
Glossary of terms used in the positional numeral
systems

Positional notation
Positional notation (or place-value notation, or
positional numeral system) usually denotes the
extension to any base of the Hindu–Arabic numeral
system (or decimal system). More generally, a
positional system is a numeral system in which the
contribution of a digit to the value of a number is the
value of the digit multiplied by a factor determined by
the position of the digit. In early numeral systems,
such as Roman numerals, a digit has only one value: I
means one, X means ten and C a hundred (however,
the value may be negated if placed before another
digit). In modern positional systems, such as the
decimal system, the position of the digit means that its
value must be multiplied by some value: in 555, the
three identical symbols represent five hundreds, five
tens, and five units, respectively, due to their different
positions in the digit string.

The Babylonian numeral system, base 60, was the
first positional system to be developed, and its
influence is present today in the way time and angles are counted in tallies related to 60, such as 60 minutes
in an hour and 360 degrees in a circle. Today, the Hindu–Arabic numeral system (base ten) is the most
commonly used system globally. However, the binary numeral system (base two) is used in almost all
computers and electronic devices because it is easier to implement efficiently in electronic circuits.

Systems with negative base, complex base or negative digits have been described. Most of them do not
require a minus sign for designating negative numbers.

The use of a radix point (decimal point in base ten), extends to include fractions and allows representing
any real number with arbitrary accuracy. With positional notation, arithmetical computations are much
simpler than with any older numeral system; this led to the rapid spread of the notation when it was
introduced in western Europe.

History
History of positional fractions

Issues
Mathematics

Base of the numeral system
Notation
Exponentiation
Digits and numerals
Radix point

Contents

https://en.wikipedia.org/wiki/File:Positional_notation_glossary-en.svg
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Hindu%E2%80%93Arabic_numeral_system
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Numeral_system
https://en.wikipedia.org/wiki/Roman_numerals
https://en.wikipedia.org/wiki/Decimal
https://en.wikipedia.org/wiki/Babylonian_Numerals
https://en.wikipedia.org/wiki/Base_ten
https://en.wikipedia.org/wiki/Binary_numeral_system
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Electronic_device
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Radix_point
https://en.wikipedia.org/wiki/Fraction_(mathematics)
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Arithmetic


Suanpan (the number represented in
the picture is 6,302,715,408)

Sign
Base conversion
Terminating fractions
Infinite representations

Rational numbers
Irrational numbers

Applications
Decimal system
Sexagesimal system
Computing
Other bases in human language

Non-standard positional numeral systems
Non-positional positions
See also
Notes
References
External links

Today, the base-10 (decimal) system, which is presumably
motivated by counting with the ten fingers, is ubiquitous. Other
bases have been used in the past, and some continue to be used
today. For example, the Babylonian numeral system, credited as
the first positional numeral system, was base-60. However it
lacked a real 0. Initially inferred only from context, later, by about
700 BC, zero came to be indicated by a "space" or a "punctuation
symbol" (such as two slanted wedges) between numerals.[1] It was
a placeholder rather than a true zero because it was not used alone.
Nor was it used at the end of a number. Numbers like 2 and 120
(2×60) looked the same because the larger number lacked a final
placeholder. Only context could differentiate them.

The polymath Archimedes (ca. 287–212 BC) invented a decimal positional system in his Sand Reckoner
which was based on 108[2] and later led the German mathematician Carl Friedrich Gauss to lament what
heights science would have already reached in his days if Archimedes had fully realized the potential of his
ingenious discovery.[3]

Before positional notation became standard, simple additive systems (sign-value notation) such as Roman
numerals were used, and accountants in ancient Rome and during the Middle Ages used the abacus or
stone counters to do arithmetic.[4]

Counting rods and most abacuses have been used to represent numbers in a positional numeral system.
With counting rods or abacus to perform arithmetic operations, the writing of the starting, intermediate and
final values of a calculation could easily be done with a simple additive system in each position or column.
This approach required no memorization of tables (as does positional notation) and could produce practical
results quickly.
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Chinese rod numerals; Upper row vertical form
Lower row horizontal form

The oldest extant positional notation system is that of
Chinese rod numerals, used from at least the early 8th
century. It isn't clear whether this system was introduced
from India or whether it was an autochthonous
development. Indian numerals originate with the Brahmi
numerals of about the 3rd century BC, which symbols
were, at the time, not used positionally. Medieval Indian
numerals are positional, as are the derived Arabic
numerals, recorded from the 10th century.

