 Bigge Rd.Me

194d0681: 206f6c6e 6b726150 nlo Park

Table Storage 197

2942C03.qxd 7/13/01 5:30 PM Page 197

http://www.sybex.com

This gives you the bytes as they are found in the page for the first
record (slot 0) at the address 0x631. As you can see, the row data starts at
the fifth byte by the phone number (408 496-7223) as we expected, since
it is the first fixed-length column. (In Figure 3.11, you can see that fixed-
length columns are stored first.) Then we find the state, the zip code, and
the contract value.

After the null and variable blocks, the data starts again with the Au_id
(172-31-176), since it is the first variable-length column. It continues by
the last name, first name, address, and city. All of the records of all the
pages follow the same storage rules.

Text, ntext, and Image Storage

Text, ntext, and image columns are managed differently from other
columns. As their size can be greater than that of a page, these columns are
stored in image pages—and only page pointers are stored in the physical
record structure. SQL Server 2000 introduced the new text in row
option to be able to store text, ntext, and image data directly in the row.

In this section, I will call a BLOB column any text, ntext, or image column.

The behavior of the text in row option is straightforward:

� When set to OFF, every BLOB column is stored in an image B-Tree
structure, and the address of the root node—a 16-byte address—is
stored in the row. If a table has multiple BLOB columns, there are as
many pointers as columns.

� When set to ON, every BLOB column is stored in the row if it fits in
the page and if its size is less than the predefined maximum size, or
it is stored in its own B-Tree structure.

To set this option to ON, use the sp_tableoption stored procedure:

sp_tableoption tablename, ‘text in row’, ‘on’

To set it to OFF, replace ON with OFF. If you set the option with the ON
keyword, the BLOB columns will be stored in the row if they are less
than 256 bytes long and fit in the page. If you want the maximum length
to be different than 256 bytes, you can define it by changing its value from

198 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 198

http://www.sybex.com

24 to 7,000, instead of using the ON keyword. The following example tells
SQL Server to store the Categories BLOB columns in the row if they are
less than 2,000 bytes long:

sp_tableoption ‘Categories’, ‘text in row’, ‘2000’

Let’s see what happens when BLOB columns are stored according to
their option values.

Text in Row OFF

By default, BLOB values are stored in their own structures called image
pages (see Chapter 2). These pages are arranged in a B-Tree structure to
optimize data access.

B-Tree stands for Balanced Tree. Used also in Index storage systems, it is a
tree structure whose management algorithm keeps it balanced; that is, the
length of every branch (from root to leaf) is the same whatever data you are
looking for. There are major differences between balanced and binary trees.

Here’s an example illustrating the storage process. The Categories table
of the Northwind database has the following structure:

CREATE TABLE [dbo].[Categories] (

[CategoryID] [int] IDENTITY (1, 1) NOT NULL ,

[CategoryName] [nvarchar] (15) NOT NULL ,

[Description] [ntext] NULL ,

[Picture] [image] NULL

)

This table has two BLOB columns: Description and Picture, the first
one being ntext and the second image. In every row you find two 16-byte
pointers. The following result of running DBCC PAGE shows the first record
of this table:

Slot 0 Offset 0x60

Record Type = PRIMARY_RECORD

Table Storage 199

2942C03.qxd 7/13/01 5:30 PM Page 199

http://www.sybex.com

Record Attributes = NULL_BITMAP VARIABLE_COLUMNS

191e2060: 00080030 00000001 03000004 35002500 0............%.5

191e2070: 42804580 76006500 72006500 67006100 .E.B.e.v.e.r.a.g

191e2080: 73006500 eb000000 00000000 00005f00 .e.s........._..

191e2090: 01000100 ec000000 00000000 00005f00_..

191e20a0: 03000100 00

CategoryID = 1

CategoryName = Beverages

Description = [TextPointer]

--

TextTimeStamp = 15400960 RowId = (1:95:1)

Picture = [TextPointer]

--

TextTimeStamp = 15466496 RowId = (1:95:3)

In the record structure, the CategoryID column is the only fixed-length
column, which means that it’s before the Null and Variable blocks. Then,
after the CategoryName column, you find two addresses: The first one
indicates the Description column content is in page 95 in slot 1, and the
second one indicates the Picture column content is in page 95 in slot 1.

The BLOB addresses are always 16 bytes long and point to a root node
managing the blocks in which the real data is stored. The logical structure
of a BLOB column storage is illustrated in Figure 3.12.

F I G U R E 3 . 1 2 BLOB storage structure

Record

Root

Block 2 Block 3Block 1

200 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 200

http://www.sybex.com

The address points to a root node that contains the pointer to data
blocks. If we go to page 95 slot 1, we find the following information:

Blob fragment at: Page (1:95) Slot 1 Length: 84 Type: 4
(LARGE_ROOT_2)

Blob Id: 15400960 Level: 0 MaxLinks: 5 CurLinks: 1

Child fragment at Page (1:95) Slot 0 Offset: 86

This shows us that this slot is occupied by an 84-byte structure
(Length: 84 Type: 4 (LARGE_ROOT_2)) indicating the real address of the
BLOB content: Child fragment at Page (1:95) Slot 0 Offset: 86.
The system finds the content on page 95 at slot 0. The Description value
for this row is contained in a single data block.

If we now go to page 95 slot 3, we find the following information:

Blob fragment at: Page (1:95) Slot 3 Length: 84 Type: 4
(LARGE_ROOT_2)

Blob Id: 15466496 Level: 0 MaxLinks: 5 CurLinks: 2

Child fragment at Page (1:97) Slot 0 Offset: 8080

Child fragment at Page (1:95) Slot 2 Offset: 10746

This root node indicates that the Picture data of the first row is made of
two blocks (Child fragments): the first one on page 97 slot 0, and the last
one on page 95 slot 2. This structure is illustrated on Figure 3.13.

F I G U R E 3 . 1 3 First record storage structure of the Categories table

Category Record

Root Root

Data
Block 1

Data
Block

Data
Block 2

Description
Address

Picture
Address

Page 95 Page 95

Page 95Page 95 Page 97

Table Storage 201

2942C03.qxd 7/13/01 5:30 PM Page 201

http://www.sybex.com

This storage structure is used if the BLOB size is between 64 bytes and
32KB. If the BLOB data is less that 64-bytes long, it is stored in the root
node structure. If it is bigger than 32KB, SQL Server creates an intermedi-
ate node between the root node and the data block to create a bigger
B-Tree structure, as in Figure 3.14.

F I G U R E 3 . 1 4 Storage structure of a BLOB column whose size is over 32KB

One important fact to note is whatever the size of a BLOB value, the
page containing the field content may be shared with other fields’ values or
nodes. In our previous example, page 95 contains different nodes and dif-
ferent BLOB columns. So, using page space as necessary optimizes BLOB
space. The only exception concerns intermediate nodes that are contained
in their own page for each row.

Text in Row ON

The sp_tableoption stored procedure allows you to define the limit under
which the BLOB data may be placed in the row if there is enough space in
the page and above which they are always placed in image pages. Three
cases could occur:

There is enough space in the page to hold the BLOB data. The prob-
lem is simple. The BLOB data is handled like a variable string and uses
just enough storage space. So if the limit is 2,000 bytes and the text
string is 500 bytes long, it will only use 500 bytes.

Root

Intermediate Node Intermediate Node

Block 2 Block 3Block 1 Block 5 Block 6Block 4

Record

202 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 202

http://www.sybex.com

There is not enough space in the page to hold the BLOB data. This
situation could occur because SQL Server evaluates the row size with-
out taking into account the BLOB size. It writes the row and then writes
the BLOB data at the end of the row in their definition orders, if there is
more than one BLOB column. If there is not enough space in the page
to hold the BLOB, SQL Server tries to write the root node structure (72
bytes instead of 84, if it is placed in row) or parts of the root structure
(at least 24 bytes). Then the data itself is stored in image pages.

The BLOB data is larger than the defined limit. This situation is quite
similar to the previous one. Only the root structure, or parts of the root
structure, is written in the row, and the data is stored in image pages.

In the case of multiple BLOB columns in a single table, depending on
the BLOB values and on the page available space, some columns may be in
row and some may be in image pages.

Filegroups

The last aspect about BLOBs concerns their filegroup location. By default,
BLOB data is stored in the table filegroup. The TEXTIMAGE_ON keyword
allows storing BLOB columns in a specific filegroup. The following
example places the text and image columns of the Categories table in the
BLOBFg filegroup, while the table rows are placed in the Primary
filegroup:

CREATE TABLE [dbo].[Categories] (

[CategoryID] [int] IDENTITY (1, 1) NOT NULL ,

[CategoryName] [nvarchar] (15) NOT NULL ,

[Description] [ntext] NULL ,

[Picture] [image] NULL

) ON Primary TEXTIMAGE_ON BLOBFg

This feature allows you to split BLOB data as well as character and
numerical data, while avoiding data external fragmentation. BLOB data is
generally larger than the rest of the data, so image page allocation occupies
more space, producing big physical gaps between data pages.

Consider placing your BLOB columns on a distinct filegroup if you
intend to store a large amount of BLOB data or if you access this data
quite infrequently.

Table Storage 203

2942C03.qxd 7/13/01 5:30 PM Page 203

http://www.sybex.com

Summary

In this chapter you learned how to create and manage database
tables. You discovered the details of how tables are structured and created,
using system or user-defined datatypes.

This chapter particularly focused on:

� Creating and managing a simple table

� Using row identifiers

� Placing tables or columns on filegroups

� Altering, adding, and dropping table columns

� Understanding system datatypes

� Creating and managing user-defined datatypes

� Creating and managing extended properties

� Data storage

Key Terms

Before you take the exam, be certain you are familiar with the following
terms:

B-Tree GUID
collation identifier
computed column identity
default nullability
extended property rule
filegroup scope
global variable session
globally unique identifier user-defined datatype

204 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 204

http://www.sybex.com

Exam Essentials

Perfectly know the CREATE and ALTER TABLE statements syntax.
Know all the possible parameters of these statements. In the exam you
may find tricky questions about table and column creation.

Know how to create automatic identifying columns. Identity and
UniqueIdentifier are convenient ways to create automatic columns, and
know their limits, advantages, and drawbacks.

Know how to create and bind user-defined datatypes. User-defined
datatypes offer a way to set domain integrity. Know how to create and
manage them.

Know the image and text datatypes management. Images are binary
large objects. Due to their size and type, they cannot be handled like
character or numeric data.

Understand the row storage. Tables are stored in pages. A good
understanding of data storage helps you comprehend table creation and
management.

Review Questions

1. You are one of the database developers working for Contoso, Inc.
You are developing the new customer relationship management
database. You are working on the customer table, which has the
following script:

CREATE TABLE Customers (

CustomerID nchar (5) NOT NULL IDENTITY(1, 1),

LastName nvarchar (40) NOT NULL ,

FirstName nvarchar (30) NULL ,

MiddleInitial nvarchar (3) NULL,

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Review Questions 205

2942C03.qxd 7/13/01 5:30 PM Page 205

http://www.sybex.com

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL ,

CONSTRAINT PK_Customers PRIMARY KEY CLUSTERED

(CustomerID)

)

During your test of the table, you insert 988 test rows in a batch.
The last used identity value is 988. You insert a new row, test the
identity value with @@identity, and obtain the value 55. What is
most likely the cause of this situation?

A. There is a trigger for the insert on the Customers table that
inserts a record in another table having a different identity value.
The value is given by this insert.

B. The identity column has been reseeded to start at 55.

C. You deleted the row whose CustomerID was 55 and, while
you inserted a new customer, SQL Server reused that value to
avoid “holes” in the table.

D. The identity value column is corrupted, and you need to run
DBCC CHECKIDENT to correct inaccuracies.

2. You are developing an employee database for World Wide
Importers. You need to store a short job description for every
employee. The length of these job descriptions varies and is less than
500 characters for 90 percent of them, but some can go up to
10,000 characters. What is the best solution for storing the job
descriptions while consuming the least amount of space?

A. Use two varchar columns, one with a max length of 2,000 and
one with a max length of 8,000. Depending on the real length,
you will use one or both columns.

B. Use a varchar column with a max length of 10,000.

C. Use a text column on a separate filegroup.

D. Use an in-row text column.

206 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 206

http://www.sybex.com

3. As a freelance SQL Server developer, you have been asked by one of
your customers to increase the capacity of part of its ordering
system. For the moment, the Orders table is using an identity value
as the OrderID. This column is a small integer. You need to change
it to an integer to support the increase. Which statement will change
the datatype of that column?

A. ALTER COLUMN Orders.OrderID integer

B. ALTER TABLE Orders ALTER COLUMN OrderID integer

C. ALTER TABLE Orders (OrderID integer)

D. ALTER COLUMN OrderID integer FROM Orders

4. You are working as a SQL Server developer for a large retail
company. Each time a retail store places an order to the central
warehouse, the total order amount has to be calculated from the
price and quantity of products ordered. The concerned tables are
shown in the following graphic.

You want the GrandTotal value to be calculated automatically when
the order is validated. What are the three solutions you could use to
achieve the expected result?

A. Make the GrandTotal column a calculated column.

B. Use an insert trigger to calculate the GrandTotal.

C. Calculate the GrandTotal in the client application and store it in
the table.

D. Use a stored procedure to perform the insert and calculate the
GrandTotal value in the stored procedure.

Review Questions 207

2942C03.qxd 7/13/01 5:30 PM Page 207

http://www.sybex.com

5. You are currently developing a product management system for
Northwind Traders. The product managers need to store one or
more photographs of each product for marketing purposes as well
as a complete description of every product. For performance
reasons, you want to place the products’ descriptions and
photographs on separate filegroups. From the following scripts,
choose the one that best suits this need.

A.

CREATE TABLE dbo.Products (

ProductID int IDENTITY (1, 1)

NOT NULL PRIMARY KEY,

ProductName nvarchar (40) NOT NULL,

SupplierID int NULL,

CategoryID int NULL,

QuantityPerUnit nvarchar (20) NULL,

UnitPrice money NULL,

UnitsInStock smallint NULL,

UnitsOnOrder smallint NULL,

ReorderLevel smallint NULL,

Discontinued bit NOT NULL,

ProductDescription ntext,

ProductPhoto image

) ON [PRIMARY] TEXTIMAGE_ON IMAGEFG

B.

CREATE TABLE dbo.Products (

ProductID int IDENTITY (1, 1)

NOT NULL PRIMARY KEY,

ProductName nvarchar (40) NOT NULL,

SupplierID int NULL,

CategoryID int NULL,

QuantityPerUnit nvarchar (20) NULL,

208 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 208

http://www.sybex.com

UnitPrice money NULL,

UnitsInStock smallint NULL,

UnitsOnOrder smallint NULL,

ReorderLevel smallint NULL,

Discontinued bit NOT NULL,

ProductDescription ntext ON IMAGEFG

) ON [PRIMARY]

CREATE TABLE ProductsPhoto (

ProductID int

REFERENCES Products(ProductID),

ProductPhoto image ON IMAGEFG,

PhotoLegend varchar(100)

) ON [PRIMARY]

C.

CREATE TABLE dbo.Products (

ProductID int IDENTITY (1, 1)

NOT NULL PRIMARY KEY,

ProductName nvarchar (40) NOT NULL,

SupplierID int NULL,

CategoryID int NULL,

QuantityPerUnit nvarchar (20) NULL,

UnitPrice money NULL,

UnitsInStock smallint NULL,

UnitsOnOrder smallint NULL,

ReorderLevel smallint NULL,

Discontinued bit NOT NULL,

ProductDescription ntext

) ON [PRIMARY] TEXTIMAGE_ON IMAGEFG

Review Questions 209

2942C03.qxd 7/13/01 5:30 PM Page 209

http://www.sybex.com

CREATE TABLE ProductsPhoto (

ProductID int

REFERENCES Products(ProductID),

ProductPhoto image,

PhotoLegend varchar(100)

) ON IMAGEFG

D.

CREATE TABLE dbo.Products (

ProductID int IDENTITY (1, 1)

NOT NULL PRIMARY KEY,

ProductName nvarchar (40) NOT NULL,

SupplierID int NULL,

CategoryID int NULL,

QuantityPerUnit nvarchar (20) NULL,

UnitPrice money NULL,

UnitsInStock smallint NULL,

UnitsOnOrder smallint NULL,

ReorderLevel smallint NULL,

Discontinued bit NOT NULL,

ProductDescription ntext

ON IMAGEFG,

ProductPhoto image ON IMAGEFG

) ON [PRIMARY]

6. You ran the following script to create the Suppliers table:
CREATE TABLE Suppliers(

SupplierID int IDENTITY (1, 1) NOT NULL ,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

210 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 210

http://www.sybex.com

City nvarchar (15) NULL ,

State nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL ,

HomePage ntext NULL

) ON PRIMARY

You obtained the following execution error:
Incorrect syntax near the keyword ‘PRIMARY’.

What is the reason for this error and what can you do to correct it?

A. State is a reserved keyword. Change it to Region and rerun the
script.

B. The table Suppliers already exists in the database. Change its
name and rerun the script.

C. Primary is a reserved keyword. Put it into square brackets and
rerun the script.

D. The ON PRIMARY clause should be placed before the closing
brackets. Put it inside the brackets and rerun the script.

7. You created the table shown in the following graphic.

After a couple of months, you want to reuse the identity value 23,
which has been deleted. Choose the required steps from those

Review Questions 211

2942C03.qxd 7/13/01 5:30 PM Page 211

http://www.sybex.com

presented, and place them in the right order to insert new records
and reuse the deleted identity value.

8. You run the following script:

CREATE TABLE tblEvents (

EventID int IDENTITY (1, 1) NOT NULL ,

EventType nvarchar (10) NULL ,

EventTitle nvarchar (100) NULL ,

EventDescription nvarchar (4000) NULL ,

EventLanguage nvarchar (2) NULL ,

EventDate smalldatetime NULL ,

EventEndDate smalldatetime NULL ,

)

What happens with the table creation?

A. SQL Server issues a warning and creates the table.

B. SQL Server issues an error and does not create the table.

Statements Possibilities

INSERT Computers

VALUES(23, ‘Compaq’, ‘Pentium II’, 64)

SET IDENTITY_INSERT ON

COMMIT TRAN

UPDATE Computers SET MachineID=23

WHERE MachineID=@@IDENTITY

SET IDENTITY_INSERT Computers OFF

SET IDENTITY_INSERT Computers ON

INSERT Computers

VALUES(DEFAULT, ‘Compaq’, ‘Pentium II’, 64)

BEGIN TRAN

212 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 212

http://www.sybex.com

C. SQL Server issues a warning and does not create the table.

D. SQL Server creates the table without any warning.

9. You are developer for a winery. You create the following table:

CREATE TABLE Region (

RegionID int NOT NULL,

RegionDescription nchar (50),

)

What is the nullability of the RegionDescription column?

A. NULL

B. It depends on the ANSI_NULLS option.

C. NOT NULL

D. It depends on the ANSI NULL DEFAULT database option value.

10. You are a database developer for a regional bank. One of the
databases in production contains the Employees table. This table
contains a column designed to store the phone extension of every
employee. Some of them do not have an extension, so the column
allows NULL values. Nevertheless, the telephone system has been
changed, and every employee is now assigned an extension. What
line of code would you run to modify the Extension column?

A.

ALTER TABLE Employees

ALTER COLUMN Extension Char (3) NULL

B.

ALTER TABLE Employees

ALTER COLUMN Extension NULL

C.

ALTER COLUMN Employees.Extension NULL

D.

ALTER COLUMN Employees.Extension

Char (3) NULL

Review Questions 213

2942C03.qxd 7/13/01 5:30 PM Page 213

http://www.sybex.com

11. You want to create the table illustrated in the following graphic.
What is the script you are going to use?

A.

CREATE TABLE Tasks (

TaskID int IDENTITY(1, 1),

EmployeeID int,

TaskName varchar (50),

StartDate smalldatetime NULL ,

Duration smallint NULL)

214 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 214

http://www.sybex.com

B.

CREATE TABLE Tasks (
TaskID int IDENTITY(1, 1) NOT NULL

PRIMARY KEY CLUSTERED,

EmployeeID int NOT NULL ,

TaskName varchar (50) NOT NULL ,

StartDate smalldatetime NULL ,

Duration smallint NULL)

C.

CREATE TABLE Tasks (

TaskID int

PRIMARY KEY CLUSTERED

IDENTITY(1, 1),

EmployeeID int,

TaskName varchar (50),

StartDate smalldatetime NULL ,

Duration smallint NULL)

D.

CREATE TABLE Tasks (

TaskID int,

EmployeeID int,

TaskName varchar (50),

StartDate smalldatetime,

Duration smallint)

12. You are a developer for World Wide Importers. You are currently
developing a database designed to manage imported products. Some
of these products have to be stored at a maximum temperature of
-30° C, some may be stored at -18° C, some at 0° C, and some at
4° C. This information has to be stored with each product. You
want to minimize the space used by every row. Which datatype are
you going to choose for this storage temperature?

Review Questions 215

2942C03.qxd 7/13/01 5:30 PM Page 215

http://www.sybex.com

A. TINYINT

B. SMALLINT

C. NUMERIC(2,0)

D. INT

13. You are a developer for a winery. A previous developer has created a
series of user-defined datatypes that she stored in the model
database. All these types are now in each database. In one of the
databases, you need to modify a datatype called Telephone. This is a
char(10), and you need to change it to varchar(15). Which statement
or action will be needed to reach your goal?

A. ALTER TYPE ‘Telephone’ varchar(15)

B. sp_altertype ‘telephone’, ‘varchar(15)’

C. Alter all tables that use the type, drop it, then recreate it.

D. sp_changetype ‘telephone’, ‘varchar(15)’

14. You are a database developer for an international law firm. You are
working on a new product database for the international offices.
The company’s headquarters is in San Diego, and it has the
following five offices outside of the U.S.: Paris, Singapore, Sydney,
Sao Paulo, and Johannesburg. Each of these offices uses their local
language. The application you are developing is a brand new one
and should accommodate all the company languages without any
loss, since all the data will be consolidated in San Diego. Choose
two possible solutions to handle this multi-language requirement.

A. Use Unicode for all character columns.

B. Use a different collation on each location.

C. Use the same collation on each location.

D. Use only text columns.

216 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 216

http://www.sybex.com

15. You are working on a new database system for Northwind Traders.
The company has ten offices around the world, and each of them
will run the new system. Each office can select new products to sell
on the foreign markets managed by the other offices. Each product
needs to have a unique identifier given automatically by the system
across all databases. You decide to use the UniqueIdentifier datatype
to offer this uniqueness feature. What column definition will create
the ProductID column with the UniqueIdentifier feature?

A. ProductID uniqueidentifier NOT NULL

B. ProductID uniqueidentifer newid()

C. ProductID uniqueidentifier DEFAULT newid()

D. ProductID uniqueidentifier AS newid()

Review Questions 217

2942C03.qxd 7/13/01 5:30 PM Page 217

http://www.sybex.com

Answers to Review Questions

1. A. The last identity value in any scope is stored in @@Identity. It is
likely that the table has a trigger that inserts a new row in another
table.

2. D. Option A, while possible, is not convenient for lengthy values. B
is impossible since the maximum length of a varchar column is
8,000. C would be possible, but a separate filegroup is useless,
because you would consume more space than with the in-row
storage. D is the best answer since a majority of rows will have
enough space to store the value in the row.

3. B. This is the only correct syntax.

4. B, C, and D. A computed column cannot reference columns in other
tables.

5. C. Option A would have been good if only one photograph per
product was necessary. B and D are wrong since the test and image
column locations are decided with the TEXT_IMAGE ON clause.

6. C. State could be a keyword in a future version of SQL Server, as
indicated in the Books Online. It may be a good idea not to use it,
even though it will work with SQL Server 2000. If the Suppliers
table existed, the error message would not be an incorrect syntax
error. The ON PRIMARY clause is after the closing bracket, but
PRIMARY should be placed between square brackets because it is a
reserved key word (PRIMARY KEY).

7. Statements

SET IDENTITY_INSERT Computers ON

INSERT Computers

VALUES(23, ‘Compaq’, ‘Pentium II’, 64)

SET IDENTITY_INSERT Computers OFF

218 Chapter 3 � Creating and Maintaining Tables

2942C03.qxd 7/13/01 5:30 PM Page 218

http://www.sybex.com

You cannot insert or update an explicit value in an identity column
unless you set the IDENTITY_INSERT option to ON beforehand.

8. A. The maximum length of the record is 8265 bytes, which is bigger
than the maximum authorized size of 8060 bytes. Nevertheless, due
to the fact that some columns are nvarchar, the table is created with
a warning indicating that the insert or update of a row in this table
will fail if the resulting row length exceeds 8060 bytes.

9. D. The ANSI_NULLS option concerns only the SQL-92 compliancy
behavior of comparison operators. Only the ANSI NULL DEFAULT
database option, the ANSI_DEFAULTS, and the ANSI_NULL_DFLT_ON
options have an impact on the implicit nullability of columns.

10. A. The right way to alter a column is to alter the table. Options C
and D are syntactically incorrect. When you want to alter a column
property, like the nullability, you need to redefine all of its current
properties. Option B lacks the actual column datatype.

11. B. Option A lacks the primary key and the NOT NULLs; option C
lacks the NOT NULL; option D lacks the NOT NULLs, the NULLs,
the identity, and the primary key.

12. B. Option A, TINYINT, would be great for space consumption;
unfortunately, it is unsigned. Option B, SMALLINT, offers the smallest
space consumption, while allowing signed values.

13. C. Unfortunately, you need to make sure the datatype is not used. If
you run the sp_droptype stored procedure, SQL Server will give you
the list of all the tables using the concerned datatype.

14. A, B. Different languages mean different character sets. The only
way to be sure the data is stored and read with the right character
set is to use different collations or use Unicode. The only drawback
of Unicode is that it uses 2 bytes per character.

15. C. Options B and D are syntactically incorrect. Option A creates the
column but does not give an automatic value.

Answers to Review Questions 219

2942C03.qxd 7/13/01 5:30 PM Page 219

http://www.sybex.com

Implementing Data
Integrity

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Create and alter database objects. Objects include constraints,

indexes, stored procedures, tables, triggers, user-defined

functions, and views.

� Specify table characteristics. Characteristics include
cascading actions, CHECK constraints, clustered, defaults,
FILLFACTOR, foreign keys, nonclustered, primary key, and
UNIQUE constraints.

� Alter database objects to support replication and partitioned

views.

� Design and create constraints and views.

� Troubleshoot failed object creation.

Chapter

4

2942C04.qxd 7/11/01 5:18 PM Page 221

http://www.sybex.com

The previous chapter focused on table creation. This one
defines data integrity, which is the way you implement rules in the table
structure to guarantee the data is correct. In this chapter you will learn
about:

� Data integrity implementation

� Default values management

� Check rules management

� Primary key and unique constraints

� Foreign key and relationships

Data Integrity

We first met data integrity in Chapter 1. Data integrity defines
rules for data accuracy and correctness. If, for example, a column is
defined with an integer datatype, SQL Server prevents users from entering
character data. On the other hand, a developer may design an Age column
to prevent negative numbers. These simple rules, which could in certain
cases become quite complicated, are data integrity rules.

Integrity Types

Four different types of data integrity are generally accepted in relational
databases:

Domain Domain integrity defines the valid data for a specific column.
It is enforced by restricting the datatypes, format, or range of possible
values.

2942C04.qxd 7/11/01 5:18 PM Page 222

http://www.sybex.com

Entity Entity integrity defines each row as unique for each table. In
other words, a row can exist only once in a specific table.

Referential Referential integrity protects the relationship between
tables during row inserts, updates, and deletes. Referential integrity may
prevent users from:

� Inserting records in a related table if there are no matching records
in the parent table

� Deleting records in a parent table if there is at least one matching
record in the related table

� Updating the relationship key in a parent table if is there is at least
one matching record in the related table

Enterprise Enterprise integrity defines business rules that describe the
processes in your organization.

Integrity Implementation

In every RDBMS, the four previous integrity types can be enforced in two
ways:

Declarative Integrity With declarative integrity, integrity rules are part
of the table schema. In SQL Server 2000, declarative integrity may be
enforced with the following objects and features:

� Datatypes

� Nullability

� DEFAULT constraint

� CHECK constraint

� PRIMARY KEY constraint

� UNIQUE constraint

� UNIQUE indexes

� FOREIGN KEY constraint

Data Integrity 223

2942C04.qxd 7/11/01 5:18 PM Page 223

http://www.sybex.com

Procedural Integrity With procedural integrity, integrity rules are
defined through external code objects, such as stored procedures or
triggers. In SQL Server 2000, procedural integrity may be enforced with
the following objects:

� Defaults

� Rules

� Triggers

� Stored procedures

The integrity implementation type you use has an impact on row inserts,
updates, and deletes. Declarative integrity rules are always checked before
the insert, update, or delete. That means, if one declarative integrity rule is
violated, the operation is cancelled before the row has been inserted,
updated, or deleted. Procedural integrity rules are generally checked after
the insert, update, or delete occurred. The only exception to this last rule
concerns INSTEAD OF triggers (see Chapter 6). If there are declarative and
procedural integrity rules on a table, declarative rules are checked first and
may prevent procedure rules from being checked.

Table 4.1 shows you ways to implement integrity rules.

TA B L E 4 . 1 Implementing Integrity Types

Integrity Declarative Procedural

Type Implementation Implementation

Domain Datatype, nullability Default
DEFAULT constraint Rule
CHECK constraint

Entity PRIMARY KEY constraint Stored procedure
UNIQUE constraint Trigger
UNIQUE index

Referential FOREIGN KEY constraint Stored procedure
Trigger

Enterprise N/A Stored procedure
Trigger

224 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 224

http://www.sybex.com

Triggers vs. Constraints

Every time I give a SQL Server programming course, the same
question arises. Are constraints better than triggers? There is not a
single answer, but the following rules apply any time:

� Always use constraints to enforce integrity whenever possible:

� Enforce domain integrity with CHECK constraints.

� Enforce entity integrity with PRIMARY KEY or UNIQUE constraints,
or a UNIQUE index.

� Enforce referential integrity with FOREIGN KEY constraints.

� Use triggers only in the following cases:

� Domain integrity: The column values must be validated against
one or many columns in another table.

� Referential integrity: The needed cascading rule is more
complex than the one proposed with FOREIGN KEY constraints.
For example, each time a customer is deleted, his orders are
moved to an archive table.

� Whenever the rule that must be applied cannot be done through
constraints.

Remember, constraints are part of the table schema. They are checked
after AFTER triggers and are more efficient than stored procedures and
triggers. So, when you need to enforce data integrity, always think of
constraints first.

Declarative integrity is enforced through the CREATE TABLE or ALTER
TABLE statements. Integrity rules can be defined at column or a table level.
The following items show the different possible cases:

� Column-level constraint definition at table creation:
CREATE TABLE tablename

(columname datatype [CONSTRAINT constraintname]

columnconstrainttype [,...]

� Table-level constraint definition at table creation:
CREATE TABLE tablename

(columname datatype [,...],

[CONSTRAINT constraintname] tableconstrainttype

Data Integrity 225

2942C04.qxd 7/11/01 5:18 PM Page 225

http://www.sybex.com

� Column-level constraint definition at table modification:
ALTER TABLE tablename

ADD columname datatype [CONSTRAINT constraintname]

columnconstrainttype [,...]

� Table-level constraint at table modification:
ALTER TABLE tablename

[WITH CHECK | WITH NOCHECK] ADD

[CONSTRAINT constraintname] tableconstrainttype

With the CHECK and FOREIGN KEY constraints, specifying WITH CHECK
(this is the default) tells SQL Server to check existing values. Specify-
ing WITH NOCHECK tells SQL Server not to check existing values but
only check future inserts and updates.

To drop any constraint, use the following statement:

ALTER TABLE tablename DROP [CONSTRAINT] constraintname

You can disable CHECK and FOREIGN KEY constraints during massive
inserts or updates, then re-enable them. To disable one, many, or all
constraints, use the following syntax:

ALTER TABLE tablename

NOCHECK CONSTRAINT {ALL | constraintname [,...]}

To re-enable one, many, or all constraints use the following syntax:

ALTER TABLE tablename

CHECK CONSTRAINT {ALL | constraintname [,...]}

You may have noticed that when creating a constraint, specifying the
name is optional. If you do not give a name to your constraint, SQL Server
will name it automatically. If you wish to find a constraint name, you can
run the sp_helpconstraint stored procedure, as in the following example:

sp_helpconstraint authors

Note that you have to be in the right database to execute this stored
procedure. When you open the SQL Query Analyzer, you may not be in
the right database. Check the database drop-down box and choose the
right database.

You obtain three different result sets, the first giving the object name (to
check you are working on the right object), the second giving the con-

226 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 226

http://www.sybex.com

straint list, and the third giving the list of tables referenced by the table
foreign keys:

Object Name

authors

constraint_type constraint_name ...

------------------------ -----------------------------

CHECK on column au_id CK__authors__au_id__77BFCB91

CHECK on column zip CK__authors__zip__79A81403

DEFAULT on column phone DF__authors__phone__78B3EFCA

PRIMARY KEY (clustered) UPKCL_auidind

Table is referenced by foreign key

--

pubs.dbo.titleauthor: FK__titleauth__au_id__0519C6AF

The second result set has more columns than are presented here. You
will find the defined columns for PRIMARY KEY, FOREIGN KEY, and UNIQUE
constraints, as well as the CHECK and DEFAULT constraints.

After defining the integrity basis, let’s move to the implementation
details of each integrity implementation type, starting with domain
integrity and the default values.

Default Values

Amongst column characteristics, we find nullability and default val-
ues. These two features define the value inserted in a column when it is not
specified in an INSERT statement. Three cases can occur when the column
value is not given in the INSERT statement:

� When the column is defined as accepting NULL values and has no
default value, the column value is NULL.

� When the column is defined as not accepting NULL values and has no
default value, an error occurs.

Default Values 227

2942C04.qxd 7/11/01 5:18 PM Page 227

http://www.sybex.com

� When the column has a default value, whether it has been defined to
accept or not accept NULL values, the column value is the default
value.

SQL Server 2000 has two ways to implement default values in columns:
the default constraint and the default object.

Default Constraint

The default constraint can be created at the time of table creation, added
after table creation, or dropped. Each column can only have one default
constraint.

TIMESTAMP, IDENTITY, and ROWGUIDCOL columns cannot have a default con-
straint, since their value definition is already automatic.

Defining the Default Constraint at Table Creation

The default constraint is defined in the CREATE TABLE statement at
the column level. The following lines of code give you the basic
SQL Server 2000 syntax of the default constraint definition:

CREATE TABLE tablename(

columnname datatype [NULL | NOT NULL]

[CONSTRAINT constraintname] DEFAULT expression

[,...])

The default expression can be a constant; a system function, such as
GETDATE(); a system global variable, such as @@trancount; or a user-
defined function (see Chapter 6).

The list of system functions can be found in the Books Online in the Trans-
act-SQL Reference book, in the Functions/System functions section. To open
the Books Online, choose Start ➢ Programs ➢ Microsoft SQL Server ➢
Books Online. To open a specific book, click on the plus sign (+) next to the
book name.

228 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 228

http://www.sybex.com

The name of another column cannot be used in the default expression.

Listing 4.1 creates a table with default values.

Listing 4.1: CREATE TABLE Statement with Default

Constraints

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL,

CustomerID nchar (5),

EmployeeID int NULL,

OrderDate datetime NULL

CONSTRAINT DF_Orders_OrderDate DEFAULT GETDATE(),

RequiredDate datetime NULL,

ShippedDate datetime NULL,

ShipVia int NULL,

Freight money NULL

CONSTRAINT DF_Orders_Freight DEFAULT 0,

ShipName nvarchar (40),

ShipAddress nvarchar (60),

ShipCity nvarchar (15),

ShipRegion nvarchar (15),

ShipPostalCode nvarchar (10),

ShipCountry nvarchar (15)

)

In this example, the OrderDate column has the current system date and
time as its default value, and the Freight column has 0 as its default value.
As you can see, defining a default constraint at table creation is rather
straightforward.

The CONSTRAINT keyword, which allows you to name the default constraint,
remains in the syntax to maintain compatibility with earlier SQL Server ver-
sions. If you do not add this word, the constraint will be automatically
named by SQL Server as DF_tablename_columnname_randomnumber.

In SQL Enterprise Manager, you can define default values directly in the
columns’ properties (see Figure 4.1).

Default Values 229

2942C04.qxd 7/11/01 5:18 PM Page 229

http://www.sybex.com

F I G U R E 4 . 1 Defining a column default value

This is equivalent to defining the value in the default value in the
CREATE TABLE statement.

Defining the Default Constraint for an Existing Table

If you want to add a Default constraint to an existing table, two types of
situations can happen:

� You add a default constraint to an existing column.

� You add a new column with a default constraint.

The first case is simple. Adding a default to an existing column is possi-
ble only if the column does not already have a default value and is not a
TIMESTAMP, IDENTITY or ROWGUIDCOL. The syntax to add a default con-
straint to an existing column is the following:

ALTER TABLE tablename ADD [CONSTRAINT constraintname]

DEFAULT expression FOR columnname

230 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 230

http://www.sybex.com

In the previous example, we add a default constraint on the ShipCoun-
try column of the Orders table (see Listing 4.1 for the CREATE TABLE state-
ment of the Orders table):

ALTER TABLE Orders ADD DEFAULT ‘USA’ For ShipCountry

Adding this default value does not impact existing rows. It will be
applied only to future inserts.

The second case is also simple, but may have side effects. The syntax
for adding a new column with a default constraint is as follows:

ALTER TABLE tablename ADD columnname datatype

[NULL | NOT NULL] [CONSTRAINT constraintname]

DEFAULT expression [WITH VALUES] [,...]

Note the CONSTRAINT keyword is optional. As in the CREATE TABLE
statement, SQL Server will automatically name the constraints if no
name is specified. The WITH VALUES statement manages the values inserted
in existing rows. Table 4.2 shows you the behavior of the new column on
existing rows:

TA B L E 4 . 2 Behavior of existing rows with the WITH VALUES keyword

Nullability WITH VALUES Behavior for existing rows

NOT NULL Specified or not The column is filled with the default value
NULL Specified The column is filled with the default value
NULL Not Specified The column is filled with NULL

The following example adds the Total column with the default value of
0 to the Orders table:

ALTER TABLE Orders ADD Total money NULL DEFAULT 0 WITH VALUES

With the WITH VALUES option, the Total column is filled with 0. Other-
wise, if the option has not been specified and since the NULL is included in
the ALTER TABLE statement, the column would have been filled with NULL
values.

Adding a default constraint with SQL Enterprise Manager is done in
Design mode: in the right-pane where the table names are listed, right-click
the table, and choose Design. You can then add a new column or add a
default constraint to an existing column (see Figure 4.1). Note that WITH
VALUES cannot be specified in SQL Enterprise Manager, so the nullability
of the column specifies the behavior for existing rows.

Default Values 231

2942C04.qxd 7/11/01 5:18 PM Page 231

http://www.sybex.com

Default Object

Default objects offer another way of defining a default value for a column.
Default objects, called “defaults,” have been in SQL Server since the very
first version. Defaults are not really part of declarative integrity because
they are not part of the table structure; they are actually part of the
database schema, which is the overall definition of every database object.
Defaults play the role of global variables that can be bound, or assigned,
to columns or to user-defined datatypes.

The CREATE DEFAULT statement is used to create defaults:

CREATE DEFAULT default AS constant_expression

Once created, the default can be bound to a column with the following
stored procedure:

sp_binddefault defaultname, tablename.columnname

Or, it can be bound to a user-defined datatype with the following:

sp_binddefault defaultname, datatypename [, futureonly]

The futureonly flag indicates that the existing columns of the con-
cerned datatype will not inherit the new default value. This flag can only
be used when binding a default to a datatype, not to a column.

DEFAULT constraints are preferred over column-bound default objects.
Remember, it’s advised to used declarative integrity whenever possible over
procedural integrity.

The following example creates a default value named CalifDef and
binds it to the ShipRegion of the Order table (see Listing 4.1):

CREATE DEFAULT CalifDef AS ‘CA’

GO

sp_bindefault ‘CalifDef’, ‘Orders.ShipRegion’

The same operation could be done through the Defaults folder of
SQL Enterprise Manager. This folder gives you the complete list of defined
defaults, allows you to modify and drop existing defaults, and modify or
drop existing bindings.

You can drop an existing default by executing DROP DEFAULT default-
name, but only if it is not bound to any columns or user-defined datatypes.

232 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 232

http://www.sybex.com

To unbind a default from a column, execute the sp_undbindefault stored
procedure:

sp_unbindefault tablename.columnname

To unbind a default from a user-defined datatype, run the following:

sp_unbindefault datatypename [, futureonly]

As for sp_bindefault, the futureonly flag indicates that all columns
using this user-defined datatype are not affected by the unbinding, so they
retain their default value.

Note that you cannot bind a default to a column defined with a default
constraint or alter the table to add a default constraint to a column having
a bound default.

Default Objects vs. Default Constraints

If default objects work like default constraints, you may ask yourself
whether defaults are necessary. First, defaults are a backward
compatibility feature, which means that they exist in SQL Server 2000
because they were present in previous versions. Second, they allow
you to share the same default values among different columns. But
their real purpose lies in their datatype binding. Binding a default to a
datatype means that when you define a column of that datatype, the
column automatically inherits the bound default.

Consider using default objects only when binding to datatypes;
otherwise, use default constraints. As a rule of thumb, always
consider constraints first!

E X E R C I S E 4 . 1

Defining and Testing Default Values
This exercise will walk you through creating a table with different
default values, and inserting and selecting records to check the values
that have been used.

Default Values 233

2942C04.qxd 7/11/01 5:18 PM Page 233

http://www.sybex.com

E X E R C I S E 4 . 1 (c o n t i n u e d)

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or
by choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

CREATE TABLE Events (
EventID int IDENTITY (1, 1) NOT NULL ,
EventType nvarchar (10) NOT NULL DEFAULT ‘Party’,
EventTitle nvarchar (100) NULL ,
EventDescription ntext NULL ,
EventLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL DEFAULT GETDATE(),
EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,

GETDATE()),
EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER

)

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert a row by typing the following line of code:

INSERT Events DEFAULT VALUES

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

6. Select the inserted row by typing the following line of code:

SELECT * FROM Events

Default values are one part of domain integrity. In SQL Server, you can
define constraints and rules to make sure that the data is part of a given
range of values or follows a specific format.

Check

Datatypes and default values enforce domain integrity. Check rules
limit the possible values that can be entered into a column and in doing so,
contribute to the domain integrity. Check constraints and rules are the two

234 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 234

http://www.sybex.com

possible implementations of this feature. Generally, they limit the values
allowed by defining:

� A range or ranges of acceptable values

� A list of values

� A pattern to follow, such as a phone number mask or a social secu-
rity number

Check constraints are a declarative integrity feature and rules are a pro-
cedural feature. Both can be bound to columns or to user-defined
datatypes. As mentioned for defaults, use check constraints instead of rules
except for when defining user-defined datatypes. Let’s take a close look
now at check constraints.

Check Constraints

Check constraints are part of the table definition. They can be defined at
table creation, at table modification, and dropped at any time. They can be
disabled or enabled when needed. A column can have more than one check
constraint. They are validated in their creation order during inserts and
updates.

Check constraints:

� Must evaluate to a Boolean expression, such as a WHERE expression

� Can reference other columns of the same table

Defining a Check Constraint at Table Creation

Check constraints are part of the CREATE TABLE statement and can be
defined at column or table level. To reference other columns, the check
constraint has to be defined at table level. Column level definition is as
follows:

CREATE TABLE tablename

(columname datatype [CONSTRAINT constraintname]

CHECK [NOT FOR REPLICATION] (logical_expression)
At table level, the definition is:
CREATE TABLE tablename

(columname datatype [,...],

[CONSTRAINT constraintname]

CHECK [NOT FOR REPLICATION] (logical_expression)

Check 235

2942C04.qxd 7/11/01 5:18 PM Page 235

http://www.sybex.com

The following listing presents the Orders table with a few different
check constraints.

Listing 4.2: CREATE TABLE Statement with Check

Constraints

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL,

CustomerID nchar (5)

CHECK (CustomerID LIKE ‘[A-Z][A-Z][A-Z][A-Z][A-Z]’),

EmployeeID int NULL,

OrderDate datetime NULL

CHECK (OrderDate BETWEEN ‘01/01/70’ AND GETDATE()),

RequiredDate datetime NULL,

ShippedDate datetime NULL,

ShipVia int NULL

CHECK (ShipVia IN (1, 2, 3, 4)),

Freight money NULL

CHECK (Freight>=0),

ShipName nvarchar (40),

ShipAddress nvarchar (60),

ShipCity nvarchar (15),

ShipRegion nvarchar (15),

ShipPostalCode nvarchar (10),

ShipCountry nvarchar (15),

CHECK (RequiredDate>OrderDate)

)

This CREATE TABLE statement generates four column-level constraints
and two table-level constraints, as shown by the result from the execution
of sp_helpconstraint Orders:

constraint_type constraint_name

----------------------------- ------------------------------

CHECK Table Level CK__Orders__44FF419A

CHECK on column CustomerID CK__Orders__Customer__412EB0B6

CHECK on column Freight CK__Orders__Freight__440B1D61

CHECK on column OrderDate CK__Orders__OrderDat__4222D4EF

CHECK on column ShipVia CK__Orders__ShipVia__4316F928

236 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 236

http://www.sybex.com

Note that SQL Server gives the following type of name automatically to
the check constraints:

� CK_tablename_randomnumber for table level constraints

� CK_tablename_columnname_randomnumber for column level
constraints

If we take a closer look at Listing 4.2, we see:

� The CustomerID column must follow the pattern [A-Z][A-Z][A-
Z][A-Z][A-Z], that must be composed of five letters. For example,
ALFKI is a valid value, while A4FK7 is not valid. This kind of check
constraint follows the LIKE comparison rules (see Chapter 7 for
more on LIKE rules).

� The OrderDate column must be between today and January 1,
1970.

� The ShipVia column must be only one of the four defined values in
the list.

� The Freight columns must be a positive number.

� The RequiredDate must be greater than the OrderDate.

As you can see, check constraints referencing more than one column
must be declared at table level. If you had tried to define the table level
constraints at column level with the following:

RequiredDate datetime NULL

CHECK (RequiredDate>OrderDate)

you would have obtained error 8141: Column CHECK constraint for col-
umn ‘RequiredDate’ references another column, table ‘Orders.’

Defining a Check at Table Modification

Adding a check constraint to an existing table may not be possible due to
existing data. By default, existing data is checked against the new check
constraint. If at least one row does not comply with the constraint, the
new check constraint creation fails.

Check 237

2942C04.qxd 7/11/01 5:18 PM Page 237

http://www.sybex.com

You can add a check constraint at column level when defining a new
column for the table like this:

ALTER TABLE tablename

ADD columname datatype [CONSTRAINT constraintname]

CHECK [NOT FOR REPLICATION] (logical_expression) [,...]

To define a new check constraint for an existing column, use the follow-
ing syntax:

ALTER TABLE tablename
[WITH CHECK | WITH NOCHECK] ADD

[CONSTRAINT constraintname]

CHECK [NOT FOR REPLICATION] (logical_expression)
The following example adds two constraints to the Orders table:
ALTER TABLE Orders

ADD CHECK (EmployeeID>0)

ALTER TABLE Orders

ADD CHECK (ShippedDate>OrderDate)

As we’ve seen previously, by default, existing data is checked against the
new check constraints. If you want the new constraint to apply only to
future inserts and updates, add the constraint with the WITH NOCHECK key-
word before the ADD clause.

E X E R C I S E 4 . 2

Creating and Using a Check Constraint
This exercise will walk you through modifying a table to add a check
constraint and verifying that the constraint is enforced.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

ALTER TABLE Events
ADD CHECK (EventDate>=GETDATE())

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

238 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 238

http://www.sybex.com

E X E R C I S E 4 . 2 (c o n t i n u e d)

4. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, ‘This is my Event’, ‘This will be great
fun’, ‘US’, ‘12/12/1999’, ‘01/01/2012’)

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

You should obtain error 547 because the inserted row conflicts with
the check constraint.

6. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, ‘This is my Event’, ‘This will be great
fun’, ‘US’, ‘12/12/2012’, ‘01/01/2012’)

7. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

8. Select the inserted row by typing the following line of code:

SELECT * FROM Events

Rules

Rules are a backward compatibility feature used to define validation rules
that can be bound to table columns or to user-defined datatypes. Like
default objects, rules are created on their own before being bound to
another object. The creation of a rule is done with the CREATE RULE
statement:

CREATE RULE rulename AS condition_expression

Once created, the rule can be bound to a column with the following
syntax:

sp_bindrule rulename, tablename.columnname

Check 239

2942C04.qxd 7/11/01 5:18 PM Page 239

http://www.sybex.com

Or, it can be bound to a user-defined datatype:

sp_bindrule rulename, datatypename [, futureonly]

The futureonly flag indicates that the existing columns of the con-
cerned datatype will not inherit the new rule. This flag can only be used
when binding a rule to a datatype, not to a column.

A column can have only one rule bound to it, but you can bind a rule to
a column defined with a check constraint. Both will be evaluated, starting
with the constraint.

The following example creates a rule for date checking and binds it to
the OrderDate columns of the Orders table:

CREATE RULE ActiveDate AS

@Date BETWEEN ‘01/01/70’ AND GETDATE()

AS

sp_bindrule ActiveDate, ‘Orders.OrderDate’

Expressions used in rules follow the same guidelines as check conditions
and are similar to a WHERE clause expression, except you cannot reference
any other database columns in rules. If you compare the syntax of the
CHECK statement and a rule expression, two main differences are apparent:

1. The rule expression uses a variable (beginning with an at @ sign)
that will be replaced by the column value when attached to the
column.

2. A rule expression cannot reference table columns.

The second point is the biggest behavioral difference between check
constraints and rules: rules are equivalent to column-level check con-
straints only! Just as for defaults, check constraints are preferred to rules.

Now that you know how default constraints, defaults, rules, and check
constraints work as part of domain integrity checking, let’s take a look at
entity integrity beginning with primary keys.

Primary Keys

Primary keys form the basic functionality for entity integrity check-
ing. A primary key uniquely identifies each row and is formed by one or

240 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 240

http://www.sybex.com

more columns in the table. In SQL Server 2000, the definition of a primary
key automatically creates a unique index on the non-null columns that
form the key. A table can have only one primary key (see Chapter 1 for a
formal definition of keys).

A primary key can be created during table creation or table modifica-
tion. You cannot modify an existing primary key in Transact-SQL. The fol-
lowing restrictions apply to the definition of primary key columns:

� All the columns participating in the primary key definition must be
defined as NOT NULL.

� In absence of index type specification, the supporting index is clus-
tered (see Chapter 5).

Defining a Primary Key Constraint at Table Creation

The basic definition of the primary key is quite simple, since the only
required parameter(s) is the column name(s). The optional parameters are
very similar to those of an index. The optional parameters are discussed in
detail in Chapter 5.

� Column-level primary key constraint definition:

CREATE TABLE tablename

(columname datatype [CONSTRAINT constraintname]

PRIMARY KEY [CLUSTERED | NONCLUSTERED]

[WITH FILLFACTOR = fillfactor]

[ON {filegroup | DEFAULT}] [,...]

� Table-level primary key constraint definition:

CREATE TABLE tablename

(columname datatype [,...],

[CONSTRAINT constraintname]

PRIMARY KEY [CLUSTERED | NONCLUSTERED]

{ (column [ASC | DESC] [,...n]) }

[WITH FILLFACTOR = fillfactor]

[ON { filegroup | DEFAULT }]

Primary Keys 241

2942C04.qxd 7/11/01 5:18 PM Page 241

http://www.sybex.com

A single column primary key can be defined at column level or at
table level. A multi-column primary key has to be defined at table level.
Listing 4.3 gives you the definition of a single-column primary key
definition for the Orders table.

Listing 4.3: Partial CREATE TABLE Statement with

Column-level Primary Constraint

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,

CustomerID nchar (5)

...

)

This statement creates a clustered primary key on the OrderID column,
at column level, as shown in the sp_helpconstraint ‘orders’ execution
result:

constraint_type constraint_name constraint_keys

------------------------ --------------------- ---------------

PRIMARY KEY (clustered) PK__Orders__571DF1D5 OrderID

As you can see from this result, the default primary key name begins
with PK_ followed by the table name and random figures and letters, and
the key is supported by a clustered index. We could have given the index a
specific name by using the CONSTRAINT keyword, as shown in this example:

OrderID int IDENTITY (1, 1) NOT NULL
CONSTRAINT OrdersPK PRIMARY KEY

Listing 4.4 gives you another version of a primary key definition,
defined at the table level.

Listing 4.4: CREATE TABLE Statement with Table-level

Primary Key Constraint

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL,

CustomerID nchar (5),

EmployeeID int NULL,

242 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 242

http://www.sybex.com

OrderDate datetime NULL

RequiredDate datetime NULL,

ShippedDate datetime NULL,

ShipVia int NULL

Freight money NULL

ShipName nvarchar (40),

ShipAddress nvarchar (60),

ShipCity nvarchar (15),

ShipRegion nvarchar (15),

ShipPostalCode nvarchar (10),

ShipCountry nvarchar (15),

PRIMARY KEY NONCLUSTERED (OrderID) WITH FILLFACTOR=90

)

In the above version, the primary key is defined as a non-clustered
index with a fillfactor of 90, which means that data pages are filled to only
90 percent.

You can find complete information on indexes in Chapter 5.

Once created, uniqueness of the key is enforced by the index. Trying to
insert a duplicate primary key leads to the error 2627: Violation of PRI-
MARY KEY constraint ‘PK_Orders_571DF1D5’. Cannot insert dupli-
cate key in object ‘Orders’. The statement has been terminated.

In SQL Enterprise Manager, primary key definition is even simpler. In
the Design Table window, select the primary key column (hold the CTRL
key to select multiple columns) by right-clicking the columns and choosing
Set Primary Key. A small key appears next to the chosen columns, as in
Figure 4.2.

Primary Keys 243

2942C04.qxd 7/11/01 5:18 PM Page 243

http://www.sybex.com

F I G U R E 4 . 2 Primary key definition in SQL Enterprise Manager

Note that the same operation can be performed in SQL Enterprise
Manager.

E X E R C I S E 4 . 3

Creating and Using a Primary Key Constraint
This example will walk you through creating a table with a primary key
and using this table to check that the constraint is enforced.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ Query Ana-
lyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

DROP TABLE Events
GO

244 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 244

http://www.sybex.com

E X E R C I S E 4 . 3 (c o n t i n u e d)

CREATE TABLE Events (
EventID int NOT NULL PRIMARY KEY,
EventType nvarchar (10) NOT NULL DEFAULT ‘Party’,
EventTitle nvarchar (100) NULL ,
EventDescription ntext NULL ,
EventLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL DEFAULT GETDATE()
CHECK (EventDate>=GETDATE()),
EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,

GETDATE()),
EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER

)

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert a row by typing the following lines of code:

INSERT INTO Events(EventID, EventType, EventTitle,
EventDescription, EventLanguage, EventDate, EventEndDate)
VALUES(1, DEFAULT, ‘This is my Event’, ‘This will be great
fun’, ‘US’, ‘12/12/2012’, ‘01/01/2012’)

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

6. Run the same statement another time by highlighting these lines
with the mouse and press the green arrow or CTRL-E to execute the
query.

It conflicts with the primary key constraint since you tried to insert
the same EventID and an error is returned.

Defining a Primary Key at Table Modification

You can add a primary key to an existing table, but it can be created only
if the values already inserted in the column key are unique.

You can add a primary key while adding a column, at column level:

ALTER TABLE tablename

ADD columname datatype [CONSTRAINT constraintname]

PRIMARY KEY [CLUSTERED | NONCLUSTERED]

[WITH FILLFACTOR = fillfactor]

[ON {filegroup | DEFAULT}] [,...]

Primary Keys 245

2942C04.qxd 7/11/01 5:18 PM Page 245

http://www.sybex.com

The only way to add a primary key to an existing column is at table
level:

ALTER TABLE tablename

ADD

[CONSTRAINT constraintname]

PRIMARY KEY [CLUSTERED | NONCLUSTERED]

{ (column [ASC | DESC] [,...n]) }

[WITH FILLFACTOR = fillfactor]

[ON { filegroup | DEFAULT }]

The same parameters are used in table modification as in table creation.
The following example drops the existing primary key and adds a new pri-
mary key to the Orders table:

ALTER TABLE Orders DROP CONSTRAINT PK_Orders_571DF1D5

GO

ALTER TABLE Orders ADD PRIMARY KEY(OrderID)

If you run this statement and duplicate values exist in the column, you
will first encounter error 1505: CREATE UNIQUE INDEX terminated
because a duplicate key was found for index ID 1. Most signifi-
cant primary key is ‘1’, and then error 1750: Could not create con-
straint. See previous errors. The statement has been
terminated.

Using a primary key constraint is the preferred technique to implement
a primary key in a table. But, as discussed in Chapter 1, a table can also
hold alternate keys. These keys can be implemented as unique constraints,
as we see in the next section.

Unique Constraints

As their name implies, unique constraints enforce the uniqueness of
rows. While a table can have only one primary key constraint, it can have
many unique constraints. That is the first difference between primary key
and unique constraints. The second difference concerns nullability. Unique
constraints can be created on columns defined as NULL. Nevertheless these
columns cannot contain more than one null value, because two null values

246 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 246

http://www.sybex.com

are considered equal as far as unique constraints are concerned. As pri-
mary keys, unique constraints can be referenced by foreign key constraints
to define relationships.

Defining a Unique Constraint at Table Creation

Unique constraint creation syntax is equivalent to the primary key creation
syntax:

� Column-level unique constraint definition:

CREATE TABLE tablename

(columname datatype [CONSTRAINT constraintname]

UNIQUE [CLUSTERED | NONCLUSTERED]

[WITH FILLFACTOR = fillfactor]

[ON {filegroup | DEFAULT}] [,...]

� Table-level unique constraint definition:

CREATE TABLE tablename

(columname datatype [,...],

[CONSTRAINT constraintname]

UNIQUE [CLUSTERED | NONCLUSTERED]

{ (column [ASC | DESC] [,...n]) }

[WITH FILLFACTOR = fillfactor]

[ON { filegroup | DEFAULT }]

As with primary keys, a single-column unique constraint can be created
at column or table level, and a multi-column unique constraint can only be
created at table level.

Listing 4.5 gives you an example of one column-level unique constraint
and one table-level constraint.

Listing 4.5: CREATE TABLE Statement with Unique

Constraints

CREATE TABLE Customers (

CustomerID nchar (5) NOT NULL PRIMARY KEY CLUSTERED,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

Unique Constraints 247

2942C04.qxd 7/11/01 5:18 PM Page 247

http://www.sybex.com

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL UNIQUE,

Fax nvarchar (24) NULL ,

UNIQUE NONCLUSTERED (CompanyName, ContactName)

)

The two unique constraints created in Listing 4.5 are named UQ fol-
lowed by the table name and a random number, as shown in the partial
result of the sp_helpconstraint ‘customers’ procedure execution:

constraint_type constraint_name constraint_keys

----------------------- --------------------- ----------------

UNIQUE (non-clustered) UQ_Customers_6FE99F9F CompanyName, ...

UNIQUE (non-clustered) UQ_Customers_70DDC3D8 Phone

Note that both constraints are non-clustered. Even though when we
defined the unique constraint on the Phone column, the type of index was
not explicitly indicated.

Once created, if you try to insert a duplicate value in the column
defined as unique, you obtain error 2627: Violation of UNIQUE KEY
constraint ‘ UQ_Customers_70DDC3D8’. Cannot insert duplicate
key in object ‘Customers’. The statement has been terminated.

A unique constraint is supported by a unique index (see Chapter 5),
that enforces the uniqueness of the values. The index name is the con-
straint name.

Unique constraints can be defined in SQL Enterprise Manager. Open
the table in design mode and open its properties window. The unique con-
straints can be defined in the Indexes/Keys tab, as in Figure 4.3.

248 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 248

http://www.sybex.com

F I G U R E 4 . 3 Unique constraint definition in SQL Enterprise Manager

Note that uniqueness of a column or of a group of columns can be enforced
through a constraint or an index. The only difference between them is the
ability to define a relationship with the constraint. Unique indexes alone can
not be defined as part of a relationship.

Unique Constraints 249

2942C04.qxd 7/11/01 5:18 PM Page 249

http://www.sybex.com

E X E R C I S E 4 . 4

Creating and Using a Unique Constraint
This exercise will walk you through creating a table with a unique
constraint and inserting records to check that the constraint is correctly
enforced.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or
by choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

DROP TABLE Events
GO
CREATE TABLE Events (

EventID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,
EventType nvarchar (10) NOT NULL DEFAULT ‘Party’,
EventTitle nvarchar (100) NULL UNIQUE,
EventDescription ntext NULL ,
EventLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL DEFAULT GETDATE() CHECK

(EventDate>=GETDATE()),
EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,

GETDATE()),
EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER

)

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert a row by typing the following lines of code:

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, ‘This is my Event’, ‘This will be great
fun’, ‘US’, ‘12/12/2012’, ‘01/01/2012’)

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

6. Run the same statement another time by highlighting these lines
with the mouse and press the green arrow or CTRL-E to execute the
query.

It conflicts with the unique constraint since you tried to insert the
same EventTitle.

250 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 250

http://www.sybex.com

E X E R C I S E 4 . 4 (c o n t i n u e d)

7. Insert another row by typing the following lines of code:

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, NULL, ‘This will be great fun’, ‘US’,
‘12/12/2012’, ‘01/01/2012’)

8. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

The row is inserted even if EventTitle is NULL.

9. Run the same statement one more time by highlighting these lines
with the mouse and press the green arrow or CTRL-E to execute the
query.

It conflicts with the unique constraint since you tried to insert
another null value in the EventTitle column.

Defining a Unique Constraint at Table Modification

You can add a unique constraint to an existing table, but it can be created
only if the values already inserted in the column forming the constraint are
unique.

You can add a unique constraint while adding a column at column
level:

ALTER TABLE tablename
ADD columname datatype [CONSTRAINT constraintname]
UNIQUE [CLUSTERED | NONCLUSTERED]

[WITH FILLFACTOR = fillfactor]
[ON {filegroup | DEFAULT}] [,...]

The only way to add a constraint to an existing column is at table level:

ALTER TABLE tablename
ADD [CONSTRAINT constraintname]
UNIQUE [CLUSTERED | NONCLUSTERED]

{ (column [ASC | DESC] [,...n]) }
[WITH FILLFACTOR = fillfactor]
[ON { filegroup | DEFAULT }]

Unique Constraints 251

2942C04.qxd 7/11/01 5:18 PM Page 251

http://www.sybex.com

The same parameters are used in table modification as in table creation.
The following example drops the existing unique constraint and adds a
new unique constraint to the Orders table:

ALTER TABLE Customers DROP CONSTRAINT
UQ_Customers_70DDC3D8

GO

ALTER TABLE Customers ADD UNIQUE(Phone)

If you run this statement and there are duplicate values in the column,
you will first receive error 1505: CREATE UNIQUE INDEX terminated
because a duplicate key was found for index ID 2. Most signifi-
cant primary key is ‘1’, and then error 1750: Could not create con-
straint. See previous errors. The statement has been
terminated. Note that these two errors are the same as the errors for pri-
mary key creation failure.

Unique and primary key constraints are useful where enforcing entity
integrity. The last type of declarative integrity we are going to discuss is
referential integrity with foreign key constraint.

Foreign Keys and Relationships

Foreign keys and relationships have been discussed theoretically in
Chapter 1. In SQL Server 2000, relationships are declaratively defined
with foreign key constraints. As with all other constraints, a foreign key
can be created at table creation or added afterwards.

Figure 4.4 shows three tables of the Northwind database and the two
relationships between these tables.

F I G U R E 4 . 4 Relationships and keys in the Northwind database

252 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 252

http://www.sybex.com

A foreign key constraint can reference columns defined as the primary
key or unique constraints only, and only in the same database. A foreign
key behaves like a check constraint, since it limits its values to that of the
primary key or unique column values to which it is linked. In Figure 4.4,
a new product can be inserted only if its supplier ID already exists in the
Suppliers table.

Defining a Foreign Key Constraint at Table Creation

A foreign key can be defined on one or more columns. A one-column
foreign key can be declared at column or table level in the CREATE TABLE
statement. A multi-column foreign key can only be declared at table level:

� Column-level foreign key constraint definition at table creation:

CREATE TABLE tablename

(columname datatype [CONSTRAINT constraintname]

[FOREIGN KEY]

REFERENCES ref_table [(ref_column)]

[ON DELETE { CASCADE | NO ACTION }]

[ON UPDATE { CASCADE | NO ACTION }]

[NOT FOR REPLICATION] [,...]

� Table-level foreign key constraint definition at table creation:

CREATE TABLE tablename
(columname datatype [,...],

[CONSTRAINT constraintname]

FOREIGN KEY [(column [,...n])]

REFERENCES ref_table [(ref_column [,...n])]

[ON DELETE { CASCADE | NO ACTION }]

[ON UPDATE { CASCADE | NO ACTION }]

[NOT FOR REPLICATION]

Listing 4.6 creates the relationships between the Products and the Sup-
pliers tables and between the Products and Categories tables with column-
level constraints.

Foreign Keys and Relationships 253

2942C04.qxd 7/11/01 5:18 PM Page 253

http://www.sybex.com

Listing 4.6: CREATE TABLE Statement with Foreign Key

Column-level Constraints

CREATE TABLE Products (

ProductID int IDENTITY (1, 1) NOT NULL ,

ProductName nvarchar (40) NOT NULL ,

SupplierID int NULL REFERENCES Suppliers (SupplierID),

CategoryID int NULL REFERENCES Categories (CategoryID),

QuantityPerUnit nvarchar (20) NULL ,

UnitPrice money NULL,

UnitsInStock smallint NULL,

UnitsOnOrder smallint NULL,

ReorderLevel smallint NULL,

Discontinued bit NOT NULL,

)

The FOREIGN KEY keyword is optional in column-level foreign key con-
straints, as you can note from the previous example.

The same result can be obtained with table-level constraints, as shown
in Listing 4.7.

Listing 4.7: CREATE TABLE Statement with Foreign Key

Table-level Constraints

CREATE TABLE Products (

ProductID int IDENTITY (1, 1) NOT NULL ,

ProductName nvarchar (40) NOT NULL ,

SupplierID int NULL,

CategoryID int NULL,

QuantityPerUnit nvarchar (20) NULL ,

UnitPrice money NULL,

UnitsInStock smallint NULL,

UnitsOnOrder smallint NULL,

ReorderLevel smallint NULL,

Discontinued bit NOT NULL,

CONSTRAINT FK_Products_Categories

FOREIGN KEY (CategoryID)

254 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 254

http://www.sybex.com

REFERENCES Categories (CategoryID),

CONSTRAINT FK_Products_Suppliers

FOREIGN KEY (SupplierID)

REFERENCES Suppliers (SupplierID)

)

The brackets around the column name in the FOREIGN KEY clause are
mandatory, even if the foreign key is defined on one column. If you forgot
them, the system will fire an incorrect syntax error.

The columns referenced by the foreign key statement have to be pri-
mary keys or members of a unique constraint, otherwise you obtain error
1776 at creation: There are no primary or candidate keys in the
referenced table ‘Categories’ that match the referencing column
list in the foreign key ‘FK__Products__Categories’.

As with other constraints, the CONSTRAINT keyword and the name definition
are not compulsory.

The following shows the result of running sp_helpconstraint for the
table created in Listing 4.5:

constraint_type constraint_name del_act upd_act

--------------- ---------------------- ---------- ----------

FOREIGN KEY FK_Products_Categories No Action No Action

FOREIGN KEY FK_Products_Suppliers No Action No Action

status_enabled status_for_replication

-------------- ----------------------

Enabled Is_For_Replication

Enabled Is_For_Replication

constraint_keys

--

CategoryID REFERENCES Northwind.dbo.Categories (CategoryID)

SupplierID REFERENCES Northwind.dbo.Suppliers (SupplierID)

Foreign Keys and Relationships 255

2942C04.qxd 7/11/01 5:18 PM Page 255

http://www.sybex.com

This result is given in three different blocks because it could not fit in one
block on the page.

If we take the first foreign key, we read that there is no delete or update
action. That means that cascading updates and deletes are not enforced.
The constraint is enforced (enabled), and it is not defined for replication.

We have seen in Chapter 1 that a foreign key protects the creation of
orphans; that is, it is impossible to insert a row in a child table if it has
no corresponding row in the parent table. In the previous example
(Listing 4.6), if you try to insert a new row in the Products table and give
a CategoryID that does not exist in the Category table, you obtain
error 547: INSERT statement conflicted with COLUMN FOREIGN KEY
constraint ‘FK_Products_Categories’. The conflict occurred in
database ‘Northwind’, table ‘Category’, column ‘CategoryID’.
The statement has been terminated.

In error 547, SQL Server tells you whether the constraint is column or table
level. In the Product and Category example, SQL Server recognized a COL-
UMN FOREIGN KEY. If the foreign key has been defined on two or more
columns, it would have returned TABLE FOREIGN KEY, and would not have
referenced the concerned column.

As far as cascading updates and deletes are concerned, they are not
enforced by default. That means that to protect orphans, the primary key
of the referenced table cannot be updated if it is referenced by foreign
keys, and that a parent row cannot be deleted if it has a least one corre-
sponding child row.

If you try to update the primary key, you receive error 547 again, but
with a slightly different message: UPDATE statement conflicted with
COLUMN REFERENCE constraint ‘FK_Products_Categories’. The con-
flict occurred in database ‘Northwind’, table ‘Category’, col-
umn ‘CategoryID’. The statement has been terminated.

If you try to delete a parent row, you receive error 547 again: DELETE
statement conflicted with COLUMN REFERENCE constraint ‘FK_Prod-
ucts_Categories’. The conflict occurred in database ‘North-
wind’, table ‘Category’, column ‘CategoryID’. The statement has
been terminated.

256 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 256

http://www.sybex.com

E X E R C I S E 4 . 5

Creating and Using a Foreign Key Constraint
This example will walk you through creating two related tables and
checking the referential integrity rules we’ve just seen.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

DROP TABLE Events
GO
CREATE TABLE Events (

EventID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,
EventType nvarchar (10) NOT NULL DEFAULT ‘Party’,
EventTitle nvarchar (100) NULL UNIQUE,
EventDescription ntext NULL ,
EventLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL DEFAULT GETDATE() CHECK

(EventDate>=GETDATE()),
EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,

GETDATE()),
EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER

)
GO
CREATE TABLE Schedule(

ScheduleID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,
EventID int NOT NULL,
StartDate datetime NOT NULL,
EndDate datetime NOT NULL,
PartTitle nvarchar (100) NULL,
CHECK (EndDate>StartDate),
FOREIGN KEY (EventID) REFERENCES Events (EventID)

)

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert rows by typing the following lines of code:

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, ‘This is my Event’, ‘This will be great
fun’, ‘US’, ‘12/12/2012’, ‘01/01/2012’)
GO

Foreign Keys and Relationships 257

2942C04.qxd 7/11/01 5:18 PM Page 257

http://www.sybex.com

E X E R C I S E 4 . 5 (c o n t i n u e d)

INSERT Schedule(EventID, StartDate, EndDate)
VALUES (1, ‘08:00’, ‘10:00’)
INSERT Schedule(EventID, StartDate, EndDate)
VALUES (1, ‘10:00’, ‘12:00’)

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query. Type these lines into Query Analyzer:

INSERT Schedule(EventID, StartDate, EndDate)
VALUES (2, ‘08:00’, ‘10:00’)

6. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

The INSERT statement conflicts with the foreign key constraint since
EventID 2 does not exist.

In the CREATE TABLE statement syntax, you can define a foreign key in
the following way:

CONSTRAINT FK_Products_Categories

FOREIGN KEY (CategoryID)

REFERENCES Categories (CategoryID)

Or you can define a foreign key in this way:

CONSTRAINT FK_Products_Categories

FOREIGN KEY (CategoryID)

REFERENCES Categories (CategoryID)

ON DELETE NO ACTION

ON UPDATE NO ACTION

Both ways of defining the foreign key gives you the same result: referen-
tial integrity is enforced, but cascading updates and deletes are not
enforced. Now, enforcing a cascading delete means that if a parent row is
deleted, all its child rows will be deleted in the same transaction. The same
is true when you enforce a cascading update: If the parent row is updated,
the child keys will be updated as well.

258 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 258

http://www.sybex.com

The Delete Dilemma

You are a database developer for a midsize manufacturing company.
Your job is to develop and support SQL Server databases. The
company employs 300 people. This includes 50 administrative
employees, 5 product managers, and 25 salespersons who use the
order entry application that has been built on top of a SQL Server
2000 database. The model of this database contains an Orders table, a
Products table, and an Order Details table. Each order is comprised of
one or many order lines, and each line contains the order of one
specific product. You enforced referential integrity between these
tables to be sure that every order line is part of an existing order and
that orders can be placed only on existing products.

Your company will release new products and drop some old ones in a
few weeks, and you face the dilemma of organizing the orders
containing these old products into your existing database. If you
enforced a cascading delete between the Orders and the Order Details
tables (to be sure that if a salesman deletes an order, all the related
order lines are deleted), a cascading delete cannot be used between
Products and Order lines. If you delete an old product, you should not
delete the related order lines. The product managers and the marketing
employees are using this information to calculate their monthly
revenue. Nevertheless, the product managers do not want orders to
be placed on these “deleted” products. By enforcing the foreign key
constraint on the Order Details table, you can prevent people from
deleting these products if they have been ordered at least once.

The NOCHECK keyword is your immediate solution. You drop the for-
eign key constraint in the Order Details table, then delete or move old
products even if they are referenced in orders, and recreate the con-
straint specifying NOCHECK. New orders can no longer be placed on old
products since they are not in the Products table anymore, but old
order lines are still there and the revenue figures are accurate. Of
course, if you join the Order Details table with the Products table, you
should use an outer join to be sure to include orders containing old
“deleted” products. In the meantime, the solution is in place and will
work fine!

Foreign Keys and Relationships 259

2942C04.qxd 7/11/01 5:18 PM Page 259

http://www.sybex.com

The following clause enforces cascading deletes and updates for the
foreign key constraint on the CategoryID column:

CONSTRAINT FK_Products_Categories

FOREIGN KEY (CategoryID)

REFERENCES Categories (CategoryID)

ON DELETE CASCADE

ON UPDATE CASCADE

With such a constraint, if somebody deletes category number 2
(CategoryID data type is an integer, so every category is identified by an
integer), all the products of that category will be deleted. If a user updates
the ID of category number 3, the CategoryID of all the corresponding
products will be updated.

Cascading updates and deletes can be enforced with triggers, but con-
straints are preferred for performance reasons. Nevertheless, triggers offer
more possibilities as we will see in Chapter 6.

You cannot create a cascading foreign key constraint if the table has an
INSTEAD OF DELETE or UPDATE triggers. If you try, you end up with error
1787: Cannot define foreign key constraint ‘FK_Orders_Cus-
tomers’ with cascaded DELETE or UPDATE on table ‘Orders’
because the table has an INSTEAD OF DELETE or UPDATE TRIGGER
defined on it.

Creating a foreign key constraint does not automatically create an index as
for primary keys. Since foreign keys are generally used in SELECT state-
ments (refer to Chapter 7) for joining related tables, it is a good practice to
create one or more indexes in the foreign key columns. Refer to Chapter 5
for indexing rules.

E X E R C I S E 4 . 6

Creating and Using a Cascading Foreign Key Constraint
In this example, you have the opportunity to create two related tables
with cascading relationships and to see the cascading mechanism in
action.

260 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 260

http://www.sybex.com

E X E R C I S E 4 . 6 (c o n t i n u e d)

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ Query
Analyzer.

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

DROP TABLE Schedule
DROP TABLE Events
GO
CREATE TABLE Events (

EventID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,
EventType nvarchar (10) NOT NULL DEFAULT ‘Party’,
EventTitle nvarchar (100) NULL UNIQUE,
EventDescription ntext NULL ,
EventLanguage nvarchar (2) NULL ,
EventDate smalldatetime NULL DEFAULT GETDATE() CHECK

(EventDate>=GETDATE()),
EventEndDate smalldatetime NULL DEFAULT DATEADD(day, 1,

GETDATE()),
EventCreator nvarchar (50) NOT NULL DEFAULT SYSTEM_USER

)
GO
CREATE TABLE Schedule(

ScheduleID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,
EventID int NOT NULL,
StartDate datetime,
EndDate datetime,
PartTitle nvarchar (100),
CHECK (EndDate>StartDate),
FOREIGN KEY (EventID)

REFERENCES Events (EventID)
ON DELETE CASCADE

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Insert rows by typing the following lines of code:

INSERT INTO Events(EventType, EventTitle, EventDescription,
EventLanguage, EventDate, EventEndDate)
VALUES(DEFAULT, ‘This is my Event’, ‘This will be great
fun’, ‘US’, ‘12/12/2012’, ‘01/01/2012’)
GO
INSERT Schedule(EventID, StartDate, EndDate)
VALUES (1, ‘08:00’, ‘10:00’)
INSERT Schedule(EventID, StartDate, EndDate)
VALUES (1, ‘10:00’, ‘12:00’)

Foreign Keys and Relationships 261

2942C04.qxd 7/11/01 5:18 PM Page 261

http://www.sybex.com

E X E R C I S E 4 . 6 (c o n t i n u e d)

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

6. Check that the rows were inserted into the Schedule table by typing
the following lines of code:

SELECT * FROM Schedule

7. Highlight this line with the mouse and press the green arrow or
CTRL-E to execute the query.

8. Delete EventID 1 by typing the following statement:

DELETE Events WHERE EventID=1

9. Highlight this line with the mouse and press the green arrow or
CTRL-E to execute the query.

10. Check that the rows were deleted from the Schedule table, thanks to
the cascading constraint by typing the following line of code:
SELECT * FROM Schedule

11. Highlight this line with the mouse and press the green arrow or
CTRL-E to execute the query.

Creating a foreign key constraint is far easier in SQL Enterprise
Manager. It can be done in two ways: in the table Design Mode or in the
Database Diagrams Mode. Let’s first have a closer look at the table Design
Mode, which lets you define the table characteristics:

1. Open SQL Enterprise Manager by choosing Start ➢ Programs ➢
Microsoft SQL Server ➢ Enterprise Manager. In
SQL Enterprise Manager, right-click the table name and choose
Design Table.

2. In the Design Table window, click the Manage Relationships button
in the toolbar.

3. In the Properties dialog box, click the New button, then choose the
Primary Key Table, the primary key column(s), the Foreign Key
Table, the foreign key columns, and finally choose the options. The
different options presented in the dialog box are identical to those
offered in the SQL statement and concern checking existing data,
enforcing relationship for replication, and enforcing cascading delete
and update.

262 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 262

http://www.sybex.com

4. Click the Close button to close the dialog box.

The foreign key is not created until you save the table structure.
Figure 4.5 shows the Properties dialog box with the relationship between
Customers and Orders tables.

F I G U R E 4 . 5 Relationships between Customers and Orders table

The diagram helps you graphically define the relationship between
tables, in the same way that it would be done using Microsoft Access:

1. Open SQL Enterprise Manager by choosing Start ➢ Programs ➢
Microsoft SQL Server ➢ Enterprise Manager. In SQL Enterprise
Manager, right-click the Diagrams icon and choose New Diagram.

Foreign Keys and Relationships 263

2942C04.qxd 7/11/01 5:18 PM Page 263

http://www.sybex.com

2. The Create Database Diagram Wizard appears. Click Next.

3. Click the tables you want to add to the diagram and click the Add
button to move them into the list box at the right. Click Next, then
End.

All the tables you selected in the wizard appear in the diagram
window.

4. In the primary key table, click the primary key column and drag-
and-drop it to the foreign key column. The Create Relationship
dialog box appears.

5. Check the parameters of the relationship and click OK.

The foreign key will be created when you save the diagram. Figure 4.6
illustrates the Create Relationship dialog box.

F I G U R E 4 . 6 Relationship creation in the diagram

264 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 264

http://www.sybex.com

Note that in the graphical interface, in table Design Mode or in the
Database Diagram, you have the ability to view and save the script that
matches the modification you made. Before saving your modification, click
the Save Change Script button on the toolbar. The Save Change Script
opens, as illustrated in Figure 4.7.

F I G U R E 4 . 7 Generated modification script

Using this script feature is a very handy way to learn about the ALTER and
CREATE TABLE syntaxes.

The NOT FOR REPLICATION clause indicates that the constraint is not
enforced during the replication process. Of course, the system can only
replicate data stored in the table following the constraint rule. This is true
and false: constraints can be disabled for a batch insert or update. To
avoid replication of the data that does not respect the constraint, the con-
straint is enforced for replication by default, meaning the replicated data
will be checked against the constraint. If you are sure your data is always
valid, you can disable this constraint for replication.

Foreign Keys and Relationships 265

2942C04.qxd 7/11/01 5:18 PM Page 265

http://www.sybex.com

Defining a Foreign Key Constraint at Table Modification

Once tables are created and filled with data, you can change the database
structure and may decide to add a foreign key constraint. As with the
other constraints, like check or unique, adding a foreign key constraint to
existing data means a new rule will be enforced. By default, the foreign key
constraint is checked against existing data, but can be disabled if
necessary.

A foreign key can be added to a table at column level while adding a
new column to the table, or it can be added at table level.

� Column-level foreign key constraint definition at table modification:

ALTER TABLE tablename

ADD columname datatype [CONSTRAINT constraintname]

[FOREIGN KEY]

REFERENCES ref_table [(ref_column)]

[ON DELETE { CASCADE | NO ACTION }]

[ON UPDATE { CASCADE | NO ACTION }]

[NOT FOR REPLICATION] [,...]

� Table-level foreign key constraint definition at table modification:

ALTER TABLE tablename
[WITH CHECK | WITH NOCHECK] ADD

[CONSTRAINT constraintname]

FOREIGN KEY [(column [,...n])]

REFERENCES ref_table [(ref_column [,...n])
]

[ON DELETE { CASCADE | NO ACTION }]

[ON UPDATE { CASCADE | NO ACTION }]

[NOT FOR REPLICATION]

The following example adds a foreign key to the Orders table to create
a relationship with the Products table:

ALTER TABLE Products

ADD CONSTRAINT FK_Products_Categories

FOREIGN KEY (CategoryID)

REFERENCES Categories (CategoryID)

If the constraint already exists, it has to be dropped first to be recreated,
otherwise you’ll end up with error 2714: There is already an object

266 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 266

http://www.sybex.com

named ‘FK_Products_Categories’ in the database. On the other hand,
if some key values exist that do not match the primary key in the related
table, then error 547 is fired, disallowing the constraint creation: ALTER
TABLE statement conflicted with COLUMN FOREIGN KEY constraint
‘FK_Products_Categories’. The conflict occurred in database
‘MyFirstDatabase’, table ‘Categories’, column ‘CategoryID’.

To avoid error 547, you could have created the constraint with the WITH
NOCHECK keyword, like in the following example:

ALTER TABLE Products

WITH NOCHECK ADD CONSTRAINT FK_Products_Categories

FOREIGN KEY (CategoryID)

REFERENCES Categories (CategoryID)

In this case, some rows in the Products table do not match any row in
the Categories table. To isolate these rows, use an outer join with an IS
NULL condition on the CategoryID of the Categories table, like in the fol-
lowing example:

SELECT Products.*

FROM Products LEFT OUTER JOIN Categories

ON Products.CategoryID = Categories.CategoryID

WHERE Categories.CategoryID IS NULL

You will obtain the list of all the products that do not have a matching
CategoryID. You can decide to move them to a staging table afterwards or
ask the product managers to modify these non-matching CategoryIDs.

Summary

In this chapter you learned to create and alter declarative integrity
rules, called constraints.

This chapter particularly focused on:

� Creating and altering default constraints

� Creating and altering check constraints

� Creating and altering primary key constraints

� Creating and altering unique constraints

� Creating and altering foreign key constraints

Summary 267

2942C04.qxd 7/11/01 5:18 PM Page 267

http://www.sybex.com

Key Terms

Before you take the exam, be certain you are familiar with the following
terms:

cascading delete default
cascading update foreign key
check primary key
constraint procedural integrity
data integrity rule
declarative integrity unique

Exam Essentials

Identify the differences between declarative and procedural integrity.
Integrity can be enforced through declarative constraints or procedural
objects. Know the differences between both implementations.

Know precisely how to define a default value. Default constraint and
default objects may be used to define default values. Study their differ-
ences and know the syntax to create and alter both.

Know precisely how to define check rules. Check constraints and rules
may both be used to enforce domain integrity. Study their differences
and know the syntax to create and alter both.

Know precisely how to enforce entity integrity. Primary key and
unique constraints are used to enforce entity integrity. Take time to dis-
cover their differences and the situations they prevent in a table. Know
the syntax to create and alter both.

Know precisely how to enforce relationships between two tables. For-
eign key constraints are used to enforce relationships between tables.
Know the syntax used to define them, including optional elements.

268 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 268

http://www.sybex.com

Review Questions

1. You are a SQL Server database developer for a winery. Some of the
accountants complain that some orders in the billing system have no
CustomerID, but only a Shipping address and the ID of the
employee who took the order. When they discover such an order,
they have to phone the related sales person and ask him to look for
the customer who placed the order. They lose a lot of time with that
kind of research. The chief accountant asks you to make this
information mandatory in an order. The Customers and Orders
table are illustrated below:

You run sp_helpconstraint Orders in SQL Query Analyzer and
obtain the following result:

How can you solve the problem met by the accountants and make
the CustomerID field mandatory?

Review Questions 269

2942C04.qxd 7/11/01 5:18 PM Page 269

http://www.sybex.com

270 Chapter 4 � Implementing Data Integrity

A. Create a foreign key constraint on the CustomerID column.

B. There is nothing to do, the field is already mandatory.

C. Enable the existing foreign key.

D. Create an INSTEAD OF INSERT trigger on the Orders table to
check whether the CustomerID entered in the Orders table exists
in the Customers table.

2. You are a SQL Server database developer for a hotel. You are testing
the new reservation application. While testing, you discover you
forgot to create a relationship between the Rooms and the
Reservations tables. You decide to modify the Reservations table to
enforce a relationship. Which statement do you run to enforce this
relationship?

A.

ALTER TABLE Reservations

ADD FOREIGN KEY (RoomID)

REFERENCES Rooms(RoomID)

B.

CREATE FOREIGN KEY

Reservations.RoomID

REFERENCES Rooms(RoomID)

C.

ALTER TABLE Reservations

ADD CONSTRAINT FK_Reservations_Rooms

FOREIGN KEY RoomID

REFERENCES Rooms(RoomID)

D.

ALTER TABLE Reservations

ADD RELATION Rooms

ON RoomID

3. You are developing a time tracking system for a New York based
consulting firm. While continuing to develop, some selected users

2942C04.qxd 7/11/01 5:18 PM Page 270

http://www.sybex.com

test the features you have just finished implementing. All of them tell
you it would be great if some fields could already contain the most
common values. For example, 90 percent of the customers are in
New York city, so they would like the City field to already be filled
with “New York City.” All the fields and values the user listed could
be filled with constant values. What is the fastest way to implement
such a feature in SQL Server 2000?

A. Triggers

B. Default constraint

C. Check constraint

D. User-defined datatypes

4. You are a database developer for a Massachusetts insurance
company in Boston. You are designing a new database for tracking
customers and signed insurance policies. While normalizing your
database model, you isolate the primary key for the Customers
table. The Customers table has the following structure:

How can you define the primary key on the CustomerID column at
table creation?

A.

CREATE TABLE Customers (

CustomerID nchar (5) NOT NULL ,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

Review Questions 271

2942C04.qxd 7/11/01 5:18 PM Page 271

http://www.sybex.com

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL

)

CREATE PRIMARY KEY Customers.CustomerID

B.

CREATE TABLE Customers (

CustomerID nchar(5) NOT NULL PRIMARY KEY,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL

)

C.

CREATE TABLE Customers (

CustomerID nchar (5) NOT NULL ,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

272 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 272

http://www.sybex.com

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL ,

ADD PRIMARY KEY (CustomerID)

)

D.

CREATE TABLE Customers (

CustomerID nchar (5) NOT NULL ,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL

)

GO

ALTER TABLE Customers

ALTER COLUMN CustomerID PRIMARY KEY

5. As a SQL Server developer, you are creating a database for a local
University to track students and courses. You want to enforce entity
and referential integrity rules, as described in the following graphic:

Review Questions 273

2942C04.qxd 7/11/01 5:18 PM Page 273

http://www.sybex.com

Put the following statements in the right order to create these three
tables with the right constraints. Note: Use only relevant items;
some may not be useful to obtain the desired result.

GO

CREATE TABLE StudentsCourses (

StudentID int NOT NULL,

CourseID int NOT NULL ,

PRIMARY KEY (StudentID, CourseID)

)

ALTER TABLE Students

ADD FOREIGN KEY StudentID

REFERENCES StudentsCourses (StudentID)

CREATE TABLE Students (

StudentID int NOT NULL ,

FirstName varchar (50) NULL ,

LastName varchar (50) NULL ,

CONSTRAINT PK_Students

PRIMARY KEY (StudentID

)

CREATE TABLE Courses (

CourseID int NOT NULL ,

[Name] char (10) NULL ,

PRIMARY KEY CLUSTERED (CourseID)

)

ALTER TABLE Courses

ADD FOREIGN KEY CourseID

REFERENCES StudentsCourses (CourseID)

ALTER TABLE Courses ADD PRIMARY KEY CLUSTERED
(CourseID)

ALTER TABLE StudentsCourses

ADD FOREIGN KEY (CourseID)

REFERENCES Courses (CourseID),

FOREIGN KEY (StudentID)

REFERENCES Students (StudentID)

274 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 274

http://www.sybex.com

6. You are a SQL Server developer for an international organization.
You need for all your database applications to implement validation
rules for some columns. What kind of validation rules can you
implement with check constraints? (Choose two.)

