
Transport Layer
Security

Transport Layer Security (TLS) is a cryptographic protocol designed to provide communications
security over a computer network. The protocol is widely used in applications such as email,

instant messaging, and voice over IP, but its use in securing HTTPS remains the most publicly
visible.

The TLS protocol aims primarily to provide security, including privacy (confidentiality), integrity,
and authenticity through the use of cryptography, such as the use of certificates, between two or
more communicating computer applications. It runs in the application layer and is itself

composed of two layers: the TLS record and the TLS handshake protocols.

TLS is a proposed Internet Engineering Task Force (IETF) standard, first defined in 1999, and the

current version is TLS 1.3, defined in August 2018. TLS builds on the now-deprecated SSL
(Secure Sockets Layer) specifications (1994, 1995, 1996) developed by Netscape
Communications for adding the HTTPS protocol to their Navigator web browser.

Client-server applications use the TLS protocol to communicate across a network in a way
designed to prevent eavesdropping and tampering.

Description

https://en.m.wikipedia.org/wiki/Main_Page
https://en.m.wikipedia.org/wiki/Cryptographic_protocol
https://en.m.wikipedia.org/wiki/Communication_protocol
https://en.m.wikipedia.org/wiki/Email
https://en.m.wikipedia.org/wiki/Instant_messaging
https://en.m.wikipedia.org/wiki/Voice_over_IP
https://en.m.wikipedia.org/wiki/HTTPS
https://en.m.wikipedia.org/wiki/Cryptography
https://en.m.wikipedia.org/wiki/Public_key_certificate
https://en.m.wikipedia.org/wiki/Application_layer
https://en.m.wikipedia.org/wiki/Handshaking
https://en.m.wikipedia.org/wiki/Internet_Engineering_Task_Force
https://en.m.wikipedia.org/wiki/Netscape_Communications
https://en.m.wikipedia.org/wiki/Netscape_Navigator
https://en.m.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.m.wikipedia.org/wiki/Cryptographic_protocol
https://en.m.wikipedia.org/wiki/Tamper-evident

Since applications can communicate either with or without TLS (or SSL), it is necessary for the
client to request that the server set up a TLS connection.[1] One of the main ways of achieving

this is to use a different port number for TLS connections. Port 80 is typically used for
unencrypted HTTP traffic while port 443 is the common port used for encrypted HTTPS traffic.

Another mechanism is to make a protocol-specific STARTTLS request to the server to switch the
connection to TLS – for example, when using the mail and news protocols.

Once the client and server have agreed to use TLS, they negotiate a stateful connection by using

a handshaking procedure (see § TLS handshake).[2] The protocols use a handshake with an
asymmetric cipher to establish not only cipher settings but also a session-specific shared key

with which further communication is encrypted using a symmetric cipher. During this
handshake, the client and server agree on various parameters used to establish the connection's
security:

The handshake begins when a client connects to a TLS-enabled server requesting a secure
connection and the client presents a list of supported cipher suites (ciphers and hash
functions).

From this list, the server picks a cipher and hash function that it also supports and notifies the
client of the decision.

The server usually then provides identification in the form of a digital certificate. The
certificate contains the server name, the trusted certificate authority (CA) that vouches for the
authenticity of the certificate, and the server's public encryption key.

The client confirms the validity of the certificate before proceeding.

To generate the session keys used for the secure connection, the client either:

encrypts a random number (PreMasterSecret) with the server's public key and sends the
result to the server (which only the server should be able to decrypt with its private key);
both parties then use the random number to generate a unique session key for

subsequent encryption and decryption of data during the session, or

uses Diffie–Hellman key exchange to securely generate a random and unique session key

for encryption and decryption that has the additional property of forward secrecy: if the
server's private key is disclosed in future, it cannot be used to decrypt the current session,
even if the session is intercepted and recorded by a third party.

This concludes the handshake and begins the secured connection, which is encrypted and
decrypted with the session key until the connection closes. If any one of the above steps fails,

https://en.m.wikipedia.org/wiki/Client_(computing)
https://en.m.wikipedia.org/wiki/Server_(computing)
https://en.m.wikipedia.org/wiki/Port_(computer_networking)
https://en.m.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.m.wikipedia.org/wiki/HTTPS
https://en.m.wikipedia.org/wiki/Opportunistic_TLS
https://en.m.wikipedia.org/wiki/Usenet
https://en.m.wikipedia.org/wiki/State_(computer_science)
https://en.m.wikipedia.org/wiki/Asymmetric_cipher
https://en.m.wikipedia.org/wiki/Symmetric_cipher
https://en.m.wikipedia.org/wiki/Cipher_suite
https://en.m.wikipedia.org/wiki/Encryption
https://en.m.wikipedia.org/wiki/Hash_function
https://en.m.wikipedia.org/wiki/Public_key_certificate
https://en.m.wikipedia.org/wiki/Hostname
https://en.m.wikipedia.org/wiki/Certificate_authority
https://en.m.wikipedia.org/wiki/Random_number_generation
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

then the TLS handshake fails and the connection is not created.

TLS and SSL do not fit neatly into any single layer of the OSI model or the TCP/IP model.[3][4] TLS

runs "on top of some reliable transport protocol (e.g., TCP),"[5] which would imply that it is above
the transport layer. It serves encryption to higher layers, which is normally the function of the

presentation layer. However, applications generally use TLS as if it were a transport layer,[3][4]

even though applications using TLS must actively control initiating TLS handshakes and
handling of exchanged authentication certificates.[5]

When secured by TLS, connections between a client (e.g., a web browser) and a server (e.g.,
wikipedia.org) should have one or more of the following properties:

The connection is private (or secure) because a symmetric-key algorithm is used to encrypt
the data transmitted. The keys for this symmetric encryption are generated uniquely for each
connection and are based on a shared secret that was negotiated at the start of the session.

The server and client negotiate the details of which encryption algorithm and cryptographic
keys to use before the first byte of data is transmitted (see below). The negotiation of a
shared secret is both secure (the negotiated secret is unavailable to eavesdroppers and

cannot be obtained, even by an attacker who places themself in the middle of the connection)
and reliable (no attacker can modify the communications during the negotiation without being

detected).

The identity of the communicating parties can be authenticated using public-key cryptography.
This authentication is required for the server and optional for the client.[6]

The connection is reliable because each message transmitted includes a message integrity
check using a message authentication code to prevent undetected loss or alteration of the

data during transmission.[7]: 3 

In addition to the above, careful configuration of TLS can provide additional privacy-related
properties such as forward secrecy, ensuring that any future disclosure of encryption keys

cannot be used to decrypt any TLS communications recorded in the past.

TLS supports many different methods for exchanging keys, encrypting data, and authenticating

message integrity. As a result, secure configuration of TLS involves many configurable
parameters, and not all choices provide all of the privacy-related properties described in the list
above (see the tables below § Key exchange, § Cipher security, and § Data integrity).

Attempts have been made to subvert aspects of the communications security that TLS seeks to
provide, and the protocol has been revised several times to address these security threats.

https://en.m.wikipedia.org/wiki/OSI_model
https://en.m.wikipedia.org/wiki/Internet_protocol_suite
https://en.m.wikipedia.org/wiki/Transport_layer
https://en.m.wikipedia.org/wiki/Presentation_layer
https://en.m.wikipedia.org/wiki/Symmetric-key_algorithm
https://en.m.wikipedia.org/wiki/Public-key_cryptography
https://en.m.wikipedia.org/wiki/Message_authentication_code
https://en.m.wikipedia.org/wiki/Forward_secrecy

Developers of web browsers have repeatedly revised their products to defend against potential
security weaknesses after these were discovered (see TLS/SSL support history of web

browsers).

SSL and TLS protocols

Protocol Published Status

SSL 1.0 Unpublished Unpublished

SSL 2.0 1995
Deprecated in 2011 (RFC 6176 (https://datatracker.ietf.org/doc/htm

l/rfc6176))

SSL 3.0 1996
Deprecated in 2015 (RFC 7568 (https://datatracker.ietf.org/doc/htm

l/rfc7568))

TLS 1.0 1999
Deprecated in 2021 (RFC 8996 (https://datatracker.ietf.org/doc/htm

l/rfc8996))[8][9][10]

TLS 1.1 2006
Deprecated in 2021 (RFC 8996 (https://datatracker.ietf.org/doc/htm

l/rfc8996))[8][9][10]

TLS 1.2 2008 In use since 2008[11][12]

TLS 1.3 2018 In use since 2018[12][13]

Secure Data Network System

The Transport Layer Security Protocol (TLS), together with several other basic network security
platforms, was developed through a joint initiative begun in August 1986, among the National

Security Agency, the National Bureau of Standards, the Defense Communications Agency, and
twelve communications and computer corporations who initiated a special project called the
Secure Data Network System (SDNS).[14] The program was described in September 1987 at the

10th National Computer Security Conference in an extensive set of published papers. The
innovative research program focused on designing the next generation of secure computer

communications network and product specifications to be implemented for applications on
public and private internets. It was intended to complement the rapidly emerging new OSI
internet standards moving forward both in the U.S. government's GOSIP Profiles and in the huge

ITU-ISO JTC1 internet effort internationally. Originally known as the SP4 protocol, it was

History and development

https://datatracker.ietf.org/doc/html/rfc6176
https://datatracker.ietf.org/doc/html/rfc7568
https://datatracker.ietf.org/doc/html/rfc8996
https://datatracker.ietf.org/doc/html/rfc8996
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=3

renamed TLS and subsequently published in 1995 as international standard ITU-T X.274|ISO/IEC
10736:1995.

Secure Network Programming

Early research efforts towards transport layer security included the Secure Network
Programming (SNP) application programming interface (API), which in 1993 explored the
approach of having a secure transport layer API closely resembling Berkeley sockets, to

facilitate retrofitting pre-existing network applications with security measures.[15]

SSL 1.0, 2.0, and 3.0

Netscape developed the original SSL protocols, and Taher Elgamal, chief scientist at Netscape

Communications from 1995 to 1998, has been described as the "father of SSL".[16][17][18][19] SSL
version 1.0 was never publicly released because of serious security flaws in the protocol.
Version 2.0, after being released in February 1995 was quickly discovered to contain a number

of security and usability flaws. It used the same cryptographic keys for message authentication
and encryption. It had a weak MAC construction that used the MD5 hash function with a secret

prefix, making it vulnerable to length extension attacks. And it provided no protection for either
the opening handshake or an explicit message close, both of which meant man-in-the-middle
attacks could go undetected. Moreover, SSL 2.0 assumed a single service and a fixed domain

certificate, conflicting with the widely used feature of virtual hosting in Web servers, so most
websites were effectively impaired from using SSL.

These flaws necessitated the complete redesign of the protocol to SSL version 3.0.[20][18]

Released in 1996, it was produced by Paul Kocher working with Netscape engineers Phil Karlton
and Alan Freier, with a reference implementation by Christopher Allen and Tim Dierks of

Consensus Development. Newer versions of SSL/TLS are based on SSL 3.0. The 1996 draft of
SSL 3.0 was published by IETF as a historical document in RFC 6101 (https://datatracker.ietf.or
g/doc/html/rfc6101) .

SSL 2.0 was deprecated in 2011 by RFC 6176 (https://datatracker.ietf.org/doc/html/rfc6176) .
In 2014, SSL 3.0 was found to be vulnerable to the POODLE attack that affects all block ciphers

in SSL; RC4, the only non-block cipher supported by SSL 3.0, is also feasibly broken as used in
SSL 3.0.[21] SSL 3.0 was deprecated in June 2015 by RFC 7568 (https://datatracker.ietf.org/doc/
html/rfc7568) .

https://en.m.wikipedia.org/wiki/Secure_Network_Programming
https://en.m.wikipedia.org/wiki/Application_programming_interface
https://en.m.wikipedia.org/wiki/Berkeley_sockets
https://en.m.wikipedia.org/wiki/Taher_Elgamal
https://en.m.wikipedia.org/wiki/Paul_Carl_Kocher
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6101
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6176
https://en.m.wikipedia.org/wiki/POODLE
https://en.m.wikipedia.org/wiki/Block_cipher
https://en.m.wikipedia.org/wiki/RC4
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7568
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=4
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=5

TLS 1.0

TLS 1.0 was first defined in RFC 2246 (https://datatracker.ietf.org/doc/html/rfc2246) in

January 1999 as an upgrade of SSL Version 3.0, and written by Christopher Allen and Tim Dierks
of Consensus Development. As stated in the RFC, "the differences between this protocol and
SSL 3.0 are not dramatic, but they are significant enough to preclude interoperability between

TLS 1.0 and SSL 3.0". Tim Dierks later wrote that these changes, and the renaming from "SSL" to
"TLS", were a face-saving gesture to Microsoft, "so it wouldn't look [like] the IETF was just
rubberstamping Netscape's protocol".[22]

The PCI Council suggested that organizations migrate from TLS 1.0 to TLS 1.1 or higher before
June 30, 2018.[23][24] In October 2018, Apple, Google, Microsoft, and Mozilla jointly announced

they would deprecate TLS 1.0 and 1.1 in March 2020.[8]

TLS 1.1

TLS 1.1 was defined in RFC 4346 (https://datatracker.ietf.org/doc/html/rfc4346) in April
2006.[25] It is an update from TLS version 1.0. Significant differences in this version include:

Added protection against cipher-block chaining (CBC) attacks.
The implicit initialization vector (IV) was replaced with an explicit IV.

Change in handling of padding errors.

Support for IANA registration of parameters.[26]: 2 

Support for TLS versions 1.0 and 1.1 was widely deprecated by web sites around 2020, disabling

access to Firefox versions before 24 and Chromium-based browsers before 29.[27][28][29]

TLS 1.2

TLS 1.2 was defined in RFC 5246 (https://datatracker.ietf.org/doc/html/rfc5246) in August
2008. It is based on the earlier TLS 1.1 specification. Major differences include:

The MD5–SHA-1 combination in the pseudorandom function (PRF) was replaced with SHA-
256, with an option to use cipher suite specified PRFs.

The MD5–SHA-1 combination in the finished message hash was replaced with SHA-256, with
an option to use cipher suite specific hash algorithms. However, the size of the hash in the

https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc2246
https://en.m.wikipedia.org/wiki/Payment_Card_Industry_Security_Standards_Council
https://en.m.wikipedia.org/wiki/Apple_Inc.
https://en.m.wikipedia.org/wiki/Google
https://en.m.wikipedia.org/wiki/Microsoft
https://en.m.wikipedia.org/wiki/Mozilla
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4346
https://en.m.wikipedia.org/wiki/Block_cipher_mode_of_operation#Cipher_Block_Chaining_(CBC)
https://en.m.wikipedia.org/wiki/Initialization_vector
https://en.m.wikipedia.org/wiki/Block_cipher_mode_of_operation#Padding
https://en.m.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority
https://en.m.wikipedia.org/wiki/Firefox
https://en.m.wikipedia.org/wiki/Chromium_(web_browser)
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5246
https://en.m.wikipedia.org/wiki/MD5
https://en.m.wikipedia.org/wiki/SHA-1
https://en.m.wikipedia.org/wiki/Pseudorandom_function_family
https://en.m.wikipedia.org/wiki/SHA-256
https://en.m.wikipedia.org/wiki/Cipher_suite
https://en.m.wikipedia.org/wiki/Hash_function
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=6
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=7
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=8

finished message must still be at least 96 bits.[30]

The MD5–SHA-1 combination in the digitally signed element was replaced with a single hash

negotiated during handshake, which defaults to SHA-1.

Enhancement in the client's and server's ability to specify which hashes and signature

algorithms they accept.

Expansion of support for authenticated encryption ciphers, used mainly for Galois/Counter
Mode (GCM) and CCM mode of Advanced Encryption Standard (AES) encryption.

TLS Extensions definition and AES cipher suites were added.[26]: 2 

All TLS versions were further refined in RFC 6176 (https://datatracker.ietf.org/doc/html/rfc617

6) in March 2011, removing their backward compatibility with SSL such that TLS sessions
never negotiate the use of Secure Sockets Layer (SSL) version 2.0.

TLS 1.3

TLS 1.3 was defined in RFC 8446 (https://datatracker.ietf.org/doc/html/rfc8446) in August

2018. It is based on the earlier TLS 1.2 specification. Major differences from TLS 1.2 include:[31]

Separating key agreement and authentication algorithms from the cipher suites

Removing support for weak and less-used named elliptic curves

Removing support for MD5 and SHA-224 cryptographic hash functions

Requiring digital signatures even when a previous configuration is used

Integrating HKDF and the semi-ephemeral DH proposal

Replacing resumption with PSK and tickets

Supporting 1-RTT handshakes and initial support for 0-RTT

Mandating perfect forward secrecy, by means of using ephemeral keys during the (EC)DH key
agreement

Dropping support for many insecure or obsolete features including compression,
renegotiation, non-AEAD ciphers, non-PFS key exchange (among which are static RSA and
static DH key exchanges), custom DHE groups, EC point format negotiation, Change Cipher

Spec protocol, Hello message UNIX time, and the length field AD input to AEAD ciphers

Prohibiting SSL or RC4 negotiation for backwards compatibility

https://en.m.wikipedia.org/wiki/Bit
https://en.m.wikipedia.org/wiki/Handshaking
https://en.m.wikipedia.org/wiki/Authenticated_encryption
https://en.m.wikipedia.org/wiki/Galois/Counter_Mode
https://en.m.wikipedia.org/wiki/CCM_mode
https://en.m.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6176
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc8446
https://en.m.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.m.wikipedia.org/wiki/Cryptographic_hash_function
https://en.m.wikipedia.org/wiki/HKDF
https://en.m.wikipedia.org/wiki/TLS-PSK
https://en.m.wikipedia.org/wiki/Round-trip_delay_time
https://en.m.wikipedia.org/wiki/Round-trip_delay_time
https://en.m.wikipedia.org/wiki/Forward_secrecy
https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Authenticated_encryption
https://en.m.wikipedia.org/wiki/Forward_secrecy
https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=9

Integrating use of session hash

Deprecating use of the record layer version number and freezing the number for improved

backwards compatibility

Moving some security-related algorithm details from an appendix to the specification and

relegating ClientKeyShare to an appendix

Adding the ChaCha20 stream cipher with the Poly1305 message authentication code

Adding the Ed25519 and Ed448 digital signature algorithms

Adding the x25519 and x448 key exchange protocols

Adding support for sending multiple OCSP responses

Encrypting all handshake messages after the ServerHello

Network Security Services (NSS), the cryptography library developed by Mozilla and used by its
web browser Firefox, enabled TLS 1.3 by default in February 2017.[32] TLS 1.3 support was

subsequently added — but due to compatibility issues for a small number of users, not
automatically enabled[33] — to Firefox 52.0, which was released in March 2017. TLS 1.3 was
enabled by default in May 2018 with the release of Firefox 60.0.[34]

Google Chrome set TLS 1.3 as the default version for a short time in 2017. It then removed it as
the default, due to incompatible middleboxes such as Blue Coat web proxies.[35]

During the IETF 100 Hackathon, which took place in Singapore in 2017, the TLS Group worked on
adapting open-source applications to use TLS 1.3.[36][37] The TLS group was made up of
individuals from Japan, United Kingdom, and Mauritius via the cyberstorm.mu team.[37] This

work was continued in the IETF 101 Hackathon in London,[38] and the IETF 102 Hackathon in
Montreal.[39]

wolfSSL enabled the use of TLS 1.3 as of version 3.11.1, released in May 2017.[40] As the first
commercial TLS 1.3 implementation, wolfSSL 3.11.1 supported Draft 18 and now supports Draft
28,[41] the final version, as well as many older versions. A series of blogs were published on the

performance difference between TLS 1.2 and 1.3.[42]

In September 2018, the popular OpenSSL project released version 1.1.1 of its library, in which

support for TLS 1.3 was "the headline new feature".[43]

Support for TLS 1.3 was first added to Schannel with Windows 11 and Windows Server 2022.[44]

https://en.m.wikipedia.org/wiki/ChaCha20
https://en.m.wikipedia.org/wiki/Poly1305
https://en.m.wikipedia.org/wiki/Ed25519
https://en.m.wikipedia.org/wiki/Ed448
https://en.m.wikipedia.org/wiki/X25519
https://en.m.wikipedia.org/wiki/X448
https://en.m.wikipedia.org/wiki/Online_Certificate_Status_Protocol
https://en.m.wikipedia.org/wiki/Network_Security_Services
https://en.m.wikipedia.org/wiki/Mozilla
https://en.m.wikipedia.org/wiki/Firefox
https://en.m.wikipedia.org/wiki/History_of_Firefox#Firefox_52_through_59
https://en.m.wikipedia.org/wiki/History_of_Firefox#Firefox_60_through_67
https://en.m.wikipedia.org/wiki/Google_Chrome
https://en.m.wikipedia.org/wiki/Blue_Coat_Systems
https://en.m.wikipedia.org/wiki/Hackathon
https://en.m.wikipedia.org/wiki/Singapore
https://en.m.wikipedia.org/wiki/Open-source_software
https://en.m.wikipedia.org/wiki/London
https://en.m.wikipedia.org/wiki/WolfSSL
https://en.m.wikipedia.org/wiki/OpenSSL
https://en.m.wikipedia.org/wiki/Windows_11
https://en.m.wikipedia.org/wiki/Windows_Server_2022

Enterprise Transport Security

The Electronic Frontier Foundation praised TLS 1.3 and expressed concern about the variant
protocol Enterprise Transport Security (ETS) that intentionally disables important security

measures in TLS 1.3.[45] Originally called Enterprise TLS (eTLS), ETS is a published standard
known as the 'ETSI TS103523-3', "Middlebox Security Protocol, Part3: Enterprise Transport

Security". It is intended for use entirely within proprietary networks such as banking systems.
ETS does not support forward secrecy so as to allow third-party organizations connected to the
proprietary networks to be able to use their private key to monitor network traffic for the

detection of malware and to make it easier to conduct audits.[46][47] Despite the claimed benefits,
the EFF warned that the loss of forward secrecy could make it easier for data to be exposed

along with saying that there are better ways to analyze traffic.

A digital certificate certifies the ownership of a public key by the named subject of the
certificate, and indicates certain expected usages of that key. This allows others (relying parties)
to rely upon signatures or on assertions made by the private key that corresponds to the

certified public key. Keystores and trust stores can be in various formats, such as .pem, .crt, .pfx,
and .jks.

Digital certificates

Example of a website with digital certificate

https://en.m.wikipedia.org/wiki/Electronic_Frontier_Foundation
https://en.m.wikipedia.org/wiki/ETSI
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=10
https://en.m.wikipedia.org/wiki/File:Let%E2%80%99s_Encrypt_example_certificate_on_Firefox_94_screenshot.png

Certificate authorities

TLS typically relies on a set of trusted third-party certificate authorities to establish the

authenticity of certificates. Trust is usually anchored in a list of certificates distributed with user
agent software,[48] and can be modified by the relying party.

