

Chapter 1. UNIX System Overview
Section 1.1. Introduction
Section 1.2. UNIX Architecture
Section 1.3. Logging In
Section 1.4. Files and Directories
Section 1.5. Input and Output
Section 1.6. Programs and Processes
Section 1.7. Error Handling
Section 1.8. User Identification
Section 1.9. Signals
Section 1.10. Time Values
Section 1.11. System Calls and Library Functions
Section 1.12. Summary

Chapter 2. UNIX Standardization and Implementations
Section 2.1. Introduction
Section 2.2. UNIX Standardization
Section 2.3. UNIX System Implementations
Section 2.4. Relationship of Standards and Implementations
Section 2.5. Limits
Section 2.6. Options
Section 2.7. Feature Test Macros
Section 2.8. Primitive System Data Types
Section 2.9. Conflicts Between Standards
Section 2.10. Summary

Chapter 3. File I/O
Section 3.1. Introduction
Section 3.2. File Descriptors
Section 3.3. open Function
Section 3.4. creat Function
Section 3.5. close Function
Section 3.6. lseek Function
Section 3.7. read Function
Section 3.8. write Function
Section 3.9. I/O Efficiency
Section 3.10. File Sharing
Section 3.11. Atomic Operations
Section 3.12. dup and dup2 Functions
Section 3.13. sync, fsync, and fdatasync Functions
Section 3.14. fcntl Function
Section 3.15. ioctl Function
Section 3.16. /dev/fd
Section 3.17. Summary

Chapter 4. Files and Directories
Section 4.1. Introduction
Section 4.2. stat, fstat, and lstat Functions
Section 4.3. File Types
Section 4.4. Set-User-ID and Set-Group-ID
Section 4.5. File Access Permissions
Section 4.6. Ownership of New Files and Directories

Section 4.7. access Function
Section 4.8. umask Function
Section 4.9. chmod and fchmod Functions
Section 4.10. Sticky Bit
Section 4.11. chown, fchown, and lchown Functions
Section 4.12. File Size
Section 4.13. File Truncation
Section 4.14. File Systems
Section 4.15. link, unlink, remove, and rename Functions
Section 4.16. Symbolic Links
Section 4.17. symlink and readlink Functions
Section 4.18. File Times
Section 4.19. utime Function
Section 4.20. mkdir and rmdir Functions
Section 4.21. Reading Directories
Section 4.22. chdir, fchdir, and getcwd Functions
Section 4.23. Device Special Files
Section 4.24. Summary of File Access Permission Bits
Section 4.25. Summary

Chapter 5. Standard I/O Library
Section 5.1. Introduction
Section 5.2. Streams and FILE Objects
Section 5.3. Standard Input, Standard Output, and Standard Error
Section 5.4. Buffering
Section 5.5. Opening a Stream
Section 5.6. Reading and Writing a Stream
Section 5.7. Line-at-a-Time I/O
Section 5.8. Standard I/O Efficiency
Section 5.9. Binary I/O
Section 5.10. Positioning a Stream
Section 5.11. Formatted I/O
Section 5.12. Implementation Details
Section 5.13. Temporary Files
Section 5.14. Alternatives to Standard I/O
Section 5.15. Summary

Chapter 6. System Data Files and Information
Section 6.1. Introduction
Section 6.2. Password File
Section 6.3. Shadow Passwords
Section 6.4. Group File
Section 6.5. Supplementary Group IDs
Section 6.6. Implementation Differences
Section 6.7. Other Data Files
Section 6.8. Login Accounting
Section 6.9. System Identification
Section 6.10. Time and Date Routines
Section 6.11. Summary

Chapter 7. Process Environment
Section 7.1. Introduction

Section 7.2. main Function
Section 7.3. Process Termination
Section 7.4. Command-Line Arguments
Section 7.5. Environment List
Section 7.6. Memory Layout of a C Program
Section 7.7. Shared Libraries
Section 7.8. Memory Allocation
Section 7.9. Environment Variables
Section 7.10. setjmp and longjmp Functions
Section 7.11. getrlimit and setrlimit Functions
Section 7.12. Summary

Chapter 8. Process Control
Section 8.1. Introduction
Section 8.2. Process Identifiers
Section 8.3. fork Function
Section 8.4. vfork Function
Section 8.5. exit Functions
Section 8.6. wait and waitpid Functions
Section 8.7. waitid Function
Section 8.8. wait3 and wait4 Functions
Section 8.9. Race Conditions
Section 8.10. exec Functions
Section 8.11. Changing User IDs and Group IDs
Section 8.12. Interpreter Files
Section 8.13. system Function
Section 8.14. Process Accounting
Section 8.15. User Identification
Section 8.16. Process Times
Section 8.17. Summary

Chapter 9. Process Relationships
Section 9.1. Introduction
Section 9.2. Terminal Logins
Section 9.3. Network Logins
Section 9.4. Process Groups
Section 9.5. Sessions
Section 9.6. Controlling Terminal
Section 9.7. tcgetpgrp, tcsetpgrp, and tcgetsid Functions
Section 9.8. Job Control
Section 9.9. Shell Execution of Programs
Section 9.10. Orphaned Process Groups
Section 9.11. FreeBSD Implementation
Section 9.12. Summary

Chapter 10. Signals
Section 10.1. Introduction
Section 10.2. Signal Concepts
Section 10.3. signal Function
Section 10.4. Unreliable Signals
Section 10.5. Interrupted System Calls
Section 10.6. Reentrant Functions

Section 10.7. SIGCLD Semantics
Section 10.8. Reliable-Signal Terminology and Semantics
Section 10.9. kill and raise Functions
Section 10.10. alarm and pause Functions
Section 10.11. Signal Sets
Section 10.12. sigprocmask Function
Section 10.13. sigpending Function
Section 10.14. sigaction Function
Section 10.15. sigsetjmp and siglongjmp Functions
Section 10.16. sigsuspend Function
Section 10.17. abort Function
Section 10.18. system Function
Section 10.19. sleep Function
Section 10.20. Job-Control Signals
Section 10.21. Additional Features
Section 10.22. Summary

Chapter 11. Threads
Section 11.1. Introduction
Section 11.2. Thread Concepts
Section 11.3. Thread Identification
Section 11.4. Thread Creation
Section 11.5. Thread Termination
Section 11.6. Thread Synchronization
Section 11.7. Summary

Chapter 12. Thread Control
Section 12.1. Introduction
Section 12.2. Thread Limits
Section 12.3. Thread Attributes
Section 12.4. Synchronization Attributes
Section 12.5. Reentrancy
Section 12.6. Thread-Specific Data
Section 12.7. Cancel Options
Section 12.8. Threads and Signals
Section 12.9. Threads and fork
Section 12.10. Threads and I/O
Section 12.11. Summary

Chapter 13. Daemon Processes
Section 13.1. Introduction
Section 13.2. Daemon Characteristics
Section 13.3. Coding Rules
Section 13.4. Error Logging
Section 13.5. Single-Instance Daemons
Section 13.6. Daemon Conventions
Section 13.7. Client–Server Model
Section 13.8. Summary

Chapter 14. Advanced I/O
Section 14.1. Introduction
Section 14.2. Nonblocking I/O

Section 14.3. Record Locking
Section 14.4. STREAMS
Section 14.5. I/O Multiplexing
Section 14.6. Asynchronous I/O
Section 14.7. readv and writev Functions
Section 14.8. readn and writen Functions
Section 14.9. Memory-Mapped I/O
Section 14.10. Summary

Chapter 15. Interprocess Communication
Section 15.1. Introduction
Section 15.2. Pipes
Section 15.3. popen and pclose Functions
Section 15.4. Coprocesses
Section 15.5. FIFOs
Section 15.6. XSI IPC
Section 15.7. Message Queues
Section 15.8. Semaphores
Section 15.9. Shared Memory
Section 15.10. Client–Server Properties
Section 15.11. Summary

Chapter 16. Network IPC: Sockets
Section 16.1. Introduction
Section 16.2. Socket Descriptors
Section 16.3. Addressing
Section 16.4. Connection Establishment
Section 16.5. Data Transfer
Section 16.6. Socket Options
Section 16.7. Out-of-Band Data
Section 16.8. Nonblocking and Asynchronous I/O
Section 16.9. Summary

Chapter 17. Advanced IPC
Section 17.1. Introduction
Section 17.2. STREAMS-Based Pipes
Section 17.3. UNIX Domain Sockets
Section 17.4. Passing File Descriptors
Section 17.5. An Open Server, Version 1
Section 17.6. An Open Server, Version 2
Section 17.7. Summary

Chapter 18. Terminal I/O
Section 18.1. Introduction
Section 18.2. Overview
Section 18.3. Special Input Characters
Section 18.4. Getting and Setting Terminal Attributes
Section 18.5. Terminal Option Flags
Section 18.6. stty Command
Section 18.7. Baud Rate Functions
Section 18.8. Line Control Functions
Section 18.9. Terminal Identification

Section 18.10. Canonical Mode
Section 18.11. Noncanonical Mode
Section 18.12. Terminal Window Size
Section 18.13. termcap, terminfo, and curses
Section 18.14. Summary

Chapter 19. Pseudo Terminals
Section 19.1. Introduction
Section 19.2. Overview
Section 19.3. Opening Pseudo-Terminal Devices
Section 19.4. pty_fork Function
Section 19.5. pty Program
Section 19.6. Using the pty Program
Section 19.7. Advanced Features
Section 19.8. Summary

Chapter 20. A Database Library
Section 20.1. Introduction
Section 20.2. History
Section 20.3. The Library
Section 20.4. Implementation Overview
Section 20.5. Centralized or Decentralized?
Section 20.6. Concurrency
Section 20.7. Building the Library
Section 20.8. Source Code
Section 20.9. Performance
Section 20.10. Summary

Chapter 21. Communicating with a Network Printer
Section 21.1. Introduction
Section 21.2. The Internet Printing Protocol
Section 21.3. The Hypertext Transfer Protocol
Section 21.4. Printer Spooling
Section 21.5. Source Code
Section 21.6. Summary

Appendix A

Appendix B

Chapter 1. UNIX System Overview

Section 1.1. Introduction

Section 1.2. UNIX Architecture

Section 1.3. Logging In

Section 1.4. Files and Directories

Section 1.5. Input and Output

Section 1.6. Programs and Processes

Section 1.7. Error Handling

Section 1.8. User Identification

Section 1.9. Signals

Section 1.10. Time Values

Section 1.11. System Calls and Library Functions

Section 1.12. Summary

1.1. Introduction

All operating systems provide services for programs they run. Typical services include executing a new
program, opening a file, reading a file, allocating a region of memory, getting the current time of day, and so on.
The focus of this text is to describe the services provided by various versions of the UNIX operating system.

Describing the UNIX System in a strictly linear fashion, without any forward references to terms that haven't
been described yet, is nearly impossible (and would probably be boring). This chapter provides a whirlwind tour
of the UNIX System from a programmer's perspective. We'll give some brief descriptions and examples of
terms and concepts that appear throughout the text. We describe these features in much more detail in later
chapters. This chapter also provides an introduction and overview of the services provided by the UNIX System,
for programmers new to this environment.

1.2. UNIX Architecture

In a strict sense, an operating system can be defined as the software that controls the hardware resources of the
computer and provides an environment under which programs can run. Generally, we call this software the
kernel, since it is relatively small and resides at the core of the environment. Figure 1.1 shows a diagram of the
UNIX System architecture.

Figure 1.1. Architecture of the UNIX operating system

The interface to the kernel is a layer of software called the system calls (the shaded portion in Figure 1.1).
Libraries of common functions are built on top of the system call interface, but applications are free to use both.
(We talk more about system calls and library functions in Section 1.11.) The shell is a special application that
provides an interface for running other applications.

In a broad sense, an operating system is the kernel and all the other software that makes a computer useful and
gives the computer its personality. This other software includes system utilities, applications, shells, libraries of
common functions, and so on.

For example, Linux is the kernel used by the GNU operating system. Some people refer to this as the
GNU/Linux operating system, but it is more commonly referred to as simply Linux. Although this usage may
not be correct in a strict sense, it is understandable, given the dual meaning of the phrase operating system. (It
also has the advantage of being more succinct.)

1.3. Logging In

Login Name

When we log in to a UNIX system, we enter our login name, followed by our password. The system then looks
up our login name in its password file, usually the file /etc/passwd . If we look at our entry in the password file
we see that it's composed of seven colon-separated fields: the login name, encrypted password, numeric user ID
(205), numeric group ID (105), a comment field, home directory (/home/sar), and shell program (/bin/ksh).

 sar:x:205:105:Stephen Rago:/home/sar:/bin/ksh

All contemporary systems have moved the encrypted password to a different file. In Chapter 6, we'll look at
these files and some functions to access them.

Shells

Once we log in, some system information messages are typically displayed, and then we can type commands to
the shell program. (Some systems start a window management program when you log in, but you generally end
up with a shell running in one of the windows.) A shell is a command-line interpreter that reads user input and
executes commands. The user input to a shell is normally from the terminal (an interactive shell) or sometimes
from a file (called a shell script). The common shells in use are summarized in Figure 1.2.

Figure 1.2. Common shells used on UNIX systems

Name Path FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

Bourne shell /bin/sh • link to bash link to bash •

Bourne-again shell /bin/bash optional • • •

C shell /bin/csh link to tcsh link to tcsh link to tcsh •

Korn shell /bin/ksh •

TENEX C shell /bin/tcsh • • • •

The system knows which shell to execute for us from the final field in our entry in the password file.

The Bourne shell, developed by Steve Bourne at Bell Labs, has been in use since Version 7 and is provided with
almost every UNIX system in existence. The control-flow constructs of the Bourne shell are reminiscent of
Algol 68.

The C shell, developed by Bill Joy at Berkeley, is provided with all the BSD releases. Additionally, the C shell
was provided by AT&T with System V/386 Release 3.2 and is also in System V Release 4 (SVR4). (We'll have
more to say about these different versions of the UNIX System in the next chapter.) The C shell was built on the
6th Edition shell, not the Bourne shell. Its control flow looks more like the C language, and it supports
additional features that weren't provided by the Bourne shell: job control, a history mechanism, and command
line editing.

The Korn shell is considered a successor to the Bourne shell and was first provided with SVR4. The Korn shell,
developed by David Korn at Bell Labs, runs on most UNIX systems, but before SVR4 was usually an extra-cost

add-on, so it is not as widespread as the other two shells. It is upward compatible with the Bourne shell and
includes those features that made the C shell popular: job control, command line editing, and so on.

The Bourne-again shell is the GNU shell provided with all Linux systems. It was designed to be POSIX-
conformant, while still remaining compatible with the Bourne shell. It supports features from both the C shell
and the Korn shell.

The TENEX C shell is an enhanced version of the C shell. It borrows several features, such as command
completion, from the TENEX operating system (developed in 1972 at Bolt Beranek and Newman). The TENEX
C shell adds many features to the C shell and is often used as a replacement for the C shell.

Linux uses the Bourne-again shell for its default shell. In fact, /bin/sh is a link to /bin/bash . The default user
shell in FreeBSD and Mac OS X is the TENEX C shell, but they use the Bourne shell for their administrative
shell scripts because the C shell's programming language is notoriously difficult to use. Solaris, having its
heritage in both BSD and System V, provides all the shells shown in Figure 1.2. Free ports of most of the shells
are available on the Internet.

Throughout the text, we will use parenthetical notes such as this to describe historical notes and to compare
different implementations of the UNIX System. Often the reason for a particular implementation technique
becomes clear when the historical reasons are described.

Throughout this text, we'll show interactive shell examples to execute a program that we've developed. These
examples use features common to the Bourne shell, the Korn shell, and the Bourne-again shell.

1.4. Files and Directories

File System

The UNIX file system is a hierarchical arrangement of directories and files. Everything starts in the directory
called root whose name is the single character / .

A directory is a file that contains directory entries. Logically, we can think of each directory entry as containing
a filename along with a structure of information describing the attributes of the file. The attributes of a file are
such things as type of file—regular file, directory—the size of the file, the owner of the file, permissions for the
file—whether other users may access this file—and when the file was last modified. The stat and fstat
functions return a structure of information containing all the attributes of a file. In Chapter 4, we'll examine all
the attributes of a file in great detail.

We make a distinction between the logical view of a directory entry and the way it is actually stored on disk.
Most implementations of UNIX file systems don't store attributes in the directory entries themselves, because of
the difficulty of keeping them in synch when a file has multiple hard links. This will become clear when we
discuss hard links in Chapter 4.

Filename

The names in a directory are called filenames. The only two characters that cannot appear in a filename are the
slash character (/) and the null character. The slash separates the filenames that form a pathname (described
next) and the null character terminates a pathname. Nevertheless, it's good practice to restrict the characters in a
filename to a subset of the normal printing characters. (We restrict the characters because if we use some of the
shell's special characters in the filename, we have to use the shell's quoting mechanism to reference the filename,
and this can get complicated.)

Two filenames are automatically created whenever a new directory is created: . (called dot) and .. (called dot-
dot). Dot refers to the current directory, and dot-dot refers to the parent directory. In the root directory, dot-dot
is the same as dot.

The Research UNIX System and some older UNIX System V file systems restricted a filename to 14 characters.
BSD versions extended this limit to 255 characters. Today, almost all commercial UNIX file systems support at
least 255-character filenames.

Pathname

A sequence of one or more filenames, separated by slashes and optionally starting with a slash, forms a
pathname. A pathname that begins with a slash is called an absolute pathname; otherwise, it's called a relative
pathname. Relative pathnames refer to files relative to the current directory. The name for the root of the file
system (/) is a special-case absolute pathname that has no filename component.

Example

Listing the names of all the files in a directory is not difficult. Figure 1.3 shows a bare-bones implementation of
the ls (1) command.

The notation ls (1) is the normal way to reference a particular entry in the UNIX system manuals. It refers to the
entry for ls in Section 1. The sections are normally numbered 1 through 8, and all the entries within each
section are arranged alphabetically. Throughout this text, we assume that you have a copy of the manuals for

your UNIX system.

Historically, UNIX systems lumped all eight sections together into what was called the UNIX Programmer's
Manual. As the page count increased, the trend changed to distributing the sections among separate manuals:
one for users, one for programmers, and one for system administrators, for example.

Some UNIX systems further divide the manual pages within a given section, using an uppercase letter. For
example, all the standard input/output (I/O) functions in AT&T [1990e] are indicated as being in Section 3S, as
in fopen (3S). Other systems have replaced the numeric sections with alphabetic ones, such as C for commands.

Today, most manuals are distributed in electronic form. If your manuals are online, the way to see the manual
pages for the ls command would be something like

 man 1 ls

or

 man -s1 ls

Figure 1.3 is a program that just prints the name of every file in a directory, and nothing else. If the source file is
named myls.c , we compile it into the default a.out executable file by

 cc myls.c

Historically, cc(1) is the C compiler. On systems with the GNU C compilation system, the C compiler is
gcc (1). Here, cc is often linked to gcc .

Some sample output is

 $./a.out /dev
 .
 ..
 console
 tty
 mem
 kmem
 null
 mouse
 stdin
 stdout
 stderr
 zero
 many more lines that aren't shown
 cdrom
 $./a.out /var/spool/cron
 can't open /var/spool/cron: Permission denied
 $./a.out /dev/tty
 can't open /dev/tty: Not a directory

Throughout this text, we'll show commands that we run and the resulting output in this fashion: Characters that
we type are shown in this font , whereas output from programs is shown like this . If we need to add

comments to this output, we'll show the comments in italics. The dollar sign that precedes our input is the
prompt that is printed by the shell. We'll always show the shell prompt as a dollar sign.

Note that the directory listing is not in alphabetical order. The ls command sorts the names before printing
them.

There are many details to consider in this 20-line program.

• First, we include a header of our own: apue.h . We include this header in almost every program in this
text. This header includes some standard system headers and defines numerous constants and function
prototypes that we use throughout the examples in the text. A listing of this header is in Appendix B.

• The declaration of the main function uses the style supported by the ISO C standard. (We'll have more to
say about the ISO C standard in the next chapter.)

• We take an argument from the command line, argv[1] , as the name of the directory to list. In Chapter
7, we'll look at how the main function is called and how the command-line arguments and environment
variables are accessible to the program.

• Because the actual format of directory entries varies from one UNIX system to another, we use the
functions opendir , readdir , and closedir to manipulate the directory.

• The opendir function returns a pointer to a DIR structure, and we pass this pointer to the readdir
function. We don't care what's in the DIR structure. We then call readdir in a loop, to read each
directory entry. The readdir function returns a pointer to a dirent structure or, when it's finished with
the directory, a null pointer. All we examine in the dirent structure is the name of each directory entry
(d_name). Using this name, we could then call the stat function (Section 4.2) to determine all the
attributes of the file.

• We call two functions of our own to handle the errors: err_sys and err_quit . We can see from the
preceding output that the err_sys function prints an informative message describing what type of error
was encountered ("Permission denied" or "Not a directory"). These two error functions are shown and
described in Appendix B. We also talk more about error handling in Section 1.7.

• When the program is done, it calls the function exit with an argument of 0. The function exit
terminates a program. By convention, an argument of 0 means OK, and an argument between 1 and 255
means that an error occurred. In Section 8.5, we show how any program, such as a shell or a program
that we write, can obtain the exit status of a program that it executes.

Figure 1.3. List all the files in a directory

#include "apue.h"
#include <dirent.h>

int
main(int argc, char *argv[])
{
 DIR *dp;
 struct dirent *dirp;

 if (argc != 2)
 err_quit("usage: ls directory_name");

 if ((dp = opendir(argv[1])) == NULL)
 err_sys("can't open %s", argv[1]);
 while ((dirp = readdir(dp)) != NULL)
 printf("%s\n", dirp->d_name);

 closedir(dp);
 exit(0);
}

Working Directory

Every process has a working directory, sometimes called the current working directory. This is the directory
from which all relative pathnames are interpreted. A process can change its working directory with the chdir
function.

For example, the relative pathname doc/memo/joe refers to the file or directory joe , in the directory memo, in
the directory doc , which must be a directory within the working directory. From looking just at this pathname,
we know that both doc and memo have to be directories, but we can't tell whether joe is a file or a directory. The
pathname /usr/lib/lint is an absolute pathname that refers to the file or directory lint in the directory lib ,
in the directory usr , which is in the root directory.

Home Directory

When we log in, the working directory is set to our home directory. Our home directory is obtained from our
entry in the password file (Section 1.3).

1.5. Input and Output

File Descriptors

File descriptors are normally small non-negative integers that the kernel uses to identify the files being accessed
by a particular process. Whenever it opens an existing file or creates a new file, the kernel returns a file
descriptor that we use when we want to read or write the file.

Standard Input, Standard Output, and Standard Error

By convention, all shells open three descriptors whenever a new program is run: standard input, standard output,
and standard error. If nothing special is done, as in the simple command

 ls

then all three are connected to the terminal. Most shells provide a way to redirect any or all of these three
descriptors to any file. For example,

 ls > file.list

executes the ls command with its standard output redirected to the file named file.list .

Unbuffered I/O

Unbuffered I/O is provided by the functions open , read , write, lseek , and close . These functions all work
with file descriptors.

Example

If we're willing to read from the standard input and write to the standard output, then the program in Figure 1.4
copies any regular file on a UNIX system.

The <unistd.h> header, included by apue.h , and the two constants STDIN_FILENO and STDOUT_FILENO are
part of the POSIX standard (about which we'll have a lot more to say in the next chapter). In this header are
function prototypes for many of the UNIX system services, such as the read and write functions that we call.

The constants STDIN_FILENO and STDOUT_FILENO are defined in <unistd.h> and specify the file descriptors
for standard input and standard output. These values are typically 0 and 1, respectively, but we'll use the new
names for portability.

In Section 3.9, we'll examine the BUFFSIZE constant in detail, seeing how various values affect the efficiency of
the program. Regardless of the value of this constant, however, this program still copies any regular file.

The read function returns the number of bytes that are read, and this value is used as the number of bytes to
write. When the end of the input file is encountered, read returns 0 and the program stops. If a read error
occurs, read returns -1. Most of the system functions return –1 when an error occurs.

If we compile the program into the standard name (a.out) and execute it as

 ./a.out > data

standard input is the terminal, standard output is redirected to the file data , and standard error is also the
terminal. If this output file doesn't exist, the shell creates it by default. The program copies lines that we type to
the standard output until we type the end-of-file character (usually Control-D).

If we run

 ./a.out < infile > outfile

then the file named infile will be copied to the file named outfile .

Figure 1.4. List all the files in a directory

#include "apue.h"

#define BUFFSIZE 4096

int
main(void)
{
 int n;
 char buf[BUFFSIZE];

 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
 if (write(STDOUT_FILENO, buf, n) != n)
 err_sys("write error");
 if (n < 0)
 err_sys("read error");

 exit(0);
}

In Chapter 3, we describe the unbuffered I/O functions in more detail.

Standard I/O

The standard I/O functions provide a buffered interface to the unbuffered I/O functions. Using standard I/O
prevents us from having to worry about choosing optimal buffer sizes, such as the BUFFSIZE constant in Figure
1.4. Another advantage of using the standard I/O functions is that they simplify dealing with lines of input (a
common occurrence in UNIX applications). The fgets function, for example, reads an entire line. The read
function, on the other hand, reads a specified number of bytes. As we shall see in Section 5.4, the standard I/O
library provides functions that let us control the style of buffering used by the library.

The most common standard I/O function is printf . In programs that call printf , we'll always include
<stdio.h> —normally by including apue.h —as this header contains the function prototypes for all the standard
I/O functions.

Example

The program in Figure 1.5, which we'll examine in more detail in Section 5.8, is like the previous
program that called read and write. This program copies standard input to standard output and can
copy any regular file.

The function getc reads one character at a time, and this character is written by putc . After the last
byte of input has been read, getc returns the constant EOF (defined in <stdio.h>). The standard I/O
constants stdin and stdout are also defined in the <stdio.h> header and refer to the standard
input and standard output.

Figure 1.5. Copy standard input to standard output, using standard I/O

#include "apue.h"

int
main(void)
{
 int c;

 while ((c = getc(stdin)) != EOF)
 if (putc(c, stdout) == EOF)
 err_sys("output error");

 if (ferror(stdin))
 err_sys("input error");

 exit(0);
}

1.6. Programs and Processes

Program

A program is an executable file residing on disk in a directory. A program is read into memory and is executed
by the kernel as a result of one of the six exec functions. We'll cover these functions in Section 8.10.

Processes and Process ID

An executing instance of a program is called a process, a term used on almost every page of this text. Some
operating systems use the term task to refer to a program that is being executed.

The UNIX System guarantees that every process has a unique numeric identifier called the process ID. The
process ID is always a non-negative integer.

Example

The program in Figure 1.6 prints its process ID.

If we compile this program into the file a.out and execute it, we have

 $./a.out
 hello world from process ID 851
 $./a.out
 hello world from process ID 854

When this program runs, it calls the function getpid to obtain its process ID.

Figure 1.6. Print the process ID

#include "apue.h"

int
main(void)
{
 printf("hello world from process ID %d\n", getp id());
 exit(0);
}

Process Control

There are three primary functions for process control: fork , exec , and waitpid . (The exec function has six
variants, but we often refer to them collectively as simply the exec function.)

Example

The process control features of the UNIX System are demonstrated using a simple program (Figure 1.7) that
reads commands from standard input and executes the commands. This is a bare-bones implementation of a
shell-like program. There are several features to consider in this 30-line program.

• We use the standard I/O function fgets to read one line at a time from the standard input. When we
type the end-of-file character (which is often Control-D) as the first character of a line, fgets returns a
null pointer, the loop stops, and the process terminates. In Chapter 18, we describe all the special
terminal characters—end of file, backspace one character, erase entire line, and so on—and how to
change them.

• Because each line returned by fgets is terminated with a newline character, followed by a null byte, we
use the standard C function strlen to calculate the length of the string, and then replace the newline
with a null byte. We do this because the execlp function wants a null-terminated argument, not a
newline-terminated argument.

• We call fork to create a new process, which is a copy of the caller. We say that the caller is the parent
and that the newly created process is the child. Then fork returns the non-negative process ID of the
new child process to the parent, and returns 0 to the child. Because fork creates a new process, we say
that it is called once—by the parent—but returns twice—in the parent and in the child.

• In the child, we call execlp to execute the command that was read from the standard input. This
replaces the child process with the new program file. The combination of a fork , followed by an exec ,
is what some operating systems call spawning a new process. In the UNIX System, the two parts are
separated into individual functions. We'll have a lot more to say about these functions in Chapter 8.

• Because the child calls execlp to execute the new program file, the parent wants to wait for the child to
terminate. This is done by calling waitpid , specifying which process we want to wait for: the pid
argument, which is the process ID of the child. The waitpid function also returns the termination status
of the child—the status variable—but in this simple program, we don't do anything with this value. We
could examine it to determine exactly how the child terminated.

• The most fundamental limitation of this program is that we can't pass arguments to the command that we
execute. We can't, for example, specify the name of a directory to list. We can execute ls only on the
working directory. To allow arguments would require that we parse the input line, separating the
arguments by some convention, probably spaces or tabs, and then pass each argument as a separate
argument to the execlp function. Nevertheless, this program is still a useful demonstration of the
process control functions of the UNIX System.

If we run this program, we get the following results. Note that our program has a different prompt—the percent
sign—to distinguish it from the shell's prompt.

 $./a.out
 % date
 Sun Aug 1 03:04:47 EDT 2004 programme rs work late
 % who
 sar :0 Jul 26 22:54
 sar pts/0 Jul 26 22:54 (:0)
 sar pts/1 Jul 26 22:54 (:0)
 sar pts/2 Jul 26 22:54 (:0)
 % pwd
 /home/sar/bk/apue/2e
 % ls
 Makefile
 a.out
 shell1.c
 % ^D type the end-of-file character
 $ the regul ar shell prompt

Figure 1.7. Read commands from standard input and execute them

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
 char buf[MAXLINE]; /* from apue.h */
 pid_t pid;
 int status;

 printf("%% "); /* print prompt (printf require s %% to print %) */
 while (fgets(buf, MAXLINE, stdin) != NULL) {
 if (buf[strlen(buf) - 1] == "\n")
 buf[strlen(buf) - 1] = 0; /* replace ne wline with null */

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 execlp(buf, buf, (char *)0);
 err_ret("couldn't execute: %s", buf);
 exit(127);
 }

 /* parent */
 if ((pid = waitpid(pid, &status, 0)) < 0)
 err_sys("waitpid error");
 printf("%% ");
 }
 exit(0);
}

The notation ̂D is used to indicate a control character. Control characters are special characters formed by
holding down the control key—often labeled Control or Ctrl —on your keyboard and then pressing another
key at the same time. Control-D, or ^D, is the default end-of-file character. We'll see many more control
characters when we discuss terminal I/O in Chapter 18.

Threads and Thread IDs

Usually, a process has only one thread of control—one set of machine instructions executing at a time. Some
problems are easier to solve when more than one thread of control can operate on different parts of the problem.
Additionally, multiple threads of control can exploit the parallelism possible on multiprocessor systems.

All the threads within a process share the same address space, file descriptors, stacks, and process-related
attributes. Because they can access the same memory, the threads need to synchronize access to shared data
among themselves to avoid inconsistencies.

As with processes, threads are identified by IDs. Thread IDs, however, are local to a process. A thread ID from
one process has no meaning in another process. We use thread IDs to refer to specific threads as we manipulate
the threads within a process.

Functions to control threads parallel those used to control processes. Because threads were added to the UNIX
System long after the process model was established, however, the thread model and the process model have
some complicated interactions, as we shall see in Chapter 12.

1.7. Error Handling

When an error occurs in one of the UNIX System functions, a negative value is often returned, and the integer
errno is usually set to a value that gives additional information. For example, the open function returns either a
non-negative file descriptor if all is OK or –1 if an error occurs. An error from open has about 15 possible
errno values, such as file doesn't exist, permission problem, and so on. Some functions use a convention other
than returning a negative value. For example, most functions that return a pointer to an object return a null
pointer to indicate an error.

The file <errno.h> defines the symbol errno and constants for each value that errno can assume. Each of
these constants begins with the character E. Also, the first page of Section 2 of the UNIX system manuals,
named intro (2), usually lists all these error constants. For example, if errno is equal to the constant EACCES,
this indicates a permission problem, such as insufficient permission to open the requested file.

On Linux, the error constants are listed in the errno (3) manual page.

POSIX and ISO C define errno as a symbol expanding into a modifiable lvalue of type integer. This can be
either an integer that contains the error number or a function that returns a pointer to the error number. The
historical definition is

 extern int errno;

But in an environment that supports threads, the process address space is shared among multiple threads, and
each thread needs its own local copy of errno to prevent one thread from interfering with another. Linux, for
example, supports multithreaded access to errno by defining it as

 extern int *_ _errno_location(void);
 #define errno (*_ _errno_location())

There are two rules to be aware of with respect to errno . First, its value is never cleared by a routine if an error
does not occur. Therefore, we should examine its value only when the return value from a function indicates
that an error occurred. Second, the value of errno is never set to 0 by any of the functions, and none of the
constants defined in <errno.h> has a value of 0.

Two functions are defined by the C standard to help with printing error messages.

#include <string.h>

char *strerror(int errnum);

Returns: pointer to message string

This function maps errnum, which is typically the errno value, into an error message string and returns a
pointer to the string.

The perror function produces an error message on the standard error, based on the current value of errno , and
returns.

#include <stdio.h>

void perror(const char *msg);

It outputs the string pointed to by msg, followed by a colon and a space, followed by the error message
corresponding to the value of errno , followed by a newline.

Example

Figure 1.8 shows the use of these two error functions.

If this program is compiled into the file a.out , we have

 $./a.out
 EACCES: Permission denied
 ./a.out: No such file or directory

Note that we pass the name of the program—argv[0] , whose value is ./a.out —as the argument to perror .
This is a standard convention in the UNIX System. By doing this, if the program is executed as part of a
pipeline, as in

 prog1 < inputfile | prog2 | prog3 > outputfile

we are able to tell which of the three programs generated a particular error message.

Figure 1.8. Demonstrate strerror and perror

#include "apue.h"
#include <errno.h>

int
main(int argc, char *argv[])
{
 fprintf(stderr, "EACCES: %s\n", strerror(EACCES));
 errno = ENOENT;
 perror(argv[0]);
 exit(0);
}

Instead of calling either strerror or perror directly, all the examples in this text use the error functions shown
in Appendix B. The error functions in this appendix let us use the variable argument list facility of ISO C to
handle error conditions with a single C statement.

Error Recovery

The errors defined in <errno.h> can be divided into two categories: fatal and nonfatal. A fatal error has no
recovery action. The best we can do is print an error message on the user's screen or write an error message into
a log file, and then exit. Nonfatal errors, on the other hand, can sometimes be dealt with more robustly. Most

nonfatal errors are temporary in nature, such as with a resource shortage, and might not occur when there is less
activity on the system.

Resource-related nonfatal errors include EAGAIN, ENFILE , ENOBUFS, ENOLCK, ENOSPC, ENOSR, EWOULDBLOCK, and
sometimes ENOMEM. EBUSY can be treated as a nonfatal error when it indicates that a shared resource is in use.
Sometimes, EINTR can be treated as a nonfatal error when it interrupts a slow system call (more on this in
Section 10.5).

The typical recovery action for a resource-related nonfatal error is to delay a little and try again later. This
technique can be applied in other circumstances. For example, if an error indicates that a network connection is
no longer functioning, it might be possible for the application to delay a short time and then reestablish the
connection. Some applications use an exponential backoff algorithm, waiting a longer period of time each
iteration.

Ultimately, it is up to the application developer to determine which errors are recoverable. If a reasonable
strategy can be used to recover from an error, we can improve the robustness of our application by avoiding an
abnormal exit.

1.8. User Identification

User ID

The user ID from our entry in the password file is a numeric value that identifies us to the system. This user ID
is assigned by the system administrator when our login name is assigned, and we cannot change it. The user ID
is normally assigned to be unique for every user. We'll see how the kernel uses the user ID to check whether we
have the appropriate permissions to perform certain operations.

We call the user whose user ID is 0 either root or the superuser. The entry in the password file normally has a
login name of root , and we refer to the special privileges of this user as superuser privileges. As we'll see in
Chapter 4, if a process has superuser privileges, most file permission checks are bypassed. Some operating
system functions are restricted to the superuser. The superuser has free rein over the system.

Client versions of Mac OS X ship with the superuser account disabled; server versions ship with the account
already enabled. Instructions are available on Apple's Web site describing how to enable it. See
http://docs.info.apple.com/article.html?artnum=1062 90.

Group ID

Our entry in the password file also specifies our numeric group ID. This too is assigned by the system
administrator when our login name is assigned. Typically, the password file contains multiple entries that
specify the same group ID. Groups are normally used to collect users together into projects or departments. This
allows the sharing of resources, such as files, among members of the same group. We'll see in Section 4.5 that
we can set the permissions on a file so that all members of a group can access the file, whereas others outside
the group cannot.

There is also a group file that maps group names into numeric group IDs. The group file is usually /etc/group .

The use of numeric user IDs and numeric group IDs for permissions is historical. With every file on disk, the
file system stores both the user ID and the group ID of a file's owner. Storing both of these values requires only
four bytes, assuming that each is stored as a two-byte integer. If the full ASCII login name and group name
were used instead, additional disk space would be required. In addition, comparing strings during permission
checks is more expensive than comparing integers.

Users, however, work better with names than with numbers, so the password file maintains the mapping
between login names and user IDs, and the group file provides the mapping between group names and group
IDs. The ls -l command, for example, prints the login name of the owner of a file, using the password file to
map the numeric user ID into the corresponding login name.

Early UNIX systems used 16-bit integers to represent user and group IDs. Contemporary UNIX systems use 32-
bit integers.

Example

The program in Figure 1.9 prints the user ID and the group ID.

We call the functions getuid and getgid to return the user ID and the group ID. Running the program yields

 $./a.out
 uid = 205, gid = 105

Figure 1.9. Print user ID and group ID

#include "apue.h"

int
main(void)
{
 printf("uid = %d, gid = %d\n", getuid(), getgid ());
 exit(0);
}

Supplementary Group IDs

In addition to the group ID specified in the password file for a login name, most versions of the UNIX System
allow a user to belong to additional groups. This started with 4.2BSD, which allowed a user to belong to up to
16 additional groups. These supplementary group IDs are obtained at login time by reading the file /etc/group
and finding the first 16 entries that list the user as a member. As we shall see in the next chapter, POSIX
requires that a system support at least eight supplementary groups per process, but most systems support at least
16.

1.9. Signals

Signals are a technique used to notify a process that some condition has occurred. For example, if a process
divides by zero, the signal whose name is SIGFPE (floating-point exception) is sent to the process. The process
has three choices for dealing with the signal.

1. Ignore the signal. This option isn't recommended for signals that denote a hardware exception, such as
dividing by zero or referencing memory outside the address space of the process, as the results are
undefined.

2. Let the default action occur. For a divide-by-zero condition, the default is to terminate the process.
3. Provide a function that is called when the signal occurs (this is called "catching" the signal). By

providing a function of our own, we'll know when the signal occurs and we can handle it as we wish.

Many conditions generate signals. Two terminal keys, called the interrupt key— often the DELETE key or
Control-C—and the quit key—often Control-backslash—are used to interrupt the currently running process.
Another way to generate a signal is by calling the kill function. We can call this function from a process to
send a signal to another process. Naturally, there are limitations: we have to be the owner of the other process
(or the superuser) to be able to send it a signal.

Example

Recall the bare-bones shell example (Figure 1.7). If we invoke this program and press the interrupt
key, the process terminates because the default action for this signal, named SIGINT , is to terminate
the process. The process hasn't told the kernel to do anything other than the default with this signal,
so the process terminates.

To catch this signal, the program needs to call the signal function, specifying the name of the
function to call when the SIGINT signal is generated. The function is named sig_int ; when it's
called, it just prints a message and a new prompt. Adding 11 lines to the program in Figure 1.7 gives
us the version in Figure 1.10. (The 11 new lines are indicated with a plus sign at the beginning of the
line.)

In Chapter 10, we'll take a long look at signals, as most nontrivial applications deal with them.

Figure 1.10. Read commands from standard input and execute them

 #include "apue.h"
 #include <sys/wait.h>

+ static void sig_int(int); /* our signal-cat ching function */
+
 int
 main(void)
 {
 char buf[MAXLINE]; /* from apue.h */
 pid_t pid;
 int status;

+ if (signal(SIGINT, sig_int) == SIG_ERR)
+ err_sys("signal error");
+
 printf("%% "); /* print prompt (printf requi res %% to print %) */
 while (fgets(buf, MAXLINE, stdin) != NULL) {

 if (buf[strlen(buf) - 1] == "\n")
 buf[strlen(buf) - 1] = 0; /* replace newline with null */

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 execlp(buf, buf, (char *)0);
 err_ret("couldn't execute: %s", buf);
 exit(127);
 }

 /* parent */
 if ((pid = waitpid(pid, &status, 0)) < 0)
 err_sys("waitpid error");
 printf("%% ");
 }
 exit(0);
 }
+
+ void
+ sig_int(int signo)
+ {
+ printf("interrupt\n%% ");
+ }

1.10. Time Values

Historically, UNIX systems have maintained two different time values:

1. Calendar time. This value counts the number of seconds since the Epoch: 00:00:00 January 1, 1970,
Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean Time.) These
time values are used to record the time when a file was last modified, for example.

The primitive system data type time_t holds these time values.

2. Process time. This is also called CPU time and measures the central processor resources used by a
process. Process time is measured in clock ticks, which have historically been 50, 60, or 100 ticks per
second.

The primitive system data type clock_t holds these time values. (We'll show how to obtain the number
of clock ticks per second with the sysconf function in Section 2.5.4.)

When we measure the execution time of a process, as in Section 3.9, we'll see that the UNIX System maintains
three values for a process:

• Clock time
• User CPU time
• System CPU time

The clock time, sometimes called wall clock time, is the amount of time the process takes to run, and its value
depends on the number of other processes being run on the system. Whenever we report the clock time, the
measurements are made with no other activities on the system.

The user CPU time is the CPU time attributed to user instructions. The system CPU time is the CPU time
attributed to the kernel when it executes on behalf of the process. For example, whenever a process executes a
system service, such as read or write , the time spent within the kernel performing that system service is
charged to the process. The sum of user CPU time and system CPU time is often called the CPU time.

It is easy to measure the clock time, user time, and system time of any process: simply execute the time (1)
command, with the argument to the time command being the command we want to measure. For example:

 $ cd /usr/include
 $ time -p grep _POSIX_SOURCE */*.h > /dev/null

 real 0m0.81s
 user 0m0.11s
 sys 0m0.07s

The output format from the time command depends on the shell being used, because some shells don't run
/usr/bin/time , but instead have a separate built-in function to measure the time it takes commands to run.

In Section 8.16, we'll see how to obtain these three times from a running process. The general topic of times and
dates is covered in Section 6.10.

1.11. System Calls and Library Functions

All operating systems provide service points through which programs request services from the kernel. All
implementations of the UNIX System provide a well-defined, limited number of entry points directly into the
kernel called system calls (recall Figure 1.1). Version 7 of the Research UNIX System provided about 50
system calls, 4.4BSD provided about 110, and SVR4 had around 120. Linux has anywhere between 240 and
260 system calls, depending on the version. FreeBSD has around 320.

The system call interface has always been documented in Section 2 of the UNIX Programmer's Manual. Its
definition is in the C language, regardless of the actual implementation technique used on any given system to
invoke a system call. This differs from many older operating systems, which traditionally defined the kernel
entry points in the assembler language of the machine.

The technique used on UNIX systems is for each system call to have a function of the same name in the
standard C library. The user process calls this function, using the standard C calling sequence. This function
then invokes the appropriate kernel service, using whatever technique is required on the system. For example,
the function may put one or more of the C arguments into general registers and then execute some machine
instruction that generates a software interrupt in the kernel. For our purposes, we can consider the system calls
as being C functions.

Section 3 of the UNIX Programmer's Manual defines the general-purpose functions available to programmers.
These functions aren't entry points into the kernel, although they may invoke one or more of the kernel's system
calls. For example, the printf function may use the write system call to output a string, but the strcpy (copy
a string) and atoi (convert ASCII to integer) functions don't involve the kernel at all.

From an implementor's point of view, the distinction between a system call and a library function is
fundamental. But from a user's perspective, the difference is not as critical. From our perspective in this text,
both system calls and library functions appear as normal C functions. Both exist to provide services for
application programs. We should realize, however, that we can replace the library functions, if desired, whereas
the system calls usually cannot be replaced.

Consider the memory allocation function malloc as an example. There are many ways to do memory allocation
and its associated garbage collection (best fit, first fit, and so on). No single technique is optimal for all
programs. The UNIX system call that handles memory allocation, sbrk (2), is not a general-purpose memory
manager. It increases or decreases the address space of the process by a specified number of bytes. How that
space is managed is up to the process. The memory allocation function, malloc (3), implements one particular
type of allocation. If we don't like its operation, we can define our own malloc function, which will probably
use the sbrk system call. In fact, numerous software packages implement their own memory allocation
algorithms with the sbrk system call. Figure 1.11 shows the relationship between the application, the malloc
function, and the sbrk system call.

Figure 1.11. Separation of malloc function and sbrk system call

Here we have a clean separation of duties: the system call in the kernel allocates an additional chunk of space
on behalf of the process. The malloc library function manages this space from user level.

Another example to illustrate the difference between a system call and a library function is the interface the
UNIX System provides to determine the current time and date. Some operating systems provide one system call
to return the time and another to return the date. Any special handling, such as the switch to or from daylight
saving time, is handled by the kernel or requires human intervention. The UNIX System, on the other hand,
provides a single system call that returns the number of seconds since the Epoch: midnight, January 1, 1970,
Coordinated Universal Time. Any interpretation of this value, such as converting it to a human-readable time
and date using the local time zone, is left to the user process. The standard C library provides routines to handle
most cases. These library routines handle such details as the various algorithms for daylight saving time.

An application can call either a system call or a library routine. Also realize that many library routines invoke a
system call. This is shown in Figure 1.12.

Figure 1.12. Difference between C library functions and system calls

Another difference between system calls and library functions is that system calls usually provide a minimal
interface, whereas library functions often provide more elaborate functionality. We've seen this already in the
difference between the sbrk system call and the malloc library function. We'll see this difference later, when
we compare the unbuffered I/O functions (Chapter 3) and the standard I/O functions (Chapter 5).

The process control system calls (fork , exec , and wait) are usually invoked by the user's application code
directly. (Recall the bare-bones shell in Figure 1.7.) But some library routines exist to simplify certain common
cases: the system and popen library routines, for example. In Section 8.13, we'll show an implementation of the
system function that invokes the basic process control system calls. We'll enhance this example in Section
10.18 to handle signals correctly.

To define the interface to the UNIX System that most programmers use, we have to describe both the system
calls and some of the library functions. If we described only the sbrk system call, for example, we would skip
the more programmer-friendly malloc library function that many applications use. In this text, we'll use the
term function to refer to both system calls and library functions, except when the distinction is necessary.

1.12. Summary

This chapter has been a short tour of the UNIX System. We've described some of the fundamental terms that
we'll encounter over and over again. We've seen numerous small examples of UNIX programs to give us a feel
for what the remainder of the text talks about.

The next chapter is about standardization of the UNIX System and the effect of work in this area on current
systems. Standards, particularly the ISO C standard and the POSIX.1 standard, will affect the rest of the text.

Chapter 2. UNIX Standardization and Implementations

Section 2.1. Introduction

Section 2.2. UNIX Standardization

Section 2.3. UNIX System Implementations

Section 2.4. Relationship of Standards and Implementations

Section 2.5. Limits

Section 2.6. Options

Section 2.7. Feature Test Macros

Section 2.8. Primitive System Data Types

Section 2.9. Conflicts Between Standards

Section 2.10. Summary

2.1. Introduction

Much work has gone into standardizing the UNIX programming environment and the C programming language.
Although applications have always been quite portable across different versions of the UNIX operating system,
the proliferation of versions and differences during the 1980s led many large users, such as the U.S. government,
to call for standardization.

In this chapter we first look at the various standardization efforts that have been under way over the past two
decades. We then discuss the effects of these UNIX programming standards on the operating system
implementations that are described in this book. An important part of all the standardization efforts is the
specification of various limits that each implementation must define, so we look at these limits and the various
ways to determine their values.

2.2. UNIX Standardization

2.2.1. ISO C

In late 1989, ANSI Standard X3.159–1989 for the C programming language was approved. This standard has
also been adopted as international standard ISO/IEC 9899:1990. ANSI is the American National Standards
Institute, the U.S. member in the International Organization for Standardization (ISO). IEC stands for the
International Electrotechnical Commission.

The C standard is now maintained and developed by the ISO/IEC international standardization working group
for the C programming language, known as ISO/IEC JTC1/SC22/WG14, or WG14 for short. The intent of the
ISO C standard is to provide portability of conforming C programs to a wide variety of operating systems, not
only the UNIX System. This standard defines not only the syntax and semantics of the programming language
but also a standard library [Chapter 7 of ISO 1999; Plauger 1992; Appendix B of Kernighan and Ritchie 1988].
This library is important because all contemporary UNIX systems, such as the ones described in this book,
provide the library routines that are specified in the C standard.

In 1999, the ISO C standard was updated and approved as ISO/IEC 9899:1999, largely to improve support for
applications that perform numerical processing. The changes don't affect the POSIX standards described in this
book, except for the addition of the restrict keyword to some of the function prototypes. This keyword is
used to tell the compiler which pointer references can be optimized, by indicating that the object to which the
pointer refers is accessed in the function only via that pointer.

As with most standards, there is a delay between the standard's approval and the modification of software to
conform to it. As each vendor's compilation systems evolve, they add more support for the latest version of the
ISO C standard.

A summary of the current level of conformance of gcc to the 1999 version of the ISO C standard is available at
http://www.gnu.org/software/gcc/c99status.html .

The ISO C library can be divided into 24 areas, based on the headers defined by the standard. Figure 2.1 lists
the headers defined by the C standard. The POSIX.1 standard includes these headers, as well as others. We also
list which of these headers are supported by the four implementations (FreeBSD 5.2.1, Linux 2.4.22, Mac OS X
10.3, and Solaris 9) that are described later in this chapter.

Figure 2.1. Headers defined by the ISO C standard

Header FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

<assert.h> • • • • verify program assertion

<complex.h> • • • complex arithmetic support

<ctype.h> • • • • character types

<errno.h> • • • • error codes (Section 1.7)

<fenv.h> • • floating-point environment

<float.h> • • • • floating-point constants

Figure 2.1. Headers defined by the ISO C standard

Header FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

<inttypes.h> • • • • integer type format conversion

<iso646.h> • • • • alternate relational operator macros

<limits.h> • • • • implementation constants (Section 2.5)

<locale.h> • • • • locale categories

<math.h> • • • • mathematical constants

<setjmp.h> • • • • nonlocal goto (Section 7.10)

<signal.h> • • • • signals (Chapter 10)

<stdarg.h> • • • • variable argument lists

<stdbool.h> • • • • boolean type and values

<stddef.h> • • • • standard definitions

<stdint.h> • • • integer types

<stdio.h> • • • • standard I/O library (Chapter 5)

<stdlib.h> • • • • utility functions

<string.h> • • • • string operations

<tgmath.h> • type-generic math macros

<time.h> • • • • time and date (Section 6.10)

<wchar.h> • • • • extended multibyte and wide character
support

<wctype.h> • • • • wide character classification and
mapping support

The ISO C headers depend on which version of the C compiler is used with the operating system. When
considering Figure 2.1, note that FreeBSD 5.2.1 ships with version 3.3.3 of gcc , Solaris 9 ships with both
version 2.95.3 and version 3.2 of gcc , Mandrake 9.2 (Linux 2.4.22) ships with version 3.3.1 of gcc , and Mac
OS X 10.3 ships with version 3.3 of gcc . Mac OS X also includes older versions of gcc .

2.2.2. IEEE POSIX

POSIX is a family of standards developed by the IEEE (Institute of Electrical and Electronics Engineers).
POSIX stands for Portable Operating System Interface. It originally referred only to the IEEE Standard 1003.1–
1988—the operating system interface—but was later extended to include many of the standards and draft
standards with the 1003 designation, including the shell and utilities (1003.2).

Of specific interest to this book is the 1003.1 operating system interface standard, whose goal is to promote the
portability of applications among various UNIX System environments. This standard defines the services that
must be provided by an operating system if it is to be "POSIX compliant," and has been adopted by most
computer vendors. Although the 1003.1 standard is based on the UNIX operating system, the standard is not
restricted to UNIX and UNIX-like systems. Indeed, some vendors supplying proprietary operating systems
claim that these systems have been made POSIX compliant, while still leaving all their proprietary features in
place.

Because the 1003.1 standard specifies an interface and not an implementation, no distinction is made between
system calls and library functions. All the routines in the standard are called functions.

Standards are continually evolving, and the 1003.1 standard is no exception. The 1988 version of this standard,
IEEE Standard 1003.1–1988, was modified and submitted to the International Organization for Standardization.
No new interfaces or features were added, but the text was revised. The resulting document was published as
IEEE Std 1003.1–1990 [IEEE 1990]. This is also the international standard ISO/IEC 9945–1:1990. This
standard is commonly referred to as POSIX.1, which we'll use in this text.

The IEEE 1003.1 working group continued to make changes to the standard. In 1993, a revised version of the
IEEE 1003.1 standard was published. It included 1003.1-1990 standard and the 1003.1b-1993 real-time
extensions standard. In 1996, the standard was again updated as international standard ISO/IEC 9945–1:1996. It
included interfaces for multithreaded programming, called pthreads for POSIX threads. More real-time
interfaces were added in 1999 with the publication of IEEE Standard 1003.1d-1999. A year later, IEEE
Standard 1003.1j-2000 was published, including even more real-time interfaces, and IEEE Standard 1003.1q-
2000 was published, adding event-tracing extensions to the standard.

