
Structure of monolithic and microkernel-based operating systems,
respectively

Microkernel

In computer science, a
microkernel (often abbreviated
as μ-kernel) is the near-minimum
amount of software that can
provide the mechanisms needed
to implement an operating system
(OS). These mechanisms include
low-level address space
management, thread
management, and inter-process
communication (IPC).

If the hardware provides multiple
rings or CPU modes, the
microkernel may be the only
software executing at the most
privileged level, which is
generally referred to as
supervisor or kernel mode. Traditional operating system functions, such as device drivers, protocol stacks and
file systems, are typically removed from the microkernel itself and are instead run in user space.[1]

In terms of the source code size, microkernels are often smaller than monolithic kernels. The MINIX 3
microkernel, for example, has only approximately 12,000 lines of code.[2]
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Microkernels trace their roots back to Danish computer pioneer Per Brinch Hansen and his tenure in Danish
computer company Regnecentralen where he led software development efforts for the RC 4000 computer.[3]

In 1967, Regnecentralen was installing a RC 4000 prototype in a Polish fertilizer plant in Puławy. The
computer used a small real-time operating system tailored for the needs of the plant. Brinch Hansen and his
team became concerned with the lack of generality and reusability of the RC 4000 system. They feared that
each installation would require a different operating system so they started to investigate novel and more
general ways of creating software for the RC 4000.[4] In 1969, their effort resulted in the completion of the RC
4000 Multiprogramming System. Its nucleus provided inter-process communication based on message-passing
for up to 23 unprivileged processes, out of which 8 at a time were protected from one another. It further
implemented scheduling of time slices of programs executed in parallel, initiation and control of program
execution at the request of other running programs, and initiation of data transfers to or from peripherals.
Besides these elementary mechanisms, it had no built-in strategy for program execution and resource
allocation. This strategy was to be implemented by a hierarchy of running programs in which parent processes
had complete control over child processes and acted as their operating systems.[5][6]

Following Brinch Hansen's work, microkernels have been developed since the 1970s.[7] The term microkernel
itself first appeared no later than 1981.[8] Microkernels were meant as a response to changes in the computer
world, and to several challenges adapting existing "mono-kernels" to these new systems. New device drivers,
protocol stacks, file systems and other low-level systems were being developed all the time. This code was
normally located in the monolithic kernel, and thus required considerable work and careful code management
to work on. Microkernels were developed with the idea that all of these services would be implemented as
user-space programs, like any other, allowing them to be worked on monolithically and started and stopped
like any other program. This would not only allow these services to be more easily worked on, but also
separated the kernel code to allow it to be finely tuned without worrying about unintended side effects.
Moreover, it would allow entirely new operating systems to be "built up" on a common core, aiding OS
research.

Microkernels were a very hot topic in the 1980s when the first usable local area networks were being
introduced.. The AmigaOS Exec kernel was an early example, introduced in 1986 and used in a PC with
relative commercial success. The lack of memory protection, considered in other respects a flaw, allowed this
kernel to have very high message-passing performance because it did not need to copy data while exchanging
messages between user-space programs.[9]

The same mechanisms that allowed the kernel to be distributed into user space also allowed the system to be
distributed across network links. The first microkernels, notably Mach created by Richard Rashid, proved to
have disappointing performance, but the inherent advantages appeared so great that it was a major line of
research into the late 1990s. However, during this time the speed of computers grew greatly in relation to
networking systems, and the disadvantages in performance came to overwhelm the advantages in development
terms.

Many attempts were made to adapt the existing systems to have better performance, but the overhead was
always considerable and most of these efforts required the user-space programs to be moved back into the
kernel. By 2000, most large-scale Mach kernel efforts had ended, although Apple's macOS, released in 2001,
still uses a hybrid kernel called XNU, which combines a heavily modified (hybrid) OSF/1's Mach kernel
(OSFMK 7.3 kernel) with code from BSD UNIX,[10][11] and this kernel is also used in iOS, tvOS, and
watchOS. Windows NT, starting with NT 3.1 and continuing with Windows 10, uses a hybrid kernel design.
As of 2012, the Mach-based GNU Hurd is also functional and included in testing versions of Arch Linux and
Debian.
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Although major work on microkernels had largely ended, experimenters continued development. It has since
been shown that many of the performance problems of earlier designs were not a fundamental limitation of the
concept, but instead due to the designer's desire to use single-purpose systems to implement as many of these
services as possible. Using a more pragmatic approach to the problem, including assembly code and relying on
the processor to enforce concepts normally supported in software led to a new series of microkernels with
dramatically improved performance.