After the French Revolution (1789–1799), the new French government promoted the extension of the
decimal system.[5] Some of those pro-decimal efforts—such as decimal time and the decimal calendar—
were unsuccessful. Other French pro-decimal efforts—currency decimalisation and the metrication of
weights and measures—spread widely out of France to almost the whole world.

J. Lennart Berggren notes that positional decimal fractions were used for the first time by Arab
mathematician Abu'l-Hasan al-Uqlidisi as early as the 10th century.[6] The Jewish mathematician Immanuel
Bonfils used decimal fractions around 1350, but did not develop any notation to represent them.[7] The
Persian mathematician Jamshīd al-Kāshī made the same discovery of decimal fractions in the 15th
century.[6] Al Khwarizmi introduced fractions to Islamic countries in the early 9th century; his fraction
presentation was similar to the traditional Chinese mathematical fractions from Sunzi Suanjing.[8] This form
of fraction with numerator on top and denominator at bottom without a horizontal bar was also used by
10th century Abu'l-Hasan al-Uqlidisi and 15th century Jamshīd al-Kāshī's work "Arithmetic Key".[8][9]

The adoption of the decimal representation of numbers less than one, a fraction, is often credited to Simon
Stevin through his textbook De Thiende;[10] but both Stevin and E. J. Dijksterhuis indicate that
Regiomontanus contributed to the European adoption of general decimals:[11]

European mathematicians, when taking over from the Hindus, via the Arabs, the idea of
positional value for integers, neglected to extend this idea to fractions. For some centuries
they confined themselves to using common and sexagesimal fractions... This half-
heartedness has never been completely overcome, and sexagesimal fractions still form
the basis of our trigonometry, astronomy and measurement of time. ¶ ... Mathematicians
sought to avoid fractions by taking the radius R equal to a number of units of length of the
form 10n and then assuming for n so great an integral value that all occurring quantities
could be expressed with sufficient accuracy by integers. ¶ The first to apply this method
was the German astronomer Regiomontanus. To the extent that he expressed
goniometrical line-segments in a unit R/10n, Regiomontanus may be called an anticipator
of the doctrine of decimal positional fractions.[11]: 17, 18 

In the estimation of Dijksterhuis, "after the publication of De Thiende only a small advance was required to
establish the complete system of decimal positional fractions, and this step was taken promptly by a number
of writers ... next to Stevin the most important figure in this development was Regiomontanus."
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Dijksterhuis noted that [Stevin] "gives full credit to Regiomontanus for his prior contribution, saying that
the trigonometric tables of the German astronomer actually contain the whole theory of 'numbers of the
tenth progress'."[11]: 19 

A key argument against the positional system was its susceptibility to easy fraud by simply putting a
number at the beginning or end of a quantity, thereby changing (e.g.) 100 into 5100, or 100 into 1000.
Modern cheques require a natural language spelling of an amount, as well as the decimal amount itself, to
prevent such fraud. For the same reason the Chinese also use natural language numerals, for example 100 is
written as 壹佰, which can never be forged into 壹仟(1000) or 伍仟壹佰(5100).

Many of the advantages claimed for the metric system could be realized by any consistent positional
notation. Dozenal advocates say duodecimal has several advantages over decimal, although the switching
cost appears to be high.

In mathematical numeral systems the radix r is usually the number of unique digits, including zero, that a
positional numeral system uses to represent numbers. In the interesting cases the radix is the absolute value 

 of the base b, which may also be negative. For example, for the decimal system the radix (and
base) is ten, because it uses the ten digits from 0 through 9. When a number "hits" 9, the next number will
not be another different symbol, but a "1" followed by a "0". In binary, the radix is two, since after it hits
"1", instead of "2" or another written symbol, it jumps straight to "10", followed by "11" and "100".