A. Check the value against a defined range of values.

B. Check the value against values stored in a related table.

C. Check the value against a defined pattern.

D. Check the value against the return parameter of a stored
procedure.

7. Having normalized your database model, you need a way to
implement alternate keys. What is the most efficient way to do that?
(Choose one.)

A. Unique constraints

B. Primary key constraints

C. Unique indexes

D. Nullability

8. One of the programmers on your team comes and shows you the
following script that she wrote for a table:

CREATE TABLE dbo.Orders (

OrderID int IDENTITY (1, 1) NOT NULL ,

CustomerID nchar (5) NULL ,

EmployeeID int NULL ,

OrderDate datetime NULL CONSTRAINT CK_OrderDate
CHECK (OrderDate=GETDATE()),

RequiredDate datetime NULL ,

ShippedDate datetime NULL ,

ShipVia int NULL ,

Freight money NULL CONSTRAINT DF_Orders_Freight
DEFAULT (0),

ShipName nvarchar (40) NULL ,

ShipAddress nvarchar (60) NULL ,

ShipCity nvarchar (15) NULL ,

Review Questions 275

2942C04.qxd 7/11/01 5:18 PM Page 275

http://www.sybex.com

ShipRegion nvarchar (15) NULL ,

ShipPostalCode nvarchar (10) NULL ,

ShipCountry nvarchar (15) NULL ,

CONSTRAINT PK_Orders PRIMARY KEY CLUSTERED
(OrderID),

CONSTRAINT FK_Orders_Customers FOREIGN KEY

(CustomerID) REFERENCES dbo.Customers (Cus-
tomerID),

CONSTRAINT FK_Orders_Employees FOREIGN KEY

(EmployeeID) REFERENCES dbo.Employees (Employ-
eeID),

CONSTRAINT FK_Orders_Shippers FOREIGN KEY

(ShipVia) REFERENCES dbo.Shippers (ShipperID)

)

Each time she tries to enter a new row, the system fires an error
saying that a conflict occurs on column OrderDate due to the Check
constraint ‘CK_OrderDate’, even if the order date is today’s date.
What is the cause of the error?

A. The server system date is not on time.

B. You should use the GETUTCDATE() function.

C. GETDATE() gives the century in two digits. This is a Y2K problem.

D. You should not test the value equals GETDATE(), but only its day
part.

9. You are a database developer for an e-learning company, providing
training over the Internet. You are developing a new identification
system for your customers. To enter the training system, each
customer must be authenticated. For security reasons, you developed
a series of extended stored procedures in C language. One of these
functions generates passwords. Each time someone becomes a
member, you want the system, using the extended stored procedure,
to give the member a password. What is the simplest way to
generate and store the password in the Customers table?

A. Use a stored procedure to execute the INSERT statement and call
the extended stored procedure.

276 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 276

http://www.sybex.com

B. Create an INSTEAD OF INSERT trigger and call the extended
stored procedure from the trigger.

C. Create an AFTER INSERT trigger to run the extended stored
procedure and generate the password.

D. Create a user-defined function calling the extended stored
procedure, and use it as the default value for the password
column.

10. As a consultant, you have been called by World Wide Importers, to
define their new ordering system. The new system, based on SQL
server, will extract data from the legacy database and do some data
manipulations before the marketing employees use it. In the model,
you design a Suppliers table with the following:

CREATE TABLE dbo.Suppliers (

SupplierID int IDENTITY (1, 1) NOT NULL PRIMARY KEY,

CompanyName nvarchar (40) NOT NULL ,

ContactName nvarchar (30) NULL ,

ContactTitle nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (20) NULL UNIQUE,

Fax nvarchar (20) NULL UNIQUE,

HomePage ntext NULL

)

After inserting some test rows, you obtain the following error:

Violation of UNIQUE KEY constraint
‘UQ__Suppliers__31B762FC’. Cannot insert duplicate key in
object ‘Suppliers’.

Since there are UNIQUE constraints only on the Phone and Fax
columns, you know this error is bound to one of these columns.
Nevertheless, you are sure you never used the same values twice for
Phone and Fax. What is the possible cause of the error?

A. You tried to insert two Null values in Phone or in Fax.

Review Questions 277

2942C04.qxd 7/11/01 5:18 PM Page 277

http://www.sybex.com

B. You tried to insert a phone number that existed as a fax number
in another record, or vice versa.

C. You tried to insert the same phone number twice, but in one you
insert spaces that are not considered as characters by the Unique
constraint.

D. This is a bug of SQL Server 2000, and you should apply Service
Pack 1 to correct it.

11. You are developing a warehouse management database. While
interviewing users, it appears that every object has a shelf number.
Once an object is moved out of the warehouse, its shelf number
should be emptied, but the object remains in the database.

To define that an object has been moved, you decide that its ShelfID
will be set to NULL. How can you implement this feature?

A. With a foreign key constraint without cascading option

B. With a foreign key constraint with cascading update and delete

C. With an INSTEAD OF trigger

D. With a default value

12. You are a database developer for a winery. You have been asked to
develop a new application to record the work of employees during
the vine-harvest. While the employees pick up the grapes, they put
them in their assigned basket, then weigh the full basket and go
back to their duties. Each weight is recorded with the time and date,
and the employee ID. You design the following table to record each
weighing:

CREATE TABLE weighing(

WeighingDateTime datetime NOT NULL DEFAULT Getdate(),

Weight int NOT NULL DEFAULT 0,

EmployeeID int NOT NULL)

278 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 278

http://www.sybex.com

You want to be sure that only positive values will be entered into the
weight column. What is the simplest method to do so?

A. Create a rule and a user-defined datatype; bind the rule to the
datatype and alter the table to change the type of the Weight
column to the newly created datatype.

B. Write a trigger that checks the Weight value and rollbacks the
insert if the value is negative.

C. Write a stored procedure to manage the insert and check the
value, and forbid any direct insert.

D. Alter the table to add a check constraint to the Weight column.

13. You are developer for Northwind Traders. You defined the Order
details table to create the many-to-many relationship between the
Orders and the Products table, as illustrated in the following
graphic:

What piece of code will create the Order details table?

A.

CREATE TABLE dbo.Order Details (

OrderID int NOT NULL,

ProductID int NOT NULL,

UnitPrice money NOT NULL,

Quantity smallint NOT NULL,

Review Questions 279

2942C04.qxd 7/11/01 5:18 PM Page 279

http://www.sybex.com

Discount real NOT NULL,

CONSTRAINT PK_Order_Details

PRIMARY KEY (OrderID, ProductID),

CONSTRAINT FK_Details_Orders

FOREIGN KEY (OrderID)

REFERENCES Orders (OrderID),

CONSTRAINT FK_Details_Products

FOREIGN KEY (ProductID)

REFERENCES Products (ProductID)

)

B.

CREATE TABLE dbo.Order Details (

OrderID int NOT NULL

PRIMARY KEY

REFERENCES Orders (OrderID),

ProductID int NOT NULL

PRIMARY KEY

REFERENCES Products (ProductID),

UnitPrice money NOT NULL,

Quantity smallint NOT NULL,

Discount real NOT NULL

)

C.

CREATE TABLE dbo.Order Details (

OrderID int NOT NULL PRIMARY KEY,

ProductID int NOT NULL PRIMARY KEY,

UnitPrice money NOT NULL,

Quantity smallint NOT NULL,

Discount real NOT NULL,

CONSTRAINT FK_Details_Orders

FOREIGN KEY (OrderID)

REFERENCES Orders (OrderID),

CONSTRAINT FK_Details_Products

FOREIGN KEY (ProductID)

REFERENCES Products (ProductID)

)

280 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 280

http://www.sybex.com

D.

CREATE TABLE dbo.Order Details (

OrderID int NOT NULL,

ProductID int NOT NULL,

UnitPrice money NOT NULL,

Quantity smallint NOT NULL,

Discount real NOT NULL,

PRIMARY KEY (OrderID),

PRIMARY KEY (ProductID),

FOREIGN KEY (OrderID)

REFERENCES Orders (OrderID),

FOREIGN KEY (ProductID)

REFERENCES Products (ProductID)

)

14. Security management is an important issue in your company. For
every order, you need to know who inserted it and at what time the
insert took place. You know that for security purposes, SQL Server
works in integrated mode. All inserts will be done through stored
procedures. What table script will reach that goal?

A.

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL ,

CustomerID nchar (5) NULL ,

EmployeeID int NULL

DEFAULT SESSION_USER

OrderDate datetime NULL

DEFAULT GETDATE(),

RequiredDate datetime NULL ,

ShippedDate datetime NULL ,

Freight money NULL ,

ShipperID int NULL

)

B.

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL ,

CustomerID nchar (5) NULL ,

Review Questions 281

2942C04.qxd 7/11/01 5:18 PM Page 281

http://www.sybex.com

EmployeeID int NULL ,

OrderDate datetime NULL ,

RequiredDate datetime NULL ,

ShippedDate datetime NULL ,

Freight money NULL ,

ShipperID int NULL ,

UserName varchar (50) NOT NULL

DEFAULT SYSTEM_USER(),

InsertDate datetime NOT NULL

DEFAULT NOW()

)

C.

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL ,

CustomerID nchar (5) NULL ,

EmployeeID int NULL ,

OrderDate datetime NULL ,

RequiredDate datetime NULL ,

ShippedDate datetime NULL ,

Freight money NULL ,

ShipperID int NULL ,

UserName nvarchar (50) NOT NULL

DEFAULT SYSTEM_USER,

InsertDate datetime NOT NULL

DEFAULT GETDATE()

)

D.

CREATE TABLE Orders (

OrderID int IDENTITY (1, 1) NOT NULL ,

CustomerID nchar (5) NULL ,

EmployeeID int NULL

OrderDate datetime NULL,

RequiredDate datetime NULL ,

ShippedDate datetime NULL ,

Freight money NULL ,

ShipperID int NULL

)

282 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 282

http://www.sybex.com

15. You are a SQL Server developer for a winery. You are developing a
new invoicing database system. While designing the database, you
create a Restaurant table that stores all the restaurants to whom you
are selling wine. The code for that table is the following:

CREATE TABLE Restaurants (

RestaurantID int NOT NULL PRIMARY KEY,

RestaurantName nvarchar (40) NOT NULL ,

RestaurantOwner nvarchar (30) NULL ,

Address nvarchar (60) NULL ,

City nvarchar (15) NULL ,

Region nvarchar (15) NULL ,

PostalCode nvarchar (10) NULL ,

Country nvarchar (15) NULL ,

Phone nvarchar (24) NULL ,

Fax nvarchar (24) NULL ,

HomePage ntext NULL ,

UNIQUE (RestaurantName, City)

)

What does the UNIQUE constraint mean?

A. That every restaurant name must be unique in the table

B. That no two restaurants can have the same name in the same city

C. That no two restaurants can have the same name in two different
cities

D. That the restaurant name and the city must not be null

Review Questions 283

2942C04.qxd 7/11/01 5:18 PM Page 283

http://www.sybex.com

Answers to Review Questions

1. C. With the result of the execution of the sp_helpconstraint stored
procedure, you see that a foreign key constraint exists on the Orders
table to enforce the relationship with the Customers table and that
the status-enabled column is set to disabled. The disabled constraint
has allowed orders to be inserted without matching CustomerIDs.
Re-enabling the constraint will solve the problem.

2. A. The statements in options B and D do not exist. In fact, option C
is almost good, except it lacks brackets around RoomID in the
FOREIGN KEY clause. These brackets are mandatory!

3. B. This feature could be realized with INSTEAD OF trigger, but
that would involve coding and would not be the fastest way to
implement it. Check constraints cannot be used to fill default values.
User-defined datatypes linked with default objects could be used, but
triggers are not the fastest way. So, default constraints are definitely
the fastest way to define default values to specific fields.

4. B. The CREATE PRIMARY KEY statement of option A does not exist.
The ADD PRIMARY KEY of option C is only possible in an ALTER
TABLE statement, not in a CREATE TABLE statement. You cannot add
a primary key constraint by altering a column in an ALTER TABLE
statement as in option D.

5.

CREATE TABLE Students (

StudentID int NOT NULL ,

FirstName varchar (50) NULL ,

LastName varchar (50) NULL ,

CONSTRAINT PK_Students

PRIMARY KEY (StudentID

)

284 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 284

http://www.sybex.com

CREATE TABLE Courses (

CourseID int NOT NULL ,

[Name] char (10) NULL ,

PRIMARY KEY CLUSTERED (CourseID)

)

ALTER TABLE StudentsCourses

ADD FOREIGN KEY (CourseID)

REFERENCES Courses (CourseID),

FOREIGN KEY (StudentID)

REFERENCES Students (StudentID)

The Students and Courses tables have to be created first in order to
create the relationships in the StudentsCourses table.

6. A, C. Option B is not correct because the value can only be compared
to other values in the same table. D is not correct because a stored
procedure cannot be executed in a check constraint.

7. A. Option C could be the right answer, but unique constraints are
enforcing declarative integrity, and it should always be chosen first.

8. D. GETDATE gives you the date and the time in milliseconds. So,
between the value given to the column and the time the value is
tested against GETDATE(), the milliseconds have changed. You
should use the CONVERT function, the DATEPART function, or a range
to isolate the date.

9. D. The four options are good, but D is the simplest, since it uses
declarative integrity.

10. A. Null values count as “real” values. Two null values are
impossible in a Unique column.

11. C. Options A and B will forbid any value besides valid ShelfID. D is
irrelevant in the context of an update.

Answers to Review Questions 285

2942C04.qxd 7/11/01 5:18 PM Page 285

http://www.sybex.com

12. D. All the options provide a solution, but D is the simplest because
it’s declarative integrity and should always be preferred to any other
type of integrity.

13. A. Option A is the only one with correct syntax for defining a multi-
column primary key. A multi-column primary key can only be
defined at table level.

14. C. Option A is wrong because the SESSION_USER function returns a
character string and the column is an integer. B is wrong because NOW
is not a SQL Server system function. D is wrong because it does not
record anything.

15. B. The group RestaurantName, City must be unique, so two
restaurants can have the same name if they are not located in the
same city.

286 Chapter 4 � Implementing Data Integrity

2942C04.qxd 7/11/01 5:18 PM Page 286

http://www.sybex.com

Creating and
Maintaining Indexes

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Create and alter database objects. Objects include constraints,

indexes, stored procedures, tables, triggers, user-defined

functions, and views.

� Specify index characteristics. Characteristics include
clustered, FILLFACTOR, nonclustered, and uniqueness.

� Troubleshoot failed object creation.

� Create and implement indexing strategies. Considerations

include clustered index, covering index, indexed views,

nonclustered index, placement, and statistics.

Chapter

5

2942C05.qxd 7/11/01 5:20 PM Page 287

http://www.sybex.com

In the first four chapters, you learned how to create databases
and tables. But when it comes time to store and access data in your tables,
you need to know how indexes help increase performance and integrity.

In this chapter, you will learn:

� What indexes are and what their advantages are

� How SQL Server accesses data with and without indexes

� What the distribution statistics are and what they do

� How to create and maintain an index

� What fragmentation is and how to solve the problem of data
fragmentation

All examples in this chapter use the Northwind database that is supplied
with SQL Server 2000.

Definition and Advantages of Indexes

You’ve probably heard that indexes are the heart of fast data access.
In fact, as the database grows, indexes are your guarantee to fast data
access. Data access can be fast without indexes, but only if your table is
small. If the table contains thousands or millions of rows, data access has
to be done through indexes.

In a book, the index helps you to find information about a specific
subject you are looking for without having to read the entire book. The
same applies to a database index; it helps you to find information about a
specific row or rows without having to search through the entire table.

2942C05.qxd 7/11/01 5:20 PM Page 288

http://www.sybex.com

Heaps and Indexes

In Chapter 3, you discovered that table data is stored in 8KB pages. Just
after its creation, while the table has no index, the table is called a heap.
Rows are not stored in any specific order. Figure 5.1 illustrates the
Customers table of the Northwind database, stored as a heap.

F I G U R E 5 . 1 A heap

When you need to access data in a heap, SQL Server will access the
whole table through an operation called table scan. SQL scans the whole
table to find the needed row or rows. For example, if you run the follow-
ing query:

SELECT * FROM Customers WHERE CustomerID=’ROMEY’

SQL Server will read all the data pages, even if it finds the row in the first
page. SQL Server does not know there is only one ‘ROMEY’ value, until you
create a unique constraint, a unique index, or a primary key constraint on
the column. In these three cases, an index is created to support the con-
straints. This example leads to the two basic functions of indexes. Indexes
are used to:

� Increase the speed of data access

� Enforce uniqueness of data

Though indexes have their advantages, they also have drawbacks. The
first drawback is that they consume a lot of disk and memory space. Each
time you create an index, it will store all index keys, ordered in ascending
or descending order and in many levels. The larger the key, the bigger the
index. The second drawback is that they cause slower inserts and may

ROMEY

MORGK

ANATR

TRADH

GOURL

EASTC

LAMAI

Page 10

ANTON

FAMIA

SPLIR

QUEDE

FRANR

LILAS

HILAA

Page 11

MAISD

BERGS

LACOR

FISSA

SPECD

GALED

CONSH

Page 12

BOTTM

LINOD

LONEP

CENTC

BLONP

PICCO

MAGAA

Page 13

PERIC

BLAUS

SEVES

ISLAT

TRAIH

OTTIC

QUICK

Page 14

Definition and Advantages of Indexes 289

2942C05.qxd 7/11/01 5:20 PM Page 289

http://www.sybex.com

cause slower updates and deletes. However, some internal strategies tend
to show that indexes have a small negative effect on these operations and
may even let them go faster, as you will see in the next few pages.

In SQL Server 2000, indexes are stored as B-Trees. B stands for bal-
anced. Figure 5.2 shows you an index created on the CustomerID column
of the Customers table.

F I G U R E 5 . 2 A B-Tree index

ROMEY

MORGK

ANATR

TRADH

GOURL

EASTC

LAMAI

Page 10

ANTON

FAMIA

SPLIR

QUEDE

FRANR

LILAS

HILAA

Page 11

MAISD

BERGS

LACOR

FISSA

SPECD

GALED

CONSH

Page 12

BOTTM

LINOD

LONEP

CENTC

BLONP

PICCO

MAGAA

Page 13

PERIC

BLAUS

SEVES

ISLAT

TRAIH

OTTIC

QUICK

Page 14

ANATR 1:10:3

ANTON 1:11:1

BERGS 1:12:2

BLAUS 1:14:2

BLONP 1:13:5

BOTTM 1:13:1

CENTC 1:13:4

CONSH 1:12:7

EASTC 1:10:6

FAMIA 1:11:2

Page 20

SEVES 1:14:3

SPECD 1:12:5

SPLIR 1:11:3

TRADH 1:10:4

TRAIH 1:14:5

Page 23

FISSA 1:12:4

FRANR 1:11:5

GALED 1:12:6

GOURL 1:10:5

HILAA 1:11:7

ISLAT 1:14:4

LACOR 1:12:3

LAMAI 1:10:7

LILAS 1:11:6

LINOD 1:13:2

Page 21

LONEP 1:13:3

MAGAA 1:13:7

MAISD 1:12:1

MORGK 1:10:2

OTTIK 1:14:6

PERIC 1:14:1

PICCO 1:13:6

QUEDE 1:11:4

QUICK 1:14:7

ROMEY 1:10:1

Page 22

ANATR 1:20

FISSA 1:21

LONEP 1:22

SEVES 1:23

Page 30

In
de

x
Da

ta

290 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 290

http://www.sybex.com

Now, if you run the previous query, SQL Server will use the index to
find the location of the ‘ROMEY’ row. In this case, it will go through three
pages: 30, 22, and 10, in that order. The next section will go into more
detail about accessing data through indexes.

A SQL Server index is a balanced tree in that every branch in the tree
has the same length. If you look at Figure 5.2 from top to bottom, you will
only cross three pages, where you will find the row you are looking for.
Every branch is balanced, and SQL Server keeps the branch balanced.

Some people think B stands for binary. However, a binary tree is not bal-
anced, and in SQL Server, B always stands for balanced!

Note that in Figure 5.2 the data is not sorted. This means that the index
needs to recreate a level, called the leaf level, containing all the sorted key
values and referencing the real position of the record (this level contains
pages 20 to 23). In Figure 5.2, the reference is given through a row ID that
has the following format: file number:page number:row location. So, ID
1:13:5 indicates the fifth record in page 13 belonging to file number 1.
Any other level above the leaf level is called a non-leaf level or intermedi-
ate level. The first level of an index, the one that contains the “entrance
door,” is called the root. The root of an index is made of one page contain-
ing the first keys referenced in the pages of the following level.

Index pages are 8KB pages mixed with data pages. See Chapters 2 and 3 for
more information on pages.

While all indexes have the same tree structure, SQL Server proposes
two types of index: clustered and nonclustered. These types are described
in the following sections.

Clustered Index

In RDBMS, a cluster may mean different things, but in general it refers to
two “objects” being considered as one. For example, in Windows 2000 a
cluster is a group of two or more servers seen as only one, which is used
for fault tolerance and load balancing reasons. In SQL Server 2000, a
cluster is an index mixed with a table. The table is part of the index, or
the index is part of the table, depending on your point of view.

Definition and Advantages of Indexes 291

2942C05.qxd 7/11/01 5:20 PM Page 291

http://www.sybex.com

In SQL Server, once a table has a clustered index, its data is both stored
and sorted on the index key. The leaf level of the index is the actual data
of the table.

F I G U R E 5 . 3 A clustered index

Figure 5.3 illustrates a clustered index created on the CustomerID col-
umn of the Northwind’s Customers table. As you can see, the leaf level of
the index is in fact the data level. The table is part of the index.

As the table is part of the clustered index, only one clustered index can be
created on a table.

In SQL Server 2000, a clustered index is a unique index by design,
which means that every key should be unique. While duplicates exist in the
index, they are made unique by the internal addition of a counter that
makes every key unique. Figure 5.4 illustrates this feature. Why did the
SQL Server architects implement that feature? Because there are only two

ANATR

ANTON

BERGS

BLAUS

BLONP

BOTTM

CENTC

Page 10

CONSH

EASTC

FAMIA

FISSA

FRANR

GALED

GOURL

Page 11

HILAA

ISLAT

LACOR

LAMAI

LILAS

LINOD

LONEP

Page 12

MAGAA

MAISD

MORGK

OTTIK

PERIC

PICCO

QUEDE

Page 13

QUICK

ROMEY

SEVES

SPECD

SPLIR

TRADH

TRAIH

Page 14

ANATR 1:10

CONSH 1:11

HILAA 1:12

MAGAA 1:13

QUICK 1:14

Page 30

Da
ta

In
de

x

292 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 292

http://www.sybex.com

ways to reference a record in SQL Server: by its row ID or by its clustered
key. The row ID is used when there is no clustered index, and the clustered
key is used otherwise.

F I G U R E 5 . 4 A clustered index made unique

In Figure 5.3, the clustered key was the customerID, which is, by defini-
tion, unique. Each value is stored exactly as it is in the index leaf level. In
Figure 5.4, for example, suppose the clustered key were changed to the City
column. More than one customer can exist in a specific city; for example,
Northwind Traders has four customers in Mexico. So, SQL Server added a
counter to the duplicates of Mexico, allowing every value to be unique. If a
fifth Mexican customer is added, its clustered key would be Mexico 4.

The first of the duplicate values has no counter value. The counter starts
after the first duplicate!

The number added to the key value is an automatic counter. It does not
appear to the end-user or the developer. It is just maintained internally for

Barcelona

Barquisimeto

Bergamo

Bruxelles

Campinas

Cowes

Cunewald

Page 10

Johannesburg

Kirkland

Köln

Lander

Leipzig

London

London 1

Page 11

London 2

Luleå

Madrid

Madrid 1

Mannheim

Mexico

Mexico 1

Page 12

Mexico 2

Mexico 3

Nantes

Paris

Portland

Rio

Salzburg

Page 13

San Cristobal

Sao Paulo

Sao Paulo 1

Strasbourg

Toulouse

Tsawassen

Versailles

Page 14

Barcelona 1:10

Johannesburg 1:11

London 2 1:12

Mexico 2 1:13

San Cristobal 1:14

Page 30

Da
ta

In
de

x

Definition and Advantages of Indexes 293

2942C05.qxd 7/11/01 5:20 PM Page 293

http://www.sybex.com

identification purposes. With that counter, each clustered key is guaranteed
to be unique and can be used as the row’s unique reference.

Remember the following rule when working in SQL Server 2000: A
record is always located either by its row ID or by its clustered key,
depending on the existence of a clustered index. This is an important con-
sideration, as the row ID or key will be stored in the nonclustered index
and is used to retrieve the actual data.

Nonclustered Index

Nonclustered indexes have a leaf level that contains all the key values,
sorted in the same manner as the index is defined, along with the row ID
or clustered index key. The actual data is not stored in the index and is
retrieved using the row ID or the clustered index key. Figure 5.5 illustrates
a nonclustered index on the City column. As you can see in this example,
the table does not have a clustered index (it is a heap) because the row
locator is the row ID.

F I G U R E 5 . 5 A nonclustered index on a heap

Barcelona 1:11:6

Barquisimeto 1:12:5

Bergamo 1:13:1

Bruxelles 1:13:2

Campinas 1:11:7

Cowes 1:12:2

Cunewald 1:14:1

Johannesburg 1:12:6

Kirkland 1:14:7

Köln 1:13:4

Page 20

Lander 1:14:5

Leipzig 1:13:3

London 1:11:2

London 1:11:1

London 1:14:3

Luleå 1:10:3

Madrid 1:14:2

Madrid 1:11:4

Mannheim 1:10:4

Mexico 1:13:5

Page 21

Mexico 1:10:7

Mexico 1:10:1

Mexico 1:10:2

Nantes 1:11:5

Paris 1:14:4

Portland 1:12:7

Rio 1:13:7

Salzburg 1:13:6

San Cristobal 1:12:1

Sao Paulo 1:11:3

Page 22

Sao Paulo 1:14:6

Strasbourg 1:10:5

Toulouse 1:12:4

Tsawassen 1:10:6

Versailles 1:12:3

Page 23

Barcelona 1:20

Lander 1:21

Mexico 1:22

Sao Paulo 1:23

Page 30

294 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 294

http://www.sybex.com

Another example of a nonclustered index on a heap is given in Figure 5.2.

Let’s take another example, based on the Customers table. Let’s start
with the fact that this table has a clustered index on the CustomerID (see
Figure 5.3). Now, if we create a nonclustered index on the City column,
the result will look like Figure 5.6.

F I G U R E 5 . 6 A nonclustered index on a clustered index

The clustered index key is used a row locator, and it is part of the leaf
level of every nonclustered index. This fact leads to another rule in SQL
Server: Keep clustered keys as short as possible. Every time you choose a
clustered index key, it will be used as a row locator and will be stored at
leaf level of every nonclustered index. The larger the clustered key, the big-
ger the nonclustered indexes. The last thing you want is an oversized index

Barcelona GALED

Barquisimeto LILAS

Bergamo MAGAA

Bruxelles MAISD

Campinas GOURL

Cowes ISLAT

Cunewald QUICK

Johannesburg LINOD

Kirkland TRAIH

Köln OTTIK

Page 20

Lander SPLIR

Leipzig MORGK

London EASTC

London CONSH

London SEVES

Luleå BERGS

Madrid ROMEY

Madrid FISSA

Mannheim BLAUS

Mexico PERIC

Page 21

Mexico CENTC

Mexico ANATR

Mexico ANTON

Nantes FRANR

Paris SPECD

Portland LONEP

Rio QUEDE

Salzburg PICCO

San Cristobal HILAA

Sao Paulo FAMIA

Page 22

Sao Paulo TRADH

Strasbourg BLONP

Toulouse LAMAI

Tsawassen BOTTM

Versailles LACOR

Page 23

Barcelona 1:20

Lander 1:21

Mexico 1:22

Sao Paulo 1:23

Page 30

Definition and Advantages of Indexes 295

2942C05.qxd 7/11/01 5:20 PM Page 295

http://www.sybex.com

that will increase I/O and reduce performance. The larger the key, the less
index data that will fit on each page and the more pages that must be read
to find the information.

Composite Indexes

Until now, we’ve encountered only single-column indexes. An index can be
created based on two or more columns. The only restriction is that the
index key has to be less than 900 bytes. If the index is composed of only
fixed-size columns, the sum of their sizes must be less than 900 bytes. If
the index contains variable-length columns, the sum of their maximum size
may be more than 900 bytes, but the stored value cannot be over 900
bytes. For example, consider two 500-byte varchar columns. SQL Ser-
ver 2000 will let you create a composite index with these two columns if
no column value size exceeds 900 bytes.

Pay attention to the fact that the composite index on (Column1, Col-
umn2) is different from (Column2, Column1), and is different from two
indexes, one on Column1 and the other on Column2. As you’ll see later in
the section “Index Choice,” the query optimizer may use all these indexes
differently, depending on the query.

Unique Indexes

A unique index enforces entity integrity. As we’ve seen in the previous
chapter, entity integrity can be enforced by unique or primary key
constraints, or by unique indexes. Behind a unique or a primary constraint
lies a unique index.

The unique index guarantees that every value is unique in the indexed
column, or, in the case of a composite index, that every group of values is
unique. Once a unique index is created, you cannot enter duplicate values.
If you try, you’ll fire error 2601: Cannot insert duplicate key row in
object tablename with unique index indexname.

Now that you are familiar with the basic terminology and types of indexes,
let’s take a look at how SQL Server accesses data with or without them.

296 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 296

http://www.sybex.com

Accessing Data with and without Indexes

Depending on the query and on the type of indexes existing on the
table, the system may choose to use different data access strategies. The
three strategies include:

� Using a heap, when no clustered index exists

� Using a clustered index

� Using a nonclustered index

The following sections describe these three strategies in detail.

Accessing Data with a Heap

When a query accesses a table that does not have a clustered index to pilot
the search, a table scan is performed. So, to find data in a heap, SQL
Server uses the Index Allocation Map (IAM). The IAM is a page that
contains a map of all the extents that contain the data for the table. This
data is stored as a bitmap that can quickly be searched. SQL Server uses
the IAM page to find the location of data pages. Figure 5.7 illustrates the
methodology used by SQL Server. A 1 indicates that the extent is used by
the object, and a 0 indicates that it is not used.

Create and implement indexing strategies. Considerations

include clustered index, covering index, indexed views,

nonclustered index, placement, and statistics.

Accessing Data with and without Indexes 297

2942C05.qxd 7/11/01 5:20 PM Page 297

http://www.sybex.com

F I G U R E 5 . 7 Accessing data with a heap

Any query that cannot be driven by an index uses the following
methodology. It is broken down in three phases:

1. SQL Server queries the Sysindexes system table to find the address
of the FirstIAM page.

2. SQL Server accesses the IAM page and looks for allocated pages and
extents.

3. SQL Server accesses data pages and extents as it finds them in the
IAM page.

As you can see, the sequence in which the records are sent back to the
client is the IAM sequence order, not the inserted order. That’s the reason
why there is no logic in the record sequence order besides the allocations
found in the IAM.

ROMEY

MORGK

ANATR

TRADH

GOURL

EASTC

LAMAI

Pages 8–15 Pages 16–23

MAISD

BERGS

LACOR

FISSA

SPECD

GALED

CONSH

Pages 24–31

BOTTM

LINOD

LONEP

CENTC

BLONP

PICCO

MAGAA

Pages 32–39

0–7 0

8–15 1

16–23 0

24–31 1

32–39 1

40–47 0

48–55 0

IAM

298 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 298

http://www.sybex.com

For the Customers table, if you run the following query:

SELECT id, indid, firstIAM

FROM sysindexes

WHERE id=OBJECT_ID(‘CustomerCustomerDemo’)

You obtain the following result for the first row:

id indid firstIAM

—————- ——— ———————

1189579276 0 0x510100000100

The result you receive for the ID and FirstIAM columns may be different as
these values are server-dependent.

In this result, note that the Indid value is 0, which indicates that this
Sysindexes record refers to a heap.

One of the principal benefits of this strategy is that the scan of the IAM
is a Boolean operation, and therefore very fast and reliable. The principal
drawback is that the table has to be scanned entirely, even if you need only
one record. This could lead to performance problems quite quickly.

This operation can be seen in the query execution plan—the strategy
SQL Server is using to execute the query—as a table scan, which is repre-
sented by the following icon:

Accessing Data with a Clustered Index

As soon as a table has a clustered index, the IAM is no longer used for
data access, but only for maintenance purposes. Data pages are linked
together and data is sorted on the clustered index key.

If you run a query like SELECT * FROM Customers, without specifying
a WHERE clause, the system will perform a clustered index scan. This

Accessing Data with and without Indexes 299

2942C05.qxd 7/11/01 5:20 PM Page 299

http://www.sybex.com

operation is similar to a table scan in that all data pages are read. The
main difference between a clustered index scan and a table scan is that the
result is sorted on the clustered key in the clustered index scan. This occurs
because the clustered index scan is not using the IAM, but finds the first
page of the table (its address is stored in the Sysindexes table), reads it,
and then finds the next page using a pointer to the next page. This
pointer is the address of the next data page and is stored at the end of
each data page.

In the graphical execution plan in Query Analyzer, the following icon
represents the clustered index scan:

Note that an arrow goes straight through the index icon, meaning this
is a scan and not a seek. A seek is a “direct” access to the data, limiting the
number of accessed pages (and represented by a bent arrow). A scan
accesses every page of the table or the index.

Now, if you want to access specific data in the table using the clustered
index, SQL Server will do an index search when you run the following
query:

SELECT *

FROM Customers

WHERE customerid = ‘ALFKI’

The associated execution plan icon for this search looks like the
following:

Note that the arrow is jagged to indicate that SQL Server is using the
index to “seek” specific values. In such an operation, SQL Server finds the

300 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 300

http://www.sybex.com

root page of the index (the address of this root page is stored in the Sysin-
dexes table) and searches the values in the index. Figure 5.8 represents that
search.

F I G U R E 5 . 8 A clustered index search

The first operation SQL Server executes is to find the root address in
the Sysindexes table. For the Customers table, if you run the following
query:

SELECT id, indid, root

FROM sysindexes

WHERE id=OBJECT_ID(‘Customers’)

Barcelona

Barquisimeto

Bergamo

Bruxelles

Campinas

Cowes

Cunewald

Page 10

Johannesburg

Kirkland

Köln

Lander

Leipzig

London

London 1

Page 11

London 2

Luleå

Madrid

Madrid 1

Mannheim

Mexico

Mexico 1

Page 12

Mexico 2

Mexico 3

Nantes

Paris

Portland

Rio

Salzburg

Page 13

San Cristobal

Sao Paolo

Sao Paulo 1

Strasbourg

Toulouse

Tsawassen

Versailles

Page 14

Barcelona 1:10

Johannesburg 1:11

London 2 1:12

Mexico 2 1:13

San Cristobal 1:14

Page 30

SELECT * FROM Customers WHERE City = 'London'

Accessing Data with and without Indexes 301

2942C05.qxd 7/11/01 5:20 PM Page 301

http://www.sybex.com

You obtain the following result for the first row:

id indid root

----------- ------ --------------

2041058307 1 0x4B0000000100

The results you receive for the ID and FirstIAM columns may be different as
these values are server-dependent.

In this result, note that the Indid value is 1, which indicates that this
record refers to a clustered index. With a heap, the value is 0. You cannot
have both references for the same table in the Sysindexes table, since every
table is stored either as a heap or as a clustered index. So, if you go
through a Sysindexes table, you’ll find some records referencing heaps
(Indid = 0) and some referencing clustered indexes (Indid = 1).

The root address is the entrance door of the index. Once SQL Server
has the root access, it scans the page to find out what path it has to follow.
In the example illustrated in Figure 5.8, you are looking for the London
records. London is between Johannesburg and London 2. So, SQL Server
knows that the first London record is in page 11, where Johannesburg is
the first record. Remember that records are physically sorted on the index
key. It accesses page 11, scans it, and finds the first London record. It con-
tinues its scan until it does not find any London again. In this example, it
reaches the end of the page and goes to the next page (remember that
pages are linked), to continue its scan. It stops when it reaches the last
London record.

In this particular example, SQL Server had to scan three pages (the root
and two data pages) instead of the five that would have been necessary for
a full table scan. Now, if you imagine that your table grows to 5,000
pages, SQL Server would just read a couple of pages to find the London
records, not all 5,000!

Accessing Data with a Nonclustered Index

When accessing data with a nonclustered index, there is a difference in
how the access is performed depending on whether the nonclustered index

302 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 302

http://www.sybex.com

is created on a heap or over a clustered index. Remember that there are
only two ways to locate a record: its row ID in a heap and its clustered key
in a table with a clustered index. The method chosen will depend on the
structure of the table.

If you drop all indexes on the Customers table and create a nonclus-
tered index on the City column, the execution plan looks like the following
when you look for the London records:

The first operation (on the right) is an index seek. The system uses the
index to find the records corresponding to the WHERE clause. In the leaf level
of the index, it finds the row locator (either a row ID or a clustered key).

When using a search with a nonclustered index, SQL Server queries the
Sysindexes table to find the root address of the index, as in the following
excerpt of this table:

id indid root

----------- ------ --------------

2073058421 2 0x530000000100

In this result, note that the Indid value is 2, indicating that it refers to a
nonclustered index. Values between 2 and 250 are reserved for nonclus-
tered indexes.

Figure 5.9 illustrates the search process when the table does not have a
clustered index (it is a heap).

Once SQL Server has the root address, it scans the root page and finds
the page or pages that reference the right value. In the example, London is
between Lander and Mexico (alphabetically speaking, of course), so the
record reference is to be found in the Lander page, that is, page 21. SQL
Server accesses and scans page 21 to find London occurrences. Each time it
finds a value of “London,” it reads its address and loads the page in mem-
ory until it is finished with the searched value.

Accessing Data with and without Indexes 303

2942C05.qxd 7/11/01 5:20 PM Page 303

http://www.sybex.com

F I G U R E 5 . 9 A nonclustered index search over a heap

In this example, SQL Server read 4 pages, but performs 5 page accesses.
Since there are three occurrences of London, it will access page 11 twice.
This counts for two logical accesses, even if this page is physically read
only once. If you compare this with the clustered index access example in
the previous section, note that there is one additional level here due to the
fact that the leaf level of the nonclustered index is above the data page.

Barcelona 1:11:6

Barquisimeto 1:12:5

Bergamo 1:13:1

Bruxelles 1:13:2

Campinas 1:11:7

Cowes 1:12:2

Cunewald 1:14:1

Johannesburg 1:12:6

Kirkland 1:14:7

Köln 1:13:4

Page 20

Lander 1:14:5

Leipzig 1:13:3

London 1:11:2

London 1:11:1

London 1:14:3

Luleå 1:10:3

Madrid 1:14:2

Madrid 1:11:4

Mannheim 1:10:4

Mexico 1:13:5

Page 21

Mexico 1:10:7

Mexico 1:10:1

Mexico 1:10:2

Nantes 1:11:5

Paris 1:14:4

Portland 1:12:7

Rio 1:13:7

Salzburg 1:13:6

San Cristobal 1:12:1

Sao Paulo 1:11:3

Page 22

Sao Paulo 1:14:6

Strasbourg 1:10:5

Toulouse 1:12:4

Tsawassen 1:10:6

Versailles 1:12:3

Page 23

Barcelona 1:20

Lander 1:21

Mexico 1:22

Sao Paulo 1:23

Page 30

SELECT * FROM Customers WHERE City = 'London'

Mexico

Mexico

Luleå

Mannheim

Strasbourg

Tsawassen

Mexico

Page 10

London

London

Sao Paulo

Madrid

Nantes

Barcelona

Campinas

Page 11

San Cristobal

Cowes

Versailles

Toulouse

Barquisimeto

Johannesburg

Portland

Page 12

Bergamo

Bruxelles

Leipzig

Köln

Mexico

Salzburg

Rio

Page 13

Cunewald

Madrid

London

Paris

Lander

Sao Paulo

Kirkland

Page 14

304 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 304

http://www.sybex.com

Figure 5.10 illustrates the search had there been a clustered index on the
CustomerID column.

F I G U R E 5 . 1 0 A nonclustered index search over a clustered index

Barcelona 1:20

Lander 1:21

Mexico 1:22

Sao Paulo 1:23

Page 30

ANATR 1:10

CONSH 1:11

HILAA 1:12

MAGAA 1:13

QUICK 1:14

Page 31

SELECT * FROM Customers WHERE City = ’London’

ANATR

ANTON

BERGS

BLAUS

BLONP

BOTTM

CENTC

Page 10

CONSH

EASTC

FAMIA

FISSA

FRANR

GALED

GOURL

Page 11

HILAA

ISLAT

LACOR

LAMAI

LILAS

LINOD

LONEP

Page 12

MAGAA

MAISD

MORGK

OTTIK

PERIC

PICCO

QUEDE

Page 13

QUICK

ROMEY

SEVES

SPECD

SPLIR

TRADH

TRAIH

Page 14

Barcelona GALED

Barquisimeto LILAS

Bergamo MAGAA

Bruxelles MAISD

Campinas GOURL

Cowes ISLAT

Cunewald QUICK

Margarita LINOD

Kirkland TRAIH

Köln OTTIK

Page 20

Lander SPLIR

Leipzig MORGK

London EASTC

London CONSH

London SEVES

Luleå BERGS

Madrid ROMEY

Madrid FISSA

Mannheim BLAUS

Mexico PERIC

Page 21

Mexico CENTC

Mexico ANATR

Mexico ANTON

Nantes FRANR

Paris SPECD

Portland LONEP

Rio QUEDE

Salzburg PICCO

San Cristobal HILAA

Sao Paulo FAMIA

Page 22

Sao Paulo TRADH

Strasbourg BLONP

Toulouse LAMAI

Tsawassen BOTTM

Versailles LACOR

Page 23

Accessing Data with and without Indexes 305

2942C05.qxd 7/11/01 5:20 PM Page 305

http://www.sybex.com

In this example, the nonclustered seek is the same as in Figure 5.9. The
difference is that SQL Server finds a clustered key in the nonclustered leaf
level and not a row ID. With the clustered key, it uses the clustered index
to locate the corresponding record.

The execution plan does not recognize any differences between a non-
clustered index seek over a heap and a nonclustered index seek over a clus-
tered index. The last operation is always called Bookmark lookup—the
bookmark being the row ID or the clustered key, depending on the existence
of a clustered key.

At this point in the chapter, you should have a precise idea of how
indexes are used in SQL Server and how they work. One big question
remains when it comes time to use them: How does SQL Server choose the
right index or indexes to execute a query? The next section answers this
important question.

Statistics and Index Choice

A book sometimes contains two or more indexes, one by word and
one by theme. Your knowledge of the subject you are looking for guides
you toward the right index. SQL Server is faced with the same problem for
every query it has to execute. If a table has one clustered index and four
nonclustered indexes, how does SQL Server know which index or indexes
to use? The distribution statistics help the query optimizer to choose the
appropriate index.

Create and implement indexing strategies. Considerations

include clustered index, covering index, indexed views,

nonclustered index, placement, and statistics.

306 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 306

http://www.sybex.com

Distribution Statistics

The index choice is not made with a magic wand or a crystal ball, but with
a scientific approach based on distribution statistics. Every index has a
distribution statistics zone, stored in the Statblob column of the Sysindexes
table.

In previous versions of SQL Server, the distribution statistics were
stored in a 2KB page, whatever the size of the index. So, in SQL 6.5, as the
table became bigger, the statistics were less accurate as a single 2KB page
could not hold an accurate sample of the data distribution. In SQL Ser-
ver 2000, the distribution statistics are stored in an image column, and its
size increases proportionally to the index size for better accuracy. So, in
SQL Server 2000, the size of the index does not have any impact on statis-
tics accuracy.

To understand what these statistics are, let’s use the Orders table from
the Northwind database. If you run the following query:

SELECT TOP 24 OrderID, OrderDate

FROM Orders

ORDER BY OrderDate

You obtain the following result set:

OrderID OrderDate

----------- --

10248 1996-07-04 00:00:00.000

10249 1996-07-05 00:00:00.000

10250 1996-07-08 00:00:00.000

10251 1996-07-08 00:00:00.000

10252 1996-07-09 00:00:00.000

10253 1996-07-10 00:00:00.000

10254 1996-07-11 00:00:00.000

10255 1996-07-12 00:00:00.000

10256 1996-07-15 00:00:00.000

10257 1996-07-16 00:00:00.000

10258 1996-07-17 00:00:00.000

10259 1996-07-18 00:00:00.000

10260 1996-07-19 00:00:00.000

10261 1996-07-19 00:00:00.000

Statistics and Index Choice 307

2942C05.qxd 7/11/01 5:20 PM Page 307

http://www.sybex.com

10262 1996-07-22 00:00:00.000

10263 1996-07-23 00:00:00.000

10264 1996-07-24 00:00:00.000

10265 1996-07-25 00:00:00.000

10266 1996-07-26 00:00:00.000

10267 1996-07-29 00:00:00.000

10268 1996-07-30 00:00:00.000

10269 1996-07-31 00:00:00.000

10270 1996-08-01 00:00:00.000

10271 1996-08-01 00:00:00.000

(24 row(s) affected)

This is an extract of the orders taken between July 7, 1996 and August 1,
1996. Now, count the number of occurrences of every order date.

orderdate # of orderdate

------------ --------------

1996-07-04 1

1996-07-05 1

1996-07-08 2

1996-07-09 1

1996-07-10 1

1996-07-11 1

1996-07-12 1

1996-07-15 1

1996-07-16 1

1996-07-17 1

1996-07-18 1

1996-07-19 2

1996-07-22 1

1996-07-23 1

1996-07-24 1

1996-07-25 1

1996-07-26 1

1996-07-29 1

1996-07-30 1

1996-07-31 1

1996-08-01 2

308 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 308

http://www.sybex.com

This is a simple view of statistics. When SQL Server sorts and counts
the order dates this way, it knows in advance how many orders it will find
each time you look for orders taken on a specific date. For example, try
running the following query:

SELECT *

FROM Orders

WHERE OrderDate BETWEEN ‘1996-07-15’ AND ‘1996-07-20’

SQL Server knows before accessing the data that it will find 6 records.
So, it knows that it should access at most 6 data pages if the records are
evenly dispatched. The purpose of distribution statistics is based on this
simple algorithm: to decide what data access strategy it will use, SQL Server
needs to evaluate how many records correspond to the search condition.

In SQL Server, distribution statistics actually go beyond just counting
the number of occurrences. First, the statistics should more accurately
reflect the reality of data distribution. Second, the distribution statistics
zone may not contain all indexed values to spare space, depending on the
number of records. There are 830 records in the Orders table, but only
186 values in the distribution zone. (This value is based on a statistics
algorithm that goes beyond the scope of this book.) How do you know
there are only 186 values in the distribution statistics zone? Thanks to the
DBCC SHOW_STATISTICS statement, if you run the following:

DBCC SHOW_STATISTICS (Orders,OrderDate)

You obtain three result sets similar to the following. The actual results
will depend on the your SQL Server. The first result set is the following
(extract):

Updated Rows Rows Sampled Steps Density

-------------------- ----- ------------- ------ ------------

Feb 5 2001 10:38PM 830 830 186 1.6926861E-3

This result set indicates that:

� The statistics have been updated for the last time on February 5, 2001.

� The table contains 830 rows.

� All of these rows have been used to calculate the statistics.

� There are 186 values in the statistics (number of steps).

� The average density is about 0.17 percent.

Statistics and Index Choice 309

2942C05.qxd 7/11/01 5:20 PM Page 309

http://www.sybex.com

Probably the most interesting figure of this result set is the density. If
every value were unique, the density would be 1 out of 830, which is 0.12
percent. Here the density of 0.17 indicates that some values exist in two or
more occurrences. For example, there were two orders taken on July 8,
1996. As far as density is concerned, the smaller, the better. It indicates
that the index is very selective.

If you index a column containing only three different values (for
example, Mr., Mrs., Miss), you will end up with a density of 33.3 percent,
which is not good and reveals that this index is useless. The index con-
sumes space, but will probably never be used. On the other hand, a unique
index has a density of 1 out of the total number of records, which is the
best selectivity an index can have. Always pay attention to the density of
your indexes. If it is above 10 percent, the index is considered useless.

The second result set of running the DBCC SHOW_STATISTICS is the
following:

All density Average Length Columns

--------------- ---------------- -------------------

2.0833334E-3 8.0 OrderDate

1.2048193E-3 12.0 OrderDate, OrderID

This is interesting information because the density of the OrderDate
alone is 0.2 percent, but paired with the OrderID column it goes down to
0.12 percent. This is a completely normal situation; since the OrderID is
the primary key of the table, its density is the best that could be reached on
the table.

The last result set may be the most interesting in fully understanding
statistics. The following result is an extract of the first rows of this set of
data spanning the range from July 4, 1996 through August 1, 1996:

RANGE_HI_KEY RANGE_ROWS EQ_ROWS DISTINCT_RANGE_ROWS

------------ ----------- --------- -------------------

1996-07-04 0.0 1.0 0

1996-07-15 7.0 1.0 6

1996-07-19 3.0 2.0 3

1996-07-25 3.0 1.0 3

1996-08-01 4.0 2.0 4

First of all, note there are only five values in the distribution zone,
instead of the 24 values in the table between July 4th and August 1st.

310 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 310

http://www.sybex.com

Nevertheless, with the other columns, the system knows exactly how many
lines exist between July 4th and August 1st. Let’s see how it knows this.

The RANGE_HI_KEY column gives the upper value of a range stored in the
distribution page. We know that 1996-07-04 is the upper value of the first
range, and that the following value is 1996-07-15. Between these two
values, we find seven other values. The RANGE_ROWS column gives this
information. There are three values between 1996-07-15 and 1996-07-19,
and so on. Now, the EQ_ROWS column gives the number of occurrences of
the upper value of the range. In this example, we know there is one 1996-
07-04 occurrence, one 1996-07-15, and two 1996-07-19. Last, but not
least, the DISTINCT_RANGE_ROWS column gives the number of distinct values
within a range. Here, there are six distinct values between 1996-07-04 and
1996-07-15. So, we now know there is one duplicate in this range, since
there are seven values among six distinct ones. There is one last column
that does not appear in the previous result set, named AVG_RANGE_ROWS,
which is the result of RANGE_ROWS/DISTINCT_RANGE_ROWS.

Just with this information, we can figure out the distribution of data in
the indexed column. The distribution can be represented the following way:

1996-07-04

Seven values and one duplicate

1996-07-15

Three distinct values

1996-07-19

1996-07-19

Three distinct values

1996-07-25

Four distinct values

1996-08-01

1996-08-01

When the system is evaluating the number of records concerning orders
taken on July 19, 1996 with the distribution statistics, it knows that there
are only two records because it found a hit in the statistics. If you are look-
ing for orders taken on July 23, 1996, there is at most one. Between
July 19th, and July 25th, there are only three distinct values. So, July 23rd
may be one of them, or the record containing the value may not exist. But
the system knows that there could not be more than one occurrence.

Statistics and Index Choice 311

2942C05.qxd 7/11/01 5:20 PM Page 311

http://www.sybex.com

Index Choice

As you’ve seen in the previous example about the distribution statistics
zone, the system knows quite precisely how data is distributed in the
indexed column. Each time a query is run, the first operation performed by
the system is an evaluation of the distribution statistics. Let’s take a few
examples to fully understand what the system does. If you run the
following:

SELECT *

FROM Orders

WHERE OrderDate BETWEEN ‘1996-07-19’ AND ‘1996-07-25’

SQL Server first checks whether there is an index on the OrderDate col-
umn, or a composite index starting with the OrderDate column. In that
case, it will evaluate the number of rows that exist in this range. With the
estimated execution plan of SQL Query Analyzer, the system gives you
back the results shown in the following graphic. To display the estimated
execution plan of a query, highlight the query and click the Display Esti-
mated Execution Plan button on the SQL Query Analyzer toolbar.

312 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 312

http://www.sybex.com

Here, the Estimated row count is six. This is a good scientific guess:
There are two 1996-07-19 occurrences, one 1996-07-25, and three values
between them, which add up to six. Easy, isn’t it?

Now, if you run the following:

SELECT *

FROM Orders

WHERE OrderDate BETWEEN ‘1996-07-19’ AND ‘1996-07-25’

AND CustomerID = ‘FOLKO’

SQL Server discovers one index on OrderDate and one on CustomerID. It
will then use both and do an intersection between the interim results. The
evaluation gives six records for the criteria on OrderDate and 19 for the
one on CustomerID. The index intersection is performed like a join
between two result sets. In this particular case, SQL Server will use a
merge join strategy, resulting in one record.

If you change the AND keyword into an OR keyword, the system may do
an index union, or it may prefer to scan the table if it is not too big. In that
case, the clustered index scan is chosen because the Orders table is quite
small, and it will be faster to scan the table than to use both indexes and
join the two result sets. The cost of OR operations is generally high.

Now, what happens if there is no index, and therefore no statistics? The
answer is pretty easy: SQL Server cannot work without statistics! So,
instead of guessing, it creates a distribution statistics zone without any
indexes based on it. If you run the following:

SELECT *

FROM Orders

WHERE ShipCity=’Graz’

SQL Server will automatically create a distribution statistics zone for this
column, since the ShipCity column is not indexed. To list all the indexes
created on the Orders table, run the following:

SELECT name, first, root

FROM sysindexes

WHERE id=OBJECT_ID(‘Orders’)

Statistics and Index Choice 313

2942C05.qxd 7/11/01 5:20 PM Page 313

http://www.sybex.com

You obtain the following result:

name first root

------------------------------ -------------- --------------

PK_Orders 0xF00000000100 0xF10000000100

CustomerID 0xDA0000000100 0xDD0000000100

CustomersOrders 0xDF0000000100 0x920100000100

EmployeeID 0x940100000100 0x970100000100

EmployeesOrders 0x980100000100 0x9B0100000100

OrderDate 0x9C0100000100 0x9F0100000100

ShippedDate 0xA10100000100 0xA40100000100

ShippersOrders 0xA50100000100 0xA80100000100

ShipPostalCode 0xA90100000100 0xAC0100000100

_WA_Sys_ShipCity_797309D9 0x000000000000 0x000000000000

Note the last line. The “index” name is _WA_Sys_ShipCity_797309D9,
and its first and root addresses are NULL because this is not an index; it is a
distribution statistics zone.

The actual name is randomly generated and may be different on your
server.

Statistics created automatically on columns are dropped automatically if
they are not used. So, you do not have to bother with them. Just let the sys-
tem manage them!

You can discover the statistics that exist on a table by running the
sp_helpstats system procedure:

sp_helpstats ‘Orders’
You will receive the following result:
statistics_name statistics_keys

----------------------------- -------------------

_WA_Sys_ShipCity_797309D9 ShipCity

You can get the same result if you choose Tools ➢ Manage Statistics in
SQL Query Analyzer. For the Orders table, the Manage Statistics dialog
box is shown in Figure 5.11.

314 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 314

http://www.sybex.com

F I G U R E 5 . 1 1 Manage Statistics dialog box

These statistics have been created because the database
AUTO_CREATE_STATISTICS option is on.

The automatic statistics zones are a great help for SQL Server adminis-
trators to discover that some indexes are missing. The only problem with
statistics is that they must be up-to-date to be useful.

Statistics Maintenance

What would happen if the statistics were not up-to-date? The answer is
quite straightforward: Your index choice may be wrong. Imagine that the
statistics have been created while the table contained 1,000 rows, but that
the table grew rapidly and now contains more than 100,000 records. The
system builds its choice of index on this outdated statistic and may make
the wrong decision. To be really useful, the statistics have to be up-to-date.

Statistics and Index Choice 315

2942C05.qxd 7/11/01 5:20 PM Page 315

http://www.sybex.com

By default, statistics are updated automatically in SQL Server 2000. To
check whether the statistics automatic update is activated in a specific
database, run the following:

SELECT DATABASEPROPERTYEX(‘dbname’, ‘IsAutoUpdate-
Statistics’)

If the result is 1, then the statistics are automatically updated when
needed. To set the AUTO_UPDATE_STATISTICS option, run the following:

ALTER DATABASE dbname SET AUTO_UPDATE_STATISTICS ON

To turn if off, run the following:

ALTER DATABASE dbname SET AUTO_UPDATE_STATISTICS OFF

Avoid using sp_dboption, since this stored procedure is given only for
backward compatibility in SQL Server 2000.

As a rule of thumb, it is better to leave this option on. All the statistics
will be automatically updated when they become outdated. The update
algorithm is entirely managed by SQL Server, depending on the number of
updates, deletes, and inserts, and on the number of records in the table. If
your table has a one million records and only 100 records change (0.01
percent), the distribution statistics do not have to be updated since this
change will not dramatically change the data distribution of the table.

Furthermore, if a table size is over 8MB (1,000 pages), SQL Server will
not use all the data to calculate the distribution statistics, but only a
sample. All of these features have one purpose: to calculate the most
accurate statistics while limiting the impact on performance during their
update. So, based on these features, SQL Server will automatically
recalculate the statistics when the optimizer finds that they are outdated.

Now, it is possible to enable or disable automatic computation of statis-
tics with the sp_autostats system stored procedure. Run the following:

sp_autostats ‘Orders’

You’ll see the automatic statistics setting for the Northwind database
and the Orders table:

Global statistics settings for [Northwind]:

Automatic update statistics: ON

Automatic create statistics: ON

316 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 316

http://www.sybex.com

Settings for table [Orders]

Index Name AUTOSTATS Last Updated

---------------------------- --------- -----------------------

[PK_Orders] ON 2001-02-05 22:38:47.693

[CustomerID] ON 2001-02-05 22:38:47.753

[CustomersOrders] ON 2001-02-05 22:38:47.803

[EmployeeID] ON 2001-02-05 22:38:47.833

[EmployeesOrders] ON 2001-02-05 22:38:47.853

[OrderDate] ON 2001-02-05 22:38:47.883

[ShippedDate] ON 2001-02-05 22:38:47.913

[ShippersOrders] ON 2001-02-05 22:38:47.943

[ShipPostalCode] ON 2001-02-05 22:38:47.983

[_WA_Sys_ShipCity_797309D9] ON 2001-03-13 23:54:55.490

If you want to turn off all the automatic statistics for the Orders table,
run the following:

sp_autostats ‘Orders’, ‘OFF’

To turn it on again, run the following:

sp_autostats ‘Orders’, ‘ON’

Now, you can turn on automatic statistics updates for one specific
index, by running the following:

sp_autostats ‘Orders’, ‘ON’, ’indexname’

Here, indexname is the name of the index in question. To turn it off, run
the following:

sp_autostats ‘Orders’, ‘OFF’, ’indexname’

The sp_createstats system stored procedure may be used to create statis-
tics for every column of every table of a database. The only columns not
affected by this procedure are the non-deterministic columns, the non-
precise columns, and those of image, text, and ntext data types (determinis-
tic and precise columns are explained in the “Index on Computed Columns”
section). But do not forget that statistics consume space. It is better to do an
analysis of the queries run against a database with the Index Tuning Wizard
than to create all possible statistics (see Chapter 12 for information on this
wizard).

Statistics and Index Choice 317

2942C05.qxd 7/11/01 5:20 PM Page 317

http://www.sybex.com

To disable automatic statistics updates, you have the following choices:

� Disable the AUTO_UPDATE_STATISTICS option with the ALTER DATA-
BASE statement.

� Use the sp_autostats system stored procedure.

� Use the STATISTICS_NORECOMPUTE of the CREATE INDEX statement
(see the next section on creating an index and statistics).

� Use the NORECOMPUTE clause of the STATISTICS UPDATES or CREATE
STATISTICS statement.

Once you have disabled automatic statistics update, you need to update
them manually. This operation can be done through index maintenance
(see the last section of this chapter on fragmentation and index mainte-
nance), or with the UPDATE STATISTICS statement.

The complete syntax of STATISTICS UPDATES is as follows:

UPDATE STATISTICS Table | View

[

Index

| (statistics_name [,...n])

]

[WITH

[

[FULLSCAN]

| SAMPLE number { PERCENT | ROWS }]

| RESAMPLE

]

[[,] [ALL | COLUMNS | INDEX]

[[,] NORECOMPUTE]

]

Where the options are defined below.

Table | View This value is the name of the table or view for which sta-
tistics should be updated.

Index | Statistics_name This value is the name of the index or a
comma-delimited list of the statistics kept for the table. If included, then
the specific statistics are updated. If this value is not included, statistics
for all indexes are updated.

FULLSCAN This specifies that all rows in the table should be read to
compute the statistics distribution. This is the same as specifying

318 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 318

http://www.sybex.com

SAMPLE 100 PERCENT. The FULLSCAN and SAMPLE options cannot be
used together.

SAMPLE number (PERCENT | ROWS) This option specifies the
amount of the table that should be sampled to update the distribution
statistics. An integer number is specified in place of the number parame-
ter. The sample can be specified as a percentage of the table or an
absolute number of rows. SQL Server 2000 has a minimum amount of
rows that must be sampled, and if the number specified is too small, it
is automatically adjusted.

RESAMPLE This option specifies that the statistics are updated using
an inherited sampling ratio. If the ratio is below the minimum, SQL
Server automatically adjusts the ratio to the minimum.

ALL | COLUMNS | INDEX This option specifies whether column
statistics, index statistics, or all statistics are updated. By default, all
statistics are updated.

NORECOMPUTE This option specifies that statistics that become
outdated are not automatically recomputed. This is the same as dis-
abling automatic statistics using SP_AUTOSTATS.
The UPDATE STATISTICS statement allows you to perform the following:

� You can update index or column statistics.

� You can precisely calculate the statistics over the whole table
(FULLSCAN), or calculate the statistics with a sample.

� You can update the index, columns, or all statistics (all is the
default).

� You can disable statistics calculation with the NORECOMPUTE clause.

Here are some examples of a statistics update. The first example will
update all the statistics of the Orders table:

UPDATE STATISTICS Orders

The following statement will update the statistics of the OrderDate
index of the Orders table:

UPDATE STATISTICS Orders OrderDate

The third statement will update the statistics of the OrderDate index,
using only a 10 percent sample of the data:

UPDATE STATISTICS Orders OrderDate WITH SAMPLE 10 PERCENT

Statistics and Index Choice 319

2942C05.qxd 7/11/01 5:20 PM Page 319

http://www.sybex.com

Even if you ask for a specific sample percentage, SQL Server may not
respect your request if it finds the percentage too small to be representa-
tive. Remember, the table must be bigger that 8MB to be sampled. And,
even with such a size, too small a sample may not be used! SQL Server
decides about the smallest sample possible.

This last example updates the index statistics only and disables their
automatic update setting with the following statement:

UPDATE STATISTICS Orders WITH INDEX, NORECOMPUTE

This statement can be run on a daily or weekly basis if you want to
ensure constant statistics accuracy but do not want SQL Server to auto-
matically recompute the distribution statistics.

Now that you have a better understanding of how indexes are used, it is
time to examine how to create them.

Creating Indexes and Statistics

Creating indexes or statistics is a straightforward process when done
with the CREATE INDEX and CREATE STATISTICS statements. Let’s start by
looking at how indexes are created.

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

� Specify index characteristics. Characteristics include clustered,
FILLFACTOR, nonclustered, and uniqueness.

Troubleshoot failed object creation.

320 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 320

http://www.sybex.com

Indexes

As we’ve seen in the previous pages, two types of indexes exist: clustered
and nonclustered. In addition to these types, different options can be
added: uniqueness enforcement, multiple columns, statistics recalculation,
and so on. All these choices address a great variety of needs and let the
index be tailored to the situation. This section focuses on index creation
and option use, starting with basic index creation.

Clustered and Nonclustered Index

The basic CREATE INDEX statement is quite simple:

CREATE [CLUSTERED | NONCLUSTERED] INDEX index_name

ON { table | view } (column [ASC | DESC] [,...n
])

[ON filegroup]

The following statement creates the OrderDate nonclustered index on
the Orders table:

CREATE INDEX OrderDate ON Orders(OrderDate)

As you can observe, the default index is always nonclustered. If you
want a clustered index, you have to specify it, as in the following example:

CREATE CLUSTERED INDEX idxCustID ON Orders(CustomerID)

A table can have only one clustered index. If you created a primary key con-
straint on the table, you may have created a clustered index to support the
constraint. If you end up with error 1902: Cannot create more than one
clustered index on table ‘tablename’. Drop the existing clustered
index ‘indexname’ before creating another, it is because you have
another clustered index defined on the table and it may be the primary key.

The sp_helpindex system stored procedure gives you the complete list
of indexes created on a table. For example, if you run the following:

sp_helpindex Orders

Creating Indexes and Statistics 321

2942C05.qxd 7/11/01 5:20 PM Page 321

http://www.sybex.com

You obtain the following result:

index_name index_description index_keys

---------------- ------------------------------- ---------------

CustomerID nonclustered located on PRIMARY CustomerID

EmployeeID nonclustered located on PRIMARY EmployeeID

OrderDate nonclustered located on PRIMARY OrderDate

PK_Orders clustered, unique, OrderID

primary key located on PRIMARY

ShippedDate nonclustered located on PRIMARY ShippedDate

ShippersOrders nonclustered located on PRIMARY ShipVia

ShipPostalCode nonclustered located on PRIMARY ShipPostalCode

You can obtain a more readable result in SQL Query Analyzer by
choosing Tools ➢ Manage Indexes. Figure 5.12 shows the Manage Indexes
dialog box.

F I G U R E 5 . 1 2 Manage Indexes dialog box

322 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 322

http://www.sybex.com

From the previous result set, notice that all indexes are located on PRI-
MARY. That means they have all been created in the primary filegroup (see
Chapter 2 for more information on filegroups). You can place indexes on
a different filegroup than the one used for the table to balance I/Os among
different disks, even if a RAID solution may offer better performance.
Many DBAs love this feature because it allows them control over file
placement.

The CREATE INDEX statement has many options. Among these, we find:

� ASC|DESC

� SORT_IN_TEMPDB

� IGNORE_DUP_KEY

ASC, which is the default, stores the index in ascending order. DESC
stores it in descending order. While it has no effect on search performance,
it may have a positive impact on the ORDER BY clause. The following state-
ment creates an index on the UnitPrice column of the Products table in
descending order (from the most expensive to the cheapest product):

CREATE INDEX idxUnitPrice ON Products(UnitPrice DESC)

SORT_IN_TEMPDB is useful to improve performance during index cre-
ation. The creation of an index occurs in two phases. The first one creates
a temporary result set containing the sorted index key for a nonclustered
index and the sorted data for a clustered index. The second moves this
sorted result set to the final destination of the index. Without the
SORT_IN_TEMPDB option, the temporary result set is stored in the filegroup
of the created index. With the SORT_IN_TEMPDB option, the temporary
result set is stored in the Tempdb database.

The following statement creates a clustered index on the OrderID col-
umn of the Order Details table and stores the interim result set in Tempdb:

CREATE INDEX idxOrderID ON [Order Details](Orderid)

WITH SORT_IN_TEMPDB

The overall performance can be enhanced if Tempdb is stored on
another set of disks from the current database. During phase 1, reads from
the database won’t compete with writes to the interim result, and during
phase 2, writes from the interim result set won’t compete with writes to
the final destination. Another positive impact occurs on the extents alloca-
tion. They may be more compact, since the interim storage is in another
database.

Creating Indexes and Statistics 323

2942C05.qxd 7/11/01 5:20 PM Page 323

http://www.sybex.com

The only issue you must think of is free space. There should be enough
free space to accommodate the interim result, either in Tempdb (with the
SORT_IN_TEMPDB option) or in the filegroup (without the SORT_IN_TEMPDB
option).

IGNORE_DUP_KEY is a very tricky option. It only concerns what happens
during inserts into unique indexes. Without the option, if a duplicate key is
found, the entire insert is rolled back. With the option, if two rows contain
a duplicate key, the first one is inserted and the second issues a warning,
but the insert continues. The intrinsic transactional nature of the insert is
violated. Consider the following test tables and index:

CREATE TABLE testduplicate(c1 int, c2 varchar(10))

CREATE TABLE test(c1 int, c2 varchar(10))

CREATE UNIQUE INDEX idxc1 ON test(c1)

WITH IGNORE_DUP_KEY

Let’s say we insert the same values in the Testduplicate table as with the
following:

INSERT testduplicate VALUES(1, ‘test’)

INSERT testduplicate VALUES(1, ‘test’)

And then try to insert these two rows into the test table using the
following:

INSERT test SELECT * FROM testduplicate

We will obtain warning 3604: Duplicate key was ignored, which
means one of the two rows has been inserted. If you had created the index
without the IGNORE_DUP_KEY option, you would have obtained error 2601:
Cannot insert duplicate key row in object ‘test’ with unique
index ‘idxc1’, and no row would have been inserted in the table. This
option can be very convenient when inserting data coming from different
sources, but should be used with caution, since you can insert only parts of
the result set, and not all the records.

Unique Index

By definition, default indexes allow duplicate keys. If you want to enforce
uniqueness, use the UNIQUE clause in the CREATE INDEX statement.

324 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 324

http://www.sybex.com

It is better to enforce uniqueness with unique constraints. These constraints
build unique indexes in the background, and their major benefit is that they
can be used as the source of relationships. Unique indexes cannot be used
as the source of relationships.

If you want to enforce uniqueness for the OrderID column of the
Orders table, run the following statement:

CREATE UNIQUE INDEX uidxOrderID ON Orders(OrderID)

As for a non-unique index, the default is nonclustered. If you want to
create a clustered unique index, you have to specify it as in the following:

CREATE UNIQUE CLUSTERED INDEX uidxOrderID ON
Orders(OrderID)

If duplicate values are found during the index creation phase, the
creation will fail with error message 1505: CREATE UNIQUE INDEX termi-
nated because a duplicate key was found for index ID index-
number. Most significant primary key is ‘keyvalue’. You have to
find, delete, or update duplicate values before creating the unique index.
Imagine that you imported data from your legacy system, and that you
have to check whether duplicates exist and cleanse them before creating
the unique index. The following query builds a list of duplicate OrderID
values:

SELECT OrderID, COUNT(OrderID) FROM Orders

GROUP BY OrderID HAVING Count(OrderID)>1

With the list you can directly access faulty data and correct it.

Composite Index

A composite index is made of more than one column. The following
example creates an index based on ShipCountry and OrderDate:

CREATE NONCLUSTERED INDEX idxDateCountry

ON Orders(OrderDate, ShipCountry)

You should be aware that the column order is essential in a composite
index. Consider the following query:

SELECT * FROM Orders

WHERE OrderDate BETWEEN ‘1996-07-14’ AND ‘1996-08-14’

Creating Indexes and Statistics 325

2942C05.qxd 7/11/01 5:20 PM Page 325

http://www.sybex.com

It may use the idxDateCountry index. But the following query cannot
use it:

SELECT * FROM Orders WHERE ShipCountry=’Poland’

Now, imagine that you create the index in the opposite order:

CREATE NONCLUSTERED INDEX idxCountryDate

ON Orders(ShipCountry, OrderDate)

The first SELECT statement cannot benefit from this index, as the second
may. Since the ShipCountry column is the first of the index, a query on
only the OrderDate column cannot be driven by this index (order dates are
ordered for every country, not overall).

SELECT * FROM Orders

WHERE OrderDate BETWEEN ‘1996-07-14’ AND ‘1996-08-14’

AND ShipCountry=’Sweden’

Depending on the selectivity of the query, and on the search condition,
SQL Server will use either the idxDateCountry or idxCountryDate index.
The previous example uses idxCountryDate because ShipCountry was
more selective than OrderDate. The following query uses idxDateCountry
because, this time, OrderDate is more selective than ShipCountry:

SELECT * FROM Orders

WHERE OrderDate BETWEEN ‘1996-07-04’ AND ‘1996-07-05’

AND ShipCountry like ‘F%’

These examples show you that two composite indexes on the same
columns in different orders may be useful to service different queries. A
thorough analysis of the different queries run on your system will help you
determine what are the best composite indexes to create.

One last thing to note about a composite index is that one index on
(OrderDate, ShipCountry) is different from having two indexes, one on
OrderDate and one on ShipCountry. In the first case, the index can be
used directly to drive the query. In the second case, both indexes may be
used, but an intersection (a kind of join) has to be performed, which low-
ers the performance.

Index on Computed Columns

SQL Server 7 introduced computed columns (see Chapter 3). SQL Ser-
ver 2000 introduces indexed computed columns. One of the main

326 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 326

http://www.sybex.com

advantages of indexing computed columns is the ability to perform a fast
search. If not indexed, the results of computed columns are calculated on
the fly during query execution. If indexed, the result is stored at the leaf
level of the index and recalculated when one of the values of the function
is updated.

The results of the computed columns are stored at the leaf level, not in the
table. That means that if the index on the computed column is not covering
the query (an index is covering a query if all columns defined in the query
are part of the index), the value will be calculated on the fly, although it is
stored in the index. This rule applies because it costs fewer resources to
perform the calculation than to seek the index for the value.

To be indexed, a computed column must comply with a certain number
of rules:

� The computed column expression must be deterministic and precise.
To know whether a computed column is deterministic, run the
following:

SELECT COLUMNPROPERTY(OBJECT_ID(‘tablename’),

‘columnname’, ‘IsDeterministic’)

If the returned value is 1, the column is deterministic. If 0, the col-
umn is non-deterministic. To know if a computed column is precise,
run the following:

SELECT COLUMNPROPERTY(OBJECT_ID(‘tablename’),

‘columnname’, ‘IsPrecise’)

If the returned value is 1, the column is precise. If 0, it is not precise.

� The ANSI_NULLS option must be set to ON when the table is created.
To check whether it was on at table creation, run the following:

SELECT OBJECTPROPERTY(OBJECT_ID(‘tablename’), ‘IsAnsi-
NullsOn’).

� The computed column result must not be of text, ntext, or image
data types.

Creating Indexes and Statistics 327

2942C05.qxd 7/11/01 5:20 PM Page 327

http://www.sybex.com

Now, six options must be set to ON and one to OFF during index cre-
ation and index values modification. The options set to ON are:

� ANSI_NULLS

� ANSI_PADDING

� ANSI_WARNINGS

� ARITHABORT

� CONCAT_NULL_YIELDS_NULL

� QUOTED_IDENTIFIER

The option set to OFF is:

� NUMERIC_ROUNDABORT

All of these options, except ARITHABORT are correctly set by the OLE-DB
provider for SQL Server and the ODBC driver of SQL Server. By default,
ARITHABORT is set to OFF. If you want to implement indexed computed
columns and indexed views, you should set the ARITHABORT option to ON
for your server. You can use the following script:

DECLARE @value int

SELECT @value=(value | 64)

FROM spt_values JOIN Sysconfigures

ON number=config WHERE name=’user options’

EXEC sp_configure ‘user options’, @value

RECONFIGURE

If all these seven options are not correctly set, the optimizer will not
consider the index created on the computed column.

Fillfactor

The index fill factor plays an important role in reducing data fragmen-
tation, as you are going to see in the section “Fragmentation and Index
Maintenance.” The FILLFACTOR option indicates the percentage of pages
that are going to be physically occupied at leaf level. Let’s consider the

328 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 328

http://www.sybex.com

index illustrated in Figure 5.13. This index has a default fill factor, which
means the pages are 100 percent full.

F I G U R E 5 . 1 3 An index with a fill factor of 100

Now, if we create the same index, but with a fill factor of 50, it will
look like the one presented in Figure 5.14.

Barcelona …

Barquisimeto …

Bergamo …

Bruxelles …

Campinas …

Cowes …

Cunewald …

Johannesburg …

Kirkland …

Köln …

Page 20

Lander …

Leipzig …

London …

London …

London …

Luleå …

Madrid …

Madrid …

Mannheim …

Mexico …

Page 21

Mexico …

Mexico …

Mexico …

Nantes …

Paris …

Portland …

Rio …

Salzburg …

San Cristobal …

Sao Paulo …

Page 22

Sao Paulo …

Strasbourg …

Toulouse …

Tsawassen …

Versailles …

Page 23

Barcelona 1:20

Lander 1:21

Mexico 1:22

Sao Paulo 1:23

Page 30

Creating Indexes and Statistics 329

2942C05.qxd 7/11/01 5:20 PM Page 329

http://www.sybex.com

F I G U R E 5 . 1 4 An index with a fill factor of 50

With a fill factor of 50, the pages are half full. The table will occupy
more space, but can accept more inserts without incurring page splits (see
the section later in this chapter on index fragmentation). If you want to
insert the city of Boston, it must fit between Bergamo and Bruxelles. With
a fill factor of 100, the page is split in two and the insert is performed.
With a fill factor of 50, the insert is performed directly because there is
enough free space in the page.

A fill factor of less than 100 is good for tables in which many inserts
and updates take place. With such a fill factor, data fragmentation is
delayed and may not occur if the index is compacted on a regular basis.
On the other hand, if many inserts and updates are performed in an index
with a fill factor of 100, data fragmentation occurs frequently, and perfor-
mance decreases. A good practice is to use a fill factor of around 80. It is a
good balance between performance and resource usage.

Barcelona …

Barquisimeto …

Bergamo …

Bruxelles …

Campinas …

Page 20

Cowes …

Cunewald …

Johannesburg …

Kirkland …

Köln …

Page 21

Lander …

Leipzig …

London …

London …

London …

Page 22

Luleå …

Madrid …

Madrid …

Mannheim …

Mexico …

Page 23

Barcelona 1:20

Cowes 1:21

Lander 1:22

Luleå 1:23

Mexico 1:24

Page 30

.

.

.

…

330 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 330

http://www.sybex.com

The following example creates an index on the ShipCountry column of
the Orders table with a fill factor of 80:

CREATE NONCLUSTERED INDEX idxCountry

ON Orders(ShipCountry)

WITH FILLFACTOR = 80

The fill factor only applies to the leaf level. The index non-leaf levels are
always optimized to leave spaces for at least two index keys. Nonetheless,
if you want to apply the same fill factor to non-leaf level, use the PADINDEX
option, as in the following statement:

CREATE NONCLUSTERED INDEX idxCountry

ON Orders(ShipCountry)

WITH FILLFACTOR = 80, PAD_INDEX

As a rule of thumb, use a fill factor of 80 for frequently updated
indexes, and use a fill factor of 100 for decision support systems or for
tables with frequent inserts at the end of the table (for example, an index
on an identity column).

If the fill factor cannot be fulfilled exactly, SQL Server will always include
excess rows on each page. For example, if 13 records fit on a table, with
a fill factor of 50, SQL Server could store 6.5 records on each page, which
is impossible. In fact, it will store 7 records on each page, obtaining a real
fill factor of 53.8.

Statistics

We’ve seen in the previous pages that the system was able to generate
statistics automatically when no index existed to drive a query. It is
possible, though, to create statistics without an index, just to help the
query optimizer. Statistics can be created on one or multiple columns. The
full syntax is the following:

CREATE STATISTICS statistics_name

ON { table | view } (column [,...n])

[WITH

[[FULLSCAN

| SAMPLE number { PERCENT | ROWS }] [,]
]

Creating Indexes and Statistics 331

2942C05.qxd 7/11/01 5:20 PM Page 331

http://www.sybex.com

[NORECOMPUTE]

]

If you want to create statistics over ShipCountry and EmployeeID, run
the following:

CREATE STATISTICS statEmpCountry

ON Orders(EmployeeID, ShipCountry)

As for index creation, the system will use a full scan or a sample, depend-
ing on the size of the table and the directive you give. The NORECOMPUTE
clause indicates that the statistics should not be updated automatically.

Remember, statistics are here to help the query optimizer in its choice.
Having statistics on different columns help it to have a better understand-
ing of data distribution, while consuming less space than indexes. Be
aware that statistics do not replace indexes. Indexes are still useful to
accelerate the query execution. Statistics is just one of the optimization
tools that may be used to ease the query execution path.

While indexes are mandatory for performance, they need to be main-
tained. A database may encounter data fragmentation due to frequent
updates, deletes, and inserts. Data fragmentation may decrease the perfor-
mance. It is time to look at what happens during data modification and
what to do to maintain good performance.

Fragmentation and Index Maintenance

Even though a lot of action is automated in SQL Server 2000, index
maintenance may be a large part of the administration and is directly
related to performance. In case of a performance decrease, the DBA and
the SQL developers should first think about data fragmentation. Why and
when does data fragmentation occur? Because data is updated and rows
may move around. We will first look at what happens during inserts,

Create and implement indexing strategies. Considerations

include clustered index, covering index, indexed views,

nonclustered index, placement, and statistics.

332 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 332

http://www.sybex.com

deletes, and updates, and then explain what to do to limit fragmentation
and what action to perform to defragment tables.

Fragmentation Types

Fragmentation in SQL Server concerns data files. When a record is deleted,
space is freed in the page. When a record is inserted in the middle of a
clustered index, or at the leaf level of a nonclustered index, it may cause a
page split. When a record is updated, its size may increase and the record
may move to another page. All of these situations lead to data fragmen-
tation. In SQL Server 2000, there are two types of fragmentation: internal
and external.

Internal fragmentation refers to empty spaces inside pages. External
fragmentation refers to page links. Figure 5.15 illustrates a classic situation
of internal fragmentation.

F I G U R E 5 . 1 5 Internal fragmentation

In this example, pages are not fully filled. Space is overused. Defrag-
menting these pages will lead to less used space, and therefore a better use
of I/Os and memory. Remember, pages are moved into memory just as they
are moved to disk. If pages are filled at 10 or 20 percent, you will lose 90
or 80 percent of memory, which will be used to store useless bits.

Barcelona …

Barquisimeto …

Bruxelles …

Campinas …

Kirkland …

Köln …

Lander …

Mannheim …

Mexico …

Nantes …

Paris …

Portland …

Salzburg …

San Cristobal …

Sao Paulo …

Fragmentation and Index Maintenance 333

2942C05.qxd 7/11/01 5:20 PM Page 333

http://www.sybex.com

Figure 5.16 illustrates a classic situation of external fragmentation.
When a page is split, the new allocation may not be physically close to the
split page.

F I G U R E 5 . 1 6 External fragmentation

In an ideal situation, pages are linked naturally from left to right, that
is, in their storage order. Due to successive page splits, the pages may not
be linked in an optimal manner. This situation will lead to performance
decrease because the number of pages generally increases, like the number
of extents.

The DBCC SHOWCONTIG statement helps you determine external and
internal fragmentation. If you run DBCC SHOWCONTIG(‘Orders’), you may
obtain the following result (note that the result may vary from one server
to the other):

DBCC SHOWCONTIG scanning ‘Orders’ table...

Table: ‘Orders’ (21575115); index ID: 1, database ID: 9

TABLE level scan performed.

- Pages Scanned................................: 20

- Extents Scanned..............................: 5

- Extent Switches..............................: 4

- Avg. Pages per Extent........................: 4.0

- Scan Density [Best Count:Actual Count].......: 60.00% [3:5]

- Logical Scan Fragmentation: 0.00%

Ideal situation

Fragmented situation

334 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 334

http://www.sybex.com

- Extent Scan Fragmentation: 40.00%

- Avg. Bytes Free per Page.....................: 146.5

- Avg. Page Density (full).....................: 98.19%

DBCC SHOWCONTIG works at the leaf level, so all of these results concern
the data pages. The explanation of the result is the following:

� Pages scanned shows the number of data pages. Here the table is
20 pages long.

� Extents scanned shows the number of extents used by the table.
Here we learn that the table uses 5 extents. This first information
tells us there may be external fragmentation, since only 3 pages
would be necessary to store 20 pages (8 pages per extent).

� Extents Switches gives the number of times DBCC moved from
one extent to the other. In a normal situation, this number is equal
to Extent Scanned - 1.

� Avg. Pages per extent gives the average number of pages per
extent while traversing the page chain. This value should be as close
as possible to 8 (the maximum number of pages per extent if the
table is compacted).

� Scan Density represents the value of external fragmentation. Its result
is based on the ideal number of extent changes and on the real number
of extent changes. The lower the value, the more external fragmenta-
tion. This value should always be as close as possible to 100.

� Logical Scan Fragmentation gives the percentage of out-of-order
pages. In a normal situation, pages are linked in a right-to-left order,
that is, in ascending page number order. If the pages are in this
order, the Logical Scan Fragmentation is 0. The higher the value, the
more page-to-page fragmentation.

� Extent Scan Fragmentation gives the percentage of out-of-order
extents. An out-of-order extent is an extent that is not physically
following the previous allocated extent for the object. Again, seeing
this figure increase indicates extent-to-extent fragmentation.
Allocated extents are not contiguous. This may result in unopti-
mized I/Os.

� Avg. Bytes Free per Page is the average number of bytes free
per page. This number should be as close as possible to 0 if the

Fragmentation and Index Maintenance 335

2942C05.qxd 7/11/01 5:20 PM Page 335

http://www.sybex.com

fill factor is 100; otherwise, you should take the fill factor into
consideration. With a fill factor of 80, having an average of 1,600
bytes free per page is a normal situation (20 percent of 8KB).

� Avg. Page Density gives the average page density, taking the row
size into account. This value should be as close as possible to 100.
The Avg. Bytes Free per Page and Avg. Page Density average
numbers give a good overview of internal fragmentation.

If the previous example, we have a page density of 98.19 percent, that
indicates there is no real internal density (due to the row size, there is
always a little extra space in pages). On the other hand, a scan density of
60 percent and an extent scan fragmentation of 40 percent indicates exter-
nal fragmentation. If we defragment the table (you will discover the state-
ments to use to defragment a table in the next couple of sections) and run
DBCC SHOWCONTIG again, we get the following result:

DBCC SHOWCONTIG scanning ‘Orders’ table...

Table: ‘Orders’ (21575115); index ID: 1, database ID: 9

TABLE level scan performed.

- Pages Scanned................................: 20

- Extents Scanned..............................: 3

- Extent Switches..............................: 2

- Avg. Pages per Extent........................: 6.7

- Scan Density [Best Count:Actual Count].......: 100.00%
[3:3]

- Logical Scan Fragmentation: 0.00%

- Extent Scan Fragmentation: 0.00%

- Avg. Bytes Free per Page.....................: 146.5

- Avg. Page Density (full).....................: 98.19%

As you can see, scan density is now 100 percent and scan fragmentation
is 0. Data pages and extents are now contiguous.

Inserts

Inserts may cause leaf level fragmentation. A clustered index is particularly
sensitive, where the leaf level contains the data pages. Figure 5.17
represents that kind of situation.

336 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 336

http://www.sybex.com

F I G U R E 5 . 1 7 Page split

In this example, you want to insert the Barstow record between
Barquisimento and Bergamo. Unfortunately, the page is full and there is
no free space for the new record. The page is split in two; a new page is
allocated where there is enough space, the first half of the records remains
in the page, and the second half goes to the new page. Enough space is
now available for the insert. In this example, the insert takes place in
the first page but could occur in the second, depending on the insert
value.

The problem that arises here is the fact that the new page will be allo-
cated wherever there is space in the file, and that could be far away from
the original page. If inserts occur randomly, you’ll end up with a lot of
external fragmentation, as well as internal fragmentation since the page
will be half full.

Updates

Update management has always been a subject of long discussions between
RDBMS nerds. There are many types of physical update strategies, the two
major ones being in-place and out-of-place updates. SQL Server always
tries to do in-place updates to avoid moving the record around and
updating the indexes. But in the case of size increase, it may not be
possible to leave the record in the same page. In that case, to minimize the
impact of out-of-place updates, SQL Server uses forwarding pointers.

Barcelona

Barquisimeto

Bergamo

Bruxelles

Campinas

Cowes

Cunewald

Barcelona

Barquisimeto

Barstow

Bergamo

Bruxelles

Campinas

Cowes

Cunewald

Before After

Barstow

Fragmentation and Index Maintenance 337

2942C05.qxd 7/11/01 5:20 PM Page 337

http://www.sybex.com

F I G U R E 5 . 1 8 Use of a forwarding pointer

Figure 5.18 illustrates what happens when a row is updated and needs
to be moved due to a size increase. SQL Server leaves the new address of
the record at its old address. This avoids the need to update the indexes
referencing the record. In this example, the address of the GOURL record
is always 1:10:5, since it was in fifth position of the tenth page of the first
file. When SQL Server arrives at this address, it knows it must go to
1:82:5.

This feature avoids updates that would have a negative impact on per-
formance. With one, two, or dozens of indexes on the previous table, the
row locator is stable. The only problem is created when SQL Server scans
the table because a lot of external fragmentation occurs. For a transac-
tional system in which update performance is really the top priority, this
feature guarantees homogeneous performance.

Deletes

While inserts may have a negative impact on external and internal frag-
mentation, and updates may have a negative impact on external
fragmentation, deletes have a negative impact on internal fragmentation,
creating “holes” in data pages. To manage deletes, SQL Server 2000 uses a
“phantom” strategy. It does not physically delete the data from pages, but
marks the space for deletion.

If a new insert or update reclaims space, the mark-for-deletion space
can be reused. Otherwise, every half-hour, a background cleansing process
reclaims deleted space.

ROMEY

MORGK

ANATR

TRADH

GOURL

EASTC

LAMAI

Page 10

ROMEY

MORGK

ANATR

TRADH

1:82:5

EASTC

LAMAI

Page 10

PERIC

BLAUS

SEVES

ISLAT

GOURL

Page 82

UPDATE

Before After

…

338 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 338

http://www.sybex.com

Figure 5.15 shows a situation in which records have been deleted and
internal fragmentation is occurring. If this situation is not a problem on a
short-term basis, it overuses space and can dramatically impact I/O perfor-
mances on a long-term basis. In Figure 5.15, a record has been deleted
between Barquisimento and Bruxelles. But this space may have been used
by a “short” record, and may not be used by new records. The Avg. Bytes
Free per page and Avg. Page Density values of the DBCC SHOWCONTIG indi-
cate internal fragmentation. Keep in mind that pages are as-is in memory.
So, if they are 50 percent free, you double your memory need. The more
compact the pages, the better.

You should monitor the internal and external fragmentation very
closely to be sure that every page is filled and correctly linked.

What to Do Now

You now understand how inserts, deletes, and updates lead to data
fragmentation. Luckily, SQL Server proposes three ways to defragment
data files:

� DBCC INDEXDEFRAG

� DBCC DBREINDEX

� CREATE INDEX WITH DROP_EXISTING

DBCC INDEXDEFRAG defragments the leaf level of all types of indexes,
and deals with internal and external fragmentation. It guarantees that
pages are linked in the physical order (see the ideal situation in
Figure 5.16) and compacted. Nevertheless, it does not allocate new pages,
but simply reshuffles existing pages. So, a heavily fragmented index will
not really benefit from this statement.