Microkernels are closely related to exokernels.[12] They also have much in common with hypervisors,[13] but
the latter make no claim to minimality and are specialized to supporting virtual machines; the L4 microkernel
frequently finds use in a hypervisor capacity.

Early operating system kernels were rather small, partly because computer memory was limited. As the
capability of computers grew, the number of devices the kernel had to control also grew. Throughout the early
history of Unix, kernels were generally small, even though they contained various device drivers and file
system implementations. When address spaces increased from 16 to 32 bits, kernel design was no longer
constrained by the hardware architecture, and kernels began to grow larger.

The Berkeley Software Distribution (BSD) of Unix began the era of larger kernels. In addition to operating a
basic system consisting of the CPU, disks and printers, BSD added a complete TCP/IP networking system and
a number of "virtual" devices that allowed the existing programs to work 'invisibly' over the network. This
growth continued for many years, resulting in kernels with millions of lines of source code. As a result of this
growth, kernels were prone to bugs and became increasingly difficult to maintain.

The microkernel was intended to address this growth of kernels and the difficulties that resulted. In theory, the
microkernel design allows for easier management of code due to its division into user space services. This also
allows for increased security and stability resulting from the reduced amount of code running in kernel mode.
For example, if a networking service crashed due to buffer overflow, only the networking service's memory
would be corrupted, leaving the rest of the system still functional.

Inter-process communication (IPC) is any mechanism which allows separate processes to communicate with
each other, usually by sending messages. Shared memory is, strictly defined, also an inter-process
communication mechanism, but the abbreviation IPC usually refers to message passing only, and it is the latter
that is particularly relevant to microkernels. IPC allows the operating system to be built from a number of
smaller programs called servers, which are used by other programs on the system, invoked via IPC. Most or all
support for peripheral hardware is handled in this fashion, with servers for device drivers, network protocol
stacks, file systems, graphics, etc.

IPC can be synchronous or asynchronous. Asynchronous IPC is analogous to network communication: the
sender dispatches a message and continues executing. The receiver checks (polls) for the availability of the
message, or is alerted to it via some notification mechanism. Asynchronous IPC requires that the kernel
maintains buffers and queues for messages, and deals with buffer overflows; it also requires double copying of
messages (sender to kernel and kernel to receiver). In synchronous IPC, the first party (sender or receiver)
blocks until the other party is ready to perform the IPC. It does not require buffering or multiple copies, but the
implicit rendezvous can make programming tricky. Most programmers prefer asynchronous send and
synchronous receive.
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First-generation microkernels typically supported synchronous as well as asynchronous IPC, and suffered from
poor IPC performance. Jochen Liedtke assumed the design and implementation of the IPC mechanisms to be
the underlying reason for this poor performance. In his L4 microkernel he pioneered methods that lowered IPC
costs by an order of magnitude.[14] These include an IPC system call that supports a send as well as a receive
operation, making all IPC synchronous, and passing as much data as possible in registers. Furthermore,
Liedtke introduced the concept of the direct process switch, where during an IPC execution an (incomplete)
context switch is performed from the sender directly to the receiver. If, as in L4, part or all of the message is
passed in registers, this transfers the in-register part of the message without any copying at all. Furthermore, the
overhead of invoking the scheduler is avoided; this is especially beneficial in the common case where IPC is
used in an remote procedure call (RPC) type fashion by a client invoking a server. Another optimization,
called lazy scheduling, avoids traversing scheduling queues during IPC by leaving threads that block during
IPC in the ready queue. Once the scheduler is invoked, it moves such threads to the appropriate waiting queue.
As in many cases a thread gets unblocked before the next scheduler invocation, this approach saves significant
work. Similar approaches have since been adopted by QNX and MINIX 3.

