
The Raspberry Pi uses a system on
a chip as an almost fully contained
microcomputer. This SoC does not
contain any kind of data storage,
which is common for a
microprocessor SoC.

System on a chip

A system on a chip (SoC; /ˌɛsˌoʊˈsiː/ es-oh-SEE or /sɒk/ sock[nb 1])
is an integrated circuit (also known as a "chip") that integrates all or
most components of a computer or other electronic system. These
components almost always include a central processing unit (CPU),
memory, input/output ports and secondary storage, often alongside
other components such as radio modems and a graphics processing
unit (GPU) – all on a single substrate or microchip.[1] It may contain
digital, analog, mixed-signal, and often radio frequency signal
processing functions (otherwise it is considered only an application
processor).

Higher-performance SoCs are often paired with dedicated and
physically separate memory and secondary storage (almost always
LPDDR and eUFS or eMMC, respectively) chips, that may be
layered on top of the SoC in what's known as a package on package
(PoP) configuration, or be placed close to the SoC. Additionally,
SoCs may use separate wireless modems.[2]

SoCs are in contrast to the common traditional motherboard-based PC architecture, which separates
components based on function and connects them through a central interfacing circuit board.[nb 2] Whereas a
motherboard houses and connects detachable or replaceable components, SoCs integrate all of these
components into a single integrated circuit. An SoC will typically integrate a CPU, graphics and memory
interfaces,[nb 3] hard-disk and USB connectivity,[nb 4] random-access and read-only memories and secondary
storage and/or their controllers on a single circuit die, whereas a motherboard would connect these modules as
discrete components or expansion cards.

An SoC integrates a microcontroller, microprocessor or perhaps several processor cores with peripherals like a
GPU, Wi-Fi and cellular network radio modems, and/or one or more coprocessors. Similar to how a
microcontroller integrates a microprocessor with peripheral circuits and memory, an SoC can be seen as
integrating a microcontroller with even more advanced peripherals.

More tightly integrated computer system designs improve performance and reduce power consumption as well
as semiconductor die area than multi-chip designs with equivalent functionality. This comes at the cost of
reduced replaceability of components. By definition, SoC designs are fully or nearly fully integrated across
different component modules. For these reasons, there has been a general trend towards tighter integration of
components in the computer hardware industry, in part due to the influence of SoCs and lessons learned from
the mobile and embedded computing markets. SoCs can be viewed as part of a larger trend towards embedded
computing and hardware acceleration.

SoCs are very common in the mobile computing (such as in smartphones and tablet computers) and edge
computing markets.[3][4] They are also commonly used in embedded systems such as WiFi routers and the
Internet of Things.

Contents

https://en.wikipedia.org/wiki/File:Raspberry-Pi-2-Bare-BR.jpg
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Microcomputer
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Computer_data_storage#Secondary_storage
https://en.wikipedia.org/wiki/Radio_modem
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Wafer_(electronics)
https://en.wikipedia.org/wiki/Digital_signal_(electronics)
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
https://en.wikipedia.org/wiki/Radio_frequency
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/LPDDR
https://en.wikipedia.org/wiki/Universal_Flash_Storage
https://en.wikipedia.org/wiki/EMMC
https://en.wikipedia.org/wiki/Package_on_package
https://en.wikipedia.org/wiki/Motherboard
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Discrete_components
https://en.wikipedia.org/wiki/Expansion_card
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Power_consumption
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/Interchangeable_parts
https://en.wikipedia.org/wiki/Modularity
https://en.wikipedia.org/wiki/Semiconductor_industry
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Hardware_acceleration
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Smartphones
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Internet_of_things

Types
Applications

Embedded systems
Mobile computing
Personal computers

Structure
Functional components

Processor cores
Memory
Interfaces
Digital signal processors
Other

Intermodule communication
Bus-based communication
Network on a chip

Design flow
Design verification

Optimization goals
Targets

Power consumption
Performance per watt
Waste heat
Throughput
Latency

Methodologies
Task scheduling
Pipelining
Probabilistic modeling
Markov chains

Fabrication
Benchmarks
See also
Notes
References
Further reading
External links

In general, there are four distinguishable types of SoCs:

SoCs built around a microcontroller,
SoCs built around a microprocessor, often found in mobile phones;

Types

https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microprocessor

Microcontroller-based system on a chip

AMD Am286ZX/LX, SoC based on
Intel 80286

Specialized application-specific integrated circuit
SoCs designed for specific applications that do not
fit into the above two categories, and
Programmable SoCs (PSoC), where most
functionality is fixed but some functionality is
reprogrammable in a manner analogous to a field-
programmable gate array.

SoCs can be applied to any computing task. However, they
are typically used in mobile computing such as tablets,
smartphones, smartwatches and netbooks as well as
embedded systems and in applications where previously
microcontrollers would be used.

Where previously only microcontrollers could be used, SoCs
are rising to prominence in the embedded systems market.
Tighter system integration offers better reliability and mean time
between failure, and SoCs offer more advanced functionality and
computing power than microcontrollers.[5] Applications include AI
acceleration, embedded machine vision,[6] data collection, telemetry,
vector processing and ambient intelligence. Often embedded SoCs
target the internet of things, industrial internet of things and edge
computing markets.

Mobile computing based SoCs always bundle processors, memories,
on-chip caches, wireless networking capabilities and often digital
camera hardware and firmware. With increasing memory sizes, high
end SoCs will often have no memory and flash storage and instead,
the memory and flash memory will be placed right next to, or above
(package on package), the SoC.[7] Some examples of mobile computing SoCs include:

Samsung Electronics: list, typically based on ARM

Exynos, used mainly by Samsung's Galaxy series of smartphones
Qualcomm:

Snapdragon (list), used in many LG, Xiaomi, Google Pixel, HTC and Samsung Galaxy
smartphones. In 2018, Snapdragon SoCs are being used as the backbone of laptop
computers running Windows 10, marketed as "Always Connected PCs".[8][9]

