
Novell exteNd Composer™

Telnet Connect

USER’S GUIDE

www.novell.com4.1

Legal Notices

Copyright ©1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

SilverStream is a registered trademark of SilverStream Software, LLC. Novell is a registered trademark of Novell,
Inc.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any
rights of ownership in the Software.

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Ant Copyright ©1999 The
Apache Software Foundation. All rights reserved. Xalan Copyright ©1999 The Apache Software Foundation. All
rights reserved. Xerces Copyright ©1999-2000 The Apache Software Foundation. All rights reserved. Jakarta-
Regexp, Ant, Xalan, Crimson and Xerces software is licensed by The Apache Software Foundation and
redistribution and use of Jakarta-Regexp, Ant, Xalan, Crimson and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
the redistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", "Xalan", "Ant" and "Apache Software Foundation" must not be used to
endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org <mailto:apache@apache.org>. 5. Products derived from this software may not be
called "Apache", nor may "Apache" appear in their name, without prior written permission of The Apache Software
Foundation. THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE
SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer
that follows these conditions in the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org <mailto:license@jdom.org>. 4. Products
derived from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior written
permission from the JDOM Project Management (pm@jdom.org <mailto:pm@jdom.org>). THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans,
Enterprise JavaBeans, JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava
Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager,
Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer,
ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java
WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

Copyright ©2001 Extreme! Lab, Indiana University License. http://www.extreme.indiana.edu. Permission is hereby
granted, free of charge, to any person obtaining a copy of the Indiana University software and associated Indiana
University documentation files (the "IU Software"), to deal in the IU Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the IU Software,
and to permit persons to whom the IU Software is furnished to do so, subject to the following conditions: The above
copyright notice and this permission notice shall be included in all copies or substantial portions of the IU Software.
THE IU SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE IU SOFTWARE OR THE USE OR OTHER DEALINGS IN THE IU SOFTWARE.

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved.

Copyright © 1994-2002 W3C® (Massachusetts Institute of Technology, Institut National de Recherche Informatique
et en Automatique, Keio University), all Rights Reserved. http: www.w3.org/consortium/legal. This W3C work
(including software, documents, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions: Permission to use, copy, modify, and distribute
this software and its documentation, with or without modification, for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the software and documentation or
portions thereof, including modifications, that you make: 1. The full text of this NOTICE in a location viewable to
users of the redistributed or derivative work. 2. Any pre-existing intellectual property disclaimers, notices, or terms
and conditions. If none exist, a short notice of the following form (hypertext is preferred, text is permitted) should be
used within the body of any redistributed or derivative code: "Copyright © [$date-of-software] World Wide Web
Consortium, (Massachusetts Institute of Technology, Institut National de Recherche en Informatique et en
Automatique, Keio University). All Rights Reserved. http://www.w3.org/Consortium/Legal/" 3. Notice of any
changes or modifications to the W3C files, including the date changes were made. (We recommend you provide
URIs to the location from which the code is derived.) THIS SOFTWARE AND DOCUMENTATION IS
PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR
DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS
OR OTHER RIGHTS. COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION. The name and trademarks of copyright holders may NOT be used in advertising or publicity
pertaining to the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at all times remain with copyright holders.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

Telnet Connect User’s Guide
January 2003
000-000000-000

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks
Novell and jBroker are registered trademarks and Novell exteNd is a trademark of Novell, Inc.

Third-Party Trademarks
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans,
Enterprise JavaBeans, JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava
Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager,
Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer,
ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java
WorkShop, the Java Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.

7777

Contents

About This Guide 11

1111 Welcome to exteNd Composer and Telnet User Interface 13
Before You Begin . 13
About exteNd Composer Connects . 13
What Is Telnet?. 15
What is the Telnet Connect?. 15
About exteNd Composer's Telnet Component . 16
What Applications Can You Build Using the Telnet User Interface Component Editor? 16

2222 Getting Started with the Telnet Component Editor 17
Creating a Telnet Connection Resource. 17
About Connection Resources . 17
About Constant and Expression Driven Connections . 18

About Code Page Support . 21
Creating XML Templates for Your Component. 21

3333 Creating a Telnet Component 23
Before Creating a Telnet Component . 23
About the Telnet Component Editor Window . 25
About the Telnet Native Environment Pane . 26
About Telnet Keyboard Support . 26
About the Screen Object. 29

What it is . 29
How it works. 29

About Telnet-Specific Menu Bar Items . 30
About Telnet-Specific Context-Menu Items . 31

Native Environment Pane Context Menu . 31
Action Pane Context Menu . 31

About Telnet-Specific Buttons. 32
Record Button . 32
Connection Button . 33

4444 Performing Telnet Actions 35
About Actions . 35
About Telnet-Specific Actions . 35

The Check Screen Action . 36
Understanding the Check Screen Action . 37
Readiness Criteria . 37

The Send Buffer Action . 39

Telnet Connect User’s Guide8888

Editing Text in the Send Buffer Dialog . 41
About the Send Buffer Action and Record Mode . 42
How Keys Are Displayed in the Action Model . 42

Telnet-Specific Expression Builder Extensions. 42
Login . 43
Screen Methods . 43
Keys . 48

Screen Selections in the Telnet Connect . 48
Selecting Continuous Data. 48
Selecting Rectangular Regions . 50

About the Sample Program. 51
Recording a Telnet Session . 51
Looping Over Multiple Rows in Search of Data . 57
Editing a Previously Recorded Action Model . 65

Changing an Existing Action . 66
Adding A New Action . 69
About Adding Alias Actions . 72
Deleting an Action . 73

Testing your Telnet Component . 73
Using the Animation Tools . 75
Tips for Building Reliable Telnet Components . 77
Using Other Actions in the Telnet Component Editor . 78
Handling Errors and Messages. 80

Check Screen Errors . 81
Send Buffer Errors . 83
Errors Involving Connections . 83

Finding a “Bad” Action . 83

5555 Advanced Telnet Actions 85
Data Sets that Span Screens . 86
Dealing with Redundant Data . 87
An Example of Looping over Multiple Screens . 89

Initial Actions . 90
Setting Up the Main Loop . 91
Screen Caching . 92
The Main Loop . 93

Performance Considerations . 96

6666 Logon Components, Connections, and Connection Pools 99
About Telnet Session Performance . 99
Connection Pool Architecture . 100
About the Telnet Connection . 102

Connection Pooling with a Single Sign-On. 103
About the Telnet Logon Component . 103

LOGON Actions . 104

9999

Maximizing Performance with the Logon Component . 106
KEEPALIVE Actions . 107

Maximizing Performance with KEEPALIVE Actions . 109
LOGOFF Actions . 109

Maximizing Performance of the LOGOFF Actions . 109
Logon Component Execution . 110

Creating a Connection Pool . 110
Overview . 110

Creating a Connection . 111
Creating a Logon Component. 111
Creating a Logon Connection using a Pool Connection . 113

Maximizing Performance of Telnet Logon Connection . 117
Static versus Dynamically Created Documents/Elements . 118

Creating a Logon Connection using a Session Connection . 118
Creating a Telnet Component. 120

Maximizing Performance of Telnet Terminal Components . 121
Managing Pools . 121
 . 124
Connection Pool Management and Deployed Services . 124

Connection Discard Behavior. 125
Screen Synchronization . 125

AAAA Glossary 127

BBBB Telnet Keyboard Equivalents 129

CCCC Telnet Display Attributes 135
Viewing All Character Attributes at Once . 136

DDDD Reserved Words 139

EEEE Java Code Pages 141
About Encodings. 141

Telnet Connect User’s Guide10101010

11111111

About This Guide

Purpose

The guide describes how to use exteNd Composer Telnet Connect, referred to as
the Telnet Component Editor. The Telnet Component Editor is a separately-
installed component editor in exteNd Composer.

Audience

The audience for the guide is developers and system integrators using exteNd
Composer to create services and components which integrate Telnet applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s
development environment and deployment options. You must also have an
understanding of the Telnet environment and building or using applications
utilizing Telnet or VT-series terminals (e.g. VT100).

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

The guide is organized as follows:

Chapter 1, Welcome to exteNd Composer and Telnet, gives a definition and
overview of the Telnet Component Editor.

Chapter 2, Getting Started with the Telnet Component Editor, describes the
necessary preparations for creating a Telnet component.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

12121212 Telnet Connect User’s Guide

Chapter 3, Creating a Telnet Component, describes the parts of the component
editor.

Chapter 4, Performing Telnet Actions, describes how to use the basic Telnet
actions, as well as the unique drag-and-drop conventions of Telnet Connect.

Chapter 5, Advanced Telnet Actions, discusses techniques for solving common
Telnet computing problems in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes
how to enhance performance through use of shared connections.

Appendix A, is a glossary.

Appendix B, ANSI Escape Sequences and Control Codes, recognized and /or used
by Telnet Connect.

Appendix C, Telnet Attributes, and their display significance along with a
discussion of how to use the getattribute().

Appendix D, Reserved Words, lists those words used only for Telnet Connect.

Conventions Used in the Guide

The guide uses the following typographical conventions.

Bold typeface within instructions indicate action items, including:

� Menu selections
� Form selections
� Dialog box items

Sans-serif bold typeface is used for:

� Uniform Resource Identifiers
� File names
� Directories and partial pathnames

Italic typeface indicates:

� Variable information that you supply
� Technical terms used for the first time
� Title of other Novell publications

Monospaced typeface indicates:

� Method names
� Code examples
� System input
� Operating system objects

13Welcome to exteNd Composer and Telnet User Interface

Welcome to exteNd Composer and
Telnet User Interface Chapter 1

Before You Begin
Welcome to the Telnet Connect Guide. This Guide is a companion to the exteNd
Composer User's Guide, which details how to use all the features of exteNd
Composer, except for the Connect Component Editors. If you haven't looked at
the Composer User's Guide yet, please familiarize yourself with it before using
this Guide.

exteNd Composer provides separate Component Editors for each Connect. The
special features of each component editor are described in separate Guides like
this one.

If you have been using exteNd Composer, and are familiar with the XML Map
Component Editor, then this Guide should get you started with the Telnet
Component Editor.

Before you can begin working with the Telnet Connect you must have installed it
into your existing exteNd Composer. Likewise, before you can run any Services
built with this Connect in the exteNd Composer Enterprise Server environment,
you must have already installed the server-side software for this Connect into
Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the
Telnet environment and the particular applications that you want to XML-enable.

About exteNd Composer Connects
exteNd Composer is built upon a simple hub and spoke architecture (Fig.1-1).
The hub is a robust XML transformation engine that accepts requests via XML
documents, performs transformation processes on those documents and
interfaces with XML-enabled applications, and returns an XML response
document. The spokes, or Connects, are plug-in modules that "XML-enable"

Telnet Connect User’s Guide14

sources of data that are not XML aware, bringing their data into the hub for
processing as XML. These data sources can be anything from legacy
COBOL/applications to Message Queues to HTML pages.

Figure 1-1

exteNd Composer Connects can be categorized by the integration strategy each
one employs to XML-enable an information source. The integration strategies
are a reflection of the major divisions used in modern systems designs for
Internet-based computing architectures. Depending on your B2B needs and the
architecture of your legacy applications, exteNd Composer can integrate your
business systems at the User Interface, Program Logic, or Data levels. (See
below.)

Welcome to exteNd Composer and Telnet User Interface 15

What Is Telnet?
Telnet is a specification (RFC 854) for a communications protocol. The term Telnet
refers to a generic TCP/IP protocol for emulating a terminal on ANSI standard
systems. Many applications for UNIX and VAX/VMS (as well as others) were
developed for terminal based systems. These systems allow remote execution of their
interface through the Telnet TCP/IP protocol. Telnet allows this by mimicking the
terminal in that it sends screens to a client and accepts keyed data from the client.
This interaction, through a so-called “dumb” terminal, means that all the data is
processed on the host computer. Telnet terminal emulation software can be used to
make a microcomputer or PC act as if it were a Telnet-type terminal while it is
communicating with a host computer.

What is the Telnet Connect?
The Telnet Connect XML-enables VT-series and ANSI Terminal based systems using
the User Interface integration strategy by hooking into the Telnet Terminal Stream.
Using the Telnet Connect, you can make legacy applications and their business logic
available to the internet, extranet, or intranet processes. You can navigate through an
application as if you were at a terminal session, use XML documents to drive
inquiries and updates into the screens rather than keying, use the messages returned
from application screens to make the same decisions as if you were at a terminal, and
move data and responses into XML documents that can be returned to the requestor

Telnet Connect User’s Guide16

or continue to be processed. The Telnet screens appear in the Native
Environment Pane of the Telnet Component Editor.

About exteNd Composer's Telnet Component
Much like the XML Map component, the Telnet Component is designed to map,
transform, and transfer data between two different XML templates (i.e., request
and response XML documents). However, it is specialized to make a connection
(via Telnet) to a host application, process the data using elements from a screen,
and then map the results to an output DOM. You can then act upon the output
DOM in any way that makes sense for your integration application. In essence,
you're able to capture data from, or push data to, a host system without ever
having to alter the host system itself.

A Telnet Component can perform simple data manipulations, such as mapping
and transferring data from an XML document into a host program, or perform
"screen scraping" of a Telnet program, putting the harvested data into an XML
document. A Telnet Component has all the functionality of the XML Map
Component and can process XSL, send mail, and post and receive XML
documents using the HTTP protocol.

What Applications Can You Build Using the Telnet
User Interface Component Editor?

The Telnet User Interface Component Editor allows you to extend any XML
integration you are building to include any of your business applications that
support Telnet-based terminal interactions (See the exteNd Composer User's
Guide for more information.) For example, you may have an application that
retrieves a product's description, picture, price, and inventory from regularly
updated databases and displays it in a Web browser. By using the Telnet
Component Editor, you can now get the current product information from the
operational systems and the static information (e.g., a picture) from a database
and merge the information from these separate information sources before
displaying it to a user. This provides the same current information to both your
internal and external users.

17Getting Started with the Telnet Component Editor

Getting Started with the Telnet
Component Editor Chapter 2

While there are many ways to go about creating Telnet Components, the most
commonly used steps in creating a simple Telnet Component are as follows:

� Create XML Template(s) for the program.
� Create a Connection Resource.
� Create a Telnet Component.
� Enter Record mode and navigate to the program using terminal emulation

available via the component editor’s Native Environment Pane.
� Drag and drop input-document data into the screen as needed.
� Drag and drop screen results into the output document.
� Stop recording.

In this chapter, we’ll focus on creating and a configuring a Telnet Connection
Resource, which is an essential first step in being able to use Telnet Components.

Creating a Telnet Connection Resource
Before you can create a Telnet Component, you need to create a Connection
Resource to access the host program. If you try to create a Telnet Component in
the absence of any available Connection Resources, a dialog will appear, asking
if you wish to create a Connection Resource. By answering Yes to this dialog,
you will be taken to the appropriate wizard.

About Connection Resources
When you create a Connection Resource for the Telnet Component, you will use
a live Telnet Connection to connect to a host environment of your choice. After
setting up your Connection Resource, it will be available for use by any number
of Telnet Components that might require a connection to the host in question.

Telnet Connect User’s Guide18

About Constant and Expression Driven Connections
You can specify Connection parameter values in one of two ways: as Constants
or as Expressions. A constant-based parameter uses the static value you supply in
the Connection dialog every time the Connection is used. An expression-based
parameter allows you to set the value in question using a programmatic
expression (that is, an ECMAScript expression), which can result in a different
value each time the connection is used at runtime. This allows the Connection's
behavior to be flexible and vary based on runtime conditions.

For instance, one very simple use of an expression-driven parameter in a Telnet
Connection would be to define the User ID and Password as PROJECT Variables
(e.g.: PROJECT.XPath("USERCONFIG/MyDeployUser"). This way, when you
deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User ID and Password to use.

���� To switch a parameter from Constant-driven to Expression-driven:

1 Click the right mouse button in the parameter field you are interested in
changing.

2 Select Expression from the context menu and the editor button will appear
or become enabled. See below.

3 Click on the Expression Editor button. The Expression Editor appears.

Getting Started with the Telnet Component Editor 19

4 Create an expression (optionally using the pick lists in the upper portion of
the window) that evaluates to a valid parameter value at runtime. Click OK.

���� To create a Telnet Connection Resource:

1 From the Composer File menu, select New xObject, then Resource, then
Connection.
NOTE: Alternatively, you can highlight Connection in the Composer
window category pane, click the right mouse button, then select New.

The Create a New Connection Resource Wizard appears.

Telnet Connect User’s Guide20

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next. The second panel of the wizard appears.

5 Select the Telnet Connection type from the pulldown menu. Dialog changes
appearance to show just the fields necessary for creating the Telnet
connection.

6 In the Host or IP Address field, enter the physical (IP) address or hostname
alias for the machine to which you are connecting.