In a series of experiments, Chen and Bershad compared memory cycles per instruction (MCPI) of monolithic
Ultrix with those of microkernel Mach combined with a 4.3BSD Unix server running in user space. Their
results explained Mach's poorer performance by higher MCPI and demonstrated that IPC alone is not
responsible for much of the system overhead, suggesting that optimizations focused exclusively on IPC will
have limited impact.[15] Liedtke later refined Chen and Bershad's results by making an observation that the
bulk of the difference between Ultrix and Mach MCPI was caused by capacity cache-misses and concluding
that drastically reducing the cache working set of a microkernel will solve the problem.[16]

In a client-server system, most communication is essentially synchronous, even if using asynchronous
primitives, as the typical operation is a client invoking a server and then waiting for a reply. As it also lends
itself to more efficient implementation, most microkernels generally followed L4's lead and only provided a
synchronous IPC primitive. Asynchronous IPC could be implemented on top by using helper threads.
However, experience has shown that the utility of synchronous IPC is dubious: synchronous IPC forces a
multi-threaded design onto otherwise simple systems, with the resulting synchronization complexities.
Moreover, an RPC-like server invocation sequentializes client and server, which should be avoided if they are
running on separate cores. Versions of L4 deployed in commercial products have therefore found it necessary
to add an asynchronous notification mechanism to better support asynchronous communication. This signal-
like mechanism does not carry data and therefore does not require buffering by the kernel. By having two
forms of IPC, they have nonetheless violated the principle of minimality. Other versions of L4 have switched
to asynchronous IPC completely.[17]

As synchronous IPC blocks the first party until the other is ready, unrestricted use could easily lead to
deadlocks. Furthermore, a client could easily mount a denial-of-service attack on a server by sending a request
and never attempting to receive the reply. Therefore, synchronous IPC must provide a means to prevent
indefinite blocking. Many microkernels provide timeouts on IPC calls, which limit the blocking time. In
practice, choosing sensible timeout values is difficult, and systems almost inevitably use infinite timeouts for
clients and zero timeouts for servers. As a consequence, the trend is towards not providing arbitrary timeouts,
but only a flag which indicates that the IPC should fail immediately if the partner is not ready. This approach
effectively provides a choice of the two timeout values of zero and infinity. Recent versions of L4 and MINIX
have gone down this path (older versions of L4 used timeouts). QNX avoids the problem by requiring the
client to specify the reply buffer as part of the message send call. When the server replies the kernel copies the
data to the client's buffer, without having to wait for the client to receive the response explicitly.[18]
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Microkernel servers are essentially daemon programs like any others, except that the kernel grants some of
them privileges to interact with parts of physical memory that are otherwise off limits to most programs. This
allows some servers, particularly device drivers, to interact directly with hardware.

A basic set of servers for a general-purpose microkernel includes file system servers, device driver servers,
networking servers, display servers, and user interface device servers. This set of servers (drawn from QNX)
provides roughly the set of services offered by a Unix monolithic kernel. The necessary servers are started at
system startup and provide services, such as file, network, and device access, to ordinary application programs.
With such servers running in the environment of a user application, server development is similar to ordinary
application development, rather than the build-and-boot process needed for kernel development.

Additionally, many "crashes" can be corrected by simply stopping and restarting the server. However, part of
the system state is lost with the failing server, hence this approach requires applications to cope with failure. A
good example is a server responsible for TCP/IP connections: If this server is restarted, applications will
experience a "lost" connection, a normal occurrence in a networked system. For other services, failure is less
expected and may require changes to application code. For QNX, restart capability is offered as the QNX
High Availability Toolkit.[19]

Device drivers frequently perform direct memory access (DMA), and therefore can write to arbitrary locations
of physical memory, including various kernel data structures. Such drivers must therefore be trusted. It is a
common misconception that this means that they must be part of the kernel. In fact, a driver is not inherently
more or less trustworthy by being part of the kernel.

While running a device driver in user space does not necessarily reduce the damage a misbehaving driver can
cause, in practice it is beneficial for system stability in the presence of buggy (rather than malicious) drivers:
memory-access violations by the driver code itself (as opposed to the device) may still be caught by the
memory-management hardware. Furthermore, many devices are not DMA-capable, their drivers can be made
untrusted by running them in user space. Recently, an increasing number of computers feature IOMMUs,
many of which can be used to restrict a device's access to physical memory.[20] This also allows user-mode
drivers to become untrusted.

User-mode drivers actually predate microkernels. The Michigan Terminal System (MTS), in 1967, supported
user space drivers (including its file system support), the first operating system to be designed with that
capability.[21] Historically, drivers were less of a problem, as the number of devices was small and trusted
anyway, so having them in the kernel simplified the design and avoided potential performance problems. This
led to the traditional driver-in-the-kernel style of Unix,[22] Linux, and Windows NT. With the proliferation of
various kinds of peripherals, the amount of driver code escalated and in modern operating systems dominates
the kernel in code size.