The syntax of this statement is:

DBCC INDEXDEFRAG

({ database_name | database_id | 0 }

, { table_name | table_id | view_name | view_id
}

, { index_name | index_id }

) [WITH NO_INFOMSGS]

Fragmentation and Index Maintenance 339

2942C05.qxd 7/11/01 5:20 PM Page 339

http://www.sybex.com

The following code defragments the PK_Orders index of the Orders
table:

DBCC INDEXDEFRAG (Northwind, Orders, PK_Orders)

At the end of this statement execution, SQL gives you the number of pages
it analyzes, and the number of pages it moved and removed, if necessary.

DBCC INDEXDEFRAG has one major advantage: It is an online statement,
holding locks for a very short period of time because it’s using small trans-
actions instead of one big transaction like other statements (you’ll learn
more about locks in Chapter 10). You can then defragment an index while
users are connected to the database without disturbing normal operations.
Its major drawback is that it has an online operation and is not as efficient
as a DBCC DBREINDEX or a CREATE INDEX WITH DROP_EXISTING.

DBCC DBREINDEX can be used to rebuild and then defragment any or all
indexes of a table, and possibly change the index fill factor. The following
shows you its syntax:

DBCC DBREINDEX

([‘database.owner.table_name’

[, index_name

[, fillfactor]

]

]

)[WITH NO_INFOMSGS]

The following statement rebuilds the PK_Orders index of the Orders
table:

DBCC DBREINDEX (‘Northwind..Orders’, PK_Orders)

The following statement rebuilds all the indexes of the Orders table:

DBCC DBREINDEX (Orders, ‘’)

Note that the database name is not given in the previous statement,
which means the database on which the statement is executed is the data-
base the connection is using.

The WITH DROP_EXISTING clause of the CREATE INDEX statement allows
an index to be dropped and recreated in the same statement. This has a
major advantage if you are running this statement on a clustered index,
because the nonclustered index may not be rebuilt. Imagine you just ran a
CREATE INDEX WITH DROP_EXISTING without modifying the key. As the

340 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 340

http://www.sybex.com

clustered key is the row locator, if it does not change, the nonclustered
index remains unchanged, too. If you had to run DROP then CREATE INDEX
to recreate the index, the nonclustered indexes would have been rebuilt
during the clustered index destruction (the row locator is changed) and
rebuilt again during the clustered index creation.

The following statement recreates the OrderDate index of the Orders
table:

CREATE INDEX OrderDate

ON Orders(OrderDate)

WITH DROP_EXISTING

You can modify your index structure during a DROP_EXISTING opera-
tion, with the exception of transforming a clustered index to a nonclus-
tered index, which is impossible.

You can schedule the defragmentation of your indexes on a regular
basis, either by programming a DBCC DBREINDEX or DBCC INDEXDEFRAG
operation, or by using the Database Maintenance Plan Wizard. Listing 5.1
creates a stored procedure that you can execute to reindex all the tables of
a database.

Listing 5.1: Reindexing All Tables
Run this script in the master database to be able to run the procedure

from any databases.

CREATE PROCEDURE sp_reindex_all_tables

AS

DECLARE reindex_cursor CURSOR

FOR

SELECT name FROM sysobjects WHERE type = ‘U’

OPEN reindex_cursor

DECLARE @tablename sysname

FETCH NEXT FROM reindex_cursor INTO @tablename

WHILE (@@FETCH_STATUS <> -1)

BEGIN

EXECUTE (‘DBCC DBREINDEX (‘’’ + @tablename + ‘’’,
‘’’’)’)

FETCH NEXT FROM reindex_cursor INTO @tablename

END

DEALLOCATE reindex_cursor

Fragmentation and Index Maintenance 341

2942C05.qxd 7/11/01 5:20 PM Page 341

http://www.sybex.com

Summary

In this chapter, you learned how indexes were used by SQL Server, as
well as how to create and maintain them to reach expected performance.

This chapter particularly focused on:

� What indexes are and how they are structured

� How data is accessed with and without indexes

� What statistics are and how SQL Server chooses what index to use

� How to create and maintain indexes and statistics

Key Terms

Before you take the exam, be certain you are familiar with the fol-
lowing terms:

Exam Essentials

Know the syntax for CREATE INDEX statements. Know all the
possible parameters of these statements, and especially focus on the
different index types and the fill factor.

Understand index impact on performances. Index plays a major role in
query performance. A thorough understanding of this role is mandatory.

clustered
composite index
density
distribution statistics
external fragmentation
heap
intermediate level
internal fragmentation

leaf level
nonclustered
non-leaf level
root
selectivity
table scan
unique index

342 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 342

http://www.sybex.com

Know and understand the role of statistics. Distribution statistics are
the only scientific way SQL Server has to guess the right indexes to use
for a query. You should understand the functioning of statistics.

Know how to defragment an index. Fragmentation can have a nega-
tive effect on data access. You should understand the two fragmentation
types and how to limit them.

Review Questions

1. You are a database developer for Northwind Traders. One of your
users complains that the following query is very time consuming:

SELECT * FROM Customers WHERE Country = ‘Finland’

The Customers table structure and the execution plan are shown in
the following graphics.

Review Questions 343

2942C05.qxd 7/11/01 5:20 PM Page 343

http://www.sybex.com

What can you do to improve the execution of the query without
modifying the table structure and existing indexes, but knowing that
the primary key is clustered?

A. Add a clustered index on the Country column.

B. Add a nonclustered index on the Country column.

C. The clustered index is already used, so the table may be
fragmented. You should defragment it.

D. Create a table containing the customers from Finland, and create
a partitioned view above.

2. You need to optimize the execution of the following queries:

SELECT * FROM Customers

WHERE City LIKE ‘R%’ AND CompanyName like ‘V%’

SELECT * FROM Customers

WHERE CompanyName LIKE ‘A%’

The table structure is shown in the following graphic. The primary
key is nonclustered.

344 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 344

http://www.sybex.com

What index or indexes would you create to optimize speed while
minimizing space consumption?

A. One clustered index on (City, CompanyName)

B. One clustered index on CompanyName and one nonclustered
on City

C. One nonclustered index on CompanyName and one clustered
on City

D. One clustered index on (CompanyName, City)

3. You are developer for World Wide Importers. You try to optimize
data access to the Products table. These past weeks, this table’s size
has increased by 300 percent due to the merge with a new company.
You decide to create a unique clustered index on the ProductID
column to increase seeks on productID and to ensure the uniqueness
of the IDs. While creating the index, you receive the following error
message:

CREATE UNIQUE INDEX terminated because a duplicate key was
found for index ID 1

What can you do to create the index?

A. Run the CREATE INDEX statement with the IGNORE_DUP_ROW
option.

B. Run the CREATE INDEX statement with the IGNORE_DUP_KEY
option.

C. Delete duplicate keys and run the CREATE INDEX statement again.

D. Create a UNIQUE constraint with the WITH NOCHECK option.

4. Your customers complain about a performance decrease when
querying the invoice table. This performance decrease began
approximately 2 weeks ago, without any logical explanation
concerning the size increase of the database. In fact, the table has
increased 3 percent, but the performance decreased by 50 percent.

Exam Essentials 345

2942C05.qxd 7/11/01 5:20 PM Page 345

http://www.sybex.com

You run DBCC SHOWCONTIG on the Invoice table and obtain the
following result:

You think that fragmentation may be the issue. What statement can
you run to defragment the table?

A. DBCC DEFRAG(‘Invoices’)

B. DBCC DBREINDEX (‘Invoices’, ‘’)

C. DBCC INDEXDEFRAG(‘Invoices’)

D. DBCC REINDEX(‘Invoices’)

5. You are a database developer for a regional bank. You have just
received a new server for customer accounts management. The main
table of the accounts management database is the Movements table
that records every account movement, debit, and credit. You need to
optimize data access to this table. You analyzed table usage and
discover that 70 percent of the time the table is written and 30
percent of the time it is read. Reads are always related to a specific
account, meaning a banking officer needs to check all the
movements of specific accounts. The number of records increases
approximately 1 percent every day. What type of index or indexes
seems to be the more convenient for this table?

A. A nonclustered index on the Account Number

B. A clustered index on the Account Number with a fill factor
around 90 percent

C. A clustered index on the Movement Number and a nonclustered
index on the Account Number

346 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 346

http://www.sybex.com

D. A clustered index on the Account Number with a fill factor of 50
percent

6. Your company has just merged with another one. As part of your
job as the SQL Server developer, you have been asked to consolidate
the customers’ information. Fortunately, both companies share the
same type of information. The CustomerID for each customer is
generated by a hashing function that uses the customer name and
zip code as parameters to calculate a unique ID. You create a
database with both tables, CustomersA from your company and
CustomersB from the other company. You calculate the unique
CustomerID for each table. You now have two tables each
containing hundreds of thousands of rows uniquely identified by the
hashed CustomerID. You will perform the insert process from
CustomersB into CustomersA with the following statement:

INSERT CustomersA SELECT * FROM CustomersB

How could you guarantee that no duplicates will appear in
CustomersA? (Choose the best answer.)

A. Create a UNIQUE constraint on CustomersA(CustomerID) before
the insert.

B. Enforce a PRIMARY KEY constraint on CustomersA(CustomerID).

C. Create a UNIQUE index on CustomersA(CustomerID) with the
IGNORE_DUP_KEY option.

D. Create an INSERT trigger on CustomersA to check whether each
inserted row is unique and rejects duplicates.

7. You created the Order Details table with the following script:

CREATE TABLE [Order Details] (

OrderID int NOT NULL,

ProductID int NOT NULL ,

UnitPrice money NOT NULL

CONSTRAINT DF_Order_Details_UnitPrice DEFAULT (0),

Quantity smallint NOT NULL

CONSTRAINT DF_Order_Details_Quantity DEFAULT (1),

Review Questions 347

2942C05.qxd 7/11/01 5:20 PM Page 347

http://www.sybex.com

Discount smallint NOT NULL

CONSTRAINT DF_Order_Details_Discount DEFAULT (0),

Total as (UnitPrice*Quantity*(1-Discount/100)),

CONSTRAINT PK_Order_Details
PRIMARY KEY CLUSTERED (OrderID, ProductID)

)

You create an index on the Total column to perform a fast seek on
the Total column. Once created, you realize that this index is never
used by queries. What are the possible causes of this behavior?
(Choose two.)

A. The Total column is non-deterministic.

B. The Total column is not precise.

C. The ANSI_NULLS option was not set to ON during table creation.

D. The ARITHABORT option was not set to ON during index creation.

8. You try to run the following statement on the Customers table:

CREATE CLUSTERED INDEX cidx ON Customers(CustomerID)

And obtain the following error:

Cannot create more than one clustered index

What is the most possible cause of this error?

A. The primary key constraint already created a clustered index.

B. You have reached the maximum of 250 indexes.

C. The foreign key constraint already created a clustered index.

D. There is already a clustered index on the CustomerID column.
You are not allowed to create two indexes on the same column.

9. You are developer for Northwind Traders. You created the Suppliers
table illustrated in the following graphic.

348 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 348

http://www.sybex.com

Which statement will create a nonclustered composite index on the
CompanyName and City columns?

A. CREATE INDEX ON Suppliers(CompanyName, City)

B. CREATE COMPOSITE INDEX idxCompCity ON
Suppliers(CompanyName, City)

C. CREATE INDEX idxCompCity ON Suppliers.CompanyName,
Suppliers.City

D. CREATE INDEX idxCompCity ON Suppliers(CompanyName,
City)

10. The users of the ordering system for World Wide Importers
complain about the response time when they query customers’
information. The database name is Orders, and the table they are
querying is named Customers. You test some of their queries. On
one of them, the execution plan indicates outdated statistics on an
index. You want to ensure that this situation won’t occur anymore.
Which statements do you execute to make sure statistics will be
updated automatically in the future? (Choose two.)

A. UPDATE STATISTICS ‘Customers’

B. sp_autostats ‘Customers’, ‘ON’

C. sp_dboption ‘Orders’, ‘auto create statistics’, ON

Review Questions 349

2942C05.qxd 7/11/01 5:20 PM Page 349

http://www.sybex.com

D. ALTER DATABASE Orders SET AUTO_CREATE_STATISTICS ON

11. Before launching the new Products database into production, you
want to ensure that all server and database options are correctly set.
Your first concern is about distribution statistics. Which of the
following can you run to check that the automatic statistics update
is set? (Choose two.)

A. sp_dboption ‘Products’, ‘auto update statistics’

B. sp_dbproperty ‘Products’, ‘AutoUpdateStatistics’)

C. sp_configure ‘Products’, ‘auto update statistics’

D. SELECT DATABASEPROPERTYEX(‘Products’,
‘IsAutoUpdateStatistics’)

12. You are a database developer for Northwind Traders. You led the
team that developed the new shipping system. In that database, you
have Orders and Shippers tables as illustrated in the following
graphic:

For the past couple of days, users have complained about response
time when they query orders shipped by some suppliers. The size of
the Orders table has been multiplied by 10 in the past couple of

350 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 350

http://www.sybex.com

weeks. You think that some index statistics may be outdated or
some index may be missing. What can you run to quickly check the
last update date of all indexes and statistics on the Orders table?

A. sp_autostats ‘Orders’

B. sp_helpstats ‘Orders’

C. sp_statistics ‘Orders’

D. sp_helpindex ‘Orders’

13. You are developer for a regional bank. You have put in production a
new customer relationship management system a couple of weeks
ago. Some customers complain about the response time when they
query some customer accounts. You think it may be a problem of
missing indexes. You want to know quickly which indexes are
missing. What can you run to get this information?

A. sp_helpindex ‘Accounts’

B. sp_statistics ‘Accounts’

C. sp_helpstats ‘Accounts’

D. sp_indexes ‘Accounts’

14. You created a new employee management system for a regional
bank. The Employee table and indexes script is the following:

CREATE TABLE dbo.employee (

emp_id int NOT NULL ,

fname varchar (20) NOT NULL ,

minit char (1) NULL ,

lname varchar (30) NOT NULL ,

job_id smallint NOT NULL

CONSTRAINT DF_employee_job_id DEFAULT (1),

job_lvl tinyint NULL

CONSTRAINT DF_employee_job_lv DEFAULT (10),

pub_id char (4) NOT NULL

Review Questions 351

2942C05.qxd 7/11/01 5:20 PM Page 351

http://www.sybex.com

CONSTRAINT DF_employee_pub_id DEFAULT (‘9952’),

hire_date datetime NOT NULL

CONSTRAINT DF_employee_hire_date DEFAULT (get-
date()),

CONSTRAINT PK_emp_id

PRIMARY KEY (emp_id)

)

CREATE INDEX idxfname ON Employee(fname)

Almost every time you run a query with or without a WHERE
condition, you obtain the execution plan shown in the following
graphic:

What is the most possible cause of these full table scans?

A. The index statistics are outdated.

B. There are not enough indexes to service the queries.

C. You need to force the index in queries.

D. The indexes are outdated.

15. You are a developer for a winery. You developed a new production
management system. This application has been live for a couple of
weeks now, and you want to ensure that everything is running
smoothly. You query different system tables and discover in
Sysindexes an object called _WA_Sys_Region_7B905C75. You are sure
you have not created this object. What is it and who created it?

A. It is an index automatically created by the system on the Region
column.

352 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 352

http://www.sybex.com

B. It is a distribution statistics zone automatically created by the
system on the Region column.

C. It is a temporary table automatically created by the system to
perform an ordering operation on the Region column.

D. It is a temporary index created by the system to service a query
that has been made on Washington state.

Answers to Review Questions

1. B. The execution plan shows an index scan and not an index seek.
Furthermore, the scan is done on the primary key, not on the
Country column. Creating an index on the Country column will
definitely enhance performance.

2. D. Even if the clustered key is quite large, this index will offer the
best performance while not occupying lots of space. Option A
would not be useful because CompanyName may not be used alone.
Options B and C may be good solutions, but will consume more
space than option D.

3. C. The IGNORE_DUP_ROW option is no longer supported in SQL Ser-
ver 2000. The IGNORE_DUP_KEY option applies only when INSERT
statements try to insert duplicate keys; it does not solve the problem
of duplicate keys existing in the table. The WITH NOCHECK option
cannot be used with UNIQUE constraints.

4. B. This is a tricky question. The DBCC INDEXDEFRAG statement can be
used to defragment this table, but you should indicate the database
and the index name in the statement. Options A and D do not exist.

5. B. A clustered index on the Account Number will help reads, since
all the records concerning a specific Account Number are close to
each other. The fill factor of 90 percent will allow inserts during the
week (5 percent size increase in five days), while limiting page splits.

Answers to Review Questions 353

2942C05.qxd 7/11/01 5:20 PM Page 353

http://www.sybex.com

6. C. The IGNORE_DUP_KEY option forbids duplicates on the column
while leaving unique values to be inserted. It removes the atomicity
of the INSERT statement, but allows fast inserts.

7. C and D. The Total column is deterministic and precise. It is only
made of precise number values (money and value). If the Total
column would not have been deterministic or precise, the index
would not have been created. Both options presented should be set
to allow index usage.

8. A. There can be only one clustered index per table. When creating a
primary key, you can ask for a clustered index. That’s probably why
you cannot create this clustered index.

9. D. In option A, the index name is missing. In option B, COMPOSITE
is not a keyword. Option C is syntactically incorrect.

10. B and D. Option A will update statistics immediately but does not
guarantee that statistics will be up-to-date in the future. Option C
would have been good, but there is a syntax error, because the ON
keyword should have been placed between quotes. So, the only way
to make sure statistics will be automatically updated is to set the
AUTO_CREATE_ STATISTICS option on the database and on each index
of the table.

11. A and D. The stored procedure in option B does not exist. The
procedure in option C exists, but concerns only server-wide options.
The auto update option is a database option.

12. A. Sp_autostats is the only stored procedure that gives you the last
update date for every index and that may set the automatic update
feature on or off.

13. C. Sp_helpindex and sp_indexes give you only the list of existing
indexes. Sp_statistics gives you the list of existing statistics; but
with the result set given, you cannot distinguish between indexes
and distribution statistics zones. Only sp_helpstats gives you the

354 Chapter 5 � Creating and Maintaining Indexes

2942C05.qxd 7/11/01 5:20 PM Page 354

http://www.sybex.com

list of distribution statistics zones, which lets you discover the
columns that have been queried without the support of indexes.

14. B. A table scan indicates that there are not enough indexes to service
the query. So, more indexes should be created in accordance with
the WHERE conditions.

15. B. If the auto_create_statistics option is set, SQL Server creates
distribution statistics zones when no indexes are available to service
the query, to know the statistical distribution of a specific column.

Answers to Review Questions 355

2942C05.qxd 7/11/01 5:20 PM Page 355

http://www.sybex.com

Creating and
Maintaining Database
Objects

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Create and alter database objects. Objects include constraints,

indexes, stored procedures, tables, triggers, user-defined

functions, and views.

� Specify schema binding and encryption for stored
procedures, triggers, user-defined functions, and views.

� Specify recompile settings for stored procedures.

� Alter database objects to support replication and partitioned

views.

� Support merge, snapshot, and transactional replication
models.

� Design a partitioning strategy.
� Design and create constraints and views.
� Resolve replication conflicts.

� Troubleshoot failed object creation.

� Manage data manipulation by using stored procedures,

transactions, triggers, user-defined functions, and views.

� Implement error handling in stored procedures,
transactions, triggers, and user-defined functions.

� Pass and return parameters to and from stored procedures
and user-defined functions.

� Validate data.

Chapter

6

2942C06.qxd 7/16/01 11:35 AM Page 357

http://www.sybex.com

� Enforce procedural business logic by using stored procedures,

transactions, triggers, user-defined functions, and views.

� Specify trigger actions.
� Design and manage transactions.
� Manage control of flow.
� Filter data by using stored procedures, triggers, user-

defined functions, and views.

� Troubleshoot and optimize programming objects. Objects

include stored procedures, transaction, triggers, user-defined

functions, and views.

2942C06.qxd 7/16/01 11:35 AM Page 358

http://www.sybex.com

You are about to enter a long chapter dedicated to writing
T-SQL code and to creating and manipulating SQL Server database
objects. In this chapter, you will learn:

� How to create, use, and manage views

� How to create, use, and manage stored procedures

� How to create, use and manage user-defined functions

� How to create, use, and manage triggers

Views

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

� Specify schema binding and encryption for stored procedures,
triggers, user-defined functions, and views.

Troubleshoot failed object creation.

Alter database objects to support replication and

partitioned views.

� Design a partitioning strategy.

� Design and create constraints and views.

Manage data manipulation by using views.

Enforce procedural business logic by using views.

� Filter data by using views.

2942C06.qxd 7/16/01 11:35 AM Page 359

http://www.sybex.com

Defining views can be very simple, but managing and using them can
become quite complex. A lot of rules govern view creation and usage. This
section focuses on view creation, modification, and usage, starting with the
definition and advantages of views.

Definition and Advantages of Views

A view is essentially a named SELECT statement. It acts as a table, but does
not contain any data. It relies on the data stored in the underlying table.
Like a table, a view can be queried, and data can be inserted, deleted, and
modified through a view.

F I G U R E 6 . 1 A simple view

View

360 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 360

http://www.sybex.com

In Figure 6.1, the view is relying on the Suppliers and Products tables of
the Northwind database. The SELECT statement used to create the view is
as follows:

SELECT CompanyName, ProductName, UnitPrice

FROM Suppliers INNER JOIN Products

ON Suppliers.SupplierID = Products.SupplierID

As you can see, if you know how to write a SELECT statement (see
Chapter 7), you know how to create a view.

Views can be used in the following situations:

Mask data complexity A view can join many tables or perform a cal-
culation, which makes it easy to query and access data. A normalized
database is sometimes difficult to use due to the number of tables to
query. Views can mask this normalization. Views can also be used to
combine result sets coming from different servers. The users do not
know data is coming from different servers, but this feature helps
increase performance by scaling out the application. For example, a
server can contain data from the U.S., another one from Europe, and a
third one from Asia. A view can combine the data from these three
servers.

Provide a security mechanism Views can be designed with a WHERE
clause, or with specific join and column selections to restrict the data
available to users. For example, a sales table may contain the region.
Different views can be created to ensure each salesperson has access
only to his or her sales region. It is better to manage security at a view
level (or at a stored procedure level), than at a column level.

Performance enhancer Views are stored SELECT statements that can be
dozens of lines long. Using a view avoids running the query from the
client application. Furthermore, the view is already parsed, so running a
view is generally faster than running the query it contains directly. Last,
but not least, it isolates the application from the data, providing the
possibility of changing the query if needed, without modifying the
application.

Views 361

2942C06.qxd 7/16/01 11:35 AM Page 361

http://www.sybex.com

Creating and Altering Views

Creating a view is a straightforward process if you know how to write a
SELECT statement. The full syntax is as follows:

CREATE VIEW [<db_name>.][<owner>.]view_name [(column[
,...n])]

[WITH {ENCRYPTION|SCHEMABINDING|VIEW_METADATA}[
,...n]]

AS

select_statement

[WITH CHECK OPTION]

The various sections are described below:

The SELECT Statement

As you can see, a view contains a SELECT statement and a few parameters,
if needed. The SELECT statement must follow some restrictions; the SELECT
statement cannot:

� Contain ORDER BY clause, unless there is a TOP clause in the select list

� Contain COMPUTE or COMPUTE BY clauses

� Contain the INTO keyword

� Reference a temporary table or a table variable

The following lines of code create the view illustrated in Figure 6.1:

CREATE VIEW vwProducts

AS

SELECT ProductName, UnitPrice, CompanyName

FROM Suppliers

INNER JOIN Products

ON Suppliers.SupplierID = Products.SupplierID

Troubleshoot and optimize programming objects. Objects

include stored procedures, transaction, triggers, user-

defined functions, and views.

362 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 362

http://www.sybex.com

If you try to sort the result set by product name by running the follow-
ing script:

CREATE VIEW vwProducts

AS

SELECT ProductName, UnitPrice, CompanyName

FROM Suppliers

INNER JOIN Products

ON Suppliers.SupplierID = Products.SupplierID

ORDER BY ProductName

You obtain error 1033, The ORDER BY clause is invalid in views,
inline functions, derived tables, and subqueries, unless TOP
is also specified. You have to add the TOP clause to make this view
creatable:

CREATE VIEW vwProducts

AS

SELECT TOP 100 PERCENT CompanyName, ProductName, UnitPrice

FROM Suppliers

INNER JOIN Products

ON Suppliers.SupplierID = Products.SupplierID

ORDER BY ProductName

The code for the view is stored in the Syscomments system table. You
can query this table directly, but it is easier to use the sp_helptext stored
procedure. If you run the following:

sp_helptext vwproducts

The result produced is:

Text

--

CREATE VIEW vwProducts

AS

SELECT TOP 100 PERCENT CompanyName, ProductName, UnitPrice

FROM Suppliers

INNER JOIN Products

ON Suppliers.SupplierID = Products.SupplierID

ORDER BY ProductName

This result is the same code that was used to create the view.

Views 363

2942C06.qxd 7/16/01 11:35 AM Page 363

http://www.sybex.com

The ENCRYPTION Option

If you develop an application that you are going to sell and install at your
customers’ sites, you may want to protect your intellectual property. All
objects containing code, such as views, can be encrypted. In the previous
examples, by using the sp_helptext or by querying the Syscomments
system table, you could discover the text of the code used to create the
view. If you want to protect your code, you can encrypt it with the
ENCRYPTION option. The following example creates the view and
encrypts it:

CREATE VIEW vwProducts

WITH ENCRYPTION

AS

SELECT CompanyName, ProductName, UnitPrice

FROM Suppliers

INNER JOIN Products

ON Suppliers.SupplierID = Products.SupplierID

When you query its text with the sp_helptext stored procedure, SQL
Server’s answer is: The object comments have been encrypted. In the
same way, if you try to generate the script of an encrypted view, either
with SQL Query Analyzer or with SQL Enterprise Manager, SQL Server
will answer that the view code cannot be generated: /****** Encrypted
object is not transferable, and script can not be generated.
******/.

The SCHEMABINDING Option

The SCHEMABINDING option is useful to protect your view definition against
any structure modifications of the underlying table. Once a view is created
with the SCHEMABINDING option, the underlying tables cannot be dropped
and cannot be altered if it affects the view definition. For example, a
column could be added to the table, but a column used in the view cannot
be dropped. Consider the following view:

CREATE VIEW vwProducts

WITH SCHEMABINDING

AS

SELECT CompanyName, ProductName, UnitPrice

FROM dbo.Suppliers

364 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 364

http://www.sybex.com

INNER JOIN dbo.Products

ON Suppliers.SupplierID = Products.SupplierID

The Suppliers and Products tables cannot be dropped or altered freely. If
you try to remove a column by running the following:

ALTER TABLE Products DROP COLUMN UnitPrice

The result is the error 5074, The object ‘vwProducts’ is dependent on
column ‘UnitPrice’.

In the CREATE VIEW statement, two-part names are used (owner.object).
This is mandatory with the SCHEMABINDING option.

If you use the SCHEMABINDING option, you have to define every column
in the select list; you cannot use the * symbol. If you try, you obtain error
1054, Syntax ‘*’ is not allowed in schema-bound objects.

The VIEW_METADATA Option

The VIEW_METADATA option is useful when you use a view through DBLIB
(DB-Library), OLE DB, or ODBC. In the normal case, each time a client
application queries a view or a table through any of these interfaces, it
needs first to retrieve metadata about this view or table. Metadata is
information about the view’s properties, such as a column name or type.
To be able to manipulate or display the retrieved information correctly, the
client application needs to know as precisely as possible the structure of
the object it will be using.

When you query a view created with the default options, SQL Server
queries the tables constituting the view to retrieve the metadata from the
base tables. With the VIEW_METADATA option, SQL Server does not query
the table metadata, but instead sends the view metadata back to the client.
The main benefit for the client is the ability to create an updateable client-
side cursor, based on the view. Generally, client-side cursors based on
views are not updateable. The VIEW_METADATA option opens new possibili-
ties for client development.

You can find more information on OLE DB, ODBC, DB-Library, and client-
side cursors in the SQL Server Books OnLine.

Views 365

2942C06.qxd 7/16/01 11:35 AM Page 365

http://www.sybex.com

The With Check Option Option

This last option is probably the most useful. To understand it, let’s look
at a quick example. Suppose you have a Customers table containing a
State column. You create a view that selects only customers from
California with:

CREATE VIEW CustomersCAView

AS

SELECT * FROM Customers WHERE state=’CA’

Using this view, if you need to update one of the California customers,
you can run the following statement:

UPDATE CustomersCAView SET state=’OR’ WHERE
CustomerID=’LETSS’

The update occurs without any problem, and when you query the view
again, the LETSS customer is not present anymore. This seems normal,
since you modified the state for a customer. This can become really annoy-
ing, however, for users that perform data access through this view.

By default, you can update any record through a view, and make it dis-
appear, because the WHERE condition applied to the view does not select the
data anymore. You can insert data in the table through the view that does
not comply with the view WHERE condition. In other words, the view
restricts data access but not data updates and inserts! To avoid this situa-
tion, you can use the WITH CHECK OPTION option:

CREATE VIEW CustomersCAView

AS

SELECT * FROM Customers WHERE state=’CA’

WITH CHECK OPTION

This option guarantees that the data updated or inserted through the
view complies with the WHERE condition.

If you run the previous update, and if the view has been created with
the WITH CHECK OPTION option, you obtain error 550, The attempted
insert or update failed because the target view either speci-
fies WITH CHECK OPTION or spans a view that specifies WITH
CHECK OPTION and one or more rows resulting from the operation
did not qualify under the CHECK OPTION constraint.

366 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 366

http://www.sybex.com

This option guarantees users cannot eject rows out of the view. It
should be used whenever you intend to update or insert data through
views.

Using Views

When the time comes to use views, two types of operations are possible:
data retrieving and data updating. A view is a pseudo table, so wherever
you can use a table, you can also use a view. While this statement is true
with SELECT operations, it may be false with INSERT, UPDATE, or DELETE
operations, depending on the view. Let’s have a look at using views in
these two types of situations.

Retrieving Data

Retrieving data is probably the simplest way to use a view. In a SELECT
statement, views are like tables. As we’ve seen at the beginning of this
section, views can be useful in restricting or facilitating data access. With
views, users have access to the data through a dedicated path.

A Trainer’s Point of View

One of the most frequent quandaries students have when learning
how to program SQL Server concerns view performance. This is a
trivial quandary since everybody sees the two SELECT statements. If
you create the following view:

CREATE VIEW CustomersCA
AS
SELECT * FROM Customers WHERE State=’CA’

And run the following statement:

SELECT * FROM CustomersCA WHERE City = ‘San Francisco’

People assume that SQL Server runs the “real” statement as follows:

SELECT * FROM (SELECT * FROM Customers WHERE State=’CA’)
WHERE City = ‘San Francisco’

Views 367

2942C06.qxd 7/16/01 11:35 AM Page 367

http://www.sybex.com

They also assume that SQL Server first selects California customers
and then filters the result to return only those in San Francisco. In fact,
SQL really runs the following statement:

SELECT * FROM Customers WHERE State=’CA’ AND City = ‘San
Francisco’

This is an important concept as it means that if indexes exist they will
be used accordingly, and that the view is not executing an “internal”
SELECT statement (defined in the view) whose result set will be used
by the “external” SELECT statement (run by the user). A view does not
slow performance, but it is not a stored procedure and should not be
directly seen as a performance enhancer. Unlike stored procedures,
views are not pre-compiled, as you will discover in the “Stored
Procedures” section later in this chapter.

A view can be used in a SELECT statement wherever a table can be used.
The rule is as simple as that. It is not so simple, however, when you need
to update data.

Updating Data

By default, a view based on one or many tables is updateable. That means
you can update, delete, or insert data in the underlying table(s) through the
view, as you would do directly to the table. Nevertheless, some restrictions
apply:

� If the view is based on two or more tables, the UPDATE, INSERT, and
DELETE statements cannot affect more than one table. In other
words, if the view is based on more than one table, you cannot run a
DELETE statement, and all the columns referenced in the INSERT and
UPDATE statements should belong to the same underlying table. If
you try to execute a query that affects more than one table, you fire
error 4405, View or function ‘viewname’ is not updatable
because the modification affects multiple base tables.

� You cannot update, insert, or delete data in a view created with the
DISTINCT clause. If you try, you’ll fire error 4404, View or func-
tion ‘viewname’ is not updatable because the definition
contains the DISTINCT clause.

368 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 368

http://www.sybex.com

� You cannot update, insert, or delete data in a view using grouping
functions. If you try, you obtain error 4403, View or function
‘viewname’ is not updatable because it contains aggre-
gates.

� You cannot update, insert, or delete data in a view if it contains cal-
culated columns. If you try, you’ll fire error 4406, Update or
insert of view or function ‘viewname’ failed because it
contains a derived or constant field.

� Your insert, update, or delete operation may fail because of column
or table constraint or of column properties. For example, if a table
contains a non-NULL column, which has no default value, and if it is
not used in a view, you won’t be able to insert a new row in this
table through the view, since you won’t be able to define a value for
this column.

All of these rules have existed for years (they were already there in
SQL Server 4.2 on OS/2). In SQL Server 2000, all of these restrictions can
be avoided with the INSTEAD OF triggers. We will come back to INSTEAD
OF triggers in the “Triggers” section later in this chapter.

Indexed Views

One of the brand-new features in SQL Server 2000 is the ability to index
views, and, in doing so, materialize views.

Indexed views are only available in SQL Server 2000 Enterprise Edition and
in SQL Server 2000 Developer Edition.

Normally, view is usually just a query—a kind of pseudo table—in that
it does not store data, it accesses the data stored in the base tables. When
you index a view, the view result set is stored in the database, and updated
dynamically. The main advantage of indexed views lies in one word: per-
formance. Here are a few examples that illustrate the performance gains
that can occur with indexed views:

� If the view you are querying is grouping data from a table or calcu-
lating averages and sums, base data is accessed and thousands or

Views 369

2942C06.qxd 7/16/01 11:35 AM Page 369

http://www.sybex.com

even millions of records are aggregated. If you index this view and
then access it, the aggregates will have already been calculated and
you may retrieve only a few hundred rows.

� When you query a view that is using multiple tables and performing
complex and numerous joins, the system will need to join the differ-
ent tables. This query time can be very long. If you index this view,
all the joins will have already been resolved and you can access the
data directly. This view becomes a kind of super-index that spans
across multiple tables.

From these two examples, you can see that indexed views are in fact a
decision support feature, designed to enhance SELECT query performance.

Indexed views have been designed to offer SQL Server developers the
same features Oracle has offered with its materialized views. It was with
materialized views that Oracle obtained the top TPC-D benchmarks in the
world. TPC-D is an industry benchmark for data warehousing databases.
Microsoft also obtained a benchmark using indexed views. Without indexed
views, SQL Server queries would have needed to access the base data,
while Oracle was using its materialized views to avoid accessing base data.
After a complaint from Microsoft, the Transaction Processing Performance
Council (www.tpc.org) decided to remove the TPC-D benchmark and intro-
duced two specific benchmarks for decision support systems: TCP-H and
TPC-R. You can find more information on TPC benchmark on the TPC Web
site at www.tpc.org.

An indexed view stores the view result set in the database. The view can
be viewed as a super index, but indexed views are generally more complex
than indexes. When data is updated in the base table, SQL Server needs to
update the data in the indexed view as well, and this update could nega-
tively impact performance. Always consider indexed views only when
SELECT performance is much more important when compared to updates,
deletes and inserts performance.

The first index created on a view should be a clustered index. View data
will then be sorted on the clustered key and made unique by the addition
of an internal counter (see the “Clustered Index” section in the previous

370 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 370

http://www.sybex.com

chapter), accelerating data retrieval. Furthermore, the following conditions
must apply:

� The ANSI_NULLS, QUOTED_IDENTIFIERS, ANSI_PADDING, ANSI_WARN-
INGS, ARITHABORT, and CONCAT_NULL_YIELDS_NULL options should
be set ON during the view creation.

� The NUMERIC_ROUNDABOUT option should be set OFF during the view
creation.

� The ANSI_NULLS option needs to be set to ON during the base table
creation.

� The view references only tables and not other views.

� All the referenced tables should belong to the same owner and be in
the same database.

� The view must be created with the SCHEMABINDING option.

� UNION, TOP, ORDER BY, COUNT(*), MAX, MIN, STDEV, STDEVP, VAR,
VARP, CONTAINS, FREETEXT, COMPUTE, COMPUTE BY, HAVING, CUBE, and
ROLLUP keywords are not authorized.

� The view cannot contain text, ntext, or image columns.

� Functions used in the view must be deterministic (see the “Index on
Computed Columns” section in the previous chapter).

� All table and function names must be referenced using two-part
names: owner.name.

Aside from these items, the index creation is exactly identical to a nor-
mal view created on a table. Since the first index is a clustered index, all
data columns will be stored in data pages (leaf level of the clustered index)
and only index keys will be stored in the non-leaf levels.

COUNT(*) is not allowed in an indexed view. But you can count the number
of rows with the new COUNT_BIG function that is allowed.

After the clustered index is created, you can create nonclustered indexes
as well. The clustered index is needed to store the view data. Nonclustered
indexes will be used as any other nonclustered index—to enhance data

Views 371

2942C06.qxd 7/16/01 11:35 AM Page 371

http://www.sybex.com

access. Once you’ve indexed a view, the “virtual” side of the view becomes
real: the view contains data, even if this data is extracted from base table.

To learn more about clustered and nonclustered indexes, refer to the
previous chapter, dedicated to indexes.

Partitioned Views

One of the most exciting additions to SQL Server 2000 is the partitioned
view feature, which opens the gate to parallel processing among a number
of servers in a server farm. This means that data can be spread out on
multiple servers and merged on-the-fly, if needed, by a query. The idea
behind partitioned views is that the resources of one server are intrinsically
limited, but you can add as many servers as you need to increase the
scalability of your application. You can spread data on your various
servers, and, once you reach a performance limit, add a new server to
increase the performance by distributing the workload.

Let’s use an example to illustrate partitioned data. Suppose the number
of rows in your Customers table is increasing fast. You want to split this
table into three smaller tables: customers from Northern America (USA
and Canada), customers from Europe (UK, France, and Germany), and
customers from Asia (Japan, Thailand, and China). You place each of
these tables on a different server, as in Figure 6.2, and create on each
server a Customers partitioned view to access all customers’ information.

F I G U R E 6 . 2 A partitioned view

Customers View

Server A

North America

Server B

Europe

Server C

Rest of the
world

372 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 372

http://www.sybex.com

When a user queries the Customers view, the SQL Server that executes
the view knows where to find the data because it is a partitioned view. It
then sends the query to the necessary servers and merges the result sets.
Let’s further develop the example illustrated in Figure 6.2. The Customers
view is created from the three tables with the following script:

CREATE VIEW Customers

AS

SELECT * FROM ServerA.MyCompany.dbo.CustomersAmerica

UNION ALL

SELECT * FROM ServerB.MyCompany.dbo.CustomersEurope

UNION ALL

SELECT * FROM ServerC.MyCompany.dbo.CustomersAsia

One important fact to note about partitioned views is that the table is
partitioned horizontally into non-overlapping parts. In the above example,
the table CustomersAmerica contains only customers from America, but
no customers from Europe or elsewhere. A view is considered partitioned
if the data from the different tables it unions does not overlap!

To ensure that the data does not overlap and that SQL Server can guar-
antee it is not overlapping, the individual tables need to contain CHECK
constraints. One or more columns from the original table are used to parti-
tion the data over the different servers. These columns are called partition-
ing columns. A partitioning column needs to follow some strict rules:

� The column value should be validated by a CHECK constraint using
only the following operators: BETWEEN, AND, OR, <, <=, >, >=, and =.
Note <> and ! are not allowed in a CHECK constraint if the column
has to be a partitioning column.

� The column is NOT NULL.

� The column is part of the table primary key.

� The column is not a calculated column.

� Only one CHECK constraint exists on the column.

Furthermore, the tables need to follow some rules, too:

� The table cannot have indexes on computed columns.

Views 373

2942C06.qxd 7/16/01 11:35 AM Page 373

http://www.sybex.com

� The table primary keys should be defined on the same columns.

� The SET ANSI_PADDING of all tables constituting the view should be
the same.

The following scripts create the partitioning columns of the different
Customers tables of our example. Each should be run on a separate server:

CREATE TABLE CustomersAmerica(

CustomerID nchar(5) NOT NULL,

CompanyName nvarchar(50) NOT NULL,

ContactName nvarchar(30) NULL,

ContactTitle nvarchar(30) NULL,

Address nvarchar(60) NULL,

City nvarchar(30) NULL,

Region nvarchar(10) NULL,

PostalCode nvarchar(15) NULL,

Country nvarchar(50) NOT NULL

CHECK (Country IN(‘USA’, ‘Canada’)),

Phone nvarchar(24) NULL,

Fax nvarchar(24) NULL,

CONSTRAINT PK_Customer_America

PRIMARY KEY (CustomerID, Country)

)

CREATE TABLE CustomersEurope(

CustomerID nchar(5) NOT NULL,

CompanyName nvarchar(50) NOT NULL,

ContactName nvarchar(30) NULL,

ContactTitle nvarchar(30) NULL,

Address nvarchar(60) NULL,

City nvarchar(30) NULL,

Region nvarchar(10) NULL,

PostalCode nvarchar(15) NULL,

Country nvarchar(50) NOT NULL

CHECK (Country IN (‘UK’, ‘France’, ‘Germany’)),

374 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 374

http://www.sybex.com

Phone nvarchar(24) NULL,

Fax nvarchar(24) NULL,

CONSTRAINT PK_Customer_Europe

PRIMARY KEY (CustomerID, Country)

)

CREATE TABLE CustomersAsia(

CustomerID nchar(5) NOT NULL,

CompanyName nvarchar(50) NOT NULL,

ContactName nvarchar(30) NULL,

ContactTitle nvarchar(30) NULL,

Address nvarchar(60) NULL,

City nvarchar(30) NULL,

Region nvarchar(10) NULL,

PostalCode nvarchar(15) NULL,

Country nvarchar(50) NOT NULL

CHECK (Country IN (‘Japan’, ‘Thailand’, ‘Japan’)),

Phone nvarchar(24) NULL,

Fax nvarchar(24) NULL,

CONSTRAINT PK_Customer_Asia

PRIMARY KEY (CustomerID, Country)

)

These scripts enforce the five column rules and the three table rules.
Note that the Country column is part of the primary key. This choice is
not a logical one, since logical design guides us to define the CustomerID
as the primary key. But, if we want the Country column to be the parti-
tioning column, it needs to be added to the primary key.

If the tables enforce these rules, the view created with the UNION ALL
keyword will be a partitioned view if:

� All the columns of constituting tables are referenced in the SELECT
statements.

� All the corresponding columns of each SELECT statement are of the
same type, precision, scale, and collation.

� Each table column can only be referenced once in the select list.

Views 375

2942C06.qxd 7/16/01 11:35 AM Page 375

http://www.sybex.com

The Customers view enforces these rules, so it is a partitioned view. Par-
titioned views are created on different servers along with the tables placed
on these servers. OLE DB is the mechanism that is used to communicate
between the servers, and the servers are connected as linked servers. If we
want to create the partitioned view on each server, all the servers need to
be declared as linked servers: ServerA and ServerB are linked server to
ServerC, ServerA and ServerC are linked server to ServerB, and ServerB
and Server C are linked server to Server A. The linked server definitions
need to be created before the partitioned view.

You’ll find information about linked servers and how to set them up in
Sybex’s MCSE: SQL Server 2000 Administration Study Guide.

Partitioned views are a great technique for splitting data among differ-
ent servers. But they are really great when the time comes for inserting,
deleting, or updating data in the base table. If the view enforces all the pre-
vious rules, SQL Server will automatically update the right table depending
on the value given in the query. For example, consider the following insert
query:

INSERT INTO Customers(CustomerID, CompanyName, Contact-
Name, ContactTitle, Address, City, Region, PostalCode,
Country, Phone, Fax)

VALUES(‘ALFKI’, ‘Alfreds Futterkiste’, ‘Maria Anders’,
‘Sales Representative’, ‘Obere Str. 57’, ‘Berlin’,
NULL, ‘12209’, ‘Germany’, NULL, NULL)

SQL Server will automatically insert the record in the CustomersEurope
table. This is due to the partitioning column. Errors 4431 to 4453 are
dedicated to dealing with un-updateable partitioned views and all issues
that could occur because of the violation of the previous rules.

If you run the following:

UPDATE Customers SET Country = ‘Canada’

WHERE CustomerID=’ALFKI’

SQL Server will automatically move the record from one table to another
(and therefore from one server to another).

376 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 376

http://www.sybex.com

Partitioned Views are Great, but…

The partitioned view feature is particularly extraordinary when you
think of all the work the system has to do. If you needed to program
all the necessary cases, you would spend months or invest a lot of
money in a transaction monitor. With this feature, Microsoft opens the
gate to automatic load balancing in future SQL Server versions. The
only drawback concerns all the restriction rules. If you miss one, your
view may be created, but it will not be a partitioned view and not all of
the automatic features will work. If something is not working with
your views, check all the rules; you probably forgot one.

As you have just seen, updates are possible, but there are some restric-
tions that exist on INSERT, UPDATE, and DELETE statements. INSERT state-
ments are possible only if:

� All the columns declared in the views are referenced in the INSERT
statement.

� The DEFAULT keyword is not allowed in the VALUES clause. This rule
and the following one disallow a table from containing a column
with an IDENTITY property.

� The table does not contain a timestamp column.

� The table does not contain reflexive joins.

UPDATE statements are possible only if:

� The DEFAULT keyword is not allowed in the SET clause.

� The table does not contain a timestamp column.

� The table does not contain reflexive joins.

DELETE statements are possible only if:

� The table does not contain reflexive joins.

If one of these rules is violated, you’ll end up with an error whose num-
ber is between 4431 and 4453. On the other hand, if you follow all these
different rules, you can leverage an extremely powerful feature in
SQL Server 2000.

Views 377

2942C06.qxd 7/16/01 11:35 AM Page 377

http://www.sybex.com

If a view gives you the power to access data wherever it is kept, stored
procedures allow you to create complex access and modification methods.

Stored Procedures

A database rarely exists on its own. A client application is used to
access or to modify data stored in that database. Two possibilities exist
to access and update this data: client-side procedures and server-side pro-
cedures. With SQL Server, server-side procedures are generally called
stored procedures. This section focuses on what stored procedures are,
what their benefits are, and how to use them to enhance the performance,
security, and functionality of your database application.

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

� Specify schema binding and encryption for stored procedures,
triggers, user-defined functions, and views.

� Specify recompile settings for stored procedures.

Troubleshoot failed object creation.

Manage data manipulation by using stored procedures.

� Implement error handling in stored procedures.

� Pass and return parameters to and from stored procedure.

� Validate data.

Enforce procedural business logic by using stored

procedures.

� Manage control of flow.

� Filter data by using stored procedures.

Troubleshoot and optimize programming objects. Objects

include stored procedures, transaction, triggers, user-

defined functions, and views.

378 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 378

http://www.sybex.com

Definition and Advantages of Stored Procedures

A stored procedure is a batch of Transact-SQL statements stored under a
name and executed as a single unit of work. In other languages, like C,
Pascal, or Basic, a procedure is usually a set of statements that aim to
accomplish one specific goal and can be called from the same program, as
a single statement.

In SQL Server, the definition of a procedure is basically the same. A
stored procedure can be called from another stored procedure, from a
client application, or from a Transact-SQL batch to perform a predefined
action. They carry the following inherent advantages:

Fast execution Stored procedures are precompiled and optimized
once, then their execution plan is stored directly in memory, bypassing
the parsing, optimization and compilation phase, that an ad-hoc query
goes through.

Network load reduction The client application calls only the stored
procedure that is executed on the server. If the client was executing the
same operation on its own, it would require many instructions be sent
to the server and the results analyzed on the client.

Security mechanism As with views, a user can be granted permission
to execute a stored procedure that updates or retrieves data in a table,
while not having to know how to update or retrieve it directly. Stored
procedures can shield data access and updates efficiently and easily.

Notes From the Field: Stored Procedures

After all of these years of working with SQL Server, stored procedures
are probably the most convenient feature I’ve ever encountered.
They are fast to execute and easy to implement; they have many
qualities and no real drawbacks!

The first objects I create after tables and indexes are stored
procedures. Even if user-defined functions can replace stored
procedures in many cases, they are still number one when the time
comes for performance improvement. I do not know a professional
solution based on SQL Server that does not contain any stored
procedures.

Stored Procedures 379

2942C06.qxd 7/16/01 11:35 AM Page 379

http://www.sybex.com

Stored procedures are a must in a SQL Server database. Figure 6.3
shows you why a stored procedure is called “stored.”

F I G U R E 6 . 3 Stored procedure compilation process

When a stored procedure is created (see the next section for CREATE
PROCEDURE syntax), it is parsed and then normalized. The normalization
process breaks the query into manageable parts and assembles them into a
query tree. For a stored procedure, the query tree is stored in the Syscom-
ments table. The first time the stored procedure is executed, the query tree
is optimized and transformed into a query plan that is stored in memory
(in the procedure cache). That query plan is compiled and executed. Subse-
quent execution of the same procedure will use the query plan that is
stored in the procedure cache to enhance performance and avoid executing
the previous steps.

Stored procedures are definitely a performance enhancer. Most of the
work is done on the server, taking advantage of the full server power. Let’s
now have a look at procedure creation.

Creating and Altering a Stored Procedure

Creating a stored procedure is a straightforward process. SQL Enterprise
Manager offers a Create Stored Procedure Wizard for basic insert, delete,

Compiling

Optimizing

Normalizing

Parsing

Query (procedure)

Query tree
(stored in syscomments)

Query plan
(stored in procedure cache)

380 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 380

http://www.sybex.com

or update stored procedures, but most of procedure creation is done
through the CREATE PROCEDURE statement:

CREATE PROC[EDURE] procedure_name

[{@parameter data_type} [= default] [OUTPUT]] [,...n]

[WITH

{ RECOMPILE | ENCRYPTION | RECOMPILE , ENCRYPTION
}]

[FOR REPLICATION]

AS sql_statement [...n]

The most complicated part of the stored procedure creation is the con-
tent creation (the sql_statement part). That’s where all the intelligence
resides. The following procedure, stored in the Northwind database, is a
simple example of a stored procedure executing a SELECT statement to
retrieve the orders history of a customer given the CustomerID:

CREATE PROCEDURE CustOrderHist @CustomerID nchar(5)

AS

SELECT ProductName, Total=SUM(Quantity)

FROM Products P, [Order Details] OD, Orders O, Customers C

WHERE C.CustomerID = @CustomerID
AND C.CustomerID = O.CustomerID AND O.OrderID =
OD.OrderID AND OD.ProductID = P.ProductID

GROUP BY ProductName

A stored procedure name should follow identifiers rules (See Chapter 3).
If its name starts with a single pound sign (#), then the procedure is
temporary and local to the connection, which is usable only with the
connection used to create it. If its name starts with a double pound
sign (##), then the procedure is temporary and global to all connections,
that is usable by any connection. SQL Server deletes automatically a
temporary stored procedure when the connection used to create it closes.

Parameters are studied in detail in the next section, and the RECOMPILE
option is analyzed in the “Executing a Stored Procedure” section later
on in this chapter. The ENCRYPTION option encrypts the source code
of the procedure to protect intellectual property of its author (see “The
ENCRYPTION Option” section earlier in this chapter for more details on
encryption).

Stored Procedures 381

2942C06.qxd 7/16/01 11:35 AM Page 381

http://www.sybex.com

The FOR REPLICATION option is used for filtering a stored procedure.
When replicating a database, you can decide to replicate data and database
objects. If a stored procedure is created with the FOR REPLICATION option,
it cannot be replicated.

The Strange FOR REPLICATION Option

I always thought this option was ill-named. When you use it, the
stored procedure cannot be replicated. Just think of it as an option
used to indicate that the stored procedure is part of the replication
process and executed during replication.

This parameter is reserved for replication stored procedures, which
are procedures used during the replication process to filter data to be
replicated.

You can use any Transact-SQL statement in a stored procedure, but
some limitations exist. The first and most important one is that a stored
procedure always ends when the query processor finds a GO.

GO and Batches

GO is not a Transact-SQL statement, but a command used in ISQL (and
now OSQL) to run a series of statements. Introduced in the first version
of SQL Server, it still plays an important role in certain statements. GO

is said to end a Transact-SQL batch. A batch is a series of Transact-
SQL statements ended by a GO. The only problem is that historic rules
still exist that control statement execution:

� All the statements of a batch are compiled together.

� A syntax error in one statement forbids the execution of the
entire batch.

� A batch is not a transaction: if an error occurs, the statements
executed prior to the error are not affected.

382 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 382

http://www.sybex.com

So, a batch is not a transaction but a unit of work. Now some
statements have their own behavior inside of a batch:

� CREATE DEFAULT, CREATE PROCEDURE, CREATE RULE, CREATE
TRIGGER, and CREATE VIEW cannot be combined with any other
statement inside of a batch.

� You cannot add a column to a table in a batch and reference the
new column in the same batch.

With these rules (mainly the first one), you cannot create two views
or two defaults without inserting a GO between the two CREATE
statements. This has an important impact on the stored procedure
creation: you can only create a single view, default, rule, trigger, or
other procedure inside a procedure. If you do create one of these
objects, it will be the only work performed by the stored procedure.

The second limitation concerns the following statements: ALTER TABLE,
CREATE INDEX, CREATE TABLE, All the DBCC statements, DROP TABLE, DROP
INDEX, TRUNCATE TABLE, and UPDATE STATISTICS. The object names refer-
enced by these statements should contain the object owner if the stored
procedure has to be executed by users besides the procedure creator.

The third and last limitation concerns the SET SHOWPLAN_ALL and SET
SHOWPLAN_TEXT statements. They can be used in a stored procedure but
should be the only statement of that procedure. Suffice to say this is an
unlikely situation!

Stored procedure creation uses a process called deferred name resolu-
tion, meaning that if a procedure is referencing a table that does not exist
at the procedure creation time, the procedure is created without errors.
The object names will be resolved at execution time. This feature is really
convenient when generating scripts. You may create a procedure and a
table in whatever order you choose.

SQL Server 7 introduced a feature called compatibility level, enabling the
Transact-SQL grammar level to be “downgraded” to run a script created
with a previous version of SQL Server. SQL Server 2000 keeps this feature,
its default compatibility level being 80 (SQL Server 2000 is version 8.0). If
the compatibility level of a database is 65, a warning is issued if a refer-
enced table does not exist at the stored procedure creation time.

Stored Procedures 383

2942C06.qxd 7/16/01 11:35 AM Page 383

http://www.sybex.com

Altering an existing database is another easy process, since the syntax is
exactly equivalent to the CREATE PROCEDURE; you just have to replace the
CREATE keyword with ALTER. The following example alters the CustOrder-
Hist stored procedure:

ALTER PROCEDURE CustOrderHist @CustomerID nchar(5)

AS

SELECT ProductName, Total=SUM(Quantity)

FROM Products P, [Order Details] OD, Orders O, Customers C

WHERE C.CustomerID = @CustomerID

AND C.CustomerID = O.CustomerID AND O.OrderID =
OD.OrderID AND OD.ProductID = P.ProductID

GROUP BY ProductName

ORDER BY ProductName

Last, but not least, you can delete a stored procedure with the DROP
PROCEDURE statement, as in the following example:

DROP PROCEDURE CustOrderHist

A stored procedure may depend on one or many other stored procedures or
user-defined functions. If you drop a stored procedure, make sure that it is
not referenced by other stored procedures or functions by running the
sp_depends system stored procedure.

Using Parameters

One of the main advantages of stored procedures is their ability to accept
input and output parameters, as with any other fourth-generation
language. A parameter declaration has the following syntax:

{@parameter data_type} [= default] [OUTPUT]

Just as for variables, a parameter’s name always begins with an at sign
(@) and is of a defined datatype. The minimum declaration is seen in the
following example:

CREATE PROCEDURE CustOrdersDetail @OrderID int

AS

SELECT ProductName,

UnitPrice=ROUND(Od.UnitPrice, 2),

384 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 384

http://www.sybex.com

Quantity,

Discount=CONVERT(int, Discount * 100),

ExtendedPrice=ROUND(CONVERT(money, Quantity * (1 -
Discount) * Od.UnitPrice), 2)

FROM Products P, [Order Details] Od

WHERE Od.ProductID = P.ProductID and Od.OrderID = @OrderID

This procedure has one integer parameter called @OrderID. A stored
procedure can have up to 2,100 parameters, separated by commas.

Besides its type, a parameter can have a default value. This default
value is used if no value is provided for the parameters when the proce-
dure is run. The following declaration of the sp_help system stored
procedure has one parameter with a default NULL value:

create proc sp_help

@objname nvarchar(776) = NULL — object name we’re after

as ...

This stored procedure can be called only with its name, or with its
name followed by an object name.

In the previous examples, the parameters were input parameters. If the
value of the parameter is modified inside of the procedure, its value is not
output to the calling process. The following example creates a stored pro-
cedure with an output parameter:

CREATE PROC TotalTurnover @total money=0 OUTPUT

AS

SELECT @test=SUM(UnitPrice*Quantity) from [Order Details]

The value of the @total parameter, declared with the OUTPUT keyword,
is visible outside of the procedure. If you omit the OUTPUT keyword, the
@total value will be NULL outside of the procedure, since its value will not
be visible outside.

There is another way to return a value from a stored procedure: the
RETURN statement. While every parameter can be defined as an output
parameter, only one value can be returned with the RETURN statement.
Note that only integer values can be returned with the statement, while
parameters can be of any datatype. Return values can be trapped with all
the classical Application Programming Interfaces (APIs), like DB-Library,
Remote Data Objects and ODBC, and ActiveX Data Objects and
OLE DB.

Stored Procedures 385

2942C06.qxd 7/16/01 11:35 AM Page 385

http://www.sybex.com

Executing a Stored Procedure

A stored procedure can be executed from a client program, another stored
procedure, or directly from a Transact-SQL batch. From the client
perspective, a stored procedure performs one or many actions and is called
just by its name along with any parameters that are needed.

Stored Procedures and SQL Server

Stored procedures have always been part of SQL Server. A SQL Server
without stored procedures would be like a good meal without wine
(from a Frenchman’s perspective): Stored procedures should be seen
as the primary data access and modification mechanism. Stored pro-
cedures are entirely executed on the server, save network resources,
and provide security. Not taking advantage of stored procedures is like
filling your formula-one race car with low-octane fuel.

From a server perspective, a stored procedure is just a named set of
Transact-SQL statements, seen as a pre-analyzed and compiled batch.

Query Tree and Query Plans

When you run the CREATE PROCEDURE statement, SQL Server analyzes the
code of the procedure, parses it, and calculates what is called the query
tree (see Figure 6.3). The query tree is stored in the Syscomments system
table along with the stored procedure source code.

The first time the stored procedure is called by a client program or
another stored procedure, the query tree is read from the Syscomments
table and is “optimized.” Its query plan, or execution plan, is calculated.
This is the most important phase of all. During this phase, SQL Server
chooses the right indexes, the table order, the join strategies, and so on. In
other words, it chooses how the query is going to be run.

Once the query plan is calculated, it is compiled and passed to the query
processor for execution. The query plan is stored in memory, in a zone
called the procedure cache. This cache is not fundamentally different from
the data cache; in fact it is shared with the data cache. It contains every
“active” stored procedure. The first time the stored procedure is called, its

386 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 386

http://www.sybex.com

query plan is brought into the procedure cache. It will remain in this mem-
ory area until it ceases to be used and SQL Server needs this memory to
allocate to another process. A stored procedure that is used frequently can
remain in memory indefinitely.

The query plan can be shared by multiple connections. An execution
context is created for every connection for the parameter’s substitution.

SQL Server 7 and 2000 introduced the ability of a stored procedure to share
its execution plan simultaneously with many connections. In other words,
the execution plans became reentrant. This was not possible in previous
versions: If two connections wanted to run the same stored procedure at
the same time, they needed two distinct execution plans.

You can get an idea of the memory allocation for stored procedures
with the DBCC PROCCACHE statement. It gives you information on the num-
ber of plans that can be stored, the number currently stored, the number of
active procedures, and the size they occupy.

If you want to run tests on whether a stored procedure is useful for
performance, free the procedure cache before running it to simulate
the worst situation. You free the procedure cache by running
DBCC FREEPROCCACHE.

Compiling

The verb compile led to much misunderstanding in the past concerning
stored procedure. The compilation described with the RECOMPILE keyword
refers to the optimizing phase. When SQL Server indicates that it is
recompiling a stored procedure, it is saying it is recalculating its execu-
tion plan.

Recompilation is normally an automatic process, but can be done on
demand, depending on the stored procedure. Let’s consider the following
procedure:

CREATE PROC ListCustomer @CustomerID int

AS

SELECT * FROM Customers

WHERE CustomerID>=@CustomerID

ORDER BY CustomerID

Stored Procedures 387

2942C06.qxd 7/16/01 11:35 AM Page 387

http://www.sybex.com

Let’s say there are 250,000 rows in the Customers table, with
CustomerID values from 1 to 250,000, and a nonclustered index on
the CustomerID column. If the first execution of this procedure is done
with the customerID value or 249,995, SQL Server will probably choose a
query plan using an index, since the number of rows to retrieve is reduced.
The query plan stored in the procedure cache is relying on this index.

Suppose another user now executes the same procedure, but with a
parameter value of 100. Since a query plan has already been calculated,
the same query plan will be reused, which can lead to dramatically poor
performance. In fact, with this CustomerID value, a table scan would have
been better: Searching more than 249,900 values in an index is more work
than scanning the whole table, even if it has to be sorted.

In this situation, it would have been a good idea not to keep the execu-
tion plan in memory and to recreate one when needed. So, this procedure
needs to be recompiled when the parameter changes, since its execution
plan may vary from one execution to another. That’s the purpose of the
RECOMPILE keyword. If you run the following code, you indicate to
SQL Server that it should not keep the execution plan in memory but
recreate a new one for each subsequent execution. The code below creates
a stored procedure using the WITH RECOMPILE option.

CREATE PROC ListCustomer @CustomerID int

WITH RECOMPILE

AS

SELECT * FROM Customers

WHERE CustomerID>=@CustomerID

ORDER BY CustomerID

You should always validate your decision to recompile a stored procedure
by analyzing the estimated execution plan of the query in SQL Query Ana-
lyzer with different parameter values. If the plan is always the same, the
procedure should not be created with the RECOMPILE clause. If different
parameter values lead to different estimated plans, the procedure should
be created with the RECOMPILE clause.

You can recompile a procedure when you run it from Transact-SQL
with the EXECUTE statement. While this is possible, it is not really conve-
nient, since a procedure call is generally embedded in client code and not
made directly from isql or SQL Query Analyzer.

388 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 388

http://www.sybex.com

The last discussion of the recompilation process concerns the sp_recom-
pile stored procedure. Used with a table name, it forces every stored proce-
dure and trigger using this table to be recompiled. The following example
forces every procedure and trigger referencing the Orders table to be
recompiled:

sp_recompile ‘Orders’

This system stored procedure is convenient if you add a new index to a
table or new statistics (see Chapter 5 for information on indexes and sta-
tistics). Adding this kind of object transforms the way the table is used and
may make obsolete the existing query plan.

Running a Procedure

So far, you have seen how to create stored procedures and how SQL Server
executes them. If you want SQL Server to run a stored procedure, you
have to ask it to do so. This is done in Transact-SQL with the EXECUTE
statement.

Generally a stored procedure is called from a client program with a data-
base API like Remote Data Objects or ActiveX Data Objects. You can find
information on stored procedure execution with such APIs for Visual Basic
or C Language in the SQL Server Books Online.

EXECUTE is not mandatory to run a stored procedure if the procedure is
the first instruction of the batch. For example, if you want to run the fol-
lowing lines of code, you need the EXECUTE statement:

DECLARE @TO Money

EXECUTE TotalTurnover @TO OUTPUT

SELECT @TO

If you omit it, SQL Server fires the error 170, syntax error.
As far as parameters are concerned, they can be called by address or by

name. To illustrate this concept, let’s take the example of the sp_configure
system stored procedure.

CREATE PROCEDURE sp_configure —- 1996/08/14 09:43

@configname varchar(35)=NULL — option name to configure

,@configvalue int =NULL — new configuration value

as ...

Stored Procedures 389

2942C06.qxd 7/16/01 11:35 AM Page 389

http://www.sybex.com

This procedure has two parameters, @configname, and @configvalue. If
you want to modify the lightweight pooling option, you have two possibil-
ities:

sp_configure @configname=’lightweight pooling’, @config-
value=0

or

sp_configure ‘lightweight pooling’, 0

In the first syntax, you explicitly name the parameters. In the second
syntax, you declare their values in the right order. Note that the following
line has the same effect:

sp_configure @configvalue=0, @configname=
’lightweight pooling’

Since the parameters’ names are given, their orders have no importance.
Note that in the last three examples, the EXECUTE statement is not
included, implying the stored procedure was the first statement in the
batch.

Now if the procedure has a return value, the call is a little bit different.
Let’s consider the following procedure:

CREATE PROCEDURE ListCustOrders @CustomerID nvarchar(5)

AS

IF EXISTS(SELECT * FROM Orders WHERE CustomerID=
@CustomerID)

BEGIN

SELECT * FROM Orders WHERE CustomerID=@CustomerID

RETURN 1

END

ELSE

RETURN 0

In this procedure, if the sought customer has orders, then the procedure
returns the corresponding orders as a result set and 1 as the return value of
the stored procedure. If the customer did not place orders, the procedure
returns 0 as the return value. To query the return value in Transact-SQL,
you need to declare a local variable and run the stored procedure using

390 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 390

http://www.sybex.com

this local variable to indicate where to store the return value, as in the
following lines of code:

DECLARE @ret INT

EXECUTE @ret=ListCustOrders ‘PRINI’

SELECT @ret

Note the variable is placed between the EXECUTE keyword and the pro-
cedure name. The call is similar to function calls in Visual Basic or the C
language.

Performance or Simplicity?

You are the database administrator and lead developer for an insur-
ance company. The board of directors decided that all the mission-
critical database applications would now be run on SQL Server. As the
lead developer you are in charge of performance tuning and opti-
mizing the applications. Recently, a Microsoft Access application has
been upgraded to work with SQL Server. When this application was
developed, Access had been chosen for its simplicity, without thinking
of the data growth. This application has become over time mission-
critical and has been used by dozens of persons and its size is now
close to one gigabyte.

The Upsizing Wizard handled the data migration from Access to SQL
Server without any problem. Most of the Visual Basic for Application
code has been refined to work with a remote database system. Some
parts of the application perform well, while others are slower than
before the migration. Using the SQL Profiler, you realize that network
traffic is very high for these slow parts. Checking the code, you
discover this is due to FOR NEXT and DO WHILE loops. You cut and
paste this code in SQL Query Analyzer, adapt it to the Transact-SQL
syntax, and create stored procedures. Lastly, you change the Visual
Basic code so that it just calls the newly created stored procedure.
With this change, the network traffic decreases and the actions
perform very well.

Stored Procedures 391

2942C06.qxd 7/16/01 11:35 AM Page 391

http://www.sybex.com

Stored procedures are not miracles, but you can create miracles with
them. Each time you discover huge network traffic as the result of a
specific action, or when you see loops with SQL statements in the
middle, think about creating a stored procedure. It may require extra
work up-front to rewrite the function in Transact-SQL if it has been
first written in Basic or any other language, but you’ll save a lot of
network resources and user time.

Error Handling

No system is perfect. Errors happen all the time. One of the main tasks of
the developer is to handle all possible errors to protect users and
applications from unwanted behaviors. Error handling has always been a
concern in every development project, but is probably the weakest part of
Transact-SQL.

First, all errors are not equal from a SQL Server point of view. Some
errors cause general failure of the server, while others just stop the
statement or warn the user. The following explanation helps you under-
stand why all errors are not equal. An error is composed of many parts:

� An error number.

� An error message indicating the apparent cause of the error.

� A severity level indicating the kind of problem encountered. There
are 25 levels of severity:

� Less than or equal to 10, the error is only a warning and does not
generally stop the execution of the statement.

� Between 11 and 16, the error is triggered by the user or by a state-
ment written by the user. A syntax error has a gravity of 16, for
example. Generally, an error with that severity level stops the
statement execution.

� With a severity of 17 to 19, the error is a system error that stops
the statement, but keeps the connection open.

� Between 20 and 25, the error is fatal and signals a system prob-
lem. A problem like a corrupted database causes that kind of
error. Such an error stops the statement execution, may close the
active connection and may even stop the server.

392 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 392

http://www.sybex.com

� A state code used by Microsoft Support Engineer to locate the state-
ment that failed in the SQL Server source code. The state code is
useless for normal error handling and can be ignored, except when
asked for by a support engineer.

As stated above, depending on the severity level, the errors can stop the
execution of the statement. A transaction is another factor that is affected
by the error level. In Chapter 2, we have seen that a transaction is Atomic,
Consistent, Isolated, and Durable (ACID). Its atomicity property means
that all operations in a transaction are considered as one action. If one
statement fails inside a transaction, the whole transaction fails (see Chap-
ter 8 for more information on transactions).

In a stored procedure, the error handling depends on the different fac-
tors we have just seen. You should always keep them in mind. Then, the
way to program the error trapping and management will almost always be
the same: use the @@ERROR system function.

If you used previous versions of SQL Server, system functions beginning
with the double “at” sign (@@) were called global variable in the SQL
Server documentation. Now called system functions, they send back infor-
mation about the system to the user.

If a statement executes without any error, @@ERROR sends back 0. If
it sends back an error number, you can test this value to decide what to do.

All programming APIs (ADO, RDO, etc.) trap these errors along with their
numbers and texts.

The following piece of code traps the error in a stored procedure and
returns its value to the calling program:

CREATE PROCEDURE InsSales

@stor_id char(4),

@ord_num varchar(20),

@ord_date datetime,

@qty smallint,

@payterms varchar(12),

@title_id tid

Stored Procedures 393

2942C06.qxd 7/16/01 11:35 AM Page 393

http://www.sybex.com

AS

DECLARE @err int

BEGIN TRANSACTION

INSERT INTO sales(stor_id, ord_num, ord_date,

qty, payterms, title_id)

VALUES (@stor_id, @ord_num, @ord_date,

@qty, @payterms, @title_id)

SET @err=@@ERROR

IF @err<>0

GOTO ErrorHandler

UPDATE titles

SET ytd_sales=ytd_sales+@qty

WHERE title_id=@title_id

SET @err=@@ERROR

IF @err<>0

GOTO ErrorHandler

COMMIT TRANSACTION

RETURN 0

ErrorHandler:

ROLLBACK TRANSACTION

RETURN @err

In this particular stored procedure, we open a transaction to insert a
record into the Sales table of the Pubs database and update the Ytd_Sales
of the Titles table on-the-fly. After each of these statements, we test the
error number and, if it’s different from zero, we jump to the error handler
that rolls back the transaction and returns the error number. If the transac-
tion ends normally, it returns zero.

This classical error handler uses the @@ERROR system function and the
RETURN statement to send a value back to the calling code. Situations arise
where you need more control over what’s happening to your code—that’s
the reason for error message customization. All SQL Server messages are
stored in the Sysmessages system table. You can add your own messages to
this table, using error numbers over 50,000 with the sp_addmessage sys-
tem procedure, and then raise your own messages with the RAISERROR
statement.

The following statement adds a message to the Sysmessages system
table, indicating that the given title_id does not exist:

394 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 394

http://www.sybex.com

EXEC sp_addmessage @msgnum = 50100, @severity = 16,

@msgtext = N’The title with the title_id %s does not exist’

You can now raise this error in the previous InsSales stored procedure
to check first whether the title_id value exists:

CREATE PROCEDURE InsSales

@stor_id char(4),

@ord_num varchar(20),

@ord_date datetime,

@qty smallint,

@payterms varchar(12),

@title_id tid

AS

DECLARE @err int

IF NOT EXISTS(SELECT * FROM Titles WHERE
title_id=@title_id)

BEGIN

RAISERROR (50100, 16, 1, @title_id)

RETURN 50100

END

...

Note that the custom error message contains one parameter, declared
with %s, due to the fact that this is a string parameter. If the parameter
had been a signed integer, it would have been declared with %d (C devel-
opers recognize printf format options—all these options are defined in
the SQL Server Books Online along with the RAISERROR statement defini-
tion). You can declare and have any number of parameters in your error
message, but know that a message can have a maximum length of 400
characters.

You can also raise system errors with RAISERROR, but this is hardly ever
done, since the system will raise errors before you do so!

Stored procedures are a must in SQL Server applications, just as views
are necessary to reduce visible complexity. SQL Server 2000 introduced a
new feature that may look like a stored procedure or a view, but enhances
their functionalities: user-defined functions. Microsoft announced them
in SQL Server 7, but we had to wait to SQL Server 2000 to see their
implementation.

Stored Procedures 395

2942C06.qxd 7/16/01 11:35 AM Page 395

http://www.sybex.com

Transactions

Everything is a transaction in SQL Server. Each unit of work, each
query, and each statement is implicitly a transaction by itself by default.
The power of a relational database system is its ability to ensure that each
of these transactions is completed in its entirety or that all traces of it are
removed from the system.

A transaction is defined by the following properties (referred to as the
ACID properties):

Atomic All operations in a transaction are atomic, meaning that if one
operation fails, the whole transaction fails.

Consistent Before the transaction, the database was in a consistent
state. After the transaction, it is back in a consistent state, but it may
have gone through an inconstant state during the transaction. That is
why a transaction must comply with the third property, isolated.

Isolated A running transaction is isolated from the outside. Locking
provides this property.

Durable Once a transaction is validated (committed), the effects of the
transaction remain in the database forever. The transaction log provides
this property.

SQL Server ensures that every transaction is either completed (called
committed in SQL Server) or rolled back (removed from the system).

A single statement, however, cannot always perform the amount of
work needed for a process. The classic example of this is the transfer of

Enforce procedural business logic by using stored

procedures, transactions, triggers, user-defined functions,

and views.

Design and manage transactions.

Troubleshoot and optimize programming objects. Objects

include stored procedures, transactions, triggers, user-

defined functions, and views.

396 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 396

http://www.sybex.com

money between two bank accounts. If each statement is a transaction (one
statement removes money, and the next one deposits it), then inconsisten-
cies could arise if only one of the statements is completed. Imagine that the
first query is executed and money is withdrawn from the first account, but
power fails and the server crashes before the second statement, the deposit
statement, executes. The funds would be lost!

Fortunately, SQL Server allows the programmer to explicitly declare a
transaction and determine whether or not the transaction should be com-
mitted or rolled back. By testing for success or failure of a particular
process, the programmer can determine if all statements inside the transac-
tion should be marked as completed. Of course, if the server should fail in
the middle of a transaction, SQL Server will automatically undo the trans-
action when it is restarted.

Be sure that any transaction that is started is either committed or rolled
back. An open transaction uses resources and can prevent the transaction
log from being backed up!

The structure of a transaction is as follows:
BEGIN TRANSACTION [<<ttrraannssaaccttiioonn__nnaammee>>]

➥ [WITH MARK <<ddeessccrriippttiioonn>>]

…

<T-SQL code>

…

[SAVE TRANSACTION <<ssaavveeppooiinntt nnaammee>>]

…

<T-SQL code>

…

<test for errors >

<if true>

ROLLBACK TRANSACTION [<<ttrraannssaaccttiioonn__nnaammee>> |
➥ <<ssaavveeppooiinntt nnaammee>>]

<if false>

COMMIT TRANSACTION

Transactions 397

2942C06.qxd 7/16/01 11:35 AM Page 397

http://www.sybex.com

This looks complex, but basically the BEGIN TRANSACTION statement
starts a transaction. All statements that occur until a ROLLBACK or COMMIT
statement will consume resources and hold locks to ensure that the trans-
action can be completed. The BEGIN TRANSACTION statement allows for the
naming of the transaction, which allows nesting of transactions (see the
last paragraph in this section) as well as the marking of the transaction.
The WITH MARK keywords mark the transaction log and allow a restore of
the server up to this point in time.

The SAVE TRANSACTION statement allows the programmer to mark a
section of work as completed, although it is not committed. This allows
additional statements to proceed and be undone without undoing the work
to this point. Suppose a process transferred money between two accounts
and then removed additional money from one of the accounts. The trans-
action could mark a savepoint after the transfer of funds before removing
additional money. If there were some business logic that might prevent the
removal of money, the transaction could be undone back to the savepoint
and then committed. This would allow part of the transaction to be com-
pleted. This allows conditional programming within a transaction.

The ROLLBACK TRANSACTION statement will cancel a transaction and
undo any work that has been performed by T-SQL statements between it
and the BEGIN TRANSACTION statement.

The COMMIT TRANSACTION statement will mark all the work done as
completed, and at this point, the transaction is considered complete. If the
server crashes after this statement, when it restarts, the work that was per-
formed inside this transaction will be verified as having been performed on
the actual data.

Transactions are usually used inside stored procedures when a series of
steps must be completed as one unit of work. They are valid, however, in
any programming situation, including batches. A transaction can span
multiple batches, as you will see in Exercise 10.1. Triggers are executed
within a transaction by default. Whatever statement is modifying the table
is an implicit transaction that also contains the trigger. A ROLLBACK state-
ment inside a trigger rolls back the data modification statement as well as
any transaction that contains it.

One last point about transactions: They can be nested, which allows a
transaction to exist inside another transaction. SQL Server allows these
transactions to be named, so that the inner transaction can be rolled back
or committed without affecting the outer transaction. Nested transactions
are very similar to a transaction with a savepoint.

398 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 398

http://www.sybex.com

User-defined Functions

User-defined functions are the new killer feature for developers. They
enhance views and stored procedures, and offer new functionalities that
were impossible to achieve on the server side with previous versions of
SQL Server. This section focuses on the different types of user-defined
functions and on how to create and manage them.

Definition and Advantages of User-defined Functions

A user-defined function (UDF) is a named set of Transact-SQL statements
used like system functions or views. There are two main types of UDFs:

Scalar A scalar UDF returns a single value and can be used wherever
an expression or variable can be used, for example, in a select list of a
SELECT statement, or in the SET clause of an UPDATE statement. A scalar

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

� Specify schema binding and encryption user-defined functions.

Troubleshoot failed object creation.

Manage data manipulation by using user-defined functions.

� Implement error handling in user-defined functions.

� Pass and return parameters to and from user-defined functions.

� Validate data.

Enforce procedural business logic by using user-defined

functions.

� Manage control of flow.

� Filter data by using user-defined functions.

Troubleshoot and optimize programming objects. Objects

include stored procedures, transaction, triggers, user-

defined functions, and views.

User-defined Functions 399

2942C06.qxd 7/16/01 11:35 AM Page 399

http://www.sybex.com

function can be seen as the result of some mathematical or string
function.

Table-valued Table UDFs return a result set and can be used wherever
a table or a view can be used (under some limitations). Table-valued
UDFs can be referenced in a FROM clause of a SELECT statement, for
example. UDFs can be more complex than views and can have
parameters.

All the functions are created with the CREATE FUNCTION statement,
modified with the ALTER FUNCTION, and dropped with the DROP FUNCTION
statement. The different functions share some syntax elements and have
their own particularities. The options they share are ENCRYPTION and
SCHEMABINDING. These options are equivalent to the same view options.
Refer to the “View” section for more information on these options.

Let’s now examine the different UDFs and how to create and
manage them.

Creating and Altering a UDF

As we have just seen, there are two main types of UDFs: scalar and table-
valued. The table-valued UDFs are split into two subtypes: inline and
multistatement table-valued.

Scalar UDF

A developer usually thinks of UDFs as functions similar to the
mathematical or string-manipulation functions. That’s exactly the purpose
of scalar user-defined functions. They can implement a complex
calculation or data manipulation and return one value. For example, you
could create a function that calculates the royalty owed to an author,
knowing its author_id.

The syntax of such a function is as follows:

CREATE FUNCTION [owner_name.]function_name

([{@parameter_name [AS] data_type [=default]} [,...n
]])

RETURNS scalar_return_data_type

[WITH { ENCRYPTION | SCHEMABINDING } [[,] ...n]]

[AS]

400 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 400

http://www.sybex.com

BEGIN

function_body

RETURN scalar_expression

END

The function body can contain any Transact-SQL statement, as in a
stored procedure. You can retrieve data from a table, do complex calcula-
tions, and so on. The RETURN statement contains the value to return to the
calling statement.

The following example calculates and returns the total value of each
Order Detail record:

CREATE FUNCTION TotalAmount

(@UnitPrice money, @Quantity smallint, @Discount real)

RETURNS money

AS

BEGIN

RETURN (@UnitPrice*@Quantity)*(1-@discount)

END

This function accepts three required parameters, calculates the total
amount, and returns it to the calling statement. The following SELECT
statement returns information about order number 10250 and uses the
TotalAmount UDF:

SELECT

ProductID,

Total=dbo.TotalAmount(UnitPrice, Quantity, Discount)

FROM [Order details]

WHERE OrderID=10250

The results are:

ProductID Total

----------- -------------------

41 77.0000

51 1261.4000

65 214.2000

As you see, scalar functions are straightforward. They can be more
complicated than the previous example, since any Transact-SQL statement
can be included in the function body.

User-defined Functions 401

2942C06.qxd 7/16/01 11:35 AM Page 401

http://www.sybex.com

Inline Table-valued UDF

An inline table-valued user-defined function can be seen as a view with
parameters. They execute one SELECT statement, as in a view, but can
include parameters, like a stored procedure. The basic syntax is:

CREATE FUNCTION [owner_name.]function_name

([{@parameter_name [AS] data_type [=default]} [,...n
]])

RETURNS TABLE

[WITH { ENCRYPTION | SCHEMABINDING } [[,] ...n]]

[AS]

RETURN [(] select-stmt [)]

Consider the following SELECT statement:

SELECT

stores.stor_name,

titles.title

SUM(sales.qty) AS TotalQty

FROM stores

INNER JOIN sales ON stores.stor_id = sales.stor_id

INNER JOIN titles ON sales.title_id = titles.title_id

WHERE stores.stor_id= @stor_id

GROUP BY stores.stor_name, titles.title

With the parameterized WHERE clause, the function cannot be trans-
formed into a view. Prior to SQL Server 2000, the only way to store this
query in the database was to create a stored procedure. Now, it is the ideal
SELECT statement for an inline table-valued UDF:

CREATE FUNCTION SalesByBookshop (@stor_id char(4))

RETURNS TABLE

AS

RETURN(

SELECT

stores.stor_name,

titles.title,

SUM(sales.qty) AS TotalQty

FROM stores

INNER JOIN sales ON stores.stor_id = sales.stor_id

INNER JOIN titles ON sales.title_id = titles.title_id

402 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 402

http://www.sybex.com

WHERE stores.stor_id= @stor_id

GROUP BY stores.stor_name, titles.title

)

Once created, you simply have to use it:

SELECT * FROM SalesByBookShop(7066)

The result is:

stor_name title TotalQty

-------------- ----------------------------- ------------

Barnum’s Is Anger the Enemy? 75

Barnum’s Secrets of Silicon Valley 50

Inline table-valued are just views with parameters!

Multistatement Table-valued UDF

Multistatement table-valued UDFs are the most complex form of UDF.
This type of function builds the result set from one or many SELECT
statements. Its basic syntax is the following:

CREATE FUNCTION [owner_name.]function_name

([{@parameter_name [AS] data_type [=default]} [,...n
]])

RETURNS @return_variable

TABLE ({column_definition | table_constraint} [,...n
])

[WITH { ENCRYPTION | SCHEMABINDING } [[,] ...n]]

[AS]

BEGIN

function_body

RETURN

END

The following example creates a contact list from two or three tables,
depending on a parameter value:

CREATE FUNCTION Contacts(@suppliers bit=0)

RETURNS @Contacts TABLE

(ContactName nvarchar(30),

Phone nvarchar(24),

ContactType nvarchar(15))

User-defined Functions 403

2942C06.qxd 7/16/01 11:35 AM Page 403

http://www.sybex.com

AS

BEGIN

INSERT @Contacts

SELECT ContactName, Phone, ‘Customer’ FROM Customers

INSERT @Contacts

SELECT FirstName + ‘ ‘ + LastName, HomePhone, ‘Employee’
FROM Employees

IF @Suppliers=1

INSERT @Contacts

SELECT ContactName, Phone, ‘Supplier’ FROM Suppliers

RETURN

END

The whole idea of multistatement table-valued user-defined functions
lies in this example. The function uses a temporary table declared in a
table variable. In this example, this table is called @Contacts. Then
multiple SELECT statements are run against different tables to insert data in
the temporary table. At last the result is returned to the calling statement,
like in the following line of code:

SELECT * FROM Contacts(1) ORDER BY ContactName

Again, this example shows that a multistatement table-valued UDF has
the power of a stored procedure and the usage simplicity of a view. This
kind of process was implemented with stored procedure and temporary
tables stored in the tempdb database prior to SQL Server 2000. Now all
the work is done in one function and in memory. This is a dream for
developers!

Using UDFs

Depending on the UDF type, the execution call is different. A scalar UDF
is always called by a two-component name: owner.functionname, like in
the following example:

SELECT

ProductID,

Total=dbo.TotalAmount(UnitPrice, Quantity, Discount)

FROM [Order details]

WHERE OrderID=10250

404 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 404

http://www.sybex.com

If you omit the owner, dbo in this example, in the function call, you
obtain error 195, ‘TotalAmount’ is not a recognized function name.
A scalar UDF can be used where an expression may be used: in the select
list of a SELECT statement, as in the above example, or even in a CREATE
TABLE statement. The following code is a custom Order Details table:

CREATE TABLE [Order Details] (

OrderID int NOT NULL ,

ProductID int NOT NULL ,

UnitPrice money NOT NULL DEFAULT (0),

Quantity smallint NOT NULL DEFAULT (1),

Discount real NOT NULL DEFAULT (0),

Total AS dbo.TotalAmount(UnitPrice, Quantity, Dis-
count))

A table-valued UDF may be called with a one- or two-component name,
as in the following example:

SELECT * FROM Contacts(1) ORDER BY ContactName

Note that if a table-valued function has no parameters, you must still
use parentheses:

SELECT * FROM Contacts() ORDER BY ContactName

If parameters have default values, they cannot be skipped or ignored in the
function call. You have to use the DEFAULT keyword.

You may encounter a strange type of function that starts with two
colons (::), as in the following example:

SELECT * FROM ::fn_virtualservernodes()

This is a system user-defined function. You’ll find some of them
described in the SQL Server Books OnLine, but the majority are undocu-
mented and used only internally by SQL Server.

This ends this section on user-defined functions. These new objects are
extremely useful, fulfilling major needs in database development. The last
section concerns another useful object: triggers.

User-defined Functions 405

2942C06.qxd 7/16/01 11:35 AM Page 405

http://www.sybex.com

Triggers

Triggers are as old as SQL Server. In fact, they were one of the features
in the first version of SQL Server that made it popular. Like stored proce-
dures, views, and user-defined functions, triggers are pieces of code entirely
executed on the server. This section covers their definition and advantages,
and then focuses on their different types and usage.

Definition and Advantages of Triggers

A trigger is a special form of stored procedure, bound to a table or to a
view, and fired automatically by a particular statement. In Chapter 4, we
discussed constraints, which are used to enforce different types of data
integrity. Triggers are generally used to enforce referential integrity and
business rules. While triggers are similar to CHECK constraints, they have
one major difference: triggers are reactive while constraints are proactive.

Create and alter database objects. Objects include

constraints, indexes, stored procedures, tables, triggers,

user-defined functions, and views.

� Specify schema binding and encryption for triggers.

Troubleshoot failed object creation.

Manage data manipulation by using triggers.

� Implement error handling in triggers.

� Validate data.

Enforce procedural business logic by using triggers.

� Specify trigger actions.

� Manage control of flow.

� Filter data by using triggers.

Troubleshoot and optimize programming objects. Objects

include stored procedures, transaction, triggers, user-

defined functions, and views.

406 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 406

http://www.sybex.com

This means a constraint is fired before the effect of the statement takes
place, while a trigger is fired after or instead of the firing statement.

Two types of triggers exist:

� AFTER triggers that run after the statements that fired them

� INSTEAD OF triggers that run instead of statements that fired them

Triggers can be used to go beyond declarative referential integrity and
to implement more complex rules than those possibly defined with CHECK
constraints. Triggers are found in many situations like maintaining denor-
malized data, complex cascading updates, inserts or deletes, comparing
data before and after updates, etc.

A trigger is part of the transaction started by the statement that fired it.
So, since a transaction is atomic (see Chapters 2 and 8 for more informa-
tion about transactions), if the trigger fails, the firing statement fails. If this
statement is part of a larger transaction, then the entire transaction fails.

Let’s start with AFTER triggers and discuss the way they work and can
be implemented.

AFTER Triggers

AFTER triggers can only be created on tables. A table can have any number
of AFTER triggers defined for inserts, deletes, and updates. All of them are
created with the same syntax:

CREATE TRIGGER trigger_name

ON table

[WITH ENCRYPTION]

{

{ {FOR | AFTER} {[INSERT][,][UPDATE][,][DELETE] }

[WITH APPEND]

[NOT FOR REPLICATION]

AS

[{IF UPDATE(column)

[{AND | OR} UPDATE(column)][...n]}

]

sql_statement [...n]

}
}

Triggers 407

2942C06.qxd 7/16/01 11:35 AM Page 407

http://www.sybex.com

Before going further, note the options already discussed with stored pro-
cedures. The WITH ENCRYPTION option encrypts the trigger code to protect
the intellectual property of its author and forbids reverse engineering the
trigger. The NOT FOR REPLICATION option indicates not to fire the trigger if
the table is modified by the replication process.

A trigger can be created to react to inserts, updates, or deletes. The
same trigger can be created on two or all three of these actions. For
example, a trigger can be created for deletes and updates.