7 In the Port field, enter the number of the Telnet port. The default port
number is 23.

8 In the Terminal Type field, enter the type of terminal you wish to specify
when handshaking with the host. Select one of the values in the pulldown
menu (currently VT100, VT220, or VT320) or manually enter another
terminal type. Use lowercase letters “vt” (as in vt132) when entering a value
manually.

NOTE: Some hosts may not let you log on as a “VT220” (or whatever). If
you know the kind of terminal(s) the host recognizes, you can enter an
acceptable value in this space to “spoof” the host into handshaking
successfully.

9 In the Code Page field, specify a code page (See “About Code Page Support
on page 19.”

Getting Started with the Telnet Component Editor 21

10 Enter a UserID and Password. These are not actually submitted to the host
during the establishment of a connection. They are simply defined here. (The
Password is encrypted.) Right-mouse-click and choose Expression if you
want to make these fields expression-driven. See discussion further above.
NOTE: After you’ve entered UserID and Password info in this dialog, the
ECMAScript global variables USERID and PASSWORD will point to these
values. You can then use these globals in Send Buffer expressions (or as
described under “Native Environment Pane Context Menu” on page 31).

11 Click the Default check box if you'd like this particular Telnet connection to
become the default connection for subsequent Telnet Components.

12 Click Finish. The newly created resource connection object appears in the
Composer Connection Resource detail pane.

About Code Page Support
Code Page support in exteNd Composer Connection Resources allow you to
specify which Character Encoding scheme to use when translating characters sent
between exteNd Composer and other host systems. exteNd Composer data uses
Unicode character encoding (the Java and XML standard). Existing legacy and
other host systems use a variety of character encoding schemes (i.e., Code Pages)
specific for their language or usage. A mechanism is needed to translate the
character encoding between these systems if they are to communicate with one
another. This is handled in exteNd Composer by specifying the Code Page used by
a host system in the Connection Resource.

Creating XML Templates for Your Component
In addition to a connection resource, a Telnet Component may also require that
you have already created XML templates so that you have sample documents for
designing your component. (For more information, see Chapter 5, “Creating
XML Templates,” in the exteNd Composer User's Guide.)

In many cases, your input documents will be designed to contain data that a
terminal operator might type into the program interactively. Likewise, the output
documents are designed to receive data returned to the screen as a result of the
operator's input. For example, in a typical business scenario, a terminal operator
may receive a phone request from a customer interested in the price or
availability of an item. The operator would typically query the host system via
“dumb terminal” in a Telnet session by entering information (such as a part
number) into a terminal when prompted. A short time later, the host responds by
returning data to the terminal screen, and the operator relays this information to
the customer. This session could be carried out by an exteNd Composer Web

Telnet Connect User’s Guide22

Service that uses a Telnet Component. The part number (arriving via HTTP)
might be represented as a data element in an XML input document. The looked-
up data returned from the host would appear in the component’s output
document. That data might in turn be output to a web page, or sent to another
business process as XML, etc.

NOTE: If your component design calls for any other xObject resources, such as
custom scripts or Code Table maps, it is best to create these before creating the
Telnet Component. For more information, see the exteNd Composer User's Guide.

23Creating a Telnet Component

Creating a Telnet Component Chapter 3

Before Creating a Telnet Component
As with all exteNd Composer components, the first step in creating a Telnet
component—assuming a Connection Resource is available—is to prepare any
XML templates needed by the component. (For more information, see “Creating
a New XML Template” in the Composer User's Guide.)

Once you've specified the XML templates, you can create a component, using the
template's sample documents to represent the inputs and outputs processed by
your component.

Also, as part of the process of creating a Telnet component, you must specify a
Telnet connection for use with the component (or you can create a new one). See
the previous chapter for information on creating Telnet Connection Resources.

���� To create a new Telnet Component:

1 Select File>New xObject>Component>Telnet. The “Create a New Telnet
Component” Wizard appears. Select Terminal Component.

Telnet Connect User’s Guide24

2 Enter a Name for the new Telnet Component.

3 Optionally, type Description text.

4 Click Next. The XML Property Info panel of the New Telnet Component
Wizard appears.

5 Specify the Input template(s). Select a Template Category if it is different
than the default category. Then select a Template Name from the list of XML
templates in the selected Template Category.

Creating a Telnet Component 25

6 To add additional input XML templates, click Add and choose a Template
Category and Template Name for each. Repeat as many times as desired. To
remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as output. (The name of the output DOM is
Output.)

NOTE: You can specify an input or output XML template that contains no
predefined structure by selecting {System}{ANY} as the Output template.
For more information, see “Creating an Output DOM without Using a
Template” in the Composer User’s Guide.

8 Click Next. The Connection Info panel of the Create a New Telnet
Component Wizard appears.

9 Select a Connection name from the pulldown list. For more information on
the Telnet Connection, see “Creating a Connection Resource” in Chapter 2
of this Guide.

10 Click Finish. The component is created and the Telnet Component Editor
appears.

About the Telnet Component Editor Window
The Telnet Component Editor includes all the functionality of exteNd
Composer’s XML Map Component Editor. For example, it contains mapping
panes for Input and Output XML documents as well as an Action pane.

There is one main difference, however. The Telnet Component Editor also

Telnet Connect User’s Guide26

includes a Native Environment Pane featuring a Telnet emulator. This screen
appears black until you either click the Connection icon in the main toolbar or
begin recording by clicking the Record button in the toolbar. Either action
establishes a Telnet emulation session inside the Native Environment Pane with
the host that you specified in the connection resource used by this Telnet
component.

About the Telnet Native Environment Pane
The Telnet Native Environment Pane provides Telnet emulation of your host
environment. From this pane, you can execute a Telnet session in real time,
interacting with the Native Environment Pane exactly as you would with the
screen on a “dumb terminal.” You can also do the following:

� Use data from an Input XML document (or other available DOM) as input
for a Telnet screen field. For example, you could drag a SKU number from
an input DOM into the “part number” field of a Telnet screen, which would
then query the host and return data associated with that part number, such as
description and price.

� Map the data from the returned Telnet screen and put it into an Output XML
document (or other available DOM, e.g., Temp, MyDom, or whatever).

� Map header and detail information (such as a form with multiple line items)
from the Native Environment Pane to an XML document using an
ECMAScript expression or function.

About Telnet Keyboard Support
The Telnet Native Environment Pane supports the use of numerous special
terminal keys. The Terminal Keypad dialog (see below) is comprised of four
Tabs: Common Keys, NumPad Keys, Control Keys and Other Keys. Each Tab
contains a group of keys with specific functionality.

Note that you can also achieve the use of additional keys (such as F13 through
F20) by using the picklists in the Expression Builder dialog, Function/Methods
column, under Telnet > Keys.

���� How to Use the Floating Keypad:

1 Select View/Terminal Keypad from the Composer Menu. A floating
Keypad appears. The Keypad window contains a series of tabs, including the
following: Common Keys, NumPad Keys, Control Keys and Other Keys.

2 Click on the appropriate Tab to display the keys you wish to view on the
Terminal Keypad.

Creating a Telnet Component 27

3 Click on the key you wish to invoke. If you require help, hover the mouse
over that key. Help will display the Telnet keyboard equivalent for that key.
You will see the result of the key you clicked in the Native Environment
Pane.

4 Click OK to close the keypad. In order for the keypad to redisplay, you must
repeat step 1. When you display the keypad, you will return to the last Tab
that you were using.

The following pages illustrate the four Tabs and corresponding keys that can be
used to interact with Telnet.

Common Keys: Includes directional keys, (Arrow Down, Arrow Left, Arrow
Right, Arrow Up, BackSpace, BackTab) as well as Delete, Escape, Linefeed,
Return, and Tab. The function keys, F1 through F20, are also displayed.

NumPad Keys: Includes the digits 0-9, Minus, Comma, Period and Enter keys.

Telnet Connect User’s Guide28

Control Keys: Includes 32 keys associated with specific functions. Refer to Appendix
B for a complete listing.

Other Keys: Includes keys to perform common functions for example: the Help key.

Creating a Telnet Component 29

NOTE: The complete list of special (non-printing) keys and their ANSI equivalents
is shown in Appendix B.

About the Screen Object
The Screen Object is a byte-array representation of the emulator screen shown in
the Native Environment Pane, with methods for manipulating the screen
contents.

What it is
The Telnet component communicates with the host environment via a character-
mode terminal data stream, in a Telnet session. The user sends data to the host in
the form of keystrokes (or XML data mapped to cursor prompts). The host, in
turn, sends the terminal a stream of data which may contain anything from a
single byte to a whole screen’s worth of information. The Screen Object
represents the current screen’s worth of data. For a 24 x 80 ANSI terminal screen,
this is 1,920 bytes of data.

How it works
When character data arrive from the host, appropriate updates to the Native
Environment Pane occur in real time. Those updates might be anything from a
simple cursor repositioning to a complete repaint of the terminal screen. The
screen content is, in this sense, highly dynamic.

Telnet Connect User’s Guide30

When you have signaled exteNd Composer (via a Check Screen action) that you wish
to operate on the current screen’s contents, the screen buffer is packaged into a Screen
Object that is made accessible to your component through ECMAScript.

Many times, it is not necessary for your component to “know” or understand the
complete screen contents prior to sending keystrokes back to the host or prior to
mapping data into a prompt. But when mapping outbound from the screen to a DOM,
it can be useful to have programmatic access to the Screen Object. To make this
possible, the Connect for Telnet defines a number of ECMAScript extensions for
manipulating screen contents. These extensions are described in further detail in the
next chapter. For now, a simple example will suffice. Suppose you are interested in
obtaining a string value that occurs on the screen in row 5 at column position 20. If the
string is 10 characters long, you could obtain its value by using the following
ECMAScript expression as the Source in a Map action (with an output DOM or temp
DOM as the Target):

Screen.getTextAt(5, 20, 10)

The 10 characters beginning at row 5, column 20 on the screen would be mapped to the
Target of the Map action.

For more examples (and complete API documentation for the Screen object), see the
section on “Telnet-Specific Expression Builder Extensions” in the next chapter.

About Telnet-Specific Menu Bar Items

Component Menu
Start/Stop Recording—This menu option manages the automatic creation of actions
as you interact with a host program. Start will enable the automatic creation of
actions as you interact with the screen and Stop will end action creation.

Connect/Disconnect—This menu option allows you to control the connection to the
host. When you are recording or animating, a connection is automatically established
(and consequently, the connection icon is shown in the “connected/disabled” state).
However, this button is useful if you are not recording and you merely want to
establish a connection for the purpose of navigating the Telnet environment.

Creating a Telnet Component 31

About Telnet-Specific Context-Menu Items
The Telnet Connect also includes context-menu items that are specific to this
Connect. To view the context menu, place your cursor in the appropriate pane
(Native Environment or Action) and click the right mouse button.

Native Environment Pane Context Menu

When you right-mouse-click in the Native Environment Pane, you will see a
contextual menu. The menu items will be greyed out if you are not in record mode.
In record mode, the context menu has the following appearance:

The four commands work as follows:

Send Buffer: USERID—Automatically sends User ID information to the host,
based on the value you supplied (if any) for User ID in the Telnet Connection
Resource for this component. Also creates the corresponding Send Buffer action
in the Action Model.

Send Buffer: PASSWORD—Automically transmits Password information to the
host, based on the Password you supplied (if any) in the Telnet Connection
Resource for this component. Also creates the corresponding Send Buffer action
in the Action Model.

Send Buffer—Brings up the Send Buffer dialog, allowing you to create a new
Send Buffer Action. (See the next chapter for a detailed discussion of the use of
this command.)

Check Screen—Creates a new Check Screen action without bringing up a dialog
(same as a click on the Create Check Screen button in the toolbar).

Action Pane Context Menu

If you click the right mouse button when the mouse is located anywhere in the
Action pane, a context menu appears as shown.

Telnet Connect User’s Guide32

The function of the context menu items are as follows:

Send Buffer—Allows you to create a Send Buffer action. The Send Buffer Action
dialog will appear, allowing you to enter text and/or control-key commands that will
be sent to the Telnet host application. (This dialog will also let you enter an
ECMAScript expression, or an XPath fragment representing the location of string
data in your input DOM.) See the next chapter for a detailed discussion of the use of
this command.

Check Screen—This command allows you to create a new Check Screen action (to
sync the component with the host). A dialog appears, allowing you to specify various
go-ahead criteria as well as a Timeout value. See the next chapter for a detailed
discussion of the Check Screen action.

About Telnet-Specific Buttons
The Telnet Connect includes a number of Connect-specific tool icons (and/or icons
with Connect-specific functionality) on the component editor’s main toolbar. They
appear as shown below.

Record Button

Record icon (normal state)

Creating a Telnet Component 33

Record icon (recording in progress)

Record icon (disabled)

The Record button allows you to capture keyboard and screen manipulations as
you interact with the Native Environment Pane. Recorded operations are placed in
the Action Model as actions, which you can then “play back” during testing.

Connection Button

Connection (disconnected state)

Connection (connected state)

Connection (connected/disabled state)

The Connection button on Composer’s main toolbar toggles the connection state
of the component (using settings you provided during the creation of the
Connection Resource associated with the component).

NOTE: When you are recording or animating, a connection is automatically
established, in which case the button will be shown in the “connected/disabled”
state. When you turn off recording, the connection the button will return to the
enabled state.

Create Check Screen Button

The Create Check Screen button on Composer’s main toolbar should be
clicked before the first user interaction with any given terminal screen.
This signals exteNd Composer that you intend to work with the screen

data as currently shown in the Native Environment Pane. Clicking this button
causes a new Check Screen Action to be inserted into the Action Model. (See the
next chapter for a detailed discussion of this action type.)

Telnet Connect User’s Guide34

35Performing Telnet Actions

Performing Telnet Actions Chapter 4

About Actions
An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. Please see the chapters in the
Composer User's Guide devoted to Actions.

Within the Telnet Component Editor, a set of instructions for processing XML
documents or communicating with non-XML data sources is created as part of an
Action Model. The Action Model performs all data mapping, data
transformation, data transfer between hosts and XML documents, and data
transfer within components and services.

An Action Model is made up of a list of actions that work together. As an
example, one Action Model might read invoice data from a disk, retrieve data
from a host inventory database, map the result to a temporary XML document,
make a conversion, and map the converted data to an output XML document.

The Action Model mentioned above would be composed of several actions.
These actions would:

� Open an invoice document and perform a Telnet command to retrieve
invoice data from a host database

� Map the result to a temporary XML document
� Convert a numeric code using a Code Table
� Map the result to an Output XML document

About Telnet-Specific Actions
The Telnet Connect includes two actions that are specific to the Telnet
environment: Check Screen and Send Buffer.

Telnet Connect User’s Guide36

The purpose of these actions is to allow the Telnet component (running in a
deployed service) to replicate, at runtime, the terminal/host interactions that occur
in a Telnet session. The usage and meanings of these actions are described in
further detail below.

The Check Screen Action

Because of the latency involved in Telnet sessions and the possibility that screen
data may arrive in an arbitrary, host-application-defined order, it is essential that
your component can depend on the terminal screen being in a given state before it
operates on the current screen data. The Check Screen action makes it possible for
your component to stay “in sync” with the host. You will manually create Check
Screen actions at various points in your Action Model so that precisely the correct
screens are acted on at precisely the right time(s).

To create a new Check Screen action, you can do one of the following:

� Click on the “Create Check Screen Action” button on the main toolbar, or

� Perform a right mouse click inside the action list, then select New Action
and Check Screen from the contextual menu, or

� In the component editor’s main menu bar, select Action, then New Action,
then Check Screen

NOTE: You will most often use the toolbar button when you are in Record mode.

Telnet Action Description

Check Screen Allows the component to stay in sync with the host
application. This action signals the component that
execution must not proceed until the screen is in a
particular state (which can be specified in the Check
Screen setup dialog), subject to a user-specified
timeout value.

Send Buffer Buffers a string for transmission to the host. The string
is formed from Map actions and/or from user
keystrokes. (The Send Buffer action can be created
manually, but will more often be generated
automatically when the user types into the screen or
maps data to the current prompt.)

Performing Telnet Actions 37

���� To create a Check Screen action using a menu command:

1 Perform a right mouse click inside the action list, then select New Action
and Check Screen from the contextual menu (or use the Action menu in the
main menu bar as described above). The Check Screen dialog appears.

2 Click one of the three radio buttons (Cursor position, Prompt, or
Expression), depending on how you want to specify the go-ahead (screen
readiness) criterion. (The default is “Cursor position.”) See discussion
below.

3 Specify a Timeout value in milliseconds. (See discussion further below.)
4 Specify a Min wait value in milliseconds. (See discussion further below.)
5 Click OK.

Understanding the Check Screen Action

The purpose of the Check Screen Action dialog is twofold:

� It allows you to specify the readiness criteria by which the screen state will
be judged at execution time.

� It allows you to specify a wait time for program synchronization.

These factors are discussed in some detail below. Be sure to read and understand
the following sections before creating your first Telnet Component.