As a microkernel must allow building arbitrary operating system services on top, it must provide some core
functionality. At a minimum, this includes:

Some mechanisms for dealing with address spaces, required for managing memory protection
Some execution abstraction to manage CPU allocation, typically threads or scheduler
activations
Inter-process communication, required to invoke servers running in their own address spaces

Device drivers
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This minimal design was pioneered by Brinch Hansen's Nucleus and the hypervisor of IBM's VM. It has since
been formalised in Liedtke's minimality principle:

A concept is tolerated inside the microkernel only if moving it outside the kernel, i.e., permitting
competing implementations, would prevent the implementation of the system's required
functionality.[16]

Everything else can be done in a usermode program, although device drivers implemented as user programs
may on some processor architectures require special privileges to access I/O hardware.

Related to the minimality principle, and equally important for microkernel design, is the separation of
mechanism and policy, it is what enables the construction of arbitrary systems on top of a minimal kernel. Any
policy built into the kernel cannot be overwritten at user level and therefore limits the generality of the
microkernel.[12] Policy implemented in user-level servers can be changed by replacing the servers (or letting
the application choose between competing servers offering similar services).

For efficiency, most microkernels contain schedulers and manage timers, in violation of the minimality
principle and the principle of policy-mechanism separation.

Start up (booting) of a microkernel-based system requires device drivers, which are not part of the kernel.
Typically this means that they are packaged with the kernel in the boot image, and the kernel supports a
bootstrap protocol that defines how the drivers are located and started; this is the traditional bootstrap
procedure of L4 microkernels. Some microkernels simplify this by placing some key drivers inside the kernel
(in violation of the minimality principle), LynxOS and the original Minix are examples. Some even include a
file system in the kernel to simplify booting. A microkernel-based system may boot via multiboot compatible
boot loader. Such systems usually load statically-linked servers to make an initial bootstrap or mount an OS
image to continue bootstrapping.

A key component of a microkernel is a good IPC system and virtual-memory-manager design that allows
implementing page-fault handling and swapping in usermode servers in a safe way. Since all services are
performed by usermode programs, efficient means of communication between programs are essential, far more
so than in monolithic kernels. The design of the IPC system makes or breaks a microkernel. To be effective,
the IPC system must not only have low overhead, but also interact well with CPU scheduling.

On most mainstream processors, obtaining a service is inherently more expensive in a microkernel-based
system than a monolithic system.[12] In the monolithic system, the service is obtained by a single system call,
which requires two mode switches (changes of the processor's ring or CPU mode). In the microkernel-based
system, the service is obtained by sending an IPC message to a server, and obtaining the result in another IPC
message from the server. This requires a context switch if the drivers are implemented as processes, or a
function call if they are implemented as procedures. In addition, passing actual data to the server and back may
incur extra copying overhead, while in a monolithic system the kernel can directly access the data in the
client's buffers.

Performance is therefore a potential issue in microkernel systems. The experience of first-generation
microkernels such as Mach and ChorusOS showed that systems based on them performed very poorly.[15]

However, Jochen Liedtke showed that Mach's performance problems were the result of poor design and
implementation, specifically Mach's excessive cache footprint.[16] Liedtke demonstrated with his own L4
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microkernel that through careful design and implementation, and especially by following the minimality
principle, IPC costs could be reduced by more than an order of magnitude compared to Mach. L4's IPC
performance is still unbeaten across a range of architectures.[23][24][25]

While these results demonstrate that the poor performance of systems based on first-generation microkernels is
not representative for second-generation kernels such as L4, this constitutes no proof that microkernel-based
systems can be built with good performance. It has been shown that a monolithic Linux server ported to L4
exhibits only a few percent overhead over native Linux.[26] However, such a single-server system exhibits
few, if any, of the advantages microkernels are supposed to provide by structuring operating system
functionality into separate servers.

A number of commercial multi-server systems exist, in particular the real-time systems QNX and Integrity. No
comprehensive comparison of performance relative to monolithic systems has been published for those
multiserver systems. Furthermore, performance does not seem to be the overriding concern for those
commercial systems, which instead emphasize reliably quick interrupt handling response times (QNX) and
simplicity for the sake of robustness. An attempt to build a high-performance multiserver operating system was
the IBM Sawmill Linux project.[27] However, this project was never completed.