The WITH APPEND option has been introduced in SQL Server 7 to allow
multiple triggers for the same statement on databases with a compatibility
level less than or equal to 65. With SQL Server 7 or SQL Server 2000
databases, WITH APPEND is the default behavior. You can use this option
only if you use the FOR keyword and not AFTER, even though they are
synonyms.

Triggers are bound to a table. If you drop the table, all the triggers asso-
ciated to this table are dropped. You can alter a trigger definition with the
ALTER TRIGGER statement (same syntax as CREATE TRIGGER) and drop a
trigger with the DROP TRIGGER statement:

DROP TRIGGER trigger [,...n]

Triggers can be nested up to 32 levels. For example, an INSERT trigger
that runs an UPDATE statement that fires an UPDATE trigger that runs a
DELETE statement that fires a DELETE trigger, and so on. Triggers can be
recursive if the database option RECURSIVE_TRIGGERS is turned on with the
following command:

ALTER DATABASE database_name

SET RECURSIVE_TRIGGERS ON

If you want to test whether recursive triggers are on, run the following
statement:

SELECT DATABASEPROPERTYEX(database,
‘IsRecursiveTriggersEnabled’

Triggers working on the same table may be used to check values and
modify them on-the-fly. If you implement this behavior, be aware that the
recursive triggers option can cause unexpected behavior.

408 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 408

http://www.sybex.com

The INSERT Trigger

An INSERT trigger is fired on the INSERT statement. That means that when
a user inserts a record in the table and the record has been successfully
inserted, the trigger is fired. Figure 6.4 illustrates the functioning process
of an INSERT trigger.

F I G U R E 6 . 4 The INSERT trigger process

The trigger used in this example is the following:

CREATE TRIGGER InsTasks ON Tasks

AFTER INSERT

AS

IF NOT EXISTS(SELECT * FROM Employees E JOIN Inserted I ON
E.EmployeeID=I.EmployeeID)

BEGIN

RAISERROR(‘The Employee does not exist’, 16, 1)

ROLLBACK TRANSACTION

END

This triggers a rollback of the insert if the employee ID does not exist.

The same feature could have been realized with a FOREIGN KEY constraint.

The process of INSERT trigger firing is as follows:

TaskID EmployeeID TaskName StartDate Duration

1 12 Contact Josh 3/4/2001 1

2 13 Provide marketing info 3/4/2001 2

3 15 Check Orders 3/5/2001 7

TaskID EmployeeID TaskName StartDate Duration

3 15 Check Orders 3/5/2001 7

INSERT tasks(EmployeeID, TaskName, StartDate, Duration)
VALUES(15, 'CheckOrders', '3/5/2001', 7)

INSERT trigger

3

1

2

Triggers 409

2942C06.qxd 7/16/01 11:35 AM Page 409

http://www.sybex.com

1. The user or the system runs an INSERT statement

2. If the record does not violate any constraint, it is physically inserted
in the table and in a temporary table called Inserted. This private
temporary table has the same structure as the base table and exists
only for the duration of the trigger. It isolates the inserted record.

3. The trigger fires.

4. If the trigger ends its execution without errors, the Inserted table is
deleted and the record is marked as inserted.

In the code example, the code joins the Employees and the Inserted
table to check the employee ID existence. This is a common method of
existence checking. The Inserted table contains only the record that has
just been inserted.

INSERT triggers are used for existence checking, as in the above
example, for cascading inserts, or for maintaining denormalized data.
The following example updates the year-to-date column of the Titles
table after each sales insert:

CREATE TRIGGER InsSales ON Sales

AFTER INSERT

AS

UPDATE titles

SET ytd_sales=T.ytd_sales+I.qty

FROM Inserted I JOIN Titles T

ON I.title_id=T.title_ID

You can imagine other examples: a sales insert fails if the unit in stock
count of the ordered products is equal to zero, a book loan fails if the
library member has already three books on loan, and so on. Each time
insert checks need to be made and go beyond simple CHECK or FOREIGN
KEY constraints, INSERT triggers may be the solution.

The DELETE Trigger

The process of a DELETE trigger is very close to that of INSERT triggers,
with the exception that it uses the Deleted table, which contains the
record that has just been deleted, instead of the Inserted table. Figure 6.5
illustrates the delete process, with a firing trigger.

410 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 410

http://www.sybex.com

F I G U R E 6 . 5 The DELETE trigger process

Let’s look at an example of a deleted trigger. Support the trigger with
the following:

CREATE TRIGGER DelTasks ON Tasks

AFTER DELETE

AS

IF EXISTS (SELECT * FROM DELETED WHERE StartDate<=GET-
DATE())

BEGIN

RAISERROR(‘A started task cannot be deleted’, 16, 1)

ROLLBACK TRANSACTION

END

This trigger checks the Startdate value and rolls back the transaction if
it is before the system date. The process of trigger firing is as follows:

1. The user or the system runs a DELETE statement.

2. If the record does not violate any foreign key constraint, it is
physically deleted from the table and inserted into a temporary table
called Deleted. This private temporary table has the same structure
as the base table and exists only for the duration of the trigger.

3. The trigger fires.

4. If the trigger ends its execution without errors, the Deleted table is
deleted and the record is marked as deleted from the base table.

TaskID EmployeeID TaskName StartDate Duration

1 12 Contact Josh 3/4/2001 1

2 13 Provide marketing info 3/4/2001 2

3 15 Check Orders 3/5/2001 7

TaskID EmployeeID TaskName StartDate Duration

3 15 Check Orders 3/5/2001 7

DELETE Tasks WHERE TaskID=3

Deleted table

DELETE trigger

3

1

2

Triggers 411

2942C06.qxd 7/16/01 11:35 AM Page 411

http://www.sybex.com

DELETE triggers can be used for existence checking, for cascading
deletes, or for maintaining denormalized data. The following example
decreases the year-to-date value of the title record if a sales record is
deleted:

CREATE TRIGGER DelSales ON Sales

AFTER DELETE

AS

UPDATE titles

SET ytd_sales=T.ytd_sales-D.qty

FROM Deleted D JOIN Titles T

ON D.title_id=T.title_ID

As with INSERT triggers, a lot of other examples can be found: if a sales
record is deleted, it is moved to a DeletedSales table for statistical purposes;
each time a book is brought back to the library, the on_loan column of the
Members table is decreased; and so on.

The UPDATE Trigger

An update operation can be seen as a delete operation followed by an
insert: the old values are deleted and the new ones are inserted. Figure 6.6
shows you the update process.

F I G U R E 6 . 6 The UPDATE trigger process

TaskID EmployeeID TaskName StartDate Duration

1 12 Contact Josh 3/4/2001 1

2 24 Provide marketing info 3/4/2001 2

TaskID EmployeeID TaskName StartDate Duration

3 13 Provide marketing info 3/4/2001 2

UPDATE Tasks SET EmployeeID=24 WHERE TaskID=2 UPDATE trigger

3

1
2

Deleted table

TaskID EmployeeID TaskName StartDate Duration

2 24 Provide marketing info 3/4/2001 2

Inserted table

Tasks table

412 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 412

http://www.sybex.com

Suppose the trigger looks like the following:

CREATE TRIGGER UpdTasks ON Tasks

AFTER UPDATE

AS

IF UPDATE(TaskID)

BEGIN

RAISERROR(‘The TaskID cannot be updated’, 16, 1)

ROLLBACK TRANSACTION

END

IF NOT EXISTS(SELECT * FROM Employees E JOIN Inserted I ON
E.EmployeeID=I.EmployeeID)

BEGIN

RAISERROR(‘The Employee does not exist’, 16, 1)

ROLLBACK TRANSACTION

END

This trigger first checks that the TaskID column has not been updated.
If so, it rolls back the transaction. Then, it checks the employee ID, just as
in the INSERT trigger, and rolls back the transaction if it does not exist.
The process of UPDATE trigger firing is as follows:

1. The user or the system runs an UPDATE statement.

2. If the record does not violate any constraint, it is physically updated
in the table, its old version is inserted into the Deleted table, and its
new version is inserted into the Inserted Table.

3. The trigger fires.

4. If the trigger ends its execution without errors, the Deleted and
Inserted tables are deleted and the record is marked as updated in
the base table.

Like other triggers, UPDATE triggers can be used to maintain data
integrity or denormalization.

INSTEAD OF Triggers

SQL Server 2000 introduces INSTEAD OF triggers. This feature, like the
user-defined functions, has been awaited for a long time. One of the main
drawbacks of AFTER triggers is that they take place after the statement that

Triggers 413

2942C06.qxd 7/16/01 11:35 AM Page 413

http://www.sybex.com

fires them. You have seen in the previous examples that if the trigger
violates the rule enforced in the trigger, it has to rollback the transaction.

Other RDBMSs, like Oracle or DB/2, use AFTER and BEFORE triggers.
SQL Server does not propose BEFORE triggers, a kind of trigger that fires
before the actual statements modify the base table. As its name implies, an
INSTEAD OF trigger is executed instead of the statement that fired it.

INSTEAD OF triggers can be created on tables or on views, but a table or
a view can have only one INSTEAD OF trigger per action.

An INSTEAD OF trigger cannot be created on a table that has a foreign key
with CASCADE DELETE or CASCADE UPDATE.

When created on a view, an INSTEAD OF trigger enhances the updata-
bility of the view. We’ve seen that a view can only update, delete, or insert
data in one base table at a time. With INSTEAD OF triggers, this limitation
disappears. As we are going to see, it is possible with an INSTEAD OF trig-
ger to update any number of tables.

The INSTEAD OF INSERT Trigger

Like the AFTER trigger, the INSTEAD OF trigger works with the Inserted
table. But the logic is a little bit different:

1. The user or the system runs an INSERT statement.

2. If the record does not violate any constraint, it is inserted only in the
Inserted table.

3. The trigger fires and performs any necessary action.

Note first that the record is only inserted in the Inserted table, not in
the base table. So there is nothing to rollback if any test in the trigger fails.
Second, the INSERT does not really take place in the table. The trigger
may decide to insert the record after doing some tests on its values, but if
the trigger code does something else, the insert will not be performed.
The trigger is executed instead of the base INSERT statement. If the trigger
executes an INSERT statement into the table, it is not fired a second time.
INSTEAD OF triggers are not recursive!

414 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 414

http://www.sybex.com

The following example shows a trigger that tests the quantity of a prod-
uct in stock before accepting an order:

CREATE TRIGGER InsOrdDet ON [Order Details]

INSTEAD OF INSERT

AS

DECLARE @qty int

SELECT @qty=quantity FROM Inserted

IF @qty<=(SELECT UnitsInStock
FROM Products P JOIN Inserted I
ON P.ProductID = I.ProductID)

INSERT INTO [Order Details]

SELECT * FROM Inserted

ELSE

RAISERROR(‘Not enough products in stock’, 16, 1)

As you can see from this trigger, the INSERT statement in the trigger
code is just a normal INSERT SELECT statement, inserting the record
already stored in the Inserted table. One major advantage here is that
no rollback is required if the units in stock are less than expected.

The INSTEAD OF DELETE Trigger

INSTEAD OF DELETE triggers function in the same manner as INSTEAD OF
INSERT triggers, but they use the Deleted table:

1. The user or the system runs a DELETE statement.

2. If the record does not violate any constraint, it is inserted only in
the Deleted table.

3. The trigger fires and performs any necessary action.

As for the INSTEAD OF INSERT trigger, no action is performed in the
table besides what the trigger does.

An INSTEAD OF DELETE trigger cannot be defined on a table enforcing the
ON DELETE CASCADE option on a FOREIGN KEY constraint.

Triggers 415

2942C06.qxd 7/16/01 11:35 AM Page 415

http://www.sybex.com

The INSTEAD OF UPDATE Trigger

INSTEAD OF UPDATE triggers work with the Inserted and Deleted table to
store values before and after the update. No data is modified in the base
table. The logic is the following:

1. The user or the system runs an UPDATE statement.

2. If the record does not violate any constraint, its old version is
inserted in the Deleted table and its new version is inserted in the
Inserted table.

3. The trigger fires and performs any necessary action.

As usual, no modification is being made to the table, aside from what is
done in the trigger.

An INSTEAD OF UPDATE trigger cannot be defined on a table enforcing the
ON UPDATE CASCADE option on a FOREIGN KEY constraint.

The Special Case of Views

INSTEAD OF triggers are useful with views since they can enhance their
updatability. Consider the following view found in the Northwind
database:

CREATE VIEW [Alphabetical list of products]

AS

SELECT Products.*, Categories.CategoryName

FROM Categories INNER JOIN Products

ON Categories.CategoryID = Products.CategoryID

WHERE Products.Discontinued=0

If you try to insert a new record into the Products table through this
view, you need to define the columns and make sure the category used
exists. Now, with an INSTEAD OF INSERT trigger, you may check the
existence of the category, create it if it does not exist, and insert the new
product as shown in the following example:

CREATE TRIGGER InsLP ON [Alphabetical list of products]

INSTEAD OF INSERT

416 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 416

http://www.sybex.com

AS

IF EXISTS(SELECT * FROM Inserted I JOIN Category C

ON I.CategoryID=C.CategoryID)

INSERT INTO Products(ProductID, ProductName, SupplierID,

CategoryID, QuantityPerUnit, UnitPrice, UnitsInStock,

UnitsOnOrder, ReorderLevel, Discontinued)

SELECT ProductID, ProductName, SupplierID,

CategoryID, QuantityPerUnit, UnitPrice, UnitsInStock,

UnitsOnOrder, ReorderLevel, Discontinued FROM
Inserted

ELSE

BEGIN

BEGIN TRANSACTION

INSERT INTO Category(CategoryName)

SELECT CategoryName FROM Inserted

INSERT INTO Products(ProductID, ProductName, SupplierID,

CategoryID, QuantityPerUnit, UnitPrice,

UnitsInStock, UnitsOnOrder, ReorderLevel,

Discontinued)

SELECT ProductID, ProductName, SupplierID,

@@IDENTITY, QuantityPerUnit, UnitPrice,

UnitsInStock, UnitsOnOrder, ReorderLevel,

Discontinued FROM Inserted

COMMIT TRANSACTION

END

This version of the trigger is deliberately shortened for the example. To
be complete, you should add error handling in the transaction to make
sure it is rolled back if an error occurs.

With that trigger on the view, you update both base tables with only
one INSERT statement.

Even if a partitioned view is made of multiple tables, it does not need
INSTEAD OF triggers to modify the base table, since the partitioned columns
determines which table to modify. See the “Partitioned Views” section ear-
lier in this chapter.

Triggers 417

2942C06.qxd 7/16/01 11:35 AM Page 417

http://www.sybex.com

As for tables, only one INSTEAD OF trigger can be created per action
(insert, update, or delete).

Performance Considerations

Although triggers are a wonderful invention, they can cause dramatic
performance loss. Triggers are useful because as part of the database
schema, they enforce data integrity directly on the server. Since a trigger
will always be part of the base transaction, triggers are guaranteed to
be consistent actions. But this guarantee can also lower performance.
This is why.

When you modify a record, the trigger fires. Normally, an insert,
update, or delete operation takes a few milliseconds. Now since the trigger
has been fired, and while it runs, locks are held on the modified record(s).
The trigger may update, delete, or insert other records in other tables,
acquiring additional locks to do so. As more work is done inside the trig-
ger, the number of locks required increases, as does the contention on the
system. The more locks, the longer the transaction and the fewer users that
can be supported by the server.

One motto of SQL Server is to keep transactions short. With triggers,
you increase the size and the duration of the transactions. Pay very close
attention to the execution time of your statements once you add triggers.

On the other hand, triggers are fast: like stored procedures, they are
compiled and stored in the procedure cache, and the inserted and deleted
tables are stored in the data cache. No I/Os are required to execute a trig-
ger. But again, that may still negatively impact performance. The execution
time of the trigger depends on the number of tables and the number of
rows impacted by the trigger.

As a rule of thumb:

� Keep triggers short.

� Test, test, and retest triggers’ impact on performance.

Never underestimate their impact. If you encounter performance loss
and have lots of triggers, finding the statement or trigger that is causing
the problem may be a difficult task.

418 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 418

http://www.sybex.com

Various Considerations

To finish with triggers, here are some various considerations on triggers
you may find helpful for the exam.

A table can have more than one AFTER trigger for a defined action. For
example, a table can have three AFTER INSERT triggers. This situation can
occur if you created your own trigger, then installed the merge replication
(which adds triggers to the table) or published data on the Web with the
Web Wizard. These actions could lead to potential problems. With this
example, imagine the Web trigger fires first and creates the Web page, then
the custom trigger fires and rolls back the transaction. Unfortunately, the
creation of the Web page is not a transactional action. So, a Web page has
been created with inaccurate information.

Due to situations like this one, it is necessary to be able to change the
firing order. SQL Server allows us to choose the first and last trigger to
fire, with the sp_settriggerorder system stored procedure. In our previous
example, let’s consider that triggers are:

� WebTrig for the Web trigger, defined on INSERT, DELETE, and UPDATE

� CustomInsTrig for the custom trigger, defined only on INSERT

� ReplTrig defined on INSERT, DELETE, and UPDATE

If you want WebTrig to be first and ReplTrig to be last, run the follow-
ing code:

EXEC sp_settrigerorder ‘WebTrig’, ‘FIRST’

EXEC sp_settrigerorder ‘ReplTrig’, ‘LAST’

Between the first and the last triggers, the trigger order cannot be modi-
fied. They are fired in the order SQL Server finds them in the system table.

There is a third parameter for this procedure to define the action on
which you are setting the order. For example, a trigger could be the first
trigger for INSERT actions but the last trigger for DELETE actions. SQL
Server allows precise control of trigger order for the first and last triggers
that fire for each action.

In some situations, triggers can become a burden. For example, if you
need to import thousands of new rows in a batch job, it may be a good

Triggers 419

2942C06.qxd 7/16/01 11:35 AM Page 419

http://www.sybex.com

idea to disable the triggers. The ALTER TABLE statement allow you to
enable and disable trigger on demand:

ALTER TABLE table_name

{ ENABLE | DISABLE } TRIGGER

{ ALL | trigger_name [,...n] }

Running the following statement disables all the triggers of the Order
Details table:

ALTER TABLE [Order Details] DISABLE TRIGGER ALL

Run the same statement with ENABLE instead of DISABLE to reenable all
triggers.

Summary

In this chapter you learned how to create, manage, and use views,
stored procedures, transactions, user-defined functions, and triggers. This
chapter particularly focused on:

� Creating and managing views

� Retrieving and updating data through views

� Defining partitioned views

� Creating and managing stored procedures

� Declaring parameters on stored procedures

� Calling stored procedures with and without return values

� Creating and managing user-defined functions

� Understanding the advantages of user-defined functions over views
and stored procedures

� Creating and managing AFTER and INSTEAD OF triggers

� Using trigger options

� Managing transactions

420 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 420

http://www.sybex.com

Key Terms

Before you take the exam, be certain you are familiar with the following
terms:

Exam Essentials

Know the CREATE and ALTER VIEW syntax. The Exam contains a
number of syntax questions. Knowing all the options of CREATE and
ALTER VIEW statements is essential.

Understand when a view is updateable. Updatability of a view is sub-
ject to the definitions of its base tables and columns defined. Know the
principles of updatability

Know the limitations of views. SELECT statements used to create the
view are subjects to some limitations. Know them well.

Know how to create and alter stored procedures. Stored procedures
are probably the most important objects after tables in a SQL Server
database. Many questions in the exam concern stored procedures.

Know how to create and alter user-defined functions. User-defined
functions are new objects replacing or enhancing views and stored
procedures.

compilation
encryption
error number
execution plan
indexed views
inline table-valued user-defined

function
materialized view
metadata
multistatement table-valued

user-defined function
parameter

partitioned view
partitioning column
query plan
query tree
scalar user-defined function
schemabinding
severity level
state code
stored procedure
trigger
user-defined function
view

Key Terms 421

2942C06.qxd 7/16/01 11:35 AM Page 421

http://www.sybex.com

Understand trigger functioning and limitations. Triggers are fantastic
tools to maintain referential integrity or denormalized data. Understand
how they work and what their impact is on performance.

Know the differences between AFTER and INSTEAD OF triggers.
INSTEAD OF triggers are new to SQL Server 2000. There are subtle dif-
ferences between AFTER and INSTEAD OF triggers. Make sure you under-
stand these differences.

Review Questions

1. You are a database developer for Woodgrove Bank. You are
working on a new banking system. Each time an account movement
is recorded into the Movements table of the banking system,you
need to recalculate and store the account balance.

You have been asked to implement this feature while lowering the
impact on the existing application. How can you do that?

A. Create a stored procedure that inserts the movement and update
the balance.

B. Create a view that joins the Movement and Accounts tables to
update both at the same time.

C. Create a user-defined function that joins the Movement and
Accounts tables, and accept the account ID as parameter.

D. Create AFTER triggers on the Movements table to update the
Account table.

2. You are maintaining a SQL Server database for Tailspin Toys. Some
users complain that they cannot insert orders where the quantity
ordered is above 256. The script that created the table is the
following:

CREATE TABLE [Order Details] (

[OrderID] [int] NOT NULL ,

[ProductID] [int] NOT NULL ,

[UnitPrice] [money] NOT NULL DEFAULT (0),

422 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:35 AM Page 422

http://www.sybex.com

[Quantity] [tinyint] NOT NULL DEFAULT (1),

[Discount] [real] NOT NULL DEFAULT (0)

) ON [PRIMARY]

You want to alter the datatype of the Quantity column, but when
you try to run the dedicate ALTER TABLE statement, you obtain the
following error:

The object ‘vwOrders’ is dependent on column ‘Quantity’

What can you do to solve this problem, without having any side
effect on the applications?

A. Drop the vwOrders view.

B. Alter the vwOrders view so that it has no SCHEMABINDING option.

C. Alter the vwOrders view so that it has no ENCRYPTION option.

D. Drop the Order Details table and re-create it.

3. You are a database developer for a SQL Server 2000 database. Your
database tracks employees and customers of the company you are
working for. Each person of the database is recorded in the Persons
table and each Employee in the Employees table. The schema and
links of these tables are shown below:

You want to create a stored procedure used to insert a new
employee that inserts a new record in the Persons table, then in the

Review Questions 423

2942C06.qxd 7/16/01 11:36 AM Page 423

http://www.sybex.com

Employees table. What is the best script to preserve transactional
integrity?

A.

CREATE PROCEDURE InsertEmployee

(@LastName nvarchar(20),

@FirstName nvarchar(10),

@Title nvarchar(30),

@BirthDate datetime,

@HireDate datetime,

@Address nvarchar(60),

@City nvarchar(15),

@Region nvarchar(15),

@PostalCode nvarchar(10),

@Country nvarchar(15),

@HomePhone nvarchar(24),

@Extension nvarchar(4))

AS

INSERT INTO Persons

(LastName, FirstName, Title)

VALUES

(@LastName, @FirstName, @Title)

INSERT INTO Employees

(PersonID, BirthDate,

HireDate, Address, City,

Region, PostalCode, Country,

HomePhone, Extension)

VALUES(@@IDENTITY, @BirthDate,

@HireDate, @Address, @City,

@Region, @PostalCode,

Country, @HomePhone,

Extension)

B.

CREATE PROCEDURE InsertEmployee

(@LastName nvarchar(20),

@FirstName nvarchar(10),

@Title nvarchar(30),

424 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 424

http://www.sybex.com

@BirthDate datetime,

@HireDate datetime,

@Address nvarchar(60),

@City nvarchar(15),

@Region nvarchar(15),

@PostalCode nvarchar(10),

@Country nvarchar(15),

@HomePhone nvarchar(24),

@Extension nvarchar(4))

AS

INSERT INTO Persons

(LastName, FirstName, Title)

VALUES

(@LastName, @FirstName, @Title)

INSERT INTO Employees

(PersonID, BirthDate,

HireDate, Address, City,

Region, PostalCode, Country,

HomePhone, Extension)

VALUES(@@IDENTITY, @BirthDate,

@HireDate, @Address, @City,

@Region, @PostalCode,

Country, @HomePhone,

Extension)

IF @@ERROR<>0

ROLLBACK TRANSACTION

C.

CREATE PROCEDURE InsertEmployee

(@LastName nvarchar(20),

@FirstName nvarchar(10),

@Title nvarchar(30),

@BirthDate datetime,

@HireDate datetime,

@Address nvarchar(60),

@City nvarchar(15),

@Region nvarchar(15),

Review Questions 425

2942C06.qxd 7/16/01 11:36 AM Page 425

http://www.sybex.com

@PostalCode nvarchar(10),

@Country nvarchar(15),

@HomePhone nvarchar(24),

@Extension nvarchar(4))

AS

BEGIN TRANSACTION

INSERT INTO Persons

(LastName, FirstName, Title)

VALUES

(@LastName, @FirstName, @Title)

IF @@ERROR=0

BEGIN

INSERT INTO Employees

(PersonID, BirthDate,

HireDate, Address, City,

Region, PostalCode, Country,

HomePhone, Extension)

VALUES(@@IDENTITY, @BirthDate,

@HireDate, @Address, @City,

@Region, @PostalCode,

Country, @HomePhone,

Extension)

IF @@ERROR=0

BEGIN

COMMIT TRANSACTION

RETURN 0

END

ELSE

BEGIN

ROLLBACK TRANSACTION

RETURN 1

END

END

ELSE

426 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 426

http://www.sybex.com

BEGIN

ROLLBACK TRANSACTION

RETURN 1

END

COMMIT TRANSACTION

RETURN 0

D.

CREATE PROCEDURE InsertEmployee

(@LastName nvarchar(20),

@FirstName nvarchar(10),

@Title nvarchar(30),

@BirthDate datetime,

@HireDate datetime,

@Address nvarchar(60),

@City nvarchar(15),

@Region nvarchar(15),

@PostalCode nvarchar(10),

@Country nvarchar(15),

@HomePhone nvarchar(24),

@Extension nvarchar(4))

AS

BEGIN TRAN

INSERT INTO Persons

(LastName, FirstName, Title)

VALUES

(@LastName, @FirstName, @Title)

IF @@ERROR<>0

ROLLBACK TRAN

INSERT INTO Employees

(PersonID, BirthDate,

HireDate, Address, City,

Region, PostalCode, Country,

HomePhone, Extension)

VALUES(@@IDENTITY, @BirthDate,

@HireDate, @Address, @City,

@Region, @PostalCode,

Review Questions 427

2942C06.qxd 7/16/01 11:36 AM Page 427

http://www.sybex.com

Country, @HomePhone,

Extension)

IF @@ ERROR<>0

ROLLBACK TRAN

COMMIT TRAN

4. You are a database developer for A. Datum Corporation. You are
gathering data for a national project on personal computer usage.
Users are querying this database to find usage patterns based on age,
sex, computer brand, and state. All of this data being in different
tables in the same database. The data is updated by a batch job
every night, so during office hours, the data is only read.

Users complain that queries are long to run. How could you increase
the speed of these queries?

A. Create views and index these views so users can quickly access
the needed information.

B. Create a stored procedure so user queries do not have to be
recompiled.

C. Create table-valued user-defined functions.

D. Create temporary tables filled during batch jobs so that users
query these tables.

5. You are a database developer for Lucerne Publishing. You have two
servers, CORP1 and CORP2, running SQL Server 2000. CORP1
contains national sales data, and CORP2 contains foreign sales data.

Both Sales data tables contains a column storing the country. You
want to create a partitioned view unionizing these two tables, and
you want to keep your users from querying base tables but run all
their SELECT, INSERT, DELETE, and UPDATE queries on this view. How
can you be sure that your view is partitioned and updateable?
(Choose three options.)

A. The partitioning column is part of the primary key.

B. The partitioning column has a CHECK constraint.

C. The CHECK constraint of the partitioning column only uses = and
<> operators.

428 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 428

http://www.sybex.com

D. The column is NOT NULL.

E. The column is deterministic.

6. You are a database developer for a SQL Server 2000 database. Your
database tracks employees and customers of the company you are
working for. Each customer is recorded in the Persons table and
each employee in the Employees table. The schema and links of
these tables are shown on the next page:

You create the following view to extract employees’ information:

CREATE VIEW vwEmployees

AS

SELECT PersonID, LastName, FirstName, Title, BirthDate,
HireDate, Address, City, Region, PostalCode, Country,
Extension, HomePhone

FROM Employees

INNER JOIN Persons ON Employees.PersonID =
Persons.PersonID

You want to insert new employees through this view. How can you
achieve this result?

A. Create an INSTEAD OF trigger on the vwEmployees view.

B. Create an INSTEAD OF trigger on the Employees table.
Create an INSTEAD OF trigger on the Persons table.

Review Questions 429

2942C06.qxd 7/16/01 11:36 AM Page 429

http://www.sybex.com

C. Create a stored procedure that processes the insert.

D. Create an AFTER trigger on the vwEmployees view.

7. You are developing a customer relationship management system for
an insurance company. You need to provide a view unionizing data
from different tables, while allowing parameters. You decide to
create a multistatement user-defined function. This function will
union data from the CorporateCustomers, PrivateCustomers, and
Employees tables (in this order).

You want the users to be able to choose whether to include the data
from the Employees table. Order the following statements to create
this function:

Possibilities

INSERT @ListName SELECT CustName
FROM CorporateCustomers

IF @Emp=1

CREATE FUNCTION ListName (@Emp bit)

END

RETURNS TABLE

BEGIN TRANSACTION

BEGIN

RETURNS @ListName TABLE(Name varchar(60))

INSERT @ListName SELECT FirstName + ‘ ‘ +
LastName FROM Employees

COMMIT TRANSACTION

INSERT @ListName SELECT CustName
FROM PrivateCustomers

RETURN

430 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 430

http://www.sybex.com

8. You are a database developer for A. Datum corp. One department
of your company gathers information about baseball games. Some
users intensively query this database to find information about a
specific match or a given team. Besides the match ID or the team ID,
the query contains always the same tables and columns. Some users
want to join the result set they obtain with other tables. What is the
most convenient object you could create to keep users from typing
the query every time, while fulfilling their joining needs?

A. A parameterized stored procedure

B. A parameterized table-valued user-defined function

C. A parameterized view

D. A parameterized scalar user-defined function

9. You are a database developer for Lucerne Publishing. In your
organization, you have two servers, CORP1 and CORP2. CORP2 is
used for archiving data. Every three months, a batch job extracts
data older than three months from the Sales table and moves it from
CORP1 to CORP2.

CORP2 has already been declared as a linked server on CORP1. All
the users of your database system are connected to CORP1. You
need to provide a seamless access to the archived sales data on
CORP02 and merge them with the CORP1 active data.

What script could you run on CORP1 to achieve this seamless
access?

A.

sp_addlinkedserver ‘CORP2’, ‘SQL Server’

GO

SELECT * FROM CORP2.Sales S2

JOIN CORP1.Sales S1

ON S2.SalesID=S1.SalesID

B.

CREATE VIEW AllSales

AS

SELECT * FROM Sales

UNION ALL

SELECT * FROM CORP2.Archive.dbo.Sales

Review Questions 431

2942C06.qxd 7/16/01 11:36 AM Page 431

http://www.sybex.com

C.

INSERT INTO #ArchievedSales

SELECT * FROM CORP2.Archive.Sales

D.

sp_addserver ‘CORP2’

GO

CREATE PROCEDURE AllSales

AS

SELECT * FROM CORP2.Sales

10. You are working for Southridge Video as database developer. You
implemented the following stored procedure to return the total sales
for a given video title:

CREATE PROCEDURE TotalSold

@title_id varchar(6), @TotalQty int=0 OUTPUT

AS

SELECT @TotalQty=SUM(qty)

FROM titles INNER JOIN sales

ON titles.title_id = sales.title_id

WHERE titles.title_id = @title_id

IF @TotalQty=0

RETURN 0

ELSE

RETURN 1

How can you call that procedure to return the message ‘No sales for
that video title’ when the sales are null, and ‘The total sales for the
video number XXX is YYY’ when the sales are not null?
A.

DECLARE @Title_id varchar(6)

DECLARE @TotalQty int

DECLARE @ret_value int

SET @Title_id=’BU1032’

EXEC TotalSold @Title_id,

@ret_value OUTPUT

IF @ret_value=0

PRINT ‘No sales for that video title’

432 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 432

http://www.sybex.com

ELSE

PRINT ‘The total sales for the video number ‘ +
@Title_id + ‘ is ‘ + cast(@TotalQty as varchar(10))

B.

DECLARE @Title_id varchar(6)

DECLARE @TotalQty int

DECLARE @ret_value int

SET @Title_id=’BU1032’

EXEC TotalSold @Title_id,

@TotalQty

IF @ret_value=0

PRINT ‘No sales for that video title’

ELSE

PRINT ‘The total sales for the video number ‘ +
@Title_id + ‘ is ‘ + cast(@TotalQty as varchar(10))

C.

DECLARE @Title_id varchar(6)

DECLARE @TotalQty int

DECLARE @ret_value int

SET @Title_id=’BU1032’

EXEC TotalSold @Title_id,

@TotalQty OUTPUT, @ret_value

IF @ret_value=0

PRINT ‘No sales for that video title’

ELSE

PRINT ‘The total sales for the video number ‘ +
@Title_id + ‘ is ‘ + cast(@TotalQty as varchar(10))

D.

DECLARE @Title_id varchar(6)

DECLARE @TotalQty int

DECLARE @ret_value int

SET @Title_id=’BU1032’

EXEC @ret_value=TotalSold @Title_id,

@TotalQty OUTPUT

IF @ret_value=0

PRINT ‘No sales for that video title’

ELSE

Review Questions 433

2942C06.qxd 7/16/01 11:36 AM Page 433

http://www.sybex.com

PRINT ‘The total sales for the video number ‘ +
@Title_id + ‘ is ‘ + cast(@TotalQty as varchar(10))

11. You are a database developer for a large international organization.
SQL Server 2000 is used to store statistics about pages viewed on
your corporate Web servers. The database options are default ones.
The marketing employees query this database through a series of
stored procedure and defined queries.

The database size has increased fast this past week due to a huge
marketing campaign, and the users complains that, depending on
the value they used for parameters, some stored procedures are very
slow even though the number of rows is approximately the same
between two executions.

What can you do to increase the speed of these procedures?

A. Update the statistics of indexes used by the slow procedures

B. Run sp_recompile on the slow procedures

C. Alter the slow procedure to add the WITH RECOMPILE option

D. Run DBCC DBREINDEX on the tables used by the slow procedure

12. You are working as a database developer for Woodgrove Bank.
Recently, you have been asked to implement a very complicated
calculation for loan insurance. This calculation looks for data in
different tables based on a customer ID given by the user, joins these
tables, performs statistical calculations, and returns one value.

You will need to use the result of this calculation in SELECT, INSERT,
UPDATE, and DELETE statements. What is the most efficient way to
implement it?

A. A scalar user-defined function

B. A view

C. A stored procedure

D. An inline table-valued user-defined function

13. You are a database developer for a SQL Server 2000 database. This
database tracks courses, students, and teachers. The database
structure is as follows:

434 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 434

http://www.sybex.com

You want to create a view that gives you the list of students, along
with the teachers who teach the class they are attending, ordered
alphabetically. Which SELECT statement will build that list?

A.

SELECT DISTINCT

StudentLastName, TeacherLastName

FROM Students INNER JOIN CourseStudent

ON Students.StudentID = CourseStudent.StudentID

INNER JOIN Courses

ON CourseStudent.CourseID = Courses.CourseID

INNER JOIN CourseTeacher

ON Courses.CourseID = CourseTeacher.CourseID

INNER JOIN Teachers ON

CourseTeacher.TeacherID = Teachers.TeacherID

ORDER BY StudentLastName

B.

SELECT

StudentLastName, TeacherLastName

FROM Students INNER JOIN CourseStudent

ON Students.StudentID = CourseStudent.StudentID

INNER JOIN Courses

ON CourseStudent.CourseID = Courses.CourseID

INNER JOIN CourseTeacher

ON Courses.CourseID = CourseTeacher.CourseID

INNER JOIN Teachers ON

CourseTeacher.TeacherID = Teachers.TeacherID

GROUP BY StudentLastName, TeacherLastName

Review Questions 435

2942C06.qxd 7/16/01 11:36 AM Page 435

http://www.sybex.com

C.

SELECT DISTINCT TOP 100 PERCENT

StudentLastName, TeacherLastName

FROM Students INNER JOIN CourseStudent

ON Students.StudentID = CourseStudent.StudentID

INNER JOIN Courses

ON CourseStudent.CourseID = Courses.CourseID

INNER JOIN CourseTeacher

ON Courses.CourseID = CourseTeacher.CourseID

INNER JOIN Teachers ON

CourseTeacher.TeacherID = Teachers.TeacherID

ORDER BY Students.StudentLastName

D.

SELECT StudentLastName, TeacherLastName

FROM Students INNER JOIN CourseStudent

ON Students.StudentID = CourseStudent.StudentID

INNER JOIN Courses

ON CourseStudent.CourseID = Courses.CourseID

INNER JOIN CourseTeacher

ON Courses.CourseID = CourseTeacher.CourseID

INNER JOIN Teachers ON

CourseTeacher.TeacherID = Teachers.TeacherID

ORDER BY Students.StudentLastName

14. You are a database developer for Tailspin Toys. You are developing
a database system to track purchases made by the product
managers. Each time a purchase is made, it should be checked
against a budget table and recorded in the Purchases table only if it
is under the budget figure.

You decide to implement a trigger on the Purchases table to check
the allocated budget to the program manager before acknowledg-
ing the purchase. Each Product Manager has only one budget
record. You start to write the script of the trigger:

CREATE TRIGGER InsPurchases ON Purchases
FOR INSERT
AS

436 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 436

http://www.sybex.com

How do you finish the script to reach your goal? Choose the right
statements and put them in the right order. Note that some state-
ments may not be useful.

Possibilities

UPDATE Budget

SET BudgetedAmount = BudgetedAmount-
PurchasedAmount

FROM Inserted I JOIN Budget B

ON I.ProdManID = B.ProdManID

IF @@ERROR<>0

COMMIT TRAN

IF EXISTS(SELECT *

FROM Inserted I JOIN Budget B

ON I.ProdManID = B.ProdManID

WHERE BudgetedAmount<PurchasedAmount)

ROLLBACK TRAN

BEGIN TRAN

15. You are a database developer for Lucerne Publishing. You designed
an employee table tracking all the company’s employees. The script
of this table is below:

CREATE TABLE Employees (

EmployeeID int IDENTITY (1, 1) NOT NULL ,

LastName nvarchar (20) ,

FirstName nvarchar (10) ,

DepartmentID int

HireDate datetime NULL ,

Extension nvarchar (4))

You want the department manager to view and update only
employees of their department. How can you achieve this result?

Review Questions 437

2942C06.qxd 7/16/01 11:36 AM Page 437

http://www.sybex.com

A. Create a view to filter data horizontally with the SCHEMABINDING
option.

B. Create a stored procedure per department and grant the right to
the right procedure to each manager.

C. Create a table containing links between DepartmentID and the
Manager login ID.

Create a view to filter data horizontally from the Employees
table on the Manager login ID with the CHECK_OPTION option.

D. Grant to right to the manager on a row basis.

Answers to Review Questions

1. D. Options A, B, and C, while having advantages, need an update of
client application. Only option D meets the expectation of update
and minimizing impact on client application.

2. B. The error obtained is due to the fact that a schema-bound view
uses the column you need to modify. Removing the SCHEMABINDING
option will solve the problem.

3. C. Option A lacks transactional integrity. Option B and D are not
syntactically correct.

4. A. For heavy reads, indexed views are a must. In this scenario, the
updates are done off-hours, so indexed views will have no negative
impact on office-hours operations.

5. A, B, and D. Option C is not good because a partitioning column’s
CHECK constraint may only use BETWEEN, AND, OR, <, <=, >, >=, and =.
Option E is not good either, since the column may not be
deterministic.

6. A. A modification through a view can impact only one base table.
With an INSTEAD OF trigger, you can capture the modification
statement and replace it with your own statement(s). This kind of
trigger allows updates on multiple base tables used in views.

438 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 438

http://www.sybex.com

7.

CREATE FUNCTION ListName (@Emp bit)

RETURNS @ListName TABLE(Name varchar(60))

BEGIN

INSERT @ListName SELECT CustName FROM CorporateCustomers

INSERT @ListName SELECT CustName FROM PrivateCustomers

IF @Emp=1

INSERT @ListName SELECT FirstName + ‘ ‘ + LastName FROM
Employees

RETURN

END

This is a multistatement user-defined function. The only tricky
statement is the RETURNS. In this kind of statement, you need to
define the return table and to use a table variable to store it.

8. B. Parameterized views (Option C) do not exist. A scalar function
(Option D) returns one value, so it cannot be joined. A stored
procedure can be parameterized but cannot be joined. The only
object offering the view feature with parameters is the table-valued
user-defined function.

9. B. First, all other options are wrong because they are not using a
fully qualified name (four components) to access the table on the
remote server. Second, only a partitioned view offers the seamless
access to CORP1 users.

10. D. The only difference among the four options is the stored
procedure call. If a procedure has a return value, it is always called
with the syntax EXEC @variable=procedurename. Then, when you
need to output a value, as in this example the @TotalQty value, you
need to use the OUPUT keyword after the variable name in the call.

11. C. Given the description of the problem, this problem is caused by a
bad execution plan. If you change a procedure parameter and slow

Answers to Review Questions 439

2942C06.qxd 7/16/01 11:36 AM Page 439

http://www.sybex.com

the response time, it is generally a problem of bad execution plan
choice. This is the kind of procedure you should create with the
RECOMPILE option.

12. A. Since this calculation returns only one value, a scalar UDF, a
view, or a stored procedure may work well, since inline table-valued
UDFs are designed to return a result set, not a single value. Since
this calculation needs one parameter (customer ID), only scalar UDF
and stored procedures will work (views do not accept parameters).
The result should be used in DML statements, so only a scalar UDF
fulfills the entire requirement.

13. C. This is a tricky question. First of all, the ORDER BY clause is
allowed in a view only with a TOP clause in the SELECT statement.
Only option C contains the TOP clause. Second, the DISTINCT clause
is compulsory to ensure that no duplicates are retrieved (a student
can attend two classes given by the same teacher). Third, with a
GROUP BY, we could have avoided duplicates, but we would not be
sure that the result is sorted.

14. IF EXISTS(SELECT *

FROM Inserted I JOIN Budget B

ON I.ProdManID = B.ProdManID

WHERE BudgetedAmount<PurchasedAmount)

ROLLBACK TRAN

What you have to check is whether the budgeted amount is greater
than the PurchasedAmount. If it is, you need to rollback the insert.
Remember, the AFTER trigger is part of the transaction that fired it.
The needed BEGIN TRANSACTION is implicit.

15. C. You need to filter data horizontally. Unfortunately, there is no
known link between the ManagerID and the DepartmentID. You
need to first create a table linking the data from both tables and
create a view that filters data on the manager login ID.

440 Chapter 6 � Creating and Maintaining Database Objects

2942C06.qxd 7/16/01 11:36 AM Page 440

http://www.sybex.com

Accessing Data

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Manage result sets by using cursors and Transact-SQL.

Considerations include locking models and appropriate usage.

� Manipulate heterogeneous data. Methods include linked

servers, OPENQUERY, OPENROWSET, and OPENXML.

� Extract data in XML format. Considerations include output

format and XML schema structure.

Chapter

7

2942C07.qxd 7/16/01 11:37 AM Page 441

http://www.sybex.com

Database systems are primarily used for the storage and
retrieval of data. In most systems there are usually far more read opera-
tions than write operations, and it is usually the case that the DBA will
write far more SELECT queries than any other kind, so it pays to develop
good skills here. In SQL Server 2000, there are more ways of accessing and
retrieving data than in any previous version. This chapter will cover the
main ways of accessing data in SQL Server.

The basic SELECT statement is still the primary way of returning data
from the server and is pretty much unchanged from SQL Server 7. This
can also be the most complex statement that you will learn in T-SQL, so it
pays to develop your skills in this area.

Cursors are still available in SQL Server 2000, and they have not
changed substantially since version 7.0 when they were rewritten. This
chapter looks at the syntax and structure of cursors with definitions of the
options and types of cursors.

Distributed queries have become a feature of SQL Server that is used
more now that heterogeneous data sources must be linked together. The
concept of linked servers was introduced in SQL Server 7 and allowed a
variety of data to be queried from disparate data sources within SQL
Server without importing the data. Other database engines could be
linked to SQL Server in order to retrieve data from another database and
combine it with data inside SQL Server with a single query. Adding,
configuring, and using linked servers as well as ad hoc queries are dis-
cussed in the third section of this chapter. SQL Server 2000 has also intro-
duced distributed partitioned views that allow a single table to be spread
across multiple SQL Servers and accessed through a view as though it were
a single table. The method for querying these views is also discussed.

SQL Server 2000 adds an additional method of getting data from the
server. XML as a data format has grown in importance over the last few
years, and SQL Server 2000 includes the ability to return data in an XML

2942C07.qxd 7/16/01 11:37 AM Page 442

http://www.sybex.com

format directly to clients without requiring additional software to reformat
the data. XML is increasingly important in e-commerce as more firms seek
to exchange data between disparate systems. The last section in this chap-
ter will discuss how to retrieve data and format XML data structures in
SQL Server from either a client or directly through a URL.

Only the extraction of data from SQL Server is covered in this chapter. Mod-
ifications of data using cursors, Transact-SQL, linked servers, OPENQUERY,
OPENROWSET, and OPENXML are covered in Chapter 8: Modifying Data.

The SELECT Command

The query most commonly written to retrieve data for display or use
in some other process is the SELECT query. Mastery of the SELECT com-
mand is an important part of any DBA’s toolkit. SELECT is also one of the
more complicated T-SQL statements since there are so many variables and
permutations for its structure. There are some DBAs whose entire job is
based on writing SELECT queries for various reports and data retrieval
processes. They spend all their time designing and optimizing queries and
never worry about any other part of SQL Server.

The tremendous amount of variations of the SELECT statement and a
full treatment of it are beyond the scope of this book. There are much bet-
ter references if you choose to learn more about the SELECT statement and
how to write efficient and well-structured queries. Instead, this section will
detail the main types of SELECT queries and provide a number of examples.
A formal definition of the SELECT statement and its options appears at the
end of this section. This chapter assumes that the reader is familiar with
the SELECT statement and T-SQL and presents definitions and explanations
of the options intended for review but not for initial learning.

Manage result sets by using Transact-SQL.

The SELECT Command 443

2942C07.qxd 7/16/01 11:37 AM Page 443

http://www.sybex.com

All examples in this chapter use the Northwind sample database provided
with SQL Server.

Typically, a query that is used to access data is written to provide the
information to someone or some application. The SELECT statement is a
complex statement with many options, so we will use a series of require-
ments from a fictional company to get data from the database. This will
(hopefully) be more interesting to the reader as well as show how a simple
statement can evolve in a business setting.

Single Table SELECT

The simplest type of SELECT query involves a single table. In this type of
SELECT statement, the query includes the following parts: column list, table
name, qualifiers, and order of data. A simple example of this would be one
that gets a list of customers:

SELECT *

FROM Customers

This statement has only one column in the column list (*) and a table
name (Customers) in it. The order of the data returned is in natural order,
or the order in which the data is stored in the table. The asterisk (*) is a
special character in SQL that is used as short-hand notation instead of
explicitly listing all column names. For the above statement, this is trans-
lated into:

SELECT

CustomerID,

CompanyName,

ContactName,

ContactTitle,

Address,

City,

Region,

PostalCode,

Country,

Phone,

Fax

FROM Customers

444 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 444

http://www.sybex.com

Suppose that we wanted to see a result set with only certain columns
that we will use to give to salespeople as a contact list. The salespeople
will get the details for each row themselves, so we are only concerned with
a few columns. We can explicitly limit the result set to a few columns
by only naming those columns that we wish to return. This is called a
vertical partition. It is called a vertical partition because we are blocking
information along the vertical axis. Figure 7.1 shows the entire table with
the shaded areas representing the blocked information. This query will
return a vertical partition of the Customers table that could be used as a
contact list.

Select

CustomerID,

ContactName,

Phone

From Customers

F I G U R E 7 . 1 A vertical partition of the Customers table

The SELECT Command 445

2942C07.qxd 7/16/01 11:37 AM Page 445

http://www.sybex.com

The ORDER BY Clause

The ORDER BY clause allows you to order the table by any of the columns.
In our example, if we wish to order the list by ContactName, we would do
the following:

SELECT

CustomerID,

ContactName,

Phone

FROM Customers

ORDER BY ContactName

This statement will produce a result set that has the same headers as the
previous one, but the rows will be ordered by the ContactName field
alphabetically. Here is the first result set (abbreviated):

CustomerID ContactName Phone

---------- ------------------------------ ----------------

ROMEY Alejandra Camino (91) 745 6200

MORGK Alexander Feuer 0342-023176

ANATR Ana Trujillo (5) 555-4729

TRADH Anabela Domingues (11) 555-2167

When an ORDER BY clause is included, the default is to display the data in
ascending order. We can alter this by adding a descending (DESC) option to
the ORDER BY clause. We can also include multiple column names in the
clause to gain more control over the order of the result set. If we wanted to
order the results in reverse order (alphabetically) by CustomerID, but in
alphabetical order by contact, the query would look like:

SELECT

CustomerID,

ContactName,

Phone

FROM Customers

ORDER BY CustomerID DESC, ContactName

446 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 446

http://www.sybex.com

And the first five rows of the results:

CustomerID ContactName Phone

---------- ------------------------------ ----------------

WOLZA Zbyszek Piestrzeniewicz (26) 642-7012

WILMK Matti Karttunen 90-224 8858

WHITC Karl Jablonski (206) 555-4112

WELLI Paula Parente (14) 555-8122

WARTH Pirkko Koskitalo 981-443655

If you compare this with the previous result set, you will see that this
requirement was satisfied. The results are ordered by the CustomerID col-
umn in reverse alphabetical order, and then the results are ordered by the
contact name in alphabetical order. The relative positions of the rows
returned have been moved to satisfy the SQL statement, and thus the
requirements.

Text, ntext, and image columns are not valid in the ORDER BY clause.

In addition to reordering the results, we sometimes wish to limit the
results to certain rows that meet some criteria. The next section examines
the WHERE clause and its usefulness in qualifying the results.

The WHERE Clause

The WHERE clause is used to limit the rows that are included in the result set
by specifying certain criteria that each row must meet. The WHERE clause
can be thought of as a filter that is applied to the data being retrieved.
Each row in the table is run through the filter, and only rows that match
the criteria are allowed through the filter.

Now suppose that we are asked to write a series of statements to limit
the results to particular countries. These separate queries will be handed
out to individual salespeople based on the country. We can use the WHERE
clause to qualify which rows will be returned by the server. Let’s write the

The SELECT Command 447

2942C07.qxd 7/16/01 11:37 AM Page 447

http://www.sybex.com

SQL to get the customers in Finland, which will be given to one of the
salespeople:

SELECT

CustomerID,

CompanyName,

ContactName,

Country

FROM Customers

WHERE Country = ‘Finland’

ORDER BY Country DESC, ContactName

This SQL statement contains a WHERE clause that forces the query
processor to evaluate each row and only return those that have a value of
“Finland” for the Country column. The complete result set is shown
below:

CustomerID CompanyName ContactName Country

---------- ---------------------- ---------------- -------

WILMK Wilman Kala Matti Karttunen Finland

WARTH Wartian Herkku Pirkko Koskitalo Finland

Note that there is a WHERE clause in this statement that filters out all the
rows that have a country equal to “Finland” and displays only these rows.
The server does not return any rows with different values for Country (we
know there are rows with “USA” from a prior example). The result set is
limited to, or qualified by, the WHERE clause.

We can include multiple criteria if we wish to limit the result set further.
For example, we could limit our result set to the city of Helsinki with the
addition of another item in our WHERE clause:

SELECT

CustomerID,

CompanyName,

ContactName,

Country

FROM Customers

WHERE Country = ‘Finland’

and City = ‘Helsinki’

ORDER BY Country DESC, ContactName

448 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 448

http://www.sybex.com

In this statement, we have joined the two qualifications with the keyword
AND. We can continue to add as many qualifiers as needed with additional
AND statements between the qualifiers.

You can use any valid T-SQL operator in the WHERE clause. Besides the =
operator, you can use >, <, != or <>, and LIKE.

Enhancing Performance

One of the things often seen in queries written by less experienced
T-SQL programmers is the inclusion of every field in the SELECT
clause that is in the WHERE clause. The example above works with the
City column included in the WHERE clause, but not in the SELECT list.
The two parts of the query are independent and do require any
columns to be included in both.

This is mentioned because returning additional columns that are not
needed can impact your application in a few ways and is poor
programming practice for a couple of reasons. One, this wastes
bandwidth. SQL Server is a client/server-based system (even if
included in an application that uses more than two tiers). This is an
unnecessary use of bandwidth to return columns that are not needed,
even if the query is from a local SQL Server.

The second potential problem is poor query performance. The
inclusion of extra fields that are not needed can cause the query
processor to retrieve data from leaf pages rather than index pages for
some queries. Since the amount of data being returned can affect the
choices made by the query processor, keeping the data retrieved to a
minimum can often speed up query performance, especially in heavily
loaded systems.

In addition to limiting the results with a WHERE clause, there are times
that we wish to return the results from a table with a different column
header. The next section examines this option.

The SELECT Command 449

2942C07.qxd 7/16/01 11:37 AM Page 449

http://www.sybex.com

Specifying Aliases

We now have a list to give to our salesperson, but the column headers at
the top are not clearly understood by business people. Fortunately, the
SELECT statement allows us to change the headers in the query without
having to change the underlying table. We can specify an alias for any or
all of the column names, which this will print out in the result set. Suppose
we want to change the headers to look like the following:

Customer Code Company Contact Country

---------- ------------------ ---------------- --------

WILMK Wilman Kala Matti Karttunen Finland

WARTH Wartian Herkku Pirkko Koskitalo Finland

We would write the following SQL statement:

SELECT

CustomerID ‘Customer Code’,

Companyname as ‘Company’,

‘Contact’ = ContactName,

Country

from Customers

where Country = ‘Finland’

order by Country desc, ContactName

If you look closely at the code, you will see that there are three different
ways that an alias is being specified. The first is to add a space and then
the alias name in quotes after the column name, as seen here:

CustomerID ‘Customer Code’,

The second is to place an “as” in between the column name and alias
name, as seen here:

Companyname as ‘Company’,

The last way places the alias name first with an equality indicator (=)
and then the column name, as seen here:

‘Contact’ = ContactName,

450 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 450

http://www.sybex.com

Any of these ways are valid and will work as expected in SQL Server, but
the second way is an ANSI standard and recommended to ensure as much
compatibility as possible.

Sometimes we wish to limit the number of rows regardless of whether
the rows match the criteria in the WHERE clause. The next section looks at
two ways to accomplish this.

Limiting the Number of Returned Results

There are times when the client wishes to have only a limited number of
results returned. There are two ways to limit the size of the result set
returned from a query: SET ROWCOUNT and TOP.

The SET ROWCOUNT is included for backward compatibility and is not
recommended. This is a session option that is set with the syntax SET ROW-
COUNT N where N is the number of rows that the client wishes to have
returned. All subsequent result sets will be limited to this number of rows
until the session ends (the client disconnects) or SET ROWCOUNT 0 is issued.
This option is limited to returning a specific number of rows without
regard to the total size of the result set.

SQL Server 7 introduced a T-SQL enhancement called TOP that per-
forms the same function as SET ROWCOUNT. However, TOP is an option that
is issued inside the SELECT query. There are also two options with TOP. The
programmer can specify an absolute number of rows or a percentage of
the result set. If the query includes an ORDER BY clause, then the ORDER BY
is applied before the TOP operator.

Suppose that we wanted to take the same list generated above, but
query the database for customers in the U.S. There are 13 customers
located in the U.S., but we do not want to generate a list with more than 7
customers for any one salesperson. We could incorporate the TOP operator
to perform this query as follows:

SELECT TOP 7

CustomerID,

CompanyName,

ContactName,

Country

FROM Customers

WHERE Country = ‘USA’

ORDER BY Country DESC, ContactName

The SELECT Command 451

2942C07.qxd 7/16/01 11:37 AM Page 451

http://www.sybex.com

Which returns this result set:

CustomerID CompanyName ContactName Country

---------- --------------------------------- ------------------ -------

SPLIR Split Rail Beer & Ale Art Braunschweiger USA

LONEP Lonesome Pine Restaurant Fran Wilson USA

TRAIH Trail’s Head Gourmet Provisioners Helvetius Nagy USA

GREAL Great Lakes Food Market Howard Snyder USA

LETSS Let’s Stop N Shop Jaime Yorres USA

LAZYK Lazy K Kountry Store John Steel USA

SAVEA Save-a-lot Markets Jose Pavarotti USA

(7 row(s) affected)

We could generate this same result set using SET ROWCOUNT with the fol-
lowing lines of code:

SET ROWCOUNT 7

SELECT TOP 7

CustomerID,

CompanyName,

ContactName,

Country

FROM Customers

WHERE Country = ‘USA’

ORDER BY Country DESC, ContactName

SET ROWCOUNT 0

Comparing SET ROWCOUNT and TOP

When comparing these two options (SET ROWCOUNT and TOP), you see
that they both have their place in developing applications. Books
Online recommends using TOP, but there are instances where this
option does not fit.

The main place where SET ROWCOUNT has an advantage over TOP is in
reusing code. The same query that is used to return all rows can be
limited to a smaller number of rows with SET ROWCOUNT. If TOP were to
be used, then two queries would have to be written to handle the TOP
differently from the query that returns all rows.

452 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 452

http://www.sybex.com

SET ROWCOUNT is limited to an absolute number of rows, so in those
cases where a percentage of the result set is desired, TOP is the only
choice. SET ROWCOUNT also suffers from the need to “turn off” this
option when complete result sets are needed. Many application
developers will forget this, and subsequent queries may be
misinterpreted by users who see a limited number of results instead
of the complete result set. Also, SET ROWCOUNT only works with
absolute numbers. If a percentage of the results is desired, then TOP
must be used.

As with most SQL Server tools, the choice of whether to use TOP or
SET ROWCOUNT depends on the specific situation.

In Exercise 7.1, you will use a number of queries we just talked about.

E X E R C I S E 7 . 1

Single Table Selects
This exercise will walk you through creating a few different single table
queries using the various options that have been discussed in the
chapter.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

In this example, we want to return a basic contact list from the Cus-
tomers table in the Northwind database. For this contact list we are
interested in the following columns:

� CustomerID

� ContactName

� Phone

This limited list of rows is a vertical partition that contains the same
number of rows as the table, but only the three columns listed.

The SELECT Command 453

2942C07.qxd 7/16/01 11:37 AM Page 453

http://www.sybex.com

E X E R C I S E 7 . 1 (c o n t i n u e d)

2. Type the following query to return in Query Analyzer (be sure the
Northwind database is selected):

SELECT
CustomerID,
ContactName,
Phone
FROM Customers

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query. You should receive the following
results:

CustomerID ContactName Phone
---------- ------------------- ----------
BSBEV Victoria Ashworth (171) 555-1212
CACTU Patricio Simpson (1) 135-5555
CENTC Francisco Chang (5) 555-3392
CHOPS Yang Wang 0452-076545
COMMI Pedro Afonso (11) 555-7647

4. Now let’s limit the results to those customers that have the owner
as the contact. Type the following query into Query Analyzer:

SELECT
CustomerID,
ContactName,
Phone
FROM Customers
WHERE ContactTitle = ‘Owner’

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query. You should receive the following
results (results are abbreviated):

CustomerID ContactName Phone
---------- ------------------------------ --------------
ANATR Ana Trujillo (5) 555-4729
ANTON Antonio Moreno (5) 555-3932
BOLID Martín Sommer (91) 555 22 82
BONAP Laurence Lebihan 91.24.45.40
CHOPS Yang Wang 0452-076545

454 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 454

http://www.sybex.com

E X E R C I S E 7 . 1 (c o n t i n u e d)

6. Let’s now order the results by the phone number so that those cus-
tomers with similar phone numbers are grouped together. Type the
following query into Query Analyzer:

SELECT
CustomerID,
ContactName,
Phone
FROM Customers
WHERE ContactTitle = ‘Owner’
ORDER BY Phone

7. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query. You should receive the following
results (results are abbreviated):

CustomerID ContactName Phone
---------- ----------------------------- ---------------
PARIS Marie Bertrand (1) 42.34.22.66
GROSR Manuel Pereira (2) 283-2951
WHITC Karl Jablonski (206) 555-4112
WOLZA Zbyszek Piestrzeniewicz (26) 642-7012
LETSS Jaime Yorres (415) 555-5938
TORTU Miguel Angel Paolino (5) 555-2933
ANTON Antonio Moreno (5) 555-3932

8. Lastly, let’s limit the results to the first 20 percent of the results. The
previous result set contained 17 rows, so we expect to see 4 rows in
the next result set (17 × .2 = 3.4 rounded to 4). Type the following
query into Query Analyzer:

SELECT TOP 20 PERCENT
CustomerID,
ContactName,
Phone
FROM Customers
WHERE ContactTitle = ‘Owner’

CustomerID ContactName Phone
---------- ------------------------------ ----------------------
PARIS Marie Bertrand (1) 42.34.22.66
GROSR Manuel Pereira (2) 283-2951
WHITC Karl Jablonski (206) 555-4112
WOLZA Zbyszek Piestrzeniewicz (26) 642-7012

The SELECT Command 455

2942C07.qxd 7/16/01 11:37 AM Page 455

http://www.sybex.com

Inner Joins

A single table SELECT statement has limited use in relational databases.
The power of a relational database comes from its ability to gather
information from multiple tables and link the information together. The
most common method of linking information in different tables is the
inner join. An inner join works by comparing columns in two tables and
returning the requested information if the values of the columns match.

Since it is easier to explain this with an example, let’s suppose that we
have a new request from our salespeople. They want to see all of the
orders for each customer along with the customer ID, company name, and
the date that the order was placed. We could write:

SELECT

Customers.CustomerID ‘Customer Code’,

CompanyName as ‘Company’,

OrderID,

OrderDate,

Country

FROM Customers, Orders

WHERE Country = ‘Finland’

AND City = ‘Helsinki’

AND CustomerID = CustomerID

ORDER BY Country DESC, ContactName

However, this statement will actually generate the following error:

Server: Msg 209, Level 16, State 1, Line 1

Ambiguous column name ‘CustomerID’.

The CustomerID column appears in both the Customers and Orders
tables, and the query processor does not know which column to use.

In the following query, we have further qualified the column in the
WHERE clause that is to be used by including the table name as a prefix to
the column name and using a period as a separator. The corrected SQL
statement is below:

SELECT

Customers.CustomerID ‘Customer Code’,

Companyname as ‘Company’,

OrderID,

456 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 456

http://www.sybex.com

OrderDate,

Country

FROM Customers, Orders

WHERE Customers.Country = ‘Finland’

AND City = ‘Helsinki’

AND Customers.CustomerID = Orders.CustomerID

ORDER BY Country DESC, ContactName

This returns the following result set:

Customer Code Company OrderID OrderDate Country

------------- ------------- ----------- ----------- --------

WILMK Wilman Kala 10615 1997-07-30 Finland

WILMK Wilman Kala 10673 1997-09-18 Finland

WILMK Wilman Kala 10695 1997-10-07 Finland

WILMK Wilman Kala 10873 1998-02-06 Finland

WILMK Wilman Kala 10879 1998-02-10 Finland

WILMK Wilman Kala 10910 1998-02-26 Finland

WILMK Wilman Kala 11005 1998-04-07 Finland

If you run this on your SQL Server, you will likely see the time included
with the order date. I deleted this column so that it would fit on the page.
Typing the table name in front of each column results in lots of wasted
keystrokes, not to mention that it gets rather annoying. Fortunately,
T-SQL allows the use of aliases for the table name as well as the column
name. Here is the query rewritten with an alias used for each of the tables:

SELECT

c.CustomerID ‘Customer Code’,

c.Companyname as ‘Company’,

o.OrderID,

o.OrderDate,

c.Country

FROM Customers c, Orders o

WHERE c.Country = ‘Finland’

AND c.City = ‘Helsinki’

AND c.CustomerID = o.CustomerID

ORDER BY c.Country DESC, c.ContactName

The SELECT Command 457

2942C07.qxd 7/16/01 11:37 AM Page 457

http://www.sybex.com

Using aliases is recommended and actually makes it easier to read your
code. You should qualify all columns and tables in every query and use
aliases to make it easier. In my queries, I usually develop an abbreviation
for each table in the database and tend to use it over and over in all queries.
I have collegues who always alias each table with ‘a’, ‘b’, ‘c’, etc. You can
choose whatever method is more comfortable for you.

The ANSI SQL standard specifies that inner joins be qualified in a
slightly different manner. Here is the above code rewritten with the ANSI
style inner join syntax:

SELECT

c.CustomerID ‘Customer Code’,

c.Companyname as ‘Company’,

o.OrderID,

o.OrderDate,

c.Country

FROM Customers c INNER JOIN Orders o ON C.CustomerID =
O.CustomerID

WHERE c.Country = ‘Finland’

AND c.City = ‘Helsinki’

ORDER BY c.Country desc, c.ContactName

In this query, the join between the tables has been moved from the WHERE
clause to the FROM clause following the ON keyword. The columns being
joined follow the same syntax that is used in the WHERE clause, and multi-
ple qualifications can be specified by separating them from each other with
the AND keyword.

Outer Joins

Inner joins require that the qualifying conditions be met for each row to be
included in the result set. Outer joins allow all rows from one or more
tables to be included in the result set. There are three types of outer joins
that can be written in T-SQL: left outer joins, right outer joins, and full
outer joins.

458 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 458

http://www.sybex.com

Left and Right Outer Joins

The left and right outer joins are very similar and differ only in which
table includes all its rows. The left outer join includes all the rows from
the table on the left side of the join syntax, while the right outer join is
just the opposite. This can be confusing, so let’s continue with an example.

Our Finland salesperson is a little bored since there are only two cus-
tomers in Finland. We are requested to generate a list of customers who
have no orders so that our salesperson can try and make some sales by
contacting these customers. There are a few ways this could be done, but
since we are talking about outer joins, we will use an outer join. Starting
with the query from above, we will change the inner join to an outer join.
We will also remove the existing WHERE clause and add a slightly different
one. Here is the code:

SELECT

c.CustomerID ‘Cust Code’,

c.Companyname as ‘Company’,

o.OrderID,

o.OrderDate ‘OrdDate’,

c.Country

FROM Customers c LEFT OUTER JOIN Orders o

ON C.CustomerID = O.CustomerID

WHERE o.OrderID Is NULL

ORDER BY c.Country DESC, c.ContactName

In this query, the inner keyword is replaced by left outer in the FROM
clause. Since we have specified a left outer join and the Customers table is
on the left side of this expression, this will generate a list of all customers
whether or not there are matching rows in the Orders table. Wherever
there is no matching row, SQL Server will return NULL values as place-
holders for those columns selected from the Orders table. Matching rows
return the data from the Orders table for the OrderID and OrderDate
columns. The new WHERE clause merely limits the result set to those rows
where a NULL has been placed in the OrderID column so we only see the
customers with no orders. The result set looks like this:

Cust Code Company OrderID OrdDate Country

--------- ------------------------------------ ------- ------- -------

FISSA FISSA Fabrica Inter. Salchichas S.A. NULL NULL Spain

PARIS Paris spécialités NULL NULL France

The SELECT Command 459

2942C07.qxd 7/16/01 11:37 AM Page 459

http://www.sybex.com

The right outer join works the same way except the table on the right
side of the join expression will return all rows. Other than this, the two
joins work in the exact same manner.

T-SQL allows an alternate, legacy syntax for outer joins in the SELECT
statement. Here is the same query rewritten using this syntax:

SELECT

c.CustomerID ‘Cust Code’,

c.Companyname as ‘Company’,

o.OrderID,

o.OrderDate ‘OrdDate’,

c.Country

FROM Customers c, Orders o

WHERE o.OrderID IS NULL

AND C.CustomerID *= O.CustomerID

ORDER BY c.Country DESC, c.ContactName

Notice that the qualification that was in the ON clause has been moved
back to the WHERE clause and the equality symbol has an asterisk (*) added
to it on the left side. This is legacy syntax for an outer join. While still sup-
ported in SQL Server 2000, this syntax can lead to unexpected behavior in
complex queries and is not recommended.

Full Outer Joins

The full outer join returns all rows from both tables, matching up the rows
wherever a match can be made and placing NULLs in the places where no
matching row exists. This concept is best explained with an example, so
let’s examine another request from the Northwind salesperson.

Suppose our salesperson wanted to get a list of cities in which there are
customers along with any employees in these cities. In addition, if there is
an employee in a city with no customers, this should be included as well.
This is a description of a full outer join, where we want to return all rows
from both tables, matching the rows up wherever possible.

The following code will implement a full outer join by using the key-
words FULL OUTER JOIN between the two tables:

SELECT

c.CustomerID ‘Cust Code’,

c.city as ‘Cust City’,

460 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 460

http://www.sybex.com

c.country,

e.firstname,

e.lastname

FROM employees e FULL OUTER JOIN customers c

ON e.city = c.city

This returns a result set that includes these rows (results are
abbreviated):

Cust Code Cust City country firstname lastname

--------- ------------- --------------- ---------- ---------

WHITC Seattle USA Laura Callahan

WILMK Helsinki Finland NULL NULL

WOLZA Warszawa Poland NULL NULL

NULL NULL NULL Andrew Fuller

NULL NULL NULL Margaret Peacock

As you can see in this result set, the first row has a match between the
employee city and the customer city. The data from each table row is
placed in the appropriate column. The second and third rows show rows
in the Customers table for which there was no matching row in the
Employees table. SQL Server returned the data from the Customers table,
but since there was no matching row in Employees, NULLs were returned
as placeholders in each of the columns that represent data from the
Employees table. The last two rows show NULL values for the columns
representing data from the Customers table. Since there were no matching
rows in the Customers table for these employees, only the data from the
Employees table is included.

In order to fit this result set on the page, the city from the Employees table
is not included. We would have to use the names in this result set to query
the Employees table for the location of these employees.

The SELECT Command 461

2942C07.qxd 7/16/01 11:37 AM Page 461

http://www.sybex.com

Cross Joins

The cross join is also referred to as a cross product. You will rarely
find a use for this type of join unless you need to generate test data. A
cross product can generate quite a bit of data with a single query and
is useful to produce large amounts of data. A cross join will generate a
result set that includes all combinations of rows from both tables. The
number of rows returned is the product of the numbers of rows in
each table. Let’s look at an example.

Our salesperson is busy calling customers right now, but the
purchasing people want a list of all suppliers and categories and every
possible combination. Since we are busy, we decide not to ask why
they want this data or how they will use it and simply write a cross
join query, as seen here:

SELECT *
FROM Suppliers CROSS JOIN Categories

There are 29 rows in the Suppliers table and 8 rows in the Categories
table. Their product is 29 × 8 = 232. This query will return 232 rows,
which will include all combinations of suppliers and categories. Notice
that there is no need to add a qualifier for this type of join. Since all
combinations are being returned, it does not make sense to qualify
the join. We could still add a WHERE clause and limit the result set if we
choose.

An alternative to specifying a cross join specifically is as follows:

SELECT *
FROM Suppliers, Categories

This will return the same result set as the CROSS JOIN query. Often we
see complex queries with many tables (usually more than five) that
implement a cross join. This is almost always an oversight on the
programmer’s part in forgetting to include a qualifier between two
tables.

When reviewing anyone else’s code, the first thing you should check
is that all tables are joined together to ensure that no cross products
occur.

462 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 462

http://www.sybex.com

In Exercise. 7.2, we will look at the various joins.

E X E R C I S E 7 . 2

Joining Tables Together
This exercise will look at various ways that tables in the Northwind
database can be joined together.

Suppose that we wish to list each order number along with the
quantity purchased and the name of the product for each line item in
the order. This is an example of an inner join where we want to return
rows that match in all the tables. For this query, we will join two tables
together to retrieve the information.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server 2000 ➢ SQL
Query Analyzer.

2. Use an inner join between the Order Details table and the Products
table. Type the following query to return in Query Analyzer (be sure
the Northwind database is selected):

SELECT
o.OrderID,
o.Quantity,
p.ProductName

FROM [Order Details] o, Products p
WHERE o.ProductID = p.ProductId

3. You should receive the following results (results are abbreviated):

OrderID Quantity ProductName
----------- -------- -----------------------------------
10248 12 Queso Cabrales
10248 2 Tofu
10248 1 Genen Shouyu
10248 10 Singaporean Hokkien Fried Mee
10248 5 Mozzarella di Giovanni

Now we wish to find out which customers have never ordered any-
thing. This requires an outer join since we want to return rows from
the Customers table that have no match in the Orders table.

The SELECT Command 463

2942C07.qxd 7/16/01 11:37 AM Page 463

http://www.sybex.com

E X E R C I S E 7 . 2 (c o n t i n u e d)

4. Use a left outer join to return customers with no matching rows
in the Orders table. A WHERE clause is used to limit the results to
only the rows that have no match. Type the following query to
return in Query Analyzer:

SELECT
c.CustomerID,
o.OrderId

FROM Customers c LEFT OUTER JOIN Orders o
ON c.CustomerID = o.CustomerID

WHERE o.OrderID IS NULL

5. You should receive the following results (results are abbreviated):

CustomerID OrderId
---------- ------------
PARIS NULL
FISSA NULL

Aggregate Operators

Aggregate operators provide a summary of information in a query. The
aggregate operations that are supported in SQL Server are:

� SUM

� AVG

� COUNT

� MIN

� MAX

These functions allow the programmer to summarize information using
any of the previous mathematical operations.

If we were requested to provide a report that showed how many orders
each customer had and the total dollar amount of all orders for that cus-
tomer, we could write:

SELECT

c.Country,

c.CustomerID,

COUNT(o.orderID) ‘Total Orders’,

464 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 464

http://www.sybex.com

SUM(od.UnitPrice * od.Quantity) ‘Total Sales’

FROM Customers c, Orders o, [Order Details] od

WHERE c.CustomerID = o.CustomerID

AND o.OrderID = od.OrderID

GROUP BY c.CustomerID

This query includes three tables, but is very similar to the inner join
queries discussed earlier.

In the following sections, we will discuss how to use the aggregate oper-
ators, as well as how to group the results using the various aggregate
options.

The GROUP BY Clause

There is one additional section in this query: the GROUP BY clause.
Whenever a non-aggregated field is included in a query, it must be
accompanied by the GROUP BY clause and listed in this clause. This tells the
query processor where to group the information and provide totals.
Without this clause, the query processor returns an error informing the
programmer that the field must be included in an aggregate or placed in
the GROUP BY clause.

The (abbreviated) results for this query are:

Country CustomerID Total Orders Total Sales

--------------- ---------- ------------ -----------------

Germany ALFKI 12 4596.2000

Mexico ANATR 10 1402.9500

Mexico ANTON 17 7515.3500

UK AROUT 30 13806.5000

An improperly structured GROUP BY clause can lead to some misleading
results. Be sure that you understand how the data is being summarized
in your query. It is easy to misinterpret the results if you do not pay close
attention to which fields are included in your GROUP BY clause and in
what order. Including an ORDER BY clause can make understanding the
results easier.

The SELECT Command 465

2942C07.qxd 7/16/01 11:37 AM Page 465

http://www.sybex.com

The HAVING Clause

Suppose that we wanted to limit the results to those countries and
customers that had spent $10,000 or more and with less than 20 orders.
Aggregates can include a HAVING clause for this purpose. A HAVING clause
is like a WHERE clause for aggregates. The following query:

SELECT

c.Country,

c.CustomerID,

COUNT(o.orderID) ‘Total Orders’,

SUM(od.UnitPrice * od.Quantity) ‘Total Sales’

FROM Customers c, Orders o, [Order Details] od

WHERE c.CustomerID = o.CustomerID

AND o.OrderID = od.OrderID

GROUP BY c.country, c.CustomerID

HAVING SUM(od.UnitPrice * od.Quantity) > 10000

AND COUNT(o.OrderID) < 20

includes the HAVING clause with two qualifications: one for the total sales
and one for the number of orders. Only those rows that meet both qualifi-
cations in the HAVING clause will be included in the result set.

CUBE and ROLLUP

There are also two summary operators that will provide additional data
for the aggregate values: CUBE and ROLLUP. These two operators are used
with the GROUP BY clause to add additional rows that summarize the
totals by groups. CUBE will provide additional summary rows for every
combination of group and subgroup that is returned by the query. ROLLUP
will provide summary rows in a hierarchical order from the lowest level
group to the highest. The number of rows returned by ROLLUP may vary
depending on the order of the columns in the GROUP BY clause. Here is an
example:

SELECT

c.CustomerID,

c.City,

c.Country,

COUNT(o.orderID) ‘Total Orders’,

SUM(od.UnitPrice * od.Quantity) ‘Total Sales’

466 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 466

http://www.sybex.com

FROM Customers c, Orders o, [Order Details] od

WHERE c.CustomerID = o.CustomerID

AND o.OrderID = od.OrderID

GROUP BY c.country, c.city, c.CustomerID

WITH CUBE

HAVING SUM(od.UnitPrice * od.Quantity) > 10000

ORDER BY c.country

The above query added the City column so that the effects of CUBE and
ROLLUP are visible. You can substitute ROLLUP for CUBE to see the effects
on the results. These operators are not often used, as the client must be
able to distinguish the summary rows from data rows. The summary
rows in the result set will have NULLs placed in the columns that are
being summarized.

The COMPUTE Clause

In addition to the aggregates included in the SELECT list, the COMPUTE
clause is included in SQL Server for backward compatibility to produce
aggregates as extra result sets. This operator will produce additional result
sets that contain the aggregates requested. If our Finland salesperson
wanted to see each order for his customers and then the total for all
orders, we could use the following query:

SELECT c.CustomerID, o.OrderID, (od.quantity * od.unit-
price) ‘total’

FROM ORDERS o, [order details] od, Customers c

WHERE c.CustomerID = o.CustomerID

AND o.OrderID = od.OrderID

and c.Country = ‘Finland’

COMPUTE SUM(od.quantity * od.unitprice)

This query will list each order and the total sales price for this order.
After this result set, a second result set is included with the sum of all the
orders as a single column.

Books Online recommends that this operator be replaced by the ROLLUP
operation or the use of Analysis Services; however, it is still valid T-SQL and
should be understood for the exam.

The SELECT Command 467

2942C07.qxd 7/16/01 11:37 AM Page 467

http://www.sybex.com

COMPUTE also includes an optional BY keyword that will break the
results down into further result sets. The following code:

SELECT c.CustomerID, o.OrderID, (od.quantity * od.unit-
price) ‘total’

FROM Orders o, [order details] od, Customers c

WHERE c.CustomerID = o.CustomerID

AND o.OrderID = od.OrderID

AND c.CustomerID LIKE ‘AN%’

ORDER BY c.customerID

COMPUTE SUM(od.quantity * od.unitprice) BY c.CustomerID

will produce four different result sets, one for each of the customers since
the customer is included in the BY clause. After each of these customer
result sets, there is a further result set produced by the COMPUTE clause that
has the sum of the orders for that customer.

Many client applications cannot handle multiple result sets, so before using
the COMPUTE clause in a query, be sure that the application is prepared for
multiple result sets. The recommended alternative is to use the ROLLUP
option and have the client application decode the single result set.

In Exercise 7.3, we will show you how to use aggregates.

E X E R C I S E 7 . 3

Using Aggregates
Aggregates are most helpful in summarizing data for reports. Often a
user will want to see the total of some numeric values or the endpoints
for date ranges. This exercise will use aggregates to analyze the sales
information that is contained in the Northwind database.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

A classic example of an aggregate is generating the total sales rev-
enue for a time period. Suppose that we were interested in knowing
the total sales volume by customer for 1997.

468 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 468

http://www.sybex.com

E X E R C I S E 7 . 3 (c o n t i n u e d)

2. Write a query that returns the total sales for each customer for 1997.
Use the SUM operator to generate the total sales as the quantity of
an item purchased multiplied by the unit price. In Query Analyzer,
type the following:

SELECT
o.CustomerID,
SUM(od.Quantity * od.UnitPrice) ‘Total Sales’

FROM Orders o, [Order Details] od
WHERE o.OrderID = od.OrderID
AND o.OrderDate > ‘12/31/1996’
AND o.OrderDate < ‘01/01/1998’
GROUP BY o.CustomerID

3. You should receive the following results (results are abbreviated):

CustomerID Total Sales
---------- --------------------
ALFKI 2294.0000
ANATR 799.7500
ANTON 6452.1500
AROUT 6589.0000

4. Now, we wish to limit this list to those customers who spent more
than $20,000 in 1997. Limit the results from above to those cus-
tomers with a total sales amount greater than $20,000 using a HAV-
ING clause. Type the following in Query Analyzer:

SELECT
o.CustomerID,
SUM(od.Quantity * od.UnitPrice) ‘Total Sales’

FROM Orders o, [Order Details] od
WHERE o.OrderID = od.OrderID
AND o.OrderDate > ‘12/31/1996’
AND o.OrderDate < ‘01/01/1998’
GROUP BY o.CustomerID
HAVING SUM(od.Quantity * od.UnitPrice) > 20000

5. You should receive the following results (results are abbreviated):

CustomerID Total Sales
---------- -------------------
ERNSH 53467.3800
HUNGO 23959.0500
MEREP 26087.1000
QUICK 64238.0000
SAVEA 60672.6400

The SELECT Command 469

2942C07.qxd 7/16/01 11:37 AM Page 469

http://www.sybex.com

The UNION Command

The UNION command is used to join two SELECT queries. It is placed
between two queries, and the two result sets are combined and returned to
the client as a single result. The results can include or exclude duplicates.
Both queries that are included in the UNION must have the same number of
columns.

The following query will return a list of cities for both customers and
employees:

SELECT c.City

FROM Customers c

UNION

SELECT e.City

FROM Employees e

This list does not have any duplicates included in the results. The UNION
operator compiles both result sets and removes any duplicates before send-
ing the data back to the client. If we wanted to see duplicates (and see how
many entities are in a city), we could include the ALL option in the UNION
command:

SELECT c.City

FROM Customers c

UNION ALL

SELECT e.City

FROM Employees e

This result set will have duplicates included.

The Distinct Command

The DISTINCT command is also used to remove duplicates from a single
result set in the same manner that UNION removes them from two result
sets. If we issue the following query:

SELECT DISTINCT e.City

FROM Employees e

470 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 470

http://www.sybex.com

we get back a list of cities with no duplicates. If this command is used with
multiple columns in the SELECT list, then duplicates are removed from the
entire result set, not just the first column listed. Here are the complete
results (there are 9 rows in this table):

City

Kirkland

London

Redmond

Seattle

Tacoma

Scalars

A scalar, also know as a literal, is essentially a constant value. There are
times when a single value is needed in a result set for some reason. This
may be a simple result that returns some value, such as a name, to
the user:

SELECT ‘Steve’ as ‘Name’

Name

————

Steve

We can also use a scalar in combination with a logical test to return some
value we specify back in the result set. Suppose we are generating (yet
another) sales report and the salespeople want to know only if a customer
is a foreign or a domestic customer. We could write:

SELECT CASE WHEN c.Country = ‘USA’

THEN ‘Domestic’

ELSE ‘Foreign’

END ‘Status’,

c.CustomerID

FROM Customers c

The SELECT Command 471

2942C07.qxd 7/16/01 11:37 AM Page 471

http://www.sybex.com

This would return the following (abbreviated):

Status CustomerID

-------- ----------

Foreign LAUGB

Domestic LAZYK

Foreign LEHMS

Domestic LETSS

Foreign LILAS

In this query, we have combined a CASE expression with a scalar to
return one of two values depending on how the CASE is evaluated for each
row in the result set.

Subqueries

A subquery is a query embedded inside another query. There are many
possibilities for subqeuries, so we will cover the three main places that
these can appear and that you should be aware of for the exam. You can
use a subquery inside the SELECT list in place of a column, in the FROM
clause in place of a table, and in the WHERE clause in place of a column or
literal qualifier.

Subqueries in the SELECT list

When a subquery is used in the SELECT list, it returns data that takes the
place of a column. It is rare when this type of query cannot be structured
in another way, but it is valid T-SQL syntax. This type of subquery is
called a scalar subquery since it can only return one value.

If our salesperson wanted a report of all orders with a specific supplier’s
name prefixed, we could use the following query:

SELECT

(SELECT ContactName

FROM Suppliers WHERE ContactTitle = ‘Sales Agent’

) ‘Agent’,

o.OrderID FROM Orders o

472 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 472

http://www.sybex.com

We would get these results (abbreviated):

Agent OrderID

--

Lars Peterson 10249

Lars Peterson 10251

Lars Peterson 10258

Lars Peterson 10260

Subqueries in the FROM Clause

When a subquery is used in the FROM clause, this is referred to as a derived
table. An alias must be specified, and the columns from this query can be
used just like the columns in any normal table included in the WHERE
clause. The following is an example of this type of query:

SELECT a.*, b.*

FROM Customers a, (SELECT Ordered, OrderDate, CustomerID

FROM Orders) b

WHERE a.CustomerID = b.CustomerID

While not a very efficient or useful query, this does return a list of cus-
tomers along with their order ID and order date for each of their orders.

Subqueries in the WHERE Clause

The last place that subqueries normally occur is in the WHERE clause as part
of a qualification. When used as a part of a qualifying statement, a
subquery can return a single row, which is used with the >, <, =, and LIKE
operators. If the subquery returns multiple rows, then it would be part of
an IN operator and take the place of a comma-delimited list.

There is a special type of subquery called a correlated subquery that can
be used in the WHERE clause. This subquery, also called the inner query, is
correlated when it is reevaluated for each row that is passed through the
outer query. The subquery is said to be correlated like the results from the
subquery correlate directly to the row being evaluated in the outer query.
This is probably better explained with two examples; the first is a subquery

The SELECT Command 473

2942C07.qxd 7/16/01 11:37 AM Page 473

http://www.sybex.com

in the WHERE clause that is not correlated. Here is a query that lists the
order ID and date for all orders placed by customers in the U.S.:

SELECT o.OrderID, o.OrderDate

FROM Orders o

WHERE o.CustomerID in (SELECT CustomerID

FROM Customers c

WHERE Country = ‘USA’

)

This subquery will return the same number of rows containing the same
data for each row that is evaluated from the outer query. If the row in the
outer query has a customer ID that matches a customer ID returned by the
subquery, the row is returned in the result set.

This next query shows customers and the order that directly proceeded
a late order:

SELECT CustomerID, OrderID

FROM Orders o

WHERE OrderDate = (SELECT max(OrderDate)

FROM Orders o1

WHERE o1.CustomerID = o.CustomerID

AND o1.RequiredDate < o1.ShippedDate)

In this query, the subquery returns different results depending on which
row is being evaluated in the outer query. The inner query cannot even be
evaluated without having some data from the outer query. This subquery
is correlated to the outer query by Customer ID.

SELECT: By the Book

This chapter has examined each of the sections and many of the
options of the SELECT statement. The formal syntax for the SELECT
statement is as follows:

SELECT statement ::=
< query_expression >
[ORDER BY { order_by_expression | column_position [ASC

| DESC] }
[,...n]]

474 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 474

http://www.sybex.com

[COMPUTE
{ { AVG | COUNT | MAX | MIN | SUM } (expression) } [

,...n]
[BY expression [,...n]]

]
[FOR { BROWSE | XML { RAW | AUTO | EXPLICIT }

[, XMLDATA]
[, ELEMENTS]
[, BINARY base64]

}
]

[OPTION (< query_hint > [,...n])]

< query_expression > ::=
{ < query_specification > | (< query_expression >) }
[UNION [ALL] < query_specification | (<

query_expression >) [...n]]

< query_specification > ::=
SELECT [ALL | DISTINCT]

[{ TOP integer | TOP integer PERCENT } [WITH TIES]
]

< SELECT_list >
[INTO new_table]
[FROM { < table_source > } [,...n]]
[WHERE < search_condition >]
[GROUP BY [ALL] group_by_expression [,...n]

[WITH { CUBE | ROLLUP }]
]
[HAVING < search_condition >]

This definition of the SELECT statement shows the outline of the
SELECT with its options first. Inside this SELECT, there is a placeholder
for the <query_expression> that is defined in the second section.
This in turn, includes a placeholder for the <query_specification>,
which is defined in the third section.

Some of these options will be discussed in later sections, like the FOR
section, which applies to XML formatted data, and the INTO clause,
which is a method for inserting bulk data into a table. For more
detailed explanations of the other options, Books Online or a
reference devoted to T-SQL is recommended.

The SELECT Command 475

2942C07.qxd 7/16/01 11:37 AM Page 475

http://www.sybex.com

Functions for Transforming Data

SQL Server 2000 includes a number of functions for changing the
values of a column, scalar, or variable. These functions can be grouped
into various categories depending on their datatypes. Since this chapter is
assuming you have some familiarity with T-SQL, Tables 7.1 through 7.3
list the functions and provide a description of each. More detailed infor-
mation on these functions is available in Books Online.

TA B L E 7 . 1 General Functions

Function Description

ISDATE(exp) Returns 1 if exp is a valid date

ISNULL(exp1,exp2)

ISNUMERIC(exp) Returns 1 if exp is a number type

NULLIF(exp1, exp2)

TA B L E 7 . 2 String Functions

Function Description

ASCII(char)

CHAR(int)

CHARINDEX(string1, string2, start)

DIFFERENCE(string1, string2) Returns the difference between the
SOUNDEX values of string1 and
string2.

Returns the starting position for
string1 in string2 optionally starting
at position start.

Returns the character value for
an ASCII integer value.

Returns the ASCII value of a
character.

Returns NULL if both expressions are
equivalent

Returns exp2 if exp1 is NULL, otherwise exp1
is returned

476 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 476

http://www.sybex.com

TA B L E 7 . 2 String Functions (continued)

Function Description

LEFT(string, int)

LEN(string) Returns the length of the string.

LOWER(string)

LTRIM(string)

NCHAR(int)

PATINDEX(string1, string2)

QUOTENAME(string, char)

REPLACE(string1, string2, string3)

REPLICATE(string, int)

REVERSE(string)

RIGHT(string, int) Returns the int number of characters
from the right side of the string.

Returns the reverse of a character
expression.

Returns a string with int number of
char repeated.