Readiness Criteria

It is important that the execution of actions in your Action Model not proceed
until:

Telnet Connect User’s Guide38

1 The host application is ready, and

2 All screen data have arrived (that is, the screen is in a known state)

Your component must have some way of “knowing” when the current screen is
ready. You can specify the readiness criterion based on cursor position, prompt
name, or an ECMAScript expression.

Cursor Position

You can base readiness on the location of the terminal’s cursor. Simply enter the
row and column number of the cursor’s “prompt position.” (The values shown in
the Row and Column fields of the dialog will always automatically default to the
cursor’s current position. You will normally not have to enter the numbers
manually.)

Prompt

The current prompt position can be specified on the basis of the character string
that immediately precedes the cursor position in the terminal emulation window.
For example, the prompt may say “Choose one: (A, B, C, D)”. In this instance, you
could specify “Choose one: (A, B, C, D)”, or “(A, B, C, D)”, or perhaps simply
“)”, as the go-ahead prompt. (The default value shown for the prompt string will
be the current screen contents for the line in which the cursor is positioned. The
default string will include all characters from the beginning of the prompt line up
to and including the last space character, if any, preceding the cursor.)

Expression

It is possible that the prompt position or prompt text could vary dynamically at
runtime. For the ultimate flexibility in determining the go-ahead criterion, you can
click the Expression radio button in the Check Screen Action dialog and enter an
ECMAScript expression in the associated text field. At runtime, if the expression
evaluates as “true,” the screen will be considered ready; but not otherwise.

Timeout

The timeout value (in milliseconds) represents the maximum amount of time that
your component will wait for screen data to both arrive and meet the readiness
criterion specified in the top part of the dialog. If the available screen data do not
meet the readiness criteria before the specified number of milliseconds have
elapsed, an exception is thrown.

Performing Telnet Actions 39

NOTE: Obviously, since the latency involved in a Telnet session can vary greatly
from application to application, from connection to connection, or even from screen
to screen, a great deal of discretion should be exercised in deciding on a Timeout
value. Careful testing of the component at design time as well as on the server will
be required in order to determine “safe” timeout values.

The default Timeout value will vary depending on whether you are in Record
mode or you are merely creating Actions manually. In Record mode, the default
Timeout value is a calculated value based on the actual time that elapses between
the last operation and the loading of the new screen. (The value displayed in the
dialog is twice this “observed load time,” rounded up to the nearest full second.)
When you are creating a Check Screen action manually (not in Record mode), the
default value is 1500 milliseconds.

Min Wait

The Min Wait time (in milliseconds) represents the amount of time your
component should wait before the initial check of the screen buffer. For example,
if you specify a Min Wait of 500, your component will check the screen for
readiness (according to the criteria you specified) after waiting 500 milliseconds.
If the go-ahead criteria are met, the screen will be rechecked after another 100
milliseconds. Only if the second check is also good will execution of the
component proceed. If not, the screen will be rechecked at 100-millisecond
intervals until the Timeout value (above) has been reached. At that point, if the
screen still does not meet readiness requirements, an exception is thrown.

NOTE: Every Check Screen action checks the screen a minimum of two times.
Go-ahead doesn’t occur unless two consecutive checks are passed.

The default value for Min Wait is 50 milliseconds. But regardless of the Min Wait
time, the screen will be checked one final time at the expiration of the Timeout
period, so that even if the Min Wait time is greater than the Timeout value, the
screen will still be checked once.

The Send Buffer Action

The Send Buffer action encapsulates “keystroke data” (whether actually obtained
from keystrokes, or through a drag-and-drop mapping, or via an ECMAScript
expression built with the Expression Builder) that will be sent to the host in a
single transmission at component execution time. When the Send Buffer action
executes, the buffered data are sent to the host in the form of a properly ANSI-
escaped byte stream.

The Send Buffer action can be created in several ways:

Telnet Connect User’s Guide40

� In Record mode, just begin typing after a Check Screen action has been
created. Keystrokes are automatically captured to a new Send Buffer action.

� Right-mouse-click anywhere in the Action Model; a contextual menu
appears. Select New Action and Send Buffer.

� In the main menu bar, under Action, select New Action and Send Buffer.

���� To create a Send Buffer action using menu commands:

1 Right-mouse-click anywhere in the Action Model and select New Action,
then Send Buffer, from the contextual menu (or use the Action menu as
described above). The Send Buffer dialog will appear.

2 To map a DOM element’s contents to the buffer, click the XPath radio
button, then select a DOM from the pulldown list and type the appropriate
XPath node name in the text area (or click the Expression icon at right and
build the node name using the Expression Builder).

3 To specify the buffer’s contents using ECMAScript, click the Expression
radio button, then use the Expression Builder dialog to create an
ECMAScript expression that evaluates to a string.

4 To specify the contents of the buffer manually (by typing a string into the
text field), first check the Accept Key Strokes checkbox, then begin typing.
The Expression radio button will become selected automatically and every
key you press will be entered into a quoted string in the text area. Control
keys (arrow keys, function keys, etc.) will automatically be translated to the
appropriate escape sequences. (See discussion below.)

5 Click OK.

Performing Telnet Actions 41

Editing Text in the Send Buffer Dialog

When you are in “Accept Key Strokes” mode, normal editing of text via
backspacing, cut/paste, etc. is not possible, since every keystroke is captured to
the dialog as an escaped string-literal value. For example, if you hit the
backspace key, a value of “\u0008” will be appended to the string buffer, instead
of the previous character being deleted. This may not be what you want.

To edit the buffer contents directly (using cut, paste, backspace, and so on), first
uncheck the Accept Key Strokes checkbox. Then edit your text. To return to key-
capture mode, check Accept Key Strokes. Any additional keystrokes will then be
translated to escape sequences and appended to the existing text.

On some occasions, you may wish to enter an escape value manually. You can do
this by unchecking Accept Key Strokes and typing the value in question
anywhere in the current text string. If you don’t know the escape sequence for a
given control key, you can find it by clicking the Expression icon to the right of
the text area (which brings up the Expression Builder dialog) and then
doubleclicking the appropriate control-key entry in the picklist in the upper part
of the Expression Builder dialog.

If you want to know what a given escape sequence means in plain English,
simply select (highlight) the escape sequence(s) of interest and let the mouse
hover over the selection. See below.

A hover-help box will appear, containing the escape sequence’s plain-English
translation. For example, in the graphic above, the escape sequence “\u0008” has
been highlighted and the mouse is hovering over the selection. The hover-help
box shows that the combination “\u0008” is the Telnet equivalent of Backspace
(BS) or Control-H.

If a group of escape sequences is selected, you will see (in the hover-help box) all
character equivalents, wrapped in angle brackets. For example, upon selecting
the sequence “\u001b[A\u000a\u000d”, hover-help will display:

< Arrow Up > < LF = CTRL+J > < CR = CTRL+M >

Telnet Connect User’s Guide42

All special (non-printing) keys and their ANSI equivalents are listed in “Telnet
Keyboard Equivalents” in Appendix B.

About the Send Buffer Action and Record Mode
When you are building an Action Model in Record mode, a new Send Buffer
action is created for you automatically if you click the Check Screen button, then
begin typing. This makes it easy to build an Action Model, since all you have to
do is click the Check Screen button, begin typing (or drag an element from the
Input DOM into the prompt area onscreen), wait for the next screen to arrive from
the host, click Check Screen, begin typing (or dragging), etc., repeatedly. In this
fashion, a sequence of Check Screen and Send Buffer actions can be built very
quickly and naturally.

When a Send Buffer action has been created automatically for you, all of your
subsequent keystrokes will be captured to the buffer until one of the following
occurs:

� You perform a right-mouse-click.
� You begin to create a new action in the Action Model.
� You drag data into or out of the Native Environment Pane.
� You toggle the Record button to the non-recording state.

How Keys Are Displayed in the Action Model
When a Send Buffer action is created, the keystrokes that are captured in real
time are displayed in the Action Model either as plain alphanumeric values or (in
the case of non-printing characters) in an escaped format. For example, an up
arrow may be translated into \u001b[a, where \u001b represents the two-byte
hex Unicode value of a particular ANSI control code and [a represents the rest of
the ASCII escape sequence for up-arrow. Backspace and delete keystrokes are
also represented as escape sequences. Therefore, if you wish to correct typos in
your Send Buffer action, you may want to doubleclick the action in the Action
Model (which brings up the Send Buffer dialog) and edit the buffer string by
hand.

Telnet-Specific Expression Builder Extensions
The Connect for Telnet exposes a number of Telnet-specific ECMAScript globals
and object extensions, which are visible in Expression Builder picklists. The
Telnet-specific items are listed under the node labelled “Telnet.” There are three
child nodes: Login, Screen Methods, and Keys. See illustration below.

Performing Telnet Actions 43

Login
Telnet Connection Resources have two global variables that are accessible from
Expression Builder dialogs: the USERID and PASSWORD. These properties
(available under the Login node of the picktree) specify the User ID and
Password values that may be requested by the host system when you connect.
You can map these variables into the terminal screen, which eliminates the need
for typing user and password information explicitly in a map action.

NOTE: You can also create a Send Buffer action where the XPath source is
defined as $PASSWORD.

Screen Methods
When an Expression Builder window is accessed from a Map or Function action
in the Telnet Component, the picklists at the top of the window expose special
Telnet-specific ECMAScript extensions, consisting of various methods of the
Screen object and predefined escape sequences corresponding to various
“special keys” on the virtual terminal’s keyboard.

Hover-help is available if you let the mouse loiter over a given picktree item.
(See illustration.)

Telnet-specific

picktree nodes

Telnet Connect User’s Guide44

In addition, you can obtain more complete online help by clicking Help in the
lower left corner of the dialog.

The Screen object offers methods with the following names, signatures, and usage
conventions:

int getAttribute(nRow, nColumn)

This method will return the display attribute value of the character at the screen
position given by nRow, nColumn. The complete set of possible display attribute
values is listed in Appendix C. An example of using this method is:

if (Screen.getAttribute(5, 20) == 1) // if character at 5,
20 is bold

// do something

Performing Telnet Actions 45

int getColumnCount(void)

This method returns the native column-width dimension of the current screen.
(Due to possible mode changes in the course of host-program execution, this value
can change from screen to screen. Do not depend on this value staying constant
over the life of the component.) When the program is in 24x80 mode, this method
will return 80. To retrieve all of the contents of row 15 of the current screen,
regardless of its native dimensions, you could do:

var myRow = Screen.getTextAt(15, 1, Screen.getMaxColumn());

int getCursorRow(void)

This method returns the current row position of the cursor in the Telnet emulator
screen (Native Environment Pane). Row positions are one-based rather than zero-
based. In other words, in 24x80 mode, this method would return a value from 1 to
24, inclusive.

int getCursorColumn(void)

This method returns the current column position of the cursor in the Telnet
emulator screen (Native Environment Pane). Column positions are one-based
rather than zero-based. In other words, in 24x80 mode, this method would return
a value from 1 to 80, inclusive.

String getPrompt(void)

The getPrompt() method returns the string representing all characters in the
cursor’s row, starting at column 1 and continuing to, but not including,
getCursorColumn()—in other words, everything from the beginning of the line
to the cursor position. (This is the same as the default prompt string shown in the
Check Screen dialog.) Example:

var thePrompt = Screen.getPrompt();

if (thePrompt().toLowerCase().indexOf("password") != -1)

Screen.setText(PASSWORD);

Telnet Connect User’s Guide46

int getRowCount(void)

This method returns the native vertical dimension of the current screen. (Due to
possible mode changes in the course of host-program execution, this value can
change from screen to screen. Do not depend on this value staying constant over
the life of the component.) When a program is in 24x80 mode, this method will
return 24. To loop over all rows of a screen, regardless of its native dimensions,
you could do:

for (var i = 1; i <= Screen.getMaxRow(); i++)
{

var myRow = Screen.getTextAt(i, 1, Screen.getMaxColumn());
// do something with myRow

}

String getText(nOffset, nLength)

This method returns the string of characters (of length nLength) that occurs in the
Screen object at the byte offset given by nOffset. Note that the offset is one-
based, not zero-based. Thus, to obtain all of a 24 x 80 screen as an ECMAScript
String, you would do:

var wholeScreen = Screen.getText(1, 24 * 80);

Any attempt to obtain character data beyond the bounds of the screen buffer will
result in an exception. For example, the following call will fail:

var wholeScreen = Screen.getText(1, 1 + 24 * 80); // ERROR!

String getTextAt(nRow, nColumn, nLength)

This method returns an ECMAScript String that represents the sequence of
characters (of length nLength) in the current screen starting at the row and
column position specified. Note that nRow and nColumn are one-based, not zero-
based. A zero value for either of these parameters will cause an exception.

Performing Telnet Actions 47

To obtain all of row 20 of a 24x80 screen, you would do:

var myRow = Screen.getTextAt(20, 1, 80);
The getTextAt() technique is used internally in drag-and-drop Map actions
involving screen selections created as described in “Selecting Continuous Data”
further below.

String getTextFromRectangle(nStartRow, nStartColumn,
nEndRow, nEndColumn)

This method returns a single String consisting of substrings (one per row)
comprising all the characters within the bounding box defined by the top left and
bottom right row/column coordinates specified as parameters. So for example, in
24x80 mode, you could obtain the upper left quarter of the screen by doing:

var topLeftQuadrant =
Screen.getTextFromRectangle(1,1,12,40);
The getTextFromRectangle() method is used internally in drag-and-drop
Map actions involving rectangular screen selection regions created using the
Shift-selection method (see “Selecting Rectangular Regions” below).

Note that the string returned by this method contains newline (\u000a) delimiters
between substrings. That is, there will be one newline at the end of each row’s
worth of data. The overall length of the returned string will thus be the number of
rows times the number of columns, plus the number of rows. For example,
Screen.getTextFromRectangle(1,1,4,4).length will equal 20.

void setText(String)

The setText() method allows you to send data to the screen (and therefore the
host application) programmatically, without explicitly creating a Send Buffer
action. Example:

var myPhone = "(203) 225-1800";
if (Screen.getPrompt().indexOf("Phone") != -1)

Screen.setText(myPhone + "\r"); // send string + CR

Telnet Connect User’s Guide48

Keys
The Keys node of the Telnet-specific picktree in the Expression Builder dialog has
child nodes labelled Common Keys, NumPad Keys, Control Keys, and Other
Keys. By doubleclicking the picklist items under these categories, you can
automatically generate the ANSI escape sequence for any non-printing characters
you wish to transmit to the host. The detailed contents of these picktree items can
be found in Appendix B.

Screen Selections in the Telnet Connect
There are two main ways of selecting data on the terminal screen (in the Native
Environment Pane) at design time, for purposes of dragging out. One method
selects text in a continuous stream, from one screen-buffer offset to another; the
other method selects text in an arbitrary onscreen bounding box or region.

Selecting Continuous Data
When you drag across multiple rows of data without holding the Shift key down,
all characters from the initial screen offset (at the mouse-down event) to the final
screen offset (at mouse-up) are selected, as shown in the graphic below. (The
selected text is “reversed out.” A partial row has been selected, followed by three
complete rows, followed by a partial row.)

Performing Telnet Actions 49

As indicated in the component editor window’s status line (lower left), the
selection in the above example actually begins at row 5, column 26, and ends at
row 9, column 35. If you were to drag this selection out of the Native
Environment Pane, into a DOM, a Map action would be generated as follows:

Notice that the getTextAt() method is used. This means the captured screen
characters form one string, which is mapped to Output/Inquiry/Response/Info.
No newlines or other special characters are inserted into the string. (Areas of the
screen shown in black are simply represented as space characters in the string.)

Telnet Connect User’s Guide50

Selecting Rectangular Regions

Sometimes you may not want the selection behavior described above. In certain
cases, screen data may be grouped into zones with their own natural boundaries.
For example, in the screen shown previously, there is a box two-thirds of the way
down the screen containing information on the availability of a given book. You
may want to capture (for drag-out purposes) just the data enclosed within this
particular rectangular region on the screen. To do this, first hold the Shift key
down, then drag your mouse across the portion of the screen that you want to
select. The selected area is highlighted and the appropriate row/column start and
end points are displayed in the status line of the component editor’s window, as
below:

In this instance, when you drag the rectangular highlight region out of the Native
Environment Pane, into a DOM, the resulting Map action uses the
getTextFromRectangle() method described on page 47.The resulting action
looks like:

Performing Telnet Actions 51

This method operates in a different fashion from getTextAt(), because the string
returned by getTextFromRectangle() is wrapped at the rectangle’s right edge.
Newlines are inserted at the wrap points as discussed in the API description of
getTextFromRectangle(), further above.

About the Sample Program
For demonstration purposes, the CONSULS program is used in the example that
follows. This Telnet program is offered online by the Connecticut state university
library system to allow users to search for books and periodicals by title, author, and
other criteria.

Recording a Telnet Session
The Telnet Component differs from other components in that a major portion of the
Action Model is built for you automatically. This happens as you interact with the
host in the Native Environment pane as part of a live Telnet session. Composer
records your interactions as a set of auto-generated actions in the Action Model.
Typically, in other exteNd Composer components (such as a JDBC Component), you
must manually create actions in the Action Model, which then perform the mapping,
logging, transformation, communication, and other tasks required by the component
or service. By contrast, when you create a Telnet Component, you record requests and
responses to and from the host, which end up as actions in the Action Model. In
addition, you can add standard actions (Map, Log, Function, etc.) to the Action
Model just the same as in other components.

NOTE: In order to successfully build a Telnet Component, you should be familiar with
Telnet commands and the specifics of the application you intend to use in your XML
integration project.

The following example demonstrates several common tasks that you will encounter in
building Telnet Components, such as:

� Creation of Check Screen actions
� Automatic creation of Send Buffer actions
� Drag-and-drop mapping of Input DOM elements to Telnet-screen prompts
� Drag-and-drop mapping from the Native Environment Screen to the Output

DOM
� The use of ECMAScript expressions to manipulate Screen object elements

Telnet Connect User’s Guide52

In the following example, we start with an input XML document that contains the
title and author of a book. The goal of our Web Service is to do an author search
online, using the CONSULS Telnet app, to see if a book by the given title exists in
the library system. If so, we retrieve its ISBN (International Standard Book
Number) code in an Output DOM. Whether we succeed or not, we insert an
appropriate status message in the Output DOM.

���� To record a Telnet session:

1 Create a Telnet Component per the procedure shown on page 23 of the
previous chapter.

2 Once created, the Telnet Component Editor window appears, with the words
“Telnet Terminal Emulation” in the center of the Native Environment Pane,
indicating that no connection has yet been established with a host.

3 Click the Record button. You are automatically connected to the host that
you selected in the Connection Resource for the component. An input screen
appears in the Native Environment pane as shown below.

NOTE: The remainder of this example shows screens from a state
university library system’s online book locator service. There are many similar
Telnet services available online; consult your favorite Web search engine to
obtain IP addresses of such services.

Performing Telnet Actions 53

4 Click the Create Check Screen Action button in the toolbar. A new
Check Screen action appears in the action list. It defaults to a go-ahead
condition based on the current cursor position (which we assume will
always be 21,56 on this screen, with every future execution of this
component—an assumption worth questioning). We will tentatively
accept the default Timeout of 1500 milliseconds for this Check Screen
action, since the CONSULS program has a relatively quick response time.
(Even so, careful testing of the component should be done in order to
verify that this timeout value is safe.)

5 Type the letter A (for Author) in the input screen of the Telnet
environment pane. A new Send Buffer action appears automatically in
your component’s action list. Notice that the ‘A’ you typed is already in
the action.

NOTE: Telnet commands are often case-sensitive and should generally
be entered in ALL CAPS.

In this part of this particular host application, merely typing a single
character (without hitting Enter or Return) causes a new screen to appear.
The host, in other words, processes the typed character immediately. This
is a common Telnet idiom. You will not always need to hit Return or Enter
to get to a new screen.

Telnet Connect User’s Guide54

In response to ‘A’, the host program sends the new screen shown above.

6 Because we wish to terminate the Send Buffer action and go on to interact
with the new screen, you should click the Check Screen button in the toolbar,
at this point, to allow the component to “sync” our next action with the
current screen. Click the Create Check Screen Action button now. The new
Check Screen action appears in the action list.

NOTE: Were you to simply start typing your next command at this point
(without first creating a new Check Screen action), the command would be
appended to the still-active Send Buffer. In essence, you would be creating a
“type-ahead” buffer. At runtime, the buffer (containing two sets of screen
commands concatenated together) would be sent all at once. While this
would work okay in this particular program, the type-ahead technique could
fail in other real-world Telnet programs. Therefore, use caution when
deliberately overloading a Send Buffer action. A “best practices” approach is
to create a new Check Screen action for every new screen that appears
during your session.

Performing Telnet Actions 55

7 Drag the BOOKINQUIRY/AUTHOR/LASTNAME node from the Input
DOM to the cursor position in the Native Environment Pane. “Clancy”
(without quotation marks) appears in the prompt zone and a new Send
Buffer action appears automatically in the Action Model.
NOTE: This Telnet application is expecting the author’s name to be
provided as Last Name followed by First Name (with a space in between).
Hence, we dragged the LASTNAME element first.

8 Hit the spacebar on your keyboard. Notice that a space character is added
to “Clancy” in the Native Environment Pane. Also, a new Send Buffer
action is created containing just the space character.

9 Drag the BOOKINQUIRY/AUTHOR/FIRSTNAME element from the
Input DOM to the cursor position in the Native Environment Pane. “Tom”
(without quotation marks) appears after “Clancy ” in the prompt zone and
a new Send Buffer action appears in the Action Model.

10 Note that the terminal screen has not changed (the host has not acted on
our input), because it is waiting for Return or Enter. Hit Return or Enter
to tell the host that our query string (the author’s name) is complete. A new
Send Buffer action appears, containing \u000a, and the Native
Environment Pane updates to reflect the query results.

Telnet Connect User’s Guide56

11 Click the Create Check Screen button in the toolbar. A new Check Screen
action appears, with a default go-ahead condition based on the cursor
location of row 24, column 38. (Row 24 is the bottom row and column 38 is
about halfway across the 80-column screen; see screenshot above.) There is
no need to change the Check Screen default in this case.

12 In the Native Environment Pane, select the terminal-screen text in row 2,
from column 2 to column 18, by clicking and dragging the mouse.
NOTE: Notice that as you click and drag, the onscreen row/column
coordinates of the selected area are displayed in the status line of the
component editor window (lower left corner).

Drag selected text
to Output DOM

New action appears here

Performing Telnet Actions 57

13 Lift your finger off the mouse button and place the mouse over the selected
text. A finger cursor will appear. Click-drag the selection to the Output
DOM InquiryResponse/Status node. The selected text is inserted into the
DOM at the desired location, and a new Map Action is generated in the
Action Model automatically.

14 Click the Record button to turn recording off.

Looping Over Multiple Rows in Search of Data
In the CONSULS example (above), the goal is to find the ISBN (International
Standard Book Number) information for the book we’re interested in and map it
into the Output DOM. Therefore, when the CONSULS application shows us the
result of our author search, we need to scan that screen, looking for the book title
in question. If the title exists, our next action should be to send the corresponding
line number, which will cause CONSULS to display a new screen showing
detailed information (including ISBN) for the book.

By simple visual inspection of the terminal emulator screen (see previous
illustration), it’s easy to see that Tom Clancy’s Debt of Honor is listed as line-
item number 3 in the search-results screen. But this only holds true for this
particular search. A search on a different author/title combination might yield a
hit at a different line position. (Or if Tom Clancy writes more books, Debt of
Honor could assume a different listing position.) To determine the line position
of the book at runtime, we should iterate through lines 4 through 11 of the
terminal screen, searching for the string stored in the BOOKINQUIRY/TITLE
node of our Input DOM. The next example shows how to do this, building on the
previous example.

���� To search for a data item one row at a time:

1 At the bottom of the Action Model, add a new Repeat While action.
(Perform a right-mouse-click, then select New Action, Advanced, and
Repeat While.) The Repeat While dialog appears.

Telnet Connect User’s Guide58

2 In the While text-entry box, type an expression representing the loop-
termination condition you wish to apply to this loop. In this case, our
condition involves a check of the index variable, rowIndex. We will be
checking 8 rows of screen data in all.

3 In the Index Variable text-entry area, enter the name of your index variable
(in this case, rowIndex).

4 Since we are only retreiving a single value (one book) from the screen, we do
not need to fill in the optional Target portion of the dialog. Therefore, just
click OK. A new Repeat While action is added to the component’s Action
Model.

5 In this example, we’re looking for a specific string within a given row. If the
string is found, we will take several actions, then break out of the loop. We
will perform our row parsing and string search within a Decision Action.
Create a new Decision Action by clicking the right mouse button and
selecting New Action > Decision from the contextual menu. The Decision
Action dialog appears.

Performing Telnet Actions 59

6 Enter a Decision Expression. In this example, the three-line expression is:

var myRow = Screen.getTextAt(rowIndex+4, 1,
80).toLowerCase();
var bookTitle =

String(Input.XPath("BOOKINQUIRY/TITLE")).toLower
Case();
myRow.indexOf(bookTitle) != -1

The first line uses the Screen object’s getTextAt() method (see page 43)
to retrieve the 80 characters of data (i.e., one full line, in a 24x80 terminal
screen) at rowIndex + 4. We add an offset of 4 to the index variable
because our search of screen data should begin at row 4 and continue
through row 11. (The index variable itself will have values from 0 to 7. The
loop terminates when rowIndex reaches 8.)

The second line of code above simply retrieves the book title as a
lowercase string from the Input DOM. (Notice that because we don’t want
our search to be case-sensitive, we force both strings—the query string and
the target-object string—to be lowercase.)

The final line of code is the actual “condition check.” It relies on the core-
ECMAScript String method indexOf(), which returns –1 when the
argument string is not a substring of the string on which the method is
being called.

7 In the TRUE branch of the Decision Action, create a new Send Buffer
action. (Right-mouse-click, then choose New Action > Send Buffer from
the contextual menu.) The Send Buffer dialog appears.

Telnet Connect User’s Guide60

8 Click the Expression radio button and then enter an ECMAScript
expression in the text-edit area. In this example, we’ve entered:

var item = Screen.getTextAt(rowIndex + 4, 1,10);
var regex = new RegExp("\\d+");
item.match(regex)[0];

The first line retrieves the first ten characters of data in the “hit” row using
the getTextAt() method. Within this string, we want the first substring of
numeric characters, representing the CONSULS line number of the book
(i.e., 3). One way to extract this substring is with the ECMAScript String
method, match(), which takes a regular expression object as an argument.
On success, this method returns an array, of which the zeroth item is the
matched text. Our regular expression consists of backslash-d followed by a
plus sign, which means “one or more digit characters in a row.”
NOTE: The RegExp constructor takes a String argument, in which
backslashes that are to appear as literal backslashes “must be escaped with
a backslash.”

The net result of these lines of ECMAScript is that the number preceding the
book title in the target row (namely, ‘3’) is supplied to the host application
via a Send Buffer action. No newline need accompany the number ‘3’. Upon
receiving this number, the host application will immediately send back a
new screen giving detailed information about the indicated book, as shown
below.

Performing Telnet Actions 61

9 Create a new Check Screen action by performing a right-mouse-click and
selecting New Action > Check Screen from the contextual menu. The
Check Screen dialog appears.

10 Select the Expression radio button and enter “true” in the text-edit area.
Set a Min wait value of 100, which (in this case) we know from
experience is generous.

NOTE: The combination of “true” and 100 means we will automatically
accept any screen data that get sent within 100 milliseconds.

11 Create a new Function Action. (Right-mouse-click: select New
Action > Function.) In this action, we will retrieve the first ISBN number
on the page, if one exists, and store it into an ECMAScript global.

The expression we will use is:

this.isbn = "Not found"; // set up global
var screen = Screen.getText(1, 24 * 80); // fetch
whole screen
if (screen.indexOf('ISBN') != -1) // if ‘ISBN’ occurs,
get it
 this.isbn = lTrim(screen.split('ISBN')[1]
).split(' ')[0];

Telnet Connect User’s Guide62

The first line above simply declares and initializes an ECMAScript global
variable (which, on success, will be overwritten with a valid ISBN value).
The second line of code retrieves the entire screen buffer as a string and
places it in a local variable, text. (We assume here that we’re in 24x80
mode.)
The third line checks the screen buffer to see if “ISBN” occurs in it. If so, we
split the buffer into an array of substrings using “ISBN” as the delimiter. The
array member at index 1 will contain the ISBN number, trailed by a partial
screen’s worth of information (and possibly containing one or more leading
space characters). The custom ECMAScript function lTrim() is used to
trimming leading spaces, while the split method is again employed to break
our string into an array of substrings, assuming spaces to be the delimiters.
The zeroth item of this final array is the ISBN string that we’re looking for.
See the series of graphics below.

Performing Telnet Actions 63

Telnet Connect User’s Guide64

12 On finding the information we’re looking for, we no longer need to iterate
through line items. Therefore, create a Break Action to break out of the
loop. (Right-mouse-click; New Action; Break.)

13 Create a Map action that maps this.isbn to the InquiryResponse/ISBN
node of the Output DOM.

The completed Action Model looks like this:

Performing Telnet Actions 65

Editing a Previously Recorded Action Model
You will encounter times when you need to edit a previously recorded action
model. Unlike the situation with other components, editing a Telnet Component
requires extra attention. When a Telnet Component executes, it plays back a
sequence of actions that expect certain screens and data to appear at certain times
in order to work properly. So when editing a component you must be careful not
to make the action model sequence inconsistent with the host program execution
sequence you recorded earlier.

In general, to ensure successful edits, the following recommendations apply:

� Exercise extreme care when using Cut, Copy, and/or Paste to delete, move,
or replicate actions in your Action Model. Actions that were created
automatically during a “Record” session will often create data dependencies
that are easily overlooked in the editing process.

� When you need to use drag-and-drop to add new Map actions to your Action
Model, click the Start Animation button in the Action Pane toolbar and step
to the line of interest in your Action Model; then Pause animation and turn
on Record mode. At this point, you can safely drag to and from the screen.
Following this procedure will prevent your Action Model from getting out of
sync with the host or conflicting with previously mapped DOM data.

Telnet Connect User’s Guide66

Changing an Existing Action
The following procedure will explain how to change an existing action in a
previously recorded session.

���� To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to edit. The
component appears in the Telnet Component Editor window.

2 Navigate to the action in the Action Model where you’d like to make your
edit and highlight the action.

Performing Telnet Actions 67

3 Click the Toggle Breakpoint button (or press F2). The highlighted action
becomes red.

4 Click the Start Animation button. The animation tools (in the Actions
pane’s toolbar) become enabled.

Start Animation

Toggle Breakpoint

Telnet Connect User’s Guide68

5 Click the Step to Breakpoint/End button. The Action Model executes all of
the actions from the beginning of the Action Model to the breakpoint you set
in step 3 above.

6 In the Component Editor tool bar, click the Record button.

Step to Breakpoint/End

Record button

Performing Telnet Actions 69

7 Perform any additional drag-and-drop (or other) actions that you’d like to
make to the Action Model.

8 Turn off recording. (Toggle the Record button.)

9 Test your component.

Adding A New Action

The following procedure explains how to add a new action in a previously
recorded session.

���� To Add a Action to a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to add an
action in. The component appears in the Telnet Component Editor window.

2 Navigate to the action in the Action Model where you’d like to make your
addition and highlight the action.

Telnet Connect User’s Guide70

3 Click the Toggle Breakpoint button (or press F2). The highlighted action
becomes red.

4 Click the Start Animation button. The animation tools (in the Actions
pane’s toolbar) become enabled.

Start Animation

Toggle Breakpoint

Performing Telnet Actions 71

5 Click the Step to Breakpoint/End button. The Action Model executes all of
the actions from the beginning of the Action Model to the breakpoint you set
in step 3 above.

6 In the Component Editor tool bar, click the Record button.

Step to Breakpoint/End

Record button

Telnet Connect User’s Guide72

7 Use Composer's drag and drop features to add new Map actions that interact
with the screen. The new action will be added directly under the highlighted
line.

8 Turn off recording. (Toggle the Record button.)

9 Test your component.

About Adding Alias Actions

If you are adding Map Actions in a loop that are alias perform the following steps:

���� To Add an Alias Action to a previously recorded Action Model:

1 Open a component.

2 From the Action menu, select New Action/Advanced, then Map. The Map
Action dialog box displays.

3 Select the Expression for Source, and the dropdown box is grayed out.

4 Either type in the information, or click the Expression Builder button and
create a new expression.

5 Create an XPath to be represented by the alias. Click from the dropdown list
for the alias.

6 Click OK.

7 The new action is inserted below the line you select. (New line is highlighted
in the screen below to show it was inserted.

Performing Telnet Actions 73

Deleting an Action
The following procedure explains how to delete an action in a previously recorded
session

���� To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the RMB and select
Delete from the menu. You may also highlight the line and press the Delete button
on your keyboard.

Testing your Telnet Component
Composer includes animation tools that allow you to easily test your component.
On the Telnet Component Editor tool bar you'll find the Execute button, which
allows you to execute the entire Action Model and verify that your component

Telnet Connect User’s Guide74

works as you intend. It is important to test a newly created Telnet Component to
be sure that Timeout values in all Check Screen actions are appropriate and that
Send Buffer and other actions work as intended.

To execute a Telnet Component:
1 Open a Telnet Component. The Telnet Component Editor window appears.

2 Select the Execute button. The actions in the Action Model execute. If the
component executes successfully, a message appears as follows.

3 Click OK.

Execute button

Performing Telnet Actions 75

After executing the component, you may want to doublecheck the contents of your
DOMs to be sure all of the appropriate data mappings occurred as expected. To
make all data elements visible, select Expand XML Documents from the View
menu. This expands all of the parents, children, data elements, etc. of the DOM
trees, so that you can easily see the results of execution of the component.