Applications

Embedded systems

Mobile computing

Personal computers

https://en.wikipedia.org/wiki/File:ARMSoCBlockDiagram.svg
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/File:KL_AMD_Am286LX_ZX.jpg
https://en.wikipedia.org/wiki/AMD
https://en.wikipedia.org/wiki/Intel_80286
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Programmable_system-on-chip
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Mean_time_between_failures
https://en.wikipedia.org/wiki/AI_accelerator
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Telemetry
https://en.wikipedia.org/wiki/Ambient_intelligence
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Wireless_networking
https://en.wikipedia.org/wiki/Digital_camera
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Package_on_package
https://en.wikipedia.org/wiki/Samsung_Electronics
https://en.wikipedia.org/wiki/List_of_Samsung_System_on_Chips
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Exynos
https://en.wikipedia.org/wiki/Samsung_Galaxy
https://en.wikipedia.org/wiki/Qualcomm
https://en.wikipedia.org/wiki/Qualcomm_Snapdragon
https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_systems-on-chip
https://en.wikipedia.org/wiki/LG_Corporation
https://en.wikipedia.org/wiki/Xiaomi
https://en.wikipedia.org/wiki/Google_Pixel
https://en.wikipedia.org/wiki/HTC
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Windows_10

In 1992, Acorn Computers produced the A3010, A3020 and A4000 range of personal computers with the
ARM250 SoC. It combined the original Acorn ARM2 processor with a memory controller (MEMC), video
controller (VIDC), and I/O controller (IOC). In previous Acorn ARM-powered computers, these were four
discrete chips. The ARM7500 chip was their second-generation SoC, based on the ARM700, VIDC20 and
IOMD controllers, and was widely licensed in embedded devices such as set-top-boxes, as well as later Acorn
personal computers.

SoCs are being applied to mainstream personal computers as of 2018.[8] They are particularly applied to
laptops and tablet PCs. Tablet and laptop manufacturers have learned lessons from embedded systems and
smartphone markets about reduced power consumption, better performance and reliability from tighter
integration of hardware and firmware modules, and LTE and other wireless network communications
integrated on chip (integrated network interface controllers).[10]

ARM-based:

Qualcomm Snapdragon[9]

ARM250
ARM7500(FE)
Apple M1

x86-based:

Intel Core CULV

An SoC consists of hardware functional units, including microprocessors that run software code, as well as a
communications subsystem to connect, control, direct and interface between these functional modules.

An SoC must have at least one processor core, but typically an SoC has more than one core. Processor cores
can be a microcontroller, microprocessor (μP),[11] digital signal processor (DSP) or application-specific
instruction set processor (ASIP) core.[12] ASIPs have instruction sets that are customized for an application
domain and designed to be more efficient than general-purpose instructions for a specific type of workload.
Multiprocessor SoCs have more than one processor core by definition.

Whether single-core, multi-core or manycore, SoC processor cores typically use RISC instruction set
architectures. RISC architectures are advantageous over CISC processors for SoCs because they require less
digital logic, and therefore less power and area on board, and in the embedded and mobile computing markets,
area and power are often highly constrained. In particular, SoC processor cores often use the ARM
architecture because it is a soft processor specified as an IP core and is more power efficient than x86.[11]

Structure

Functional components

Processor cores

Memory

https://en.wikipedia.org/wiki/Acorn_Computers
https://en.wikipedia.org/wiki/Acorn_Archimedes#New_range_and_a_laptop
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/System_integration
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Module_system
https://en.wikipedia.org/wiki/LTE_(telecommunication)
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Qualcomm_Snapdragon
https://en.wikipedia.org/wiki/Apple_M1
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel_Core
https://en.wikipedia.org/wiki/CULV
https://en.wikipedia.org/wiki/Functional_unit
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Communications_subsystem
https://en.wikipedia.org/wiki/Processor_core
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Application-specific_instruction_set_processor
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Application_domain
https://en.wikipedia.org/wiki/Multi-processor_system-on-chip
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Manycore
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/IP_core
https://en.wikipedia.org/wiki/X86

SoCs must have semiconductor memory blocks to perform their computation, as do microcontrollers and other
embedded systems. Depending on the application, SoC memory may form a memory hierarchy and cache
hierarchy. In the mobile computing market, this is common, but in many low-power embedded
microcontrollers, this is not necessary. Memory technologies for SoCs include read-only memory (ROM),
random-access memory (RAM), Electrically Erasable Programmable ROM (EEPROM) and flash memory.[11]

As in other computer systems, RAM can be subdivided into relatively faster but more expensive static RAM
(SRAM) and the slower but cheaper dynamic RAM (DRAM). When an SoC has a cache hierarchy, SRAM
will usually be used to implement processor registers and cores' L1 caches whereas DRAM will be used for
lower levels of the cache hierarchy including main memory. "Main memory" may be specific to a single
processor (which can be multi-core) when the SoC has multiple processors, in which case it is distributed
memory and must be sent via § Intermodule communication on-chip to be accessed by a different
processor.[12] For further discussion of multi-processing memory issues, see cache coherence and memory
latency.

SoCs include external interfaces, typically for communication protocols. These are often based upon industry
standards such as USB, FireWire, Ethernet, USART, SPI, HDMI, I²C, etc. These interfaces will differ
according to the intended application. Wireless networking protocols such as Wi-Fi, Bluetooth, 6LoWPAN
and near-field communication may also be supported.

When needed, SoCs include analog interfaces including analog-to-digital and digital-to-analog converters,
often for signal processing. These may be able to interface with different types of sensors or actuators,
including smart transducers. They may interface with application-specific modules or shields.[nb 5] Or they
may be internal to the SoC, such as if an analog sensor is built in to the SoC and its readings must be
converted to digital signals for mathematical processing.

Digital signal processor (DSP) cores are often included on SoCs. They perform signal processing operations in
SoCs for sensors, actuators, data collection, data analysis and multimedia processing. DSP cores typically
feature very long instruction word (VLIW) and single instruction, multiple data (SIMD) instruction set
architectures, and are therefore highly amenable to exploiting instruction-level parallelism through parallel
processing and superscalar execution.[12]:4 DSP cores most often feature application-specific instructions, and
as such are typically application-specific instruction-set processors (ASIP). Such application-specific
instructions correspond to dedicated hardware functional units that compute those instructions.

Typical DSP instructions include multiply-accumulate, Fast Fourier transform, fused multiply-add, and
convolutions.