The 2001 version of 1003.1 departed from the prior versions in that it combined several 1003.1 amendments,
the 1003.2 standard, and portions of the Single UNIX Specification (SUS), Version 2 (more on this later). The
resulting standard, IEEE Standard 1003.1-2001, includes the following other standards:

• ISO/IEC 9945-1 (IEEE Standard 1003.1-1996), which includes
o IEEE Standard 1003.1-1990
o IEEE Standard 1003.1b-1993 (real-time extensions)
o IEEE Standard 1003.1c-1995 (pthreads)
o IEEE Standard 1003.1i-1995 (real-time technical corrigenda)

• IEEE P1003.1a draft standard (system interface revision)
• IEEE Standard 1003.1d-1999 (advanced real-time extensions)
• IEEE Standard 1003.1j-2000 (more advanced real-time extensions)
• IEEE Standard 1003.1q-2000 (tracing)
• IEEE Standard 1003.2d-1994 (batch extensions)
• IEEE P1003.2b draft standard (additional utilities)
• Parts of IEEE Standard 1003.1g-2000 (protocol-independent interfaces)
• ISO/IEC 9945-2 (IEEE Standard 1003.2-1993)
• The Base Specifications of the Single UNIX Specification, version 2, which include

o System Interface Definitions, Issue 5
o Commands and Utilities, Issue 5
o System Interfaces and Headers, Issue 5

• Open Group Technical Standard, Networking Services, Issue 5.2
• ISO/IEC 9899:1999, Programming Languages - C

Figure 2.2, Figure 2.3, and Figure 2.4 summarize the required and optional headers as specified by POSIX.1.
Because POSIX.1 includes the ISO C standard library functions, it also requires the headers listed in Figure 2.1.
All four figures summarize which headers are included in the implementations discussed in this book.

Figure 2.2. Required headers defined by the POSIX standard

Header FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

<dirent.h> • • • • directory entries (Section 4.21)

<fcntl.h> • • • • file control (Section 3.14)

<fnmatch.h> • • • • filename-matching types

<glob.h> • • • • pathname pattern-matching types

<grp.h> • • • • group file (Section 6.4)

<netdb.h> • • • • network database operations

<pwd.h> • • • • password file (Section 6.2)

<regex.h> • • • • regular expressions

<tar.h> • • • • tar archive values

<termios.h> • • • • terminal I/O (Chapter 18)

<unistd.h> • • • • symbolic constants

<utime.h> • • • • file times (Section 4.19)

<wordexp.h> • • • word-expansion types

<arpa/inet.h> • • • • Internet definitions (Chapter 16)

<net/if.h> • • • • socket local interfaces (Chapter 16)

<netinet/in.h> • • • • Internet address family (Section
16.3)

<netinet/tcp.h> • • • • Transmission Control Protocol
definitions

<sys/mman.h> • • • • memory management declarations

<sys/select.h> • • • • select function (Section 14.5.1)

<sys/socket.h> • • • • sockets interface (Chapter 16)

<sys/stat.h> • • • • file status (Chapter 4)

<sys/times.h> • • • • process times (Section 8.16)

<sys/types.h> • • • • primitive system data types (Section
2.8)

<sys/un.h> • • • • UNIX domain socket definitions
(Section 17.3)

<sys/utsname.h> • • • • system name (Section 6.9)

Figure 2.2. Required headers defined by the POSIX standard

Header FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

<sys/wait.h> • • • • process control (Section 8.6)

Figure 2.3. XSI extension headers defined by the POSIX standard

Header FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

<cpio.h> • • • cpio archive values

<dlfcn.h> • • • • dynamic linking

<fmtmsg.h> • • • message display structures

<ftw.h> • • file tree walking (Section 4.21)

<iconv.h> • • • codeset conversion utility

<langinfo.h> • • • • language information constants

<libgen.h> • • • • definitions for pattern-matching
function

<monetary.h> • • • • monetary types

<ndbm.h> • • • database operations

<nl_types.h> • • • • message catalogs

<poll.h> • • • • poll function (Section 14.5.2)

<search.h> • • • • search tables

<strings.h> • • • • string operations

<syslog.h> • • • • system error logging (Section
13.4)

<ucontext.h> • • • • user context

<ulimit.h> • • • • user limits

<utmpx.h> • • user accounting database

<sys/ipc.h> • • • • IPC (Section 15.6)

<sys/msg.h> • • • message queues (Section 15.7)

<sys/resource.h> • • • • resource operations (Section 7.11)

<sys/sem.h> • • • • semaphores (Section 15.8)

<sys/shm.h> • • • • shared memory (Section 15.9)

Figure 2.3. XSI extension headers defined by the POSIX standard

Header FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

<sys/statvfs.h> • • • file system information

<sys/time.h> • • • • time types

<sys/timeb.h> • • • • additional date and time
definitions

<sys/uio.h> • • • • vector I/O operations (Section
14.7)

Figure 2.4. Optional headers defined by the POSIX standard

Header FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

<aio.h> • • • • asynchronous I/O

<mqueue.h> • • message queues

<pthread.h> • • • • threads (Chapters 11 and 12)

<sched.h> • • • • execution scheduling

<semaphore.h> • • • • semaphores

<spawn.h> • real-time spawn interface

<stropts.h> • • XSI STREAMS interface (Section
14.4)

<trace.h> event tracing

In this text we describe the 2001 version of POSIX.1, which includes the functions specified in the ISO C
standard. Its interfaces are divided into required ones and optional ones. The optional interfaces are further
divided into 50 sections, based on functionality. The sections containing nonobsolete programming interfaces
are summarized in Figure 2.5 with their respective option codes. Option codes are two- to three-character
abbreviations that help identify the interfaces that belong to each functional area. The option codes highlight
text on manual pages where interfaces depend on the support of a particular option. Many of the options deal
with real-time extensions.

Figure 2.5. POSIX.1 optional interface groups and codes

Code SUS mandatory Symbolic constant Description

ADV _POSIX_ADVISORY_INFO advisory information (real-time)

Figure 2.5. POSIX.1 optional interface groups and codes

Code SUS mandatory Symbolic constant Description

AIO _POSIX_ASYNCHRONOUS_IO asynchronous input and output (real-time)

BAR _POSIX_BARRIERS barriers (real-time)

CPT _POSIX_CPUTIME process CPU time clocks (real-time)

CS _POSIX_CLOCK_SELECTION clock selection (real-time)

CX • extension to ISO C standard

FSC • _POSIX_FSYNC file synchronization

IP6 _POSIX_IPV6 IPv6 interfaces

MF • _POSIX_MAPPED_FILES memory-mapped files

ML _POSIX_MEMLOCK process memory locking (real-time)

MLR _POSIX_MEMLOCK_RANGE memory range locking (real-time)

MON _POSIX_MONOTONIC_CLOCK monotonic clock (real-time)

MPR • _POSIX_MEMORY_PROTECTION memory protection

MSG _POSIX_MESSAGE_PASSING message passing (real-time)

MX IEC 60559 floating-point option

PIO _POSIX_PRIORITIZED_IO prioritized input and output

PS _POSIX_PRIORITIZED_SCHEDULING process scheduling (real-time)

RS _POSIX_RAW_SOCKETS raw sockets

RTS _POSIX_REALTIME_SIGNALS real-time signals extension

SEM _POSIX_SEMAPHORES semaphores (real-time)

SHM _POSIX_SHARED_MEMORY_OBJECTS shared memory objects (real-time)

SIO _POSIX_SYNCHRONIZED_IO synchronized input and output (real-time)

SPI _POSIX_SPIN_LOCKS spin locks (real-time)

SPN _POSIX_SPAWN spawn (real-time)

SS _POSIX_SPORADIC_SERVER process sporadic server (real-time)

TCT _POSIX_THREAD_CPUTIME thread CPU time clocks (real-time)

TEF _POSIX_TRACE_EVENT_FILTER trace event filter

THR • _POSIX_THREADS threads

TMO _POSIX_TIMEOUTS timeouts (real-time)

Figure 2.5. POSIX.1 optional interface groups and codes

Code SUS mandatory Symbolic constant Description

TMR _POSIX_TIMERS timers (real-time)

TPI _POSIX_THREAD_PRIO_INHERIT thread priority inheritance (real-time)

TPP _POSIX_THREAD_PRIO_PROTECT thread priority protection (real-time)

TPS _POSIX_THREAD_PRIORITY_SCHEDULING thread execution scheduling (real-time)

TRC _POSIX_TRACE trace

TRI _POSIX_TRACE_INHERIT trace inherit

TRL _POSIX_TRACE_LOG trace log

TSA • _POSIX_THREAD_ATTR_STACKADDR thread stack address attribute

TSF • _POSIX_THREAD_SAFE_FUNCTIONS thread-safe functions

TSH • _POSIX_THREAD_PROCESS_SHARED thread process-shared synchronization

TSP _POSIX_THREAD_SPORADIC_SERVER thread sporadic server (real-time)

TSS • _POSIX_THREAD_ATTR_STACKSIZE thread stack address size

TYM _POSIX_TYPED_MEMORY_OBJECTS typed memory objects (real-time)

XSI • _XOPEN_UNIX X/Open extended interfaces

XSR _XOPEN_STREAMS XSI STREAMS

POSIX.1 does not include the notion of a superuser. Instead, certain operations require "appropriate privileges,"
although POSIX.1 leaves the definition of this term up to the implementation. UNIX systems that conform to
the Department of Defense security guidelines have many levels of security. In this text, however, we use the
traditional terminology and refer to operations that require superuser privilege.

After almost twenty years of work, the standards are mature and stable. The POSIX.1 standard is maintained by
an open working group known as the Austin Group (http://www.opengroup.org/austin). To ensure that
they are still relevant, the standards need to be either updated or reaffirmed every so often.

2.2.3. The Single UNIX Specification

The Single UNIX Specification, a superset of the POSIX.1 standard, specifies additional interfaces that extend
the functionality provided by the basic POSIX.1 specification. The complete set of system interfaces is called
the X/Open System Interface (XSI). The _XOPEN_UNIX symbolic constant identifies interfaces that are part of
the XSI extensions to the base POSIX.1 interfaces.

The XSI also defines which optional portions of POSIX.1 must be supported for an implementation to be
deemed XSI conforming. These include file synchronization, memory-mapped files, memory protection, and
thread interfaces, and are marked in Figure 2.5 as "SUS mandatory." Only XSI-conforming implementations
can be called UNIX systems.

The Open Group owns the UNIX trademark and uses the Single UNIX Specification to define the interfaces an
implementation must support to call itself a UNIX system. Implementations must file conformance statements,
pass test suites that verify conformance, and license the right to use the UNIX trademark.

Some of the additional interfaces defined in the XSI are required, whereas others are optional. The interfaces
are divided into option groups based on common functionality, as follows:

• Encryption: denoted by the _XOPEN_CRYPT symbolic constant
• Real-time: denoted by the _XOPEN_REALTIME symbolic constant
• Advanced real-time
• Real-time threads: denoted by the _XOPEN_REALTIME_THREADS symbolic constant
• Advanced real-time threads
• Tracing
• XSI STREAMS: denoted by the _XOPEN_STREAMS symbolic constant
• Legacy: denoted by the _XOPEN_LEGACY symbolic constant

The Single UNIX Specification (SUS) is a publication of The Open Group, which was formed in 1996 as a
merger of X/Open and the Open Software Foundation (OSF), both industry consortia. X/Open used to publish
the X/Open Portability Guide, which adopted specific standards and filled in the gaps where functionality was
missing. The goal of these guides was to improve application portability past what was possible by merely
conforming to published standards.

The first version of the Single UNIX Specification was published by X/Open in 1994. It was also known as
"Spec 1170," because it contained roughly 1,170 interfaces. It grew out of the Common Open Software
Environment (COSE) initiative, whose goal was to further improve application portability across all
implementations of the UNIX operating system. The COSE group—Sun, IBM, HP, Novell/USL, and OSF—
went further than endorsing standards. In addition, they investigated interfaces used by common commercial
applications. The resulting 1,170 interfaces were selected from these applications, and also included the X/Open
Common Application Environment (CAE), Issue 4 (known as "XPG4" as a historical reference to its
predecessor, the X/Open Portability Guide), the System V Interface Definition (SVID), Edition 3, Level 1
interfaces, and the OSF Application Environment Specification (AES) Full Use interfaces.

The second version of the Single UNIX Specification was published by The Open Group in 1997. The new
version added support for threads, real-time interfaces, 64-bit processing, large files, and enhanced multibyte
character processing.

The third version of the Single UNIX Specification (SUSv3, for short) was published by The Open Group in
2001. The Base Specifications of SUSv3 are the same as the IEEE Standard 1003.1-2001 and are divided into
four sections: Base Definitions, System Interfaces, Shell and Utilities, and Rationale. SUSv3 also includes
X/Open Curses Issue 4, Version 2, but this specification is not part of POSIX.1.

In 2002, ISO approved this version as International Standard ISO/IEC 9945:2002. The Open Group updated the
1003.1 standard again in 2003 to include technical corrections, and ISO approved this as International Standard
ISO/IEC 9945:2003. In April 2004, The Open Group published the Single UNIX Specification, Version 3, 2004
Edition. It included more technical corrections edited in with the main text of the standard.

2.2.4. FIPS

FIPS stands for Federal Information Processing Standard. It was published by the U.S. government, which used
it for the procurement of computer systems. FIPS 151–1 (April 1989) was based on the IEEE Std. 1003.1–1988
and a draft of the ANSI C standard. This was followed by FIPS 151–2 (May 1993), which was based on the

IEEE Standard 1003.1–1990. FIPS 151–2 required some features that POSIX.1 listed as optional. All these
options have been included as mandatory in POSIX.1-2001.

The effect of the POSIX.1 FIPS was to require any vendor that wished to sell POSIX.1-compliant computer
systems to the U.S. government to support some of the optional features of POSIX.1. The POSIX.1 FIPS has
since been withdrawn, so we won't consider it further in this text.

2.3. UNIX System Implementations

The previous section described ISO C, IEEE POSIX, and the Single UNIX Specification; three standards
created by independent organizations. Standards, however, are interface specifications. How do these standards
relate to the real world? These standards are taken by vendors and turned into actual implementations. In this
book, we are interested in both these standards and their implementation.

Section 1.1 of McKusick et al. [1996] gives a detailed history (and a nice picture) of the UNIX System family
tree. Everything starts from the Sixth Edition (1976) and Seventh Edition (1979) of the UNIX Time-Sharing
System on the PDP-11 (usually called Version 6 and Version 7). These were the first releases widely distributed
outside of Bell Laboratories. Three branches of the tree evolved.

1. One at AT&T that led to System III and System V, the so-called commercial versions of the UNIX
System.

2. One at the University of California at Berkeley that led to the 4.xBSD implementations.
3. The research version of the UNIX System, developed at the Computing Science Research Center of

AT&T Bell Laboratories, that led to the UNIX Time-Sharing System 8th Edition, 9th Edition, and ended
with the 10th Edition in 1990.

2.3.1. UNIX System V Release 4

UNIX System V Release 4 (SVR4) was a product of AT&T's UNIX System Laboratories (USL, formerly
AT&T's UNIX Software Operation). SVR4 merged functionality from AT&T UNIX System V Release 3.2
(SVR3.2), the SunOS operating system from Sun Microsystems, the 4.3BSD release from the University of
California, and the Xenix system from Microsoft into one coherent operating system. (Xenix was originally
developed from Version 7, with many features later taken from System V.) The SVR4 source code was released
in late 1989, with the first end-user copies becoming available during 1990. SVR4 conformed to both the
POSIX 1003.1 standard and the X/Open Portability Guide, Issue 3 (XPG3).

AT&T also published the System V Interface Definition (SVID) [AT&T 1989]. Issue 3 of the SVID specified
the functionality that an operating system must offer to qualify as a conforming implementation of UNIX
System V Release 4. As with POSIX.1, the SVID specified an interface, not an implementation. No distinction
was made in the SVID between system calls and library functions. The reference manual for an actual
implementation of SVR4 must be consulted to see this distinction [AT&T 1990e].

2.3.2. 4.4BSD

The Berkeley Software Distribution (BSD) releases were produced and distributed by the Computer Systems
Research Group (CSRG) at the University of California at Berkeley; 4.2BSD was released in 1983 and 4.3BSD
in 1986. Both of these releases ran on the VAX minicomputer. The next release, 4.3BSD Tahoe in 1988, also
ran on a particular minicomputer called the Tahoe. (The book by Leffler et al. [1989] describes the 4.3BSD
Tahoe release.) This was followed in 1990 with the 4.3BSD Reno release; 4.3BSD Reno supported many of the
POSIX.1 features.

The original BSD systems contained proprietary AT&T source code and were covered by AT&T licenses. To
obtain the source code to the BSD system you had to have a UNIX source license from AT&T. This changed as
more and more of the AT&T source code was replaced over the years with non-AT&T source code and as many
of the new features added to the Berkeley system were derived from non-AT&T sources.

In 1989, Berkeley identified much of the non-AT&T source code in the 4.3BSD Tahoe release and made it
publicly available as the BSD Networking Software, Release 1.0. This was followed in 1991 with Release 2.0

of the BSD Networking Software, which was derived from the 4.3BSD Reno release. The intent was that most,
if not all, of the 4.4BSD system would be free of any AT&T license restrictions, thus making the source code
available to all.

4.4BSD-Lite was intended to be the final release from the CSRG. Its introduction was delayed, however,
because of legal battles with USL. Once the legal differences were resolved, 4.4BSD-Lite was released in 1994,
fully unencumbered, so no UNIX source license was needed to receive it. The CSRG followed this with a bug-
fix release in 1995. This release, 4.4BSD-Lite, release 2, was the final version of BSD from the CSRG. (This
version of BSD is described in the book by McKusick et al. [1996].)

The UNIX system development done at Berkeley started with PDP-11s, then moved to the VAX minicomputer,
and then to other so-called workstations. During the early 1990s, support was provided to Berkeley for the
popular 80386-based personal computers, leading to what is called 386BSD. This was done by Bill Jolitz and
was documented in a series of monthly articles in Dr. Dobb's Journal throughout 1991. Much of this code
appears in the BSD Networking Software, Release 2.0.

2.3.3. FreeBSD

FreeBSD is based on the 4.4BSD-Lite operating system. The FreeBSD project was formed to carry on the BSD
line after the Computing Science Research Group at the University of California at Berkeley decided to end its
work on the BSD versions of the UNIX operating system, and the 386BSD project seemed to be neglected for
too long.

All software produced by the FreeBSD project is freely available in both binary and source forms. The
FreeBSD 5.2.1 operating system was one of the four used to test the examples in this book.

Several other BSD-based free operating systems are available. The NetBSD project (http://www.netbsd.org)
is similar to the FreeBSD project, with an emphasis on portability between hardware platforms. The OpenBSD
project (http://www.openbsd.org) is similar to FreeBSD but with an emphasis on security.

2.3.4. Linux

Linux is an operating system that provides a rich UNIX programming environment, and is freely available
under the GNU Public License. The popularity of Linux is somewhat of a phenomenon in the computer industry.
Linux is distinguished by often being the first operating system to support new hardware.

Linux was created in 1991 by Linus Torvalds as a replacement for MINIX. A grass-roots effort then sprang up,
whereby many developers across the world volunteered their time to use and enhance it.

The Mandrake 9.2 distribution of Linux was one of the operating systems used to test the examples in this book.
That distribution uses the 2.4.22 version of the Linux operating system kernel.

2.3.5. Mac OS X

Mac OS X is based on entirely different technology than prior versions. The core operating system is called
"Darwin," and is based on a combination of the Mach kernel (Accetta et al. [1986]) and the FreeBSD operating
system. Darwin is managed as an open source project, similar to FreeBSD and Linux.

Mac OS X version 10.3 (Darwin 7.4.0) was used as one of the operating systems to test the examples in this
book.

2.3.6. Solaris

Solaris is the version of the UNIX System developed by Sun Microsystems. It is based on System V Release 4,
with more than ten years of enhancements from the engineers at Sun Microsystems. It is the only commercially
successful SVR4 descendant, and is formally certified to be a UNIX system. (For more information on UNIX
certification, see http://www.opengroup.org/certification/idx/unix.htm l .)

The Solaris 9 UNIX system was one of the operating systems used to test the examples in this book.

2.3.7. Other UNIX Systems

Other versions of the UNIX system that have been certified in the past include

• AIX, IBM's version of the UNIX System
• HP-UX, Hewlett-Packard's version of the UNIX System
• IRIX, the UNIX System version shipped by Silicon Graphics
• UnixWare, the UNIX System descended from SVR4 and currently sold by SCO

2.4. Relationship of Standards and Implementations

The standards that we've mentioned define a subset of any actual system. The focus of this book is on four real
systems: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9. Although only Solaris can call itself a
UNIX system, all four provide a UNIX programming environment. Because all four are POSIX compliant to
varying degrees, we will also concentrate on the features that are required by the POSIX.1 standard, noting any
differences between POSIX and the actual implementations of these four systems. Those features and routines
that are specific to only a particular implementation are clearly marked. As SUSv3 is a superset of POSIX.1,
we'll also note any features that are part of SUSv3 but not part of POSIX.1.

Be aware that the implementations provide backward compatibility for features in earlier releases, such as
SVR3.2 and 4.3BSD. For example, Solaris supports both the POSIX.1 specification for nonblocking I/O
(O_NONBLOCK) and the traditional System V method (O_NDELAY). In this text, we'll use only the POSIX.1 feature,
although we'll mention the nonstandard feature that it replaces. Similarly, both SVR3.2 and 4.3BSD provided
reliable signals in a way that differs from the POSIX.1 standard. In Chapter 10 we describe only the POSIX.1
signal mechanism.

2.5. Limits

The implementations define many magic numbers and constants. Many of these have been hard coded into
programs or were determined using ad hoc techniques. With the various standardization efforts that we've
described, more portable methods are now provided to determine these magic numbers and implementation-
defined limits, greatly aiding the portability of our software.

Two types of limits are needed:

1. Compile-time limits (e.g., what's the largest value of a short integer?)
2. Runtime limits (e.g., how many characters in a filename?)

Compile-time limits can be defined in headers that any program can include at compile time. But runtime limits
require the process to call a function to obtain the value of the limit.

Additionally, some limits can be fixed on a given implementation—and could therefore be defined statically in
a header—yet vary on another implementation and would require a runtime function call. An example of this
type of limit is the maximum number of characters in a filename. Before SVR4, System V historically allowed
only 14 characters in a filename, whereas BSD-derived systems increased this number to 255. Most UNIX
System implementations these days support multiple file system types, and each type has its own limit. This is
the case of a runtime limit that depends on where in the file system the file in question is located. A filename in
the root file system, for example, could have a 14-character limit, whereas a filename in another file system
could have a 255-character limit.

To solve these problems, three types of limits are provided:

1. Compile-time limits (headers)
2. Runtime limits that are not associated with a file or directory (the sysconf function)
3. Runtime limits that are associated with a file or a directory (the pathconf and fpathconf functions)

To further confuse things, if a particular runtime limit does not vary on a given system, it can be defined
statically in a header. If it is not defined in a header, however, the application must call one of the three conf
functions (which we describe shortly) to determine its value at runtime.

2.5.1. ISO C Limits

All the limits defined by ISO C are compile-time limits. Figure 2.6 shows the limits from the C standard that are
defined in the file <limits.h> . These constants are always defined in the header and don't change in a given
system. The third column shows the minimum acceptable values from the ISO C standard. This allows for a
system with 16-bit integers using one's-complement arithmetic. The fourth column shows the values from a
Linux system with 32-bit integers using two's-complement arithmetic. Note that none of the unsigned data types
has a minimum value, as this value must be 0 for an unsigned data type. On a 64-bit system, the values for long
integer maximums match the maximum values for long long integers.

Figure 2.6. Sizes of integral values from <limits.h>

Name Description
Minimum acceptable

value Typical value

CHAR_BIT bits in a char 8 8

Figure 2.6. Sizes of integral values from <limits.h>

Name Description
Minimum acceptable

value Typical value

CHAR_MAX max value of char (see later) 127

CHAR_MIN min value of char (see later) –128

SCHAR_MAX max value of signed char 127 127

SCHAR_MIN min value of signed char –127 –128

UCHAR_MAX max value of unsigned char 255 255

INT_MAX max value of int 32,767 2,147,483,647

INT_MIN min value of int –32,767 –2,147,483,648

UINT_MAX max value of unsigned int 65,535 4,294,967,295

SHRT_MIN min value of short –32,767 –32,768

SHRT_MAX max value of short 32,767 32,767

USHRT_MAX max value of unsigned short 65,535 65,535

LONG_MAX max value of long 2,147,483,647 2,147,483,647

LONG_MIN min value of long –2,147,483,647 –2,147,483,648

ULONG_MAX max value of unsigned long 4,294,967,295 4,294,967,295

LLONG_MAX max value of long long 9,223,372,036,854,775,807 9,223,372,036,854,775,807

LLONG_MIN min value of long long –9,223,372,036,854,775,807 –9,223,372,036,854,775,808

ULLONG_MAX max value of unsigned long long 18,446,744,073,709,551,615 18,446,744,073,709,551,615

MB_LEN_MAX max number of bytes in a multibyte
character constant

1 16

One difference that we will encounter is whether a system provides signed or unsigned character values. From
the fourth column in Figure 2.6, we see that this particular system uses signed characters. We see that CHAR_MIN
equals SCHAR_MIN and that CHAR_MAX equals SCHAR_MAX. If the system uses unsigned characters, we would have
CHAR_MIN equal to 0 and CHAR_MAX equal to UCHAR_MAX.

The floating-point data types in the header <float.h> have a similar set of definitions. Anyone doing serious
floating-point work should examine this file.

Another ISO C constant that we'll encounter is FOPEN_MAX, the minimum number of standard I/O streams that
the implementation guarantees can be open at once. This value is in the <stdio.h> header, and its minimum
value is 8. The POSIX.1 value STREAM_MAX, if defined, must have the same value as FOPEN_MAX.

ISO C also defines the constant TMP_MAX in <stdio.h> . It is the maximum number of unique filenames
generated by the tmpnam function. We'll have more to say about this constant in Section 5.13.

In Figure 2.7, we show the values of FOPEN_MAX and TMP_MAX on the four platforms we discuss in this book.

Figure 2.7. ISO limits on various platforms

Limit FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

FOPEN_MAX 20 16 20 20

TMP_MAX 308,915,776 238,328 308,915,776 17,576

ISO C also defines the constant FILENAME_MAX, but we avoid using it, because some operating system
implementations historically have defined it to be too small to be of use.

2.5.2. POSIX Limits

POSIX.1 defines numerous constants that deal with implementation limits of the operating system.
Unfortunately, this is one of the more confusing aspects of POSIX.1. Although POSIX.1 defines numerous
limits and constants, we'll only concern ourselves with the ones that affect the base POSIX.1 interfaces. These
limits and constants are divided into the following five categories:

1. Invariant minimum values: the 19 constants in Figure 2.8
2. Invariant value: SSIZE_MAX
3. Runtime increasable values: CHARCLASS_NAME_MAX, COLL_WEIGHTS_MAX, LINE_MAX, NGROUPS_MAX, and

RE_DUP_MAX
4. Runtime invariant values, possibly indeterminate: ARG_MAX, CHILD_MAX, HOST_NAME_MAX,

LOGIN_NAME_MAX, OPEN_MAX, PAGESIZE, RE_DUP_MAX, STREAM_MAX, SYMLOOP_MAX, TTY_NAME_MAX, and
TZNAME_MAX

5. Pathname variable values, possibly indeterminate: FILESIZEBITS , LINK_MAX, MAX_CANON, MAX_INPUT,
NAME_MAX, PATH_MAX, PIPE_BUF, and SYMLINK_MAX

Figure 2.8. POSIX.1 invariant minimum values from <limits.h>

Name Description: minimum acceptable value for Value

_POSIX_ARG_MAX length of arguments to exec functions 4,096

_POSIX_CHILD_MAX number of child processes per real user ID 25

_POSIX_HOST_NAME_MAX maximum length of a host name as returned by gethostname 255

_POSIX_LINK_MAX number of links to a file 8

_POSIX_LOGIN_NAME_MAX maximum length of a login name 9

_POSIX_MAX_CANON number of bytes on a terminal's canonical input queue 255

_POSIX_MAX_INPUT space available on a terminal's input queue 255

Figure 2.8. POSIX.1 invariant minimum values from <limits.h>

Name Description: minimum acceptable value for Value

_POSIX_NAME_MAX number of bytes in a filename, not including the terminating null 14

_POSIX_NGROUPS_MAX number of simultaneous supplementary group IDs per process 8

_POSIX_OPEN_MAX number of open files per process 20

_POSIX_PATH_MAX number of bytes in a pathname, including the terminating null 256

_POSIX_PIPE_BUF number of bytes that can be written atomically to a pipe 512

_POSIX_RE_DUP_MAX number of repeated occurrences of a basic regular expression permitted by
the regexec and regcomp functions when using the interval notation
\{m,n\}

255

_POSIX_SSIZE_MAX value that can be stored in ssize_t object 32,767

_POSIX_STREAM_MAX number of standard I/O streams a process can have open at once 8

_POSIX_SYMLINK_MAX number of bytes in a symbolic link 255

_POSIX_SYMLOOP_MAX number of symbolic links that can be traversed during pathname resolution 8

_POSIX_TTY_NAME_MAX length of a terminal device name, including the terminating null 9

_POSIX_TZNAME_MAX number of bytes for the name of a time zone 6

Of these 44 limits and constants, some may be defined in <limits.h> , and others may or may not be defined,
depending on certain conditions. We describe the limits and constants that may or may not be defined in Section
2.5.4, when we describe the sysconf , pathconf , and fpathconf functions. The 19 invariant minimum values
are shown in Figure 2.8.

These values are invariant; they do not change from one system to another. They specify the most restrictive
values for these features. A conforming POSIX.1 implementation must provide values that are at least this large.
This is why they are called minimums, although their names all contain MAX. Also, to ensure portability, a
strictly-conforming application must not require a larger value. We describe what each of these constants refers
to as we proceed through the text.

A strictly-conforming POSIX application is different from an application that is merely POSIX conforming. A
POSIX-conforming application uses only interfaces defined in IEEE Standard 1003.1-2001. A strictly-
conforming application is a POSIX-conforming application that does not rely on any undefined behavior, does
not use any obsolescent interfaces, and does not require values of constants larger than the minimums shown in
Figure 2.8.

Unfortunately, some of these invariant minimum values are too small to be of practical use. For example, most
UNIX systems today provide far more than 20 open files per process. Also, the minimum limit of 255 for
_POSIX_PATH_MAX is too small. Pathnames can exceed this limit. This means that we can't use the two constants
_POSIX_OPEN_MAX and _POSIX_PATH_MAX as array sizes at compile time.

Each of the 19 invariant minimum values in Figure 2.8 has an associated implementation value whose name is
formed by removing the _POSIX_ prefix from the name in Figure 2.8. The names without the leading _POSIX_
were intended to be the actual values that a given implementation supports. (These 19 implementation values
are items 2–5 from our list earlier in this section: the invariant value, the runtime increasable value, the runtime
invariant values, and the pathname variable values.) The problem is that not all of the 19 implementation values
are guaranteed to be defined in the <limits.h> header.

For example, a particular value may not be included in the header if its actual value for a given process depends
on the amount of memory on the system. If the values are not defined in the header, we can't use them as array
bounds at compile time. So, POSIX.1 decided to provide three runtime functions for us to call—sysconf ,
pathconf , and fpathconf —to determine the actual implementation value at runtime. There is still a problem,
however, because some of the values are defined by POSIX.1 as being possibly "indeterminate" (logically
infinite). This means that the value has no practical upper bound. On Linux, for example, the number of iovec
structures you can use with readv or writev is limited only by the amount of memory on the system. Thus,
IOV_MAX is considered indeterminate on Linux. We'll return to this problem of indeterminate runtime limits in
Section 2.5.5.

2.5.3. XSI Limits

The XSI also defines constants that deal with implementation limits. They include:

1. Invariant minimum values: the ten constants in Figure 2.9
2. Numerical limits: LONG_BIT and WORD_BIT
3. Runtime invariant values, possibly indeterminate: ATEXIT_MAX, IOV_MAX, and PAGE_SIZE

Figure 2.9. XSI invariant minimum values from <limits.h>

Name Description Minimum acceptable
value

Typical
value

NL_ARGMAX maximum value of digit in calls to printf and
scanf

9 9

NL_LANGMAX maximum number of bytes in LANG environment
variable

14 14

NL_MSGMAX maximum message number 32,767 32,767

NL_NMAX maximum number of bytes in N-to-1 mapping
characters

(none specified) 1

NL_SETMAX maximum set number 255 255

NL_TEXTMAX maximum number of bytes in a message string _POSIX2_LINE_MAX 2,048

NZERO default process priority 20 20

_XOPEN_IOV_MAX maximum number of iovec structures that can be
used with readv or writev

16 16

_XOPEN_NAME_MAX number of bytes in a filename 255 255

_XOPEN_PATH_MAX number of bytes in a pathname 1,024 1,024

The invariant minimum values are listed in Figure 2.9. Many of these values deal with message catalogs. The
last two illustrate the situation in which the POSIX.1 minimums were too small—presumably to allow for
embedded POSIX.1 implementations—so the Single UNIX Specification added symbols with larger minimum
values for XSI-conforming systems.

2.5.4. sysconf, pathconf, and fpathconf Functions

We've listed various minimum values that an implementation must support, but how do we find out the limits
that a particular system actually supports? As we mentioned earlier, some of these limits might be available at
compile time; others must be determined at runtime. We've also mentioned that some don't change in a given
system, whereas others can change because they are associated with a file or directory. The runtime limits are
obtained by calling one of the following three functions.

#include <unistd.h>

long sysconf(int name);

long pathconf(const char *pathname, int name);

long fpathconf(int filedes, int name);

All three return: corresponding value if OK, –1 on error (see later)

The difference between the last two functions is that one takes a pathname as its argument and the other takes a
file descriptor argument.

Figure 2.10 lists the name arguments that sysconf uses to identify system limits. Constants beginning with
SC are used as arguments to sysconf to identify the runtime limit. Figure 2.11 lists the name arguments that
are used by pathconf and fpathconf to identify system limits. Constants beginning with _PC_ are used as
arguments to pathconf and fpathconf to identify the runtime limit.

Figure 2.10. Limits and name arguments to sysconf

Name of limit Description name argument

ARG_MAX maximum length, in bytes, of arguments to the exec functions _SC_ARG_MAX

ATEXIT_MAX maximum number of functions that can be registered with the
atexit function

_SC_ATEXIT_MAX

CHILD_MAX maximum number of processes per real user ID _SC_CHILD_MAX

clock ticks/second number of clock ticks per second _SC_CLK_TCK

COLL_WEIGHTS_MAX maximum number of weights that can be assigned to an entry
of the LC_COLLATE order keyword in the locale definition file

_SC_COLL_WEIGHTS_MAX

HOST_NAME_MAX maximum length of a host name as returned by gethostname _SC_HOST_NAME_MAX

Figure 2.10. Limits and name arguments to sysconf

Name of limit Description name argument

IOV_MAX maximum number of iovec structures that can be used with
readv or writev

_SC_IOV_MAX

LINE_MAX maximum length of a utility's input line _SC_LINE_MAX

LOGIN_NAME_MAX maximum length of a login name _SC_LOGIN_NAME_MAX

NGROUPS_MAX maximum number of simultaneous supplementary process
group IDs per process

_SC_NGROUPS_MAX

OPEN_MAX maximum number of open files per process _SC_OPEN_MAX

PAGESIZE system memory page size, in bytes _SC_PAGESIZE

PAGE_SIZE system memory page size, in bytes _SC_PAGE_SIZE

RE_DUP_MAX number of repeated occurrences of a basic regular expression
permitted by the regexec and regcomp functions when using
the interval notation \{m,n\}

_SC_RE_DUP_MAX

STREAM_MAX maximum number of standard I/O streams per process at any
given time; if defined, it must have the same value as
FOPEN_MAX

_SC_STREAM_MAX

SYMLOOP_MAX number of symbolic links that can be traversed during
pathname resolution

_SC_SYMLOOP_MAX

TTY_NAME_MAX length of a terminal device name, including the terminating
null

_SC_TTY_NAME_MAX

TZNAME_MAX maximum number of bytes for the name of a time zone _SC_TZNAME_MAX

Figure 2.11. Limits and name arguments to pathconf and fpathconf

Name of limit Description name argument

FILESIZEBITS minimum number of bits needed to represent, as a signed integer value,
the maximum size of a regular file allowed in the specified directory

_PC_FILESIZEBITS

LINK_MAX maximum value of a file's link count _PC_LINK_MAX

MAX_CANON maximum number of bytes on a terminal's canonical input queue _PC_MAX_CANON

MAX_INPUT number of bytes for which space is available on terminal's input queue _PC_MAX_INPUT

NAME_MAX maximum number of bytes in a filename (does not include a null at end) _PC_NAME_MAX

PATH_MAX maximum number of bytes in a relative pathname, including the
terminating null

_PC_PATH_MAX

PIPE_BUF maximum number of bytes that can be written atomically to a pipe _PC_PIPE_BUF

Figure 2.11. Limits and name arguments to pathconf and fpathconf

Name of limit Description name argument

SYMLINK_MAX number of bytes in a symbolic link _PC_SYMLINK_MAX

We need to look in more detail at the different return values from these three functions.

1. All three functions return –1 and set errno to EINVAL if the name isn't one of the appropriate constants.
The third column in Figures 2.10 and 2.11 lists the limit constants we'll deal with throughout the rest of
this book.

2. Some names can return either the value of the variable (a return value 0) or an indication that the
value is indeterminate. An indeterminate value is indicated by returning –1 and not changing the value
of errno .

3. The value returned for _SC_CLK_TCK is the number of clock ticks per second, for use with the return
values from the times function (Section 8.16).

There are some restrictions for the pathname argument to pathconf and the filedes argument to fpathconf . If
any of these restrictions isn't met, the results are undefined.

1. The referenced file for _PC_MAX_CANON and _PC_MAX_INPUT must be a terminal file.
2. The referenced file for _PC_LINK_MAX can be either a file or a directory. If the referenced file is a

directory, the return value applies to the directory itself, not to the filename entries within the directory.
3. The referenced file for _PC_FILESIZEBITS and _PC_NAME_MAX must be a directory. The return value

applies to filenames within the directory.
4. The referenced file for _PC_PATH_MAX must be a directory. The value returned is the maximum length of

a relative pathname when the specified directory is the working directory. (Unfortunately, this isn't the
real maximum length of an absolute pathname, which is what we want to know. We'll return to this
problem in Section 2.5.5.)

5. The referenced file for _PC_PIPE_BUF must be a pipe, FIFO, or directory. In the first two cases (pipe or
FIFO) the return value is the limit for the referenced pipe or FIFO. For the other case (a directory) the
return value is the limit for any FIFO created in that directory.

6. The referenced file for _PC_SYMLINK_MAX must be a directory. The value returned is the maximum
length of the string that a symbolic link in that directory can contain.

Example

The awk(1) program shown in Figure 2.12 builds a C program that prints the value of each pathconf and
sysconf symbol.

The awk program reads two input files—pathconf.sym and sysconf.sym —that contain lists of the limit name
and symbol, separated by tabs. All symbols are not defined on every platform, so the awk program surrounds
each call to pathconf and sysconf with the necessary #ifdef statements.

For example, the awk program transforms a line in the input file that looks like

 NAME_MAX _PC_NAME_MAX

into the following C code:

#ifdef NAME_MAX
 printf("NAME_MAX is defined to be %d\n", NAME_ MAX+0);
#else
 printf("no symbol for NAME_MAX\n");
#endif
#ifdef _PC_NAME_MAX
 pr_pathconf("NAME_MAX =", argv[1], _PC_NAME_MA X);
#else
 printf("no symbol for _PC_NAME_MAX\n");
#endif

The program in Figure 2.13, generated by the awk program, prints all these limits, handling the case in which a
limit is not defined.

Figure 2.14 summarizes results from Figure 2.13 for the four systems we discuss in this book. The entry "no
symbol" means that the system doesn't provide a corresponding _SC or _PC symbol to query the value of the
constant. Thus, the limit is undefined in this case. In contrast, the entry "unsupported" means that the symbol is
defined by the system but unrecognized by the sysconf or pathconf functions. The entry "no limit" means that
the system defines no limit for the constant, but this doesn't mean that the limit is infinite.

We'll see in Section 4.14 that UFS is the SVR4 implementation of the Berkeley fast file system. PCFS is the
MS-DOS FAT file system implementation for Solaris.

Figure 2.12. Build C program to print all supported configuration limits

BEGIN {
 printf("#include \"apue.h\"\n")
 printf("#include <errno.h>\n")
 printf("#include <limits.h>\n")
 printf("\n")
 printf("static void pr_sysconf(char *, int);\n")
 printf("static void pr_pathconf(char *, char *, int);\n")
 printf("\n")
 printf("int\n")
 printf("main(int argc, char *argv[])\n")
 printf("{\n")
 printf("\tif (argc != 2)\n")
 printf("\t\terr_quit(\"usage: a.out <dirname>\");\n\n")
 FS="\t+"
 while (getline <"sysconf.sym" > 0) {
 printf("#ifdef %s\n", $1)
 printf("\tprintf(\"%s defined to be %%d\\n\ ", %s+0);\n", $1, $1)
 printf("#else\n")
 printf("\tprintf(\"no symbol for %s\\n\");\ n", $1)
 printf("#endif\n")
 printf("#ifdef %s\n", $2)
 printf("\tpr_sysconf(\"%s =\", %s);\n", $1, $2)
 printf("#else\n")
 printf("\tprintf(\"no symbol for %s\\n\");\ n", $2)
 printf("#endif\n")
 }
 close("sysconf.sym")
 while (getline <"pathconf.sym" > 0) {
 printf("#ifdef %s\n", $1)

 printf("\tprintf(\"%s defined to be %%d\\n\ ", %s+0);\n", $1, $1)
 printf("#else\n")
 printf("\tprintf(\"no symbol for %s\\n\");\ n", $1)
 printf("#endif\n")
 printf("#ifdef %s\n", $2)
 printf("\tpr_pathconf(\"%s =\", argv[1], %s);\n", $1, $2)
 printf("#else\n")
 printf("\tprintf(\"no symbol for %s\\n\");\ n", $2)
 printf("#endif\n")
 }
 close("pathconf.sym")
 exit
}
END {
 printf("\texit(0);\n")
 printf("}\n\n")
 printf("static void\n")
 printf("pr_sysconf(char *mesg, int name)\n")
 printf("{\n")
 printf("\tlong val;\n\n")
 printf("\tfputs(mesg, stdout);\n")
 printf("\terrno = 0;\n")
 printf("\tif ((val = sysconf(name)) < 0) {\n")
 printf("\t\tif (errno != 0) {\n")
 printf("\t\t\tif (errno == EINVAL)\n")
 printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")
 printf("\t\t\telse\n")
 printf("\t\t\t\terr_sys(\"sysconf error\");\n")
 printf("\t\t} else {\n")
 printf("\t\t\tfputs(\" (no limit)\\n\", stdout) ;\n")
 printf("\t\t}\n")
 printf("\t} else {\n")
 printf("\t\tprintf(\" %%ld\\n\", val);\n")
 printf("\t}\n")
 printf("}\n\n")
 printf("static void\n")
 printf("pr_pathconf(char *mesg, char *path, int name)\n")
 printf("{\n")
 printf("\tlong val;\n")
 printf("\n")
 printf("\tfputs(mesg, stdout);\n")
 printf("\terrno = 0;\n")
 printf("\tif ((val = pathconf(path, name)) < 0) {\n")
 printf("\t\tif (errno != 0) {\n")
 printf("\t\t\tif (errno == EINVAL)\n")
 printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n")
 printf("\t\t\telse\n")
 printf("\t\t\t\terr_sys(\"pathconf error, path = %%s\", path);\n")
 printf("\t\t} else {\n")
 printf("\t\t\tfputs(\" (no limit)\\n\", stdout) ;\n")
 printf("\t\t}\n")
 printf("\t} else {\n")
 printf("\t\tprintf(\" %%ld\\n\", val);\n")
 printf("\t}\n")
 printf("}\n")
}

Figure 2.13. Print all possible sysconf and pathconf values

#include "apue.h"
#include <errno.h>
#include <limits.h>

static void pr_sysconf(char *, int);
static void pr_pathconf(char *, char *, int);

int
main(int argc, char *argv[])
{
 if (argc != 2)
 err_quit("usage: a.out <dirname>");

#ifdef ARG_MAX
 printf("ARG_MAX defined to be %d\n", ARG_MAX+0) ;
#else
 printf("no symbol for ARG_MAX\n");
#endif
#ifdef _SC_ARG_MAX
 pr_sysconf("ARG_MAX =", _SC_ARG_MAX);
#else
 printf("no symbol for _SC_ARG_MAX\n");
#endif

/* similar processing for all the rest of the sysco nf symbols... */

#ifdef MAX_CANON
 printf("MAX_CANON defined to be %d\n", MAX_CANO N+0);
#else
 printf("no symbol for MAX_CANON\n");
#endif
#ifdef _PC_MAX_CANON
 pr_pathconf("MAX_CANON =", argv[1], _PC_MAX_CAN ON);
#else
 printf("no symbol for _PC_MAX_CANON\n");
#endif

/* similar processing for all the rest of the pathc onf symbols... */

 exit(0);
}
static void
pr_sysconf(char *mesg, int name)
{
 long val;

 fputs(mesg, stdout);
 errno = 0;
 if ((val = sysconf(name)) < 0) {
 if (errno != 0) {
 if (errno == EINVAL)
 fputs(" (not supported)\n", stdout) ;
 else
 err_sys("sysconf error");
 } else {
 fputs(" (no limit)\n", stdout);
 }
 } else {
 printf(" %ld\n", val);
 }
}

static void
pr_pathconf(char *mesg, char *path, int name)
{

 long val;

 fputs(mesg, stdout);
 errno = 0;
 if ((val = pathconf(path, name)) < 0) {
 if (errno != 0) {
 if (errno == EINVAL)
 fputs(" (not supported)\n", stdout) ;
 else
 err_sys("pathconf error, path = %s" , path);
 } else {
 fputs(" (no limit)\n", stdout);
 }
 } else {
 printf(" %ld\n", val);
 }
}

Figure 2.14. Examples of configuration limits

Solaris 9
Limit FreeBSD

5.2.1
Linux 2.4.22 Mac OS X

10.3 UFS file
system

PCFS file
system

ARG_MAX 65,536 131,072 262,144 1,048,320 1,048,320

ATEXIT_MAX 32 2,147,483,647 no symbol no limit no limit

CHARCLASS_NAME_MAX no symbol 2,048 no symbol 14 14

CHILD_MAX 867 999 100 7,877 7,877

clock ticks/second 128 100 100 100 100

COLL_WEIGHTS_MAX 0 255 2 10 10

FILESIZEBITS unsupported 64 no symbol 41 unsupported

HOST_NAME_MAX 255 unsupported no symbol no symbol no symbol

IOV_MAX 1,024 no limit no symbol 16 16

LINE_MAX 2,048 2,048 2,048 2,048 2,048

LINK_MAX 32,767 32,000 32,767 32,767 1

LOGIN_NAME_MAX 17 256 no symbol 9 9

MAX_CANON 255 255 255 256 256

MAX_INPUT 255 255 255 512 512

NAME_MAX 255 255 765 255 8

NGROUPS_MAX 16 32 16 16 16

OPEN_MAX 1,735 1,024 256 256 256

PAGESIZE 4,096 4,096 4,096 8,192 8,192

Figure 2.14. Examples of configuration limits

Solaris 9
Limit FreeBSD

5.2.1
Linux 2.4.22 Mac OS X

10.3 UFS file
system

PCFS file
system

PAGE_SIZE 4,096 4,096 no symbol 8,192 8,192

PATH_MAX 1,024 4,096 1,024 1,024 1,024

PIPE_BUF 512 4,096 512 5,120 5,120

RE_DUP_MAX 255 32,767 255 255 255

STREAM_MAX 1,735 16 20 256 256

SYMLINK_MAX unsupported no limit no symbol no symbol no symbol

SYMLOOP_MAX 32 no limit no symbol no symbol no symbol

TTY_NAME_MAX 255 32 no symbol 128 128

TZNAME_MAX 255 6 255 no limit no limit

2.5.5. Indeterminate Runtime Limits

We mentioned that some of the limits can be indeterminate. The problem we encounter is that if these limits
aren't defined in the <limits.h> header, we can't use them at compile time. But they might not be defined at
runtime if their value is indeterminate! Let's look at two specific cases: allocating storage for a pathname and
determining the number of file descriptors.

Pathnames

Many programs need to allocate storage for a pathname. Typically, the storage has been allocated at compile
time, and various magic numbers—few of which are the correct value—have been used by different programs
as the array size: 256, 512, 1024, or the standard I/O constant BUFSIZ. The 4.3BSD constant MAXPATHLEN in the
header <sys/param.h> is the correct value, but many 4.3BSD applications didn't use it.

POSIX.1 tries to help with the PATH_MAX value, but if this value is indeterminate, we're still out of luck. Figure
2.15 shows a function that we'll use throughout this text to allocate storage dynamically for a pathname.

Figure 2.15. Dynamically allocate space for a pathname

#include "apue.h"
#include <errno.h>
#include <limits.h>

#ifdef PATH_MAX
static int pathmax = PATH_MAX;
#else
static int pathmax = 0;
#endif

#define SUSV3 200112L

static long posix_version = 0;

/* If PATH_MAX is indeterminate, no guarantee this is adequate */
#define PATH_MAX_GUESS 1024

char *
path_alloc(int *sizep) /* also return allocated siz e, if nonnull */
{
 char *ptr;
 int size;

 if (posix_version == 0)
 posix_version = sysconf(_SC_VERSION);

 if (pathmax == 0) { /* first time through * /
 errno = 0;
 if ((pathmax = pathconf("/", _PC_PATH_MAX)) < 0) {
 if (errno == 0)
 pathmax = PATH_MAX_GUESS; /* it's i ndeterminate */
 else
 err_sys("pathconf error for _PC_PAT H_MAX");
 } else {
 pathmax++; /* add one since it's r elative to root */
 }
 }
 if (posix_version < SUSV3)
 size = pathmax + 1;
 else
 size = pathmax;

 if ((ptr = malloc(size)) == NULL)
 err_sys("malloc error for pathname");

 if (sizep != NULL)
 *sizep = size;
 return(ptr);
}

If the constant PATH_MAX is defined in <limits.h> , then we're all set. If it's not, we need to call pathconf . The
value returned by pathconf is the maximum size of a relative pathname when the first argument is the working
directory, so we specify the root as the first argument and add 1 to the result. If pathconf indicates that
PATH_MAX is indeterminate, we have to punt and just guess a value.

Standards prior to SUSv3 were unclear as to whether or not PATH_MAX included a null byte at the end of the
pathname. If the operating system implementation conforms to one of these prior versions, we need to add 1 to
the amount of memory we allocate for a pathname, just to be on the safe side.

The correct way to handle the case of an indeterminate result depends on how the allocated space is being used.
If we were allocating space for a call to getcwd , for example—to return the absolute pathname of the current
working directory; see Section 4.22—and if the allocated space is too small, an error is returned and errno is
set to ERANGE. We could then increase the allocated space by calling realloc (see Section 7.8 and Exercise
4.16) and try again. We could keep doing this until the call to getcwd succeeded.

Maximum Number of Open Files

A common sequence of code in a daemon process—a process that runs in the background, not connected to a
terminal—is one that closes all open files. Some programs have the following code sequence, assuming the
constant NOFILE was defined in the <sys/param.h> header:

 #include <sys/param.h>

 for (i = 0; i < NOFILE; i++)
 close(i);

Other programs use the constant _NFILE that some versions of <stdio.h> provide as the upper limit. Some
hard code the upper limit as 20.

We would hope to use the POSIX.1 value OPEN_MAX to determine this value portably, but if the value is
indeterminate, we still have a problem. If we wrote the following and if OPEN_MAX was indeterminate, the loop
would never execute, since sysconf would return -1:

 #include <unistd.h>

 for (i = 0; i < sysconf(_SC_OPEN_MAX); i++)
 close(i);

Our best option in this case is just to close all descriptors up to some arbitrary limit, say 256. As with our
pathname example, this is not guaranteed to work for all cases, but it's the best we can do. We show this
technique in Figure 2.16.

Figure 2.16. Determine the number of file descriptors

#include "apue.h"
#include <errno.h>
#include <limits.h>

#ifdef OPEN_MAX
static long openmax = OPEN_MAX;
#else
static long openmax = 0;
#endif

/*
 * If OPEN_MAX is indeterminate, we're not
 * guaranteed that this is adequate.
 */
#define OPEN_MAX_GUESS 256

long
open_max(void)
{
 if (openmax == 0) { /* first time through */
 errno = 0;
 if ((openmax = sysconf(_SC_OPEN_MAX)) < 0) {
 if (errno == 0)
 openmax = OPEN_MAX_GUESS; /* it's indeterminate */
 else
 err_sys("sysconf error for _SC_OPEN_ MAX");
 }
 }

 return(openmax);
}

We might be tempted to call close until we get an error return, but the error return from close (EBADF) doesn't
distinguish between an invalid descriptor and a descriptor that wasn't open. If we tried this technique and
descriptor 9 was not open but descriptor 10 was, we would stop on 9 and never close 10. The dup function
(Section 3.12) does return a specific error when OPEN_MAX is exceeded, but duplicating a descriptor a couple of
hundred times is an extreme way to determine this value.

Some implementations will return LONG_MAX for limits values that are effectively unlimited. Such is the case
with the Linux limit for ATEXIT_MAX (see Figure 2.14). This isn't a good idea, because it can cause programs to
behave badly.

For example, we can use the ulimit command built into the Bourne-again shell to change the maximum
number of files our processes can have open at one time. This generally requires special (superuser) privileges if
the limit is to be effectively unlimited. But once set to infinite, sysconf will report LONG_MAX as the limit for
OPEN_MAX. A program that relies on this value as the upper bound of file descriptors to close as shown in Figure
2.16 will waste a lot of time trying to close 2,147,483,647 file descriptors, most of which aren't even in use.

Systems that support the XSI extensions in the Single UNIX Specification will provide the getrlimit (2)
function (Section 7.11). It can be used to return the maximum number of descriptors that a process can have
open. With it, we can detect that there is no configured upper bound to the number of open files our processes
can open, so we can avoid this problem.

The OPEN_MAX value is called runtime invariant by POSIX, meaning that its value should not change during the
lifetime of a process. But on systems that support the XSI extensions, we can call the setrlimit (2) function
(Section 7.11) to change this value for a running process. (This value can also be changed from the C shell with
the limit command, and from the Bourne, Bourne-again, and Korn shells with the ulimit command.) If our
system supports this functionality, we could change the function in Figure 2.16 to call sysconf every time it is
called, not only the first time.

2.6. Options

We saw the list of POSIX.1 options in Figure 2.5 and discussed XSI option groups in Section 2.2.3. If we are to
write portable applications that depend on any of these optionally-supported features, we need a portable way to
determine whether an implementation supports a given option.

Just as with limits (Section 2.5), the Single UNIX Specification defines three ways to do this.