The highest symbol of a positional numeral system usually has the value one less than the value of the radix
of that numeral system. The standard positional numeral systems differ from one another only in the base
they use.

The radix is an integer that is greater than 1, since a radix of zero would not have any digits, and a radix of
1 would only have the zero digit. Negative bases are rarely used. In a system with more than  unique
digits, numbers may have many different possible representations.

It is important that the radix is finite, from which follows that the number of digits is quite low. Otherwise,
the length of a numeral would not necessarily be logarithmic in its size.

(In certain non-standard positional numeral systems, including bijective numeration, the definition of the
base or the allowed digits deviates from the above.)

In standard base-ten (decimal) positional notation, there are ten decimal digits and the number

.

In standard base-sixteen (hexadecimal), there are the sixteen hexadecimal digits (0–9 and A–F) and the
number

where B represents the number eleven as a single symbol.
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In general, in base-b, there are b digits  and the number

has  Note that  represents a sequence of digits, not multiplication.

When describing base in mathematical notation, the letter b is generally used as a symbol for this concept,
so, for a binary system, b equals 2. Another common way of expressing the base is writing it as a decimal
subscript after the number that is being represented (this notation is used in this article). 11110112 implies
that the number 1111011 is a base-2 number, equal to 12310 (a decimal notation representation), 1738
(octal) and 7B16 (hexadecimal). In books and articles, when using initially the written abbreviations of
number bases, the base is not subsequently printed: it is assumed that binary 1111011 is the same as
11110112.

The base b may also be indicated by the phrase "base-b". So binary numbers are "base-2"; octal numbers
are "base-8"; decimal numbers are "base-10"; and so on.

To a given radix b the set of digits {0, 1, ..., b−2, b−1} is called the standard set of digits. Thus, binary
numbers have digits {0, 1}; decimal numbers have digits {0, 1, 2, ..., 8, 9}; and so on. Therefore, the
following are notational errors: 522, 22, 1A9. (In all cases, one or more digits is not in the set of allowed
digits for the given base.)

Positional numeral systems work using exponentiation of the base. A digit's value is the digit multiplied by
the value of its place. Place values are the number of the base raised to the nth power, where n is the
number of other digits between a given digit and the radix point. If a given digit is on the left hand side of
the radix point (i.e. its value is an integer) then n is positive or zero; if the digit is on the right hand side of
the radix point (i.e., its value is fractional) then n is negative.

As an example of usage, the number 465 in its respective base b (which must be at least base 7 because the
highest digit in it is 6) is equal to:

If the number 465 was in base-10, then it would equal:

(46510 = 46510)

If however, the number were in base 7, then it would equal:

(4657 = 24310)

10b = b for any base b, since 10b = 1×b1 + 0×b0. For example, 102 = 2; 103 = 3; 1016 = 1610. Note that
the last "16" is indicated to be in base 10. The base makes no difference for one-digit numerals.

Notation
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This concept can be demonstrated using a diagram. One object represents one unit. When the number of
objects is equal to or greater than the base b, then a group of objects is created with b objects. When the
number of these groups exceeds b, then a group of these groups of objects is created with b groups of b
objects; and so on. Thus the same number in different bases will have different values:

241 in base 5: 
   2 groups of 52 (25)           4 groups of 5          1 group of 1 
   ooooo    ooooo 
   ooooo    ooooo                ooooo   ooooo 
   ooooo    ooooo         +                         +         o 
   ooooo    ooooo                ooooo   ooooo 
   ooooo    ooooo 

241 in base 8: 
   2 groups of 82 (64)          4 groups of 8          1 group of 1 
 oooooooo  oooooooo 
 oooooooo  oooooooo 
 oooooooo  oooooooo         oooooooo   oooooooo 
 oooooooo  oooooooo    +                            +        o 
 oooooooo  oooooooo 
 oooooooo  oooooooo         oooooooo   oooooooo 
 oooooooo  oooooooo 
 oooooooo  oooooooo 

The notation can be further augmented by allowing a leading minus sign. This allows the representation of
negative numbers. For a given base, every representation corresponds to exactly one real number and every
real number has at least one representation. The representations of rational numbers are those
representations that are finite, use the bar notation, or end with an infinitely repeating cycle of digits.

