
Software testing tactics
This article discusses a set of tactics useful in software testing. It is intended as a comprehensive list of
tactical approaches to Software Quality Assurance (more widely colloquially known as Quality Assurance
(traditionally called by the acronym "QA") and general application of the test method (usually just called
"testing" or sometimes "developer testing").

Installation testing
The box approach

White-box testing
Black-box testing

Visual testing
Grey-box testing

Automated testing
Automated testing tools
Abstraction of application layers as applied to automated testing

Unit testing
Integration testing
Component interface testing
System testing
Operational acceptance testing

Compatibility testing
Smoke and sanity testing
Regression testing
Acceptance testing
Alpha testing
Beta testing
Functional vs non-functional testing
Continuous testing
Destructive testing
Software performance testing
Usability testing
Accessibility testing
Security testing
Internationalization and localization testing
Development testing
A/B testing

Contents

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_Quality_Assurance
https://en.wikipedia.org/wiki/Quality_Assurance
https://en.wikipedia.org/wiki/Test_method


Concurrent testing
Conformance testing or type testing
References
External links

An installation test assures that the system is installed correctly and working at actual customer's hardware.

Software testing methods are traditionally divided into white- and black-box testing. These two approaches
are used to describe the point of view that a test engineer takes when designing test cases.

White-box testing (also known as clear box testing, glass box testing, transparent box testing and structural
testing, by seeing the source code) tests internal structures or workings of a program, as opposed to the
functionality exposed to the end-user. In white-box testing an internal perspective of the system, as well as
programming skills, are used to design test cases. The tester chooses inputs to exercise paths through the
code and determine the appropriate outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit
testing (ICT).

While white-box testing can be applied at the unit, integration and system levels of the software testing
process, it is usually done at the unit level. It can test paths within a unit, paths between units during
integration, and between subsystems during a system–level test. Though this method of test design can
uncover many errors or problems, it might not detect unimplemented parts of the specification or missing
requirements.

Techniques used in white-box testing include:

API testing – testing of the application using public and private APIs (application
programming interfaces)
Code coverage – creating tests to satisfy some criteria of code coverage (e.g., the test
designer can create tests to cause all statements in the program to be executed at least
once)
Fault injection methods – intentionally introducing faults to gauge the efficacy of testing
strategies
Mutation testing methods
Static testing methods

Code coverage tools can evaluate the completeness of a test suite that was created with any method,
including black-box testing. This allows the software team to examine parts of a system that are rarely
tested and ensures that the most important function points have been tested.[1] Code coverage as a software
metric can be reported as a percentage for:

Function coverage, which reports on functions executed

Installation testing

The box approach

White-box testing

https://en.wikipedia.org/wiki/In-circuit_test
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Api_testing
https://en.wikipedia.org/wiki/Application_programming_interfaces
https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Fault_injection
https://en.wikipedia.org/wiki/Mutation_testing
https://en.wikipedia.org/wiki/Static_testing
https://en.wikipedia.org/wiki/Function_points
https://en.wikipedia.org/wiki/Software_metric


Black box diagram

Statement coverage, which reports on the number of lines executed to complete the
test
Decision coverage, which reports on whether both the True and the False branch of a
given test has been executed

100% statement coverage ensures that all code paths or branches (in terms of control flow) are executed at
least once. This is helpful in ensuring correct functionality, but not sufficient since the same code may
process different inputs correctly or incorrectly.

Black-box testing treats the software as a "black box", examining
functionality without any knowledge of internal implementation,
without seeing the source code. The testers are only aware of what
the software is supposed to do, not how it does it.[2] Black-box
testing methods include: equivalence partitioning, boundary value
analysis, all-pairs testing, state transition tables, decision table testing, fuzz testing, model-based testing, use
case testing, exploratory testing and specification-based testing.

Specification-based testing aims to test the functionality of software according to the applicable
requirements.[3] This level of testing usually requires thorough test cases to be provided to the tester, who
then can simply verify that for a given input, the output value (or behavior), either "is" or "is not" the same
as the expected value specified in the test case. Test cases are built around specifications and requirements,
i.e., what the application is supposed to do. It uses external descriptions of the software, including
specifications, requirements, and designs to derive test cases. These tests can be functional or non-
functional, though usually functional.

Specification-based testing may be necessary to assure correct functionality, but it is insufficient to guard
against complex or high-risk situations.[4]

One advantage of the black box technique is that no programming knowledge is required. Whatever biases
the programmers may have had, the tester likely has a different set and may emphasize different areas of
functionality. On the other hand, black-box testing has been said to be "like a walk in a dark labyrinth
without a flashlight."[5] Because they do not examine the source code, there are situations when a tester
writes many test cases to check something that could have been tested by only one test case, or leaves some
parts of the program untested.

This method of test can be applied to all levels of software testing: unit, integration, system and acceptance.
It typically comprises most if not all testing at higher levels, but can also dominate unit testing as well.

The aim of visual testing is to provide developers with the ability to examine what was happening at the
point of software failure by presenting the data in such a way that the developer can easily find the
information she or he requires, and the information is expressed clearly.[6][7]

At the core of visual testing is the idea that showing someone a problem (or a test failure), rather than just
describing it, greatly increases clarity and understanding. Visual testing therefore requires the recording of
the entire test process – capturing everything that occurs on the test system in video format. Output videos
are supplemented by real-time tester input via picture-in-a-picture webcam and audio commentary from
microphones.

Black-box testing

Visual testing

https://en.wikipedia.org/wiki/File:Blackbox.svg
https://en.wikipedia.org/wiki/Control_flow
https://en.wikipedia.org/wiki/Equivalence_partitioning
https://en.wikipedia.org/wiki/Boundary_value_analysis
https://en.wikipedia.org/wiki/All-pairs_testing
https://en.wikipedia.org/wiki/State_transition_table
https://en.wikipedia.org/wiki/Decision_table
https://en.wikipedia.org/wiki/Fuzz_testing
https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Exploratory_testing
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Non-functional_testing
https://en.wikipedia.org/wiki/Unit_test
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Acceptance_test


Visual testing provides a number of advantages. The quality of communication is increased drastically
because testers can show the problem (and the events leading up to it) to the developer as opposed to just
describing it and the need to replicate test failures will cease to exist in many cases. The developer will have
all the evidence he or she requires of a test failure and can instead focus on the cause of the fault and how it
should be fixed.

Visual testing is particularly well-suited for environments that deploy agile methods in their development of
software, since agile methods require greater communication between testers and developers and
collaboration within small teams.

Ad hoc testing and exploratory testing are important methodologies for checking software integrity, because
they require less preparation time to implement, while the important bugs can be found quickly. In ad hoc
testing, where testing takes place in an improvised, impromptu way, the ability of a test tool to visually
record everything that occurs on a system becomes very important in order to document the steps taken to
uncover the bug.

Visual testing is gathering recognition in customer acceptance and usability testing, because the test can be
used by many individuals involved in the development process. For the customer, it becomes easy to
provide detailed bug reports and feedback, and for program users, visual testing can record user actions on
screen, as well as their voice and image, to provide a complete picture at the time of software failure for the
developers.

Grey-box testing (American spelling: gray-box testing) involves having knowledge of internal data
structures and algorithms for purposes of designing tests, while executing those tests at the user, or black-
box level. The tester is not required to have full access to the software's source code.[2] Manipulating input
data and formatting output do not qualify as grey-box, because the input and output are clearly outside of
the "black box" that we are calling the system under test. This distinction is particularly important when
conducting integration testing between two modules of code written by two different developers, where
only the interfaces are exposed for test.

However, tests that require modifying a back-end data repository such as a database or a log file does
qualify as grey-box, as the user would not normally be able to change the data repository in normal
production operations. Grey-box testing may also include reverse engineering to determine, for instance,
boundary values or error messages.

By knowing the underlying concepts of how the software works, the tester makes better-informed testing
choices while testing the software from outside. Typically, a grey-box tester will be permitted to set up an
isolated testing environment with activities such as seeding a database. The tester can observe the state of
the product being tested after performing certain actions such as executing SQL statements against the
database and then executing queries to ensure that the expected changes have been reflected. Grey-box
testing implements intelligent test scenarios, based on limited information. This will particularly apply to
data type handling, exception handling, and so on.[8]

Many programming groups are relying more and more on automated testing, especially groups that use test-
driven development. There are many frameworks to write tests in, and continuous integration software will
run tests automatically every time code is checked into a version control system.

Grey-box testing

Automated testing

https://en.wikipedia.org/wiki/Agile_testing#Agile_methods
https://en.wikipedia.org/wiki/Ad_hoc_testing
https://en.wikipedia.org/wiki/Exploratory_testing
https://en.wikipedia.org/wiki/Acceptance_testing#customer_acceptance
https://en.wikipedia.org/wiki/Usability_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Reverse_coding
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Test_automation
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Version_control


While automation cannot reproduce everything that a human can do (and all the ways they think of doing
it), it can be very useful for regression testing. However, it does require a well-developed test suite of
testing scripts in order to be truly useful.

Program testing and fault detection can be aided significantly by testing tools and debuggers. Testing/debug
tools include features such as:

Program monitors, permitting full or partial monitoring of program code including:

Instruction set simulator, permitting complete instruction level monitoring and trace
facilities
Hypervisor, permitting complete control of the execution of program code including:-
Program animation, permitting step-by-step execution and conditional breakpoint at
source level or in machine code
Code coverage reports

Formatted dump or symbolic debugging, tools allowing inspection of program variables on
error or at chosen points
Automated functional GUI(Graphical User Interface) testing tools are used to repeat system-
level tests through the GUI
Benchmarks, allowing run-time performance comparisons to be made
Performance analysis (or profiling tools) that can help to highlight hot spots and resource
usage

Some of these features may be incorporated into a single composite tool or an Integrated Development
Environment (IDE).

There are generally four recognized levels of tests: unit testing, integration testing, component interface
testing, and system testing. Tests are frequently grouped by where they are added in the software
development process, or by the level of specificity of the test. The main levels during the development
process as defined by the SWEBOK guide are unit-, integration-, and system testing that are distinguished
by the test target without implying a specific process model.[9] Other test levels are classified by the testing
objective.[9]

There are two different levels of tests from the perspective of customers: low-level testing (LLT) and high-
level testing (HLT). LLT is a group of tests for different level components of software application or
product. HLT is a group of tests for the whole software application or product.

Unit testing refers to tests that verify the functionality of a specific section of code, usually at the function
level. In an object-oriented environment, this is usually at the class level, and the minimal unit tests include
the constructors and destructors.[10]

These types of tests are usually written by developers as they work on code (white-box style), to ensure that
the specific function is working as expected. One function might have multiple tests, to catch corner cases
or other branches in the code. Unit testing alone cannot verify the functionality of a piece of software, but

Automated testing tools

Abstraction of application layers as applied to automated testing

Unit testing

https://en.wikipedia.org/wiki/Test_suite
https://en.wikipedia.org/wiki/Debugger
https://en.wikipedia.org/wiki/Instruction_set_simulator
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Program_animation
https://en.wikipedia.org/wiki/Breakpoint
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Symbolic_debugging
https://en.wikipedia.org/wiki/Benchmark_(computing)
https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://en.wikipedia.org/wiki/Hot_spot_(computer_science)
https://en.wikipedia.org/wiki/Integrated_Development_Environment
https://en.wikipedia.org/wiki/SWEBOK
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Corner_case


rather is used to ensure that the building blocks of the software work independently from each other.

Unit testing is a software development process that involves synchronized application of a broad spectrum
of defect prevention and detection strategies in order to reduce software development risks, time, and costs.
It is performed by the software developer or engineer during the construction phase of the software
development lifecycle. Rather than replace traditional QA focuses, it augments it. Unit testing aims to
eliminate construction errors before code is promoted to QA; this strategy is intended to increase the quality
of the resulting software as well as the efficiency of the overall development and QA process.

Depending on the organization's expectations for software development, unit testing might include static
code analysis, data-flow analysis, metrics analysis, peer code reviews, code coverage analysis and other
software verification practices.

Integration testing is any type of software testing that seeks to verify the interfaces between components
against a software design. Software components may be integrated in an iterative way or all together ("big
bang"). Normally the former is considered a better practice since it allows interface issues to be located
more quickly and fixed.

Integration testing works to expose defects in the interfaces and interaction between integrated components
(modules). Progressively larger groups of tested software components corresponding to elements of the
architectural design are integrated and tested until the software works as a system.[11]

The practice of component interface testing can be used to check the handling of data passed between
various units, or subsystem components, beyond full integration testing between those units.[12][13] The
data being passed can be considered as "message packets" and the range or data types can be checked, for
data generated from one unit, and tested for validity before being passed into another unit. One option for
interface testing is to keep a separate log file of data items being passed, often with a timestamp logged to
allow analysis of thousands of cases of data passed between units for days or weeks. Tests can include
checking the handling of some extreme data values while other interface variables are passed as normal
values.[12] Unusual data values in an interface can help explain unexpected performance in the next unit.
Component interface testing is a variation of black-box testing,[13] with the focus on the data values beyond
just the related actions of a subsystem component.

System testing tests a completely integrated system to verify that the system meets its requirements.[14] For
example, a system test might involve testing a logon interface, then creating and editing an entry, plus
sending or printing results, followed by summary processing or deletion (or archiving) of entries, then
logoff.

Operational acceptance is used to conduct operational readiness (pre-release) of a product, service or
system as part of a quality management system. OAT is a common type of non-functional software testing,
used mainly in software development and software maintenance projects. This type of testing focuses on
the operational readiness of the system to be supported, and/or to become part of the production

Integration testing

Component interface testing

System testing

Operational acceptance testing

https://en.wikipedia.org/wiki/Static_code_analysis
https://en.wikipedia.org/wiki/Data-flow_analysis
https://en.wikipedia.org/wiki/Code_coverage
https://en.wikipedia.org/wiki/Software_verification
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/Quality_management_system
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_maintenance
https://en.wikipedia.org/w/index.php?title=Operational_readiness&action=edit&redlink=1


environment. Hence, it is also known as operational readiness testing (ORT) or Operations readiness and
assurance (OR&A) testing. Functional testing within OAT is limited to those tests which are required to
verify the non-functional aspects of the system.

In addition, the software testing should ensure that the portability of the system, as well as working as
expected, does not also damage or partially corrupt its operating environment or cause other processes
within that environment to become inoperative.[15]

A common cause of software failure (real or perceived) is a lack of its compatibility with other application
software, operating systems (or operating system versions, old or new), or target environments that differ
greatly from the original (such as a terminal or GUI application intended to be run on the desktop now
being required to become a web application, which must render in a web browser). For example, in the
case of a lack of backward compatibility, this can occur because the programmers develop and test software
only on the latest version of the target environment, which not all users may be running. This results in the
unintended consequence that the latest work may not function on earlier versions of the target environment,
or on older hardware that earlier versions of the target environment was capable of using. Sometimes such
issues can be fixed by proactively abstracting operating system functionality into a separate program
module or library.

Sanity testing determines whether it is reasonable to proceed with further testing.

Smoke testing consists of minimal attempts to operate the software, designed to determine whether there are
any basic problems that will prevent it from working at all. Such tests can be used as build verification test.

Regression testing focuses on finding defects after a major code change has occurred. Specifically, it seeks
to uncover software regressions, as degraded or lost features, including old bugs that have come back. Such
regressions occur whenever software functionality that was previously working correctly, stops working as
intended. Typically, regressions occur as an unintended consequence of program changes, when the newly
developed part of the software collides with the previously existing code. Common methods of regression
testing include re-running previous sets of test cases and checking whether previously fixed faults have re-
emerged. The depth of testing depends on the phase in the release process and the risk of the added
features. They can either be complete, for changes added late in the release or deemed to be risky, or be
very shallow, consisting of positive tests on each feature, if the changes are early in the release or deemed to
be of low risk. Regression testing is typically the largest test effort in commercial software development,[16]

due to checking numerous details in prior software features, and even new software can be developed
while using some old test cases to test parts of the new design to ensure prior functionality is still supported.

Acceptance testing can mean one of two things:

1. A smoke test is used as an acceptance test prior to introducing a new build to the main
testing process, i.e., before integration or regression.

Compatibility testing

Smoke and sanity testing

Regression testing

Acceptance testing

https://en.wikipedia.org/wiki/Operations_readiness_and_assurance
https://en.wikipedia.org/wiki/Functional_testing
https://en.wikipedia.org/wiki/Computer_compatibility
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Software_versioning
https://en.wikipedia.org/wiki/Computer_terminal
https://en.wikipedia.org/wiki/GUI
https://en.wikipedia.org/wiki/Desktop_metaphor
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Sanity_testing
https://en.wikipedia.org/wiki/Smoke_testing_(software)
https://en.wikipedia.org/wiki/Build_verification_test
https://en.wikipedia.org/wiki/Software_regression
https://en.wikipedia.org/wiki/Unintended_consequence
https://en.wikipedia.org/wiki/Risk_management
https://en.wikipedia.org/wiki/Smoke_testing_(software)
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Regression_testing


2. Acceptance testing performed by the customer, often in their lab environment on their own
hardware, is known as user acceptance testing (UAT). Acceptance testing may be
performed as part of the hand-off process between any two phases of development.

Alpha testing is simulated or actual operational testing by potential users/customers or an independent test
team at the developers' site. Alpha testing is often employed for off-the-shelf software as a form of internal
acceptance testing, before the software goes to beta testing.[17]

Beta testing comes after alpha testing and can be considered a form of external user acceptance testing.
Versions of the software, known as beta versions, are released to a limited audience outside of the
programming team known as beta testers. The software is released to groups of people so that further
testing can ensure the product has few faults or bugs. Beta versions can be made available to the open
public to increase the feedback field to a maximal number of future users and to deliver value earlier, for an
extended or even indefinite period of time (perpetual beta).

Functional testing refers to activities that verify a specific action or function of the code. These are usually
found in the code requirements documentation, although some development methodologies work from use
cases or user stories. Functional tests tend to answer the question of "can the user do this" or "does this
particular feature work."

Non-functional testing refers to aspects of the software that may not be related to a specific function or user
action, such as scalability or other performance, behavior under certain constraints, or security. Testing will
determine the breaking point, the point at which extremes of scalability or performance leads to unstable
execution. Non-functional requirements tend to be those that reflect the quality of the product, particularly
in the context of the suitability perspective of its users.

Continuous testing is the process of executing automated tests as part of the software delivery pipeline to
obtain immediate feedback on the business risks associated with a software release candidate.[18][19]

Continuous testing includes the validation of both functional requirements and non-functional requirements;
the scope of testing extends from validating bottom-up requirements or user stories to assessing the system
requirements associated with overarching business goals.[20][21][22]

Destructive testing attempts to cause the software or a sub-system to fail. It verifies that the software
functions properly even when it receives invalid or unexpected inputs, thereby establishing the robustness
of input validation and error-management routines. Software fault injection, in the form of fuzzing, is an
example of failure testing. Various commercial non-functional testing tools are linked from the software
fault injection page; there are also numerous open-source and free software tools available that perform
destructive testing.

Alpha testing

Beta testing

Functional vs non-functional testing

Continuous testing

Destructive testing

https://en.wikipedia.org/wiki/User_acceptance_testing
https://en.wikipedia.org/wiki/User_acceptance_testing
https://en.wikipedia.org/wiki/Beta_version
https://en.wikipedia.org/wiki/Computer_bug
https://en.wikipedia.org/wiki/Feedback#In_organizations
https://en.wikipedia.org/wiki/Perpetual_beta
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Performance
https://en.wikipedia.org/wiki/Constraint_(mathematics)
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Test_automation
https://en.wikipedia.org/wiki/Functional_requirements
https://en.wikipedia.org/wiki/Non-functional_requirements
https://en.wikipedia.org/wiki/Robustness_(computer_science)
https://en.wikipedia.org/wiki/Fault_injection
https://en.wikipedia.org/wiki/Fuzz_testing
https://en.wikipedia.org/wiki/Fault_injection


Performance testing is generally executed to determine how a system or sub-system performs in terms of
responsiveness and stability under a particular workload. It can also serve to investigate, measure, validate
or verify other quality attributes of the system, such as scalability, reliability and resource usage.

Load testing is primarily concerned with testing that the system can continue to operate under a specific
load, whether that be large quantities of data or a large number of users. This is generally referred to as
software scalability. The related load testing activity of when performed as a non-functional activity is often
referred to as endurance testing. Volume testing is a way to test software functions even when certain
components (for example a file or database) increase radically in size. Stress testing is a way to test
reliability under unexpected or rare workloads. Stability testing (often referred to as load or endurance
testing) checks to see if the software can continuously function well in or above an acceptable period.

There is little agreement on what the specific goals of performance testing are. The terms load testing,
performance testing, scalability testing, and volume testing, are often used interchangeably.

Real-time software systems have strict timing constraints. To test if timing constraints are met, real-time
testing is used.

Usability testing is to check if the user interface is easy to use and understand. It is concerned mainly with
the use of the application.

Accessibility testing may include compliance with standards such as:

Americans with Disabilities Act of 1990
Section 508 Amendment to the Rehabilitation Act of 1973
Web Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C)

Security testing is essential for software that processes confidential data to prevent system intrusion by
hackers.

The International Organization for Standardization (ISO) defines this as a "type of testing conducted to
evaluate the degree to which a test item, and associated data and information, are protected so that
unauthorised persons or systems cannot use, read or modify them, and authorized persons or systems are
not denied access to them."[23]

The general ability of software to be internationalized and localized can be automatically tested without
actual translation, by using pseudolocalization. It will verify that the application still works, even after it has
been translated into a new language or adapted for a new culture (such as different currencies or time
zones).[24]

Software performance testing

Usability testing

Accessibility testing

Security testing

Internationalization and localization testing

https://en.wikipedia.org/wiki/Load_testing#Software_load_testing
https://en.wikipedia.org/wiki/Load_testing
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Volume_testing
https://en.wikipedia.org/wiki/Stress_testing
https://en.wikipedia.org/wiki/Scalability_testing
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_testing
https://en.wikipedia.org/wiki/Usability_testing
https://en.wikipedia.org/wiki/Accessibility
https://en.wikipedia.org/wiki/Americans_with_Disabilities_Act_of_1990
https://en.wikipedia.org/wiki/Section_508_Amendment_to_the_Rehabilitation_Act_of_1973
https://en.wikipedia.org/wiki/Web_Accessibility_Initiative
https://en.wikipedia.org/wiki/World_Wide_Web_Consortium
https://en.wikipedia.org/wiki/Security_testing
https://en.wikipedia.org/wiki/Backdoor_(computing)
https://en.wikipedia.org/wiki/Hacker_(computer_security)
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Pseudolocalization


Actual translation to human languages must be tested, too. Possible localization failures include:

Software is often localized by translating a list of strings out of context, and the translator
may choose the wrong translation for an ambiguous source string.
Technical terminology may become inconsistent if the project is translated by several people
without proper coordination or if the translator is imprudent.
Literal word-for-word translations may sound inappropriate, artificial or too technical in the
target language.
Untranslated messages in the original language may be left hard coded in the source code.
Some messages may be created automatically at run time and the resulting string may be
ungrammatical, functionally incorrect, misleading or confusing.
Software may use a keyboard shortcut which has no function on the source language's
keyboard layout, but is used for typing characters in the layout of the target language.
Software may lack support for the character encoding of the target language.
Fonts and font sizes which are appropriate in the source language may be inappropriate in
the target language; for example, CJK characters may become unreadable if the font is too
small.
A string in the target language may be longer than the software can handle. This may make
the string partly invisible to the user or cause the software to crash or malfunction.
Software may lack proper support for reading or writing bi-directional text.
Software may display images with text that was not localized.
Localized operating systems may have differently named system configuration files and
environment variables and different formats for date and currency.

"Development testing" is a software development process that involves synchronized application of a broad
spectrum of defect prevention and detection strategies in order to reduce software development risks, time,
and costs. It is performed by the software developer or engineer during the construction phase of the
software development lifecycle. Rather than replace traditional QA focuses, it augments it. Development
Testing aims to eliminate construction errors before code is promoted to QA; this strategy is intended to
increase the quality of the resulting software as well as the efficiency of the overall development and QA
process.

Depending on the organization's expectations for software development, Development Testing might
include static code analysis, data flow analysis, metrics analysis, peer code reviews, unit testing, code
coverage analysis, traceability, and other software verification practices.

A/B testing is basically a comparison of two outputs, generally when only one variable has changed: run a
test, change one thing, run the test again, compare the results. This is more useful with more small-scale
situations, but very useful in fine-tuning any program. With more complex projects, multivariant testing can
be done.

Development testing

A/B testing

Concurrent testing

https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Hard_coding
https://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
https://en.wikipedia.org/wiki/Keyboard_shortcut
https://en.wikipedia.org/wiki/Keyboard_layout
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/CJK_characters
https://en.wikipedia.org/wiki/Bi-directional_text
https://en.wikipedia.org/wiki/Configuration_file
https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Date_and_time_notation_by_country
https://en.wikipedia.org/wiki/Currency
https://en.wikipedia.org/wiki/Static_code_analysis


In concurrent testing, the focus is on the performance while continuously running with normal input and
under normal operational conditions, as opposed to stress testing, or fuzz testing. Memory leaks, as well as
basic faults are easier to find with this method.

In software testing, conformance testing verifies that a product performs according to its specified
standards. Compilers, for instance, are extensively tested to determine whether they meet the recognized
standard for that language.

1. Introduction (http://www.bullseye.com/coverage.html#intro), Code Coverage Analysis, Steve
Cornett

2. Patton, Ron (2006). Software Testing (https://archive.org/details/softwaretesting0000patt)
(2nd ed.). Sams Publishing (published July 26, 2005). ISBN 978-0672327988.

3. Laycock, G. T. (1993). "The Theory and Practice of Specification Based Software Testing" (ht
tps://web.archive.org/web/20070214130159/http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.g
z). Dept of Computer Science, Sheffield University, UK. Archived from the original (http://ww
w.mcs.le.ac.uk/people/gtl1/thesis.ps.gz) (PostScript) on 2007-02-14. Retrieved 2008-02-13.

4. Bach, James (June 1999). "Risk and Requirements-Based Testing" (http://www.satisfice.co
m/articles/requirements_based_testing.pdf) (PDF). Computer. 32 (6): 113–114. Retrieved
2008-08-19.

5. Savenkov, Roman (2008). How to Become a Software Tester. Roman Savenkov Consulting.
p. 159. ISBN 978-0-615-23372-7.

6. "Visual testing of software – Helsinki University of Technology" (http://www.cs.hut.fi/~jlonnbe
r/VisualTesting.pdf) (PDF). Retrieved 2012-01-13.

7. "Article on visual testing in Test Magazine" (https://web.archive.org/web/20120724162657/ht
tp://www.testmagazine.co.uk/2011/04/visual-testing/). Testmagazine.co.uk. Archived from the
original (http://www.testmagazine.co.uk/2011/04/visual-testing) on 2012-07-24. Retrieved
2012-01-13.

8. "SOA Testing Tools for Black, White and Gray Box SOA Testing Techniques" (http://www.cro
sschecknet.com/soa_testing_black_white_gray_box.php). Crosschecknet.com. Retrieved
2012-12-10.

9. "SWEBOK Guide – Chapter 5" (http://www.computer.org/portal/web/swebok/html/ch5#Ref2.
1). Computer.org. Retrieved 2012-01-13.

10. Binder, Robert V. (1999). Testing Object-Oriented Systems: Objects, Patterns, and Tools (htt
ps://archive.org/details/testingobjectori00bind/page/45). Addison-Wesley Professional. p. 45
(https://archive.org/details/testingobjectori00bind/page/45). ISBN 0-201-80938-9.

11. Beizer, Boris (1990). Software Testing Techniques (Second ed.). New York: Van Nostrand
Reinhold. pp. 21, 430. ISBN 0-442-20672-0.

12. Clapp, Judith A. (1995). Software Quality Control, Error Analysis, and Testing (https://books.
google.com/books?id=wAq0rnyiGMEC&pg=PA313). p. 313. ISBN 0815513631.

13. Mathur, Aditya P. (2008). Foundations of Software Testing (https://books.google.com/books?i
d=yU-rTcurys8C&pg=PA18). Purdue University. p. 18. ISBN 978-8131716601.

14. IEEE (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. New York: IEEE. ISBN 1-55937-079-3.

15. Whitepaper: Operational Acceptance – an application of the ISO 29119 Software Testing
standard. May 2015 Anthony Woods, Capgemini

Conformance testing or type testing

References

http://www.bullseye.com/coverage.html#intro
https://archive.org/details/softwaretesting0000patt
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0672327988
https://web.archive.org/web/20070214130159/http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
https://en.wikipedia.org/wiki/PostScript
https://en.wikipedia.org/wiki/James_Bach
http://www.satisfice.com/articles/requirements_based_testing.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-615-23372-7
http://www.cs.hut.fi/~jlonnber/VisualTesting.pdf
https://web.archive.org/web/20120724162657/http://www.testmagazine.co.uk/2011/04/visual-testing/
http://www.testmagazine.co.uk/2011/04/visual-testing
http://www.crosschecknet.com/soa_testing_black_white_gray_box.php
http://www.computer.org/portal/web/swebok/html/ch5#Ref2.1
https://archive.org/details/testingobjectori00bind/page/45
https://archive.org/details/testingobjectori00bind/page/45
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-80938-9
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-442-20672-0
https://books.google.com/books?id=wAq0rnyiGMEC&pg=PA313
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0815513631
https://books.google.com/books?id=yU-rTcurys8C&pg=PA18
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-8131716601
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/1-55937-079-3


Software testing tools and products (https://curlie.org/Computers/Programming/Software_Te
sting/Products_and_Tools) at Curlie

Retrieved from "https://en.wikipedia.org/w/index.php?title=Software_testing_tactics&oldid=1042435771"

This page was last edited on 5 September 2021, at 00:32 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

16. Paul Ammann; Jeff Offutt (2008). Introduction to Software Testing (https://books.google.com/
books?id=leokXF8pLY0C&pg=PA215). p. 215 of 322 pages.

17. van Veenendaal, Erik. "Standard glossary of terms used in Software Testing" (http://www.ast
qb.org/get-certified/istqb-syllabi-the-istqb-software-tester-certification-body-of-knowledge/).
Retrieved 4 January 2013.

18. Part of the Pipeline: Why Continuous Testing Is Essential (https://www.techwell.com/techwel
l-insights/2015/08/part-pipeline-why-continuous-testing-essential), by Adam Auerbach,
TechWell Insights August 2015

19. The Relationship between Risk and Continuous Testing: An Interview with Wayne Ariola (htt
p://www.stickyminds.com/interview/relationship-between-risk-and-continuous-testing-intervi
ew-wayne-ariola), by Cameron Philipp-Edmonds, Stickyminds December 2015

20. DevOps: Are You Pushing Bugs to Clients Faster (http://uploads.pnsqc.org/2015/papers/t-00
7_Ariola_paper.pdf), by Wayne Ariola and Cynthia Dunlop, PNSQC October 2015

21. DevOps and QA: What’s the real cost of quality? (http://devops.com/2015/06/11/devops-and-
qa-whats-the-real-cost-of-quality/), by Ericka Chickowski, DevOps.com June 2015

22. Shift Left and Put Quality First (https://www.techwell.com/techwell-insights/2014/10/shift-left-
and-put-quality-first), by Adam Auerbach, TechWell Insights October 2014

23. ISO/IEC/IEEE 29119-1:2013 – Software and Systems Engineering – Software Testing – Part
1 – Concepts and Definitions; Section 4.38

24. "Globalization Step-by-Step: The World-Ready Approach to Testing. Microsoft Developer
Network" (http://msdn.microsoft.com/en-us/goglobal/bb688148). Msdn.microsoft.com.
Retrieved 2012-01-13.

External links

https://curlie.org/Computers/Programming/Software_Testing/Products_and_Tools
https://en.wikipedia.org/wiki/Curlie
https://en.wikipedia.org/w/index.php?title=Software_testing_tactics&oldid=1042435771
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://books.google.com/books?id=leokXF8pLY0C&pg=PA215
http://www.astqb.org/get-certified/istqb-syllabi-the-istqb-software-tester-certification-body-of-knowledge/
https://www.techwell.com/techwell-insights/2015/08/part-pipeline-why-continuous-testing-essential
http://www.stickyminds.com/interview/relationship-between-risk-and-continuous-testing-interview-wayne-ariola
http://uploads.pnsqc.org/2015/papers/t-007_Ariola_paper.pdf
http://devops.com/2015/06/11/devops-and-qa-whats-the-real-cost-of-quality/
https://www.techwell.com/techwell-insights/2014/10/shift-left-and-put-quality-first
http://msdn.microsoft.com/en-us/goglobal/bb688148