1. Compile-time options are defined in <unistd.h> .
2. Runtime options that are not associated with a file or a directory are identified with the sysconf

function.
3. Runtime options that are associated with a file or a directory are discovered by calling either the

pathconf or the fpathconf function.

The options include the symbols listed in the third column of Figure 2.5, as well as the symbols listed in Figures
2.17 and 2.18. If the symbolic constant is not defined, we must use sysconf , pathconf , or fpathconf to
determine whether the option is supported. In this case, the name argument to the function is formed by
replacing the _POSIX at the beginning of the symbol with _SC or _PC. For constants that begin with _XOPEN, the
name argument is formed by prepending the string with _SC or _PC. For example, if the constant
_POSIX_THREADS is undefined, we can call sysconf with the name argument set to _SC_THREADS to determine
whether the platform supports the POSIX threads option. If the constant _XOPEN_UNIX is undefined, we can call
sysconf with the name argument set to _SC_XOPEN_UNIX to determine whether the platform supports the XSI
extensions.

Figure 2.17. Options and name arguments to sysconf

Name of option Description name argument

_POSIX_JOB_CONTROL indicates whether the implementation
supports job control

_SC_JOB_CONTROL

_POSIX_READER_WRITER_LOCKS indicates whether the implementation
supports reader–writer locks

_SC_READER_WRITER_LOCKS

_POSIX_SAVED_IDS indicates whether the implementation
supports the saved set-user-ID and the
saved set-group-ID

_SC_SAVED_IDS

_POSIX_SHELL indicates whether the implementation
supports the POSIX shell

_SC_SHELL

_POSIX_VERSION indicates the POSIX.1 version _SC_VERSION

_XOPEN_CRYPT indicates whether the implementation
supports the XSI encryption option
group

_SC_XOPEN_CRYPT

_XOPEN_LEGACY indicates whether the implementation
supports the XSI legacy option group

_SC_XOPEN_LEGACY

_XOPEN_REALTIME indicates whether the implementation
supports the XSI real-time option group

_SC_XOPEN_REALTIME

Figure 2.17. Options and name arguments to sysconf

Name of option Description name argument

_XOPEN_REALTIME_THREADS indicates whether the implementation
supports the XSI real-time threads option
group

_SC_XOPEN_REALTIME_THREADS

_XOPEN_VERSION indicates the XSI version _SC_XOPEN_VERSION

Figure 2.18. Options and name arguments to pathconf and fpathconf

Name of option Description name argument

_POSIX_CHOWN_RESTRICTED indicates whether use of chown is restricted _PC_CHOWN_RESTRICTED

_POSIX_NO_TRUNC indicates whether pathnames longer than NAME_MAX
generate an error

_PC_NO_TRUNC

_POSIX_VDISABLE if defined, terminal special characters can be disabled
with this value

_PC_VDISABLE

_POSIX_ASYNC_IO indicates whether asynchronous I/O can be used with
the associated file

_PC_ASYNC_IO

_POSIX_PRIO_IO indicates whether prioritized I/O can be used with the
associated file

_PC_PRIO_IO

_POSIX_SYNC_IO indicates whether synchronized I/O can be used with
the associated file

_PC_SYNC_IO

If the symbolic constant is defined by the platform, we have three possibilities.

1. If the symbolic constant is defined to have the value –1, then the corresponding option is unsupported by
the platform.

2. If the symbolic constant is defined to be greater than zero, then the corresponding option is supported.
3. If the symbolic constant is defined to be equal to zero, then we must call sysconf , pathconf , or

fpathconf to determine whether the option is supported.

Figure 2.17 summarizes the options and their symbolic constants that can be used with sysconf , in addition to
those listed in Figure 2.5.

The symbolic constants used with pathconf and fpathconf are summarized in Figure 2.18. As with the system
limits, there are several points to note regarding how options are treated by sysconf , pathconf , and fpathconf .

1. The value returned for _SC_VERSION indicates the four-digit year and two-digit month of the standard.
This value can be 198808L, 199009L, 199506L, or some other value for a later version of the standard.
The value associated with Version 3 of the Single UNIX Specification is 200112L.

2. The value returned for _SC_XOPEN_VERSION indicates the version of the XSI that the system complies
with. The value associated with Version 3 of the Single UNIX Specification is 600.

3. The values _SC_JOB_CONTROL, _SC_SAVED_IDS, and _PC_VDISABLE no longer represent optional
features. As of Version 3 of the Single UNIX Specification, these features are now required, although
these symbols are retained for backward compatibility.

4. _PC_CHOWN_RESTRICTED and _PC_NO_TRUNC return –1 without changing errno if the feature is not
supported for the specified pathname or filedes.

5. The referenced file for _PC_CHOWN_RESTRICTED must be either a file or a directory. If it is a directory,
the return value indicates whether this option applies to files within that directory.

6. The referenced file for _PC_NO_TRUNC must be a directory. The return value applies to filenames within
the directory.

7. The referenced file for _PC_VDISABLE must be a terminal file.

In Figure 2.19 we show several configuration options and their corresponding values on the four sample
systems we discuss in this text. Note that several of the systems haven't yet caught up to the latest version of the
Single UNIX Specification. For example, Mac OS X 10.3 supports POSIX threads but defines _POSIX_THREADS
as

 #define _POSIX_THREADS

without specifying a value. To conform to Version 3 of the Single UNIX Specification, the symbol, if defined,
should be set to -1, 0, or 200112.

Figure 2.19. Examples of configuration options

Solaris 9
Limit FreeBSD

5.2.1
Linux
2.4.22

Mac OS X
10.3 UFS file

system
PCFS file

system

_POSIX_CHOWN_RESTRICTED 1 1 1 1 1

_POSIX_JOB_CONTROL 1 1 1 1 1

_POSIX_NO_TRUNC 1 1 1 1 unsupported

_POSIX_SAVED_IDS unsupported 1 unsupported 1 1

_POSIX_THREADS 200112 200112 defined 1 1

_POSIX_VDISABLE 255 0 255 0 0

_POSIX_VERSION 200112 200112 198808 199506 199506

_XOPEN_UNIX unsupported 1 undefined 1 1

_XOPEN_VERSION unsupported 500 undefined 3 3

An entry is marked as "undefined" if the feature is not defined, i.e., the system doesn't define the symbolic
constant or its corresponding _PC or _SC name. In contrast, the "defined" entry means that the symbolic constant
is defined, but no value is specified, as in the preceding _POSIX_THREADS example. An entry is "unsupported" if
the system defines the symbolic constant, but it has a value of -1, or it has a value of 0 but the corresponding
sysconf or pathconf call returned -1.

Note that pathconf returns a value of –1 for _PC_NO_TRUNC when used with a file from a PCFS file system on
Solaris. The PCFS file system supports the DOS format (for floppy disks), and DOS filenames are silently
truncated to the 8.3 format limit that the DOS file system requires.

2.7. Feature Test Macros

The headers define numerous POSIX.1 and XSI symbols, as we've described. But most implementations can
add their own definitions to these headers, in addition to the POSIX.1 and XSI definitions. If we want to
compile a program so that it depends only on the POSIX definitions and doesn't use any implementation-
defined limits, we need to define the constant _POSIX_C_SOURCE. All the POSIX.1 headers use this constant to
exclude any implementation-defined definitions when _POSIX_C_SOURCE is defined.

Previous versions of the POSIX.1 standard defined the _POSIX_SOURCE constant. This has been superseded by
the _POSIX_C_SOURCE constant in the 2001 version of POSIX.1.

The constants _POSIX_C_SOURCE and _XOPEN_SOURCE are called feature test macros. All feature test macros
begin with an underscore. When used, they are typically defined in the cc command, as in

 cc -D_POSIX_C_SOURCE=200112 file.c

This causes the feature test macro to be defined before any header files are included by the C program. If we
want to use only the POSIX.1 definitions, we can also set the first line of a source file to

 #define _POSIX_C_SOURCE 200112

To make the functionality of Version 3 of the Single UNIX Specification available to applications, we need to
define the constant _XOPEN_SOURCE to be 600. This has the same effect as defining _POSIX_C_SOURCE to be
200112L as far as POSIX.1 functionality is concerned.

The Single UNIX Specification defines the c99 utility as the interface to the C compilation environment. With it
we can compile a file as follows:

 c99 -D_XOPEN_SOURCE=600 file.c -o file

To enable the 1999 ISO C extensions in the gcc C compiler, we use the -std=c99 option, as in

 gcc -D_XOPEN_SOURCE=600 -std=c99 file.c -o file

Another feature test macro is _ _STDC_ _ , which is automatically defined by the C compiler if the compiler
conforms to the ISO C standard. This allows us to write C programs that compile under both ISO C compilers
and non-ISO C compilers. For example, to take advantage of the ISO C prototype feature, if supported, a header
could contain

 #ifdef _ _STDC_ _
 void *myfunc(const char *, int);
 #else
 void *myfunc();
 #endif

Although most C compilers these days support the ISO C standard, this use of the _ _STDC_ _ feature test
macro can still be found in many header files.

2.8. Primitive System Data Types

Historically, certain C data types have been associated with certain UNIX system variables. For example, the
major and minor device numbers have historically been stored in a 16-bit short integer, with 8 bits for the major
device number and 8 bits for the minor device number. But many larger systems need more than 256 values for
these device numbers, so a different technique is needed. (Indeed, Solaris uses 32 bits for the device number: 14
bits for the major and 18 bits for the minor.)

The header <sys/types.h> defines some implementation-dependent data types, called the primitive system
data types. More of these data types are defined in other headers also. These data types are defined in the
headers with the C typedef facility. Most end in _t . Figure 2.20 lists many of the primitive system data types
that we'll encounter in this text.

Figure 2.20. Some common primitive system data types

Type Description

caddr_t core address (Section 14.9)

clock_t counter of clock ticks (process time) (Section 1.10)

comp_t compressed clock ticks (Section 8.14)

dev_t device numbers (major and minor) (Section 4.23)

fd_set file descriptor sets (Section 14.5.1)

fpos_t file position (Section 5.10)

gid_t numeric group IDs

ino_t i-node numbers (Section 4.14)

mode_t file type, file creation mode (Section 4.5)

nlink_t link counts for directory entries (Section 4.14)

off_t file sizes and offsets (signed) (lseek , Section 3.6)

pid_t process IDs and process group IDs (signed) (Sections 8.2 and 9.4)

ptrdiff_t result of subtracting two pointers (signed)

rlim_t resource limits (Section 7.11)

sig_atomic_t data type that can be accessed atomically (Section 10.15)

sigset_t signal set (Section 10.11)

size_t sizes of objects (such as strings) (unsigned) (Section 3.7)

ssize_t functions that return a count of bytes (signed) (read , write , Section 3.7)

time_t counter of seconds of calendar time (Section 1.10)

uid_t numeric user IDs

Figure 2.20. Some common primitive system data types

Type Description

wchar_t can represent all distinct character codes

By defining these data types this way, we do not build into our programs implementation details that can change
from one system to another. We describe what each of these data types is used for when we encounter them
later in the text.

2.9. Conflicts Between Standards

All in all, these various standards fit together nicely. Our main concern is any differences between the ISO C
standard and POSIX.1, since SUSv3 is a superset of POSIX.1. There are some differences.

ISO C defines the function clock to return the amount of CPU time used by a process. The value returned is a
clock_t value. To convert this value to seconds, we divide it by CLOCKS_PER_SEC, which is defined in the
<time.h> header. POSIX.1 defines the function times that returns both the CPU time (for the caller and all its
terminated children) and the clock time. All these time values are clock_t values. The sysconf function is
used to obtain the number of clock ticks per second for use with the return values from the times function.
What we have is the same term, clock ticks per second, defined differently by ISO C and POSIX.1. Both
standards also use the same data type (clock_t) to hold these different values. The difference can be seen in
Solaris, where clock returns microseconds (hence CLOCKS_PER_SEC is 1 million), whereas sysyconf returns
the value 100 for clock ticks per second.

Another area of potential conflict is when the ISO C standard specifies a function, but doesn't specify it as
strongly as POSIX.1 does. This is the case for functions that require a different implementation in a POSIX
environment (with multiple processes) than in an ISO C environment (where very little can be assumed about
the host operating system). Nevertheless, many POSIX-compliant systems implement the ISO C function, for
compatibility. The signal function is an example. If we unknowingly use the signal function provided by
Solaris (hoping to write portable code that can be run in ISO C environments and under older UNIX systems),
it'll provide semantics different from the POSIX.1 sigaction function. We'll have more to say about the
signal function in Chapter 10

2.10. Summary

Much has happened over the past two decades with the standardization of the UNIX programming environment.
We've described the dominant standards—ISO C, POSIX, and the Single UNIX Specification—and their effect
on the four implementations that we'll examine in this text: FreeBSD, Linux, Mac OS X, and Solaris. These
standards try to define certain parameters that can change with each implementation, but we've seen that these
limits are imperfect. We'll encounter many of these limits and magic constants as we proceed through the text.

The bibliography specifies how one can obtain copies of the standards that we've discussed.

Chapter 3. File I/O

Section 3.1. Introduction

Section 3.2. File Descriptors

Section 3.3. open Function

Section 3.4. creat Function

Section 3.5. close Function

Section 3.6. lseek Function

Section 3.7. read Function

Section 3.8. write Function

Section 3.9. I/O Efficiency

Section 3.10. File Sharing

Section 3.11. Atomic Operations

Section 3.12. dup and dup2 Functions

Section 3.13. sync, fsync, and fdatasync Functions

Section 3.14. fcntl Function

Section 3.15. ioctl Function

Section 3.16. /dev/fd

Section 3.17. Summary

3.1. Introduction

We'll start our discussion of the UNIX System by describing the functions available for file I/O—open a file,
read a file, write a file, and so on. Most file I/O on a UNIX system can be performed using only five functions:
open , read , write , lseek , and close . We then examine the effect of various buffer sizes on the read and
write functions.

The functions described in this chapter are often referred to as unbuffered I/O, in contrast to the standard I/O
routines, which we describe in Chapter 5. The term unbuffered means that each read or write invokes a system
call in the kernel. These unbuffered I/O functions are not part of ISO C, but are part of POSIX.1 and the Single
UNIX Specification.

Whenever we describe the sharing of resources among multiple processes, the concept of an atomic operation
becomes important. We examine this concept with regard to file I/O and the arguments to the open function.
This leads to a discussion of how files are shared among multiple processes and the kernel data structures
involved. After describing these features, we describe the dup , fcntl , sync , fsync , and ioctl functions.

3.2. File Descriptors

To the kernel, all open files are referred to by file descriptors. A file descriptor is a non-negative integer. When
we open an existing file or create a new file, the kernel returns a file descriptor to the process. When we want to
read or write a file, we identify the file with the file descriptor that was returned by open or creat as an
argument to either read or write .

By convention, UNIX System shells associate file descriptor 0 with the standard input of a process, file
descriptor 1 with the standard output, and file descriptor 2 with the standard error. This convention is used by
the shells and many applications; it is not a feature of the UNIX kernel. Nevertheless, many applications would
break if these associations weren't followed.

The magic numbers 0, 1, and 2 should be replaced in POSIX-compliant applications with the symbolic
constants STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO. These constants are defined in the <unistd.h>
header.

File descriptors range from 0 through OPEN_MAX. (Recall Figure 2.10.) Early historical implementations of the
UNIX System had an upper limit of 19, allowing a maximum of 20 open files per process, but many systems
increased this limit to 63.

With FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, the limit is essentially infinite, bounded by the amount of
memory on the system, the size of an integer, and any hard and soft limits configured by the system
administrator. Linux 2.4.22 places a hard limit of 1,048,576 on the number of file descriptors per process.

3.3. open Function

A file is opened or created by calling the open function.

#include <fcntl.h>

int open(const char *pathname, int oflag, ... /* mo de_t mode */);

Returns: file descriptor if OK, –1 on error

We show the third argument as ... , which is the ISO C way to specify that the number and types of the
remaining arguments may vary. For this function, the third argument is used only when a new file is being
created, as we describe later. We show this argument as a comment in the prototype.

The pathname is the name of the file to open or create. This function has a multitude of options, which are
specified by the oflag argument. This argument is formed by ORing together one or more of the following
constants from the <fcntl.h> header:

O_RDONLY Open for reading only.

O_WRONLY Open for writing only.

O_RDWR Open for reading and writing.

Most implementations define O_RDONLY as 0, O_WRONLY as 1, and O_RDWR as 2, for compatibility with older
programs.

One and only one of these three constants must be specified. The following constants are optional:

O_APPEND Append to the end of file on each write. We describe this option in detail in Section 3.11.

O_CREAT Create the file if it doesn't exist. This option requires a third argument to the open function, the
mode, which specifies the access permission bits of the new file. (When we describe a file's
access permission bits in Section 4.5, we'll see how to specify the mode and how it can be
modified by the umask value of a process.)

O_EXCL Generate an error if O_CREAT is also specified and the file already exists. This test for whether the
file already exists and the creation of the file if it doesn't exist is an atomic operation. We describe
atomic operations in more detail in Section 3.11.

O_TRUNC If the file exists and if it is successfully opened for either write-only or read–write, truncate its
length to 0.

O_NOCTTY If the pathname refers to a terminal device, do not allocate the device as the controlling terminal
for this process. We talk about controlling terminals in Section 9.6.

O_NONBLOCK If the pathname refers to a FIFO, a block special file, or a character special file, this option sets
the nonblocking mode for both the opening of the file and subsequent I/O. We describe this mode
in Section 14.2.

In earlier releases of System V, the O_NDELAY (no delay) flag was introduced. This option is similar to the
O_NONBLOCK (nonblocking) option, but an ambiguity was introduced in the return value from a read operation.
The no-delay option causes a read to return 0 if there is no data to be read from a pipe, FIFO, or device, but this
conflicts with a return value of 0, indicating an end of file. SVR4-based systems still support the no-delay
option, with the old semantics, but new applications should use the nonblocking option instead.

The following three flags are also optional. They are part of the synchronized input and output option of the
Single UNIX Specification (and thus POSIX.1):

O_DSYNC Have each write wait for physical I/O to complete, but don't wait for file attributes to be updated if
they don't affect the ability to read the data just written.

O_RSYNC Have each read operation on the file descriptor wait until any pending writes for the same portion of
the file are complete.

O_SYNC Have each write wait for physical I/O to complete, including I/O necessary to update file attributes
modified as a result of the write . We use this option in Section 3.14.

The O_DSYNC and O_SYNC flags are similar, but subtly different. The O_DSYNC flag affects a file's attributes only
when they need to be updated to reflect a change in the file's data (for example, update the file's size to reflect
more data). With the O_SYNC flag, data and attributes are always updated synchronously. When overwriting an
existing part of a file opened with the O_DSYNC flag, the file times wouldn't be updated synchronously. In
contrast, if we had opened the file with the O_SYNC flag, every write to the file would update the file's times
before the write returns, regardless of whether we were writing over existing bytes or appending to the file.

Solaris 9 supports all three flags. FreeBSD 5.2.1 and Mac OS X 10.3 have a separate flag (O_FSYNC) that does
the same thing as O_SYNC. Because the two flags are equivalent, FreeBSD 5.2.1 defines them to have the same
value (but curiously, Mac OS X 10.3 doesn't define O_SYNC). FreeBSD 5.2.1 and Mac OS X 10.3 don't support
the O_DSYNC or O_RSYNC flags. Linux 2.4.22 treats both flags the same as O_SYNC.

The file descriptor returned by open is guaranteed to be the lowest-numbered unused descriptor. This fact is
used by some applications to open a new file on standard input, standard output, or standard error. For example,
an application might close standard output—normally, file descriptor 1—and then open another file, knowing
that it will be opened on file descriptor 1. We'll see a better way to guarantee that a file is open on a given
descriptor in Section 3.12 with the dup2 function.

Filename and Pathname Truncation

What happens if NAME_MAX is 14 and we try to create a new file in the current directory with a filename
containing 15 characters? Traditionally, early releases of System V, such as SVR2, allowed this to happen,
silently truncating the filename beyond the 14th character. BSD-derived systems returned an error status, with
errno set to ENAMETOOLONG. Silently truncating the filename presents a problem that affects more than simply
the creation of new files. If NAME_MAX is 14 and a file exists whose name is exactly 14 characters, any function
that accepts a pathname argument, such as open or stat , has no way to determine what the original name of the
file was, as the original name might have been truncated.

With POSIX.1, the constant _POSIX_NO_TRUNC determines whether long filenames and long pathnames are
truncated or whether an error is returned. As we saw in Chapter 2, this value can vary based on the type of the
file system.

Whether or not an error is returned is largely historical. For example, SVR4-based systems do not generate an
error for the traditional System V file system, S5. For the BSD-style file system (known as UFS), however,
SVR4-based systems do generate an error.

As another example, see Figure 2.19. Solaris will return an error for UFS, but not for PCFS, the DOS-
compatible file system, as DOS silently truncates filenames that don't fit in an 8.3 format.

BSD-derived systems and Linux always return an error.

If _POSIX_NO_TRUNC is in effect, errno is set to ENAMETOOLONG, and an error status is returned if the entire
pathname exceeds PATH_MAX or any filename component of the pathname exceeds NAME_MAX.

3.4. creat Function

A new file can also be created by calling the creat function.

#include <fcntl.h>

int creat(const char *pathname, mode_t mode);

Returns: file descriptor opened for write-only if OK, –1 on error

Note that this function is equivalent to

 open (pathname, O_WRONLY | O_CREAT | O_TRUNC, m ode);

Historically, in early versions of the UNIX System, the second argument to open could be only 0, 1, or 2. There
was no way to open a file that didn't already exist. Therefore, a separate system call, creat , was needed to
create new files. With the O_CREAT and O_TRUNC options now provided by open , a separate creat function is no
longer needed.

We'll show how to specify mode in Section 4.5 when we describe a file's access permissions in detail.

One deficiency with creat is that the file is opened only for writing. Before the new version of open was
provided, if we were creating a temporary file that we wanted to write and then read back, we had to call creat ,
close , and then open . A better way is to use the open function, as in

 open (pathname, O_RDWR | O_CREAT | O_TRUNC, mod e);

3.5. close Function

An open file is closed by calling the close function.

#include <unistd.h>

int close(int filedes);

Returns: 0 if OK, –1 on error

Closing a file also releases any record locks that the process may have on the file. We'll discuss this in Section
14.3.

When a process terminates, all of its open files are closed automatically by the kernel. Many programs take
advantage of this fact and don't explicitly close open files. See the program in Figure 1.4, for example.

3.6. lseek Function

Every open file has an associated "current file offset," normally a non-negative integer that measures the
number of bytes from the beginning of the file. (We describe some exceptions to the "non-negative" qualifier
later in this section.) Read and write operations normally start at the current file offset and cause the offset to be
incremented by the number of bytes read or written. By default, this offset is initialized to 0 when a file is
opened, unless the O_APPEND option is specified.

An open file's offset can be set explicitly by calling lseek .

#include <unistd.h>

off_t lseek(int filedes, off_t offset, int whence);

Returns: new file offset if OK, –1 on error

The interpretation of the offset depends on the value of the whence argument.

• If whence is SEEK_SET, the file's offset is set to offset bytes from the beginning of the file.
• If whence is SEEK_CUR, the file's offset is set to its current value plus the offset. The offset can be

positive or negative.
• If whence is SEEK_END, the file's offset is set to the size of the file plus the offset. The offset can be

positive or negative.

Because a successful call to lseek returns the new file offset, we can seek zero bytes from the current position
to determine the current offset:

 off_t currpos;

 currpos = lseek(fd, 0, SEEK_CUR);

This technique can also be used to determine if a file is capable of seeking. If the file descriptor refers to a pipe,
FIFO, or socket, lseek sets errno to ESPIPE and returns –1.

The three symbolic constants—SEEK_SET, SEEK_CUR, and SEEK_END—were introduced with System V. Prior to
this, whence was specified as 0 (absolute), 1 (relative to current offset), or 2 (relative to end of file). Much
software still exists with these numbers hard coded.

The character l in the name lseek means "long integer." Before the introduction of the off_t data type, the
offset argument and the return value were long integers. lseek was introduced with Version 7 when long
integers were added to C. (Similar functionality was provided in Version 6 by the functions seek and tell .)

Example

The program in Figure 3.1 tests its standard input to see whether it is capable of seeking.

If we invoke this program interactively, we get

 $./a.out < /etc/motd

 seek OK
 $ cat < /etc/motd | ./a.out
 cannot seek
 $./a.out < /var/spool/cron/FIFO
 cannot seek

Figure 3.1. Test whether standard input is capable of seeking

#include "apue.h"

int
main(void)
{
 if (lseek(STDIN_FILENO, 0, SEEK_CUR) == -1)
 printf("cannot seek\n");
 else
 printf("seek OK\n");
 exit(0);
}

Normally, a file's current offset must be a non-negative integer. It is possible, however, that certain devices
could allow negative offsets. But for regular files, the offset must be non-negative. Because negative offsets are
possible, we should be careful to compare the return value from lseek as being equal to or not equal to –1 and
not test if it's less than 0.

The /dev/kmem device on FreeBSD for the Intel x86 processor supports negative offsets.

Because the offset (off_t) is a signed data type (Figure 2.20), we lose a factor of 2 in the maximum file size. If
off_t is a 32-bit integer, the maximum file size is 231-1 bytes.

lseek only records the current file offset within the kernel—it does not cause any I/O to take place. This offset
is then used by the next read or write operation.

The file's offset can be greater than the file's current size, in which case the next write to the file will extend the
file. This is referred to as creating a hole in a file and is allowed. Any bytes in a file that have not been written
are read back as 0.

A hole in a file isn't required to have storage backing it on disk. Depending on the file system implementation,
when you write after seeking past the end of the file, new disk blocks might be allocated to store the data, but
there is no need to allocate disk blocks for the data between the old end of file and the location where you start
writing.

Example

The program shown in Figure 3.2 creates a file with a hole in it.

Running this program gives us

 $./a.out
 $ ls -l file.hole check its si ze
 -rw-r--r-- 1 sar 16394 Nov 25 01:01 fi le.hole
 $ od -c file.hole let's look a t the actual contents

 0000000 a b c d e f g h i j \0 \0 \0 \0 \0 \0
 0000020 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0
 *
 0040000 A B C D E F G H I J
 0040012

We use the od(1) command to look at the contents of the file. The -c flag tells it to print the contents as
characters. We can see that the unwritten bytes in the middle are read back as zero. The seven-digit number at
the beginning of each line is the byte offset in octal.

To prove that there is really a hole in the file, let's compare the file we've just created with a file of the same
size, but without holes:

 $ ls -ls file.hole file.nohole compare sizes
 8 -rw-r--r-- 1 sar 16394 Nov 25 01:01 file.hole
 20 -rw-r--r-- 1 sar 16394 Nov 25 01:03 file.nohole

Although both files are the same size, the file without holes consumes 20 disk blocks, whereas the file with
holes consumes only 8 blocks.

In this example, we call the write function (Section 3.8). We'll have more to say about files with holes in
Section 4.12.

Figure 3.2. Create a file with a hole in it

#include "apue.h"
#include <fcntl.h>

char buf1[] = "abcdefghij";
char buf2[] = "ABCDEFGHIJ";

int
main(void)
{
 int fd;

 if ((fd = creat("file.hole", FILE_MODE)) < 0)
 err_sys("creat error");

 if (write(fd, buf1, 10) != 10)
 err_sys("buf1 write error");
 /* offset now = 10 */

 if (lseek(fd, 16384, SEEK_SET) == -1)
 err_sys("lseek error");
 /* offset now = 16384 */

 if (write(fd, buf2, 10) != 10)
 err_sys("buf2 write error");
 /* offset now = 16394 */

 exit(0);
}

Because the offset address that lseek uses is represented by an off_t , implementations are allowed to support
whatever size is appropriate on their particular platform. Most platforms today provide two sets of interfaces to
manipulate file offsets: one set that uses 32-bit file offsets and another set that uses 64-bit file offsets.

The Single UNIX Specification provides a way for applications to determine which environments are supported
through the sysconf function (Section 2.5.4.). Figure 3.3 summarizes the sysconf constants that are defined.

Figure 3.3. Data size options and name arguments to sysconf

Name of option Description name argument

_POSIX_V6_ILP32_OFF32 int , long , pointer, and off_t types are 32 bits. _SC_V6_ILP32_OFF32

_POSIX_V6_ILP32_OFFBIG int, long , and pointer types are 32 bits; off_t types
are at least 64 bits.

_SC_V6_ILP32_OFFBIG

_POSIX_V6_LP64_OFF64 int types are 32 bits; long , pointer, and off_t types are
64 bits.

_SC_V6_LP64_OFF64

_POSIX_V6_LP64_OFFBIG int types are 32 bits; long , pointer, and off_t types are
at least 64 bits.

_SC_V6_LP64_OFFBIG

The c99 compiler requires that we use the getconf (1) command to map the desired data size model to the flags
necessary to compile and link our programs. Different flags and libraries might be needed, depending on the
environments supported by each platform.

Unfortunately, this is one area in which implementations haven't caught up to the standards. Confusing things
further is the name changes that were made between Version 2 and Version 3 of the Single UNIX Specification.

To get around this, applications can set the _FILE_OFFSET_BITS constant to 64 to enable 64-bit offsets. Doing
so changes the definition of off_t to be a 64-bit signed integer. Setting _FILE_OFFSET_BITS to 32 enables 32-
bit file offsets. Be aware, however, that although all four platforms discussed in this text support both 32-bit and
64-bit file offsets by setting the _FILE_OFFSET_BITS constant to the desired value, this is not guaranteed to be
portable.

Note that even though you might enable 64-bit file offsets, your ability to create a file larger than 2 TB (231-1
bytes) depends on the underlying file system type.

3.7. read Function

Data is read from an open file with the read function.

#include <unistd.h>

ssize_t read(int filedes, void *buf, size_t nbytes) ;

Returns: number of bytes read, 0 if end of file, –1 on error

If the read is successful, the number of bytes read is returned. If the end of file is encountered, 0 is returned.

There are several cases in which the number of bytes actually read is less than the amount requested:

• When reading from a regular file, if the end of file is reached before the requested number of bytes has
been read. For example, if 30 bytes remain until the end of file and we try to read 100 bytes, read
returns 30. The next time we call read , it will return 0 (end of file).

• When reading from a terminal device. Normally, up to one line is read at a time. (We'll see how to
change this in Chapter 18.)

• When reading from a network. Buffering within the network may cause less than the requested amount
to be returned.

• When reading from a pipe or FIFO. If the pipe contains fewer bytes than requested, read will return
only what is available.

• When reading from a record-oriented device. Some record-oriented devices, such as magnetic tape, can
return up to a single record at a time.

• When interrupted by a signal and a partial amount of data has already been read. We discuss this further
in Section 10.5.

The read operation starts at the file's current offset. Before a successful return, the offset is incremented by the
number of bytes actually read.

POSIX.1 changed the prototype for this function in several ways. The classic definition is

 int read(int filedes, char *buf, unsigned nbyte s);

• First, the second argument was changed from a char * to a void * to be consistent with ISO C: the
type void * is used for generic pointers.

• Next, the return value must be a signed integer (ssize_t) to return a positive byte count, 0 (for end of
file), or –1 (for an error).

• Finally, the third argument historically has been an unsigned integer, to allow a 16-bit implementation to
read or write up to 65,534 bytes at a time. With the 1990 POSIX.1 standard, the primitive system data
type ssize_t was introduced to provide the signed return value, and the unsigned size_t was used for
the third argument. (Recall the SSIZE_MAX constant from Section 2.5.2.)

3.8. write Function

Data is written to an open file with the write function.

#include <unistd.h>

ssize_t write(int filedes, const void *buf, size_t nbytes);

Returns: number of bytes written if OK, –1 on error

The return value is usually equal to the nbytes argument; otherwise, an error has occurred. A common cause for
a write error is either filling up a disk or exceeding the file size limit for a given process (Section 7.11 and
Exercise 10.11).

For a regular file, the write starts at the file's current offset. If the O_APPEND option was specified when the file
was opened, the file's offset is set to the current end of file before each write operation. After a successful write,
the file's offset is incremented by the number of bytes actually written.

3.9. I/O Efficiency

The program in Figure 3.4 copies a file, using only the read and write functions. The following caveats apply
to this program.

Figure 3.4. Copy standard input to standard output

#include "apue.h"

#define BUFFSIZE 4096

int
main(void)
{
 int n;
 char buf[BUFFSIZE];

 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
 if (write(STDOUT_FILENO, buf, n) != n)
 err_sys("write error");

 if (n < 0)
 err_sys("read error");

 exit(0);
}

• It reads from standard input and writes to standard output, assuming that these have been set up by the
shell before this program is executed. Indeed, all normal UNIX system shells provide a way to open a
file for reading on standard input and to create (or rewrite) a file on standard output. This prevents the
program from having to open the input and output files.

• Many applications assume that standard input is file descriptor 0 and that standard output is file
descriptor 1. In this example, we use the two defined names, STDIN_FILENO and STDOUT_FILENO, from
<unistd.h> .

• The program doesn't close the input file or output file. Instead, the program uses the feature of the UNIX
kernel that closes all open file descriptors in a process when that process terminates.

• This example works for both text files and binary files, since there is no difference between the two to
the UNIX kernel.

One question we haven't answered, however, is how we chose the BUFFSIZE value. Before answering that, let's
run the program using different values for BUFFSIZE. Figure 3.5 shows the results for reading a 103,316,352-
byte file, using 20 different buffer sizes.

The file was read using the program shown in Figure 3.4, with standard output redirected to /dev/null . The
file system used for this test was the Linux ext2 file system with 4,096-byte blocks. (The st_blksize value,
which we describe in Section 4.12, is 4,096.) This accounts for the minimum in the system time occurring at a
BUFFSIZE of 4,096. Increasing the buffer size beyond this has little positive effect.

Most file systems support some kind of read-ahead to improve performance. When sequential reads are detected,
the system tries to read in more data than an application requests, assuming that the application will read it
shortly. From the last few entries in Figure 3.5, it appears that read-ahead in ext2 stops having an effect after
128 KB.

Figure 3.5. Timing results for reading with different buffer sizes on Linux

BUFFSIZE User CPU (seconds) System CPU (seconds) Clock time (seconds) #loops

1 124.89 161.65 288.64 103,316,352

2 63.10 80.96 145.81 51,658,#176

4 31.84 40.00 72.75 25,829,088

8 15.17 21.01 36.85 12,914,544

16 7.86 10.27 18.76 6,457,272

32 4.13 5.01 9.76 3,228,636

64 2.11 2.48 6.76 1,614,318

128 1.01 1.27 6.82 807,159

256 0.56 0.62 6.80 403,579

512 0.27 0.41 7.03 201,789

1,024 0.17 0.23 7.84 100,894

2,048 0.05 0.19 6.82 50,447

4,096 0.03 0.16 6.86 25,223

8,192 0.01 0.18 6.67 12,611

16,384 0.02 0.18 6.87 6,305

32,768 0.00 0.16 6.70 3,152

65,536 0.02 0.19 6.92 1,576

131,072 0.00 0.16 6.84 788

262,144 0.01 0.25 7.30 394

524,288 0.00 0.22 7.35 198

We'll return to this timing example later in the text. In Section 3.14, we show the effect of synchronous writes;
in Section 5.8, we compare these unbuffered I/O times with the standard I/O library.

Beware when trying to measure the performance of programs that read and write files. The operating system
will try to cache the file incore, so if you measure the performance of the program repeatedly, the successive
timings will likely be better than the first. This is because the first run will cause the file to be entered into the
system's cache, and successive runs will access the file from the system's cache instead of from the disk. (The
term incore means in main memory. Back in the day, a computer's main memory was built out of ferrite core.
This is where the phrase "core dump" comes from: the main memory image of a program stored in a file on disk
for diagnosis.)

In the tests reported in Figure 3.5, each run with a different buffer size was made using a different copy of the
file so that the current run didn't find the data in the cache from the previous run. The files are large enough that
they all don't remain in the cache (the test system was configured with 512 MB of RAM).

3.10. File Sharing

The UNIX System supports the sharing of open files among different processes. Before describing the dup
function, we need to describe this sharing. To do this, we'll examine the data structures used by the kernel for all
I/O.

The following description is conceptual. It may or may not match a particular implementation. Refer to Bach
[1986] for a discussion of these structures in System V. McKusick et al. [1996] describes these structures in
4.4BSD. McKusick and Neville-Neil [2005] cover FreeBSD 5.2. For a similar discussion of Solaris, see Mauro
and McDougall [2001].

The kernel uses three data structures to represent an open file, and the relationships among them determine the
effect one process has on another with regard to file sharing.

1. Every process has an entry in the process table. Within each process table entry is a table of open file
descriptors, which we can think of as a vector, with one entry per descriptor. Associated with each file
descriptor are

a. The file descriptor flags (close-on-exec; refer to Figure 3.6 and Section 3.14)
b. A pointer to a file table entry

2. The kernel maintains a file table for all open files. Each file table entry contains
a. The file status flags for the file, such as read, write, append, sync, and nonblocking; more on

these in Section 3.14
b. The current file offset
c. A pointer to the v-node table entry for the file

3. Each open file (or device) has a v-node structure that contains information about the type of file and
pointers to functions that operate on the file. For most files, the v-node also contains the i-node for the
file. This information is read from disk when the file is opened, so that all the pertinent information
about the file is readily available. For example, the i-node contains the owner of the file, the size of the
file, pointers to where the actual data blocks for the file are located on disk, and so on. (We talk more
about i-nodes in Section 4.14 when we describe the typical UNIX file system in more detail.)

Linux has no v-node. Instead, a generic i-node structure is used. Although the implementations differ,
the v-node is conceptually the same as a generic i-node. Both point to an i-node structure specific to the
file system.

We're ignoring some implementation details that don't affect our discussion. For example, the table of open file
descriptors can be stored in the user area instead of the process table. These tables can be implemented in
numerous ways—they need not be arrays; they could be implemented as linked lists of structures, for example.
These implementation details don't affect our discussion of file sharing.

Figure 3.6 shows a pictorial arrangement of these three tables for a single process that has two different files
open: one file is open on standard input (file descriptor 0), and the other is open on standard output (file
descriptor 1). The arrangement of these three tables has existed since the early versions of the UNIX System
[Thompson 1978], and this arrangement is critical to the way files are shared among processes. We'll return to
this figure in later chapters, when we describe additional ways that files are shared.

Figure 3.6. Kernel data structures for open files

The v-node was invented to provide support for multiple file system types on a single computer system. This
work was done independently by Peter Weinberger (Bell Laboratories) and Bill Joy (Sun Microsystems). Sun
called this the Virtual File System and called the file system–independent portion of the i-node the v-node
[Kleiman 1986]. The v-node propagated through various vendor implementations as support for Sun's Network
File System (NFS) was added. The first release from Berkeley to provide v-nodes was the 4.3BSD Reno release,
when NFS was added.

In SVR4, the v-node replaced the file system–independent i-node of SVR3. Solaris is derived from SVR4 and
thus uses v-nodes.

Instead of splitting the data structures into a v-node and an i-node, Linux uses a file system–independent i-node
and a file system–dependent i-node.

If two independent processes have the same file open, we could have the arrangement shown in Figure 3.7. We
assume here that the first process has the file open on descriptor 3 and that the second process has that same file
open on descriptor 4. Each process that opens the file gets its own file table entry, but only a single v-node table
entry is required for a given file. One reason each process gets its own file table entry is so that each process has
its own current offset for the file.

Figure 3.7. Two independent processes with the same file open

Given these data structures, we now need to be more specific about what happens with certain operations that
we've already described.

• After each write is complete, the current file offset in the file table entry is incremented by the number
of bytes written. If this causes the current file offset to exceed the current file size, the current file size in
the i-node table entry is set to the current file offset (for example, the file is extended).

• If a file is opened with the O_APPEND flag, a corresponding flag is set in the file status flags of the file
table entry. Each time a write is performed for a file with this append flag set, the current file offset in
the file table entry is first set to the current file size from the i-node table entry. This forces every write
to be appended to the current end of file.

• If a file is positioned to its current end of file using lseek , all that happens is the current file offset in the
file table entry is set to the current file size from the i-node table entry. (Note that this is not the same as
if the file was opened with the O_APPEND flag, as we will see in Section 3.11.)

• The lseek function modifies only the current file offset in the file table entry. No I/O takes place.

It is possible for more than one file descriptor entry to point to the same file table entry, as we'll see when we
discuss the dup function in Section 3.12. This also happens after a fork when the parent and the child share the
same file table entry for each open descriptor (Section 8.3).

Note the difference in scope between the file descriptor flags and the file status flags. The former apply only to
a single descriptor in a single process, whereas the latter apply to all descriptors in any process that point to the
given file table entry. When we describe the fcntl function in Section 3.14, we'll see how to fetch and modify
both the file descriptor flags and the file status flags.

Everything that we've described so far in this section works fine for multiple processes that are reading the same
file. Each process has its own file table entry with its own current file offset. Unexpected results can arise,
however, when multiple processes write to the same file. To see how to avoid some surprises, we need to
understand the concept of atomic operations.

3.11. Atomic Operations

Appending to a File

Consider a single process that wants to append to the end of a file. Older versions of the UNIX System didn't
support the O_APPEND option to open , so the program was coded as follows:

 if (lseek(fd, 0L, 2) < 0) /* po sition to EOF */
 err_sys("lseek error");
 if (write(fd, buf, 100) != 100) /* an d write */
 err_sys("write error");

This works fine for a single process, but problems arise if multiple processes use this technique to append to the
same file. (This scenario can arise if multiple instances of the same program are appending messages to a log
file, for example.)

Assume that two independent processes, A and B, are appending to the same file. Each has opened the file but
without the O_APPEND flag. This gives us the same picture as Figure 3.7. Each process has its own file table
entry, but they share a single v-node table entry. Assume that process A does the lseek and that this sets the
current offset for the file for process A to byte offset 1,500 (the current end of file). Then the kernel switches
processes, and B continues running. Process B then does the lseek , which sets the current offset for the file for
process B to byte offset 1,500 also (the current end of file). Then B calls write, which increments B's current file
offset for the file to 1,600. Because the file's size has been extended, the kernel also updates the current file size
in the v-node to 1,600. Then the kernel switches processes and A resumes. When A calls write, the data is
written starting at the current file offset for A, which is byte offset 1,500. This overwrites the data that B wrote
to the file.

The problem here is that our logical operation of "position to the end of file and write" requires two separate
function calls (as we've shown it). The solution is to have the positioning to the current end of file and the write
be an atomic operation with regard to other processes. Any operation that requires more than one function call
cannot be atomic, as there is always the possibility that the kernel can temporarily suspend the process between
the two function calls (as we assumed previously).

The UNIX System provides an atomic way to do this operation if we set the O_APPEND flag when a file is
opened. As we described in the previous section, this causes the kernel to position the file to its current end of
file before each write. We no longer have to call lseek before each write.

pread and pwrite Functions

The Single UNIX Specification includes XSI extensions that allow applications to seek and perform I/O
atomically. These extensions are pread and pwrite .

#include <unistd.h>

ssize_t pread(int filedes, void *buf, size_t nbytes , off_t offset);

Returns: number of bytes read, 0 if end of file, –1 on error

ssize_t pwrite(int filedes, const void *buf,
 size_t nbytes, off_t offset);

#include <unistd.h>

ssize_t pread(int filedes, void *buf, size_t nbytes , off_t offset);

Returns: number of bytes written if OK, –1 on error

Calling pread is equivalent to calling lseek followed by a call to read , with the following exceptions.

• There is no way to interrupt the two operations using pread .
• The file pointer is not updated.

Calling pwrite is equivalent to calling lseek followed by a call to write, with similar exceptions.

Creating a File

We saw another example of an atomic operation when we described the O_CREAT and O_EXCL options for the
open function. When both of these options are specified, the open will fail if the file already exists. We also
said that the check for the existence of the file and the creation of the file was performed as an atomic operation.
If we didn't have this atomic operation, we might try

 if ((fd = open(pathname, O_WRONLY)) < 0) {
 if (errno == ENOENT) {
 if ((fd = creat(pathname, mode)) < 0)
 err_sys("creat error");
 } else {
 err_sys("open error");
 }
 }

The problem occurs if the file is created by another process between the open and the creat . If the file is
created by another process between these two function calls, and if that other process writes something to the
file, that data is erased when this creat is executed. Combining the test for existence and the creation into a
single atomic operation avoids this problem.

In general, the term atomic operation refers to an operation that might be composed of multiple steps. If the
operation is performed atomically, either all the steps are performed, or none are performed. It must not be
possible for a subset of the steps to be performed. We'll return to the topic of atomic operations when we
describe the link function (Section 4.15) and record locking (Section 14.3).

3.12. dup and dup2 Functions

An existing file descriptor is duplicated by either of the following functions.

#include <unistd.h>

int dup(int filedes);

int dup2(int filedes, int filedes2);

Both return: new file descriptor if OK, –1 on error

The new file descriptor returned by dup is guaranteed to be the lowest-numbered available file descriptor. With
dup2 , we specify the value of the new descriptor with the filedes2 argument. If filedes2 is already open, it is
first closed. If filedes equals filedes2, then dup2 returns filedes2 without closing it.

The new file descriptor that is returned as the value of the functions shares the same file table entry as the
filedes argument. We show this in Figure 3.8.

Figure 3.8. Kernel data structures after dup(1)

In this figure, we're assuming that when it's started, the process executes

 newfd = dup(1);

We assume that the next available descriptor is 3 (which it probably is, since 0, 1, and 2 are opened by the shell).
Because both descriptors point to the same file table entry, they share the same file status flags—read, write,
append, and so on—and the same current file offset.

Each descriptor has its own set of file descriptor flags. As we describe in the next section, the close-on-exec file
descriptor flag for the new descriptor is always cleared by the dup functions.

Another way to duplicate a descriptor is with the fcntl function, which we describe in Section 3.14. Indeed, the
call

 dup(filedes);

is equivalent to

 fcntl(filedes, F_DUPFD, 0);

Similarly, the call

 dup2(filedes, filedes2);

is equivalent to

 close(filedes2);
 fcntl(filedes, F_DUPFD, filedes2);

In this last case, the dup2 is not exactly the same as a close followed by an fcntl . The differences are as
follows.

1. dup2 is an atomic operation, whereas the alternate form involves two function calls. It is possible in the
latter case to have a signal catcher called between the close and the fcntl that could modify the file
descriptors. (We describe signals in Chapter 10.)

2. There are some errno differences between dup2 and fcntl .

The dup2 system call originated with Version 7 and propagated through the BSD releases. The fcntl
method for duplicating file descriptors appeared with System III and continued with System V. SVR3.2
picked up the dup2 function, and 4.2BSD picked up the fcntl function and the F_DUPFD functionality.
POSIX.1 requires both dup2 and the F_DUPFD feature of fcntl .

3.13. sync, fsync, and fdatasync Functions

Traditional implementations of the UNIX System have a buffer cache or page cache in the kernel through which
most disk I/O passes. When we write data to a file, the data is normally copied by the kernel into one of its
buffers and queued for writing to disk at some later time. This is called delayed write. (Chapter 3 of Bach
[1986] discusses this buffer cache in detail.)

The kernel eventually writes all the delayed-write blocks to disk, normally when it needs to reuse the buffer for
some other disk block. To ensure consistency of the file system on disk with the contents of the buffer cache,
the sync , fsync , and fdatasync functions are provided.

#include <unistd.h>

int fsync(int filedes);

int fdatasync(int filedes);

Returns: 0 if OK, –1 on error

 void sync(void);

The sync function simply queues all the modified block buffers for writing and returns; it does not wait for the
disk writes to take place.

The function sync is normally called periodically (usually every 30 seconds) from a system daemon, often
called update . This guarantees regular flushing of the kernel's block buffers. The command sync (1) also calls
the sync function.

The function fsync refers only to a single file, specified by the file descriptor filedes, and waits for the disk
writes to complete before returning. The intended use of fsync is for an application, such as a database, that
needs to be sure that the modified blocks have been written to the disk.

The fdatasync function is similar to fsync , but it affects only the data portions of a file. With fsync , the file's
attributes are also updated synchronously.

All four of the platforms described in this book support sync and fsync . However, FreeBSD 5.2.1 and Mac OS
X 10.3 do not support fdatasync .

3.14. fcntl Function

The fcntl function can change the properties of a file that is already open.

#include <fcntl.h>

int fcntl(int filedes, int cmd, ... /* int arg */) ;

Returns: depends on cmd if OK (see following), –1 on error

In the examples in this section, the third argument is always an integer, corresponding to the comment in the
function prototype just shown. But when we describe record locking in Section 14.3, the third argument
becomes a pointer to a structure.

The fcntl function is used for five different purposes.

1. Duplicate an existing descriptor (cmd = F_DUPFD)
2. Get/set file descriptor flags (cmd = F_GETFD or F_SETFD)
3. Get/set file status flags (cmd = F_GETFL or F_SETFL)
4. Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN)
5. Get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW)

We'll now describe the first seven of these ten cmd values. (We'll wait until Section 14.3 to describe the last
three, which deal with record locking.) Refer to Figure 3.6, since we'll be referring to both the file descriptor
flags associated with each file descriptor in the process table entry and the file status flags associated with each
file table entry.

F_DUPFD Duplicate the file descriptor filedes. The new file descriptor is returned as the value of the function. It
is the lowest-numbered descriptor that is not already open, that is greater than or equal to the third
argument (taken as an integer). The new descriptor shares the same file table entry as filedes. (Refer
to Figure 3.8.) But the new descriptor has its own set of file descriptor flags, and its FD_CLOEXEC file
descriptor flag is cleared. (This means that the descriptor is left open across an exec , which we
discuss in Chapter 8.)

F_GETFD Return the file descriptor flags for filedes as the value of the function. Currently, only one file
descriptor flag is defined: the FD_CLOEXEC flag.

F_SETFD Set the file descriptor flags for filedes. The new flag value is set from the third argument (taken as an
integer).

Be aware that some existing programs that deal with the file descriptor flags don't use the constant
FD_CLOEXEC. Instead, the programs set the flag to either 0 (don't close-on-exec, the default) or 1 (do
close-on-exec).

F_GETFL Return the file status flags for filedes as the value of the function. We described the file status flags
when we described the open function. They are listed in Figure 3.9.

Figure 3.9. File status flags for fcntl

File status flag Description

O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing

O_APPEND append on each write

O_NONBLOCK nonblocking mode

O_SYNC wait for writes to complete (data and attributes)

O_DSYNC wait for writes to complete (data only)

O_RSYNC synchronize reads and writes

O_FSYNC wait for writes to complete (FreeBSD and Mac OS X only)

O_ASYNC asynchronous I/O (FreeBSD and Mac OS X only)

 Unfortunately, the three access-mode flags—O_RDONLY, O_WRONLY, and O_RDWR—are not separate
bits that can be tested. (As we mentioned earlier, these three often have the values 0, 1, and 2,
respectively, for historical reasons. Also, these three values are mutually exclusive; a file can have
only one of the three enabled.) Therefore, we must first use the O_ACCMODE mask to obtain the
access-mode bits and then compare the result against any of the three values.

F_SETFL Set the file status flags to the value of the third argument (taken as an integer). The only flags that
can be changed are O_APPEND, O_NONBLOCK, O_SYNC, O_DSYNC, O_RSYNC, O_FSYNC, and O_ASYNC.

F_GETOWN Get the process ID or process group ID currently receiving the SIGIO and SIGURG signals. We
describe these asynchronous I/O signals in Section 14.6.2.

F_SETOWN Set the process ID or process group ID to receive the SIGIO and SIGURG signals. A positive arg
specifies a process ID. A negative arg implies a process group ID equal to the absolute value of arg.

The return value from fcntl depends on the command. All commands return –1 on an error or some other
value if OK. The following four commands have special return values: F_DUPFD, F_GETFD, F_GETFL, and
F_GETOWN. The first returns the new file descriptor, the next two return the corresponding flags, and the final
one returns a positive process ID or a negative process group ID.

Example

The program in Figure 3.10 takes a single command-line argument that specifies a file descriptor and prints a
description of selected file flags for that descriptor.

Note that we use the feature test macro _POSIX_C_SOURCE and conditionally compile the file access flags that
are not part of POSIX.1. The following script shows the operation of the program, when invoked from bash
(the Bourne-again shell). Results vary, depending on which shell you use.

 $./a.out 0 < /dev/tty
 read only
 $./a.out 1 > temp.foo
 $ cat temp.foo

 write only
 $./a.out 2 2>>temp.foo
 write only, append
 $./a.out 5 5<>temp.foo
 read write

The clause 5<>temp.foo opens the file temp.foo for reading and writing on file descriptor 5.

Figure 3.10. Print file flags for specified descriptor

#include "apue.h"
#include <fcntl.h>
int
main(int argc, char *argv[])
{

 int val;

 if (argc != 2)
 err_quit("usage: a.out <descriptor#>");

 if ((val = fcntl(atoi(argv[1]), F_GETFL, 0)) < 0)
 err_sys("fcntl error for fd %d", atoi(argv[1]));

 switch (val & O_ACCMODE) {
 case O_RDONLY:
 printf("read only");
 break;

 case O_WRONLY:
 printf("write only");
 break;

 case O_RDWR:
 printf("read write");
 break;

 default:
 err_dump("unknown access mode");
 }

 if (val & O_APPEND)
 printf(", append");
 if (val & O_NONBLOCK)
 printf(", nonblocking");
#if defined(O_SYNC)
 if (val & O_SYNC)
 printf(", synchronous writes");
#endif
#if !defined(_POSIX_C_SOURCE) && defined(O_FSYNC)
 if (val & O_FSYNC)
 printf(", synchronous writes");
#endif
 putchar('\n');
 exit(0);
}

Example

When we modify either the file descriptor flags or the file status flags, we must be careful to fetch the existing
flag value, modify it as desired, and then set the new flag value. We can't simply do an F_SETFD or an F_SETFL,
as this could turn off flag bits that were previously set.

Figure 3.11 shows a function that sets one or more of the file status flags for a descriptor.

If we change the middle statement to

 val &= ~flags; /* turn flags off */

we have a function named clr_fl , which we'll use in some later examples. This statement logically ANDs the
one's complement of flags with the current val .

If we call set_fl from Figure 3.4 by adding the line

 set_fl(STDOUT_FILENO, O_SYNC);

at the beginning of the program, we'll turn on the synchronous-write flag. This causes each write to wait for the
data to be written to disk before returning. Normally in the UNIX System, a write only queues the data for
writing; the actual disk write operation can take place sometime later. A database system is a likely candidate
for using O_SYNC, so that it knows on return from a write that the data is actually on the disk, in case of an
abnormal system failure.

We expect the O_SYNC flag to increase the clock time when the program runs. To test this, we can run the
program in Figure 3.4, copying 98.5 MB of data from one file on disk to another and compare this with a
version that does the same thing with the O_SYNC flag set. The results from a Linux system using the ext2 file
system are shown in Figure 3.12.