According to Netcraft, who monitors active TLS certificates, the market-leading certificate

authority (CA) has been Symantec since the beginning of their survey (or VeriSign before the
authentication services business unit was purchased by Symantec). As of 2015, Symantec
accounted for just under a third of all certificates and 44% of the valid certificates used by the 1

million busiest websites, as counted by Netcraft.[49] In 2017, Symantec sold its TLS/SSL
business to DigiCert.[50] In an updated report, it was shown that IdenTrust, DigiCert, and Sectigo

are the top 3 certificate authorities in terms of market share since May 2019.[51]

As a consequence of choosing X.509 certificates, certificate authorities and a public key
infrastructure are necessary to verify the relation between a certificate and its owner, as well as

to generate, sign, and administer the validity of certificates. While this can be more convenient
than verifying the identities via a web of trust, the 2013 mass surveillance disclosures made it

more widely known that certificate authorities are a weak point from a security standpoint,
allowing man-in-the-middle attacks (MITM) if the certificate authority cooperates (or is
compromised).[52][53]

Key exchange or key agreement

Before a client and server can begin to exchange information protected by TLS, they must
securely exchange or agree upon an encryption key and a cipher to use when encrypting data

(see § Cipher). Among the methods used for key exchange/agreement are: public and private
keys generated with RSA (denoted TLS_RSA in the TLS handshake protocol), Diffie–Hellman

(TLS_DH), ephemeral Diffie–Hellman (TLS_DHE), elliptic-curve Diffie–Hellman (TLS_ECDH),
ephemeral elliptic-curve Diffie–Hellman (TLS_ECDHE), anonymous Diffie–Hellman
(TLS_DH_anon),[7] pre-shared key (TLS_PSK)[54] and Secure Remote Password (TLS_SRP).[55]

The TLS_DH_anon and TLS_ECDH_anon key agreement methods do not authenticate the server
or the user and hence are rarely used because those are vulnerable to man-in-the-middle

attacks. Only TLS_DHE and TLS_ECDHE provide forward secrecy.

Algorithms

https://en.m.wikipedia.org/wiki/Netcraft
https://en.m.wikipedia.org/wiki/NortonLifeLock
https://en.m.wikipedia.org/wiki/Verisign
https://en.m.wikipedia.org/wiki/IdenTrust
https://en.m.wikipedia.org/wiki/DigiCert
https://en.m.wikipedia.org/wiki/Sectigo
https://en.m.wikipedia.org/wiki/X.509
https://en.m.wikipedia.org/wiki/Public_key_infrastructure
https://en.m.wikipedia.org/wiki/Web_of_trust
https://en.m.wikipedia.org/wiki/Global_surveillance_disclosures_(2013%E2%80%93present)
https://en.m.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.m.wikipedia.org/wiki/RSA_(algorithm)
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/Key-agreement_protocol#Exponential_key_exchange
https://en.m.wikipedia.org/wiki/TLS-PSK
https://en.m.wikipedia.org/wiki/TLS-SRP
https://en.m.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=12
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=14

Public key certificates used during exchange/agreement also vary in the size of the
public/private encryption keys used during the exchange and hence the robustness of the

security provided. In July 2013, Google announced that it would no longer use 1024-bit public
keys and would switch instead to 2048-bit keys to increase the security of the TLS encryption it

provides to its users because the encryption strength is directly related to the key size.[56][57]

https://en.m.wikipedia.org/wiki/Google
https://en.m.wikipedia.org/wiki/Key_size

Key exchange/agreement and authentication

Algorithm
SSL

2.0

SSL

3.0

TLS

1.0

TLS

1.1

TLS

1.2

TLS

1.3
Status

RSA Yes Yes Yes Yes Yes No

Defined for TLS 1.2 in

RFCs

DH-RSA No Yes Yes Yes Yes No

DHE-RSA (forward secrecy) No Yes Yes Yes Yes Yes

ECDH-RSA No No Yes Yes Yes No

ECDHE-RSA (forward

secrecy)
No No Yes Yes Yes Yes

DH-DSS No Yes Yes Yes Yes No

DHE-DSS (forward secrecy) No Yes Yes Yes Yes No[58]

ECDH-ECDSA No No Yes Yes Yes No

ECDHE-ECDSA (forward

secrecy)
No No Yes Yes Yes Yes

ECDH-EdDSA No No Yes Yes Yes No

ECDHE-EdDSA (forward

secrecy)[59]
No No Yes Yes Yes Yes

PSK No No Yes Yes Yes ?

PSK-RSA No No Yes Yes Yes ?

DHE-PSK (forward secrecy) No No Yes Yes Yes Yes

ECDHE-PSK (forward

secrecy)
No No Yes Yes Yes Yes

SRP No No Yes Yes Yes ?

SRP-DSS No No Yes Yes Yes ?

SRP-RSA No No Yes Yes Yes ?

Kerberos No No Yes Yes Yes ?

DH-ANON (insecure) No Yes Yes Yes Yes ?

ECDH-ANON (insecure) No No Yes Yes Yes ?

GOST R 34.10-94/34.10-

2001[60]
No No Yes Yes Yes ?

Proposed in RFC

drafts

https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.m.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/Elliptic_Curve_DSA
https://en.m.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/Elliptic_Curve_DSA
https://en.m.wikipedia.org/wiki/ECDH
https://en.m.wikipedia.org/wiki/EdDSA
https://en.m.wikipedia.org/wiki/ECDHE
https://en.m.wikipedia.org/wiki/EdDSA
https://en.m.wikipedia.org/wiki/TLS-PSK
https://en.m.wikipedia.org/wiki/Pre-shared_key
https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/Pre-shared_key
https://en.m.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/Pre-shared_key
https://en.m.wikipedia.org/wiki/TLS-SRP
https://en.m.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://en.m.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.m.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://en.m.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.m.wikipedia.org/wiki/Kerberos_(protocol)
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://en.m.wikipedia.org/wiki/GOST

Cipher

https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=15

Cipher security against publicly known feasible attacks

Cipher Protocol version

Type Algorithm
Nominal

strength
(bits)

SSL 2.0
SSL

3.0[n 1][n 2][n 3][n 4]

TLS

1.0[n 1][n 3]
TLS 1.1[

Block

cipher

with

mode of
operation

AES GCM[61][n 5]

256,

128

— — — —

AES CCM[62][n 5] — — — —

AES CBC[n 6] — Insecure
Depends

on
mitigations

Depend

on
mitigatio

Camellia GCM[63][n 5]

256,

128

— — — —

Camellia CBC[64][n 6] — Insecure
Depends

on
mitigations

Depend

on
mitigatio

ARIA GCM[65][n 5]

256,

128

— — — —

ARIA CBC[65][n 6] — —
Depends

on
mitigations

Depend

on
mitigatio

SEED CBC[66][n 6] 128 — Insecure
Depends

on
mitigations

Depend

on
mitigatio

3DES EDE CBC[n 6][n 7] 112[n 8] Insecure Insecure Insecure Insecu

GOST 28147-89

CNT[60][n 7]
256 — — Insecure Insecu

IDEA CBC[n 6][n 7][n 9] 128 Insecure Insecure Insecure Insecu

DES CBC[n 6][n 7][n 9] 56 Insecure Insecure Insecure Insecu

https://en.m.wikipedia.org/wiki/Cipher
https://en.m.wikipedia.org/wiki/Block_cipher
https://en.m.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.m.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.m.wikipedia.org/wiki/Galois/Counter_Mode
https://en.m.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.m.wikipedia.org/wiki/CCM_mode
https://en.m.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/Camellia_(cipher)
https://en.m.wikipedia.org/wiki/Galois/Counter_Mode
https://en.m.wikipedia.org/wiki/Camellia_(cipher)
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/ARIA_(cipher)
https://en.m.wikipedia.org/wiki/Galois/Counter_Mode
https://en.m.wikipedia.org/wiki/ARIA_(cipher)
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/SEED_(cipher)
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/Triple_DES
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/GOST_(block_cipher)
https://en.m.wikipedia.org/wiki/Block_cipher_mode_of_operation#Counter_(CTR)
https://en.m.wikipedia.org/wiki/International_Data_Encryption_Algorithm
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/Data_Encryption_Standard
https://en.m.wikipedia.org/wiki/Cipher_block_chaining

40[n 10] Insecure Insecure Insecure —

RC2 CBC[n 6][n 7] 40[n 10] Insecure Insecure Insecure —

Stream

cipher

ChaCha20-Poly1305[71][n 5] 256 — — — —

RC4[n 11]

128 Insecure Insecure Insecure Insecu

40[n 10] Insecure Insecure Insecure —

None Null[n 12] – Insecure Insecure Insecure Insecu

Notes

1. RFC 5746 (https://datatracker.ietf.org/doc/html/rfc5746) must be implemented to fix a renegotiation

flaw that would otherwise break this protocol.

2. If libraries implement fixes listed in RFC 5746 (https://datatracker.ietf.org/doc/html/rfc5746) , this
violates the SSL 3.0 specification, which the IETF cannot change unlike TLS. Most current libraries

implement the fix and disregard the violation that this causes.

3. The BEAST attack breaks all block ciphers (CBC ciphers) used in SSL 3.0 and TLS 1.0 unless mitigated by

the client and/or the server. See § Web browsers.

4. The POODLE attack breaks all block ciphers (CBC ciphers) used in SSL 3.0 unless mitigated by the client

and/or the server. See § Web browsers.

5. AEAD ciphers (such as GCM and CCM) can only be used in TLS 1.2 or later.

https://en.m.wikipedia.org/wiki/RC2
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/Stream_cipher
https://en.m.wikipedia.org/wiki/ChaCha20
https://en.m.wikipedia.org/wiki/Poly1305
https://en.m.wikipedia.org/wiki/RC4
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5746
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5746
https://en.m.wikipedia.org/wiki/AEAD_block_cipher_modes_of_operation
https://en.m.wikipedia.org/wiki/Galois/Counter_Mode
https://en.m.wikipedia.org/wiki/CCM_mode

Data integrity

A message authentication code (MAC) is used for data integrity. HMAC is used for CBC mode of
block ciphers. Authenticated encryption (AEAD) such as GCM and CCM mode uses AEAD-

integrated MAC and doesn't use HMAC.[72] HMAC-based PRF, or HKDF is used for TLS
handshake.

Data integrity

Algorithm
SSL
2.0

SSL
3.0

TLS
1.0

TLS
1.1

TLS
1.2

TLS
1.3

Status

HMAC-MD5 Yes Yes Yes Yes Yes No

Defined for TLS 1.2 in
RFCs

HMAC-SHA1 No Yes Yes Yes Yes No

HMAC-SHA256/384 No No No No Yes No

AEAD No No No No Yes Yes

GOST 28147-89
IMIT[60] No No Yes Yes Yes ?

Proposed in RFC drafts

GOST R 34.11-94[60] No No Yes Yes Yes ?

6. CBC ciphers can be attacked with the Lucky Thirteen attack if the library is not written carefully to

eliminate timing side channels.

7. The Sweet32 attack breaks block ciphers with a block size of 64 bits.[67]

8. Although the key length of 3DES is 168 bits, effective security strength of 3DES is only 112 bits,[68] which

is below the recommended minimum of 128 bits.[69]

9. IDEA and DES have been removed from TLS 1.2.[70]

10. 40-bit strength cipher suites were intentionally designed with reduced key lengths to comply with since-

rescinded US regulations forbidding the export of cryptographic software containing certain strong

encryption algorithms (see Export of cryptography from the United States). These weak suites are

forbidden in TLS 1.1 and later.

11. Use of RC4 in all versions of TLS is prohibited by RFC 7465 (https://datatracker.ietf.org/doc/html/rfc74

65) (because RC4 attacks weaken or break RC4 used in SSL/TLS).

12. Authentication only, no encryption.

Applications and adoption

https://en.m.wikipedia.org/wiki/Message_authentication_code
https://en.m.wikipedia.org/wiki/HMAC
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/wiki/Authenticated_encryption
https://en.m.wikipedia.org/wiki/Galois/Counter_Mode
https://en.m.wikipedia.org/wiki/CCM_mode
https://en.m.wikipedia.org/wiki/HMAC
https://en.m.wikipedia.org/wiki/Pseudorandom_function_family
https://en.m.wikipedia.org/wiki/HKDF
https://en.m.wikipedia.org/wiki/HMAC
https://en.m.wikipedia.org/wiki/MD5
https://en.m.wikipedia.org/wiki/HMAC
https://en.m.wikipedia.org/wiki/SHA-1
https://en.m.wikipedia.org/wiki/HMAC
https://en.m.wikipedia.org/wiki/SHA-2
https://en.m.wikipedia.org/wiki/AEAD_block_cipher_modes_of_operation
https://en.m.wikipedia.org/wiki/GOST_28147-89
https://en.m.wikipedia.org/wiki/GOST_(hash_function)
https://en.m.wikipedia.org/wiki/Lucky_Thirteen_attack
https://en.m.wikipedia.org/wiki/Sweet32
https://en.m.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7465
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=16

In applications design, TLS is usually implemented on top of Transport Layer protocols,
encrypting all of the protocol-related data of protocols such as HTTP, FTP, SMTP, NNTP and

XMPP.

Historically, TLS has been used primarily with reliable transport protocols such as the

Transmission Control Protocol (TCP). However, it has also been implemented with datagram-
oriented transport protocols, such as the User Datagram Protocol (UDP) and the Datagram
Congestion Control Protocol (DCCP), usage of which has been standardized independently using

the term Datagram Transport Layer Security (DTLS).

Websites

A primary use of TLS is to secure World Wide Web traffic between a website and a web browser
encoded with the HTTP protocol. This use of TLS to secure HTTP traffic constitutes the HTTPS

protocol.[73]

Website protocol support (May 2022)

Protocol

version

Website

support[74] Security[74][75]

SSL 2.0 0.3% Insecure

SSL 3.0 2.5% Insecure[76]

TLS 1.0 37.1% Deprecated[8][9][10]

TLS 1.1 40.6% Deprecated[8][9][10]

TLS 1.2 99.7% Depends on cipher[n 1] and client mitigations[n 2]

TLS 1.3 54.2% Secure

Notes
1. see § Cipher table above

2. see § Web browsers and § Attacks against TLS/SSL sections

Web browsers

As of April 2016, the latest versions of all major web browsers support TLS 1.0, 1.1, and 1.2, and
have them enabled by default. However, not all supported Microsoft operating systems support

the latest version of IE. Additionally, many Microsoft operating systems currently support
multiple versions of IE, but this has changed according to Microsoft's Internet Explorer Support

https://en.m.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.m.wikipedia.org/wiki/File_Transfer_Protocol
https://en.m.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.m.wikipedia.org/wiki/Network_News_Transfer_Protocol
https://en.m.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol
https://en.m.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.m.wikipedia.org/wiki/User_Datagram_Protocol
https://en.m.wikipedia.org/wiki/Datagram_Congestion_Control_Protocol
https://en.m.wikipedia.org/wiki/Datagram_Transport_Layer_Security
https://en.m.wikipedia.org/wiki/World_Wide_Web
https://en.m.wikipedia.org/wiki/Website
https://en.m.wikipedia.org/wiki/Web_browser
https://en.m.wikipedia.org/wiki/HTTPS
https://en.m.wikipedia.org/wiki/List_of_Microsoft_operating_systems
https://support.microsoft.com/en-us/gp/microsoft-internet-explorer
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=18
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=19

Lifecycle Policy FAQ (https://support.microsoft.com/en-us/gp/microsoft-internet-explorer) ,
"beginning January 12, 2016, only the most current version of Internet Explorer available for a

supported operating system will receive technical support and security updates." The page then
goes on to list the latest supported version of IE at that date for each operating system. The next

critical date would be when an operating system reaches the end of life stage. Since June 15,
2022, Internet Explorer 11 dropped support for Windows 10 editions which follow Microsoft's
Modern Lifecycle Policy.[77][78]

Mitigations against known attacks are not enough yet:

Mitigations against POODLE attack: some browsers already prevent fallback to SSL 3.0;

however, this mitigation needs to be supported by not only clients but also servers. Disabling
SSL 3.0 itself, implementation of "anti-POODLE record splitting", or denying CBC ciphers in SSL
3.0 is required.

Google Chrome: complete (TLS_FALLBACK_SCSV is implemented since version 33,
fallback to SSL 3.0 is disabled since version 39, SSL 3.0 itself is disabled by default since
version 40. Support of SSL 3.0 itself was dropped since version 44.)

Mozilla Firefox: complete (support of SSL 3.0 itself is dropped since version 39. SSL 3.0
itself is disabled by default and fallback to SSL 3.0 are disabled since version 34,

TLS_FALLBACK_SCSV is implemented since version 35. In ESR, SSL 3.0 itself is disabled
by default and TLS_FALLBACK_SCSV is implemented since ESR 31.3.0.)

Internet Explorer: partial (only in version 11, SSL 3.0 is disabled by default since April

2015. Version 10 and older are still vulnerable against POODLE.)

Opera: complete (TLS_FALLBACK_SCSV is implemented since version 20, "anti-POODLE

record splitting", which is effective only with client-side implementation, is implemented
since version 25, SSL 3.0 itself is disabled by default since version 27. Support of SSL 3.0
itself will be dropped since version 31.)

Safari: complete (only on OS X 10.8 and later and iOS 8, CBC ciphers during fallback to
SSL 3.0 is denied, but this means it will use RC4, which is not recommended as well.

Support of SSL 3.0 itself is dropped on OS X 10.11 and later and iOS 9.)

Mitigation against RC4 attacks:
Google Chrome disabled RC4 except as a fallback since version 43. RC4 is disabled since

Chrome 48.

https://support.microsoft.com/en-us/gp/microsoft-internet-explorer
https://en.m.wikipedia.org/wiki/Internet_Explorer_11
https://en.m.wikipedia.org/wiki/Windows_10_editions
https://en.m.wikipedia.org/wiki/History_of_Firefox#Version_38%E2%80%9344
https://en.m.wikipedia.org/wiki/History_of_Firefox#Version_31%E2%80%9337
https://en.m.wikipedia.org/wiki/Opera_(web_browser)

Firefox disabled RC4 except as a fallback since version 36. Firefox 44 disabled RC4 by
default.

Opera disabled RC4 except as a fallback since version 30. RC4 is disabled since Opera
35.

Internet Explorer for Windows 7/Server 2008 R2 and for Windows 8/Server 2012 have set
the priority of RC4 to lowest and can also disable RC4 except as a fallback through
registry settings. Internet Explorer 11 Mobile 11 for Windows Phone 8.1 disable RC4

except as a fallback if no other enabled algorithm works. Edge and IE 11 disable RC4
completely in August 2016.

Mitigation against FREAK attack:
The Android Browser included with Android 4.0 and older is still vulnerable to the FREAK
attack.

Internet Explorer 11 Mobile is still vulnerable to the FREAK attack.

Google Chrome, Internet Explorer (desktop), Safari (desktop & mobile), and Opera
(mobile) have FREAK mitigations in place.

Mozilla Firefox on all platforms and Google Chrome on Windows were not affected by
FREAK.

Libraries

Most SSL and TLS programming libraries are free and open source software.

BoringSSL, a fork of OpenSSL for Chrome/Chromium and Android as well as other Google

applications.

Botan, a BSD-licensed cryptographic library written in C++.

BSAFE Micro Edition Suite: a multi-platform implementation of TLS written in C using a FIPS-

validated cryptographic module

BSAFE SSL-J: a TLS library providing both a proprietary API and JSSE API, using FIPS-

validated cryptographic module

cryptlib: a portable open source cryptography library (includes TLS/SSL implementation)

Delphi programmers may use a library called Indy which utilizes OpenSSL or alternatively ICS

which supports TLS 1.3 now.

GnuTLS: a free implementation (LGPL licensed)

https://en.m.wikipedia.org/wiki/Windows_7
https://en.m.wikipedia.org/wiki/Windows_8
https://en.m.wikipedia.org/wiki/Windows_Phone_8.1
https://en.m.wikipedia.org/wiki/Android_Ice_Cream_Sandwich
https://en.m.wikipedia.org/wiki/Free_and_open_source_software
https://en.m.wikipedia.org/wiki/BoringSSL
https://en.m.wikipedia.org/wiki/Botan_(programming_library)
https://en.m.wikipedia.org/wiki/BSAFE
https://en.m.wikipedia.org/wiki/C_(programming_language)
https://en.m.wikipedia.org/wiki/BSAFE
https://en.m.wikipedia.org/wiki/Java_Secure_Socket_Extension
https://en.m.wikipedia.org/wiki/Cryptlib
https://en.m.wikipedia.org/wiki/Delphi_(programming_language)
https://en.m.wikipedia.org/wiki/Internet_Direct
https://en.m.wikipedia.org/wiki/OpenSSL
https://en.m.wikipedia.org/wiki/GnuTLS
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=20

Java Secure Socket Extension (JSSE): the Java API and provider implementation (named
SunJSSE)[79]

LibreSSL: a fork of OpenSSL by OpenBSD project.

MatrixSSL: a dual licensed implementation

Mbed TLS (previously PolarSSL): A tiny SSL library implementation for embedded devices that
is designed for ease of use

Network Security Services: FIPS 140 validated open source library

OpenSSL: a free implementation (BSD license with some extensions)

Schannel: an implementation of SSL and TLS Microsoft Windows as part of its package.

Secure Transport: an implementation of SSL and TLS used in OS X and iOS as part of their
packages.

wolfSSL (previously CyaSSL): Embedded SSL/TLS Library with a strong focus on speed and

size.

A paper presented at the 2012 ACM conference on computer and communications security[80]

showed that many applications used some of these SSL libraries incorrectly, leading to

vulnerabilities. According to the authors:

"The root cause of most of these vulnerabilities is the terrible design of the

APIs to the underlying SSL libraries. Instead of expressing high-level

security properties of network tunnels such as confidentiality and

authentication, these APIs expose low-level details of the SSL protocol to

application developers. As a consequence, developers often use SSL APIs

incorrectly, misinterpreting and misunderstanding their manifold

parameters, options, side effects, and return values."

Other uses

The Simple Mail Transfer Protocol (SMTP) can also be protected by TLS. These applications use

public key certificates to verify the identity of endpoints.

TLS can also be used for tunnelling an entire network stack to create a VPN, which is the case

with OpenVPN and OpenConnect. Many vendors have by now married TLS's encryption and
authentication capabilities with authorization. There has also been substantial development

https://en.m.wikipedia.org/wiki/Java_Secure_Socket_Extension
https://en.m.wikipedia.org/wiki/Java_(programming_language)
https://en.m.wikipedia.org/wiki/LibreSSL
https://en.m.wikipedia.org/wiki/MatrixSSL
https://en.m.wikipedia.org/wiki/Mbed_TLS
https://en.m.wikipedia.org/wiki/Network_Security_Services
https://en.m.wikipedia.org/wiki/FIPS_140
https://en.m.wikipedia.org/wiki/OpenSSL
https://en.m.wikipedia.org/wiki/Security_Support_Provider_Interface
https://en.m.wikipedia.org/wiki/Microsoft_Windows
https://en.m.wikipedia.org/wiki/Secure_Transport
https://en.m.wikipedia.org/wiki/OS_X
https://en.m.wikipedia.org/wiki/IOS
https://en.m.wikipedia.org/wiki/WolfSSL
https://en.m.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.m.wikipedia.org/wiki/Computer_security_conference
https://en.m.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.m.wikipedia.org/wiki/Public_key_certificate
https://en.m.wikipedia.org/wiki/Virtual_private_network
https://en.m.wikipedia.org/wiki/OpenVPN
https://en.m.wikipedia.org/wiki/OpenConnect
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=21

since the late 1990s in creating client technology outside of Web-browsers, in order to enable
support for client/server applications. Compared to traditional IPsec VPN technologies, TLS has

some inherent advantages in firewall and NAT traversal that make it easier to administer for
large remote-access populations.

TLS is also a standard method for protecting Session Initiation Protocol (SIP) application
signaling. TLS can be used for providing authentication and encryption of the SIP signalling
associated with VoIP and other SIP-based applications.[81]

Attacks against TLS/SSL

Significant attacks against TLS/SSL are listed below.

In February 2015, IETF issued an informational RFC[82] summarizing the various known attacks

against TLS/SSL.