A digit is a symbol that is used for positional notation, and a numeral consists of one or more digits used for
representing a number with positional notation. Today's most common digits are the decimal digits "0", "1",
"2", "3", "4", "5", "6", "7", "8", and "9". The distinction between a digit and a numeral is most
pronounced in the context of a number base.

A non-zero numeral with more than one digit position will mean a different number in a different number
base, but in general, the digits will mean the same.[12] For example, the base-8 numeral 238 contains two
digits, "2" and "3", and with a base number (subscripted) "8". When converted to base-10, the 238 is
equivalent to 1910, i.e. 238 = 1910. In our notation here, the subscript "8" of the numeral 238 is part of the
numeral, but this may not always be the case.

Imagine the numeral "23" as having an ambiguous base number. Then "23" could likely be any base, from
base-4 up. In base-4, the "23" means 1110, i.e. 234 = 1110. In base-60, the "23" means the number 12310,
i.e. 2360 = 12310. The numeral "23" then, in this case, corresponds to the set of base-10 numbers {11, 13,
15, 17, 19, 21, 23, ..., 121, 123} while its digits "2" and "3" always retain their original meaning: the "2"
means "two of", and the "3" three.

In certain applications when a numeral with a fixed number of positions needs to represent a greater
number, a higher number-base with more digits per position can be used. A three-digit, decimal numeral
can represent only up to 999. But if the number-base is increased to 11, say, by adding the digit "A", then
the same three positions, maximized to "AAA", can represent a number as great as 1330. We could
increase the number base again and assign "B" to 11, and so on (but there is also a possible encryption
between number and digit in the number-digit-numeral hierarchy). A three-digit numeral "ZZZ" in base-60
could mean 215 999. If we use the entire collection of our alphanumerics we could ultimately serve a base-
62 numeral system, but we remove two digits, uppercase "I" and uppercase "O", to reduce confusion with

Digits and numerals
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digits "1" and "0".[13] We are left with a base-60, or sexagesimal numeral system utilizing 60 of the 62
standard alphanumerics. (But see Sexagesimal system below.) In general, the number of possible values that
can be represented by a  digit number in base  is .

The common numeral systems in computer science are binary (radix 2), octal (radix 8), and hexadecimal
(radix 16). In binary only digits "0" and "1" are in the numerals. In the octal numerals, are the eight digits
0–7. Hex is 0–9 A–F, where the ten numerics retain their usual meaning, and the alphabetics correspond to
values 10–15, for a total of sixteen digits. The numeral "10" is binary numeral "2", octal numeral "8", or
hexadecimal numeral "16".

The notation can be extended into the negative exponents of the base b. Thereby the so-called radix point,
mostly ».«, is used as separator of the positions with non-negative from those with negative exponent.

Numbers that are not integers use places beyond the radix point. For every position behind this point (and
thus after the units digit), the exponent n of the power bn decreases by 1 and the power approaches 0. For
example, the number 2.35 is equal to:

If the base and all the digits in the set of digits are non-negative, negative numbers cannot be expressed. To
overcome this, a minus sign, here »-«, is added to the numeral system. In the usual notation it is prepended
to the string of digits representing the otherwise non-negative number.

The conversion to a base  of an integer n represented in base  can be done by a succession of
Euclidean divisions by  the right-most digit in base  is the remainder of the division of n by  the
second right-most digit is the remainder of the division of the quotient by  and so on. The left-most digit
is the last quotient. In general, the kth digit from the right is the remainder of the division by  of the
(k−1)th quotient.