The six rows in Figure 3.12 were all measured with a BUFFSIZE of 4,096. The results in Figure 3.5 were
measured reading a disk file and writing to /dev/null , so there was no disk output. The second row in Figure
3.12 corresponds to reading a disk file and writing to another disk file. This is why the first and second rows in
Figure 3.12 are different. The system time increases when we write to a disk file, because the kernel now copies
the data from our process and queues the data for writing by the disk driver. We expect the clock time to
increase also when we write to a disk file, but it doesn't increase significantly for this test, which indicates that
our writes go to the system cache, and we don't measure the cost to actually write the data to disk.

When we enable synchronous writes, the system time and the clock time should increase significantly. As the
third row shows, the time for writing synchronously is about the same as when we used delayed writes. This
implies that the Linux ext2 file system isn't honoring the O_SYNC flag. This suspicion is supported by the sixth
line, which shows that the time to do synchronous writes followed by a call to fsync is just as large as calling
fsync after writing the file without synchronous writes (line 5). After writing a file synchronously, we expect
that a call to fsync will have no effect.

Figure 3.13 shows timing results for the same tests on Mac OS X 10.3. Note that the times match our
expectations: synchronous writes are far more expensive than delayed writes, and using fsync with
synchronous writes makes no measurable difference. Note also that adding a call to fsync at the end of the
delayed writes makes no measurable difference. It is likely that the operating system flushed previously written

data to disk as we were writing new data to the file, so by the time that we called fsync , very little work was
left to be done.

Compare fsync and fdatasync , which update a file's contents when we say so, with the O_SYNC flag, which
updates a file's contents every time we write to the file.

Figure 3.11. Turn on one or more of the file status flags for a descriptor

#include "apue.h"
#include <fcntl.h>

void
set_fl(int fd, int flags) /* flags are file status flags to turn on */
{
 int val;

 if ((val = fcntl(fd, F_GETFL, 0)) < 0)
 err_sys("fcntl F_GETFL error");

 val |= flags; /* turn on flags */

 if (fcntl(fd, F_SETFL, val) < 0)
 err_sys("fcntl F_SETFL error");
}

Figure 3.12. Linux ext2 timing results using various synchronization mechanisms

Operation User CPU
(seconds)

System CPU
(seconds)

Clock time
(seconds)

read time from Figure 3.5 for BUFFSIZE =
4,096

0.03 0.16 6.86

normal write to disk file 0.02 0.30 6.87

write to disk file with O_SYNC set 0.03 0.30 6.83

write to disk followed by fdatasync 0.03 0.42 18.28

write to disk followed by fsync 0.03 0.37 17.95

write to disk with O_SYNC set followed by
fsync

0.05 0.44 17.95

Figure 3.13. Mac OS X timing results using various synchronization mechanisms

Operation User CPU
(seconds)

System CPU
(seconds)

Clock time
(seconds)

write to /dev/null 0.06 0.79 4.33

normal write to disk file 0.05 3.56 14.40

write to disk file with O_FSYNC set 0.13 9.53 22.48

Figure 3.13. Mac OS X timing results using various synchronization mechanisms

Operation User CPU
(seconds)

System CPU
(seconds)

Clock time
(seconds)

write to disk followed by fsync 0.11 3.31 14.12

write to disk with O_FSYNC set followed by
fsync

0.17 9.14 22.12

With this example, we see the need for fcntl . Our program operates on a descriptor (standard output), never
knowing the name of the file that was opened by the shell on that descriptor. We can't set the O_SYNC flag when
the file is opened, since the shell opened the file. With fcntl , we can modify the properties of a descriptor,
knowing only the descriptor for the open file. We'll see another need for fcntl when we describe nonblocking
pipes (Section 15.2), since all we have with a pipe is a descriptor.

3.15. ioctl Function

The ioctl function has always been the catchall for I/O operations. Anything that couldn't be expressed using
one of the other functions in this chapter usually ended up being specified with an ioctl . Terminal I/O was the
biggest user of this function. (When we get to Chapter 18, we'll see that POSIX.1 has replaced the terminal I/O
operations with separate functions.)

#include <unistd.h> /* System V */
#include <sys/ioctl.h> /* BSD and Linux */
#include <stropts.h> /* XSI STREAMS */

int ioctl(int filedes, int request, ...);

Returns: –1 on error, something else if OK

The ioctl function is included in the Single UNIX Specification only as an extension for dealing with
STREAMS devices [Rago 1993]. UNIX System implementations, however, use it for many miscellaneous
device operations. Some implementations have even extended it for use with regular files.

The prototype that we show corresponds to POSIX.1. FreeBSD 5.2.1 and Mac OS X 10.3 declare the second
argument as an unsigned long . This detail doesn't matter, since the second argument is always a #define d
name from a header.

For the ISO C prototype, an ellipsis is used for the remaining arguments. Normally, however, there is only one
more argument, and it's usually a pointer to a variable or a structure.

In this prototype, we show only the headers required for the function itself. Normally, additional device-specific
headers are required. For example, the ioctl commands for terminal I/O, beyond the basic operations specified
by POSIX.1, all require the <termios.h> header.

Each device driver can define its own set of ioctl commands. The system, however, provides generic ioctl
commands for different classes of devices. Examples of some of the categories for these generic ioctl
commands supported in FreeBSD are summarized in Figure 3.14.

Figure 3.14. Common FreeBSD ioctl operations

Category Constant names Header Number of ioctls

disk labels DIOxxx <sys/disklabel.h> 6

file I/O FIOxxx <sys/filio.h> 9

mag tape I/O MTIOxxx <sys/mtio.h> 11

socket I/O SIOxxx <sys/sockio.h> 60

terminal I/O TIOxxx <sys/ttycom.h> 44

The mag tape operations allow us to write end-of-file marks on a tape, rewind a tape, space forward over a
specified number of files or records, and the like. None of these operations is easily expressed in terms of the
other functions in the chapter (read , write , lseek , and so on), so the easiest way to handle these devices has
always been to access their operations using ioctl .

We use the ioctl function in Section 14.4 when we describe the STREAMS system, in Section 18.12 to fetch
and set the size of a terminal's window, and in Section 19.7 when we access the advanced features of pseudo
terminals.

3.16. /dev/fd

Newer systems provide a directory named /dev/fd whose entries are files named 0, 1, 2, and so on. Opening
the file /dev/fd/ n is equivalent to duplicating descriptor n, assuming that descriptor n is open.

The /dev/fd feature was developed by Tom Duff and appeared in the 8th Edition of the Research UNIX
System. It is supported by all of the systems described in this book: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X
10.3, and Solaris 9. It is not part of POSIX.1.

In the function call

 fd = open("/dev/fd/0", mode);

most systems ignore the specified mode, whereas others require that it be a subset of the mode used when the
referenced file (standard input, in this case) was originally opened. Because the previous open is equivalent to

 fd = dup(0);

the descriptors 0 and fd share the same file table entry (Figure 3.8). For example, if descriptor 0 was opened
read-only, we can only read on fd . Even if the system ignores the open mode, and the call

 fd = open("/dev/fd/0", O_RDWR);

succeeds, we still can't write to fd .

We can also call creat with a /dev/fd pathname argument, as well as specifying O_CREAT in a call to open .
This allows a program that calls creat to still work if the pathname argument is /dev/fd/1 , for example.

Some systems provide the pathnames /dev/stdin , /dev/stdout , and /dev/stderr . These pathnames are
equivalent to /dev/fd/0 , /dev/fd/1 , and /dev/fd/2 .

The main use of the /dev/fd files is from the shell. It allows programs that use pathname arguments to handle
standard input and standard output in the same manner as other pathnames. For example, the cat (1) program
specifically looks for an input filename of - and uses this to mean standard input. The command

 filter file2 | cat file1 - file3 | lpr

is an example. First, cat reads file1 , next its standard input (the output of the filter program on file2), then
file3 . If /dev/fd is supported, the special handling of - can be removed from cat , and we can enter

 filter file2 | cat file1 /dev/fd/0 file3 | lpr

The special meaning of - as a command-line argument to refer to the standard input or standard output is a
kludge that has crept into many programs. There are also problems if we specify - as the first file, as it looks
like the start of another command-line option. Using /dev/fd is a step toward uniformity and cleanliness.

3.17. Summary

This chapter has described the basic I/O functions provided by the UNIX System. These are often called the
unbuffered I/O functions because each read or write invokes a system call into the kernel. Using only read
and write , we looked at the effect of various I/O sizes on the amount of time required to read a file. We also
looked at several ways to flush written data to disk and their effect on application performance.

Atomic operations were introduced when multiple processes append to the same file and when multiple
processes create the same file. We also looked at the data structures used by the kernel to share information
about open files. We'll return to these data structures later in the text.

We also described the ioctl and fcntl functions. We return to both of these functions in Chapter 14, where
we'll use ioctl with the STREAMS I/O system, and fcntl for record locking.

Chapter 4. Files and Directories

Section 4.1. Introduction

Section 4.2. stat, fstat, and lstat Functions

Section 4.3. File Types

Section 4.4. Set-User-ID and Set-Group-ID

Section 4.5. File Access Permissions

Section 4.6. Ownership of New Files and Directories

Section 4.7. access Function

Section 4.8. umask Function

Section 4.9. chmod and fchmod Functions

Section 4.10. Sticky Bit

Section 4.11. chown, fchown, and lchown Functions

Section 4.12. File Size

Section 4.13. File Truncation

Section 4.14. File Systems

Section 4.15. link, unlink, remove, and rename Functions

Section 4.16. Symbolic Links

Section 4.17. symlink and readlink Functions

Section 4.18. File Times

Section 4.19. utime Function

Section 4.20. mkdir and rmdir Functions

Section 4.21. Reading Directories

Section 4.22. chdir, fchdir, and getcwd Functions

Section 4.23. Device Special Files

Section 4.24. Summary of File Access Permission Bits

Section 4.25. Summary

4.1. Introduction

In the previous chapter we covered the basic functions that perform I/O. The discussion centered around I/O for
regular files—opening a file, and reading or writing a file. We'll now look at additional features of the file
system and the properties of a file. We'll start with the stat functions and go through each member of the stat
structure, looking at all the attributes of a file. In this process, we'll also describe each of the functions that
modify these attributes: change the owner, change the permissions, and so on. We'll also look in more detail at
the structure of a UNIX file system and symbolic links. We finish this chapter with the functions that operate on
directories, and we develop a function that descends through a directory hierarchy.

4.2. stat, fstat, and lstat Functions

The discussion in this chapter centers around the three stat functions and the information they return.

#include <sys/stat.h>

int stat(const char *restrict pathname, struct stat *restrict buf);

int fstat(int filedes, struct stat *buf);

int lstat(const char *restrict pathname, struct sta t *restrict buf);

All three return: 0 if OK, –1 on error

Given a pathname, the stat function returns a structure of information about the named file. The fstat
function obtains information about the file that is already open on the descriptor filedes. The lstat function is
similar to stat , but when the named file is a symbolic link, lstat returns information about the symbolic link,
not the file referenced by the symbolic link. (We'll need lstat in Section 4.21 when we walk down a directory
hierarchy. We describe symbolic links in more detail in Section 4.16.)

The second argument is a pointer to a structure that we must supply. The function fills in the structure pointed
to by buf. The definition of the structure can differ among implementations, but it could look like

 struct stat {
 mode_t st_mode; /* file type & mode (permissions) */
 ino_t st_ino; /* i-node number (se rial number) */
 dev_t st_dev; /* device number (fi le system) */
 dev_t st_rdev; /* device number for special files */
 nlink_t st_nlink; /* number of links * /
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 off_t st_size; /* size in bytes, fo r regular files */
 time_t st_atime; /* time of last acce ss */
 time_t st_mtime; /* time of last modi fication */
 time_t st_ctime; /* time of last file status change */
 blksize_t st_blksize; /* best I/O block si ze */
 blkcnt_t st_blocks; /* number of disk bl ocks allocated */
 };

The st_rdev , st_blksize , and st_blocks fields are not required by POSIX.1. They are defined as XSI
extensions in the Single UNIX Specification.

Note that each member is specified by a primitive system data type (see Section 2.8). We'll go through each
member of this structure to examine the attributes of a file.

The biggest user of the stat functions is probably the ls -l command, to learn all the information about a file.

4.3. File Types

We've talked about two different types of files so far: regular files and directories. Most files on a UNIX system
are either regular files or directories, but there are additional types of files. The types are:

1. Regular file. The most common type of file, which contains data of some form. There is no distinction to
the UNIX kernel whether this data is text or binary. Any interpretation of the contents of a regular file is
left to the application processing the file.

One notable exception to this is with binary executable files. To execute a program, the kernel must
understand its format. All binary executable files conform to a format that allows the kernel to identify
where to load a program's text and data.

2. Directory file. A file that contains the names of other files and pointers to information on these files.
Any process that has read permission for a directory file can read the contents of the directory, but only
the kernel can write directly to a directory file. Processes must use the functions described in this chapter
to make changes to a directory.

3. Block special file. A type of file providing buffered I/O access in fixed-size units to devices such as disk
drives.

4. Character special file. A type of file providing unbuffered I/O access in variable-sized units to devices.
All devices on a system are either block special files or character special files.

5. FIFO. A type of file used for communication between processes. It's sometimes called a named pipe. We
describe FIFOs in Section 15.5.

6. Socket. A type of file used for network communication between processes. A socket can also be used for
non-network communication between processes on a single host. We use sockets for interprocess
communication in Chapter 16.

7. Symbolic link. A type of file that points to another file. We talk more about symbolic links in Section
4.16.

The type of a file is encoded in the st_mode member of the stat structure. We can determine the file type with
the macros shown in Figure 4.1. The argument to each of these macros is the st_mode member from the stat
structure.

Figure 4.1. File type macros in <sys/stat.h>

Macro Type of file

S_ISREG() regular file

S_ISDIR() directory file

S_ISCHR() character special file

S_ISBLK() block special file

S_ISFIFO() pipe or FIFO

S_ISLNK() symbolic link

S_ISSOCK() socket

POSIX.1 allows implementations to represent interprocess communication (IPC) objects, such as message
queues and semaphores, as files. The macros shown in Figure 4.2 allow us to determine the type of IPC object
from the stat structure. Instead of taking the st_mode member as an argument, these macros differ from those
in Figure 4.1 in that their argument is a pointer to the stat structure.

Figure 4.2. IPC type macros in <sys/stat.h>

Macro Type of object

S_TYPEISMQ() message queue

S_TYPEISSEM() semaphore

S_TYPEISSHM() shared memory object

Message queues, semaphores, and shared memory objects are discussed in Chapter 15. However, none of the
various implementations of the UNIX System discussed in this book represent these objects as files.

Example

The program in Figure 4.3 prints the type of file for each command-line argument.

Sample output from Figure 4.3 is

 $./a.out /etc/passwd /etc /dev/initctl /dev/lo g /dev/tty \
 > /dev/scsi/host0/bus0/target0/lun0/cd /dev/cdr om
 /etc/passwd: regular
 /etc: directory
 /dev/initctl: fifo
 /dev/log: socket
 /dev/tty: character special
 /dev/scsi/host0/bus0/target0/lun0/cd: block spe cial
 /dev/cdrom: symbolic link

(Here, we have explicitly entered a backslash at the end of the first command line, telling the shell that we want
to continue entering the command on another line. The shell then prompts us with its secondary prompt, >, on
the next line.) We have specifically used the lstat function instead of the stat function to detect symbolic
links. If we used the stat function, we would never see symbolic links.

To compile this program on a Linux system, we must define _GNU_SOURCE to include the definition of the
S_ISSOCK macro.

Figure 4.3. Print type of file for each command-line argument

#include "apue.h"

int
main(int argc, char *argv[])
{

 int i;
 struct stat buf;

 char *ptr;

 for (i = 1; i < argc; i++) {
 printf("%s: ", argv[i]);
 if (lstat(argv[i], &buf) < 0) {
 err_ret("lstat error");
 continue;

 }
 if (S_ISREG(buf.st_mode))
 ptr = "regular";
 else if (S_ISDIR(buf.st_mode))
 ptr = "directory";
 else if (S_ISCHR(buf.st_mode))
 ptr = "character special";
 else if (S_ISBLK(buf.st_mode))
 ptr = "block special";
 else if (S_ISFIFO(buf.st_mode))
 ptr = "fifo";
 else if (S_ISLNK(buf.st_mode))
 ptr = "symbolic link";
 else if (S_ISSOCK(buf.st_mode))
 ptr = "socket";
 else
 ptr = "** unknown mode **";
 printf("%s\n", ptr);
 }
 exit(0);
}

Historically, early versions of the UNIX System didn't provide the S_ISxxx macros. Instead, we had to logically
AND the st_mode value with the mask S_IFMT and then compare the result with the constants whose names are
S_IFxxx . Most systems define this mask and the related constants in the file <sys/stat.h> . If we examine this
file, we'll find the S_ISDIR macro defined something like

 #define S_ISDIR(mode) (((mode) & S_IFMT) == S_I FDIR)

We've said that regular files are predominant, but it is interesting to see what percentage of the files on a given
system are of each file type. Figure 4.4 shows the counts and percentages for a Linux system that is used as a
single-user workstation. This data was obtained from the program that we show in Section 4.21.

Figure 4.4. Counts and percentages of different file types

File type Count Percentage

regular file 226,856 88.22 %

directory 23,017 8.95

symbolic link 6,442 2.51

character special 447 0.17

Figure 4.4. Counts and percentages of different file types

File type Count Percentage

block special 312 0.12

socket 69 0.03

FIFO 1 0.00

4.4. Set-User-ID and Set-Group-ID

Every process has six or more IDs associated with it. These are shown in Figure 4.5.

Figure 4.5. User IDs and group IDs associated with each process

real user ID
real group ID

who we really are

effective user ID
effective group ID
supplementary group IDs

used for file access permission checks

saved set-user-ID
saved set-group-ID

saved by exec functions

• The real user ID and real group ID identify who we really are. These two fields are taken from our entry
in the password file when we log in. Normally, these values don't change during a login session,
although there are ways for a superuser process to change them, which we describe in Section 8.11.

• The effective user ID, effective group ID, and supplementary group IDs determine our file access
permissions, as we describe in the next section. (We defined supplementary group IDs in Section 1.8.)

• The saved set-user-ID and saved set-group-ID contain copies of the effective user ID and the effective
group ID when a program is executed. We describe the function of these two saved values when we
describe the setuid function in Section 8.11.

The saved IDs are required with the 2001 version of POSIX.1. They used to be optional in older
versions of POSIX. An application can test for the constant _POSIX_SAVED_IDS at compile time or can
call sysconf with the _SC_SAVED_IDS argument at runtime, to see whether the implementation supports
this feature.

Normally, the effective user ID equals the real user ID, and the effective group ID equals the real group ID.

Every file has an owner and a group owner. The owner is specified by the st_uid member of the stat
structure; the group owner, by the st_gid member.

When we execute a program file, the effective user ID of the process is usually the real user ID, and the
effective group ID is usually the real group ID. But the capability exists to set a special flag in the file's mode
word (st_mode) that says "when this file is executed, set the effective user ID of the process to be the owner of
the file (st_uid)." Similarly, another bit can be set in the file's mode word that causes the effective group ID to
be the group owner of the file (st_gid). These two bits in the file's mode word are called the set-user-ID bit and
the set-group-ID bit.

For example, if the owner of the file is the superuser and if the file's set-user-ID bit is set, then while that
program file is running as a process, it has superuser privileges. This happens regardless of the real user ID of
the process that executes the file. As an example, the UNIX System program that allows anyone to change his
or her password, passwd (1), is a set-user-ID program. This is required so that the program can write the new
password to the password file, typically either /etc/passwd or /etc/shadow , files that should be writable only
by the superuser. Because a process that is running set-user-ID to some other user usually assumes extra
permissions, it must be written carefully. We'll discuss these types of programs in more detail in Chapter 8.

Returning to the stat function, the set-user-ID bit and the set-group-ID bit are contained in the file's st_mode
value. These two bits can be tested against the constants S_ISUID and S_ISGID .

4.5. File Access Permissions

The st_mode value also encodes the access permission bits for the file. When we say file, we mean any of the
file types that we described earlier. All the file types—directories, character special files, and so on—have
permissions. Many people think only of regular files as having access permissions.

There are nine permission bits for each file, divided into three categories. These are shown in Figure 4.6.

Figure 4.6. The nine file access permission bits, from <sys/stat.h>

st_mode mask Meaning

S_IRUSR user-read

S_IWUSR user-write

S_IXUSR user-execute

S_IRGRP group-read

S_IWGRP group-write

S_IXGRP group-execute

S_IROTH other-read

S_IWOTH other-write

S_IXOTH other-execute

The term user in the first three rows in Figure 4.6 refers to the owner of the file. The chmod(1) command, which
is typically used to modify these nine permission bits, allows us to specify u for user (owner), g for group, and o
for other. Some books refer to these three as owner, group, and world; this is confusing, as the chmod command
uses o to mean other, not owner. We'll use the terms user, group, and other, to be consistent with the chmod
command.

The three categories in Figure 4.6—read, write, and execute—are used in various ways by different functions.
We'll summarize them here, and return to them when we describe the actual functions.

• The first rule is that whenever we want to open any type of file by name, we must have execute
permission in each directory mentioned in the name, including the current directory, if it is implied. This
is why the execute permission bit for a directory is often called the search bit.

For example, to open the file /usr/include/stdio.h , we need execute permission in the directory / ,
execute permission in the directory /usr , and execute permission in the directory /usr/include . We
then need appropriate permission for the file itself, depending on how we're trying to open it: read-only,
read–write, and so on.

If the current directory is /usr/include , then we need execute permission in the current directory to
open the file stdio.h . This is an example of the current directory being implied, not specifically
mentioned. It is identical to our opening the file ./stdio.h .

Note that read permission for a directory and execute permission for a directory mean different things.
Read permission lets us read the directory, obtaining a list of all the filenames in the directory. Execute
permission lets us pass through the directory when it is a component of a pathname that we are trying to
access. (We need to search the directory to look for a specific filename.)

Another example of an implicit directory reference is if the PATH environment variable, described in
Section 8.10, specifies a directory that does not have execute permission enabled. In this case, the shell
will never find executable files in that directory.

• The read permission for a file determines whether we can open an existing file for reading: the
O_RDONLY and O_RDWR flags for the open function.

• The write permission for a file determines whether we can open an existing file for writing: the
O_WRONLY and O_RDWR flags for the open function.

• We must have write permission for a file to specify the O_TRUNC flag in the open function.
• We cannot create a new file in a directory unless we have write permission and execute permission in

the directory.
• To delete an existing file, we need write permission and execute permission in the directory containing

the file. We do not need read permission or write permission for the file itself.
• Execute permission for a file must be on if we want to execute the file using any of the six exec

functions (Section 8.10). The file also has to be a regular file.

The file access tests that the kernel performs each time a process opens, creates, or deletes a file depend on the
owners of the file (st_uid and st_gid), the effective IDs of the process (effective user ID and effective group
ID), and the supplementary group IDs of the process, if supported. The two owner IDs are properties of the file,
whereas the two effective IDs and the supplementary group IDs are properties of the process. The tests
performed by the kernel are as follows.

1. If the effective user ID of the process is 0 (the superuser), access is allowed. This gives the superuser
free rein throughout the entire file system.

2. If the effective user ID of the process equals the owner ID of the file (i.e., the process owns the file),
access is allowed if the appropriate user access permission bit is set. Otherwise, permission is denied. By
appropriate access permission bit, we mean that if the process is opening the file for reading, the user-
read bit must be on. If the process is opening the file for writing, the user-write bit must be on. If the
process is executing the file, the user-execute bit must be on.

3. If the effective group ID of the process or one of the supplementary group IDs of the process equals the
group ID of the file, access is allowed if the appropriate group access permission bit is set. Otherwise,
permission is denied.

4. If the appropriate other access permission bit is set, access is allowed. Otherwise, permission is denied.

These four steps are tried in sequence. Note that if the process owns the file (step 2), access is granted or denied
based only on the user access permissions; the group permissions are never looked at. Similarly, if the process
does not own the file, but belongs to an appropriate group, access is granted or denied based only on the group
access permissions; the other permissions are not looked at.

4.6. Ownership of New Files and Directories

When we described the creation of a new file in Chapter 3, using either open or creat , we never said what
values were assigned to the user ID and group ID of the new file. We'll see how to create a new directory in
Section 4.20 when we describe the mkdir function. The rules for the ownership of a new directory are identical
to the rules in this section for the ownership of a new file.

The user ID of a new file is set to the effective user ID of the process. POSIX.1 allows an implementation to
choose one of the following options to determine the group ID of a new file.

1. The group ID of a new file can be the effective group ID of the process.
2. The group ID of a new file can be the group ID of the directory in which the file is being created.

FreeBSD 5.2.1 and Mac OS X 10.3 always uses the group ID of the directory as the group ID of the new
file.

The Linux ext2 and ext3 file systems allow the choice between these two POSIX.1 options to be made
on a file system basis, using a special flag to the mount (1) command. On Linux 2.4.22 (with the proper
mount option) and Solaris 9, the group ID of a new file depends on whether the set-group-ID bit is set
for the directory in which the file is being created. If this bit is set for the directory, the group ID of the
new file is set to the group ID of the directory; otherwise, the group ID of the new file is set to the
effective group ID of the process.

Using the second option—inheriting the group ID of the directory—assures us that all files and directories
created in that directory will have the group ID belonging to the directory. This group ownership of files and
directories will then propagate down the hierarchy from that point. This is used, for example, in the
/var/spool/mail directory on Linux.

As we mentioned, this option for group ownership is the default for FreeBSD 5.2.1 and Mac OS X 10.3, but an
option for Linux and Solaris. Under Linux 2.4.22 and Solaris 9, we have to enable the set-group-ID bit, and the
mkdir function has to propagate a directory's set-group-ID bit automatically for this to work. (This is described
in Section 4.20.)

4.7. access Function

As we described earlier, when we open a file, the kernel performs its access tests based on the effective user and
group IDs. There are times when a process wants to test accessibility based on the real user and group IDs. This
is useful when a process is running as someone else, using either the set-user-ID or the set-group-ID feature.
Even though a process might be set-user-ID to root, it could still want to verify that the real user can access a
given file. The access function bases its tests on the real user and group IDs. (Replace effective with real in the
four steps at the end of Section 4.5.)

#include <unistd.h>

int access(const char *pathname, int mode);

Returns: 0 if OK, –1 on error

The mode is the bitwise OR of any of the constants shown in Figure 4.7.

Figure 4.7. The mode constants for access function, from <unistd.h>

mode Description

R_OK test for read permission

W_OK test for write permission

X_OK test for execute permission

F_OK test for existence of file

Example

Figure 4.8 shows the use of the access function.

Here is a sample session with this program:

 $ ls -l a.out
 -rwxrwxr-x 1 sar 15945 Nov 30 12:1 0 a.out
 $./a.out a.out
 read access OK
 open for reading OK
 $ ls -l /etc/shadow
 -r-------- 1 root 1315 Jul 17 2002 /etc/shadow
 $./a.out /etc/shadow
 access error for /etc/shadow: Permission d enied
 open error for /etc/shadow: Permission den ied
 $ su become superus er
 Password: enter superuser password
 # chown root a.out change file's u ser ID to root
 # chmod u+s a.out and turn on set -user-ID bit
 # ls -l a.out check owner and SUID bit

 -rwsrwxr-x 1 root 15945 Nov 30 12:10 a .out
 # exit go back to norm al user
 $./a.out /etc/shadow
 access error for /etc/shadow: Permission d enied
 open for reading OK

In this example, the set-user-ID program can determine that the real user cannot normally read the file, even
though the open function will succeed.

Figure 4.8. Example of access function

#include "apue.h"
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 if (argc != 2)
 err_quit("usage: a.out <pathname>");
 if (access(argv[1], R_OK) < 0)
 err_ret("access error for %s", argv[1]);
 else
 printf("read access OK\n");
 if (open(argv[1], O_RDONLY) < 0)
 err_ret("open error for %s", argv[1]);
 else
 printf("open for reading OK\n");
 exit(0);
}

In the preceding example and in Chapter 8, we'll sometimes switch to become the superuser, to demonstrate
how something works. If you're on a multiuser system and do not have superuser permission, you won't be able
to duplicate these examples completely.

4.8. umask Function

Now that we've described the nine permission bits associated with every file, we can describe the file mode
creation mask that is associated with every process.

The umask function sets the file mode creation mask for the process and returns the previous value. (This is one
of the few functions that doesn't have an error return.)

#include <sys/stat.h>

mode_t umask(mode_t cmask);

Returns: previous file mode creation mask

The cmask argument is formed as the bitwise OR of any of the nine constants from Figure 4.6: S_IRUSR,
S_IWUSR, and so on.

The file mode creation mask is used whenever the process creates a new file or a new directory. (Recall from
Sections 3.3 and 3.4 our description of the open and creat functions. Both accept a mode argument that
specifies the new file's access permission bits.) We describe how to create a new directory in Section 4.20. Any
bits that are on in the file mode creation mask are turned off in the file's mode.

Example

The program in Figure 4.9 creates two files, one with a umask of 0 and one with a umask that disables all the
group and other permission bits.

If we run this program, we can see how the permission bits have been set.

 $ umask first print the c urrent file mode creation mask
 002
 $./a.out
 $ ls -l foo bar
 -rw------- 1 sar 0 Dec 7 21:20 ba r
 -rw-rw-rw- 1 sar 0 Dec 7 21:20 fo o
 $ umask see if the file m ode creation mask changed
 002

Figure 4.9. Example of umask function

#include "apue.h"
#include <fcntl.h>

#define RWRWRW (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_I ROTH|S_IWOTH)

int
main(void)
{
 umask(0);

 if (creat("foo", RWRWRW) < 0)
 err_sys("creat error for foo");
 umask(S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);
 if (creat("bar", RWRWRW) < 0)
 err_sys("creat error for bar");
 exit(0);
}

Most users of UNIX systems never deal with their umask value. It is usually set once, on login, by the shell's
start-up file, and never changed. Nevertheless, when writing programs that create new files, if we want to
ensure that specific access permission bits are enabled, we must modify the umask value while the process is
running. For example, if we want to ensure that anyone can read a file, we should set the umask to 0. Otherwise,
the umask value that is in effect when our process is running can cause permission bits to be turned off.

In the preceding example, we use the shell's umask command to print the file mode creation mask before we run
the program and after. This shows us that changing the file mode creation mask of a process doesn't affect the
mask of its parent (often a shell). All of the shells have a built-in umask command that we can use to set or print
the current file mode creation mask.

Users can set the umask value to control the default permissions on the files they create. The value is expressed
in octal, with one bit representing one permission to be masked off, as shown in Figure 4.10. Permissions can be
denied by setting the corresponding bits. Some common umask values are 002 to prevent others from writing
your files, 022 to prevent group members and others from writing your files, and 027 to prevent group members
from writing your files and others from reading, writing, or executing your files.

Figure 4.10. The umask file access permission bits

Mask bit Meaning

0400 user-read

0200 user-write

0100 user-execute

0040 group-read

0020 group-write

0010 group-execute

0004 other-read

0002 other-write

0001 other-execute

The Single UNIX Specification requires that the shell support a symbolic form of the umask command. Unlike
the octal format, the symbolic format specifies which permissions are to be allowed (i.e., clear in the file
creation mask) instead of which ones are to be denied (i.e., set in the file creation mask). Compare both forms of
the command, shown below.

 $ umask first print t he current file mode creation mask
 002
 $ umask -S print the sym bolic form
 u=rwx,g=rwx,o=rx
 $ umask 027 change the fi le mode creation mask
 $ umask -S print the sym bolic form
 u=rwx,g=rx,o=

4.9. chmod and fchmod Functions

These two functions allow us to change the file access permissions for an existing file.

#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode);

int fchmod(int filedes, mode_t mode);

Both return: 0 if OK, –1 on error

The chmod function operates on the specified file, whereas the fchmod function operates on a file that has
already been opened.

To change the permission bits of a file, the effective user ID of the process must be equal to the owner ID of the
file, or the process must have superuser permissions.

The mode is specified as the bitwise OR of the constants shown in Figure 4.11.

Figure 4.11. The mode constants for chmod functions, from <sys/stat.h>

mode Description

S_ISUID set-user-ID on execution

S_ISGID set-group-ID on execution

S_ISVTX saved-text (sticky bit)

S_IRWXU read, write, and execute by user (owner)

S_IRUSR read by user (owner)

S_IWUSR write by user (owner)

S_IXUSR execute by user (owner)

S_IRWXG read, write, and execute by group

S_IRGRP read by group

S_IWGRP write by group

S_IXGRP execute by group

S_IRWXO read, write, and execute by other (world)

S_IROTH read by other (world)

S_IWOTH write by other (world)

S_IXOTH execute by other (world)

Note that nine of the entries in Figure 4.11 are the nine file access permission bits from Figure 4.6. We've added
the two set-ID constants (S_ISUID and S_ISGID), the saved-text constant (S_ISVTX), and the three combined
constants (S_IRWXU, S_IRWXG, and S_IRWXO).

The saved-text bit (S_ISVTX) is not part of POSIX.1. It is defined as an XSI extension in the Single UNIX
Specification. We describe its purpose in the next section.

Example

Recall the final state of the files foo and bar when we ran the program in Figure 4.9 to demonstrate the umask
function:

 $ ls -l foo bar
 -rw------- 1 sar 0 Dec 7 21:2 0 bar
 -rw-rw-rw- 1 sar 0 Dec 7 21:2 0 foo

The program shown in Figure 4.12 modifies the mode of these two files.

After running the program in Figure 4.12, we see that the final state of the two files is

 $ ls -l foo bar
 -rw-r--r-- 1 sar 0 Dec 7 21:20 bar
 -rw-rwSrw- 1 sar 0 Dec 7 21:20 foo

In this example, we have set the permissions of the file bar to an absolute value, regardless of the current
permission bits. For the file foo , we set the permissions relative to their current state. To do this, we first call
stat to obtain the current permissions and then modify them. We have explicitly turned on the set-group-ID bit
and turned off the group-execute bit. Note that the ls command lists the group-execute permission as S to
signify that the set-group-ID bit is set without the group-execute bit being set.

On Solaris, the ls command displays an l instead of an S to indicate that mandatory file and record locking has
been enabled for this file. This applies only to regular files, but we'll discuss this more in Section 14.3.

Finally, note that the time and date listed by the ls command did not change after we ran the program in Figure
4.12. We'll see in Section 4.18 that the chmod function updates only the time that the i-node was last changed.
By default, the ls -l lists the time when the contents of the file were last modified.

Figure 4.12. Example of chmod function

#include "apue.h"

int
main(void)
{
 struct stat statbuf;

 /* turn on set-group-ID and turn off group-exe cute */

 if (stat("foo", &statbuf) < 0)
 err_sys("stat error for foo");
 if (chmod("foo", (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)
 err_sys("chmod error for foo");

 /* set absolute mode to "rw-r--r--" */

 if (chmod("bar", S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0)
 err_sys("chmod error for bar");

 exit(0);
}

The chmod functions automatically clear two of the permission bits under the following conditions:

• On systems, such as Solaris, that place special meaning on the sticky bit when used with regular files, if
we try to set the sticky bit (S_ISVTX) on a regular file and do not have superuser privileges, the sticky bit
in the mode is automatically turned off. (We describe the sticky bit in the next section.) This means that
only the superuser can set the sticky bit of a regular file. The reason is to prevent malicious users from
setting the sticky bit and adversely affecting system performance.

On FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, only the superuser can set the sticky bit on a regular
file. Linux 2.4.22 places no such restriction on the setting of the sticky bit, because the bit has no
meaning when applied to regular files on Linux. Although the bit also has no meaning when applied to
regular files on FreeBSD and Mac OS X, these systems prevent everyone but the superuser from setting
it on a regular file.

• It is possible that the group ID of a newly created file is a group that the calling process does not belong
to. Recall from Section 4.6 that it's possible for the group ID of the new file to be the group ID of the
parent directory. Specifically, if the group ID of the new file does not equal either the effective group ID
of the process or one of the process's supplementary group IDs and if the process does not have
superuser privileges, then the set-group-ID bit is automatically turned off. This prevents a user from
creating a set-group-ID file owned by a group that the user doesn't belong to.

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 add another security feature to try to
prevent misuse of some of the protection bits. If a process that does not have superuser privileges writes
to a file, the set-user-ID and set-group-ID bits are automatically turned off. If malicious users find a set-
group-ID or a set-user-ID file they can write to, even though they can modify the file, they lose the
special privileges of the file.

4.10. Sticky Bit

The S_ISVTX bit has an interesting history. On versions of the UNIX System that predated demand paging, this
bit was known as the sticky bit. If it was set for an executable program file, then the first time the program was
executed, a copy of the program's text was saved in the swap area when the process terminated. (The text
portion of a program is the machine instructions.) This caused the program to load into memory more quickly
the next time it was executed, because the swap area was handled as a contiguous file, compared to the possibly
random location of data blocks in a normal UNIX file system. The sticky bit was often set for common
application programs, such as the text editor and the passes of the C compiler. Naturally, there was a limit to the
number of sticky files that could be contained in the swap area before running out of swap space, but it was a
useful technique. The name sticky came about because the text portion of the file stuck around in the swap area
until the system was rebooted. Later versions of the UNIX System referred to this as the saved-text bit; hence,
the constant S_ISVTX. With today's newer UNIX systems, most of which have a virtual memory system and a
faster file system, the need for this technique has disappeared.

On contemporary systems, the use of the sticky bit has been extended. The Single UNIX Specification allows
the sticky bit to be set for a directory. If the bit is set for a directory, a file in the directory can be removed or
renamed only if the user has write permission for the directory and one of the following:

• Owns the file
• Owns the directory
• Is the superuser

The directories /tmp and /var/spool/uucppublic are typical candidates for the sticky bit—they are
directories in which any user can typically create files. The permissions for these two directories are often read,
write, and execute for everyone (user, group, and other). But users should not be able to delete or rename files
owned by others.

The saved-text bit is not part of POSIX.1. It is an XSI extension to the basic POSIX.1 functionality defined in
the Single UNIX Specification, and is supported by FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9.

Solaris 9 places special meaning on the sticky bit if it is set on a regular file. In this case, if none of the execute
bits is set, the operating system will not cache the contents of the file.

4.11. chown, fchown, and lchown Functions

The chown functions allow us to change the user ID of a file and the group ID of a file.

#include <unistd.h>

int chown(const char *pathname, uid_t owner, gid_t group);

int fchown(int filedes, uid_t owner, gid_t group);

int lchown(const char *pathname, uid_t owner,
 gid_t group);

All three return: 0 if OK, –1 on error

These three functions operate similarly unless the referenced file is a symbolic link. In that case, lchown
changes the owners of the symbolic link itself, not the file pointed to by the symbolic link.

The lchown function is an XSI extension to the POSIX.1 functionality defined in the Single UNIX
Specification. As such, all UNIX System implementations are expected to provide it.

If either of the arguments owner or group is -1, the corresponding ID is left unchanged.

Historically, BSD-based systems have enforced the restriction that only the superuser can change the ownership
of a file. This is to prevent users from giving away their files to others, thereby defeating any disk space quota
restrictions. System V, however, has allowed any user to change the ownership of any files they own.

POSIX.1 allows either form of operation, depending on the value of _POSIX_CHOWN_RESTRICTED.

With Solaris 9, this functionality is a configuration option, whose default value is to enforce the restriction.
FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 always enforce the chown restriction.

Recall from Section 2.6 that the _POSIX_CHOWN_RESTRICTED constant can optionally be defined in the header
<unistd.h> , and can always be queried using either the pathconf function or the fpathconf function. Also
recall that this option can depend on the referenced file; it can be enabled or disabled on a per file system basis.
We'll use the phrase, if _POSIX_CHOWN_RESTRICTED is in effect, to mean if it applies to the particular file that
we're talking about, regardless of whether this actual constant is defined in the header.

If _POSIX_CHOWN_RESTRICTED is in effect for the specified file, then

1. Only a superuser process can change the user ID of the file.
2. A nonsuperuser process can change the group ID of the file if the process owns the file (the effective

user ID equals the user ID of the file), owner is specified as –1 or equals the user ID of the file, and
group equals either the effective group ID of the process or one of the process's supplementary group
IDs.

This means that when _POSIX_CHOWN_RESTRICTED is in effect, you can't change the user ID of other users' files.
You can change the group ID of files that you own, but only to groups that you belong to.

If these functions are called by a process other than a superuser process, on successful return, both the set-user-
ID and the set-group-ID bits are cleared.

4.12. File Size

The st_size member of the stat structure contains the size of the file in bytes. This field is meaningful only
for regular files, directories, and symbolic links.

Solaris also defines the file size for a pipe as the number of bytes that are available for reading from the pipe.
We'll discuss pipes in Section 15.2.

For a regular file, a file size of 0 is allowed. We'll get an end-of-file indication on the first read of the file.

For a directory, the file size is usually a multiple of a number, such as 16 or 512. We talk about reading
directories in Section 4.21.

For a symbolic link, the file size is the number of bytes in the filename. For example, in the following case, the
file size of 7 is the length of the pathname usr/lib :

 lrwxrwxrwx 1 root 7 Sep 25 07:14 lib -> usr/lib

(Note that symbolic links do not contain the normal C null byte at the end of the name, as the length is always
specified by st_size .)

Most contemporary UNIX systems provide the fields st_blksize and st_blocks . The first is the preferred
block size for I/O for the file, and the latter is the actual number of 512-byte blocks that are allocated. Recall
from Section 3.9 that we encountered the minimum amount of time required to read a file when we used
st_blksize for the read operations. The standard I/O library, which we describe in Chapter 5, also tries to read
or write st_blksize bytes at a time, for efficiency.

Be aware that different versions of the UNIX System use units other than 512-byte blocks for st_blocks .
Using this value is nonportable.

Holes in a File

In Section 3.6, we mentioned that a regular file can contain "holes." We showed an example of this in Figure
3.2. Holes are created by seeking past the current end of file and writing some data. As an example, consider the
following:

 $ ls -l core
 -rw-r--r-- 1 sar 8483248 Nov 18 12:18 co re
 $ du -s core
 272 core

The size of the file core is just over 8 MB, yet the du command reports that the amount of disk space used by
the file is 272 512-byte blocks (139,264 bytes). (The du command on many BSD-derived systems reports the
number of 1,024-byte blocks; Solaris reports the number of 512-byte blocks.) Obviously, this file has many
holes.

As we mentioned in Section 3.6, the read function returns data bytes of 0 for any byte positions that have not
been written. If we execute the following, we can see that the normal I/O operations read up through the size of
the file:

 $ wc -c core
 8483248 core

The wc(1) command with the -c option counts the number of characters (bytes) in the file.

If we make a copy of this file, using a utility such as cat (1), all these holes are written out as actual data bytes
of 0:

 $ cat core > core.copy
 $ ls -l core*
 -rw-r--r-- 1 sar 8483248 Nov 18 12:18 core
 -rw-rw-r-- 1 sar 8483248 Nov 18 12:27 core.copy
 $ du -s core*
 272 core
 16592 core.copy

Here, the actual number of bytes used by the new file is 8,495,104 (512 x 16,592). The difference between this
size and the size reported by ls is caused by the number of blocks used by the file system to hold pointers to the
actual data blocks.

Interested readers should refer to Section 4.2 of Bach [1986], Sections 7.2 and 7.3 of McKusick et al. [1996] (or
Sections 8.2 and 8.3 in McKusick and Neville-Neil [2005]), and Section 14.2 of Mauro and McDougall [2001]
for additional details on the physical layout of files.

4.13. File Truncation

There are times when we would like to truncate a file by chopping off data at the end of the file. Emptying a file,
which we can do with the O_TRUNC flag to open , is a special case of truncation.

#include <unistd.h>

int truncate(const char *pathname, off_t length);

int ftruncate(int filedes, off_t length);

Both return: 0 if OK, –1 on error

These two functions truncate an existing file to length bytes. If the previous size of the file was greater than
length, the data beyond length is no longer accessible. If the previous size was less than length, the effect is
system dependent, but XSI-conforming systems will increase the file size. If the implementation does extend a
file, data between the old end of file and the new end of file will read as 0 (i.e., a hole is probably created in the
file).

The ftruncate function is part of POSIX.1. The truncate function is an XSI extension to the POSIX.1
functionality defined in the Single UNIX Specification.

BSD releases prior to 4.4BSD could only make a file smaller with truncate .

Solaris also includes an extension to fcntl (F_FREESP) that allows us to free any part of a file, not just a chunk
at the end of the file.

We use ftruncate in the program shown in Figure 13.6 when we need to empty a file after obtaining a lock on
the file.

4.14. File Systems

To appreciate the concept of links to a file, we need a conceptual understanding of the structure of the UNIX
file system. Understanding the difference between an i-node and a directory entry that points to an i-node is also
useful.

Various implementations of the UNIX file system are in use today. Solaris, for example, supports several
different types of disk file systems: the traditional BSD-derived UNIX file system (called UFS), a file system
(called PCFS) to read and write DOS-formatted diskettes, and a file system (called HSFS) to read CD file
systems. We saw one difference between file system types in Figure 2.19. UFS is based on the Berkeley fast file
system, which we describe in this section.

We can think of a disk drive being divided into one or more partitions. Each partition can contain a file system,
as shown in Figure 4.13.

Figure 4.13. Disk drive, partitions, and a file system

The i-nodes are fixed-length entries that contain most of the information about a file.

If we examine the i-node and data block portion of a cylinder group in more detail, we could have what is
shown in Figure 4.14.

Figure 4.14. Cylinder group's i-nodes and data blocks in more detail

Note the following points from Figure 4.14.

• We show two directory entries that point to the same i-node entry. Every i-node has a link count that
contains the number of directory entries that point to the i-node. Only when the link count goes to 0 can
the file be deleted (i.e., can the data blocks associated with the file be released). This is why the
operation of "unlinking a file" does not always mean "deleting the blocks associated with the file." This
is why the function that removes a directory entry is called unlink , not delete. In the stat structure, the
link count is contained in the st_nlink member. Its primitive system data type is nlink_t . These types
of links are called hard links. Recall from Section 2.5.2 that the POSIX.1 constant LINK_MAX specifies
the maximum value for a file's link count.

• The other type of link is called a symbolic link. With a symbolic link, the actual contents of the file—the
data blocks—store the name of the file that the symbolic link points to. In the following example, the
filename in the directory entry is the three-character string lib and the 7 bytes of data in the file are
usr/lib :

• lrwxrwxrwx 1 root 7 Sep 25 07:14 lib -> usr/lib

The file type in the i-node would be S_IFLNK so that the system knows that this is a symbolic link.

• The i-node contains all the information about the file: the file type, the file's access permission bits, the
size of the file, pointers to the file's data blocks, and so on. Most of the information in the stat structure
is obtained from the i-node. Only two items of interest are stored in the directory entry: the filename and
the i-node number; the other items—the length of the filename and the length of the directory record—
are not of interest to this discussion. The data type for the i-node number is ino_t .

• Because the i-node number in the directory entry points to an i-node in the same file system, we cannot
have a directory entry point to an i-node in a different file system. This is why the ln (1) command
(make a new directory entry that points to an existing file) can't cross file systems. We describe the link
function in the next section.

• When renaming a file without changing file systems, the actual contents of the file need not be moved—
all that needs to be done is to add a new directory entry that points to the existing i-node, and then unlink
the old directory entry. The link count will remain the same. For example, to rename the file
/usr/lib/foo to /usr/foo , the contents of the file foo need not be moved if the directories /usr/lib
and /usr are on the same file system. This is how the mv(1) command usually operates.

We've talked about the concept of a link count for a regular file, but what about the link count field for a
directory? Assume that we make a new directory in the working directory, as in

 $ mkdir testdir

Figure 4.15 shows the result. Note that in this figure, we explicitly show the entries for dot and dot-dot.

Figure 4.15. Sample cylinder group after creating the directory testdir

The i-node whose number is 2549 has a type field of "directory" and a link count equal to 2. Any leaf directory
(a directory that does not contain any other directories) always has a link count of 2. The value of 2 is from the
directory entry that names the directory (testdir) and from the entry for dot in that directory. The i-node
whose number is 1267 has a type field of "directory" and a link count that is greater than or equal to 3. The
reason we know that the link count is greater than or equal to 3 is that minimally, it is pointed to from the
directory entry that names it (which we don't show in Figure 4.15), from dot, and from dot-dot in the testdir
directory. Note that every subdirectory in a parent directory causes the parent directory's link count to be
increased by 1.

This format is similar to the classic format of the UNIX file system, which is described in detail in Chapter 4 of
Bach [1986]. Refer to Chapter 7 of McKusick et al. [1996] or Chapter 8 of McKusick and Neville-Neil [2005]
for additional information on the changes made with the Berkeley fast file system. See Chapter 14 of Mauro and
McDougall [2001] for details on UFS, the Solaris version of the Berkeley fast file system.

4.15. link, unlink, remove, and rename Functions

As we saw in the previous section, any file can have multiple directory entries pointing to its i-node. The way
we create a link to an existing file is with the link function.

#include <unistd.h>

int link(const char *existingpath, const char *newp ath);

Returns: 0 if OK, –1 on error

This function creates a new directory entry, newpath, that references the existing file existingpath. If the
newpath already exists, an error is returned. Only the last component of the newpath is created. The rest of the
path must already exist.

The creation of the new directory entry and the increment of the link count must be an atomic operation. (Recall
the discussion of atomic operations in Section 3.11.)

Most implementations require that both pathnames be on the same file system, although POSIX.1 allows an
implementation to support linking across file systems. If an implementation supports the creation of hard links
to directories, it is restricted to only the superuser. The reason is that doing this can cause loops in the file
system, which most utilities that process the file system aren't capable of handling. (We show an example of a
loop introduced by a symbolic link in Section 4.16.) Many file system implementations disallow hard links to
directories for this reason.

To remove an existing directory entry, we call the unlink function.

#include <unistd.h>

int unlink(const char *pathname);

Returns: 0 if OK, –1 on error

This function removes the directory entry and decrements the link count of the file referenced by pathname. If
there are other links to the file, the data in the file is still accessible through the other links. The file is not
changed if an error occurs.

We've mentioned before that to unlink a file, we must have write permission and execute permission in the
directory containing the directory entry, as it is the directory entry that we will be removing. Also, we
mentioned in Section 4.10 that if the sticky bit is set in this directory we must have write permission for the
directory and one of the following:

• Own the file
• Own the directory
• Have superuser privileges

Only when the link count reaches 0 can the contents of the file be deleted. One other condition prevents the
contents of a file from being deleted: as long as some process has the file open, its contents will not be deleted.

When a file is closed, the kernel first checks the count of the number of processes that have the file open. If this
count has reached 0, the kernel then checks the link count; if it is 0, the file's contents are deleted.

Example

The program shown in Figure 4.16 opens a file and then unlinks it. The program then goes to sleep for 15
seconds before terminating.

Running this program gives us

 $ ls -l tempfile look at how big the file is
 -rw-r----- 1 sar 413265408 Jan 21 07:14 tem pfile
 $ df /home check how much free space is available
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/hda4 11021440 1956332 9065108 18% /home
 $./a.out & run the program in Figure 4.16 in the background
 1364 the shell prints it s process ID
 $ file unlinked the file is unlinke d
 ls -l tempfile see if the filename is still there
 ls: tempfile: No such file or directory the directory entry is gone
 $ df /home see if the space is available yet
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/hda4 11021440 1956332 9065108 18% /home
 $ done the program is done , all open files are closed
 df /home now the disk space should be available
 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/hda4 11021440 1552352 9469088 15% /home
 now the 394.1 MB of disk space are available

Figure 4.16. Open a file and then unlink it

#include "apue.h"
#include <fcntl.h>

int
main(void)
{
 if (open("tempfile", O_RDWR) < 0)
 err_sys("open error");
 if (unlink("tempfile") < 0)
 err_sys("unlink error");
 printf("file unlinked\n");
 sleep(15);
 printf("done\n");
 exit(0);
}

This property of unlink is often used by a program to ensure that a temporary file it creates won't be left around
in case the program crashes. The process creates a file using either open or creat and then immediately calls
unlink . The file is not deleted, however, because it is still open. Only when the process either closes the file or
terminates, which causes the kernel to close all its open files, is the file deleted.

If pathname is a symbolic link, unlink removes the symbolic link, not the file referenced by the link. There is
no function to remove the file referenced by a symbolic link given the name of the link.

The superuser can call unlink with pathname specifying a directory, but the function rmdir should be used
instead to unlink a directory. We describe the rmdir function in Section 4.20.

We can also unlink a file or a directory with the remove function. For a file, remove is identical to unlink . For
a directory, remove is identical to rmdir .

#include <stdio.h>

int remove(const char *pathname);

Returns: 0 if OK, –1 on error

ISO C specifies the remove function to delete a file. The name was changed from the historical UNIX name of
unlink because most non-UNIX systems that implement the C standard didn't support the concept of links to a
file at the time.

A file or a directory is renamed with the rename function.

#include <stdio.h>

int rename(const char *oldname, const char *newname);

Returns: 0 if OK, –1 on error

This function is defined by ISO C for files. (The C standard doesn't deal with directories.) POSIX.1 expanded
the definition to include directories and symbolic links.

There are several conditions to describe, depending on whether oldname refers to a file, a directory, or a
symbolic link. We must also describe what happens if newname already exists.

1. If oldname specifies a file that is not a directory, then we are renaming a file or a symbolic link. In this
case, if newname exists, it cannot refer to a directory. If newname exists and is not a directory, it is
removed, and oldname is renamed to newname. We must have write permission for the directory
containing oldname and for the directory containing newname, since we are changing both directories.

2. If oldname specifies a directory, then we are renaming a directory. If newname exists, it must refer to a
directory, and that directory must be empty. (When we say that a directory is empty, we mean that the
only entries in the directory are dot and dot-dot.) If newname exists and is an empty directory, it is
removed, and oldname is renamed to newname. Additionally, when we're renaming a directory,
newname cannot contain a path prefix that names oldname. For example, we can't rename /usr/foo to
/usr/foo/testdir , since the old name (/usr/foo) is a path prefix of the new name and cannot be
removed.

3. If either oldname or newname refers to a symbolic link, then the link itself is processed, not the file to
which it resolves.

4. As a special case, if the oldname and newname refer to the same file, the function returns successfully
without changing anything.

If newname already exists, we need permissions as if we were deleting it. Also, because we're removing the
directory entry for oldname and possibly creating a directory entry for newname, we need write permission and
execute permission in the directory containing oldname and in the directory containing newname.