As with other computer systems, SoCs require timing sources to generate clock signals, control execution of
SoC functions and provide time context to signal processing applications of the SoC, if needed. Popular time
sources are crystal oscillators and phase-locked loops.

SoC peripherals including counter-timers, real-time timers and power-on reset generators. SoCs also include
voltage regulators and power management circuits.

Interfaces

Digital signal processors

Other

Intermodule communication

https://en.wikipedia.org/wiki/Semiconductor_memory
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Memory_hierarchy
https://en.wikipedia.org/wiki/Cache_hierarchy
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Read-only_memory
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/Static_random-access_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/L1_cache
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-processor_system-on-chip
https://en.wikipedia.org/wiki/Distributed_memory
https://en.wikipedia.org/wiki/Cache_coherence
https://en.wikipedia.org/wiki/Memory_latency
https://en.wikipedia.org/wiki/Electrical_connector
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/FireWire
https://en.wikipedia.org/wiki/Ethernet
https://en.wikipedia.org/wiki/Universal_synchronous_and_asynchronous_receiver-transmitter
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/HDMI
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Wireless_network
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/6LoWPAN
https://en.wikipedia.org/wiki/Near-field_communication
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Smart_transducer
https://en.wikipedia.org/wiki/Modularity
https://en.wikipedia.org/wiki/Digital_signal_processor
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Data_collection
https://en.wikipedia.org/wiki/Data_analysis
https://en.wikipedia.org/wiki/Very_long_instruction_word
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Parallel_processing_(DSP_implementation)
https://en.wikipedia.org/wiki/Superscalar_execution
https://en.wikipedia.org/wiki/Application-specific_instruction-set_processor
https://en.wikipedia.org/wiki/Functional_unit
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fused_multiply-accumulate
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Clock_generator
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Crystal_oscillators
https://en.wikipedia.org/wiki/Phase-locked_loop
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Counter_(digital)
https://en.wikipedia.org/wiki/Timer
https://en.wikipedia.org/wiki/Power-on_reset
https://en.wikipedia.org/wiki/Voltage_regulator
https://en.wikipedia.org/wiki/Power_management

SoCs comprise many execution units. These units must often send data and instructions back and forth.
Because of this, all but the most trivial SoCs require communications subsystems. Originally, as with other
microcomputer technologies, data bus architectures were used, but recently designs based on sparse
intercommunication networks known as networks-on-chip (NoC) have risen to prominence and are forecast to
overtake bus architectures for SoC design in the near future.[13]

Historically, a shared global computer bus typically connected the different components, also called "blocks"
of the SoC.[13] A very common bus for SoC communications is ARM's royalty-free Advanced
Microcontroller Bus Architecture (AMBA) standard.

Direct memory access controllers route data directly between external interfaces and SoC memory, bypassing
the CPU or control unit, thereby increasing the data throughput of the SoC. This is similar to some device
drivers of peripherals on component-based multi-chip module PC architectures.

Computer buses are limited in scalability, supporting only up to tens of cores (multicore) on a single
chip.[13]:xiii Wire delay is not scalable due to continued miniaturization, system performance does not scale
with the number of cores attached, the SoC's operating frequency must decrease with each additional core
attached for power to be sustainable, and long wires consume large amounts of electrical power. These
challenges are prohibitive to supporting manycore systems on chip.[13]:xiii

In the late 2010s, a trend of SoCs implementing communications subsystems in terms of a network-like
topology instead of bus-based protocols has emerged. A trend towards more processor cores on SoCs has
caused on-chip communication efficiency to become one of the key factors in determining the overall system
performance and cost.[13]:xiii This has led to the emergence of interconnection networks with router-based
packet switching known as "networks on chip" (NoCs) to overcome the bottlenecks of bus-based
networks.[13]:xiii

Networks-on-chip have advantages including destination- and application-specific routing, greater power
efficiency and reduced possibility of bus contention. Network-on-chip architectures take inspiration from
communication protocols like TCP and the Internet protocol suite for on-chip communication,[13] although
they typically have fewer network layers. Optimal network-on-chip network architectures are an ongoing area
of much research interest. NoC architectures range from traditional distributed computing network topologies
such as torus, hypercube, meshes and tree networks to genetic algorithm scheduling to randomized algorithms
such as random walks with branching and randomized time to live (TTL).

Many SoC researchers consider NoC architectures to be the future of SoC design because they have been
shown to efficiently meet power and throughput needs of SoC designs. Current NoC architectures are two-
dimensional. 2D IC design has limited floorplanning choices as the number of cores in SoCs increase, so as
three-dimensional integrated circuits (3DICs) emerge, SoC designers are looking towards building three-
dimensional on-chip networks known as 3DNoCs.[13]

A system on a chip consists of both the hardware, described in § Structure, and the software controlling the
microcontroller, microprocessor or digital signal processor cores, peripherals and interfaces. The design flow
for an SoC aims to develop this hardware and software at the same time, also known as architectural co-
design. The design flow must also take into account optimizations (§ Optimization goals) and constraints.

Bus-based communication

Network on a chip

Design flow

https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Instruction_(computing)
https://en.wikipedia.org/wiki/Communications_system
https://en.wikipedia.org/wiki/Microcomputer
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architecture
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Control_unit
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Multi-chip_module
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Multicore
https://en.wikipedia.org/wiki/Miniaturization
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Operating_frequency
https://en.wikipedia.org/wiki/Manycore
https://en.wikipedia.org/wiki/2010s
https://en.wikipedia.org/wiki/Communications_subsystem
https://en.wikipedia.org/wiki/Bus_(computing)
https://en.wikipedia.org/wiki/Multi-processor_system-on-chip
https://en.wikipedia.org/wiki/Router_(computing)
https://en.wikipedia.org/wiki/Packet_switching
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Bottleneck_(engineering)
https://en.wikipedia.org/wiki/Routing
https://en.wikipedia.org/wiki/Bus_contention
https://en.wikipedia.org/wiki/Communication_protocols
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Network_layer
https://en.wikipedia.org/wiki/Network_architecture
https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Torus_interconnect
https://en.wikipedia.org/wiki/Hypercube_internetwork_topology
https://en.wikipedia.org/wiki/Mesh_networking
https://en.wikipedia.org/wiki/Tree_network
https://en.wikipedia.org/wiki/Genetic_algorithm_scheduling
https://en.wikipedia.org/wiki/Randomized_algorithm
https://en.wikipedia.org/wiki/Branching_random_walk
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Floorplan_(microelectronics)
https://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit
https://en.wikipedia.org/wiki/Electronic_hardware
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Design_flow_(EDA)

SoC design flow

Most SoCs are developed from pre-qualified hardware
component IP core specifications for the hardware elements
and execution units, collectively "blocks", described above,
together with software device drivers that may control their
operation. Of particular importance are the protocol stacks
that drive industry-standard interfaces like USB. The
hardware blocks are put together using computer-aided
design tools, specifically electronic design automation tools;
the software modules are integrated using a software
integrated development environment.

SoCs components are also often designed in high-level
programming languages such as C++, MATLAB or
SystemC and converted to RTL designs through high-level
synthesis (HLS) tools such as C to HDL or flow to HDL.[14]

HLS products called "algorithmic synthesis" allow designers
to use C++ to model and synthesize system, circuit, software
and verification levels all in one high level language
commonly known to computer engineers in a manner
independent of time scales, which are typically specified in
HDL.[15] Other components can remain software and be
compiled and embedded onto soft-core processors included
in the SoC as modules in HDL as IP cores.

Once the architecture of the SoC has been defined, any new hardware elements are written in an abstract
hardware description language termed register transfer level (RTL) which defines the circuit behavior, or
synthesized into RTL from a high level language through high-level synthesis. These elements are connected
together in a hardware description language to create the full SoC design. The logic specified to connect these
components and convert between possibly different interfaces provided by different vendors is called glue
logic.

Chips are verified for validation correctness before being sent to a semiconductor foundry. This process is
called functional verification and it accounts for a significant portion of the time and energy expended in the
chip design life cycle, often quoted as 70%.[16][17] With the growing complexity of chips, hardware
verification languages like SystemVerilog, SystemC, e, and OpenVera are being used. Bugs found in the
verification stage are reported to the designer.

Traditionally, engineers have employed simulation acceleration, emulation or prototyping on reprogrammable
hardware to verify and debug hardware and software for SoC designs prior to the finalization of the design,
known as tape-out. Field-programmable gate arrays (FPGAs) are favored for prototyping SoCs because
FPGA prototypes are reprogrammable, allow debugging and are more flexible than application-specific
integrated circuits (ASICs).[18][19]

With high capacity and fast compilation time, simulation acceleration and emulation are powerful technologies
that provide wide visibility into systems. Both technologies, however, operate slowly, on the order of MHz,
which may be significantly slower – up to 100 times slower – than the SoC's operating frequency.
Acceleration and emulation boxes are also very large and expensive at over US$1 million.

Design verification

https://en.wikipedia.org/wiki/File:SoCDesignFlow.svg
https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Protocol_stack
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/Computer-aided_design
https://en.wikipedia.org/wiki/Electronic_design_automation
https://en.wikipedia.org/wiki/Modular_programming
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/SystemC
https://en.wikipedia.org/wiki/Register-transfer_level
https://en.wikipedia.org/wiki/High-level_synthesis
https://en.wikipedia.org/wiki/C_to_HDL
https://en.wikipedia.org/wiki/Flow_to_HDL
https://en.wikipedia.org/wiki/Computer_engineers
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Register-transfer_level
https://en.wikipedia.org/wiki/Glue_logic
https://en.wikipedia.org/wiki/Semiconductor_fabrication_plant
https://en.wikipedia.org/wiki/Functional_verification
https://en.wikipedia.org/wiki/Integrated_circuit_development
https://en.wikipedia.org/wiki/Hardware_verification_language
https://en.wikipedia.org/wiki/SystemVerilog
https://en.wikipedia.org/wiki/SystemC
https://en.wikipedia.org/wiki/E_(verification_language)
https://en.wikipedia.org/wiki/OpenVera
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Reconfigurable_computing
https://en.wikipedia.org/wiki/Tape-out
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/FPGA_prototyping
https://en.wikipedia.org/wiki/Debugging
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

FPGA prototypes, in contrast, use FPGAs directly to enable engineers to validate and test at, or close to, a
system's full operating frequency with real-world stimuli. Tools such as Certus[20] are used to insert probes in
the FPGA RTL that make signals available for observation. This is used to debug hardware, firmware and
software interactions across multiple FPGAs with capabilities similar to a logic analyzer.

In parallel, the hardware elements are grouped and passed through a process of logic synthesis, during which
performance constraints, such as operational frequency and expected signal delays, are applied. This generates
an output known as a netlist describing the design as a physical circuit and its interconnections. These netlists
are combined with the glue logic connecting the components to produce the schematic description of the SoC
as a circuit which can be printed onto a chip. This process is known as place and route and precedes tape-out
in the event that the SoCs are produced as application-specific integrated circuits (ASIC).

SoCs must optimize power use, area on die, communication, positioning for locality between modular units
and other factors. Optimization is necessarily a design goal of SoCs. If optimization was not necessary, the
engineers would use a multi-chip module architecture without accounting for the area utilization, power
consumption or performance of the system to the same extent.

Common optimization targets for SoC designs follow, with explanations of each. In general, optimizing any of
these quantities may be a hard combinatorial optimization problem, and can indeed be NP-hard fairly easily.
Therefore, sophisticated optimization algorithms are often required and it may be practical to use
approximation algorithms or heuristics in some cases. Additionally, most SoC designs contain multiple
variables to optimize simultaneously, so Pareto efficient solutions are sought after in SoC design. Oftentimes
the goals of optimizing some of these quantities are directly at odds, further adding complexity to design
optimization of SoCs and introducing trade-offs in system design.

For broader coverage of trade-offs and requirements analysis, see requirements engineering.

SoCs are optimized to minimize the electrical power used to perform the SoC's functions. Most SoCs must use
low power. SoC systems often require long battery life (such as smartphones), can potentially spending months
or years without a power source needing to maintain autonomous function, and often are limited in power use
by a high number of embedded SoCs being networked together in an area. Additionally, energy costs can be
high and conserving energy will reduce the total cost of ownership of the SoC. Finally, waste heat from high
energy consumption can damage other circuit components if too much heat is dissipated, giving another
pragmatic reason to conserve energy. The amount of energy used in a circuit is the integral of power consumed
with respect to time, and the average rate of power consumption is the product of current by voltage.
Equivalently, by Ohm's law, power is current squared times resistance or voltage squared divided by
resistance:

SoCs are frequently embedded in portable devices such as smartphones, GPS navigation devices, digital
watches (including smartwatches) and netbooks. Customers want long battery lives for mobile computing
devices, another reason that power consumption must be minimized in SoCs. Multimedia applications are

Optimization goals

Targets

Power consumption

https://en.wikipedia.org/wiki/Logic_synthesis
https://en.wikipedia.org/wiki/Netlist
https://en.wikipedia.org/wiki/Glue_logic
https://en.wikipedia.org/wiki/Printed_circuit_board
https://en.wikipedia.org/wiki/Place_and_route
https://en.wikipedia.org/wiki/Tape-out
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://en.wikipedia.org/wiki/Power_consumption
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Multi-chip_module
https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Optimization_algorithm
https://en.wikipedia.org/wiki/Approximation_algorithm
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Multivariate_optimization
https://en.wikipedia.org/wiki/Pareto_efficiency
https://en.wikipedia.org/wiki/Trade-off#Engineering
https://en.wikipedia.org/wiki/Requirements_analysis
https://en.wikipedia.org/wiki/Requirements_engineering
https://en.wikipedia.org/wiki/Electric_power#Definition
https://en.wikipedia.org/wiki/Battery_life
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Total_cost_of_ownership
https://en.wikipedia.org/wiki/Waste_heat
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Power_(physics)
https://en.wikipedia.org/wiki/Mean_value_theorem
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Ohm%27s_law
https://en.wikipedia.org/wiki/Resistance_(physics)
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Smartphones
https://en.wikipedia.org/wiki/GPS_navigation_device
https://en.wikipedia.org/wiki/Digital_watch
https://en.wikipedia.org/wiki/Smartwatch
https://en.wikipedia.org/wiki/Netbook
https://en.wikipedia.org/wiki/Mobile_computing
https://en.wikipedia.org/wiki/Multimedia_application

often executed on these devices, including video games, video streaming, image processing; all of which have
grown in computational complexity in recent years with user demands and expectations for higher-quality
multimedia. Computation is more demanding as expectations move towards 3D video at high resolution with
multiple standards, so SoCs performing multimedia tasks must be computationally capable platform while
being low power to run off a standard mobile battery.[12]:3

SoCs are optimized to maximize power efficiency in performance per watt: maximize the performance of the
SoC given a budget of power usage. Many applications such as edge computing, distributed processing and
ambient intelligence require a certain level of computational performance, but power is limited in most SoC
environments. The ARM architecture has greater performance per watt than x86 in embedded systems, so it is
preferred over x86 for most SoC applications requiring an embedded processor.

SoC designs are optimized to minimize waste heat output on the chip. As with other integrated circuits, heat
generated due to high power density are the bottleneck to further miniaturization of components.[21]:1 The
power densities of high speed integrated circuits, particularly microprocessors and including SoCs, have
become highly uneven. Too much waste heat can damage circuits and erode reliability of the circuit over time.
High temperatures and thermal stress negatively impact reliability, stress migration, decreased mean time
between failures, electromigration, wire bonding, metastability and other performance degradation of the SoC
over time.[21]:2–9

In particular, most SoCs are in a small physical area or volume and therefore the effects of waste heat are
compounded because there is little room for it to diffuse out of the system. Because of high transistor counts on
modern devices due to Moore's law, oftentimes a layout of sufficient throughput and high transistor density is
physically realizable from fabrication processes but would result in unacceptably high amounts of heat in the
circuit's volume.[21]:1

These thermal effects force SoC and other chip designers to apply conservative design margins, creating less
performant devices to mitigate the risk of catastrophic failure. Due to increased transistor densities as length
scales get smaller, each process generation produces more heat output than the last. Compounding this
problem, SoC architectures are usually heterogeneous, creating spatially inhomogeneous heat fluxes, which
cannot be effectively mitigated by uniform passive cooling.[21]:1

SoCs are optimized to maximize computational and communications throughput.

SoCs are optimized to minimize latency for some or all of their functions. This can be accomplished by laying
out elements with proper proximity and locality to each-other to minimize the interconnection delays and
maximize the speed at which data is communicated between modules, functional units and memories. In
general, optimizing to minimize latency is an NP-complete problem equivalent to the boolean satisfiability
problem.

Performance per watt

Waste heat

Throughput

Latency

https://en.wikipedia.org/wiki/Video_game
https://en.wikipedia.org/wiki/Video_streaming
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Video_quality
https://en.wikipedia.org/wiki/3D_video
https://en.wikipedia.org/wiki/High_resolution
https://en.wikipedia.org/wiki/List_of_video_compression_formats
https://en.wikipedia.org/wiki/Power_efficiency
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Distributed_processing
https://en.wikipedia.org/wiki/Ambient_intelligence
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Soft_microprocessor
https://en.wikipedia.org/wiki/Waste_heat
https://en.wikipedia.org/wiki/Dissipation
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Power_density
https://en.wikipedia.org/wiki/Bottleneck_(engineering)
https://en.wikipedia.org/wiki/Miniaturization
https://en.wikipedia.org/wiki/Reliability_(semiconductor)
https://en.wikipedia.org/wiki/Stress_migration
https://en.wikipedia.org/wiki/Mean_time_between_failures
https://en.wikipedia.org/wiki/Electromigration
https://en.wikipedia.org/wiki/Wire_bonding
https://en.wikipedia.org/wiki/Metastability_(electronics)
https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Transistors_density
https://en.wikipedia.org/wiki/Semiconductor_device_fabrication
https://en.wikipedia.org/wiki/Design_margin
https://en.wikipedia.org/wiki/Catastrophic_failure
https://en.wikipedia.org/wiki/Transistors_density
https://en.wikipedia.org/wiki/Semiconductor_node
https://en.wikipedia.org/wiki/Heat_flux
https://en.wikipedia.org/wiki/Passive_cooling
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Integrated_circuit_layout
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Execution_unit
https://en.wikipedia.org/wiki/NP-completeness
https://en.wikipedia.org/wiki/Boolean_satisfiability_problem

For tasks running on processor cores, latency and throughput can be improved with task scheduling. Some
tasks run in application-specific hardware units, however, and even task scheduling may not be sufficient to
optimize all software-based tasks to meet timing and throughput constraints.

Systems on chip are modeled with standard hardware verification and validation techniques, but additional
techniques are used to model and optimize SoC design alternatives to make the system optimal with respect to
multiple-criteria decision analysis on the above optimization targets.

Task scheduling is an important activity in any computer system with multiple processes or threads sharing a
single processor core. It is important to reduce § Latency and increase § Throughput for embedded software
running on an SoC's § Processor cores. Not every important computing activity in a SoC is performed in
software running on on-chip processors, but scheduling can drastically improve performance of software-
based tasks and other tasks involving shared resources.

SoCs often schedule tasks according to network scheduling and randomized scheduling algorithms.

Hardware and software tasks are often pipelined in processor design. Pipelining is an important principle for
speedup in computer architecture. They are frequently used in GPUs (graphics pipeline) and RISC processors
(evolutions of the classic RISC pipeline), but are also applied to application-specific tasks such as digital signal
processing and multimedia manipulations in the context of SoCs.[12]

SoCs are often analyzed though probabilistic models, Queueing theory § Queueing networks and Markov
chains. For instance, Little's law allows SoC states and NoC buffers to be modeled as arrival processes and
analyzed through Poisson random variables and Poisson processes.

SoCs are often modeled with Markov chains, both discrete time and continuous time variants. Markov chain
modeling allows asymptotic analysis of the SoC's steady state distribution of power, heat, latency and other
factors to allow design decisions to be optimized for the common case.

SoC chips are typically fabricated using metal–oxide–semiconductor (MOS) technology.[22] The netlists
described above are used as the basis for the physical design (place and route) flow to convert the designers'
intent into the design of the SoC. Throughout this conversion process, the design is analyzed with static timing
modeling, simulation and other tools to ensure that it meets the specified operational parameters such as
frequency, power consumption and dissipation, functional integrity (as described in the register transfer level
code) and electrical integrity.

Methodologies

Task scheduling

Pipelining

Probabilistic modeling

Markov chains

Fabrication

https://en.wikipedia.org/wiki/Task_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Multiple-criteria_decision_analysis
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Embedded_software
https://en.wikipedia.org/wiki/Shared_resource
https://en.wikipedia.org/wiki/Network_scheduling
https://en.wikipedia.org/wiki/Stochastic_scheduling
https://en.wikipedia.org/wiki/Processor_design
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Graphics_pipeline
https://en.wikipedia.org/wiki/Classic_RISC_pipeline
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Queueing_theory#Queueing_networks
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Little%27s_law
https://en.wikipedia.org/wiki/Poisson_random_variable
https://en.wikipedia.org/wiki/Poisson_process
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_chain#Discrete-time_Markov_chain
https://en.wikipedia.org/wiki/Markov_chain#Continuous-time_Markov_chain
https://en.wikipedia.org/wiki/Asymptotic_analysis
https://en.wikipedia.org/wiki/Markov_chain#Steady-state_analysis_and_limiting_distributions
https://en.wikipedia.org/wiki/Semiconductor_device_fabrication
https://en.wikipedia.org/wiki/Metal%E2%80%93oxide%E2%80%93semiconductor
https://en.wikipedia.org/wiki/Place_and_route

When all known bugs have been rectified and these have been re-verified and all physical design checks are
done, the physical design files describing each layer of the chip are sent to the foundry's mask shop where a
full set of glass lithographic masks will be etched. These are sent to a wafer fabrication plant to create the SoC
dice before packaging and testing.

SoCs can be fabricated by several technologies, including:

Full custom ASIC
Standard cell ASIC
Field-programmable gate array (FPGA)

ASICs consume less power and are faster than FPGAs but cannot be reprogrammed and are expensive to
manufacture. FPGA designs are more suitable for lower volume designs, but after enough units of production
ASICs reduce the total cost of ownership.[23]

SoC designs consume less power and have a lower cost and higher reliability than the multi-chip systems that
they replace. With fewer packages in the system, assembly costs are reduced as well.

However, like most very-large-scale integration (VLSI) designs, the total cost is higher for one large chip than
for the same functionality distributed over several smaller chips, because of lower yields and higher non-
recurring engineering costs.

When it is not feasible to construct an SoC for a particular application, an alternative is a system in package
(SiP) comprising a number of chips in a single package. When produced in large volumes, SoC is more cost-
effective than SiP because its packaging is simpler.[24] Another reason SiP may be preferred is waste heat may
be too high in a SoC for a given purpose because functional components are too close together, and in an SiP
heat will dissipate better from different functional modules since they are physically further apart.

SoC research and development often compares many options. Benchmarks, such as COSMIC,[25] are
developed to help such evaluations.

List of system-on-a-chip suppliers
Post-silicon validation
ARM architecture
Single-board computer
System in package
Network on a chip
Programmable SoC
Application-specific instruction set processor (ASIP)
Platform-based design
Lab on a chip
Organ on a chip in biomedical technology
Multi-chip module
List of Qualcomm Snapdragon processors - Qualcomm
Exynos - Samsung

Benchmarks

See also

https://en.wikipedia.org/wiki/Full_custom
https://en.wikipedia.org/wiki/Standard_cell
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Very-large-scale_integration
https://en.wikipedia.org/wiki/Semiconductor_device_fabrication#Device_test
https://en.wikipedia.org/wiki/Non-recurring_engineering
https://en.wikipedia.org/wiki/System_in_package
https://en.wikipedia.org/wiki/Chip_carrier
https://en.wikipedia.org/wiki/Waste_heat
https://en.wikipedia.org/wiki/Research_and_development
https://en.wikipedia.org/wiki/List_of_system-on-a-chip_suppliers
https://en.wikipedia.org/wiki/Post-silicon_validation
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/System_in_package
https://en.wikipedia.org/wiki/Network_on_a_chip
https://en.wikipedia.org/wiki/Programmable_system-on-chip
https://en.wikipedia.org/wiki/Application-specific_instruction_set_processor
https://en.wikipedia.org/wiki/Platform-based_design
https://en.wikipedia.org/wiki/Lab_on_a_chip
https://en.wikipedia.org/wiki/Organ_on_a_chip
https://en.wikipedia.org/wiki/Multi-chip_module
https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_processors
https://en.wikipedia.org/wiki/Qualcomm
https://en.wikipedia.org/wiki/Exynos
https://en.wikipedia.org/wiki/Samsung

1. This article uses the convention that SoC is pronounced /ˌɛsˌoʊˈsiː/ es-oh-SEE. Therefore, it
uses the convention "an" for the indefinite article corresponding to SoC ("an SoC"). Other
sources may pronounce it as /sɒk/ sock and therefore use "a SoC".

2. This central board is called the "mother board" for hosting the "child" component cards.
3. The graphics connections (PCI Express) and RAM historically constituted the northbridge of

motherboard-backed discrete architectures.
4. The hard disk and USB connectivity historically comprised part of the southbridge of

motherboard-backed discrete modular architectures.
5. In embedded systems, "shields" are analogous to expansion cards for PCs. They often fit over

a microcontroller such as an Arduino or single-board computer such as the Raspberry Pi and
function as peripherals for the device.

1. Shah, Agam (January 3, 2017). "7 dazzling smartphone improvements with Qualcomm's
Snapdragon 835 chip" (https://www.networkworld.com/article/3154386/7-dazzling-smartphone-
improvements-with-qualcomms-snapdragon-835-chip.html). Network World.

2. https://arstechnica.com/gadgets/2020/02/qualcomms-snapdragon-x60-promises-smaller-5g-
modems-in-2021/?amp=1

3. Pete Bennett, EE Times. "The why, where and what of low-power SoC design (http://www.eeti
mes.com/document.asp?doc_id=1276973)." December 2, 2004. Retrieved July 28, 2015.

4. Nolan, Stephen M. "Power Management for Internet of Things (IoT) System on a Chip (SoC)
Development" (https://www.design-reuse.com/articles/42705/power-management-for-iot-soc-de
velopment.html). Design And Reuse. Retrieved 2018-09-25.

5. "Is a single-chip SOC processor right for your embedded project?" (https://www.embedded.co
m/design/mcus-processors-and-socs/4419584/Is-a-single-chip-SOC-processor-right-for-your-e
mbedded-project-). Embedded. Retrieved 2018-10-13.

6. "Qualcomm launches SoCs for embedded vision | Imaging and Machine Vision Europe" (http
s://www.imveurope.com/news/qualcomm-launches-socs-embedded-vision).
www.imveurope.com. Retrieved 2018-10-13.

7. "Samsung Galaxy S10 and S10e Teardown" (https://www.ifixit.com/Teardown/Samsung+Galax
y+S10+and+S10e+Teardown/120331). iFixit. March 6, 2019.

8. "ARM is going after Intel with new chip roadmap through 2020" (https://www.windowscentral.co
m/arm-going-after-intel-new-chip-roadmap-through-2020). Windows Central. Retrieved
2018-10-06.

9. "Always Connected PCs, Extended Battery Life 4G LTE Laptops | Windows" (https://www.micro
soft.com/en-us/windows/always-connected-laptop-pcs). www.microsoft.com. Retrieved
2018-10-06.

10. "Gigabit Class LTE, 4G LTE and 5G Cellular Modems | Qualcomm" (https://www.qualcomm.co
m/products/modems). Qualcomm. Retrieved 2018-10-13.

11. Furber, Stephen B. (2000). ARM system-on-chip architecture. Harlow, England: Addison-
Wesley. ISBN 0201675196. OCLC 44267964 (https://www.worldcat.org/oclc/44267964).

12. Haris Javaid, Sri Parameswaran (2014). Pipelined Multiprocessor System-on-Chip for
Multimedia. Springer. ISBN 9783319011134. OCLC 869378184 (https://www.worldcat.org/oclc/
869378184).

13. Kundu, Santanu; Chattopadhyay, Santanu (2014). Network-on-chip: the Next Generation of
System-on-Chip Integration (1st ed.). Boca Raton, FL: CRC Press. ISBN 9781466565272.
OCLC 895661009 (https://www.worldcat.org/oclc/895661009).

Notes

References

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/Indefinite_article
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/PCI_Express
https://en.wikipedia.org/wiki/Northbridge_(computing)
https://en.wikipedia.org/wiki/Southbridge_(computing)
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Expansion_card
https://en.wikipedia.org/wiki/Personal_computer
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Arduino
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Peripheral
https://www.networkworld.com/article/3154386/7-dazzling-smartphone-improvements-with-qualcomms-snapdragon-835-chip.html
https://arstechnica.com/gadgets/2020/02/qualcomms-snapdragon-x60-promises-smaller-5g-modems-in-2021/?amp=1
https://en.wikipedia.org/wiki/EE_Times
http://www.eetimes.com/document.asp?doc_id=1276973
https://www.design-reuse.com/articles/42705/power-management-for-iot-soc-development.html
https://www.embedded.com/design/mcus-processors-and-socs/4419584/Is-a-single-chip-SOC-processor-right-for-your-embedded-project-
https://www.imveurope.com/news/qualcomm-launches-socs-embedded-vision
https://www.ifixit.com/Teardown/Samsung+Galaxy+S10+and+S10e+Teardown/120331
https://www.windowscentral.com/arm-going-after-intel-new-chip-roadmap-through-2020
https://www.microsoft.com/en-us/windows/always-connected-laptop-pcs
https://www.qualcomm.com/products/modems
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0201675196
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/44267964
https://en.wikipedia.org/wiki/Springer-Verlag
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9783319011134
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/869378184
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781466565272
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/895661009

Badawy, Wael; Jullien, Graham A., eds. (2003). System-on-Chip for Real-Time Applications (htt
ps://books.google.com/books?id=Ha76NqrqPVIC). Kluwer international series in engineering
and computer science, SECS 711. Boston: Kluwer Academic Publishers.
ISBN 9781402072543. OCLC 50478525 (https://www.worldcat.org/oclc/50478525). 465 pages.
Furber, Stephen B. (2000). ARM system-on-chip architecture. Boston: Addison-Wesley.
ISBN 0-201-67519-6.
Kundu, Santanu; Chattopadhyay, Santanu (2014). Network-on-chip: the Next Generation of
System-on-Chip Integration (1st ed.). Boca Raton, FL: CRC Press. ISBN 9781466565272.
OCLC 895661009 (https://www.worldcat.org/oclc/895661009).