For example: converting A10BHex to decimal (41227):

0xA10B/10 = 0x101A R: 7 (ones place) 
0x101A/10 = 0x19C  R: 2 (tens place) 
 0x19C/10 = 0x29   R: 2 (hundreds place) 
  0x29/10 = 0x4    R: 1  ... 
                      4 

When converting to a larger base (such as from binary to decimal), the remainder represents  as a single
digit, using digits from . For example: converting 0b11111001 (binary) to 249 (decimal):

0b11111001/10 = 0b11000 R: 0b1001 (0b1001 = "9" for ones place) 
   0b11000/10 = 0b10    R: 0b100  (0b100 =  "4" for tens) 
      0b10/10 = 0b0     R: 0b10   (0b10 =   "2" for hundreds) 

Radix point
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Base conversion
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For the fractional part, conversion can be done by taking digits after the radix point (the numerator), and
dividing it by the implied denominator in the target radix. Approximation may be needed due to a
possibility of non-terminating digits if the reduced fraction's denominator has a prime factor other than any
of the base's prime factor(s) to convert to. For example, 0.1 in decimal (1/10) is 0b1/0b1010 in binary, by
dividing this in that radix, the result is 0b0.00011 (because one of the prime factors of 10 is 5). For more
general fractions and bases see the algorithm for positive bases.

In practice, Horner's method is more efficient than the repeated division required above[14]. A number in
positional notation can be thought of as a polynomial, where each digit is a coefficient. Coefficients can be
larger than one digit, so an efficient way to convert bases is to convert each digit, then evaluate the
polynomial via Horner's method within the target base. Converting each digit is a simple lookup table,
removing the need for expensive division or modulus operations; and multiplication by x becomes right-
shifting. However, other polynomial evaluation algorithms would work as well, like repeated squaring for
single or sparse digits. Example:

Convert 0xA10B to 41227 
 A10B = (10*16^3) + (1*16^2) + (0*16^1) + (11*16^0) 
 
 Lookup table: 
  0x0 = 0 
  0x1 = 1 
  ... 
  0x9 = 9 
  0xA = 10 
  0xB = 11 
  0xC = 12 
  0xD = 13 
  0xE = 14 
  0xF = 15 
 Therefore 0xA10B's decimal digits are 10, 1, 0, and 11. 
  
 Lay out the digits out like this. The most significant digit (10) is "dropped": 
  10 1   0    11 <- Digits of 0xA10B 
 
  --------------- 
  10 
 Then we multiply the bottom number from the source base (16), the product is placed under 
the next digit of the source value, and then add: 
  10 1   0    11 
     160 
  --------------- 
  10 161 
 
 Repeat until the final addition is performed: 
  10 1   0    11 
     160 2576 41216 
  --------------- 
  10 161 2576 41227 
   
 and that is 41227 in decimal. 

Convert 0b11111001 to 249 
 Lookup table: 
  0b0 = 0 
  0b1 = 1 
 
Result: 
 1  1  1  1  1  0  0   1 <- Digits of 0b11111001 
    2  6  14 30 62 124 248 
 ------------------------- 
 1  3  7  15 31 62 124 249 

The numbers which have a finite representation form the semiring

Terminating fractions
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More explicitly, if  is a factorization of  into the primes  with
exponents ,[15] then with the non-empty set of denominators  we have

where  is the group generated by the  and  is the so-called localization of  with respect
to .

The denominator of an element of  contains if reduced to lowest terms only prime factors out of . This
ring of all terminating fractions to base  is dense in the field of rational numbers . Its completion for the
usual (Archimedean) metric is the same as for , namely the real numbers . So, if  then 
has not to be confused with , the discrete valuation ring for the prime , which is equal to  with 

.

If  divides , we have 

The representation of non-integers can be extended to allow an infinite string of digits beyond the point.
For example, 1.12112111211112 ... base-3 represents the sum of the infinite series:

Since a complete infinite string of digits cannot be explicitly written, the trailing ellipsis (...) designates the
omitted digits, which may or may not follow a pattern of some kind. One common pattern is when a finite
sequence of digits repeats infinitely. This is designated by drawing a vinculum across the repeating block:

This is the repeating decimal notation (to which there does not exist a single universally accepted notation
or phrasing). For base 10 it is called a repeating decimal or recurring decimal.