4.16. Symbolic Links

A symbolic link is an indirect pointer to a file, unlike the hard links from the previous section, which pointed
directly to the i-node of the file. Symbolic links were introduced to get around the limitations of hard links.

• Hard links normally require that the link and the file reside in the same file system
• Only the superuser can create a hard link to a directory

There are no file system limitations on a symbolic link and what it points to, and anyone can create a symbolic
link to a directory. Symbolic links are typically used to move a file or an entire directory hierarchy to another
location on a system.

Symbolic links were introduced with 4.2BSD and subsequently supported by SVR4.

When using functions that refer to a file by name, we always need to know whether the function follows a
symbolic link. If the function follows a symbolic link, a pathname argument to the function refers to the file
pointed to by the symbolic link. Otherwise, a pathname argument refers to the link itself, not the file pointed to
by the link. Figure 4.17 summarizes whether the functions described in this chapter follow a symbolic link. The
functions mkdir , mkfifo , mknod, and rmdir are not in this figure, as they return an error when the pathname is a
symbolic link. Also, the functions that take a file descriptor argument, such as fstat and fchmod , are not listed,
as the handling of a symbolic link is done by the function that returns the file descriptor (usually open).
Whether or not chown follows a symbolic link depends on the implementation.

In older versions of Linux (those before version 2.1.81), chown didn't follow symbolic links. From version
2.1.81 onward, chown follows symbolic links. With FreeBSD 5.2.1 and Mac OS X 10.3, chown follows
symbolic links. (Prior to 4.4BSD, chown didn't follow symbolic links, but this was changed in 4.4BSD.) In
Solaris 9, chown also follows symbolic links. All of these platforms provide implementations of lchown to
change the ownership of symbolic links themselves.

One exception to Figure 4.17 is when the open function is called with both O_CREAT and O_EXCL set. In this case,
if the pathname refers to a symbolic link, open will fail with errno set to EEXIST. This behavior is intended to
close a security hole so that privileged processes can't be fooled into writing to the wrong files.

Figure 4.17. Treatment of symbolic links by various functions

Function Does not follow symbolic link Follows symbolic link

access •

chdir •

chmod •

chown • •

creat •

exec •

lchown •

link •

Figure 4.17. Treatment of symbolic links by various functions

Function Does not follow symbolic link Follows symbolic link

lstat •

open •

opendir •

pathconf •

readlink •

remove •

rename •

stat •

truncate •

unlink •

Example

It is possible to introduce loops into the file system by using symbolic links. Most functions that look up a
pathname return an errno of ELOOP when this occurs. Consider the following commands:

 $ mkdir foo make a new direc tory
 $ touch foo/a create a 0-lengt h file
 $ ln -s ../foo foo/testdir create a symboli c link
 $ ls -l foo
 total 0
 -rw-r----- 1 sar 0 Jan 22 00:16 a
 lrwxrwxrwx 1 sar 6 Jan 22 00:16 tes tdir -> ../foo

This creates a directory foo that contains the file a and a symbolic link that points to foo . We show this
arrangement in Figure 4.18, drawing a directory as a circle and a file as a square. If we write a simple program
that uses the standard function ftw (3) on Solaris to descend through a file hierarchy, printing each pathname
encountered, the output is

 foo
 foo/a
 foo/testdir
 foo/testdir/a
 foo/testdir/testdir
 foo/testdir/testdir/a
 foo/testdir/testdir/testdir
 foo/testdir/testdir/testdir/a

(many more lines until we encounter an ELOOP error)

In Section 4.21, we provide our own version of the ftw function that uses lstat instead of stat , to prevent it
from following symbolic links.

Note that on Linux, the ftw function uses lstat , so it doesn't display this behavior.

A loop of this form is easy to remove. We are able to unlink the file foo/testdir , as unlink does not follow
a symbolic link. But if we create a hard link that forms a loop of this type, its removal is much more difficult.
This is why the link function will not form a hard link to a directory unless the process has superuser
privileges.

Indeed, Rich Stevens did this on his own system as an experiment while writing the original version of this
section. The file system got corrupted and the normal fsck (1) utility couldn't fix things. The deprecated tools
clri (8) and dcheck (8) were needed to repair the file system.

The need for hard links to directories has long since passed. With symbolic links and the mkdir function, there
is no longer any need for users to create hard links to directories.

When we open a file, if the pathname passed to open specifies a symbolic link, open follows the link to the
specified file. If the file pointed to by the symbolic link doesn't exist, open returns an error saying that it can't
open the file. This can confuse users who aren't familiar with symbolic links. For example,

 $ ln -s /no/such/file myfile create a symbolic link
 $ ls myfile
 myfile ls say s it's there
 $ cat myfile so we try to look at it
 cat: myfile: No such file or directory
 $ ls -l myfile try -l option
 lrwxrwxrwx 1 sar 13 Jan 22 00:26 myfile -> /no/such/file

The file myfile does exist, yet cat says there is no such file, because myfile is a symbolic link and the file
pointed to by the symbolic link doesn't exist. The -l option to ls gives us two hints: the first character is an l ,
which means a symbolic link, and the sequence -> also indicates a symbolic link. The ls command has another
option (-F) that appends an at-sign to filenames that are symbolic links, which can help spot symbolic links in a
directory listing without the -l option.

Figure 4.18. Symbolic link testdir that creates a loop

4.17. symlink and readlink Functions

A symbolic link is created with the symlink function.

#include <unistd.h>

int symlink(const char *actualpath, const char *sym path);

Returns: 0 if OK, –1 on error

A new directory entry, sympath, is created that points to actualpath. It is not required that actualpath exist when
the symbolic link is created. (We saw this in the example at the end of the previous section.) Also, actualpath
and sympath need not reside in the same file system.

Because the open function follows a symbolic link, we need a way to open the link itself and read the name in
the link. The readlink function does this.

#include <unistd.h>

ssize_t readlink(const char* restrict pathname,
 char *restrict buf,
 size_t bufsize);

Returns: number of bytes read if OK, –1 on error

This function combines the actions of open , read , and close . If the function is successful, it returns the number
of bytes placed into buf. The contents of the symbolic link that are returned in buf are not null terminated.

4.18. File Times

Three time fields are maintained for each file. Their purpose is summarized in Figure 4.19.

Figure 4.19. The three time values associated with each file

Field Description Example ls(1) option

st_atime last-access time of file data read -u

st_mtime last-modification time of file data write default

st_ctime last-change time of i-node status chmod, chown -c

Note the difference between the modification time (st_mtime) and the changed-status time (st_ctime). The
modification time is when the contents of the file were last modified. The changed-status time is when the i-
node of the file was last modified. In this chapter, we've described many operations that affect the i-node
without changing the actual contents of the file: changing the file access permissions, changing the user ID,
changing the number of links, and so on. Because all the information in the i-node is stored separately from the
actual contents of the file, we need the changed-status time, in addition to the modification time.

Note that the system does not maintain the last-access time for an i-node. This is why the functions access and
stat , for example, don't change any of the three times.

The access time is often used by system administrators to delete files that have not been accessed for a certain
amount of time. The classic example is the removal of files named a.out or core that haven't been accessed in
the past week. The find (1) command is often used for this type of operation.

The modification time and the changed-status time can be used to archive only those files that have had their
contents modified or their i-node modified.

The ls command displays or sorts only on one of the three time values. By default, when invoked with either
the -l or the -t option, it uses the modification time of a file. The -u option causes it to use the access time, and
the -c option causes it to use the changed-status time.

Figure 4.20 summarizes the effects of the various functions that we've described on these three times. Recall
from Section 4.14 that a directory is simply a file containing directory entries: filenames and associated i-node
numbers. Adding, deleting, or modifying these directory entries can affect the three times associated with that
directory. This is why Figure 4.20 contains one column for the three times associated with the file or directory
and another column for the three times associated with the parent directory of the referenced file or directory.
For example, creating a new file affects the directory that contains the new file, and it affects the i-node for the
new file. Reading or writing a file, however, affects only the i-node of the file and has no effect on the directory.
(The mkdir and rmdir functions are covered in Section 4.20. The utime function is covered in the next section.
The six exec functions are described in Section 8.10. We describe the mkfifo and pipe functions in Chapter
15.)

Figure 4.20. Effect of various functions on the access, modification, and changed-status times

Referenced file or
directory

Parent directory of
referenced file or directory Function

a m c a m c

Section Note

chmod, fchmod • 4.9

chown , fchown • 4.11

creat • • • • • 3.4 O_CREAT new file

creat • • 3.4 O_TRUNC existing file

exec • 8.10

lchown • 4.11

link • • • 4.15 parent of second
argument

mkdir • • • • • 4.20

mkfifo • • • • • 15.5

open • • • • • 3.3 O_CREAT new file

open • • 3.3 O_TRUNC existing file

pipe • • • 15.2

read • 3.7

remove • • • 4.15 remove file = unlink

remove • • 4.15 remove directory =
rmdir

rename • • • 4.15 for both arguments

rmdir • • 4.20

truncate ,
ftruncate

 • • 4.13

unlink • • • 4.15

utime • • • 4.19

write • • 3.8

4.19. utime Function

The access time and the modification time of a file can be changed with the utime function.

#include <utime.h>

int utime(const char *pathname, const struct utimbu f *times);

Returns: 0 if OK, –1 on error

The structure used by this function is

 struct utimbuf {
 time_t actime; /* access time */
 time_t modtime; /* modification time */
 }

The two time values in the structure are calendar times, which count seconds since the Epoch, as described in
Section 1.10.

The operation of this function, and the privileges required to execute it, depend on whether the times argument
is NULL.

• If times is a null pointer, the access time and the modification time are both set to the current time. To
do this, either the effective user ID of the process must equal the owner ID of the file, or the process
must have write permission for the file.

• If times is a non-null pointer, the access time and the modification time are set to the values in the
structure pointed to by times. For this case, the effective user ID of the process must equal the owner ID
of the file, or the process must be a superuser process. Merely having write permission for the file is not
adequate.

Note that we are unable to specify a value for the changed-status time, st_ctime —the time the i-node was last
changed—as this field is automatically updated when the utime function is called.

On some versions of the UNIX System, the touch (1) command uses this function. Also, the standard archive
programs, tar (1) and cpio (1), optionally call utime to set the times for a file to the time values saved when the
file was archived.

Example

The program shown in Figure 4.21 truncates files to zero length using the O_TRUNC option of the open function,
but does not change their access time or modification time. To do this, the program first obtains the times with
the stat function, truncates the file, and then resets the times with the utime function.

We can demonstrate the program in Figure 4.21 with the following script:

 $ ls -l changemod times look at size s and last-modification times
 -rwxrwxr-x 1 sar 15019 Nov 18 18:53 cha ngemod
 -rwxrwxr-x 1 sar 16172 Nov 19 20:05 tim es
 $ ls -lu changemod times look at last -access times

 -rwxrwxr-x 1 sar 15019 Nov 18 18:53 cha ngemod
 -rwxrwxr-x 1 sar 16172 Nov 19 20:05 tim es
 $ date print today' s date
 Thu Jan 22 06:55:17 EST 2004
 $./a.out changemod times run the prog ram in Figure 4.21
 $ ls -l changemod times and check th e results
 -rwxrwxr-x 1 sar 0 Nov 18 18:53 cha ngemod
 -rwxrwxr-x 1 sar 0 Nov 19 20:05 tim es
 $ ls -lu changemod times check the la st-access times also
 -rwxrwxr-x 1 sar 0 Nov 18 18:53 cha ngemod
 -rwxrwxr-x 1 sar 0 Nov 19 20:05 tim es
 $ ls -lc changemod times and the chan ged-status times
 -rwxrwxr-x 1 sar 0 Jan 22 06:55 cha ngemod
 -rwxrwxr-x 1 sar 0 Jan 22 06:55 tim es

As we expect, the last-modification times and the last-access times are not changed. The changed-status times,
however, are changed to the time that the program was run.

Figure 4.21. Example of utime function

#include "apue.h"
#include <fcntl.h>
#include <utime.h>

int
main(int argc, char *argv[])
{
 int i, fd;
 struct stat statbuf;
 struct utimbuf timebuf;

 for (i = 1; i < argc; i++) {
 if (stat(argv[i], &statbuf) < 0) { /* fetch current times */
 err_ret("%s: stat error", argv[i]);
 continue;
 }
 if ((fd = open(argv[i], O_RDWR | O_TRUNC)) < 0) { /* truncate */
 err_ret("%s: open error", argv[i]);
 continue;

 }
 close(fd);
 timebuf.actime = statbuf.st_atime;
 timebuf.modtime = statbuf.st_mtime;
 if (utime(argv[i], &timebuf) < 0) { /* reset times */
 err_ret("%s: utime error", argv[i]);
 continue;
 }
 }
 exit(0);
}

4.20. mkdir and rmdir Functions

Directories are created with the mkdir function and deleted with the rmdir function.

#include <sys/stat.h>

int mkdir(const char *pathname, mode_t mode);

Returns: 0 if OK, –1 on error

This function creates a new, empty directory. The entries for dot and dot-dot are automatically created. The
specified file access permissions, mode, are modified by the file mode creation mask of the process.

A common mistake is to specify the same mode as for a file: read and write permissions only. But for a
directory, we normally want at least one of the execute bits enabled, to allow access to filenames within the
directory. (See Exercise 4.16.)

The user ID and group ID of the new directory are established according to the rules we described in Section
4.6.

Solaris 9 and Linux 2.4.22 also have the new directory inherit the set-group-ID bit from the parent directory.
This is so that files created in the new directory will inherit the group ID of that directory. With Linux, the file
system implementation determines whether this is supported. For example, the ext2 and ext3 file systems
allow this behavior to be controlled by an option to the mount (1) command. With the Linux implementation of
the UFS file system, however, the behavior is not selectable; it inherits the set-group-ID bit to mimic the
historical BSD implementation, where the group ID of a directory is inherited from the parent directory.

BSD-based implementations don't propagate the set-group-ID bit; they simply inherit the group ID as a matter
of policy. Because FreeBSD 5.2.1 and Mac OS X 10.3 are based on 4.4BSD, they do not require this inheriting
of the set-group-ID bit. On these platforms, newly created files and directories always inherit the group ID of
the parent directory, regardless of the set-group-ID bit.

Earlier versions of the UNIX System did not have the mkdir function. It was introduced with 4.2BSD and
SVR3. In the earlier versions, a process had to call the mknod function to create a new directory. But use of the
mknod function was restricted to superuser processes. To circumvent this, the normal command that created a
directory, mkdir (1), had to be owned by root with the set-user-ID bit on. To create a directory from a process,
the mkdir (1) command had to be invoked with the system (3) function.

An empty directory is deleted with the rmdir function. Recall that an empty directory is one that contains
entries only for dot and dot-dot.

#include <unistd.h>

int rmdir(const char *pathname);

Returns: 0 if OK, –1 on error

If the link count of the directory becomes 0 with this call, and if no other process has the directory open, then
the space occupied by the directory is freed. If one or more processes have the directory open when the link
count reaches 0, the last link is removed and the dot and dot-dot entries are removed before this function returns.
Additionally, no new files can be created in the directory. The directory is not freed, however, until the last
process closes it. (Even though some other process has the directory open, it can't be doing much in the
directory, as the directory had to be empty for the rmdir function to succeed.)

4.21. Reading Directories

Directories can be read by anyone who has access permission to read the directory. But only the kernel can
write to a directory, to preserve file system sanity. Recall from Section 4.5 that the write permission bits and
execute permission bits for a directory determine if we can create new files in the directory and remove files
from the directory—they don't specify if we can write to the directory itself.

The actual format of a directory depends on the UNIX System implementation and the design of the file system.
Earlier systems, such as Version 7, had a simple structure: each directory entry was 16 bytes, with 14 bytes for
the filename and 2 bytes for the i-node number. When longer filenames were added to 4.2BSD, each entry
became variable length, which means that any program that reads a directory is now system dependent. To
simplify this, a set of directory routines were developed and are part of POSIX.1. Many implementations
prevent applications from using the read function to access the contents of directories, thereby further isolating
applications from the implementation-specific details of directory formats.

#include <dirent.h>

DIR *opendir(const char *pathname);

Returns: pointer if OK, NULL on error

struct dirent *readdir(DIR *dp);

Returns: pointer if OK, NULL at end of directory or error

void rewinddir(DIR *dp);

int closedir(DIR *dp);

Returns: 0 if OK, –1 on error

long telldir(DIR *dp);

Returns: current location in directory associated with dp

void seekdir(DIR *dp, long loc);

The telldir and seekdir functions are not part of the base POSIX.1 standard. They are XSI extensions in the
Single UNIX Specifications, so all conforming UNIX System implementations are expected to provide them.

Recall our use of several of these functions in the program shown in Figure 1.3, our bare-bones implementation
of the ls command.

The dirent structure defined in the file <dirent.h> is implementation dependent. Implementations define the
structure to contain at least the following two members:

 struct dirent {
 ino_t d_ino; /* i-node num ber */
 char d_name[NAME_MAX + 1]; /* null-termi nated filename */
 }

The d_ino entry is not defined by POSIX.1, since it's an implementation feature, but it is defined in the XSI
extension to POSIX.1. POSIX.1 defines only the d_name entry in this structure.

Note that NAME_MAX is not a defined constant with Solaris—its value depends on the file system in which the
directory resides, and its value is usually obtained from the fpathconf function. A common value for NAME_MAX
is 255. (Recall Figure 2.14.) Since the filename is null terminated, however, it doesn't matter how the array
d_name is defined in the header, because the array size doesn't indicate the length of the filename.

The DIR structure is an internal structure used by these six functions to maintain information about the directory
being read. The purpose of the DIR structure is similar to that of the FILE structure maintained by the standard
I/O library, which we describe in Chapter 5.

The pointer to a DIR structure that is returned by opendir is then used with the other five functions. The
opendir function initializes things so that the first readdir reads the first entry in the directory. The ordering
of entries within the directory is implementation dependent and is usually not alphabetical.

Example

We'll use these directory routines to write a program that traverses a file hierarchy. The goal is to
produce the count of the various types of files that we show in Figure 4.4. The program shown in
Figure 4.22 takes a single argument—the starting pathname—and recursively descends the hierarchy
from that point. Solaris provides a function, ftw (3), that performs the actual traversal of the
hierarchy, calling a user-defined function for each file. The problem with this function is that it calls
the stat function for each file, which causes the program to follow symbolic links. For example, if
we start at the root and have a symbolic link named /lib that points to /usr/lib , all the files in the
directory /usr/lib are counted twice. To correct this, Solaris provides an additional function,
nftw (3), with an option that stops it from following symbolic links. Although we could use nftw ,
we'll write our own simple file walker to show the use of the directory routines.

In the Single UNIX Specification, both ftw and nftw are included in the XSI extensions to the base
POSIX.1 specification. Implementations are included in Solaris 9 and Linux 2.4.22. BSD-based
systems have a different function, fts (3), that provides similar functionality. It is available in
FreeBSD 5.2.1, Mac OS X 10.3, and Linux 2.4.22.

We have provided more generality in this program than needed. This was done to illustrate the ftw
function. For example, the function myfunc always returns 0, even though the function that calls it is
prepared to handle a nonzero return.

Figure 4.22. Recursively descend a directory hierarchy, counting file types

#include "apue.h"
#include <dirent.h>
#include <limits.h>

/* function type that is called for each filename * /
typedef int Myfunc(const char *, const struct stat *, int);

static Myfunc myfunc;
static int myftw(char *, Myfunc *);
static int dopath(Myfunc *);

static long nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot;

int
main(int argc, char *argv[])
{
 int ret;

 if (argc != 2)
 err_quit("usage: ftw <starting-pathname>");

 ret = myftw(argv[1], myfunc); /* does it all */

 ntot = nreg + ndir + nblk + nchr + nfifo + nsli nk + nsock;
 if (ntot == 0)
 ntot = 1; /* avoid divide by 0; print 0 for all counts */
 printf("regular files = %7ld, %5.2f %%\n", nre g,
 nreg*100.0/ntot);
 printf("directories = %7ld, %5.2f %%\n", ndi r,
 ndir*100.0/ntot);
 printf("block special = %7ld, %5.2f %%\n", nbl k,
 nblk*100.0/ntot);
 printf("char special = %7ld, %5.2f %%\n", nch r,
 nchr*100.0/ntot);
 printf("FIFOs = %7ld, %5.2f %%\n", nfi fo,
 nfifo*100.0/ntot);
 printf("symbolic links = %7ld, %5.2f %%\n", nsl ink,
 nslink*100.0/ntot);
 printf("sockets = %7ld, %5.2f %%\n", nso ck,
 nsock*100.0/ntot);

 exit(ret);
}

/*
 * Descend through the hierarchy, starting at "path name".
 * The caller's func() is called for every file.
 */
#define FTW_F 1 /* file other than director y */
#define FTW_D 2 /* directory */
#define FTW_DNR 3 /* directory that can't be read */
#define FTW_NS 4 /* file that we can't stat */

static char *fullpath; /* contains full pathna me for every file */

static int /* we return whatever f unc() returns */
myftw(char *pathname, Myfunc *func)
{

 int len;
 fullpath = path_alloc(&len); /* malloc's for PATH_MAX+1 bytes */
 /* (Figure 2.15) */
 strncpy(fullpath, pathname, len); /* prot ect against */
 fullpath[len-1] = 0; /* buff er overrun */

 return(dopath(func));
}
/*
 * Descend through the hierarchy, starting at "full path".
 * If "fullpath" is anything other than a directory , we lstat() it,
 * call func(), and return. For a directory, we cal l ourself
 * recursively for each name in the directory.
 */

static int /* we return whatever f unc() returns */
dopath(Myfunc* func)
{
 struct stat statbuf;
 struct dirent *dirp;
 DIR *dp;
 int ret;
 char *ptr;

 if (lstat(fullpath, &statbuf) < 0) /* stat erro r */
 return(func(fullpath, &statbuf, FTW_NS));
 if (S_ISDIR(statbuf.st_mode) == 0) /* not a dir ectory */
 return(func(fullpath, &statbuf, FTW_F));

 /*
 * It's a directory. First call func() for the directory,
 * then process each filename in the directory .
 */
 if ((ret = func(fullpath, &statbuf, FTW_D)) != 0)
 return(ret);

 ptr = fullpath + strlen(fullpath); /* poin t to end of fullpath */
 *ptr++ = '/';
 *ptr = 0;

 if ((dp = opendir(fullpath)) == NULL) /* c an't read directory */
 return(func(fullpath, &statbuf, FTW_DNR));

 while ((dirp = readdir(dp)) != NULL) {
 if (strcmp(dirp->d_name, ".") == 0 ||
 strcmp(dirp->d_name, "..") == 0)
 continue; /* ignore dot and dot-dot */

 strcpy(ptr, dirp->d_name); /* append nam e after slash */

 if ((ret = dopath(func)) != 0) /* recursive */
 break; /* time to leave */
 }
 ptr[-1] = 0; /* erase everything from slash onwards */

 if (closedir(dp) < 0)
 err_ret("can't close directory %s", fullpa th);

 return(ret);
}

static int
myfunc(const char *pathname, const struct stat *sta tptr, int type)
{
 switch (type) {
 case FTW_F:
 switch (statptr->st_mode & S_IFMT) {
 case S_IFREG: nreg++; break;
 case S_IFBLK: nblk++; break;
 case S_IFCHR: nchr++; break;
 case S_IFIFO: nfifo++; break;
 case S_IFLNK: nslink++; break;
 case S_IFSOCK: nsock++; break;
 case S_IFDIR:
 err_dump("for S_IFDIR for %s", pathname);
 /* directories should have type = FTW_D */
 }

 break;

 case FTW_D:
 ndir++;
 break;

 case FTW_DNR:
 err_ret("can't read directory %s", pathname);
 break;

 case FTW_NS:
 err_ret("stat error for %s", pathname);
 break;

 default:
 err_dump("unknown type %d for pathname %s", type, pathname);
 }

 return(0);
}

For additional information on descending through a file system and the use of this technique in many standard
UNIX System commands—find , ls , tar , and so on—refer to Fowler, Korn, and Vo [1989].

4.22. chdir, fchdir, and getcwd Functions

Every process has a current working directory. This directory is where the search for all relative pathnames
starts (all pathnames that do not begin with a slash). When a user logs in to a UNIX system, the current working
directory normally starts at the directory specified by the sixth field in the /etc/passwd file—the user's home
directory. The current working directory is an attribute of a process; the home directory is an attribute of a login
name.

We can change the current working directory of the calling process by calling the chdir or fchdir functions.

#include <unistd.h>

int chdir(const char *pathname);

int fchdir(int filedes);

Both return: 0 if OK, –1 on error

We can specify the new current working directory either as a pathname or through an open file descriptor.

The fchdir function is not part of the base POSIX.1 specification. It is an XSI extension in the Single UNIX
Specification. All four platforms discussed in this book support fchdir .

Example

Because it is an attribute of a process, the current working directory cannot affect processes that invoke the
process that executes the chdir . (We describe the relationship between processes in more detail in Chapter 8.)
This means that the program in Figure 4.23 doesn't do what we might expect.

If we compile it and call the executable mycd, we get the following:

 $ pwd
 /usr/lib
 $ mycd
 chdir to /tmp succeeded
 $ pwd
 /usr/lib

The current working directory for the shell that executed the mycd program didn't change. This is a side effect of
the way that the shell executes programs. Each program is run in a separate process, so the current working
directory of the shell is unaffected by the call to chdir in the program. For this reason, the chdir function has
to be called directly from the shell, so the cd command is built into the shells.

Figure 4.23. Example of chdir function

#include "apue.h"

int
main(void)
{

 if (chdir("/tmp") < 0)
 err_sys("chdir failed");
 printf("chdir to /tmp succeeded\n");
 exit(0);
}

Because the kernel must maintain knowledge of the current working directory, we should be able to fetch its
current value. Unfortunately, the kernel doesn't maintain the full pathname of the directory. Instead, the kernel
keeps information about the directory, such as a pointer to the directory's v-node.

What we need is a function that starts at the current working directory (dot) and works its way up the directory
hierarchy, using dot-dot to move up one level. At each directory, the function reads the directory entries until it
finds the name that corresponds to the i-node of the directory that it just came from. Repeating this procedure
until the root is encountered yields the entire absolute pathname of the current working directory. Fortunately, a
function is already provided for us that does this task.

#include <unistd.h>

char *getcwd(char *buf, size_t size);

Returns: buf if OK, NULL on error

We must pass to this function the address of a buffer, buf, and its size (in bytes). The buffer must be large
enough to accommodate the absolute pathname plus a terminating null byte, or an error is returned. (Recall the
discussion of allocating space for a maximum-sized pathname in Section 2.5.5.)

Some older implementations of getcwd allow the first argument buf to be NULL. In this case, the function calls
malloc to allocate size number of bytes dynamically. This is not part of POSIX.1 or the Single UNIX
Specification and should be avoided.

Example

The program in Figure 4.24 changes to a specific directory and then calls getcwd to print the working directory.
If we run the program, we get

 $./a.out
 cwd = /var/spool/uucppublic
 $ ls -l /usr/spool
 lrwxrwxrwx 1 root 12 Jan 31 07:57 /usr/spool -> ../var/spool

Note that chdir follows the symbolic link—as we expect it to, from Figure 4.17—but when it goes up the
directory tree, getcwd has no idea when it hits the /var/spool directory that it is pointed to by the symbolic
link /usr/spool . This is a characteristic of symbolic links.

Figure 4.24. Example of getcwd function

 #include "apue.h"

 int

 main(void)
 {

 char *ptr;
 int size;

 if (chdir("/usr/spool/uucppublic") < 0)
 err_sys("chdir failed");

 ptr = path_alloc(&size); /* our own function */
 if (getcwd(ptr, size) == NULL)
 err_sys("getcwd failed");

 printf("cwd = %s\n", ptr);
 exit(0);
 }

The getcwd function is useful when we have an application that needs to return to the location in the file system
where it started out. We can save the starting location by calling getcwd before we change our working
directory. After we complete our processing, we can pass the pathname obtained from getcwd to chdir to
return to our starting location in the file system.

The fchdir function provides us with an easy way to accomplish this task. Instead of calling getcwd , we can
open the current directory and save the file descriptor before we change to a different location in the file system.
When we want to return to where we started, we can simply pass the file descriptor to fchdir .

4.23. Device Special Files

The two fields st_dev and st_rdev are often confused. We'll need to use these fields in Section 18.9 when we
write the ttyname function. The rules are simple.

• Every file system is known by its major and minor device numbers, which are encoded in the primitive
system data type dev_t . The major number identifies the device driver and sometimes encodes which
peripheral board to communicate with; the minor number identifies the specific subdevice. Recall from
Figure 4.13 that a disk drive often contains several file systems. Each file system on the same disk drive
would usually have the same major number, but a different minor number.

• We can usually access the major and minor device numbers through two macros defined by most
implementations: major and minor . This means that we don't care how the two numbers are stored in a
dev_t object.

Early systems stored the device number in a 16-bit integer, with 8 bits for the major number and 8 bits
for the minor number. FreeBSD 5.2.1 and Mac OS X 10.3 use a 32-bit integer, with 8 bits for the major
number and 24 bits for the minor number. On 32-bit systems, Solaris 9 uses a 32-bit integer for dev_t ,
with 14 bits designated as the major number and 18 bits designated as the minor number. On 64-bit
systems, Solaris 9 represents dev_t as a 64-bit integer, with 32 bits for each number. On Linux 2.4.22,
although dev_t is a 64-bit integer, currently the major and minor numbers are each only 8 bits.

POSIX.1 states that the dev_t type exists, but doesn't define what it contains or how to get at its
contents. The macros major and minor are defined by most implementations. Which header they are
defined in depends on the system. They can be found in <sys/types.h> on BSD-based systems. Solaris
defines them in <sys/mkdev.h> . Linux defines these macros in <sys/sysmacros.h> , which is included
by <sys/types.h> .

• The st_dev value for every filename on a system is the device number of the file system containing that
filename and its corresponding i-node.

• Only character special files and block special files have an st_rdev value. This value contains the
device number for the actual device.

Example

The program in Figure 4.25 prints the device number for each command-line argument. Additionally, if the
argument refers to a character special file or a block special file, the st_rdev value for the special file is also
printed.

Running this program gives us the following output:

 $./a.out / /home/sar /dev/tty[01]
 /: dev = 3/3
 /home/sar: dev = 3/4
 /dev/tty0: dev = 0/7 (character) rdev = 4/0
 /dev/tty1: dev = 0/7 (character) rdev = 4/1
 $ mount which directorie s are mounted on which devices?
 /dev/hda3 on / type ext2 (rw,noatime)
 /dev/hda4 on /home type ext2 (rw,noatime)
 $ ls -lL /dev/tty[01] /dev/hda[34]
 brw------- 1 root 3, 3 Dec 31 1969 /dev/hda3
 brw------- 1 root 3, 4 Dec 31 1969 /dev/hda4
 crw------- 1 root 4, 0 Dec 31 1969 /dev/tty0
 crw------- 1 root 4, 1 Jan 18 15:36 /dev/tty1

The first two arguments to the program are directories (/ and /home/sar), and the next two are the device
names /dev/tty[01] . (We use the shell's regular expression language to shorten the amount of typing we need
to do. The shell will expand the string /dev/tty[01] to /dev/tty0 /dev/tty1 .)

We expect the devices to be character special files. The output from the program shows that the root directory
has a different device number than does the /home/sar directory. This indicates that they are on different file
systems. Running the mount (1) command verifies this.

We then use ls to look at the two disk devices reported by mount and the two terminal devices. The two disk
devices are block special files, and the two terminal devices are character special files. (Normally, the only
types of devices that are block special files are those that can contain random-access file systems: disk drives,
floppy disk drives, and CD-ROMs, for example. Some older versions of the UNIX System supported magnetic
tapes for file systems, but this was never widely used.)

Note that the filenames and i-nodes for the two terminal devices (st_dev) are on device 0/7—the devfs pseudo
file system, which implements the /dev —but that their actual device numbers are 4/0 and 4/1.

Figure 4.25. Print st_dev and st_rdev values

#include "apue.h"
#ifdef SOLARIS
#include <sys/mkdev.h>
#endif

int
main(int argc, char *argv[])
{

 int i;
 struct stat buf;

 for (i = 1; i < argc; i++) {
 printf("%s: ", argv[i]);
 if (stat(argv[i], &buf) < 0) {
 err_ret("stat error");
 continue;
 }

 printf("dev = %d/%d", major(buf.st_dev), m inor(buf.st_dev));
 if (S_ISCHR(buf.st_mode) || S_ISBLK(buf.st _mode)) {
 printf(" (%s) rdev = %d/%d",
 (S_ISCHR(buf.st_mode)) ? "char acter" : "block",
 major(buf.st_rdev), minor(buf. st_rdev));

 }
 printf("\n");
 }

 exit(0);

}

4.24. Summary of File Access Permission Bits

We've covered all the file access permission bits, some of which serve multiple purposes. Figure 4.26
summarizes all these permission bits and their interpretation when applied to a regular file and a directory.

Figure 4.26. Summary of file access permission bits

Constant Description Effect on regular file Effect on directory

S_ISUID set-user-ID set effective user ID on execution (not used)

S_ISGID set-group-ID if group-execute set then set effective group ID on
execution; otherwise enable mandatory record
locking (if supported)

set group ID of new files
created in directory to group ID
of directory

S_ISVTX sticky bit control caching of file contents (if supported) restrict removal and renaming
of files in directory

S_IRUSR user-read user permission to read file user permission to read
directory entries

S_IWUSR user-write user permission to write file user permission to remove and
create files in directory

S_IXUSR user-execute user permission to execute file user permission to search for
given pathname in directory

S_IRGRP group-read group permission to read file group permission to read
directory entries

S_IWGRP group-write group permission to write file group permission to remove and
create files in directory

S_IXGRP group-
execute

group permission to execute file group permission to search for
given pathname in directory

S_IROTH other-read other permission to read file other permission to read
directory entries

S_IWOTH other-write other permission to write file other permission to remove and
create files in directory

S_IXOTH other-
execute

other permission to execute file other permission to search for
given pathname in directory

The final nine constants can also be grouped into threes, since

 S_IRWXU = S_IRUSR | S_IWUSR | S_IXUSR
 S_IRWXG = S_IRGRP | S_IWGRP | S_IXGRP
 S_IRWXO = S_IROTH | S_IWOTH | S_IXOTH

Chapter 5. Standard I/O Library

Section 5.1. Introduction

Section 5.2. Streams and FILE Objects

Section 5.3. Standard Input, Standard Output, and Standard Error

Section 5.4. Buffering

Section 5.5. Opening a Stream

Section 5.6. Reading and Writing a Stream

Section 5.7. Line-at-a-Time I/O

Section 5.8. Standard I/O Efficiency

Section 5.9. Binary I/O

Section 5.10. Positioning a Stream

Section 5.11. Formatted I/O

Section 5.12. Implementation Details

Section 5.13. Temporary Files

Section 5.14. Alternatives to Standard I/O

Section 5.15. Summary

5.2. Streams and FILE Objects

In Chapter 3, all the I/O routines centered around file descriptors. When a file is opened, a file descriptor is
returned, and that descriptor is then used for all subsequent I/O operations. With the standard I/O library, the
discussion centers around streams. (Do not confuse the standard I/O term stream with the STREAMS I/O
system that is part of System V and standardized in the XSI STREAMS option in the Single UNIX
Specification.) When we open or create a file with the standard I/O library, we say that we have associated a
stream with the file.

With the ASCII character set, a single character is represented by a single byte. With international character sets,
a character can be represented by more than one byte. Standard I/O file streams can be used with single-byte
and multibyte ("wide") character sets. A stream's orientation determines whether the characters that are read and
written are single-byte or multibyte. Initially, when a stream is created, it has no orientation. If a multibyte I/O
function (see <wchar.h>) is used on a stream without orientation, the stream's orientation is set to wide-oriented.
If a byte I/O function is used on a stream without orientation, the stream's orientation is set to byte-oriented.
Only two functions can change the orientation once set. The freopen function (discussed shortly) will clear a
stream's orientation; the fwide function can be used to set a stream's orientation.

#include <stdio.h>
#include <wchar.h>

int fwide(FILE *fp, int mode);

Returns: positive if stream is wide-oriented,
negative if stream is byte-oriented,

or 0 if stream has no orientation

The fwide function performs different tasks, depending on the value of the mode argument.

• If the mode argument is negative, fwide will try to make the specified stream byte-oriented.
• If the mode argument is positive, fwide will try to make the specified stream wide-oriented.
• If the mode argument is zero, fwide will not try to set the orientation, but will still return a value

identifying the stream's orientation.

Note that fwide will not change the orientation of a stream that is already oriented. Also note that there is no
error return. Consider what would happen if the stream is invalid. The only recourse we have is to clear errno
before calling fwide and check the value of errno when we return. Throughout the rest of this book, we will
deal only with byte-oriented streams.

When we open a stream, the standard I/O function fopen returns a pointer to a FILE object. This object is
normally a structure that contains all the information required by the standard I/O library to manage the stream:
the file descriptor used for actual I/O, a pointer to a buffer for the stream, the size of the buffer, a count of the
number of characters currently in the buffer, an error flag, and the like.

Application software should never need to examine a FILE object. To reference the stream, we pass its FILE
pointer as an argument to each standard I/O function. Throughout this text, we'll refer to a pointer to a FILE
object, the type FILE * as a file pointer.

Throughout this chapter, we describe the standard I/O library in the context of a UNIX system. As we
mentioned, this library has already been ported to a wide variety of other operating systems. But to provide
some insight about how this library can be implemented, we will talk about its typical implementation on a
UNIX system.

5.3. Standard Input, Standard Output, and Standard Error

Three streams are predefined and automatically available to a process: standard input, standard output, and
standard error. These streams refer to the same files as the file descriptors STDIN_FILENO, STDOUT_FILENO, and
STDERR_FILENO, which we mentioned in Section 3.2.

These three standard I/O streams are referenced through the predefined file pointers stdin , stdout , and stderr .
The file pointers are defined in the <stdio.h> header.

5.4. Buffering

The goal of the buffering provided by the standard I/O library is to use the minimum number of read and write
calls. (Recall Figure 3.5, where we showed the amount of CPU time required to perform I/O using various
buffer sizes.) Also, it tries to do its buffering automatically for each I/O stream, obviating the need for the
application to worry about it. Unfortunately, the single aspect of the standard I/O library that generates the most
confusion is its buffering.

Three types of buffering are provided:

1. Fully buffered. In this case, actual I/O takes place when the standard I/O buffer is filled. Files residing
on disk are normally fully buffered by the standard I/O library. The buffer used is usually obtained by
one of the standard I/O functions calling malloc (Section 7.8) the first time I/O is performed on a stream.

The term flush describes the writing of a standard I/O buffer. A buffer can be flushed automatically by
the standard I/O routines, such as when a buffer fills, or we can call the function fflush to flush a
stream. Unfortunately, in the UNIX environment, flush means two different things. In terms of the
standard I/O library, it means writing out the contents of a buffer, which may be partially filled. In terms
of the terminal driver, such as the tcflush function in Chapter 18, it means to discard the data that's
already stored in a buffer.

2. Line buffered. In this case, the standard I/O library performs I/O when a newline character is
encountered on input or output. This allows us to output a single character at a time (with the standard
I/O fputc function), knowing that actual I/O will take place only when we finish writing each line. Line
buffering is typically used on a stream when it refers to a terminal: standard input and standard output,
for example.

Line buffering comes with two caveats. First, the size of the buffer that the standard I/O library is using
to collect each line is fixed, so I/O might take place if we fill this buffer before writing a newline.
Second, whenever input is requested through the standard I/O library from either (a) an unbuffered
stream or (b) a line-buffered stream (that requires data to be requested from the kernel), all line-buffered
output streams are flushed. The reason for the qualifier on (b) is that the requested data may already be
in the buffer, which doesn't require data to be read from the kernel. Obviously, any input from an
unbuffered stream, item (a), requires data to be obtained from the kernel.

3. Unbuffered. The standard I/O library does not buffer the characters. If we write 15 characters with the
standard I/O fputs function, for example, we expect these 15 characters to be output as soon as possible,
probably with the write function from Section 3.8.

The standard error stream, for example, is normally unbuffered. This is so that any error messages are
displayed as quickly as possible, regardless of whether they contain a newline.

ISO C requires the following buffering characteristics.

• Standard input and standard output are fully buffered, if and only if they do not refer to an interactive
device.

• Standard error is never fully buffered.

This, however, doesn't tell us whether standard input and standard output can be unbuffered or line buffered if
they refer to an interactive device and whether standard error should be unbuffered or line buffered. Most
implementations default to the following types of buffering.

• Standard error is always unbuffered.
• All other streams are line buffered if they refer to a terminal device; otherwise, they are fully buffered.

The four platforms discussed in this book follow these conventions for standard I/O buffering: standard
error is unbuffered, streams open to terminal devices are line buffered, and all other streams are fully
buffered.

We explore standard I/O buffering in more detail in Section 5.12 and Figure 5.11.

If we don't like these defaults for any given stream, we can change the buffering by calling either of the
following two functions.

#include <stdio.h>

void setbuf(FILE *restrict fp, char *restrict buf);

int setvbuf(FILE *restrict fp, char *restrict buf,
 int mode,
 size_t size);

Returns: 0 if OK, nonzero on error

These functions must be called after the stream has been opened (obviously, since each requires a valid file
pointer as its first argument) but before any other operation is performed on the stream.

With setbuf , we can turn buffering on or off. To enable buffering, buf must point to a buffer of length BUFSIZ,
a constant defined in <stdio.h> . Normally, the stream is then fully buffered, but some systems may set line
buffering if the stream is associated with a terminal device. To disable buffering, we set buf to NULL.

With setvbuf , we specify exactly which type of buffering we want. This is done with the mode argument:

_IOFBF fully buffered

_IOLBF line buffered

_IONBF unbuffered

If we specify an unbuffered stream, the buf and size arguments are ignored. If we specify fully buffered or line
buffered, buf and size can optionally specify a buffer and its size. If the stream is buffered and buf is NULL, the
standard I/O library will automatically allocate its own buffer of the appropriate size for the stream. By
appropriate size, we mean the value specified by the constant BUFSIZ.

Some C library implementations use the value from the st_blksize member of the stat structure (see Section
4.2) to determine the optimal standard I/O buffer size. As we will see later in this chapter, the GNU C library
uses this method.

Figure 5.1 summarizes the actions of these two functions and their various options.

Figure 5.1. Summary of the setbuf and setvbuf functions

Function mode buf Buffer and length Type of buffering

non-null user buf of length BUFSIZ fully buffered or line buffered
setbuf

NULL (no buffer) unbuffered

non-null user buf of length size
_IOLBF

NULL system buffer of appropriate length
fully buffered

non-null user buf of length size
_IOFBF

NULL system buffer of appropriate length
line buffered

setvbuf

_IONBF (ignored) (no buffer) unbuffered

Be aware that if we allocate a standard I/O buffer as an automatic variable within a function, we have to close
the stream before returning from the function. (We'll discuss this more in Section 7.8.) Also, some
implementations use part of the buffer for internal bookkeeping, so the actual number of bytes of data that can
be stored in the buffer is less than size. In general, we should let the system choose the buffer size and
automatically allocate the buffer. When we do this, the standard I/O library automatically releases the buffer
when we close the stream.

At any time, we can force a stream to be flushed.

#include <stdio.h>

int fflush(FILE *fp);

Returns: 0 if OK, EOF on error

This function causes any unwritten data for the stream to be passed to the kernel. As a special case, if fp is NULL,
this function causes all output streams to be flushed.

5.5. Opening a Stream

The following three functions open a standard I/O stream.

#include <stdio.h>

FILE *fopen(const char *restrict pathname, const ch ar *restrict type);

FILE *freopen(const char *restrict pathname, const char *restrict type,
 FILE *restrict fp);

FILE *fdopen(int filedes, const char *type);

All three return: file pointer if OK, NULL on error

The differences in these three functions are as follows.

1. The fopen function opens a specified file.
2. The freopen function opens a specified file on a specified stream, closing the stream first if it is already

open. If the stream previously had an orientation, freopen clears it. This function is typically used to
open a specified file as one of the predefined streams: standard input, standard output, or standard error.

3. The fdopen function takes an existing file descriptor, which we could obtain from the open , dup , dup2 ,
fcntl , pipe , socket , socketpair , or accept functions, and associates a standard I/O stream with the
descriptor. This function is often used with descriptors that are returned by the functions that create
pipes and network communication channels. Because these special types of files cannot be opened with
the standard I/O fopen function, we have to call the device-specific function to obtain a file descriptor,
and then associate this descriptor with a standard I/O stream using fdopen .

Both fopen and freopen are part of ISO C; fdopen is part of POSIX.1, since ISO C doesn't deal with
file descriptors.

ISO C specifies 15 values for the type argument, shown in Figure 5.2.

Figure 5.2. The type argument for opening a standard I/O stream

type Description

r or rb open for reading

w or wb truncate to 0 length or create for writing

a or ab append; open for writing at end of file, or create for writing

r+ or r+b or rb+ open for reading and writing

w+ or w+b or wb+ truncate to 0 length or create for reading and writing

a+ or a+b or ab+ open or create for reading and writing at end of file

Using the character b as part of the type allows the standard I/O system to differentiate between a text file and a
binary file. Since the UNIX kernel doesn't differentiate between these types of files, specifying the character b
as part of the type has no effect.

With fdopen , the meanings of the type argument differ slightly. The descriptor has already been opened, so
opening for write does not truncate the file. (If the descriptor was created by the open function, for example,
and the file already existed, the O_TRUNC flag would control whether or not the file was truncated. The fdopen
function cannot simply truncate any file it opens for writing.) Also, the standard I/O append mode cannot create
the file (since the file has to exist if a descriptor refers to it).

When a file is opened with a type of append, each write will take place at the then current end of file. If multiple
processes open the same file with the standard I/O append mode, the data from each process will be correctly
written to the file.

Versions of fopen from Berkeley before 4.4BSD and the simple version shown on page 177 of Kernighan and
Ritchie [1988] do not handle the append mode correctly. These versions do an lseek to the end of file when the
stream is opened. To correctly support the append mode when multiple processes are involved, the file must be
opened with the O_APPEND flag, which we discussed in Section 3.3. Doing an lseek before each write won't
work either, as we discussed in Section 3.11.

When a file is opened for reading and writing (the plus sign in the type), the following restrictions apply.

• Output cannot be directly followed by input without an intervening fflush , fseek , fsetpos ,or rewind .
• Input cannot be directly followed by output without an intervening fseek , fsetpos ,or rewind , or an

input operation that encounters an end of file.

We can summarize the six ways to open a stream from Figure 5.2 in Figure 5.3.

Figure 5.3. Six ways to open a standard I/O stream

Restriction r w a r+ w+ a+

file must already exist • •

previous contents of file discarded • •

stream can be read • • • •

stream can be written • • • • •

stream can be written only at end • •

Note that if a new file is created by specifying a type of either w or a, we are not able to specify the file's access
permission bits, as we were able to do with the open function and the creat function in Chapter 3.

By default, the stream that is opened is fully buffered, unless it refers to a terminal device, in which case it is
line buffered. Once the stream is opened, but before we do any other operation on the stream, we can change the
buffering if we want to, with the setbuf or setvbuf functions from the previous section.

An open stream is closed by calling fclose .

#include <stdio.h>

int fclose(FILE *fp);

Returns: 0 if OK, EOF on error

Any buffered output data is flushed before the file is closed. Any input data that may be buffered is discarded. If
the standard I/O library had automatically allocated a buffer for the stream, that buffer is released.

When a process terminates normally, either by calling the exit function directly or by returning from the main
function, all standard I/O streams with unwritten buffered data are flushed, and all open standard I/O streams
are closed.

5.6. Reading and Writing a Stream

Once we open a stream, we can choose from among three types of unformatted I/O:

1. Character-at-a-time I/O. We can read or write one character at a time, with the standard I/O functions
handling all the buffering, if the stream is buffered.

2. Line-at-a-time I/O. If we want to read or write a line at a time, we use fgets and fputs . Each line is
terminated with a newline character, and we have to specify the maximum line length that we can handle
when we call fgets . We describe these two functions in Section 5.7.

3. Direct I/O. This type of I/O is supported by the fread and fwrite functions. For each I/O operation, we
read or write some number of objects, where each object is of a specified size. These two functions are
often used for binary files where we read or write a structure with each operation. We describe these two
functions in Section 5.9.

The term direct I/O, from the ISO C standard, is known by many names: binary I/O, object-at-a-time I/O,
record-oriented I/O, or structure-oriented I/O.

(We describe the formatted I/O functions, such as printf and scanf , in Section 5.11.)

Input Functions

Three functions allow us to read one character at a time.

#include <stdio.h>

int getc(FILE *fp);

int fgetc(FILE *fp);

int getchar(void);

All three return: next character if OK, EOF on end of file or error

The function getchar is defined to be equivalent to getc(stdin) . The difference between the first two
functions is that getc can be implemented as a macro, whereas fgetc cannot be implemented as a macro. This
means three things.

1. The argument to getc should not be an expression with side effects.
2. Since fgetc is guaranteed to be a function, we can take its address. This allows us to pass the address of

fgetc as an argument to another function.
3. Calls to fgetc probably take longer than calls to getc , as it usually takes more time to call a function.

These three functions return the next character as an unsigned char converted to an int . The reason for
specifying unsigned is so that the high-order bit, if set, doesn't cause the return value to be negative. The reason
for requiring an integer return value is so that all possible character values can be returned, along with an
indication that either an error occurred or the end of file has been encountered. The constant EOF in <stdio.h>
is required to be a negative value. Its value is often –1. This representation also means that we cannot store the
return value from these three functions in a character variable and compare this value later against the constant
EOF.

Note that these functions return the same value whether an error occurs or the end of file is reached. To
distinguish between the two, we must call either ferror or feof .

#include <stdio.h>

int ferror(FILE *fp);

int feof(FILE *fp);

Both return: nonzero (true) if condition is true, 0 (false) otherwise

void clearerr(FILE * fp);

In most implementations, two flags are maintained for each stream in the FILE object:

• An error flag
• An end-of-file flag

Both flags are cleared by calling clearerr .

After reading from a stream, we can push back characters by calling ungetc .

#include <stdio.h>

int ungetc(int c, FILE *fp);

Returns: c if OK, EOF on error

The characters that are pushed back are returned by subsequent reads on the stream in reverse order of their
pushing. Be aware, however, that although ISO C allows an implementation to support any amount of pushback,
an implementation is required to provide only a single character of pushback. We should not count on more
than a single character.

The character that we push back does not have to be the same character that was read. We are not able to push
back EOF. But when we've reached the end of file, we can push back a character. The next read will return that
character, and the read after that will return EOF. This works because a successful call to ungetc clears the end-
of-file indication for the stream.

Pushback is often used when we're reading an input stream and breaking the input into words or tokens of some
form. Sometimes we need to peek at the next character to determine how to handle the current character. It's
then easy to push back the character that we peeked at, for the next call to getc to return. If the standard I/O
library didn't provide this pushback capability, we would have to store the character in a variable of our own,
along with a flag telling us to use this character instead of calling getc the next time we need a character.

When we push characters back with ungetc , they don't get written back to the underlying file or device. They
are kept incore in the standard I/O library's buffer for the stream.

Output Functions

We'll find an output function that corresponds to each of the input functions that we've already described.

#include <stdio.h>

int putc(int c, FILE *fp);

int fputc(int c, FILE *fp);

int putchar(int c);

All three return: c if OK, EOF on error

Like the input functions, putchar(c) is equivalent to putc(c, stdout) , and putc can be implemented as a
macro, whereas fputc cannot be implemented as a macro.

5.7. Line-at-a-Time I/O

Line-at-a-time input is provided by the following two functions.

#include <stdio.h>

char *fgets(char *restrict buf, int n, FILE *restri ct fp);

char *gets(char *buf);

Both return: buf if OK, NULL on end of file or error

Both specify the address of the buffer to read the line into. The gets function reads from standard input,
whereas fgets reads from the specified stream.

With fgets , we have to specify the size of the buffer, n. This function reads up through and including the next
newline, but no more than n–1 characters, into the buffer. The buffer is terminated with a null byte. If the line,
including the terminating newline, is longer than n–1, only a partial line is returned, but the buffer is always null
terminated. Another call to fgets will read what follows on the line.

The gets function should never be used. The problem is that it doesn't allow the caller to specify the buffer size.
This allows the buffer to overflow, if the line is longer than the buffer, writing over whatever happens to follow
the buffer in memory. For a description of how this flaw was used as part of the Internet worm of 1988, see the
June 1989 issue (vol. 32, no. 6) of Communications of the ACM . An additional difference with gets is that it
doesn't store the newline in the buffer, as does fgets .

This difference in newline handling between the two functions goes way back in the evolution of the UNIX
System. Even the Version 7 manual (1979) states "gets deletes a newline, fgets keeps it, all in the name of
backward compatibility."

Even though ISO C requires an implementation to provide gets , use fgets instead.

Line-at-a-time output is provided by fputs and puts .

#include <stdio.h>

int fputs(const char *restrict str, FILE *restrict fp);

int puts(const char *str);

Both return: non-negative value if OK, EOF on error

The function fputs writes the null-terminated string to the specified stream. The null byte at the end is not
written. Note that this need not be line-at-a-time output, since the string need not contain a newline as the last
non-null character. Usually, this is the case—the last non-null character is a newline—but it's not required.

The puts function writes the null-terminated string to the standard output, without writing the null byte. But
puts then writes a newline character to the standard output.

The puts function is not unsafe, like its counterpart gets . Nevertheless, we'll avoid using it, to prevent having
to remember whether it appends a newline. If we always use fgets and fputs , we know that we always have to
deal with the newline character at the end of each line.

5.8. Standard I/O Efficiency

Using the functions from the previous section, we can get an idea of the efficiency of the standard I/O system.
The program in Figure 5.4 is like the one in Figure 3.4: it simply copies standard input to standard output, using
getc and putc . These two routines can be implemented as macros.

Figure 5.4. Copy standard input to standard output using getc and putc

#include "apue.h"

int
main(void)
{
 int c;

 while ((c = getc(stdin)) != EOF)
 if (putc(c, stdout) == EOF)
 err_sys("output error");

 if (ferror(stdin))
 err_sys("input error");

 exit(0);
}

We can make another version of this program that uses fgetc and fputc , which should be functions, not
macros. (We don't show this trivial change to the source code.)

Finally, we have a version that reads and writes lines, shown in Figure 5.5.