Renegotiation attack

A vulnerability of the renegotiation procedure was discovered in August 2009 that can lead to
plaintext injection attacks against SSL 3.0 and all current versions of TLS.[83] For example, it

allows an attacker who can hijack an https connection to splice their own requests into the
beginning of the conversation the client has with the web server. The attacker can't actually

decrypt the client–server communication, so it is different from a typical man-in-the-middle
attack. A short-term fix is for web servers to stop allowing renegotiation, which typically will not
require other changes unless client certificate authentication is used. To fix the vulnerability, a

renegotiation indication extension was proposed for TLS. It will require the client and server to
include and verify information about previous handshakes in any renegotiation handshakes.[84]

This extension has become a proposed standard and has been assigned the number RFC 5746
(https://datatracker.ietf.org/doc/html/rfc5746) . The RFC has been implemented by several
libraries.[85][86][87]

Downgrade attacks: FREAK attack and Logjam attack

A protocol downgrade attack (also called a version rollback attack) tricks a web server into
negotiating connections with previous versions of TLS (such as SSLv2) that have long since
been abandoned as insecure.

Security

https://en.m.wikipedia.org/wiki/IPsec
https://en.m.wikipedia.org/wiki/Network_address_translation
https://en.m.wikipedia.org/wiki/Session_Initiation_Protocol
https://en.m.wikipedia.org/wiki/Voice_over_Internet_Protocol
https://en.m.wikipedia.org/wiki/Client_certificate
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5746
https://en.m.wikipedia.org/wiki/Downgrade_attack
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=23
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=24
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=25

Previous modifications to the original protocols, like False Start[88] (adopted and enabled by
Google Chrome[89]) or Snap Start, reportedly introduced limited TLS protocol downgrade

attacks[90] or allowed modifications to the cipher suite list sent by the client to the server. In
doing so, an attacker might succeed in influencing the cipher suite selection in an attempt to

downgrade the cipher suite negotiated to use either a weaker symmetric encryption algorithm or
a weaker key exchange.[91] A paper presented at an ACM conference on computer and
communications security in 2012 demonstrated that the False Start extension was at risk: in

certain circumstances it could allow an attacker to recover the encryption keys offline and to
access the encrypted data.[92]

Encryption downgrade attacks can force servers and clients to negotiate a connection using
cryptographically weak keys. In 2014, a man-in-the-middle attack called FREAK was discovered
affecting the OpenSSL stack, the default Android web browser, and some Safari browsers.[93]

The attack involved tricking servers into negotiating a TLS connection using cryptographically
weak 512 bit encryption keys.

Logjam is a security exploit discovered in May 2015 that exploits the option of using legacy

"export-grade" 512-bit Diffie–Hellman groups dating back to the 1990s.[94] It forces susceptible
servers to downgrade to cryptographically weak 512-bit Diffie–Hellman groups. An attacker can

then deduce the keys the client and server determine using the Diffie–Hellman key exchange.

Cross-protocol attacks: DROWN

The DROWN attack is an exploit that attacks servers supporting contemporary SSL/TLS protocol
suites by exploiting their support for the obsolete, insecure, SSLv2 protocol to leverage an attack

on connections using up-to-date protocols that would otherwise be secure.[95][96] DROWN
exploits a vulnerability in the protocols used and the configuration of the server, rather than any
specific implementation error. Full details of DROWN were announced in March 2016, together

with a patch for the exploit. At that time, more than 81,000 of the top 1 million most popular
websites were among the TLS protected websites that were vulnerable to the DROWN attack.[96]

BEAST attack

On September 23, 2011 researchers Thai Duong and Juliano Rizzo demonstrated a proof of

concept called BEAST (Browser Exploit Against SSL/TLS)[97] using a Java applet to violate
same origin policy constraints, for a long-known cipher block chaining (CBC) vulnerability in TLS

1.0:[98][99] an attacker observing 2 consecutive ciphertext blocks C0, C1 can test if the plaintext
block P1 is equal to x by choosing the next plaintext block P2 = x C0 C1; as per CBC

https://en.m.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.m.wikipedia.org/wiki/Computer_security_conference
https://en.m.wikipedia.org/wiki/Man-in-the-middle
https://en.m.wikipedia.org/wiki/OpenSSL
https://en.m.wikipedia.org/wiki/Android_(operating_system)
https://en.m.wikipedia.org/wiki/Safari_(web_browser)
https://en.m.wikipedia.org/wiki/Security_exploit
https://en.m.wikipedia.org/wiki/Arms_Export_Control_Act
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/DROWN_attack
https://en.m.wikipedia.org/wiki/Java_applet
https://en.m.wikipedia.org/wiki/Same_origin_policy
https://en.m.wikipedia.org/wiki/Cipher_block_chaining
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=26
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=27

operation, C2 = E(C1 P2) = E(C1 x C0 C1) = E(C0 x), which will be equal to C1 if x =
P1. Practical exploits had not been previously demonstrated for this vulnerability, which was

originally discovered by Phillip Rogaway[100] in 2002. The vulnerability of the attack had been
fixed with TLS 1.1 in 2006, but TLS 1.1 had not seen wide adoption prior to this attack

demonstration.

RC4 as a stream cipher is immune to BEAST attack. Therefore, RC4 was widely used as a way to
mitigate BEAST attack on the server side. However, in 2013, researchers found more

weaknesses in RC4. Thereafter enabling RC4 on server side was no longer recommended.[101]

Chrome and Firefox themselves are not vulnerable to BEAST attack,[102][103] however, Mozilla

updated their NSS libraries to mitigate BEAST-like attacks. NSS is used by Mozilla Firefox and
Google Chrome to implement SSL. Some web servers that have a broken implementation of the
SSL specification may stop working as a result.[104]

Microsoft released Security Bulletin MS12-006 on January 10, 2012, which fixed the BEAST
vulnerability by changing the way that the Windows Secure Channel (Schannel) component
transmits encrypted network packets from the server end.[105] Users of Internet Explorer (prior to

version 11) that run on older versions of Windows (Windows 7, Windows 8 and Windows Server
2008 R2) can restrict use of TLS to 1.1 or higher.

Apple fixed BEAST vulnerability by implementing 1/n-1 split and turning it on by default in OS X
Mavericks, released on October 22, 2013.[106]

CRIME and BREACH attacks

The authors of the BEAST attack are also the creators of the later CRIME attack, which can allow

an attacker to recover the content of web cookies when data compression is used along with
TLS.[107][108] When used to recover the content of secret authentication cookies, it allows an
attacker to perform session hijacking on an authenticated web session.

While the CRIME attack was presented as a general attack that could work effectively against a
large number of protocols, including but not limited to TLS, and application-layer protocols such

as SPDY or HTTP, only exploits against TLS and SPDY were demonstrated and largely mitigated
in browsers and servers. The CRIME exploit against HTTP compression has not been mitigated
at all, even though the authors of CRIME have warned that this vulnerability might be even more

widespread than SPDY and TLS compression combined. In 2013 a new instance of the CRIME
attack against HTTP compression, dubbed BREACH, was announced. Based on the CRIME

https://en.m.wikipedia.org/wiki/Exploit_(computer_security)
https://en.m.wikipedia.org/wiki/Vulnerability_(computing)
https://en.m.wikipedia.org/wiki/Phillip_Rogaway
https://en.m.wikipedia.org/wiki/RC4
https://en.m.wikipedia.org/wiki/Network_Security_Services
https://en.m.wikipedia.org/wiki/Attack_(computing)
https://en.m.wikipedia.org/wiki/Mozilla_Firefox
https://en.m.wikipedia.org/wiki/Google_Chrome
https://en.m.wikipedia.org/wiki/Web_server
https://en.m.wikipedia.org/wiki/Microsoft
https://en.m.wikipedia.org/wiki/Schannel
https://en.m.wikipedia.org/wiki/Windows_7
https://en.m.wikipedia.org/wiki/Windows_8
https://en.m.wikipedia.org/wiki/Windows_Server_2008
https://en.m.wikipedia.org/wiki/Apple_Inc.
https://en.m.wikipedia.org/wiki/OS_X_Mavericks
https://en.m.wikipedia.org/wiki/CRIME
https://en.m.wikipedia.org/wiki/Data_compression
https://en.m.wikipedia.org/wiki/Authentication_cookie
https://en.m.wikipedia.org/wiki/Session_hijacking
https://en.m.wikipedia.org/wiki/SPDY
https://en.m.wikipedia.org/wiki/HTTP
https://en.m.wikipedia.org/wiki/HTTP_compression
https://en.m.wikipedia.org/wiki/BREACH
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=28

attack a BREACH attack can extract login tokens, email addresses or other sensitive information
from TLS encrypted web traffic in as little as 30 seconds (depending on the number of bytes to

be extracted), provided the attacker tricks the victim into visiting a malicious web link or is able
to inject content into valid pages the user is visiting (ex: a wireless network under the control of

the attacker).[109] All versions of TLS and SSL are at risk from BREACH regardless of the
encryption algorithm or cipher used.[110] Unlike previous instances of CRIME, which can be
successfully defended against by turning off TLS compression or SPDY header compression,

BREACH exploits HTTP compression which cannot realistically be turned off, as virtually all web
servers rely upon it to improve data transmission speeds for users.[109] This is a known

limitation of TLS as it is susceptible to chosen-plaintext attack against the application-layer data
it was meant to protect.

Timing attacks on padding

Earlier TLS versions were vulnerable against the padding oracle attack discovered in 2002. A
novel variant, called the Lucky Thirteen attack, was published in 2013.

Some experts[69] also recommended avoiding triple DES CBC. Since the last supported ciphers
developed to support any program using Windows XP's SSL/TLS library like Internet Explorer on

Windows XP are RC4 and Triple-DES, and since RC4 is now deprecated (see discussion of RC4
attacks), this makes it difficult to support any version of SSL for any program using this library
on XP.

A fix was released as the Encrypt-then-MAC extension to the TLS specification, released as
RFC 7366 (https://datatracker.ietf.org/doc/html/rfc7366) .[111] The Lucky Thirteen attack can

be mitigated in TLS 1.2 by using only AES_GCM ciphers; AES_CBC remains vulnerable.

POODLE attack

On October 14, 2014, Google researchers published a vulnerability in the design of SSL 3.0,
which makes CBC mode of operation with SSL 3.0 vulnerable to a padding attack (CVE-2014-

3566 (https://www.cve.org/CVERecord?id=CVE-2014-3566)). They named this attack POODLE
(Padding Oracle On Downgraded Legacy Encryption). On average, attackers only need to make
256 SSL 3.0 requests to reveal one byte of encrypted messages.[76]

Although this vulnerability only exists in SSL 3.0 and most clients and servers support TLS 1.0
and above, all major browsers voluntarily downgrade to SSL 3.0 if the handshakes with newer

versions of TLS fail unless they provide the option for a user or administrator to disable SSL 3.0

https://en.m.wikipedia.org/wiki/Chosen-plaintext_attack
https://en.m.wikipedia.org/wiki/Padding_oracle_attack
https://en.m.wikipedia.org/wiki/Lucky_Thirteen_attack
https://en.m.wikipedia.org/wiki/Triple_DES
https://en.m.wikipedia.org/wiki/Windows_XP
https://en.m.wikipedia.org/wiki/RC4
https://en.m.wikipedia.org/wiki/Talk:RC4
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7366
https://en.m.wikipedia.org/wiki/CBC_mode_of_operation
https://en.m.wikipedia.org/wiki/Padding_oracle_attack
https://en.m.wikipedia.org/wiki/CVE_(identifier)
https://www.cve.org/CVERecord?id=CVE-2014-3566
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=29
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=30

and the user or administrator does so. Therefore, the man-in-the-middle can first conduct a
version rollback attack and then exploit this vulnerability.[76]

On December 8, 2014, a variant of POODLE was announced that impacts TLS implementations
that do not properly enforce padding byte requirements.[112]

RC4 attacks

Despite the existence of attacks on RC4 that broke its security, cipher suites in SSL and TLS that

were based on RC4 were still considered secure prior to 2013 based on the way in which they
were used in SSL and TLS. In 2011, the RC4 suite was actually recommended as a work around

for the BEAST attack.[113] New forms of attack disclosed in March 2013 conclusively
demonstrated the feasibility of breaking RC4 in TLS, suggesting it was not a good workaround
for BEAST.[75] An attack scenario was proposed by AlFardan, Bernstein, Paterson, Poettering and

Schuldt that used newly discovered statistical biases in the RC4 key table[114] to recover parts of
the plaintext with a large number of TLS encryptions.[115][116] An attack on RC4 in TLS and SSL
that requires 13 × 220 encryptions to break RC4 was unveiled on 8 July 2013 and later described

as "feasible" in the accompanying presentation at a USENIX Security Symposium in August
2013.[117][118] In July 2015, subsequent improvements in the attack make it increasingly practical

to defeat the security of RC4-encrypted TLS.[119]

As many modern browsers have been designed to defeat BEAST attacks (except Safari for Mac
OS X 10.7 or earlier, for iOS 6 or earlier, and for Windows; see § Web browsers), RC4 is no longer

a good choice for TLS 1.0. The CBC ciphers which were affected by the BEAST attack in the past
have become a more popular choice for protection.[69] Mozilla and Microsoft recommend

disabling RC4 where possible.[120][121] RFC 7465 (https://datatracker.ietf.org/doc/html/rfc746
5) prohibits the use of RC4 cipher suites in all versions of TLS.

On September 1, 2015, Microsoft, Google and Mozilla announced that RC4 cipher suites would

be disabled by default in their browsers (Microsoft Edge, Internet Explorer 11 on Windows
7/8.1/10, Firefox, and Chrome) in early 2016.[122][123][124]

Truncation attack

A TLS (logout) truncation attack blocks a victim's account logout requests so that the user

unknowingly remains logged into a web service. When the request to sign out is sent, the
attacker injects an unencrypted TCP FIN message (no more data from sender) to close the

https://en.m.wikipedia.org/wiki/Version_rollback_attack
https://en.m.wikipedia.org/wiki/RC4
https://en.m.wikipedia.org/wiki/BEAST_(computer_security)
https://en.m.wikipedia.org/wiki/USENIX
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7465
https://en.m.wikipedia.org/wiki/Microsoft_Edge
https://en.m.wikipedia.org/wiki/Internet_Explorer_11
https://en.m.wikipedia.org/wiki/Firefox
https://en.m.wikipedia.org/wiki/Google_Chrome
https://en.m.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=31
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=32

connection. The server therefore doesn't receive the logout request and is unaware of the
abnormal termination.[125]

Published in July 2013,[126][127] the attack causes web services such as Gmail and Hotmail to
display a page that informs the user that they have successfully signed-out, while ensuring that

the user's browser maintains authorization with the service, allowing an attacker with
subsequent access to the browser to access and take over control of the user's logged-in
account. The attack does not rely on installing malware on the victim's computer; attackers need

only place themselves between the victim and the web server (e.g., by setting up a rogue
wireless hotspot).[125] This vulnerability also requires access to the victim's computer.
Another

possibility is when using FTP the data connection can have a false FIN in the data stream, and if
the protocol rules for exchanging close_notify alerts is not adhered to a file can be truncated.

Unholy PAC attack

This attack, discovered in mid-2016, exploits weaknesses in the Web Proxy Autodiscovery
Protocol (WPAD) to expose the URL that a web user is attempting to reach via a TLS-enabled

web link.[128] Disclosure of a URL can violate a user's privacy, not only because of the website
accessed, but also because URLs are sometimes used to authenticate users. Document sharing

services, such as those offered by Google and Dropbox, also work by sending a user a security
token that's included in the URL. An attacker who obtains such URLs may be able to gain full
access to a victim's account or data.

The exploit works against almost all browsers and operating systems.

Sweet32 attack

The Sweet32 attack breaks all 64-bit block ciphers used in CBC mode as used in TLS by
exploiting a birthday attack and either a man-in-the-middle attack or injection of a malicious

JavaScript into a web page. The purpose of the man-in-the-middle attack or the JavaScript
injection is to allow the attacker to capture enough traffic to mount a birthday attack.[129]

Implementation errors: Heartbleed bug, BERserk attack, Cloudflare bug

The Heartbleed bug is a serious vulnerability specific to the implementation of SSL/TLS in the

popular OpenSSL cryptographic software library, affecting versions 1.0.1 to 1.0.1f. This
weakness, reported in April 2014, allows attackers to steal private keys from servers that should

normally be protected.[130] The Heartbleed bug allows anyone on the Internet to read the
memory of the systems protected by the vulnerable versions of the OpenSSL software. This

https://en.m.wikipedia.org/wiki/Gmail
https://en.m.wikipedia.org/wiki/Outlook.com
https://en.m.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol
https://en.m.wikipedia.org/wiki/Birthday_attack
https://en.m.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.m.wikipedia.org/wiki/JavaScript
https://en.m.wikipedia.org/wiki/Heartbleed
https://en.m.wikipedia.org/wiki/OpenSSL
https://en.m.wikipedia.org/wiki/Public-key_cryptography
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=33
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=34
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=35

compromises the secret private keys associated with the public certificates used to identify the
service providers and to encrypt the traffic, the names and passwords of the users and the

actual content. This allows attackers to eavesdrop on communications, steal data directly from
the services and users and to impersonate services and users.[131] The vulnerability is caused by

a buffer over-read bug in the OpenSSL software, rather than a defect in the SSL or TLS protocol
specification.

In September 2014, a variant of Daniel Bleichenbacher's PKCS#1 v1.5 RSA Signature Forgery

vulnerability[132] was announced by Intel Security Advanced Threat Research. This attack,
dubbed BERserk, is a result of incomplete ASN.1 length decoding of public key signatures in

some SSL implementations, and allows a man-in-the-middle attack by forging a public key
signature.[133]

In February 2015, after media reported the hidden pre-installation of superfish adware on some

Lenovo notebooks,[134] a researcher found a trusted root certificate on affected Lenovo
machines to be insecure, as the keys could easily be accessed using the company name,
Komodia, as a passphrase.[135] The Komodia library was designed to intercept client-side

TLS/SSL traffic for parental control and surveillance, but it was also used in numerous adware
programs, including Superfish, that were often surreptitiously installed unbeknownst to the

computer user. In turn, these potentially unwanted programs installed the corrupt root certificate,
allowing attackers to completely control web traffic and confirm false websites as authentic.

In May 2016, it was reported that dozens of Danish HTTPS-protected websites belonging to Visa

Inc. were vulnerable to attacks allowing hackers to inject malicious code and forged content into
the browsers of visitors.[136] The attacks worked because the TLS implementation used on the

affected servers incorrectly reused random numbers (nonces) that are intended to be used only
once, ensuring that each TLS handshake is unique.[136]

In February 2017, an implementation error caused by a single mistyped character in code used

to parse HTML created a buffer overflow error on Cloudflare servers. Similar in its effects to the
Heartbleed bug discovered in 2014, this overflow error, widely known as Cloudbleed, allowed

unauthorized third parties to read data in the memory of programs running on the servers—data
that should otherwise have been protected by TLS.[137]

Survey of websites vulnerable to attacks

As of July 2021, the Trustworthy Internet Movement estimated the ratio of websites that are

vulnerable to TLS attacks.[74]

https://en.m.wikipedia.org/wiki/X.509
https://en.m.wikipedia.org/wiki/Buffer_over-read
https://en.m.wikipedia.org/wiki/Daniel_Bleichenbacher
https://en.m.wikipedia.org/wiki/Superfish
https://en.m.wikipedia.org/wiki/Potentially_unwanted_program
https://en.m.wikipedia.org/wiki/Visa_Inc.
https://en.m.wikipedia.org/wiki/Cryptographic_nonce
https://en.m.wikipedia.org/wiki/Cloudflare
https://en.m.wikipedia.org/wiki/Cloudbleed
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=36

Survey of the TLS vulnerabilities of the most popular websites

Attacks
Security

Insecure Depends Secure Other

Renegotiation attack
0.1%

support insecure
renegotiation

<0.1%

support both

99.2%

support secure
renegotiation

0.7%

no
support

RC4 attacks
0.4%

support RC4 suites used
with modern browsers

6.5%

support some
RC4 suites

93.1%

no support
—

TLS Compression (CRIME

attack)

>0.0%

vulnerable
— — —

Heartbleed
>0.0%

vulnerable
— — —

ChangeCipherSpec

injection attack

0.1%

vulnerable and
exploitable

0.2%

vulnerable,
not

exploitable

98.5%

not vulnerable

1.2%

unknown

POODLE attack against

TLS

(Original POODLE against

SSL 3.0 is not included)

0.1%

vulnerable and
exploitable

0.1%

vulnerable,
not

exploitable

99.8%

not vulnerable

0.2%

unknown

Protocol downgrade

6.6%

Downgrade defence not
supported

—

72.3%

Downgrade
defence

supported

21.0%

unknown

Forward secrecy

Forward secrecy is a property of cryptographic systems which ensures that a session key
derived from a set of public and private keys will not be compromised if one of the private keys
is compromised in the future.[138] Without forward secrecy, if the server's private key is

compromised, not only will all future TLS-encrypted sessions using that server certificate be
compromised, but also any past sessions that used it as well (provided of course that these past
sessions were intercepted and stored at the time of transmission).[139] An implementation of

https://en.m.wikipedia.org/wiki/CVE-2014-0224
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=37

TLS can provide forward secrecy by requiring the use of ephemeral Diffie–Hellman key exchange
to establish session keys, and some notable TLS implementations do so exclusively: e.g., Gmail

and other Google HTTPS services that use OpenSSL.[140] However, many clients and servers
supporting TLS (including browsers and web servers) are not configured to implement such

restrictions.[141][142] In practice, unless a web service uses Diffie–Hellman key exchange to
implement forward secrecy, all of the encrypted web traffic to and from that service can be
decrypted by a third party if it obtains the server's master (private) key; e.g., by means of a court

order.[143]

Even where Diffie–Hellman key exchange is implemented, server-side session management

mechanisms can impact forward secrecy. The use of TLS session tickets (a TLS extension)
causes the session to be protected by AES128-CBC-SHA256 regardless of any other negotiated
TLS parameters, including forward secrecy ciphersuites, and the long-lived TLS session ticket

keys defeat the attempt to implement forward secrecy.[144][145][146] Stanford University research
in 2014 also found that of 473,802 TLS servers surveyed, 82.9% of the servers deploying
ephemeral Diffie–Hellman (DHE) key exchange to support forward secrecy were using weak

Diffie–Hellman parameters. These weak parameter choices could potentially compromise the
effectiveness of the forward secrecy that the servers sought to provide.[147]

Since late 2011, Google has provided forward secrecy with TLS by default to users of its Gmail
service, along with Google Docs and encrypted search, among other services.[148]
Since
November 2013, Twitter has provided forward secrecy with TLS to users of its service.[149] As of

August 2019, about 80% of TLS-enabled websites are configured to use cipher suites that
provide forward secrecy to most web browsers.[74]

TLS interception

TLS interception (or HTTPS interception if applied particularly to that protocol) is the practice of
intercepting an encrypted data stream in order to decrypt it, read and possibly manipulate it, and
then re-encrypt it and send the data on its way again. This is done by way of a "transparent

proxy": the interception software terminates the incoming TLS connection, inspects the HTTP
plaintext, and then creates a new TLS connection to the destination.[150]

TLS/HTTPS interception is used as an information security measure by network operators in

order to be able to scan for and protect against the intrusion of malicious content into the
network, such as computer viruses and other malware.[150] Such content could otherwise not be

https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/Gmail
https://en.m.wikipedia.org/wiki/OpenSSL
https://en.m.wikipedia.org/wiki/Gmail
https://en.m.wikipedia.org/wiki/Google_Docs
https://en.m.wikipedia.org/wiki/Twitter
https://en.m.wikipedia.org/wiki/HTTPS
https://en.m.wikipedia.org/wiki/Transparent_proxy
https://en.m.wikipedia.org/wiki/Information_security
https://en.m.wikipedia.org/wiki/Computer_virus
https://en.m.wikipedia.org/wiki/Malware
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=38

detected as long as it is protected by encryption, which is increasingly the case as a result of the
routine use of HTTPS and other secure protocols.