Searches string1 for string2 and
replaces string2 with string3.

Returns a Unicode string with the
delimiter char added to make the
input string a valid Microsoft® SQL
Server™ delimited identifier. If no
second parameter is passed, char
defaults to the square bracket.

Returns the starting position of
string1 in string2. Wildcards may
be used in string1.

Returns the UNICODE character
represented by int.

Returns the string with all blank
spaces from the left side of the
string removed.

Returns the string passed in with all
characters converted to lowercase.

Returns the first int characters from
string.

Functions for Transforming Data 477

2942C07.qxd 7/16/01 11:37 AM Page 477

http://www.sybex.com

TA B L E 7 . 2 String Functions (continued)

Function Description

RTRIM(string)

SOUNDEX(string)

SPACE(int) Returns int number of spaces.

STR(float, length, decimal) Converts a numeric value to a string.

STUFF(string, start, length, char)

SUBSTRING(string, start, int)

UNICODE(Unicode string)

UPPER(string)

TA B L E 7 . 3 Date and Time Functions

Function Description

DATEADD(datepart, int, date) Returns a date based on adding (or
subtracting) an interval from date.
The interval type (days, hours, etc.)
is specified by datepart and the
length of the interval is specified
by int.

Returns the string passed in with all
characters converted to uppercase.

Returns the numeric value of the
first character of a UNICODE
expression.

Returns a portion of the string
string starting at position start and
continuing for int characters.

Removes length characters from
string starting with character start
and replaces them with char.

Returns a four-character code that
can be used to evaluate how similar
this string is to another.

Returns the string with all blank
spaces from the end of the string
removed.

478 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 478

http://www.sybex.com

TA B L E 7 . 3 Date and Time Functions (continued)

Function Description

DATEDIFF(date1, date2)

DATENAME(datepart, date)

DATEPART()

DAY(date)

GETDATE()

GETUTCDATE

MONTH(date)

YEAR

There are number of other functions that can be used to gather system
information, get configuration information, etc., which are available in SQL
Server. For a detailed description of all these functions, see Books Online.

Returns the numeric year number
of date.

Returns the numeric month number
of date.

Returns the datetime value that
represents the current Universal
Time Coordinate. Calculated based
on the server time zone and the
current time.

Returns the current server date
and time.

Returns the numeric day of the
week for date.

Returns the specific part of the date
as an integer.

Returns a character string that rep-
resents the datepart of date.

Returns the difference between two
dates.

Functions for Transforming Data 479

2942C07.qxd 7/16/01 11:37 AM Page 479

http://www.sybex.com

Cursors

Cursors are programming constructs that derive their functionality
from procedural programming languages. They simulate a table structure,
derived from a result set, and allow the programmer to access the data row
by row. The programmer can also perform operations on the underlying
data in the existing table. While useful and even essential in some areas,
cursors are not recommended for most solutions. The row-by-row nature
of a cursor is fundamentally opposed to the set processing that is the basis
and strength of SQL Server.

A good description of a cursor might be a temporary table that you
define based on a query, but a table that you can only access one row at a
time without requiring the computation of a new primary key for each
row. You can retrieve all the values from that row, but each row must be
retrieved separately. In order to store two rows’ worth of data, you must
have twice as many variables as you have fields in the cursor.

While ANSI SQL includes the concept of cursors in the SQL standard, you
should avoid using them whenever possible. There are usually set-oriented
approaches that are both more efficient and quicker to execute.

Cursors can be used to update data as well as retrieve it row by row,
but cannot be used to insert data. They can be used as a temporary storage
area for a set of data that is protected from changes. Certain configuration
options can either ensure that changes to the underlying data show up in
SQL Server or that the data is “frozen” when the cursor is declared.

While most situations should not require a cursor, there are times that a
cursor is needed and indeed may be the most efficient method of process-
ing a set of data. In the following sections, I will describe a few examples
of cursor usage and then provide a more detailed definition of the various
cursor parameters and options.

Manage result sets by using cursors and Transact-SQL.

480 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 480

http://www.sybex.com

Using a Cursor

Printing reports is usually the function of a front-end application, but there
are times when SQL Server will be needed or just used to produce a
formatted report. Reporting is a classic example of where T-SQL will be
unable to produce the desired output because the report does not conform
to the structure of most result sets. In the Northwind database, we have
customers and orders in separate tables. Suppose our sales manager
wanted a customer history report in the following format:

Customer:ALFKI - Alfreds Futterkiste

Order:10643 (Aug 25 1997)

Order:10692 (Oct 3 199)

Order:10702 (Oct 13 199)

Customer:ANATR - Ana Trujillo Emparedados y helados

Order:10625 (Aug 8 1997)

Order:10759 (Nov 28 199)

Customer:ANTON - Antonio Moreno Taquería

Order:10507 (Apr 15 1997)

Order:10535 (May 13 199)

Order:10573 (Jun 19 199)

Order:10677 (Sep 22 199)

Order:10682 (Sep 25 199)

Customer:AROUT - Around the Horn

Order:10453 (Feb 21 1997)

Order:10558 (Jun 4 199)

Order:10707 (Oct 16 199)

Order:10741 (Nov 14 199)

Order:10743 (Nov 17 199)

Order:10768 (Dec 8 199)

Order:10793 (Dec 24 199)

This report would be extremely difficult to produce using T-SQL and its
set-oriented statements. The grouping and ordering of the data is difficult
enough without trying to produce the formatting that indents the order
and places it directly below the customer data. There are a few ways to
implement this report (Temp tables, lots of UNIONs, etc.) without a cursor,
but they would not be easier or simpler.

The code in Listing 7.1 will produce the previous report.

Cursors 481

2942C07.qxd 7/16/01 11:37 AM Page 481

http://www.sybex.com

Listing 7.1: Sales Report Using a Cursor

DECLARE rpt CURSOR FOR

SELECT c.CustomerID, c.CompanyName, o.OrderID, o.Order-
Date

FROM Customers c, Orders o

WHERE c.CustomerID = o.CustomerID

AND c.CustomerID LIKE ‘A%’

AND DatePart(year, o.OrderDate) = 1997

DECLARE @cid char(8),

@cname char(40),

@ordid char(8),

@orddt datetime,

@old char(8)

OPEN rpt

FETCH NEXT FROM rpt INTO @cid, @cname, @ordid, @orddt

SELECT @old = ‘ ‘

WHILE @@fetch_status = 0

BEGIN

IF @old = @cid

BEGIN

PRINT ‘ Order:’ + rtrim(@ordid) + ‘ (‘ + cast(
@orddt as CHAR(10)) + ‘)’

END

ELSE

BEGIN

PRINT ‘Customer:’ + rtrim(@cid) + ‘ - ‘ + rtrim(
@cname)

PRINT ‘ Order:’ + rtrim(@ordid) + ‘ (‘ + cast(
@orddt as CHAR(11)) + ‘)’

SELECT @old = @cid

END

482 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 482

http://www.sybex.com

FETCH NEXT FROM rpt INTO @cid, @cname, @ordid, @orddt

END

CLOSE rpt

DEALLOCATE rpt

This code is relatively simple and short and works in the following
manner. In the first six lines, the cursor is declared and the server creates
the structure internally. If you run the following lines:

SELECT c.CustomerID, c.CompanyName, o.OrderID, o.OrderDate

FROM Customers c, Orders o

WHERE c.CustomerID = o.CustomerID

AND c.CustomerID LIKE ‘A%’

AND DatePart(year, o.OrderDate) = 1997

you will get a result set that looks exactly like the cursor. The next
statement declares a series of variables that will hold the individual field
values from each row in the cursor. One extra variable is declared that
is used to control the formatting. The following line from Listing 7.1 is
required and allows the program to access the cursor:

OPEN rpt

Cursors can be opened and closed as many times as needed, though the
program can only access the cursor when it is “open.”

The following line retrieves the first row of data from the cursor and
places it into the variables that were previously declared:

FETCH NEXT FROM rpt INTO @cid, @cname, @ordid, @orddt

Once the data is stored in these variables, then it can be used in what-
ever operations are needed (in this case, PRINT statements).

The following lines from Listing 7.1 construct a loop that moves
through each line of the cursor and determines what is needed as output
based on the data that it finds in the local variables:

WHILE @@fetch_status = 0

BEGIN

PRINT ‘ Order:’ + rtrim(@ordid) + ‘ (‘ + cast(
@orddt as

CHAR(10)) + ‘)’

END

ELSE

Cursors 483

2942C07.qxd 7/16/01 11:37 AM Page 483

http://www.sybex.com

BEGIN

PRINT ‘Customer:’ + rtrim(@cid) + ‘ - ‘ + rtrim(
@cname)

PRINT ‘ Order:’ + rtrim(@ordid) + ‘ (‘ + cast(@orddt as

CHAR(11)) + ‘)’

SELECT @old = @cid

END

FETCH NEXT FROM rpt INTO @cid, @cname, @ordid,
@orddt

END

Note that there is a FETCH statement inside the loop. This is extremely
important! Without this FETCH, the loop would continue to run indefinitely
as no new data would be retrieved and @@FETCH_STATUS would never
change. When a program calls a FETCH statement, it causes the row indica-
tor within a cursor to move and updates @@FETCH_STATUS.

I cannot count the number of times that I have written or reviewed cursor
code that neglected a FETCH inside the loop. I finally learned to check for its
existence before I do any other troubleshooting.

The last two lines close the cursor and then remove it from memory. It
is important to note that once the cursor is deallocated, it is literally
removed from the server and cannot be accessed again. A new cursor
could be declared with the same structure and data, but it would be a dif-
ferent cursor. If a process is working on a particular row inside the cursor
and the cursor is deallocated, the location from which the last FETCH state-
ment was made is lost. Declaring a new cursor with the same structure (or
based on the same query) would start processing from the first row. If you
intend to work with the same cursor later in a batch or script, then you
can close it to conserve resources. When it is needed, another OPEN com-
mand will open the cursor for access at the same point where it was
closed.

Cursor Declaration

Now that we have explained how a cursor can be used, let’s look at the
formal declaration of a cursor. There are a number of different cursor

484 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 484

http://www.sybex.com

types and options that can be used in SQL Server, each one creating a
slightly different cursor that is suited to different types of operations. The
complete syntax for the declaration of a cursor is as follows:

DECLARE <cursor_name> CURSOR

[LOCAL | GLOBAL]

[FORWARD_ONLY | SCROLL]

[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

[TYPE_WARNING]

FOR

[SELECT statement]

[FOR UPDATE [OF column list [a, b, .., n]]]

The cursor name should conform to the standard SQL Server object identi-
fier naming rules. Each of the sections is described below along with an
explanation of its effect on the cursor:

[LOCAL | GLOBAL] This is an optional argument that controls the
scope of the cursor. By default, if this is omitted, the default is to create
a local cursor database option controls whether the cursor is declared
LOCAL or GLOBAL.

LOCAL cursors are visible only within the batch, stored procedure, or
trigger in which they are declared. They can only be referenced by vari-
ables within these constructs, though they can be assigned to an OUPUT
parameter from a stored procedure and assigned to a cursor variable in
the calling program. A LOCAL cursor is deallocated implicitly when the
batch, stored procedure, or cursor ends.

A GLOBAL cursor has a scope that includes the current connection and
may span multiple batches, stored procedures, or triggers. The cursor
name can be referenced from any point in the current connection. The
cursor will only be implicitly deallocated when the connection closes.

Cursors consume resources and may cause locking problems if held open
too long. GLOBAL cursors are especially prone to cause performance prob-
lems on shared resources. Be wary of using GLOBAL cursors and holding
them open for too long. It is a good habit to deallocate the cursor as soon
as it is no longer needed.

Cursors 485

2942C07.qxd 7/16/01 11:37 AM Page 485

http://www.sybex.com

[FORWARD_ONLY | SCROLL] This option has an effect on how
the cursor behaves with regard to accessing the data within the cursor.
FORWARD_ONLY means that the program that uses the cursor can only
move from the beginning row to the ending row in that direction. Once
a row has passed (in logical order), it can no longer be accessed. This
option is generally faster for performance since the server need not pro-
vide a mechanism for moving in both directions.

SCROLL cursors allow the programmer to move in both forward and
backward directions through the cursor. The movement in this type of
cursor does not need to be a row at a time. Any row can be accessed
with a FETCH statement by using the options available with this
command.

There are additional resources required for scroll cursors since the entire
dataset must be maintained until the cursor is destroyed. If backward move-
ment is not required in the cursor, do not declare the cursor with SCROLL.

[STATIC | KEYSET | DYNAMIC | FAST_FORWARD] These
options control how the cursor interacts with the data on which it is
based as well as how SQL Server stores the cursor internally.

STATIC cursors consist of a temporary copy of the data from the under-
lying sources. This type of cursor is implemented as a temporary table
in Tempdb, where the data is copied from the SELECT statement into
Tempdb. Changes to the underlying data are not reflected in the cursor.
This type of cursor is also not updateable.

KEYSET cursors also use Tempdb, but only to store the key values that
identify the rows in the underlying data. The main feature of this type
of cursor is that changes to non-key values are reflected in the cursor.
This allows the most up-to-date information about non-key fields to be
available inside the cursor. Inserts as well as changes to key values are
not reflected in the cursor unless the update is performed through the
cursor and the WHERE CURRENT OF clause is used. Deletes of rows cause
@@FETCH_STATUS to be set to -2.

DYNAMIC cursors are essentially views of the underlying data source and
reflect all changes to data made outside the cursor. Absolute fetches are
not supported in this type of cursor.

486 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 486

http://www.sybex.com

FAST_FORWARD cursors are forward-scrolling, read-only cursors that
have performance enhancements to make them the fastest type of cursor
to use. These cursors are non-updateable (hence read-only) and cannot
be used when SCROLL, FOR_UPDATE or FORWARD_ONLY are used.

[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC] READ_ONLY
cursors act as the name implies. No updates are allowed through this
cursor.

SCROLL_LOCKS cursors ensure that updates made as the program moves
through the cursor are guaranteed to succeed. This is because SQL
Server locks the rows as they are read into the cursor, thereby prevent-
ing any changes by other users and conflicts from occurring.

The OPTIMISTIC option is used when locks on the rows read into the
cursor are not wanted or needed. If an update or delete is made to a
row in the cursor that was changed by another source, the update or
delete in the cursor will fail. It is an optimistic strategy that assumes
the data will be the same and updates can occur, but there are no
guarantees.

SCROLL_LOCKS cursors can cause contention problems with other users.
Since each row in this cursor is locked in the underlying table, other users
cannot access these rows until the cursor is deallocated.

[TYPE_WARNING] This option specifies that a message be sent to
the client if the server changes the type of cursor from what was submit-
ted. If the client specifies options that require the changing of the cursor
from one type to another, this controls whether an informational mes-
sage is sent to the client.

[SELECT statement] This query is any valid SELECT statement that
follows the rules for the particular database in which the cursor is being
declared. This query is the defining statement in the declaration and
determines the size and width of the cursor. The number of fields in the
column list of the query will set the width of the cursor and determine
the fields that are available inside the cursor. The WHERE clause in the
SELECT statement (or lack of one) will determine how many rows will
populate the cursor.

Cursors 487

2942C07.qxd 7/16/01 11:37 AM Page 487

http://www.sybex.com

FOR UPDATE [OF column 1, column 2, .., n] This option speci-
fies columns in the cursor that are updateable. If no column list is
included, then all columns are updateable. Otherwise, only those
columns specifically listed are updateable.

This option is covered in Chapter 8: Modifying Data.

Retrieving Data from the Cursor

Once the cursor has been declared, the data inside the cursor is retrieved
using the FETCH command. Each time this statement is issued, it returns a
single row of data into local variables. These variables must match the
data types of the columns included in the cursor, and there must be the
same number of variables in the fetch statement as there are columns in
the cursor.

The formal syntax of FETCH is as follows:

FETCH

[NEXT | PRIOR | FIRST | LAST

| ABSOLUTE { n | @Nvar}

| RELATIVE { n | @Nvar}

]

The keywords are defined in Table 7.4.

TA B L E 7 . 4 FETCH Options

OPTION Description

NEXT Returns the next row from the cursor moving forward
PRIOR Returns the prior row in the cursor moving backward
FIRST Returns the first row from the cursor
LAST Returns the last row in the cursor
ABSOLUTE Returns the nth row from the cursor where n is

counted from the first row
RELATIVE Returns the nth row from the cursor starting from the

current row (n may be negative)

488 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 488

http://www.sybex.com

Each execution of FETCH will set the value of the global variable
@@FETCH_STATUS depending on the results of the FETCH statement. If the
next row is retrieved without any error, this variable will be set to 0. Table
7.5 lists the values that result from the FETCH statement.

TA B L E 7 . 5 FETCH Result Codes

Result Code Description

0 No errors occurred. The specified row was retrieved.
-1 FETCH failed or row is beyond the result set (EOF or BOF).
-2 Row is missing.

Distributed Queries

Only the retrieval of data using linked servers and OPENROWSET is dis-
cussed in this section. The modification of data is discussed in Chapter 8:
Modifying Data.

Distributed queries are being used more and more as data spread
across various systems must be gathered together for a single query. SQL
Server 7 introduced the concept of linked servers, which allowed a variety
of data sources to be queried as though the data were stored in a table on
the same system. SQL Server 2000 still uses the linked servers for heteroge-
neous data sources and allows ad hoc queries as well using the OPENROWSET
function. Both of these methods for accessing data will be discussed in the
following sections.

Supporting very large databases with heavy transaction loads was a
design goal of SQL Server 2000. Distributed partitioned views were
enhanced to allow updates and create a federation of database servers.

Manipulate heterogeneous data. Methods include linked

servers and OPENROWSET.

Distributed Queries 489

2942C07.qxd 7/16/01 11:37 AM Page 489

http://www.sybex.com

With a federation of database servers, data from a table is spread across all
servers in the federation, but is queried and updated as though the data
were in a single table on a single server. By distributing this load, SQL
Server 2000 is capable of supporting the loads of even the largest systems.

Linked Servers

The concept of a linked server was introduced in SQL Server 7 as a way
to allow SQL Server developers to incorporate data stored in other systems
into queries. This concept existed in previous versions of SQL Server, but
was limited to remote procedure calls and servers that supported a limited
set of protocols. With SQL Server 7, this was expanded to any OLE DB
source for which a driver was installed on the server. Spreadsheets, dBase,
and Excel files were all accessible from within SQL Server by adding a link
to the particular data source. The following OLE DB providers have been
tested with SQL Server 2000:

� Microsoft OLE DB Provider for SQL Server

� Microsoft OLE DB Provider for ODBC

� Microsoft OLE DB Provider for Jet version 4.0

� Microsoft OLE DB Provider for DTS Packages

� Microsoft OLE DB Provider for Oracle version 2.6

� Microsoft OLE DB Provider for Microsoft Directory Services

� Microsoft OLE DB Provider for Microsoft Indexing Service

� Microsoft OLE DB Provider for DB2

These data sources can either expose their data as a rowset or return
data from a query as a rowset. If the remote data source has a database
engine that can return a rowset, the section of the query that deals with the
remote data source is sent to that engine for processing. For OLE DB
sources that do not have an engine, such as Excel or text files, the OLE DB
provider is responsible for executing the query and returning the rowset.

Manipulate heterogeneous data using linked servers.

490 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 490

http://www.sybex.com

SQL Server registers information about the location of the data source,
the drivers needed, and any security information (name, password) that is
needed to access the server. The data source is then queried from within a
database using a four-part name for the object being queried. This name is
in the form:

linked_server_name.catalog.schema.object_name

The parts are defined here:

linked_server_name This is the friendly name that is registered in
sysservers.

catalog The catalog is analogous to the database in SQL Server. This
is the location within the remote data source in which the object is
located.

schema This is equivalent to the owner of the table.

object_name This is the name of the table or other structure being
queried.

This four-part name is the same fully qualified name structure that can be
used for any local table in a SQL Server database. If these parts are not
included, the server defaults to the local server, the catalog to the current
database, and the schema to dbo.

Adding a linked server is accomplished with the sp_addlinkedserver
system stored procedure. This procedure takes a series of parameters to
register the remote server on the local system. The stored procedure
format is:

sp_addlinkedserver [@server =] ‘server’

[, [@srvproduct =] ‘product_name’]

[, [@provider =] ‘provider_name’]

[, [@datasrc =] ‘data_source’]

[, [@location =] ‘location’]

[, [@provstr =] ‘provider_string’]

[, [@catalog =] ‘catalog’]

The parameters are described here:

@server This is the local name for the linked server that will be used
in queries.

Distributed Queries 491

2942C07.qxd 7/16/01 11:37 AM Page 491

http://www.sybex.com

@srvproduct This is the product name of the OLE DB data source
being added as a linked server. If this is SQL Server, then the remaining
parameters do not need to be specified.

@provider This is the unique programmatic identifier of the OLE DB
provider being used for the data source.

@datasrc This is the name of the data source as required by the OLE
DB provider. For SQL Servers it is the name of the remote server, such
as server\instance.

@location This is interpreted by the OLE DB provider as the location
of the data source, and varies by provider.

@provstr This is the OLE DB connection string specific to the
provider.

@catalog This is the catalog to be used when making a connection to
the remote data source. It is the database name in SQL Server.

The values that are required for the parameters will vary depending on
the type of OLE DB data source being added as a linked server. If our fic-
tional company had a remote SQL Server named NEO that needed to be
added as a remote server, we would execute the following code:

EXEC sp_addlinkedserver @server=’NEO_REMOTE’, @srvprod-
uct=’’,

@provider=’SQLOLEDB’, @datasrc=’NEO’

This would add the remote server NEO, which we would then access as
NEO_REMOTE, for the linked server name along with the other three parts of
the name needed for a query.

For an Excel spreadsheet, however, the parameters are much different.
A path is needed as well as a name for the range of rows and cells that will
be accessed. The name for the range is created from within Excel and is
not needed to register the linked server, but is needed in any queries to
this linked server. A sample stored procedure call to register the
Sales_History.xls spreadsheet on the local server would be:

EXEC sp_addlinkedserver ‘Sales_History’,

‘Jet 4.0’,

‘Microsoft.Jet.OLEDB.4.0’,

‘c:\Sales_History.xls’,

NULL,

‘Excel 5.0’

492 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 492

http://www.sybex.com

The local name is set to the same name as the spreadsheet, but this is for
convenience. It is not required. In fact, the local name need not look any-
thing like the remote name of the data source for any of the providers.

Security in a linked server environment is handled by storing informa-
tion about remote logins on the local server. The remote logins can be
mapped directly to local logins, or a single account can be chosen for all
queries sent to the linked server. One last alternative is to allow the current
login’s credentials to be “passed through” to the linked server. Keep in
mind that no matter which method is chosen for security, the linked server
manages its own permissions and will only allow access to those objects
that the remote login has permission to access.

Adding a remote server login is accomplished with the sp_addlinked-
srvlogin system stored procedure. Its format is as follows:

sp_addlinkedsrvlogin [@rmtsrvname =] ‘rmtsrvname’

[, [@useself =] ‘useself’]

[, [@locallogin =] ‘locallogin’]

[, [@rmtuser =] ‘rmtuser’]

[, [@rmtpassword =] ‘rmtpassword’]

These parameters are defined here:

@rmtsrvname The local name of the linked server. This is the same as
the @server parameter for sp_addlinkedserver.

@useself Either True or False. If True, then local SQL Server logins
use their own credentials and @rmtuser and @rmtpassword are ignored.
If False, then @rmtuser and @rmtpassword are used for the login speci-
fied in @locallogin.

@locallogin This is the login on the local SQL Server for which this
mapping is valid. If NULL, then all local logins are mapped with
@rmtuser and @rmtpassword.

@rmtuser The username used to connect to the remote server. This
parameter defaults to NULL.

@rmtpassword The password used to connect to the remote server for
@rmtuser.

If different login mappings are needed for different users, then this stored
procedure must be run separately for each mapping. Suppose our salesper-
son is named Morpheus, but he has no user account on the linked server

Distributed Queries 493

2942C07.qxd 7/16/01 11:37 AM Page 493

http://www.sybex.com

Trinity. We have been given a login on Trinity for Morpheus to use, but
the login name is Morpheus2 and the password is matrix. We can add a
mapping for Morpheus with the following stored procedure call:

exec sp_addlinkedsrvlogin ‘Trinity’, ‘false’, ‘Morpheus’,
‘Morpheus2’, ‘matrix’

The OPENROWSET Function

Registering a linked server is not difficult but can be time consuming
and is a cumbersome way to gain access to a data source that may be
needed for only a single query. SQL Server 2000 provides an alternative
method of accessing remote data sources with the OPENROWSET function.
This function allows ad hoc access to the remote data source within the
FROM clause of a SELECT query just as any other table. It may also be refer-
enced as the target of an INSERT, UPDATE, or DELETE clause if the OLE DB
provider supports this functionality. The syntax of this function is:

OPENROWSET (‘provider_name‘

, { ‘datasource‘ ; ‘user_id‘ ; ‘password‘

| ‘provider_string‘ }

, { [catalog.] [schema.] object

| ‘query‘ }

)

The parameters are described here:

provider_name The friendly name of the OLE DB provider as stored
in the registry.

datasource The name of the data source. This could be the filename
or the server name.

user_id A username that is used to log in to the remote data source.

password The password to be used with user_id to log in.

provider_string The provider-specific connection string for initializ-
ing the connection.

Manipulate heterogeneous data using OPENROWSET.

494 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 494

http://www.sybex.com

catalog The initial catalog to be accessed.

schema The name of the schema or object owner.

object The name of the object being queried.

query The specific query to be run to return a rowset.

Suppose that our salesperson for Finland maintains an Access database
table of calls that have been made each week. The sales manager requests
that we query this Access spreadsheet and compare the orders with calls
made to customers. Since our salesperson uses the CustomerID column in
his call log, we copy the Access database to the SQL Server and issue this
query:

SELECT o.CustomerID, o.OrderID, a.CallTime, a.CallDate

FROM Orders o INNER JOIN
OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,

‘c:\MSSQL\Data\calllog.mdb’;’admin’;’pwd’, Calls)

AS a

ON o.CustomerID = a.customerID

This query will perform an inner join on the local Access database against
our Orders table in Northwind.

If access to a data source is needed more than a handful of times, the
source should be registered with SQL Server. This allows SQL Server to
optimize the connection process.

Heterogeneous Data Access

As powerful and useful as relational database systems are, a
tremendous amount of data is still stored in other formats. Excel
spreadsheets seem to contain most of the data in every company
in which I have worked; I often find some of the most valuable
information is kept updated in this format. It is also difficult, if not
impossible, to get business people to stop using their spreadsheets
and perform all data updates in SQL Server.

Distributed Queries 495

2942C07.qxd 7/16/01 11:37 AM Page 495

http://www.sybex.com

In prior versions of SQL Server, this data would have to be converted
and loaded into the SQL Server after every update or an employee
would be forced to manually input the updates into the Excel
spreadsheet as well as some SQL Server applications. Neither of
these is a good solution and usually results in the spreadsheet and the
SQL Server database holding different information most of the time.

Both linked servers and OPENROWSET provide an excellent
alternative to either of these methods by allowing queries against SQL
Server to include the data in these alternate formats without any
duplication of data. By registering a linked server against an Excel
spreadsheet (or other format), queries that require this information
can always be assured of receiving the most up-to-date data.

Distributed Partitioned Views

In traditional SQL Server views, if a UNION operator is included in the view
definition, the view is not updateable. A distributed partitioned view is a
special view that includes a union of data from multiple servers but is
allowed to be updated if it meets certain criteria. Updates are discussed in
Chapter 8, and this section will look at what a distributed partitioned view
is, how to create one, and how to incorporate a distributed partitioned
view into a query.

In Figure 7.2, the structure of a distributed partitioned view is shown.
The view is called vCustomers and contains data from the Northwind.Cus-
tomers table for those customers whose CustomerID starts with A or B.
The data that is in this view is actually distributed across two servers,
ServerA and ServerB, with each server holding a portion of the data. The
data on each server is stored in a table that has a check constraint to
ensure that only data that is supposed to be stored on this server is stored
here. The distributed partitioned view combines the data from all these
servers and presents it as a single view. The query processor load for this
data is distributed across multiple servers, which increases the performance
and scalability of this data.

496 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 496

http://www.sybex.com

F I G U R E 7 . 2 Distributed partitioned view structure

There are a few steps to create a distributed partitioned view. We will
show you how to do it in Exercise 7.4.

E X E R C I S E 7 . 4

Creating a Distributed Partitioned View
This exercise requires at least two SQL Servers (or two instances on
one server) to complete. To create a distributed partitioned view,
follow these steps:

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

VCustomers
CustomerID
ALFKI
ANATR
ANTON
AROUT
BERGS
BLAUS
BLONP
BOLID
BONAP
BOTTM
BSBEV

CompanyName
Alfred’s Futterkiste
Ana Trujillo Emparedados y helados
Antonio moreno Taquería
Around the Horn
Berglunds snabbköp
Blauer See Delikatessen
Blondesddsl père et fils
Bólido Comidas preparadas
Bon app´
Bottom-Dollar Markets
B’s Beverages

VCustomersA
CustomerID
ALFKI
ANATR
ANTON
AROUT

CompanyName
Alfred’s Futterkiste
Ana Trujillo Emparedados y helados
Antonio Moreno Taquería
Around the Horn

VCustomersB
CustomerID
BERGS
BLAUS
BLONP
BOLID
BONAP
BOTTM
BSBEV

CompanyName
Berglunds snabbköp
Blauer See Delikatessen
Blondesddsl père et fils
Bólido Comidas preparadas
Bon app´
Bottom-Dollar Markets
B’s Beverages

ServerA ServerB

Distributed Queries 497

2942C07.qxd 7/16/01 11:37 AM Page 497

http://www.sybex.com

E X E R C I S E 7 . 4 (c o n t i n u e d)

2. First you must create tables on each server with check constraints
that will limit the data stored in each table. Connect to ServerA and
type the following query (be sure the Northwind database is
selected):

CREATE TABLE vCustomerA
(CustomerID char(10) PRIMARY KEY

CHECK (substring(CustomerID, 1, 1) = ‘A’),
CompanyName varchar(100))

3. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

4. Connect to ServerB by choosing File ➢ Connect from the Query
Analyzer menu and logging into ServerB.

5. Type the following query into the Query Analyzer window for
ServerB (be sure the Northwind database is selected).

CREATE TABLE vCustomerB
(CustomerID char(10) PRIMARY KEY

CHECK (substring(CustomerID, 1, 1) = ‘B’),
CompanyName varchar(100)
)

6. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

Notice that each of these tables contains a CHECK constraint on the
primary key to limit the data in that table to the horizontal partition
that is supported by that server.

7. Once the individual tables have been set up, each server must cre-
ate a link to the servers with the other horizontal partitions. In this
case, ServerB would have to be linked on ServerA, and ServerA
would have to be linked on ServerB. This allows each server to
communicate with the other servers for a query against the view
that is made on that server. Steps 8 through 10 will link the servers
together.

498 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 498

http://www.sybex.com

E X E R C I S E 7 . 4 (c o n t i n u e d)

8. From the Query Analyzer window connected to ServerA, ServerA
registers ServerB using the following script (change the login infor-
mation to match your servers):

EXEC sp_addlinkedserver @server=’ServerB’,
@srvproduct=’’,

@provider=’SQLOLEDB’, @datasrc=’SERVERB’
EXEC sp_addlinkedsrvlogin ‘ServerB’, ‘True’

9. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

10. From the Query Analyzer window connected to ServerB, ServerB
registers ServerA using the following script (change the login infor-
mation to match your servers):

EXEC sp_addlinkedserver @server=’ServerA’,
@srvproduct=’’,

@provider=’SQLOLEDB’, @datasrc=’SERVERA’
EXEC sp_addlinkedsrvlogin ‘ServerA’, ‘True’
The last step involves creating the partitioned view.

11. Type the following code into the Query Analyzer window connected
to ServerA and highlight it with your mouse. Press the green arrow
or press CTRL-E to execute this code.

CREATE VIEW vCustomers AS
SELECT * FROM Northwind.dbo.vCustomerA

UNION ALL
SELECT * FROM ServerB.Northwind.dbo.vCustomerB

12. Type the following code into the Query Analyzer window connected
to ServerB and highlight it with your mouse. Press the green arrow
or press CTRL-E to execute this code.

CREATE VIEW vCustomers AS
SELECT * FROM Northwind.dbo.vCustomerB

UNION ALL
SELECT * FROM ServerA.Northwind.dbo.vCustomerA

A query that incorporates vCustomer can be run from either
ServerA or ServerB, and the same data is returned. This view can
be incorporated into any query in the same manner as any other
table or view.

Distributed Queries 499

2942C07.qxd 7/16/01 11:37 AM Page 499

http://www.sybex.com

The distributed partitioned view technology has also been incorporated
into the query processor. Whichever server the query is run on will only
query the other servers if it needs data from that server. A query that only
looked for customers starting with a B would only query ServerB, even if
this query is run on ServerA. An examination of the execution plan will
show that remote queries are only sent to the appropriate servers.

SQL Server 2000 and XML

SQL Server 2000 introduced Extensible Markup Language (XML)
support for the first time as a part of the SQL Server feature set. While
available as an add-on for SQL Server 7, this functionality has been
enhanced and extended in SQL Server 2000 and includes a number of fea-
tures to make data access very easy. The addition of XML data retrieval
brings with it a new syntax and method of formatting data that is very dif-
ferent from the traditional row and column structure, which has character-
ized SQL Server in the past.

XML is a tag-based markup language—similar to HTML—that delimits
and describes sections of the data using tags. These tags are not, for the
most part, predefined as HTML tags are. Instead, XML tags are defined
by the user and will change from data set to data set. Hence the extensible
part of the XML acronym. Here is an example of an XML document:

<Customers CustomerID=”ALFKI” CompanyName=”Alfreds
Futterkiste” ContactName=”Maria Anders”
ContactTitle=”Sales Representative” Address=”Obere Str.
57” City=”Berlin” PostalCode=”12209” Country=”Germany”
Phone=”030-0074321” Fax=”030-0076545”/>

A set of XML data is called an XML document. In the example above,
the document contains one element, <Customers>, with a series of attrib-
utes: CustomerID, CompanyName, etc. This XML document has an implicit
Document Type Definition (DTD), which defines the elements and attrib-
utes of an XML document. The DTD is similar to the table definition in a
relational database.

500 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 500

http://www.sybex.com

Some additional terminology is necessary in order to understand how
XML data can be accessed in SQL Server:

XSL The Extensible Stylesheet Language (XSL) is similar to the Cas-
cading Style Sheets (CSS) used in HTML. XSL provides a way to
describe how an XML document is to be formatted or displayed.

XPATH XML Path Language (XPATH) is a standard language that
has been defined by the World Wide Web Consortium (W3C) to navi-
gate through an XML document. SQL Server supports a subset of this
standard.

Templates Templates are XML documents that contain one or more
SQL statements that specify queries (SQL or XPATH queries) executed
using the template rather than through a URL.

IIS Internet Information Server (IIS) is the Web server that is supplied
with Windows NT and Windows 2000. It is a client-server program,
similar to SQL Server, that provides data access through the HTTP
protocol.

URL A uniform resource locator (URL) defines a location for a par-
ticular resource. Web pages are commonly specified using a URL as the
path to some particular page. SQL Server 2000 integrates with IIS to
provide access to SQL Server through a URL.

XML is well suited for a variety of data-related applications, especially those
that require the integration of disparate systems. It is, however, a compli-
cated topic, with an almost infinite variety of ways that it could be inte-
grated into a particular system. Readers are advised to consult additional
reference materials to learn more about XML. This chapter presents a brief
introduction to XML and how XML-formatted data can be retrieved using
SQL Server.

In the following sections, will discuss using XML with the SELECT state-
ment and accessing SQL through a URL.

SQL Server 2000 and XML 501

2942C07.qxd 7/16/01 11:37 AM Page 501

http://www.sybex.com

Using SELECT with XML

There are a number of methods for retrieving data in XML format,
though the simplest one is using a standard SELECT statement. As noted in
the “SELECT: By the Book” sidebar in this chapter, the SELECT syntax
includes a FOR XML clause that will return data as XML rather than a stan-
dard recordset. When using this form of the SELECT statement, there are
three different modes for returning the data as well as three different
options. Table 7.6 lists the modes and Table 7.7 lists the options along
with a description of each.

TA B L E 7 . 6 FOR XML Modes

Mode Description

RAW

AUTO

EXPLICIT This mode requires the query to specify how the XML docu-
ment will be formed. Additional columns must be introduced
into the query that will determine how different elements
will be nested together.

This mode allows SQL Server to format an XML document in
a logical way, based on the table schema. Each row becomes
an element, with each column becoming an attribute.

This mode transforms each row in the recordset into an XML
element with the identifier row. Each non-NULL column is
mapped into an attribute of the element.

Extract data in XML format. Considerations include output

format and XML schema structure.

502 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 502

http://www.sybex.com

TA B L E 7 . 7 FOR XML Options

Option Description

XMLDATA

ELEMENTS

BINARY BASE64

Here are a few examples that should better explain how XML data is
transformed from a relational schema. The first example is a couple of
rows from the Northwind database:

SELECT CustomerID, CompanyName, ContactName, Country

FROM Customers

WHERE CustomerID LIKE ‘BL%’

CustomerID CompanyName ContactName Country

---------- -------------------------- ------------------ -------

BLAUS Blauer See Delikatessen Hanna Moos Germany

BLONP Blondesddsl père et fils Frédérique Citeaux France

Now, here is the same data with the FOR XML AUTO option added.

SELECT CustomerID, CompanyName, ContactName, Country

FROM Customers

WHERE CustomerID LIKE ‘BL%’

FOR XML AUTO

<Customers CustomerID=”BLAUS” CompanyName=”Blauer See
Delikatessen”

ContactName=”Hanna Moos” Country=”Germany”/>

When this option is specified, binary data is
returned as BASE64 encoded. If using the RAW or
EXPLICIT mode to retrieve binary data, this option
must be specified. In AUTO mode, the binary data is
returned as a reference only.

This option is only available in AUTO mode. When
included, the columns of the recordset are returned
as sub-elements rather than attributes.

When this option is included, the XML Data Schema
is returned along with the XML document as an
inline schema, prepended to the document.

SQL Server 2000 and XML 503

2942C07.qxd 7/16/01 11:37 AM Page 503

http://www.sybex.com

<Customers CustomerID=”BLONP” CompanyName=”Blondesddsl père et
fils”

ContactName=”Frédérique Citeaux” Country=”France”/>

This result set is returned as a single row in Query Analyzer. It has been
reformatted to fit this page.

Note that the table name is listed as the element (first item in the tag)
and repeated for each row. Each column header becomes an attribute, with
the value of the column for that row becoming the value of the attribute.

Now, I will add the XML Data Schema to the query:

SELECT CustomerID, CompanyName, ContactName, Country

FROM Customers

WHERE CustomerID LIKE ‘BL%’

FOR XML AUTO, XMLDATA

<Schema name=”Schema7” xmlns=”urn:schemas-microsoft-
com:xml-data” xmlns:dt=”urn:schemas-microsoft-
com:datatypes”>

<ElementType name=”customers” content=”empty”
model=”closed”>

<AttributeType name=”CustomerID” dt:type=”string”/>

<AttributeType name=”CompanyName” dt:type=”string”/>

</ElementType>

<customers CustomerID=”BLAUS” CompanyName=”Blauer See
Delikatessen” ContactName=”Hanna Moos” Country=”Ger-
many”/>

<customers CustomerID=”BLONP” CompanyName=”Blondesddsl
père et fils” ContactName=”Frédérique Citeaux” Coun-
try=”France”/>

This result includes the schema references at the beginning for the
namespace (xmlns) and the datatypes (xmlns:dt) that were used to create
this document.

If the RAW mode is used, then the same result set looks slightly different:

SELECT CustomerID, CompanyName, ContactName, Country

from Customers

WHERE customerid LIKE ‘BL%’

FOR XML RAW

504 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 504

http://www.sybex.com

Results:

<row CustomerID=”BLAUS” CompanyName=”Blauer See
Delikatessen”/>

<row CustomerID=”BLONP” CompanyName=”Blondesddsl père et
fils”/>

If the XMLDATA option is used, then the same schema information from the
above example will be prepended to the result set. The row identifier will
still remain at the beginning of each row.

The EXPLICIT mode is much more complicated than any of the other
two modes. When this is specified, the query must follow a specific format
to ensure that the XML document is valid. The other two modes return
well-formed XML documents, which have no open tags in improperly
nested elements.

In order to tell the server how to nest the data, two columns are
prepended to the result set. The first column is an integer and must be
called Tag; it will store the tag number of the current element. The second
column is called Parent and stores the tag number of the parent element.
The rest of the rowset corresponds to the columns of data that are to be
transformed into elements and attributes. They must be named in the fol-
lowing manner: <element>!<tag_number>!<attribute_name>. The last
item required for EXPLICIT mode is that the children must immediately
follow their parent.

With all of these constraints, it is not likely that you will use EXPLICIT mode
very often. However, it is an area that you may be tested on when you take
the exam. Be sure that you understand how this mode works and what its
requirements are.

In the cursor example, we produced a report in the following format:

Customer:ALFKI - Alfreds Futterkiste

Order:10643 (Aug 25 1997)

Order:10692 (Oct 3 199)

Order:10702 (Oct 13 199)

Customer:ANATR - Ana Trujillo Emparedados y helados

Order:10625 (Aug 8 1997)

Order:10759 (Nov 28 199)

Customer:ANTON - Antonio Moreno Taquería

Order:10507 (Apr 15 1997)

SQL Server 2000 and XML 505

2942C07.qxd 7/16/01 11:37 AM Page 505

http://www.sybex.com

This same type of formatting can be achieved using the EXPLICIT mode
of a SELECT statement. Actually, two SELECT queries are needed and are
joined by a UNION ALL to include any duplicates:

SELECT 1 as Tag,

NULL as Parent,

Customers.CustomerID as [Customer!1!CustomerID],

Customers.CompanyName as [Customer!1!Company-
NameD],

NULL as [Order!2!OrderID],

NULL as [Order!2!OrderDate]

FROM Customers

UNION ALL

SELECT 2,

1,

Customers.CustomerID,

Customers.CompanyName,

Orders.OrderID,

Orders.OrderDate

FROM Customers, Orders

WHERE Customers.CustomerID = Orders.CustomerID

ORDER BY [Customer!1!CustomerID], [Order!2!OrderID]

FOR XML EXPLICIT

If you run this query in Query Analyzer without the FOR XML EXPLICIT,
you will see a normal result set with a series of NULLs for each top-level
element. The details under each top level are complete rows that will be
used to fill out the nested elements in the XML document.

The easiest way to view the XML documents is with Internet Explorer 5 or
higher. If you access any of these queries through a URL (or you can
retrieve the results from ADO and display them), you will see a nicely for-
matted and indented XML document. We’ll discuss how to do this in the
next section.

506 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 506

http://www.sybex.com

E X E R C I S E 7 . 5

Extracting Data In XML Format
This exercise will reformat the two queries in Exercise 7.2 to return the
data in an XML format.

1. Rewrite the first query in Exercise 7.2 to return XML data using the
AUTO option.

SELECT
o.OrderID,
o.Quantity,
p.ProductName

FROM [Order Details] o, Products p
WHERE o.ProductID = p.ProductId
FOR XML AUTO

XML_F52E2B61-18A1-11d1-B105-00805F49916B
--
<o OrderID=”10248” Quantity=”12”>
<p ProductName=”Queso Cabrales”/>

</o>
<o OrderID=”10248” Quantity=”10”>
<p ProductName=”Singaporean Hokkien Fried Mee”/>

</o>
<o OrderID=”10248” Quantity=”5”>
<p ProductName=”Mozzarella di Giovanni”/>

</o>

2. Rewrite the second query from Exercise 7.2 to return data using the
RAW mode and including the XMLDATA option.

SELECT
c.CustomerID,
o.OrderId

FROM Customers c LEFT OUTER JOIN Orders o
ON c.CustomerID = o.CustomerID

WHERE o.OrderID IS NULL
FOR XML RAW, XMLDATA

Accessing SQL Server through a URL

SQL Server 2000 integrates with IIS to provide access to SQL Server data.
This data is returned in an XML format and queried using the same types
of T-SQL code that was presented in the prior section. The setup for IIS to
allow this access is made easier with a menu option—Configure SQL XML
Support In IIS—that is created when SQL Server is installed. The details
are explained in Books Online and are beyond the scope of this text.

SQL Server 2000 and XML 507

2942C07.qxd 7/16/01 11:37 AM Page 507

http://www.sybex.com

Once you have configured IIS to integrate with SQL Server, there will be
a virtual root created that is accessible using a URL. Data can be accessed
using this URL in a few different ways. SQL queries can be appended to
the URL as a parameter named sql. The value of this parameter will be
the query that is to be executed. An example of this type of data retrieval
is with the following URL:

http://MyServer/Nwind?sql=SELECT+CustomerID+FROM+Customers+FOR+XML+RAW&

root=ROOT

Here MyServer is the name of the IIS Server. The query is reformatted to
conform to the requirements of HTTP requests.

When setting up the IIS integration, be sure to check the Allow URL
Queries option.

There are a few different methods of using a URL to extract data from
SQL Server. The following sections will examine how template files can
store queries on the server, XSL can be used to reformat the result sets, and
will briefly discuss XPATH queries.

Template Files

Specifying SQL queries in the URL is cumbersome as well as a possible
security risk. A malicious user could possibly alter the query in the URL
to retrieve data that they are not intended to view. An alternative to
specifying a query in the URL is to incorporate the query into a template
file. A template file is a physical file that is placed in a folder on the IIS
server. This template folder will have been configured when IIS was
configured and will be the virtual root for the template virtual name.

Template files are specified in the following format:

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”

sql:xsl=’XSL FileName’ >

<sql:header>

<sql:param>..</sql:param>

<sql:param>..</sql:param>...n

</sql:header>

<sql:query>

sql statement(s)

508 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 508

http://www.sybex.com

</sql:query>

<sql:xpath-query mapping-schema=”SchemaFileName.xml”>

XPath query

</sql:xpath-query>

</ROOT>

Table 7.8 defines the various options when using template files.

TA B L E 7 . 8 Options of the Template File

Option Description

ROOT

<sql:header>

<sql:query>

<sql:xpath-query>

The template is then accessed through a URL, like in Listing 7.2.

Listing 7.2: XMLTemplate1.xml

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>

<sql:query>

SELECT CustomerID

FROM Customers

FOR XML AUTO

</sql:query>

</ROOT>

This section is for any XPATH queries that are
to be executed.

This refers to any SQL queries that are to be
executed. Multiple queries can be placed in the
same template file.

This tag holds header values. At the current
time, only SQL parameters can be included in
this section.

This is the top-level element added to an XML
fragment to create an XML document. This
name is arbitrary and can be replaced with any
name. This tag includes the namespace decla-
ration, which provides a reference for the
schema of this document.

SQL Server 2000 and XML 509

2942C07.qxd 7/16/01 11:37 AM Page 509

http://www.sybex.com

This file is saved in the template folder and accessed through the
following URL:

http://MyServer/Nwind/template/XMLTemplate1.xml

The results of this URL request will be an XML document that looks the
same as that which was returned from the above example when the query
was passed into the URL. Multiple SQL queries can be placed in the file,
and they will each be executed and returned as a single XML document.

Each SQL query is a separate transaction. If a single statement fails, pro-
cessing will continue with the next query.

Templates are not limited to SQL queries; they can also execute stored
procedures. And with either queries or stored procedures, the templates
can include parameters that will be substituted into the query or stored
procedure call when the template is accessed.

Suppose that our Finland salesperson has now returned to us and
requested that we provide him two reports on sales; one of these reports is
an order history report for a given customer, and the second report is a list
of products along with their respective categories. Our salesperson wants
these two reports to be generated together, as they are used for a weekly
report. In order to provide these reports to the salesperson, we will use a
template file that contains the two queries, one of which will be a stored
procedure and is the other a SQL query. The file is shown in Listing 7.3.

Listing 7.3: XMLTemplate2.xml

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”>

<sql:header>

<sql:param name=”CustomerID”>WARTH</sql:param>

</sql:header>

<sql:query>select c.categoryname, p.productid, p.product-
name FROM

products p, categories c where c.categoryid =

p.categoryid</sql:query>

<sql:query>exec CustOrderHist @CustomerID</sql:query>

</ROOT>

510 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 510

http://www.sybex.com

The two SQL statements are stored in XMLTemplate2.xml in the tem-
plate directory. It is similar to the previous template file, but there is an
additional section after the root header that is the <sql:header> section.
In this section, there is a single parameter defined as CustomerID. The
value of WARTH that is between the two <sql:param> tags is the default
value that will be used in the stored procedure query if there is no value
passed in with the URL.

Below are two URL strings and the results that will follow each for
comparison; one contains a parameter value and one does not.

http://MyServer/Nwind/template/XMLTemplate2.xml

http://MyServer/Nwind/template/XMLTemplate2.xml?Cus-
tomerID=WILMK

XSL

Extract data in XML format applying XSL to format the result. Returning
an XML document is useful when the data will be used by another
process. But if the data will be used directly as a report, the formatting of
an XML document is not very useful. Fortunately, the SQL XML
integration with IIS allows for the use of XSL templates to change the
formatting. An XSL template is a stylesheet that implements a formatting
language for XML documents.

To apply an XSL file to an XML document retrieved by a template,
there are a few things that must be changed. The XSL file must be added
to the template file in the root declaration. Using the XMLTemplate1.xml
file from above, Listing 7.4 is the addition of a couple other fields and
XSLStyle1.xsl.

Listing 7.4: XMLTemplate1.xml

<ROOT xmlns:sql=”urn:schemas-microsoft-com:xml-sql”

sql:xsl=’XSLStyle1.xsl’>

<sql:query>

SELECT CustomerID, CompanyName, Country

FROM Customers

FOR XML AUTO

</sql:query>

</ROOT>

The contents of XSLStyle1.xsl are shown in Listing 7.5.

SQL Server 2000 and XML 511

2942C07.qxd 7/16/01 11:37 AM Page 511

http://www.sybex.com

Listing 7.5: XSLStyle.xsl

<?xml version=’1.0’ encoding=’UTF-8’?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
version=”1.0”>

<xsl:template match = ‘*’>

<xsl:apply-templates />

</xsl:template>

<xsl:template match = ‘Customers’>

<TR>

<TD><xsl:value-of select = ‘@CustomerID’ /></TD>

<TD><xsl:value-of select = ‘@CompanyName’ /></TD>

<TD><xsl:value-of select = ‘@Country’ /></TD>

</TR>

</xsl:template>

<xsl:template match = ‘/’>

<HTML>

<HEAD>

<STYLE>th { background-color: #CCCCCC }</STYLE>

</HEAD>

<BODY>

<TABLE border=’1’ style=’width:300;’>

<TR><TH colspan=’3’>Customers</TH></TR>

<TR><TH >CustomerID</TH><TH>CompanyName</TH><TH>Coun-
try</TH></TR>

<xsl:apply-templates select = ‘root’ />

</TABLE>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

This stylesheet contains a section called <xsl:template> that looks
for an XML element called Customers. When it finds it, HTML code is
applied to this element. This code creates the row of a table with a
different cell for three different columns. Below this section, there is an
HTML template that contains a single table that specifies two rows. The

512 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 512

http://www.sybex.com

first row contains the table header (Customers) and the second row con-
tains the column headers (CustomerID, CompanyName, and Country). In
the space where the third row would be is a tag that marks the place where
one of the <xsl:template> sections will be substituted. For our query, we
will return a series of elements called Customers, and so the second
<xsl:template> section will be placed here for each element that is
returned called Customers. This will result in a row for each row the query
returns. The results are shown in Figure 7.3.

F I G U R E 7 . 3 Transformation of an XML result set using an XSL stylesheet

SQL Server 2000 and XML 513

2942C07.qxd 7/16/01 11:37 AM Page 513

http://www.sybex.com

XPATH

XML Path Language (XPATH) is a graphical navigation language for
moving through an XML document. Each document has a series of
elements and attributes that may be nested underneath one another.
This nesting produces a tree-like structure similar to the one shown in
Figure 7.3. Once you can visualize an XML document in this fashion,
then XPATH will make more sense. Each node in this structure has a
parent and children. XPATH allows the selection of a node, or subnode,
by specifying the path to that node. For example, if a programmer wanted
to refer to the Contact Name node, then the XPATH query would be:

/Customer/Contact Name

Practical Uses of SQL XML Integration

SQL Server is a very powerful and flexible product, but it has
limitations. One such limitation is the need for the client to include
software and logic that can connect to SQL Server, submit a query,
retrieve a result set, and then reformat that result set as necessary. By
allowing a client application to access SQL Server using a URL, the
client-side application is greatly simplified.

One such use of XML data retrieved directly from a SQL Server is as
the source for an HTML control on a Web page. If an application
needed to display an image and the images were kept in the database,
such as the images in Northwind.Employees.photo, the data could be
specified in a Web page in the following manner:

<img src=”http://MyServer/nwind?sql=select photo from
Employees where EmployeeID=1”>

When there is no FOR XML clause, the data that is returned as the
content type defaults to text/html unless it is specified as some other
type. If the FOR XML clause is included, the type defaults to text/xml.

514 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 514

http://www.sybex.com

Summary

This chapter has examined a number of ways in which data can be
retrieved from SQL Server.

� The SELECT statement can be one of the simplest or most complex
statements in the T-SQL language. This chapter should not, how-
ever, be the sole source of information about the SELECT statement.
Readers are encouraged to consult other sources for more details
about how the SELECT statement can be used. This chapter provided
an overview of a number of different types of SELECT statements
including:

� Single table

� SELECT using WHERE, ORDER BY, and TOP

� Joins

� Aggregates

� Subqueries

� A cursor is a programming construct that works differently from
most other T-SQL functions. A cursor primarily works with a single
row at a time, in contrast to most SQL operations that work with a
set of rows. A cursor must be explicitly declared along with vari-
ables to hold the values from each column as the rows are retrieved
from the cursor. A cursor can be updateable or read-only, and move-
ment through the cursor can be limited to a forward direction only
or movement both forward and backward.

� Distributed queries are becoming more important as databases grow
and different data sources must be incorporated into queries. SQL
Server includes three methods of accessing distributed data. Linked
Servers are remote data sources that are registered in SQL Server.
Once registered, these data sources can be accessed using queries
made in the local database. Ad Hoc queries are handled with the
OPENROWSET function.

Summary 515

2942C07.qxd 7/16/01 11:37 AM Page 515

http://www.sybex.com

� Distributed partitioned views were developed to allow SQL Server
to scale across multiple database servers. To use this technology, a
table is horizontally partitioned across multiple servers and then a
view is created on each server that implements a UNION across all
the horizontal partitions. This technology builds on and requires
that each server be linked to the others using SQL Server Linked
Servers.

� The ability to work directly with XML formatted data is an integral
part of SQL Server 2000. T-SQL has been enhanced to return XML
documents directly from SELECT queries in a variety of formats.
AUTO and RAW are the most often used and easiest to use. These
modes return well-formed XML documents in a format that maps
directly to the relational format.

� In addition to using T-SQL to retrieve data as XML, SQL Ser-
ver 2000 is integrated with IIS to allow access to SQL Server using
a URL and HTTP. Queries can be embedded in a URL or saved in
template files, which are then referenced in the query. Not only
XML documents, but formatted result sets can be retrieved from a
URL query. The application of an XSL stylesheet to a query or tem-
plate allows the programmer to specify how the results are format-
ted. XPATH is a navigational language that can be used to access
some portion of an XML document. In order to use XPATH, the
programmer must have a thorough understanding of the XML
schema for the particular relational schema being queried.

Exam Essentials

Know the different parts of the SELECT statement. Each part of the
SELECT statement contains different options. Know how each one
changes the statement and affects the results.

Know the different types of joins and how to use them. There are five
types of joins. Be sure to understand how each one returns data from

516 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 516

http://www.sybex.com

the joined tables as well as both types of syntax that can be used to
specify the joins.

Know how to use aggregates in a SELECT statement. Aggregates
group data together using different mathematical operators. Remember
that a grouping must be specified if there are non-aggregate columns
included in the query.

Understand how a subquery can be used. A subquery is a query
embedded inside another query. The embedded query can be correlated
or not correlated. A subquery can also create a derived table for use in
the outer query.

Understand cursors and how they can be used to process data a single
row at a time. Cursors are built from a query and then accessed a sin-
gle row at a time using the FETCH statement. Understand the different
types and their effects on concurrency.

Know what a distributed query is and the different types. Linked
servers are registered remote data sources that are accessible using the
four-part name. Understand OPENROWSET and its format for query-
ing a remote data source. Distributed Partitioned Views allow a table
to be spread across multiple SQL Servers. Know how these views are
created and accessed.

Understand how data can be returned from SQL Server in an XML for-
mat. The SELECT statement includes a FOR XML clause, and you should
understand the different options for this clause.

Keep in mind that SQL Server can be accessed using a URL. Under-
stand how SQL Server is integrated with IIS. Know the different meth-
ods of accessing data within a URL.

Know how to reformat data returned from a URL query. XSL
stylesheets are used to reformat data. Understand their options and use.

Exam Essentials 517

2942C07.qxd 7/16/01 11:37 AM Page 517

http://www.sybex.com

Key Terms

Before you take the exam, be certain you are familiar with the
following terms:

aggregate operators
alias
correlated subquery
cross join
cursors
derived table
distributed partitioned view
distributed queries
Extensible Stylesheet Language

(XSL)
full outer join
horizontal partition
inner join
Internet Information Server (IIS)
left outer join
legacy syntax

linked server
literal
natural order
outer join
right outer join
scalar subquery
scalar
subquery
templates
URL
vertical partition
well formed
XML
XML document
XML Path Language (XPATH)

518 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 518

http://www.sybex.com

Review Questions

1.You are charged with writing reports for the president of the company.
He has requested that you present him with a list of customers who
have spent at least $50,000 with the company. Which query would
accomplish this?

A.

SELECT c.customerID

FROM Orders o, [Order Details] od

WHERE o.ordered = od.ordered

AND sum(od.quantity * od.unitprice) > 50000

B.

SELECT o.customerID, sum(od.quantity * od.unitprice)

FROM Orders o, [Order Details] od

WHERE o.orderid = od.orderid

GROUP BY o.customerid

HAVING SUM(od.quantity * od.unitprice) > 50000

C.

SELECT o.customerID

FROM Orders o, [Order Details] od

WHERE o.orderid = od.orderid

GROUP BY o.customerid

HAVING SUM(od.quantity * od.unitprice) > 50000

D.

SELECT o.customerID

FROM Orders o, [Order Details] od

WHERE o.orderid = od.orderid

GROUP BY o.customerid

HAVING SUM(od.quantity * od.unitprice) > 50000

Review Questions 519

2942C07.qxd 7/16/01 11:37 AM Page 519

http://www.sybex.com

2. You are asked to generate a report for a client. The client requests
specific formatting, and you determine that a cursor is needed and
that forward and backward movement through the cursor will be
needed. Which cursor declaration would best fit these needs?

A.

DECLARE report_cursor FORWARD_ONLY FOR

SELECT ordered, orderdate, requireddate,
shippeddate

FROM orders

B.

DECLARE report_cursor SCROLL FOR

SELECT ordered, orderdate, requireddate,
shippeddate

FROM orders

C.

DECLARE report_cursor SCROLL FOR

SELECT ordered, orderdate, requireddate,
shippeddate

FROM orders

FOR UPDATE OF orderdate

D.

DECLARE report_cursor FAST_FORWARD FOR

SELECT ordered, orderdate, requireddate,
shippeddate

FROM orders

3. Which of the following queries will return the most expensive
10 percent of products?

A.

SELECT TOP 10 ProductID, UnitPrice

FROM products

ORDER BY UnitPrice

520 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 520

http://www.sybex.com

B.

SELECT TOP 10 percent ProductID, UnitPrice

FROM products

ORDER BY UnitPrice DESC

C.

SELECT TOP 10 PERCENT ProductID, UnitPrice

FROM products

D.

SELECT TOP 10 PERCENT ProductID, UnitPrice

FROM products

ORDER BY UnitPrice

4. The customer database in your company has two tables that contain
customers and orders. You wish to return a list of all customers and
their orders. If a customer has no orders, then only the customer
information should be returned. Which query will perform this
operation? (Select all that apply.)

A.

SELECT c.CustomerID, c.CompanyName, o.OrderID, o.Order-
Total

FROM Customers c, Orders o

WHERE c.CustomerID = o.OrderID

B.

SELECT c.CustomerID, c.CompanyName, o.OrderID, o.Order-
Total

FROM Customers c, Orders o

WHERE c.CustomerID *= o.OrderID

C.

SELECT c.CustomerID, c.CompanyName, o.OrderID, o.Order-
Total

FROM Customers c, Orders o

WHERE c.CustomerID =* o.OrderID

Review Questions 521

2942C07.qxd 7/16/01 11:37 AM Page 521

http://www.sybex.com

D.

SELECT c.CustomerID, c.CompanyName, o.OrderID, o.Order-
Total

FROM Customers c LEFT OUTER JOIN Orders o

ON c.CustomerID = o.OrderID

5. You are the DBA for Super Duper Kids Toys, Inc. and have been
asked to format a report that lists all current products along with
their prices. Each product receives a new price that is discounted
based on the classification type of the product. You determine that a
cursor is the best way to carry out this task. Place the following
statements in the correct order. (Use only those statements that are
necessary.) Assume that @t, @p, and @y have already been defined.

OPEN cproducts

DEALLOCATE cproducts

FETCH NEXT FROM cproducts INTO @t, @p, @y

DECLARE cproducts CURSOR FOR

SELECT ProductID, UnitPrice, ToyType

FROM ToyProduct

END

SELECT @t ‘Product’,

CASE

WHEN @y = 1 THEN @p * .9

WHEN @y = 2 THEN @p * .85

ELSE @p * .8

END ‘Price’

WHILE @@FETCH_STATUS = 0

BEGIN

FETCH NEXT FROM cproducts into @t, @p, @y

522 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 522

http://www.sybex.com

6. Which T-SQL statement is an example of a correlated subqeury?

A.

SELECT c.customerID

FROM customers c

WHERE c.CustomerID = (SELECT CustomerID

FROM Orders o

WHERE o.orderID = 10020

)

B.

SELECT c.customerID

FROM customers c, (SELECT CustomerID

FROM Orders o

WHERE o.orderID = 10020) o

WHERE c.CustomerID = o.CustomerID

C.

SELECT o.OrderID

FROM Orders o

WHERE o.OrderID = (SELECT MAX(OrderID)

FROM Orders o1

)

D.

SELECT o.OrderID

FROM Order o

WHERE o.OrderID = (

SELECT MAX(OrderID)

FROM Orders o1

WHERE o.CustomerID = o1.CustomerID

)

Review Questions 523

2942C07.qxd 7/16/01 11:37 AM Page 523

http://www.sybex.com

7. You are the DBA for the Super Spammers E-mail Company and you
are in charge of upgrading the database. The Customer table has
grown so large and is queried so often that you decide to distribute
the load across a federation of four database servers and use
distributed partitioned views to access the data. What is the best
method for distributing the data on each of your four servers?

A. You place the first third of Customers on one server, the second
on another server, and the last third on the third server. All new
customers will be added to the fourth server.

B. You create four vertical partitions of the Customers table,
balancing the column sizes as best you can, and place a vertical
partition on each server.

C. You create four horizontal partitions based on the primary key
and place one horizontal partition on each server.

D. You place the most often accessed rows on one server and evenly
distribute the data on the other three servers.

8. You are the Report Writing DBA for Data Integrators, Inc., a
company that specializes in converting and combining data from
different sources for its clients. You have received an Excel
spreadsheet from a client who needs this data added to a report that
uses the database. This is a one-time change to this report. Which of
the following methods are the easiest way to add this data to the
report? (Choose all that apply.)

A. Create a distributed partitioned view that includes the database
and the spreadsheet, and rewrite the report using this view.

B. Create a linked server for the Excel spreadsheet, and rewrite the
report to include the linked server.

C. Rewrite the report to use a query that uses the OPENROWSET
function with the Excel spreadsheet.

D. Create a view of the Excel spreadsheet using the SCHEMABINDING
function.

524 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 524

http://www.sybex.com

9. Which of the following items would correctly execute the queries
stored in the file Samples.xml with the CustomerID parameter set to
“ALFKI”?

A.

http://MyServer/Nwind/template/XMLTemplate2.xml?Cus-
tomerID=First

B.

http://MyServer/Nwind/XMLTemplate2.xml?CustomerID=ALFKI

C.

http://MyServer/Nwind/template/XMLTemplate2.xml?Cus-
tomerID=ALFKI

D.

http://MyServer/Nwind/template/XMLTemplate2.xml?Set+
CustomerID+=+ALFKI

10. You are the DBA for the ABC Software Company, and one of your
developers brings you the following query:

SELECT e.name, e.email, s.region, e.age > 35

FROM email_list e, s.state, i.income_bracket

WHERE s.region = ‘East’

He reports that this query is running very slowly and returns more
data than he expects. The query should return a list of those
customers’ names and e-mails who are older than 35 and live in the
East region. Which of the following changes will fix this query?

A.

SELECT e.name, e.email, s.region, e.age > 35

FROM email_list e, s.state, i.income_bracket

WHERE e.state = s.state

AND s.region = ‘East’

AND i.lower > 50000

Review Questions 525

2942C07.qxd 7/16/01 11:37 AM Page 525

http://www.sybex.com

B.

SELECT e.name, e.email, s.region, e.age > 35

FROM email_list e, s.state, i.income_bracket

WHERE e.state = s.state

AND s.region = ‘East’

C.

SELECT e.name, e.email, s.region, e.age

FROM email_list e, s.state, i.income_bracket

WHERE e.state = s.state

AND s.region = ‘East’

AND e.age > 35

D. Don’t change the query. There is nothing you can do.

11. You are the DBA for a small company and have recently been asked
to provide access to data through a URL. You decide that the best
way to provide this data is by using the SQL XML Integration with
IIS in SQL Server 2000. Each client uses the same data but requires
the data to be formatted differently. Which tool should you use to
reformat the data for each client?

A. Provide separate XPATH queries for each client.

B. Use separate XSL stylesheets for each client.

C. Use separate template files for each client.

D. Use separate URLs for each client.

12. You are tasked with developing a strategy for providing the clients
of your company with data in XML documents. You decide to use
the XML features of SQL Server 2000 to accomplish this task. The
documents are simple documents that retrieve the data based on a
parameter. How can you provide your clients this data? (Select all
that apply.)

A. Create a series of URLs with embedded queries and explain to
the client how to change the parameter values.

526 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 526

http://www.sybex.com

B. Create a series of SELECT queries using the FOR XML clause and
send these to your client with explanations on how to change the
parameter values.

C. Create a series of template files and the associated URLs and
explain to the client how to change the parameter values.

D. Create a series of queries that join together data with an XML
document using the OPENROWSET function. Explain to the
client how to change the parameter values.

13. You are the Report Writing DBA for Data Integrators, Inc., a
company that specializes in converting and combining data from
different sources for its clients. You have been asked to create a
report that will combine sales data from an Access database with
customer data stored in SQL Server to display the total sales for
each customer. You need to add to the following code those items
that are required for the return of the total sales amount and date of
the most recent order. (Only include those items that are needed).

(See next page for options.)

SELECT c.CustomerName

FROM Customer C, INNER JOIN

OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,

‘c:\Orders.mdb’;’admin’;’pwd’, Orders)

AS a

ON o.CustomerID = a.customerID

Review Questions 527

2942C07.qxd 7/16/01 11:37 AM Page 527

http://www.sybex.com

Choices:

14. You are the DBA for the ShirtOutlet.com company. One of your
developers is having trouble with a query and brings it to you. She
needs to display all possible combinations of polo shirt styles and
their colors. There are 5 styles stored in the PoloStyle table and
8 colors stored in the PoloColor table. Which query will return
this data?

A.

SELECT *

FROM PoloStyle s, PoloColor c

WHERE s.StyleID = c.ColorID

B.

SELECT *

FROM PoloStyle s FULL OUTER JOIN PoloColor c

ON s.StyleID = c.ColorID

C.

SELECT *

FROM PoloStyle s LEFT OUTER JOIN PoloColor c

ON s.StyleID = c.ColorID

D.

SELECT *

FROM PoloStyle s, PoloColor c

,SUM(a.OrderAmount)

,MAX(a.OrderDate)

MIN(a.OrderDate)

GROUP BY c.CustomerName

WHERE c.CustomerID = a.CustomerID

GROUP BY c.CustomerName, a.OrderDate,
a.OrderAmount

528 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 528

http://www.sybex.com

15. As the primary DBA for your company, you are being asked to clean
up a number of reports that developers have written for your
company. Many of these reports are raw queries that are exported to
Excel and have different column names for the same information,
i.e. CustName and CustomerName for the name of the customer in
two different reports. How can you standardize the names of the
columns in all the reports?

A. Rename all columns in the database to have standard names for
each type of data.

B. Use a standard alias for each type of data in the queries that
generate the reports.

C. Rewrite all queries to look for each type of data in a single table
so the column name is always consistent.

D. Rewrite all queries to use self-joins to standardize the column
names.

Answers to Review Questions

1. C. This query returns a list of customers who have spent $50,000 or
more. Option A is not a valid query. The aggregate cannot appear in
the WHERE clause unless it is in a subquery. B will return the list of
customers and the amounts they spent, but the question did not ask
for the amounts. D returns all customers.

2. B. This type of cursor allows movement (scrolling) both forward
and backward. Options A and D only allow forward movements. C
will allow scrolling, but updates were not specified.

3. B. Option B orders all products from most expensive to least and
then returns the top 10 percent of these products. Option A returns
the 10 least expensive products, C returns the first 10 percent of
products, and D returns the 10 percent least expensive products.

4. B, D. Both Options B and D are left outer joins that return all
customers whether or not they have orders. If they do, the order

Answers to Review Questions 529

2942C07.qxd 7/16/01 11:37 AM Page 529

http://www.sybex.com

information is returned. Option A only returns customers with
orders. Option C returns all orders whether or not they have a
customer.

5.

The cursor declaration comes first and then the cursor must be
opened before any rows can be processed. The first action after
opening the cursor is to FETCH a row and then loop through the
cursor as long as @@FETCH_STATUS is equal to zero. Inside the loop,
the select occurs that determines a price based on the type and a new
FETCH statement is called to move the cursor to the next row. After
all processing is complete, the cursor should be deallocated.

6. D. The code in option D is the only correlated subquery. Each row
in the outer query causes a different evaluation of the inner query.

DECLARE cproducts CURSOR FOR

SELECT ProductID, UnitPrice, ToyType

FROM ToyProduct

OPEN cproducts

FETCH NEXT FROM cproducts INTO @t, @p, @y

WHILE @@FETCH_STATUS = 0

BEGIN

SELECT @t ‘Product’,

CASE

WHEN @y = 1 THEN @p * .9

WHEN @y = 2 THEN @p * .85

ELSE @p * .8

END ‘Price’

FETCH NEXT FROM cproducts into @t, @p, @y

END

DEALLOCATE cproducts

530 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 530

http://www.sybex.com

7. C. Distributed partitioned views require that the data be
horizontally partitioned based on the primary key and placed on
each server.

8. B, C. You can use either linked servers or the OPENROWSET option to
access date in an Excel spreadsheet. A distributed partitioned view
cannot access non-SQL Server data, and there is no such thing as an
OPENEXCEL function.

9. C. If you used this URL, you would be able to execute the queries
stored in the Samples.xml file.

10. C. The first and second queries are not valid. The problem in the
original query is that two tables are being joined using a cross join.
The third query includes the e.state = s.state clause, which
eliminates the cross join. The age qualification is also moved from
the column list to the WHERE clause.

11. B. The best answer for formatting changes is to use XSL to reformat
data rather than different queries.

12. A, B, and C. Each of these methods, using embedded queries in
URLs, SELECT statements with FOR XML, and template files will
work. The OPENROWSET function is not used for working with
XML documents.

13. SELECT c.CustomerName

,SUM(a.OrderAmount)

,MAX(a.OrderDate)

FROM Customer C, INNER JOIN

OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,
‘c:\Orders.mdb’;’admin’;’pwd’, Orders)
AS a

ON o.CustomerID = a.customerID

GROUP BY c.CustomerName

Answers to Review Questions 531

2942C07.qxd 7/16/01 11:37 AM Page 531

http://www.sybex.com

The requirement for the most recent order is asking for the MAX()
OrderDate in the table. The SUM() is also asked for in the
requirements. No WHERE clause is needed since an INNER JOIN clause
is included, and the GROUP BY clause only needs those columns that
are not being aggregated.

14. D. When all possible combinations of two tables are requested, a
cross join is needed. This can be specified using CROSS JOIN in the
query or by not qualifying the join between two tables.

15. B. The use of column aliases is the best solution for standardizing
the column names output in various queries.

532 Chapter 7 � Accessing Data

2942C07.qxd 7/16/01 11:37 AM Page 532

http://www.sybex.com

Modifying Data

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Retrieve, filter, group, summarize, and modify data by using

Transact-SQL.

� Manage result sets by using cursors and Transact-SQL.

Considerations include locking models and appropriate usage.

� Manipulate heterogeneous data. Methods include linked

servers, OPENQUERY, OPENROWSET, and OPENXML.

Chapter

8

2942C08.qxd 7/16/01 11:38 AM Page 533

http://www.sybex.com

The last chapter examined the various ways that data can be
extracted from SQL Server. This chapter covers the ways that data can be
manipulated in SQL Server. Data can be added to SQL Server, changed
once inside a database, or removed if it is no longer needed. Much of the
material in this chapter builds on the previous chapter. It is recommended
that you have a thorough understanding of the SELECT statement and other
ways that data is retrieved before reading this chapter.

There are three primary Transact-SQL statements available to manipu-
late data. The INSERT, UPDATE, and DELETE statements each work very
much like the SELECT statement and will be examined in detail in this
chapter.

In addition, cursors can be used to update data that is in the underlying
table of the cursor. This chapter will examine how a cursor can be created
and used in the manipulation of data.

Both linked servers and the OPENROWSET command can be used to
update remote data sources. In addition, distributed partitioned views are
updateable in SQL Server 2000. This chapter will look at ways that data
that does not reside in the local SQL Server can be changed through Trans-
act-SQL.

XML can also be used to submit an update to the SQL Server. With the
OPENXML command, an XML document can be used in data manipulation
queries.

2942C08.qxd 7/16/01 11:38 AM Page 534

http://www.sybex.com

The INSERT Statement

The INSERT statement is the way that most data is added to a database
in SQL Server. Whenever new data is needed, the INSERT statement pro-
vides the flexibility to add data to tables in a variety of ways. Like most
other SQL commands, this statement can work with sets of data and insert
a large number of rows into a table with a single line of code.

This section will look at the two formats of the INSERT statement that
add single rows of data to a table. The multiple row format of the INSERT
command will then be presented.

Single Row Insert

There are three formats for inserting a single row into a table:

� Explicit values can be specified.

� A SELECT query can be used that returns a single row.

� A stored procedure can be called that returns a single row in a single
result set.

The format for all methods is similar and the syntax for each is pre-
sented in Listing 8.1.

Listing 8.1: INSERT Statement

INSERT [INTO]
{ table_name WITH (< table_hints > [...n])
}
{ [(column_list)]

{ VALUES ({ DEFAULT | NULL | expression } [,...n])
| derived_table
| execute_statement

Retrieve, filter, group, summarize, and modify data by using

Transact-SQL.

The INSERT Statement 535

2942C08.qxd 7/16/01 11:38 AM Page 535

http://www.sybex.com

Each section of this statement is explained below:

table_name This is the name of the table that will receive the new
row.

table_hints The following hints are allowed:

FASTFIRSTROW

HOLDLOCK

PAGLOCK

READCOMMITTED

REPEATABLEREAD

ROWLOCK

SERIALIZABLE

TABLOCK

TABLOCKX

UPDLOCK

These are the same table hints that can be used to influence the query
optimizer. A thorough discussion of these is given in the “Query Hints”
section of Chapter 12.

column_list This is an optional section. If included, then all columns
that receive values are listed here. Columns not listed here must allow
NULL values or have a default value bound to the column.

derived_table This can be any valid SELECT statement that returns a
result set of the proper size to satisfy the INSERT statement.

Since an insert using a query or a call to a stored procedure is primarily
used to insert multiple rows, these will be covered in the next section.

When inserting a single row into a table, the programmer can explicitly
list the values that will be inserted into each column using the VALUES
clause. This approach provides the programmer with complete control
over the values placed in each column. If there is a default value defined

536 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 536

http://www.sybex.com

for any columns, the keyword DEFAULT can be used in place of an explicit
value to allow SQL Server to insert the appropriate default value.

In Exercise 8.1, we will insert a single row into a database.

All the exercises in this chapter will use the Northwind database that is
included with SQL Server 2000.

E X E R C I S E 8 . 1

Inserting a Single Row
In this exercise, we will add two new rows to the [Order Details] table.
Each row will be added using a different form of the INSERT statement.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. In the Query Analyzer, type the following query to add a row:

INSERT [Order Details]
(OrderID, ProductID, UnitPrice, Quantity, Discount)
VALUES
(10248, 14, 20, 2, 0)

3. Be sure the Northwind database is selected in the database drop-
down box, and press the green arrow on the toolbar or CTRL-E to
execute the query. You should receive the following results:

(1 row(s) affected)

The [Order Details] table in the Northwind database has default
values bound to a few of the columns, so we will populate one of
these columns using the default value.

4. Type the following in Query Analyzer:

INSERT [Order Details]
(OrderID, ProductID, UnitPrice, Quantity, Discount)
VALUES(10248, 15, DEFAULT, 1, 0)
SELECT *
FROM [Order Details]
WHERE OrderID = 10248

The INSERT Statement 537

2942C08.qxd 7/16/01 11:38 AM Page 537

http://www.sybex.com

E X E R C I S E 8 . 1 (c o n t i n u e d)

5. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query. You should receive the following
results:

(1 row(s) affected)

OrderID ProductID UnitPrice Quantity Discount
--------- ---------- ----------- -------- ------------------
10248 14 20.0000 2 0.0
10248 15 .0000 1 0.0

The UnitPrice column has a default of 0 bound to it. This column is
listed in the column list section, and the keyword DEFAULT is used in
the VALUES clause to populate this field with the default value.

The second row in this result set is the one that was just inserted.

Inserting a Single Row with Selected Columns

Not every column must be included in an INSERT statement if the table
meets certain criteria. If a column is defined as an identity field, it should
not be included in the INSERT statement unless additional T-SQL state-
ments are executed before the statement. This situation is covered in the
next section.

The other situations where a column may be omitted from the INSERT
statement are when the column either allows NULL values or has a default
value bound to the column. In these situations, SQL Server will automati-
cally insert the default value for the column if it is omitted. If no default
value is bound to the column, then a NULL will be placed in this field. If
the column does not allow NULL values and does not have a default value
specified, SQL Server will not perform the insert and will return an error
to the calling program.

In Exercise 8.2, we will insert values for selected columns.

538 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 538

http://www.sybex.com

E X E R C I S E 8 . 2

Insert Selected Columns
In this exercise, we will insert a new row into the Products table. This
table allows NULL values in all fields except the ProductID,
ProductName, and Discontinued fields. ProductID is also an identity
field.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Type the following query (be sure the Northwind database is
selected):

INSERT Products
(ProductName, Discontinued)
VALUES
(‘SQL Server Book’, 0)

SELECT ProductID, ProductName, SupplierID, UnitPrice,
Discontinued
FROM Products
WHERE ProductName = ‘SQL Server Book’

3. Highlight these lines using your mouse and press CTRL-E. You
should see something like the following:

ProductID ProductName SupplierID UnitPrice Discontinued
----------- ----------------- ----------- ---------- --------------
78 SQL Server Book NULL .0000 0

Only a few selected columns are included in the result list to save
space. There are three columns in the results that were not in the
INSERT statement. The ProductID column is an identity column, so
SQL Server calculates and includes its value automatically. Suppli-
erID allows NULL values and has no default, so it receives a NULL
value. UnitPrice allows NULL values, but has a default of 0 bound to
this column, so it receives a 0 value.

The INSERT Statement 539

2942C08.qxd 7/16/01 11:38 AM Page 539

http://www.sybex.com

Inserting Single Rows with an Identity Field

An identity column is a special column in SQL Server that holds an integer
value (TINYINT, SMALLINT, INT, or BIGINT) that is automatically
incremented by SQL Server with each insert. When the column is defined,
the initial value as well as the amount of each increment is included in the
definition. Only one column in a table can be defined as an identity
column. Since SQL Server automatically calculates the identity value, the
identity column should not be included in any INSERT statements.

SQL Server does not guarantee that identity values are unique. If you wish
to ensure that every value in a table is unique, an index enforcing this
requirement must be created.

If an explicit value is required for the identity field, SQL Server does
provide a mechanism for inserting this data. There is a property that
allows a programmer to disable the automatic insertion of identity values.
This property is the IDENTITY_INSERT property and can be set to either ON
or OFF using the SET command. Once the property is set to ON, an INSERT
statement can include the identity field in the column list and supply an
explicit value for this column in the VALUES clause. The syntax is as
follows:

SET IDENTITY_INSERT <table_name> [ON | OFF]

This property should be set immediately before a statement that will
supply a value for the identity column and reset immediately after. Only
one table on each SQL Server can have this property enabled at a time. If a
user attempts to set this property for another table while it is already set,
an error is returned.

Exercise 8.3 will show you how to insert identity values.

540 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 540

http://www.sybex.com

E X E R C I S E 8 . 3

Inserting Identity Values
The Categories table in the Northwind database has the CategoryID
field defined as an identity column. This exercise will explicitly insert a
new row with an explicit value for this column.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Enable the IDENTITY_INSERT property for the Categories table with
the following query (be sure the Northwind database is selected):

SET IDENTITY_INSERT Categories ON

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

The command(s) completed successfully.

4. Type the following query to insert the new row with an explicit
value for the CategoryID column.

INSERT Categories
(CategoryID, CategoryName, Description)
VALUES
(9999, ‘SQL Products’, ‘Products that work with SQL

Server.’)

5. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

(1 row(s) affected)

6. Disable the IDENTITY_INSERT property for the Categories table with
the following query:

SET IDENTITY_INSERT Categories OFF

7. Highlight this line using your mouse and press the green arrow on
the toolbar or press CTRL-E. You should see something like the
following:

The command(s) completed successfully.

The INSERT Statement 541

2942C08.qxd 7/16/01 11:38 AM Page 541

http://www.sybex.com

Inserting Multiple Rows

Often a set of data needs to be inserted into a table. Perhaps the user needs
to quickly seed a new table with some values from another table or some
data needs to be copied. It is quicker and easier to use a single INSERT
statement with a query or stored procedure than to run a series of INSERT
statements, each adding one row.

When multiple rows are inserted using a query, all the inserted rows are
automatically encapsulated within an implicit transaction. If there is a
problem with a single row and it cannot be inserted, then no rows are
inserted and the transaction is rolled back. If a series of INSERT statements
are run, the programmer must explicitly create a transaction and perform
error checking after each insert to ensure that all rows are added. Inserting
multiple rows works exactly like inserting single rows with the exception
that the VALUES clause cannot be used. Either a SELECT query or a stored
procedure must be called to insert a set of rows. This set could be a single
row, which would allow these two methods to behave in the same manner
as if the VALUES clause were used. The column list in the INSERT clause is
optional, though the same restrictions that applied to single row inserts
apply here as well. All constraints and rules are also applied.

The DEFAULT keyword cannot be used in either the SELECT query or in
the stored procedure, so values must be supplied for all columns if there is
no column list explicitly specified. A NULL value can be explicitly speci-
fied as a scalar in the queries column list, or it can be returned by the
query as part of the result set. Of course, the column that is being
populated by the NULL value must still be defined to allow NULLs.
Exercises 8.4 and 8.5 will walk you through adding multiple rows to a
table using a query and a stored procedure.

E X E R C I S E 8 . 4

Using a Query to Insert Multiple Rows
This exercise will add a duplicate row to the Products table for each
existing row with a new ProductID value and a price that is reduced by
20 percent.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

542 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 542

http://www.sybex.com

E X E R C I S E 8 . 4 (c o n t i n u e d)

2. Type the following query to insert the new rows (be sure the North-
wind database is selected):

INSERT Products
(ProductName, SupplierID, CategoryID,
QuantityPerUnit, UnitPrice, UnitsInStock,
UnitsOnOrder, ReorderLevel, Discontinued

)
SELECT ProductName, SupplierID, CategoryID,

QuantityPerUnit, UnitPrice * .8, UnitsInStock,
0, 0, 1

FROM Products

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

(78 row(s) affected)

Each product that was in the Products table is now listed twice: once at
its original price and once at 80 percent of its price.

E X E R C I S E 8 . 5

Using a Stored Procedure to Insert Multiple Rows
This exercise will use a stored procedure that returns multiple rows to
insert rows into a table. We will create a table and then populate it with
a series of rows based on an existing stored procedure.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Create the report table using the following query (be sure the North-
wind database is selected):

CREATE TABLE Rpt_Emp_Sales_By_Country
(Country VARCHAR(15),

LastName VARCHAR(20),
FirstName VARCHAR(10),
ShippedDate DATETIME,
OrderID INT,
SaleAmount MONEY

)

The INSERT Statement 543

2942C08.qxd 7/16/01 11:38 AM Page 543

http://www.sybex.com

E X E R C I S E 8 . 5 (c o n t i n u e d)

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

The command(s) completed successfully.

4. Insert the sales data for 1997 by typing the following query:

INSERT Rpt_Emp_Sales_By_Country . . .
EXEC dbo.[Employee Sales by Country] ‘01/01/1997’,
‘01/01/1998’
select * from Rpt_Emp_Sales_By_Country

5. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following (the results are abbreviated and the time was removed
from the ShippedDate column):

Country LastName FirstName ShippedDate OrderID SaleAmount
-------- ----------- ---------- ------------- ---------- ------------
USA Callahan Laura 1997-01-16 10380 1313.8200
USA Fuller Andrew 1997-01-01 10392 1440.0000
USA Davolio Nancy 1997-01-03 10393 2556.9500
USA Davolio Nancy 1997-01-03 10394 442.0000

6. Cleanup the database and remove the table with the following
query:

DROP TABLE Rpt_Emp_Sales_By_Country

7. Highlight this line using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

The command(s) completed successfully.

The UPDATE Statement

Retrieve, filter, group, summarize, and modify data by using

Transact-SQL.

544 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 544

http://www.sybex.com

Once data is stored in SQL Server, it can be changed using the UPDATE
statement. This command allows the user to specify that data in a specific
table be changed to new values based on qualifications that are included in
a WHERE clause, just like the WHERE clause in a SELECT statement. Like the
INSERT statement, the UPDATE statement can only affect one table at a time,
though multiple rows may be involved. Unlike INSERT where the simplest
form adds a single row, the simplest UPDATE statement will update all rows
in a table.

This section will examine how various forms of the UPDATE statement
can be used to change data that is stored in a table.

Updating All Rows

An UPDATE statement contains an implicit transaction, so all rows affected
by the UPDATE statement will be changed or none will be. If the server fails
in the middle of a transaction, then all the changes will be undone when
the server restarts.

The simplest UPDATE statement is one that sets all rows in a column of a
table to the same expression. This form of the UPDATE statement has no
qualifications and is in the form:

UPDATE <table_name>

SET <column_name> = <expression>

The expression in this statement can be a variable, a constant, or an
expression. Exercise 8.6 shows a practical application of this type of
update.

E X E R C I S E 8 . 6

Update All Rows
This exercise will update all rows of the Products table to a single
expression using two different forms of the UPDATE command.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Set all prices equal to a constant value with the following query (be
sure the Northwind database is selected):

BEGIN TRANSACTION

The UPDATE Statement 545

2942C08.qxd 7/16/01 11:38 AM Page 545

http://www.sybex.com

E X E R C I S E 8 . 6 (c o n t i n u e d)

UPDATE Products
SET UnitPrice = 10

SELECT ProductID, ProductName, UnitPrice
FROM Products

ROLLBACK TRANSACTION

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

(312 row(s) affected)

ProductID ProductName UnitPrice
----------- ------------------------------- ----------------
1 Chai 10.0000
2 Chang 10.0000
3 Aniseed Syrup 10.0000

After running this code, the results show that every row in the Prod-
ucts table has the UnitPrice column set to 10. The ROLLBACK TRANS-
ACTION command restores the original values.

4. Now let us reduce all prices by 10 percent using the UPDATE com-
mand. Type the following query into Query Analyzer:

BEGIN TRANSACTION
UPDATE Products
SET UnitPrice = UnitPrice * 0.9

SELECT ProductID, ProductName, UnitPrice
FROM Products

ROLLBACK TRANSACTION

5. Highlight the lines of code above using your mouse and press the
green arrow on the toolbar or press CTRL-E. You should see some-
thing like the following:

(312 row(s) affected)

ProductID ProductName UnitPrice
----------- ------------------------------ -----------------
1 Chai 16.2000
2 Chang 17.1000
3 Aniseed Syrup 9.0000
4 Chef Anton’s Cajun Seasoning 19.8000
5 Chef Anton’s Gumbo Mix 19.2150

546 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 546

http://www.sybex.com

Updating a Set of Rows

Modifying all the rows in a table using an UPDATE statement is not
something that is common in most tables. Usually a set of rows with some
common elements will need to be updated. In order to update only a
portion of a table, the UPDATE statement needs to be qualified so it will
affect only those rows meeting the qualification.

In the same manner as the SELECT statement, which was covered in
Chapter 7, the UPDATE statement can include both a FROM clause and a
WHERE clause to limit the rows that are affected by the statement to those
that match the WHERE clause. The FROM clause allows tables other than the
table being updated to be used to make qualifications.

Only a single table can be directly affected using the UPDATE statement.

The syntax of the UPDATE command is as follows:

UPDATE <table_name>

SET <column_name> = <expression>

[FROM <table_list>]

[WHERE <search_condition>

The FROM and WHERE clauses behave exactly like they do in a SELECT state-
ment. Aliases and table hints can be used along with derived tables, sub-
queries, or any other valid form of these clauses as presented in Chapter 7.