An irrational number has an infinite non-repeating representation in all integer bases. Whether a rational
number has a finite representation or requires an infinite repeating representation depends on the base. For
example, one third can be represented by:

Infinite representations

Rational numbers
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or, with the base implied:
 (see also 0.999...)

For integers p and q with gcd(p, q) = 1, the fraction p/q has a finite representation in base b if and only if
each prime factor of q is also a prime factor of b.

For a given base, any number that can be represented by a finite number of digits (without using the bar
notation) will have multiple representations, including one or two infinite representations:

1. A finite or infinite number of zeroes can be appended:

2. The last non-zero digit can be reduced by one and an infinite string of digits, each
corresponding to one less than the base, are appended (or replace any following zero
digits):

 (see also 0.999...)

A (real) irrational number has an infinite non-repeating representation in all integer bases.

Examples are the non-solvable nth roots

with  and y ∉ Q, numbers which are called algebraic, or numbers like

which are transcendental. The number of transcendentals is uncountable and the sole way to write them
down with a finite number of symbols is to give them a symbol or a finite sequence of symbols.

In the decimal (base-10) Hindu–Arabic numeral system, each position starting from the right is a higher
power of 10. The first position represents 100 (1), the second position 101 (10), the third position 102

(10 × 10 or 100), the fourth position 103 (10 × 10 × 10 or 1000), and so on.

Fractional values are indicated by a separator, which can vary in different locations. Usually this separator
is a period or full stop, or a comma. Digits to the right of it are multiplied by 10 raised to a negative power
or exponent. The first position to the right of the separator indicates 10−1 (0.1), the second position 10−2

(0.01), and so on for each successive position.

Irrational numbers

Applications

Decimal system
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As an example, the number 2674 in a base-10 numeral system is:

(2 × 103) + (6 × 102) + (7 × 101) + (4 × 100)

or

(2 × 1000) + (6 × 100) + (7 × 10) + (4 × 1).

The sexagesimal or base-60 system was used for the integral and fractional portions of Babylonian
numerals and other mesopotamian systems, by Hellenistic astronomers using Greek numerals for the
fractional portion only, and is still used for modern time and angles, but only for minutes and seconds.
However, not all of these uses were positional.

Modern time separates each position by a colon or a prime symbol. For example, the time might be
10:25:59 (10 hours 25 minutes 59 seconds). Angles use similar notation. For example, an angle might be
10°25′59″ (10 degrees 25 minutes 59 seconds). In both cases, only minutes and seconds use sexagesimal
notation—angular degrees can be larger than 59 (one rotation around a circle is 360°, two rotations are
720°, etc.), and both time and angles use decimal fractions of a second. This contrasts with the numbers
used by Hellenistic and Renaissance astronomers, who used thirds, fourths, etc. for finer increments. Where
we might write 10°25′59.392″, they would have written 10°25 59 23 31 12  or 10°25I59II23III31IV12V.

Using a digit set of digits with upper and lowercase letters allows short notation for sexagesimal numbers,
e.g. 10:25:59 becomes 'ARz' (by omitting I and O, but not i and o), which is useful for use in URLs, etc.,
but it is not very intelligible to humans.

In the 1930s, Otto Neugebauer introduced a modern notational system for Babylonian and Hellenistic
numbers that substitutes modern decimal notation from 0 to 59 in each position, while using a semicolon (;)
to separate the integral and fractional portions of the number and using a comma (,) to separate the positions
within each portion.[16] For example, the mean synodic month used by both Babylonian and Hellenistic
astronomers and still used in the Hebrew calendar is 29;31,50,8,20 days, and the angle used in the example
above would be written 10;25,59,23,31,12 degrees.

