
Software security assurance
Software security assurance is a process that helps design and implement software that protects the data
and resources contained in and controlled by that software. Software is itself a resource and thus must be
afforded appropriate security.

Since the number of threats specifically targeting software is increasing, the security of our software that we
produce or procure must be assured. "Dependence on information technology makes software assurance a
key element of business continuity, national security, and homeland security."[1]

What is software security assurance?
What causes software security problems?

Non-conformance, or a failure to satisfy requirements
Errors or omissions in software requirements

Software security assurance activities
Building in security

Tools and techniques
Common weaknesses enumeration
Security architecture/design analysis

Logic analysis
Data analysis
Interface analysis
Constraint analysis

Secure code reviews, inspections, and walkthroughs
Informal reviews
Formal reviews
Inspections and walkthroughs

Security testing

See also
References

Software Security Assurance (SSA) is the process of ensuring that software is designed to operate at a level
of security that is consistent with the potential harm that could result from the loss, inaccuracy, alteration,
unavailability, or misuse of the data and resources that it uses, controls, and protects.

The software security assurance process begins by identifying and categorizing the information that is to be
contained in, or used by, the software. The information should be categorized according to its sensitivity.
For example, in the lowest category, the impact of a security violation is minimal (i.e. the impact on the

Contents

What is software security assurance?

https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Resource_(computer_science)
https://en.wikipedia.org/wiki/Security#Types
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Information_sensitivity


software owner's mission, functions, or reputation is negligible). For a top category, however, the impact
may pose a threat to human life; may have an irreparable impact on software owner's missions, functions,
image, or reputation; or may result in the loss of significant assets or resources.

Once the information is categorized, security requirements can be developed. The security requirements
should address access control, including network access and physical access; data management and data
access; environmental controls (power, air conditioning, etc.) and off-line storage; human resource security;
and audit trails and usage records.

All security vulnerabilities in software are the result of security bugs, or defects, within the software. In
most cases, these defects are created by two primary causes: (1) non-conformance, or a failure to satisfy
requirements; and (2) an error or omission in the software requirements.

A non-conformance may be simple–the most common is a coding error or defect–or more complex (i.e., a
subtle timing error or input validation error). The important point about non-conformance is that verification
and validation techniques are designed to detect them and security assurance techniques are designed to
prevent them. Improvements in these methods, through a software security assurance program, can improve
the security of software.

The most serious security problems with software-based systems are those that develop when the software
requirements are incorrect, inappropriate, or incomplete for the system situation. Unfortunately, errors or
omissions in requirements are more difficult to identify. For example, the software may perform exactly as
required under normal use, but the requirements may not correctly deal with some system state. When the
system enters this problem state, unexpected and undesirable behavior may result. This type of problem
cannot be handled within the software discipline; it results from a failure of the system and software
engineering processes which developed and allocated the system requirements to the software.

There are two basic types of Software Security Assurance activities.

1. Some focus on ensuring that information processed by an information system is assigned a
proper sensitivity category, and that the appropriate protection requirements have been
developed and met in the system.

2. Others focus on ensuring the control and protection of the software, as well as that of the
software support tools and data.

At a minimum, a software security assurance program should ensure that:

1. A security evaluation has been performed for the software.
2. Security requirements have been established for the software.
3. Security requirements have been established for the software development and/or

operations and maintenance (O&M) processes.

What causes software security problems?

Non-conformance, or a failure to satisfy requirements

Errors or omissions in software requirements

Software security assurance activities

https://en.wikipedia.org/wiki/Access_control
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Off-line_storage
https://en.wikipedia.org/wiki/Security_bugs
https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Program_state


4. Each software review, or audit, includes an evaluation of the security requirements.
5. A configuration management and corrective action process is in place to provide security for

the existing software and to ensure that any proposed changes do not inadvertently create
security violations or vulnerabilities.

6. Physical security for the software is adequate.

Improving the software development process and building better software are ways to improve software
security, by producing software with fewer defects and vulnerabilities. A first-order approach is to identify
the critical software components that control security-related functions and pay special attention to them
throughout the development and testing process. This approach helps to focus scarce security resources on
the most critical areas.

There are many commercial off-the-shelf (COTS) software packages that are available to support software
security assurance activities. However, before they are used, these tools must be carefully evaluated and
their effectiveness must be assured.

One way to improve software security is to gain a better understanding of the most common weaknesses
that can affect software security. With that in mind, there is a current community-based program called the
Common Weaknesses Enumeration project,[2] which is sponsored by The Mitre Corporation to identify and
describe such weaknesses. The list, which is currently in a very preliminary form, contains descriptions of
common software weaknesses, faults, and flaws.

Security architecture/design analysis verifies that the software design correctly implements security
requirements. Generally speaking, there are four basic techniques that are used for security
architecture/design analysis. [3][4]

Logic analysis evaluates the equations, algorithms, and control logic of the software design.