When including tables in the FROM clause, the table being updated can be
added to this list so an alias can be specified.

In Exercise 8.7, we will update a set of rows.

E X E R C I S E 8 . 7

Updating a Set of Rows

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

The UPDATE Statement 547

2942C08.qxd 7/16/01 11:38 AM Page 547

http://www.sybex.com

E X E R C I S E 8 . 7 (c o n t i n u e d)

2. Reduce the price of products from Tokyo Traders by 10 percent by
typing the following query (be sure the Northwind database is
selected):

BEGIN TRANSACTION
UPDATE Products
SET UnitPrice = UnitPrice * 0.9
FROM Suppliers s
WHERE s.SupplierID = Products.SupplierID
and s.CompanyName = ‘Tokyo Traders’

SELECT ProductID,
ProductName,
QuantityPerUnit,
UnitPrice

FROM Products

ROLLBACK TRANSACTION

3. Highlight the lines of code above using your mouse and press the
green arrow on the toolbar or press CTRL-E.

This code reduced the price of the two products from Tokyo Traders
by 10 percent. Here are the values before and after this statement is
run (the result set is abbreviated):

ProductID ProductName QuantityPerUnit UnitPrice
----------- ------------------- ----------------- ---------
9 Mishi Kobe Niku 18 - 500 g pkgs. 97.0000
10 Ikura 12 - 200 ml jars 31.0000
74 Longlife Tofu 5 kg pkg. 10.0000

ProductID ProductName QuantityPerUnit UnitPrice
----------- ------------------- ----------------- ---------
9 Mishi Kobe Niku 18 - 500 g pkgs. 87.3000
10 Ikura 12 - 200 ml jars 27.9000
74 Longlife Tofu 5 kg pkg. 9.0000

Updating Multiple Columns

Updating a set of rows can be useful in many situations; however, a
programmer may often want to update multiple columns in a table. T-SQL

548 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 548

http://www.sybex.com

includes the ability to update more than one column in a single statement.
Each column being updated follows the same format of

<column_name> = <expression>

with these phrases being separated by commas, just like the column
expressions in the SELECT statement are separated by commas. All columns
in a table, or a subset of the columns can be updated, but only a single
table’s columns can be updated directly with each statement.

In Exercise 8.8, we will update multiple columns.

E X E R C I S E 8 . 8

Updating Multiple Columns

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. The following query will reduce the price of the products from
Tokyo Traders, reduce the number on order to zero, and mark these
items as discontinued. Type the following query in Query Analyzer
(be sure the Northwind database is selected):

BEGIN TRANSACTION
UPDATE Products
SET UnitPrice = UnitPrice * 0.9,

UnitsOnOrder = 0,
Discontinued = 1

FROM Suppliers s
WHERE s.SupplierID = Products.SupplierID
and s.CompanyName = ‘Tokyo Traders’

SELECT ProductID,
ProductName,
UnitPrice,
UnitsOnOrder,
Discontinued

FROM Products

ROLLBACK TRANSACTION

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E.

The UPDATE Statement 549

2942C08.qxd 7/16/01 11:38 AM Page 549

http://www.sybex.com

E X E R C I S E 8 . 8 (c o n t i n u e d)

The before and after results are:

ProductID ProductName UnitPrice UnitsOnOrder Discontinued
----------- ---------------- ----------- ------------ ------------
9 Mishi Kobe Niku 97.0000 0 1
10 Ikura 31.0000 0 0
74 Longlife Tofu 10.0000 20 0

ProductID ProductName UnitPrice UnitsOnOrder Discontinued
----------- ---------------- ----------- ------------ ------------
9 Mishi Kobe Niku 87.3000 0 1
10 Ikura 27.9000 0 1
74 Longlife Tofu 9.0000 0 1

Updating a View

A view can be updated in addition to directly updating a table, though
there are a few restrictions to using an UPDATE in this fashion.

� The view and the columns being updated must be defined as
updateable.

� The definition of the view must contain at least one table in the FROM
clause.

� The columns being updated cannot be derived columns.

� The UPDATE statement can only affect a single base table in the view.

� Any columns from the base table that are included in a view can be
updated and are updated using the name of the column defined in
the view.

� If the view definition contains aggregates, then it is not updateable.
The exception to this is if aggregates appear in a subquery and are
not affected by any update operations.

If a view meets these conditions, it can be used in an UPDATE statement
like any other base table. All of the above examples could have used a
view in place of a table.

550 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 550

http://www.sybex.com

Distributed partitioned views are also updateable and are a key part of
building a large scalable SQL Server database.

The DELETE Statement

The fourth statement that can be used to modify data in T-SQL is
DELETE. This command removes rows from a table in the same way that
UPDATE can be used to modify the data in a row.

Deleting All Rows

Like the UPDATE statement, the simplest DELETE statement is one that
affects all rows. When there is no qualification included, the DELETE
statement will remove all rows from a table or view. The syntax for the
DELETE statement is:

DELETE <table_name>

Executing this statement will remove all rows from the table or view.
Just as an UPDATE statement can only affect one base table, the DELETE
statement can only be issued against a view if the view contains a single
table.

On large tables, deleting all rows may take a large amount of time since
each deletion is logged in the transaction log. It is usually quicker to issue a
TRUNCATE TABLE <table_name>.

In Exercise 8.9, we will remove all rows from a table.

Retrieve, filter, group, summarize, and modify data by using

Transact-SQL.

The DELETE Statement 551

2942C08.qxd 7/16/01 11:38 AM Page 551

http://www.sybex.com

E X E R C I S E 8 . 9

Remove All Rows From a Table
This exercise will remove all rows from the Order Details table. This
operation is encapsulated inside a transaction so the deletion is not
permanent.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Delete all rows from the Order Details table with the following query
(be sure the Northwind database is selected):

BEGIN TRANSACTION
DELETE [Order Details]
SELECT * FROM [Order Details]
ROLLBACK TRANSACTION

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

(2154 row(s) affected)

OrderID ProductID UnitPrice Quantity Discount
----------- ----------- ------------- ----------------------

(0 row(s) affected)

The SELECT statement in this batch will not return any rows since
they are all deleted by the DELETE statement. The ROLLBACK TRANS-
ACTION will restore the deleted rows.

Deleting a Set of Rows

Usually a process that needs to remove data from a table will only remove
a subset of the rows in the table. Rarely will the entire table be emptied of
data. The DELETE statement allows the programmer to specify a subset of
data that is to be removed.

In the same manner as the SELECT statement, which was covered in
Chapter 7, the DELETE statement can include both a FROM clause and a
WHERE clause to limit the rows that are affected by the statement to those

552 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 552

http://www.sybex.com

that match the WHERE clause. The FROM clause allows tables other than the
table being updated to be used to make qualifications.

Only a single table can be directly affected using the DELETE statement.

The syntax of the DELETE command to delete a set of rows is as follows:

DELETE <table_name>

[FROM <table_list>]

[WHERE <search_condition>

The FROM and WHERE clauses behave exactly like they do in a SELECT
statement. Aliases and table hints can be used along with derived tables,
subqueries, or any other valid form of these clauses as presented in
Chapter 7.

When including tables in the FROM clause, the table being updated can be
added to this list so an alias can be specified.

In Exercise 8.10, we will delete of set of rows.

E X E R C I S E 8 . 1 0

Deleting a Set of Rows
This exercise will remove only order details for a single order and a
single customer. Each set of code is encapsulated inside a transaction
so the deletion of data is a temporary event.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Remove the order details for OrderID = 10248 by typing the follow-
ing query into Query Analyzer (be sure the Northwind database is
selected):

BEGIN TRANSACTION
DELETE [Order Details]
WHERE OrderID = 10248

The DELETE Statement 553

2942C08.qxd 7/16/01 11:38 AM Page 553

http://www.sybex.com

E X E R C I S E 8 . 1 0 (c o n t i n u e d)

SELECT *
FROM [Order Details]
WHERE OrderID = 10248
ROLLBACK TRANSACTION

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

(2 row(s) affected)

OrderID ProductID UnitPrice Quantity Discount
----------- ----------- ---------------- -------------------

(0 row(s) affected)

4. Remove all the order details for Customer ALFKI by typing the fol-
lowing query into Query Analyzer (be sure the Northwind database
is selected):

BEGIN TRANSACTION

DELETE [Order Details]
FROM [Order Details] od, Orders o
WHERE o.CustomerID = ‘ALFKI’
AND o.OrderID = od.OrderID

SELECT *
FROM [Order Details] od, Orders o
WHERE o.CustomerID = ‘ALFKI’
AND o.OrderID = od.OrderID

ROLLBACK TRANSACTION

5. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following (the results are abbreviated):

(12 row(s) affected)

OrderID ProductID UnitPrice Quantity Discount
----------- ----------- ----------- -------------------

(0 row(s) affected)

554 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 554

http://www.sybex.com

Modifying Data inside a Cursor

In Chapter 7, cursors were presented as a construct that allows a
process to deal with a single row of data at a time in a procedural fashion.
In this section, we will examine how the data inside a cursor can be
changed using the cursor.

We will only cover managing result sets using cursors in the following
sections.

Declaring an Updateable Cursor

If the default values are used when declaring a cursor, then the cursor will
not be updateable. SQL Server assumes that cursors are, by default, not
updateable. When declaring the cursor, the UPDATE keyword must be
included in the declaration. Optionally, a list of columns that are
updateable can be included. If a column list is included, then only those
columns listed are updateable. The syntax for declaring an updateable
cursor is similar to that presented in Chapter 7:

DECLARE <cursor_name> CURSOR

[LOCAL | GLOBAL]

[FORWARD_ONLY | SCROLL]

[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]

[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]

[TYPE_WARNING]

FOR

[SELECT statement]

[FOR UPDATE [OF column_list [a, b, .., n]]]

Manage result sets by using cursors and Transact-SQL.

Considerations include locking models and appropriate

usage.

Modifying Data inside a Cursor 555

2942C08.qxd 7/16/01 11:38 AM Page 555

http://www.sybex.com

The last line of this declaration includes the FOR UPDATE clause and
optionally a column list. By including this clause, SQL Server understands
that the cursor is being used for a positional update of the data in the base
table. This means the current row in the cursor is mapped to a single row
in the underlying base table, and the mapped row is the row that is
modified.

The OF column_list part of the clause is optional. If this is not
included, then all the columns of the cursor are updateable. If the column
list is included, then only those columns listed are updateable.

Be sure that the UPDATE statement is updating the correct table from the
cursor declaration. There are many cases where the same column name
from two different tables may be used to form the cursor.

Updating Data within a Cursor

The UPDATE statement used to modify the base table actually references the
base table and must conform to all rules for UPDATE statements, but the
row is qualified using the cursor rather than the standard WHERE clause.
The syntax for this statement is as follows:

UPDATE <table_name>

SET <column_name> = <expression>

WHERE CURRENT OF <cursor_name>

This statement looks very similar to the UPDATE statement presented in
Chapter 7, but the WHERE clause is qualified by the cursor rather than any
logical operations. When this statement is executed, it will update the row
of the table that corresponds to the row that is currently pointed to by the
cursor. If the cursor was not declared as updateable or the column being
updated was not included in the column list, then an error will be
returned.

Columns in a table that are not included in the cursor may be updated, pro-
vided that the OF column_list clause is not specified.

In Exercise 8.11, we will modify data using a cursor.

556 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 556

http://www.sybex.com

E X E R C I S E 8 . 1 1

Modifying Data Using a Cursor
This exercise will use a cursor to update the CompanyName in the
Customers table.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Declare the cursor by typing the following query (be sure the North-
wind database is selected):

DECLARE MyCursor CURSOR
FOR
SELECT
c.CustomerID,
c.Companyname,
c.contactname,
o.OrderID,
o.OrderDate

FROM Customers c, Orders o
WHERE c.CustomerID = o.CustomerID
FOR UPDATE

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

The command(s) completed successfully.

4. Open the cursor and retrieve a row with the following query:

OPEN MyCursor

DECLARE
@cid VARCHAR(8),
@c VARCHAR(80),
@o INT,
@od DATETIME,
@cn VARCHAR(80)

FETCH NEXT FROM MyCursor INTO @cid, @c, @cn, @o, @od
SELECT @cid

Modifying Data inside a Cursor 557

2942C08.qxd 7/16/01 11:38 AM Page 557

http://www.sybex.com

E X E R C I S E 8 . 1 1 (c o n t i n u e d)

5. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

VINET

(1 row(s) affected)

6. Update the Customers table with the following query:

BEGIN TRANSACTION
UPDATE Customers
SET CompanyName = ‘q’
WHERE CURRENT OF Mycursor

7. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

(1 row(s) affected)

8. Cleanup the database, retrieve the results, and rollback the transac-
tion with this query:

DEALLOCATE MyCursor

SELECT *
FROM Customers

ROLLBACK TRANSACTION

9. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. The result of this update will be
seen near the bottom of the result set. Here is an abbreviated result
set with the updated row.

CustomerID CompanyName ContactName ContactTitle
---------- -------------------- ------------ ---------------------
VICTE Victuailles en stock Mary Saveley Sales Agent
VINET q Paul Henriot Accounting Manager
WANDK Die Wandernde Kuh Rita Müller Sales Representative

558 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 558

http://www.sybex.com

Modifying Data Using XML

In Chapter 7, the methods that SQL Server 2000 provides for retrieving
data in an XML format were presented. However, this is only half of the
XML capability of SQL Server 2000. The ability to update data stored in
SQL Server using an XML data source is presented in this section.

Modifying Data Using OPENXML

The method chosen by SQL Server 2000 that allows modification of data
using an XML data source is OPENXML. This function provides a view
of the XML data that looks like a standard SQL Server rowset. This
rowset can be used in place of any other rowset in SELECT statements. This
includes SELECT statements used for INSERT, UPDATE, and DELETE
statements.

In order for an XML data source to be used in T-SQL statements, the
document must be parsed and stored in memory in SQL Server in a tree
representation. This tree representation includes information that SQL
Server needs to know about the various nodes so it can prepare a rowset
view of the data. SQL Server includes a new stored procedure,
SP_XML_PREPAREDOCUMENT, that will convert an XML document
into the internal SQL Server representation.

SP_XML_PREPAREDOCUMENT

OPENXML cannot work with the native text format of an XML document.
The information about how the various nodes of an XML document are
related is needed to provide the proper rowset view. SP_XML_PREPAREDOCUMENT
converts a text-based XML document into a form that SQL Server can use.

Elements, attributes, text, comments, and anything else stored in the XML
document as a discrete piece of information is a node.

Manipulate heterogeneous data. Methods include linked

servers, OPENQUERY, OPENROWSET, and OPENXML.

Modifying Data Using XML 559

2942C08.qxd 7/16/01 11:38 AM Page 559

http://www.sybex.com

SQL Server parses and creates an internal representation of the docu-
ment built in memory. The internal representation is a view of the XML
document in a tree-like structure of the nodes in the document. The tree
structure includes elements, attributes, text, comments, and any other
nodes. Consider the XML document in Listing 8.2:

Listing 8.2: XML Authors

<ROOT>

<Customers customerid=”ALFKI” contactname=”Maria Anders”
Phone=”030-0074321”>

<Orders orderid=”10643” orderdate=”1997-08-
25T00:00:00”/>

<Orders orderid=”10702” orderdate=”1997-10-
13T00:00:00”/>

</Customers>

<Customers CustomerID=”ANATR” ContactName=”Ana Trujillo”
Phone=”(5) 555-4729”>

<Orders OrderID=”10308”/>

</Customers>

</ROOT>

The internal tree representation of this document is similar to Figure 8.1.

F I G U R E 8 . 1 Tree Representation of Prepared XML Document

ROOT Customers

Customers

CustomerID

CustomerID

ContactName

ContactName

Phone

Phone

Orders

Orders

Orders

ALFKI

ANATR

Maria Anders

Ana Trujillo

030-0074321

(5) 555-4729

OrderID

OrderDate

OrderID

OrderDate

OrderID

10643

1997-08-25T00:00:00

10702

1997-10-13T00:00:00

10308

560 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 560

http://www.sybex.com

This stored procedure then returns a handle for the internal representa-
tion of the XML document for use by other processes. The syntax for this
stored procedure is as follows:

SP_XML_PREPAREDOCUMENT hdoc OUTPUT

[, xmltext][, xpath_namespaces]

The parameters of this stored procedure are defined as follows:

hdoc This is an integer that is returned to the calling program as a
handle to the internal representation of the XML document. Any
process that needs to access the internal representation of the XML doc-
ument needs to refer to the document using this handle.

xmltext This is the actual XML document stored as a text parameter.
This can be CHAR, NCHAR, VARCHAR, NVARCHAR, TEXT, or NTEXT. If no
parameter is passed or its value is NULL, then a representation of an
empty XML document will be created.

xpath_namespaces This parameter specifies that namespace Uniform
Resource Identifiers (URIs) that are used in the XPATH expressions in
OPENXML. These expressions specify the row and column mappings for
each node. Its default value is <root xmlns:mp=”urn:schemas-
microsoft-com:xml-metaprop”>.

Once this stored procedure has completed, OPENXML can be used to con-
vert this XML document stored in memory to a row and column view,
which can be used in T-SQL statements.

After processing an XML document that was created in memory with
SP_XML_PREPAREDOCUMENT, you should always remove the document with
SP_XML_REMOVEDOCUMENT. This will free the resources for other processes.

Using OPENXML

Once the document is parsed and stored in memory, the OPENXML function
can be used to provide a rowset view of the XML document. The basic
syntax for OPENXML is as follows:

OPENXML(idoc INT [in],row_pattern nvarchar[in],[flags
byte[in]])
[WITH (schema_declaration | table_name)]

Modifying Data Using XML 561

2942C08.qxd 7/16/01 11:38 AM Page 561

http://www.sybex.com

OPENXML has the following definitions for each parameter:

idoc This is the integer handle that refers to the internal representation
of the XML document. This is returned by SP_XML_PREPAREDOCUMENT.

row_pattern A XPATH pattern that identifies the nodes to be processed
as rows.

flags Indicates the type of mapping that is to be used between the
XML data and the rowset. This parameter also determines how extra
columns should be filled. The default is 0, and here are the possible
values:

0 Default

1 Use an attribute-centric mapping. In this mapping, the attributes
of elements will map to columns of the same name. If the names
are different, then the column_patterns must be specified in the
schema declaration.

2 Use an element-centric mapping. May be combined with an
attribute-centric mapping. This maps element names to column
names.

schema_declaration This is an optional clause that provides for the
specific mapping between the nodes in the XML document and the
resulting rowset. The schema declaration will be in the form:

column_name column_type [column_pattern | meta_property]

where the parameters are defined as follows:

� column_name is the name of the column in the result set.

� column_type is the datatype of the column in the result set.

� column_pattern is an optional XPATH pattern that maps a specific
node to a column. If this parameter is not specified, then the map-
ping defaults to the attribute- or element-centric mapping specified
by the flags parameter.

� meta_property, if specified, defines the column as holding informa-
tion provided by the metaproperty. These properties allow you to
extract information about the XML node such as namespace or rela-
tive position.

562 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 562

http://www.sybex.com

table_name An optional parameter that can be given in place of a
schema declaration. This is the name of an existing table that holds the
desired schema of the result set.

If no WITH clause is included, then the results of the OPENXML function
are returned as an edge table. An edge table can represent the fine-grained
structure of an XML document in a single table. The columns of the edge
table are defined in Table 8.1.

TA B L E 8 . 1 Edge Table Columns

Column Description

id A BIGINT. This is a unique identifier for the row. A
value of 0 is used for the root and negative values are
reserved.

parentid A BIGINT. Identifies the parent of the row. The parent is
not necessarily the parent element from the XML docu-
ment. It depends on the node type. If this is a text
node, then the parent may be an attribute row.

nodetype An INT. This identifies the node type. A value of 1 is
used for Element nodes, a value of 2 for Attribute
nodes, and a value of 3 for text nodes.

localname A NVARCHAR. This gives the local name of the element
or attribute. This is set to NULL if the document object
does not have a name.

prefix A NVARCHAR. This is the namespace prefix of
the node.

namespaceuri A NVARCHAR. The namespace URI of the node. If
NULL, then no namespace is present.

datatype A NVARCHAR. The actual datatype of the element or
attribute row. Otherwise this is NULL. The type is taken
from the inline schema or inferred by SQL Server.

prev BIGINT. The XML ID of the previous sibling node.

text NTEXT. This holds the attribute value or element con-
tent in text form.

Modifying Data Using XML 563

2942C08.qxd 7/16/01 11:38 AM Page 563

http://www.sybex.com

The following sections will discuss the three data modification state-
ments using OPENXML.

Inserting Rows with OPENXML

Since OPENXML returns a rowset that looks like the rowset from any other
table or view, it can be used in an INSERT statement in the same manner as
a table or view. The only restriction is that the INSERT statement must use
a SELECT query for the source data, as this is the type of statement that is
used with OPENXML.

In Exercise 8.12, we will insert a row using OPENXML.

E X E R C I S E 8 . 1 2

Inserting Data with OPENXML
This exercise will add a new customer using OPENXML.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Prepare the internal representation of the XML document and insert
the new row by typing the following query (be sure the Northwind
database is selected):

DECLARE @idoc int
DECLARE @doc VARCHAR(1000)
SET @doc =’
<ROOT>
<Customer CustomerID=”STAR” ContactName=”Michael Jordan”
CompanyName=”Bulls”>

</Customer>
</ROOT>’
--Create an internal representation of the XML document.
EXEC SP_XML_PREPAREDOCUMENT @idoc OUTPUT, @doc

INSERT Customers (CustomerID, ContactName, CompanyName)
SELECT *
FROM OPENXML (@idoc, ‘/ROOT/Customer’,1)

WITH (CustomerID varchar(5),
ContactName varchar(20),
CompanyName varchar(20)

)

SELECT * FROM Customers

EXEC SP_XML_REMOVEDOCUMENT @idoc

564 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 564

http://www.sybex.com

E X E R C I S E 8 . 1 2 (c o n t i n u e d)

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

CustomerID CompanyName ContactName ContactTitle
---------- ---------------------- ------------------- -------------
SPLIR Split Rail Beer & Ale Art Braunschweiger Sales Manager
STAR Bulls Michael Jordan NULL
SUPRD Suprêmes délices Pascale Cartrain Accounting

Updating Rows with OPENXML

In the same manner as the INSERT statement, the XML document can be
used in an UPDATE statement to modify data. The OPENXML result looks like
any other table and is included in the FROM clause of the UPDATE statement.

In Exercise 8.13, we will update data using OPENXML.

E X E R C I S E 8 . 1 3

Updating Data with OPENXML
This exercise will modify the customer added in Exercise 8.12. The
CompanyName field will be changed.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Prepare the internal representation of the XML document and per-
form the update by typing the following query (be sure the North-
wind database is selected):

DECLARE @idoc int
DECLARE @doc VARCHAR(1000)
SET @doc =’
<ROOT>
<Customer CustomerID=”STAR” ContactName=”Michael Jordan”
CompanyName=”Chicago Bulls”>

</Customer>
</ROOT>’
--Create an internal representation of the XML document.
EXEC SP_XML_PREPAREDOCUMENT @idoc OUTPUT, @doc

Modifying Data Using XML 565

2942C08.qxd 7/16/01 11:38 AM Page 565

http://www.sybex.com

E X E R C I S E 8 . 1 3 (c o n t i n u e d)

UPDATE Customers
SET CompanyName = b.CompanyName
FROM OPENXML (@idoc, ‘/ROOT/Customer’,1)

WITH (CustomerID varchar(5),
ContactName varchar(20),
CompanyName varchar(20)

) b
WHERE Customers.CustomerID = b.CustomerID

SELECT * FROM Customers

EXEC SP_XML_REMOVEDOCUMENT @idoc

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following: (Results are abbreviated. This portion of the results will
be near the bottom of the result set.)

CustomerID CompanyName ContactName ContactTitle
---------- ---------------------- ------------------- ---------------
SPLIR Split Rail Beer & Ale Art Braunschweiger Sales Manager
STAR Chicago Bulls Michael Jordan NULL
SUPRD Suprêmes délices Pascale Cartrain Accounting

Deleting Rows with OPENXML

The DELETE statement is very similar to the UPDATE statement when using
OPENXML. A FROM clause must be included for the OPENXML rowset to
participate in the delete operation.

In Exercise 8.14, we will delete rows using OPENXML.

E X E R C I S E 8 . 1 4

Deleting Data with OPENXML
This exercise will remove the customer added in Exercise 8.12.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

566 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 566

http://www.sybex.com

E X E R C I S E 8 . 1 4 (c o n t i n u e d)

2. Prepare the internal representation of the XML document and delete
the customer with the following query (be sure the Northwind data-
base is selected):

DECLARE @idoc int
DECLARE @doc VARCHAR(1000)
SET @doc =’
<ROOT>
<Customer CustomerID=”STAR” ContactName=”Michael Jordan”
CompanyName=”Bulls”>

</Customer>
</ROOT>’
—Create an internal representation of the XML document.
EXEC sp_xml_preparedocument @idoc OUTPUT, @doc

DELETE Customers
FROM OPENXML (@idoc, ‘/ROOT/Customer’,1)

WITH (CustomerID varchar(5),
ContactName varchar(20),
CompanyName varchar(20)

) b
WHERE Customers.CustomerID = b.CustomerID

SELECT * FROM Customers

EXEC SP_XML_REMOVEDOCUMENT @idoc

3. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following in the query analyzer: (Results are abbreviated. This por-
tion of the results will be near the bottom of the result set.)

CustomerID CompanyName ContactName ContactTitle
---------- ---------------------- ------------------- --------------
SPLIR Split Rail Beer & Ale Art Braunschweiger Sales Manager
SUPRD Suprêmes délices Pascale Cartrain Accounting

Note that the row with a CustomerID of STAR has been deleted.

Modifying Data Using XML 567

2942C08.qxd 7/16/01 11:38 AM Page 567

http://www.sybex.com

Data Modification Using OPENXML

OPENXML appears to be a cumbersome method of modifying data
stored in SQL Server, and in many cases it is. There are a number of
places, however, that this technique is much easier to use than any
other.

Suppose that you work for a company that specializes in e-mailing
newsletters, product specials, etc., and are contracted by various firms
to send e-mails on their behalf. These firms send you periodic data
feeds that contain the e-mail address, name, and other pertinent
information about their customers to whom you are sending e-mails.
The feeds you receive are incremental and contain both new and
updated information for customers.

If you were to receive these feeds in a text format, you would have to
devise an import routine to move this data into a table, scrub the data,
perform update and inserts against your existing customer tables,
and hope the data is sent in the same format each time.

By receiving this data as XML, the document can be validated against
a known scheme, which prevents any processing if the document
does not conform to the accepted schema. The document can then be
submitted directly to the SQL Server using INSERT and UPDATE
statements with OPENXML to add this information to your database.
The self-describing nature of XML would also ensure that if columns
were ordered differently, the process would be unaffected.

Using Distributed Queries to Modify Data

In Chapter 7, we looked at distributed queries and how they can be
used to access data stored in a variety of formats. Chapter 7 was con-
cerned with including remote data sources in a query executed in the local

Manipulate heterogeneous data. Methods include linked

servers, OPENQUERY, OPENROWSET, and OPENXML.

568 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 568

http://www.sybex.com

SQL Server. The same techniques for retrieving data can be used to modify
the data, if the provider for the data source supports data modification.
Since not all providers allow modifications, the documentation for each
provider will have to be checked manually.

There are two basic types of distributed queries: those using linked
servers and those using the OPENROWSET function. We will examine
how data modification statements change using each of these remote data
sources.

Modifying Data Using Linked Servers

Assuming that it is supported, the process for modifying data in a linked
server is the same as a data modification for a local data source with one
exception. The table being referenced by the modification statement must
be specified in the fully qualified, four-part notation that was presented in
Chapter 7. This notation is in the form:

linked_server_name.catalog.schema.object_name

where parts are defined as follows:

linked_server_name This is the friendly name of the server that is
registered in sysservers.

catalog The catalog is analogous to the database in SQL Server. This
is the location within the remote data source in which the object is
located.

schema Equivalent to the owner of the table.

object_name This is the name of the table of other structure being
queried.

Other than this restriction, the INSERT, UPDATE, and DELETE statements
are formed and used exactly as they would be for a local data source. All
of the updates presented in this chapter to this point, could be specified
with the same four-part, fully qualified notation. The server would be the
local server, the catalog would be “Northwind,” and the schema “dbo.” If
we had another SQL Server or Access database that was registered as a
linked server, the only change to the queries would be to substitute the
remote server name in place of the local server.

Using Distributed Queries to Modify Data 569

2942C08.qxd 7/16/01 11:38 AM Page 569

http://www.sybex.com

Modifying Data Using OPENROWSET

When using the OPENROWSET function to modify data in remote data
sources, the queries are structured the same way as they are for local
tables. The difference is that in place of the name of a local table, the
entire OPENROWSET function call is used. While not as readable as the
other types of statements presented in this chapter, the structure of the
T-SQL statement is the same.

In Exercise 8.14, we will modify data using OPENROWSET.

E X E R C I S E 8 . 1 5

Modifying Data with OPENROWSET
This exercise will modify data in an Access database using the
OPENROWSET function. To complete this exercise, Access 97 or
Access 2000 is needed.

1. Start the Access program and create a blank database called
c:\db_test.mdb.

2. In this database, create a new table with three fields:

Field: CustomerID, Type: Text, Length: 10

Field: CallTime, Type: Number

Field: CallDate, Type: Date/Time

3. Save the table by pressing the Save icon on the toolbar or choosing
File ➢ Save from the menu. Name the table “Calls.”

4. Close the Access program.

5. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

6. Insert rows into the database using OPENROWSET by typing the fol-
lowing query (be sure the Northwind database is selected):

INSERT OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,
‘c:\db_test.mdb’;’admin’;’’, Calls)

(CustomerID, CallTime, CallDate)
select c.CustomerID, 10, getdate()
from Customers c
where c.CustomerID like ‘B%’

570 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 570

http://www.sybex.com

E X E R C I S E 8 . 1 5 (c o n t i n u e d)

7. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E.

8. Start the Access program and open the Calls table. There will be
eight rows of data in this table as shown below.

9. Close the Access program.

10. Type the following code into Query Analyzer (Access should be
closed).

UPDATE OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,
‘c:\db_test.mdb’;’admin’;’’, Calls)

SET CALLTIME = 20
WHERE CustomerID = ‘BOLID’

11. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E.

12. Start the Access program and open the Calls table. The row with the
CustomerID = ‘BOLID’ will have a calltime of 20 as shown on the
next page.

Using Distributed Queries to Modify Data 571

2942C08.qxd 7/16/01 11:38 AM Page 571

http://www.sybex.com

E X E R C I S E 8 . 1 5 (c o n t i n u e d)

13. Delete a row from the table by typing the following code into Query
Analyzer (Access should be closed):

DELETE OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,
‘c:\db_test.mdb’;’admin’;’’, Calls)

WHERE CustomerID = ‘BOLID’

14. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E.

15. Start the Access program and open the Calls table. The row with the
CustomerID = ‘BOLID’ will no longer be in the table as shown below:

572 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 572

http://www.sybex.com

Summary

This chapter has examined various ways in which data in a SQL
Server database can be modified. The following topics were covered in this
chapter:

� INSERT is the T-SQL statement that adds rows of data to a table.
This statement can use a VALUES clause to add single rows or a
SELECT query to add multiple rows.

� UPDATE is the T-SQL command that modifies the existing data in a
table. This statement can affect all rows or be qualified with a WHERE
clause in the same manner as a SELECT statement.

� DELETE is the T-SQL statement that removes rows of data from a
table. This statement can also be qualified with a WHERE clause in the
same manner as the UPDATE or SELECT statements.

� OPENXML is a function that provides a view of an XML document
that is in the same row and column format as other result sets. This
can be used in the FROM clause of T-SQL statements in place of a
table or view. This chapter presented examples of INSERT, UPDATE,
and DELETE statements.

� Linked servers and OPENROWSET distributed queries allow data to
be modified if the provider supports this function. Linked server
updates are the same as local updates using a fully-qualified table
name. OPENROWSET queries substitute the OPENROWSET function for
the table name that is being updated.

Key Terms

Before you take the exam, be certain you are familiar with the fol-
lowing terms:

edge table Uniform Resource Identifiers (URIs)
handle SP_XML_PREPAREDOCUMENT
OPENXML SP_XML_REMOVEDOCUMENT
positional update

Summary 573

2942C08.qxd 7/16/01 11:38 AM Page 573

http://www.sybex.com

Exam Essentials

Understand the different forms of the INSERT statement. This statement
can be used with a VALUES clause, a SELECT statement, or a stored pro-
cedure call. Understand how to use each form.

Know how defaults are used with INSERT. Be sure you understand
the difference between an implicit default and an explicit default.

Know the different forms of an UPDATE statement. The UPDATE state-
ment only affects a single table, but can include other tables to provide
values for the update or qualify the rows affected.

Know how to delete rows from a table. The DELETE statement is simi-
lar to the UPDATE statement in its structure. Also understand how TRUN-
CATE TABLE is different from DELETE.

Understand what an updateable cursor is. A cursor can be used to
update rows. You should be aware of the syntax for declaring this cur-
sor and how to structure the UPDATE statement.

Know how the OPENXML function works. OPENXML requires the doc-
ument to be parsed and stored in memory. Know how to prepare and
remove the document from memory. Understand how OPENXML trans-
forms an XML document.

Review Questions

1. As a SQL Server consultant, you are asked to add data to a client’s
database. The source data is in an XML format, and the client offers
to have the data manually typed into an Excel spreadsheet. You
reply this is not necessary because you can directly work with the
XML document. Which two SQL Server tools would you choose?

A. SP_XML_PREPAREDOCUMENT

B. OPENQUERY

C. OPENXML

D. SP_XML_OPENDOCUMENT

574 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 574

http://www.sybex.com

2. You are the DBA for an Internet retailer and you need to reduce
the prices of all products by 10 percent. Which statement will
accomplish this goal?

A.

UPDATE Products

SET UnitPrice = 10 Percent UnitPrice

B.

UPDATE Products

SET UnitPrice = UnitPrice * .9

WHERE ProductID IS NOT NULL

C.

UPDATE Products

SET UnitPrice = UnitPrice * .9

WHERE ProductID = 10

D.

UPDATE Products

SET UnitPrice = UnitPrice - (UnitPrice * .1)

3. A developer brings you a query that is designed to insert a row into
the Customer table. His application does not always have values for
all columns, but all columns have a default value. How can he
structure the INSERT statement?

A.

INSERT Customers (Name, CID, *) VALUES (@c, @id,
DEFAULT)

B.

INSERT Customers (Name, CID) VALUES (@c, @id)

C.

INSERT Customers (Name, CID) VALUES (@c, @id) WITH
DEFAULT

D.

INSERT Customers DEFAULTS EXCEPT (Name = @c, CID = @id)

Summary 575

2942C08.qxd 7/16/01 11:38 AM Page 575

http://www.sybex.com

4. A developer has accidentally run the following code:

BEGIN TRANSACTION

UPDATE Products

SET UnitPrice = .6

He had been asked to reduce the price of each product by 40 percent
and update orders placed after Jan 1, 2001 with the correct unit
price. Place the following code in the correct order to complete this
task. Only include those steps that are needed.

5. You are the DBA for Super Duper Kids Toys, Inc. and have been
asked to reduce the price of all current products. Each product
receives a new price that is discounted based on the classification
type of the product. You determine that a cursor is the best way to
carry out this task. Place the following statements in the correct
order (Use only those statements that are necessary). Assume that
@y and @p have already been defined.

BEGIN TRANSACTION

UPDATE Products
SET UnitPrice = UnitPrice * .6

ROLLBACK TRANSACTION

COMMIT TRANSACTION

UPDATE Products
SET UnitPrice = (UnitPrice * 1.66) * .6

UPDATE Products
SET UnitPrice = UnitPrice * .4

UPDATE Orders
SET UnitPrice = UnitPrice * .4

SELECT UnitPrice = UnitPrice * .4

UPDATE Orders
SET UnitPrice = UnitPrice * .6

576 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 576

http://www.sybex.com

6. Which query below will delete only those rows from the Orders
table that have no child rows in the OrderLine table?

A.

DELETE Orders

WHERE OrderLine.OrderID Is NULL

B.

DELETE Orders

FROM OrderLine

WHERE OrderLine.OrderID Is NULL

OPEN cproducts

DEALLOCATE cproducts

FETCH NEXT FROM cproducts INTO @y, @p

END

FETCH NEXT FROM cproducts into @y, @p

UPDATE ToyProduct

SET UnitPrice = CASE
WHEN @y = 1 THEN @p * .9
WHEN @y = 2 THEN @p * .85
ELSE @p * .8
END
WHERE CURRENT OF cproducts

DECLARE cproducts CURSOR FOR

SELECT ToyType, UnitPrice
FROM ToyProduct
FOR UPDATE

WHILE @@FETCH_STATUS = 0

BEGIN

Review Questions 577

2942C08.qxd 7/16/01 11:38 AM Page 577

http://www.sybex.com

C.

DELETE Orders

FROM OrderLine ol, Orders o

WHERE o.OrderID = ol.OrderID

D.

DELETE Orders

WHERE OrderID NOT IN

(SELECT OrderID from OrderLine)

7. You are the DBA for the Super Spammers E-mail Company and
have completed an upgrade of the database. The Customer table is
now distributed across a federation of four database servers and
accessed using a distributed partitioned view called vCustomers.
ServerA holds customers with last names beginning with A-F, ServerB
holds customers with last names beginning with G-M, ServerC holds
customers with last names beginning with N-T, and ServerD holds
customers with last names beginning with A-F. Which statement below
will update the status of all customers whose last name begins with a J?

A.

UPDATE Customer

SET Status = 1

WHERE ServerB.Customer.LastName = ‘J’

B.

UPDATE vCustomers

SET Status = 1

WHERE LastName = ‘J’

C.

UPDATE vCustomers

SET Status = 1

WHERE LastName LIKE ‘J%’

578 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 578

http://www.sybex.com

D.

UPDATE ServerB.vCustomers

SET Status = 1

WHERE ServerB.Customer.LastName = ‘J’

8. You are the Report Writing DBA for Data Integrators, Inc., a
company that specializes in converting and combining data from
different sources for its clients. You have been asked by a client to
import data in their Access database and then update the database
with the current date and time. Which query below can accomplish
this task?

A.

UPDATE OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,

‘c:\datafeed.mdb’;’admin’;’’, Clients)

SET TimeStamp = GETDATE()

B.

UPDATE ‘c:\datafeed.mdb’..Clients

SET TimeStamp = GETDATE()

C.

DECLARE @a int

SELECT @a = OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,

‘c:\datafeed.mdb’;’admin’;’’, Clients)

UPDATE @a

SET Timestamp = GETDATE()

D.

UPDATE LINKED_SERVER(‘Microsoft.Jet.OLEDB.4.0’,

‘c:\datafeed.mdb’;’admin’;’’, Clients)

SET TimeStamp = GETDATE()

9. You are the report-writing DBA for Data Integrators, Inc., a
company that specializes in converting and combining data from
different sources for its clients. You have received an XML

Review Questions 579

2942C08.qxd 7/16/01 11:38 AM Page 579

http://www.sybex.com

document from one of your clients, who informs you that all future
data files will be in this format. How should you import this data?

A. Use OPENXML with an INSERT statement.

B. Use OPENROWSET with an INSERT statement.

C. Use OPENXML with OPENROWSET to create a derived table in an
INSERT statement.

D. Use OPENXML with SCHEMABINDING.

10. When working with an XML document inside SQL Server, a
programmer must complete a process before querying the server
using OPENXML. Another process should also be performed when the
query is complete. Which two functions are used for these
processes?

A. SP_XML_OPENDOCUMENT

B. SP_XML_REMOVEDOCUMENT

C. SP_XML_DESTROYDOCUMENT

D. SP_XML_READDOCUMENT

E. SP_XML_PREPAREDOCUMENT

11. The fastest way to delete all the rows in a table is with which
statement?

A. DELETE table_name

B. DELETE ALL table_name

C. TRUNCATE TABLE table_name

D. TRUNCATE ALL table_name

12. You are the DBA for a company that has received a list of products
to remove from your database as an XML document. Which three
statements would you use to complete this task? Assume that the
XML document is stored in the @doc variable and any other
variables needed have been declared.

A.

EXEC SP_XML_READDOCUMENT @idoc OUTPUT, @doc

580 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 580

http://www.sybex.com

B.

EXEC SP_XML_PREPAREDOCUMENT @idoc OUTPUT, @doc

C.

DELETE Products

FROM OPENXML (@idoc, ‘/ROOT/Product’,1)

WITH (ProductID varchar(5)

) b

WHERE Product.ProductID = b.ProductID

D.

DELETE OPENXML (@idoc, ‘/ROOT/Product’,1)

WITH (ProductID varchar(5)

) b

E.

EXEC SP_XML_REMOVEDOCUMENT @idoc OUTPUT, @doc

F.

EXEC SP_XML_DELETEDOCUMENT @idoc OUTPUT, @doc

13. You have been asked to insert a series of rows into the Categories
table. There is an identity field in this table called CatID. Which two
T-SQL statements are needed to complete this operation?

A.

INSERT Categories (CatID, CatName)

SELECT ID, Name FROM TempCat

B.

INSERT Categories (CatName)

SELECT Name FROM TempCat

C.

SET IDENTITY_INSERT Categories ON

D.

SET IDENTITY_INSERT Categories OFF

14. You have received a list of five product names to insert into the
Products table. This table has an identity field called ProdID, and
the name field is called ProdName. Each product name is stored in a

Review Questions 581

2942C08.qxd 7/16/01 11:38 AM Page 581

http://www.sybex.com

different variable. Which INSERT statements can you use? (Select all
that apply.)

A.

INSERT Products (ProdName)

SELECT @a, @b, @c, @d, @e

B.

INSERT Products (ProdName)

VALUES(@a, @b, @c, @d, @e)

C.

INSERT Products (ProdName)

VALUES(@a)

INSERT Products (ProdName)

VALUES(@b)

INSERT Products (ProdName)

VALUES(@c)

INSERT Products (ProdName)

VALUES(@d)

INSERT Products (ProdName)

VALUES(@e)

D.

INSERT Products (ProdName)

SELECT @a

UNION

SELECT @b

UNION

SELECT @c

UNION

SELECT @d

UNION

SELECT @e

15. You have a linked server called RemoteData defined on your local
SQL Server. After using your Northwind database to test some data
modification statements, you delete all the data in your local
Products table. Which statement will restore your Products table to
its original form?

582 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 582

http://www.sybex.com

A.

UPDATE Products

FROM RemoteData.Northwind.dbo.Products

B.

INSERT Products

FROM RemoteData.Northwind.dbo.Products

C.

INSERT Products

SELECT *

FROM RemoteData.Northwind.dbo.Products

D.

INSERT Products

SELECT *

FROM RemoteData.Products

Review Questions 583

2942C08.qxd 7/16/01 11:38 AM Page 583

http://www.sybex.com

Answers to Review Questions

1. A, C. The OPENXML function works with an XML document after it
has been parsed and stored using SP_XML_PREPAREDOCUMENT.

2. D. Since the question specifies all rows should be altered, the UPDATE
statement should not have any qualifications. The SET statement
should include a mathematical expression that takes the existing
price and returns a price that is 10 percent less. The PERCENT
keyword is not a valid expression.

3. B. If a column has a default value and the INSERT statement does not
specify an explicit value, the column should not be included. If the
default is explicitly included in the VALUES clause, the column name
must be specified.

4.

The code that was presented was incorrect and needs to be undone,
so a rollback of the update is needed first. The next two statements
should be wrapped in a transaction and should be UPDATE
statements that replace the existing unit price with a price that is 60
percent of the original.

ROLLBACK TRANSACTION

BEGIN TRANSACTION

UPDATE Products
SET UnitPrice = UnitPrice * .6

UPDATE Orders
SET UnitPrice = UnitPrice * .6

COMMIT TRANSACTION

584 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 584

http://www.sybex.com

5.

The cursor declaration is first, and then the cursor must be opened
before any rows can be processed. The first action after opening the
cursor is to FETCH a row and then loop through the cursor as long as
@@FETCH_STATUS is equal to zero. Inside the loop, the update should
occur and a new FETCH statement is called to move the cursor to the
next row. After all processing, the cursor should be deallocated.

6. D. The last statement deletes those rows in Orders for which a
corresponding row in OrderLine is not found. The other queries do
not meet this requirement.

7. C. Only the UPDATE statement with the LIKE operator will update all
customers whose last name begins with J.

DECLARE cproducts CURSOR FOR
SELECT ToyType, UnitPrice
FROM ToyProduct
FOR UPDATE

OPEN cproducts

FETCH NEXT FROM cproducts into @y, @p

WHILE @@FETCH_STATUS = 0

BEGIN

UPDATE ToyProduct

SET UnitPrice = CASE
WHEN @y = 1 THEN @p * .9
WHEN @y = 2 THEN @p * .85
ELSE @p * .8
END
WHERE CURRENT OF cproducts

FETCH NEXT FROM cproducts into @y, @p

END

DEALLOCATE cproducts

Answers to Review Questions 585

2942C08.qxd 7/16/01 11:38 AM Page 585

http://www.sybex.com

8. A. The OPENROWSET can be used in a query in any place that a table
name would be used. The format for an UPDATE statement using
OPENROWSET is the same as that for any other UPDATE statement.

9. A. The OPENXML function will transform the XML document into a
rowset that can be used in an INSERT statement.

10. B, E. Before an XML document can be read using OPENXML, it must
be parsed into an internal representation using
SP_XML_PREPAREDOCUMENT. After processing, it should be removed
using SP_XML_REMOVEDOCUMENT.

11. C. The TRUNCATE TABLE statement is faster than DELETE.

12. B, C, and E. First, a document must be parsed using
SP_XML_PREPAREDOCUMENT; then it can be queried using OPENXML.
The DELETE statement must reference the Products table and use the
OPENXML query to qualify the products to be deleted. Afterward, the
SP_XML_REMOVEDOCUMENT procedure should be called.

13. A, C. Only the SET IDENTITY_INSERT ON statement is required
along with the INSERT statement.

14. C, D. To insert multiple rows that are stored in variables, five
separate INSERT statements are required using the VALUES clause.
Alternatively, a UNION can be used to combine all these variables into
a rowset with five rows.

15. C. The insert from a linked server requires the four-part naming to
be specified; otherwise, this uses the same format as an INSERT from
a local table.

586 Chapter 8 � Modifying Data

2942C08.qxd 7/16/01 11:38 AM Page 586

http://www.sybex.com

Importing and
Exporting Data

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Import and export data. Methods include the bulk copy

program, the Bulk Insert task, and Data Transformation

Services (DTS).

Chapter

9

2942C09.qxd 7/16/01 11:39 AM Page 587

http://www.sybex.com

In any RDBMS, a great deal of loading and extraction of data is
required outside of any applications that are built to work against the
database. Whether seeding values for a table or creating a set of data to
transfer to another system, a DBA must be able to move large quantities of
data in and out of SQL Server.

SQL Server 2000 includes a variety of tools that can be used to load a
large set of data from a non–SQL Server source or extract a set of data to
send to a remote source. These same tools can also be used to move data
from SQL Server to SQL Server, database to database, or even from table
to table. SQL Server 2000 still includes the BCP (bulk copy program),
which has been included for many versions. In SQL Server 2000, the
T-SQL language has been enhanced with the BULK INSERT command,
which allows access to the BCP program from within a batch of T-SQL
commands. The Data Transformation Services utilities, introduced in SQL
Server 7, have been substantially enhanced to provide additional methods
of transferring data in and out of SQL Server.

Bulk Copy

SQL Server includes two utilities for the bulk copying of text data:
BCP and BULK INSERT. These two utilities are designed for the movement
of data into and out of SQL Server quickly. Each is discussed below.

BCP

This is the legacy method for the loading or extraction of data and has
been included with SQL Server for a number of versions. BCP is a separate
program called, appropriately, bcp.exe, which is installed in the

2942C09.qxd 7/16/01 11:39 AM Page 588

http://www.sybex.com

MSSQL\BINN folder and is run from a command prompt. Since this
program is run from a command prompt without a GUI, it is called a
command line utility.

This utility was written to import and extract data between SQL Server
and a data file. The data file can be in a text format, or it could be in a
binary format that is understood by SQL Server, called native format. The
utility can also be run in an interactive mode with minimal options speci-
fied, or it can be automated with the additional text files that are described
in the following “BCP Syntax” and “Using Format Files” sections.

Since this is a command line utility, it lends itself to being scripted in a num-
ber of ways. The SQL Agent can be used, an ordinary batch or CMD file
along with the Windows NT AT command can be used, or it can even be
called from any program that supports shell access to the operating system.

BCP Syntax

The BCP program includes a number of options, which are specified as
command line parameters. The syntax and options are as follows:

BCP

{[[database_name.][owner].]{table_name | view_name} |
“query”}

{IN | OUT | QUERYOUT | FORMAT} data_file

[-m max_errors]

[-f format_file]

[-e err_file]

[-F first_row] [-L last_row] [-b batch_size]

[-n]

[-c]

[-w]

[-N]

[-V (60 | 65 | 70)]

[-6]

[-q]

[-C code_page]

[-t field_term]

Bulk Copy 589

2942C09.qxd 7/16/01 11:39 AM Page 589

http://www.sybex.com

[-r row_term]

[-i input_file]

[-o output_file]

[-a packet_size]

[-S server_name[\instance_name]]

[-U login_id]

[-P password]

[-T]

[-v]

[-R]

[-k]

[-E]

[-h “hint [,...n]”]

BCP options are case sensitive, so -N and -n are different parameters
and interpreted differently. Each option is described below.

database name This is the name of the database that contains the
table or view that is the target of the copy operation. If no database is
specified, then BCP operates in the default database for the login.

owner This is the owner of the table or view specified for the copy
operation. If no owner is specified, the table or view must be owned by
the login or SQL Server 2000 will report an error.

table_name, view_name, or query An entire table or view can be
specified here to move all of the data into or out of the table or view. If
this is a load of data and a view is specified, then only a single table in
the view can be loaded and a format file is needed.

If a query is specified, then QUERYOUT must also be included and the
copy operation must be an extraction. Loads of data cannot specify a
query. The query must be enclosed in double quotes and anything that
is quoted inside the query is specified using single quotes. If multiple
result sets are returned by the query, only the first result set is copied to
the output file.

IN | OUT | QUERYOUT | FORMAT Only one of these options can be
specified. The IN and OUT parameters specify the direction of the trans-
fer with IN being a load of data into SQL Server and OUT being an
extraction of data to a text file. QUERYOUT is specified when copying
data out from a query. FORMAT will create a format file that matches the

590 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 590

http://www.sybex.com

option specified (-n, -c, -6, -N, or -w). The -f option must also be
included with FORMAT.

data_file This is the name of the file that contains the source data
for a load or is the destination for an extraction. The name should
include the path (if not in the current directory) and is limited to 255
characters.

-m max_errors This is the maximum number of errors that can occur
before the bulk copy operation is cancelled. Each row that cannot be
copied for any reason is bypassed and counts as an error. The default
for this parameter is 10.

-f format_file The format file is the name of an additional text file
that contains information about the columns of data and their formats
in the text file. The name should include the path to the file.

For loads of data, this file must exist and maps each column in the
source data file to a column in SQL Server in the table or view. For
extractions of data, this file can be created and the user is prompted for
formatting information. If this option is not used and none of the para-
meters -c, -n, -6, -N, or -w is included, BCP will prompt the user for
formatting information.

-e error_file This is the name of a file in which to store the rows
that are not imported. Error messages are sent to the user’s workstation.
If this option is not included, no error file is created.

-F first_row This specifies which row in the source data to start
copying. The default is row 1, which is the first row in the source.

-L last_row This specifies which row in the source data is the last
row to copy. The default is 0, which specifies the last row.

-b batch_size If this option is not specified, BCP attempts to copy all
rows as part of one batch and one transaction. This parameter allows
the user to specify smaller batches of data, each of which would be its
own transaction. This cannot be used with the -h option.

-n This parameter specifies that the data in the text file is stored in a
binary format native to SQL Server. Using this option will not prompt
for formatting information for the columns.

Bulk Copy 591

2942C09.qxd 7/16/01 11:39 AM Page 591

http://www.sybex.com

-c This option specifies that the data being copied is stored in the text
file in a character format. The user is not prompted for formatting
information. Each field is assumed to be a char datatype with the tab
character as the field separator and the newline character as the row
terminator.

-w This parameter specifies that the copy operation will use Unicode
characters. The user is not prompted for formatting information.
Each field is assumed to be a nchar datatype with the tab character as
the field separator and the newline character as the row terminator.
This parameter cannot be used with SQL Server 6.5 and below.

-N This option will transfer data using the database datatype for non-
character data and Unicode characters for character data. This offers a
speed advantage over the -w option and is designed for moving data
from one SQL Server to another. The user is not prompted for formatting
information, and this cannot be used with SQL Server 6.5 and below.

-V (60 | 65 | 70) This option will perform the bulk copy opera-
tion using datatypes from an earlier version of SQL Server. This option
should be used in conjunction with the -c or -n options.

-6 This parameter performs the copy using SQL Server 6.0 or 6.5
datatypes. This option is supported for backwards compatibility and
should not be used. The -V option should be used instead.

-q This option will execute the SET QUOTED_IDENTIFERS ON statement
before beginning the copy of any data. This should be used when the
table or view name contains a space or a quotation mark. The entire
three-part name should be enclosed in double quotation marks.

-C code_page This parameter specifies the code page of the data in the
data file. This option is supported for backward compatibility. Instead
of including this parameter, a collation should be specified for each
column in the format file or in interactive BCP.

-t field_terminator This parameter specifies the field terminator in
the data file. The default is \t (the tab character).

-r row_terminator This parameter specifies the row terminator in the
data file. The default is \n (newline character).

-i input_file This parameter specifies an input file that contains
the answers to the command prompt questions asked by BCP in
interactive mode.

592 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 592

http://www.sybex.com

-o output_file This is the name of an output file that receives the
output from the BCP utility.

-a packet_size This parameter specifies the packet size in bytes of the
data that is being sent to and from the server. This parameter overrides
the server option set with SP_CONFIGURE. The parameter can range from
4096 to 65535 and defaults to 4096. An increased packet size can
improve performance, but if the requested size cannot be sent, the
default is used.

-S server_name[\instance_name] This parameter specifies which
server the utility should log into to perform the copy operation. For
SQL Server 2000 servers, the instance name can be specified. If no
instance is specified, the default instance is used. If this parameter is not
sent, then the utility attempts to connect to the default instance on the
local machine.

-U login_id This parameter specifies the login ID that is used to
connect to the SQL Server.

-P password The parameter specifies the password for the login ID. If
this parameter is not at the end of the command prompt line, then the
user is prompted for a password. If this parameter is included at the end
of the command prompt and no password is specified, then a NULL
password is sent.

-T This option specifies that the BCP utility connect to the SQL Server
using a trusted connection. The utility will use the network credentials
of the user running the utility. The –U and –P parameters are not
required with –T.

-v This parameter returns the BCP version number and copyright
information.

-R This parameter specifies that the currency, date, and time data is
copied using the format that is set in the local computer’s locale setting.
By default the local computer’s settings are ignored.

-k This parameter ensures that empty columns retain a NULL value
during the copy operation, rather than using any default values speci-
fied for the columns.

-E This option specifies that values for an identity column are inserted
into the table in the identity column, if they exist. If identity values are
present in the data file, but –E is not specified, then they are ignored. If

Bulk Copy 593

2942C09.qxd 7/16/01 11:39 AM Page 593

http://www.sybex.com

the data file does not contain identity values for the table, a format file
should be used to specify that the identity column should be skipped
when inserting data. SQL Server 2000 will automatically assign the
identity values using the identity column seed and increment.

-h “hint [,…n]“ This parameter specifies a hint that should be used
during the bulk copy operation. This parameter cannot be used with
SQL Server 6.5 or lower. The available hints are:

ORDER (column [ASC | DESC] [, …n] This hint specifies the sort
order of data in the data file. The performance of the operation can
be improved if the data being loaded is sorted according to the clus-
tered index. By default, BCP assumes that all the data in the data file
is unordered.

ROWS_PER_BATCH = n This hint specifies the number of rows per
batch. By default, all the rows in the copy operation are assumed to
be in a single batch.

KILOBYTES_PER_BATCH = n This hint specifies the approximate
number of kilobytes that should be sent per batch. By default,
the number is unknown and the batch size is set with the –b
parameter or the ROWS_PER_BATCH hint.

TABLOCK This hint will cause a table lock to be acquired and held
for the duration of the copy operation. This hint can significantly
improve performance of the operation since there will be no lock
contention. Multiple clients can load the table if there are no indexes
on the table and TABLOCK is specified. By default the table lock on
bulk load option determines the locking behavior.

CHECK_CONSTRAINTS This hint specifies that any check constraints
on the destination table are checked during the copy operation. By
default, these constraints are ignored.

FIRE_TRIGGERS This hint specifies that any triggers on the destina-
tion table will execute during the copy operation. By default, no
insert triggers are executed.

Using Format Files

If the data file and the SQL Server table are in different formats, with
different column names or orders, then a format file must be used. This file

594 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 594

http://www.sybex.com

is used to specify the specific columns and orders that map the data file to
the SQL Server.

SQL Server can automatically generate this file when BCP is used in
interactive mode. The user will be prompted for each column’s storage
type, prefix length, field length, field terminator, and row terminator. Once
all columns are specified, the user is prompted, as shown below, to specify
whether or not to save a format file and the filename. The default filename
is bcp.fmt.

Do you want to save this format information in
a file? [Y/N] y

Host filename: [bcp.fmt]

Once this format file is saved, it can be used for future transfers of data,
in or out of SQL Server, between the same table and a data file of similar
format.

If an existing format file is specified using the –f parameter, then BCP
does not prompt the user for the column information.

A format file can be created by hand or edited to reflect changes in the
data structure of the text file. The format file itself is a text file of tab-
delimited information that looks like the following format.

F I G U R E 9 . 1 Sample format file

The first line of the format file contains the version number of BCP to
be used. The following below:

8.0

specifies SQL Server 2000. This number follows the same format as the
major and minor version number of SQL Server.

8.0
11
1 SQLNCHAR 2 10 "" CustomerID SQL_Latin1_General_CP1_CI_AS
2 SQLNCHAR 2 80 "" CompanyName SQL_Latin1_General_CP1_CI_AS
3 SQLNCHAR 2 60 "" ContactName SQL_Latin1_General_CP1_CI_AS
4 SQLNCHAR 2 60 "" ContactTitle SQL_Latin1_General_CP1_CI_AS
5 SQLNCHAR 2 120 "" Address SQL_Latin1_General_CP1_CI_AS
6 SQLNCHAR 2 30 "" City SQL_Latin1_General_CP1_CI_AS
7 SQLNCHAR 2 30 "" Region SQL_Latin1_General_CP1_CI_AS
8 SQLNCHAR 2 20 "" PostalCode SQL_Latin1_General_CP1_CI_AS
9 SQLNCHAR 2 30 "" Country SQL_Latin1_General_CP1_CI_AS
10 SQLNCHAR 2 48 "" Phone SQL_Latin1_General_CP1_CI_AS
11 SQLNCHAR 2 48 "" Fax SQL_Latin1_General_CP1_CI_AS

Bulk Copy 595

2942C09.qxd 7/16/01 11:39 AM Page 595

http://www.sybex.com

The second line of the format file will determine the number of columns
that exist (or should be created) in the data file. The number specified in
the following parameter:

4

must match the number of columns for all subsequent rows.
Each additional line in the data file will contain a series of data ele-

ments that describe a field in the data file. A tab separates each piece of
information, and each line must contain the same number of columns. The
data columns that are allowable are listed in Table 9.1.

TA B L E 9 . 1 Format File Column Descriptors

Column Description

Data File Field Order This is the position of the field within the
data file. The first field is 1 and each
additional field is incremented by one.

Data File Datatype The type of data structure being stored in
this particular field. The datatype should
be SQLCHAR for character format files. For
native files, then use the default
datatype. A list of types is listed in
Table 9.2.

Prefix Length This is the number of prefix characters
for the field. Legal numbers are 0, 1, 2,
and 4. SQL Server has a set of default
values for each datatype, data file for-
mat, and column nullability. A list of
these values is given in Table 9.3.

Data File Data Length This field is the maximum length of the
data stored in this column. The list of
lengths for the various datatypes is given
in Table 9.4.

Terminator The field terminator. The terminator
should be enclosed in double quotation
marks. A list of terminators is given in
Table 9.5.

596 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 596

http://www.sybex.com

TA B L E 9 . 1 Format File Column Descriptors (continued)

Column Description

Server Column Order This is the column number of the data in
the SQL Server table.

Server Column Name This is the name of the column as stored
in SQL Server.

Collation This is the collation that is used to store
character and Unicode data in the
data file.

TA B L E 9 . 2 Format File Datatypes

SQL Server Datatype Format File Datatype

char SQLCHAR
varchar SQLCHAR
nchar SQLNCHAR
nvarchar SQLNCHAR
text SQLCHAR
ntext SQLNCHAR
binary SQLBINARY
varbinary SQLBINARY
image SQLBINARY
datetime SQLDATETIME
smalldatetime SQLDATETIM4
decimal SQLDECIMAL
numeric SQLNUMERIC
float SQLFLT8
real SQLFLT4
int SQLINT
bigint SQLBIGINT
smallint SQLSMALLINT
tinyint SQLTINYINT
money SQLMONEY
smallmoney SQLMONEY4
bit SQLBIT
uniqueidentifier SQLUNIQUEID
sql_variant SQLVARIANT
timestamp SQLBINARY

Bulk Copy 597

2942C09.qxd 7/16/01 11:39 AM Page 597

http://www.sybex.com

TA B L E 9 . 3 SQL Server Prefix Lengths

SQL Server Native Character

Data Type Format Format

NOT NULL NULL NOT NULL NULL

char 2 2 2 2
varchar 2 2 2 2
nchar 2 2 2 2
nvarchar 2 2 2 2
text 4 4 4 4
ntext 4 4 1 1
binary 1 1 2 2
varbinary 1 1 2 2
image 4 4 4 4
datetime 0 1 1 1
smalldatetime 0 1 1 1
decimal 1 1 1 1
numeric 1 1 1 1
float 0 1 1 1
real 0 1 1 1
int 0 1 1 1
bigint 0 1 1 1
smallint 0 1 1 1
tinyint 0 1 1 1
money 0 1 1 1
smallmoney 0 1 1 1
bit 0 1 0 1
uniqueidentifier 1 1 1 1
timestamp 1 1 2 2

TA B L E 9 . 4 SQL Server Field Lengths

Datatype Character Format Native Format

char Length defined for the Length defined for the
column column

varchar Length defined for the Length defined for the
column column

nchar Twice the length defined Length defined for the
for the column column

598 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 598

http://www.sybex.com

TA B L E 9 . 4 SQL Server Field Lengths (continued)

Datatype Character Format Native Format

nvarchar Twice the length defined Length defined for the
for the column column

text 0 0
ntext 0 0
bit 1 1
binary Twice the length defined Length defined for the

for the column + 1 column
varbinary Twice the length defined Length defined for the

for the column + 1 column
image 0 0
datetime 24 8
smalldatetime 24 4
float 30 8
real 30 4
int 12 4
bigint 19 8
smallint 7 2
tinyint 5 1
money 30 8
smallmoney 30 4
decimal 41* *
numeric 41* *
uniqueidentifier 37 16
timestamp 17 8

TA B L E 9 . 5 Field Terminators

Terminator Code

Tab \t
Newline character \n
Carriage return \r
Backslash \\
Null terminator (no visible \0
terminator)

Bulk Copy 599

2942C09.qxd 7/16/01 11:39 AM Page 599

http://www.sybex.com

TA B L E 9 . 5 Field Terminators (continued)

Terminator Code

Any printable character (control (*, A, t, l, and so on)
characters are not printable,
except null, tab, newline, and
carriage return)
String of up to 10 printable (**\t**, end,
characters, including some or all of !!!!!!!!!!, \t—\n, and
the terminators listed earlier so on)

E X E R C I S E 9 . 1

Using the BCP Utility
In this exercise, you will use the BCP utility to import data from a
text file.

1. Open a Command Prompt by choosing Start Programs ➢ Run and
typing Cmd in the text box. Press Enter, and a Command Prompt
window should open.

2. Type the following (replacing dev_sjones with the name of your
server):

bcp Northwind.dbo.Customers out c:\Cust.txt -Sdev_sjones
-T –c

3. You should see something like the following:
Starting copy...

91 rows copied.
Network packet size (bytes): 4096
Clock Time (ms.): total 40

4. Now choose Start Programs ➢ RUN, type NOTEPAD C:\Cust.txt
in the edit box, and press Enter. The Notepad program should run
and display the Customers table in a text format as shown in
Figure 9.2.

600 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 600

http://www.sybex.com

Bulk Copy 601

F I G U R E 9 . 2 The Northwind Customers Table

Working with Mainframes

You are a DBA working for a utility company that has compiled a great
deal of legacy data stored in mainframe computers. There is a billing
database that contains customer information and is used to generate
bills for customers. Recently the company has begun to install
automated equipment to gather usage information from customers.
The new automated equipment is designed to send the data back to
the data centers. The format of the data being sent is complex, and it
is decided that a server process will be written to receive the data and
store it in a SQL Server.

You must ensure this data gets written to the billing database on the
mainframe each night. Before you automate the transfer, you must
also load the current customers into the SQL Server so the automated
equipment can match its information against the existing customer
records. You receive a text file of customer information from the
mainframe.

2942C09.qxd 7/16/01 11:39 AM Page 601

http://www.sybex.com

Since SQL Server 2000 has been chosen as the server platform, you
examine the list of tools available. The bulk copy utilities seem to be
the easiest tools to work with and you decide to use them. To load
data from the mainframe, you choose the BCP program to copy
the data into the table in SQL Server. You decide to load 1,000 rows at
a time to ensure that if there is a failure, the work done to date is not
lost. This process is run from Query Analyzer one time to load the
data for the automated equipment.

Since security is a concern on the mainframe and getting access to the
billing database is difficult, you talk to the programmers for this
database and they agree to import data if you can generate a text file
of data each night. You use BCP to copy out information from the
usage database using a query operation. The query copies all rows
that have changed since the previous day based on a datetime
column that is updated by the server process. This process is
scheduled using the SQLAgent to run each night.

BULK INSERT

SQL Server 2000 contains an enhancement to the T-SQL language that
allows the execution of a bulk copy program from within the server. This
command is very similar to the BCP program, but allows you to execute a
bulk copy operation from within a T-SQL batch.

Unlike the BCP program, only members of the Sysadmin or Bulkadmin
fixed server roles have permission to run the BULK INSERT command.
Applications run by users not part of either of these roles would not be
able to execute the BULK INSERT command.

The syntax and parameters are described below.

BULK INSERT Syntax

BULK INSERT

[[‘database_name‘.] [‘owner‘].] { ‘table_name‘ FROM
‘data_file‘ }

[WITH

(

[BATCHSIZE [= batch_size]]

[[,] CHECK_CONSTRAINTS]

602 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 602

http://www.sybex.com

[[,] CODEPAGE [= ‘ACP’ | ‘OEM’ | ‘RAW’ | ‘code_page’
]]

[[,] DATAFILETYPE [=
{ ‘char’ | ‘native’| ‘widechar’ |

‘widenative’ }]]

[[,] FIELDTERMINATOR [= ‘field_terminator‘]]
[[,] FIRSTROW [= first_row]]
[[,] FIRE_TRIGGERS]
[[,] FORMATFILE = ‘format_file_path‘]
[[,] KEEPIDENTITY]
[[,] KEEPNULLS]
[[,] KILOBYTES_PER_BATCH [= kilobytes_per_batch]]
[[,] LASTROW [= last_row]]
[[,] MAXERRORS [= max_errors]]
[[,] ORDER ({ column [ASC | DESC] } [,...n])]
[[,] ROWS_PER_BATCH [= rows_per_batch]]
[[,] ROWTERMINATOR [= ‘row_terminator‘]]
[[,] TABLOCK]

)

]

Each of these options is very similar to the same option for the BCP
program. They are described below.

database_name This parameter is the name of the database containing
the table that is receiving the data. This allows insertion into a table in a
database other than the current connection’s database.

owner This parameter is the name of the owner of the table or view
that is being inserted into. This parameter is optional if the user per-
forming the bulk insert owns the table. Otherwise an error is returned.

table_name This parameter is the name of the table or view that will
receive the data from the copy operation. Bulk insertion into views fol-
lows the same restrictions as the standard T-SQL INSERT statement.

data_file This parameter is the name of the source data file, includ-
ing the path. This must be a valid path from the SQL Server computer.
Universal Naming Convention (UNC) paths are allowed.

BATCHSIZE = nn This parameter specifies the number of rows in a
batch. Each batch is treated as a single transaction with all rows being
inserted or rolled back. The default is all rows in a single batch.

Bulk Copy 603

2942C09.qxd 7/16/01 11:39 AM Page 603

http://www.sybex.com

CHECK_CONSTRAINTS If this parameter is included, then any constraints
on the destination table are checked. These constraints are not checked
by default.

CODEPAGE = ‘code_page’ This parameter specifies the code page of
the data in the source file. This parameter is only needed if character
data in the source data file contains characters with values greater than
127 or less than 32.

DATAFILETYPE This parameter specifies the format of the source data
file. The following are the four possible values:

CHAR This is the default format. This option should be chosen if the
source data file contains standard character data.

NATIVE The source data file is in SQL Server native format. Use
this format when the BCP utility was used to create the data file
with the –n option.

WIDECHAR This option is selected when the source data file contains
character data with Unicode characters.

WIDENATIVE This option works the same as NATIVE except the
character and text data in the source file contains Unicode charac-
ters. The data file should have been created with the BCP utility and
the –n option.

FIELDTERMINATOR This parameter specifies the character that is used
to delimit fields. The default is the tab character.

FIRSTROW This specifies the row in the source data at which to begin
the copy operation.

FIRE_TRIGGERS If this parameter is specified, then any INSERT triggers
on the destination table will fire. By default, INSERT triggers on the des-
tination table do not execute.

FORMATFILE = ‘format_file’ This parameter allows the specification
of a format file for the bulk insert operation. This format file follows
the same format as a format file for the BCP utility. The details on the
format of this file can be found in the section “Using Format Files.”

KEEPIDENTITY When this parameter is specified, SQL Server will insert
the identity values in the source data file into the destination table. If

604 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 604

http://www.sybex.com

this parameter is not given, then SQL Server will automatically assign
the identity values. If the source file does not contain the identity values,
then a format file must be used to skip the identity column.

KEEPNULLS This parameter specifies that empty columns in the source
data file should keep a NULL value in the destination table.

KILOBYTES_PER_BATCH This parameter can be used to specify the
approximate number of kilobytes per batch. The default is unknown.

LASTROW This parameter is used to specify the last row of data in the
source file that should be inserted. The default is 0, which indicates that
all rows should be copied.

MAXERRORS This parameter specifies the maximum number of errors
that can occur before the bulk insert operation is terminated. Any
row that cannot be imported is counted as an error and not inserted
into the destination table. The default for this parameter is 10.

ORDER {column ASC | DESC [,...n]} This parameter specifies how
the source data file is sorted. If the data is sorted in the same order
as the clustered index, then insert performance can be dramatically
improved. If there is not a clustered index on the table, this parameter
is ignored.

ROWS_PER_BATCH This parameter specifies the number of rows in the
source data file that should be included in each batch. This can be used
only if the BATCHSIZE parameter is not specified. By default, all the rows
in the source data file are included in a single batch.

ROWTERMINATOR = ‘term’ This parameter specifies the character that
is used to delimit one row from the next in the source data file. The
default is the newline character (\n).

TABLOCK This parameter specifies that a table lock be obtained and
held for the duration of the bulk insert operation. A table can be loaded
in parallel from multiple client machines if it has no indexes and
TABLOCK is specified.

Exercise 9.2 will examine how the BULK INSERT command can be used
to import a text file into SQL Server.

Bulk Copy 605

2942C09.qxd 7/16/01 11:39 AM Page 605

http://www.sybex.com

E X E R C I S E 9 . 2

Using BULK INSERT
In this exercise, you will use the BULK INSERT command to import a
text file into SQL Server.

1. Open Wordpad by choosing Start ➢ Run ➢ Wordpad.

2. Enter the following information in the Wordpad program, separat-
ing each city from its team with a tab:

Denver Broncos
San Diego Chargers
Kansas City Chiefs
Seattle Seahawks
Oakland Raiders

3. Save this file to your local drive as c:\BulkInsertTest.txt by
pressing the Save icon on the toolbar or choosing File ➢ Save from
the menu.

4. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

5. Type the following query (be sure the Northwind database is
selected):

CREATE TABLE BulkInsertTest
(City char(20),

Team char(20)
)

6. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should see something like the
following:

The command(s) completed successfully.

7. Now type the following query below the previous one:

BULK INSERT BulkInsertTest FROM ‘c:\BulkInsertTest.txt’

SELECT * FROM BulkInsertTest

606 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 606

http://www.sybex.com

E X E R C I S E 9 . 2 (c o n t i n u e d)

8. High light these lines using your mouse and press CTRL-E. You
should see something like the following:

(5 row(s) affected)

City Team
-------------------- ----------------------
Denver Broncos
Kansas City Chiefs
Oakland Raiders
San Diego Chargers
Seattle Seahawks

(5 row(s) affected)

Data Transformation Services

Data Transformation Services is a subsystem that is included in SQL
Server 2000 and is designed for the movement and manipulation of data
between formats and platforms. This subsystem can implement very simple
data copy operations that are similar to the BCP utility. It can also build
very complex data extraction, scrubbing, and insertion routines that per-
form complex tasks such as loading a data warehouse, archiving old data,
or simulating replication between heterogeneous data sources.

This subsystem includes DTS connections that allow access to data in
various formats, DTS tasks that can transform data or perform some
action, and the ability to link these items together into a workflow using
constraints. The entire collection of tasks, connections, and constraints is
called a package.

A complete description of the DTS environment and its capabilities is
beyond the scope of this book. This chapter will describe the basics of DTS
and the new tasks devoted to the transfer of data, along with examples of
how these tasks can be used.

Data Transformation Services 607

2942C09.qxd 7/16/01 11:39 AM Page 607

http://www.sybex.com

The DTS Environment

Data Transformation Services is a utility that allows a programming envi-
ronment to develop a process that performs some task and a run-time
environment to execute this process. The run-time environment allows the
execution of a process, called a package, from a command prompt on the
server. The programming environment is introduced below, but readers are
advised to consult Books Online or another text that is devoted to DTS to
learn the full scope of its capabilities.

The programming environment is primarily a GUI-based development
tool called the DTS Designer that allows a programmer to develop a
package that will perform some task. When creating a new package, the
programmer is presented with a template package that looks like
Figure 9.3.

F I G U R E 9 . 3 Blank DTS package

This environment consists of three toolbars: one for connections, one
for tasks, and one for the development environment. The development
package designer space is the empty white area in the right-hand side of
the window. The tasks and connections can be added to the package
using the menu at the top or by dragging one of the items from the toolbar
onto the designer space. Once an item has been added to the package, then
double clicking the object can set its properties and options.

608 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 608

http://www.sybex.com

By default, all the tasks that are added to the package execute in paral-
lel when the package is run. Tasks can be arranged into a workflow, how-
ever, by arranging the tasks in a sequence. Once each task completes, it
returns a success or failure code. The DTS package allows linkages
between tasks that execute the next task based on a success code, a failure
code, or either code.

If multiple tasks share the same connection, then they will execute in serial
rather than parallel. If they are set up with two different connections, even
if both connections point to the same data source, they will execute in
parallel.

Connections

Connections are sources or destinations for data. Included with SQL
Server 2000 are a series of connections for SQL Servers, Access databases,
Excel spreadsheets, text files, and other sources of data. A package must
contain a connection if it is to manipulate or copy data. These connections
are built upon the OLE-DB technology from Microsoft, which allows
access to a wide variety of data stored in a great many formats.

A connection can be added to the package by dragging it from the tool-
bar onto the package designer space. Once it has been added to the
designer, various properties can be set that depend on the type of data
source selected. SQL Server, for example, requires the server name, user ID
and password, and database to be selected for the connection. Excel
sources require the path and name of the file along with the username and
password under which the file may be saved. The following connections
are included with SQL Server 2000:

SQL Server Allows connections to SQL Servers versions 6.x, 7,
and 2000.

Access Databases Allows connections to Microsoft Access databases
through the JET engine.

Excel Spreadsheets Allows access to data stored in Excel spreadsheets.

DBase 5 Databases Allows access to data stored in dBase format.

HTML Allows access to data stored in an HTML file.

Paradox Allows access to Paradox databases.

Data Transformation Services 609

2942C09.qxd 7/16/01 11:39 AM Page 609

http://www.sybex.com

Text File Two connections are provided. One for text files that serve
as a source of data and one for text files that act as a destination.

Oracle A generic Oracle database connection is included.

Data Link Provides a connection to data where the connection infor-
mation is stored in a UDL file.

Other Allows access to any data source for which an ODBC driver is
installed on the local machine. This source requires a DSN to be set up
to connect to the data source.

Tasks

Tasks are units of functionality that can be used to complete various
processes. Each different process that DTS is capable of completing has its
own task. These tasks can be added to a package and linked together to
perform almost any type of data transfer, manipulation, or extraction.

Tasks are added to the DTS environment using the menu bar or by
dragging and dropping a task from the toolbar onto the designer surface.
Many tasks require connections, and the DTS designer will ask for the
source and destination connections. Once the task has been added to the
package, then it can be configured to meet the programmer’s needs.

SQL Server 2000’s DTS environment includes the following tasks:

FTP Task This task allows file transfers to and from FTP servers.

ActiveX Script Task This task allows the execution of an ActiveX
script written using VBscript or Jscript.

Transform Data Task This task will perform a copy of data between
two connections. A table or a query can be used to extract the data
from the source, and this task specifies the mappings between columns,
any data transformations that occur, and other options that are avail-
able for transferring data.

Execute Process Task This task allows any Win32 task or application
to be run from within the DTS environment. Parameters may be passed
to the process and an exit code received.

Execute SQL Task This task will execute any SQL script that is
entered against a connection.

Data Driven Query Task This task is similar to the Transform Data
Task, but is much more flexible. Each row that is processed can be

610 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 610

http://www.sybex.com

processed using one of four different SQL statements depending on the
result of an ActiveX script.

Copy SQL Server Objects Task This task allows the copying of any
SQL Server object(s) from one SQL Server to another. The user can
select which objects are copied—whether data, indexes, permissions,
etc. are copied with the objects.

Send Mail Task This task will send mail using a MAPI provider.

Bulk Insert Task This task works exactly like the BCP and BULK
INSERT commands described earlier in this chapter.

Execute Package Task This task allows the execution of another
package from within this package. This allows the reuse of a package,
similar to the way stored procedures allow the reuse of T-SQL code.

Message Queue Task This task allows the sending or reading of
messages from a Microsoft Message Queue.

Transfer Error Messages Task This task allows the transfer of user
defined error messages between SQL Servers. These are error messages
that are created using the SP_ADDMESSAGE stored procedure.

Transfer Databases Task This task will transfer an entire database
from one SQL Server to another. The task allows the copy or move of
the database and specifies the destination files.

Transfer Master Stored Procedures Task This task will transfer stored
procedures in the master database from one SQL Server to another.

Transfer Jobs Task This task allows the transfer of SQLAgent jobs
from one SQL Server to another.

Transfer Logins Task This task allows the transfer of logins on one
SQL Server to another.

Dynamic Properties Task This task allows the setting of the package
properties at runtime based on a query, an .INI file, a constant, or a
variety of other values. The properties being set can be existing
properties of the package or any of the objects within it, or new proper-
ties that are added to the package as global variables.

Once the tasks are added to a package, they can be connected together
in a workflow. The programmer can select two tasks and then right-click
in the DTS Designer or select Workflow from the menu and choose the

Data Transformation Services 611

2942C09.qxd 7/16/01 11:39 AM Page 611

http://www.sybex.com

type of workflow to implement. An arrow will appear between the two
tasks that represents the direction of the workflow. The following are the
three choices given in the DTS Designer:

On Completion This type of workflow is always followed when the
package is executed. When the first task completes, the second is
started, regardless of whether the first task succeeded or failed. This
workflow is represented with a blue arrow.

On Success This path is only followed when the first task in the work-
flow returns a success code. This workflow arrow is green in color.

On Failure When the first task returns a failure error code, regardless
of the reason for the error, the second task is executed. If the first task is
successful, then this workflow is not followed. This workflow is repre-
sented with a red arrow.

When a package executes, by default, all the tasks run in parallel. The
package is assigned a certain number of threads, and all tasks not assigned
in a workflow will execute on one of these threads as soon as it is available.
If a workflow is implemented, then the designer can control the order in
which the tasks are completed. This allows a package to create a table and
then insert data into the table if the creation succeeded. If the creation
failed, however, the programmer might not want the rows to be inserted.

Packages

A collection of connections, tasks, and their workflows is known as a
package in DTS. While each individual task in a package can be executed
from within the DTS designer, most often the entire package will be
executed using the DTSRUN command line utility. These programs can use
the package GUID, but usually these packages are named and saved in one
of four different formats. Each format has its own benefits and drawbacks
as described below.

If the package is saved in SQL Server, it is as a binary large object
(BLOB) field in msdb.sysdtspackages. Each time the package is changed
and saved again, it is given a new version and added to this table. A DBA
must manually delete old versions of a package. By default, the most
recent version of a package is executed.

The package can also be saved to the SQL Server Meta Data Services.
Meta Data Services are designed to allow the tracking of packages and
their execution as well as the sharing of meta data between DTS and any
other applications that can access it.

612 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 612

http://www.sybex.com

If the package is saved to Meta Data Services, the various protection
options for the package are not available. If security is important, then this
format should not be chosen.

The package can be saved to an operating system file in one of two
formats. The first is as a structured storage file that can be copied across
the network just like any other operating system file. This allows the
sharing of packages without requiring them to be stored in SQL Server. All
versions of the package are saved in the same file, though each version can
be edited separately.

Once a package with multiple versions is saved in a structured storage file,
the individual versions cannot be deleted. Only the entire file can be
deleted. Avoid saving packages in this format if the need to branch versions
is required.

The other operating system file format that packages can be saved to is
a Visual Basic file format. Packages saved in this format can be edited
using Microsoft Visual Basic version 5, Service Pack 3 or later. These
packages can be executed from Visual Basic or incorporated into other
applications.

Exercise 9.3 will walk you through creating a package in DTS that will
duplicate the functionality of Exercise 9.2

E X E R C I S E 9 . 3

Using DTS
In this exercise, you will use DTS to import a text file.

1. Open the DTS Designer. Do this through the SQL Enterprise Man-
ager by highlighting Data Transformation Services and selecting
Action ➢ New Package or by right-clicking Data Transformation
Services and selecting New Package from the pop-up menu.

2. Add a SQL Server connection to the designer surface by dragging
the SQL Server icon onto the designer, or selecting Connection ➢

Data Transformation Services 613

2942C09.qxd 7/16/01 11:39 AM Page 613

http://www.sybex.com

E X E R C I S E 9 . 3 (c o n t i n u e d)

Microsoft OLE DB Provider for SQL Server from the menu. Enter the
following options:

1. Select New Connection and type MyConnection in the edit box.

2. Enter your server name in the Server box. If you are running
Enterprise Manager from the SQL Server machine console, you
can leave this as (local).

3. If your server supports NT Authentication, you can leave this
radio button checked. Otherwise, select Use SQL Server Authen-
tication and enter the username and password of a user that has
permissions to add data to the Northwind database.

4. Select Northwind in the Database drop-down box. Your
Connection Properties dialog box should look similar to the one
in the following graphic.

614 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 614

http://www.sybex.com

E X E R C I S E 9 . 3 (c o n t i n u e d)

3. Add a Bulk Insert task to the package by dragging this icon onto the
designer surface or selecting Task ➢ Bulk Insert Task from the
menu. Enter the following properties:

1. In the Description edit box enter BulkInsertTest.

2. The Existing Connection box should have MyConnection in it.

3. From the Destination Table drop-down box, select the [North-
wind].[dbo].[BulkInsertTest] table. If this is not visible, please go
back and complete Exercise 9.2.

4. In the Source Data File edit box, enter c:\BulkInsertTest.txt.
If you did not complete Exercise 9.2 to create this file, please
complete steps 1, 2, and 3 from Exercise 9.2.

4. Your text file dialog box should look like the following:

Data Transformation Services 615

2942C09.qxd 7/16/01 11:39 AM Page 615

http://www.sybex.com

E X E R C I S E 9 . 3 (c o n t i n u e d)

5. Save the package by pressing the floppy disk icon on the top tool-
bar or selecting Package ➢ Save from the menu. Enter a name for
the package and click OK. Leave the Location drop-down box set to
SQL Server.

6. Execute the package by clicking the green arrow on the top toolbar
or selecting Package ➢ Execute from the menu. The package
should run, and you should get two dialog boxes that look like the
following:

7. Close the two dialog boxes and open Query Analyzer through SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

8. Select the Northwind database from the Database drop-down box
and enter the following query:

SELECT * FROM BulkInsertTest

616 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 616

http://www.sybex.com

E X E R C I S E 9 . 3 (c o n t i n u e d)

9. Highlight these lines using your mouse and press the green arrow
on the toolbar or press CTRL-E. You should receive the following
output. There are two sets of data, one from Exercise 9.2 and one
from this exercise.

City Team
-------------------- -----------------------
Denver Broncos
Kansas City Chiefs
Oakland Raiders
San Diego Chargers
Seattle Seahawks
Denver Broncos
Kansas City Chiefs
Oakland Raiders
San Diego Chargers
Seattle Seahawks

(10 row(s) affected)

Summary

This chapter has examined various ways in which data in a SQL
Server environment can be inserted or extracted from the server in bulk.

� BCP is a command line utility that has been included in quite a few
versions of SQL Server. It allows the bulk insert or extraction of
data between a text file and SQL Server. Format files can be used to
specify mappings between the SQL Server table and the text file.

� The T-SQL language in SQL Server 2000 includes the BULK INSERT
command, which operates very similar to the BCP program. It
allows the insertion of data into a SQL Server table from a text file.
This command can share format files with the BCP program.

� Data Transformation Services is a utility included in SQL Server
2000 that moves and manipulates data between data sources. This
utility includes a programming environment that allows a user to
develop a package that can include a variety of tasks, processes, and

Summary 617

2942C09.qxd 7/16/01 11:39 AM Page 617

http://www.sybex.com

workflow sequences. These packages can be stored in SQL Server
or operating system files and are executed using the command line
utility DTSRUN.

Key Terms

Before you take the exam, be certain you are familiar with the
following terms:

Exam Essentials

Understand how the BCP.EXE utility can be used. The BCP utility has
been included with SQL Server for a number of versions. It is widely
used as an import and extraction utility.

Know the limitations of BCP. The BCP utility can only move data
between SQL Server and a text file. This text file can be in a character
format or a binary format native to SQL Server.

Understand what the BULK COPY T-SQL Extension does. The BULK
COPY command performs the same function as the BCP utility, but it can
only import data. The options are the same as those for BCP.

Know what Data Transformation Services (DTS) is and how it is used
in SQL Server. DTS is a utility that allows the manipulation of data
between a variety of data sources. It includes connections to work with
different formats of data as well as different tasks to move this data
around.

BCP
BULK INSERT
Data Transformation Services
command line utility
native format
interactive mode
trusted connection
format file

field terminator
DTS connections
DTS tasks
package
tasks
workflow
Meta Data Services
structured storage file

618 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 618

http://www.sybex.com

Review Questions

1. You are the DBA for a mass e-mail company and often receive lists
of names and e-mails from your clients. Each client sends his or her
data in a different format, but each always sends the same format.
You use the BCP program to import this data into your e-mail table.
Which of the techniques listed below can make importing this data
easier?

A. Changing the BCP batch size for each client to 1,000

B. Using a single format file that you edit for each client

C. Using a separate format file for each client, customized to that
client’s data file

D. Using an INSTEAD OF trigger to reformat the data received from
each client

2. You have received a large data feed from the mainframe program-
mers in your company. This feed has 26 data files, each one
containing a list of customers separated by the first letter of the
customer’s last name. Which BCP option will speed the importing
of this data into SQL Server when using multiple machines?

A. -f format_file

B. -b batch_size

C. -a packet_size

D. -h “TABLOCK”

3. You are the DBA for OnlineCatalogs, Inc., a Web service provider
that places a company’s catalogs on the Internet. One of your clients
sends you his catalog in a text file with the column headers of the
data on the first line of the file. You decide to use the BULK INSERT
command to import this data file into SQL Server; however, you do
not want to import the column headers as a row of data. Here is the
first line of T-SQL code you write:

BULK INSERT Products FROM ‘c:\Products.txt’

Review Questions 619

2942C09.qxd 7/16/01 11:39 AM Page 619

http://www.sybex.com

What options do you need to include to import this file? (Assume no
formatting changes are needed.)

A. FIRE_TRIGGERS

B. FIRSTROW = 2

C. LASTROW = 2

D. BATCHSIZE = 100

4. ABC Manufacturing Corporation is a highly automated industrial
company. Most assembly lines automatically report information to
your SQL Server database. Which tools can you use to extract this
information for reporting to the manufacturing supervisors? (Select
all that apply.)

A. DTS

B. BCP.EXE

C. BULK INSERT

D. BULK EXTRACT

5. You are the DBA for the Data Integrators Company and in charge of
building DTS packages that move data between various systems.
One of your clients requests that you build a package that copies
data from SQL Server to an Excel spreadsheet and then e-mails the
spreadsheet to a user. Place the following tasks in the order required
to complete this task. Include only those tasks that are needed.

A. Add the BEGIN TRANSACTION task to the package.

B. Add a Data Transform task from SQL Server to the Excel
Spreadsheet to the package.

C. Add a connection for the SQL Server to the package.

D. Add the COMMIT TRANSACTION task to the package.

E. Add and configure a Send E-mail task to the package that
attaches the spreadsheet to the e-mail.

F. Add a connection for the Excel spreadsheet to the package.

G. Add a workflow constraint between the Excel spreadsheet and
the Send E-mail task.

620 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 620

http://www.sybex.com

6. As a DTS package designer, you must often send packages from the
corporate network to remote field offices. These packages can be
installed and run by trained employees at these locations, but not all
locations have network connections to your server. How can you
send these packages to your remote users?