In computing, the binary (base-2), octal (base-8) and hexadecimal (base-16) bases are most commonly
used. Computers, at the most basic level, deal only with sequences of conventional zeroes and ones, thus it
is easier in this sense to deal with powers of two. The hexadecimal system is used as "shorthand" for binary
—every 4 binary digits (bits) relate to one and only one hexadecimal digit. In hexadecimal, the six digits
after 9 are denoted by A, B, C, D, E, and F (and sometimes a, b, c, d, e, and f).

The octal numbering system is also used as another way to represent binary numbers. In this case the base
is 8 and therefore only digits 0, 1, 2, 3, 4, 5, 6, and 7 are used. When converting from binary to octal every
3 bits relate to one and only one octal digit.

Hexadecimal, decimal, octal, and a wide variety of other bases have been used for binary-to-text encoding,
implementations of arbitrary-precision arithmetic, and other applications.

For a list of bases and their applications, see list of numeral systems.

Sexagesimal system

Computing
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Base-12 systems (duodecimal or dozenal) have been popular because multiplication and division are easier
than in base-10, with addition and subtraction being just as easy. Twelve is a useful base because it has
many factors. It is the smallest common multiple of one, two, three, four and six. There is still a special
word for "dozen" in English, and by analogy with the word for 102, hundred, commerce developed a word
for 122, gross. The standard 12-hour clock and common use of 12 in English units emphasize the utility of
the base. In addition, prior to its conversion to decimal, the old British currency Pound Sterling (GBP)
partially used base-12; there were 12 pence (d) in a shilling (s), 20 shillings in a pound (£), and therefore
240 pence in a pound. Hence the term LSD or, more properly, £sd.

The Maya civilization and other civilizations of pre-Columbian Mesoamerica used base-20 (vigesimal), as
did several North American tribes (two being in southern California). Evidence of base-20 counting
systems is also found in the languages of central and western Africa.

Remnants of a Gaulish base-20 system also exist in French, as seen today in the names of the numbers from
60 through 99. For example, sixty-five is soixante-cinq (literally, "sixty [and] five"), while seventy-five is
soixante-quinze (literally, "sixty [and] fifteen"). Furthermore, for any number between 80 and 99, the "tens-
column" number is expressed as a multiple of twenty. For example, eighty-two is quatre-vingt-deux
(literally, four twenty[s] [and] two), while ninety-two is quatre-vingt-douze (literally, four twenty[s] [and]
twelve). In Old French, forty was expressed as two twenties and sixty was three twenties, so that fifty-three
was expressed as two twenties [and] thirteen, and so on.

In English the same base-20 counting appears in the use of "scores". Although mostly historical, it is
occasionally used colloquially. Verse 10 of Pslam 90 in the King James Version of the Bible starts: "The
days of our years are threescore years and ten; and if by reason of strength they be fourscore years, yet is
their strength labour and sorrow". The Gettysburg Address starts: "Four score and seven years ago".

The Irish language also used base-20 in the past, twenty being fichid, forty dhá fhichid, sixty trí fhichid and
eighty ceithre fhichid. A remnant of this system may be seen in the modern word for 40, daoichead.

The Welsh language continues to use a base-20 counting system, particularly for the age of people, dates
and in common phrases. 15 is also important, with 16–19 being "one on 15", "two on 15" etc. 18 is
normally "two nines". A decimal system is commonly used.

The Inuit languages use a base-20 counting system. Students from Kaktovik, Alaska invented a base-20
numberal system in 1994[17]

Danish numerals display a similar base-20 structure.

The Māori language of New Zealand also has evidence of an underlying base-20 system as seen in the
terms Te Hokowhitu a Tu referring to a war party (literally "the seven 20s of Tu") and Tama-hokotahi,
referring to a great warrior ("the one man equal to 20").

The binary system was used in the Egyptian Old Kingdom, 3000 BC to 2050 BC. It was cursive by
rounding off rational numbers smaller than 1 to 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64, with a 1/64 term
thrown away (the system was called the Eye of Horus).

A number of Australian Aboriginal languages employ binary or binary-like counting systems. For example,
in Kala Lagaw Ya, the numbers one through six are urapon, ukasar, ukasar-urapon, ukasar-ukasar,
ukasar-ukasar-urapon, ukasar-ukasar-ukasar.

