
Test automation
In software testing, test automation is the use of software separate from the software being tested to
control the execution of tests and the comparison of actual outcomes with predicted outcomes.[1] Test
automation can automate some repetitive but necessary tasks in a formalized testing process already in
place, or perform additional testing that would be difficult to do manually. Test automation is critical for
continuous delivery and continuous testing.[2]

There are many approaches to test automation, however below are the general approaches used widely:

Graphical user interface testing. A testing framework that generates user interface events
such as keystrokes and mouse clicks, and observes the changes that result in the user
interface, to validate that the observable behavior of the program is correct.
API driven testing. A testing framework that uses a programming interface to the
application to validate the behaviour under test. Typically API driven testing bypasses
application user interface altogether. It can also be testing public (usually) interfaces to
classes, modules or libraries are tested with a variety of input arguments to validate that the
results that are returned are correct.

One way to generate test cases automatically is model-based testing through use of a model of the system
for test case generation, but research continues into a variety of alternative methodologies for doing so. In
some cases, the model-based approach enables non-technical users to create automated business test cases
in plain English so that no programming of any kind is needed in order to configure them for multiple
operating systems, browsers, and smart devices.[3]

What to automate, when to automate, or even whether one really needs automation are crucial decisions
which the testing (or development) team must make.[4] A multi-vocal literature review of 52 practitioner
and 26 academic sources found that five main factors to consider in test automation decision are: 1) System
Under Test (SUT), 2) the types and numbers of tests, 3) test-tool, 4) human and organizational topics, and
5) cross-cutting factors. The most frequent individual factors identified in the study were: need for
regression testing, economic factors, and maturity of SUT.[5]

A growing trend in software development is the use of unit testing frameworks such as the xUnit
frameworks (for example, JUnit and NUnit) that allow the execution of unit tests to determine whether
various sections of the code are acting as expected under various circumstances. Test cases describe tests
that need to be run on the program to verify that the program runs as expected.

Test automation, mostly using unit testing, is a key feature of extreme programming and agile software
development, where it is known as test-driven development (TDD) or test-first development. Unit tests can
be written to define the functionality before the code is written. However, these unit tests evolve and are
extended as coding progresses, issues are discovered and the code is subjected to refactoring.[6] Only when
all the tests for all the demanded features pass is the code considered complete. Proponents argue that it
produces software that is both more reliable and less costly than code that is tested by manual exploration. It
is considered more reliable because the code coverage is better, and because it is run constantly during
development rather than once at the end of a waterfall development cycle. The developer discovers defects
immediately upon making a change, when it is least expensive to fix. Finally, code refactoring is safer when
unit testing is used; transforming the code into a simpler form with less code duplication, but equivalent
behavior, is much less likely to introduce new defects when the refactored code is covered by unit tests.

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Continuous_testing
https://en.wikipedia.org/wiki/Graphical_user_interface_testing
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/API_testing
https://en.wikipedia.org/wiki/Public_interface
https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/JUnit
https://en.wikipedia.org/wiki/NUnit
https://en.wikipedia.org/wiki/Code
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Code_refactoring
https://en.wikipedia.org/wiki/Code_duplication


Some software testing tasks (such as extensive low-level interface regression testing) can be laborious and
time-consuming to do manually. In addition, a manual approach might not always be effective in finding
certain classes of defects. Test automation offers a possibility to perform these types of testing effectively.

Once automated tests have been developed, they can be run quickly and repeatedly. Many times, this can
be a cost-effective method for regression testing of software products that have a long maintenance life.
Even minor patches over the lifetime of the application can cause existing features to break which were
working at an earlier point in time.

While the reusability of automated tests is valued by software development companies, this property can
also be viewed as a disadvantage. It leads to the so-called "Pesticide Paradox", where repeatedly executed
scripts stop detecting errors that go beyond their frameworks. In such cases, manual testing may be a better
investment. This ambiguity once again leads to the conclusion that the decision on test automation should
be made individually, keeping in mind project requirements and peculiarities.