Data analysis evaluates the description and intended usage of each data item used in design of the software
component. The use of interrupts and their effect on data should receive special attention to ensure interrupt
handling routines do not alter critical data used by other routines.

Building in security

Tools and techniques

Common weaknesses enumeration

Security architecture/design analysis

Logic analysis

Data analysis

Interface analysis

https://en.wikipedia.org/wiki/Configuration_management
https://en.wikipedia.org/wiki/Corrective_action
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Software_Development_Security
https://en.wikipedia.org/wiki/Commercial_off-the-shelf
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Mitre_Corporation
https://en.wikipedia.org/wiki/Security_architecture
https://en.wikipedia.org/wiki/Equations
https://en.wikipedia.org/wiki/Algorithms
https://en.wikipedia.org/wiki/Control_logic
https://en.wikipedia.org/wiki/Component-based_software_engineering#Component_Definition


Interface analysis verifies the proper design of a software component's interfaces with other components of
the system, including computer hardware, software, and end-users.

Constraint analysis evaluates the design of a software component against restrictions imposed by
requirements and real-world limitations. The design must be responsive to all known or anticipated
restrictions on the software component. These restrictions may include timing, sizing, and throughput
constraints, input and output data limitations, equation and algorithm limitations, and other design
limitations.

Code analysis verifies that the software source code is written correctly, implements the desired design, and
does not violate any security requirements. Generally speaking, the techniques used in the performance of
code analysis mirror those used in design analysis.

Secure Code reviews are conducted during and at the end of the development phase to determine whether
established security requirements, security design concepts, and security-related specifications have been
satisfied. These reviews typically consist of the presentation of material to a review group. Secure code
reviews are most effective when conducted by personnel who have not been directly involved in the
development of the software being reviewed.

Informal secure code reviews can be conducted on an as-needed basis. To conduct an informal review, the
developer simply selects one or more reviewer(s) and provides and/or presents the material to be reviewed.
The material may be as informal as pseudo-code or hand-written documentation.

Formal secure code reviews are conducted at the end of the development phase for each software
component. The client of the software appoints the formal review group, who may make or affect a "go/no-
go" decision to proceed to the next step of the software development life cycle.

A secure code inspection or walkthrough is a detailed examination of a product on a step-by-step or line-
by-line (of source code) basis. The purpose of conducting secure code inspections or walkthroughs is to
find errors. Typically, the group that does an inspection or walkthrough is composed of peers from
development, security engineering and quality assurance.

Software security testing, which includes penetration testing, confirms the results of design and code
analysis, investigates software behaviour, and verifies that the software complies with security
requirements. Special security testing, conducted in accordance with a security test plan and procedures,
establishes the compliance of the software with the security requirements. Security testing focuses on

Constraint analysis

Secure code reviews, inspections, and walkthroughs

Informal reviews

Formal reviews

Inspections and walkthroughs

Security testing

https://en.wikipedia.org/wiki/Interface_(computing)
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/End-user_(computer_science)
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Code_review
https://en.wikipedia.org/wiki/Pseudo_code
https://en.wikipedia.org/wiki/Software_development_life_cycle
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Security_engineering
https://en.wikipedia.org/wiki/Quality_assurance
https://en.wikipedia.org/wiki/Security_testing
https://en.wikipedia.org/wiki/Penetration_test


locating software weaknesses and identifying extreme or unexpected situations that could cause the
software to fail in ways that would cause a violation of security requirements. Security testing efforts are
often limited to the software requirements that are classified as "critical" security items.

Secure by design
Computer security
Security engineering
Software protection

1. Karen Mercedes, Theodore Winograd "Enhancing The Development Life Cycle To Produce
Secure Software" (http://www.thedacs.com/techs/abstract/358844) Archived (https://web.arc
hive.org/web/20120330161131/http://www.thedacs.com/techs/abstract/358844) 2012-03-30
at the Wayback Machine, Data & Analysis Center for Software, October 2008

2. "Common Weaknesses Enumeration Project" (http://www.cve.mitre.org/cwe/index.html).
Retrieved 26 August 2010.

3. Web Application Security Testing (https://pentesting.company/web-application-security-testi
ng/)

4. "A Catalog of Security Architecture Weaknesses". 2017 IEEE International Conference on
Software Architecture (ICSA). doi:10.1109/ICSAW.2017.25.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Software_security_assurance&oldid=1004822661"

This page was last edited on 4 February 2021, at 15:45 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

See also

References

https://en.wikipedia.org/wiki/Secure_by_design
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Security_engineering
https://en.wikipedia.org/wiki/Software_protection
http://www.thedacs.com/techs/abstract/358844
https://web.archive.org/web/20120330161131/http://www.thedacs.com/techs/abstract/358844
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Data_%26_Analysis_Center_for_Software
http://www.cve.mitre.org/cwe/index.html
https://pentesting.company/web-application-security-testing/
https://en.wikipedia.org/w/index.php?title=Software_security_assurance&oldid=1004822661
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