A. Save each package in the Structured File Format and e-mail them
to your users.

B. Save each file on your SQL Server and have the users execute
them directly from your SQL Server.

C. Save each file to the Meta Data Services on your SQL Server and
send the meta data to your remote users through e-mail.

D. Save each package in Visual Basic format and send this to your
users through e-mail.

7. As the DBA for Bulk E-mailers, Inc, you often receive large data files
to import into SQL Server. Occasionally, one of these files is
extremely large and the import does not complete due to a network
error. When this happens, you must restart the entire import. Which
option for the BULK INSERT command can prevent you from losing
the work done to date by the server in the event of a network error?

A. MAXERRORS

B. BATCHSIZE

C. ROWS_PER_BATCH

D. FORMATFILE

8. A format file can be used to perform which of the following
functions for the BCP.EXE utility? (Select all that apply.)

A. Rearrange columns between the data file and the SQL Server
table.

B. Change the collation of an individual column.

C. Insert Identity values into the table.

D. Determine the starting row to import in the data file.

Review Questions 621

2942C09.qxd 7/16/01 11:39 AM Page 621

http://www.sybex.com

9. Which utility can be used to transfer data from an Access database
to SQL Server?

A. BCP.EXE

B. BULK INSERT

C. BULK INSERT with a format file

D. DTS

10. You are the DBA for a company that stores its products in a few
tables. The schema for these tables is shown in the graphic below:

You need to import data that is sent from your manufacturers in a
text file into these tables. The manufacturer sends you a single file
with each row containing the following information:

� ProdID

� ProdName

� ProdDescr

622 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 622

http://www.sybex.com

� ProdSKU

� UnitPrice

� Location

What is the best way for you to import this information?

A. Create a view of both tables and insert the data using the BULK
COPY command.

B. Create a view of both tables and insert the data using the
BCP.EXE program.

C. Create a DTS package that reads the file once and imports the
data into the Product table and then reads the file a second time
and imports the data into the ProductSKU table.

D. Create a DTS package that reads the file and imports the data
into the Product and ProductSKU tables at the same time.

Answers to Review Questions

1. C. Creating a separate format file for each client that can be reused
for each import makes importing the data easy.

2. D. If the TABLOCK hint is specified on each client, a table lock is
obtained and parallel loads occur very quickly.

3. B. Since the first row contains the column headers, we want to skip
importing this row. The FIRSTROW option will start the import at line
2, which is the first line of data.

4. A, B. Both A and B are tools that can extract data from SQL Server.
C is an import utility only, and D is not a valid utility in SQL Server.

5. C (or F), F (or C), B, E, G. Options A and D are not valid tasks.
The two connections to the data source must be added before the
Data Transform task and the Send E-mail task must be added before
the workflow constraint.

Answers to Review Questions 623

2942C09.qxd 7/16/01 11:39 AM Page 623

http://www.sybex.com

6. A, D. Both of these methods create and operating system file that
can be e-mailed to the remote users. Options B and C would require
network connectivity from the remote user’s site to your server,
which is not available for all sites.

7. B or C. Either of these can be used to prevent the loss of work
during an import by specifying the size of a transaction.

8. A, B, C. All of these items are specified using a format file. Option D
is specified by a command line parameter passed to the BCP
program.

9. D. Only DTS can transfer between Access and SQL Server. The
other utilities only work with text data files.

10. C. Since the data must be moved from a single file to two different
files, the BULK COPY command and the BCP utility cannot complete
this in one step. DTS is the best choice, though two different steps
are needed to ensure that the data in the Product table is imported
first. The foreign key between the two tables necessitates this.

624 Chapter 9 � Importing and Exporting Data

2942C09.qxd 7/16/01 11:39 AM Page 624

http://www.sybex.com

Locking

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Manage result sets by using cursors and Transact-SQL.

Considerations include locking models and appropriate usage.

Chapter

10

2942C10.qxd 7/16/01 11:40 AM Page 625

http://www.sybex.com

Locks exist all around us in the world. We have locks on
doors, windows, bank vaults, and diaries, most of which are there to
prevent unauthorized access to some resource. Most computer systems
and applications also include locks to prevent unauthorized access as
well. Windows NT computers require a password “key” to unlock the
computer.

In SQL Server 2000, as in most relational database systems, locks are
crucial in ensuring that data loss and integrity can be maintained. All these
multi-user systems include some method of locking that prevents one user
from overwriting or interfering with another user’s actions.

Imagine that there is a paper ledger used to track the sales for a com-
pany. There are two people that are assigned to enter sales numbers in this
ledger and each enters the numbers in the same way: They read the exist-
ing sales total in the ledger, the current sale is added to this total, and the
new total is written in the ledger. When these two people get busy, there is
the potential that one of these users will overwrite another’s entry and data
will be lost. Suppose that person A reads the current total as $100. Person
A now looks at the current sale, which is $10 and adds these two numbers
together. While person A is adding the numbers, person B looks at the
ledger and reads $100 also. Person B then starts his own addition using his
current sale number of $25. While person B is adding his numbers, person
A erases the $100 in the ledger and writes $110. Person B now completes
his addition and erases the ledger entry and enters $125. The total should
be $135 at this point, but data has been lost.

SQL Server 2000 seeks to prevent this occurrence by using locks to
control access to data. The database server implements different types of
locks that are designed to ensure that only one person can change a
particular piece of data at a time and that data integrity is maintained.
SQL Server 2000 has a system of locking that balances the need to protect
data against conflicting modifications while allowing as much concurrency
as possible.

2942C10.qxd 7/16/01 11:40 AM Page 626

http://www.sybex.com

This chapter will examine how locks are implemented in SQL
Server 2000 and their effects on the behavior of the server as well as
ways that the behavior can be modified.

The Lock Manager

SQL Server 2000 has a lock manager that controls and manages the
locking process. The lock manager is responsible for acquiring locks for
different processes, managing the interaction of the different lock modes,
escalating these locks if necessary, and releasing them as soon as possible
to avoid contention problems with other processes. The lock manager
must avoid releasing locks too soon as transactional integrity must be
maintained, depending on the isolation level that is set for the database. If
they occur, the lock manager must also resolve deadlock issues.

The lock manager changes its behavior based on the transaction
isolation level that has been set. There are four levels that are specified by
the ANSI and ISO standards groups, which are supported by SQL
Server 2000. These are listed in Table 10.1. The isolation level is set to
READ COMMITTED by default, but can be changed for any individual
transaction using the SET TRANSACTION ISOLATION LEVEL command.

TABLE 10.1 Transaction Isolation Levels

Level Description

READ UNCOMMITTED This is the lowest level of isolation, and is also
known as “dirty read.” This allows a user to read
any data on a page, even if some of it has been
marked or changed by a transaction in progress.
If the transaction were to be rolled back, the sec-
ond process might have retrieved data that does
not exist in the system. A process that is reading
data does not acquire shared locks.

READ COMMITTED This is SQL Server 2000’s default isolation level.
A process at this level will never read data that
is changed but not committed. A process will
acquire shared locks when reading data. If a
process revisits a row of data inside a transac-
tion, it may have changed or new rows may
have appeared.

The Lock Manager 627

2942C10.qxd 7/16/01 11:40 AM Page 627

http://www.sybex.com

TA B L E 1 0 . 1 Transaction Isolation Levels (continued)

Level Description

REPEATABLE READ This level works in the same manner as READ
COMMITTED, but ensures that if a row of data
is revisited within a transaction, the data cannot
be changed, but new rows may appear. This
level will hold shared locks until the transaction
completes.

SERIALIZABLE The serializable level is the highest level of iso-
lation. When set at this level, SQL Server will
behave as though it is a single user system for
each user, at the expense of contention prob-
lems between users. This level adds to REPEAT-
ABLE READ by preventing new rows from
appearing within a transaction.

The lock manager tries to prevent problems from occurring between
multiple users of a system. The main problems that can occur are:

� Lost updates

� Uncommitted dependencies

� Inconsistent analysis

� Phantom reads

Each of these items is a basic problem that can result when multiple users
or processes are attempting to modify a shared system of data.

Lost updates occur when a situation like the one described in the intro-
duction take place. The update made by person A was “lost.” All transac-
tion isolation levels prevent lost updates.

An uncommitted dependency is a “dirty read.” One process or user is
retrieving data that was changed by another, but the change has not been
committed and may be “undone” or rolled back. The READ COMMITTED
level prevents inconsistent analysis from occurring.

Inconsistent analysis can result when one process retrieves a set of data
and finds one result, but gets a different result when a second retrieval is
performed. These two retrievals must be within the same transaction. The
REPEATABLE READ isolation level prevents inconsistent analysis.

628 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 628

http://www.sybex.com

Phantom reads occur when a process retrieves data in two different
operations, but gets more or fewer rows in one of the operations. These
are due to an INSERT or DELETE operation between the two retrieval opera-
tions. The SERIALIZABLE isolation level prevents phantom reads.

Lock Modes

The SQL Server 2000 architecture implements different lock modes that
prevent access to data, as well as protect the users from receiving
inaccurate information. The different types of locks can be changed from
one type to another on the same resource as needs of the transaction
change. Various options and hints (discussed later in this chapter) can be
included in applications or set on the server to change the way that SQL
Server implements each type of lock. The isolation levels listed previously
also affect the way these lock modes are used by a transaction. Table 10.2
lists the modes of locks that exist in SQL Server 2000.

TABLE 10.2 SQL Server 2000 Lock Modes

Type Lock Code Description

Shared S A shared lock is a read lock that
notifies other processes that the
data is being read. No changes are
possible to data with shared locks,
but other processes or users can
acquire their own shared locks to
read the same data.

Intent Shared IS An intent shared lock indicates that
a transaction intends to acquire a
shared lock on a resource at a
lower level than the intent shared
lock is held.

Intent Exclusive IX An intent exclusive lock indicates
that a transaction will seek exclu-
sive locks on a resource at a lower
level than the intent exclusive lock
is being held.

The Lock Manager 629

2942C10.qxd 7/16/01 11:40 AM Page 629

http://www.sybex.com

TA B L E 1 0 . 2 SQL Server 2000 Lock Modes (continued)

Type Lock Code Description

SIX This type of lock is used when a
transaction needs to read some of
the resource at a lower level than
the shared with intent exclusive
lock and will require shared locks.
The transaction will also require
intent exclusive locks on some of
the resource at a lower level to
perform a data modification.

Update U An update lock is a lock that noti-
fies other processes that a data
modification statement is coming.
This will be upgraded to an exclu-
sive lock when the actual data is
changed.

Exclusive X Exclusive locks prevent any other
user or process from accessing the
resource. All data modifications
require an exclusive lock before
the data can be changed.

Schema Stability Sch-S Schema stability locks are used
when a query is being compiled.
This prevents any schema from
being performed but does not
block any other type of lock.

Schema Modification Sch-M Schema modification locks are
used when a portion of the schema
is being modified.

Bulk Update BU Bulk update locks are acquired on
a table that is the target of a bulk
copy operation. This prevents
other transactions from accessing
the table, but multiple bulk update
locks can be acquired by other bulk
copy operations in order to load
the table in parallel.

Shared with Intent
Exclusive

630 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 630

http://www.sybex.com

Each type of lock is implemented when a particular event occurs. SQL
Server can adjust the locking dynamically based on server conditions and
its own estimates of how efficient each type of lock may be. Since locking
more resources than needed can cause contention problems, each lock is
held for as long as it is needed to ensure transactional integrity and then
released. Each lock is described below with more detail about its behavior
and implementation.

Shared Locks

A shared lock exists to protect the reading of data. This allows a process
to access data without the data being changed or lost during the access. A
resource can have any number of shared locks on it at one time. These
locks do not interfere with one another.

The length of time that a shared lock is held depends on the transaction
isolation level. If the isolation level is set to READ REPEATED or SERIALIZ-
ABLE, then the shared locks are held until the end of the transaction. If the
level is READ COMMITTED, then the locks are only held as long as the server
takes to read a page of data. If the query is scanning the table, then the
lock is held until a shared lock is acquired on the next page.

Intent Locks

Intent locks are not really locks that are acquired on an object. An intent
lock serves as a flag that a transaction needs a lock. These locks prevent
another process from gaining an exclusive lock on the resource while the
process is waiting. Intent locks are acquired at a higher level than that of
the lock they will be changed into. If a transaction requires a lock at a row
or page level, an intent lock will be placed on the entire table to prevent
another process from gaining a table lock and blocking the process with
the intent lock. This also helps performance, as the server need not
examine every row or page when attempting a table lock. Just the intent
locks need to be examined.

There are three types of intent locks: intent shared, intent exclusive, and
shared with intent exclusive. An intent shared lock tells the server that the
transaction needs to acquire shared locks on some of the resources at a
lower level. An intent exclusive lock indicates that a transaction needs to
change some of the data in the resource at a lower level and will need
exclusive locks on the data being modified. A shared with intent exclusive
lock is a combination that signifies the transaction needs to read as well as
modify some of the resources at a lower level. Only one shared with intent

The Lock Manager 631

2942C10.qxd 7/16/01 11:40 AM Page 631

http://www.sybex.com

exclusive lock can be placed on the higher-level resource, though other
intent shared locks from other transactions can exist on the lower-level
resources.

Update Locks

Update locks exist to prevent deadlocks on resources that are being
modified. Typically the first process acquires a shared lock on the resource
being modified. A second process also may acquire a shared lock on the
same resource. As each attempts to convert the lock to an exclusive lock, it
must wait for the other process to release its shared lock. This results in a
deadlock. SQL Server prevents this by acquiring an update lock on the
resource and then converting this to an exclusive lock when the data
modification occurs or to a shared lock if no update occurs. Only one
process can hold an update lock on a resource at a time.

Update locks are not only used for updates. Any data modification
statement that reads the data prior to a modification will use an update
lock. Conversion to an exclusive lock is still required before the actual
data modification takes place.

Exclusive Locks

An exclusive lock is the most restrictive type of lock SQL Server
implements. When an exclusive lock has been set on a resource, only the
process that acquired the lock may access the resource for reading and/or
modification. No other locks of any kind can be acquired on the resource
for the duration of the exclusive lock.

When the actual data modification is actually made to a row, an exclusive
lock is always required.

Schema Locks

A schema lock is used to ensure that schema modifications cannot occur
while some process needs the schema to remain constant. There are two
types of schema locks. The schema modification lock is used when the
schema for a table is being changed. This prevents another process from
modifying the same schema at this time. A schema stability lock is used
when a query is being compiled. These locks do not prevent any shared,

632 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 632

http://www.sybex.com

intent, or exclusive locks from being acquired; they only prevent schema
changes on the table.

One other lock similar to the schema locks is the bulk update lock. This
type of lock is used when a bulk copy operation is being performed and
the TABLOCK hint has been specified.

Latches

In addition to these locks, SQL Server also uses latches, which are
essentially lightweight locks. Latches are used when managing access to
the internal data structures of SQL Server, such as pages of data, index
pages, and text pages. The latches ensure the physical integrity of the data
by controlling the access to the actual data structures. They also enhance
performance, as the overhead of latches is lower than that of locks.

Levels of Locking

Each of these types of locks can be applied at various levels or
granularities. These granularities are at different levels in the database and
arranged in a hierarchy. Each different level at which a lock can be applied
is described below, arranged in increasing levels of the hierarchy.

Row A row is the lowest level of lock. A row lock protects a single
row of data in a table on a single page. Other rows on the same page of
data are not affected.

Page A page lock affects all rows on a single 8KB page of data.

Extent An extent lock affects a complete extent, or eight data pages.
Since an extent can contain pages from different objects, this type of
lock can affect more than one object.

Table A table lock affects all rows in the table.

Database This type of lock is held on the entire database and all
objects within the database.

The entire database is locked with a shared lock whenever a process has an
open connection to that particular database. This shared database lock pre-
vents major changes like a database being dropped or detached from the
server.

The Lock Manager 633

2942C10.qxd 7/16/01 11:40 AM Page 633

http://www.sybex.com

There is also another type of lock that does not necessarily fit in the
hierarchy, but exists to prevent a specific problem.

Key Range Locks A key range lock is a lock that prevents phantom reads
and allows serializable transactions. These locks are held on individual
rows and the ranges between rows. By holding a lock on a range, inserts or
deletions in the range are prevented, thus ensuring no phantom reads.

Transactions and Locking

A transaction in SQL Server ensures either that all work done by a
single statement or a group of statements is completed, or that none of the
work is performed. The classic example of this involves the transfer of
money between two bank accounts. One account is marked with a
decrease of funds and the second account is marked with the correspond-
ing increase of funds. Together, these two changes are a transaction. If only
one of them is performed, then money is being either created or lost, nei-
ther of which is an acceptable situation. If only one of these transactions
occurs, then that transaction must be undone as soon as the second trans-
action fails. This ensures that all funds are accounted for and the bank will
still be in business next week.

SQL Server ensures that all the statements within a transaction will be
completed or not done at all. One way in which the integrity of all data
can be maintained during a transaction is through the use of locks. Locks
prevent changes to the data until the transaction is either committed (all
changes are written to the database) or rolled back (all changes are
removed and the database is in the same state as it was prior to the start of
the transaction). This ensures that one transaction cannot interfere with
another. These locks, however, cause a few side effects to the system, the
first of which is blocking.

Blocking

Blocking is a natural occurrence in any system where one process can
prevent another from using some resource. In SQL Server, when one
process locks a resource and another object needs to use the same
resource, the second process must wait until the locks are released. In this
situation, the first process blocks the second process. Blocks are the result
of contention in SQL Server when many processes are trying to access the

634 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 634

http://www.sybex.com

same resource. Blocks are not necessarily the sign of a problem in the
system, though they can cause contention issues if they exist for
extraordinary lengths of time.

SQL Server tries to minimize the amount of blocking that occurs by
acquiring the lowest level of lock that it needs to complete a transaction.
SQL Server will estimate the amount of data that is affected by a particular
transaction and then decide which level of lock is required to perform the
work. If SQL Server needs to update all rows in a table, then a table lock is
the most efficient type of lock because until all rows are modified, none of
the rows can be unlocked. Rather than acquiring a lock on each row or
page of the table, a single table lock can be implemented with less
resources and time, which will allow the transaction to complete quicker.

If SQL Server finds that it did not estimate well and large numbers of
locks are being acquired at one level, it can perform lock escalation. Lock
escalation occurs when the server changes from one level of lock to
another. A single lock at a higher level is more efficient and quicker to
both acquire and release. Higher-level locks, however, cause more con-
tention issues because less data is available to other processes while
the locks are being held. SQL Server tries to balance the efficiency of
high-level locks with the lower contention of lower-level locks.

Deadlocks

Occasionally, two processes will both be performing transactions and they
will block each other. When this occurs, neither process can proceed
because it needs a resource that is being locked by the other process. This
situation is called a deadlock and cannot be resolved without one process
being terminated. In this situation, SQL Server will usually choose one
process as the deadlock victim and terminate it. All work done by the
deadlock victim is rolled back and its locks released. This allows the other
process to complete its transaction.

A description of a deadlock would be as follows: Suppose that one
transaction needs to update the prices in the Products table and any orders
that are pending. This process begins to lock pages in the Products table
and starts performing updates. At the same time, a second transaction is
updating the orders to mark pending orders as completed and reads the
current price from the Products table to complete its update. The second
transaction is locking pages in the Orders table, but reaches a point where
it cannot continue until the first transaction releases its locks on the Prod-
ucts table. The first transaction, however, also cannot complete until the

Transactions and Locking 635

2942C10.qxd 7/16/01 11:40 AM Page 635

http://www.sybex.com

second process releases its locks on the Orders table. This situation results
in a standstill, or deadlock. Once SQL Server recognizes this condition, it
will choose a deadlock victim and roll back that transaction’s work. The
client for that transaction will receive the following error message:

Server: Msg 1205, Level 13, State 50, Line 1

Transaction (Process ID 51) was deadlocked on {lock}
resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

In this message, whichever process was chosen as the deadlock victim is
reported using its system process ID (SPID). SQL Server will usually choose
the process that submitted the last statement and caused the deadlock.

One way in which deadlocks can be controlled is through the use of the
SET DEADLOCK_PRIORITY option, which can be set to low or normal. If this
option is set to LOW by a transaction, the transaction will terminate when a
deadlock occurs, even if it is not the transaction that completed the dead-
lock. Exercise 10.1 creates a deadlock condition and uses the SET DEAD-
LOCK_PRIORITY option to force the first transaction to terminate.

E X E R C I S E 1 0 . 1

Create a Deadlock Condition in SQL Server
This exercise will deliberately create a deadlock condition.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Type the following query into Query Analyzer (be sure the North-
wind database is selected):

SET DEADLOCK_PRIORITY LOW
BEGIN TRANSACTION
UPDATE Customers
SET Region = ‘CO’

3. Highlight these lines with the mouse and press the green arrow or
press CTRL-E to execute the query. You should receive the following
results:

(92 row(s) affected)

636 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 636

http://www.sybex.com

E X E R C I S E 1 0 . 1 (c o n t i n u e d)

4. Open a second query window by pressing CTRL-N or selecting
File ➢ New from the menu. Type the following query into Query
Analyzer (be sure the Northwind database is selected):

BEGIN TRANSACTION
UPDATE Orders
SET EmployeeID = 8

5. Highlight these lines with the mouse and press the green arrow or
press CTRL-E to execute the query. You should receive the following
results:

(830 row(s) affected)

6. Switch back to the first window by selecting Window ➢ 1 from the
menu. Type the following query into Query Analyzer:

UPDATE Orders
SET OrderDate = Getdate()

7. Highlight these lines with the mouse and press the green arrow or
press CTRL-E to execute the query. You should not receive any
results and the query should not complete execution.

At this point, the first (current) transaction is being blocked by the
second transaction. No deadlock condition has occurred yet.

8. Switch back to the second window by selecting Window ➢ 2 from
the menu. Type the following query into Query Analyzer:

UPDATE Customers
SET City = ‘Denver’

9. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query. You should receive the following
results after a short delay:

(92 row(s) affected)

10. Switch back to the first window by selecting Window ➢ 1 from the
menu. You should see something like the following:

Server: Msg 1205, Level 13, State 54, Line 1
Transaction (Process ID 51) was deadlocked on {lock}
resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

Since the DEADLOCK_PRIORITY option was set to low for the first trans-
action, it terminated as soon as the deadlock condition was detected.

Transactions and Locking 637

2942C10.qxd 7/16/01 11:40 AM Page 637

http://www.sybex.com

Deadlocks can be tracked using SQL Profiler or Performance Monitor.

Preventing Deadlocks

It is not often that deadlocks are encountered in a new application.
Most transactions are implicit, short, and affect a single resource.
Once an application starts to mature, however, more complex
transactions are usually introduced that contain multiple statements
and affect more than one object.

Deadlocks often occur when transactions that use the same resources
access these resources in different orders. One way to limit deadlocks
is to ensure that transactions that use the same resources all access
those resources in the same order.

When developing transactions that will access more than one object,
it helps to develop a standard order in which to access all objects. If
this is done, then it is unlikely that a deadlock condition will be
created.

Locking Options

In SQL Server 2000, a programmer can influence the locking behav-
ior of transactions. There are means of viewing the locking activity on a
server in addition to including hints and options in transactions or queries
that control or influence the locking behavior. This section will look at
some of the other ways that a programmer or DBA can view and change
the locking behavior of SQL Server.

Viewing Locks

The first step to controlling the locking behavior in SQL Server is to
understand how many and of which types are the locks that are being held
in the system. There are two ways that locks can be viewed in SQL Server:
through Enterprise Manager or using the SP_LOCK system stored

638 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 638

http://www.sybex.com

procedure. Each of these methods provides different information that can
be used to determine which locks are being applied in SQL Server. Exercise
10.2 examines how Enterprise Manager can be used to view the locks on a
system.

E X E R C I S E 1 0 . 2

Viewing Locks with Enterprise Manager
This exercise will allow you to view a snapshot of all the locking
activity on your SQL Server.

1. Open the SQL Server Enterprise Manager. Do this by choosing Start
➢ Programs ➢ Microsoft SQL Server ➢ Enterprise Manager.

2. Expand the list of groups by clicking the plus (+) sign next to
Microsoft SQL Servers, then expand this group by clicking the plus
sign next to the group in which your SQL Sever is registered.
Finally, select the SQL Server to which you want to connect by click-
ing it. Your SQL Server should then have a small green circle on the
server icon with a white triangle inside.

3. Expand the folders under the SQL Server by clicking the plus (+)
sign next to the server name. Expand the management folder by
clicking the plus sign and then expand the Current Activity folder.
Your Enterprise Manager should like the one below.

Locking Options 639

2942C10.qxd 7/16/01 11:40 AM Page 639

http://www.sybex.com

E X E R C I S E 1 0 . 2 (c o n t i n u e d)

There are three items under Current Activity: Process Info,
Locks/Process ID, and Locks/Object. Each of these displays lock
information using a different filter.

4. Select Locks/Process ID and click one of the SPID icons below this
item. You should see a display like the one below.

The right-hand pane will display all the locks that are being held on
objects by the particular connection that was selected. The columns
shown are the same as those returned by SP_LOCK. They are
described below.

5. Select Locks/Object and choose one of the objects below this item.
Your Enterprise Manager should look like the one below.

640 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 640

http://www.sybex.com

E X E R C I S E 1 0 . 2 (c o n t i n u e d)

This display shows all of the locks that are being held on the object
selected. These columns are also described in Table 10.3.

The other method of viewing lock information is to run the SP_LOCK
system stored procedure. Its syntax is given below:

SP_LOCK [@spid1] [, @spid2]

where the arguments are both the system process ID numbers of one or
two processes on the SQL Server. This stored procedure can have none,
one, or two parameters. If no parameters are passed, then all lock informa-
tion about all processes is returned. If one or two system process IDs are
passed as parameters, then only locking information for the one or two
processes is returned. The result set returned by this stored procedure is
given in Table 10.3.

TABLE 10.3 SP_LOCK Result Set

Column Description

Spid System Process ID number. The number given to the
process by SQL Server and stored in
master..sysprocesses.

Dbid The database ID number. Each database is assigned a
unique number on the SQL Server. This number is stored
in master..sysdatabases.

Objid The object ID number. Each object in a database receives
a unique ID number in that database. This number is
stored in the sysobjects table in each database.

Indid The index identification number.

Locking Options 641

2942C10.qxd 7/16/01 11:40 AM Page 641

http://www.sybex.com

TA B L E 1 0 . 3 SP_LOCK Result Set (continued)

Column Description

Type The type of lock being applied. The lock types are:
DB - Database
FIL - File
IDX - Index
PG - Page
Key - Key
TAB - Table
EXT - Extent
RID - Row

Resource The lock on the resource. This matches the value in Sys-
lockinfo.restext. This is a text description of the
resource being locked.

Mode The lock mode of the requester. The lock modes are listed
in Table 10.2.

Status The status of the lock being requested. The available sta-
tuses are GRANT (lock has been obtained), WAIT (blocked
by another process), or CNVRT (a lock that is held on a
resource is waiting to be converted to another lock).

Lock Isolation Levels

As mentioned in the first section of this chapter, “The Lock Manager,” there
are four different methods of implementing locking in a relational database.
These four levels are ANSI standards that are supported by SQL Server. In
SQL Server 2000, the default isolation level is READ COMMITTED. All
transactions will behave in a manner consistent with this level by default.

SQL Server 2000 includes a SET option that allows the programmer to
change the isolation level for a particular transaction. The syntax for this
option is

SET TRANSACTION ISOLATION LEVEL <isolation_level>

The isolation level is one of the following: READ UNCOMMITTED, READ COM-
MITTED, REPEATABLE READ, or SERIALIZABLE.

Once this option is run, the isolation level remains in effect for the dura-
tion of the connection or until it is changed with another SET command.

642 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 642

http://www.sybex.com

Lock Hints

In SQL Server 2000, there are options available that can change the
behavior of locking in the server. These lock hints are used to force the
server to hold locks longer than it otherwise would, or to not acquire any
locks at all (and potentially read data that has already been changed).
Table 10.4 lists the lock hints that are available for queries. Each of these
hints is placed in the FROM clause of a query after the table to which it
should apply.

TABLE 10.4 Lock Hints

Hint Description

HOLDLOCK Holds a shared lock until completion of the transac-
tion instead of releasing the lock as soon as the
required table, row, or data page is no longer
required. HOLDLOCK is equivalent to SERIALIZABLE.

NOLOCK Does not issue shared locks and does not honor
exclusive locks. When this option is in effect, it is
possible to read an uncommitted transaction or a set
of pages that are rolled back in the middle of a read.
Dirty reads are possible. Only applies to the SELECT
statement.

PAGLOCK Uses page locks where a single table lock would
usually be taken.

READCOMMITTED Performs a scan with the same locking semantics as
a transaction running at the READ COMMITTED isola-
tion level. By default, SQL Server 2000 operates at
this isolation level.

READPAST Skips locked rows. This option causes a transaction
to skip rows locked by other transactions that would
ordinarily appear in the result set, rather than block
the transaction waiting for the other transactions to
release their locks on these rows. The READPAST lock
hint applies only to transactions operating at READ
COMMITTED isolation and will read only past row-
level locks. Applies only to the SELECT statement.

Locking Options 643

2942C10.qxd 7/16/01 11:40 AM Page 643

http://www.sybex.com

TA B L E 1 0 . 4 Lock Hints (continued)

Hint Description

READUNCOMMITTED Equivalent to NOLOCK.

REPEATABLEREAD Performs a scan with the same locking semantics as
a transaction running at the REPEATABLE READ isola-
tion level.

ROWLOCK Uses row-level locks instead of the coarser-grained
page- and table-level lock.

SERIALIZABLE Performs a scan with the same locking semantics as
a transaction running at the SERIALIZABLE isolation
level. Equivalent to HOLDLOCK.

TABLOCK Uses a table lock instead of the finer-grained row- or
page-level locks. SQL Server holds this lock until the
end of the statement. However, if you also specify
HOLDLOCK, the lock is held until the end of the trans-
action.

TABLOCKX Uses an exclusive lock on a table. This lock prevents
others from reading or updating the table and is held
until the end of the statement or transaction.

UPDLOCK Uses update locks instead of shared locks while
reading a table, and holds locks until the end of the
statement or transaction. UPDLOCK has the advan-
tage of allowing you to read data (without blocking
other readers) and update it later with the assurance
that the data has not changed since you last read it.

XLOCK Uses an exclusive lock that will be held until the end
of the transaction on all data processed by the state-
ment. This lock can be specified with either PAGLOCK
or TABLOCK, in which case the exclusive lock applies
to the appropriate level of granularity.

There is also a lock hint available for the bulk data utilities. These hints
were discussed in Chapter 9: Importing and Exporting Data. Both the BCP
utility and the BULK INSERT T-SQL command support a TABLOCK parame-
ter that will lock the entire table into which data is being copied.

644 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 644

http://www.sybex.com

Summary

This chapter has provided a description of the ways that locks are
used in SQL Server. The following points were discussed:

� SQL Server contains a subsystem called the lock manager whose
function is to manage locks on resources within the server.

� An individual transaction can use one of four different locking
methods in processing the transaction. The four methods are:

� READ UNCOMMITTED

� READ COMMITTED

� REPEATABLE READ

� SERIALIZABLE

� There are a variety of different types of locks that can be acquired
on resources in SQL Server. The types are:

� Shared

� Update

� Exclusive

� Intent shared

� Intent exclusive

� Shared with intent exclusive

� Schema modification

� Schema stability

� Bulk update

� Locks in SQL Server can be acquired at different levels of granular-
ity. The levels are nested in a hierarchy that represents increasing
amounts of a resource being locked. The levels are:

� Row

� Page

� Extent

Summary 645

2942C10.qxd 7/16/01 11:40 AM Page 645

http://www.sybex.com

� Table

� Database

� Key range

� When a transaction is waiting to acquire a lock on a resource that
another transaction holds a lock on, the first transaction is being
blocked. If two processes both need a lock on a resource locked by
the other and neither can proceed, a deadlock occurs.

� SQL Server 2000 includes lock hints in both queries and the bulk
copy utilities that allow the programmer to specify how the server
should implement locking.

Key Terms

Before you take the exam, be certain you are familiar with the fol-
lowing terms:

concurrency
lock manager
READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE
lost updates
uncommitted dependencies
inconsistent analysis

phantom reads
lock hints
lock escalation
blocking
deadlock
deadlock victim
System Process ID Number

(SPID)

646 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 646

http://www.sybex.com

Exam Essentials

Know the four isolation levels supported by SQL Server 2000. There
are four ANSI standard isolation levels for transactions that are
supported by SQL Server 2000. They are: READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ, and SERIALIABLE.

Know the different types of locks that SQL Server uses. There are six
different types of locks that are used in SQL Server 2000. Be sure you
know how each one is used.

Know the different granularities at which a lock can be acquired.
There are a number of levels at which a lock can be acquired: row,
page, extent, table, database, and key range.

Understand how transactions are affected by locking. Locks can cause
blocking and deadlocks within transactions.

Know the various lock hints available for queries. There are a number
of lock hints that can be used in the FROM clause of a query. Know the
effects of each one.

Review Questions

1. Which types of locks are implemented when retrieving data using a
SELECT query?

A. Intent

B. Shared

C. Exclusive

D. Schema stability

2. What is the default isolation level for SQL Server 2000?

A. SERIALIZABLE

B. READ UNCOMMITTED

Review Questions 647

2942C10.qxd 7/16/01 11:40 AM Page 647

http://www.sybex.com

C. REPEATABLE READ

D. READ COMMITTED

3. How can SQL Server 2000’s locking behavior be changed? (Select all
that apply.)

A. By starting SQL Server with the -f flag

B. With the inclusion of a hint in the FROM clause of a query

C. By running SET TRANSACTION ISOLATION LEVEL

D. By running SP_LOCK with a parameter

4. Which lock is acquired at the time when a transaction actually
modifies data in a row?

A. Update

B. Exclusive

C. Intent

D. Deliberate

5. What is the maximum number of shared locks that can exist on a
single page?

A. 1

B. 5

C. 1,024

D. No limit

6. You run a query that updates all the rows in an extremely large table
called Products. While the query is running, a user calls to tell you
that the SQL Server is not responding to his query on the Products
table. What is happening?

A. The user has deadlocked with your update query.

B. The user is being blocked by your update query.

C. The user is blocking your update query.

D. The user’s computer has locked up.

648 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 648

http://www.sybex.com

7. Key Range Locks are used to prevent _______.

A. Lost updates

B. Uncommitted dependencies

C. Phantom reads

D. Inconsistent analysis

8. Which type of lock ensures that a table cannot be altered while a
query is being compiled?

A. Schema modification

B. Schema stability

C. Shared

D. Compile

9. You start to import a large text file using the BCP program. Another
developer tries to query the table into which you are importing data.
Which lock prevents him from querying the table?

A. Bulk copy locks

B. Bulk update locks

C. Update locks

D. Exclusive locks

10. You try to drop the Test database from your SQL Server, but receive
an error that informs you other users are connected to the database.
Why can you not drop the database?

A. The users have open transactions.

B. The users have exclusive locks on the database.

C. The users have shared locks on the database.

D. The users have schema locks on the database.

Review Questions 649

2942C10.qxd 7/16/01 11:40 AM Page 649

http://www.sybex.com

11. Which lock hint will retain locks on a resource until the completion
of a transaction? (Choose two.)

A. SERIALIZABLE

B. UPDLOCK

C. HOLDLOCK

D. ROWLOCK

12. You run SP_LOCK and receive the following output:

spid dbid ObjId IndId Type Resource Mode Status

---- ---- ---------- ----- ---- -------------- ----- -------

51 6 0 0 DB S GRANT

51 1 1977774103 0 TAB IS GRANT

52 5 1977058079 1 KEY (10018e6baefb) X GRANT

52 5 1977058079 1 KEY (0601d808a263) X GRANT

What types of locks is process 51 holding? (Choose two.)

A. Shared table lock

B. Shared database lock

C. Inclusive shared table lock

D. Intent shared table lock

13. What is a deadlock?

A. A situation when two processes are both blocking each other
from completing and neither can proceed without acquiring a
lock on a resource that is locked by the other

B. A situation when two processes both want to acquire a lock on
the same resource

C. A situation when two processes simultaneously acquire exclusive
locks on the same resource

D. A situation when one process is waiting for another to release a
lock on a resource

650 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 650

http://www.sybex.com

14. SQL Server acquires a series of row locks to complete a transaction
on a table. As the number of locks grows, SQL Server decides to
switch the row locks into an extent lock. What is this process called?

A. Lock alteration

B. Lock upgrade

C. Lock escalation

D. Lock consolidation

15. A phantom read occurs when ______. (Select all that apply.)

A. A transaction reads a row of data and then sees different data
during a second read.

B. A transaction reads a row of data and then sees a new row
during a second read.

C. A transaction reads a row of data and then the row is deleted
during a second read.

D. A transaction reads a row of data and then is blocked from
reading the same data during a second read.

Answers to Review Questions

1. B. Shared locks are used when returning data from a SELECT query.

2. D. The default isolation level is READ COMMITTED.

3. B, C. The locking behavior of SQL Server 2000 can be altered by
using a lock hint in the FROM clause of a query or by changing the
isolation level of a transaction.

4. B. At the time when the data modification actually takes place, an
exclusive lock is required.

5. D. There is no limit to the number of shared locks that can be
placed on a page.

Review Questions 651

2942C10.qxd 7/16/01 11:40 AM Page 651

http://www.sybex.com

6. B. While an update query is being run, it is likely that users trying to
access the same table will be blocked.

7. C. Key range locks prevent new rows from being inserted and
existing rows from being deleted in a range of data. These are
known as phantom reads.

8. B. Schema stability locks ensure that the schema of the objects used
in a query is stable while the query is being compiled.

9. B. When a bulk copy operation is started, bulk update locks are
acquired on the target table.

10. C. Whenever a user connects to a database, they acquire a shared
lock on the database to prevent it from being dropped or taken
offline.

11. A, C. Both the SERIALIZABLE and HOLDLOCK hints are equivalent.
Both hold locks until the completion of the transaction.

12. B, D. Given the output, process 51 holds a shared database lock on
database 6 and an intent shared table lock on object 1977774103
in database 1.

13. A. A deadlock results when two processes each require a lock on a
resource already locked by the other to complete.

14. C. When SQL Server changes from a lock at a lower level of
granularity to one of higher granularity, it is called lock escalation.

15. B, C. A phantom read occurs within a transaction when there are
new rows or missing rows during a subsequent read of the same
data.

652 Chapter 10 � Locking

2942C10.qxd 7/16/01 11:40 AM Page 652

http://www.sybex.com

Developing a Security
Plan

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Control data access by using stored procedures, triggers, user-

defined functions, and views.

� Apply ownership chains.
� Use programming logic and objects. Considerations include

implementing row-level security and restricting direct
access to tables.

� Define object-level security including column-level

permissions by using GRANT, REVOKE, and DENY.

� Create and manage application roles.

Chapter

11

2942C11.qxd 7/16/01 1:54 PM Page 653

http://www.sybex.com

Security is one of the most important facets of a successful
SQL Server database, but it is also one of the most overlooked and least
understood parts of SQL Server. Security seems to be a daunting task and
one that intimidates many people, but with an understanding of the secu-
rity model and the development of a few good habits, almost anyone can
implement a secure SQL Server.

This chapter will examine the security model in SQL Server and explain
how this model is applied to control access to the server. This chapter will
also examine how the security model affects the objects in a database and
how access to these objects can be controlled.

All exercises in this chapter assume that the SQL Server is set up to
allow connections using either Windows NT Authentication or SQL
Server Authentication.

Overview of SQL Server Security

SQL Server security is a fairly simple model that is based on the
same “allow nothing by default” principle that exists in many firewall
products. This principle starts by assuming that no one has access to an
object or resource in SQL Server. Any access rights must be explicitly
granted to a user before they can access the server.

2942C11.qxd 7/16/01 1:54 PM Page 654

http://www.sybex.com

The singular exception to this rule is the “sa” or System Administrator
login. This user has rights to all objects in the system.

SQL Server has two levels of security built into the product. The first
level is the access needed to connect to the server, and the second level is
the database level where access to all the objects in a database is granted.
These two levels of security are discussed in the following sections.

Server Access

Imagine that you are starting a new job. On your first day, the office
manager gives you a key to the office. This key allows you access into the
company’s office space whenever you desire to come to work. This key is
the equivalent of a login in SQL Server. You have access to the outer shell
of the company (the building), though not necessarily to any items inside
this building.

When you were hired, someone decided that you should be allowed to
become a part of the company. This was your authentication into the com-
pany. SQL Server allows you two different types of authentication. A login
can be explicitly added to SQL Server, which would be the case with SQL
Server authentication. Suppose, however, that your office is located in an
office building along with a number of other companies. There is a secu-
rity guard at the entrance to the building, but by virtue of being a part of
one company, you are allowed to enter the building and use your key to
access your company’s office. This is similar to Windows Authentication,
where as a user of the network, you can be allowed to access SQL Server
based on your network login and password.

The Login Process

Before a user can access data in a SQL Server, he or she must first log
into the server and be authenticated by SQL Server as being allowed
to access the server. The two methods of authentication allowed
by SQL Server, as presented above, are Windows Authentication and
SQL Server Authentication.

Overview of SQL Server Security 655

2942C11.qxd 7/16/01 1:54 PM Page 655

http://www.sybex.com

Windows NT/2000 Authentication relies upon the network logon name
and password being passed to SQL Server by the NT network. Each user
of the network has his or her security credentials presented to a resource
automatically when the user attempts to access the resource. When these
credentials are presented and accepted, the user has a trusted connection to
the SQL Server. When using this type of authentication, no login informa-
tion is required from the user or application; the Windows network auto-
matically handles the login.

The use of Windows NT Authentication for access is always allowed in
SQL Server 2000.

SQL Server Authentication does not rely upon the network at all for
determining whether a user is allowed to access the server. SQL Server
maintains its own database of login names and passwords, which are
stored in the master database in the Syslogins table. When this method of
authentication is performed, the user must explicitly send a login name
and password to SQL Server, or SQL Server will present a dialog box ask-
ing the user for the login name and password. Whichever method is used,
once SQL Server receives the login name and password, these are com-
pared to the values stored in Master.syslogins table. If there is a match,
then the user is logged into the server, otherwise, the user is sent a “failed
login” message.

Logins can be added in one of two ways: using T-SQL and using the
Enterprise Manager program. Exercise 11.1 will show how Enterprise
Manager can be used to add a new login. Exercise 11.5 will show how a
login is added using T-SQL.

656 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 656

http://www.sybex.com

E X E R C I S E 1 1 . 1

Adding a New Login

1. Open the SQL Server Enterprise Manager. Do this by choosing Start
➢ Programs ➢ Microsoft SQL Server ➢ Enterprise Manager.

2. Expand your SQL Server tree by clicking the plus symbol (+) next
to the server name. Select the Security folder and click the plus
symbol next to it. Your Enterprise Manager should look like the
following:

3. Add a new login by right-clicking the Logins icon and selecting New
Login or selecting the Logins icon and choosing Action ➢ New Login

Overview of SQL Server Security 657

2942C11.qxd 7/16/01 1:54 PM Page 657

http://www.sybex.com

E X E R C I S E 1 1 . 1 (c o n t i n u e d)

from the menu. You should receive a dialog box that looks like the
one below:

This dialog box contains the information needed to add a new login.
The login name, type of login security implemented, and the default
database and language are specified here.

4. Enter the following information on this tab:

� Type Delaney in the Name edit box for your new login.

� Choose the SQL Server Authentication radio button.

� Type testpassword in the Password edit box.

� Select the Northwind database in the default database box.

658 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 658

http://www.sybex.com

E X E R C I S E 1 1 . 1 (c o n t i n u e d)

5. Press the OK button and you will be asked to confirm the password.
Reenter testpassword in this box and press the OK button.

The new user has now been created and your Enterprise Manager
should look like the one below. Note that the new login is listed in
the right pane.

Creating and Managing Database Access

On the first day at your new company, you notice there are a number of
filing cabinets around the office. You receive a key to one of these filing
cabinets along with your office key. This key gives you access to the data
in that one filing cabinet. There are other filing cabinets in your
company, but you do not have keys for these and therefore cannot access
data in these cabinets. The filing cabinet is similar to a SQL Server
database in that there are separate “keys” that allow a user to access a
database.

Overview of SQL Server Security 659

2942C11.qxd 7/16/01 1:54 PM Page 659

http://www.sybex.com

For someone who has logged into SQL Server, a user must be created in
a database and mapped to a login so that data can be retrieved from that
database. If access to another database is needed, then a different user
must be created in the second database and mapped to the same login.
Each database contains a Sysusers table that defines each user and the
login to which they are mapped. When a user is added to the database, the
server inserts their login ID into this table along with a unique user ID that
is generated.

Just like a login can be added in two ways, a database user can be
added using T-SQL or Enterprise Manager. Exercise 11.2 shows how to
add a user to a database using Enterprise Manager. Exercise 11.5 will
show how a user is added using T-SQL.

E X E R C I S E 1 1 . 2

Adding a New Database User

1. Open the SQL Server Enterprise Manager. Do this by choosing
Start ➢ Programs ➢ Microsoft SQL Server ➢ Enterprise Manager.

2. Expand your SQL Server tree by clicking the plus symbol (+) next to
the server name. Select the Databases folder, the Northwind data-
base folder, and click the Users icon. Your Enterprise Manager
should look like the following:

660 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 660

http://www.sybex.com

E X E R C I S E 1 1 . 2 (c o n t i n u e d)

3. Add a new user by right-clicking the Users icon and selecting New
Database User or selecting the Users icon and choosing Action ➢
New Database User from the menu. You should receive a dialog
box that contains the information needed to add a new database
user. The user is mapped to a login name and the various roles this
user is assigned to are chosen here.

4. Select the login created in Exercise 11.1. The same name is added
to the User Name edit box be default. The username can be
changed if you wish. Your dialog should look like the one below:

Overview of SQL Server Security 661

2942C11.qxd 7/16/01 1:54 PM Page 661

http://www.sybex.com

E X E R C I S E 1 1 . 2 (c o n t i n u e d)

5. Press the OK button and the new user will be added. Your Enter-
prise Manager should look like the one below:

User Defined Roles

Adding users to databases and assigning them rights are simple tasks when
working with a new database, but as more and more objects are created,
the burden of administering the security for all the users becomes very
complex. Rights need to be granted to each user for each object. If you
have 10 users in your database and create a new table, you must include
all 10 usernames in your GRANT statement to allow everyone access to the
table.

Fortunately SQL Server includes a mechanism that can simplify this
task: roles. The administrator can create a role and add a series of users to
this role. Object rights are then granted to the role and all users inherit the
rights from the role. A user can be in multiple roles. Roles can also be
included in other roles. Roles allow management of users in the same way
that groups are used to manage NT users.

The rights that are granted to roles are combined to determine whether
a user can access an object. Suppose a user, Delaney, is in the Readers role
that has rights to select data from the Books table. Delaney is also a

662 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 662

http://www.sybex.com

member of the Writers role that has rights to insert data into the Books
table. Delaney has combined rights to select and insert data on the Books
table.

The DENY permission, however, overrides other rights when combining
memberships from multiple roles. Suppose that Delaney is added to the
Publishers role that has been denied permission to insert data into the
Books table. Delaney will not be allowed to insert data into the Books table
even though he has rights to insert from the Writers role. The DENY INSERT
permission from the Publishers role overrides the INSERT permission.

Users can be added to roles using both T-SQL and Enterprise Manager.
There are a number of stored procedures for managing roles that are listed
below.

SP_ADDROLE This procedure adds a new role to a database. The role
name is required as a parameter.

SP_DROPROLE This procedure deletes a role from a database. The role
name is required as a parameter.

SP_ADDROLEMEMBER This procedure adds a user or another role to a
role. The role name that is gaining new members is required along with
the username or role name that is being added.

SP_DROPROLEMEMBER This procedure removes a member user or role
from an existing role. The role name that is losing members is required
along with the name of the user or role that is being removed.

Exercise 11.3 walks through adding a role and a user to the role using
T-SQL.

E X E R C I S E 1 1 . 3

Adding a Role and a User

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer. Be sure that you log in as sa to the SQL Server.

2. Type the following query to add a new role to the Northwind data-
base (be sure Northwind is selected in the database drop-down box):

EXEC SP_ADDROLE ‘Samples’

Overview of SQL Server Security 663

2942C11.qxd 7/16/01 1:54 PM Page 663

http://www.sybex.com

E X E R C I S E 1 1 . 3 (c o n t i n u e d)

3. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should receive the following
results:

New role added.

4. Now type the following query to add a user to this role. The user
from Exercise 11.2 will be added to this role.

EXEC SP_ADDROLEMEMBER ‘Samples’, ‘Delaney’

5. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should receive the following
results:

‘Delaney’ added to role ‘Samples’.

Application Roles

SQL Server 2000 includes a second kind of role called an application role.
This role allows the administrator limited access to data to a specific
application. This allows the application to determine how a user can
access or modify data within the database. This is useful when the
application can be modified to activate the application role in
SQL Server.

Application roles have a few differences from user roles. First,
application roles have no members. Second, an application role is
inactive by default. Once connected to SQL Server, the application runs
SP_SETAPP-ROLE to activate the role using the role name and a password.
Lastly, all permissions assigned to the current user are removed and only
those permissions assigned to the application role are applied.

Permissions are assigned to application roles in the same manner that
they are assigned to users or user roles. Exercise 11.4 creates a new role
and shows how the permissions are applied.

Create and manage application roles.

664 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 664

http://www.sybex.com

E X E R C I S E 1 1 . 4

Using Application Roles
This exercise will create an application role and assign it rights. A
separate connection will activate the role and demonstrate how
permissions work.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer. Be sure that you log in as sa to the SQL Server.

2. In the query analyzer, type the following query to create a new table
(be sure the Northwind database is selected):

EXEC SP_ADDAPPROLE ‘AppSample’, ‘AppPwd’
GO

3. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. The following results are dis-
played:

New application role added.

4. Type the following query to create a new table (be sure the North-
wind database is selected):

CREATE TABLE AppTest
(AppID int,
AppDesc char(40)

)
GO
GRANT SELECT ON AppTest to AppSample
GO
INSERT INTO AppTest VALUES (1, ‘Sample Application’)
GO
SELECT * FROM AppTest

5. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. The following results are dis-
played:

AppID AppDesc
----------- ---
1 Sample Application

(1 row(s) affected)

Overview of SQL Server Security 665

2942C11.qxd 7/16/01 1:54 PM Page 665

http://www.sybex.com

E X E R C I S E 1 1 . 4 (c o n t i n u e d)

No rights are assigned to this table, so normal users, such as the
user created in Exercise 11.2, will not have rights to this table. The
application role, however, will have SELECT rights to this table.

6. Log into the SQL Server as Delaney by choosing File ➢ Connect
from the menu and entering Delaney as the login name and Test-
password as the password. A blank query window should open.

7. Select the Northwind database and type the following query:

SELECT * FROM AppTest

8. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

Server: Msg 229, Level 14, State 5, Line 1
SELECT permission denied on object ‘AppTest’, database
‘Northwind’, owner ‘dbo’.

9. Now activate the application role by typing the following query:

EXEC SP_SETAPPROLE ‘AppSample’, ‘AppPwd’

10. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

The application role ‘AppSample’ is now active.

11. Select the Northwind database and type the following query:

SELECT * FROM AppTest

12. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

AppID AppDesc
----------- ---
1 Sample Application

(1 row(s) affected)

666 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 666

http://www.sybex.com

Assigning Object Rights

Once a user has logged into a SQL Server and chosen a particular
database, the issue of controlling access to data must be addressed. SQL
Server allows a DBA or programmer to control this access at a few different
levels. One way is through the object rights that must be granted to each
user before they can use the object. The second way of controlling access is
through the creation of various objects designed to limit access to data.

This section will look at the various objects that can be used to control
access to data in SQL Server. Each of these objects is used primarily to
implement security according to business rules while the rights granted on
the object determine who can even access the object itself.

Object Rights

There are a number of different types of rights that can be granted to a
user or role. Each type of access for an object requires that a command be
run that explicitly details the access allowed. Rights are granted to users or
roles using the GRANT command. Its syntax is listed below along with a
description of its options.

GRANT
{ ALL [PRIVILEGES] | permission [,...n] }
{

[(column [,...n])] ON { table | view }
| ON { table | view } [(column [,...n])]
| ON { stored_procedure | extended_procedure }
| ON { user_defined_function }

}
TO security_account [,...n]
[WITH GRANT OPTION]
[AS { group | role }]

Define object-level security including column-level

permissions by using GRANT, REVOKE, and DENY.

Assigning Object Rights 667

2942C11.qxd 7/16/01 1:54 PM Page 667

http://www.sybex.com

ALL PRIVILEGES | permission This is the list of the type of permis-
sions that are being granted. Each permission should be specified in a
comma-delimited list. Members of the db_owner role can use the ALL
command to grant all rights. The valid permissions depend on the type
of object named in the GRANT statement.

Column For objects that have columns, specific columns may be listed.
If no column list is included, then the rights default to all columns.

Table | view | stored procedure | extended procedure |
user_defined_function This is the name of the object on which
rights are being granted.

Security_account This is the name of the user or role who is receiv-
ing the rights. This can be a SQL Server user or role as well as a Win-
dows NT user or role. Multiple users can be specified in a comma-
delimited list.

WITH GRANT OPTION When this option is included, the user who
receives the rights can in turn grant these same rights to another user.
This option is only valid for object permissions.

AS {group | role} This option is used to specify the group or role
that has permissions to grant the rights. When a user is a member of a
group that has been given rights to grant permissions and wishes to
extend these permissions to users or groups not part of the group or
role, this clause is included along with the name of the group or role
that has rights to grant permissions.

In addition to being able to grant access to an object, the access can be
removed with the REVOKE command. As with Windows NT, the applica-
tion of a REVOKE command to a user overrides any other rights that the
user has been given explicitly or as a member of a group or role. The
syntax and explanation of the REVOKE command is given below.

REVOKE [GRANT OPTION FOR]
{ ALL [PRIVILEGES] | permission [,...n] }
{

[(column [,...n])] ON { table | view }
| ON { table | view } [(column [,...n])]
| ON { stored_procedure | extended_procedure }
| ON { user_defined_function }

}

668 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 668

http://www.sybex.com

{ TO | FROM }
security_account [,...n]

[CASCADE]
[AS { group | role }]

ALL PRIVILEGES | permission This is the list of the type of permis-
sions that are being granted. Each permission is specified as an item in a
comma-delimited list. Members of the db_owner role can use the ALL
command to grant all rights. The valid permissions depend on the type
of object named in the GRANT statement.

Column For objects that have columns, specific columns may be listed.
If no column list is included, then the rights default to all columns.

Table | view | stored procedure | extended procedure |
user_defined_function This is the name of the object on which
rights are being granted.

Security_account This is the name of the user or role who is receiv-
ing the rights. This can be a SQL Server user or role as well as a Win-
dows NT user or role. Multiple users can be specified in a comma-
delimited list.

CASCADE This clause is included when one user needs to remove per-
missions from a another user as well as any additional users who
received rights from this user. This clause is primarily applicable for
removing rights from users who received them with the FOR GRANT
option in the GRANT statement.

It is preferable to grant rights on objects to roles and assign users to these
roles.

The ability to give and remove rights from a user allows most data secu-
rity to be implemented, but occasionally there is the need to specifically
prevent a user from performing an action on an object. The DENY com-
mand prevents a specific type of command from being run on an object.
The syntax for the DENY command is given below along with explanations
of the options.

DENY
{ ALL [PRIVILEGES] | permission [,...n] }
{

Assigning Object Rights 669

2942C11.qxd 7/16/01 1:54 PM Page 669

http://www.sybex.com

[(column [,...n])] ON { table | view }
| ON { table | view } [(column [,...n])]
| ON { stored_procedure | extended_procedure }
| ON { user_defined_function }

}
TO security_account [,...n]
[CASCADE]

ALL PRIVILEGES | permission This is the list of the type of permis-
sions that are being granted. Each permission should be specified in a
comma-delimited list. Members of the db_owner role can use the ALL
command to grant all rights. The valid permissions depend on the type
of object named in the GRANT statement.

Column For objects that have columns, specific columns may be listed.
If no column list is included, then the rights default to all columns.

Table | view | stored procedure | extended procedure |
user_defined_function This is the name of the object on which
rights are being granted.

Security_account This is the name of the user or role who is
receiving the rights. This can be a SQL Server user or role as well as a
Windows NT user or role. Multiple users can be specified in a
comma-delimited list.

CASCADE This clause is included when a user needs to remove
permissions from a user as well as any additional users who received
rights from this user. This clause is primarily applicable for remov-
ing rights from users who received them with the FOR GRANT option in
the GRANT statement.

Viewing Rights

Rights can also be viewed and managed from the Enterprise Manager
program. Once a database is selected, the DBA can view a variety of
information. To view the users in a database, select the Users icon beneath
a database folder. Double-clicking a user will bring up a dialog box with
the username, login name, and role memberships. This dialog box also
contains a Permissions button. Pressing this button will display a dialog
box like the one in Figure 11.1. This dialog box displays a grid that
shows all objects and the type of permissions granted on each object.
A green check mark indicates a granted permission, while a red X
indicates a denied permission. An empty check box indicates no
permissions.

670 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 670

http://www.sybex.com

F I G U R E 1 1 . 1 Database User Permission dialog box

Tables

All data is stored in a table in SQL Server, including system information.
When a table is created, only the owner of the table and the owner of the
database are allowed to access the table. If other users need to access the
table, then they must be explicitly granted access to the table. The rights
that can be granted for a table are listed in Table 11.1.

TA B L E 1 1 . 1 Table Rights

Right Description

SELECT SELECT rights allow a user to read from a table.
INSERT INSERT rights allow a user to add rows to the table.
UPDATE UPDATE rights allow a user to change rows that

exist in a table.
DELETE DELETE rights allow a user to remove rows from a

table.
REFERENCES REFERENCES rights allow a user to reference for-

eign keys to the object. Also allows SCHEMABIND-
ING references in views and functions.

Assigning Object Rights 671

2942C11.qxd 7/16/01 1:54 PM Page 671

http://www.sybex.com

Only the owner of the table or the database owner can grant these
rights to other users or roles. The table owner or database owner can also
revoke the rights.

Tables can be used to limit access to data by storing the data in separate
tables with different rights granted to different users. A vertical partition
of a table is an example of controlling access to data through a table.

E X E R C I S E 1 1 . 5

Granting Rights to a Table
In this exercise, we will grant a user rights to retrieve data from a table.
A new table and a new user will be created to prove the rights need to
be granted to each table.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer. Be sure that you log in as sa to the SQL Server.

2. In the query analyzer, type the following query to create a new table
(be sure the Northwind database is selected):

CREATE TABLE Security
(SecureID int,

UserName char(20)
)
GO
INSERT Security VALUES (1, ‘Test’)
GO

3. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query.

4. Type the following query to create a new login and grant access to
the Northwind database:

EXEC SP_ADDLOGIN ‘Kyle’, ‘Test’
EXEC SP_ADDUSER ‘Kyle’, ‘Kyle’

5. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

New login created.
Granted database access to ‘Kyle’.

672 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 672

http://www.sybex.com

E X E R C I S E 1 1 . 5 (c o n t i n u e d)

6. Log into the SQL Server as Kyle by choosing File ➢ Connect from
the menu and entering Kyle as the login name and Test as the pass-
word. A blank query window should open.

7. Select the Northwind database and type the following query:

SELECT * FROM Security

8. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

Server: Msg 229, Level 14, State 5, Line 1
SELECT permission denied on object ‘Security’, database
‘Northwind’, owner ‘dbo’.

This table was just created, but no rights on this table were granted
to any users. The new user (Kyle) that was created is a part of the
public role in Northwind by default, but has no rights to this new
table by default. We will now grant rights to this user.

9. Change to the previously opened query window by selecting
Window ➢ 1 from the menu. Type the following query:

GRANT SELECT ON Security TO Public

10. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. This statement gives all mem-
bers of the public role the right to view data in this table.

11. Change to the previously opened query window by selecting
Window ➢ 2 from the menu. The following query should still be
typed in the window:

SELECT * FROM Security

12. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

SecureID UserName
----------- ---------------------
1 Test

(1 row(s) affected)

Assigning Object Rights 673

2942C11.qxd 7/16/01 1:54 PM Page 673

http://www.sybex.com

Rights to the individual columns within a table can also be granted to
users. This has the same effect as a view in limiting access to a vertical par-
tition of the table. The user will only see those columns to which they have
been granted rights. Exercise 11.2 walks through granting rights to
selected columns.

E X E R C I S E 1 1 . 6

Granting Rights to Selected Columns in a Table
In this exercise, we will grant a user rights to retrieve data from limited
columns in a table. A new table will be created to prove the rights need
to be granted to each table.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer. Be sure that you log in as sa to the SQL Server.

2. In the query analyzer, type the following query to create a new table
(be sure the Northwind database is selected):

CREATE TABLE Security2
(SecureID int,

UserName char(20),
Salary money

)
GO
INSERT Security2 VALUES (1, ‘Test’, 100000)
GO
GRANT SELECT ON Security2 (SecureID, UserName) TO Public

3. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query.

4. Log into the SQL Server as Kyle by choosing File ➢ Connect from
the menu and entering Kyle as the login name and Test as the pass-
word. A blank query window should open.

5. Select the Northwind database and type the following query:

select * from Security2

674 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 674

http://www.sybex.com

E X E R C I S E 1 1 . 6 (c o n t i n u e d)

6. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

Server: Msg 230, Level 14, State 1, Line 1
SELECT permission denied on column ‘Salary’ of object
‘Security2’, database ‘Northwind’, owner ‘dbo’.

When the asterisk (*) is used in a SELECT statement, SQL Server
expands this to a list of all columns. Since this user does not have
rights to all columns, but only the first two columns, an error is
returned.

7. Type the following query:

SELECT SecureID, UserName from Security2

8. Highlight this line and press the green arrow on the toolbar or press
CTRL-E to execute the query. You should see the following results:

SecureID UserName
----------- ---------------------
1 Test

(1 row(s) affected)

Views

A view is essentially a table that is created when the view is accessed.
Views provide controlled access to data by limiting which columns or rows
from a table (or tables) is available to a user. When a limited set of
columns is presented in a view, a vertical partition of the underlying table
is created. When a limited set of rows is presented through a view, a
horizontal partition of data is created.

The object permissions granted on a view are the same ones that are
available for tables. These permissions are listed in Table 11.1. There are

Control data access by using stored procedures, triggers,

user-defined functions, and views.

� Use programming logic and objects. Considerations include
implementing row-level security and restricting direct access to
tables.

Assigning Object Rights 675

2942C11.qxd 7/16/01 1:54 PM Page 675

http://www.sybex.com

additional rights that must be implemented in views. The user of the view
must have the appropriate rights to the tables that make up the view. The
user can have explicit rights granted or can follow an ownership chain
(discussed below). Exercise 11.7 shows how rights are granted to a view.

E X E R C I S E 1 1 . 7

Granting Rights to a View
In this exercise, we will grant a user rights to retrieve data from a view.
A new view will be created to show how rights are granted to a view.
This exercise uses the tables and user from Exercises 11.5 and 11.6.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer. Be sure that you log in as sa to the SQL Server.

2. In the query analyzer, type the following query to create a new view
(be sure the Northwind database is selected):

CREATE VIEW MyView
AS
SELECT s1.SecureID, s1.UserName, s2.Salary
FROM Security s1, Security2 s2
WHERE s1.SecureID = s2.SecureID

GO

SELECT * FROM MyView

3. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query.

4. Log into the SQL Server as Kyle by choosing File ➢ Connect from
the menu and entering Kyle as the login name and Test as the pass-
word. A blank query window should open.

5. Select the Northwind database and type the following query:

select * from MyView

6. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

Server: Msg 229, Level 14, State 5, Line 1
SELECT permission denied on object ‘MyView’, database
‘Northwind’, owner ‘dbo’.

676 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 676

http://www.sybex.com

E X E R C I S E 1 1 . 7 (c o n t i n u e d)

This view was just created, but no rights on this view were granted
to any users. The new user (Kyle) that was created is a part of the
public role in Northwind by default, but has no rights to this new
view by default even though this user has rights to view data in
each table. We will now grant rights to this user.

7. Change to the previously opened query window by selecting Win-
dow ➢ 1 from the menu. Type the following query:

GRANT SELECT ON MyView TO Public

8. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. This statement gives all mem-
bers of the public role the right to view data in this table.

9. Change to the previously opened query window by selecting Win-
dow ➢ 2 from the menu. The following query should still be typed
in the window:

SELECT * FROM MyView

10. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

SecureID UserName Salary
----------- -------------------- ----------------------
1 Test 100000.0000

(1 row(s) affected)

Stored Procedures

Control data access by using stored procedures, triggers,

user-defined functions, and views.

� Use programming logic and objects. Considerations include
implementing row-level security and restricting direct access to
tables.

Assigning Object Rights 677

2942C11.qxd 7/16/01 1:54 PM Page 677

http://www.sybex.com

Stored procedures are batches of code that are compiled into a single
unit. The user who executes the stored procedure does not know
what commands are inside the stored procedure, and cannot change the
commands prior to executing the procedure. The stored procedure is
essentially a black box that provides the user with certain data (or
performs some function) without the user knowing how that data is
retrieved or how the function is implemented.

This encapsulation can enforce data security by forcing the user to
execute the stored procedure to perform tasks rather than using T-SQL.
Since the business logic and rules are contained inside the stored
procedure, the integrity of data can be maintained and secured from
unwanted modifications.

The only security right that is assignable for stored procedures is the
EXECUTE right. This allows a user to execute the stored procedure, pass
it parameters, and receive results back from the object. Exercise 11.8
shows how rights are granted to a stored procedure.

E X E R C I S E 1 1 . 8

Granting Rights to a Stored Procedure
In this exercise, we will grant a user rights to execute a stored
procedure. A new procedure will be created to prove the rights need to
be granted to each table. This exercise requires the user from
Exercise 11.5.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer. Be sure that you log in as sa to the SQL Server.

2. In the query analyzer, type the following query to create a new table
(be sure the Northwind database is selected):

CREATE PROCEDURE spGetCustomers
AS
SELECT CustomerID, CompanyName, ContactName
FROM Customers

RETURN
GO
EXEC spGetCustomers
GO

678 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 678

http://www.sybex.com

E X E R C I S E 1 1 . 8 (c o n t i n u e d)

3. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should receive the following
results (results are abbreviated):

CustomerID CompanyName ContactName
---------- ----------------------------------- --------------
ALFKI Alfreds Futterkiste Maria Anders
ANATR Ana Trujillo Emparedados y helados Ana Trujillo
ANTON Antonio Moreno Taquería Antonio Moreno

4. Log into the SQL Server as Kyle by choosing File ➢ Connect from
the menu and entering Kyle as the login name and Test as the pass-
word. A blank query window should open.

5. Select the Northwind database and type the following query:
EXEC spGetCustomers

6. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

Server: Msg 229, Level 14, State 5, Procedure
spGetCustomers, Line 1
EXECUTE permission denied on object ‘spGetCustomers’,
database ‘Northwind’, owner ‘dbo’.

7. Change back to the first query window by selecting Window ➢ 1
from the menu. This query window should display your server
name and database, along with the sa user.

8. Type the following query:

GRANT EXECUTE ON spGetCustomers TO Public

9. Highlight this line and press the green arrow on the toolbar or press
CTRL-E to execute the query. You should see the following results:

The command(s) completed successfully.

Assigning Object Rights 679

2942C11.qxd 7/16/01 1:54 PM Page 679

http://www.sybex.com

E X E R C I S E 1 1 . 8 (c o n t i n u e d)

10. Change back to the query window that is logged in as Kyle by
selecting Window ➢ 2 from the menu. The following query should
be typed in the window:

EXEC spGetCustomers

11. Highlight this line and press the green arrow on the toolbar or press
CTRL-E to execute the query. You should see the following results
(results are abbreviated):

CustomerID CompanyName ContactName
---------- ----------------------------------- --------------
ALFKI Alfreds Futterkiste Maria Anders
ANATR Ana Trujillo Emparedados y helados Ana Trujillo
ANTON Antonio Moreno Taquería Antonio Moreno

Triggers

Triggers are attached to tables and primarily used to enforce referential
integrity or business rules. A trigger is a batch of code bound to a table
that executes in response to a modification of the table. Triggers are
discussed in Chapter 6: Creating and Maintaining Database Objects.

Triggers can implement a security plan in a number of ways. Since a
trigger will execute whenever a data modification is made on the table,
the trigger can contain code that checks business security rules. The
business rules may allow or disallow the modification based on other data
in the system. This allows much more flexible and granular control
of security for the application rather than relying on SQL Server object
security at the table or column level.

These objects do not receive rights by themselves, rather, the rights to
execute an INSERT, UPDATE, or DELETE statement on a table implicitly allow
the user to execute the associated trigger that has been defined for the

Control data access by using stored procedures, triggers,

user-defined functions, and views.

� Use programming logic and objects. Considerations include
implementing row-level security and restricting direct access to
tables.

680 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 680

http://www.sybex.com

table. The right to execute the trigger, however, does not extend any
permission on other objects that may be referenced in the trigger. If a
trigger modifies another table, the ownership chain must remain intact
or the user must have rights to modify the table referenced by the
trigger. Ownership chains are discussed below in the “Ownership
Chains” section.

Using Triggers to Capture an Audit Trail

Imagine that you are the DBA for a financial institution and have been
charged with implementing auditing controls on the banking applica-
tion. You choose to use triggers to ensure that any data modification
statements are captured in a separate table. Each INSERT, UPDATE, and
DELETE statement fires a trigger that records the user information,
current time, and the modification that is occurring.

The main concern is that the data being captured in the auditing table
is intact and no user can modify it. You cannot remove all rights from
the table for users, however, because they need the ability to add new
data to the audit table and read the table for tracking the audits.

To prevent any accidental changes, you decide to create an UPDATE
and a DELETE trigger on your audit table. These triggers will rollback
any attempts to change the audit data. With these triggers in place,
you are assured that all audit data remains intact.

User-defined Functions

Control data access by using stored procedures, triggers,

user-defined functions, and views.

� Use programming logic and objects. Considerations include
implementing row-level security and restricting direct access to
tables.

Assigning Object Rights 681

2942C11.qxd 7/16/01 1:54 PM Page 681

http://www.sybex.com

User-defined functions are similar to stored procedures in that they are
precompiled scripts of code that the user who executes them cannot
change. User-defined functions can be used to enforce security in the same
way that stored procedures can be used. A process can be encapsulated in
a function so the user cannot alter the process and is unaware of how the
process is implemented. For example, a function could be written that
provides some type of security encryption. Users of the function are
unaware of how the function operates and therefore cannot bypass or
change this security. User-defined functions are discussed in Chapter 6:
Creating and Maintaining Database Objects.

User-defined functions implement object security in the same manner as
stored procedures. The EXECUTE permission must be granted to a user
before they can execute the function. Exercise 11.9 shows how execute
rights are granted to a user-defined function.

E X E R C I S E 1 1 . 9

Granting Rights to a User-defined Function
In this exercise, we will grant a user rights to execute a function. A new
function will be created to prove the rights need to be granted to a
user. This exercise requires the user from Exercise 11.5.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer. Be sure that you log in as sa to the SQL Server.

2. In the query analyzer, type the following query to create a new func-
tion (be sure the Northwind database is selected):

CREATE FUNCTION CipherSubst
(@PlainText varchar(80)
)
RETURNS varchar(80)
AS
BEGIN
RETURN(SUBSTRING(@PlainText, 2, LEN(@PlainText)) +

SUBSTRING(@PlainText, 1, 1)
)

END
GO
select dbo.CipherSubst(‘PigLatin’)

682 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 682

http://www.sybex.com

E X E R C I S E 1 1 . 9 (c o n t i n u e d)

3. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should receive the following
results:

--
igLatinP

(1 row(s) affected)

4. Log into the SQL Server as Kyle by choosing File ➢ Connect from
the menu and entering Kyle as the login name and Test as the pass-
word. A blank query window should open.

5. Select the Northwind database and type the following query:

SELECT dbo.CipherSubst(‘PigLatin’)

6. Highlight these lines and press the green arrow on the toolbar or
press CTRL-E to execute the query. You should see the following
results:

Server: Msg 229, Level 14, State 5, Line 1
EXECUTE permission denied on object ‘CipherSubst’, database
‘Northwind’, owner ‘dbo’.

7. Change back to the first query window by selecting Window ➢ 1
from the menu. This query window should display your server name
and database, along with the sa user.

8. Type the following query:

GRANT EXECUTE ON CipherSubst TO Public

9. Highlight this line and press the green arrow on the toolbar or press
CTRL-E to execute the query. You should see the following results:

The command(s) completed successfully.

10. Change back to the query window in which you are logged in as
Kyle by selecting Window ➢ 2 from the menu. The following query
should be typed in the window:

SELECT dbo.CipherSubst(‘PigLatin’)

Assigning Object Rights 683

2942C11.qxd 7/16/01 1:54 PM Page 683

http://www.sybex.com

E X E R C I S E 1 1 . 9 (c o n t i n u e d)

11. Highlight this line and press the green arrow on the toolbar or press
CTRL-E to execute the query. You should see the following results:

--
igLatinP

(1 row(s) affected)

Ownership Chains

SQL Server 2000 allows objects to build upon other objects; views contain
tables, stored procedures can contain views, etc. Each of these objects,
however, implements its own security with explicit statements for each
object required to grant or deny access to that object. In order to prevent
an explicit permission grant or deny statement for each object contained
within another object, SQL Server uses ownership chains to check the
security on an object. An ownership chain is the implicit link between the
owners of two objects that access one another. If the same user owns both
objects, then an ownership chain is intact. If not, the ownership chain is
broken. Ownership chains allow the original owner of the lowest-level
objects to retain control over their object.

Each object has an owner that is independent of other objects. When
user A accesses object A, user A’s permissions are checked to see if the user
has been granted the appropriate permissions for object A. If object A then
accesses object B, SQL Server first compares the owners of the two objects.
If the same user owns both objects, then permissions are not checked on
object B. If a different user owns object B, however, then the permissions
for access are rechecked for user A against object B.

If different users own two objects, security is checked because the
ownership chain is broken. This becomes an issue when different users are

Control data access by using stored procedures, triggers,

user-defined functions, and views.

� Apply ownership chains.

684 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 684

http://www.sybex.com

creating objects and granting permissions on their own objects in a data-
base. If two different people create objects that each access the other’s
object, both must grant rights to their object for another user to access the
object.

Usually dbo owns all objects in a live database. Broken ownership chains
usually are the cause of problems in development databases where
multiple people create objects.

Summary

This chapter has presented a description of SQL Server security and
how it can be implemented inside a database. The following topics were
covered:

� An overview of the SQL Server security model was presented. Allow
nothing is the default security setting.

� A brief introduction to server-level security and logins.

� A description of database-level security and users.

� The two types of roles implemented in SQL Server 2000. A descrip-
tion and example of each was presented.

� The chapter examined assigning security using T-SQL commands.

� Object level security for each of the different types of objects was
discussed. The chapter also examines how each object can imple-
ment data security.

� Ownership chains and their effect on object access when different
users own objects in a chain.

Summary 685

2942C11.qxd 7/16/01 1:54 PM Page 685

http://www.sybex.com

Key Terms

Before you take the exam, be certain you are familiar with the fol-
lowing terms:

Exam Essentials

Understand the security model for SQL Server. SQL Server imple-
ments an “allow nothing” model by default. All rights to objects must
be explicitly granted.

Know how rights on objects are given and removed from users and roles.
The GRANT and REVOKE commands are used to give or remove rights from
objects. The DENY command prevents a type of action on an object.

Know how tables implement secure access to data. Tables can be used
to limit rights to data by splitting data across tables and granting lim-
ited rights to each table. Rights can also be granted to specific columns
instead of the entire table.

Know how stored procedures implement secure access to data. Stored
procedures provide security for data by preventing the user from access-
ing the underlying tables or views. The user only can access the data
that the stored procedure allows them to access.

Know how triggers implement secure access to data. Triggers can be
used to validate all changes that are made to a table. This can prevent a
user from inappropriately changing data in a way that it should not be
changed.

application role
authentication
authentication
authentication
EXECUTE
horizontal partition
login

ownership chains
roles
trusted connection
user
vertical partition
Windows Authentication

686 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 686

http://www.sybex.com

Know how views implement secure access to data. Views provide
security for data by limiting those columns that a user can access.

Know how user-defined functions implement secure access to data. A
user-defined function can produce a result that is consistent based on its
inputs. This prevents users from implementing some function incor-
rectly. The user is also unaware how the particular function is imple-
mented.

Understand the different types of roles and how they are implemented.
SQL Server 2000 databases allow roles to be created that group users
together. SQL Server 2000 also allows application roles that are
invoked by an application rather than any particular user login.

Understand ownership chains and how they affect the security of
objects. SQL Server ensures that a user does not inherit any rights
from another user by checking the security of all objects that reference
other objects whenever ownership chains are broken.

Review Questions

1. You are the DBA for a large software development company. Each
project includes 10 or more developers who are assigned with
creating tables and queries to meet business rules. Each developer is
assigned to a role that has rights to create objects in their particular
database. One of your developers, Jim, has created a table that
stores product information, but another developer, Bill, insists the
table was not created as he cannot select any rows from this table.
What is the problem?

A. Bill is probably typing the name incorrectly.

B. Jim did not create the table in the correct database.

C. Bill is querying the wrong database.

D. Jim did not grant Bill rights to view the table.

2. Jack creates a table but does not grant any rights to any other
user. Jack creates a view on this table and grants Jill SELECT rights

Review Questions 687

2942C11.qxd 7/16/01 1:54 PM Page 687

http://www.sybex.com

to the view. Jill accesses the data through the view. How can she do
this without rights on the table?

A. If rights are granted on a view, the user never needs rights on the
tables underneath the view.

B. This is not possible. Jack needs to grant Jill rights to the table.

C. The ownership chain between the table and view is unbroken.

D. Jill is the database owner.

3. You are the DBA for a large corporation. The human resources
department has requested access to the Employee table to view
address and contact information for all employees. This table also
contains salary information that Human Resources employees
should not be able to view. What can you do to give Human
Resources access to only part of the table? (Choose two.)

A. Create a new role for Human Resources.

B. Grant SELECT rights on the Employee table to the Human
Resources role.

C. Grant SELECT rights on the Employee table for the address and
contact information columns only to the Human Resources
department.

D. Create a view of the entire Employee table and Grant SELECT
rights on this view to the Human Resources role.

E. Create a new user that is shared by all Human Resources
employees.

4. You are the DBA for the marketing department and have been asked
to write a query that can perform a statistical analysis on a series of
inputs. Your boss is concerned that users may alter the query to
perform their own analysis. What can you do to prevent this?

A. You can create a view that returns the results instead of a query.

B. You can create a user-defined function to calculate the analysis.

C. You can create a stored procedure to calculate the analysis.

D. You can include the FOR ENCRYPTION clause in the query to
prevent others from changing it.

688 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 688

http://www.sybex.com

5. As a DBA, you want to prevent all the users in the Accounts
Receivable department from changing any data in the Invoice table,
but they must still be able to view this data. All these users belong to
the Account role that has SELECT, INSERT, UPDATE, and DELETE
rights on the Invoice table. What can you do?

A. Remove these users from the Accounting group.

B. Execute a DENY statement to remove all modification rights from
these users.

C. Execute a GRANT statement that only includes the SELECT
permission for these users.

D. Execute a REVOKE statement to remove all rights from these users.

6. Kyle creates a stored procedure that references a table created by
Delaney. Delaney has previously executed the following statement:

GRANT SELECT, REFERENCES ON MyTable TO Kyle

Kyle now executes this statement:

GRANT EXECUTE ON MyProc to Tia

What will happen when Tia executes MyProc?

A. She will receive a permissions error on MyTable.

B. The procedure will execute and return the result.

C. The procedure will execute and return an empty result set due to
a permissions problem.

D. The procedure will not return an error, but will not execute.

7. You are the DBA for the Super Spammers E-mail Company where a
new database and order entry system is being deployed for your
sales department. The manager of this department is concerned that
his users might use Excel or another tool to enter data into the
system. What should you do to prevent this? (Choose three.)

A. Run a DENY ALL TO Excel statement.

B. Grant rights to objects to only the OrderEntry role.

C. Have the developers modify the application to include the
password for the OrderEntry role.

Review Questions 689

2942C11.qxd 7/16/01 1:54 PM Page 689

http://www.sybex.com

D. Create an application role called OrderEntry.

E. Add all users to the OrderEntry role.

8. You are the DBA for a car dealership and have been told that
occasionally salespeople try to enter an exceptionally large discount
for a car. They must not be allowed to enter more than a 25 percent
discount for any car. The manager of the dealership informs you
that there are two different applications for entering sales and they
cannot be modified in the short term. What can you do to ensure
that no discounts greater than 25 percent are entered?

A. Add a constraint to the Orders table.

B. Add a user-defined function that calculates the discount.

C. Add triggers to the Orders table to check for discounts greater
than 25 percent and rollback transactions if they exceed this
amount.

D. Add a view on the Orders table that limits the discount to 25
percent.

9. You are a new DBA with a large retailer. A new salesperson starts
the same day as you, and their manager asks you to add them to the
SQL Server database as a user. He tells you that they should be
granted rights to various tables and gives you the following script:

-- Cashier

GRANT SELECT, INSERT, UPDATE ON Orders TO <user>

GRANT SELECT ON Products TO <user>

-- Inventory

GRANT SELECT ON Orders TO <user>

GRANT SELECT, INSERT, UPDATE ON Products TO <user>

He tells you that this person is a cashier and an inventory person, so
they should get all these rights. What can you do to streamline this
security implementation?

A. Separate the two groups of statements into separate scripts.

B. Create two roles, one for each job type, and grant rights to these
roles. Move all users into roles.

690 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 690

http://www.sybex.com

C. Create a third script for people performing both jobs.

D. Create an application role for each job and place users into the
appropriate role.

10. You add a new employee to SQL Server using the AddLogin dialog
box in Enterprise Manager and set their default database to Sales.
You e-mail the user their password. A few hours later the user calls
to complain that they cannot access the SQL Server and the server is
telling them they are not a valid user in the Sales database. What is
wrong?

A. The employee needs to change to the Sales database after they
connect.

B. The employee is connecting to the wrong SQL Server.

C. The employee is typing the password incorrectly.

D. You forgot to add the employee as a user in the Sales database.

11. You are the DBA for a large company that has just written a new
application called POST for SQL Server. They are concerned that
only the POST program be used to access the database, so you
create an application role called POST and assign rights to this role
for the objects in the database. You add the authorized users to the
database, but assign them no rights. A few hours later, you receive a
call saying that none of the users can access any data in the
database. What is the problem?

A. The application needs to run SP_ADDAPPROLEMEMBER after
connecting to the SQL Server.

B. The application needs to run SP_ACTIVATEAPPROLE after
connecting to the SQL Server.

C. The application needs to run SP_SETAPPROLE after connecting to
the SQL Server.

D. The application needs to run SP_STARTAPPROLE after connecting
to the SQL Server.

12. Charles grants Dave SELECT rights to the Employee table using the
WITH GRANT option. Dave then creates a view of the Employee table

Review Questions 691

2942C11.qxd 7/16/01 1:54 PM Page 691

http://www.sybex.com

and grants Matt SELECT rights to the view and the Employee table.
Later Charles decides to revoke the SELECT rights from Dave using
this statement:

REVOKE SELECT ON Employee FROM Dave

What will happen when Matt tries to select data from the Employee
table?

A. He will receive a permissions error.

B. He will receive an empty result set.

C. He will receive the result set he expected.

D. He will receive no result set.

13. As the DBA for a large corporation, you have hundreds of users in
your SQL Server database. To make administration easier, you have
created roles for the different departments that use the database.
The sales department has over a hundred users, and their manager is
complaining that a dozen salespeople are selling products with
extremely large discounts. The manager wants to prevent these
salespeople from entering orders, but they should retain all other
existing rights. What is the best way to implement this rule?

A. Create a new role and move the dozen salespeople to this role.
Give this role the same rights as the other role except for the
Orders table.

B. Create a new role and add the dozen salespeople to it. Grant this
new role SELECT only rights to the Orders table.

C. Issue a DENY statement for these dozen salespeople individually
on the Orders table.

D. Create a new role and add the dozen salespeople to this role.
deny modifications on the Orders table for this new role.

14. One of the developers in your company comes to see you with a
problem. He has created a table called UserForms with a foreign key
that references another table called Forms, which was created by
another user. The other user granted him rights to select data from
the Forms table. When he tries to create his UserForms table with a
foreign key, he receives a permissions error. What is the problem?

692 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 692

http://www.sybex.com

A. He needs insert, update, and delete rights on the Forms table.

B. He needs to have cascading rights for UPDATE and DELETE.

C. He needs references rights on Forms to create a foreign key.

D. He needs to own the Forms table.

15. You are the DBA for XXX, Inc. and need to ensure that security is
maintained, but IT personnel do not spend an inordinate amount of
time administering security. The IT development staff creates tables
and stored procedures on the development servers that you must
move to the production servers over time. What is the best way to
ensure that security is maintained, but problems are kept to a
minimum?

A. Recompile all objects with dbo as the owner.

B. Create a role for each developer and assign rights to users
through these roles.

C. Create a development role and assign rights to all objects
through this role.

D. Ask each developer to create scripts that grant rights to all roles
for all their objects.

Answers to Review Questions

1. D. The most likely explanation is that Jim did not execute a GRANT
statement after he created the table. By default, Bill would not be
able to see the table.

2. C. If the same user owns a view and the tables underneath the view,
the ownership chain is unbroken and rights are only checked on the
view. If a different user owns the view than the user who owns the
table, the ownership chain is broken and the user of the view must
have access to both the view and the table.

Answers to Review Questions 693

2942C11.qxd 7/16/01 1:54 PM Page 693

http://www.sybex.com

3. A, C. To meet this requirement, only grant rights to those columns
that are needed. The recommended practice is to create a new role
and assign rights to this role.

4. A, B, or C. Option A, B, or C encapsulates the functionality in an
object that secures it from user tampering.

5. B. To prevent specific rights that a user has already received as the
member of another role, the DENY statement will prevent them from
inheriting this right from any other role.

6. A. The ownership chain is broken because Kyle owns one object and
Delaney owns another. When Tia executes the stored procedure, SQL
Server allows her to execute it because she was granted rights to do
so. However, when the stored procedure tries to access the table, the
ownership chain is broken and another security check is performed.
Since Tia was not granted rights to this table, an error is returned.

7. B, C, D. To allow only a specific application to change data, create
an application role and include the password in the application.
Assign all rights for objects to this role. No users can be added to an
application role.

8. C. Triggers are the best way to enforce a business rule on a table in
every circumstance.

9. B. The recommended practice is to create roles and assign object
rights to these roles. Users are then assigned to the roles as needed.

10. D. When adding a new login to SQL Server, the login must also be
mapped to a user in a database to access the data in that database.

11. C. To use an application role, it must be activated after connecting
to the database with the SP_SETAPPROLE stored procedure.

12. C. Unless the CASCADE option is included with the REVOKE statement,
rights granted by Dave will not be removed from other users.

694 Chapter 11 � Developing a Security Plan

2942C11.qxd 7/16/01 1:54 PM Page 694

http://www.sybex.com

13. D. The best way to implement this new security role is to create a
new role and deny permissions on the Orders table for this role. By
adding the dozen salespeople to this role, the DENY will override their
existing permissions on the Orders table. All their other permissions
will remain the same.

14. C. In order to create a foreign key that references another user’s
table, references permissions are needed.

15. A. The easiest way to implement security while preventing problems
is to ensure that all objects are owned by one user. This way, no
ownership chains are broken.

Answers to Review Questions 695

2942C11.qxd 7/16/01 1:54 PM Page 695

http://www.sybex.com

Analyzing and
Optimizing Data Access

MICROSOFT EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

� Analyze the query execution plan. Considerations include

query processor operations and steps.

� Capture, analyze, and replay SQL Profiler traces.

Considerations include lock detection, performance tuning,

and trace flags.

� Create and implement indexing strategies. Considerations

include clustered index, covering index, indexed views,

nonclustered index, placement, and statistics.

� Improve index use by using the Index Tuning Wizard.

� Monitor and troubleshoot database activity by using SQL

Profiler.

Chapter

12

2942C12.qxd 7/13/01 5:40 PM Page 697

http://www.sybex.com

Developing and deploying an application is merely the first
step in what you hope will be its long life. As an application matures and
evolves, one area that becomes increasingly important is the analysis and
optimization of the queries. The data used by an application will grow and
change, and the information used by the query optimizer will change. As
this happens, an application’s performance may substantially decrease. The
database and queries require maintenance to ensure that the application
continues to perform as expected.

The analysis and optimization of queries are both an art and a science,
and are essential skills for a DBA to learn. Unfortunately it seems that
many reference materials devote far more space to learning how to write
queries than to teaching one to analyze and improve queries. There are
more and more people using SQL Server every year, and Transact-SQL
skills are trickling down from DBAs to developers of all levels. However,
the knowledge of how to write efficient queries and how to find poorly
written ones is limited to relatively few people.

While this text is not designed to cover this topic in detail, it is written
to introduce the reader to the query optimizer and how SQL Server makes
decisions about the execution of queries. The analysis and optimization of
queries in SQL Server is covered along with the tools available to the SQL
Server DBA. The various options in Query Analyzer, the SQL Server Pro-
filer, and the Stored Procedure Debugger are introduced along with basic
instructions on how to use them and when a particular tool can be used in
place of another.

2942C12.qxd 7/13/01 5:40 PM Page 698

http://www.sybex.com

The Query Optimizer

Whenever a query is submitted to SQL Server, the SQL engine must
make decisions about how to go about retrieving the data for the user.
Inside the SQL Server query processing engine, there is a section of code
called the query optimizer whose function is to find the most efficient
means of retrieving data at that particular time. This query optimizer com-
pares different possible methods of retrieving the data (called execution
plans) and then chooses one. Once this is done, the query engine goes
about using this plan to retrieve the data requested by the query.