Test automation tools can be expensive and are usually employed in combination with manual testing. Test
automation can be made cost-effective in the long term, especially when used repeatedly in regression
testing. A good candidate for test automation is a test case for common flow of an application, as it is
required to be executed (regression testing) every time an enhancement is made in the application. Test
automation reduces the effort associated with manual testing. Manual effort is needed to develop and
maintain automated checks, as well as reviewing test results.

In automated testing, the test engineer or software quality assurance person must have software coding
ability since the test cases are written in the form of source code which when run produce output according
to the assertions that are a part of it. Some test automation tools allow for test authoring to be done by
keywords instead of coding, which do not require programming.

API testing
Continuous testing
Graphical User Interface (GUI) testing
Testing at different levels

Levels

Framework approach in automation
Test automation interface
Interface engine
Object repository

Defining boundaries between automation framework and a testing tool
What to test
See also
References

General references

External links

Contents

API testing

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Software_quality_assurance
https://en.wikipedia.org/wiki/Assertion_(computing)


API testing is also being widely used by software testers as it enables them to verify requirements
independent of their GUI implementation, commonly to test them earlier in development, and to make sure
the test itself adheres to clean code principles, especially the single responsibility principle. It involves
directly testing APIs as part of integration testing, to determine if they meet expectations for functionality,
reliability, performance, and security.[7] Since APIs lack a GUI, API testing is performed at the message
layer.[8] API testing is considered critical when an API serves as the primary interface to application
logic.[9]

Continuous testing is the process of executing automated tests as part of the software delivery pipeline to
obtain immediate feedback on the business risks associated with a software release candidate.[10][11] For
Continuous Testing, the scope of testing extends from validating bottom-up requirements or user stories to
assessing the system requirements associated with overarching business goals.[12]

Many test automation tools provide record and playback features that allow users to interactively record
user actions and replay them back any number of times, comparing actual results to those expected. The
advantage of this approach is that it requires little or no software development. This approach can be
applied to any application that has a graphical user interface. However, reliance on these features poses
major reliability and maintainability problems. Relabelling a button or moving it to another part of the
window may require the test to be re-recorded. Record and playback also often adds irrelevant activities or
incorrectly records some activities.

A variation on this type of tool is for testing of web sites. Here, the "interface" is the web page. However,
such a framework utilizes entirely different techniques because it is rendering HTML and listening to DOM
Events instead of operating system events. Headless browsers or solutions based on Selenium Web Driver
are normally used for this purpose.[13][14][15]

Another variation of this type of test automation tool is for testing mobile applications. This is very useful
given the number of different sizes, resolutions, and operating systems used on mobile phones. For this
variation, a framework is used in order to instantiate actions on the mobile device and to gather results of
the actions.

Another variation is script-less test automation that does not use record and playback, but instead builds a
model of the application and then enables the tester to create test cases by simply inserting test parameters
and conditions, which requires no scripting skills.

A strategy to decide the amount of tests to automate is the test automation pyramid. This strategy suggests
to write three types of tests with different granularity. The higher the level, less is the amount of tests to
write.[16]

As a solid foundation, Unit testing provides robustness to the software products. Testing
individual parts of the code makes it easy to write and run the tests.

Continuous testing

Graphical User Interface (GUI) testing

Testing at different levels

Levels

https://en.wikipedia.org/wiki/API_testing
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Communications_protocol#Layering
https://en.wikipedia.org/wiki/Application_logic
https://en.wikipedia.org/wiki/Continuous_testing
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/DOM_Events
https://en.wikipedia.org/wiki/Headless_browser
https://en.wikipedia.org/wiki/Selenium_(Software)#Selenium_WebDriver
https://en.wikipedia.org/wiki/Unit_testing


The test automation pyramid
proposed by Mike Cohn[16]

The service layer refers to testing the services of an
application separately from its user interface, these
services are anything that the application does in
response to some input or set of inputs.
At the top level we have UI testing which has fewer tests
due to the different attributes that make it more complex
to run, for example the fragility of the tests, where a
small change in the user interface can break a lot of
tests and adds maintenance effort.[16][17]

A test automation framework is an integrated system that sets the
rules of automation of a specific product. This system integrates
the function libraries, test data sources, object details and various
reusable modules. These components act as small building blocks
which need to be assembled to represent a business process. The framework provides the basis of test
automation and simplifies the automation effort.

The main advantage of a framework of assumptions, concepts and tools that provide support for automated
software testing is the low cost for maintenance. If there is change to any test case then only the test case
file needs to be updated and the driver Script and startup script will remain the same. Ideally, there is no
need to update the scripts in case of changes to the application.

Choosing the right framework/scripting technique helps in maintaining lower costs. The costs associated
with test scripting are due to development and maintenance efforts. The approach of scripting used during
test automation has effect on costs.

Various framework/scripting techniques are generally used:

1. Linear (procedural code, possibly generated by tools like those that use record and
playback)

2. Structured (uses control structures - typically ‘if-else’, ‘switch’, ‘for’, ‘while’ conditions/
statements)

3. Data-driven (data is persisted outside of tests in a database, spreadsheet, or other
mechanism)

4. Keyword-driven
5. Hybrid (two or more of the patterns above are used)
6. Agile automation framework

The Testing framework is responsible for:[18]

1. defining the format in which to express expectations
2. creating a mechanism to hook into or drive the application under test
3. executing the tests
4. reporting results

Framework approach in automation

Test automation interface

https://en.wikipedia.org/wiki/File:The_test_automation_pyramid.png
https://en.wikipedia.org/wiki/UI_Testing
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Software_maintenance
https://en.wikipedia.org/wiki/Test_case
https://en.wikipedia.org/w/index.php?title=Driver_Script&action=edit&redlink=1
https://en.wikipedia.org/wiki/Startup_script
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Keyword-driven_testing


Test Automation Interface Model

Test automation interfaces are platforms that provide a single workspace for incorporating multiple testing
tools and frameworks for System/Integration testing of application under test. The goal of Test Automation
Interface is to simplify the process of mapping tests to business criteria without coding coming in the way
of the process. Test automation interface are expected to improve the efficiency and flexibility of
maintaining test scripts.[19]

Test Automation Interface consists of the following core modules:

Interface Engine
Interface Environment
Object Repository

Interface engines are built on top of Interface Environment.
Interface engine consists of a parser and a test runner. The parser is
present to parse the object files coming from the object repository into the test specific scripting language.
The test runner executes the test scripts using a test harness.[19]

Object repositories are a collection of UI/Application object data recorded by the testing tool while
exploring the application under test.[19]

Tools are specifically designed to target some particular test environment, such as Windows and web
automation tools, etc. Tools serve as a driving agent for an automation process. However, an automation
framework is not a tool to perform a specific task, but rather infrastructure that provides the solution where
different tools can do their job in a unified manner. This provides a common platform for the automation
engineer.

There are various types of frameworks. They are categorized on the basis of the automation component
they leverage. These are:

1. Data-driven testing
2. Modularity-driven testing
3. Keyword-driven testing
4. Hybrid testing
5. Model-based testing
6. Code-driven testing
7. Behavior driven development

Interface engine

Object repository

Defining boundaries between automation framework and a
testing tool

What to test

https://en.wikipedia.org/wiki/File:Test_Automation_Interface.png
https://en.wikipedia.org/wiki/Workspace
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Test_harness
https://en.wikipedia.org/wiki/Data-driven_testing
https://en.wikipedia.org/wiki/Modularity-driven_testing
https://en.wikipedia.org/wiki/Keyword-driven_testing
https://en.wikipedia.org/wiki/Hybrid_testing
https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Behavior_driven_development


Testing tools can help automate tasks such as product installation, test data creation, GUI interaction,
problem detection (consider parsing or polling agents equipped with test oracles), defect logging, etc.,
without necessarily automating tests in an end-to-end fashion.

One must keep satisfying popular requirements when thinking of test automation:

Platform and OS independence
Data driven capability (Input Data, Output Data, Metadata)
Customization Reporting (DB Data Base Access, Crystal Reports)
Easy debugging and logging
Version control friendly – minimal binary files
Extensible & Customization (Open APIs to be able to integrate with other tools)
Common Driver (For example, in the Java development ecosystem, that means Ant or
Maven and the popular IDEs). This enables tests to integrate with the developers' workflows.
Support unattended test runs for integration with build processes and batch runs.
Continuous integration servers require this.
Email Notifications like bounce messages
Support distributed execution environment (distributed test bed)
Distributed application support (distributed SUT)

List of GUI testing tools
List of web testing tools
Continuous testing
Fuzzing
Headless browser
Software testing
System testing
Unit test

1. Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in
Software Management. Wiley-IEEE Computer Society Press. p. 74. ISBN 978-0-470-04212-
0.

2. O’Connor, Rory V.; Akkaya, Mariye Umay; Kemaneci, Kerem; Yilmaz, Murat; Poth,
Alexander; Messnarz, Richard (2015-10-15). Systems, Software and Services Process
Improvement: 22nd European Conference, EuroSPI 2015, Ankara, Turkey, September 30 --
October 2, 2015. Proceedings (https://books.google.com/books?id=2xOcCgAAQBAJ&q=Sy
stems%2C+Software+and+Services+Process+Improvement%3A+27th+European+Confere
nce&pg=PA71). Springer. ISBN 978-3-319-24647-5.

3. Proceedings from the 5th International Conference on Software Testing and Validation
(ICST). Software Competence Center Hagenberg. "Test Design: Lessons Learned and
Practical Implications. doi:10.1109/IEEESTD.2008.4578383 (https://doi.org/10.1109%2FIEE
ESTD.2008.4578383). ISBN 978-0-7381-5746-7.

4. Brian Marick. "When Should a Test Be Automated?" (http://www.stickyminds.com/sitewide.a
sp?Function=edetail&ObjectType=ART&ObjectId=2010). StickyMinds.com. Retrieved
2009-08-20.

See also

References

https://en.wikipedia.org/wiki/Test_oracle
https://en.wikipedia.org/wiki/Computing_platform
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Data_Base
https://en.wikipedia.org/wiki/Crystal_Reports
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Apache_Ant
https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Integrated_Development_Environment
https://en.wikipedia.org/wiki/Workflows
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Bounce_message
https://en.wikipedia.org/wiki/Testbed
https://en.wikipedia.org/wiki/System_Under_Test
https://en.wikipedia.org/wiki/List_of_GUI_testing_tools
https://en.wikipedia.org/wiki/List_of_web_testing_tools
https://en.wikipedia.org/wiki/Continuous_testing
https://en.wikipedia.org/wiki/Fuzzing
https://en.wikipedia.org/wiki/Headless_browser
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Unit_test
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-470-04212-0
https://books.google.com/books?id=2xOcCgAAQBAJ&q=Systems%2C+Software+and+Services+Process+Improvement%3A+27th+European+Conference&pg=PA71
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-3-319-24647-5
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FIEEESTD.2008.4578383
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-7381-5746-7
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART&ObjectId=2010


Elfriede Dustin; et al. (1999). Automated Software Testing (https://archive.org/details/automat
edsoftwar00elfr). Addison Wesley. ISBN 978-0-201-43287-9.
Elfriede Dustin; et al. (2009). Implementing Automated Software Testing. Addison Wesley.
ISBN 978-0-321-58051-1.
Mark Fewster & Dorothy Graham (1999). Software Test Automation. ACM Press/Addison-
Wesley. ISBN 978-0-201-33140-0.
Roman Savenkov: How to Become a Software Tester. Roman Savenkov Consulting, 2008,
ISBN 978-0-615-23372-7
Hong Zhu; et al. (2008). AST '08: Proceedings of the 3rd International Workshop on
Automation of Software Test (http://portal.acm.org/citation.cfm?id=1370042#). ACM Press.
doi:10.1145/1370042 (https://doi.org/10.1145%2F1370042). ISBN 978-1-60558-030-2.
Mosley, Daniel J.; Posey, Bruce (2002). Just Enough Software Test Automation. ISBN 978-
0130084682.

5. Garousi, Vahid; Mäntylä, Mika V. (2016-08-01). "When and what to automate in software
testing? A multi-vocal literature review". Information and Software Technology. 76: 92–117.
doi:10.1016/j.infsof.2016.04.015 (https://doi.org/10.1016%2Fj.infsof.2016.04.015).

6. Vodde, Bas; Koskela, Lasse (2007). "Learning Test-Driven Development by Counting
Lines". IEEE Software. 24 (3): 74–79. doi:10.1109/ms.2007.80 (https://doi.org/10.1109%2Fm
s.2007.80). S2CID 30671391 (https://api.semanticscholar.org/CorpusID:30671391).

7. Testing APIs protects applications and reputations (http://searchsoftwarequality.techtarget.co
m/tip/Testing-APIs-protects-applications-and-reputations), by Amy Reichert,
SearchSoftwareQuality March 2015

8. All About API Testing: An Interview with Jonathan Cooper (http://www.stickyminds.com/inter
view/all-about-api-testing-interview-jonathan-cooper), by Cameron Philipp-Edmonds,
Stickyminds August 19, 2014

9. Produce Better Software by Using a Layered Testing Strategy (http://www.gartner.com/docu
ment/2645817?ref=QuickSearch), by Sean Kenefick, Gartner January 7, 2014

10. Part of the Pipeline: Why Continuous Testing Is Essential (https://www.techwell.com/techwel
l-insights/2015/08/part-pipeline-why-continuous-testing-essential), by Adam Auerbach,
TechWell Insights August 2015

11. The Relationship between Risk and Continuous Testing: An Interview with Wayne Ariola (htt
p://www.stickyminds.com/interview/relationship-between-risk-and-continuous-testing-intervi
ew-wayne-ariola), by Cameron Philipp-Edmonds, Stickyminds December 2015

12. DevOps: Are You Pushing Bugs to Clients Faster (http://uploads.pnsqc.org/2015/papers/t-00
7_Ariola_paper.pdf), by Wayne Ariola and Cynthia Dunlop, PNSQC October 2015

13. Headless Testing with Browsers; https://docs.travis-ci.com/user/gui-and-headless-browsers/
14. Headless Testing with PhantomJS;http://phantomjs.org/headless-testing.html
15. Automated User Interface Testing; https://www.devbridge.com/articles/automated-user-

interface-testing/
16. Mike Cohn (2010). Succeeding with Agile. Raina Chrobak. ISBN 978-0-321-57936-2.
17. The Practical Test Pyramid (https://martinfowler.com/articles/practical-test-pyramid.html), by

Ham Vocke
18. "Selenium Meet-Up 4/20/2010 Elisabeth Hendrickson on Robot Framework 1of2" (https://w

ww.youtube.com/watch?v=qf2i-xQ3LoY). Retrieved 2010-09-26.
19. "Conquest: Interface for Test Automation Design" (http://www.qualitycow.com/Docs/Conques

tInterface.pdf) (PDF). Retrieved 2011-12-11.

General references

https://archive.org/details/automatedsoftwar00elfr
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-43287-9
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-58051-1
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-33140-0
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-615-23372-7
http://portal.acm.org/citation.cfm?id=1370042#
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F1370042
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-60558-030-2
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0130084682
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.infsof.2016.04.015
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2Fms.2007.80
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:30671391
http://searchsoftwarequality.techtarget.com/tip/Testing-APIs-protects-applications-and-reputations
http://www.stickyminds.com/interview/all-about-api-testing-interview-jonathan-cooper
http://www.gartner.com/document/2645817?ref=QuickSearch
https://en.wikipedia.org/wiki/Gartner
https://www.techwell.com/techwell-insights/2015/08/part-pipeline-why-continuous-testing-essential
http://www.stickyminds.com/interview/relationship-between-risk-and-continuous-testing-interview-wayne-ariola
http://uploads.pnsqc.org/2015/papers/t-007_Ariola_paper.pdf
https://docs.travis-ci.com/user/gui-and-headless-browsers/
http://phantomjs.org/headless-testing.html
https://www.devbridge.com/articles/automated-user-interface-testing/
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-57936-2
https://martinfowler.com/articles/practical-test-pyramid.html
https://www.youtube.com/watch?v=qf2i-xQ3LoY
http://www.qualitycow.com/Docs/ConquestInterface.pdf


Hayes, Linda G., "Automated Testing Handbook", Software Testing Institute, 2nd Edition,
March 2004
Kaner, Cem, "Architectures of Test Automation (http://www.kaner.com/pdfs/testarch.pdf)",
August 2000

Practical Experience in Automated Testing (http://www.methodsandtools.com/archive/archiv
e.php?id=33)
Test Automation: Delivering Business Value (https://web.archive.org/web/20100106191031/
http://www.applabs.com/internal/app_whitepaper_test_automation_delivering_business_val
ue_1v00.pdf)
Test Automation Snake Oil (http://www.satisfice.com/articles/test_automation_snake_oil.pdf)
by James Bach
When Should a Test Be Automated? (http://www.stickyminds.com/r.asp?F=DART_2010) by
Brian Marick
Guidelines for Test Automation framework (https://web.archive.org/web/20110707113430/htt
p://info.allianceglobalservices.com/Portals/30827/docs/test%20automation%20framework%
20and%20guidelines.pdf)
Advanced Test Automation (http://www.testars.com/docs/5GTA.pdf)
Success Factors for Keyword Driven Testing (http://www.logigear.com/resources/articles-pre
sentations-templates/389--key-success-factors-for-keyword-driven-testing.html) by Hans
Buwalda
Automation That Learns: Making Your Computer Work for You (http://www.stickyminds.com/
article/automation-learns-making-your-computer-work-you) by Jeremy Carey-Dressler
Automation Testing Resources & Best Practices (https://www.joecolantonio.com/2017/03/02/
automation-testing/) by Joe Colantonio

Retrieved from "https://en.wikipedia.org/w/index.php?title=Test_automation&oldid=1027113010"

This page was last edited on 6 June 2021, at 05:31 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

External links

http://www.kaner.com/pdfs/testarch.pdf
http://www.methodsandtools.com/archive/archive.php?id=33
https://web.archive.org/web/20100106191031/http://www.applabs.com/internal/app_whitepaper_test_automation_delivering_business_value_1v00.pdf
http://www.satisfice.com/articles/test_automation_snake_oil.pdf
http://www.stickyminds.com/r.asp?F=DART_2010
https://web.archive.org/web/20110707113430/http://info.allianceglobalservices.com/Portals/30827/docs/test%20automation%20framework%20and%20guidelines.pdf
http://www.testars.com/docs/5GTA.pdf
http://www.logigear.com/resources/articles-presentations-templates/389--key-success-factors-for-keyword-driven-testing.html
http://www.stickyminds.com/article/automation-learns-making-your-computer-work-you
https://www.joecolantonio.com/2017/03/02/automation-testing/
https://en.wikipedia.org/w/index.php?title=Test_automation&oldid=1027113010
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