Figure 5.5. Copy standard input to standard output using fgets and fputs

#include "apue.h"

int
main(void)
{
 char buf[MAXLINE];

 while (fgets(buf, MAXLINE, stdin) != NULL)
 if (fputs(buf, stdout) == EOF)
 err_sys("output error");

 if (ferror(stdin))
 err_sys("input error");

 exit(0);
}

Note that we do not close the standard I/O streams explicitly in Figure 5.4 or Figure 5.5. Instead, we know that
the exit function will flush any unwritten data and then close all open streams. (We'll discuss this in Section
8.5.) It is interesting to compare the timing of these three programs with the timing data from Figure 3.5. We
show this data when operating on the same file (98.5 MB with 3 million lines) in Figure 5.6.

Figure 5.6. Timing results using standard I/O routines

Function User CPU
(seconds)

System CPU
(seconds)

Clock time
(seconds)

Bytes of program
text

best time from Figure 3.5 0.01 0.18 6.67

fgets , fputs 2.59 0.19 7.15 139

getc , putc 10.84 0.27 12.07 120

fgetc , fputc 10.44 0.27 11.42 120

single byte time from
Figure 3.5

124.89 161.65 288.64

For each of the three standard I/O versions, the user CPU time is larger than the best read version from Figure
3.5, because the character-at-a-time standard I/O versions have a loop that is executed 100 million times, and
the loop in the line-at-a-time version is executed 3,144,984 times. In the read version, its loop is executed only
12,611 times (for a buffer size of 8,192). This difference in clock times is from the difference in user times and
the difference in the times spent waiting for I/O to complete, as the system times are comparable.

The system CPU time is about the same as before, because roughly the same number of kernel requests are
being made. Note that an advantage of using the standard I/O routines is that we don't have to worry about
buffering or choosing the optimal I/O size. We do have to determine the maximum line size for the version that
uses fgets , but that's easier than trying to choose the optimal I/O size.

The final column in Figure 5.6 is the number of bytes of text space—the machine instructions generated by the
C compiler—for each of the main functions. We can see that the version using getc and putc takes the same
amount of space as the one using the fgetc and fputc functions. Usually, getc and putc are implemented as
macros, but in the GNU C library implementation, the macro simply expands to a function call.

The version using line-at-a-time I/O is almost twice as fast as the version using character-at-a-time I/O. If the
fgets and fputs functions are implemented using getc and putc (see Section 7.7 of Kernighan and Ritchie
[1988], for example), then we would expect the timing to be similar to the getc version. Actually, we might
expect the line-at-a-time version to take longer, since we would be adding the overhead of 200 million extra
function calls to the existing 6 million ones. What is happening with this example is that the line-at-a-time
functions are implemented using memccpy(3). Often, the memccpy function is implemented in assembler instead
of C, for efficiency.

The last point of interest with these timing numbers is that the fgetc version is so much faster than the
BUFFSIZE=1 version from Figure 3.5. Both involve the same number of function calls—about 200 million—yet
the fgetc version is almost 12 times faster in user CPU time and slightly more than 25 times faster in clock
time. The difference is that the version using read executes 200 million function calls, which in turn execute
200 million system calls. With the fgetc version, we still execute 200 million function calls, but this ends up
being only 25,222 system calls. System calls are usually much more expensive than ordinary function calls.

As a disclaimer, you should be aware that these timing results are valid only on the single system they were run
on. The results depend on many implementation features that aren't the same on every UNIX system.
Nevertheless, having a set of numbers such as these, and explaining why the various versions differ, helps us

understand the system better. From this section and Section 3.9, we've learned that the standard I/O library is
not much slower than calling the read and write functions directly. The approximate cost that we've seen is
about 0.11 seconds of CPU time to copy a megabyte of data using getc and putc . For most nontrivial
applications, the largest amount of the user CPU time is taken by the application, not by the standard I/O
routines.

5.9. Binary I/O

The functions from Section 5.6 operated with one character at a time, and the functions from Section 5.7
operated with one line at a time. If we're doing binary I/O, we often would like to read or write an entire
structure at a time. To do this using getc or putc , we have to loop through the entire structure, one byte at a
time, reading or writing each byte. We can't use the line-at-a-time functions, since fputs stops writing when it
hits a null byte, and there might be null bytes within the structure. Similarly, fgets won't work right on input if
any of the data bytes are nulls or newlines. Therefore, the following two functions are provided for binary I/O.

#include <stdio.h>

size_t fread(void *restrict ptr, size_t size,
 size_t nobj,
 FILE *restrict fp);

size_t fwrite(const void *restrict ptr, size_t size , size_t nobj,
 FILE *restrict fp);

Both return: number of objects read or written

These functions have two common uses:

1. Read or write a binary array. For example, to write elements 2 through 5 of a floating-point array, we
could write

2. float data[10];
3.
4. if (fwrite(&data[2], sizeof(float), 4, fp) != 4)
5. err_sys("fwrite error");

Here, we specify size as the size of each element of the array and nobj as the number of elements.

6. Read or write a structure. For example, we could write
7. struct {
8. short count;
9. long total;
10. char name[NAMESIZE];
11. } item;
12.
13. if (fwrite(&item, sizeof(item), 1, fp) != 1)
14. err_sys("fwrite error");

Here, we specify size as the size of structure and nobj as one (the number of objects to write).

The obvious generalization of these two cases is to read or write an array of structures. To do this, size would be
the sizeof the structure, and nobj would be the number of elements in the array.

Both fread and fwrite return the number of objects read or written. For the read case, this number can be less
than nobj if an error occurs or if the end of file is encountered. In this case ferror or feof must be called. For
the write case, if the return value is less than the requested nobj, an error has occurred.

A fundamental problem with binary I/O is that it can be used to read only data that has been written on the same
system. This was OK many years ago, when all the UNIX systems were PDP-11s, but the norm today is to have
heterogeneous systems connected together with networks. It is common to want to write data on one system and
process it on another. These two functions won't work, for two reasons.

1. The offset of a member within a structure can differ between compilers and systems, because of
different alignment requirements. Indeed, some compilers have an option allowing structures to be
packed tightly, to save space with a possible runtime performance penalty, or aligned accurately, to
optimize runtime access of each member. This means that even on a single system, the binary layout of a
structure can differ, depending on compiler options.

2. The binary formats used to store multibyte integers and floating-point values differ among machine
architectures.

We'll touch on some of these issues when we discuss sockets in Chapter 16. The real solution for exchanging
binary data among different systems is to use a higher-level protocol. Refer to Section 8.2 of Rago [1993] or
Section 5.18 of Stevens, Fenner, & Rudoff [2004] for a description of some techniques various network
protocols use to exchange binary data.

We'll return to the fread function in Section 8.14 when we'll use it to read a binary structure, the UNIX process
accounting records.

5.10. Positioning a Stream

There are three ways to position a standard I/O stream:

1. The two functions ftell and fseek . They have been around since Version 7, but they assume that a
file's position can be stored in a long integer.

2. The two functions ftello and fseeko . They were introduced in the Single UNIX Specification to allow
for file offsets that might not fit in a long integer. They replace the long integer with the off_t data type.

3. The two functions fgetpos and fsetpos . They were introduced by ISO C. They use an abstract data
type, fpos_t , that records a file's position. This data type can be made as big as necessary to record a
file's position.

Portable applications that need to move to non-UNIX systems should use fgetpos and fsetpos .

#include <stdio.h>

long ftell(FILE *fp);

Returns: current file position indicator if OK, –1L on error

int fseek(FILE *fp, long offset, int whence);

Returns: 0 if OK, nonzero on error

void rewind(FILE *fp);

For a binary file, a file's position indicator is measured in bytes from the beginning of the file. The value
returned by ftell for a binary file is this byte position. To position a binary file using fseek , we must specify a
byte offset and how that offset is interpreted. The values for whence are the same as for the lseek function
from Section 3.6: SEEK_SET means from the beginning of the file, SEEK_CUR means from the current file
position, and SEEK_END means from the end of file. ISO C doesn't require an implementation to support the
SEEK_END specification for a binary file, as some systems require a binary file to be padded at the end with
zeros to make the file size a multiple of some magic number. Under the UNIX System, however, SEEK_END is
supported for binary files.

For text files, the file's current position may not be measurable as a simple byte offset. Again, this is mainly
under non-UNIX systems that might store text files in a different format. To position a text file, whence has to
be SEEK_SET, and only two values for offset are allowed: 0—meaning rewind the file to its beginning—or a
value that was returned by ftell for that file. A stream can also be set to the beginning of the file with the
rewind function.

The ftello function is the same as ftell , and the fseeko function is the same as fseek , except that the type
of the offset is off_t instead of long .

#include <stdio.h>

off_t ftello(FILE *fp);

#include <stdio.h>

off_t ftello(FILE *fp);

Returns: current file position indicator if OK, (off_t) –1 on error

int fseeko(FILE *fp, off_t offset, int whence);

Returns: 0 if OK, nonzero on error

Recall the discussion of the off_t data type in Section 3.6. Implementations can define the off_t type to be
larger than 32 bits.

As we mentioned, the fgetpos and fsetpos functions were introduced by the ISO C standard.

#include <stdio.h>

int fgetpos(FILE *restrict fp, fpos_t *restrict pos);

int fsetpos(FILE *fp, const fpos_t *pos);

Both return: 0 if OK, nonzero on error

The fgetpos function stores the current value of the file's position indicator in the object pointed to by pos.
This value can be used in a later call to fsetpos to reposition the stream to that location.

5.11. Formatted I/O

Formatted Output

Formatted output is handled by the four printf functions.

#include <stdio.h>

int printf(const char *restrict format, ...);

int fprintf(FILE *restrict fp, const char *restrict format, ...);

Both return: number of characters output if OK, negative value if output error

int sprintf(char *restrict buf, const char *restric t format, ...);

int snprintf(char *restrict buf, size_t n,
 const char *restrict format, ...);

Both return: number of characters stored in array if OK, negative value if encoding error

The printf function writes to the standard output, fprintf writes to the specified stream, and sprintf places
the formatted characters in the array buf. The sprintf function automatically appends a null byte at the end of
the array, but this null byte is not included in the return value.

Note that it's possible for sprintf to overflow the buffer pointed to by buf. It's the caller's responsibility to
ensure that the buffer is large enough. Because this can lead to buffer-overflow problems, snprintf was
introduced. With it, the size of the buffer is an explicit parameter; any characters that would have been written
past the end of the buffer are discarded instead. The snprintf function returns the number of characters that
would have been written to the buffer had it been big enough. As with sprintf , the return value doesn't include
the terminating null byte. If snprintf returns a positive value less than the buffer size n, then the output was
not truncated. If an encoding error occurs, snprintf returns a negative value.

The format specification controls how the remainder of the arguments will be encoded and ultimately displayed.
Each argument is encoded according to a conversion specification that starts with a percent sign (%). Except for
the conversion specifications, other characters in the format are copied unmodified. A conversion specification
has four optional components, shown in square brackets below:

 %[flags][fldwidth][precision][lenmodifier]convt ype

The flags are summarized in Figure 5.7.

Figure 5.7. The flags component of a conversion specification

Flag Description

- left-justify the output in the field

Figure 5.7. The flags component of a conversion specification

Flag Description

+ always display sign of a signed conversion

(space) prefix by a space if no sign is generated

convert using alternate form (include 0x prefix for hex format, for example)

0 prefix with leading zeros instead of padding with spaces

The fldwidth component specifies a minimum field width for the conversion. If the conversion results in fewer
characters, it is padded with spaces. The field width is a non-negative decimal integer or an asterisk.

The precision component specifies the minimum number of digits to appear for integer conversions, the
minimum number of digits to appear to the right of the decimal point for floating-point conversions, or the
maximum number of bytes for string conversions. The precision is a period (.) followed by a optional non-
negative decimal integer or an asterisk.

Both the field width and precision can be an asterisk. In this case, an integer argument specifies the value to be
used. The argument appears directly before the argument to converted.

The lenmodifier component specifies the size of the argument. Possible values are summarized in Figure 5.8.

Figure 5.8. The length modifier component of a conversion specification

Length modifier Description

hh signed or unsigned char

h signed or unsigned short

l signed or unsigned long or wide character

ll signed or unsigned long long

j intmax_t or uintmax_t

z size_t

t ptrdiff_t

L long double

The convtype component is not optional. It controls how the argument is interpreted. The various conversion
types are summarized in Figure 5.9.

Figure 5.9. The conversion type component of a conversion specification

Conversion type Description

d,i signed decimal

o unsigned octal

u unsigned decimal

x,X unsigned hexadecimal

f,F double floating-point number

e,E double floating-point number in exponential format

g,G interpreted as f, F, e, or E, depending on value converted

a,A double floating-point number in hexadecimal exponential format

c character (with l length modifier, wide character)

s string (with l length modifier, wide character string)

p pointer to a void

n pointer to a signed integer into which is written the number of characters written so far

% a % character

C wide character (an XSI extension, equivalent to lc)

S wide character string (an XSI extension, equivalent to ls)

The following four variants of the printf family are similar to the previous four, but the variable argument list
(...) is replaced with arg.

#include <stdarg.h>
#include <stdio.h>

int vprintf(const char *restrict format, va_list ar g);

int vfprintf(FILE *restrict fp, const char *restric t format,
 va_list arg);

Both return: number of characters output if OK, negative value if output error

int vsprintf(char *restrict buf, const char *restri ct format,
 va_list arg);

int vsnprintf(char *restrict buf, size_t n,
 const char *restrict format, va_list arg);

Both return: number of characters stored in array if OK, negative value if encoding error

We use the vsnprintf function in the error routines in Appendix B.

Refer to Section 7.3 of Kernighan and Ritchie [1988] for additional details on handling variable-length
argument lists with ISO Standard C. Be aware that the variable-length argument list routines provided with ISO
C—the <stdarg.h> header and its associated routines—differ from the <varargs.h> routines that were
provided with older UNIX systems.

Formatted Input

Formatted input is handled by the three scanf functions.

#include <stdio.h>

int scanf(const char *restrict format, ...);

int fscanf(FILE *restrict fp, const char *restrict format, ...);

int sscanf(const char *restrict buf, const char *re strict format,
 ...);

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

The scanf family is used to parse an input string and convert character sequences into variables of specified
types. The arguments following the format contain the addresses of the variables to initialize with the results of
the conversions.

The format specification controls how the arguments are converted for assignment. The percent sign (%)
indicates the start of a conversion specification. Except for the conversion specifications and white space, other
characters in the format have to match the input. If a character doesn't match, processing stops, leaving the
remainder of the input unread.

There are three optional components to a conversion specification, shown in square brackets below:

 %[*][fldwidth][lenmodifier]convtype

The optional leading asterisk is used to suppress conversion. Input is converted as specified by the rest of the
conversion specification, but the result is not stored in an argument.

The fldwidth component specifies the maximum field width in characters. The lenmodifier component
specifies the size of the argument to be initialized with the result of the conversion. The same length modifiers
supported by the printf family of functions are supported by the scanf family of functions (see Figure 5.8 for
a list of the length modifiers).

The convtype field is similar to the conversion type field used by the printf family, but there are some
differences. One difference is that results that are stored in unsigned types can optionally be signed on input.
For example, –1 will scan as 4294967295 into an unsigned integer. Figure 5.10 summarizes the conversion
types supported by the scanf family of functions.

Figure 5.10. The conversion type component of a conversion specification

Conversion
type

Description

d signed decimal, base 10

i signed decimal, base determined by format of input

o unsigned octal (input optionally signed)

u unsigned decimal, base 10 (input optionally signed)

x unsigned hexadecimal (input optionally signed)

a,A,e,E,f,F,g,G floating-point number

c character (with l length modifier, wide character)

s string (with l length modifier, wide character string)

[matches a sequence of listed characters, ending with]

[^ matches all characters except the ones listed, ending with]

p pointer to a void

n pointer to a signed integer into which is written the number of characters read so far

% a % character

C wide character (an XSI extension, equivalent to lc)

S wide character string (an XSI extension, equivalent to ls)

As with the printf family, the scanf family also supports functions that use variable argument lists as
specified by <stdarg.h> .

#include <stdarg.h>
#include <stdio.h>

int vscanf(const char *restrict format, va_list arg);

int vfscanf(FILE *restrict fp, const char *restrict format,
 va_list arg);

int vsscanf(const char *restrict buf, const char *r estrict format,
 va_list arg);

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

Refer to your UNIX system manual for additional details on the scanf family of functions.

5.12. Implementation Details

As we've mentioned, under the UNIX System, the standard I/O library ends up calling the I/O routines that we
described in Chapter 3. Each standard I/O stream has an associated file descriptor, and we can obtain the
descriptor for a stream by calling fileno .

Note that fileno is not part of the ISO C standard, but an extension supported by POSIX.1.

#include <stdio.h>

int fileno(FILE *fp);

Returns: the file descriptor associated with the stream

We need this function if we want to call the dup or fcntl functions, for example.

To look at the implementation of the standard I/O library on your system, start with the header <stdio.h> . This
will show how the FILE object is defined, the definitions of the per-stream flags, and any standard I/O routines,
such as getc , that are defined as macros. Section 8.5 of Kernighan and Ritchie [1988] has a sample
implementation that shows the flavor of many implementations on UNIX systems. Chapter 12 of Plauger [1992]
provides the complete source code for an implementation of the standard I/O library. The implementation of the
GNU standard I/O library is also publicly available.

Example

The program in Figure 5.11 prints the buffering for the three standard streams and for a stream that is associated
with a regular file.

Note that we perform I/O on each stream before printing its buffering status, since the first I/O operation usually
causes the buffers to be allocated for a stream. The structure members _IO_file_flags , _IO_buf_base , and
_IO_buf_end and the constants _IO_UNBUFFERED and _IO_LINE_BUFFERED are defined by the GNU standard
I/O library used on Linux. Be aware that other UNIX systems may have different implementations of the
standard I/O library.

If we run the program in Figure 5.11 twice, once with the three standard streams connected to the terminal and
once with the three standard streams redirected to files, we get the following result:

 $./a.out stdin, stdout, and stderr connected to terminal
 enter any character
 we type a newli ne
 one line to standard error
 stream = stdin, line buffered, buffer size = 10 24
 stream = stdout, line buffered, buffer size = 1 024
 stream = stderr, unbuffered, buffer size = 1
 stream = /etc/motd, fully buffered, buffer size = 4096
 $./a.out < /etc/termcap > std.out 2> std.err
 run it again wi th all three streams redirected

 $ cat std.err
 one line to standard error
 $ cat std.out
 enter any character

 stream = stdin, fully buffered, buffer size = 4 096
 stream = stdout, fully buffered, buffer size = 4096
 stream = stderr, unbuffered, buffer size = 1
 stream = /etc/motd, fully buffered, buffer size = 4096

We can see that the default for this system is to have standard input and standard output line buffered when
they're connected to a terminal. The line buffer is 1,024 bytes. Note that this doesn't restrict us to 1,024-byte
input and output lines; that's just the size of the buffer. Writing a 2,048-byte line to standard output will require
two write system calls. When we redirect these two streams to regular files, they become fully buffered, with
buffer sizes equal to the preferred I/O size—the st_blksize value from the stat structure—for the file system.
We also see that the standard error is always unbuffered, as it should be, and that a regular file defaults to fully
buffered.

Figure 5.11. Print buffering for various standard I/O streams

#include "apue.h"

void pr_stdio(const char *, FILE *);

int
main(void)
{
 FILE *fp;

 fputs("enter any character\n", stdout);
 if (getchar() == EOF)
 err_sys("getchar error");
 fputs("one line to standard error\n", stderr);

 pr_stdio("stdin", stdin);
 pr_stdio("stdout", stdout);
 pr_stdio("stderr", stderr);

 if ((fp = fopen("/etc/motd", "r")) == NULL)
 err_sys("fopen error");
 if (getc(fp) == EOF)
 err_sys("getc error");
 pr_stdio("/etc/motd", fp);
 exit(0);
}

void
pr_stdio(const char *name, FILE *fp)
{
 printf("stream = %s, ", name);

 /*
 * The following is nonportable.
 */
 if (fp->_IO_file_flags & _IO_UNBUFFERED)
 printf("unbuffered");
 else if (fp->_IO_file_flags & _IO_LINE_BUF)
 printf("line buffered");
 else /* if neither of above */
 printf("fully buffered");
 printf(", buffer size = %d\n", fp->_IO_buf_end - fp->_IO_buf_base);
}

5.13. Temporary Files

The ISO C standard defines two functions that are provided by the standard I/O library to assist in creating
temporary files.

#include <stdio.h>

char *tmpnam(char *ptr);

Returns: pointer to unique pathname

FILE *tmpfile(void);

Returns: file pointer if OK, NULL on error

The tmpnam function generates a string that is a valid pathname and that is not the same name as an existing file.
This function generates a different pathname each time it is called, up to TMP_MAX times. TMP_MAX is defined in
<stdio.h> .

Although ISO C defines TMP_MAX, the C standard requires only that its value be at least 25. The Single UNIX
Specification, however, requires that XSI-conforming systems support a value of at least 10,000. Although this
minimum value allows an implementation to use four digits (0000–9999), most implementations on UNIX
systems use lowercase or uppercase characters.

If ptr is NULL, the generated pathname is stored in a static area, and a pointer to this area is returned as the value
of the function. Subsequent calls to tmpnam can overwrite this static area. (This means that if we call this
function more than once and we want to save the pathname, we have to save a copy of the pathname, not a copy
of the pointer.) If ptr is not NULL, it is assumed that it points to an array of at least L_tmpnam characters. (The
constant L_tmpnam is defined in <stdio.h> .) The generated pathname is stored in this array, and ptr is also
returned as the value of the function.

The tmpfile function creates a temporary binary file (type wb+) that is automatically removed when it is closed
or on program termination. Under the UNIX System, it makes no difference that this file is a binary file.

Example

The program in Figure 5.12 demonstrates these two functions.

If we execute the program in Figure 5.12, we get

 $./a.out
 /tmp/fileC1Icwc
 /tmp/filemSkHSe
 one line of output

Figure 5.12. Demonstrate tmpnam and tmpfile functions

#include "apue.h"

int
main(void)
{
 char name[L_tmpnam], line[MAXLINE];
 FILE *fp;

 printf("%s\n", tmpnam(NULL)); /* first te mp name */

 tmpnam(name); /* second t emp name */
 printf("%s\n", name);

 if ((fp = tmpfile()) == NULL) /* create t emp file */
 err_sys("tmpfile error");
 fputs("one line of output\n", fp); /* write to temp file */
 rewind(fp); /* then rea d it back */
 if (fgets(line, sizeof(line), fp) == NULL)
 err_sys("fgets error");
 fputs(line, stdout); /* print th e line we wrote */

 exit(0);
}

The standard technique often used by the tmpfile function is to create a unique pathname by calling tmpnam,
then create the file, and immediately unlink it. Recall from Section 4.15 that unlinking a file does not delete its
contents until the file is closed. This way, when the file is closed, either explicitly or on program termination,
the contents of the file are deleted.

The Single UNIX Specification defines two additional functions as XSI extensions for dealing with temporary
files. The first of these is the tempnam function.

#include <stdio.h>

char *tempnam(const char *directory, const char *pr efix);

Returns: pointer to unique pathname

The tempnam function is a variation of tmpnam that allows the caller to specify both the directory and a prefix
for the generated pathname. There are four possible choices for the directory, and the first one that is true is
used.

1. If the environment variable TMPDIR is defined, it is used as the directory. (We describe environment
variables in Section 7.9.)

2. If directory is not NULL, it is used as the directory.
3. The string P_tmpdir in <stdio.h> is used as the directory.
4. A local directory, usually /tmp , is used as the directory.

If the prefix argument is not NULL, it should be a string of up to five bytes to be used as the first characters of the
filename.

This function calls the malloc function to allocate dynamic storage for the constructed pathname. We can free
this storage when we're done with the pathname. (We describe the malloc and free functions in Section 7.8.)

Example

The program in Figure 5.13 shows the use of tempnam.

Note that if either command-line argument—the directory or the prefix—begins with a blank, we pass a null
pointer to the function. We can now show the various ways to use it:

 $./a.out /home/sar TEMP specify both directory and prefix
 /home/sar/TEMPsf00zi
 $./a.out " " PFX use defa ult directory: P_tmpdir
 /tmp/PFXfBw7Gi
 $ TMPDIR=/var/tmp ./a.out /usr/tmp " " use envi ronment variable; no prefix
 /var/tmp/file8fVYNi environm ent variable overrides directory
 $ TMPDIR=/no/such/dir ./a.out /home/sar/tmp QQQ
 /home/sar/tmp/QQQ98s8Ui invalid environment directory is ignored

As the four steps that we listed earlier for specifying the directory name are tried in order, this function also
checks whether the corresponding directory name makes sense. If the directory doesn't exist (the /no/such/dir
example), that case is skipped, and the next choice for the directory name is tried. From this example, we can
see that for this implementation, the P_tmpdir directory is /tmp . The technique that we used to set the
environment variable, specifying TMPDIR= before the program name, is used by the Bourne shell, the Korn shell,
and bash .

Figure 5.13. Demonstrate tempnam function

#include "apue.h"

int
main(int argc, char *argv[])
{
 if (argc != 3)
 err_quit("usage: a.out <directory> <prefix> ");

 printf("%s\n", tempnam(argv[1][0] != ' ' ? argv [1] : NULL,
 argv[2][0] != ' ' ? argv[2] : NULL));

 exit(0);
}

The second function that XSI defines is mkstemp . It is similar to tmpfile , but returns an open file descriptor for
the temporary file instead of a file pointer.

#include <stdlib.h>

int mkstemp(char *template);

Returns: file descriptor if OK, –1 on error

The returned file descriptor is open for reading and writing. The name of the temporary file is selected using the
template string. This string is a pathname whose last six characters are set to XXXXXX. The function replaces
these with different characters to create a unique pathname. If mkstemp returns success, it modifies the template
string to reflect the name of the temporary file.

Unlike tmpfile , the temporary file created by mkstemp is not removed automatically for us. If we want to
remove it from the file system namespace, we need to unlink it ourselves.

There is a drawback to using tmpnam and tempnam: a window exists between the time that the unique pathname
is returned and the time that an application creates a file with that name. During this timing window, another
process can create a file of the same name. The tempfile and mkstemp functions should be used instead, as
they don't suffer from this problem.

The mktemp function is similar to mkstemp , except that it creates a name suitable only for use as a temporary
file. The mktemp function doesn't create a file, so it suffers from the same drawback as tmpnam and tempnam.
The mktemp function is marked as a legacy interface in the Single UNIX Specification. Legacy interfaces might
be withdrawn in future versions of the Single UNIX Specification, and so should be avoided.

5.14. Alternatives to Standard I/O

The standard I/O library is not perfect. Korn and Vo [1991] list numerous defects: some in the basic design, but
most in the various implementations.

One inefficiency inherent in the standard I/O library is the amount of data copying that takes place. When we
use the line-at-a-time functions, fgets and fputs , the data is usually copied twice: once between the kernel and
the standard I/O buffer (when the corresponding read or write is issued) and again between the standard I/O
buffer and our line buffer. The Fast I/O library [fio (3) in AT&T 1990a] gets around this by having the function
that reads a line return a pointer to the line instead of copying the line into another buffer. Hume [1988] reports
a threefold increase in the speed of a version of the grep (1) utility, simply by making this change.

Korn and Vo [1991] describe another replacement for the standard I/O library: sfio. This package is similar in
speed to the fio library and normally faster than the standard I/O library. The sfio package also provides some
new features that aren't in the others: I/O streams generalized to represent both files and regions of memory,
processing modules that can be written and stacked on an I/O stream to change the operation of a stream, and
better exception handling.

Krieger, Stumm, and Unrau [1992] describe another alternative that uses mapped files—the mmap function that
we describe in Section 14.9. This new package is called ASI, the Alloc Stream Interface. The programming
interface resembles the UNIX System memory allocation functions (malloc , realloc , and free , described in
Section 7.8). As with the sfio package, ASI attempts to minimize the amount of data copying by using pointers.

Several implementations of the standard I/O library are available in C libraries that were designed for systems
with small memory footprints, such as embedded systems. These implementations emphasize modest memory
requirements over portability, speed, or functionality. Two such implementations are the uClibc C library (see
http://www.uclibc.org for more information) and the newlibc C library (http://sources.redhat.com/newlib).

5.15. Summary

The standard I/O library is used by most UNIX applications. We have looked at all the functions provided by
this library, as well as at some implementation details and efficiency considerations. Be aware of the buffering
that takes place with this library, as this is the area that generates the most problems and confusion.

Chapter 6. System Data Files and Information

Section 6.1. Introduction

Section 6.2. Password File

Section 6.3. Shadow Passwords

Section 6.4. Group File

Section 6.5. Supplementary Group IDs

Section 6.6. Implementation Differences

Section 6.7. Other Data Files

Section 6.8. Login Accounting

Section 6.9. System Identification

Section 6.10. Time and Date Routines

Section 6.11. Summary

6.1. Introduction

A UNIX system requires numerous data files for normal operation: the password file /etc/passwd and the
group file /etc/group are two files that are frequently used by various programs. For example, the password
file is used every time a user logs in to a UNIX system and every time someone executes an ls -l command.

Historically, these data files have been ASCII text files and were read with the standard I/O library. But for
larger systems, a sequential scan through the password file becomes time consuming. We want to be able to
store these data files in a format other than ASCII text, but still provide an interface for an application program
that works with any file format. The portable interfaces to these data files are the subject of this chapter. We
also cover the system identification functions and the time and date functions.

6.2. Password File

The UNIX System's password file, called the user database by POSIX.1, contains the fields shown in Figure 6.1.
These fields are contained in a passwd structure that is defined in <pwd.h> .

Figure 6.1. Fields in /etc/passwd file

Description
struct passwd

member POSIX.1
FreeBSD

5.2.1
Linux
2.4.22

Mac OS X
10.3

Solaris
9

user name char *pw_name • • • • •

encrypted password char *pw_passwd • • • •

numerical user ID uid_t pw_uid • • • • •

numerical group ID gid_t pw_gid • • • • •

comment field char *pw_gecos • • • •

initial working
directory

char *pw_dir • • • • •

initial shell (user
program)

char *pw_shell • • • • •

user access class char *pw_class • •

next time to change
password

time_t pw_change • •

account expiration time time_t pw_expire • •

Note that POSIX.1 specifies only five of the ten fields in the passwd structure. Most platforms support at least
seven of the fields. The BSD-derived platforms support all ten.

Historically, the password file has been stored in /etc/passwd and has been an ASCII file. Each line contains
the fields described in Figure 6.1, separated by colons. For example, four lines from the /etc/passwd file on
Linux could be

 root:x:0:0:root:/root:/bin/bash
 squid:x:23:23::/var/spool/squid:/dev/null
 nobody:x:65534:65534:Nobody:/home:/bin/sh
 sar:x:205:105:Stephen Rago:/home/sar:/bin/bash

Note the following points about these entries.

• There is usually an entry with the user name root . This entry has a user ID of 0 (the superuser).
• The encrypted password field contains a single character as a placeholder where older versions of the

UNIX System used to store the encrypted password. Because it is a security hole to store the encrypted
password in a file that is readable by everyone, encrypted passwords are now kept elsewhere. We'll
cover this issue in more detail in the next section when we discuss passwords.

• Some fields in a password file entry can be empty. If the encrypted password field is empty, it usually
means that the user does not have a password. (This is not recommended.) The entry for squid has one
blank field: the comment field. An empty comment field has no effect.

• The shell field contains the name of the executable program to be used as the login shell for the user.
The default value for an empty shell field is usually /bin/sh . Note, however, that the entry for squid
has /dev/null as the login shell. Obviously, this is a device and cannot be executed, so its use here is to
prevent anyone from logging in to our system as user squid .

Many services have separate user IDs for the daemon processes (Chapter 13) that help implement the
service. The squid entry is for the processes implementing the squid proxy cache service.

• There are several alternatives to using /dev/null to prevent a particular user from logging in to a
system. It is common to see /bin/false used as the login shell. It simply exits with an unsuccessful
(nonzero) status; the shell evaluates the exit status as false. It is also common to see /bin/true used to
disable an account. All it does is exit with a successful (zero) status. Some systems provide the nologin
command. It prints a customizable error message and exits with a nonzero exit status.

• The nobody user name can be used to allow people to log in to a system, but with a user ID (65534) and
group ID (65534) that provide no privileges. The only files that this user ID and group ID can access are
those that are readable or writable by the world. (This assumes that there are no files specifically owned
by user ID 65534 or group ID 65534, which should be the case.)

• Some systems that provide the finger (1) command support additional information in the comment field.
Each of these fields is separated by a comma: the user's name, office location, office phone number, and
home phone number. Additionally, an ampersand in the comment field is replaced with the login name
(capitalized) by some utilities. For example, we could have

• sar:x:205:105:Steve Rago, SF 5-121, 555-1111, 5 55-2222:/home/sar:/bin/sh
•
•

Then we could use finger to print information about Steve Rago.

 $ finger -p sar
 Login: sar Name: Steve Rag o
 Directory: /home/sar Shell: /bin/sh
 Office: SF 5-121, 555-1111 Home Phone: 55 5-2222
 On since Mon Jan 19 03:57 (EST) on ttyv0 (messa ges off)
 No Mail.

Even if your system doesn't support the finger command, these fields can still go into the comment
field, since that field is simply a comment and not interpreted by system utilities.

Some systems provide the vipw command to allow administrators to edit the password file. The vipw command
serializes changes to the password file and makes sure that any additional files are consistent with the changes
made. It is also common for systems to provide similar functionality through graphical user interfaces.

POSIX.1 defines only two functions to fetch entries from the password file. These functions allow us to look up
an entry given a user's login name or numerical user ID.

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

struct passwd *getpwnam(const char *name);

Both return: pointer if OK, NULL on error

The getpwuid function is used by the ls (1) program to map the numerical user ID contained in an i-node into a
user's login name. The getpwnam function is used by the login (1) program when we enter our login name.

Both functions return a pointer to a passwd structure that the functions fill in. This structure is usually a static
variable within the function, so its contents are overwritten each time we call either of these functions.

These two POSIX.1 functions are fine if we want to look up either a login name or a user ID, but some
programs need to go through the entire password file. The following three functions can be used for this.

#include <pwd.h>

struct passwd *getpwent(void);

Returns: pointer if OK, NULL on error or end of file

void setpwent(void);

void endpwent(void);

These three functions are not part of the base POSIX.1 standard. They are defined as XSI extensions in the
Single UNIX Specification. As such, all UNIX systems are expected to provide them.

We call getpwent to return the next entry in the password file. As with the two POSIX.1 functions, getpwent
returns a pointer to a structure that it has filled in. This structure is normally overwritten each time we call this
function. If this is the first call to this function, it opens whatever files it uses. There is no order implied when
we use this function; the entries can be in any order, because some systems use a hashed version of the file
/etc/passwd .

The function setpwent rewinds whatever files it uses, and endpwent closes these files. When using getpwent ,
we must always be sure to close these files by calling endpwent when we're through. Although getpwent is
smart enough to know when it has to open its files (the first time we call it), it never knows when we're through.

Example

Figure 6.2 shows an implementation of the function getpwnam .

The call to setpwent at the beginning is self-defense: we ensure that the files are rewound, in case
the caller has already opened them by calling getpwent . The call to endpwent when we're done is
because neither getpwnam nor getpwuid should leave any of the files open.

Figure 6.2. The getpwnam function

#include <pwd.h>
#include <stddef.h>
#include <string.h>

struct passwd *
getpwnam(const char *name)
{
 struct passwd *ptr;

 setpwent();
 while ((ptr = getpwent()) != NULL)
 if (strcmp(name, ptr->pw_name) == 0)
 break; /* found a match */
 endpwent();
 return(ptr); /*a ptr is NULL if no match fou nd */
}

6.3. Shadow Passwords

The encrypted password is a copy of the user's password that has been put through a one-way encryption
algorithm. Because this algorithm is one-way, we can't guess the original password from the encrypted version.

Historically, the algorithm that was used (see Morris and Thompson [1979]) always generated 13 printable
characters from the 64-character set [a-zA-Z0-9./] . Some newer systems use an MD5 algorithm to encrypt
passwords, generating 31 characters per encrypted password. (The more characters used to store the encrypted
password, the more combinations there are, and the harder it will be to guess the password by trying all possible
variations.) When we place a single character in the encrypted password field, we ensure that an encrypted
password will never match this value.

Given an encrypted password, we can't apply an algorithm that inverts it and returns the plaintext password.
(The plaintext password is what we enter at the Password: prompt.) But we could guess a password, run it
through the one-way algorithm, and compare the result to the encrypted password. If user passwords were
randomly chosen, this brute-force approach wouldn't be too successful. Users, however, tend to choose
nonrandom passwords, such as spouse's name, street names, or pet names. A common experiment is for
someone to obtain a copy of the password file and try guessing the passwords. (Chapter 4 of Garfinkel et al.
[2003] contains additional details and history on passwords and the password encryption scheme used on UNIX
systems.)

To make it more difficult to obtain the raw materials (the encrypted passwords), systems now store the
encrypted password in another file, often called the shadow password file. Minimally, this file has to contain the
user name and the encrypted password. Other information relating to the password is also stored here (Figure
6.3).

Figure 6.3. Fields in /etc/shadow file

Description struct spwd member

user login name char *sp_namp

encrypted password char *sp_pwdp

days since Epoch of last password change int sp_lstchg

days until change allowed int sp_min

days before change required int sp_max

days warning for expiration int sp_warn

days before account inactive int sp_inact

days since Epoch when account expires int sp_expire .

reserved unsigned int sp_flag

The only two mandatory fields are the user's login name and encrypted password. The other fields control how
often the password is to change—known as "password aging"—and how long an account is allowed to remain
active.

The shadow password file should not be readable by the world. Only a few programs need to access encrypted
passwords—login (1) and passwd (1), for example—and these programs are often set-user-ID root. With
shadow passwords, the regular password file, /etc/passwd , can be left readable by the world.

On Linux 2.4.22 and Solaris 9, a separate set of functions is available to access the shadow password file,
similar to the set of functions used to access the password file.

#include <shadow.h>

struct spwd *getspnam(const char *name);

struct spwd *getspent(void);

Both return: pointer if OK, NULL on error

void setspent(void);

void endspent(void);

On FreeBSD 5.2.1 and Mac OS X 10.3, there is no shadow password structure. The additional account
information is stored in the password file (refer back to Figure 6.1).

6.4. Group File

The UNIX System's group file, called the group database by POSIX.1, contains the fields shown in Figure 6.4.
These fields are contained in a group structure that is defined in <grp.h> .

Figure 6.4. Fields in /etc/group file

Description
struct group

member POSIX.1
FreeBSD

5.2.1
Linux
2.4.22

Mac OS X
10.3

Solaris
9

group name char *gr_name • • • • •

encrypted password char *gr_passwd • • • •

numerical group ID int gr_gid • • • • •

array of pointers to
individual user names

char **gr_mem • • • • •

The field gr_mem is an array of pointers to the user names that belong to this group. This array is terminated by
a null pointer.

We can look up either a group name or a numerical group ID with the following two functions, which are
defined by POSIX.1.

#include <grp.h>

struct group *getgrgid(gid_t gid);

struct group *getgrnam(const char *name);

Both return: pointer if OK, NULL on error

As with the password file functions, both of these functions normally return pointers to a static variable,
which is overwritten on each call.

If we want to search the entire group file, we need some additional functions. The following three functions are
like their counterparts for the password file.

#include <grp.h>

struct group *getgrent(void);

Returns: pointer if OK, NULL on error or end of file

void setgrent(void);

void endgrent(void);

These three functions are not part of the base POSIX.1 standard. They are defined as XSI extensions in the
Single UNIX Specification. All UNIX Systems provide them.

The setgrent function opens the group file, if it's not already open, and rewinds it. The getgrent function
reads the next entry from the group file, opening the file first, if it's not already open. The endgrent function
closes the group file.

6.5. Supplementary Group IDs

The use of groups in the UNIX System has changed over time. With Version 7, each user belonged to a single
group at any point in time. When we logged in, we were assigned the real group ID corresponding to the
numerical group ID in our password file entry. We could change this at any point by executing newgrp (1). If the
newgrp command succeeded (refer to the manual page for the permission rules), our real group ID was changed
to the new group's ID, and this was used for all subsequent file access permission checks. We could always go
back to our original group by executing newgrp without any arguments.

This form of group membership persisted until it was changed in 4.2BSD (circa 1983). With 4.2BSD, the
concept of supplementary group IDs was introduced. Not only did we belong to the group corresponding to the
group ID in our password file entry, but we also could belong to up to 16 additional groups. The file access
permission checks were modified so that not only was the effective group ID compared to the file's group ID,
but also all the supplementary group IDs were compared to the file's group ID.

Supplementary group IDs are a required feature of POSIX.1. (In older versions of POSIX.1, they were
optional.) The constant NGROUPS_MAX (Figure 2.10) specifies the number of supplementary group IDs. A
common value is 16 (Figure 2.14).

The advantage in using supplementary group IDs is that we no longer have to change groups explicitly. It is not
uncommon to belong to multiple groups (i.e., participate in multiple projects) at the same time.

Three functions are provided to fetch and set the supplementary group IDs.

#include <unistd.h>

int getgroups(int gidsetsize, gid_t grouplist[]);

Returns: number of supplementary group IDs if OK, –1 on error

#include <grp.h> /* on Linux */
#include <unistd.h> /* on FreeBSD, Mac OS X, and S olaris */

int setgroups(int ngroups, const gid_t grouplist[]) ;

#include <grp.h> /* on Linux and Solaris */
#include <unistd.h> /* on FreeBSD and Mac OS X */

int initgroups(const char *username, gid_t basegid) ;

Both return: 0 if OK, –1 on error

Of these three functions, only getgroups is specified by POSIX.1. Because setgroups and initgroups are
privileged operations, they are not part of POSIX.1. All four platforms covered in this book, however, support
all three functions.

On Mac OS X 10.3, basegid is declared to be of type int .

The getgroups function fills in the array grouplist with the supplementary group IDs. Up to gidsetsize elements
are stored in the array. The number of supplementary group IDs stored in the array is returned by the function.

As a special case, if gidsetsize is 0, the function returns only the number of supplementary group IDs. The array
grouplist is not modified. (This allows the caller to determine the size of the grouplist array to allocate.)

The setgroups function can be called by the superuser to set the supplementary group ID list for the calling
process: grouplist contains the array of group IDs, and ngroups specifies the number of elements in the array.
The value of ngroups cannot be larger than NGROUPS_MAX.

The only use of setgroups is usually from the initgroups function, which reads the entire group file—with
the functions getgrent , setgrent , and endgrent , which we described earlier—and determines the group
membership for username. It then calls setgroups to initialize the supplementary group ID list for the user.
One must be superuser to call initgroups , since it calls setgroups . In addition to finding all the groups that
username is a member of in the group file, initgroups also includes basegid in the supplementary group ID
list; basegid is the group ID from the password file for username.

The initgroups function is called by only a few programs: the login (1) program, for example, calls it when
we log in.

6.6. Implementation Differences

We've already discussed the shadow password file supported by Linux and Solaris. FreeBSD and Mac OS X
store encrypted passwords differently. Figure 6.5 summarizes how the four platforms covered in this book store
user and group information.

Figure 6.5. Account implementation differences

Information
FreeBSD

5.2.1
Linux
2.4.22 Mac OS X 10.3

Solaris
9

Account information /etc/passwd /etc/passwd netinfo /etc/passwd

Encrypted passwords /etc/master.passwd /etc/shadow netinfo /etc/shadow

Hashed password files? yes no no no

Group information /etc/group /etc/group netinfo /etc/group

On FreeBSD, the shadow password file is /etc/master.passwd . Special commands are used to edit it, which
in turn generate a copy of /etc/passwd from the shadow password file. In addition, hashed versions of the files
are also generated: /etc/pwd.db is the hashed version of /etc/passwd , and /etc/spwd.db is the hashed
version of /etc/master.passwd . These provide better performance for large installations.

On Mac OS X, however, /etc/passwd and /etc/master.passwd are used only in single-user mode (when the
system is undergoing maintenance; single-user mode usually means that no system services are enabled). In
multiuser mode—during normal operation—the netinfo directory service provides access to account
information for users and groups.

Although Linux and Solaris support similar shadow password interfaces, there are some subtle differences. For
example, the integer fields shown in Figure 6.3 are defined as type int on Solaris, but as long int on Linux.
Another difference is the account-inactive field. Solaris defines it to be the number of days since the user last
logged in to the system, whereas Linux defines it to be the number of days after which the maximum password
age has been reached.

On many systems, the user and group databases are implemented using the Network Information Service (NIS).
This allows administrators to edit a master copy of the databases and distribute them automatically to all servers
in an organization. Client systems contact servers to look up information about users and groups. NIS+ and the
Lightweight Directory Access Protocol (LDAP) provide similar functionality. Many systems control the method
used to administer each type of information through the /etc/nsswitch.conf configuration file.

6.7. Other Data Files

We've discussed only two of the system's data files so far: the password file and the group file. Numerous other
files are used by UNIX systems in normal day-to-day operation. For example, the BSD networking software has
one data file for the services provided by the various network servers (/etc/services), one for the protocols
(/etc/protocols), and one for the networks (/etc/networks). Fortunately, the interfaces to these various files
are like the ones we've already described for the password and group files.

The general principle is that every data file has at least three functions:

1. A get function that reads the next record, opening the file if necessary. These functions normally return
a pointer to a structure. A null pointer is returned when the end of file is reached. Most of the get
functions return a pointer to a static structure, so we always have to copy it if we want to save it.

2. A set function that opens the file, if not already open, and rewinds the file. This function is used when
we know we want to start again at the beginning of the file.

3. An end entry that closes the data file. As we mentioned earlier, we always have to call this when we're
done, to close all the files.

Additionally, if the data file supports some form of keyed lookup, routines are provided to search for a record
with a specific key. For example, two keyed lookup routines are provided for the password file: getpwnam looks
for a record with a specific user name, and getpwuid looks for a record with a specific user ID.

Figure 6.6 shows some of these routines, which are common to UNIX systems. In this figure, we show the
functions for the password files and group file, which we discussed earlier in this chapter, and some of the
networking functions. There are get , set , and end functions for all the data files in this figure.

Figure 6.6. Similar routines for accessing system data files

Description Data file Header Structure Additional keyed lookup functions

passwords /etc/passwd <pwd.h> passwd getpwnam , getpwuid

groups /etc/group <grp.h> group getgrnam , getgrgid

shadow /etc/shadow <shadow.h> spwd getspnam

hosts /etc/hosts <netdb.h> hostent gethostbyname , gethostbyaddr

networks /etc/networks <netdb.h> netent getnetbyname , getnetbyaddr

protocols /etc/protocols <netdb.h> protoent getprotobyname , getprotobynumber

services /etc/services <netdb.h> servent getservbyname , getservbyport

Under Solaris, the last four data files in Figure 6.6 are symbolic links to files of the same name in the directory
/etc/inet . Most UNIX System implementations have additional functions that are like these, but the
additional functions tend to deal with system administration files and are specific to each implementation.

6.8. Login Accounting

Two data files that have been provided with most UNIX systems are the utmp file, which keeps track of all the
users currently logged in, and the wtmp file, which keeps track of all logins and logouts. With Version 7, one
type of record was written to both files, a binary record consisting of the following structure:

 struct utmp {
 char ut_line[8]; /* tty line: "ttyh0", "ttyd0 ", "ttyp0", ... */
 char ut_name[8]; /* login name */
 long ut_time; /* seconds since Epoch */
 };

On login, one of these structures was filled in and written to the utmp file by the login program, and the same
structure was appended to the wtmp file. On logout, the entry in the utmp file was erased—filled with null
bytes—by the init process, and a new entry was appended to the wtmp file. This logout entry in the wtmp file
had the ut_name field zeroed out. Special entries were appended to the wtmp file to indicate when the system
was rebooted and right before and after the system's time and date was changed. The who(1) program read the
utmp file and printed its contents in a readable form. Later versions of the UNIX System provided the last (1)
command, which read through the wtmp file and printed selected entries.

Most versions of the UNIX System still provide the utmp and wtmp files, but as expected, the amount of
information in these files has grown. The 20-byte structure that was written by Version 7 grew to 36 bytes with
SVR2, and the extended utmp structure with SVR4 takes over 350 bytes!

The detailed format of these records in Solaris is given in the utmpx (4) manual page. With Solaris 9, both files
are in the /var/adm directory. Solaris provides numerous functions described in getutx (3) to read and write
these two files.

On FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3, the utmp (5) manual page gives the format of their
versions of these login records. The pathnames of these two files are /var/run/utmp and /var/log/wtmp .

6.9. System Identification

POSIX.1 defines the uname function to return information on the current host and operating system.

#include <sys/utsname.h>

int uname(struct utsname *name);

Returns: non-negative value if OK, –1 on error

We pass the address of a utsname structure, and the function fills it in. POSIX.1 defines only the minimum
fields in the structure, which are all character arrays, and it's up to each implementation to set the size of each
array. Some implementations provide additional fields in the structure.

 struct utsname {
 char sysname[]; /* name of the operating s ystem */
 char nodename[]; /* name of this node */
 char release[]; /* current release of oper ating system */
 char version[]; /* current version of this release */
 char machine[]; /* name of hardware type * /
 };

Each string is null-terminated. The maximum name lengths supported by the four platforms discussed in this
book are listed in Figure 6.7. The information in the utsname structure can usually be printed with the uname(1)
command.

POSIX.1 warns that the nodename element may not be adequate to reference the host on a communications
network. This function is from System V, and in older days, the nodename element was adequate for referencing
the host on a UUCP network.

Realize also that the information in this structure does not give any information on the POSIX.1 level. This
should be obtained using _POSIX_VERSION, as described in Section 2.6.

Finally, this function gives us a way only to fetch the information in the structure; there is nothing specified by
POSIX.1 about initializing this information.

Historically, BSD-derived systems provide the gethostname function to return only the name of the host. This
name is usually the name of the host on a TCP/IP network.

#include <unistd.h>

int gethostname(char *name, int namelen);

Returns: 0 if OK, –1 on error

The namelen argument specifies the size of the name buffer. If enough space is provided, the string returned
through name is null terminated. If insufficient room is provided, however, it is unspecified whether the string is
null terminated.

The gethostname function, now defined as part of POSIX.1, specifies that the maximum host name length is
HOST_NAME_MAX. The maximum name lengths supported by the four implementations covered in this book are
summarized in Figure 6.7.

Figure 6.7. System identification name limits

Maximum name length Interface

FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

uname 256 65 256 257

gethostname 256 64 256 256

If the host is connected to a TCP/IP network, the host name is normally the fully qualified domain name of the
host.

There is also a hostname (1) command that can fetch or set the host name. (The host name is set by the
superuser using a similar function, sethostname .) The host name is normally set at bootstrap time from one of
the start-up files invoked by /etc/rc or init .

6.10. Time and Date Routines

The basic time service provided by the UNIX kernel counts the number of seconds that have passed since the
Epoch: 00:00:00 January 1, 1970, Coordinated Universal Time (UTC). In Section 1.10, we said that these
seconds are represented in a time_t data type, and we call them calendar times. These calendar times represent
both the time and the date. The UNIX System has always differed from other operating systems in (a) keeping
time in UTC instead of the local time, (b) automatically handling conversions, such as daylight saving time, and
(c) keeping the time and date as a single quantity.

The time function returns the current time and date.

#include <time.h>

time_t time(time_t *calptr);

Returns: value of time if OK, –1 on error

The time value is always returned as the value of the function. If the argument is non- null, the time value is
also stored at the location pointed to by calptr.

We haven't said how the kernel's notion of the current time is initialized. Historically, on implementations
derived from System V, the stime (2) function was called, whereas BSD-derived systems used
settimeofday (2).

The Single UNIX Specification doesn't specify how a system sets its current time.

The gettimeofday function provides greater resolution (up to a microsecond) than the time function. This is
important for some applications.

#include <sys/time.h>

int gettimeofday(struct timeval *restrict tp, void *restrict tzp);

Returns: 0 always

This function is defined as an XSI extension in the Single UNIX Specification. The only legal value for tzp is
NULL; other values result in unspecified behavior. Some platforms support the specification of a time zone
through the use of tzp, but this is implementation-specific and not defined by the Single UNIX Specification.

The gettimeofday function stores the current time as measured from the Epoch in the memory pointed to by tp.
This time is represented as a timeval structure, which stores seconds and microseconds:

 struct timeval {
 time_t tv_sec; /* seconds */
 long tv_usec; /* microseconds */
 };

Once we have the integer value that counts the number of seconds since the Epoch, we normally call one of the
other time functions to convert it to a human-readable time and date. Figure 6.8 shows the relationships between
the various time functions.

Figure 6.8. Relationship of the various time functions

(The four functions in this figure that are shown with dashed lines—localtime , mktime , ctime , and
strftime —are all affected by the TZ environment variable, which we describe later in this section.)

The two functions localtime and gmtime convert a calendar time into what's called a broken-down time, a tm
structure.

 struct tm { /* a broken-down time */
 int tm_sec; /* seconds after the minute: [0 - 60] */
 int tm_min; /* minutes after the hour: [0 - 59] */
 int tm_hour; /* hours after midnight: [0 - 23] */
 int tm_mday; /* day of the month: [1 - 31] */
 int tm_mon; /* months since January: [0 - 11] */
 int tm_year; /* years since 1900 */
 int tm_wday; /* days since Sunday: [0 - 6] */
 int tm_yday; /* days since January 1: [0 - 365] */
 int tm_isdst; /* daylight saving time flag: <0, 0, >0 */
 };

The reason that the seconds can be greater than 59 is to allow for a leap second. Note that all the fields except
the day of the month are 0-based. The daylight saving time flag is positive if daylight saving time is in effect, 0
if it's not in effect, and negative if the information isn't available.

In previous versions of the Single UNIX Specification, double leap seconds were allowed. Thus, the valid range
of values for the tm_sec member was 0–61. The formal definition of UTC doesn't allow for double leap
seconds, so the valid range for seconds is now defined to be 0–60.

#include <time.h>

struct tm *gmtime(const time_t *calptr);

struct tm *localtime(const time_t *calptr);

Both return: pointer to broken-down time

The difference between localtime and gmtime is that the first converts the calendar time to the local time,
taking into account the local time zone and daylight saving time flag, whereas the latter converts the calendar
time into a broken-down time expressed as UTC.

The function mktime takes a broken-down time, expressed as a local time, and converts it into a time_t value.

#include <time.h>

time_t mktime(struct tm *tmptr);

Returns: calendar time if OK, –1 on error

The asctime and ctime functions produce the familiar 26-byte string that is similar to the default output of the
date (1) command:

 Tue Feb 10 18:27:38 2004\n\0

#include <time.h>

char *asctime(const struct tm *tmptr);

char *ctime(const time_t *calptr);

Both return: pointer to null-terminated string

The argument to asctime is a pointer to a broken-down string, whereas the argument to ctime is a pointer to a
calendar time.