It has been shown in the meantime that user-level device drivers can come close to the performance of in-
kernel drivers even for such high-throughput, high-interrupt devices as Gigabit Ethernet.[28] This seems to
imply that high-performance multi-server systems are possible.

The security benefits of microkernels have been frequently discussed.[29][30] In the context of security the
minimality principle of microkernels is, some have argued, a direct consequence of the principle of least
privilege, according to which all code should have only the privileges needed to provide required functionality.
Minimality requires that a system's trusted computing base (TCB) should be kept minimal. As the kernel (the
code that executes in the privileged mode of the hardware) has unvetted access to any data and can thus violate
its integrity or confidentiality, the kernel is always part of the TCB. Minimizing it is natural in a security-driven
design.

Consequently, microkernel designs have been used for systems designed for high-security applications,
including KeyKOS, EROS and military systems. In fact common criteria (CC) at the highest assurance level
(Evaluation Assurance Level (EAL) 7) has an explicit requirement that the target of evaluation be "simple", an
acknowledgment of the practical impossibility of establishing true trustworthiness for a complex system.
Again, the term "simple" is misleading and ill-defined. At least the Department of Defense Trusted Computer
System Evaluation Criteria introduced somewhat more precise verbiage at the B3/A1 classes:

"The TCB shall [implement] complete, conceptually simple protection mechanisms with precisely
defined semantics. Significant system engineering shall be directed toward minimizing the
complexity of the TCB, as well as excluding from the TCB those modules that are not protection-
critical."

— Department of Defense Trusted Computer System Evaluation Criteria

In 2018, a paper presented at the Asia-Pacific Systems Conference claimed that microkernels were
demonstrably safer than monolithic kernels by investigating all published critical CVEs for the Linux kernel at
the time. The study concluded that 40% of the issues could not occur at all in a formally verified microkernel,
and only 4% of the issues would remain entirely unmitigated in such a system.[31]
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More recent work on microkernels has been focusing on formal specifications of the kernel API, and formal
proofs of the API's security properties and implementation correctness. The first example of this is a
mathematical proof of the confinement mechanisms in EROS, based on a simplified model of the EROS
API.[32] More recently (in 2007) a comprehensive set of machine-checked proofs was performed of the
properties of the protection model of seL4, a version of L4.[33]

This has led to what is referred to as third-generation microkernels,[34] characterised by a security-oriented
API with resource access controlled by capabilities, virtualization as a first-class concern, novel approaches to
kernel resource management,[35] and a design goal of suitability for formal analysis, besides the usual goal of
high performance. Examples are Coyotos, seL4, Nova,[36][37] Redox and Fiasco.OC.[36][38]

In the case of seL4, complete formal verification of the implementation has been achieved,[34] i.e. a
mathematical proof that the kernel's implementation is consistent with its formal specification. This provides a
guarantee that the properties proved about the API actually hold for the real kernel, a degree of assurance
which goes beyond even CC EAL7. It was followed by proofs of security-enforcement properties of the API,
and a proof demonstrating that the executable binary code is a correct translation of the C implementation,
taking the compiler out of the TCB. Taken together, these proofs establish an end-to-end proof of security
properties of the kernel.[39]

Some examples of microkernels are:

The L4 microkernel family
Redox
Zircon

The term nanokernel or picokernel historically referred to:

A kernel where the total amount of kernel code, i.e. code executing in the privileged mode of
the hardware, is very small. The term picokernel was sometimes used to further emphasize
small size. The term nanokernel was coined by Jonathan S. Shapiro in the paper The KeyKOS
NanoKernel Architecture (https://web.archive.org/web/20110621235229/http://www.cis.upenn.e
du/~KeyKOS/NanoKernel/NanoKernel.html). It was a sardonic response to Mach, which
claimed to be a microkernel while Shapiro considered it monolithic, essentially unstructured,
and slower than the systems it sought to replace. Subsequent reuse of and response to the
term, including the picokernel coinage, suggest that the point was largely missed. Both
nanokernel and picokernel have subsequently come to have the same meaning expressed by
the term microkernel.
A virtualization layer underneath an operating system, which is more correctly referred to as a
hypervisor.
A hardware abstraction layer that forms the lowest-level part of a kernel, sometimes used to
provide real-time functionality to normal operating systems, like Adeos.

There is also at least one case where the term nanokernel is used to refer not to a small kernel, but one that
supports a nanosecond clock resolution.[40]

Third generation
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