A significant drawback of TLS/HTTPS interception is that it introduces new security risks of its
own. One notable limitation is that it provides a point where network traffic is available

unencrypted thus giving attackers an incentive to attack this point in particular in order to gain
access to otherwise secure content. The interception also allows the network operator, or
persons who gain access to its interception system, to perform man-in-the-middle attacks

against network users. A 2017 study found that "HTTPS interception has become startlingly
widespread, and that interception products as a class have a dramatically negative impact on

connection security".[150]

The TLS protocol exchanges records, which encapsulate the data to be exchanged in a specific
format (see below). Each record can be compressed, padded, appended with a message

authentication code (MAC), or encrypted, all depending on the state of the connection. Each
record has a content type field that designates the type of data encapsulated, a length field and a

TLS version field. The data encapsulated may be control or procedural messages of the TLS
itself, or simply the application data needed to be transferred by TLS. The specifications (cipher
suite, keys etc.) required to exchange application data by TLS, are agreed upon in the "TLS

handshake" between the client requesting the data and the server responding to requests. The
protocol therefore defines both the structure of payloads transferred in TLS and the procedure to

establish and monitor the transfer.

TLS handshake

Protocol details

https://en.m.wikipedia.org/wiki/Man-in-the-middle_attack
https://en.m.wikipedia.org/wiki/Message_authentication_code
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=40
https://en.m.wikipedia.org/wiki/File:Full_TLS_1.2_Handshake.svg

When the connection starts, the record encapsulates a "control" protocol – the handshake
messaging protocol (content type 22). This protocol is used to exchange all the information

required by both sides for the exchange of the actual application data by TLS. It defines the
format of messages and the order of their exchange. These may vary according to the demands

of the client and server – i.e., there are several possible procedures to set up the connection.
This initial exchange results in a successful TLS connection (both parties ready to transfer
application data with TLS) or an alert message (as specified below).

Basic TLS handshake

A typical connection example follows, illustrating a handshake where the server (but not the
client) is authenticated by its certificate:

1. Negotiation phase:

A client sends a ClientHello message specifying the highest TLS protocol version it
supports, a random number, a list of suggested cipher suites and suggested
compression methods. If the client is attempting to perform a resumed handshake, it

may send a session ID. If the client can use Application-Layer Protocol Negotiation, it
may include a list of supported application protocols, such as HTTP/2.

The server responds with a ServerHello message, containing the chosen protocol
version, a random number, cipher suite and compression method from the choices
offered by the client. To confirm or allow resumed handshakes the server may send a

session ID. The chosen protocol version should be the highest that both the client and
server support. For example, if the client supports TLS version 1.1 and the server

Simplified illustration of the full TLS 1.2 handshake with timing information.

https://en.m.wikipedia.org/wiki/Handshaking
https://en.m.wikipedia.org/wiki/Cipher_suite
https://en.m.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://en.m.wikipedia.org/wiki/Communications_protocol
https://en.m.wikipedia.org/wiki/HTTP/2
https://en.m.wikipedia.org/wiki/File:Full_TLS_1.2_Handshake.svg
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=41

supports version 1.2, version 1.1 should be selected; version 1.2 should not be
selected.

The server sends its Certificate message (depending on the selected cipher suite, this
may be omitted by the server).[151]

The server sends its ServerKeyExchange message (depending on the selected cipher
suite, this may be omitted by the server). This message is sent for all DHE, ECDHE and
DH_anon cipher suites.[7]

The server sends a ServerHelloDone message, indicating it is done with handshake
negotiation.

The client responds with a ClientKeyExchange message, which may contain a
PreMasterSecret, public key, or nothing. (Again, this depends on the selected cipher.)
This PreMasterSecret is encrypted using the public key of the server certificate.

The client and server then use the random numbers and PreMasterSecret to compute a
common secret, called the "master secret". All other key data (session keys such as IV,
symmetric encryption key, MAC key[152]) for this connection is derived from this master

secret (and the client- and server-generated random values), which is passed through a
carefully designed pseudorandom function.

2. The client now sends a ChangeCipherSpec record, essentially telling the server, "Everything
I tell you from now on will be authenticated (and encrypted if encryption parameters were
present in the server certificate). "The ChangeCipherSpec is itself a record-level protocol

with content type of 20.
The client sends an authenticated and encrypted Finished message, containing a hash

and MAC over the previous handshake messages.

The server will attempt to decrypt the client's Finished message and verify the hash
and MAC. If the decryption or verification fails, the handshake is considered to have

failed and the connection should be torn down.

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you from

now on will be authenticated (and encrypted, if encryption was negotiated)."
The server sends its authenticated and encrypted Finished message.

The client performs the same decryption and verification procedure as the server did in

the previous step.

https://en.m.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.m.wikipedia.org/wiki/ECDHE
https://en.m.wikipedia.org/wiki/Session_key
https://en.m.wikipedia.org/wiki/Initialization_vector
https://en.m.wikipedia.org/wiki/Symmetric_encryption
https://en.m.wikipedia.org/wiki/Message_authentication_code
https://en.m.wikipedia.org/wiki/Pseudorandomness

4. Application phase: at this point, the "handshake" is complete and the application protocol is
enabled, with content type of 23. Application messages exchanged between client and

server will also be authenticated and optionally encrypted exactly like in their Finished
message. Otherwise, the content type will return 25 and the client will not authenticate.

Client-authenticated TLS handshake

The following full example shows a client being authenticated (in addition to the server as in the

example above; see mutual authentication) via TLS using certificates exchanged between both
peers.

1. Negotiation Phase:
A client sends a ClientHello message specifying the highest TLS protocol version it
supports, a random number, a list of suggested cipher suites and compression

methods.

The server responds with a ServerHello message, containing the chosen protocol
version, a random number, cipher suite and compression method from the choices

offered by the client. The server may also send a session id as part of the message to
perform a resumed handshake.

The server sends its Certificate message (depending on the selected cipher suite, this
may be omitted by the server).[151]

The server sends its ServerKeyExchange message (depending on the selected cipher

suite, this may be omitted by the server). This message is sent for all DHE, ECDHE and
DH_anon ciphersuites.[7]

The server sends a CertificateRequest message, to request a certificate from the
client.

The server sends a ServerHelloDone message, indicating it is done with handshake

negotiation.

The client responds with a Certificate message, which contains the client's certificate,

but not its private key.

The client sends a ClientKeyExchange message, which may contain a PreMasterSecret,
public key, or nothing. (Again, this depends on the selected cipher.) This

PreMasterSecret is encrypted using the public key of the server certificate.

https://en.m.wikipedia.org/wiki/Mutual_authentication
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=42

The client sends a CertificateVerify message, which is a signature over the previous
handshake messages using the client's certificate's private key. This signature can be

verified by using the client's certificate's public key. This lets the server know that the
client has access to the private key of the certificate and thus owns the certificate.

The client and server then use the random numbers and PreMasterSecret to compute a
common secret, called the "master secret". All other key data ("session keys") for this
connection is derived from this master secret (and the client- and server-generated

random values), which is passed through a carefully designed pseudorandom function.

2. The client now sends a ChangeCipherSpec record, essentially telling the server, "Everything

I tell you from now on will be authenticated (and encrypted if encryption was negotiated).
"The ChangeCipherSpec is itself a record-level protocol and has type 20 and not 22.

Finally, the client sends an encrypted Finished message, containing a hash and MAC

over the previous handshake messages.

The server will attempt to decrypt the client's Finished message and verify the hash
and MAC. If the decryption or verification fails, the handshake is considered to have

failed and the connection should be torn down.

3. Finally, the server sends a ChangeCipherSpec, telling the client, "Everything I tell you from

now on will be authenticated (and encrypted if encryption was negotiated)."
The server sends its own encrypted Finished message.

The client performs the same decryption and verification procedure as the server did in

the previous step.

4. Application phase: at this point, the "handshake" is complete and the application protocol is

enabled, with content type of 23. Application messages exchanged between client and
server will also be encrypted exactly like in their Finished message.

Resumed TLS handshake

Public key operations (e.g., RSA) are relatively expensive in terms of computational power. TLS

provides a secure shortcut in the handshake mechanism to avoid these operations: resumed
sessions. Resumed sessions are implemented using session IDs or session tickets.

Apart from the performance benefit, resumed sessions can also be used for single sign-on, as it

guarantees that both the original session and any resumed session originate from the same
client. This is of particular importance for the FTP over TLS/SSL protocol, which would

https://en.m.wikipedia.org/wiki/Single_sign-on
https://en.m.wikipedia.org/wiki/FTPS
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=43

otherwise suffer from a man-in-the-middle attack in which an attacker could intercept the
contents of the secondary data connections.[153]

TLS 1.3 handshake

The TLS 1.3 handshake was condensed to only one round trip compared to the two round trips
required in previous versions of TLS/SSL.

First the client sends a clientHello message to the server that contains a list of supported

ciphers in order of the client's preference and makes a guess on what key algorithm will be used
so that it can send a secret key to share if needed. By making a guess at what key algorithm will

be used, the server eliminates a round trip. After receiving the clientHello, the server sends a
serverHello with its key, a certificate, the chosen cipher suite and the finished message.

After the client receives the server's finished message, it now is coordinated with the server on

which cipher suite to use.[154]

Session IDs

In an ordinary full handshake, the server sends a session id as part of the ServerHello message.
The client associates this session id with the server's IP address and TCP port, so that when the

client connects again to that server, it can use the session id to shortcut the handshake. In the
server, the session id maps to the cryptographic parameters previously negotiated, specifically
the "master secret". Both sides must have the same "master secret" or the resumed handshake

will fail (this prevents an eavesdropper from using a session id). The random data in the
ClientHello and ServerHello messages virtually guarantee that the generated connection keys

will be different from in the previous connection. In the RFCs, this type of handshake is called an
abbreviated handshake. It is also described in the literature as a restart handshake.

1. Negotiation phase:

A client sends a ClientHello message specifying the highest TLS protocol version it
supports, a random number, a list of suggested cipher suites and compression

methods. Included in the message is the session id from the previous TLS connection.

The server responds with a ServerHello message, containing the chosen protocol
version, a random number, cipher suite and compression method from the choices

offered by the client. If the server recognizes the session id sent by the client, it
responds with the same session id. The client uses this to recognize that a resumed

handshake is being performed. If the server does not recognize the session id sent by

https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=44
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=45

the client, it sends a different value for its session id. This tells the client that a
resumed handshake will not be performed. At this point, both the client and server

have the "master secret" and random data to generate the key data to be used for this
connection.

2. The server now sends a ChangeCipherSpec record, essentially telling the client, "Everything
I tell you from now on will be encrypted." The ChangeCipherSpec is itself a record-level
protocol and has type 20 and not 22.

Finally, the server sends an encrypted Finished message, containing a hash and MAC
over the previous handshake messages.

The client will attempt to decrypt the server's Finished message and verify the hash
and MAC. If the decryption or verification fails, the handshake is considered to have
failed and the connection should be torn down.

3. Finally, the client sends a ChangeCipherSpec, telling the server, "Everything I tell you from
now on will be encrypted."

The client sends its own encrypted Finished message.

The server performs the same decryption and verification procedure as the client did in
the previous step.

4. Application phase: at this point, the "handshake" is complete and the application protocol is
enabled, with content type of 23. Application messages exchanged between client and
server will also be encrypted exactly like in their Finished message.

Session tickets

RFC 5077 (https://datatracker.ietf.org/doc/html/rfc5077) extends TLS via use of session
tickets, instead of session IDs. It defines a way to resume a TLS session without requiring that
session-specific state is stored at the TLS server.

When using session tickets, the TLS server stores its session-specific state in a session ticket
and sends the session ticket to the TLS client for storing. The client resumes a TLS session by

sending the session ticket to the server, and the server resumes the TLS session according to
the session-specific state in the ticket. The session ticket is encrypted and authenticated by the
server, and the server verifies its validity before using its contents.

One particular weakness of this method with OpenSSL is that it always limits encryption and
authentication security of the transmitted TLS session ticket to AES128-CBC-SHA256 , no

matter what other TLS parameters were negotiated for the actual TLS session.[145] This means

https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5077
https://en.m.wikipedia.org/wiki/OpenSSL
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=46

that the state information (the TLS session ticket) is not as well protected as the TLS session
itself. Of particular concern is OpenSSL's storage of the keys in an application-wide context

(SSL_CTX), i.e. for the life of the application, and not allowing for re-keying of the AES128-
CBC-SHA256 TLS session tickets without resetting the application-wide OpenSSL context

(which is uncommon, error-prone and often requires manual administrative intervention).[146][144]

TLS record

This is the general format of all TLS records.

TLS record format, general

Offset Byte+0 Byte+1 Byte+2 Byte+3

Byte

0

Content type —

Bytes

1–4

Legacy version Length

(Major) (Minor) (bits 15–8) (bits 7–0)

Bytes

5–(m−1)

Protocol message(s)

Bytes

m–(p−1)

MAC (optional)

Bytes

p–(q−1)

Padding (block ciphers only)

Content type
This field identifies the Record Layer Protocol Type contained in this record.

Content types

Hex Dec Type

0×14 20 ChangeCipherSpec

0×15 21 Alert

0×16 22 Handshake

0×17 23 Application

0×18 24 Heartbeat

https://en.m.wikipedia.org/wiki/Message_authentication_code
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=47

Legacy version
This field identifies the major and minor version of TLS prior to TLS 1.3 for the contained

message. For a ClientHello message, this need not be the highest version supported by the
client. For TLS 1.3 and later, this must to be set 0x0303 and application must send supported

versions in an extra message extension block.

Versions

Major

version

Minor

version
Version type

3 0 SSL 3.0

3 1 TLS 1.0

3 2 TLS 1.1

3 3 TLS 1.2

3 4 TLS 1.3

Length

The length of "protocol message(s)", "MAC" and "padding" fields combined (i.e. q−5), not to
exceed 214 bytes (16 KiB).

Protocol message(s)
One or more messages identified by the Protocol field. Note that this field may be encrypted
depending on the state of the connection.

MAC and padding
A message authentication code computed over the "protocol message(s)" field, with
additional key material included. Note that this field may be encrypted, or not included entirely,

depending on the state of the connection.
No "MAC" or "padding" fields can be present at end of TLS records before all cipher algorithms

and parameters have been negotiated and handshaked and then confirmed by sending a
CipherStateChange record (see below) for signalling that these parameters will take effect in
all further records sent by the same peer.

Handshake protocol

Most messages exchanged during the setup of the TLS session are based on this record, unless
an error or warning occurs and needs to be signaled by an Alert protocol record (see below), or
the encryption mode of the session is modified by another record (see ChangeCipherSpec

protocol below).

https://en.m.wikipedia.org/wiki/Message_authentication_code
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=48

TLS record format for handshake protocol

Offset Byte+0 Byte+1 Byte+2 Byte+3

Byte

0
22 —

Bytes

1–4

Legacy version Length

(Major) (Minor) (bits 15–8) (bits 7–0)

Bytes

5–8
Message type

Handshake message data length

(bits 23–16) (bits 15–8) (bits 7–0)

Bytes

9–(n−1)
Handshake message data

Bytes

n–(n+3)
Message type

Handshake message data length

(bits 23–16) (bits 15–8) (bits 7–0)

Bytes

(n+4)–
Handshake message data

Message type

This field identifies the handshake message type.

Message types

Code Description

0 HelloRequest

1 ClientHello

2 ServerHello

4 NewSessionTicket

8 EncryptedExtensions (TLS 1.3 only)

11 Certificate

12 ServerKeyExchange

13 CertificateRequest

14 ServerHelloDone

15 CertificateVerify

16 ClientKeyExchange

20 Finished

Handshake message data length

This is a 3-byte field indicating the length of the handshake data, not including the header.

Note that multiple handshake messages may be combined within one record.

Alert protocol

This record should normally not be sent during normal handshaking or application exchanges.

However, this message can be sent at any time during the handshake and up to the closure of
the session. If this is used to signal a fatal error, the session will be closed immediately after

sending this record, so this record is used to give a reason for this closure. If the alert level is
flagged as a warning, the remote can decide to close the session if it decides that the session is
not reliable enough for its needs (before doing so, the remote may also send its own signal).

https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=49

TLS record format for alert protocol

Offset Byte+0 Byte+1 Byte+2 Byte+3

Byte

0
21 —

Bytes

1–4

Legacy version Length

(Major) (Minor) 0 2

Bytes

5–6
Level Description —

Bytes

7–(p−1)
MAC (optional)

Bytes

p–(q−1)
Padding (block ciphers only)

Level

This field identifies the level of alert. If the level is fatal, the sender should close the session
immediately. Otherwise, the recipient may decide to terminate the session itself, by sending its

own fatal alert and closing the session itself immediately after sending it. The use of Alert
records is optional, however if it is missing before the session closure, the session may be
resumed automatically (with its handshakes).

Normal closure of a session after termination of the transported application should preferably
be alerted with at least the Close notify Alert type (with a simple warning level) to prevent such

automatic resume of a new session. Signalling explicitly the normal closure of a secure
session before effectively closing its transport layer is useful to prevent or detect attacks (like
attempts to truncate the securely transported data, if it intrinsically does not have a

predetermined length or duration that the recipient of the secured data may expect).

Alert level types

Code
Level

type
Connection state

1 warning connection or security may be unstable.

2 fatal
connection or security may be compromised, or an unrecoverable error has

occurred.

Description

https://en.m.wikipedia.org/wiki/Message_authentication_code

This field identifies which type of alert is being sent.

Alert description types

Code Description Level types Note

0 Close notify warning/fatal

10
Unexpected

message
fatal

20 Bad record MAC fatal
Possibly a bad SSL implementation, or payload has

been tampered with e.g. FTP firewall rule on FTPS
server.

21 Decryption failed fatal TLS only, reserved

22 Record overflow fatal TLS only

30
Decompression

failure
fatal

40 Handshake failure fatal

41 No certificate warning/fatal SSL 3.0 only, reserved

42 Bad certificate warning/fatal

43
Unsupported

certificate
warning/fatal

e.g. certificate has only server authentication usage

enabled and is presented as a client certificate

44 Certificate revoked warning/fatal

45 Certificate expired warning/fatal
Check server certificate expire also check no

certificate in the chain presented has expired

46 Certificate unknown warning/fatal

47 Illegal parameter fatal

48
Unknown CA

(Certificate
authority)

fatal TLS only

49 Access denied fatal

TLS only – e.g. no client certificate has been

presented (TLS: Blank certificate message or SSLv3:
No Certificate alert), but server is configured to

require one.

50 Decode error fatal TLS only

51 Decrypt error warning/fatal TLS only

https://en.m.wikipedia.org/wiki/FTPS
https://en.m.wikipedia.org/wiki/Certificate_authority

60 Export restriction fatal TLS only, reserved

70 Protocol version fatal TLS only

71 Insufficient security fatal TLS only

80 Internal error fatal TLS only

86
Inappropriate

fallback
fatal TLS only

90 User canceled fatal TLS only

100 No renegotiation warning TLS only

110
Unsupported

extension
warning TLS only

111
Certificate

unobtainable
warning TLS only

112 Unrecognized name warning/fatal
TLS only; client's Server Name Indicator specified a

hostname not supported by the server

113
Bad certificate

status response
fatal TLS only

114
Bad certificate hash

value
fatal TLS only

115

Unknown PSK

identity (used in
TLS-PSK and TLS-

SRP)

fatal TLS only

116 Certificate required fatal TLS version 1.3 only

120

or
255

No application

protocol
fatal TLS version 1.3 only

ChangeCipherSpec protocol

https://en.m.wikipedia.org/wiki/Server_Name_Indication
https://en.m.wikipedia.org/wiki/Hostname
https://en.m.wikipedia.org/wiki/Pre-shared_key
https://en.m.wikipedia.org/wiki/TLS-PSK
https://en.m.wikipedia.org/wiki/TLS-SRP
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=50

TLS record format for ChangeCipherSpec protocol

Offset Byte+0 Byte+1 Byte+2 Byte+3

Byte

0
20 —

Bytes

1–4

Legacy version Length

(Major) (Minor) 0 1

Byte

5

CCS protocol

type
—

CCS protocol type

Currently only 1.

Application protocol

TLS record format for application protocol

Offset Byte+0 Byte+1 Byte+2 Byte+3

Byte

0
23 —

Bytes

1–4

Legacy version Length

(Major) (Minor) (bits 15–8) (bits 7–0)

Bytes

5–(m−1)
Application data

Bytes

m–(p−1)
MAC (optional)

Bytes

p–(q−1)
Padding (block ciphers only)

Length

Length of application data (excluding the protocol header and including the MAC and padding
trailers)

MAC
32 bytes for the SHA-256-based HMAC, 20 bytes for the SHA-1-based HMAC, 16 bytes for the
MD5-based HMAC.

Padding

https://en.m.wikipedia.org/wiki/Message_authentication_code
https://en.m.wikipedia.org/wiki/SHA-256
https://en.m.wikipedia.org/wiki/HMAC
https://en.m.wikipedia.org/wiki/SHA-1
https://en.m.wikipedia.org/wiki/MD5
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=51

Variable length; last byte contains the padding length.

From the application protocol point of view, TLS belongs to a lower layer, although the TCP/IP
model is too coarse to show it. This means that the TLS handshake is usually (except in the
STARTTLS case) performed before the application protocol can start. In the name-based virtual

server feature being provided by the application layer, all co-hosted virtual servers share the
same certificate because the server has to select and send a certificate immediately after the

ClientHello message. This is a big problem in hosting environments because it means either
sharing the same certificate among all customers or using a different IP address for each of
them.

There are two known workarounds provided by X.509:

If all virtual servers belong to the same domain, a wildcard certificate can be used.[155]

Besides the loose host name selection that might be a problem or not, there is no common

agreement about how to match wildcard certificates. Different rules are applied depending on
the application protocol or software used.[156]

Add every virtual host name in the subjectAltName extension. The major problem being that
the certificate needs to be reissued whenever a new virtual server is added.

To provide the server name, RFC 4366 (https://datatracker.ietf.org/doc/html/rfc4366)

Transport Layer Security (TLS) Extensions allow clients to include a Server Name Indication
extension (SNI) in the extended ClientHello message. This extension hints to the server

immediately which name the client wishes to connect to, so the server
can select the
appropriate certificate to send to the clients.

RFC 2817 (https://datatracker.ietf.org/doc/html/rfc2817) also documents a method to

implement name-based virtual hosting by upgrading HTTP to TLS via an HTTP/1.1 Upgrade
header. Normally this is to securely implement HTTP over TLS within the main "http" URI scheme

(which avoids forking the URI space and reduces the number of used ports), however, few
implementations currently support this.

Primary standards

Support for name-based virtual servers

Standards

https://en.m.wikipedia.org/wiki/STARTTLS
https://en.m.wikipedia.org/wiki/Virtual_domain
https://en.m.wikipedia.org/wiki/X.509
https://en.m.wikipedia.org/wiki/Wildcard_certificate
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4366
https://en.m.wikipedia.org/wiki/Server_Name_Indication
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc2817
https://en.m.wikipedia.org/wiki/HTTP/1.1_Upgrade_header
https://en.m.wikipedia.org/wiki/URI_scheme
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=54

The current approved version of TLS is version 1.3, which is specified in:

RFC 8446 (https://datatracker.ietf.org/doc/html/rfc8446) : "The Transport Layer Security

(TLS) Protocol Version 1.3".

