
Software system safety
In software engineering, software system safety optimizes system safety in the design, development, use,
and maintenance of software systems and their integration with safety-critical hardware systems in an
operational environment.

Overview
Goals
See also
References

Software system safety is a subset of system safety and system engineering and is synonymous with the
software engineering aspects of Functional Safety. As part of the total safety and software development
program, software cannot be allowed to function independently of the total effort. Both simple and highly
integrated multiple systems are experiencing an extraordinary growth in the use of computers and software
to monitor and/or control safety-critical subsystems or functions. A software specification error, design flaw,
or the lack of generic safety-critical requirements can contribute to or cause a system failure or erroneous
human decision. To achieve an acceptable level of safety for software used in critical applications, software
system safety engineering must be given primary emphasis early in the requirements definition and system
conceptual design process. Safety-critical software must then receive continuous management emphasis and
engineering analysis throughout the development and operational lifecycles of the system. Software with
safety-critical functionality must be thoroughly verified with objective analysis.

Functional Hazard Analyses (FHA) are often conducted early on - in parallel with or as part of system
engineering Functional Analyses - to determine the safety-critical functions (SCF) of the systems for further
analyses and verification. Software system safety is directly related to the more critical design aspects and
safety attributes in software and system functionality, whereas software quality attributes are inherently
different and require standard scrutiny and development rigor. Development Assurance levels (DAL) and
associated Level of Rigor (LOR) is a graded approach to software quality and software design assurance as
a pre-requisite that a suitable software process is followed for confidence. LOR concepts and standards
such as DO-178C are NOT a substitute for software safety. Software safety per IEEE STD-1228 and MIL-
STD-882E focuses on ensuring explicit safety requirements are met and verified using functional
approaches from a safety requirements analysis and test perspective. Software safety hazard analysis
required for more complex systems where software is controlling critical functions generally are in the
following sequential categories and are conducted in phases as part of the system safety or safety
engineering process: software safety requirements analysis; software safety design analyses (top level,
detailed design and code level); software safety test analysis, and software safety change analysis. Once
these "functional" software safety analyses are completed the software engineering team will know where
to place safety emphasis and what functional threads, functional paths, domains and boundaries to focus on
when designing in software safety attributes to ensure correct functionality and to detect malfunctions,
failures, faults and to implement a host of mitigation strategies to control hazards. Software security and

Contents

Overview

https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/System_safety
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Safety-critical_system
https://en.wikipedia.org/wiki/Program_specification
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/DO-178C


various software protection technologies are similar to software safety attributes in the design to mitigate
various types of threats vulnerability and risks. Deterministic software is sought in the design by verifying
correct and predictable behavior at the system level.

Functional safety is achieved through engineering development to ensure correct execution
and behavior of software functions as intended
Safety consistent with mission requirements, is designed into the software in a timely, cost
effective manner.
On complex systems involving many interactions safety-critical functionality should be
identified and thoroughly analyzed before deriving hazards and design safeguards for
mitigations.
Safety-critical functions lists and preliminary hazards lists should be determined proactively
and influence the requirements that will be implemented in software.
Contributing factors and root causes of faults and resultant hazards associated with the
system and its software are identified, evaluated and eliminated or the risk reduced to an
acceptable level, throughout the lifecycle.
Reliance on administrative procedures for hazard control is minimized.
The number and complexity of safety critical interfaces is minimized.
The number and complexity of safety critical computer software components is minimized.
Sound human engineering principles are applied to the design of the software-user interface
to minimize the probability of human error.
Failure modes, including hardware, software, human and system are addressed in the
design of the software.
Sound software engineering practices and documentation are used in the development of
the software.
Safety issues and safety attributes are addressed as part of the software testing effort at all
levels.
Software is designed for human machine interface, ease of maintenance and modification or
enhancement
Software with safety-critical functionality must be thoroughly verified with objective analysis
and preferably test evidence that all safety requirements have been met per established
criteria.

Software assurance
IEC 61508 - Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems
ISO 26262 - Road vehicles – Functional safety
Functional Safety
Software quality
System accident

Goals

See also

References

https://en.wikipedia.org/wiki/Software_assurance
https://en.wikipedia.org/wiki/IEC_61508
https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/Functional_safety
https://en.wikipedia.org/wiki/Software_quality_assurance
https://en.wikipedia.org/wiki/System_accident


 This article incorporates public domain material from the United States Army document: "Software
handbook" (http://www.monmouth.army.mil/cecom/safety/sys_service/software_handbook.htm).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Software_system_safety&oldid=1045888761"

This page was last edited on 22 September 2021, at 23:48 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

https://en.wikipedia.org/wiki/Copyright_status_of_works_by_the_federal_government_of_the_United_States
https://en.wikipedia.org/wiki/United_States_Army
http://www.monmouth.army.mil/cecom/safety/sys_service/software_handbook.htm
https://en.wikipedia.org/w/index.php?title=Software_system_safety&oldid=1045888761
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