The final time function, strftime , is the most complicated. It is a printf -like function for time values.

#include <time.h>

size_t strftime(char *restrict buf, size_t maxsize,
 const char *restrict format,
 const struct tm *restrict tmptr);

Returns: number of characters stored in array if room, 0 otherwise

The final argument is the time value to format, specified by a pointer to a broken-down time value. The
formatted result is stored in the array buf whose size is maxsize characters. If the size of the result, including the
terminating null, fits in the buffer, the function returns the number of characters stored in buf, excluding the
terminating null. Otherwise, the function returns 0.

The format argument controls the formatting of the time value. Like the printf functions, conversion specifiers
are given as a percent followed by a special character. All other characters in the format string are copied to the
output. Two percents in a row generate a single percent in the output. Unlike the printf functions, each
conversion specified generates a different fixed-size output string—there are no field widths in the format string.
Figure 6.9 describes the 37 ISO C conversion specifiers. The third column of this figure is from the output of
strftime under Linux, corresponding to the time and date Tue Feb 10 18:27:38 EST 2004 .

Figure 6.9. Conversion specifiers for strftime

Format Description Example

%a abbreviated weekday name Tue

%A full weekday name Tuesday

%b abbreviated month name Feb

%B full month name February

%c date and time Tue Feb 10 18:27:38 2004

%C year/100: [00–99] 20

%d day of the month: [01–31] 10

%D date [MM/DD/YY] 02/10/04

%e day of month (single digit preceded by space) [1–31] 10

%F ISO 8601 date format [YYYY–MM–DD] 2004-02-10

%g last two digits of ISO 8601 week-based year [00–99] 04

%G ISO 8601 week-based year 2004

%h same as %b Feb

%H hour of the day (24-hour format): [00–23] 18

%I hour of the day (12-hour format): [01–12] 06

%j day of the year: [001–366] 041

%m month: [01–12] 02

%M minute: [00–59] 27

%n newline character

%p AM/PM PM

%r locale's time (12-hour format) 06:27:38 PM

Figure 6.9. Conversion specifiers for strftime

Format Description Example

%R same as "%H:%M" 18:27

%S second: [00–60] 38

%t horizontal tab character

%T same as "%H:%M:%S" 18:27:38

%u ISO 8601 weekday [Monday=1, 1–7] 2

%U Sunday week number: [00–53] 06

%V ISO 8601 week number: [01–53] 07

%w weekday: [0=Sunday, 0–6] 2

%W Monday week number: [00–53] 06

%x date 02/10/04

%X time 18:27:38

%y last two digits of year: [00–99] 04

%Y year 2004

%z offset from UTC in ISO 8601 format -0500

%Z time zone name EST

%% translates to a percent sign %

The only specifiers that are not self-evident are %U, %V, and %W. The %U specifier represents the week number of
the year, where the week containing the first Sunday is week 1. The %W specifier represents the week number of
the year, where the week containing the first Monday is week 1. The %V specifier is different. If the week
containing the first day in January has four or more days in the new year, then this is treated as week 1.
Otherwise, it is treated as the last week of the previous year. In both cases, Monday is treated as the first day of
the week.

As with printf , strftime supports modifiers for some of the conversion specifiers. The E and O modifiers can
be used to generate an alternate format if supported by the locale.

Some systems support additional, nonstandard extensions to the format string for strftime .

We mentioned that the four functions in Figure 6.8 with dashed lines were affected by the TZ environment
variable: localtime , mktime , ctime , and strftime . If defined, the value of this environment variable is used
by these functions instead of the default time zone. If the variable is defined to be a null string, such as TZ=,
then UTC is normally used. The value of this environment variable is often something like TZ=EST5EDT, but
POSIX.1 allows a much more detailed specification. Refer to the Environment Variables chapter of the Single
UNIX Specification [Open Group 2004] for all the details on the TZ variable.

All the time and date functions described in this section, except gettimeofday , are defined by the ISO C
standard. POSIX.1, however, added the TZ environment variable. On FreeBSD 5.2.1, Linux 2.4.22, and Mac OS
X 10.3, more information on the TZ variable can be found in the tzset (3) manual page. On Solaris 9, this
information is in the environ (5) manual page.

6.11. Summary

The password file and the group file are used on all UNIX systems. We've looked at the various functions that
read these files. We've also talked about shadow passwords, which can help system security. Supplementary
group IDs provide a way to participate in multiple groups at the same time. We also looked at how similar
functions are provided by most systems to access other system-related data files. We discussed the POSIX.1
functions that programs can use to identify the system on which they are running. We finished the chapter with
a look at the time and date functions provided by ISO C and the Single UNIX Specification.

Chapter 7. Process Environment

Section 7.1. Introduction

Section 7.2. main Function

Section 7.3. Process Termination

Section 7.4. Command-Line Arguments

Section 7.5. Environment List

Section 7.6. Memory Layout of a C Program

Section 7.7. Shared Libraries

Section 7.8. Memory Allocation

Section 7.9. Environment Variables

Section 7.10. setjmp and longjmp Functions

Section 7.11. getrlimit and setrlimit Functions

Section 7.12. Summary

7.1. Introduction

Before looking at the process control primitives in the next chapter, we need to examine the environment of a
single process. In this chapter, we'll see how the main function is called when the program is executed, how
command-line arguments are passed to the new program, what the typical memory layout looks like, how to
allocate additional memory, how the process can use environment variables, and various ways for the process to
terminate. Additionally, we'll look at the longjmp and setjmp functions and their interaction with the stack. We
finish the chapter by examining the resource limits of a process.

7.2. main Function

A C program starts execution with a function called main . The prototype for the main function is

 int main(int argc, char *argv[]);

where argc is the number of command-line arguments, and argv is an array of pointers to the arguments. We
describe these arguments in Section 7.4.

When a C program is executed by the kernel—by one of the exec functions, which we describe in Section
8.10—a special start-up routine is called before the main function is called. The executable program file
specifies this routine as the starting address for the program; this is set up by the link editor when it is invoked
by the C compiler. This start-up routine takes values from the kernel—the command-line arguments and the
environment—and sets things up so that the main function is called as shown earlier.

7.3. Process Termination

There are eight ways for a process to terminate. Normal termination occurs in five ways:

1. Return from main
2. Calling exit
3. Calling _exit or _Exit
4. Return of the last thread from its start routine (Section 11.5)
5. Calling pthread_exit (Section 11.5) from the last thread

Abnormal termination occurs in three ways:

6. Calling abort (Section 10.17)
7. Receipt of a signal (Section 10.2)
8. Response of the last thread to a cancellation request (Sections 11.5 and 12.7)

For now, we'll ignore the three termination methods specific to threads until we discuss threads in
Chapters 11 and 12.

The start-up routine that we mentioned in the previous section is also written so that if the main function returns,
the exit function is called. If the start-up routine were coded in C (it is often coded in assembler) the call to
main could look like

 exit(main(argc, argv));

Exit Functions

Three functions terminate a program normally: _exit and _Exit , which return to the kernel immediately, and
exit , which performs certain cleanup processing and then returns to the kernel.

#include <stdlib.h>

void exit(int status);

void _Exit(int status);

#include <unistd.h>

void _exit(int status);

We'll discuss the effect of these three functions on other processes, such as the children and the parent of the
terminating process, in Section 8.5.

The reason for the different headers is that exit and _Exit are specified by ISO C, whereas _exit is specified
by POSIX.1.

Historically, the exit function has always performed a clean shutdown of the standard I/O library: the fclose
function is called for all open streams. Recall from Section 5.5 that this causes all buffered output data to be
flushed (written to the file).

All three exit functions expect a single integer argument, which we call the exit status. Most UNIX System
shells provide a way to examine the exit status of a process. If (a) any of these functions is called without an
exit status, (b) main does a return without a return value, or (c) the main function is not declared to return an
integer, the exit status of the process is undefined. However, if the return type of main is an integer and main
"falls off the end" (an implicit return), the exit status of the process is 0.

This behavior is new with the 1999 version of the ISO C standard. Historically, the exit status was undefined if
the end of the main function was reached without an explicit return statement or call to the exit function.

Returning an integer value from the main function is equivalent to calling exit with the same value. Thus

 exit(0);

is the same as

 return(0);

from the main function.

Example

The program in Figure 7.1 is the classic "hello, world" example.

When we compile and run the program in Figure 7.1, we see that the exit code is random. If we compile the
same program on different systems, we are likely to get different exit codes, depending on the contents of the
stack and register contents at the time that the main function returns:

 $ cc hello.c
 $./a.out
 hello, world
 $ echo $? print the exit sta tus
 13

Now if we enable the 1999 ISO C compiler extensions, we see that the exit code changes:

 $ cc -std=c99 hello.c enable gcc's 1999 ISO C extensions
 hello.c:4: warning: return type defaults to 'in t'
 $./a.out
 hello, world
 $ echo $? role="italicAlt" print the exit status
 0

Note the compiler warning when we enable the 1999 ISO C extensions. This warning is printed because the
type of the main function is not explicitly declared to be an integer. If we were to add this declaration, the
message would go away. However, if we were to enable all recommended warnings from the compiler (with the

-Wall flag), then we would see a warning message something like "control reaches end of nonvoid function."

The declaration of main as returning an integer and the use of exit instead of return produces needless
warnings from some compilers and the lint (1) program. The problem is that these compilers don't know that
an exit from main is the same as a return . One way around these warnings, which become annoying after a
while, is to use return instead of exit from main . But doing this prevents us from using the UNIX System's
grep utility to locate all calls to exit from a program. Another solution is to declare main as returning void ,
instead of int , and continue calling exit . This gets rid of the compiler warning but doesn't look right
(especially in a programming text), and can generate other compiler warnings, since the return type of main is
supposed to be a signed integer. In this text, we show main as returning an integer, since that is the definition
specified by both ISO C and POSIX.1.

Different compilers vary in the verbosity of their warnings. Note that the GNU C compiler usually doesn't emit
these extraneous compiler warnings unless additional warning options are used.

Figure 7.1. Classic C program

#include <stdio.h>

main()
{
 printf("hello, world\n");
}

In the next chapter, we'll see how any process can cause a program to be executed, wait for the process to
complete, and then fetch its exit status.

atexit Function

With ISO C, a process can register up to 32 functions that are automatically called by exit . These are called
exit handlers and are registered by calling the atexit function.

#include <stdlib.h>

int atexit(void (*func)(void));

Returns: 0 if OK, nonzero on error

This declaration says that we pass the address of a function as the argument to atexit . When this function is
called, it is not passed any arguments and is not expected to return a value. The exit function calls these
functions in reverse order of their registration. Each function is called as many times as it was registered.

These exit handlers first appeared in the ANSI C Standard in 1989. Systems that predate ANSI C, such as SVR3
and 4.3BSD, did not provide these exit handlers.

ISO C requires that systems support at least 32 exit handlers. The sysconf function can be used to determine
the maximum number of exit handlers supported by a given platform (see Figure 2.14).

With ISO C and POSIX.1, exit first calls the exit handlers and then closes (via fclose) all open streams.
POSIX.1 extends the ISO C standard by specifying that any exit handlers installed will be cleared if the
program calls any of the exec family of functions. Figure 7.2 summarizes how a C program is started and the
various ways it can terminate.

Figure 7.2. How a C program is started and how it terminates

Note that the only way a program is executed by the kernel is when one of the exec functions is called. The
only way a process voluntarily terminates is when _exit or _Exit is called, either explicitly or implicitly (by
calling exit). A process can also be involuntarily terminated by a signal (not shown in Figure 7.2).

Example

The program in Figure 7.3 demonstrates the use of the atexit function.

Executing the program in Figure 7.3 yields

 $./a.out
 main is done
 first exit handler
 first exit handler
 second exit handler

An exit handler is called once for each time it is registered. In Figure 7.3, the first exit handler is registered
twice, so it is called two times. Note that we don't call exit ; instead, we return from main .

Figure 7.3. Example of exit handlers

#include "apue.h"

static void my_exit1(void);
static void my_exit2(void);

int
main(void)
{
 if (atexit(my_exit2) != 0)
 err_sys("can't register my_exit2");

 if (atexit(my_exit1) != 0)
 err_sys("can't register my_exit1");

 if (atexit(my_exit1) != 0)
 err_sys("can't register my_exit1");

 printf("main is done\n");
 return(0);
}

static void
my_exit1(void)
{
 printf("first exit handler\n");
}

static void
my_exit2(void)
{
 printf("second exit handler\n");
}

7.4. Command-Line Arguments

When a program is executed, the process that does the exec can pass command-line arguments to the new
program. This is part of the normal operation of the UNIX system shells. We have already seen this in many of
the examples from earlier chapters.

Example

The program in Figure 7.4 echoes all its command-line arguments to standard output. Note that the normal
echo (1) program doesn't echo the zeroth argument.

If we compile this program and name the executable echoarg , we have

 $./echoarg arg1 TEST foo
 argv[0]: ./echoarg
 argv[1]: arg1
 argv[2]: TEST
 argv[3]: foo

We are guaranteed by both ISO C and POSIX.1 that argv[argc] is a null pointer. This lets us alternatively
code the argument-processing loop as

 for (i = 0; argv[i] != NULL; i++)

Figure 7.4. Echo all command-line arguments to standard output

#include "apue.h"

int
main(int argc, char *argv[])
{
 int i;

 for (i = 0; i < argc; i++) /* echo all com mand-line args */
 printf("argv[%d]: %s\n", i, argv[i]);
 exit(0);
}

7.5. Environment List

Each program is also passed an environment list. Like the argument list, the environment list is an array of
character pointers, with each pointer containing the address of a null-terminated C string. The address of the
array of pointers is contained in the global variable environ :

 extern char **environ;

For example, if the environment consisted of five strings, it could look like Figure 7.5. Here we explicitly show
the null bytes at the end of each string. We'll call environ the environment pointer, the array of pointers the
environment list, and the strings they point to the environment strings.

Figure 7.5. Environment consisting of five C character strings

By convention, the environment consists of

name=value

strings, as shown in Figure 7.5. Most predefined names are entirely uppercase, but this is only a convention.

Historically, most UNIX systems have provided a third argument to the main function that is the address of the
environment list:

 int main(int argc, char *argv[], char *envp[]);

Because ISO C specifies that the main function be written with two arguments, and because this third argument
provides no benefit over the global variable environ , POSIX.1 specifies that environ should be used instead of
the (possible) third argument. Access to specific environment variables is normally through the getenv and
putenv functions, described in Section 7.9, instead of through the environ variable. But to go through the
entire environment, the environ pointer must be used.

7.6. Memory Layout of a C Program

Historically, a C program has been composed of the following pieces:

• Text segment, the machine instructions that the CPU executes. Usually, the text segment is sharable so
that only a single copy needs to be in memory for frequently executed programs, such as text editors, the
C compiler, the shells, and so on. Also, the text segment is often read-only, to prevent a program from
accidentally modifying its instructions.

• Initialized data segment, usually called simply the data segment, containing variables that are
specifically initialized in the program. For example, the C declaration

• int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized data segment with its
initial value.

• Uninitialized data segment, often called the "bss" segment, named after an ancient assembler operator
that stood for "block started by symbol." Data in this segment is initialized by the kernel to arithmetic 0
or null pointers before the program starts executing. The C declaration

• long sum[1000];

appearing outside any function causes this variable to be stored in the uninitialized data segment.

• Stack, where automatic variables are stored, along with information that is saved each time a function is
called. Each time a function is called, the address of where to return to and certain information about the
caller's environment, such as some of the machine registers, are saved on the stack. The newly called
function then allocates room on the stack for its automatic and temporary variables. This is how
recursive functions in C can work. Each time a recursive function calls itself, a new stack frame is used,
so one set of variables doesn't interfere with the variables from another instance of the function.

• Heap, where dynamic memory allocation usually takes place. Historically, the heap has been located
between the uninitialized data and the stack.

Figure 7.6 shows the typical arrangement of these segments. This is a logical picture of how a program looks;
there is no requirement that a given implementation arrange its memory in this fashion. Nevertheless, this gives
us a typical arrangement to describe. With Linux on an Intel x86 processor, the text segment starts at location
0x08048000 , and the bottom of the stack starts just below 0xC0000000 . (The stack grows from higher-
numbered addresses to lower-numbered addresses on this particular architecture.) The unused virtual address
space between the top of the heap and the top of the stack is large.

Figure 7.6. Typical memory arrangement

Several more segment types exist in an a.out , containing the symbol table, debugging information, linkage
tables for dynamic shared libraries, and the like. These additional sections don't get loaded as part of the
program's image executed by a process.

Note from Figure 7.6 that the contents of the uninitialized data segment are not stored in the program file on
disk. This is because the kernel sets it to 0 before the program starts running. The only portions of the program
that need to be saved in the program file are the text segment and the initialized data.

The size (1) command reports the sizes (in bytes) of the text, data, and bss segments. For example:

 $ size /usr/bin/cc /bin/sh
 text data bss dec hex filena me
 79606 1536 916 82058 1408a /usr/b in/cc
 619234 21120 18260 658614 a0cb6 /bin/s h

The fourth and fifth columns are the total of the three sizes, displayed in decimal and hexadecimal, respectively.

7.7. Shared Libraries

Most UNIX systems today support shared libraries. Arnold [1986] describes an early implementation under
System V, and Gingell et al. [1987] describe a different implementation under SunOS. Shared libraries remove
the common library routines from the executable file, instead maintaining a single copy of the library routine
somewhere in memory that all processes reference. This reduces the size of each executable file but may add
some runtime overhead, either when the program is first executed or the first time each shared library function
is called. Another advantage of shared libraries is that library functions can be replaced with new versions
without having to relink edit every program that uses the library. (This assumes that the number and type of
arguments haven't changed.)

Different systems provide different ways for a program to say that it wants to use or not use the shared libraries.
Options for the cc (1) and ld (1) commands are typical. As an example of the size differences, the following
executable file—the classic hello.c program—was first created without shared libraries:

 $ cc -static hello1.c prevent gcc f rom using shared libraries
 $ ls -l a.out
 -rwxrwxr-x 1 sar 475570 Feb 18 23:17 a. out
 $ size a.out
 text data bss dec hex fil ename
 375657 3780 3220 382657 5d6c1 a.o ut

If we compile this program to use shared libraries, the text and data sizes of the executable file are greatly
decreased:

 $ cc hello1.c gcc defaults t o use shared libraries
 $ ls -l a.out
 -rwxrwxr-x 1 sar 11410 Feb 18 23:19 a.o ut
 $ size a.out
 text data bss dec hex fil ename
 872 256 4 1132 46c a.o ut

7.8. Memory Allocation

ISO C specifies three functions for memory allocation:

1. malloc , which allocates a specified number of bytes of memory. The initial value of the memory is
indeterminate.

2. calloc , which allocates space for a specified number of objects of a specified size. The space is
initialized to all 0 bits.

3. realloc , which increases or decreases the size of a previously allocated area. When the size increases, it
may involve moving the previously allocated area somewhere else, to provide the additional room at the
end. Also, when the size increases, the initial value of the space between the old contents and the end of
the new area is indeterminate.

#include <stdlib.h>

void *malloc(size_t size);

void *calloc(size_t nobj, size_t size);

void *realloc(void *ptr, size_t newsize);

All three return: non-null pointer if OK, NULL on error

void free(void *ptr);

The pointer returned by the three allocation functions is guaranteed to be suitably aligned so that it can be used
for any data object. For example, if the most restrictive alignment requirement on a particular system requires
that double s must start at memory locations that are multiples of 8, then all pointers returned by these three
functions would be so aligned.

Because the three alloc functions return a generic void * pointer, if we #include <stdlib.h> (to obtain the
function prototypes), we do not explicitly have to cast the pointer returned by these functions when we assign it
to a pointer of a different type.

The function free causes the space pointed to by ptr to be deallocated. This freed space is usually put into a
pool of available memory and can be allocated in a later call to one of the three alloc functions.

The realloc function lets us increase or decrease the size of a previously allocated area. (The most common
usage is to increase an area.) For example, if we allocate room for 512 elements in an array that we fill in at
runtime but find that we need room for more than 512 elements, we can call realloc . If there is room beyond
the end of the existing region for the requested space, then realloc doesn't have to move anything; it simply
allocates the additional area at the end and returns the same pointer that we passed it. But if there isn't room at
the end of the existing region, realloc allocates another area that is large enough, copies the existing 512-
element array to the new area, frees the old area, and returns the pointer to the new area. Because the area may
move, we shouldn't have any pointers into this area. Exercise 4.16 shows the use of realloc with getcwd to
handle any length pathname. Figure 17.36 shows an example that uses realloc to avoid arrays with fixed,
compile-time sizes.

Note that the final argument to realloc is the new size of the region, not the difference between the old and
new sizes. As a special case, if ptr is a null pointer, realloc behaves like malloc and allocates a region of the
specified newsize.

Older versions of these routines allowed us to realloc a block that we had free d since the last call to malloc ,
realloc , or calloc . This trick dates back to Version 7 and exploited the search strategy of malloc to perform
storage compaction. Solaris still supports this feature, but many other platforms do not. This feature is
deprecated and should not be used.

The allocation routines are usually implemented with the sbrk (2) system call. This system call expands (or
contracts) the heap of the process. (Refer to Figure 7.6.) A sample implementation of malloc and free is given
in Section 8.7 of Kernighan and Ritchie [1988].

Although sbrk can expand or contract the memory of a process, most versions of malloc and free never
decrease their memory size. The space that we free is available for a later allocation, but the freed space is not
usually returned to the kernel; that space is kept in the malloc pool.

It is important to realize that most implementations allocate a little more space than is requested and use the
additional space for record keeping—the size of the allocated block, a pointer to the next allocated block, and
the like. This means that writing past the end of an allocated area could overwrite this record-keeping
information in a later block. These types of errors are often catastrophic, but difficult to find, because the error
may not show up until much later. Also, it is possible to overwrite this record keeping by writing before the start
of the allocated area.

Writing past the end or before the beginning of a dynamically-allocated buffer can corrupt more than internal
record-keeping information. The memory before and after a dynamically-allocated buffer can potentially be
used for other dynamically-allocated objects. These objects can be unrelated to the code corrupting them,
making it even more difficult to find the source of the corruption.

Other possible errors that can be fatal are freeing a block that was already freed and calling free with a pointer
that was not obtained from one of the three alloc functions. If a process calls malloc , but forgets to call free ,
its memory usage continually increases; this is called leakage. By not calling free to return unused space, the
size of a process's address space slowly increases until no free space is left. During this time, performance can
degrade from excess paging overhead.

Because memory allocation errors are difficult to track down, some systems provide versions of these functions
that do additional error checking every time one of the three alloc functions or free is called. These versions
of the functions are often specified by including a special library for the link editor. There are also publicly
available sources that you can compile with special flags to enable additional runtime checking.

FreeBSD, Mac OS X, and Linux support additional debugging through the setting of environment variables. In
addition, options can be passed to the FreeBSD library through the symbolic link /etc/malloc.conf .

Alternate Memory Allocators

Many replacements for malloc and free are available. Some systems already include libraries providing
alternate memory allocator implementations. Other systems provide only the standard allocator, leaving it up to
software developers to download alternatives, if desired. We discuss some of the alternatives here.

libmalloc

SVR4-based systems, such as Solaris, include the libmalloc library, which provides a set of interfaces
matching the ISO C memory allocation functions. The libmalloc library includes mallopt , a function that
allows a process to set certain variables that control the operation of the storage allocator. A function called
mallinfo is also available to provide statistics on the memory allocator.

vmalloc

Vo [1996] describes a memory allocator that allows processes to allocate memory using different techniques for
different regions of memory. In addition to the functions specific to vmalloc , the library also provides
emulations of the ISO C memory allocation functions.

quick-fit

Historically, the standard malloc algorithm used either a best-fit or a first-fit memory allocation strategy.
Quick-fit is faster than either, but tends to use more memory. Weinstock and Wulf [1988] describe the
algorithm, which is based on splitting up memory into buffers of various sizes and maintaining unused buffers
on different free lists, depending on the size of the buffers. Free implementations of malloc and free based on
quick-fit are readily available from several FTP sites.

alloca Function

One additional function is also worth mentioning. The function alloca has the same calling sequence as
malloc ; however, instead of allocating memory from the heap, the memory is allocated from the stack frame of
the current function. The advantage is that we don't have to free the space; it goes away automatically when the
function returns. The alloca function increases the size of the stack frame. The disadvantage is that some
systems can't support alloca , if it's impossible to increase the size of the stack frame after the function has been
called. Nevertheless, many software packages use it, and implementations exist for a wide variety of systems.

All four platforms discussed in this text provide the alloca function.

7.9. Environment Variables

As we mentioned earlier, the environment strings are usually of the form

name=value

The UNIX kernel never looks at these strings; their interpretation is up to the various applications. The shells,
for example, use numerous environment variables. Some, such as HOME and USER, are set automatically at login,
and others are for us to set. We normally set environment variables in a shell start-up file to control the shell's
actions. If we set the environment variable MAILPATH, for example, it tells the Bourne shell, GNU Bourne-again
shell, and Korn shell where to look for mail.

ISO C defines a function that we can use to fetch values from the environment, but this standard says that the
contents of the environment are implementation defined.

#include <stdlib.h>

char *getenv(const char *name);

Returns: pointer to value associated with name, NULL if not found

Note that this function returns a pointer to the value of a name=value string. We should always use getenv to
fetch a specific value from the environment, instead of accessing environ directly.

Some environment variables are defined by POSIX.1 in the Single UNIX Specification, whereas others are
defined only if the XSI extensions are supported. Figure 7.7 lists the environment variables defined by the
Single UNIX Specification and also notes which implementations support the variables. Any environment
variable defined by POSIX.1 is marked with •; otherwise, it is an XSI extension. Many additional
implementation-dependent environment variables are used in the four implementations described in this book.
Note that ISO C doesn't define any environment variables.

Figure 7.7. Environment variables defined in the Single UNIX Specification

Variable POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

COLUMNS • • • • • terminal width

DATEMSK XSI • • getdate (3) template file
pathname

HOME • • • • • home directory

LANG • • • • • name of locale

LC_ALL • • • • • name of locale

LC_COLLATE • • • • • name of locale for collation

LC_CTYPE • • • • • name of locale for character

Figure 7.7. Environment variables defined in the Single UNIX Specification

Variable POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

Description

classification

LC_MESSAGES • • • • • name of locale for messages

LC_MONETARY • • • • • name of locale for monetary
editing

LC_NUMERIC • • • • • name of locale for numeric
editing

LC_TIME • • • • • name of locale for date/time
formatting

LINES • • • • • terminal height

LOGNAME • • • • • login name

MSGVERB XSI • • fmtmsg (3) message components
to process

NLSPATH XSI • • • • sequence of templates for
message catalogs

PATH • • • • • list of path prefixes to search for
executable file

PWD • • • • • absolute pathname of current
working directory

SHELL • • • • • name of user's preferred shell

TERM • • • • • terminal type

TMPDIR • • • • • pathname of directory for creating
temporary files

TZ • • • • • time zone information

In addition to fetching the value of an environment variable, sometimes we may want to set an environment
variable. We may want to change the value of an existing variable or add a new variable to the environment. (In
the next chapter, we'll see that we can affect the environment of only the current process and any child
processes that we invoke. We cannot affect the environment of the parent process, which is often a shell.
Nevertheless, it is still useful to be able to modify the environment list.) Unfortunately, not all systems support
this capability. Figure 7.8 shows the functions that are supported by the various standards and implementations.

Figure 7.8. Support for various environment list functions

Function ISO C POSIX.1 FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

Figure 7.8. Support for various environment list functions

Function ISO C POSIX.1 FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

getenv • • • • • •

putenv XSI • • • •

setenv • • • •

unsetenv • • • •

clearenv •

clearenv is not part of the Single UNIX Specification. It is used to remove all entries from the environment list.

The prototypes for the middle three functions listed in Figure 7.8 are

 #include <stdlib.h>

 int putenv(char *str);

 int setenv(const char *name, const char *value,
 int rewrite);

 int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places it in the environment list. If name
already exists, its old definition is first removed.

• The setenv function sets name to value. If name already exists in the environment, then (a) if rewrite is
nonzero, the existing definition for name is first removed; (b) if rewrite is 0, an existing definition for
name is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an error if such a definition does not
exist.

Note the difference between putenv and setenv . Whereas setenv must allocate memory to create the
name=value string from its arguments, putenv is free to place the string passed to it directly into the
environment. Indeed, on Linux and Solaris, the putenv implementation places the address of the string
we pass to it directly into the environment list. In this case, it would be an error to pass it a string
allocated on the stack, since the memory would be reused after we return from the current function.

It is interesting to examine how these functions must operate when modifying the environment list. Recall
Figure 7.6: the environment list—the array of pointers to the actual name=value strings—and the environment
strings are typically stored at the top of a process's memory space, above the stack. Deleting a string is simple;
we simply find the pointer in the environment list and move all subsequent pointers down one. But adding a
string or modifying an existing string is more difficult. The space at the top of the stack cannot be expanded,

because it is often at the top of the address space of the process and so can't expand upward; it can't be
expanded downward, because all the stack frames below it can't be moved.

1. If we're modifying an existing name:
a. If the size of the new value is less than or equal to the size of the existing value, we can just copy

the new string over the old string.
b. If the size of the new value is larger than the old one, however, we must malloc to obtain room

for the new string, copy the new string to this area, and then replace the old pointer in the
environment list for name with the pointer to this allocated area.

2. If we're adding a new name, it's more complicated. First, we have to call malloc to allocate room for the
name=value string and copy the string to this area.

a. Then, if it's the first time we've added a new name, we have to call malloc to obtain room for a
new list of pointers. We copy the old environment list to this new area and store a pointer to the
name=value string at the end of this list of pointers. We also store a null pointer at the end of this
list, of course. Finally, we set environ to point to this new list of pointers. Note from Figure 7.6
that if the original environment list was contained above the top of the stack, as is common, then
we have moved this list of pointers to the heap. But most of the pointers in this list still point to
name=value strings above the top of the stack.

b. If this isn't the first time we've added new strings to the environment list, then we know that
we've already allocated room for the list on the heap, so we just call realloc to allocate room
for one more pointer. The pointer to the new name=value string is stored at the end of the list (on
top of the previous null pointer), followed by a null pointer.

7.10. setjmp and longjmp Functions

In C, we can't goto a label that's in another function. Instead, we must use the setjmp and longjmp functions to
perform this type of branching. As we'll see, these two functions are useful for handling error conditions that
occur in a deeply nested function call.

Consider the skeleton in Figure 7.9. It consists of a main loop that reads lines from standard input and calls the
function do_line to process each line. This function then calls get_token to fetch the next token from the
input line. The first token of a line is assumed to be a command of some form, and a switch statement selects
each command. For the single command shown, the function cmd_add is called.

Figure 7.9. Typical program skeleton for command processing

#include "apue.h"

#define TOK_ADD 5

void do_line(char *);
void cmd_add(void);
int get_token(void);

int
main(void)
{
 char line[MAXLINE];

 while (fgets(line, MAXLINE, stdin) != NULL)
 do_line(line);
 exit(0);
}

char *tok_ptr; /* global pointer for get_ token() */

void
do_line(char *ptr) /* process one line of inp ut */
{
 int cmd;

 tok_ptr = ptr;
 while ((cmd = get_token()) > 0) {
 switch (cmd) { /* one case for each command */
 case TOK_ADD:
 cmd_add();
 break;
 }
 }
}

void
cmd_add(void)
{
 int token;

 token = get_token();
 /* rest of processing for this command */
}

int
get_token(void)
{

 /* fetch next token from line pointed to by tok_ ptr */
}

The skeleton in Figure 7.9 is typical for programs that read commands, determine the command type, and then
call functions to process each command. Figure 7.10 shows what the stack could look like after cmd_add has
been called.

Figure 7.10. Stack frames after cmd_add has been called

Storage for the automatic variables is within the stack frame for each function. The array line is in the stack
frame for main , the integer cmd is in the stack frame for do_line , and the integer token is in the stack frame for
cmd_add.

As we've said, this type of arrangement of the stack is typical, but not required. Stacks do not have to grow
toward lower memory addresses. On systems that don't have built-in hardware support for stacks, a C
implementation might use a linked list for its stack frames.

The coding problem that's often encountered with programs like the one shown in Figure 7.9 is how to handle
nonfatal errors. For example, if the cmd_add function encounters an error—say, an invalid number—it might
want to print an error, ignore the rest of the input line, and return to the main function to read the next input line.
But when we're deeply nested numerous levels down from the main function, this is difficult to do in C. (In this
example, in the cmd_add function, we're only two levels down from main , but it's not uncommon to be five or
more levels down from where we want to return to.) It becomes messy if we have to code each function with a
special return value that tells it to return one level.

The solution to this problem is to use a nonlocal goto : the setjmp and longjmp functions. The adjective
nonlocal is because we're not doing a normal C goto statement within a function; instead, we're branching back
through the call frames to a function that is in the call path of the current function.

 #include <setjmp.h>

 int setjmp(jmp_buf env);

Returns: 0 if called directly, nonzero if returning from a call to longjmp

 void longjmp(jmp_buf env, int val);

 #include <setjmp.h>

 int setjmp(jmp_buf env);

We call setjmp from the location that we want to return to, which in this example is in the main function. In
this case, setjmp returns 0 because we called it directly. In the call to setjmp , the argument env is of the special
type jmp_buf . This data type is some form of array that is capable of holding all the information required to
restore the status of the stack to the state when we call longjmp . Normally, the env variable is a global variable,
since we'll need to reference it from another function.

When we encounter an error—say, in the cmd_add function—we call longjmp with two arguments. The first is
the same env that we used in a call to setjmp , and the second, val, is a nonzero value that becomes the return
value from setjmp . The reason for the second argument is to allow us to have more than one longjmp for each
setjmp . For example, we could longjmp from cmd_add with a val of 1 and also call longjmp from get_token
with a val of 2. In the main function, the return value from setjmp is either 1 or 2, and we can test this value, if
we want, and determine whether the longjmp was from cmd_add or get_token .

Let's return to the example. Figure 7.11 shows both the main and cmd_add functions. (The other two functions,
do_line and get_token , haven't changed.)

Figure 7.11. Example of setjmp and longjmp

#include "apue.h"
#include <setjmp.h>

#define TOK_ADD 5

jmp_buf jmpbuffer;

int
main(void)
{
 char line[MAXLINE];

 if (setjmp(jmpbuffer) != 0)
 printf("error");
 while (fgets(line, MAXLINE, stdin) != NULL)
 do_line(line);
 exit(0);
}

 ...

void
cmd_add(void)
{
 int token;

 token = get_token();
 if (token < 0) /* an error has occurred */
 longjmp(jmpbuffer, 1);
 /* rest of processing for this command */
}

When main is executed, we call setjmp , which records whatever information it needs to in the variable
jmpbuffer and returns 0. We then call do_line , which calls cmd_add, and assume that an error of some form is
detected. Before the call to longjmp in cmd_add, the stack looks like that in Figure 7.10. But longjmp causes
the stack to be "unwound" back to the main function, throwing away the stack frames for cmd_add and do_line
(Figure 7.12). Calling longjmp causes the setjmp in main to return, but this time it returns with a value of 1
(the second argument for longjmp).

Figure 7.12. Stack frame after longjmp has been called

Automatic, Register, and Volatile Variables

We've seen what the stack looks like after calling longjmp . The next question is, "what are the states of the
automatic variables and register variables in the main function?" When main is returned to by the longjmp , do
these variables have values corresponding to when the setjmp was previously called (i.e., are their values rolled
back), or are their values left alone so that their values are whatever they were when do_line was called (which
caused cmd_add to be called, which caused longjmp to be called)? Unfortunately, the answer is "it depends."
Most implementations do not try to roll back these automatic variables and register variables, but the standards
say only that their values are indeterminate. If you have an automatic variable that you don't want rolled back,
define it with the volatile attribute. Variables that are declared global or static are left alone when longjmp is
executed.

Example

The program in Figure 7.13 demonstrates the different behavior that can be seen with automatic, global,
register, static, and volatile variables after calling longjmp .

If we compile and test the program in Figure 7.13, with and without compiler optimizations, the results are
different:

 $ cc testjmp.c compile without an y optimization
 $./a.out
 in f1():
 globval = 95, autoval = 96, regival = 97, volav al = 98, statval = 99
 after longjmp:
 globval = 95, autoval = 96, regival = 97, volav al = 98, statval = 99
 $ cc -O testjmp.c compile with full optimization
 $./a.out

 in f1():
 globval = 95, autoval = 96, regival = 97, volav al = 98, statval = 99
 after longjmp:
 globval = 95, autoval = 2, regival = 3, volaval = 98, statval = 99

Note that the optimizations don't affect the global, static, and volatile variables; their values after the longjmp
are the last values that they assumed. The setjmp (3) manual page on one system states that variables stored in
memory will have values as of the time of the longjmp , whereas variables in the CPU and floating-point
registers are restored to their values when setjmp was called. This is indeed what we see when we run the
program in Figure 7.13. Without optimization, all five variables are stored in memory (the register hint is
ignored for regival). When we enable optimization, both autoval and regival go into registers, even though
the former wasn't declared register , and the volatile variable stays in memory. The thing to realize with this
example is that you must use the volatile attribute if you're writing portable code that uses nonlocal jumps.
Anything else can change from one system to the next.

Some printf format strings in Figure 7.13 are longer than will fit comfortably for display in a programming
text. Instead of making multiple calls to printf , we rely on ISO C's string concatenation feature, where the
sequence

 "string1" "string2"

is equivalent to

 "string1string2"

Figure 7.13. Effect of longjmp on various types of variables

#include "apue.h"
#include <setjmp.h>

static void f1(int, int, int, int);
static void f2(void);

static jmp_buf jmpbuffer;
static int globval;

int
main(void)
{
 int autoval;
 register int regival;
 volatile int volaval;
 static int statval;

 globval = 1; autoval = 2; regival = 3; volaval = 4; statval = 5;

 if (setjmp(jmpbuffer) != 0) {
 printf("after longjmp:\n");
 printf("globval = %d, autoval = %d, regiva l = %d,"
 " volaval = %d, statval = %d\n",
 globval, autoval, regival, volaval, st atval);
 exit(0);
 }

 /*
 * Change variables after setjmp, but before l ongjmp.
 */
 globval = 95; autoval = 96; regival = 97; vola val = 98;
 statval = 99;

 f1(autoval, regival, volaval, statval); /* nev er returns */
 exit(0);
}

static void
f1(int i, int j, int k, int l)
{
 printf("in f1():\n");
 printf("globval = %d, autoval = %d, regival = % d,"
 " volaval = %d, statval = %d\n", globval, i , j, k, l);
 f2();
}
static void
f2(void)
{
 longjmp(jmpbuffer, 1);
}

We'll return to these two functions, setjmp and longjmp , in Chapter 10 when we discuss signal handlers and
their signal versions: sigsetjmp and siglongjmp .

Potential Problem with Automatic Variables

Having looked at the way stack frames are usually handled, it is worth looking at a potential error in dealing
with automatic variables. The basic rule is that an automatic variable can never be referenced after the function
that declared it returns. There are numerous warnings about this throughout the UNIX System manuals.

Figure 7.14 shows a function called open_data that opens a standard I/O stream and sets the buffering for the
stream.

Figure 7.14. Incorrect usage of an automatic variable

#include <stdio.h>

#define DATAFILE "datafile"

FILE *
open_data(void)
{
 FILE *fp;
 char databuf[BUFSIZ]; /* setvbuf makes thi s the stdio buffer */

 if ((fp = fopen(DATAFILE, "r")) == NULL)
 return(NULL);
 if (setvbuf(fp, databuf, _IOLBF, BUFSIZ) != 0)
 return(NULL);
 return(fp); /* error */
}

The problem is that when open_data returns, the space it used on the stack will be used by the stack frame for
the next function that is called. But the standard I/O library will still be using that portion of memory for its

stream buffer. Chaos is sure to result. To correct this problem, the array databuf needs to be allocated from
global memory, either statically (static or extern) or dynamically (one of the alloc functions).

7.11. getrlimit and setrlimit Functions

Every process has a set of resource limits, some of which can be queried and changed by the getrlimit and
setrlimit functions.

 #include <sys/resource.h>

 int getrlimit(int resource, struct rlimit *rlptr) ;

 int setrlimit(int resource, const struct rlimit * rlptr);

Both return: 0 if OK, nonzero on error

These two functions are defined as XSI extensions in the Single UNIX Specification. The resource limits for a
process are normally established by process 0 when the system is initialized and then inherited by each
successive process. Each implementation has its own way of tuning the various limits.

Each call to these two functions specifies a single resource and a pointer to the following structure:

 struct rlimit {
 rlim_t rlim_cur; /* soft limit: current li mit */
 rlim_t rlim_max; /* hard limit: maximum va lue for rlim_cur */
 };

Three rules govern the changing of the resource limits.

1. A process can change its soft limit to a value less than or equal to its hard limit.
2. A process can lower its hard limit to a value greater than or equal to its soft limit. This lowering of the

hard limit is irreversible for normal users.
3. Only a superuser process can raise a hard limit.

An infinite limit is specified by the constant RLIM_INFINITY .

The resource argument takes on one of the following values. Figure 7.15 shows which limits are defined by the
Single UNIX Specification and supported by each implementation.

Figure 7.15. Support for resource limits

Limit XSI FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

RLIMIT_AS • • •

RLIMIT_CORE • • • • •

RLIMIT_CPU • • • • •

RLIMIT_DATA • • • • •

RLIMIT_FSIZE • • • • •

RLIMIT_LOCKS •

Figure 7.15. Support for resource limits

Limit XSI FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

RLIMIT_MEMLOCK • • •

RLIMIT_NOFILE • • • • •

RLIMIT_NPROC • • •

RLIMIT_RSS • • •

RLIMIT_SBSIZE •

RLIMIT_STACK • • • • •

RLIMIT_VMEM • •

RLIMIT_AS The maximum size in bytes of a process's total available memory. This affects the sbrk

function (Section 1.11) and the mmap function (Section 14.9).

RLIMIT_CORE The maximum size in bytes of a core file. A limit of 0 prevents the creation of a core file.

RLIMIT_CPU The maximum amount of CPU time in seconds. When the soft limit is exceeded, the
SIGXCPU signal is sent to the process.

RLIMIT_DATA The maximum size in bytes of the data segment: the sum of the initialized data, uninitialized
data, and heap from Figure 7.6.

RLIMIT_FSIZE The maximum size in bytes of a file that may be created. When the soft limit is exceeded, the
process is sent the SIGXFSZ signal.

RLIMIT_LOCKS The maximum number of file locks a process can hold. (This number also includes file
leases, a Linux-specific feature. See the Linux fcntl (2) manual page for more information.)

RLIMIT_MEMLOCK The maximum amount of memory in bytes that a process can lock into memory using
mlock (2).

RLIMIT_NOFILE The maximum number of open files per process. Changing this limit affects the value
returned by the sysconf function for its _SC_OPEN_MAX argument (Section 2.5.4). See Figure
2.16 also.

RLIMIT_NPROC The maximum number of child processes per real user ID. Changing this limit affects the
value returned for _SC_CHILD_MAX by the sysconf function (Section 2.5.4).

RLIMIT_RSS Maximum resident set size (RSS) in bytes. If available physical memory is low, the kernel
takes memory from processes that exceed their RSS.

RLIMIT_SBSIZE The maximum size in bytes of socket buffers that a user can consume at any given time.

RLIMIT_STACK The maximum size in bytes of the stack. See Figure 7.6.

RLIMIT_VMEM This is a synonym for RLIMIT_AS .

The resource limits affect the calling process and are inherited by any of its children. This means that the setting
of resource limits needs to be built into the shells to affect all our future processes. Indeed, the Bourne shell, the

GNU Bourne-again shell, and the Korn shell have the built-in ulimit command, and the C shell has the built-in
limit command. (The umask and chdir functions also have to be handled as shell built-ins.)

Example

The program in Figure 7.16 prints out the current soft limit and hard limit for all the resource limits supported
on the system. To compile this program on all the various implementations, we have conditionally included the
resource names that differ. Note also that we must use a different printf format on platforms that define
rlim_t to be an unsigned long long instead of an unsigned long .

Note that we've used the ISO C string-creation operator (#) in the doit macro, to generate the string value for
each resource name. When we say

 doit(RLIMIT_CORE);

the C preprocessor expands this into

 pr_limits("RLIMIT_CORE", RLIMIT_CORE);

Running this program under FreeBSD gives us the following:

 $./a.out
 RLIMIT_CORE (infinite) (infinite)
 RLIMIT_CPU (infinite) (infinite)
 RLIMIT_DATA 536870912 536870912
 RLIMIT_FSIZE (infinite) (infinite)
 RLIMIT_MEMLOCK (infinite) (infinite)
 RLIMIT_NOFILE 1735 1735
 RLIMIT_NPROC 867 867
 RLIMIT_RSS (infinite) (infinite)
 RLIMIT_SBSIZE (infinite) (infinite)
 RLIMIT_STACK 67108864 67108864
 RLIMIT_VMEM (infinite) (infinite)

Solaris gives us the following results:

 $./a.out
 RLIMIT_AS (infinite) (infinite)
 RLIMIT_CORE (infinite) (infinite)
 RLIMIT_CPU (infinite) (infinite)
 RLIMIT_DATA (infinite) (infinite)
 RLIMIT_FSIZE (infinite) (infinite)
 RLIMIT_NOFILE 256 65536
 RLIMIT_STACK 8388608 (infinite)
 RLIMIT_VMEM (infinite) (infinite)

Figure 7.16. Print the current resource limits

#include "apue.h"
#if defined(BSD) || defined(MACOS)
#include <sys/time.h>
#define FMT "%10lld "
#else
#define FMT "%10ld "

#endif
#include <sys/resource.h>

#define doit(name) pr_limits(#name, name)

static void pr_limits(char *, int);

int
main(void)
{

#ifdef RLIMIT_AS
 doit(RLIMIT_AS);
#endif
 doit(RLIMIT_CORE);
 doit(RLIMIT_CPU);
 doit(RLIMIT_DATA);
 doit(RLIMIT_FSIZE);
#ifdef RLIMIT_LOCKS
 doit(RLIMIT_LOCKS);
#endif
#ifdef RLIMIT_MEMLOCK
 doit(RLIMIT_MEMLOCK);
#endif
 doit(RLIMIT_NOFILE);
#ifdef RLIMIT_NPROC
 doit(RLIMIT_NPROC);
#endif
#ifdef RLIMIT_RSS
 doit(RLIMIT_RSS);
#endif
#ifdef RLIMIT_SBSIZE
 doit(RLIMIT_SBSIZE);
#endif
 doit(RLIMIT_STACK);
#ifdef RLIMIT_VMEM
 doit(RLIMIT_VMEM);
#endif
 exit(0);
}

static void
pr_limits(char *name, int resource)
{
 struct rlimit limit;

 if (getrlimit(resource, &limit) < 0)
 err_sys("getrlimit error for %s", name);
 printf("%-14s ", name);
 if (limit.rlim_cur == RLIM_INFINITY)
 printf("(infinite) ");
 else
 printf(FMT, limit.rlim_cur);
 if (limit.rlim_max == RLIM_INFINITY)
 printf("(infinite)");
 else
 printf(FMT, limit.rlim_max);
 putchar((int)'\n');
}

Exercise 10.11 continues the discussion of resource limits, after we've covered signals.

7.12. Summary

Understanding the environment of a C program in a UNIX system's environment is a prerequisite to
understanding the process control features of the UNIX System. In this chapter, we've looked at how a process
is started, how it can terminate, and how it's passed an argument list and an environment. Although both are
uninterpreted by the kernel, it is the kernel that passes both from the caller of exec to the new process.

We've also examined the typical memory layout of a C program and how a process can dynamically allocate
and free memory. It is worthwhile to look in detail at the functions available for manipulating the environment,
since they involve memory allocation. The functions setjmp and longjmp were presented, providing a way to
perform nonlocal branching within a process. We finished the chapter by describing the resource limits that
various implementations provide.

Chapter 8. Process Control

Section 8.1. Introduction

Section 8.2. Process Identifiers

Section 8.3. fork Function

Section 8.4. vfork Function

Section 8.5. exit Functions

Section 8.6. wait and waitpid Functions

Section 8.7. waitid Function

Section 8.8. wait3 and wait4 Functions

Section 8.9. Race Conditions

Section 8.10. exec Functions

Section 8.11. Changing User IDs and Group IDs

Section 8.12. Interpreter Files

Section 8.13. system Function

Section 8.14. Process Accounting

Section 8.15. User Identification

Section 8.16. Process Times

Section 8.17. Summary

8.1. Introduction

We now turn to the process control provided by the UNIX System. This includes the creation of new processes,
program execution, and process termination. We also look at the various IDs that are the property of the
process—real, effective, and saved; user and group IDs—and how they're affected by the process control
primitives. Interpreter files and the system function are also covered. We conclude the chapter by looking at the
process accounting provided by most UNIX systems. This lets us look at the process control functions from a
different perspective.

8.2. Process Identifiers

Every process has a unique process ID, a non-negative integer. Because the process ID is the only well-known
identifier of a process that is always unique, it is often used as a piece of other identifiers, to guarantee
uniqueness. For example, applications sometimes include the process ID as part of a filename in an attempt to
generate unique filenames.

Although unique, process IDs are reused. As processes terminate, their IDs become candidates for reuse. Most
UNIX systems implement algorithms to delay reuse, however, so that newly created processes are assigned IDs
different from those used by processes that terminated recently. This prevents a new process from being
mistaken for the previous process to have used the same ID.

There are some special processes, but the details differ from implementation to implementation. Process ID 0 is
usually the scheduler process and is often known as the swapper. No program on disk corresponds to this
process, which is part of the kernel and is known as a system process. Process ID 1 is usually the init process
and is invoked by the kernel at the end of the bootstrap procedure. The program file for this process was
/etc/init in older versions of the UNIX System and is /sbin/init in newer versions. This process is
responsible for bringing up a UNIX system after the kernel has been bootstrapped. init usually reads the
system-dependent initialization files—the /etc/rc* files or /etc/inittab and the files in /etc/init.d —and
brings the system to a certain state, such as multiuser. The init process never dies. It is a normal user process,
not a system process within the kernel, like the swapper, although it does run with superuser privileges. Later in
this chapter, we'll see how init becomes the parent process of any orphaned child process.

Each UNIX System implementation has its own set of kernel processes that provide operating system services.
For example, on some virtual memory implementations of the UNIX System, process ID 2 is the pagedaemon.
This process is responsible for supporting the paging of the virtual memory system.

In addition to the process ID, there are other identifiers for every process. The following functions return these
identifiers.

#include <unistd.h>

pid_t getpid(void);

Returns: process ID of calling process

pid_t getppid(void);

Returns: parent process ID of calling process

uid_t getuid(void);

Returns: real user ID of calling process

uid_t geteuid(void);

Returns: effective user ID of calling process

gid_t getgid(void);

#include <unistd.h>

pid_t getpid(void);

Returns: real group ID of calling process

gid_t getegid(void);

Returns: effective group ID of calling process

Note that none of these functions has an error return. We'll return to the parent process ID in the next section
when we discuss the fork function. The real and effective user and group IDs were discussed in Section 4.4.

8.3. fork Function

An existing process can create a new one by calling the fork function.

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parent, –1 on error

The new process created by fork is called the child process. This function is called once but returns twice. The
only difference in the returns is that the return value in the child is 0, whereas the return value in the parent is
the process ID of the new child. The reason the child's process ID is returned to the parent is that a process can
have more than one child, and there is no function that allows a process to obtain the process IDs of its children.
The reason fork returns 0 to the child is that a process can have only a single parent, and the child can always
call getppid to obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel, so it's not
possible for 0 to be the process ID of a child.)

Both the child and the parent continue executing with the instruction that follows the call to fork . The child is a
copy of the parent. For example, the child gets a copy of the parent's data space, heap, and stack. Note that this
is a copy for the child; the parent and the child do not share these portions of memory. The parent and the child
share the text segment (Section 7.6).

Current implementations don't perform a complete copy of the parent's data, stack, and heap, since a fork is
often followed by an exec . Instead, a technique called copy-on-write (COW) is used. These regions are shared
by the parent and the child and have their protection changed by the kernel to read-only. If either process tries to
modify these regions, the kernel then makes a copy of that piece of memory only, typically a "page" in a virtual
memory system. Section 9.2 of Bach [1986] and Sections 5.6 and 5.7 of McKusick et al. [1996] provide more
detail on this feature.

Variations of the fork function are provided by some platforms. All four platforms discussed in this book
support the vfork (2) variant discussed in the next section.

Linux 2.4.22 also provides new process creation through the clone (2) system call. This is a generalized form of
fork that allows the caller to control what is shared between parent and child.

FreeBSD 5.2.1 provides the rfork (2) system call, which is similar to the Linux clone system call. The rfork
call is derived from the Plan 9 operating system (Pike et al. [1995]).

Solaris 9 provides two threads libraries: one for POSIX threads (pthreads) and one for Solaris threads. The
behavior of fork differs between the two thread libraries. For POSIX threads, fork creates a process containing
only the calling thread, but for Solaris threads, fork creates a process containing copies of all threads from the
process of the calling thread. To provide similar semantics as POSIX threads, Solaris provides the fork1
function, which can be used to create a process that duplicates only the calling thread, regardless of the thread
library used. Threads are discussed in detail in Chapters 11 and 12.

Example

The program in Figure 8.1 demonstrates the fork function, showing how changes to variables in a child process

do not affect the value of the variables in the parent process.

If we execute this program, we get

$./a.out
a write to stdout
before fork
pid = 430, glob = 7, var = 89 child's variable s were changed
pid = 429, glob = 6, var = 88 parent's copy wa s not changed
$./a.out > temp.out
$ cat temp.out
a write to stdout
before fork
pid = 432, glob = 7, var = 89
before fork
pid = 431, glob = 6, var = 88

In general, we never know whether the child starts executing before the parent or vice versa. This depends on
the scheduling algorithm used by the kernel. If it's required that the child and parent synchronize, some form of
interprocess communication is required. In the program shown in Figure 8.1, we simply have the parent put
itself to sleep for 2 seconds, to let the child execute. There is no guarantee that this is adequate, and we talk
about this and other types of synchronization in Section 8.9 when we discuss race conditions. In Section 10.16,
we show how to use signals to synchronize a parent and a child after a fork .

When we write to standard output, we subtract 1 from the size of buf to avoid writing the terminating null byte.
Although strlen will calculate the length of a string not including the terminating null byte, sizeof calculates
the size of the buffer, which does include the terminating null byte. Another difference is that using strlen
requires a function call, whereas sizeof calculates the buffer length at compile time, as the buffer is initialized
with a known string, and its size is fixed.