SOCC (http://www.ieee-socc.org/) Annual IEEE International SoC Conference
Baya (http://www.edautils.com/Baya.html) free SoC platform assembly and IP integration tool

14. "Best Practices for FPGA Prototyping of MATLAB and Simulink Algorithms" (http://www.eejourn
al.com/archives/articles/20110825-mathworks/). EEJournal. 2011-08-25. Retrieved
2018-10-08.

15. Bowyer, Bryan (2005-02-05). "The 'why' and 'what' of algorithmic synthesis" (https://www.eetim
es.com/document.asp?doc_id=1271261). EE Times. Retrieved 2018-10-08.

16. EE Times. "Is verification really 70 percent? (http://www.eetimes.com/author.asp?section_id=36
&doc_id=1264922)." June 14, 2004. Retrieved July 28, 2015.

17. "Difference between Verification and Validation" (http://www.softwaretestingclass.com/differenc
e-between-verification-and-validation/). Software Testing Class. Retrieved 2018-04-30. "In
interviews most of the interviewers are asking questions on “What is Difference between
Verification and Validation?” Many people use verification and validation interchangeably but
both have different meanings."

18. Rittman, Danny (2006-01-05). "Nanometer prototyping" (http://www.tayden.com/publications/Na
nometer%20Prototyping.pdf) (PDF). Tayden Design. Retrieved 2018-10-07.

19. "FPGA Prototyping to Structured ASIC Production to Reduce Cost, Risk & TTM" (http://www.de
sign-reuse.com/articles/13550/fpga-prototyping-to-structured-asic-production-to-reduce-cost-ris
k-ttm.html). Design And Reuse. Retrieved 2018-10-07.

20. Brian Bailey, EE Times. "Tektronix hopes to shake up ASIC prototyping (http://www.eetimes.co
m/document.asp?doc_id=1317504)." October 30, 2012. Retrieved July 28, 2015.

21. Ogrenci-Memik, Seda (2015). Heat Management in Integrated circuits: On-chip and system-
level monitoring and cooling. London, United Kingdom: The Institution of Engineering and
Technology. ISBN 9781849199353. OCLC 934678500 (https://www.worldcat.org/oclc/9346785
00).

22. Lin, Youn-Long Steve (2007). Essential Issues in SOC Design: Designing Complex Systems-
on-Chip (https://books.google.com/books?id=7OV9lEn9LiQC&pg=PA176). Springer Science &
Business Media. p. 176. ISBN 9781402053528.

23. "FPGA vs ASIC: Differences between them and which one to use? – Numato Lab Help Center"
(https://numato.com/blog/differences-between-fpga-and-asics/). numato.com. Retrieved
2018-10-17.

24. EE Times. "The Great Debate: SOC vs. SIP (http://www.eetimes.com/document.asp?doc_id=11
53043)." March 21, 2005. Retrieved July 28, 2015.

25. "COSMIC" (http://www.ece.ust.hk/~eexu/COSMIC.html). www.ece.ust.hk. Retrieved
2018-10-08.

Further reading

External links

https://books.google.com/books?id=Ha76NqrqPVIC
https://en.wikipedia.org/wiki/Wolters_Kluwer
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781402072543
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/50478525
https://en.wikipedia.org/wiki/ARM_system-on-chip_architecture
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-201-67519-6
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781466565272
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/895661009
http://www.ieee-socc.org/
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
http://www.edautils.com/Baya.html
http://www.eejournal.com/archives/articles/20110825-mathworks/
https://www.eetimes.com/document.asp?doc_id=1271261
https://en.wikipedia.org/wiki/EE_Times
https://en.wikipedia.org/wiki/EE_Times
http://www.eetimes.com/author.asp?section_id=36&doc_id=1264922
http://www.softwaretestingclass.com/difference-between-verification-and-validation/
http://www.tayden.com/publications/Nanometer%20Prototyping.pdf
http://www.design-reuse.com/articles/13550/fpga-prototyping-to-structured-asic-production-to-reduce-cost-risk-ttm.html
http://www.eetimes.com/document.asp?doc_id=1317504
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781849199353
https://en.wikipedia.org/wiki/OCLC_(identifier)
https://www.worldcat.org/oclc/934678500
https://books.google.com/books?id=7OV9lEn9LiQC&pg=PA176
https://en.wikipedia.org/wiki/Springer_Science_%26_Business_Media
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781402053528
https://numato.com/blog/differences-between-fpga-and-asics/
https://en.wikipedia.org/wiki/EE_Times
http://www.eetimes.com/document.asp?doc_id=1153043
http://www.ece.ust.hk/~eexu/COSMIC.html

Systems on Chip for Embedded Applications (http://www.eng.auburn.edu/~nelson/courses/elec
5260_6260/Systems%20on%20Chip%20(SoC).pdf), Auburn University seminar in VLSI
Instant SoC (http://www.fpga-cores.com/instant-soc/) SoC for FPGAs defined by C++

Retrieved from "https://en.wikipedia.org/w/index.php?title=System_on_a_chip&oldid=1024311646"

This page was last edited on 21 May 2021, at 10:59 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

http://www.eng.auburn.edu/~nelson/courses/elec5260_6260/Systems%20on%20Chip%20(SoC).pdf
https://en.wikipedia.org/wiki/Auburn_University
https://en.wikipedia.org/wiki/Very-large-scale_integration
http://www.fpga-cores.com/instant-soc/
https://en.wikipedia.org/w/index.php?title=System_on_a_chip&oldid=1024311646
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