Using the Animation Tools
In the Action Model, you'll find animation tools that allow you to test a particular
section of the Action Model by setting one or more breakpoints. Using these
tools, you can run through the actions that work properly, stop at the actions that
are giving you trouble, and then troubleshoot the problem actions one at a time.

�The following procedure is a brief example of the functionality of the animation
tools. For a complete description of all the animation tools and their functionality,
please refer to the exteNd Composer User's Guide.

���� To run a Telnet Component using Animation Tools:

1 1.Open a Telnet Component. The component appears in the Telnet
Component Editor window.
NOTE: Animation and Recording are mutually exclusive modes in the
component. In order to record during animation, you must either pause, or
stop animation and then turn on record mode.

2 Click the Start Animation button in the Action Model tool bar, or press F5
on the keyboard. All of the tools on the tool bar become active, and a
connection is established with the host. The Native Environment Pane
becomes active.

3 Click the Step Into button. The first Check Screen action becomes
highlighted.

Telnet Connect User’s Guide76

4 Click the Step Into button again. The Check Screen action (above) executes and
the next action becomes highlighted.

5 Click the Step Into button repeatedly to execute actions one-by-one.
6 Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) as desired to

control the execution of the component. Note that you can set a breakpoint at any
time during execution by clicking the mouse on an action line and hitting F2 or
using the Set Breakpoint button.

7 Once execution is complete, the following message appears.

Performing Telnet Actions 77

Tips for Building Reliable Telnet Components
The following tips may be helpful to you in building reliable Telnet Components.

� Always follow a Send Buffer action with a Check Screen action.
� In Check Screen actions, accept the default go-ahead condition (based on

cursor position) only when you are certain that the absolute cursor position
will always be constant for the given screen. Many times, it is safer to write
a custom expression.

� A fast, accurate way to create a prompt-based Check Screen action during
recording is to highlight (select) the characters of interest immediately
preceding the cursor (up to but not including the cursor position), then click
the right mouse button and select Check Screen. This automatically creates a
Check Screen action based on the prompt you highlighted.

� When typing a custom prompt string under Prompt (in the Check Screen
dialog), remember to escape any quotation marks that might appear within
the prompt string.

� Avoid using Check Screen go-ahead criteria based on variable information,
such as dates, times, etc.

� Avoid Check Screens that do nothing but wait a specified period of time
using the Min Wait setting. While this technique may work, it can create
significant performance bottlenecks.

� Remember that the default Timeout values used in Check Screen actions are
calculated from actual response times during the design session. This has a
couple of implications. First, the default Timeout value may need to be
increased, for load-sensitive applications. Secondly, deleting a Check Screen
action may cause synchronization timeouts on subsequent executions.
Careful testing will reveal these sorts of problems.

� When disjoint go-ahead criteria come into play, such as when the middle of a
screen remains constant during a repaint but the first and last lines change,
you may want to create two Check Screen actions then combine them into
one action that’s based on an expression.

Telnet Connect User’s Guide78

Using Other Actions in the Telnet Component Editor
In addition to the Check Screen and Send Buffer actions, you can use all other
actions in the Telnet Component Editor. The Action menu lists both basic and
advanced actions, as described in the following tables.

Table 4-1

Basic Actions Description

Comment Documents the Action Model. You can use
comments to clarify the processing, especially if
Decisions and/or Repeats are used in the Action
Model.

Component Executes another component and defines runtime
DOMs to be passed to, and received from the called
component.

Decision Allows you to execute one of two sets of actions
based on a condition you specify. Processing
branches along a True or False path, depending on
how your condition is resolved as the component
executes.

Function Executes either an ECMAScript script function or a
custom script you have previously created. You can
create custom scripts using Composer's Custom
Script Resource Editor.

Log Writes information to various log files specified in the
component. There are three Log types: System
Output, System Log, and User Log.

Map Transfers and optionally transforms element data
from one XML DOM to another.

Send Mail Automatically sends en e-mail to a specified e-mail
address during execution of the component.

Switch Allows program control to branch to a particular
block of actions based on a match between an input
value and a Case value. This is essentially a
convenience action that can be used to eliminate
long, hard-to-read if/else (Decision action) chains.

Performing Telnet Actions 79

The actions in Table 4–2 are located on the component editor’s Action menu,
under the Advanced, Data Exchange and Repeat sub-menus.

Table 4-2

Table 4-3

Advanced
Actions Description

Apply
Namespaces

Provides a way to override NameSpace prefixes, declare a
new one or ignore a NameSpace altogether.

Raise Error Evaluates a condition which if true, writes the contents of an
expression to a global variable called ERROR. If used alone,
it throws an exception, stops a component, and returns
control to the service. If used within the Execute branch of a
Try On Error action, it is evaluated and control passes to
actions in the On Error branch.

Simultaneous
Components

Allows two or more components to be executed
simultaneously (that is, in multithreaded fashion).

Transaction Allows you to invoke User Transaction commands (such as
begin, commit, and rollback) in components that will be
deployed as part of non-Container-managed services, or
setRollbackOnly in components that will be part of
Contained-managed EJB deployments.

Try On Error Responds to actions that produce errors by executing a set
of actions. The Try On Error action is essentially an error
trapping and solution action.

XSLT
Transform

Transforms an XML file according to instructions in an XSL
file. The output is commonly used for rendering XML files in
the Web browsers.

Data Exchange
Actions Description

UR_/File Read Allows a file format that is not XML to be read into Composer

UR_/File Write Allows a file to be written into another format from XML.

WS
Interchange

Executes a Web Service using messages and operations
defined in a WSDL resource.

Telnet Connect User’s Guide80

Table 4-4

Handling Errors and Messages
In testing a Telnet Component, you may encounter errors relating to Check Screen
and/or Send Buffer actions. The result is a dialog similar to the following:

XML
Interchange

Reads external XML documents into the component's DOM
or writes the component's DOM to an external XML
document. Read/write methods include: Get, Put, Post, and
Post with Response using the File, FTP, HTTP, and HTTPS
protocols.

Repeat Actions Description

Break Stops execution of a Repeat for Element, Repeat for Group,
or Repeat While loop and continues execution with the next
action outside the loop.

Continue Stops execution of the current Loop iteration in a Repeat for
Element, Repeat for Group, or Repeat While loop, and
continues at the top of the same loop with the next iteration.

Declare Group Allows you to create and name a group based on an element
that occurs multiple times. Groups are used in the Repeat for
Group action.

Repeat for
Element

Repeats one or more actions for each occurrence of a
specified element in your DOM tree. The Repeat For
Element action allows you to create a loop based on an
element that occurs multiple times.

Repeat for
Group

Repeats one or more actions for each member of a group. A
Repeat For Group action allows you to re-structure your data
and calculate aggregates on your data.

Repeat While Repeats one or more actions by creating a loop. A While
Repeat action allows you to base a processing loop on any
valid ECMAScript expression.

Data Exchange
Actions Description

Performing Telnet Actions 81

This section discusses possible error conditions and how to deal with them.

Check Screen Errors

Most of the errors you are likely to encounter at execution time will be related to
Check Screen actions. It is important to realize that every one of the Check Screen
errors discussed below is a timeout error. If one of the errors described below
occurs, it means that the go-ahead criteria you specified in the Check Screen setup
dialog were not met within the Timeout period. Therefore, you should first try to
determine whether slow host response might be the real problem (in which case,
the solution is to increase the Timeout value for the Check Screen action in
question). If the error still occurs after the Timeout value has been increased, then
you can be sure the error is due to an incorrect or inappropriate go-ahead condition
in your Check Screen action.

The following paragraphs describe typical error messages and their meanings.

“Expected cursor position (Row = {0}, Column = {1}) was not established”

This error means that the Check Screen failed because the cursor was not at the
expected location at the expiration of the Timeout period. Perhaps the host
application changed, or the prompt line may be varying dynamically in some way
that you weren’t anticipating, etc. It’s also possible, as explained above, that the
Check Screen simply “timed out” for reasons having to do with heavy host load or
a bad connection. Try increasing the Timeout value for the given Check Screen
action. If that doesn’t help (or if you suspect that the problem involves an
inappropriate choice of go-ahead criteria), try rewriting the Check Screen go-
ahead condition based on something other than fixed cursor coordinates. For
example, specify a prompt string, or use an Expression to validate the screen
contents in some way.

Telnet Connect User’s Guide82

“Expected prompt text {0} was not established”

This error means that the Check Screen failed because the prompt was not
identical to the specified (expected) prompt string prior to the expiration of the
Timeout period. The prompt line may be varying dynamically in some way that
you weren’t anticipating. Or (as explained above) the host response time may
simply have increased unexpectedly due to heavy load or other factors. If you
suspect that host latency is a problem, try increasing the Timeout value for the
Check Screen action. Otherwise, rewrite your Check Screen go-ahead criteria to
be based on something other than a hard-coded prompt value. For example,
specify an Expression that validates the prompt in some way.

“Screen Check Expression {0} was evaluated as false”

This error happens when the Check Screen go-ahead is based on an ECMAScript
expression and the expression happens to evaluate as false at execution time. Once
again, it’s important to realize that this sort of error can be triggered simply on the
basis of slow host response (timeout). When the host is slow to respond, it means
that your ECMAScript expression will be evaluated on the basis of whatever is in
the screen buffer as of the moment of timeout. If no data (or insufficient data) have
arrived, the expression is bound to evaluate as false.

To fix this sort of problem, either increase the Timeout value for this Check Screen
action (if you suspect that the problem is host latency) or try modifying the logic
in your ECMAScript expression.

Performing Telnet Actions 83

Send Buffer Errors

If you see an automatically generated Send Buffer action at the top of your Action
Model that contains the string "\u001b[?1;2c" (or something similar), it means that
you have specified no terminal type (or perhaps an unrecognized terminal type) in
the Terminal Type field of the Telnet Connection Resource setup dialog.

Send Buffer errors will, in general, be rare. Be on guard, however, for Send
Buffers that contain more than one screen’s worth of commands (so-called “type-
ahead” buffering). Such actions are easy to create accidentally. An Action Model
with overloaded Send Buffers may work correctly as you step through actions at
animation time, but can fail when the component-as-a-whole is executed, due to
screen synchronization problems. The way to avoid problems here is to make sure
that for every Send Buffer action, there is always be a corresponding Check
Screen action.

Errors Involving Connections

If connection pooling is used, and there has been an attempt to log on with a bad
UserID or Password, that connection instance will not be usable and that member
of the pool will be skipped over in subsequent connection requests. An error
message will be sent to the server log saying “Logon connection in pool <Pool
name> was discarded for User ID <User ID>.” You should check for messages of
this sort during preproduction testing and/or any time performance issues arise.

Finding a “Bad” Action
When you have a large Action Model (containing dozens or hundreds of Check
Screen and Send Buffer actions), simply locating the action that’s responsible for
an error can be a challenge. One way to find the problematic action is to:

1 Select and Copy the text after “Expected” in the error dialog. (Click the
Details button if need be, to expose the full error description. Highlight the
relevant text, such as cursor coordinates. Then use Control-C to Copy.)

2 Click inside the Action Model.

3 Use Control-F to initiate a search.

4 Paste the error text into the search dialog.

5 Execute the search.

Telnet Connect User’s Guide84

Of course, if you have multiple Check Screen actions that are based on identical
go-ahead criteria, the foregoing technique won’t necessarily be helpful. If that’s
the case, set a breakpoint at the midpoint of your Action Model, and run the
component. If the error doesn’t occur, move the breakpoint to a spot halfway
between the original breakpoint and the end of the action list. (Otherwise, if the
error does happen, set the breakpoint at a spot one quarter of the way down from
the top of the action list.) Run the component again. Keep relocating the
breakpoint, each time halving the distance between the last breakpoint or the top
or bottom of the action list, as appropriate. In this way, you can quickly narrow
down the location of the problematic action. (Using this “binary search” strategy,
you should be able to debug an Action Model containing 128 actions in just 7
tries.)

85Advanced Telnet Actions

Advanced Telnet Actions Chapter 1

Telnet-based computing differs from other types of computing (including other
terminal-based interactions) in a number of important ways:

� Data arrive a character at a time, rather than in chunks.
� There is no obvious structure to arriving data; and the data may arrive in an

arbitrary order.
� Screen updates may involve just a portion of the screen (perhaps a single

character) or the whole screen.
� Retrieval of data sets may require repeated roundtrip communications with

the host. (One query may bring many screens’ worth of data, which must be
captured through multiple “page forward” commands, etc.)

� Information that spans screens may be (and often is) partially duplicated on
the final screen.

These factors can make automating a Telnet interaction (via an Action Model)
challenging. The goal of this chapter is to suggest some strategies for dealing with
common (yet potentially problematic) Telnet-computing situations in the context
of an eXtend Action Model.

To get the most out of this chapter, you should already have read Chapter 4,
“Performing Telnet Actions” and you should be familiar with Action Model
programming constructs (such as looping via the Repeat While action). In
addition, you should have some experience using ECMAScript.

Telnet Connect User’s Guide86

Data Sets that Span Screens
A common requirement in Telnet computing is to capture a data set that spans
multiple screens. In cases where the screen contains a line that says something like
“Page 1 of 4,” it’s a straightforward matter to inspect the screen at the point where
this line occurs (using one of the ECMAScript Screen-object methods described
earlier, in the section titled “Telnet-Specific Expression Builder Extensions”) and
construct a loop that iterates through all available screens. But sometimes it’s not
obvious how many screens’ worth of data there may be. In some cases, the only
clue that you have may be the presence of a “More” command (for example) at the
top or bottom of the screen, which changes to “Back” (or “End,” or some other
message) when you reach the final screen. In other cases, you may be told how
many total records exist, and you may be able to determine (by visual inspection)
how many records are displayed per screen; hence, you can calculate the total
number of screens of information awaiting you.

The point is that if your query results in (potentially) more than one screen’s worth
of information, you must be prepared to iterate through all available screens using
a Repeat/While action, and stop when no additional screens are available. You will
have to supply your own custom logic for deciding when to stop iterating. Your
logic might depend on one or more of the following strategies:

� Determine the total number of screens to visit by “scraping” that
information, if available, off the first screen.

� Divide “total records” (if this information is available) by the number of
records per screen (if this is known in advance), and add one.

� Visit screens one-by-one and break when a blank record is detected.

� Visit screens one-by-one until a special string (such as “End” or “Go Back”)
is detected.

� Visit screens one-by-one until two consecutive identical screens have been
encountered.

Obviously, the strategy or strategies you should use will depend on the
implementation specifics of the Telnet application in question. For some
applications, iterating through screens until a blank record is encountered would
be appropriate, whereas for others, it wouldn’t be.

An example of an Action Model that combines two of these strategies will be
discussed in detail further below.

Advanced Telnet Actions 87

Dealing with Redundant Data
In Telnet applications, it’s common for the final screen of a multiscreen result set
to be “padded” with data from the previous screen. In this way, the appearance of
a full screen is maintained.

Consider the following two screen shots. The top one shows the next-to-last
screen’s worth of information in a query that returned six screens of information.
Notice that the reversed-out status line (row 2 from the top) says “43 entries found,
entries 33–40 are:”, followed by line entries. Since there are 43 records in the
overall data set, and the next-to-last screen ends with record number 40, you’d
expect the next (and final) screen to show records 41 through 43. Instead, the final
screen looks like the one at the bottom of the next page. Notice that it shows
records 36 through 43—that is, it contains five records (36 through 40) from the
previous screen. In most cases, you will not want to capture this redundant data.
The question is: How can you detect and reject redundant records of this sort?

ECMAScript offers an easy and convenient way of maintaining unduplicated lists.
The trick is to create a bare (uninitialized) Object, then attach record names as
properties. Since no object can ever have two properties with identical names,
assigning record names as property names means the object’s property list is an
unduplicated list of record names.

Telnet Connect User’s Guide88

A short example will make this clearer. Suppose you have an array of items in
which some items are listed more than once:

var myArray = new Array(
"Tom","Amy","Greg","Tom","Amy");

To unduplicate this array, you could assign properties to a bare object, where the
property names equal the array values:

var myObject = new Object(); // create a bare object
for (var i = 0; i < myArray.length; i++) // loop over array
{

var arrayMember = myArray[i]; // fetch array member
myObject[arrayMember] = true; // create the property

}

// Now obtain all property names
// in a new, unduplicated array:

Advanced Telnet Actions 89

var uniqueValues = new Array();
var n = 0; // counter
for (var propertyName in myObject) // enumerate property names

uniqueValues[n++] = propertyName;

// Now ’uniqueValues’ contains just "Tom","Amy","Greg"

We will use this trick to our advantage in the Telnet example discussed below.

An Example of Looping over Multiple Screens
Let’s look at a sample Telnet component that combines several of the strategies
we’ve been talking about. The host application is a university library system’s
book locator service. In this example, we have an input document that specifies an
author’s name. Based on that name, we want to query the library for all available
book titles by that author and capture the results to an output DOM. We want the
output document to contain an unduplicated list of titles.

This example will demonstrate:

� How to "scrape" data from multiple screens, without knowing in advance
how many screens there are.

� How to reject duplicate records as they are encountered.
� How to create Output DOM nodes programmatically.
� Breaking out of the main loop if a blank record is encountered or the final

screen has been reached.

The logic for our Action Model’s main loop can be summarized (in pseudocode)
as follows:

Determine the number of records-per-screen
While (true) // enter a "forever" loop

Fetch a record
IF Record is Valid // i.e., not blank

Write data to Output DOM
IF Screen has been completely processed

IF this is not the final screen
Fetch next screen

ELSE BREAK // final screen processed
ELSE BREAK // blank record reached

Telnet Connect User’s Guide90

Initial Actions

The initial portion of the Action Model for this example looks exactly like the
actions created in the earlier example (in the "Telnet Actions" chapter) under
“Recording a Telnet Session”, except that in this case our author is Thomas
Aquinas. The initial actions are simply the Check Screen and Send Buffer actions
necessary to conduct an Author search on "Thomas Aquinas."

The initial screen of our result set looks like:

At the very beginning of the second row, we’re told how many records ("entries")
were found. We can capture this information by using a Function Action:

Advanced Telnet Actions 91

This three-line script obtains all of Row 2 in a local variable called line2, trims
leading spaces off the line, and splits the line on space characters (capturing the
zeroth member of the resulting array into a variable, totalHits). After this, it’s
a simple matter to write the "total hits" number into the Output DOM using a Map
Action.

At this point, we could use the "total hits" number as the basis for our main loop.
But for illustration purposes, we’re going to bypass that tactic, because not every
Telnet host reports "total hits" information on the first response screen. We will,
however, take advantage of the fact that this particular application reports the
number of records per screen (in row two). Here again, though, it’s possible—with
clever ECMAScript programming—to determine "records-per-screen"
information dynamically, at runtime. Alternatively, you can just hard-code this
value after visually inspecting the screen.

NOTE: At some point, you will have to decide whether (and under what
circumstances) it makes sense to hard-code something like the number of records
per screen, as opposed to applying runtime logic. With Telnet applications, it’s rare
that you can count on being able to determine every important screen
characteristic dynamically. Some fore-knowledge of the host application’s behavior
will almost always be implicit in the final Action Model.

We will store the records-per-screen number in an ECMAScript variable,
booksPerScreen. In this example, there are eight records per screen.

Setting Up the Main Loop

Before creating our main loop, we need to set up an index variable that will be
used when creating nodes in our Output DOM. This index (called
bookNumber)will start at one and will be incremented once for every book title
we capture to Output. The reason this index starts at one instead of zero is that
DOM nodes use one-based indexing. We will be using bookNumber to index our
nodes.

We also will use an ECMAScript expression (in a Function Action) to create a
blank ECMAScript object:

var bookTable = new Object();

By storing book titles as property names on this object, we can keep an
unduplicated list of records, as explained further above (see “Dealing with
Redundant Data”).

Telnet Connect User’s Guide92

To create the loop, we place a Repeat While action in the Action Model. (Right-
mouse-click, then select New Action > Advanced > Repeat While.) The dialog
settings for this look like:

By setting the While condition to true, we are—in effect—creating an infinite
loop. The exit conditions for this loop are twofold:

� If a blank record (all space characters) is encountered, the loop is terminated.

� If the current screen is identical to the previous one, the loop is terminated.

The latter condition provides a suitably robust way to break out of our infinite
loop.What’s more, it’s generally applicable to a wide range of Telnet
applications—not just the library-query application.

The index variable i, which cycles from zero to booksPerScreen – 1, serves
two roles:

1 It lets us know when it’s time to fetch a new screen (namely, when the value
reaches booksPerScreen – 1), and

2 It serves as the basis for our row offset when fetching records.

Screen Caching

One additional bit of pre-loop setup code involves caching the current screen. We
include the following Function Action statement immediately before beginning
the loop:

Advanced Telnet Actions 93

previousScreen =
Screen.getTextAt(1,1,Screen.getColumnCount() *
Screen.getRowCount());

The variable previousScreen caches the contents of the last-looked-at screen
so that we can check newly obtained screens against it. If a newly obtained screen
has exactly the same content as the screen we just processed, this is a hint that we
have reached the final screen (and we should therefore terminate the loop).

The Main Loop

We’re now in a position to look at what our Action Model’s main loop actually
does.

First Half

Consider the first portion of the loop as shown below. This is where most of the
real work takes place.

The first action inside the loop is a Function Action, which fetches the 53
characters beginning at column 9 of row 4 + i. The rows we’re interested in
include rows 4 through 11, inclusive; this is the zone in which the host reports our
line items. Since i cycles from zero to 7, we can use "4 + i" as a row offset in our
code.

Telnet Connect User’s Guide94

Once we’ve obtained a record, we do a validation check before proceeding. Only
if the zone that the record came from is non-empty will we continue with the loop.
We use a Decision Action with a decision expression of:

Screen.getTextAt(4 + i, 9, 53) != (new Array(53)).join(" ")

The statement on the right side of the expression means "create a new, empty array
of length 53, and convert it to a String by joining the array members together,
using a single space character as the delimiter." Since each array member is null,
this essentially forms a String consisting of 53 space characters in a row. We can
compare this String with the onscreen string to determine if a blank record was
encountered.

In the TRUE branch of our Decision Action, we immediately check to see if the
book title we just fetched has already been encountered. (We don’t want
duplicates.) Since we’ve been using the tactic of keeping book titles as property
names on the bookTable object (see discussion further above), all we have to do
to check for prior existence of the book is execute a Decision Action against the
expression:

bookTable[bookTitle] == null

If this statement is true, it means the bookTable object has no property who’s
name matches the String in bookTitle. When this is the case, it means we can go
ahead and do our mapping operations. (Otherwise, we fall through and keep
iterating.)

In the TRUE branch of this decision, we mark bookTable[bookTitle] as
true; this assigns a new, non-null property to bookTable. We then map an index
number as well as the book title to new nodes in our Output DOM. By applying a
target expression of

Output.createXPath("InquiryResponse/Books[$bookNumber]/Title
")

for mapping, we are able to use the running index in bookNumber to create a new
node instance under InquiryResponse/Books with element name Title.

Finally, we increment bookNumber.

Advanced Telnet Actions 95

Second Half

In the final portion of our loop, we check to see if it’s time to fetch a new screen.
If so, we execute the necessary Send Buffer command to tell the host we want to
page forward to the next screen.

Notice that as soon as we’ve fetched the new screen, we capture its contents into a
String variable, thisScreen. Then we execute a Decision Action in which we
simply compare thisScreen to previousScreen. If the two are equal, we use
a Break Action to break out of the loop. Otherwise we fall through and continue
executing.

NOTE: Use care when deciding a Min Wait time for the Check Screen action
shown above. If the Min Wait is short and the go-ahead condition is true, it’s
possible you could unintentionally skip a screen and break out of the loop
prematurely.

If we’re still executing, we reset i (the row index variable) and stuff
thisScreen into previousScreen in preparation for the next round.

The Output DOM resulting from our loop ends up looking something like this:

Telnet Connect User’s Guide96

The DOM lists all the titles found for this author, numbered sequentially. And
even though the final screen’s worth of data contains a significant amount of
information duplicated from the preceding screen, our DOM contains no duplicate
titles.

Performance Considerations
You can perform millisecond-based timing of your Action Model’s actions by
wrapping individual actions (or block of actions) in timing calls.

���� To time an Action:

1 Click into the Action Model and place a new Function Action immediately
before the action you wish to time. (Right-mouse-click, then New Action >
Function.)

2 In the Function Action, enter an ECMAScript expression of the form:
startTime = Number(new Date)

3 Insert a new Function Action immediately after the action you wish to time.

Advanced Telnet Actions 97

4 In the Function Action, enter an ECMAScript expression of the form:

endTime = Number(new Date)

5 Create a Map Action that maps endTime – startTime to a temporary
DOM element. (Right-mouse-click, New Action > Map.)

6 Run the Component. (Click the Execute button in the main toolbar.)

If you do extensive profiling of your Action Model, you will probably find that the
overwhelming majority of execution time is spent in Check Screen actions. (You
will seldom, if ever, encounter a Check Screen that executes in less than 150
milliseconds.) Two implications of this worth considering are:

� ECMAScript expressions (in Map and/or Function actions) will seldom, if
ever, be a performance consideration for the component as a whole.

� Overall component performance rests on careful tuning of Min Wait and
Timeout values in Check Screen actions.

Finally, remember that testing is not truly complete until the deployed service has
been tested (and proven reliable) on the app server.

For additional performance optimization through the use of shared connections,
be sure to read the next chapter, on Logon Components.

Telnet Connect User’s Guide98

99Logon Components, Connections, and Connection Pools

Logon Components, Connections,
and Connection Pools Chapter 2

About Telnet Session Performance
A normal Telnet Component may perform satisfactorily on your testing
workstation within exteNd Composer, but after deploying to a production
application server environment, you may discover that the Service encapsulating
this component performs slowly under load. This is not unusual and is similar to
problems experienced in the earlier days of database systems that supported
multiple users. The problem can usually be traced to the time spent on a variety of
steps needed in a typical Terminal session program. Ignoring the actual execution
of the program itself, these steps include:

1 Securing a connection to the host
2 User authentication
3 Navigation through a menu system to point where the transaction can be

launched
4 Signing the user off and closing the connection when the transaction is

finished

While it may seem small for an individual program, this one-to-one relationship of
a Telnet component to the session overhead becomes problematic under heavy
program loads typical of many Web sites and/or application server environments.
exteNd Composer minimizes the repetitive session overhead by providing two
special objects: a special Connection Resource type called a Telnet Logon
Connection and the corresponding Telnet Logon Component.

Telnet Connect User’s Guide100

Connection Pool Architecture
When you install the Connect for Telnet, two types of Connection Resources are
added to the Connection creation wizard: a Telnet Connection and a Telnet Logon
Connection (henceforth referred to as a Logon Connection). The Telnet
Connection is a true connection and (when used by a Telnet component) can
establish a session with a host system.

The Logon Connection, however, is different. It defines a pool of available User
IDs and uses a Telnet Logon Component (henceforth a Logon Component) to
execute connection and navigation related actions for each User Id. It is the Logon
Component that actually establishes connections using a regular Telnet password.
The Logon Component will be discussed later, but it is important to note that a
Logon Connection and Logon Component must be used together to establish
connection pools.

Normally, when a Telnet component activates a connection defined using a single
User ID and password, that connection's User ID/Password is unavailable to
another instance of the component or a different component that uses the same
connection definition.

Logon Components, Connections, and Connection Pools 101

The Logon Connection provides performance benefits by making additional User
IDs available to establish new connections eliminating the serial wait time for
other components to finish, and by reusing a connection when possible to avoid
session overhead.

In the diagram above, notice that each active Telnet Component has its own User
ID, its own instance of the Logon Component and its own instance of the
Connection Resource. Also notice that the execution of the multiple Telnet
Components that would otherwise use the same Connection Resource and cause
repetitive serial logon overhead, can instead reuse a User ID/Logon
Component/Connection instance provided by a single Logon Connection. Finally,
note that at Design time, the user only created one Logon Connection object, one
Logon Component object, and one Connection object. The Logon Connection
takes care of creating individual instances for each User ID/Password at runtime.

The combination of a Logon Connection, its Logon Component, and its
Connection are what constitute a Connection Pool. The key factor in deciding
when you need to define and deploy additional Connection Pools, is when one or
more Telnet Components need to use a different launch screen in the Logon
Component. One key to efficiency and performance using connection pooling is
to make sure the Telnet Terminal Component, the logon Connection and the
Logon Component do a proper job of managing the launch screen.

Telnet Connect User’s Guide102

About the Telnet Connection
The Logon Connection is not a true connection object like a Telnet Connection
Resource, but more descriptively, a pool of User IDs/Passwords that have a variety
of connection management parameters associated with them. One key parameter
is the use of a Logon Component for all the User IDs/Passwords that performs
initial Logon tasks and menu navigation to a launch screen.

In addition to specifying a Logon Component, the Logon Connection provides
the following User ID pool functionality:

1 Allows the specification of multiple User IDs in advance ensuring that
clients are able to secure a connection when one is needed

2 Allows the reuse of a User ID/connection once it is established to eliminate
repeated user authentications and disconnects

3 Allows a single User ID to use multiple connections if this is supported by
the host system

4 Keeps a connection active to prevent host timeouts during inactive periods

Logon Components, Connections, and Connection Pools 103

5 Specify when to remove a connection from the active pool

6 Set a timeout period to wait for a fully active pool to provide a free
connection

7 Specify error handling dependent on the state of the Logon Component used
by the Logon Connection

In order for multiple instances of a Telnet component or different Telnet
components to use the same Logon Connection, the following conditions must be
met:

1 All the Telnet components must use the same Connection Resource (thereby
sharing the Telnet Host, Port and Terminal type.

2 All the Telnet components must have a common launch screen in the host
system from which they can begin execution (see “About the Telnet Logon
Component” below for more detail).

Connection Pooling with a Single Sign-On
If your host system security supports multiple logins from a single user ID, you
may have circumstances where you wish to pool the single User ID. This can be
accomplished by performing the following steps:

� Specify a User ID/Password in the Connection Resource used by the Logon
Component

� On the Pool Info dialog of the Logon Connection, specify a Pool Size greater
than one

� Do NOT check the Override the UID/PWD setting in the Pool Info dialog
of the Logon Connection.

These steps will cause each pool slot to use the User ID and Password contained
in the Connection object and not use and user IDs from the pool.

About the Telnet Logon Component
The Logon Component is a special component whose Action Model is designed
to manage a connection that will be used by multiple Telnet components. The
Logon Component is in most respects the same as Telnet components except for
two key differences:

1 Its Action Model is organized and executed by connection tasks: Logon
Actions, KeepAlive Actions and Logoff Actions

2 A Logon Component is not executed by another component or service but
instead by a logon Connection.

Telnet Connect User’s Guide104

3 A Logon Component must (and can only) be used in conjunction with a
Logon Connection.

The connection tasks of a Logon Component provide three additional perfor-
mance benefits when used with a Logon Connection.

• LOGON actions navigate through the host environment and park at a
desired launch screen in the host system when a User ID from the Pool first
activates a connection to the host. The Telnet components that subsequently
reuse the connection have the performance benefit of already being at the
launch screen and won’t incur the overhead of navigating to the launch
screen as if they had come in under their own new session.

• KEEPALIVE actions prevent the host from dropping a connection if it is
not used within a standard timeout period and must leave the connect at the
same launch screen as the Logon actions.

• LOGOFF actions exit the host environment in a manner you prescribe for
all the connections made by User IDs from the pool, when a connection is
being terminated.

LOGON Actions
Actions you place in the LOGON group are primarily concerned with signing
into the host security screen and then navigating through the host menu system to
a launch screen where each Telnet component's Action Model will start. It is
important that any Telnet component using a Logon component be able to start
execution at the same common screen. Otherwise, the performance gains of
avoiding navigation overhead won't be realized and more importantly, the odd
Telnet component won't work.

Logon Actions are created the same way as in the Telnet Component that does
not use a Logon Connection. You use the Record feature to create the actions
necessary to enter sign on information such as User ID and Password as well as

Logon Components, Connections, and Connection Pools 105

your initial menu choices to arrive at the launch screen. The other important thing
to remember is to use the User IDs and Passwords from the Logon Connection
Pool. To do this you need to map the two special system variables called USE-
RID and PASSWORD to the appropriate fields on the screen. By using these two
variables, exteNd Composer will automatically map their values from the next
active and free Pool slot.

The launch screen must be a common point of execution for all the Telnet Com-
ponents using the User ID/Password pool provided by a Logon Connection. To
get to the launch screen you create Actions as you would in a normal Telnet com-
ponent. The LOGON actions in a Logon Component are executed only once
when a new connection is established.

Telnet Connect User’s Guide106

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and
end with a Check Screen Action as shown in the screen above. The final Check
Screen guarantees that control is not turned over to the Telnet Component before
the screen has arrived in the connection. Otherwise, the Telnet Component may
start at an invalid screen, throw an exception and possibly corrupt an operation. It
also performs a special check defined by the user (i.e. screen, expression and
cursor position). It is critical that the Check Screen prevents control being passed
from the Telnet Component prematurely.

I

So if a User ID/Password pool of three entries is fully used and reused by the
execution of a component 15 times, the overhead of navigating to a menu item
that executes the program of interest will only occur three times. Likewise, there
will only be three Logons to the host because LOGON actions are only executed

Logon Components, Connections, and Connection Pools 107

once—when a new connection is activated (not when it is reused).

NOTE: When possible, use the Try/On Error action to trap potential logon errors
that may be recoverable. Otherwise, the UserID trying to establish the failed logon
will be discarded from the pool decreasing the potential pool size until you manually
reset the discarded connections at the Composer Enterprise Server Console for
Telnet. See Managing Pools Sections in this Chapter for more details.

KEEPALIVE Actions
The KEEPALIVE heading is where you place actions that will create activity and
interact with the host which keeps occurring over the connection used by the
Logon Component. KEEPALIVE actions usually involve sending a key like
<ENTER> to the host. However, if after sending the key the screen changes to one
different than the launch screen, you must be sure to return the Logon Component
to the launch screen in the KEEPALIVE section. Failure to do so will leave the
next component at an incorrect screen causing it to fail.

In Telnet connections, you may type a letter and then use backspace to erase it. See
the following screen. This will create and send a buffer action to the Host. This
action allows interaction to be maintained with the Host and keeps the terminal
connected.

This escape
sequence corre-
sponds to “1” and
“Backspace.”

Telnet Connect User’s Guide108

The Pool Info dialog of a Logon Connection is where you control how often the
KEEPALIVE actions will execute. If you specify in your Logon Connection pool
that you would like to keep a free connection active for 60 minutes, but the host
will normally drop a connection after two minutes of activity, you can specify
keyboard actions to let the host know the connection is still active such as sending
an <ENTER>key.

KEEPALIVE actions may be executed multiple times, but after the KeepAlive
Time Period defined on the Pool Info dialog of the Logon Connection.

NOTE: The execution of the KEEP ALIVE actions does not cause the Inactivity
Lifetime clock to reset in the Logon Connection. Only a Telnet Component’s
execution will reset the Inactivity Lifetime.

interaction every
2 minutes

active connection for
60 minutes

Logon Components, Connections, and Connection Pools 109

Maximizing Performance with KEEPALIVE Actions

Check Screens must also be processed at the beginning and end of the Keep Alive
section. Not only does the keep Alive section prevent the connection from closing,
but it must make sure that the launch screen is present when the execution is
completed. The beginning Check Screen checks to make sure that during the time
the connection was available but not in use, that an unexpected screen didn’t arrive
from the host. And again, the ending Check Screen prevents releasing the
connection to the next Telnet Component prematurely after executing the Keep
Alive actions. See the following screen.

LOGOFF Actions

Logoff actions essentially navigate the User ID properly out of the host system.
Logoff actions execute only once for a connection and only when a connection
times out (i.e. the Inactivity Lifetime expires) or screen expression criteria is not
met, or the connection is closed via the Telnet Server console.

Maximizing Performance of the LOGOFF Actions

Logoff Actions should be made bulletproof. if an exception occurs during
execution of the Logoff actions, exteNd Composer will break its connection with
the host freeing the UserID in the pool. However, the UserID may still be active
on the host. Until the host kills the UserID because of inactivity, a subsequent
attempt by the pool to logon with that UserID may fail, unless you code your logon
to handle the situation. Logon failures cause the UserID to be discarded from the
pool reducing the potential pool size and performance overall. As with Logon and
Keep Alive actions, the way to guarantee you are on the proper screen at the start
of the logoff is to start with a Check Screen.

Telnet Connect User’s Guide110

Logon Component Execution
Each time the system requests a new connection for the creation of a Logon
component, it associates it with the first available UserId/Password combination.
Then the Logon actions are executed until the desired launch screen is reached. At
this point the Telnet component execution begins. When it is finished another
Telnet component using the same Logon Connection may begin executing,
starting from the same launch screen.

If another component doesn't begin executing, then the connection enters an active
but free state defined by the Inactivity Lifetime and KeepAlive settings on the
Pool Info dialog of the Logon Connection. If the Keep Alive period (e.g. 2
minutes) is shorter than the Inactivity Lifetime (e.g. 120 minutes), then when the
KeepAlive Period ends, the KeepAlive actions will be executed (preventing a host
timeout and dropped connection) and the KeepAlive Period begins anew. The
Inactivity Period and KeepAlive Period are defined on the Pool Info dialog of the
Logon Connection.

A Logon Component's execution lifetime is dependent on the activity of the
Logon Connection that uses it. As long as one entry in the Logon Connection pool
is active, then one instance of the Logon Component will be in memory in a live
state. A Logon Component will cease execution when the logon connection
associated with it expires due to inactivity. The only other way to stop execution
of a Logon Component is through the Telnet Console on the Server.

NOTE: If a connection attempt involves a bad User ID or Password, that
connection instance will not be usable and that member of the pool will be skipped
over in subsequent connection requests. An error message will be sent to the
server log saying “Logon connection in pool <Pool name> was discarded for User
ID <User ID>.”

Creating a Connection Pool

Overview
When creating a Telnet component, you must first create the Connection object it
needs first. Similarly, when creating the object comprising a Connection Pool,
you must create the needed objects first, which implies starting at the host and
working your way backwards to the Telnet Component that will access the host.
A typical sequence of steps for creating a Connection Pool is:

• Create the host Connection
• Create the Logon Component that uses the Connection
• Create Logon Connection that uses the Logon Component

Logon Components, Connections, and Connection Pools 111

• Create one or more Telnet Components that use the Logon Connection

Creating a Connection
This step is simple. Create a new Connection Resource as described in Chapter 2
of this Guide. Even though you will be using User IDs and Passwords defined in
the Logon Connection later, you should still define one in the Connection as well.
This will be needed when you define the Logon Component in the next step.
Alternatively, you can simply use an existing Connection Resource.

Creating a Logon Component
���� To create a Telnet Logon Component:

From the Composer File menu, select New xObject, then Component, then
Telnet Logon. The Header Info panel of the New xObject Wizard appears.

4 Type a Name for the connection object.
5 Optionally, type Description text.
6 Click Next and the Connection Info panel appears.

Telnet Connect User’s Guide112

7 Select a Connection from the drop down list.
8 Click Finish and the Logon Component Editor appears.
9 Recording actions follows a series of steps. The cursor must be positioned

over LOGON; then turn Record on, and when you are done, turn Record off.
Position the cursor to KEEPALIVE, turn Record on, and when you are done,
turn Record off. Position the cursor to LOGOFF, turn record on, then when
you are done, turn record off.

10 Record LOGON Actions for logging into the host and navigating to the
launch screen using the same Recording techniques described in Chapter 4
of this Guide.

11 Edit the LOGON Map actions that enter a User ID and Password to instead
use the special USERISD and PASSWORD variables described in the
section titled "Telnet Specific Expression Builder Extensions” in Chapter 4
of this Guide.

Logon Components, Connections, and Connection Pools 113

Create the needed SEND Buffer actions in the KEEPALIVE section of the
Action Model (a quick way is to copy an existing SEND key action, Paste it,
and then modify the key code
sent).

12 Record LOGOFF actions for properly exiting the host

13 Save and close the logon Component.

Creating a Logon Connection using a Pool Connection
���� To create a Telnet Logon Connection:

1 From the Composer File menu, select New xObject, then Resource, then
Connection, or you can click on the icon. The Header Info panel of the New
xObject Wizard appears.

2 Type a Name for the connection object.

Telnet Connect User’s Guide114

3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.

5 For the Connection Type select "Telnet Logon Connection" from the drop
down list.

6 In the Logon Via control, select the Logon Component you just created.
7 Click on the Pool Info button and the Pool Info dialog appears.

Logon Components, Connections, and Connection Pools 115

8 Enter a Pool Size number. This represents the total number of connections
you wish to make available in this pool. For each connection, you will be
expected to supply a UserID/Password combination later.

9 Enter a KeepAlive time period. This number represents (in minutes) how
often you wish to execute the KEEPALIVE actions in the associated Logon
Component whenever the connection is active but free (i.e. not being used
by a Telnet component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

10 Enter an Inactivity Lifetime. This number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to its inactive state in the
pool, it will incur the overhead of logging in and navigating host screens
when it is re-activated.

11 Enter an Entry Wait time in seconds. This time represents how long a Telnet
component will wait for a free connection when all the pool entries are
active and in use. If this time period is reached, an Exception will be thrown
to the Application Server.

12 Checking Override UID/PWD means you wish to specify User
ID/Password combinations for use in the connection pool. When checked,
this activates the Set USERID/PASSWORD button. Click on the button to
display the Set USERIDs and PASSWORDS dialog.

Telnet Connect User’s Guide116

On the Toolbar there are three icons: Add which adds an empty row, Delete, which
deletes a highlighted row and Paste which allows you to copy/paste information
from a spreadsheet into the table. For more on this, see the following Note.

NOTE: Alternate and faster ways to enter data are to copy data from a spread
sheet and paste it into the table. Make sure your selection contains at least two
columns, UserID and Password. The first and second column must contain data, all
other columns will be disregarded. The first number column you see in the screen
is automatically generated. Open the spreadsheet, copy the two columns and as
many rows as needed. Open the table and immediately press the Paste button.
You can also copy data from tables in a Microsoft Word® document using the same
technique.

13 Pool size will be updated depending upon how many rows you entered.

14 You may optionally check the Use Sequential Connection if you want all
connections will to be established sequentially one after another (as some
systems may have conflicting screens which block simultaneous access).

15 You may optionally check the Reuse Connection Only if expression is true
control. This control allows you to enter an expression that checks to make
sure the launch Screen is still present each time a new Telnet Component is
about to reuse an active free connection. Click OK to return to the
Connection Info panel. Also refer to “Maximizing Performance of the Telnet
Logon Connection” in this Chapter.

NOTE: The following a is a sample Custom Script used to see if a particular
screen is present. If it is not, the script writes a message to the console stating that
the screen is bad and the logon connection is being released. This function is called
from the “Reuse connect only if expression is true” control on the Pool Info dialog.

Paste

Add

Delete

Logon Components, Connections, and Connection Pools 117

16 Click OK to return to the Connection Info panel.
17 Click on Finish and the Logon Connection is saved.

Maximizing Performance of Telnet Logon Connection

To prevent Telnet Components from beginning execution on a connection that
may have been left on an invalid screen by a previous Telnet component, the
Logon Connection Resource allows the connection itself to check for the presence
of the launch screen. This is accomplished by using the option titled “Reuse
connection only if expression is true” on the Pool Info dialog of the Logon
Connection. The screen test you specify here is executed each time a Telnet
Component completes execution. If the test fails, exteNd Composer will
immediately disconnect from the host, possibly leaving a dangling UserID on the
host. As noted before, the host will eventually kill the user, but the UserID may be
discarded from the pool if it is accessed again before being killed, thereby
reducing the pool size and consequently overall performance.

Another reason to use the “Reuse connection only if true” option is that you can
perform very detailed tests against the screen to make sure it is your launch screen.
While Map Screen actions do perform a screen check, they only look at the
number of fields in the terminal data stream. In most cases, this is sufficient.
However, it is possible two different screens can have the same number of fields
in which case the expression based test that examines the content of the screen will
produce more rigorous results. A best practices approach mandates that you use
this feature all the time.

function checkValidLaunchScreen(ScreenDoc)
{
 var screenText = ScreenDoc.XPath("SCREEN").item(0).text
 if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") != -1) &&
 (screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||

screenText.indexOf("UNSUPPORTED FUNCTION") == -1))
 {
 return true;
 }
 else
 {
 java.lang.System.out.println("Warning - Releasing logon connection at bad screen");
 java.lang.System.err.println("Warning - Releasing logon connection at bad screen");
 return false;
 }
}

Telnet Connect User’s Guide118

Static versus Dynamically Created Documents/Elements

In some Composer applications, users have a need to place various control,
auditing, and/or meta-data in an XML document. This document may or may not
be in addition to the actual elements/documents being processed (i.e. created from
an information source). If this document structure and data is dynamically created
by multiple Map actions (i.e. over 100) performance of the component and
therefore the entire service may suffer. To boost performance, create the portion of
the document structure without the dynamic content ahead of time, then load it
into the Service at runtime via an XML Interchange action and retain the Map
actions for dynamic content. This can boost performance as much as 30% in some
cases.

Creating a Logon Connection using a Session
Connection

���� To create a Telnet Logon Connection:

From the Composer File menu, select New xObject, then Resource, then
Connection, or you can click on the icon. The Header Info panel of the New
xObject Wizard appears.

18 Type a Name for the connection object.

19 Optionally, type Description text.

20 Click Next and the Connection Info panel appears.

Logon Components, Connections, and Connection Pools 119

21 For the Connection Type select “Telnet Logon Connection” from the drop
down list.

22 In the Connect Via control, select the Logon Component you just created.

23 Click the Session Connections radio button and then on Session Info button.

24 The Keep Alive (minutes) number represents (in minutes) how often you
wish to execute the KEEPALIVE actions in the associated Logon
Component whenever the connection is active but free (i.e. not being used
by a Telnet Terminal component). The number you enter here should be less
than the Timeout period defined on the host for an inactive connection.

Telnet Connect User’s Guide120

25 The Inactivity Lifetime (minutes) number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to its inactive state in the
pool, it will incur the overhead of logging in and navigating host screens
when it is re-activated.

26 Click in the checkmark box if you want to Reuse connection only if
expression is true. If you choose to do so, the expression field automatically
displays and you can click on the expression icon to display the if the
expression is true dialog.

Creating a Telnet Component
At this point, you are ready to create a Telnet Component that can use the Con-
nection Pool. For the most part, you will build the component as you would a
normal Telnet component, the only difference being the Connection you specify
on the New xObject Wizard.

���� To create a Telnet Component:

1 From the Composer File menu, select New xObject, then Component, then
Telnet. The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the component.

3 Optionally, type Description text.

Logon Components, Connections, and Connection Pools 121

4 Click Next and the XML Property Info panel appears.
5 Select the necessary Input and Output Templates for your component.
6 Click Next. The Connection Info panel appears.
7 Select the Logon Connection you created and click on Next. The

Component editor appears.
8 Build the component as described elsewhere in this Guide.

Maximizing Performance of Telnet Terminal Components

Once the launch screen is obtained by the logon Component’s logon actions, it is
handed to the Telnet Terminal Component that uses the connection. Then the
Telnet Terminal component (when finished executing) leaves the screen handler
back at the launch screen. If the Telnet Component finishes without being on the
launch screen,(i.e. it releases the connection back to the pool with an invalid
screen) then it is possible that all subsequent Telnet Components that use the
connection may throw exceptions rendering the connection useless. It also will
degrade overall performance and possibly cause data integrity problems within
the component processing.

Once again, ensure that the launch screen is present, the last action to execute in a
Telnet Component must be a Check Screen that checks for the launch screen. This
can be tricky if your component has many decision paths that may independently
end component execution. You must be sure that each path ends with a Check
Screen action.

Managing Pools
Connections pools can be managed through the Telnet Console Screen.

���� How to Access the Console

1 Logon to your Server via your Web browser http://localhost/SilverMaster35.
In this example, Novell Server is used.

Telnet Connect User’s Guide122

2 Click on exteNd Composer and a list of installed Connects displays.

3 Click on the Telnet and the Console Screen displays. Enter the Path and
Name in the field and click SUBMIT button. The Connection Pool
Management Screen displays with table if a connection exists for the Telnet
Connect. Refer to the appropriate Server guide for more detailed
information

Logon Components, Connections, and Connection Pools 123

You can also display the exteNd Composer Telnet Connection Pool Manager by
selecting Telnet from the list of Installed Products on the left side of the exteNd
Composer Console.

Telnet Connect User’s Guide124

Connection Pool Management and Deployed Services
The Connection Pool Management Screen displays the current state of the
connection(s) with the Telnet Connect. The screen contains a table listing the Pool
Name, Description of the connection, the maximum number of connections in the
pool, the number of connections in use, the number of connections available, the
number of connections discarded. It also contains three other columns with
buttons that allow for connections to be reset.

The button Reset Discarded, resets the Discarded connections which are then
reflected in the table. The button Reset Pool resets the Available and Discarded
connections which are then reflected in the table. The button Refill Pool refills the
pool with the maximum number of connections.

Logon Components, Connections, and Connection Pools 125

Below the table there is a REFRESH button which you click on to show the
current status of the connection pool. Under this is a field which allows you to
initialize a Logon Connection Pool by entering a relative path to the deployed lib
directory. This will not work unless the deployed jar is extracted. Click on the
SUBMIT button when finished.

Connection Discard Behavior
The performance benefits of connection pooling are based on the ability of more
than one user to access a resource, or set of resources, at once. The way a
connection is established begins with the logon component picking the User ID
and Password from the table. If the connection fails, then it is discarded for this
User ID and Password and tries another until a connection is established. The
failure of one connection doesn’t prevent a successful connection to be
established.

The Connect for Telnet addresses the “one bad apple” problem by discarding any
connection that can’t be established (for whatever reason: bad user ID, timed-out
password, etc.) and reusing the others. When a connection is determined to be
unusable, the Connect for Telnet will write a message to the system log that says:
“Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization
Screen synchronization has special ramifications for users of pools. If a situation
arises in which a user leaves a connection without the screen returning to its
original state, the next user will begin a session with the screen in an unexpected
state and an error will occur. To prevent this, we have a screen expression which
the user can specify in the connection pool. It is important that the last action in a
Telnet Component be a correct Send Attention Key action that will result in the
session ending with the correct logon screen active.

If you want to check, at runtime, for the presence of a bad screen at the end of a
user session, include a Function action at the end of your component’s action
model that executes a function similar to the one shown below:

function checkValidReleaseScreen(ScreenDoc)
{
 var screenText = ScreenDoc.XPath("SCREEN").item(0).text
 if((screenText.indexOf("MENU") != -1 ||
screenText.indexOf("APLS") != -1) &&
 (screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") == -1))
 {
 return true;
 }

Telnet Connect User’s Guide126

 else // Write error messages to
// System.out and System.err:

 {
java.lang.System.out.println("Warning - Releasing logon

connection at bad screen");
java.lang.System.err.println("Warning - Releasing logon

connection at bad screen");
 return false;
 }
}

This function checks the screen text and returns false if the final screen is not
correct. The check returns true if the screen contains “MENU” or “APLS” and
does not contain “COMMAND UNRECOGNIZED” nor “UNSUPPORTED
FUNCTION.”

127Glossary

Glossary Appendix A

ANSI
American National Standards Institute.

Check Screen
An action that action signals the component that execution must not proceed until the screen is in a
particular state, subject to a user-specified timeout value.

Dumb Terminal
A computer terminal that has no onboard CPU, memory, or storage devices, beyond the minimum
necessary to communicate with a more powerful host machine.

ECMAScript
Any JavaScript-like language that conforms to European Computer Manufacturers Association
standard No. 262.

Native Environment Pane
A pane in the Telnet Component Editor that provides an emulation of an actual Telnet terminal
session.

Screen Object
A special DOM in the Telnet (and 5250) component editor windows representing the current Telnet
screen display as an XML document.

Send Buffer
An action that appears in the Action Model whenever a there is map to the screen or keys entered on
the screen.

TCP/IP
Abbreviation for Transmission Control Protocol/Internet Protocol

Telnet

Telnet Connect User’s Guide128

A specification (RFC854) for a communications protocol (TCP/IP) used for emulating a terminal on
ANSI standard systems.

Type-ahead
A technique for preloading a keyboard buffer with more than one screen’s worth of commands.

Terminal Emulation
A technique for imitating the runtime behavior of a “dumb terminal” on a desktop (or other) machine.

VT100
VAX Terminal, model 100. Also refers to the particular ANSI encoding used by this class of terminal.

129Telnet Keyboard Equivalents

Telnet Keyboard Equivalents Appendix B

Telnet Common Keys

 Arrow Down \u001b[B

 Arrow Left \u001b[D

 Arrow Right \u001b[C

 Arrow Up \u001b[A

 BackSpace \u0008

 Back Tab \u001bOP\u0009

 Delete \u007f

 Escape \u001b

 Linefeed \u000a

 Return \u000d

 Tab \u0009

Telnet Connect User’s Guide130

Telnet Functional
Keys F1-F20

 F1 \u001bOP

 F2 \u001bOQ

 F3 \u001bOR

 F4 \u001bOS

 F5 \u001b[15~

 F6 \u001b[17~

 F7 \u001b[18~

 F8 \u001b[19~

 F9 \u001b[20~

 F10 \u001b[21~

 F11 \u001b[23~

 F12 \u001b[24~

 F13 \u001b[25~

 F14 \u001b[26~

 F15 \u001b[28~

 F16 \u001b[29~

 F17 \u001b[31~

 F18 \u001b[32~

 F19 \u001b[33~

 F20 \u001b[34~

Telnet Keyboard Equivalents 131

Telnet NumPad Keys

 0 \u001bOp

 1 \u001bOq

 2 \u001bOr

 3 \u001bOs

 4 \u001bOt

 5 \u001bOu

 6 \u001bOv

 7 \u001bOw

 8 \u001bOx

 9 \u001bOy

 Minus \u001bOm

 Comma \u001bOl

 Period \u001bOn

 Enter \u001bOM

Telnet Control Keys

 ACK \u0006 (CTRL+F)

 BELL \u0007 (CTRL+G)

 BS \u0008 (CTRL+H)

 CAN \u0018 (CTRL+X)

 CR \u000d (CTRL+M)

 DC1 or XON \u0011 (CTRL+Q)

 DC2 \u0012 (CTRL+R)

Telnet Connect User’s Guide132

 DC3 or XOFF \u0013 (CTRL+S)

 DC4 \u0014 (CTRL+T)

 DLE \u0010 (CTRL+P)

 EM \u0019 (CTRL+Y)

 ENQ \u0005 (CTRL+E)

 EOT \u0004 (CTRL+D)

 ESC \u001b (CTRL+[)

 ETB \u0017
(CTRL+W)

 ETX \u0003 (CTRL+C)

 FF \u000c (CTRL+L)

 FS \u001c (CTRL+\)

 GS \u001d (CTRL+])

 HT \u0009 (CTRL+I)

 LF \u000a (CTRL+J)

 NAK \u0015 (CTRL+U)

 NUL \u0000
(CTRL+SpaceBar)

 RS \u001e (CTRL+~)

 SI \u000f (CTRL+O)

 SO \u000e (CTRL+N)

 SOH \u0001 (CTRL+A)

 STX \u0002 (CTRL+B)

 SUB \u001a (CTRL+Z)

 SYN \u0016 (CTRL+V)

 US \u001f (CTRL+?)

Telnet Keyboard Equivalents 133

 VT \u000b (CTRL+K)

Telnet Other Keys

 Do \u001b[29~

 Find \u001b[1~

 Help \u001b[28~

 Insert \u001b[2~

 KeyEnd \u001b[F

 KeyHome \u001b[H

 NextScn \u001b[6~

 PrevScn \u001b[5~

 Remove \u001b[3~

 Select \u001b[44~

Telnet Connect User’s Guide134

135Telnet Display Attributes

Telnet Display Attributes Appendix C

The Screen.getAttribute() method will return one of the values shown
below, representing the current attribute state of the onscreen character at the
given location.

Number Attribute

 0 normal display

 1 bold on

2 faint

3 standout

 4 underline (mono only)

 5 blink on

 7 reverse video on

 8 nondisplayed (invisible)

30 black foreground

31 red foreground

32 green foreground

33 yellow foreground

34 blue foreground

35 magenta foreground

Telnet Connect User’s Guide136

Viewing All Character Attributes at Once

Using the Screen.getAttribute() method, you can easily write a function that
captures all attributes (at all screen locations) at once. The following ECMAScript
function, for example, can be used at design time to display screen attributes in an alert
dialog.

function showAttributes(myScreen)
{

var attribs = new String(); // create empty string

// Iterate over all rows and columns:
for (var i = 1; i <= myScreen.getRowCount(); i++, attribs += "\n")

for (var k = 1; k <= myScreen.getColumnCount(); k++)
attribs += myScreen.getAttribute(i,k);

// display the results:
alert(attribs);

36 cyan foreground

37 white foreground

40 black background

41 red background

42 green background

43 yellow background

44 blue background

Number Attribute

45 magenta background

46 cyan background

47 white background

Telnet Display Attributes 137

}

The following illustrations show a Telnet screen and the result of applying the
showAttributes() function to the screen:

Telnet Connect User’s Guide138

139Reserved Words

Reserved Words Appendix D

The following terms are reserved words in exteNd Composer for Telnet Connect
and should not be used as labels for any user-created variables, methods, or
objects.

•USERID
•PASSWORD
•PROJECT
•Screen
•getAttribute
•getCursorColumn
•getColumnCount
•getPrompt
•getRowCount
•getText
•getTextAt
•getTextFromRectangle
•setText

Telnet Connect User’s Guide140

141Java Code Pages

Java Code Pages Appendix E

About Encodings
exteNd Composer’s ability to perform character encoding conversions is tied
directly to the Java VM in use. The supported encodings vary between different
implementations of the Java 2 platform. Sun's Java 2 Software Development Kit,
Standard Edition, v. 1.2.2 for Windows or Solaris and the Java 2 Runtime
Environment, Standard Edition, v. 1.2.2 for Solaris support. The encodings can be
found at the Sun web page:

http://java.sun.com/products//jdk/1.2/docs/guide/internat/encoding.doc.html

Sun's Java 2 Runtime Environment, Standard Edition, v. 1.2.2 for Windows comes
in two different versions: US-only and international. The international version
(which includes the lib\i18n.jar file) supports all encodings in both tables.

Telnet Connect User’s Guide142

143

Index

Symbols
$PASSWORD 43
{System}{ANY} 25

A
About Adding Alias Actions 72
About Telnet Session Performance 99
About the Telnet Connection 102
Accept Key Strokes 40, 41
actions, editing 65
Adding A New Action 69
Advanced Actions 79
Animation 67, 70

tools 75
animation 75
array, unduplicating an 88
attributes, screen 136

B
Basic Actions 78
binary search technique 84
blank record 92
breakpoint 84
breakpoints 68, 71, 76
buttons, toolbar 32

C
caching screens 92
calculated Timeout 39
Changing an Existing Action 66
Check Screen Action 36

purpose of 37
Clancy, Tom 55
Code Pages

encodings 141
support 21

comparing screens 92
Connection Discard Behavior 125

Connection Pool Architecture 100
Connection Pooling with a Single Sign-On 103
Connection Pool Management and Deployed

Services 124
Connection Resource 17

constant-driven 18
expression-based 18
how to create 19

CONSULS 51, 52
context menus 31
control keys (also see Appendix B) 41
coordinates, onscreen 56
Create Check Screen button 33
createXPath() method 94
Creating a Connection 111
Creating a Connection Pool 110
Creating a Logon Connection 113
Creating a Telnet Component 118
Cursor Position 38
Cutting/Copying actions 65

D
Data Exchange Actions 79
debugging 81
Decision Action 58
default Min Wait time 39
default Timeout value 39
Deleting an Action 73
DOM 26
drag and drop 48, 65
dumb terminal 26

E
ECMAScript

Telnet-specific methods 42
unduplicating data with 87

editing an Action Model 65
errors and error messages 81
escape values 41
exceptions 39, 81
Expression Builder

picklists in 43
Expression Editor 18

144

F
F13 through F20 26
final screen, detecting 87
Floating Keypad 26
Function Action 90

G
getAttribute() 44
getColumnCount() 45
getCursorColumn() 45
getCursorRow() 45
getPrompt() 45
getRowCount() 46
getText() 46
getTextAt() 46, 49
getTextFromRectangle() 47, 51

H
handshaking 20
hard-coded values 91
Host or IP Address 20
hover-help box, escape codes and 41

I
Inactivity Lifetime 108, 115
indexOf() 59, 61
index variables 91
infinite loop 92
ISBN 52, 57, 61
iterating through screens 86

J
join() method 94

K
KEEPALIVE Actions 107
keepalive actions 104, 107

L
latency 39
LOGOFF Actions 109
logoff actions 104
logon actions 104
Logon Component 103
Logon Component Execution 110
Logon Connection 100
looping over multiple screens 89
lTrim() 61

M
Managing Pools 121
Maximizing Performance of Telnet Logon

Connection 117
Maximizing Performance of Telnet Terminal

Components 121
Maximizing Performance of the LOGOFF

Actions 109
Maximizing Performance with KEEP ALIVE

Actions 109
Maximizing Performance with the Logon

Component 106
millisecond timing 96
Min Wait 37

default of 50ms 39
multiple screens, grabbing data from 86

N
Native Environment Pane 26
newlines, in rectangular screen selections 51
non-printing characters 42, 48
non-printing keys 29
NumPad Keys 26, 27

O
Output DOM notes, creating 89
Override the UID/PWD 103
Override UID/PWD 115

145

P
padded screens 87
PASSWORD 105
PASSWORD global 43
performance tuning 96, 99
picklists 43
Pool Info dialog 108
pool size 115
Port 20
profiling 96
PROJECT Variables 18
Prompt 38
prompt string 77
property names 91
pseudocode 89

R
readiness criteria 37
recording 30, 51
rectangular onscreen selections 50
redundant data, dealing with 87
RegExp() 60
RegExp constructor 60
regular expressions 60
rejection of duplicates 87
Repeat Actions 80
Repeat While action 92
RFC 854 15

S
scraping data 86
scraping data from multiple screens 89
screen caching 92
Screen Object 29

API for all methods 44
screens, comparing 92
screen scraping 16
Screen Selections 48
Screen Synchronization 125
selecting onscreen data 48
Send Buffer

PASSWORD 31
USERID 31

Send Buffer Action 39
creating 40
exiting 42
hover help in dialog 41
Record Mode and 42

setText() 47
shift-drag selection technique 50
Shift key down, dragging with 50
split() 61
spoofing 20
spoofing, logon 20
Static versus Dynamically Created

Documents/Elements 118
Step to Breakpoint 68, 71
strategies for loop termination 86
synchronization 37

T
Telnet specification 15
Template Category 25
Terminal Type 20
testing 73
Thomas Aquinas 90
Timeout 37, 38, 39
Tips for building Telnet Components 77
To create a Telnet Component

120
To create a Telnet Logon Connection

113
Toggle Breakpoint 67, 70
toolbar buttons 32
troubleshooting 81
type-ahead 54, 83

U
unduplicating records 87
Unicode 21, 42
USERID 105
USERID global 43
User ID pool 102

146

V
VAX 15
VT100 128
VT220 20

W
While (Repeat-While action) 58

X
XML Templates 21
XPath 40
XSL 16

	Contents
	1 Welcome to exteNd Composer and Telnet User Interface 13
	2 Getting Started with the Telnet Component Editor 17
	3 Creating a Telnet Component 23
	4 Performing Telnet Actions 35
	5 Advanced Telnet Actions 85
	6 Logon Components, Connections, and Connection Pools 99
	A Glossary 127
	B Telnet Keyboard Equivalents 129
	C Telnet Display Attributes 135
	D Reserved Words 139
	E Java Code Pages 141

	About This Guide
	Purpose
	Audience
	Prerequisites
	Additional documentation
	Organization
	Conventions Used in the Guide

	Welcome to exteNd Composer and Telnet User Interface
	Before You Begin
	About exteNd Composer Connects
	What Is Telnet?
	What is the Telnet Connect?
	About exteNd Composer's Telnet Component
	What Applications Can You Build Using the Telnet User Interface Component Editor?

	Getting Started with the Telnet Component Editor
	Creating a Telnet Connection Resource
	About Connection Resources
	About Constant and Expression Driven Connections
	About Code Page Support

	Creating XML Templates for Your Component

	Creating a Telnet Component
	Before Creating a Telnet Component
	About the Telnet Component Editor Window
	About the Telnet Native Environment Pane
	About Telnet Keyboard Support
	About the Screen Object
	What it is
	How it works

	About Telnet-Specific Menu Bar Items
	About Telnet-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	About Telnet-Specific Buttons
	Record Button
	Connection Button

	Performing Telnet Actions
	About Actions
	About Telnet-Specific Actions
	The Check Screen Action
	Understanding the Check Screen Action
	Readiness Criteria

	The Send Buffer Action
	Editing Text in the Send Buffer Dialog

	About the Send Buffer Action and Record Mode
	How Keys Are Displayed in the Action Model

	Telnet-Specific Expression Builder Extensions
	Login
	Screen Methods
	Keys

	Screen Selections in the Telnet Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	About the Sample Program
	Recording a Telnet Session
	Looping Over Multiple Rows in Search of Data
	Editing a Previously Recorded Action Model
	Changing an Existing Action
	Adding A New Action
	About Adding Alias Actions
	Deleting an Action

	Testing your Telnet Component
	Using the Animation Tools
	Tips for Building Reliable Telnet Components
	Using Other Actions in the Telnet Component Editor
	Handling Errors and Messages
	Check Screen Errors
	Send Buffer Errors
	Errors Involving Connections

	Finding a “Bad” Action

	Advanced Telnet Actions
	Data Sets that Span Screens
	Dealing with Redundant Data
	An Example of Looping over Multiple Screens
	Initial Actions
	Setting Up the Main Loop
	Screen Caching
	The Main Loop

	Performance Considerations

	Logon Components, Connections, and Connection Pools
	About Telnet Session Performance
	Connection Pool Architecture
	About the Telnet Connection
	Connection Pooling with a Single Sign-On

	About the Telnet Logon Component
	LOGON Actions
	Maximizing Performance with the Logon Component

	KEEPALIVE Actions
	Maximizing Performance with KEEPALIVE Actions
	LOGOFF Actions
	Maximizing Performance of the LOGOFF Actions

	Logon Component Execution

	Creating a Connection Pool
	Overview

	Creating a Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Maximizing Performance of Telnet Logon Connection
	Static versus Dynamically Created Documents/Elements

	Creating a Logon Connection using a Session Connection
	Creating a Telnet Component
	Maximizing Performance of Telnet Terminal Components

	Managing Pools
	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	Glossary
	Telnet Keyboard Equivalents
	Telnet Display Attributes
	Viewing All Character Attributes at Once

	Reserved Words
	Java Code Pages
	About Encodings

	Index