The current standard replaces these former versions, which are now considered obsolete:

RFC 2246 (https://datatracker.ietf.org/doc/html/rfc2246) : "The TLS Protocol Version 1.0".

RFC 4346 (https://datatracker.ietf.org/doc/html/rfc4346) : "The Transport Layer Security
(TLS) Protocol Version 1.1".

RFC 5246 (https://datatracker.ietf.org/doc/html/rfc5246) : "The Transport Layer Security
(TLS) Protocol Version 1.2".

As well as the never standardized SSL 2.0 and 3.0, which are considered obsolete:

Internet Draft (1995) (https://tools.ietf.org/html/draft-hickman-netscape-ssl-00) , SSL
Version 2.0

RFC 6101 (https://datatracker.ietf.org/doc/html/rfc6101) : "The Secure Sockets Layer (SSL)
Protocol Version 3.0".

Extensions

Other RFCs subsequently extended TLS.

Extensions to TLS 1.0 include:

RFC 2595 (https://datatracker.ietf.org/doc/html/rfc2595) : "Using TLS with IMAP, POP3 and

ACAP". Specifies an extension to the IMAP, POP3 and ACAP services that allow the server and
client to use transport-layer security to provide private, authenticated communication over the

Internet.

RFC 2712 (https://datatracker.ietf.org/doc/html/rfc2712) : "Addition of Kerberos Cipher
Suites to Transport Layer Security (TLS)". The 40-bit cipher suites defined in this memo appear

only for the purpose of documenting the fact that those cipher suite codes have already been
assigned.

RFC 2817 (https://datatracker.ietf.org/doc/html/rfc2817) : "Upgrading to TLS Within
HTTP/1.1", explains how to use the Upgrade mechanism in HTTP/1.1 to initiate Transport
Layer Security (TLS) over an existing TCP connection. This allows unsecured and secured

https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc8446
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc2246
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4346
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5246
https://tools.ietf.org/html/draft-hickman-netscape-ssl-00
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6101
https://en.m.wikipedia.org/wiki/Request_for_Comments
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc2595
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc2712
https://en.m.wikipedia.org/wiki/Kerberos_(protocol)
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc2817
https://en.m.wikipedia.org/wiki/HTTP/1.1_Upgrade_header
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=55

HTTP traffic to share the same well known port (in this case, http: at 80 rather than https: at
443).

RFC 2818 (https://datatracker.ietf.org/doc/html/rfc2818) : "HTTP Over TLS", distinguishes
secured traffic from insecure traffic by the use of a different 'server port'.

RFC 3207 (https://datatracker.ietf.org/doc/html/rfc3207) : "SMTP Service Extension for
Secure SMTP over Transport Layer Security". Specifies an extension to the SMTP service that
allows an SMTP server and client to use transport-layer security to provide private,

authenticated communication over the Internet.

RFC 3268 (https://datatracker.ietf.org/doc/html/rfc3268) : "AES Ciphersuites for TLS". Adds

Advanced Encryption Standard (AES) cipher suites to the previously existing symmetric
ciphers.

RFC 3546 (https://datatracker.ietf.org/doc/html/rfc3546) : "Transport Layer Security (TLS)

Extensions", adds a mechanism for negotiating protocol extensions during session
initialisation and defines some extensions. Made obsolete by RFC 4366 (https://datatracker.ie
tf.org/doc/html/rfc4366) .

RFC 3749 (https://datatracker.ietf.org/doc/html/rfc3749) : "Transport Layer Security
Protocol Compression Methods", specifies the framework for compression methods and the

DEFLATE compression method.

RFC 3943 (https://datatracker.ietf.org/doc/html/rfc3943) : "Transport Layer Security (TLS)
Protocol Compression Using Lempel-Ziv-Stac (LZS)".

RFC 4132 (https://datatracker.ietf.org/doc/html/rfc4132) : "Addition of Camellia Cipher
Suites to Transport Layer Security (TLS)".

RFC 4162 (https://datatracker.ietf.org/doc/html/rfc4162) : "Addition of SEED Cipher Suites
to Transport Layer Security (TLS)".

RFC 4217 (https://datatracker.ietf.org/doc/html/rfc4217) : "Securing FTP with TLS".

RFC 4279 (https://datatracker.ietf.org/doc/html/rfc4279) : "Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS)", adds three sets of new cipher suites for the TLS protocol to

support authentication based on pre-shared keys.

Extensions to TLS 1.1 include:

RFC 4347 (https://datatracker.ietf.org/doc/html/rfc4347) : "Datagram Transport Layer

Security" specifies a TLS variant that works over datagram protocols (such as UDP).

https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc2818
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc3207
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc3268
https://en.m.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc3546
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4366
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc3749
https://en.m.wikipedia.org/wiki/DEFLATE
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc3943
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4132
https://en.m.wikipedia.org/wiki/Camellia_(cipher)
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4162
https://en.m.wikipedia.org/wiki/SEED
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4217
https://en.m.wikipedia.org/wiki/FTPS
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4279
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4347
https://en.m.wikipedia.org/wiki/Datagram_Transport_Layer_Security

RFC 4366 (https://datatracker.ietf.org/doc/html/rfc4366) : "Transport Layer Security (TLS)
Extensions" describes both a set of specific extensions and a generic extension mechanism.

RFC 4492 (https://datatracker.ietf.org/doc/html/rfc4492) : "Elliptic Curve Cryptography
(ECC) Cipher Suites for Transport Layer Security (TLS)".

RFC 4680 (https://datatracker.ietf.org/doc/html/rfc4680) : "TLS Handshake Message for
Supplemental Data".

RFC 4681 (https://datatracker.ietf.org/doc/html/rfc4681) : "TLS User Mapping Extension".

RFC 4785 (https://datatracker.ietf.org/doc/html/rfc4785) : "Pre-Shared Key (PSK)
Ciphersuites with NULL Encryption for Transport Layer Security (TLS)".

RFC 5054 (https://datatracker.ietf.org/doc/html/rfc5054) : "Using the Secure Remote
Password (SRP) Protocol for TLS Authentication". Defines the TLS-SRP ciphersuites.

RFC 5077 (https://datatracker.ietf.org/doc/html/rfc5077) : "Transport Layer Security (TLS)

Session Resumption without Server-Side State".

RFC 5081 (https://datatracker.ietf.org/doc/html/rfc5081) : "Using OpenPGP Keys for
Transport Layer Security (TLS) Authentication", obsoleted by RFC 6091 (https://datatracker.iet

f.org/doc/html/rfc6091) .

Extensions to TLS 1.2 include:

RFC 5288 (https://datatracker.ietf.org/doc/html/rfc5288) : "AES Galois Counter Mode (GCM)
Cipher Suites for TLS".

RFC 5289 (https://datatracker.ietf.org/doc/html/rfc5289) : "TLS Elliptic Curve Cipher Suites

with SHA-256/384 and AES Galois Counter Mode (GCM)".

RFC 5746 (https://datatracker.ietf.org/doc/html/rfc5746) : "Transport Layer Security (TLS)

Renegotiation Indication Extension".

RFC 5878 (https://datatracker.ietf.org/doc/html/rfc5878) : "Transport Layer Security (TLS)
Authorization Extensions".

RFC 5932 (https://datatracker.ietf.org/doc/html/rfc5932) : "Camellia Cipher Suites for TLS"

RFC 6066 (https://datatracker.ietf.org/doc/html/rfc6066) : "Transport Layer Security (TLS)

Extensions: Extension Definitions", includes Server Name Indication and OCSP stapling.

RFC 6091 (https://datatracker.ietf.org/doc/html/rfc6091) : "Using OpenPGP Keys for
Transport Layer Security (TLS) Authentication".

https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4366
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4492
https://en.m.wikipedia.org/wiki/Elliptic_Curve_Cryptography
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4680
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4681
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4785
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5054
https://en.m.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://en.m.wikipedia.org/wiki/TLS-SRP
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5077
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5081
https://en.m.wikipedia.org/wiki/OpenPGP
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6091
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5288
https://en.m.wikipedia.org/wiki/Galois/Counter_Mode
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5289
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5746
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5878
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5932
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6066
https://en.m.wikipedia.org/wiki/Server_Name_Indication
https://en.m.wikipedia.org/wiki/OCSP_stapling
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6091
https://en.m.wikipedia.org/wiki/OpenPGP

RFC 6176 (https://datatracker.ietf.org/doc/html/rfc6176) : "Prohibiting Secure Sockets Layer
(SSL) Version 2.0".

RFC 6209 (https://datatracker.ietf.org/doc/html/rfc6209) : "Addition of the ARIA Cipher
Suites to Transport Layer Security (TLS)".

RFC 6347 (https://datatracker.ietf.org/doc/html/rfc6347) : "Datagram Transport Layer
Security Version 1.2".

RFC 6367 (https://datatracker.ietf.org/doc/html/rfc6367) : "Addition of the Camellia Cipher

Suites to Transport Layer Security (TLS)".

RFC 6460 (https://datatracker.ietf.org/doc/html/rfc6460) : "Suite B Profile for Transport

Layer Security (TLS)".

RFC 6655 (https://datatracker.ietf.org/doc/html/rfc6655) : "AES-CCM Cipher Suites for
Transport Layer Security (TLS)".

RFC 7027 (https://datatracker.ietf.org/doc/html/rfc7027) : "Elliptic Curve Cryptography
(ECC) Brainpool Curves for Transport Layer Security (TLS)".

RFC 7251 (https://datatracker.ietf.org/doc/html/rfc7251) : "AES-CCM Elliptic Curve

Cryptography (ECC) Cipher Suites for TLS".

RFC 7301 (https://datatracker.ietf.org/doc/html/rfc7301) : "Transport Layer Security (TLS)

Application-Layer Protocol Negotiation Extension".

RFC 7366 (https://datatracker.ietf.org/doc/html/rfc7366) : "Encrypt-then-MAC for Transport
Layer Security (TLS) and Datagram Transport Layer Security (DTLS)".

RFC 7465 (https://datatracker.ietf.org/doc/html/rfc7465) : "Prohibiting RC4 Cipher Suites".

RFC 7507 (https://datatracker.ietf.org/doc/html/rfc7507) : "TLS Fallback Signaling Cipher

Suite Value (SCSV) for Preventing Protocol Downgrade Attacks".

RFC 7568 (https://datatracker.ietf.org/doc/html/rfc7568) : "Deprecating Secure Sockets
Layer Version 3.0".

RFC 7627 (https://datatracker.ietf.org/doc/html/rfc7627) : "Transport Layer Security (TLS)
Session Hash and Extended Master Secret Extension".

RFC 7685 (https://datatracker.ietf.org/doc/html/rfc7685) : "A Transport Layer Security (TLS)
ClientHello Padding Extension".

Encapsulations of TLS include:

https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6176
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6209
https://en.m.wikipedia.org/wiki/ARIA_(cipher)
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6347
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6367
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6460
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6655
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7027
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7251
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7301
https://en.m.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7366
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7465
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7507
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7568
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7627
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7685

RFC 5216 (https://datatracker.ietf.org/doc/html/rfc5216) : "The EAP-TLS Authentication
Protocol"

Informational RFCs

RFC 7457 (https://datatracker.ietf.org/doc/html/rfc7457) : "Summarizing Known Attacks on
Transport Layer Security (TLS) and Datagram TLS (DTLS)"

RFC 7525 (https://datatracker.ietf.org/doc/html/rfc7525) : "Recommendations for Secure
Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"

Application-Layer Protocol Negotiation – a TLS extension used for SPDY and TLS False Start

Bullrun (decryption program) – a secret anti-encryption program run by the U.S. National
Security Agency

Certificate authority

Certificate Transparency

HTTP Strict Transport Security – HSTS

Key ring file

Private Communications Technology (PCT) – a historic Microsoft competitor to SSL 2.0

QUIC (Quick UDP Internet Connections) – "…was designed to provide security protection
equivalent to TLS/SSL"; QUIC's main goal is to improve perceived performance of connection-

oriented web applications that are currently using TCP

Server-Gated Cryptography

tcpcrypt

DTLS

TLS acceleration

1. Lawrence, Scott; Khare, Rohit (May 2000). "Upgrading to TLS Within HTTP/1.1" (https://tools.ietf.org/htm
l/rfc2817) . Internet Engineering Task Force. Retrieved December 15, 2018.

See also

References

https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5216
https://en.m.wikipedia.org/wiki/Extensible_Authentication_Protocol
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7457
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7525
https://en.m.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation
https://en.m.wikipedia.org/wiki/Bullrun_(decryption_program)
https://en.m.wikipedia.org/wiki/Certificate_authority
https://en.m.wikipedia.org/wiki/Certificate_Transparency
https://en.m.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://en.m.wikipedia.org/wiki/Key_ring_file
https://en.m.wikipedia.org/wiki/Private_Communications_Technology
https://en.m.wikipedia.org/wiki/QUIC
https://en.m.wikipedia.org/wiki/Server-Gated_Cryptography
https://en.m.wikipedia.org/wiki/Tcpcrypt
https://en.m.wikipedia.org/wiki/DTLS
https://en.m.wikipedia.org/wiki/TLS_acceleration
https://tools.ietf.org/html/rfc2817
https://en.m.wikipedia.org/w/index.php?title=Transport_Layer_Security&action=edit§ion=56

2. "SSL/TLS in Detail" (https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server

-2003/cc785811(v=ws.10)) . TechNet. Microsoft Docs. Retrieved October 24, 2021.

3. Hooper, Howard (2012). CCNP Security VPN 642-648 Official Cert Guide (https://books.google.com/book

s?id=5PJisOKJ0k8C&pg=PA22) (2 ed.). Cisco Press. p. 22. ISBN 9780132966382.

4. Spott, Andrew; Leek, Tom; et al. "What layer is TLS?" (https://security.stackexchange.com/a/93338) .

Information Security Stack Exchange.

5. T. Dierks, E. Rescorla (August 2008). "Introduction" (https://datatracker.ietf.org/doc/html/rfc5246#sectio

n-1) . The Transport Layer Security (TLS) Protocol Version 1.2 (https://datatracker.ietf.org/doc/html/rf

c5246) . sec. 1. doi:10.17487/RFC5246 (https://doi.org/10.17487%2FRFC5246) . RFC 5246 (https://da

tatracker.ietf.org/doc/html/rfc5246) .

6. E. Rescorla (August 2008). "The Transport Layer Security (TLS) Protocol Version 1.3" (https://tools.ietf.or

g/html/rfc8446) .

7. T. Dierks; E. Rescorla (August 2008). "The Transport Layer Security (TLS) Protocol Version 1.2" (http://tool

s.ietf.org/html/rfc5246) . Archived (https://web.archive.org/web/20171224222709/https://tools.ietf.or
g/html/rfc5246) from the original on December 24, 2017.

8. Bright, Peter (October 17, 2018). "Apple, Google, Microsoft, and Mozilla come together to end TLS 1.0" (ht

tps://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-support-for-20-year-old-tls-1-0) .
Retrieved October 17, 2018.

9. "Here is what is new and changed in Firefox 74.0 Stable - gHacks Tech News" (https://www.ghacks.net/2

020/03/10/here-is-what-is-new-and-changed-in-firefox-74-0-stable) . www.ghacks.net. March 10, 2020.

Retrieved March 10, 2020.

10. "TLS 1.0 and TLS 1.1 - Chrome Platform Status" (https://chromestatus.com/feature/575911600377036

8) . chromestatus.com. Retrieved March 10, 2020.

11. Deirks, Tim (August 2008). "The Transport Layer Security (TLS) Protocol Version 1.2" (https://www.ietf.or

g/rfc/rfc5246.txt) . IETF. Archived (https://web.archive.org/web/20080915032215/www.ietf.org/rfc/rfc
5246.txt) from the original on September 15, 2008. Retrieved August 24, 2022.

12. "Using TLS to protect data" (https://www.ncsc.gov.uk/guidance/using-tls-to-protect-data) .

www.ncsc.gov.uk. Archived (https://web.archive.org/web/20210721072543/ncsc.gov.uk/guidance/using

-tls-to-protect-data) from the original on July 21, 2021. Retrieved August 24, 2022.

13. "TLS 1.3: One Year Later" (https://www.ietf.org/blog/tls13-adoption) . IETF. Archived (https://web.archiv

e.org/web/20200708030455/https://www.ietf.org/blog/tls13-adoption) from the original on July 8,

2020. Retrieved August 24, 2022.

14. "Creating TLS: The Pioneering Role of Ruth Nelson" (https://www.circleid.com/posts/20190124_creating_
tls_the_pioneering_role_of_ruth_nelson) .

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc785811(v=ws.10)
https://en.m.wikipedia.org/wiki/Microsoft_TechNet
https://en.m.wikipedia.org/wiki/Microsoft_Docs
https://books.google.com/books?id=5PJisOKJ0k8C&pg=PA22
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/9780132966382
https://security.stackexchange.com/a/93338
https://datatracker.ietf.org/doc/html/rfc5246#section-1
https://datatracker.ietf.org/doc/html/rfc5246
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC5246
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5246
https://tools.ietf.org/html/rfc8446
http://tools.ietf.org/html/rfc5246
https://web.archive.org/web/20171224222709/https://tools.ietf.org/html/rfc5246
https://arstechnica.com/gadgets/2018/10/browser-vendors-unite-to-end-support-for-20-year-old-tls-1-0
https://www.ghacks.net/2020/03/10/here-is-what-is-new-and-changed-in-firefox-74-0-stable
https://chromestatus.com/feature/5759116003770368
https://www.ietf.org/rfc/rfc5246.txt
https://web.archive.org/web/20080915032215/www.ietf.org/rfc/rfc5246.txt
https://www.ncsc.gov.uk/guidance/using-tls-to-protect-data
https://web.archive.org/web/20210721072543/ncsc.gov.uk/guidance/using-tls-to-protect-data
https://www.ietf.org/blog/tls13-adoption
https://web.archive.org/web/20200708030455/https://www.ietf.org/blog/tls13-adoption
https://www.circleid.com/posts/20190124_creating_tls_the_pioneering_role_of_ruth_nelson

15. Thomas Y. C. Woo, Raghuram Bindignavle, Shaowen Su and Simon S. Lam, SNP: An interface for secure

network programming (https://www.cs.utexas.edu/users/lam/Vita/Cpapers/WBSL94.pdf) Proceedings
USENIX Summer Technical Conference, June 1994

16. Messmer, Ellen. "Father of SSL, Dr. Taher Elgamal, Finds Fast-Moving IT Projects in the Middle East" (http

s://web.archive.org/web/20140531105537/http://www.networkworld.com/news/2012/120412-elgamal-

264739.html) . Network World. Archived from the original (http://www.networkworld.com/news/2012/1
20412-elgamal-264739.html) on May 31, 2014. Retrieved May 30, 2014.

17. Greene, Tim. "Father of SSL says despite attacks, the security linchpin has lots of life left" (https://web.ar

chive.org/web/20140531105257/http://www.networkworld.com/news/2011/101111-elgamal-251806.

html) . Network World. Archived from the original (http://www.networkworld.com/news/2011/101111-el
gamal-251806.html) on May 31, 2014. Retrieved May 30, 2014.

18. Oppliger, Rolf (2016). "Introduction" (https://books.google.com/books?id=jm6uDgAAQBAJ&pg=PA15) .

SSL and TLS: Theory and Practice (2nd ed.). Artech House. p. 13. ISBN 978-1-60807-999-5. Retrieved

March 1, 2018 – via Google Books.

19. "THE SSL PROTOCOL" (https://web.archive.org/web/19970614020952/http://home.netscape.com/newsr

ef/std/SSL.html) . Netscape Corporation. 2007. Archived from the original (http://home.netscape.com/

newsref/std/SSL.html) on June 14, 1997.

20. Rescorla 2001

21. "POODLE: SSLv3 vulnerability (CVE-2014-3566)" (https://access.redhat.com/articles/1232123) .

Archived (https://web.archive.org/web/20141205124712/https://access.redhat.com/articles/123212

3) from the original on December 5, 2014. Retrieved October 21, 2014.

22. "Security Standards and Name Changes in the Browser Wars" (http://tim.dierks.org/2014/05/security-sta

ndards-and-name-changes-in.html) . Retrieved February 29, 2020.

23. Laura K. Gray (December 18, 2015). "Date Change for Migrating from SSL and Early TLS" (https://blog.pci

securitystandards.org/migrating-from-ssl-and-early-tls) . Payment Card Industry Security Standards
Council blog. Retrieved April 5, 2018.

24. Company, Newtek - Your Business Solutions. "Changes to PCI Compliance are Coming June 30. Is Your

Ecommerce Business Ready?" (https://www.forbes.com/sites/thesba/2018/05/30/changes-to-pci-compl

iance-are-coming-june-30-is-your-ecommerce-business-ready) . Forbes. Retrieved June 20, 2018.

25. Dierks, T. & E. Rescorla (April 2006). "The Transport Layer Security (TLS) Protocol Version 1.1" (http://tool

s.ietf.org/html/rfc5246#ref-TLS1.1) . RFC 4346 (https://tools.ietf.org/html/rfc4346) . Archived (http

s://web.archive.org/web/20171224222709/https://tools.ietf.org/html/rfc5246#ref-TLS1.1) from the

original on December 24, 2017.

https://en.m.wikipedia.org/wiki/Simon_S._Lam
https://www.cs.utexas.edu/users/lam/Vita/Cpapers/WBSL94.pdf
https://web.archive.org/web/20140531105537/http://www.networkworld.com/news/2012/120412-elgamal-264739.html
http://www.networkworld.com/news/2012/120412-elgamal-264739.html
https://web.archive.org/web/20140531105257/http://www.networkworld.com/news/2011/101111-elgamal-251806.html
http://www.networkworld.com/news/2011/101111-elgamal-251806.html
https://books.google.com/books?id=jm6uDgAAQBAJ&pg=PA15
https://en.m.wikipedia.org/wiki/Artech_House
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-1-60807-999-5
https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/std/SSL.html
http://home.netscape.com/newsref/std/SSL.html
https://access.redhat.com/articles/1232123
https://web.archive.org/web/20141205124712/https://access.redhat.com/articles/1232123
http://tim.dierks.org/2014/05/security-standards-and-name-changes-in.html
https://blog.pcisecuritystandards.org/migrating-from-ssl-and-early-tls
https://en.m.wikipedia.org/wiki/Payment_Card_Industry_Security_Standards_Council
https://www.forbes.com/sites/thesba/2018/05/30/changes-to-pci-compliance-are-coming-june-30-is-your-ecommerce-business-ready
http://tools.ietf.org/html/rfc5246#ref-TLS1.1
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://tools.ietf.org/html/rfc4346
https://web.archive.org/web/20171224222709/https://tools.ietf.org/html/rfc5246#ref-TLS1.1

26. Polk, Tim; McKay, Kerry; Chokhani, Santosh (April 2014). "Guidelines for the Selection, Configuration, and

Use of Transport Layer Security (TLS) Implementations" (https://web.archive.org/web/20140508025330/
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf) (PDF). National Institute of

Standards and Technology. p. 67. Archived from the original (http://nvlpubs.nist.gov/nistpubs/SpecialPub

lications/NIST.SP.800-52r1.pdf) (PDF) on May 8, 2014. Retrieved May 7, 2014.

27. "Twitter will deprecate support for TLS 1.0, TLS 1.1 on July 15" (https://www.thesslstore.com/blog/twitte
r-will-deprecate-support-for-tls-1-0-tls-1-1-on-july-15) . Hashed Out by The SSL Store. July 12, 2019.

Retrieved June 14, 2021.