North and Central American natives used base-4 (quaternary) to represent the four cardinal directions.
Mesoamericans tended to add a second base-5 system to create a modified base-20 system.

Other bases in human language
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A base-5 system (quinary) has been used in many cultures for counting. Plainly it is based on the number of
digits on a human hand. It may also be regarded as a sub-base of other bases, such as base-10, base-20, and
base-60.

A base-8 system (octal) was devised by the Yuki tribe of Northern California, who used the spaces between
the fingers to count, corresponding to the digits one through eight.[18] There is also linguistic evidence
which suggests that the Bronze Age Proto-Indo Europeans (from whom most European and Indic
languages descend) might have replaced a base-8 system (or a system which could only count up to 8) with
a base-10 system. The evidence is that the word for 9, newm, is suggested by some to derive from the word
for "new", newo-, suggesting that the number 9 had been recently invented and called the "new
number".[19]

Many ancient counting systems use five as a primary base, almost surely coming from the number of
fingers on a person's hand. Often these systems are supplemented with a secondary base, sometimes ten,
sometimes twenty. In some African languages the word for five is the same as "hand" or "fist" (Dyola
language of Guinea-Bissau, Banda language of Central Africa). Counting continues by adding 1, 2, 3, or 4
to combinations of 5, until the secondary base is reached. In the case of twenty, this word often means
"man complete". This system is referred to as quinquavigesimal. It is found in many languages of the
Sudan region.

The Telefol language, spoken in Papua New Guinea, is notable for possessing a base-27 numeral system.

Interesting properties exist when the base is not fixed or positive and when the digit symbol sets denote
negative values. There are many more variations. These systems are of practical and theoretic value to
computer scientists.

Balanced ternary[20] uses a base of 3 but the digit set is {1,0,1} instead of {0,1,2}. The "1" has an
equivalent value of −1. The negation of a number is easily formed by switching the    on the 1s. This
system can be used to solve the balance problem, which requires finding a minimal set of known counter-
weights to determine an unknown weight. Weights of 1, 3, 9, ... 3n known units can be used to determine
any unknown weight up to 1 + 3 + ... + 3n units. A weight can be used on either side of the balance or not
at all. Weights used on the balance pan with the unknown weight are designated with 1, with 1 if used on
the empty pan, and with 0 if not used. If an unknown weight W is balanced with 3 (31) on its pan and 1 and
27 (30 and 33) on the other, then its weight in decimal is 25 or 1011 in balanced base-3.

10113 = 1 × 33 + 0 × 32 − 1 × 31 + 1 × 30 = 25.

The factorial number system uses a varying radix, giving factorials as place values; they are related to
Chinese remainder theorem and residue number system enumerations. This system effectively enumerates
permutations. A derivative of this uses the Towers of Hanoi puzzle configuration as a counting system. The
configuration of the towers can be put into 1-to-1 correspondence with the decimal count of the step at
which the configuration occurs and vice versa.

Decimal equivalents −3 −2 −1 0 1 2 3 4 5 6 7 8

Balanced base 3 10 11 1 0 1 11 10 11 111 110 111 101

Base −2 1101 10 11 0 1 110 111 100 101 11010 11011 11000

Factoroid 0 10 100 110 200 210 1000 1010 1100

Non-standard positional numeral systems
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Each position does not need to be positional itself. Babylonian sexagesimal numerals were positional, but in
each position were groups of two kinds of wedges representing ones and tens (a narrow vertical wedge ( | )
and an open left pointing wedge (<))—up to 14 symbols per position (5 tens (<<<<<) and 9 ones ( ||||||||| )
grouped into one or two near squares containing up to three tiers of symbols, or a place holder (\\) for the
lack of a position).[21] Hellenistic astronomers used one or two alphabetic Greek numerals for each position
(one chosen from 5 letters representing 10–50 and/or one chosen from 9 letters representing 1–9, or a zero
symbol).[22]
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