In any database system, returning data to the client must be done as
efficiently and quickly as possible to minimize contention. If the database
server spends an inordinate amount of time processing one query, the per-
formance of other queries will suffer. In order for the server to find the
most efficient method of satisfying the query, it must spend resources
examining the query and comparing different methods of retrieving the
data. This overhead, however, is often returned to the user in overall time
savings when the most efficient method of satisfying the query is chosen.
This is similar to climbing an unfamiliar mountain. If you spend a few
minutes with a map comparing different routes, you will likely complete
your journey quicker than if you start climbing immediately and decide on
the route as you climb. Of course, those who start immediately will get
lucky and summit the mountain quicker a few times, but as more and
more attempts are made, those who plan will average much quicker times
than those who do not.

One of the advantages of stored procedures is that the query plans are usu-
ally predetermined. The time required to find an execution plan is elimi-
nated, which can result in a substantial time savings. For many queries, it
takes as much time to find an execution plan as it does to execute the
query.

Analyze the query execution plan. Considerations include

query processor operations and steps.

The Query Optimizer 699

2942C12.qxd 7/13/01 5:40 PM Page 699

http://www.sybex.com

There are different types of query optimizers used in various relational
database management systems. Microsoft SQL Server uses a “cost-based”
query optimizer in determining which of the various methods of retrieving
data it will pick and send to the query engine. A cost-based optimizer
assigns a cost to each method of retrieving data based on the resources
required to process the query. Processor time, disk I/O, etc. are all assigned
costs based on the number of rows that must be examined in a particular
operation. Once the optimizer has assigned the costs, it sums up the total
cost for each execution plan that was investigated. Based on the design of
the system, the query optimizer chooses an execution plan, which is then
sent to the query engine for processing.

SQL Server does not always choose the execution plan with the lowest
total resource cost as one might expect. Instead, SQL Server is designed to
pick the execution plan that is reasonably close to the theoretical minimum
and will return results to the client as quickly as possible with a reasonable
cost. The definition of reasonable will change as conditions within the
SQL Server and the load changes. This results in a dynamic, efficient query
optimizer that delivers some of the best performance in the industry.

Single Statement Optimization

There are basically two types of optimizations that occur: single statement
and batch optimizations. This section will deal with the former and the
next with the latter. Most of this section is devoted to examining how
SELECT statements are processed since this is the basis for most operations
within the server. INSERT, UPDATE, and DELETE operations basically consist
of determining the number of and which rows are affected. Both of these
operations are basically the same as a SELECT statement, so this
explanation will apply to them as well.

There are a number of statements in SQL Server that are not SELECT,
INSERT, UPDATE, or DELETE operations. Most of these are statements that
deal with system level tables, like ALTER, CREATE, etc. Since these are pri-
marily system functions and are not executed as part of an application (in
general), this text will not examine how the server satisfies these state-
ments. Also, since these are system statements and it is not recommended
that their operation be altered, it would not be productive to spend time
examining how they work.

700 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 700

http://www.sybex.com

Execution Plans

The steps that the relational engine will go through to satisfy a query make
up an execution plan. There are two items that all execution plans
determine for the relational engine:

� The order in which the source tables are accessed when performing
the query

� The method of extraction of the data from these tables

The order in which the tables are accessed is important not for which
rows will appear in the result set, but rather for the speed of the joins
between the tables. If the first data retrieval from a table can be done
quickly and returns a small number of rows, then subsequent join opera-
tions have less data to work with and can complete quicker.

The method of data extraction from a table is a fancy way of describing
whether an index is used or not. The optimizer will have a few choices for
most tables; it can scan the table for rows meeting the qualifications in the
WHERE clause, it can use an index, or even use multiple indexes and perform
an internal join. If the table is small (with few rows), then it is almost always
quicker to use a table scan. If a large number of rows will be returned,
but there is an index on columns in an ORDER BY clause, then the index
may be quicker.

For queries that include a join, there is a third step that determines the
type of join that will be used to combine the information from the various
tables. The query optimizer must choose between three types of joins for
each pair of tables or result sets that must be joined together.

For any query, there may be any number of execution plans that could
satisfy the query. In fact, for complex queries, there may be thousands of
possible execution plans that could exist. Instead of examining each plan
and assigning a cost to it, the SQL Server will “guess” at which plans will
have a cost close to the theoretical minimum cost. SQL Server uses various
algorithms to make these guesses and reduce the number of plans that it
checks. The SQL Server team has done a good job of building in limita-
tions for the query optimizer to prevent it from spending too much time
comparing queries.

The Query Optimizer 701

2942C12.qxd 7/13/01 5:40 PM Page 701

http://www.sybex.com

I am not sure what “sophisticated” algorithms are, but I am guessing that
these are the ones that work well 80-90 percent of the time. Not much detail
is available outside of Microsoft, but I can tell you that on the same hardware,
a number of queries run faster in SQL Server 2000, so I trust the SQL Server
developers made some good choices.

You can view the execution plan for a query in a couple of different
ways. You can use the SET SHOWPLAN_TEXT or SET SHOWPLAN_ALL state-
ments, which are described below. You can also view a graphical showplan
in Query Analyzer by pressing CTRL-K or selecting QUERY ➢ SHOW
EXECUTION PLAN from the menu.

I tend to use the graphical showplan to analyze queries because I think
it is easier to read and quickly finds which step consumes most of the
resources since the percentage of the resources required is displayed under
each step. You can still view the detail for each step by stopping the mouse
on each step.

While the optimization of single queries is important for ensuring opti-
mal performance from a SQL Server, there are some additional considera-
tions that must be made for batches of queries. Optimization of batches is
discussed in the next section.

Batch Optimization

Optimizing a batch is very similar to optimizing a single query. The same
techniques will be used, as the server will execute each statement sequen-
tially in the same order that they are presented in a batch. There are a few
key differences that the developer must keep in mind when optimizing a
batch that is different from single statements.

If there are conditional statements inside the batch, the developer must
be sure that both branches of the conditional statement (TRUE and FALSE)
should be optimized to ensure the batch runs as efficiently as possible.

If there are stored procedures called from within the batch, these should
be optimized separately as they will comprise a single execution plan for
the batch.

702 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 702

http://www.sybex.com

One other item to be aware of with batches is that all steps do not take
the same amount of time to complete. Profiling the batch is a good way to
start analyzing a batch and looking for ways to optimize the code. This
involves both determining the time each step takes to execute and the
number of times a step may be run. The easiest way to do this in T-SQL is
to add a series of SELECT statements in between all code lines. Each SELECT
statement returns a result set with the current server time and a text mes-
sage that identifies where in the batch the SELECT has been placed. This
will allow the programmer to find the sections of code that require the
most time to execute. These are the sections of code that will make the
most difference to the performance of the system if they can be optimized.

Analyzing Queries

Using SET Statements

In order to analyze a query, one must change the behavior of Query
Analyzer (or another client tool) to report back information about the
query. SQL Server has a number of statements that you can execute on the
client to instruct the server to report back information about the batch
that can be used to analyze and optimize the query.

The options that pertain to analyzing and optimizing queries are turned
on or off by the client and remain in effect for the duration of the connec-
tion. To turn off the effects, another SET statement must be issued. If one
of these settings is changed within a stored procedure, then it is in effect
until changed or until the stored procedure ends. If the stored procedure
ends, then the setting defaults to the value that was set before the stored
procedure was invoked. The settings also remain at their current value
when a stored procedure is invoked. Changing to a different database has
no effect on the value of any of these options.

Analyze the query execution plan. Considerations include

query processor operations and steps.

Analyzing Queries 703

2942C12.qxd 7/13/01 5:40 PM Page 703

http://www.sybex.com

The following options are useful in analyzing and optimizing queries
and batches. Each is described below.

� SET FORCEPLAN

� SET NOEXEC

� SET SHOWPLAN_ALL

� SET SHOWPLAN_TEXT

� SET STATISTICS IO

� SET STATISTICS PROFILE

� SET STATISTICS TIME

SET FORCEPLAN

This forces the SQL Server query optimizer to process the join in a query
in the same order as the tables physically appear in the FROM clause of the
query. This can be used to force the optimizer into different join orders so
query plans for each can be compared.

Be wary of using this in production code. It restricts the optimizer from
examining any query plans that would reorder the table joins.

Syntax

SET FORCEPLAN { ON | OFF }
Permissions for this option default to all users.

SET NOEXEC

This option does not really report any information that can be used to
analyze a query by itself. Instead, this option prevents the execution of the
query, allowing only the parsing of the syntax and the creation of the
execution plan by the query optimizer.

When you are trying to analyze a query that is extremely long running
or contains a very large result set, you will welcome this option. It allows
you to perform the same query plan analysis you would otherwise perform
without having to wait for the query processor to execute the query. When
this option is set, the batch is parsed and the query plan compiled, but the
query is not actually run.

704 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 704

http://www.sybex.com

Syntax

SET NOEXEC { ON | OFF }
Permissions for this option default to all users.

For some statements that return a result set (such as SET STATISTICS PRO-
FILE), setting this option to ON prevents the information from returning.

SET SHOWPLAN_ALL

This statement will instruct SQL Server not to execute the statements in
the batch, but rather to return the detailed information about how the
statements are executed. With this information, estimates of the resource
requirements are returned as well.

Syntax

SET SHOWPLAN_ALL { ON | OFF }
This setting applies at run time only, not at parse time.
This statement must be executed within its own batch.
The results from queries executed after SET SHOWPLAN_ALL is set to ON

are returned as a specialized result set. The output columns are listed in
Table 12.1.

TA B L E 1 2 . 1 SHOWPLAN_ALL Result Set

Results Description

StmtText

StmtID Statement number in the current batch.

NodeId The ID of the node in the query.

Parent The ID of the parent node in the query. The parent
is the node that must execute before this node can
be executed.

This is the text of the SQL statement for rows that
are not of type PLAN_ROW. For type PLAN_ROW, this is
a description of the operation that the server would
perform to satisfy the request.

Analyzing Queries 705

2942C12.qxd 7/13/01 5:40 PM Page 705

http://www.sybex.com

TA B L E 1 2 . 1 SHOWPLAN_ALL Result Set (continued)

Results Description

PhysicalOp

LogicalOp

Argument

DefinedValues

EstimateRows

EstimateIO

EstimateCPU

AvgRowSize

TotalSubtreeCost

OutputList A comma-separated list of the columns being out-
put by this operation.

An estimate of the total cost for this operation and
all of its child operations.

An estimate of the average row size in bytes of the
rows being passed through this operator.

This applies to rows of type PLAN_ROW only and is
an estimate of the CPU cost for this operator.

This applies to rows of type PLAN_ROW only and is
an estimate of the I/O cost for this operator.

This applies to rows of type PLAN_ROW only and is
an estimated number of rows that will be output by
this operator.

This applies to rows of type PLAN_ROW only. This is
a comma-separated list of values that are intro-
duced by the operator. This may be computed
expressions or internal values needed by the query
processor to process the query. The results may be
referenced elsewhere within the query.

This provides additional information about the
operation being performed. The contents will
depend on the PhysicalOp value.

This applies to rows of type PLAN_ROW only. This is
the relational algebraic operator that is represented
by this node. (Index Scan, Index Seek, etc.)

This applies to rows of type PLAN_ROW only. This is
the physical algorithm that was applied to the
node. (Index Scan, Index Seek, etc.)

706 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 706

http://www.sybex.com

TA B L E 1 2 . 1 SHOWPLAN_ALL Result Set (continued)

Results Description

Warnings

Type

Parallel

EstimateExecutions

Permissions for this statement default to all users.

SET SHOWPLAN_TEXT

This returns the same information that is returned by SET SHOWPLAN_ALL,
but in a more readable format for MS-DOS applications (those returning
text output). Only a single column is returned, though multiple result sets
are returned.

Syntax

SET SHOWPLAN_TEXT { ON | OFF }

Results

The result of this statement is a single column result set named
StmtText. This is the text of the SQL statement for rows that are not of

An estimate of the number of times this operator
will be executed during the current query.

Either 0 or 1. 0 means this operator is not running
parallel. 1 indicates parallelism is occurring.

Type of the node. For the parent node of the query,
this will be the SQL statement type (INSERT,
UPDATE, SELECT, DELETE). For other rows that rep-
resent some execution step, the type will be
PLAN_ROW.

A comma-separated list of warning messages that
relate to this node. Possible messages include “NO
STATS():” and “MISSING JOIN PREDICATE.”
“NO STATS():,” with a list of columns, may occur
because statistics for the columns were not avail-
able and the optimizer had to make a guess.
“MISSING JOIN PREDICATE” implies that a join is
taking place without a join predicate. This may
result in a very long query and the absence of a
join predicate should be verified.

Analyzing Queries 707

2942C12.qxd 7/13/01 5:40 PM Page 707

http://www.sybex.com

type PLAN_ROW. For type PLAN_ROW, this is a description of the operation
that the server would perform to satisfy the request along with the physi-
cal, and optionally the logical, operator. A description may also be
included.

Permissions for SET SHOWPLAN_TEXT default to all users.
This statement is used to ask the server to return the execution plan to

the client along with the result set.

SET STATISTICS IO

This statement determines whether or not statistical information about the
various I/O operations is returned to the client.

Unlike most other SET statements, the output from this statement is not
displayed in the results window. Instead, the statistics are sent to the Mes-
sages tab. The result set is described in Table 12.2.

Syntax

SET STATISTICS IO { ON | OFF }

TA B L E 1 2 . 2 SET STATISTICS IO Result Set

Column Description

Table

Scan count

Logical reads

Physical Reads

Read-ahead reads

Permissions default to all users for this statement.

This is the number of pages that are placed into the
data cache (memory) by the read ahead manager
for this query.

This is the number of pages that are read from
the disk.

This is the number of pages read from the data
cache in memory.

This is the number of scans that are performed dur-
ing the query on this table.

Name of the table on which statistics are being
reported.

708 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 708

http://www.sybex.com

SET STATISTICS PROFILE

This statement determines whether the profile information for ad hoc
queries, views, triggers, and stored procedures is displayed. The result set
is the same as that for SET SHOWPLAN_ALL with the additional columns that
are displayed in Table 12.3.

Syntax

SET STATISTICS PROFILE { ON | OFF }

TA B L E 1 2 . 3 SET STATISTICS PROFILE Result Set

Column Description

Rows

Executes The number of times this operator was executed.

Permissions default to all users for this statement.

SET STATISTICS TIME

This statement determines whether the server returns the time required (in
milliseconds) to the client that the server uses to parse, compile, and
execute each statement.

If you have enabled fiber mode (set lightweight pooling), then accurate sta-
tistics cannot be reported.

As with SET STATISTICS IO, this information is reported on the mes-
sages tab in Query Analyzer rather than in the results pane.

Syntax

SET STATISTICS TIME { ON | OFF }
Permissions for this option default to all users.

Analyzing the Execution Plan

Once the execution plan for a query is obtained, the easy part of any
optimization is complete. The most difficult and time consuming part is

This is the actual number of rows that is produced by
each operator.

Analyzing Queries 709

2942C12.qxd 7/13/01 5:40 PM Page 709

http://www.sybex.com

performing the analysis of the plan and deciding what steps to take to
ensure this query performs as optimally as possible. This is a difficult topic
to teach, as it is an art as much as a science. Just as the optimizer will
change the execution plan based on a variety of factors, the optimizer must
also consider external factors and determine the best optimization at the
time. This may not be the same optimization that would be chosen at a
later date, but since we cannot predict the future, we must do the best
we can.

Since analyzing and optimizing a query is truly an art, this section will
explain the basics of examining a query plan, provide hints about what
things to look for that can adversely affect performance, and give some
suggestions for improving performance.

Query Operations

When you examine an execution plan, the first thing that you should look
for is the type of operations that are occurring. There are a variety of
operations that can occur and each requires different resources. One
cannot say that a particular operation is always more efficient than
another since it will depend on the individual query. Instead, we will look
at the list of the various types of operations and then discuss their impacts
on performance.

Keep in mind that each of these operations can occur in multiple places
in the same query. For each table, the query optimizer must choose
whether to perform a scan or seek in addition to the order in which to per-
form the operations.

Table 12.4 lists the various operations that can appear in an execu-
tion plan.

TA B L E 1 2 . 4 Execution Plan Operators

Operation Description

Bookmark Lookup An index was used to locate a row that satisfies
some portion of the query, but now the query
processor must use the ROWID from the index to
“lookup” the actual data row. Unless the index
can be altered to “cover” the columns needed
by the query, this cannot be optimized.

710 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 710

http://www.sybex.com

TA B L E 1 2 . 4 Execution Plan Operators (continued)

Operation Description

Clustered Index Scans

Clustered Index Seek

Compute Scalar

Constant Scan

Hash Match The query processor builds a hash table for each
row that is being processed. As subsequent
rows are processed, the hash is computed and
compared to the hash table for matches. Queries
with DISTINCT, aggregates, or UNION often
require a hash table to remove duplicates.
Unless you can restructure the query to remove
one of these conditions, there is no optimization.
This type of join requires more memory than the
others. This may never be seen on memory-
restricted systems.

The query requires a constant value in some (or
all) rows. A Compute Scalar is usually used to
add the constant column to the row(s).

An expression is being evaluated to produce a
scalar result for the query or a scalar that is ref-
erenced in another part of the query. Unless you
can restructure the query to remove the scalar
value, then this cannot be optimized.

This occurs when the query processor takes
advantage of a clustered index to find the rows
that satisfy the query. This is an optimal opera-
tion for most queries and cannot be optimized
further.

These are the same as a table scan, but since a
table with a clustered index has the data ordered
as the index, a table scan is the same as a clus-
tered index scan. This is the least desirable oper-
ation for a query to perform, especially on a
large table (see table scan). Usually if this is
occurring, then the columns in the query are
either not indexed or the distribution statistics
do not lead the optimizer to believe that the
index will eliminate enough rows to make more
cost effective than scanning the table. Restruc-
turing the query can sometimes eliminate these
operations.

Analyzing Queries 711

2942C12.qxd 7/13/01 5:40 PM Page 711

http://www.sybex.com

TA B L E 1 2 . 4 Execution Plan Operators (continued)

Operation Description

Index Scan

Index Seek

Index Spool

Merge Join A merge join occurs when the two inputs
contain sorted data and the query processor can
merge then together. This is a very efficient
operation, but to get this to occur, the joins must
be able to take advantage of sorted data.
Indexes can be added on join columns or
columns included in the ORDER BY clause to get
merge joins to occur. This operation may also
occur when two or more indexes are used to
query a table. The results from each index seek
are merged together to obtain a list of data rows
that must be read.

As rows are being scanned, they are placed into
a “spool” table that exists in Tempdb. An index
is built and as additional scans of the data are
needed, this spool table can be used rather than
re-reading the input rows. This is an internal
optimization for complex queries and cannot be
changed.

A nonclustered index is being used and the
query processor can traverse only a portion of
the index to satisfy the query. This is one of the
most efficient operations for most queries.
Choosing highly selective indexes usually
results in the query optimizer choosing this type
of operation.

The nonclustered index is being used to locate
data rows, but a large number of rows are being
returned or the entire WHERE clause cannot be
examined with this index. The server reads a
part of or the entire index to satisfy the query.
Unless you can restructure the query to return
fewer rows, this cannot be optimized.

712 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 712

http://www.sybex.com

TA B L E 1 2 . 4 Execution Plan Operators (continued)

Operation Description

Nested Loop

Remote Query

Sort

Table Scan This is the same as a clustered index scan and is
performed when the table has no clustered
index (is a heap). These are usually the least
desirable operations to see in any execution
plan. This implies that the query processor must
read each row into memory and examine it to
see if it can be returned by the query. If this is
occurring, then adding an index to the table
using the column(s) needed for queries can
eliminate this from occurring. The main excep-
tion to this rule occurs with small tables of less
than a few hundred rows. Often SQL Server
finds it more efficient to table scan small tables
than incur the overhead of reading an index and

This is equivalent to building an index on the
result set. While this is an expensive operation,
unless you can restructure the query to remove
any ORDER BY clauses, there is little that can be
done here.

Some portion of the query is being submitted to
a remote source. If this is a slow portion of the
query, the optimization needs to occur on the
remote source. Perhaps the data can be moved
to SQL Server to allow the server to make its
own optimizations.

Prior to SQL 7, this was the only type of join. In
this join, one table is chosen as the inner and
scanned for each row of the outer. This is not an
efficient operation unless the number of rows is
relatively small. Restructuring the query can
remove these joins from large queries and pro-
vide some gains in performance. If memory is
limited on the system, this is probably the only
type of join that will be chosen.

Analyzing Queries 713

2942C12.qxd 7/13/01 5:40 PM Page 713

http://www.sybex.com

TA B L E 1 2 . 4 Execution Plan Operators (continued)

Operation Description

Table Scan (cont.)

Most of the descriptions and suggestions in the table above require
indexes to be altered or the query to be restructured, but these are usually
the preferred optimizations. Some of the gains in query performance come
from writing well-structured, efficient queries that return the minimum
amount of information needed, but most gains in performance are made
by choosing good indexes.

The largest gains in query performance will come from ensuring that
there are indexes on all tables and that the statistics for these indexes are
up to date. These are the two main factors that influence the query opti-
mizer in making decisions about the execution plan.

Many queries are written as SELECT * when only a column or two were
needed. Rewriting these queries to return only the values that are needed
can provide dramatic performance gains on large result sets. This can cause
the query optimizer to choose a table scan over an index seek if all columns
are returned, but only an indexed column was needed.

E X E R C I S E 1 2 . 1

Analyzing a Query
In this exercise, we will take a three-table query from Northwind and
analyze the execution plan. Since the plan that is chosen may vary
based on the system that is running the query, I will present the plan
that was chosen on two different systems that were tested. The query
text is shown below:

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

then reading the table for data. Try to eliminate
table scans using indexes where appropriate, but
do not force the server to use one if it consis-
tently chooses a table scan even when indexes
exist.

714 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 714

http://www.sybex.com

E X E R C I S E 1 2 . 1 (c o n t i n u e d)

2. Type the following query into Query Analyzer (be sure the North-
wind database is selected):

SET SHOWPLAN_TEXT ON
GO
SELECT

c.CompanyName,
sum(od.Quantity * od.UnitPrice) ‘Sales’

FROM Orders o, Customers c, [Order Details] od
WHERE o.ShipCountry = c.Country
and o.OrderID = od.OrderID
and c.ContactTitle = ‘Owner’
GROUP BY c.CompanyName

3. Highlight these lines with the mouse and press the green arrow or
press CTRL-E to execute the query. You should receive the following
results:

StmtText
--
SELECT

c.CompanyName,
sum(od.Quantity * od.UnitPrice) ‘Sales’

FROM Orders o, Customers c, [Order Details] od
WHERE o.ShipCountry = c.Country
and o.OrderID = od.OrderID
and c.ContactTitle = ‘Owner’
GROUP BY c.CompanyName

(1 row(s) affected)

StmtText
--
|--Stream Aggregate(GROUP BY:([c].[CompanyName])

DEFINE:([Expr1003]=SUM(Convert([od].[Quantity])*[od].[UnitPrice])))
|--Nested Loops(Inner Join, OUTER

REFERENCES:([o].[OrderID]))
|--Sort(ORDER BY:([c].[CompanyName] ASC))
| |--Hash Match(Inner Join,

HASH:([c].[Country])=([o].[ShipCountry]),
RESIDUAL:([o].[ShipCountry]=[c].[Country]))

| |--Clustered Index
Scan(OBJECT:([Northwind].[dbo].[Customers].[PK_Customers] AS [c]),
WHERE:([c].[ContactTitle]=’Owner’))

| |--Clustered Index
Scan(OBJECT:([Northwind].[dbo].[Orders].[PK_Orders] AS [o]))

Analyzing Queries 715

2942C12.qxd 7/13/01 5:40 PM Page 715

http://www.sybex.com

E X E R C I S E 1 2 . 1 (c o n t i n u e d)

|--Clustered Index
Seek(OBJECT:([Northwind].[dbo].[Order Details].[PK_Order_Details]
AS [od]), SEEK:([od].[OrderID]=[o].[OrderID]) ORDERED FORWARD)

(7 row(s) affected)

4. From the second output section we can deduce the following:

� Line 1 shows an aggregate operation occurring, which is unavoid-
able since the query contains a SUM operator.

� Line 2 includes a nested loop join that is used to perform the
grouping operation.

� Line 3 is a sort operation that occurs as an internal operation to
prepare the data for grouping.

� Line 4 shows a hash join being made on the Customers.Country
field and the Orders.ShipCountry field. There is an index on the
Customers table for its field, but not one on the Orders table. This
system is not limited by memory, the optimizer feels that there are
relatively few rows that will match, and a hash table in memory
will find a result set quicker than a nested loop join of the tables.

� Line 5 shows a clustered index scan is occurring on the Cus-
tomers table. Since there is no index on the ContactTitle field, no
index is being used and all rows are being examined to determine
which rows match this qualification. This is half of the information
needed for the HASH JOIN in line 4. Adding an index on Country
would likely change this to a seek operator.

� Line 6 is the other half of the information needed for the HASH
JOIN in line 4. There is no index on ShipCountry, so a clustered
index scan is needed here as well. Adding an index on ShipCoun-
try would likely change this to a seek operator.

� Line 7 shows a clustered index seek on [Order Details]. Since
there is an index on this table, this is an extremely efficient opera-
tor. Nothing can be done here to optimize this line.

716 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 716

http://www.sybex.com

Optimizing Queries

There are a few different ways to go about optimizing queries. Indexes
and rewriting queries are the most common methods for improving perfor-
mance, but query hints can also be used to try and force the server to exe-
cute a query using a specific method. Keep in mind that query hints can
force the server to choose a less than optimal execution plan. Without
extensive testing of their use on a particular system, their use is not
recommended.

In most systems, relatively few of the total number of queries that are
run are used extensively. Most time should be spent on these queries, as
they will provide the most overall benefit.

Indexes

If you cannot find another way to write the query to use existing indexes,
then adding another index is likely the next best way to improve the
efficiency of the query. Whenever an index can be used in a query or a
join, the amount of resources the server must consume, both processor
cycles and I/O, is reduced.

In order for SQL Server to use an index, the first indexed column must
be included in the WHERE clause as part of a qualification. If there are mul-
tiple columns in an index, but the first column is not part of the WHERE
clause, the index is not considered. However, all the columns in the WHERE
clause do not need to be included in the index for it to be chosen. Consider
the following query:

Select CustomerID

From Customers C

Where firstname = ‘Joe’

And lastname = ‘Public’

This query could be performed in a few different ways by the query
optimizer. If there is only an index on FIRSTNAME, then the query optimizer

Create and implement indexing strategies. Considerations

include clustered index, covering index, indexed views,

nonclustered index, placement, and statistics.

Optimizing Queries 717

2942C12.qxd 7/13/01 5:40 PM Page 717

http://www.sybex.com

may elect to perform an index seek using this index to find all rows that
match ‘Joe.’ Once this is complete, a bookmark lookup may retrieve the
data rows and the optimizer may apply a filter to limit the result set to
those that have a LASTNAME of ‘Public.’

However if we added an index on LASTNAME as well, then the optimizer
could perform the same index seek using the FIRSTNAME index. In addition,
a second index seek using the index on LASTNAME could be run and return
the rows matching ‘Public.’ These two result sets could be combined
using a merge join to obtain a result set of rows that meet both qualifica-
tions. The bookmark lookup would still have to occur to get the actual
data rows, but fewer lookups may be needed.

Lastly, the index on FIRSTNAME could be changed to be an index on
CUSTOMERID, FIRSTNAME, and LASTNAME. In this case, neither of the columns
in the WHERE clause are included as the first column of an index. The index
would not be used and a table scan would be chosen.

Of course, none of these execution plans may be chosen by the opti-
mizer to satisfy the query. It depends on a number of factors. The size of
the data is a large factor. If there were only 50 rows in this table, then a
table scan (or clustered index scan) would probably be chosen by the opti-
mizer regardless of how many indexes are on the table. The cost of reading
50 rows is less than the cost of examining a few query plans.

Also, if this were a large table, but there were relatively few unique val-
ues for FIRSTNAME in the table, and the index is nonclustered, the query
optimizer may decide on a table scan. Reading a large part of a nonclus-
tered index and then performing the bookmark lookup on the results is
not usually as cost effective as a table scan. Nonclustered indexes must be
highly selective in order for the query optimizer to choose to use them.
Usually an index that does not eliminate 95 percent of the rows, as esti-
mated by the query optimizer, will not be used.

Indexes are not always the solution to an inefficient query. For tables that
are accessed often, especially in transactional systems with lots of activity,
you should strive to keep the number of indexes on the table under five and
preferably limited to two to three. For analytical systems, try to limit the
indexes to ten unless there is very little update activity.

718 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 718

http://www.sybex.com

Clustered Indexes

There can only be one clustered index on a table, and as a result, it should
be chosen carefully. A clustered index is recommended, and by default, the
primary key is the clustered index. This is probably not the best choice for
the clustered index unless this is the only index that will exist on the table.
Clustered indexes are best suited for range queries, such as dates or a
particular numerical range. When the optimizer detects this type of query,
the clustered index is usually chosen.

Clustered Indexes and Primary Keys

One thing that often happens when inexperienced developers build a
database is that the primary key usually ends up being created as a
clustered index. By default, SQL Server will set up the primary key as
clustered, even though this will usually turn out to be a poor choice
for the clustered index.

The primary key often contains data that is incremental. A purchase
order number, an invoice number, a product SKU, or other identifiers
are often the primary key for a table. When data is added to a table, it
is all placed in contiguous pages. Not only does this create a hot spot
(an area of concentrated data modification in the table) but most
queries using these fields will be looking for a single row of data.

A better choice is usually to use a column when querying a range of
data. For an invoice table, the payment date or the invoice date might
be better choices. Or, if sales were usually grouped into tiers, then
perhaps the sale price would arrange the data in ways that are useful
to queries searching for a large number of contiguous rows.

Nonclustered Indexes

This type of index works best on large tables when very few rows are
being returned. The query optimizer will often choose a nonclustered
index that is highly selective when the index columns are included in the
join statements. When this occurs, SQL Server can find the rows needed in
the index very quickly and then get the actual data with a few scans.

Optimizing Queries 719

2942C12.qxd 7/13/01 5:40 PM Page 719

http://www.sybex.com

If the nonclustered index is not highly selective, however, then it may
not be used. The reason for this is that the I/O operations required to
repeatedly scan the table for the actual data rows are much more
expensive than a single scan through the table. This is why columns
that have only a few values, such as gender, are not good choices for
nonclustered indexes.

As a rule of thumb, if the nonclustered index can eliminate 95 percent
of the rows in a table, it will be used. If not, then another index or a table
scan will be chosen. The exception to this may occur if the nonclustered
index is a covering index for some queries. If an index includes all the
columns in the column list as well as the WHERE clause, then it may be cho-
sen and additional bookmark lookups to retrieve the actual data pages will
not be needed.

Foreign Keys are usually good choices for nonclustered indexes. Usually
these columns are used in joins.

No matter which type of index you choose, there are a few general
guidelines for creating these indexes. First, index those columns that are
used often in joins. Next, be sure that the first column of the index is the
column that is specified in most joins. If not, the index is useless. If the
index will not be used, then it is a waste of space and CPU cycles to both
create it and maintain it. Lastly, be sure to analyze your queries and see if
the indexes are being used. If not, then perhaps they should be removed
and new indexes created.

One last item that can improve performance of queries has to do
with the placement of the indexes. SQL Server 2000 allows multiple
filegroups of physical files to be associated with a database. Each of
these filegroups will be given a logical name inside the database. If these
filegroups are on separate physical devices, then placing the nonclustered
indexes in a different filegroup than the data for some tables can achieve
some performance gains. The performance benefits are difficult to quan-
tify, but with less contention for the index pages, they can be retrieved
faster from a separate physical device.

720 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 720

http://www.sybex.com

If you have separate physical devices, the log should be placed on a sepa-
rate physical device than the data. If additional physical devices are avail-
able, then heavily used indexes or tables can be moved to these physical
devices. Testing of system performance should be completed before and
after any changes are made.

E X E R C I S E 1 2 . 2

Optimizing Queries by Limiting the Result Set
This exercise will look at optimizing a two-table join.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Type the following query into Query Analyzer (be sure the North-
wind database is selected):

SELECT *
FROM [order details] o, Products p
WHERE o.ProductID = p.ProductId

3. Let us show the execution plan for this query by selecting Query ➢
Show Execution Plan from the menu. Then highlight these lines
with the mouse and press the green arrow or CTRL-E to execute the
query. You should receive the following results on the Execution
Plan tab.

Optimizing Queries 721

2942C12.qxd 7/13/01 5:40 PM Page 721

http://www.sybex.com

E X E R C I S E 1 2 . 2 (c o n t i n u e d)

This plan shows a clustered index scan from each table along with a
join. Since it is unlikely that all fields are needed from both tables,
we can limit the column list to those columns that are needed, and
this query may perform better. The following query limits the col-
umn list to a few columns.

SELECT
o.OrderID,
o.Quantity,
p.ProductID

FROM [order details] o, Products p
WHERE o.ProductID = p.ProductId

If the second query is executed, the next showplan will be obtained.

722 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 722

http://www.sybex.com

E X E R C I S E 1 2 . 2 (c o n t i n u e d)

SQL Server now uses a nonclustered index scan for the Products
table, a much more efficient operation than the clustered index scan
since less data must be read.

E X E R C I S E 1 2 . 3

Optimizing a Query by Changing an Index
This exercise will look at a two-way join between the Orders and Order
Details tables.
1. Open the SQL Server Query Analyzer. Do this through the SQL

Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Type the following query to in Query Analyzer (be sure the North-
wind database is selected):

SELECT
o.CustomerID,
SUM(od.Quantity * od.UnitPrice) ‘Total Sales’

Optimizing Queries 723

2942C12.qxd 7/13/01 5:40 PM Page 723

http://www.sybex.com

E X E R C I S E 1 2 . 3 (c o n t i n u e d)

FROM Orders o, [Order Details] od
WHERE o.OrderID = od.OrderID
AND o.OrderDate > ‘12/31/1996’
AND o.OrderDate < ‘01/01/1998’
GROUP BY o.CustomerID

3. Let us show the execution plan for this query by selecting Query ➢
Show Execution Plan from the menu. Then highlight these lines
with the mouse and press the green arrow or CTRL-E to execute the
query. You should receive the following results on the execution
plan tab:

The execution plan shows the server is performing a clustered index
scan against the Orders table, a clustered index seek against Order
Details, and then uses a Nested Loop join and a Stream Aggregate to
return the results. The following indexes exist on these tables:

� Orders

� PK_Orders (OrderID) Clustered

� CustomersOrders (CustomerID)

724 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 724

http://www.sybex.com

E X E R C I S E 1 2 . 3 (c o n t i n u e d)

� EmployeeOrders (EmployeeID)

� OrderDate (OrderDate)

� ShippedDate (ShippedDate)

� ShippersOrders (ShipVia)

� ShipPostalCode (ShipPostalCode)

� Order Details

� PK_Order_Details (OrderID, ProductID) (Clustered)

� OrderID (OrderID)

� ProductID (ProductID)

The clustered index seek is extremely efficient for the Order Details
table, but we are only concerned with two columns for the Orders
table: CustomerID and OrderDate. There is an index on both of these
columns separately, but the index on CustomerID is the clustered
index. We can change the index on OrderDate to include OrderDate
and CustomerID (in that order) with the following code:

CREATE
INDEX [OrderDate] ON [dbo].[Orders] ([OrderDate],

[CustomerID])
WITH

FILLFACTOR = 80
,DROP_EXISTING

ON [PRIMARY]

The same query now performs an index scan on the Orders table. Just
as in the first query, this change can substantially improve performance
for large data sets. Here is the execution plan for the same query after
the index change.

Optimizing Queries 725

2942C12.qxd 7/13/01 5:40 PM Page 725

http://www.sybex.com

E X E R C I S E 1 2 . 3 (c o n t i n u e d)

Query Hints

SQL Server does a great job of tuning itself and selecting the optimal join
strategies to be used for most queries. There are situations, however, where
the programmer or DBA may better understand the data than SQL Server.
In these cases, the ability to force the query processor to use a certain
strategy is available.

There are four types of hints that can be specified in a query: join hints,
index hints, query processing hints, and lock hints. Each of these is dis-
cussed below.

Join Hints

These hints are only available when using ANSI-style join syntax. In
between the type of join (INNER, LEFT, RIGHT, OUTER) and the word
JOIN, the programmer can insert the join method to be used. The valid
choices are HASH, LOOP, MERGE or REMOTE. REMOTE is useful
when the right table is a remote table and there are less rows in the left

726 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 726

http://www.sybex.com

table. The join then occurs on the server that contains the right table. An
example is below:

SELECT c.companyname, o.orderid

FROM Customers c INNER HASH JOIN Orders o

ON c.customerid = o.customerid

Index Hints

Index hints can force the query processor to choose a specific index for a
table when processing the query. The index can be specified by name or
ID, and more than one can be included. Specifying index ID 0 will force a
table scan. These hints should not be used on a production system unless
testing has confirmed that using them will increase performance. The
syntax is as follows:

SELECT SELECT_list

FROM table (INDEX {index name | Index ID} {, index name |
Index ID})

Using the index ID is not recommended as these are subject to change as
indexes are dropped and recreated. The exception is the clustered index. It
is always ID 1.

The hints are enclosed in parenthesis and follow the word INDEX. An
example that forces the query processor to use the index on Company-
Name is show below:

SELECT CustomerID

FROM Customers (INDEX (CompanyName))

where CompanyName = ‘Old World Delicatessen’

and City = ‘London’
Without the hint, this query will use the index on CITY instead.

Query Processing Hints

These hints are placed at the end of the SELECT query following the
keyword OPTION. More than one OPTION clause can be used, but only one
hint of each type can be used. The different types of hints are described in
Table 12.5.

Optimizing Queries 727

2942C12.qxd 7/13/01 5:40 PM Page 727

http://www.sybex.com

TA B L E 1 2 . 5 Query Processing Hints

Hint Description

Grouping Hints

UNION Hints

Join Hints

FAST xx

FORCE ORDER

MAXDOP xx

ROBUST PLAN

KEEP PLAN

Lock Hints

Lock hints can be used to control how SQL Server will apply locks in
various queries. These hints can impact performance dramatically in

This will ensure that a query is not recompiled as fre-
quently. Useful when a stored procedure is working
with temporary tables, which might cause lots of
recompilations.

This forces the query to choose a plan for the maxi-
mum possible row size. Useful when there are large
varchar columns.

Where xx is the max degree of parallelism to use for
this query. Overrides the server option.

This tells SQL Server to process tables in the same
order that they appear in the FROM clause. If there is an
outer join, this might be ignored.

Where xx is the number of rows. This asks SQL Server
to choose an execution plan that will send the first
rows back as quickly as possible. This can force the
use of a nonclustered index that matches an ORDER BY
clause to return the first xx rows quickly and then
process the remainder of the result set.

These are the same hints that can be specified in the
join clause. This type of hint will override any in
the join clause and be applied to all joins.

HASH, MERGE, or CONCAT are the types of UNION
hints to specify how the different result sets should be
combined.

Either HASH GROUP or UNION GROUP to specify how
the grouping operations are performed.

728 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 728

http://www.sybex.com

heavily loaded systems by requiring or not enforcing locks on the data
in tables and indexes. These hints are placed in the FROM clause of a
query. Table 12.6 lists the various lock hints and the ramifications
of each.

TA B L E 1 2 . 6 Lock Hints

Hint Description

HOLDLOCK

NOLOCK

PAGLOCK

READCOMMITTED

READPAST

READUNCOMMITTED Equivalent to NOLOCK.

Skip locked rows. This option causes a transaction
to skip rows locked by other transactions that would
ordinarily appear in the result set, rather than block
the transaction waiting for the other transactions to
release their locks on these rows. The READPAST
lock hint applies only to transactions operating at
READ COMMITTED isolation and will read only past
row-level locks. Applies only to the SELECT
statement.

Perform a scan with the same locking semantics as
a transaction running at the READ COMMITTED iso-
lation level. By default, SQL Server 2000 operates at
this isolation level.

Use page locks where a single table lock would usu-
ally be taken.

Do not issue shared locks and do not honor exclu-
sive locks. When this option is in effect, it is
possible to read an uncommitted transaction or a
set of pages that are rolled back in the middle of a
read. Dirty reads are possible. Only applies to the
SELECT statement.

Hold a shared lock until completion of the transac-
tion instead of releasing the lock as soon as the
required table, row, or data page is no longer
required. HOLDLOCK is equivalent to SERIALIZABLE.

Optimizing Queries 729

2942C12.qxd 7/13/01 5:40 PM Page 729

http://www.sybex.com

TA B L E 1 2 . 6 Lock Hints (continued)

Hint Description

REPEATABLEREAD

ROWLOCK

SERIALIZABLE

TABLOCK

TABLOCKX

UPDLOCK

XLOCK Use an exclusive lock that will be held until the end
of the transaction on all data processed by the
statement. This lock can be specified with either
PAGLOCK or TABLOCK, in which case the exclusive
lock applies to the appropriate level of granularity.

Use update locks instead of shared locks while
reading a table, and hold locks until the end of the
statement or transaction. UPDLOCK has the advan-
tage of allowing you to read data (without blocking
other readers) and update it later with the assur-
ance that the data has not changed since you last
read it.

Use an exclusive lock on a table. This lock prevents
others from reading or updating the table and is
held until the end of the statement or transaction.

Use a table lock instead of the finer-grained row- or
page-level locks. SQL Server holds this lock until
the end of the statement. However, if you also spec-
ify HOLDLOCK, the lock is held until the end of the
transaction.

Perform a scan with the same locking semantics as
a transaction running at the SERIALIZABLE isolation
level. Equivalent to HOLDLOCK.

Use row-level locks instead of the coarser-grained
page- and table-level lock.

Perform a scan with the same locking semantics as
a transaction running at the REPEATABLE READ iso-
lation level.

730 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 730

http://www.sybex.com

E X E R C I S E 1 2 . 4

Improving Performance with a Lock Hint
This exercise will look at a two-way join between the Orders and Order
Details tables.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Type the following query to in Query Analyzer (be sure the North-
wind database is selected):

SELECT * FROM Customers

This query will invoke a shares lock on the Customers table for the
duration of the query. Suppose that this is a table with 10 million
rows and there is a large amount of insert activity on this table. This
simple query can slow down the insert activity with a shared lock.

3. The following query can avoid a shared table lock on the Customers
table.

SELECT * FROM Customers (NOLOCK)\

The addition of the lock hint to this query prevents the SELECT
query from obtaining any type of lock on this table. Other users that
are updating this table will not be prevented from doing so by this
query. The implications of using this hint are that the result set that
is returned to the user could potentially be different from the actual
data in the table if a change is made to the table during the query.

Using the Profiler to Capture Activity

Capture, analyze, and replay SQL Profiler traces.

Considerations include lock detection, performance tuning,

and trace flags.

Optimizing Queries 731

2942C12.qxd 7/13/01 5:40 PM Page 731

http://www.sybex.com

In SQL Server 7.0, SQL Server introduced the Profiler as a new client
tool to “sniff” or “watch” the communications that occur between a client
and the server. This tool was substantially enhanced in SQL Server 2000,
mainly to allow SQL Server 2000 to become C2 certified. The Profiler is
an extremely flexible tool for capturing the processes that are occurring on
a SQL Server in real time, the same way that a network analyzer would
capture the traffic that is occurring on the network. A picture of the Pro-
filer is shown next.

C2 certification is a security rating applied by the NCSA to various computer
systems. As of this writing, Windows NT4 and SQL Server 2000 are the only
Microsoft products that have received this prestigious rating.

Of all the various uses for the Profiler, performance tuning is one of the
few reasons for using this tool most of the time. Rather than a replace-
ment, this tool substantially augments the performance tuning, query
analysis, and optimizations that occur. This tool is often the starting
point for analyzing queries once an application has been deployed. The
Profiler can provide you with information about which queries need to
be optimized.

732 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 732

http://www.sybex.com

Functions of the Profiler

The Profiler can monitor all traffic that occurs between a client and the
server and provide details on the queries or statements being executed by
the server. The information can be limited to specific workstations, logins,
databases, types of statements, or nearly any type of filter that one can
imagine. The Profiler also can capture nearly every event that occurs inside
SQL Server. There are thirteen classes with hundreds of events that can be
added to a trace. Table 12.7 lists the classes of events along with a
description of the events under each.

TA B L E 1 2 . 7 SQL Server Profiler Event Classes

Class Description

Cursors

Database

Errors and Warnings

Locks

Objects

Performance Collection of event classes produced when
SQL data manipulation (DML) operators
execute

Collection of event classes produced when
database objects are created, opened, closed,
dropped, or deleted

Collection of event classes produced when a
lock is acquired, cancelled, released, etc.

Collection of event classes produced when a
SQL Server error or warning occurs (for exam-
ple, an error during the compilation of a
stored procedure or an exception in SQL
Server)

Collection of event classes produced when
data or log files grow or shrink automatically

Collection of event classes produced by cursor
operations

Monitor and troubleshoot database activity by using

SQL Profiler.

Using the Profiler to Capture Activity 733

2942C12.qxd 7/13/01 5:40 PM Page 733

http://www.sybex.com

TA B L E 1 2 . 7 SQL Server Profiler Event Classes (continued)

Class Description

Scans Collection tables and indexes are scanned

Security Audit

Sessions

Stored Procedures

Transactions

TSQL

User Configurable Collection of user-configurable event classes

The Profiler can also be set up to gather information from the server
directly and store that information without requiring the client to be run-
ning. There are a series of stored procedures that allow a user to start, cap-
ture, and stop a trace without requiring any client intervention. Once the
information is captured, it can be saved and even replayed against this or
another server at a later time.

The next sections will examine how the Profiler can be used to gather
information about the SQL Server.

Using the Profiler

Capture, analyze, and replay SQL Profiler traces.

Considerations include lock detection, performance tuning,

and trace flags.

Collection of event classes produced by the
execution of Transact-SQL statements passed
to an instance of SQL Server from the client

Collection of event classes produced by the
execution of Microsoft Distributed Transaction
Coordinator (MS DTC) transactions or by writ-
ing to the transaction log

Collection of event classes produced by the
execution of stored procedures

Collection of event classes produced by
clients connecting to and disconnecting from
an instance of SQL Server

Collection of event classes used to audit
server activity

734 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 734

http://www.sybex.com

The SQL Server Profiler literally has thousands of possible options for
designing a trace. An entire book could be devoted to this alone, so
this text will examine the basics of creating, saving, and replaying a
trace file.

Each trace is based on a template trace that includes the events, data
columns, filters, and options for a particular type of trace. SQL Ser-
ver 2000 includes eight filters that each capture a particular type of
information. The user can also define their own template files if these are
needed. Figures 12.1, 12.2, 12.3, and 12.4 show the various tabs of the
Trace Properties dialog box where every option available for a trace can
be set.

F I G U R E 1 2 . 1 Trace Properties General tab

Using the Profiler to Capture Activity 735

2942C12.qxd 7/13/01 5:40 PM Page 735

http://www.sybex.com

Once a trace is defined, its definition is saved, and it can be run at any
time in the future. The trace can also be paused while running if the cap-
ture of information needs to be suspended. It can then be restarted at any
time. If the activity in the trace is being saved to a file or table, then it can
be opened at a later date and the same activity can be replayed against the
same or a different database.

F I G U R E 1 2 . 2 Trace Properties Events tab

736 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 736

http://www.sybex.com

F I G U R E 1 2 . 3 Trace Properties Data Columns tab

F I G U R E 1 2 . 4 Trace Properties Filters tab

Using the Profiler to Capture Activity 737

2942C12.qxd 7/13/01 5:40 PM Page 737

http://www.sybex.com

Exercise 12.5 will walk the user through creating a trace, saving the
results, and replaying this against a database. Exercise 12.6 will then walk
you through replaying the trace against the server.

E X E R C I S E 1 2 . 5

Creating a Trace Using the Profiler
This exercise will create a simple trace, capture activity and save the
results, and then replay the activity against a database.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Profiler or by choos-
ing Start ➢ Programs ➢ Microsoft SQL Server ➢ Profiler.

2. Select File ➢ New ➢ Trace.

3. Enter a server name and the appropriate security information in the
Connect to SQL Server dialog box.

4. Enter a name for the trace in the Trace Name edit box.

5. Check the Save to File checkbox and enter a filename in which to
store the trace data.

6. Select the Filters tab.

7. Expand the DatabaseName event by clicking it, and then click the
plus sign by the Like operator.

8. Type Northwind in the edit box.
9. Click the Run button and the trace will start.

10. Start Query Analyzer and connect to the Northwind database on the
same server that Profiler is connected to in SQL Enterprise Manager
by selecting Tools ➢ SQL Query Analyzer or by choosing Start ➢
Programs ➢ Microsoft SQL Server ➢ SQL Query Analyzer.

11. Enter a series of SELECT, UPDATE, INSERT, and DELETE queries in
Query Analyzer.

738 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 738

http://www.sybex.com

E X E R C I S E 1 2 . 5 (c o n t i n u e d)

12. Change back to Profiler and select File ➢ Stop Trace when finished.

At this point, the data will be saved in the file that was entered in
step 5. Now we wish to replay this trace against a database. If a sec-
ond SQL Server with the standard Northwind database is available,
then it may be used. Otherwise, drop the Northwind database and
run the instnwnd.sql script that is located in the Install folder
under Microsoft SQL Server\MSSQL.

E X E R C I S E 1 2 . 6

Replaying a Saved Trace File

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Profiler or by choos-
ing Start ➢ Programs ➢ Microsoft SQL Server ➢ Profiler.

2. Select File ➢ Open ➢ Trace File.

Using the Profiler to Capture Activity 739

2942C12.qxd 7/13/01 5:40 PM Page 739

http://www.sybex.com

E X E R C I S E 1 2 . 5 (c o n t i n u e d)

3. Select the file that was created in Exercise 12.5.

4. Select Replay ➢ Start to start running the trace file against the
database.

Lock Detection with Profiler

One issue that crops up with heavily loaded SQL Server systems is con-
tention for data in certain tables. As the number of users increases, the
chances that two users will want the same data at the same time increases
as well. Since SQL Server assures users that they receive accurate informa-
tion and that transactions complete, one user may prevent another user
from accessing a table for some period of time.

Without Profiler, these situations would be difficult to detect and
resolve. Profiler contains a series of events that can be used to detect
blocks or deadlocks. In the Events tab, the following events can be tracked
under the Locks class:

� Lock:Acquired

� Lock:Cancel

� Lock:Deadlock

� Lock:Deadlock Chain

� Lock:Escalation

� Lock:Released

� Lock:Timeout

If there are contention problems, then adding these events to a trace
along with TSQL:SQL:StmtStarting and TSQL:SQL:StmtCompleted can
capture activity that shows how locks are acquired and released by various
users. If the table(s) on which contention is suspected are known, a filter
can be applied to the trace to limit the amount of information captured.

Capture, analyze, and replay SQL Profiler traces.

Considerations include lock detection, performance tuning,

and trace flags.

740 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 740

http://www.sybex.com

Lock problems can be verified with Profiler by comparing the time-
stamps for when a statement starts and when the lock is acquired. A user
that is being prevented from accessing a resource should see a delay between
these two events that is longer than the delay that would occur if there
were no contention. Once this is determined, perhaps the queries can be
rewritten or the application altered to reduce or eliminate the contention.

Lock Detection with Trace Flags

An alternative to using Profiler is to enable a trace flag for watching
lock activity. One of the DBCC commands allows the user to turn on a
trace flag, which will instruct SQL Server to report certain debugging
information back to the user. The specific trace flag for lock activity is
1209, and the following code turns this flag on:

DBCC TRACEON 1209
Once this has been turned on, the lock information generated by queries

will be reported back to the user. This information can be used to deter-
mine if there are contention issues that need to be addressed.

Using the Index Tuning Wizard

SQL Server 2000 includes a wizard in Profiler to assist DBAs in devel-
oping indexes. This tool takes a series of queries and then develops execu-
tion plans for the queries based on the tables and indexes that exist on the
server. It is at this point that this wizard really provides a great benefit to
DBAs. Just as a chess computer considers a wide variety of possible moves
before making a decision, this wizard considers the different execution

Improve index use by using the Index Tuning Wizard.

Capture, analyze, and replay SQL Profiler traces.

Considerations include lock detection, performance tuning,

and trace flags.

Monitor and troubleshoot database activity by using

SQL Profiler.

Using the Profiler to Capture Activity 741

2942C12.qxd 7/13/01 5:40 PM Page 741

http://www.sybex.com

plans that would be generated given different possible indexes that could
be added to the tables referenced in the queries. From its analysis, the wiz-
ard then provides a list of recommended indexes that would optimize the
queries it has analyzed.

There are two ways in which the Index Tuning Wizard can be used. It
can be fed a single query to analyze or take a workload from the Profiler
to analyze a series of queries that actually occurred on the server. Either
way, this wizard produces a number of reports that can assist you in creat-
ing indexes that may enhance the performance of your application.

Since the Index Tuning Wizard checks the impact of a wide variety of differ-
ent possible indexes, a large workload can take a substantial amount of
time. It is not recommend that you use a production server to analyze a
database. Backup and restore your database to a test server and perform
the analysis there.

Exercise 12.7 walks the user through an analysis of indexes using the
Index Tuning Wizard.

E X E R C I S E 1 2 . 7

Using the Index Tuning Wizard
This exercise will take a short trace file and analyze it using the Index
Tuning Wizard.

1. Create a new trace as outlined in Exercise 12.5.

2. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

3. Type the following query to in Query Analyzer (be sure the North-
wind database is selected):

SELECT
c.CompanyName,
sum(od.Quantity * od.UnitPrice) ‘Sales’

FROM Orders o, Customers c, [Order Details] od
WHERE o.ShipCountry = c.Country
and o.OrderID = od.OrderID
and c.ContactTitle = ‘Owner’
GROUP BY c.CompanyName

742 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 742

http://www.sybex.com

E X E R C I S E 1 2 . 7 (c o n t i n u e d)

4. Highlight these lines with the mouse and press the green arrow or
CTRL-E to execute the query.

5. Switch back to the Profiler and stop the trace by pressing the red
rectangle on the toolbar or selecting File ➢ Stop Trace from the
menu.

6. Select Tools ➢ Index Tuning Wizard from the menu.

7. Click Next to bypass the splash screen.

8. Enter the connection information to connect to your server.

9. Select Northwind in the database drop-down list and click Next.

10. Select My Workload File and select the file from Step 1. Click Next.
11. Check the boxes next to the following tables:

� Orders

� Customers

� Order Details
12. Click Next, and the wizard will begin its analysis.

13. The next screen will display a list of the recommendations from the
wizard. For this query, you should see checks next to the following
indexes:

� PK_Orders

� PK_Order Details

� PK_Customers

14. Click the Analysis button to display a series of reports that outline
the results from the Index Tuning Wizard.

15. At this point, click Save to save the reports to disk. The Close button
returns to the wizard.

16. Clicking Next gives the you the option to apply the recommenda-
tions and/or save the script to a file.

Optimize Stored Procedures and Triggers 743

2942C12.qxd 7/13/01 5:40 PM Page 743

http://www.sybex.com

Using the Index Tuning Wizard

Assume you are the DBA for a company that has a heavily used OLTP
application. Prior to the introduction of the Index Tuning Wizard, you
would need to examine each query that is being used by an applica-
tion along with their query plans and try to discern patterns in which
columns are used most often. Using a spare server, you would then
benchmark the queries, change the indexes, run the benchmarks
again and attempt to determine the best indexes to keep for each
table. Even a small database could keep you busy for months.

This wizard performs that same task, but does so many times faster.
By comparing different possible index columns for a given workload
of queries, this tool can save you a tremendous amount of time, as
well as provide some justification for why particular indexes are
recommended.

When an application appears to be running slow, capture a few small
workloads using Profiler. These captures should be at a few different
times, with the application performing the tasks that are perceived as
slow. This wizard can then be run a few times against the workloads
and the results compared. You will likely find that some of the
recommendations are good, but some are not. With a little analysis,
you can usually find the indexes that provide the most benefit and
create these.

As with any performance tuning, be sure to benchmark before and
after.

Optimize Stored Procedures and Triggers

Optimizing stored procedures is similar to optimizing a batch or a
single query. The first time a stored procedure or a trigger is executed, the
source is compiled into an execution plan. This occurs each time the server
is restarted, as existing execution plans are lost when the server is stopped.

744 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 744

http://www.sybex.com

Since this plan is stored in memory for subsequent executions of the stored
procedure or trigger, substantial performance gains can occur on heavily
loaded servers if you use stored procedures instead of batched T-SQL code.

While the performance gains by using stored procedures are less pro-
nounced than earlier versions, there are still benefits if you have a large
number of diverse queries that are being run on a heavily loaded server.
Autoparametization and ad-hoc query plan caching have reduced the
advantage of stored procedures, but only if these queries are being run
quite often. SQL Server will only keep execution plans from these queries
in the procedure cache if they are being used.

SQL Server 2000 stored procedure execution plans are re-entrant,
which means that more than one user can run the same execution plan at
the same time. There are two benefits from this: one, the second call does
not need to generate its own execution plan. In v6.5, execution plans were
not re-entrant, and two calls to the same procedure at the same time
caused one process to generate its own execution plan. The second benefit
is that less memory is required to store these execution plans. This allows
more execution plans to remain in memory, and allows more memory is
available for queries.

If you have an application that receives a load immediately after a server
startup (such as a busy Web application), the execution plans of heavily
used stored procedures can be preloaded when SQL Server starts by includ-
ing a call to the stored procedure inside a startup stored procedure.

The methods used for optimizing batches are also useful for optimizing
stored procedures. Once all individual statements inside a stored procedure
are optimized, there is one last step to perform. Since recompiling the exe-
cution plan for any statement is usually an expensive operation, it can be
much more expensive for a stored procedure, which contains multiple
statements. One aspect of ensuring good performance is to prevent the
recompilation of a stored procedure as often as possible.

Optimize Stored Procedures and Triggers 745

2942C12.qxd 7/13/01 5:40 PM Page 745

http://www.sybex.com

A stored procedure will be recompiled automatically when any of the
following occur:

� Statistics for a table referenced in the stored procedure have been
updated.

� The procedure contains mixed DDL and DML statements.

� The procedure references a temporary table created by another
process.

SQL Server will automatically recompile the stored procedure. It is best to
try and eliminate the last two items by not including these operations in
heavily used stored procedures. The first item is controlled by turning off
the Auto Update Statistics option for the referenced tables. This is
not recommended, however, since this is likely out of the control of the
programmer.

The Stored Procedure Debugger

SQL Server programming has lagged behind most other integrated
development environments (IDEs) in the past primarily because it has
lacked debugging features for the programmer to use when troubleshoot-
ing their code. There have been third-party debuggers that have been avail-
able for a few versions, but nothing was available with the SQL Server
tools. That is, until now. With SQL Server 2000, a debugger has been built
into Query Analyzer to allow the programmer to step through their code
line by line, examine the values of variables, and find problems with the
logic that was implemented.

This tool is only available for stored procedures, but with a little cre-
ativity, a user can also debug trigger or batch code as well. Triggers can be
recompiled as stored procedures, though the programmer will need to sim-
ulate the inserted and deleted tables with temporary tables as these tables
will not exist in a stored procedure. Batches can also be recompiled as
stored procedures to check their logic.

Using the Debugger

The stored procedure debugger is integrated into Query Analyzer, but it
can only be started from the Object Browser or the Object Search win-

746 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 746

http://www.sybex.com

dows. It is hidden at the bottom of these cascading menus or available
when you right-click an object in either of these windows. Here are the
exact steps to get started:

Object Browser

1. Press F8 to display the Object Browser from within Query Analyzer
if it is not visible. It will be a pane on the left side of the application.

2. Use the Object Browser to find the database and then the stored
procedure you wish to debug.

3. Select the stored procedure name.

4. Right-click the procedure name and then select Debug from the
menu or select Tools ➢ Object Browser ➢ Debug from the menu.

Object Search

1. Press F4 to display the Object Browser from within Query Analyzer
if it is not visible. It will be a pane on the left side of the application.

2. Open the Object Search Window.

3. Run a search that finds the stored procedure. When this completes,
you should see the stored procedure name in the results (bottom)
pane.

4. Select the procedure name.

5. Right-click the procedure name and then select Debug from the
menu or select Tools ➢ Object Search ➢ Debug from the menu.

Once you complete either of these procedures, a dialog box will appear
that contains the parameters that the procedure uses along with their
datatypes and whether they are input or output parameters. The option to
set each of these to NULL is also available. Once you enter the parameter
values, clicking Execute will open the debugging interface window.

The debugger window consists of five panes and a toolbar. The five
panes are the code window at the top, the local variables pane in the left
middle window, the middle pane for global variables, the callstack window
at the middle right, and the results pane at the bottom (see Figure 12.5).
Following are descriptions of each of these panes.

Code pane Contains the source code of the stored procedure along
with a large left margin in which the breakpoints can be placed.

The Stored Procedure Debugger 747

2942C12.qxd 7/13/01 5:40 PM Page 747

http://www.sybex.com

Local variables pane Contains all the local variables and their values.
Updated as values change during stored procedure execution.

Global variables pane Contains a list of global variables and their val-
ues. Updated as the values change. Global variables are variables that
SQL Server provides. These start with @@.

Callstack The list of procedures that were called in order. This allows
the user to trace through multiple stored procedures and see the vari-
ables and their values at each level.

Results pane Shows the normal results pane that appears in query
analyzer as well as the return value of the procedure.

This debugger works like most modern debuggers. The user can set
breakpoints, step through the procedure line by line, execute to a
breakpoint or to the cursor, and change the values of variables within the
procedure execution. Transactions can be rolled back at the end of
debugging rather than be allowed to complete by checking the Auto Roll
Back option when the initial dialog box appears with the stored procedure
parameters.

F I G U R E 1 2 . 5 The Stored Procedure Debugger

748 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 748

http://www.sybex.com

Since the debugger will halt execution of the procedure and hold locks on
any resources in use, be careful about using this in a production environ-
ment. If there are transactions inside the procedure, the rows involved in
the transaction will be locked and unavailable to other users until the trans-
action completes or is rolled back.

E X E R C I S E 1 2 . 8

Debugging a Stored Procedure
Since the easiest method of learning about the debugger is to see an
example, let’s walk through the process of debugging a stored
procedure. All of the stored procedures included in the Northwind
database are single T-SQL statements, so let’s use the stored
procedure in the following code for this example.

create procedure spSample
@Cust char(1)

as

declare rpt cursor for
SELECT c.customerid, c.companyname, o.orderid, o.orderdate
FROM Customers c, Orders o
WHERE c.customerid = o.customerid
and c.customerid like @Cust + ‘%’
and datepart(year, o.orderdate) = 1997

declare
@cid char(8),
@cname char(40),
@ordid char(8),
@orddt datetime,
@old char(8),
@cnt int

-- open the cursor
open rpt

-- get the first row from the cursor and initialize the
locals
FETCH next FROM rpt into @cid, @cname, @ordid, @orddt
SELECT @old = ‘ ‘
SELECT @cnt = 1

The Stored Procedure Debugger 749

2942C12.qxd 7/13/01 5:40 PM Page 749

http://www.sybex.com

E X E R C I S E 1 2 . 8 (c o n t i n u e d)

-- loop while there is data
while @@FETCH_status = 0
begin
if @old = @cid
-- if these match, this is the customer

print the customer
begin
print ‘ Order:’ + rtrim(@ordid) + ‘ (‘ + cast(@orddt as

char(10)) + ‘)’
end
else
-- no match, a new customer
begin
print ‘Customer:’ + rtrim(@cid) + ‘ - ‘ + rtrim(@cname)
print ‘ Order:’ + rtrim(@ordid) + ‘ (‘ + cast(@orddt

as char(11)) + ‘)’
SELECT @old = @cid

end
FETCH next FROM rpt into @cid, @cname, @ordid, @orddt
SELECT @cnt = @cnt + 1

end

-- cleanup the cursor
close rpt
deallocate rpt

return @cnt

We want this code to generate a report that looks like the following for
the parameter value ‘A.’

Customer:AROUT - Around the Horn
Order:10453 (Feb 21 1997)

Customer:ANTON - Antonio Moreno Taquería
Order:10507 (Apr 15 1997)
Order:10535 (May 13 1997)

Customer:AROUT - Around the Horn
Order:10558 (Jun 4 1997)

Customer:ANTON - Antonio Moreno Taquería
Order:10573 (Jun 19 1997)

Customer:ANATR - Ana Trujillo Emparedados y helados
Order:10625 (Aug 8 1997)

Customer:ALFKI - Alfreds Futterkiste
Order:10643 (Aug 25 1997)

Customer:ANTON - Antonio Moreno Taquería
Order:10677 (Sep 22 1997)
Order:10682 (Sep 25 1997)

Customer:ALFKI - Alfreds Futterkiste
Order:10692 (Oct 3 1997)
Order:10702 (Oct 13 1997)

750 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 750

http://www.sybex.com

E X E R C I S E 1 2 . 8 (c o n t i n u e d)

Customer:AROUT - Around the Horn
Order:10707 (Oct 16 1997)
Order:10741 (Nov 14 1997)
Order:10743 (Nov 17 1997)

Customer:ANATR - Ana Trujillo Emparedados y helados
Order:10759 (Nov 28 1997)

Customer:AROUT - Around the Horn
Order:10768 (Dec 8 1997)
Order:10793 (Dec 24 1997)

There are a couple problems with this report, and the output and logic
do not work correctly. When exec spSample ‘A’ is run, no results are
returned. There are definitely customers that begin with A and orders
for these customers, so some debugging is needed.
Prior to SQL Server 2000, a programmer would likely insert a series of
PRINT or SELECT statements inside the procedure that would print out
values at various points in the procedure. By running the procedure
and observing the results, the programmer could determine where the
logical problems in the code were and fix them. This might entail some
trial and error to ensure there are enough PRINT statements in the
right places.
With SQL Server 2000, we can quickly set up the debugger to trace the
execution of the stored procedure.

1. Open the SQL Server Query Analyzer. Do this through the SQL
Enterprise Manager by selecting Tools ➢ SQL Query Analyzer or by
choosing Start ➢ Programs ➢ Microsoft SQL Server ➢ SQL Query
Analyzer.

2. Type the stored procedure code listed above into the Query Ana-
lyzer (be sure the Northwind database is selected).

3. Compile the query by pressing the green arrow on the toolbar or
pressing CTRL-E.

4. Start the object browser (if it is not started) by choosing Tools ➢
Object Browser ➢ Show/Hide from the menu or pressing F8. Navi-
gate to Northwind ➢ Stored Procedures and select dbo.spSample.
The following graphic shows the stored procedure in the object
browser after compiling the stored procedure and navigating
the tree.

The Stored Procedure Debugger 751

2942C12.qxd 7/13/01 5:40 PM Page 751

http://www.sybex.com

E X E R C I S E 1 2 . 8 (c o n t i n u e d)

5. To start the debugger, select Debug from the right-click menu and
Query Analyzer displays a dialog box that looks like the following.
In this dialog box, you can see the input parameters along with their
datatypes and whether they are input or output. In the Value box,
you can input a value for the parameter or set it to NULL by check-
ing the check box. If you had selected the wrong procedure, you
could choose a different one from the drop-down list at the top of
the dialog box. The last option is the Auto Roll Back in the lower-left
corner. If this procedure were actually changing data, you could
check this option to encase the procedure in a transaction that
would be rolled back at the end of execution.

752 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 752

http://www.sybex.com

E X E R C I S E 1 2 . 8 (c o n t i n u e d)

6. For this example, input A in the Value box and click Execute. The
window should now look like the next graphic. There are a few
things that are worth noting before you begin executing the proce-
dure. First, notice the yellow arrow is set to the first executable line
in the procedure. In this case, it is not the DECLARE statement, but
rather the query below this line. This is because the cursor line does
not execute until the query has been satisfied.

The Stored Procedure Debugger 753

2942C12.qxd 7/13/01 5:40 PM Page 753

http://www.sybex.com

There are a few choices for how to execute this stored procedure.
You can execute one line at a time, execute one line at a time but
execute all stored procedures called from within this stored proce-
dure as though they were a single line of T-SQL code, set the cursor
at a particular line and execute all code prior to that line, or set a
breakpoint (or more than one) at a particular line and run all code
until the breakpoint(s) is reached.

7. For this exercise, click the Step Into button or press F11 a few times
and step through the procedure. You will see that the WHILE loop is
never entered and the procedure ends quickly.

This is a problem as there are orders for customers beginning with
‘A.’ So let’s use some additional debugger features to find where
the problem is.

Let’s set a breakpoint at the start of the WHILE loop.

8. Place the cursor in the shaded left margin next to WHILE. Then press
the F9 button. As you see in the following graphic, a red circle
appears in this left margin, which signifies a breakpoint has been
set and execution will pause when this section of the code is reached.

754 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 754

http://www.sybex.com

E X E R C I S E 1 2 . 8 (c o n t i n u e d)

9. Click the Go button (leftmost button) or press F5, and the stored
procedure will execute until it reaches the breakpoint. At this point,
if you examine the variables, you see that all the variables used in
the FETCH statement are still set to NULL. This implies that the cur-
sor has no rows in it.

At this point, stop and close the debugger, and troubleshoot the cur-
sor by explicitly placing the parameter value in the SELECT state-
ment. Doing this reveals that substituting ‘A’ for @cust does return
an empty result set. The WHERE clause should be changed to AND
CustomerID like @CustID + ‘%’. This query will return a series of
rows for @CustID = ‘A’.

10. Make this correction in the stored procedure code, recompile the
stored procedure, and restart the debugger. The procedure will not
work. As you step through the code in the WHILE loop, notice that
each time a new CustomerID is FETCHed into @CustID, a different
section of the IF statement is executed.

Summary

Optimizing a query can have a much greater impact on the perfor-
mance of an application than any other change you can make. Tuning the
Windows 2000 or NT Server software or even the SQL Server software
can provide incremental improvements in performance. Changing hard-
ware can sometimes dramatically improve performance, but in reality
often masks performance problems that will creep back into the system as
the data sets grow larger. These improvements tend to pale in comparison
with those that come from adding an index or restructuring a query that
can provide improvement in query times by orders of magnitude.

This chapter has discussed the following:

� How SQL Server determines the method that will be used to retrieve
the data from a query. Inside the SQL Server program, a query opti-
mizer compares its multiple options and then chooses the one that it
thinks will complete the quickest at the time. The optimizer that

Summary 755

2942C12.qxd 7/13/01 5:40 PM Page 755

http://www.sybex.com

SQL Server uses is called a cost-based query optimizer. Single state-
ment optimization and batch optimization are very similar. Stored
procedures and triggers are optimized in the same way that the
query processor handles batches.

� The various options that can be used in analyzing and optimizing
Transact-SQL statements. These are turned on and off using the SET
statement.

� Analyzing the execution plans of queries requires practice on the
part of the DBA to develop proficiency. There are some standard
things to look for that will assist the user in finding problems with
slow performing queries.

� Optimizing queries is an art as well as a science and requires the
DBA to understand the distribution of the data in the system as well
as the applications that access the server. Most optimizations will
occur from adding indexes. Rewriting queries to use hints or restruc-
turing the query can also provide some performance gains. In using
any of these strategies, sufficient testing should be performed to
ensure that performance is being increased and not decreased.

� The Profiler allows the tracing of nearly every event that can occur
in SQL Server 2000. This tool can be used in analyzing queries by
capturing a workload of queries being run against a SQL Server.
Once a workload has been saved, it can be run against the Index
Tuning Wizard. This will analyze the indexes on the tables used in
the workload and make recommendations about which indexes
should be added to increase performance.

� The stored procedure debugger is new to the SQL Server tools in
SQL Server 2000. It allows a programmer to execute a stored proce-
dure line by line and view the values of variables as the execution
proceeds. This is a great tool for assisting the programmer with find-
ing logical errors in code and is available from the query analyzer.
This tool can be used against SQL Server versions 2000, v7.x and
v6.5 with Service Pack 2.

756 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 756

http://www.sybex.com

Key Terms

Before you take the exam, be certain you are familiar with the
following terms:

Exam Essentials

Understand how the SQL Server query optimizer processes queries.
The query optimizer is critical in ensuring performance. Understanding
how this engine works can assist you in writing better queries.

Know the various SET options and the information they provide. The
SET options are useful in analyzing queries. Each can provide valuable
information about how SQL Server is processing queries.

Know the different types of indexes. SQL Server allows clustered and
nonclustered indexes. A table can only have one clustered index.

Know the different types of hints that can be added to queries. There
are four classes of hints that can affect queries.

Understand the functions and use of the Profiler. The Profiler allows a
DBA to examine the flow of queries and results between a server and
client as well as within the server.

query optimizer
“cost-based”
execution plan
Bookmark Lookup
Clustered Index Scans
Clustered Index Seek
Compute Scalar
Constant Scan
Index Scan
Index Seek
Index Spool
Merge Join

Nested Loop
Remote Query
Sort
Table scan
primary key
highly selective
Profiler
trace flag
Index Tuning Wizard
Autoparametization
stored procedure debugger
breakpoint

Exam Essentials 757

2942C12.qxd 7/13/01 5:40 PM Page 757

http://www.sybex.com

Know how to use the Index Tuning Wizard. This tool can examine a
series of queries and provide suggestions for new indexes to improve
performance.

Know how to use the stored procedure debugger. This utility allows a
programmer to execute a stored procedure line by line and examine the
logical flow of the object.

Review Questions

1. The SQL Server query optimizer always chooses the execution plan
that will:

A. Use the least resources

B. Use the most resources

C. Return the data the quickest

D. Return the results in less than 1 minute

2. A developer presents you with the following query, which is running
very slow. He mentions that he recently added the Categories table
to the query to include the category name with each product.

SELECT *

FROM Products p, ProductType pt, Categories c

WHERE p.ProdTypID = pt.ProdTypID

Which query below would likely improve the performance of this
query?

A.

SELECT *

FROM Products p, ProductType pt, Categories c

WHERE p.ProdTypID = pt.ProdTypID

AND c.CategoryID = 5

B.

SELECT *

FROM Products p, ProductType pt, Categories c

WHERE c.CategoryID = p.CategoryID

758 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 758

http://www.sybex.com

C.

SELECT *

FROM Products p, ProductType pt, Categories c

WHERE p.ProdTypID = 5

AND pt.ProdTypID = 5

D.

SELECT *

FROM Products p, ProductType pt, Categories c

WHERE p.ProdTypID = pt.ProdTypID

AND p.CategoryID = c.CategoryID

3. As the DBA for Online Distributors, Inc. you are presented with the
following query. The users tell you that this query runs very slowly.

Select c.customerID, o.ordered

From Customers c, Orders o

Where c.customerid = o.ordered

And c.customerid != ‘ALFKI’

And o.ordered < 2000

Which query below would likely run quicker (assume join columns
are indexed)?

A.

Select c.customerID, o.ordered

From Customers c, Orders o

Where c.customerid = o.ordered

And (c.customerid < ‘ALFKI’OR c.customerID > ‘ALKFI)

And o.ordered < 2000

B.

Select c.customerID, o.ordered

From Customers c, Orders o

Where c.customerid = o.ordered

And c.customerid <> ‘ALFKI’

And o.ordered < 2000

Review Questions 759

2942C12.qxd 7/13/01 5:40 PM Page 759

http://www.sybex.com

C.

Select c.customerID, o.ordered

From Customers c, Orders o

Where c.customerid = o.ordered

And (c.customerid > ‘ALKFI

And o.ordered < 2000

D.

Select c.customerID, o.ordered

From Customers c, Orders o

Where o.customerid <> ‘ALFKI’

And c.customerID = o.customerID

And o.ordered < 2000

4. You wish to capture the activity that is occurring between an
application running on your manager’s computer and the SQL
Server it communicates with. This application is not returning any
data from the server, so you decide to use the Profiler to trace all
SQL activity from the SQL:StmtCompleted event class. Your
manager starts the application and presses a query button, but
nothing appears in your Profiler window. What are the likely
problems? (Select all the apply.)

A. Your manager is connecting to another SQL Server.

B. The application uses stored procedures and not T-SQL.

C. Your manager is not logging into the SQL Server.

D. The SQL Server you are profiling is not running.

5. You are the DBA for a company that is building a new database to
house their Inventory data. The Receiving table needs to track each
incoming shipment of goods using a unique number. You decide to
use this unique number as the primary key for this table and
implement this as an identity field. What type of index should you
use for the primary key?

A. Clustered

B. Nonclustered

760 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 760

http://www.sybex.com

6. You are the DBA for a large online retailer. Customers have
complained that the online catalog takes too long to display in their
browsers. This catalog is built dynamically from the database and
encompasses eight tables. What is the best course of action that you
can take to speed up these queries? (Choose two.)

A. Capture a series of sample queries between the Web server and
the SQL Server using the Profiler.

B. Examine each query using SHOWPLAN and STATISTICS IO to
determine if the query can be written more efficiently.

C. Add an index to each of the eight tables for each of the columns.

D. Add a single clustered index to each table based on each table’s
primary key.

E. Run the Index Tuning Wizard against the trace and use its
recommendations to add or drop indexes.

7. You are given the following graphical execution plan.

Review Questions 761

2942C12.qxd 7/13/01 5:40 PM Page 761

http://www.sybex.com

The following script shows the indexes on each table.
CREATE UNIQUE CLUSTERED

INDEX [UPKCL_pubind] ON [dbo].[publishers] ([pub_id])

CREATE UNIQUE CLUSTERED

INDEX [UPKCL_auidind] ON [dbo].[authors] ([au_id])

Which course of action will most likely improve the performance of
this query? (Select all that apply.)

A. Add an index on Authors.city.

B. Add an index on Publishers.pub_name.

C. Add an index on Authors.au_lname.

D. Add an index on Publishers.city.

8. Which hint will force the query processor to use a HASH JOIN to
return the results?

A. SELECT * FROM Customers c, Orders o WHERE c.customerID
= o.ordered USING HASH

B. SELECT * FROM Customers c, Orders o WHERE c.customerID
= o.ordered OPTION (HASH JOIN)

C. SELECT * FROM Customers c INNER HASH JOIN Orders o ON
c.customerID = o.ordered

D. A hash join will always be used.

9. A client has asked you to rewrite a query that is performing slowly.
As you rewrite the query, two different methods of returning the
data occur to you, and you want to determine which method runs
quicker. How can you do this?

A. Use a stop watch to time one query and then immediately time
the second query.

B. Use the SET STATISTICS IO ON command to return the
execution plan for each query.

762 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 762

http://www.sybex.com

C. Use the SQL Query debugger to determine which query executes
quicker.

D. Use the SET STATISTICS TIME ON command to determine which
query executes faster.

10. You are the DBA for a retail chain of stores. At your office, a SQL
Server receives updates each night from all the stores. Each store has
its own login that it uses to send this information to your SQL
Server. One store is not sending its updates correctly, and you decide
to use Profiler to capture all the activity from this store. You create a
new trace and save this activity to a text file. What else should you
do before starting this trace?

A. Add the Login Name to the list of data columns captured.

B. Set a filter to capture information for only the particular store’s
login name.

C. Set a filter to capture information for only the particular store’s
assigned SPID.

D. Add the SQL:StmtCompleted event to the trace.

11. While you were on vacation, a developer altered a stored procedure
that is used to calculate the inventory locations for new products.
This procedure should take a product code as a parameter and
return an inventory location based on the other products in inven-
tory and the size of the product. None of the applications that use
this stored procedure were changed, but inventory is being assigned
to the wrong locations. What can you do to solve the problem?

A. Rewrite the stored procedure.

B. Ask the developer to rewrite the stored procedure.

C. Use the stored procedure debugger to trace the logical flow of
the procedure and find the problem.

D. Create a new stored procedure that computes the inventory and
change the applications to use this procedure.

Review Questions 763

2942C12.qxd 7/13/01 5:40 PM Page 763

http://www.sybex.com

12. You are the DBA for Super Duper Kids Toys, Inc. and one of your
managers is complaining that his sales history report is running too
slowly. You execute the query used for the report and receive the
following execution plan.

There is only one index on Customers using the CustomerID field
and one index on Orders using the OrderID field. What should
you do?

A. Add an index on Customers.CompanyName.

B. Add an index on Orders.OrderDate.

C. Add an index on Orders.CustomerID.

D. Add an index on Customers.ContactName.

13. You are the only DBA for a large group of developers in a software
development company. To implement some business logic, you
decide to use a trigger. This trigger does not appear to be working,
and you need to debug the trigger. In what order should you
complete the following steps?

764 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 764

http://www.sybex.com

Use the stored procedure debugger to trace the
logical flow.

Build a temporary table to simulate the Inserted
table.

Use the Profiler to trace the activity of the trigger.

Rewrite the trigger as a stored procedure.

Build a temporary table to simulate the Deleted
table.

14. You are the DBA for ShirtOutlet.com, an Internet retailer. Good
performance is key for your company’s databases, and you are
tuning a query that is run thousands of times a day. Using the
graphical showplan, you find that this query is performing a
clustered index scan on a table. You add a nonclustered index to the
table on the column being joined, but the query optimizer still
performs a clustered index scan. You are sure that using this index
would be faster and want to test this scenario. What can you do?

A. Use SET FORCEPLAN ON with the name of your index.

B. Use a query hint to force a hash join.

C. Use an index hint with the name of the nonclustered index.

D. Use the NOLOCK hint to prevent contention issues during this
query.

15. As the DBA for a large company, you often export pricing data for
your company’s products using a SELECT query. While this export is
occurring, you need to be sure that no changes are made to the price
table. The time required to extract the pricing information must also
be minimized. What can you do?

A. Use the TABLOCK query hint.

B. Use the READUNCOMMITTED query hint.

C. Use the FASTxx query hint.

D. Use the ROBUST PLAN query hint.

Review Questions 765

2942C12.qxd 7/13/01 5:40 PM Page 765

http://www.sybex.com

Answers to Review Questions

1. C. Although SQL Server uses a cost-based query optimizer, it
chooses the plan that will return the data the quickest.

2. D. The slowness of the query is due to the cross join that is
occurring with the Categories table. Since there is no qualification of
this table in the WHERE clause, an implicit cross join occurs. Adding a
join between this table and Products will speed up the query.

3. A. Whenever the != operator is used, an index cannot benefit the
query and a scan of the table must be performed. Restructuring the
query to remove the <> will allow the index to be used for the query.
B and C do not return the correct data, and D still requires a table
scan.

4. A and C. It is possible that your manager connected to another SQL
Server, which would explain the lack of activity. If he had never
logged in, then there would also be no activity. If stored procedures
were being used, the StmtCompleted event would still be triggered.
If SQL Server were not running, you would not be able to run the
profiler.

5. B. Since this is an incremental key built using an identity field, it is
most efficient to create a nonclustered index for the primary key. A
clustered index is better served for a column that will be used in
range queries, like a date, or a supplier code.

6. A and E. The key to this question is finding the quickest method to
improving performance. Capturing a sample workload and using the
Index Tuning Wizard will often be the quickest way to improve
performance. Examining each query will be slower, and this should
be done when more time is available.

7. A and D. The two columns being used to join this table together are
not indexed, so adding an index on these columns will allow the
optimizer to perform a seek using the index rather than a scan.

766 Chapter 12 � Analyzing and Optimizing Data Access

2942C12.qxd 7/13/01 5:40 PM Page 766

http://www.sybex.com

8. B. When specifying a join hint, the OPTION clause is used at the end
of the query.

9. D. While the conditions present on the server at the time of the
query will affect the time, SET STATISTICS TIME will return the
times required to parse, compile, and execute each query.

10. B. To capture activity for a particular store, a filter should be set on
that store’s login name.

11. C. The stored procedure debugger exists to find trace the execution
of a stored procedure and assist a programmer in finding logical
errors in the procedure.

12. C. The CustomerID field is used to join the two tables together.
Adding an index on this column should improve the performance of
this query.

13. Use the stored procedure debugger to trace the logical flow.

Build a temporary table to simulate the Inserted table.

Use the Profiler to trace the activity of the trigger

Rewrite the trigger as a stored procedure.

Build a temporary table to simulate the Deleted table.

The stored procedure debugger cannot debug triggers, but the code
in the trigger can be rewritten as a stored procedure. Before using
the debugger on this procedure, however, temporary tables that
simulate the Inserted and Deleted tables need to be created.

14. C. If you want to force the query optimizer to use a particular index,
then an index hint can be used in the FROM clause of a query.

15. A. To prevent any changes from occurring on the table, the TABLOCK
hint will lock the table. By acquiring a lock on the entire table, your
query will not have any contention issues with other users and
complete quicker.

Answers to Review Questions 767

2942C12.qxd 7/13/01 5:40 PM Page 767

http://www.sybex.com

	Using Your Sybex Electronic Book
	MCSE: SQL Server 2000 Design Study Guide
	Frontmatter
	Acknowledgments
	Introduction
	Is This Book for You?
	What's on the CD
	How do You Use This Book?
	Contacts and Resources

	Chapter 1: Database Logical Modeling
	Designing a Database System
	The Entity/Relationship Model
	Defining Entities and Attributes
	Defining Relationships and Keys
	Adding Data Integrity Rules

	The Relational Model and the Normalization Process
	The Relational Table
	Normal Forms

	The Denormalization Process
	Adding a Redundant Column
	Adding a Derived Column
	Partitioning Tables

	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 2: Database Physical Modeling
	Creating and Managing a Database
	Creating a Simple Database
	Data and Log Files
	Managing Databases
	Space Management
	Database Options

	Filegroups
	Creating Filegroups
	Maintenance and Performance

	File Placement and Performance
	Data Placement
	Log File Placement

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 3: Creating and Maintaining Tables
	Creating and Altering a Table
	Creating a Table
	Altering a Table

	Columns and Datatypes
	System Datatypes
	User-defined Datatypes
	Computed Columns

	Extended Properties
	Table Storage
	Record Storage
	Text, ntext, and Image Storage

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 4: Implementing Data Integrity
	Data Integrity
	Integrity Types
	Integrity Implementation

	Default Values
	Default Constraint
	Default Object

	Check
	Check Constraints
	Rules

	Primary Keys
	Defining a Primary Key Constraint at Table Creation
	Defining a Primary Key at Table Modification

	Unique Constraints
	Defining a Unique Constraint at Table Creation
	Defining a Unique Constraint at Table Modification

	Foreign Keys and Relationships
	Defining a Foreign Key Constraint at Table Creation
	Defining a Foreign Key Constraint at Table Modification

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 5: Creating and Maintaining Indexes
	Definition and Advantages of Indexes
	Heaps and Indexes
	Clustered Index
	Nonclustered Index
	Composite Indexes
	Unique Indexes

	Accessing Data with and without Indexes
	Accessing Data with a Heap
	Accessing Data with a Clustered Index
	Accessing Data with a Nonclustered Index

	Statistics and Index Choice
	Distribution Statistics
	Index Choice
	Statistics Maintenance

	Creating Indexes and Statistics
	Indexes
	Statistics

	Fragmentation and Index Maintenance
	Fragmentation Types
	Inserts
	Updates
	Deletes
	What to Do Now

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 6: Creating and Maintaining Database Objects
	Views
	Definition and Advantages of Views
	Creating and Altering Views
	Using Views
	Indexed Views
	Partitioned Views

	Stored Procedures
	Definition and Advantages of Stored Procedures
	Creating and Altering a Stored Procedure
	Using Parameters
	Executing a Stored Procedure
	Error Handling

	Transactions
	User-defined Functions
	Definition and Advantages of User-defined Functions
	Creating and Altering a UDF
	Using UDFs

	Triggers
	Definition and Advantages of Triggers
	AFTER Triggers
	INSTEAD OF Triggers
	Performance Considerations
	Various Considerations

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 7: Accessing Data
	The SELECT Command
	Single Table SELECT
	Inner Joins
	Outer Joins
	Aggregate Operators
	The UNION Command
	The Distinct Command
	Scalars
	Subqueries

	Functions for Transforming Data
	Cursors
	Using a Cursor
	Cursor Declaration
	Retrieving Data from the Cursor

	Distributed Queries
	Linked Servers
	The OPENROWSET Function
	Distributed Partitioned Views

	SQL Server 2000 and XML
	Summary
	Exam Essentials
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 8: Modifying Data
	The INSERT Statement
	Single Row Insert
	Inserting a Single Row with Selected Columns
	Inserting Single Rows with an Identity Field
	Inserting Multiple Rows

	The UPDATE Statement
	Updating All Rows
	Updating a Set of Rows
	Updating Multiple Columns
	Updating a View

	The DELETE Statement
	Deleting All Rows
	Deleting a Set of Rows

	Modifying Data inside a Cursor
	Declaring an Updateable Cursor
	Updating Data within a Cursor

	Modifying Data Using XML
	Modifying Data Using OPENXML

	Using Distributed Queries to Modify Data
	Modifying Data Using Linked Servers
	Modifying Data Using OPENROWSET

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 9: Importing and Exporting Data
	Bulk Copy
	BCP
	BULK INSERT

	Data Transformation Services
	The DTS Environment

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 10: Locking
	The Lock Manager
	Lock Modes
	Levels of Locking

	Transactions and Locking
	Blocking
	Deadlocks

	Locking Options
	Viewing Locks
	Lock Isolation Levels
	Lock Hints

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 11: Developing a Security Plan
	Overview of SQL Server Security
	Server Access
	Creating and Managing Database Access

	Assigning Object Rights
	Ownership Chains

	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 12: Analyzing and Optimizing Data Access
	The Query Optimizer
	Single Statement Optimization
	Batch Optimization

	Analyzing Queries
	Using SET Statements
	Analyzing the Execution Plan

	Optimizing Queries
	Indexes
	Query Hints

	Using the Profiler to Capture Activity
	Functions of the Profiler
	Using the Index Tuning Wizard

	Optimize Stored Procedures and Triggers
	The Stored Procedure Debugger
	Summary
	Key Terms
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Exit

	copyright: Copyright ©2001 SYBEX, Inc., Alameda, CA
	link:

