
Software verification and validation
In software project management, software testing, and software engineering, verification and validation
(V&V) is the process of checking that a software system meets specifications and requirements so that it
fulfills its intended purpose. It may also be referred to as software quality control. It is normally the
responsibility of software testers as part of the software development lifecycle. In simple terms, software
verification is: "Assuming we should build X, does our software achieve its goals without any bugs or
gaps?" On the other hand, software validation is: "Was X what we should have built? Does X meet the
high-level requirements?"

Definitions
Software verification
Artifact or specification verification
Software validation
Artifact or specification validation
Validation vs. verification

Related concepts
V&V methods

Formal

Independent
History

At ESA
Methodology

Planning
Requirements verification
Design verification
Code verification
Validation

Regulatory environment
See also
Further reading
External links
References

Verification and validation are not the same thing, although they are often confused. Boehm succinctly
expressed the difference as[1]

Contents

Definitions

https://en.wikipedia.org/wiki/Software_project_management
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Software_quality_control
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Barry_Boehm


Verification: Are we building the product right?
Validation: Are we building the right product?

"Building the product right" checks that the specifications are correctly implemented by the system while
"building the right product" refers back to the user's needs. In some contexts, it is required to have written
requirements for both as well as formal procedures or protocols for determining compliance. Ideally, formal
methods provide a mathematical guarantee that software meets its specifications.

Building the product right implies the use of the Requirements Specification as input for the next phase of
the development process, the design process, the output of which is the Design Specification. Then, it also
implies the use of the Design Specification to feed the construction process. Every time the output of a
process correctly implements its input specification, the software product is one step closer to final
verification. If the output of a process is incorrect, the developers are not building the product the
stakeholders want correctly. This kind of verification is called "artifact or specification verification".

Building the right product implies creating a Requirements Specification that contains the needs and goals
of the stakeholders of the software product. If such artifact is incomplete or wrong, the developers will not
be able to build the product the stakeholders want. This is a form of "artifact or specification validation".

Note: Verification begins before Validation and then they run in parallel until the software product is
released.

It would imply to verify if the specifications are met by running the software but this is not possible (e. g.,
how can anyone know if the architecture/design/etc. are correctly implemented by running the software?).
Only by reviewing its associated artifacts, can someone conclude whether or not the specifications are met.

The output of each software development process stage can also be subject to verification when checked
against its input specification (see the definition by CMMI below).

Examples of artifact verification:

Of the design specification against the requirement specification: Do the architectural
design, detailed design and database logical model specifications correctly implement the
functional and non-functional requirements specifications?
Of the construction artifacts against the design specification: Do the source code, user
interfaces and database physical model correctly implement the design specification?

Software validation checks that the software product satisfies or fits the intended use (high-level checking),
i.e., the software meets the user requirements, not as specification artifacts or as needs of those who will
operate the software only; but, as the needs of all the stakeholders (such as users, operators, administrators,
managers, investors, etc.). There are two ways to perform software validation: internal and external. During
internal software validation, it is assumed that the goals of the stakeholders were correctly understood and
that they were expressed in the requirement artifacts precisely and comprehensively. If the software meets
the requirement specification, it has been internally validated. External validation happens when it is

Software verification

Artifact or specification verification

Software validation

https://en.wikipedia.org/wiki/Formal_methods


performed by asking the stakeholders if the software meets their needs. Different software development
methodologies call for different levels of user and stakeholder involvement and feedback; so, external
validation can be a discrete or a continuous event. Successful final external validation occurs when all the
stakeholders accept the software product and express that it satisfies their needs. Such final external
validation requires the use of an acceptance test which is a dynamic test.

However, it is also possible to perform internal static tests to find out if the software meets the requirements
specification but that falls into the scope of static verification because the software is not running.

Requirements should be validated before the software product as a whole is ready (the waterfall
development process requires them to be perfectly defined before design starts; but iterative development
processes do not require this to be so and allow their continual improvement).

Examples of artifact validation:

User Requirements Specification validation: User requirements as stated in a document
called User Requirements Specification are validated by checking if they indeed represent
the will and goals of the stakeholders. This can be done by interviewing the stakeholders
and asking them directly (static testing) or even by releasing prototypes and having the
users and stakeholders to assess them (dynamic testing).
User input validation: User input (gathered by any peripheral such as keyboard, bio-metric
sensor, etc.) is validated by checking if the input provided by the software operators or users
meets the domain rules and constraints (such as data type, range, and format).

According to the Capability Maturity Model (CMMI-SW v1.1),[2]

Software Validation: The process of evaluating software during or at the end of the
development process to determine whether it satisfies specified requirements. [IEEE-STD-
610]
Software Verification: The process of evaluating software to determine whether the products
of a given development phase satisfy the conditions imposed at the start of that phase.
[IEEE-STD-610]

Validation during the software development process can be seen as a form of User Requirements
Specification validation; and, that at the end of the development process is equivalent to Internal and/or
External Software validation. Verification, from CMMI's point of view, is evidently of the artifact kind.

In other words, software verification ensures that the output of each phase of the software development
process effectively carry out what its corresponding input artifact specifies (requirement -> design ->
software product), while software validation ensures that the software product meets the needs of all the
stakeholders (therefore, the requirement specification was correctly and accurately expressed in the first
place). Software verification ensures that "you built it right" and confirms that the product, as provided,
fulfills the plans of the developers. Software validation ensures that "you built the right thing" and confirms
that the product, as provided, fulfills the intended use and goals of the stakeholders.

This article has used the strict or narrow definition of verification.

From a testing perspective:

Artifact or specification validation

Validation vs. verification

https://en.wikipedia.org/wiki/Acceptance_testing
https://en.wikipedia.org/wiki/Dynamic_testing
https://en.wikipedia.org/wiki/Data_validation
https://en.wikipedia.org/wiki/Capability_Maturity_Model
https://en.wikipedia.org/wiki/Software_verification#Narrow_scope


Fault – wrong or missing function in the code.
Failure – the manifestation of a fault during execution. The software was not effective. It does
not do "what" it is supposed to do.
Malfunction – according to its specification the system does not meet its specified
functionality. The software was not efficient (it took too many resources such as CPU cycles,
it used too much memory, performed too many I/O operations, etc.), it was not usable, it was
not reliable, etc. It does not do something "how" it is supposed to do it.

Both verification and validation are related to the concepts of quality and of software quality assurance. By
themselves, verification and validation do not guarantee software quality; planning, traceability,
configuration management and other aspects of software engineering are required.

Within the modeling and simulation (M&S) community, the definitions of verification, validation and
accreditation are similar:

M&S Verification is the process of determining that a computer model, simulation, or
federation of models and simulations implementations and their associated data accurately
represent the developer's conceptual description and specifications.[3]

M&S Validation is the process of determining the degree to which a model, simulation, or
federation of models and simulations, and their associated data are accurate
representations of the real world from the perspective of the intended use(s).[3]

Accreditation is the formal certification that a model or simulation is acceptable to be used
for a specific purpose.[3]

The definition of M&S validation focuses on the accuracy with which the M&S represents the real-world
intended use(s). Determining the degree of M&S accuracy is required because all M&S are approximations
of reality, and it is usually critical to determine if the degree of approximation is acceptable for the intended
use(s). This stands in contrast to software validation.

In mission-critical software systems, formal methods may be used to ensure the correct operation of a
system. These formal methods can prove costly, however, representing as much as 80 percent of total
software design cost.

Independent Software Verification and Validation (ISVV) is targeted at safety-critical software systems
and aims to increase the quality of software products, thereby reducing risks and costs through the
operational life of the software. The goal of ISVV is to provide assurance that software performs to the
specified level of confidence and within its designed parameters and defined requirements.[4][5]

ISVV activities are performed by independent engineering teams, not involved in the software development
process, to assess the processes and the resulting products. The ISVV team independency is performed at
three different levels: financial, managerial and technical.

Related concepts

V&V methods

Formal

Independent

https://en.wikipedia.org/wiki/Quality_(business)
https://en.wikipedia.org/wiki/Software_quality_assurance
https://en.wikipedia.org/wiki/Traceability
https://en.wikipedia.org/wiki/Modeling_and_simulation
https://en.wikipedia.org/wiki/Computer_model
https://en.wikipedia.org/wiki/Accreditation
https://en.wikipedia.org/wiki/Mission-critical
https://en.wikipedia.org/wiki/Formal_methods
https://en.wikipedia.org/wiki/Software


ISVV goes beyond "traditional" verification and validation techniques, applied by development teams.
While the latter aim to ensure that the software performs well against the nominal requirements, ISVV is
focused on non-functional requirements such as robustness and reliability, and on conditions that can lead
the software to fail.

ISVV results and findings are fed back to the development teams for correction and improvement.

ISVV derives from the application of IV&V (Independent Verification and Validation) to the software.
Early ISVV application (as known today) dates back to the early 1970s when the U.S. Army sponsored the
first significant program related to IV&V for the Safeguard Anti-Ballistic Missile System.[6] Another
example is NASA's IV&V Program, which was established in 1993.[7]

By the end of the 1970s IV&V was rapidly becoming popular. The constant increase in complexity, size
and importance of the software led to an increasing demand on IV&V applied to software.

Meanwhile, IV&V (and ISVV for software systems) consolidated and is now widely used by organizations
such as the DoD, FAA,[8] NASA[7] and ESA.[9] IV&V is mentioned in DO-178B, ISO/IEC 12207 and
formalized in IEEE 1012.

Initially in 2004-2005, a European consortium led by the European Space Agency, and composed by
DNV, Critical Software SA, Terma and CODA SciSys plc created the first version of a guide devoted to
ISVV, called "ESA Guide for Independent Verification and Validation" with support from other
organizations.[10] This guide covers the methodologies applicable to all the software engineering phases in
what concerns ISVV.

In 2008 the European Space Agency released a second version, having received inputs from many different
European Space ISVV stakeholders.[10]

ISVV is usually composed by five principal phases, these phases can be executed sequentially or as results
of a tailoring process.

Planning of ISVV activities
System criticality analysis: Identification of critical components through a set of RAMS
activities (Value for Money)
Selection of the appropriate methods and tools

Verification for: completeness, correctness, testability

History

At ESA

Methodology

Planning

Requirements verification

Design verification

https://en.wikipedia.org/wiki/U.S._Army
https://en.wikipedia.org/wiki/Anti-Ballistic_Missile
https://en.wikipedia.org/wiki/DoD
https://en.wikipedia.org/wiki/FAA
https://en.wikipedia.org/wiki/Independent_Verification_and_Validation_Facility
https://en.wikipedia.org/wiki/European_Space_Agency
https://en.wikipedia.org/wiki/DO-178B
https://en.wikipedia.org/wiki/ISO/IEC_12207
https://en.wikipedia.org/wiki/IEEE_1012
https://en.wikipedia.org/wiki/European_Space_Agency
https://en.wikipedia.org/wiki/DNV_GL
https://en.wikipedia.org/wiki/Critical_Software
https://en.wikipedia.org/wiki/Terma_A/S
https://en.wikipedia.org/wiki/SCISYS
https://en.wikipedia.org/wiki/RAMS


Design adequacy and conformance to software requirements and interfaces
Internal and external consistency
Verification of feasibility and maintenance

Verification for: completeness, correctness, consistency
Code metrics analysis
Coding standards compliance verification

Identification of unstable components/functionalities
Validation focused on error-handling: complementary (not concurrent) validation regarding
the one performed by the development team
Compliance with software and system requirements
Black box testing and White box testing techniques
Experience based techniques

Software often must meet the compliance requirements of legally regulated industries, which is often
guided by government agencies[11][12] or industrial administrative authorities. For instance, the FDA
requires software versions and patches to be validated.[13]

Compiler correctness
Cross-validation
Formal verification
Functional specification
Independent Verification and Validation Facility
International Software Testing Qualifications Board
Software verification
Software requirements specification
Validation (drug manufacture)
Verification and validation – General
Verification and Validation of Computer Simulation Models
Independent verification systems
Software testing
Software engineering
Software quality
Static code analysis
Requirements engineering
Safety-critical system
Katherine Johnson Independent Verification and Validation Facility

Code verification

Validation

Regulatory environment

See also

https://en.wikipedia.org/wiki/Software_metric
https://en.wikipedia.org/wiki/Coding_conventions
https://en.wikipedia.org/wiki/System_requirements
https://en.wikipedia.org/wiki/Black_box_testing
https://en.wikipedia.org/wiki/White_box_testing
https://en.wikipedia.org/wiki/Food_and_Drug_Administration
https://en.wikipedia.org/wiki/Patch_(computing)
https://en.wikipedia.org/wiki/Compiler_correctness
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Formal_verification
https://en.wikipedia.org/wiki/Functional_specification
https://en.wikipedia.org/wiki/Independent_Verification_and_Validation_Facility
https://en.wikipedia.org/wiki/International_Software_Testing_Qualifications_Board
https://en.wikipedia.org/wiki/Software_verification
https://en.wikipedia.org/wiki/Software_requirements_specification
https://en.wikipedia.org/wiki/Validation_(drug_manufacture)
https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Verification_and_Validation_of_Computer_Simulation_Models
https://en.wikipedia.org/wiki/Independent_verification_systems
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Software_quality
https://en.wikipedia.org/wiki/Static_code_analysis
https://en.wikipedia.org/wiki/Requirements_engineering
https://en.wikipedia.org/wiki/Safety-critical_system
https://en.wikipedia.org/wiki/Katherine_Johnson_Independent_Verification_and_Validation_Facility


1012-2012 IEEE Standard for System and Software Verification and Validation. 2012.
doi:10.1109/IEEESTD.2012.6204026 (https://doi.org/10.1109%2FIEEESTD.2012.6204026).
ISBN 978-0-7381-7268-2.
Tran, E. (1999). "Verification/Validation/Certification" (http://www.ece.cmu.edu/~koopman/de
s_s99/verification/index.html). In Koopman, P. (ed.). Topics in Dependable Embedded
Systems. Carnegie Mellon University. Retrieved 2007-05-18.
Menzies, T.; Y. Hu (2003). "Data mining for very busy people". Computer. 36 (1): 22–29.
doi:10.1109/MC.2003.1244531 (https://doi.org/10.1109%2FMC.2003.1244531).

Chapter on Software quality (including VnV) (http://www.computer.org/portal/web/swebok/ht
ml/ch11) in SWEBOK

1. Pham, H. (1999). Software Reliability. John Wiley & Sons, Inc. p. 567. ISBN 9813083840.
"Software Validation. The process of ensuring that the software is performing the right
process. Software Verification. The process of ensuring that the software is performing the
process right." Likewise and also there: "In short, Boehm (3) expressed the difference
between the software verification and software validation as follows: Verification: ‘‘Are we
building the product right?’’ Validation: ‘‘Are we building the right product?’’."

2. "CMMI for Software Engineering, Version 1.1, Staged Representation (CMMI-SW, V1.1,
Staged)" (https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6217).
resources.sei.cmu.edu. Retrieved 2021-03-20.

3. "Department of Defense Documentation of Verification, Validation & Accreditation (VV&A)
for Models and Simulations". Missile Defense Agency. 2008.

4. Rogers, R. (1981-10-26). "Planning for independent software verification and validation" (htt
p://arc.aiaa.org/doi/10.2514/6.1981-2100). 3rd Computers in Aerospace Conference. San
Diego,CA,U.S.A.: American Institute of Aeronautics and Astronautics. doi:10.2514/6.1981-
2100 (https://doi.org/10.2514%2F6.1981-2100).

5. Ambrosio, Ana; Mattiello-Francisco, Fátima; Martins, Eliane (2008-05-12). "A Independent
Software Verification and Validation Process for Space Applications" (http://arc.aiaa.org/doi/
10.2514/6.2008-3517). SpaceOps 2008 Conference. Heidelberg, Germany: American
Institute of Aeronautics and Astronautics. doi:10.2514/6.2008-3517 (https://doi.org/10.2514%
2F6.2008-3517). ISBN 978-1-62410-167-0.

6. Lewis, Robert O. (1992). Independent verification and validation : a life cycle engineering
process for quality software (https://www.worldcat.org/oclc/74908695). New York: Wiley.
ISBN 0-471-57011-7. OCLC 74908695 (https://www.worldcat.org/oclc/74908695).

7. Asbury, Michael (2015-03-09). "About NASA's IV&V Program" (http://www.nasa.gov/centers/
ivv/about/index.html). NASA. Retrieved 2021-03-20.

8. Balci, O. (2010). "Golden Rules of Verification, Validation, Testing, and Certification of
Modeling and Simulation Applications" (https://www.semanticscholar.org/paper/Golden-Rule
s-of-Verification%2C-Validation%2C-Testing%2C-Balci/a78f010dd6e17f8da30bf92232d9e7
ecb6a3f071). undefined. Retrieved 2021-03-20.

9. "Flight Software Systems Section (TEC-SWF)" (https://www.esa.int/Enabling_Support/Spac
e_Engineering_Technology/Software_Systems_Engineering/Flight_Software_Systems_Se
ction_TEC-SWF). www.esa.int. Retrieved 2021-03-20.

Further reading

External links

References

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FIEEESTD.2012.6204026
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7381-7268-2
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
https://en.wikipedia.org/wiki/Computer_(magazine)
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FMC.2003.1244531
http://www.computer.org/portal/web/swebok/html/ch11
https://en.wikipedia.org/wiki/SWEBOK
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9813083840
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=6217
http://arc.aiaa.org/doi/10.2514/6.1981-2100
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2514%2F6.1981-2100
http://arc.aiaa.org/doi/10.2514/6.2008-3517
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.2514%2F6.2008-3517
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-62410-167-0
https://www.worldcat.org/oclc/74908695
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-471-57011-7
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/74908695
http://www.nasa.gov/centers/ivv/about/index.html
https://www.semanticscholar.org/paper/Golden-Rules-of-Verification%2C-Validation%2C-Testing%2C-Balci/a78f010dd6e17f8da30bf92232d9e7ecb6a3f071
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/Flight_Software_Systems_Section_TEC-SWF


Retrieved from "https://en.wikipedia.org/w/index.php?title=Software_verification_and_validation&oldid=1055774725"

This page was last edited on 17 November 2021, at 18:38 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

10. lavva.pt. "New ISVV Guide for Space in the Works" (https://www.criticalsoftware.com/en/new
s/new-isvv-guide-for-space-in-the-works). www.criticalsoftware.com. Retrieved 2021-03-20.

11. "General Principles of Software validation; Final Guidance for Industry and FDA Staff" (http
s://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocu
ments/ucm085371.pdf) (PDF). Food and Drug Administration. 11 January 2002. Retrieved
12 July 2009.

12. "Guidance for Industry: Part 11, Electronic Records; Electronic Signatures — Scope and
Application" (https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInforma
tion/Guidances/UCM072322.pdf) (PDF). Food and Drug Administration. August 2003.
Retrieved 12 July 2009.

13. "Guidance for Industry: Cybersecurity for Networked Medical Devices Containing Off-the
Shelf (OTS) Software" (https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationa
ndGuidance/GuidanceDocuments/ucm077823.pdf) (PDF). Food and Drug Administration.
14 January 2005. Retrieved 12 July 2009.

https://en.wikipedia.org/w/index.php?title=Software_verification_and_validation&oldid=1055774725
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://www.criticalsoftware.com/en/news/new-isvv-guide-for-space-in-the-works
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm085371.pdf
https://en.wikipedia.org/wiki/Food_and_Drug_Administration
https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072322.pdf
https://en.wikipedia.org/wiki/Food_and_Drug_Administration
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm077823.pdf
https://en.wikipedia.org/wiki/Food_and_Drug_Administration