28. Mackie, Kurt. "Microsoft Delays End of Support for TLS 1.0 and 1.1 -" (https://mcpmag.com/articles/202

0/04/02/microsoft-tls-1-0-and-1-1.aspx) . Microsoft Certified Professional Magazine Online.

29. "TLS 1.2 FAQ – Knowledge Base" (https://answers.psionline.com/knowledgebase/tls-1-2-faq) .

Answers.psionline.com. Retrieved February 20, 2022.

30. T. Dierks, E. Rescorla (August 2008). "Finished" (https://datatracker.ietf.org/doc/html/rfc5246#section-

7.4.9) . The Transport Layer Security (TLS) Protocol Version 1.2 (https://datatracker.ietf.org/doc/html/rf
c5246) . sec. 7.4.9. doi:10.17487/RFC5246 (https://doi.org/10.17487%2FRFC5246) . RFC 5246 (http

s://datatracker.ietf.org/doc/html/rfc5246) .

31. "Differences between TLS 1.2 and TLS 1.3 (#TLS13)" (https://web.archive.org/web/20190919000200/htt
ps://www.wolfssl.com/differences-between-tls-12-and-tls-13-9) . WolfSSL. September 18, 2019.

Archived from the original (https://www.wolfssl.com/differences-between-tls-12-and-tls-13-9) on

September 19, 2019. Retrieved September 18, 2019.

32. "NSS 3.29 release notes" (https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/NSS_3.29_rel
ease_notes) . Mozilla Developer Network. February 2017. Archived (https://web.archive.org/web/20170

222052829/https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/NSS_3.29_release_notes)

from the original on February 22, 2017.

33. "Enable TLS 1.3 by default" (https://bugzilla.mozilla.org/show_bug.cgi?id=1310516) . Bugzilla@Mozilla.
October 16, 2016. Retrieved October 10, 2017.

34. "Firefox — Notes (60.0)" (https://www.mozilla.org/en-US/firefox/60.0/releasenotes) . Mozilla. Retrieved

May 10, 2018.

35. "ProxySG, ASG and WSS will interrupt SSL connections when clients using TLS 1.3 access sites also
using TLS 1.3" (https://bluecoat.force.com/knowledgebase/articles/Technical_Alert/000032878) .

BlueTouch Online. May 16, 2017. Archived (https://web.archive.org/web/20170912061432/http://bluecoa

t.force.com/knowledgebase/articles/Technical_Alert/000032878) from the original on September 12,

2017. Retrieved September 11, 2017.

36. "TLS 1.3 IETF 100 Hackathon" (https://web.archive.org/web/20180115220635/https://datatracker.ietf.or

g/meeting/100/materials/slides-100-hackathon-sessa-tls-13) . Archived from the original (https://datatr

acker.ietf.org/meeting/100/materials/slides-100-hackathon-sessa-tls-13) on January 15, 2018.

https://web.archive.org/web/20140508025330/http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://www.thesslstore.com/blog/twitter-will-deprecate-support-for-tls-1-0-tls-1-1-on-july-15
https://mcpmag.com/articles/2020/04/02/microsoft-tls-1-0-and-1-1.aspx
https://answers.psionline.com/knowledgebase/tls-1-2-faq
https://datatracker.ietf.org/doc/html/rfc5246#section-7.4.9
https://datatracker.ietf.org/doc/html/rfc5246
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.17487%2FRFC5246
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5246
https://web.archive.org/web/20190919000200/https://www.wolfssl.com/differences-between-tls-12-and-tls-13-9
https://www.wolfssl.com/differences-between-tls-12-and-tls-13-9
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/NSS_3.29_release_notes
https://web.archive.org/web/20170222052829/https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/NSS_3.29_release_notes
https://bugzilla.mozilla.org/show_bug.cgi?id=1310516
https://www.mozilla.org/en-US/firefox/60.0/releasenotes
https://bluecoat.force.com/knowledgebase/articles/Technical_Alert/000032878
https://web.archive.org/web/20170912061432/http://bluecoat.force.com/knowledgebase/articles/Technical_Alert/000032878
https://web.archive.org/web/20180115220635/https://datatracker.ietf.org/meeting/100/materials/slides-100-hackathon-sessa-tls-13
https://datatracker.ietf.org/meeting/100/materials/slides-100-hackathon-sessa-tls-13

37. IETF – Internet Engineering Task Force (November 12, 2017), IETF Hackathon Presentations and Awards

(https://ghostarchive.org/varchive/youtube/20211028/33XW5yzjtME) , archived from the original (http
s://www.youtube.com/watch?v=33XW5yzjtME&t=2338) on October 28, 2021, retrieved November 14,

2017

38. "Hurrah! TLS 1.3 is here. Now to implement it and put it into software" (https://www.theregister.co.uk/201

8/03/27/with_tls_13_signed_off_its_implementation_time) . Retrieved March 28, 2018.

39. IETF - Internet Engineering Task Force (July 15, 2018), IETF102-HACKATHON-20180715-1400 (https://gh

ostarchive.org/varchive/youtube/20211028/u6rz4PWA_As) , archived from the original (https://www.yo

utube.com/watch?v=u6rz4PWA_As&t=4526) on October 28, 2021, retrieved July 18, 2018

40. "wolfSSL TLS 1.3 BETA Release Now Available" (https://www.wolfssl.com/wolfssl-tls-1-3-beta-release-no
w-available) . info@wolfssl.com. May 11, 2017. Retrieved May 11, 2017.

41. "TLS 1.3 PROTOCOL SUPPORT" (https://www.wolfssl.com/docs/tls13) . info@wolfssl.com.

42. "TLS 1.3 Draft 28 Support in wolfSSL" (https://www.wolfssl.com/tls-1-3-draft-28-support-wolfssl) .

info@wolfssl.com. June 14, 2018. Retrieved June 14, 2018.

43. "OpenSSL 1.1.1 Is Released" (https://www.openssl.org/blog/blog/2018/09/11/release111) . Matt

Caswell. September 11, 2018. Retrieved December 19, 2018.

44. "Protocols in TLS/SSL (Schannel SSP)" (https://docs.microsoft.com/en-us/windows/win32/secauthn/pro
tocols-in-tls-ssl--schannel-ssp) . Microsoft Docs. Retrieved November 24, 2021.

45. Hoffman-Andrews, Jacob (February 26, 2019). "ETS Isn't TLS and You Shouldn't Use It" (https://www.eff.o

rg/deeplinks/2019/02/ets-isnt-tls-and-you-shouldnt-use-it) . Electronic Frontier Foundation. Retrieved

February 27, 2019.

46. TS 103 523-3 - V1.1.1 - CYBER; Middlebox Security Protocol; Part 3: Profile for enterprise network and

data centre access control (https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.01.01_6

0/ts_10352303v010101p.pdf#page=5) (PDF). ETSI.org. Archived (https://web.archive.org/web/201811

14104718/https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.01.01_60/ts_10352303v0
10101p.pdf) (PDF) from the original on November 14, 2018.

47. Cory Doctorow (February 26, 2019). "Monumental Recklessness" (https://boingboing.net/2019/02/26/m

onumental-recklessness.html) . Boing Boing. Archived (https://web.archive.org/web/20190227071044/

boingboing.net/2019/02/26/monumental-recklessness.html) from the original on February 27, 2019.

48. Rea, Scott (2013). "Alternatives to Certification Authorities for a Secure Web" (https://www.rsaconferenc

e.com/writable/presentations/file_upload/sec-t02_final.pdf) (PDF). RSA Conference Asia Pacific.

Archived (https://web.archive.org/web/20161007222635/https://www.rsaconference.com/writable/pres

entations/file_upload/sec-t02_final.pdf) (PDF) from the original on October 7, 2016. Retrieved
September 7, 2016.

https://ghostarchive.org/varchive/youtube/20211028/33XW5yzjtME
https://www.youtube.com/watch?v=33XW5yzjtME&t=2338
https://www.theregister.co.uk/2018/03/27/with_tls_13_signed_off_its_implementation_time
https://ghostarchive.org/varchive/youtube/20211028/u6rz4PWA_As
https://www.youtube.com/watch?v=u6rz4PWA_As&t=4526
https://www.wolfssl.com/wolfssl-tls-1-3-beta-release-now-available
https://www.wolfssl.com/docs/tls13
https://www.wolfssl.com/tls-1-3-draft-28-support-wolfssl
https://www.openssl.org/blog/blog/2018/09/11/release111
https://docs.microsoft.com/en-us/windows/win32/secauthn/protocols-in-tls-ssl--schannel-ssp
https://www.eff.org/deeplinks/2019/02/ets-isnt-tls-and-you-shouldnt-use-it
https://en.m.wikipedia.org/wiki/Electronic_Frontier_Foundation
https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.01.01_60/ts_10352303v010101p.pdf#page=5
https://en.m.wikipedia.org/wiki/PDF
https://en.m.wikipedia.org/wiki/ETSI
https://web.archive.org/web/20181114104718/https://www.etsi.org/deliver/etsi_ts/103500_103599/10352303/01.01.01_60/ts_10352303v010101p.pdf
https://en.m.wikipedia.org/wiki/Cory_Doctorow
https://boingboing.net/2019/02/26/monumental-recklessness.html
https://en.m.wikipedia.org/wiki/Boing_Boing
https://web.archive.org/web/20190227071044/boingboing.net/2019/02/26/monumental-recklessness.html
https://www.rsaconference.com/writable/presentations/file_upload/sec-t02_final.pdf
https://web.archive.org/web/20161007222635/https://www.rsaconference.com/writable/presentations/file_upload/sec-t02_final.pdf

49. "Counting SSL certificates" (https://web.archive.org/web/20150516035536/http://news.netcraft.com/arc

hives/2015/05/13/counting-ssl-certificates.html) . Archived from the original (https://news.netcraft.co
m/archives/2015/05/13/counting-ssl-certificates.html) on May 16, 2015. Retrieved February 20, 2022.

50. Raymond, Art (August 3, 2017). "Lehi's DigiCert swallows web security competitor in $1 billion deal" (http

s://www.deseretnews.com/article/865686081/Lehis-DigiCert-swallows-web-security-competitor-in-1-billi

on-deal.html) . Deseret News. Retrieved May 21, 2020.

51. "Market share trends for SSL certificate authorities" (https://w3techs.com/technologies/history_overvie

w/ssl_certificate) . W3Techs. Retrieved May 21, 2020.

52. Ryan Singel (March 24, 2010). "Law Enforcement Appliance Subverts SSL" (https://www.wired.com/threat

level/2010/03/packet-forensics) . wired.com. Archived (https://web.archive.org/web/20140412151324/
http://www.wired.com/threatlevel/2010/03/packet-forensics) from the original on April 12, 2014.

53. Seth Schoen (March 24, 2010). "New Research Suggests That Governments May Fake SSL Certificates"

(https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl) . EFF.org.

Archived (https://web.archive.org/web/20100325223422/http://www.eff.org/deeplinks/2010/03/researc
hers-reveal-likelihood-governments-fake-ssl) from the original on March 25, 2010.

54. P. Eronen, Ed. (December 2005). "Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)" (http

s://tools.ietf.org/html/rfc4279) . Internet Engineering Task Force. RFC 4279 (https://tools.ietf.org/html/
rfc4279) . Archived (https://web.archive.org/web/20130905074722/http://tools.ietf.org/html/rfc427

9) from the original on September 5, 2013. Retrieved September 9, 2013.

55. D. Taylor, Ed. (November 2007). "Using the Secure Remote Password (SRP) Protocol for TLS

Authentication" (https://tools.ietf.org/html/rfc5054) . Internet Engineering Task Force. RFC 5054 (http
s://tools.ietf.org/html/rfc5054) . Archived (https://web.archive.org/web/20141207151603/http://tools.i

etf.org/html/rfc5054) from the original on December 7, 2014. Retrieved December 21, 2014.

56. Gothard, Peter (July 31, 2013). "Google updates SSL certificates to 2048-bit encryption" (http://www.com

puting.co.uk/ctg/news/2285984/google-updates-ssl-certificates-to-2048bit-encryption) . Computing.
Incisive Media. Archived (https://web.archive.org/web/20130922082322/http://www.computing.co.uk/ct

g/news/2285984/google-updates-ssl-certificates-to-2048bit-encryption) from the original on

September 22, 2013. Retrieved September 9, 2013.

57. "The value of 2,048-bit encryption: Why encryption key length matters" (http://searchsecurity.techtarget.c
om/answer/From-1024-to-2048-bit-The-security-effect-of-encryption-key-length) . SearchSecurity.

Archived (https://web.archive.org/web/20180116081141/http://searchsecurity.techtarget.com/answer/F

rom-1024-to-2048-bit-The-security-effect-of-encryption-key-length) from the original on January 16,

2018. Retrieved December 18, 2017.

58. Sean Turner (September 17, 2015). "Consensus: remove DSA from TLS 1.3" (https://www.ietf.org/mail-ar

chive/web/tls/current/msg17680.html) . Archived (https://web.archive.org/web/20151003193113/htt

p://www.ietf.org/mail-archive/web/tls/current/msg17680.html) from the original on October 3, 2015.

https://web.archive.org/web/20150516035536/http://news.netcraft.com/archives/2015/05/13/counting-ssl-certificates.html
https://news.netcraft.com/archives/2015/05/13/counting-ssl-certificates.html
https://www.deseretnews.com/article/865686081/Lehis-DigiCert-swallows-web-security-competitor-in-1-billion-deal.html
https://w3techs.com/technologies/history_overview/ssl_certificate
https://en.m.wikipedia.org/wiki/Ryan_Singel
https://www.wired.com/threatlevel/2010/03/packet-forensics
https://en.m.wikipedia.org/wiki/Wired_(magazine)
https://web.archive.org/web/20140412151324/http://www.wired.com/threatlevel/2010/03/packet-forensics
https://en.m.wikipedia.org/wiki/Seth_Schoen
https://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl
https://en.m.wikipedia.org/wiki/Electronic_Frontier_Foundation
https://web.archive.org/web/20100325223422/http://www.eff.org/deeplinks/2010/03/researchers-reveal-likelihood-governments-fake-ssl
https://tools.ietf.org/html/rfc4279
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://tools.ietf.org/html/rfc4279
https://web.archive.org/web/20130905074722/http://tools.ietf.org/html/rfc4279
https://tools.ietf.org/html/rfc5054
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://tools.ietf.org/html/rfc5054
https://web.archive.org/web/20141207151603/http://tools.ietf.org/html/rfc5054
http://www.computing.co.uk/ctg/news/2285984/google-updates-ssl-certificates-to-2048bit-encryption
https://web.archive.org/web/20130922082322/http://www.computing.co.uk/ctg/news/2285984/google-updates-ssl-certificates-to-2048bit-encryption
http://searchsecurity.techtarget.com/answer/From-1024-to-2048-bit-The-security-effect-of-encryption-key-length
https://web.archive.org/web/20180116081141/http://searchsecurity.techtarget.com/answer/From-1024-to-2048-bit-The-security-effect-of-encryption-key-length
https://www.ietf.org/mail-archive/web/tls/current/msg17680.html
https://web.archive.org/web/20151003193113/http://www.ietf.org/mail-archive/web/tls/current/msg17680.html

59. RFC 8422

60. "GOST 28147-89 Cipher Suites for Transport Layer Security (TLS)" (https://datatracker.ietf.org/doc/html/
draft-chudov-cryptopro-cptls-04) . IETF.org. December 8, 2008. Archived (https://web.archive.org/web/2

0081211144308/tools.ietf.org/html/draft-chudov-cryptopro-cptls-04) from the original on December

11, 2008.

61. RFC 5288 (https://datatracker.ietf.org/doc/html/rfc5288) , 5289 (https://datatracker.ietf.org/doc/html/r
fc5289)

62. RFC 6655 (https://datatracker.ietf.org/doc/html/rfc6655) , 7251 (https://datatracker.ietf.org/doc/html/r

fc7251)

63. RFC 6367 (https://datatracker.ietf.org/doc/html/rfc6367)

64. RFC 5932 (https://datatracker.ietf.org/doc/html/rfc5932) , 6367 (https://datatracker.ietf.org/doc/html/r

fc6367)

65. RFC 6209 (https://datatracker.ietf.org/doc/html/rfc6209)

66. RFC 4162 (https://datatracker.ietf.org/doc/html/rfc4162)

67. "On the Practical (In-)Security of 64-bit Block Ciphers — Collision Attacks on HTTP over TLS and

OpenVPN" (https://sweet32.info/SWEET32_CCS16.pdf) (PDF). October 28, 2016. Archived (https://web.

archive.org/web/20170424021101/https://sweet32.info/SWEET32_CCS16.pdf) (PDF) from the original
on April 24, 2017. Retrieved June 8, 2017.

68. "NIST Special Publication 800-57 Recommendation for Key Management — Part 1: General (Revised)" (htt

ps://web.archive.org/web/20140606050814/http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57

-Part1-revised2_Mar08-2007.pdf) (PDF). March 8, 2007. Archived from the original (http://csrc.nist.gov/
publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf) (PDF) on June 6, 2014.

Retrieved July 3, 2014.

69. Qualys SSL Labs. "SSL/TLS Deployment Best Practices" (https://www.ssllabs.com/projects/best-practice

s/index.html) . Archived (https://web.archive.org/web/20150704101956/https://www.ssllabs.com/proj
ects/best-practices/index.html) from the original on July 4, 2015. Retrieved June 2, 2015.

70. RFC 5469 (https://datatracker.ietf.org/doc/html/rfc5469)

71. RFC 7905 (https://datatracker.ietf.org/doc/html/rfc7905)

72. "RFC 5246 - The Transport Layer Security (TLS) Protocol Version 1.2" (https://datatracker.ietf.org/doc/ht
ml/rfc5246) . Datatracker.ietf.org. Retrieved February 20, 2022.

73. "Http vs https" (https://www.instantssl.com/ssl-certificate-products/https.html) . Archived (https://web.

archive.org/web/20150212105201/https://www.instantssl.com/ssl-certificate-products/https.html)

from the original on February 12, 2015. Retrieved February 12, 2015.

https://datatracker.ietf.org/doc/html/draft-chudov-cryptopro-cptls-04
https://web.archive.org/web/20081211144308/tools.ietf.org/html/draft-chudov-cryptopro-cptls-04
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5288
https://datatracker.ietf.org/doc/html/rfc5289
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6655
https://datatracker.ietf.org/doc/html/rfc7251
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6367
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5932
https://datatracker.ietf.org/doc/html/rfc6367
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6209
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc4162
https://sweet32.info/SWEET32_CCS16.pdf
https://web.archive.org/web/20170424021101/https://sweet32.info/SWEET32_CCS16.pdf
https://web.archive.org/web/20140606050814/http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
https://www.ssllabs.com/projects/best-practices/index.html
https://web.archive.org/web/20150704101956/https://www.ssllabs.com/projects/best-practices/index.html
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc5469
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc7905
https://datatracker.ietf.org/doc/html/rfc5246
https://www.instantssl.com/ssl-certificate-products/https.html
https://web.archive.org/web/20150212105201/https://www.instantssl.com/ssl-certificate-products/https.html

74. As of May 07, 2022. "SSL Pulse: Survey of the SSL Implementation of the Most Popular Websites" (http

s://www.ssllabs.com/ssl-pulse) . Qualys. Retrieved May 31, 2022.

75. ivanr (March 19, 2013). "RC4 in TLS is Broken: Now What?" (https://community.qualys.com/blogs/securit

ylabs/2013/03/19/rc4-in-tls-is-broken-now-what) . Qualsys Security Labs. Archived (https://web.archive.

org/web/20130827044512/https://community.qualys.com/blogs/securitylabs/2013/03/19/rc4-in-tls-is-b

roken-now-what) from the original on August 27, 2013. Retrieved July 30, 2013.

76. Bodo Möller, Thai Duong & Krzysztof Kotowicz. "This POODLE Bites: Exploiting The SSL 3.0 Fallback" (htt

ps://www.openssl.org/~bodo/ssl-poodle.pdf) (PDF). Archived (https://web.archive.org/web/20141014

224443/https://www.openssl.org/~bodo/ssl-poodle.pdf) (PDF) from the original on October 14, 2014.

Retrieved October 15, 2014.

77. "Internet Explorer 11 has retired and is officially out of support—what you need to know" (https://blogs.wi

ndows.com/windowsexperience/2022/06/15/internet-explorer-11-has-retired-and-is-officially-out-of-supp

ort-what-you-need-to-know) . June 15, 2022. Retrieved June 15, 2022.

78. "Internet Explorer 11 desktop app support ended for certain versions of Windows 10" (https://docs.micro
soft.com/lifecycle/announcements/internet-explorer-11-end-of-support-windows-10) . Retrieved

June 17, 2022.

79. "Java Secure Socket Extension (JSSE) Reference Guide" (https://docs.oracle.com/en/java/javase/17/sec
urity/java-secure-socket-extension-jsse-reference-guide.html) . Oracle Help Center. Retrieved

December 24, 2021.

80. Georgiev, Martin; Iyengar, Subodh; Jana, Suman; Anubhai, Rishita; Boneh, Dan; Shmatikov, Vitaly (2012).

The most dangerous code in the world: validating SSL certificates in non-browser software. Proceedings
of the 2012 ACM conference on Computer and communications security (http://www.cs.utexas.edu/~sh

mat/shmat_ccs12.pdf) (PDF). pp. 38–49. ISBN 978-1-4503-1651-4. Archived (https://web.archive.org/w

eb/20171022194807/http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf) (PDF) from the original on

October 22, 2017.

81. "The Use of the SIPS URI Scheme in the Session Initiation Protocol (SIP)" (https://tools.ietf.org/html/rfc

5630) . RFC 5630 (https://tools.ietf.org/html/rfc5630) .

82. "Summarizing Known Attacks on Transport Layer Security (TLS) and Datagram TLS (DTLS)" (https://tool

s.ietf.org/html/rfc7457) . RFC 7457 (https://tools.ietf.org/html/rfc7457) . Archived (https://web.archiv
e.org/web/20160304201813/https://tools.ietf.org/html/rfc7457) from the original on March 4, 2016.

83. "CVE – CVE-2009-3555" (http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555) . Archived (h

ttps://web.archive.org/web/20160104234608/http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009

-3555) from the original on January 4, 2016.

https://www.ssllabs.com/ssl-pulse
https://en.m.wikipedia.org/wiki/Qualys
https://community.qualys.com/blogs/securitylabs/2013/03/19/rc4-in-tls-is-broken-now-what
https://web.archive.org/web/20130827044512/https://community.qualys.com/blogs/securitylabs/2013/03/19/rc4-in-tls-is-broken-now-what
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://web.archive.org/web/20141014224443/https://www.openssl.org/~bodo/ssl-poodle.pdf
https://blogs.windows.com/windowsexperience/2022/06/15/internet-explorer-11-has-retired-and-is-officially-out-of-support-what-you-need-to-know
https://docs.microsoft.com/lifecycle/announcements/internet-explorer-11-end-of-support-windows-10
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html
http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-1-4503-1651-4
https://web.archive.org/web/20171022194807/http://www.cs.utexas.edu/~shmat/shmat_ccs12.pdf
https://tools.ietf.org/html/rfc5630
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://tools.ietf.org/html/rfc5630
https://tools.ietf.org/html/rfc7457
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://tools.ietf.org/html/rfc7457
https://web.archive.org/web/20160304201813/https://tools.ietf.org/html/rfc7457
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555
https://web.archive.org/web/20160104234608/http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555

84. Rescorla, Eric (November 5, 2009). "Understanding the TLS Renegotiation Attack" (http://www.educatedg

uesswork.org/2009/11/understanding_the_tls_renegoti.html) . Educated Guesswork. Archived (https://
web.archive.org/web/20120211120608/http://www.educatedguesswork.org/2009/11/understanding_th

e_tls_renegoti.html) from the original on February 11, 2012. Retrieved November 27, 2009.

85. "SSL_CTX_set_options SECURE_RENEGOTIATION" (https://www.openssl.org/docs/ssl/SSL_CTX_set_opti

ons.html#SECURE_RENEGOTIATION) . OpenSSL Docs. February 25, 2010. Archived (https://web.archiv
e.org/web/20101126121933/http://openssl.org/docs/ssl/SSL_CTX_set_options.html#SECURE_RENEGO

TIATION) from the original on November 26, 2010. Retrieved November 18, 2010.

86. "GnuTLS 2.10.0 released" (http://article.gmane.org/gmane.network.gnutls.general/2046) . GnuTLS

release notes. June 25, 2010. Archived (https://web.archive.org/web/20151017033726/http://article.gm
ane.org/gmane.network.gnutls.general/2046) from the original on October 17, 2015. Retrieved July 24,

2011.

87. "NSS 3.12.6 release notes" (https://web.archive.org/web/20120306184633/https://developer.mozilla.or

g/NSS_3.12.6_release_notes) . NSS release notes. March 3, 2010. Archived from the original (https://de
veloper.mozilla.org/NSS_3.12.6_release_notes) on March 6, 2012. Retrieved July 24, 2011.

88. A. Langley; N. Modadugu; B. Moeller (June 2, 2010). "Transport Layer Security (TLS) False Start" (http://to

ols.ietf.org/html/draft-bmoeller-tls-falsestart-00) . Internet Engineering Task Force. IETF. Archived (http
s://web.archive.org/web/20130905215608/http://tools.ietf.org/html/draft-bmoeller-tls-falsestart-00)

from the original on September 5, 2013. Retrieved July 31, 2013.

89. Gruener, Wolfgang. "False Start: Google Proposes Faster Web, Chrome Supports It Already" (https://web.a

rchive.org/web/20101007061707/http://www.conceivablytech.com/3299/products/false-start-google-pr
oposes-faster-web-chrome-supports-it-already) . Archived from the original (http://www.conceivablytec

h.com/3299/products/false-start-google-proposes-faster-web-chrome-supports-it-already) on October

7, 2010. Retrieved March 9, 2011.

90. Smith, Brian. "Limited rollback attacks in False Start and Snap Start" (http://www.ietf.org/mail-archive/we
b/tls/current/msg06933.html) . Archived (https://web.archive.org/web/20110504014418/http://www.ie

tf.org/mail-archive/web/tls/current/msg06933.html) from the original on May 4, 2011. Retrieved

March 9, 2011.

91. Dimcev, Adrian. "False Start" (http://www.carbonwind.net/blog/post/Random-SSLTLS-101-False-Start.a
spx) . Random SSL/TLS 101. Archived (https://web.archive.org/web/20110504060256/http://www.carb

onwind.net/blog/post/Random-SSLTLS-101-False-Start.aspx) from the original on May 4, 2011.

Retrieved March 9, 2011.

http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
https://web.archive.org/web/20120211120608/http://www.educatedguesswork.org/2009/11/understanding_the_tls_renegoti.html
https://www.openssl.org/docs/ssl/SSL_CTX_set_options.html#SECURE_RENEGOTIATION
https://web.archive.org/web/20101126121933/http://openssl.org/docs/ssl/SSL_CTX_set_options.html#SECURE_RENEGOTIATION
http://article.gmane.org/gmane.network.gnutls.general/2046
https://web.archive.org/web/20151017033726/http://article.gmane.org/gmane.network.gnutls.general/2046
https://web.archive.org/web/20120306184633/https://developer.mozilla.org/NSS_3.12.6_release_notes
https://developer.mozilla.org/NSS_3.12.6_release_notes
http://tools.ietf.org/html/draft-bmoeller-tls-falsestart-00
https://web.archive.org/web/20130905215608/http://tools.ietf.org/html/draft-bmoeller-tls-falsestart-00
https://web.archive.org/web/20101007061707/http://www.conceivablytech.com/3299/products/false-start-google-proposes-faster-web-chrome-supports-it-already
http://www.conceivablytech.com/3299/products/false-start-google-proposes-faster-web-chrome-supports-it-already
http://www.ietf.org/mail-archive/web/tls/current/msg06933.html
https://web.archive.org/web/20110504014418/http://www.ietf.org/mail-archive/web/tls/current/msg06933.html
http://www.carbonwind.net/blog/post/Random-SSLTLS-101-False-Start.aspx
https://web.archive.org/web/20110504060256/http://www.carbonwind.net/blog/post/Random-SSLTLS-101-False-Start.aspx

92. Mavrogiannopoulos, Nikos; Vercautern, Frederik; Velichkov, Vesselin; Preneel, Bart (2012). A cross-

protocol attack on the TLS protocol. Proceedings of the 2012 ACM conference on Computer and
communications security (https://www.cosic.esat.kuleuven.be/publications/article-2216.pdf) (PDF).

pp. 62–72. ISBN 978-1-4503-1651-4. Archived (https://web.archive.org/web/20150706104327/https://w

ww.cosic.esat.kuleuven.be/publications/article-2216.pdf) (PDF) from the original on July 6, 2015.

93. "SMACK: State Machine AttaCKs" (https://www.smacktls.com) . Archived (https://web.archive.org/web/
20150312074827/https://www.smacktls.com) from the original on March 12, 2015.

94. Goodin, Dan (May 20, 2015). "HTTPS-crippling attack threatens tens of thousands of Web and mail

servers" (https://arstechnica.com/security/2015/05/https-crippling-attack-threatens-tens-of-thousands-o

f-web-and-mail-servers) . Ars Technica. Archived (https://web.archive.org/web/20170519130937/http
s://arstechnica.com/security/2015/05/https-crippling-attack-threatens-tens-of-thousands-of-web-and-ma

il-servers) from the original on May 19, 2017.

95. Leyden, John (March 1, 2016). "One-third of all HTTPS websites open to DROWN attack" (https://www.the

register.com/2016/03/01/drown_tls_protocol_flaw) . The Register. Archived (https://web.archive.org/w
eb/20160301215536/http://www.theregister.co.uk/2016/03/01/drown_tls_protocol_flaw) from the

original on March 1, 2016. Retrieved March 2, 2016.

96. "More than 11 million HTTPS websites imperiled by new decryption attack" (https://arstechnica.com/info
rmation-technology/2016/03/more-than-13-million-https-websites-imperiled-by-new-decryption-attack) .

Ars Technica. March 2016. Archived (https://web.archive.org/web/20160301191108/http://arstechnica.c

om/security/2016/03/more-than-13-million-https-websites-imperiled-by-new-decryption-attack) from

the original on March 1, 2016. Retrieved March 2, 2016.

97. Thai Duong & Juliano Rizzo (May 13, 2011). "Here Come The ⊕ Ninjas" (https://bug665814.bugzilla.mozil

la.org/attachment.cgi?id=540839) . Archived (https://web.archive.org/web/20140603102506/https://bu

g665814.bugzilla.mozilla.org/attachment.cgi?id=540839) from the original on June 3, 2014.

98. Goodin, Dan (September 19, 2011). "Hackers break SSL encryption used by millions of sites" (https://ww
w.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl) . The Register. Archived (https://web.archiv

e.org/web/20120210185309/http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl)

from the original on February 10, 2012.

99. "Y Combinator comments on the issue" (http://news.ycombinator.com/item?id=3015498) . September
20, 2011. Archived (https://web.archive.org/web/20120331225714/http://news.ycombinator.com/item?i

d=3015498) from the original on March 31, 2012.

100. "Security of CBC Ciphersuites in SSL/TLS: Problems and Countermeasures" (https://web.archive.org/we

b/20120630143111/http://www.openssl.org/~bodo/tls-cbc.txt) . May 20, 2004. Archived from the
original (https://www.openssl.org/~bodo/tls-cbc.txt) on June 30, 2012.

https://www.cosic.esat.kuleuven.be/publications/article-2216.pdf
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-1-4503-1651-4
https://web.archive.org/web/20150706104327/https://www.cosic.esat.kuleuven.be/publications/article-2216.pdf
https://www.smacktls.com/
https://web.archive.org/web/20150312074827/https://www.smacktls.com
https://arstechnica.com/security/2015/05/https-crippling-attack-threatens-tens-of-thousands-of-web-and-mail-servers
https://web.archive.org/web/20170519130937/https://arstechnica.com/security/2015/05/https-crippling-attack-threatens-tens-of-thousands-of-web-and-mail-servers
https://www.theregister.com/2016/03/01/drown_tls_protocol_flaw
https://web.archive.org/web/20160301215536/http://www.theregister.co.uk/2016/03/01/drown_tls_protocol_flaw
https://arstechnica.com/information-technology/2016/03/more-than-13-million-https-websites-imperiled-by-new-decryption-attack
https://web.archive.org/web/20160301191108/http://arstechnica.com/security/2016/03/more-than-13-million-https-websites-imperiled-by-new-decryption-attack
https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
https://web.archive.org/web/20140603102506/https://bug665814.bugzilla.mozilla.org/attachment.cgi?id=540839
https://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl
https://en.m.wikipedia.org/wiki/The_Register
https://web.archive.org/web/20120210185309/http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl
http://news.ycombinator.com/item?id=3015498
https://web.archive.org/web/20120331225714/http://news.ycombinator.com/item?id=3015498
https://web.archive.org/web/20120630143111/http://www.openssl.org/~bodo/tls-cbc.txt
https://www.openssl.org/~bodo/tls-cbc.txt

101. Ristic, Ivan (September 10, 2013). "Is BEAST Still a Threat?" (https://community.qualys.com/blogs/securit

ylabs/2013/09/10/is-beast-still-a-threat) . Archived (https://web.archive.org/web/20141012121824/htt
ps://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat) from the original on

October 12, 2014. Retrieved October 8, 2014.

102. "Chrome Stable Release" (http://googlechromereleases.blogspot.jp/2011/10/chrome-stable-release.ht

ml) . Chrome Releases. October 25, 2011. Archived (https://web.archive.org/web/20150220020306/htt
p://googlechromereleases.blogspot.jp/2011/10/chrome-stable-release.html) from the original on

February 20, 2015. Retrieved February 1, 2015.

103. "Attack against TLS-protected communications" (https://blog.mozilla.org/security/2011/09/27/attack-ag

ainst-tls-protected-communications) . Mozilla Security Blog. Mozilla. September 27, 2011. Archived (htt
ps://web.archive.org/web/20150304221307/https://blog.mozilla.org/security/2011/09/27/attack-agains

t-tls-protected-communications) from the original on March 4, 2015. Retrieved February 1, 2015.

104. Smith, Brian (September 30, 2011). "(CVE-2011-3389) Rizzo/Duong chosen plaintext attack (BEAST) on

SSL/TLS 1.0 (facilitated by websockets-76)" (https://bugzilla.mozilla.org/show_bug.cgi?id=665814) .

105. MSRC (January 10, 2012). Vulnerability in SSL/TLS Could Allow Information Disclosure (2643584) (http

s://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2012/ms12-006) . Security Bulletins

(Technical report). MS12-006. Retrieved October 24, 2021 – via Microsoft Docs.

106. Ristic, Ivan (October 31, 2013). "Apple Enabled BEAST Mitigations in OS X 10.9 Mavericks" (https://comm

unity.qualys.com/blogs/securitylabs/2013/10/31/apple-enabled-beast-mitigations-in-os-x-109-maveric

ks) . Archived (https://web.archive.org/web/20141012122536/https://community.qualys.com/blogs/se

curitylabs/2013/10/31/apple-enabled-beast-mitigations-in-os-x-109-mavericks) from the original on
October 12, 2014. Retrieved October 8, 2014.

107. Goodin, Dan (September 13, 2012). "Crack in Internet's foundation of trust allows HTTPS session

hijacking" (https://arstechnica.com/security/2012/09/crime-hijacks-https-sessions) . Ars Technica.

Archived (https://web.archive.org/web/20130801104610/http://arstechnica.com/security/2012/09/crim
e-hijacks-https-sessions) from the original on August 1, 2013. Retrieved July 31, 2013.

108. Fisher, Dennis (September 13, 2012). "CRIME Attack Uses Compression Ratio of TLS Requests as Side

Channel to Hijack Secure Sessions" (https://web.archive.org/web/20120915224635/http://threatpost.co

m/en_us/blogs/crime-attack-uses-compression-ratio-tls-requests-side-channel-hijack-secure-sessions-09
1312) . ThreatPost. Archived from the original (http://threatpost.com/en_us/blogs/crime-attack-uses-c

ompression-ratio-tls-requests-side-channel-hijack-secure-sessions-091312) on September 15, 2012.

Retrieved September 13, 2012.

https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
https://web.archive.org/web/20141012121824/https://community.qualys.com/blogs/securitylabs/2013/09/10/is-beast-still-a-threat
http://googlechromereleases.blogspot.jp/2011/10/chrome-stable-release.html
https://web.archive.org/web/20150220020306/http://googlechromereleases.blogspot.jp/2011/10/chrome-stable-release.html
https://blog.mozilla.org/security/2011/09/27/attack-against-tls-protected-communications
https://web.archive.org/web/20150304221307/https://blog.mozilla.org/security/2011/09/27/attack-against-tls-protected-communications
https://bugzilla.mozilla.org/show_bug.cgi?id=665814
https://en.m.wikipedia.org/wiki/Microsoft_Security_Response_Center
https://docs.microsoft.com/en-us/security-updates/SecurityBulletins/2012/ms12-006
https://en.m.wikipedia.org/wiki/Microsoft_Docs
https://community.qualys.com/blogs/securitylabs/2013/10/31/apple-enabled-beast-mitigations-in-os-x-109-mavericks
https://web.archive.org/web/20141012122536/https://community.qualys.com/blogs/securitylabs/2013/10/31/apple-enabled-beast-mitigations-in-os-x-109-mavericks
https://arstechnica.com/security/2012/09/crime-hijacks-https-sessions
https://web.archive.org/web/20130801104610/http://arstechnica.com/security/2012/09/crime-hijacks-https-sessions
https://web.archive.org/web/20120915224635/http://threatpost.com/en_us/blogs/crime-attack-uses-compression-ratio-tls-requests-side-channel-hijack-secure-sessions-091312
http://threatpost.com/en_us/blogs/crime-attack-uses-compression-ratio-tls-requests-side-channel-hijack-secure-sessions-091312

109. Goodin, Dan (August 1, 2013). "Gone in 30 seconds: New attack plucks secrets from HTTPS-protected

pages" (https://arstechnica.com/security/2013/08/gone-in-30-seconds-new-attack-plucks-secrets-from-h
ttps-protected-pages) . Ars Technica. Condé Nast. Archived (https://web.archive.org/web/20130803181

144/http://arstechnica.com/security/2013/08/gone-in-30-seconds-new-attack-plucks-secrets-from-https-

protected-pages) from the original on August 3, 2013. Retrieved August 2, 2013.

110. Leyden, John (August 2, 2013). "Step into the BREACH: New attack developed to read encrypted web
data" (https://www.theregister.co.uk/2013/08/02/breach_crypto_attack) . The Register. Archived (http

s://web.archive.org/web/20130805233414/http://www.theregister.co.uk/2013/08/02/breach_crypto_a

ttack) from the original on August 5, 2013. Retrieved August 2, 2013.

111. P. Gutmann (September 2014). "Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS)" (http://tools.ietf.org/html/rfc7366) . Internet Engineering Task Force.

Archived (https://web.archive.org/web/20150512214100/https://tools.ietf.org/html/rfc7366) from the

original on May 12, 2015.

112. Langley, Adam (December 8, 2014). "The POODLE bites again" (https://www.imperialviolet.org/2014/12/0
8/poodleagain.html) . Archived (https://web.archive.org/web/20141208200653/https://www.imperialvi

olet.org/2014/12/08/poodleagain.html) from the original on December 8, 2014. Retrieved December 8,

2014.

113. "ssl - Safest ciphers to use with the BEAST? (TLS 1.0 exploit) I've read that RC4 is immune" (https://server

fault.com/questions/315042/safest-ciphers-to-use-with-the-beast-tls-1-0-exploit-ive-read-that-rc4-is-

im) . Serverfault.com. Retrieved February 20, 2022.

114. Pouyan Sepehrdad; Serge Vaudenay; Martin Vuagnoux (2011). "Discovery and Exploitation of New Biases
in RC4". In Alex Biryukov; Guang Gong; Douglas R. Stinson (eds.). Selected Areas in Cryptography: 17th

International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010, Revised Selected

Papers. Lecture Notes in Computer Science. Vol. 6544. pp. 74–91. doi:10.1007/978-3-642-19574-7_5 (htt

ps://doi.org/10.1007%2F978-3-642-19574-7_5) . ISBN 978-3-642-19573-0.

115. Green, Matthew (March 12, 2013). "Attack of the week: RC4 is kind of broken in TLS" (http://blog.cryptogr

aphyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html) . Cryptography

Engineering. Archived (https://web.archive.org/web/20130314214026/http://blog.cryptographyengineeri

ng.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html) from the original on March 14, 2013.
Retrieved March 12, 2013.

116. AlFardan, Nadhem; Bernstein, Dan; Paterson, Kenny; Poettering, Bertram; Schuldt, Jacob. "On the Security

of RC4 in TLS" (http://www.isg.rhul.ac.uk/tls) . Royal Holloway University of London. Archived (https://w

eb.archive.org/web/20130315084623/http://www.isg.rhul.ac.uk/tls) from the original on March 15,
2013. Retrieved March 13, 2013.

https://arstechnica.com/security/2013/08/gone-in-30-seconds-new-attack-plucks-secrets-from-https-protected-pages
https://web.archive.org/web/20130803181144/http://arstechnica.com/security/2013/08/gone-in-30-seconds-new-attack-plucks-secrets-from-https-protected-pages
https://www.theregister.co.uk/2013/08/02/breach_crypto_attack
https://web.archive.org/web/20130805233414/http://www.theregister.co.uk/2013/08/02/breach_crypto_attack
http://tools.ietf.org/html/rfc7366
https://web.archive.org/web/20150512214100/https://tools.ietf.org/html/rfc7366
https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://web.archive.org/web/20141208200653/https://www.imperialviolet.org/2014/12/08/poodleagain.html
https://serverfault.com/questions/315042/safest-ciphers-to-use-with-the-beast-tls-1-0-exploit-ive-read-that-rc4-is-im
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2F978-3-642-19574-7_5
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-3-642-19573-0
http://blog.cryptographyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html
https://web.archive.org/web/20130314214026/http://blog.cryptographyengineering.com/2013/03/attack-of-week-rc4-is-kind-of-broken-in.html
http://www.isg.rhul.ac.uk/tls
https://web.archive.org/web/20130315084623/http://www.isg.rhul.ac.uk/tls

117. AlFardan, Nadhem J.; Bernstein, Daniel J.; Paterson, Kenneth G.; Poettering, Bertram; Schuldt, Jacob C. N.

(July 8, 2013). "On the Security of RC4 in TLS and WPA" (http://www.isg.rhul.ac.uk/tls/RC4biases.pdf)
(PDF). Information Security Group. Archived (https://web.archive.org/web/20130922170155/http://www.i

sg.rhul.ac.uk/tls/RC4biases.pdf) (PDF) from the original on September 22, 2013. Retrieved

September 2, 2013.

118. AlFardan, Nadhem J.; Bernstein, Daniel J.; Paterson, Kenneth G.; Poettering, Bertram; Schuldt, Jacob C. N.
(August 15, 2013). On the Security of RC4 in TLS (https://www.usenix.org/sites/default/files/conference/

protected-files/alfardan_sec13_slides.pdf) (PDF). 22nd USENIX Security Symposium. p. 51. Archived (h

ttps://web.archive.org/web/20130922133950/https://www.usenix.org/sites/default/files/conference/pro

tected-files/alfardan_sec13_slides.pdf) (PDF) from the original on September 22, 2013. Retrieved
September 2, 2013. "Plaintext recovery attacks against RC4 in TLS are feasible although not truly

practical"

119. Goodin, Dan (July 15, 2015). "Once-theoretical crypto attack against HTTPS now verges on practicality" (h

ttps://arstechnica.com/security/2015/07/once-theoretical-crypto-attack-against-https-now-verges-on-pra
cticality) . Ars Technical. Conde Nast. Archived (https://web.archive.org/web/20150716084138/http://a

rstechnica.com/security/2015/07/once-theoretical-crypto-attack-against-https-now-verges-on-practical

ity) from the original on July 16, 2015. Retrieved July 16, 2015.

120. "Mozilla Security Server Side TLS Recommended Configurations" (https://wiki.mozilla.org/Security/Server

_Side_TLS) . Mozilla. Archived (https://web.archive.org/web/20150103093047/https://wiki.mozilla.org/

Security/Server_Side_TLS) from the original on January 3, 2015. Retrieved January 3, 2015.

121. "Security Advisory 2868725: Recommendation to disable RC4" (http://blogs.technet.com/b/srd/archive/2
013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx) . Microsoft. November 12,

2013. Archived (https://web.archive.org/web/20131118081816/http://blogs.technet.com/b/srd/archive/

2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx) from the original on

November 18, 2013. Retrieved December 4, 2013.

122. "Ending support for the RC4 cipher in Microsoft Edge and Internet Explorer 11" (https://blogs.windows.co

m/msedgedev/2015/09/01/ending-support-for-the-rc4-cipher-in-microsoft-edge-and-internet-explorer-1

1) . Microsoft Edge Team. September 1, 2015. Archived (https://web.archive.org/web/2015090205434

1/http://blogs.windows.com/msedgedev/2015/09/01/ending-support-for-the-rc4-cipher-in-microsoft-edg
e-and-internet-explorer-11) from the original on September 2, 2015.

123. Langley, Adam (September 1, 2015). "Intent to deprecate: RC4" (https://groups.google.com/a/chromium.

org/forum/#!msg/security-dev/kVfCywocUO8/vgi_rQuhKgAJ) .

124. Barnes, Richard (September 1, 2015). "Intent to ship: RC4 disabled by default in Firefox 44" (https://group
s.google.com/forum/#!topic/mozilla.dev.platform/JIEFcrGhqSM/discussion) . Archived (http://arquivo.

pt/wayback/20110122130054/https://groups.google.com/forum/#!topic/mozilla.dev.platform/JIEFcrGh

qSM/discussion) from the original on January 22, 2011.

http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
https://web.archive.org/web/20130922170155/http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/alfardan_sec13_slides.pdf
https://en.m.wikipedia.org/wiki/USENIX
https://web.archive.org/web/20130922133950/https://www.usenix.org/sites/default/files/conference/protected-files/alfardan_sec13_slides.pdf
https://arstechnica.com/security/2015/07/once-theoretical-crypto-attack-against-https-now-verges-on-practicality
https://web.archive.org/web/20150716084138/http://arstechnica.com/security/2015/07/once-theoretical-crypto-attack-against-https-now-verges-on-practicality
https://wiki.mozilla.org/Security/Server_Side_TLS
https://web.archive.org/web/20150103093047/https://wiki.mozilla.org/Security/Server_Side_TLS
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
https://web.archive.org/web/20131118081816/http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-2868725-recommendation-to-disable-rc4.aspx
https://blogs.windows.com/msedgedev/2015/09/01/ending-support-for-the-rc4-cipher-in-microsoft-edge-and-internet-explorer-11
https://web.archive.org/web/20150902054341/http://blogs.windows.com/msedgedev/2015/09/01/ending-support-for-the-rc4-cipher-in-microsoft-edge-and-internet-explorer-11
https://groups.google.com/a/chromium.org/forum/#!msg/security-dev/kVfCywocUO8/vgi_rQuhKgAJ
https://groups.google.com/forum/#!topic/mozilla.dev.platform/JIEFcrGhqSM/discussion
http://arquivo.pt/wayback/20110122130054/https://groups.google.com/forum/#!topic/mozilla.dev.platform/JIEFcrGhqSM/discussion

125. John Leyden (August 1, 2013). "Gmail, Outlook.com and e-voting 'pwned' on stage in crypto-dodge hack"

(https://www.theregister.co.uk/2013/08/01/gmail_hotmail_hijacking) . The Register. Archived (https://w
eb.archive.org/web/20130801193054/http://www.theregister.co.uk/2013/08/01/gmail_hotmail_hijacki

ng) from the original on August 1, 2013. Retrieved August 1, 2013.

126. "BlackHat USA Briefings" (https://www.blackhat.com/us-13/briefings.html#Smyth) . Black Hat 2013.

Archived (https://web.archive.org/web/20130730124037/http://www.blackhat.com/us-13/briefings.html
#Smyth) from the original on July 30, 2013. Retrieved August 1, 2013.

127. Smyth, Ben; Pironti, Alfredo (2013). Truncating TLS Connections to Violate Beliefs in Web Applications (ht

tps://hal.inria.fr/hal-01102013) . 7th USENIX Workshop on Offensive Technologies (report). Archived (ht

tps://web.archive.org/web/20151106110117/https://hal.inria.fr/hal-01102013) from the original on
November 6, 2015. Retrieved February 15, 2016.

128. Goodin, Dan (July 26, 2016). "New attack bypasses HTTPS protection on Macs, Windows, and Linux" (htt

ps://arstechnica.com/security/2016/07/new-attack-that-cripples-https-crypto-works-on-macs-windows-a

nd-linux) . Ars Technica. Condé Nast. Archived (https://web.archive.org/web/20160727160434/http://ar
stechnica.com/security/2016/07/new-attack-that-cripples-https-crypto-works-on-macs-windows-and-li

nux) from the original on July 27, 2016. Retrieved July 28, 2016.

129. Goodin, Dan (August 24, 2016). "HTTPS and OpenVPN face new attack that can decrypt secret cookies"
(https://arstechnica.com/security/2016/08/new-attack-can-pluck-secrets-from-1-of-https-traffic-affects-t

op-sites) . Ars Technica. Archived (https://web.archive.org/web/20160824181630/http://arstechnica.co

m/security/2016/08/new-attack-can-pluck-secrets-from-1-of-https-traffic-affects-top-sites) from the

original on August 24, 2016. Retrieved August 24, 2016.

130. "Why is it called the 'Heartbleed Bug'?" (https://www.washingtonpost.com/blogs/style-blog/wp/2014/04/

09/why-is-it-called-the-heartbleed-bug) . The Washington Post. April 9, 2014. Archived (https://web.archi

ve.org/web/20141009063758/http://www.washingtonpost.com/blogs/style-blog/wp/2014/04/09/why-is

-it-called-the-heartbleed-bug) from the original on October 9, 2014.

131. "Heartbleed Bug vulnerability [9 April 2014]" (https://blogs.comodo.com/e-commerce/heartbleed-bug-co

modo-urges-openssl-users-to-apply-patch) . Comodo Group. Archived (https://web.archive.org/web/201

40705212748/https://blogs.comodo.com/e-commerce/heartbleed-bug-comodo-urges-openssl-users-to-

apply-patch) from the original on July 5, 2014.

132. Bleichenbacher, Daniel (August 2006). "Bleichenbacher's RSA signature forgery based on implementation

error" (https://web.archive.org/web/20141216203704/http://www.imc.org/ietf-openpgp/mail-archive/ms

g06063.html) . Archived from the original (http://www.imc.org/ietf-openpgp/mail-archive/msg06063.

html) on December 16, 2014.

133. "BERserk" (http://www.intelsecurity.com/advanced-threat-research) . Intel Security: Advanced Threat

Research. September 2014. Archived (https://web.archive.org/web/20150112153121/http://www.intelse

curity.com/advanced-threat-research) from the original on January 12, 2015.

https://www.theregister.co.uk/2013/08/01/gmail_hotmail_hijacking
https://web.archive.org/web/20130801193054/http://www.theregister.co.uk/2013/08/01/gmail_hotmail_hijacking
https://www.blackhat.com/us-13/briefings.html#Smyth
https://web.archive.org/web/20130730124037/http://www.blackhat.com/us-13/briefings.html#Smyth
https://hal.inria.fr/hal-01102013
https://web.archive.org/web/20151106110117/https://hal.inria.fr/hal-01102013
https://arstechnica.com/security/2016/07/new-attack-that-cripples-https-crypto-works-on-macs-windows-and-linux
https://web.archive.org/web/20160727160434/http://arstechnica.com/security/2016/07/new-attack-that-cripples-https-crypto-works-on-macs-windows-and-linux
https://arstechnica.com/security/2016/08/new-attack-can-pluck-secrets-from-1-of-https-traffic-affects-top-sites
https://web.archive.org/web/20160824181630/http://arstechnica.com/security/2016/08/new-attack-can-pluck-secrets-from-1-of-https-traffic-affects-top-sites
https://www.washingtonpost.com/blogs/style-blog/wp/2014/04/09/why-is-it-called-the-heartbleed-bug
https://web.archive.org/web/20141009063758/http://www.washingtonpost.com/blogs/style-blog/wp/2014/04/09/why-is-it-called-the-heartbleed-bug
https://blogs.comodo.com/e-commerce/heartbleed-bug-comodo-urges-openssl-users-to-apply-patch
https://en.m.wikipedia.org/wiki/Comodo_Group
https://web.archive.org/web/20140705212748/https://blogs.comodo.com/e-commerce/heartbleed-bug-comodo-urges-openssl-users-to-apply-patch
https://en.m.wikipedia.org/wiki/Daniel_Bleichenbacher
https://web.archive.org/web/20141216203704/http://www.imc.org/ietf-openpgp/mail-archive/msg06063.html
http://www.imc.org/ietf-openpgp/mail-archive/msg06063.html
http://www.intelsecurity.com/advanced-threat-research
https://web.archive.org/web/20150112153121/http://www.intelsecurity.com/advanced-threat-research

134. Goodin, Dan (February 19, 2015). "Lenovo PCs ship with man-in-the-middle adware that breaks HTTPS

connections" (https://arstechnica.com/information-technology/2015/02/lenovo-pcs-ship-with-man-in-the
-middle-adware-that-breaks-https-connections) . Ars Technica. Archived (https://web.archive.org/web/2

0170912103610/https://arstechnica.com/information-technology/2015/02/lenovo-pcs-ship-with-man-in-

the-middle-adware-that-breaks-https-connections) from the original on September 12, 2017. Retrieved

December 10, 2017.

135. Valsorda, Filippo (February 20, 2015). "Komodia/Superfish SSL validation is broken" (https://blog.filippo.i

o/komodia-superfish-ssl-validation-is-broken) . Filippo.io. Archived (https://web.archive.org/web/20150

224112141/https://blog.filippo.io/komodia-superfish-ssl-validation-is-broken) from the original on

February 24, 2015.

136. Goodin, Dan (May 26, 2016). " "Forbidden attack" makes dozens of HTTPS Visa sites vulnerable to

tampering" (https://arstechnica.com/security/2016/05/faulty-https-settings-leave-dozens-of-visa-sites-vu

lnerable-to-forgery-attacks) . Ars Technica. Archived (https://web.archive.org/web/20160526175713/htt

p://arstechnica.com/security/2016/05/faulty-https-settings-leave-dozens-of-visa-sites-vulnerable-to-forg
ery-attacks) from the original on May 26, 2016. Retrieved May 26, 2016.

137. Clark Estes, Adam (February 24, 2017). "Everything You Need to Know About Cloudbleed, the Latest

Internet Security Disaster" (https://gizmodo.com/everything-you-need-to-know-about-cloudbleed-the-late
s-1792710616) . Gizmodo. Archived (https://web.archive.org/web/20170225013516/http://gizmodo.co

m/everything-you-need-to-know-about-cloudbleed-the-lates-1792710616) from the original on February

25, 2017. Retrieved February 24, 2017.

138. Diffie, Whitfield; van Oorschot, Paul C; Wiener, Michael J. (June 1992). "Authentication and Authenticated
Key Exchanges" (http://citeseer.ist.psu.edu/diffie92authentication.html) . Designs, Codes and

Cryptography. 2 (2): 107–125. CiteSeerX 10.1.1.59.6682 (https://citeseerx.ist.psu.edu/viewdoc/summar

y?doi=10.1.1.59.6682) . doi:10.1007/BF00124891 (https://doi.org/10.1007%2FBF00124891) .

S2CID 7356608 (https://api.semanticscholar.org/CorpusID:7356608) . Archived (https://web.archive.or
g/web/20080313081157/http://citeseer.ist.psu.edu/diffie92authentication.html) from the original on

March 13, 2008. Retrieved February 11, 2008.

139. "Discussion on the TLS mailing list in October 2007" (https://web.archive.org/web/20130922103746/htt

p://www.ietf.org/mail-archive/web/tls/current/msg02134.html) . Archived from the original (http://www
1.ietf.org/mail-archive/web/tls/current/msg02134.html) on September 22, 2013. Retrieved

February 20, 2022.

140. "Protecting data for the long term with forward secrecy" (http://googleonlinesecurity.blogspot.com.au/20

11/11/protecting-data-for-long-term-with.html) . Archived (https://web.archive.org/web/201305061846
54/http://googleonlinesecurity.blogspot.com.au/2011/11/protecting-data-for-long-term-with.html)

from the original on May 6, 2013. Retrieved November 5, 2012.

https://arstechnica.com/information-technology/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections
https://en.m.wikipedia.org/wiki/Ars_Technica
https://web.archive.org/web/20170912103610/https://arstechnica.com/information-technology/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections
https://blog.filippo.io/komodia-superfish-ssl-validation-is-broken
https://web.archive.org/web/20150224112141/https://blog.filippo.io/komodia-superfish-ssl-validation-is-broken
https://arstechnica.com/security/2016/05/faulty-https-settings-leave-dozens-of-visa-sites-vulnerable-to-forgery-attacks
https://web.archive.org/web/20160526175713/http://arstechnica.com/security/2016/05/faulty-https-settings-leave-dozens-of-visa-sites-vulnerable-to-forgery-attacks
https://gizmodo.com/everything-you-need-to-know-about-cloudbleed-the-lates-1792710616
https://en.m.wikipedia.org/wiki/Gizmodo
https://web.archive.org/web/20170225013516/http://gizmodo.com/everything-you-need-to-know-about-cloudbleed-the-lates-1792710616
http://citeseer.ist.psu.edu/diffie92authentication.html
https://en.m.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.59.6682
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1007%2FBF00124891
https://en.m.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:7356608
https://web.archive.org/web/20080313081157/http://citeseer.ist.psu.edu/diffie92authentication.html
https://web.archive.org/web/20130922103746/http://www.ietf.org/mail-archive/web/tls/current/msg02134.html
http://www1.ietf.org/mail-archive/web/tls/current/msg02134.html
http://googleonlinesecurity.blogspot.com.au/2011/11/protecting-data-for-long-term-with.html
https://web.archive.org/web/20130506184654/http://googleonlinesecurity.blogspot.com.au/2011/11/protecting-data-for-long-term-with.html

141. Bernat, Vincent (November 28, 2011). "SSL/TLS & Perfect Forward Secrecy" (https://vincent.bernat.im/e

n/blog/2011-ssl-perfect-forward-secrecy.html) . Archived (https://web.archive.org/web/201208270640
47/http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html) from the original on

August 27, 2012. Retrieved November 5, 2012.

142. "SSL Labs: Deploying Forward Secrecy" (https://community.qualys.com/blogs/securitylabs/2013/06/25/

ssl-labs-deploying-forward-secrecy) . Qualys.com. June 25, 2013. Archived (https://web.archive.org/we
b/20130626193314/https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-f

orward-secrecy) from the original on June 26, 2013. Retrieved July 10, 2013.

143. Ristic, Ivan (August 5, 2013). "SSL Labs: Deploying Forward Secrecy" (https://community.qualys.com/blo

gs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy) . Qualsys. Archived (https://web.archi
ve.org/web/20130920150259/https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-d

eploying-forward-secrecy) from the original on September 20, 2013. Retrieved August 31, 2013.

144. Langley, Adam (June 27, 2013). "How to botch TLS forward secrecy" (https://www.imperialviolet.org/201

3/06/27/botchingpfs.html) . imperialviolet.org. Archived (https://web.archive.org/web/2013080822161
4/https://www.imperialviolet.org/2013/06/27/botchingpfs.html) from the original on August 8, 2013.

145. Daignière, Florent. "TLS "Secrets": Whitepaper presenting the security implications of the deployment of

session tickets (RFC 5077) as implemented in OpenSSL" (https://media.blackhat.com/us-13/US-13-Daign
iere-TLS-Secrets-WP.pdf) (PDF). Matta Consulting Limited. Archived (https://web.archive.org/web/2013

0806233112/https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-WP.pdf) (PDF) from the

original on August 6, 2013. Retrieved August 7, 2013.

146. Daignière, Florent. "TLS "Secrets": What everyone forgot to tell you…" (https://media.blackhat.com/us-13/
US-13-Daigniere-TLS-Secrets-Slides.pdf) (PDF). Matta Consulting Limited. Archived (https://web.archiv

e.org/web/20130805134805/https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-Slides.p

df) (PDF) from the original on August 5, 2013. Retrieved August 7, 2013.

147. L.S. Huang; S. Adhikarla; D. Boneh; C. Jackson (2014). "An Experimental Study of TLS Forward Secrecy
Deployments" (http://crypto.stanford.edu/~dabo/pubs/abstracts/websec_ecc.html) . IEEE Internet

Computing. 18 (6): 43–51. CiteSeerX 10.1.1.663.4653 (https://citeseerx.ist.psu.edu/viewdoc/summary?d

oi=10.1.1.663.4653) . doi:10.1109/MIC.2014.86 (https://doi.org/10.1109%2FMIC.2014.86) .

S2CID 11264303 (https://api.semanticscholar.org/CorpusID:11264303) . Archived (https://web.archive.
org/web/20150920011317/http://crypto.stanford.edu/~dabo/pubs/abstracts/websec_ecc.html) from

the original on September 20, 2015. Retrieved October 16, 2015.

148. "Protecting data for the long term with forward secrecy" (http://googleonlinesecurity.blogspot.com.au/20

11/11/protecting-data-for-long-term-with.html) . Archived (https://web.archive.org/web/201402122145
18/http://googleonlinesecurity.blogspot.com.au/2011/11/protecting-data-for-long-term-with.html)

from the original on February 12, 2014. Retrieved March 7, 2014.

https://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
https://web.archive.org/web/20120827064047/http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy
https://web.archive.org/web/20130626193314/https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy
https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy
https://web.archive.org/web/20130920150259/https://community.qualys.com/blogs/securitylabs/2013/06/25/ssl-labs-deploying-forward-secrecy
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://web.archive.org/web/20130808221614/https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-WP.pdf
https://web.archive.org/web/20130806233112/https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-WP.pdf
https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-Slides.pdf
https://web.archive.org/web/20130805134805/https://media.blackhat.com/us-13/US-13-Daigniere-TLS-Secrets-Slides.pdf
http://crypto.stanford.edu/~dabo/pubs/abstracts/websec_ecc.html
https://en.m.wikipedia.org/wiki/CiteSeerX_(identifier)
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.663.4653
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FMIC.2014.86
https://en.m.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:11264303
https://web.archive.org/web/20150920011317/http://crypto.stanford.edu/~dabo/pubs/abstracts/websec_ecc.html
http://googleonlinesecurity.blogspot.com.au/2011/11/protecting-data-for-long-term-with.html
https://web.archive.org/web/20140212214518/http://googleonlinesecurity.blogspot.com.au/2011/11/protecting-data-for-long-term-with.html

Wikimedia Commons has media related to SSL and TLS.

Wagner, David; Schneier, Bruce (November 1996). "Analysis of the SSL 3.0 Protocol" (http://ww

w.schneier.com/paper-ssl.pdf) (PDF). The Second USENIX Workshop on Electronic Commerce
Proceedings. USENIX Press. pp. 29–40.

149. Hoffman-Andrews, Jacob. "Forward Secrecy at Twitter" (https://blog.twitter.com/2013/forward-secrecy-a

t-twitter-0) . Twitter. Archived (https://web.archive.org/web/20140216041202/https://blog.twitter.com/
2013/forward-secrecy-at-twitter-0) from the original on February 16, 2014. Retrieved March 7, 2014.

150. Durumeric, Zakir; Ma, Zane; Springall, Drew; Barnes, Richard; Sullivan, Nick; Bursztein, Elie; Bailey, Michael;

Halderman, J. Alex; Paxson, Vern (September 5, 2017). "The Security Impact of HTTPS Interception" (http

s://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception) .
NDSS Symposium. doi:10.14722/ndss.2017.23456 (https://doi.org/10.14722%2Fndss.2017.23456) .

ISBN 978-1-891562-46-4.

151. These certificates are currently X.509, but RFC 6091 (https://datatracker.ietf.org/doc/html/rfc6091)

also specifies the use of OpenPGP-based certificates.

152. "tls - Differences between the terms "pre-master secret", "master secret", "private key", and "shared

secret"?" (https://crypto.stackexchange.com/questions/27131/differences-between-the-terms-pre-maste

r-secret-master-secret-private-key) . Cryptography Stack Exchange. Retrieved October 1, 2020.

153. Chris (February 18, 2009). "vsftpd-2.1.0 released – Using TLS session resume for FTPS data connection
authentication" (http://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html) .

Scarybeastsecurity. blogspot.com. Archived (https://web.archive.org/web/20120707213409/http://scary

beastsecurity.blogspot.com/2009/02/vsftpd-210-released.html) from the original on July 7, 2012.
Retrieved May 17, 2012.

154. Valsorda, Filippo (September 23, 2016). "An overview of TLS 1.3 and Q&A" (https://blog.cloudflare.com/tl

s-1-3-overview-and-q-and-a) . The Cloudflare Blog.

155. Wildcard SSL Certificate overview (https://ssl.comodo.com/wildcard-ssl-certificates.php) , archived (htt
ps://web.archive.org/web/20150623231035/https://ssl.comodo.com/wildcard-ssl-certificates.php)

from the original on June 23, 2015, retrieved July 2, 2015

156. Named-based SSL virtual hosts: how to tackle the problem (https://www.switch.ch/pki/meetings/2007-0

1/namebased_ssl_virtualhosts.pdf) (PDF), archived (https://web.archive.org/web/20120803022659/htt
ps://www.switch.ch/pki/meetings/2007-01/namebased_ssl_virtualhosts.pdf) (PDF) from the original

on August 3, 2012, retrieved May 17, 2012

Further reading

https://commons.wikimedia.org/wiki/Category:SSL_and_TLS
http://www.schneier.com/paper-ssl.pdf
https://blog.twitter.com/2013/forward-secrecy-at-twitter-0
https://web.archive.org/web/20140216041202/https://blog.twitter.com/2013/forward-secrecy-at-twitter-0
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/security-impact-https-interception
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.14722%2Fndss.2017.23456
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-1-891562-46-4
https://en.m.wikipedia.org/wiki/X.509
https://en.m.wikipedia.org/wiki/RFC_(identifier)
https://datatracker.ietf.org/doc/html/rfc6091
https://en.m.wikipedia.org/wiki/OpenPGP
https://crypto.stackexchange.com/questions/27131/differences-between-the-terms-pre-master-secret-master-secret-private-key
http://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html
https://web.archive.org/web/20120707213409/http://scarybeastsecurity.blogspot.com/2009/02/vsftpd-210-released.html
https://blog.cloudflare.com/tls-1-3-overview-and-q-and-a
https://ssl.comodo.com/wildcard-ssl-certificates.php
https://web.archive.org/web/20150623231035/https://ssl.comodo.com/wildcard-ssl-certificates.php
https://www.switch.ch/pki/meetings/2007-01/namebased_ssl_virtualhosts.pdf
https://web.archive.org/web/20120803022659/https://www.switch.ch/pki/meetings/2007-01/namebased_ssl_virtualhosts.pdf

Eric Rescorla (2001). SSL and TLS: Designing and Building Secure Systems (https://archive.org/
details/ssltls00eric) . United States: Addison-Wesley Pub Co. ISBN 978-0-201-61598-2.

Stephen A. Thomas (2000). SSL and TLS essentials securing the Web. New York: Wiley.
ISBN 978-0-471-38354-3.

Bard, Gregory (2006). "A Challenging But Feasible Blockwise-Adaptive Chosen-Plaintext Attack
on SSL" (http://eprint.iacr.org/2006/136) . International Association for Cryptologic Research
(136). Retrieved September 23, 2011.

Canvel, Brice. "Password Interception in a SSL/TLS Channel" (http://lasecwww.epfl.ch/memo/
memo_ssl.shtml) . Retrieved April 20, 2007.

IETF Multiple Authors. "RFC of change for TLS Renegotiation" (http://tools.ietf.org/html/rfc5
746) . Retrieved December 11, 2009.

Creating VPNs with IPsec and SSL/TLS (http://www.linuxjournal.com/article/9916) Linux

Journal article by Rami Rosen

Joshua Davies (2010). Implementing SSL/TLS. Wiley. ISBN 978-0470920411.

Polk, Tim; McKay, Kerry; Chokhani, Santosh (April 2014). "Guidelines for the Selection,

Configuration, and Use of Transport Layer Security (TLS) Implementations" (https://web.archiv
e.org/web/20140508025330/http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.8

00-52r1.pdf) (PDF). National Institute of Standards and Technology. Archived from the
original (http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf) (PDF)

on May 8, 2014. Retrieved May 7, 2014.

Abdou, AbdelRahman; van Oorschot, Paul (August 2017). "Server Location Verification (SLV)
and Server Location Pinning: Augmenting TLS Authentication" (https://dl.acm.org/citation.cf

m?id=3139294) . Transactions on Privacy and Security. ACM. 21 (1): 1:1–1:26.
doi:10.1145/3139294 (https://doi.org/10.1145%2F3139294) . S2CID 5869541 (https://api.se
manticscholar.org/CorpusID:5869541) .

Ivan Ristic (2022). Bulletproof TLS and PKI, Second Edition. Feisty Duck. ISBN 978-
1907117091.

(Internet Engineering Task Force) TLS Workgroup (https://datatracker.ietf.org/wg/tls)

External links

https://archive.org/details/ssltls00eric
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0-201-61598-2
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0-471-38354-3
http://eprint.iacr.org/2006/136
http://lasecwww.epfl.ch/memo/memo_ssl.shtml
http://tools.ietf.org/html/rfc5746
http://www.linuxjournal.com/article/9916
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-0470920411
https://web.archive.org/web/20140508025330/http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://dl.acm.org/citation.cfm?id=3139294
https://en.m.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F3139294
https://en.m.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:5869541
https://en.m.wikipedia.org/wiki/ISBN_(identifier)
https://en.m.wikipedia.org/wiki/Special:BookSources/978-1907117091
https://datatracker.ietf.org/wg/tls

 Last edited 14 days ago by KelleyCook

Retrieved from

"https://en.wikipedia.org/w/index.php?
title=Transport_Layer_Security&oldid=1110721112"

https://en.m.wikipedia.org/wiki/Special:History/Transport_Layer_Security
https://en.wikipedia.org/w/index.php?title=Transport_Layer_Security&oldid=1110721112