Note the interaction of fork with the I/O functions in the program in Figure 8.1. Recall from Chapter 3 that the
write function is not buffered. Because write is called before the fork , its data is written once to standard
output. The standard I/O library, however, is buffered. Recall from Section 5.12 that standard output is line
buffered if it's connected to a terminal device; otherwise, it's fully buffered. When we run the program
interactively, we get only a single copy of the printf line, because the standard output buffer is flushed by the
newline. But when we redirect standard output to a file, we get two copies of the printf line. In this second
case, the printf before the fork is called once, but the line remains in the buffer when fork is called. This
buffer is then copied into the child when the parent's data space is copied to the child. Both the parent and the
child now have a standard I/O buffer with this line in it. The second printf , right before the exit , just appends
its data to the existing buffer. When each process terminates, its copy of the buffer is finally flushed.

Figure 8.1. Example of fork function

#include "apue.h"

int glob = 6; /* external variable in ini tialized data */
char buf[] = "a write to stdout\n";

int
main(void)
{
 int var; /* automatic variable on th e stack */
 pid_t pid;

 var = 88;
 if (write(STDOUT_FILENO, buf, sizeof(buf)-1) != sizeof(buf)-1)
 err_sys("write error");
 printf("before fork\n"); /* we don't flush s tdout */

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 glob++; /* modify variables */
 var++;
 } else {
 sleep(2); /* parent */
 }

 printf("pid = %d, glob = %d, var = %d\n", getpi d(), glob, var);
 exit(0);
}

File Sharing

When we redirect the standard output of the parent from the program in Figure 8.1, the child's standard output is
also redirected. Indeed, one characteristic of fork is that all file descriptors that are open in the parent are
duplicated in the child. We say "duplicated" because it's as if the dup function had been called for each
descriptor. The parent and the child share a file table entry for every open descriptor (recall Figure 3.8).

Consider a process that has three different files opened for standard input, standard output, and standard error.
On return from fork , we have the arrangement shown in Figure 8.2.

Figure 8.2. Sharing of open files between parent and child after fork

It is important that the parent and the child share the same file offset. Consider a process that fork s a child, then
wait s for the child to complete. Assume that both processes write to standard output as part of their normal
processing. If the parent has its standard output redirected (by a shell, perhaps) it is essential that the parent's

file offset be updated by the child when the child writes to standard output. In this case, the child can write to
standard output while the parent is wait ing for it; on completion of the child, the parent can continue writing to
standard output, knowing that its output will be appended to whatever the child wrote. If the parent and the
child did not share the same file offset, this type of interaction would be more difficult to accomplish and would
require explicit actions by the parent.

If both parent and child write to the same descriptor, without any form of synchronization, such as having the
parent wait for the child, their output will be intermixed (assuming it's a descriptor that was open before the
fork). Although this is possible—we saw it in Figure 8.2—it's not the normal mode of operation.

There are two normal cases for handling the descriptors after a fork .

1. The parent waits for the child to complete. In this case, the parent does not need to do anything with its
descriptors. When the child terminates, any of the shared descriptors that the child read from or wrote to
will have their file offsets updated accordingly.

2. Both the parent and the child go their own ways. Here, after the fork , the parent closes the descriptors
that it doesn't need, and the child does the same thing. This way, neither interferes with the other's open
descriptors. This scenario is often the case with network servers.

Besides the open files, there are numerous other properties of the parent that are inherited by the child:

• Real user ID, real group ID, effective user ID, effective group ID
• Supplementary group IDs
• Process group ID
• Session ID
• Controlling terminal
• The set-user-ID and set-group-ID flags
• Current working directory
• Root directory
• File mode creation mask
• Signal mask and dispositions
• The close-on-exec flag for any open file descriptors
• Environment
• Attached shared memory segments
• Memory mappings
• Resource limits

The differences between the parent and child are

• The return value from fork
• The process IDs are different
• The two processes have different parent process IDs: the parent process ID of the child is the parent; the

parent process ID of the parent doesn't change
• The child's tms_utime , tms_stime , tms_cutime , and tms_cstime values are set to 0
• File locks set by the parent are not inherited by the child
• Pending alarms are cleared for the child
• The set of pending signals for the child is set to the empty set

Many of these features haven't been discussed yet—we'll cover them in later chapters.

The two main reasons for fork to fail are (a) if too many processes are already in the system, which usually
means that something else is wrong, or (b) if the total number of processes for this real user ID exceeds the
system's limit. Recall from Figure 2.10 that CHILD_MAX specifies the maximum number of simultaneous
processes per real user ID.

There are two uses for fork :

1. When a process wants to duplicate itself so that the parent and child can each execute different sections
of code at the same time. This is common for network servers—the parent waits for a service request
from a client. When the request arrives, the parent calls fork and lets the child handle the request. The
parent goes back to waiting for the next service request to arrive.

2. When a process wants to execute a different program. This is common for shells. In this case, the child
does an exec (which we describe in Section 8.10) right after it returns from the fork .

Some operating systems combine the operations from step 2—a fork followed by an exec —into a single
operation called a spawn. The UNIX System separates the two, as there are numerous cases where it is useful to
fork without doing an exec . Also, separating the two allows the child to change the per-process attributes
between the fork and the exec , such as I/O redirection, user ID, signal disposition, and so on. We'll see
numerous examples of this in Chapter 15.

The Single UNIX Specification does include spawn interfaces in the advanced real-time option group. These
interfaces are not intended to be replacements for fork and exec , however. They are intended to support
systems that have difficulty implementing fork efficiently, especially systems without hardware support for
memory management.

8.4. vfork Function

The function vfork has the same calling sequence and same return values as fork . But the semantics of the two
functions differ.

The vfork function originated with 2.9BSD. Some consider the function a blemish, but all the platforms
covered in this book support it. In fact, the BSD developers removed it from the 4.4BSD release, but all the
open source BSD distributions that derive from 4.4BSD added support for it back into their own releases. The
vfork function is marked as an obsolete interface in Version 3 of the Single UNIX Specification.

The vfork function is intended to create a new process when the purpose of the new process is to exec a new
program (step 2 at the end of the previous section). The bare-bones shell in the program from Figure 1.7 is also
an example of this type of program. The vfork function creates the new process, just like fork , without
copying the address space of the parent into the child, as the child won't reference that address space; the child
simply calls exec (or exit) right after the vfork . Instead, while the child is running and until it calls either
exec or exit , the child runs in the address space of the parent. This optimization provides an efficiency gain on
some paged virtual-memory implementations of the UNIX System. (As we mentioned in the previous section,
implementations use copy-on-write to improve the efficiency of a fork followed by an exec , but no copying is
still faster than some copying.)

Another difference between the two functions is that vfork guarantees that the child runs first, until the child
calls exec or exit . When the child calls either of these functions, the parent resumes. (This can lead to
deadlock if the child depends on further actions of the parent before calling either of these two functions.)

Example

The program in Figure 8.3 is a modified version of the program from Figure 8.1. We've replaced the call to
fork with vfork and removed the write to standard output. Also, we don't need to have the parent call sleep ,
as we're guaranteed that it is put to sleep by the kernel until the child calls either exec or exit .

Running this program gives us

$./a.out
before vfork
pid = 29039, glob = 7, var = 89

Here, the incrementing of the variables done by the child changes the values in the parent. Because the child
runs in the address space of the parent, this doesn't surprise us. This behavior, however, differs from fork .

Note in Figure 8.3 that we call _exit instead of exit . As we described in Section 7.3, _exit does not perform
any flushing of standard I/O buffers. If we call exit instead, the results are indeterminate. Depending on the
implementation of the standard I/O library, we might see no difference in the output, or we might find that the
output from the parent's printf has disappeared.

If the child calls exit , the implementation flushes the standard I/O streams. If this is the only action taken by
the library, then we will see no difference with the output generated if the child called _exit . If the
implementation also closes the standard I/O streams, however, the memory representing the FILE object for the
standard output will be cleared out. Because the child is borrowing the parent's address space, when the parent
resumes and calls printf , no output will appear and printf will return -1. Note that the parent's
STDOUT_FILENO is still valid, as the child gets a copy of the parent's file descriptor array (refer back to Figure

8.2).

Most modern implementations of exit will not bother to close the streams. Because the process is about to exit,
the kernel will close all the file descriptors open in the process. Closing them in the library simply adds
overhead without any benefit.

Figure 8.3. Example of vfork function

#include "apue.h"

int glob = 6; /* external variable in ini tialized data */

int
main(void)
{
 int var; /* automatic variable on th e stack */
 pid_t pid;

 var = 88;
 printf("before vfork\n"); /* we don't flush s tdio */
 if ((pid = vfork()) < 0) {
 err_sys("vfork error");
 } else if (pid == 0) { /* child */
 glob++; /* modify parent's variables */
 var++;
 _exit(0); /* child terminates */
 }
 /*
 * Parent continues here.
 */
 printf("pid = %d, glob = %d, var = %d\n", getpi d(), glob, var);
 exit(0);
}

Section 5.6 of McKusick et al. [1996] contains additional information on the implementation issues of fork and
vfork . Exercises 8.1 and 8.2 continue the discussion of vfork .

8.5. exit Functions

As we described in Section 7.3, a process can terminate normally in five ways:

1. Executing a return from the main function. As we saw in Section 7.3, this is equivalent to calling exit .
2. Calling the exit function. This function is defined by ISO C and includes the calling of all exit handlers

that have been registered by calling atexit and closing all standard I/O streams. Because ISO C does
not deal with file descriptors, multiple processes (parents and children), and job control, the definition of
this function is incomplete for a UNIX system.

3. Calling the _exit or _Exit function. ISO C defines _Exit to provide a way for a process to terminate
without running exit handlers or signal handlers. Whether or not standard I/O streams are flushed
depends on the implementation. On UNIX systems, _Exit and _exit are synonymous and do not flush
standard I/O streams. The _exit function is called by exit and handles the UNIX system-specific
details; _exit is specified by POSIX.1.

In most UNIX system implementations, exit (3) is a function in the standard C library, whereas
_exit (2) is a system call.

4. Executing a return from the start routine of the last thread in the process. The return value of the thread
is not used as the return value of the process, however. When the last thread returns from its start routine,
the process exits with a termination status of 0.

5. Calling the pthread_exit function from the last thread in the process. As with the previous case, the
exit status of the process in this situation is always 0, regardless of the argument passed to
pthread_exit . We'll say more about pthread_exit in Section 11.5.

The three forms of abnormal termination are as follows:

1. Calling abort . This is a special case of the next item, as it generates the SIGABRT signal.
2. When the process receives certain signals. (We describe signals in more detail in Chapter 10). The signal

can be generated by the process itself—for example, by calling the abort function—by some other
process, or by the kernel. Examples of signals generated by the kernel include the process referencing a
memory location not within its address space or trying to divide by 0.

3. The last thread responds to a cancellation request. By default, cancellation occurs in a deferred manner:
one thread requests that another be canceled, and sometime later, the target thread terminates. We
discuss cancellation requests in detail in Sections 11.5 and 12.7.

Regardless of how a process terminates, the same code in the kernel is eventually executed. This kernel code
closes all the open descriptors for the process, releases the memory that it was using, and the like.

For any of the preceding cases, we want the terminating process to be able to notify its parent how it terminated.
For the three exit functions (exit , _exit , and _Exit), this is done by passing an exit status as the argument to
the function. In the case of an abnormal termination, however, the kernel, not the process, generates a
termination status to indicate the reason for the abnormal termination. In any case, the parent of the process can
obtain the termination status from either the wait or the waitpid function (described in the next section).

Note that we differentiate between the exit status, which is the argument to one of the three exit functions or the
return value from main , and the termination status. The exit status is converted into a termination status by the
kernel when _exit is finally called (recall Figure 7.2). Figure 8.4 describes the various ways the parent can
examine the termination status of a child. If the child terminated normally, the parent can obtain the exit status
of the child.

Figure 8.4. Macros to examine the termination status returned by wait and waitpid

Macro Description

WIFEXITED(status) True if status was returned for a child that terminated normally. In this case, we can
execute

WEXITSTATUS (status)

to fetch the low-order 8 bits of the argument that the child passed to exit , _exit ,or
_Exit .

WIFSIGNALED
(status)

True if status was returned for a child that terminated abnormally, by receipt of a signal
that it didn't catch. In this case, we can execute

WTERMSIG (status)

to fetch the signal number that caused the termination.

Additionally, some implementations (but not the Single UNIX Specification) define the
macro

WCOREDUMP (status)

that returns true if a core file of the terminated process was generated.

WIFSTOPPED (status) True if status was returned for a child that is currently stopped. In this case, we can
execute

WSTOPSIG (status)

to fetch the signal number that caused the child to stop.

WIFCONTINUED
(status)

True if status was returned for a child that has been continued after a job control stop
(XSI extension to POSIX.1; waitpid only).

When we described the fork function, it was obvious that the child has a parent process after the call to fork .
Now we're talking about returning a termination status to the parent. But what happens if the parent terminates
before the child? The answer is that the init process becomes the parent process of any process whose parent
terminates. We say that the process has been inherited by init . What normally happens is that whenever a
process terminates, the kernel goes through all active processes to see whether the terminating process is the
parent of any process that still exists. If so, the parent process ID of the surviving process is changed to be 1 (the
process ID of init). This way, we're guaranteed that every process has a parent.

Another condition we have to worry about is when a child terminates before its parent. If the child completely
disappeared, the parent wouldn't be able to fetch its termination status when and if the parent were finally ready
to check if the child had terminated. The kernel keeps a small amount of information for every terminating
process, so that the information is available when the parent of the terminating process calls wait or waitpid .
Minimally, this information consists of the process ID, the termination status of the process, and the amount of
CPU time taken by the process. The kernel can discard all the memory used by the process and close its open
files. In UNIX System terminology, a process that has terminated, but whose parent has not yet waited for it, is

called a zombie. The ps (1) command prints the state of a zombie process as Z. If we write a long-running
program that fork s many child processes, they become zombies unless we wait for them and fetch their
termination status.

Some systems provide ways to prevent the creation of zombies, as we describe in Section 10.7.

The final condition to consider is this: what happens when a process that has been inherited by init terminates?
Does it become a zombie? The answer is "no," because init is written so that whenever one of its children
terminates, init calls one of the wait functions to fetch the termination status. By doing this, init prevents the
system from being clogged by zombies. When we say "one of init 's children," we mean either a process that
init generates directly (such as getty , which we describe in Section 9.2) or a process whose parent has
terminated and has been subsequently inherited by init .

8.6. wait and waitpid Functions

When a process terminates, either normally or abnormally, the kernel notifies the parent by sending the
SIGCHLD signal to the parent. Because the termination of a child is an asynchronous event—it can happen at any
time while the parent is running—this signal is the asynchronous notification from the kernel to the parent. The
parent can choose to ignore this signal, or it can provide a function that is called when the signal occurs: a signal
handler. The default action for this signal is to be ignored. We describe these options in Chapter 10. For now,
we need to be aware that a process that calls wait or waitpid can

• Block, if all of its children are still running
• Return immediately with the termination status of a child, if a child has terminated and is waiting for its

termination status to be fetched
• Return immediately with an error, if it doesn't have any child processes

If the process is calling wait because it received the SIGCHLD signal, we expect wait to return immediately. But
if we call it at any random point in time, it can block.

#include <sys/wait.h>

pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int options) ;

Both return: process ID if OK, 0 (see later), or –1 on error

The differences between these two functions are as follows.

• The wait function can block the caller until a child process terminates, whereas waitpid has an option
that prevents it from blocking.

• The waitpid function doesn't wait for the child that terminates first; it has a number of options that
control which process it waits for.

If a child has already terminated and is a zombie, wait returns immediately with that child's status. Otherwise, it
blocks the caller until a child terminates. If the caller blocks and has multiple children, wait returns when one
terminates. We can always tell which child terminated, because the process ID is returned by the function.

For both functions, the argument statloc is a pointer to an integer. If this argument is not a null pointer, the
termination status of the terminated process is stored in the location pointed to by the argument. If we don't care
about the termination status, we simply pass a null pointer as this argument.

Traditionally, the integer status that these two functions return has been defined by the implementation, with
certain bits indicating the exit status (for a normal return), other bits indicating the signal number (for an
abnormal return), one bit to indicate whether a core file was generated, and so on. POSIX.1 specifies that the
termination status is to be looked at using various macros that are defined in <sys/wait.h> . Four mutually
exclusive macros tell us how the process terminated, and they all begin with WIF. Based on which of these four
macros is true, other macros are used to obtain the exit status, signal number, and the like. The four mutually-
exclusive macros are shown in Figure 8.4.

We'll discuss how a process can be stopped in Section 9.8 when we discuss job control.

Example

The function pr_exit in Figure 8.5 uses the macros from Figure 8.4 to print a description of the termination
status. We'll call this function from numerous programs in the text. Note that this function handles the
WCOREDUMP macro, if it is defined.

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 all support the WCOREDUMP macro.

The program shown in Figure 8.6 calls the pr_exit function, demonstrating the various values for the
termination status. If we run the program in Figure 8.6, we get

 $./a.out
 normal termination, exit status = 7
 abnormal termination, signal number = 6 (core fi le generated)
 abnormal termination, signal number = 8 (core fi le generated)

Unfortunately, there is no portable way to map the signal numbers from WTERMSIG into descriptive names. (See
Section 10.21 for one method.) We have to look at the <signal.h> header to verify that SIGABRT has a value of
6 and that SIGFPE has a value of 8.

Figure 8.5. Print a description of the exit status

#include "apue.h"
#include <sys/wait.h>

void
pr_exit(int status)
{
 if (WIFEXITED(status))
 printf("normal termination, exit status = % d\n",
 WEXITSTATUS(status));
 else if (WIFSIGNALED(status))
 printf("abnormal termination, signal number = %d%s\n",
 WTERMSIG(status),
#ifdef WCOREDUMP
 WCOREDUMP(status) ? " (core file ge nerated)" : "");
#else
 "");
#endif
 else if (WIFSTOPPED(status))
 printf("child stopped, signal number = %d\n ",
 WSTOPSIG(status));
}

Figure 8.6. Demonstrate various exit statuses

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
 pid_t pid;
 int status;

 if ((pid = fork()) < 0)
 err_sys("fork error");

 else if (pid == 0) /* child */
 exit(7);

 if (wait(&status) != pid) /* wait for chi ld */
 err_sys("wait error");
 pr_exit(status); /* and print it s status */

 if ((pid = fork()) < 0)
 err_sys("fork error");
 else if (pid == 0) /* child */
 abort(); /* generates SI GABRT */

 if (wait(&status) != pid) /* wait for chi ld */
 err_sys("wait error");
 pr_exit(status); /* and print it s status */

 if ((pid = fork()) < 0)
 err_sys("fork error");
 else if (pid == 0) /* child */
 status /= 0; /* divide by 0 generates SIGFPE */

 if (wait(&status) != pid) /* wait for chi ld */
 err_sys("wait error");
 pr_exit(status); /* and print it s status */

 exit(0);
}

As we mentioned, if we have more than one child, wait returns on termination of any of the children. What if
we want to wait for a specific process to terminate (assuming we know which process ID we want to wait for)?
In older versions of the UNIX System, we would have to call wait and compare the returned process ID with
the one we're interested in. If the terminated process wasn't the one we wanted, we would have to save the
process ID and termination status and call wait again. We would need to continue doing this until the desired
process terminated. The next time we wanted to wait for a specific process, we would go through the list of
already terminated processes to see whether we had already waited for it, and if not, call wait again. What we
need is a function that waits for a specific process. This functionality (and more) is provided by the POSIX.1
waitpid function.

The interpretation of the pid argument for waitpid depends on its value:

pid == –
1

Waits for any child process. In this respect, waitpid is equivalent to wait .

pid > 0 Waits for the child whose process ID equals pid.

pid == 0 Waits for any child whose process group ID equals that of the calling process. (We discuss process
groups in Section 9.4.)

pid < –1 Waits for any child whose process group ID equals the absolute value of pid.

The waitpid function returns the process ID of the child that terminated and stores the child's termination status
in the memory location pointed to by statloc. With wait , the only real error is if the calling process has no
children. (Another error return is possible, in case the function call is interrupted by a signal. We'll discuss this
in Chapter 10.) With waitpid , however, it's also possible to get an error if the specified process or process
group does not exist or is not a child of the calling process.

The options argument lets us further control the operation of waitpid . This argument is either 0 or is
constructed from the bitwise OR of the constants in Figure 8.7.

Figure 8.7. The options constants for waitpid

Constant Description

WCONTINUED If the implementation supports job control, the status of any child specified by pid that has been
continued after being stopped, but whose status has not yet been reported, is returned (XSI
extension to POSIX.1).

WNOHANG The waitpid function will not block if a child specified by pid is not immediately available. In
this case, the return value is 0.

WUNTRACED If the implementation supports job control, the status of any child specified by pid that has
stopped, and whose status has not been reported since it has stopped, is returned. The
WIFSTOPPED macro determines whether the return value corresponds to a stopped child process.

Solaris supports one additional, but nonstandard, option constant. WNOWAIT has the system keep the process
whose termination status is returned by waitpid in a wait state, so that it may be waited for again.

The waitpid function provides three features that aren't provided by the wait function.

1. The waitpid function lets us wait for one particular process, whereas the wait function returns the
status of any terminated child. We'll return to this feature when we discuss the popen function.

2. The waitpid function provides a nonblocking version of wait . There are times when we want to fetch a
child's status, but we don't want to block.

3. The waitpid function provides support for job control with the WUNTRACED and WCONTINUED options.

Example

Recall our discussion in Section 8.5 about zombie processes. If we want to write a process so that it fork s a
child but we don't want to wait for the child to complete and we don't want the child to become a zombie until
we terminate, the trick is to call fork twice. The program in Figure 8.8 does this.

We call sleep in the second child to ensure that the first child terminates before printing the parent process ID.
After a fork , either the parent or the child can continue executing; we never know which will resume execution
first. If we didn't put the second child to sleep, and if it resumed execution after the fork before its parent, the
parent process ID that it printed would be that of its parent, not process ID 1.

Executing the program in Figure 8.8 gives us

 $./a.out
 $ second child, parent pid = 1

Note that the shell prints its prompt when the original process terminates, which is before the second child
prints its parent process ID.

Figure 8.8. Avoid zombie processes by calling fork twice

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
 pid_t pid;

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* first child */
 if ((pid = fork()) < 0)
 err_sys("fork error");
 else if (pid > 0)
 exit(0); /* parent from second fork == first child */
 /*
 * We're the second child; our parent becom es init as soon
 * as our real parent calls exit() in the s tatement above.
 * Here's where we'd continue executing, kn owing that when
 * we're done, init will reap our status.
 */
 sleep(2);
 printf("second child, parent pid = %d\n", g etppid());
 exit(0);
 }

 if (waitpid(pid, NULL, 0) != pid) /* wait for first child */
 err_sys("waitpid error");

 /*
 * We're the parent (the original process); we continue executing,
 * knowing that we're not the parent of the sec ond child.
 */
 exit(0);
}

8.7. waitid Function

The XSI extension of the Single UNIX Specification includes an additional function to retrieve the exit status of
a process. The waitid function is similar to waitpid , but provides extra flexibility.

#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *inf op, int options);

Returns: 0 if OK, –1 on error

Like waitpid , waitid allows a process to specify which children to wait for. Instead of encoding this
information in a single argument combined with the process ID or process group ID, two separate arguments are
used. The id parameter is interpreted based on the value of idtype. The types supported are summarized in
Figure 8.9.

Figure 8.9. The idtype constants for waitid

Constant Description

P_PID Wait for a particular process: id contains the process ID of the child to wait for.

P_PGID Wait for any child process in a particular process group: id contains the process group ID of the
children to wait for.

P_ALL Wait for any child process: id is ignored.

The options argument is a bitwise OR of the flags shown in Figure 8.10. These flags indicate which state
changes the caller is interested in.

Figure 8.10. The options constants for waitid

Constant Description

WCONTINUED Wait for a process that has previously stopped and has been continued, and whose status has not
yet been reported.

WEXITED Wait for processes that have exited.

WNOHANG Return immediately instead of blocking if there is no child exit status available.

WNOWAIT Don't destroy the child exit status. The child's exit status can be retrieved by a subsequent call to
wait , waitid ,or waitpid .

WSTOPPED Wait for a process that has stopped and whose status has not yet been reported.

The infop argument is a pointer to a siginfo structure. This structure contains detailed information about the
signal generated that caused the state change in the child process. The siginfo structure is discussed further in
Section 10.14.

Of the four platforms covered in this book, only Solaris provides support for waitid .

8.8. wait3 and wait4 Functions

Most UNIX system implementations provide two additional functions: wait3 and wait4 . Historically, these
two variants descend from the BSD branch of the UNIX System. The only feature provided by these two
functions that isn't provided by the wait , waitid , and waitpid functions is an additional argument that allows
the kernel to return a summary of the resources used by the terminated process and all its child processes.

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>

pid_t wait3(int *statloc, int options, struct rusag e *rusage);

pid_t wait4(pid_t pid, int *statloc, int options,
 struct rusage *rusage);

Both return: process ID if OK, 0, or –1 on error

The resource information includes such statistics as the amount of user CPU time, the amount of system CPU
time, number of page faults, number of signals received, and the like. Refer to the getrusage (2) manual page
for additional details. (This resource information differs from the resource limits we described in Section 7.11.)
Figure 8.11 details the various arguments supported by the wait functions.

Figure 8.11. Arguments supported by wait functions on various systems

Function pid options rusage POSIX.1 Free BSD 5.2.1 Linux 2.4.22 Mac OSX 10.3 Solaris 9

wait • • • • •

waitid • • XSI •

waitpid • • • • • • •

wait3 • • • • • •

wait4 • • • • • • •

The wait3 function was included in earlier versions of the Single UNIX Specification. In Version 2, wait3 was
moved to the legacy category; wait3 was removed from the specification in Version 3.

8.9. Race Conditions

For our purposes, a race condition occurs when multiple processes are trying to do something with shared data
and the final outcome depends on the order in which the processes run. The fork function is a lively breeding
ground for race conditions, if any of the logic after the fork either explicitly or implicitly depends on whether
the parent or child runs first after the fork . In general, we cannot predict which process runs first. Even if we
knew which process would run first, what happens after that process starts running depends on the system load
and the kernel's scheduling algorithm.

We saw a potential race condition in the program in Figure 8.8 when the second child printed its parent process
ID. If the second child runs before the first child, then its parent process will be the first child. But if the first
child runs first and has enough time to exit , then the parent process of the second child is init . Even calling
sleep , as we did, guarantees nothing. If the system was heavily loaded, the second child could resume after
sleep returns, before the first child has a chance to run. Problems of this form can be difficult to debug because
they tend to work "most of the time."

A process that wants to wait for a child to terminate must call one of the wait functions. If a process wants to
wait for its parent to terminate, as in the program from Figure 8.8, a loop of the following form could be used:

 while (getppid() != 1)
 sleep(1);

The problem with this type of loop, called polling, is that it wastes CPU time, as the caller is awakened every
second to test the condition.

To avoid race conditions and to avoid polling, some form of signaling is required between multiple processes.
Signals can be used, and we describe one way to do this in Section 10.16. Various forms of interprocess
communication (IPC) can also be used. We'll discuss some of these in Chapters 15 and 17.

For a parent and child relationship, we often have the following scenario. After the fork , both the parent and
the child have something to do. For example, the parent could update a record in a log file with the child's
process ID, and the child might have to create a file for the parent. In this example, we require that each process
tell the other when it has finished its initial set of operations, and that each wait for the other to complete, before
heading off on its own. The following code illustrates this scenario:

#include "apue.h"

TELL_WAIT(); /* set things up for TELL_xxx & WAI T_xxx */

if ((pid = fork()) < 0) {
 err_sys("fork error");
} else if (pid == 0) { /* child */

 /* child does whatever is necessary ... */

 TELL_PARENT(getppid()); /* tell parent we'r e done */
 WAIT_PARENT(); /* and wait for par ent */

 /* and the child continues on its way ... */

 exit(0);
}

/* parent does whatever is necessary ... */

TELL_CHILD(pid); /* tell child we're don e */
WAIT_CHILD(); /* and wait for child * /

/* and the parent continues on its way ... */

exit(0);

We assume that the header apue.h defines whatever variables are required. The five routines TELL_WAIT,
TELL_PARENT, TELL_CHILD, WAIT_PARENT, and WAIT_CHILD can be either macros or functions.

We'll show various ways to implement these TELL and WAIT routines in later chapters: Section 10.16 shows an
implementation using signals; Figure 15.7 shows an implementation using pipes. Let's look at an example that
uses these five routines.

Example

The program in Figure 8.12 outputs two strings: one from the child and one from the parent. The program
contains a race condition because the output depends on the order in which the processes are run by the kernel
and for how long each process runs.

We set the standard output unbuffered, so every character output generates a write . The goal in this example is
to allow the kernel to switch between the two processes as often as possible to demonstrate the race condition.
(If we didn't do this, we might never see the type of output that follows. Not seeing the erroneous output doesn't
mean that the race condition doesn't exist; it simply means that we can't see it on this particular system.) The
following actual output shows how the results can vary:

 $./a.out
 ooutput from child
 utput from parent
 $./a.out
 ooutput from child
 utput from parent
 $./a.out
 output from child
 output from parent

We need to change the program in Figure 8.12 to use the TELL and WAIT functions. The program in Figure 8.13
does this. The lines preceded by a plus sign are new lines.

When we run this program, the output is as we expect; there is no intermixing of output from the two processes.

In the program shown in Figure 8.13, the parent goes first. The child goes first if we change the lines following
the fork to be

} else if (pid == 0) {
 charatatime("output from child\n");
 TELL_PARENT(getppid());
} else {
 WAIT_CHILD(); /* child goes first */
 charatatime("output from parent\n");
}

Exercise 8.3 continues this example.

Figure 8.12. Program with a race condition

#include "apue.h"

static void charatatime(char *);

int
main(void)
{
 pid_t pid;

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) {
 charatatime("output from child\n");
 } else {
 charatatime("output from parent\n");
 }
 exit(0);
}

static void
charatatime(char *str)
{
 char *ptr;
 int c;

 setbuf(stdout, NULL); /* set unbuffer ed */
 for (ptr = str; (c = *ptr++) != 0;)
 putc(c, stdout);
}

Figure 8.13. Modification of Figure 8.12 to avoid race condition

 #include "apue.h"

 static void charatatime(char *);

 int
 main(void)
 {
 pid_t pid;

+ TELL_WAIT();
+
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) {
+ WAIT_PARENT(); /* parent goes first */
 charatatime("output from child\n");
 } else {
 charatatime("output from parent\n");
+ TELL_CHILD(pid);
 }
 exit(0);
 }
 static void
 charatatime(char *str)

 {
 char *ptr;
 int c;

 setbuf(stdout, NULL); /* set unbuf fered */
 for (ptr = str; (c = *ptr++) != 0;)
 putc(c, stdout);
 }

8.10. exec Functions

We mentioned in Section 8.3 that one use of the fork function is to create a new process (the child) that then
causes another program to be executed by calling one of the exec functions. When a process calls one of the
exec functions, that process is completely replaced by the new program, and the new program starts executing
at its main function. The process ID does not change across an exec , because a new process is not created; exec
merely replaces the current process—its text, data, heap, and stack segments—with a brand new program from
disk.

There are six different exec functions, but we'll often simply refer to "the exec function," which means that we
could use any of the six functions. These six functions round out the UNIX System process control primitives.
With fork , we can create new processes; and with the exec functions, we can initiate new programs. The exit
function and the wait functions handle termination and waiting for termination. These are the only process
control primitives we need. We'll use these primitives in later sections to build additional functions, such as
popen and system .

#include <unistd.h>

int execl(const char *pathname, const char *arg0, . .. /* (char *)0 */);

int execv(const char *pathname, char *const argv []);

int execle(const char *pathname, const char *arg0, ...
 /* (char *)0, char *const envp[] */);

int execve(const char *pathname, char *const argv[] , char *const envp []);

int execlp(const char *filename, const char *arg0,
 ... /* (char *)0 */);

int execvp(const char *filename, char *const argv []);

All six return: –1 on error, no return on success

The first difference in these functions is that the first four take a pathname argument, whereas the last two take a
filename argument. When a filename argument is specified

• If filename contains a slash, it is taken as a pathname.
• Otherwise, the executable file is searched for in the directories specified by the PATH environment

variable.

The PATH variable contains a list of directories, called path prefixes, that are separated by colons. For example,
the name=value environment string

 PATH=/bin:/usr/bin:/usr/local/bin/:.

specifies four directories to search. The last path prefix specifies the current directory. (A zero-length prefix
also means the current directory. It can be specified as a colon at the beginning of the value, two colons in a row,
or a colon at the end of the value.)

There are security reasons for never including the current directory in the search path. See Garfinkel et al.
[2003].

If either execlp or execvp finds an executable file using one of the path prefixes, but the file isn't a machine
executable that was generated by the link editor, the function assumes that the file is a shell script and tries to
invoke /bin/sh with the filename as input to the shell.

The next difference concerns the passing of the argument list (l stands for list and v stands for vector). The
functions execl , execlp , and execle require each of the command-line arguments to the new program to be
specified as separate arguments. We mark the end of the arguments with a null pointer. For the other three
functions (execv , execvp , and execve), we have to build an array of pointers to the arguments, and the address
of this array is the argument to these three functions.

Before using ISO C prototypes, the normal way to show the command-line arguments for the three functions
execl , execle , and execlp was

 char *arg0, char *arg1, ..., char *argn, (char *)0

This specifically shows that the final command-line argument is followed by a null pointer. If this null pointer is
specified by the constant 0, we must explicitly cast it to a pointer; if we don't, it's interpreted as an integer
argument. If the size of an integer is different from the size of a char * , the actual arguments to the exec
function will be wrong.

The final difference is the passing of the environment list to the new program. The two functions whose names
end in an e (execle and execve) allow us to pass a pointer to an array of pointers to the environment strings.
The other four functions, however, use the environ variable in the calling process to copy the existing
environment for the new program. (Recall our discussion of the environment strings in Section 7.9 and Figure
7.8. We mentioned that if the system supported such functions as setenv and putenv , we could change the
current environment and the environment of any subsequent child processes, but we couldn't affect the
environment of the parent process.) Normally, a process allows its environment to be propagated to its children,
but in some cases, a process wants to specify a certain environment for a child. One example of the latter is the
login program when a new login shell is initiated. Normally, login creates a specific environment with only a
few variables defined and lets us, through the shell start-up file, add variables to the environment when we log
in.

Before using ISO C prototypes, the arguments to execle were shown as

 char *pathname, char *arg0, ..., char *argn, (ch ar *)0, char *envp[]

This specifically shows that the final argument is the address of the array of character pointers to the
environment strings. The ISO C prototype doesn't show this, as all the command-line arguments, the null
pointer, and the envp pointer are shown with the ellipsis notation (...).

The arguments for these six exec functions are difficult to remember. The letters in the function names help
somewhat. The letter p means that the function takes a filename argument and uses the PATH environment
variable to find the executable file. The letter l means that the function takes a list of arguments and is mutually
exclusive with the letter v , which means that it takes an argv[] vector. Finally, the letter e means that the
function takes an envp[] array instead of using the current environment. Figure 8.14 shows the differences
among these six functions.

Figure 8.14. Differences among the six exec functions

Function pathname filename Arg list argv[] environ envp[]

execl • • •

execlp • • •

execle • • •

execv • • •

execvp • • •

execve • • •

(letter in name) p l v e

Every system has a limit on the total size of the argument list and the environment list. From Section 2.5.2 and
Figure 2.8, this limit is given by ARG_MAX. This value must be at least 4,096 bytes on a POSIX.1 system. We
sometimes encounter this limit when using the shell's filename expansion feature to generate a list of filenames.
On some systems, for example, the command

 grep getrlimit /usr/share/man/*/*

can generate a shell error of the form

Argument list too long

Historically, the limit in older System V implementations was 5,120 bytes. Older BSD systems had a limit of
20,480 bytes. The limit in current systems is much higher. (See the output from the program in Figure 2.13,
which is summarized in Figure 2.14.)

To get around the limitation in argument list size, we can use the xargs (1) command to break up long argument
lists. To look for all the occurrences of getrlimit in the man pages on our system, we could use

 find /usr/share/man -type f -print | xargs grep getrlimit

If the man pages on our system are compressed, however, we could try

 find /usr/share/man -type f -print | xargs bzgre p getrlimit

We use the type -f option to the find command to restrict the list to contain only regular files, because the
grep commands can't search for patterns in directories, and we want to avoid unnecessary error messages.

We've mentioned that the process ID does not change after an exec , but the new program inherits additional
properties from the calling process:

• Process ID and parent process ID
• Real user ID and real group ID
• Supplementary group IDs
• Process group ID
• Session ID
• Controlling terminal
• Time left until alarm clock
• Current working directory
• Root directory
• File mode creation mask
• File locks
• Process signal mask
• Pending signals
• Resource limits
• Values for tms_utime , tms_stime , tms_cutime , and tms_cstime

The handling of open files depends on the value of the close-on-exec flag for each descriptor. Recall from
Figure 3.6 and our mention of the FD_CLOEXEC flag in Section 3.14 that every open descriptor in a process has a
close-on-exec flag. If this flag is set, the descriptor is closed across an exec . Otherwise, the descriptor is left
open across the exec . The default is to leave the descriptor open across the exec unless we specifically set the
close-on-exec flag using fcntl .

POSIX.1 specifically requires that open directory streams (recall the opendir function from Section 4.21) be
closed across an exec . This is normally done by the opendir function calling fcntl to set the close-on-exec
flag for the descriptor corresponding to the open directory stream.

Note that the real user ID and the real group ID remain the same across the exec , but the effective IDs can
change, depending on the status of the set-user-ID and the set- group-ID bits for the program file that is
executed. If the set-user-ID bit is set for the new program, the effective user ID becomes the owner ID of the
program file. Otherwise, the effective user ID is not changed (it's not set to the real user ID). The group ID is
handled in the same way.

In many UNIX system implementations, only one of these six functions, execve , is a system call within the
kernel. The other five are just library functions that eventually invoke this system call. We can illustrate the
relationship among these six functions as shown in Figure 8.15.

Figure 8.15. Relationship of the six exec functions

In this arrangement, the library functions execlp and execvp process the PATH environment variable, looking
for the first path prefix that contains an executable file named filename.

Example

The program in Figure 8.16 demonstrates the exec functions.

We first call execle , which requires a pathname and a specific environment. The next call is to execlp , which
uses a filename and passes the caller's environment to the new program. The only reason the call to execlp
works is that the directory /home/sar/bin is one of the current path prefixes. Note also that we set the first
argument, argv[0] in the new program, to be the filename component of the pathname. Some shells set this
argument to be the complete pathname. This is a convention only. We can set argv[0] to any string we like.
The login command does this when it executes the shell. Before executing the shell, login adds a dash as a
prefix to argv[0] to indicate to the shell that it is being invoked as a login shell. A login shell will execute the
start-up profile commands, whereas a nonlogin shell will not.

The program echoall that is executed twice in the program in Figure 8.16 is shown in Figure 8.17. It is a trivial
program that echoes all its command-line arguments and its entire environment list.

When we execute the program from Figure 8.16, we get

 $./a.out
 argv[0]: echoall
 argv[1]: myarg1
 argv[2]: MY ARG2
 USER=unknown
 PATH=/tmp
 $ argv[0]: echoall
 argv[1]: only 1 arg
 USER=sar
 LOGNAME=sar
 SHELL=/bin/bash
 47 more lines that are n't shown
 HOME=/home/sar

Note that the shell prompt appeared before the printing of argv[0] from the second exec . This is because the
parent did not wait for this child process to finish.

Figure 8.16. Example of exec functions

#include "apue.h"
#include <sys/wait.h>

char *env_init[] = { "USER=unknown", "PATH=/tmp" , NULL };

int
main(void)
{
 pid_t pid;

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* specify pathname, sp ecify environment */
 if (execle("/home/sar/bin/echoall", "echoal l", "myarg1",
 "MY ARG2", (char *)0, env_init) < 0)
 err_sys("execle error");
 }

 if (waitpid(pid, NULL, 0) < 0)
 err_sys("wait error");

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* specify filename, in herit environment */
 if (execlp("echoall", "echoall", "only 1 ar g", (char *)0) < 0)
 err_sys("execlp error");
 }

 exit(0);
}

Figure 8.17. Echo all command-line arguments and all environment strings

#include "apue.h"

int
main(int argc, char *argv[])
{
 int i;
 char **ptr;
 extern char **environ;

 for (i = 0; i < argc; i++) /* echo all com mand-line args */
 printf("argv[%d]: %s\n", i, argv[i]);

 for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */
 printf("%s\n", *ptr);

 exit(0);
}

8.11. Changing User IDs and Group IDs

In the UNIX System, privileges, such as being able to change the system's notion of the current date, and access
control, such as being able to read or write a particular file, are based on user and group IDs. When our
programs need additional privileges or need to gain access to resources that they currently aren't allowed to
access, they need to change their user or group ID to an ID that has the appropriate privilege or access.
Similarly, when our programs need to lower their privileges or prevent access to certain resources, they do so by
changing either their user ID or group ID to an ID without the privilege or ability access to the resource.

In general, we try to use the least-privilege model when we design our applications. Following this model, our
programs should use the least privilege necessary to accomplish any given task. This reduces the likelihood that
security can be compromised by a malicious user trying to trick our programs into using their privileges in
unintended ways.

We can set the real user ID and effective user ID with the setuid function. Similarly, we can set the real group
ID and the effective group ID with the setgid function.

#include <unistd.h>

int setuid(uid_t uid);

int setgid(gid_t gid);

Both return: 0 if OK, –1 on error

There are rules for who can change the IDs. Let's consider only the user ID for now. (Everything we describe
for the user ID also applies to the group ID.)

1. If the process has superuser privileges, the setuid function sets the real user ID, effective user ID, and
saved set-user-ID to uid.

2. If the process does not have superuser privileges, but uid equals either the real user ID or the saved set-
user-ID, setuid sets only the effective user ID to uid. The real user ID and the saved set-user-ID are not
changed.

3. If neither of these two conditions is true, errno is set to EPERM, and –1 is returned.

Here, we are assuming that _POSIX_SAVED_IDS is true. If this feature isn't provided, then delete all preceding
references to the saved set-user-ID.

The saved IDs are a mandatory feature in the 2001 version of POSIX.1. They used to be optional in older
versions of POSIX. To see whether an implementation supports this feature, an application can test for the
constant _POSIX_SAVED_IDS at compile time or call sysconf with the _SC_SAVED_IDS argument at runtime.

We can make a few statements about the three user IDs that the kernel maintains.

1. Only a superuser process can change the real user ID. Normally, the real user ID is set by the login (1)
program when we log in and never changes. Because login is a superuser process, it sets all three user
IDs when it calls setuid .

2. The effective user ID is set by the exec functions only if the set-user-ID bit is set for the program file. If
the set-user-ID bit is not set, the exec functions leave the effective user ID as its current value. We can

call setuid at any time to set the effective user ID to either the real user ID or the saved set-user-ID.
Naturally, we can't set the effective user ID to any random value.

3. The saved set-user-ID is copied from the effective user ID by exec . If the file's set-user-ID bit is set, this
copy is saved after exec stores the effective user ID from the file's user ID.

Figure 8.18 summarizes the various ways these three user IDs can be changed.

Figure 8.18. Ways to change the three user IDs

exec setuid(uid) ID

set-user-ID bit off set-user-ID bit on superuser unprivileged
user

real user ID unchanged unchanged set to uid unchanged

effective user
ID

unchanged set from user ID of program
file

set to uid set to uid

saved set-user
ID

copied from effective user
ID

copied from effective user ID set to uid unchanged

Note that we can obtain only the current value of the real user ID and the effective user ID with the functions
getuid and geteuid from Section 8.2. We can't obtain the current value of the saved set-user-ID.

Example

To see the utility of the saved set-user-ID feature, let's examine the operation of a program that uses
it. We'll look at the man(1) program, which is used to display online manual pages. The man program
can be installed either set-user-ID or set-group-ID to a specific user or group, usually one reserved
for man itself. The man program can be made to read and possibly overwrite files in locations that are
chosen either through a configuration file (usually /etc/man.config or /etc/manpath.config) or
using a command-line option.

The man program might have to execute several other commands to process the files containing the
manual page to be displayed. To prevent being tricked into running the wrong commands or
overwriting the wrong files, the man command has to switch between two sets of privileges: those of
the user running the man command and those of the user that owns the man executable file. The
following steps take place.

1. Assuming that the man program file is owned by the user name man and has its set-user-ID bit
set, when we exec it, we have

 real user ID = our user ID
 effective user ID = man
 saved set-user-ID = man

2. The man program accesses the required configuration files and manual pages. These files are
owned by the user name man, but because the effective user ID is man, file access is allowed.

3. Before man runs any command on our behalf, it calls setuid(getuid()) . Because we are
not a superuser process, this changes only the effective user ID. We have

 real user ID = our user ID (unchanged)
 effective user ID = our user ID
 saved set-user-ID = man (unchanged)

Now the man process is running with our user ID as its effective user ID. This means that we
can access only the files to which we have normal access. We have no additional
permissions. It can safely execute any filter on our behalf.

4. When the filter is done, man calls setuid(euid) , where euid is the numerical user ID for the
user name man. (This was saved by man by calling geteuid .) This call is allowed because the
argument to setuid equals the saved set-user-ID. (This is why we need the saved set-user-
ID.) Now we have

 real user ID = our user ID (unchanged)
 effective user ID = man
 saved set-user-ID = man (unchanged)

5. The man program can now operate on its files, as its effective user ID is man.

By using the saved set-user-ID in this fashion, we can use the extra privileges granted to us by the
set-user-ID of the program file at the beginning of the process and at the end of the process. In
between, however, the process runs with our normal permissions. If we weren't able to switch back
to the saved set-user-ID at the end, we might be tempted to retain the extra permissions the whole
time we were running (which is asking for trouble).

Let's look at what happens if man spawns a shell for us while it is running. (The shell is spawned
using fork and exec .) Because the real user ID and the effective user ID are both our normal user
ID (step 3), the shell has no extra permissions. The shell can't access the saved set-user-ID that is set
to man while man is running, because the saved set-user-ID for the shell is copied from the effective
user ID by exec . So in the child process that does the exec , all three user IDs are our normal user
ID.

Our description of how man uses the setuid function is not correct if the program is set-user-ID to
root, because a call to setuid with superuser privileges sets all three user IDs. For the example to
work as described, we need setuid to set only the effective user ID.

setreuid and setregid Functions

Historically, BSD supported the swapping of the real user ID and the effective user ID with the setreuid
function.

 #include <unistd.h>

 int setreuid(uid_t ruid, uid_t euid);

 int setregid(gid_t rgid, gid_t egid);

Both return: 0 if OK, –1 on error

We can supply a value of –1 for any of the arguments to indicate that the corresponding ID should remain
unchanged.

The rule is simple: an unprivileged user can always swap between the real user ID and the effective user ID.
This allows a set-user-ID program to swap to the user's normal permissions and swap back again later for set-
user-ID operations. When the saved set-user-ID feature was introduced with POSIX.1, the rule was enhanced to
also allow an unprivileged user to set its effective user ID to its saved set-user-ID.

Both setreuid and setregid are XSI extensions in the Single UNIX Specification. As such, all UNIX System
implementations are expected to provide support for them.

4.3BSD didn't have the saved set-user-ID feature described earlier. It used setreuid and setregid instead.
This allowed an unprivileged user to swap back and forth between the two values. Be aware, however, that
when programs that used this feature spawned a shell, they had to set the real user ID to the normal user ID
before the exec . If they didn't do this, the real user ID could be privileged (from the swap done by setreuid)
and the shell process could call setreuid to swap the two and assume the permissions of the more privileged
user. As a defensive programming measure to solve this problem, programs set both the real user ID and the
effective user ID to the normal user ID before the call to exec in the child.

seteuid and setegid Functions

POSIX.1 includes the two functions seteuid and setegid . These functions are similar to setuid and setgid ,
but only the effective user ID or effective group ID is changed.

#include <unistd.h>

int seteuid(uid_t uid);

int setegid(gid_t gid);

Both return: 0 if OK, –1 on error

An unprivileged user can set its effective user ID to either its real user ID or its saved set-user-ID. For a
privileged user, only the effective user ID is set to uid. (This differs from the setuid function, which changes
all three user IDs.)

Figure 8.19 summarizes all the functions that we've described here that modify the three user IDs.

Figure 8.19. Summary of all the functions that set the various user IDs

Group IDs

Everything that we've said so far in this section also applies in a similar fashion to group IDs. The
supplementary group IDs are not affected by setgid , setregid , or setegid .

8.12. Interpreter Files

All contemporary UNIX systems support interpreter files. These files are text files that begin with a line of the
form

 #! pathname [optional-argument]

The space between the exclamation point and the pathname is optional. The most common of these interpreter
files begin with the line

 #!/bin/sh

The pathname is normally an absolute pathname, since no special operations are performed on it (i.e., PATH is
not used). The recognition of these files is done within the kernel as part of processing the exec system call.
The actual file that gets executed by the kernel is not the interpreter file, but the file specified by the pathname
on the first line of the interpreter file. Be sure to differentiate between the interpreter file—a text file that begins
with #! —and the interpreter, which is specified by the pathname on the first line of the interpreter file.

Be aware that systems place a size limit on the first line of an interpreter file. This limit includes the #! , the
pathname, the optional argument, the terminating newline, and any spaces.

On FreeBSD 5.2.1, this limit is 128 bytes. Mac OS X 10.3 extends this limit to 512 bytes. Linux 2.4.22 supports
a limit of 127 bytes, whereas Solaris 9 places the limit at 1,023 bytes.

Example

Let's look at an example to see what the kernel does with the arguments to the exec function when the file being
executed is an interpreter file and the optional argument on the first line of the interpreter file. The program in
Figure 8.20 exec s an interpreter file.

The following shows the contents of the one-line interpreter file that is executed and the result from running the
program in Figure 8.20:

 $ cat /home/sar/bin/testinterp
 #!/home/sar/bin/echoarg foo
 $./a.out
 argv[0]: /home/sar/bin/echoarg
 argv[1]: foo
 argv[2]: /home/sar/bin/testinterp
 argv[3]: myarg1
 argv[4]: MY ARG2

The program echoarg (the interpreter) just echoes each of its command-line arguments. (This is the program
from Figure 7.4.) Note that when the kernel exec s the interpreter (/home/sar/bin/echoarg), argv[0] is the
pathname of the interpreter, argv[1] is the optional argument from the interpreter file, and the remaining
arguments are the pathname (/home/sar/bin/testinterp) and the second and third arguments from the call to
execl in the program shown in Figure 8.20 (myarg1 and MY ARG2). Both argv[1] and argv[2] from the call to
execl have been shifted right two positions. Note that the kernel takes the pathname from the execl call
instead of the first argument (testinterp), on the assumption that the pathname might contain more
information than the first argument.

Figure 8.20. A program that execs an interpreter file

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
 pid_t pid;
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 if (execl("/home/sar/bin/testinterp",
 "testinterp", "myarg1", "MY ARG2" , (char *)0) < 0)
 err_sys("execl error");
 }
 if (waitpid(pid, NULL, 0) < 0) /* parent */
 err_sys("waitpid error");
 exit(0);
}

Example. Example

A common use for the optional argument following the interpreter pathname is to specify the -f option for
programs that support this option. For example, an awk(1) program can be executed as

 awk -f myfile

which tells awk to read the awk program from the file myfile .

Systems derived from UNIX System V often include two versions of the awk language. On these systems, awk
is often called "old awk" and corresponds to the original version distributed with Version 7. In contrast, nawk
(new awk) contains numerous enhancements and corresponds to the language described in Aho, Kernighan, and
Weinberger [1988]. This newer version provides access to the command-line arguments, which we need for the
example that follows. Solaris 9 provides both versions.

The awk program is one of the utilities included by POSIX in its 1003.2 standard, which is now part of the base
POSIX.1 specification in the Single UNIX Specification. This utility is also based on the language described in
Aho, Kernighan, and Weinberger [1988].

The version of awk in Mac OS X 10.3 is based on the Bell Laboratories version that Lucent has placed in the
public domain. FreeBSD 5.2.1 and Linux 2.4.22 ship with GNU awk, called gawk, which is linked to the name
awk. The gawk version conforms to the POSIX standard, but also includes other extensions. Because they are
more up-to-date, the version of awk from Bell Laboratories and gawk are preferred to either nawk or old awk.
(The version of awk from Bell Laboratories is available at http://cm.bell-labs.com/cm/cs/awkbook/index.html.)

Using the -f option with an interpreter file lets us write

 #!/bin/awk -f
 (awk program follows in the interpreter file)

For example, Figure 8.21 shows /usr/local/bin/awkexample (an interpreter file).

If one of the path prefixes is /usr/local/bin , we can execute the program in Figure 8.21 (assuming that we've
turned on the execute bit for the file) as

 $ awkexample file1 FILENAME2 f3
 ARGV[0] = awk
 ARGV[1] = file1
 ARGV[2] = FILENAME2
 ARGV[3] = f3

When /bin/awk is executed, its command-line arguments are

 /bin/awk -f /usr/local/bin/awkexample file1 FILE NAME2 f3

The pathname of the interpreter file (/usr/local/bin/awkexample) is passed to the interpreter. The filename
portion of this pathname (what we typed to the shell) isn't adequate, because the interpreter (/bin/awk in this
example) can't be expected to use the PATH variable to locate files. When it reads the interpreter file, awk ignores
the first line, since the pound sign is awk's comment character.

We can verify these command-line arguments with the following commands:

 $ /bin/su become s uperuser
 Password: enter su peruser password
 # mv /bin/awk /bin/awk.save save the original program
 # cp /home/sar/bin/echoarg /bin/awk and repl ace it temporarily
 # suspend suspend the superuser shell using job control
 [1] + Stopped /bin/su
 $ awkexample file1 FILENAME2 f3
 argv[0]: /bin/awk
 argv[1]: -f
 argv[2]: /usr/local/bin/awkexample
 argv[3]: file1
 argv[4]: FILENAME2
 argv[5]: f3
 $ fg resume superuser shell using job control
 /bin/su
 # mv /bin/awk.save /bin/awk restore the original program
 # exit and exi t the superuser shell

In this example, the -f option for the interpreter is required. As we said, this tells awk where to look for the awk
program. If we remove the -f option from the interpreter file, an error message usually results when we try to
run it. The exact text of the message varies, depending on where the interpreter file is stored and whether the
remaining arguments represent existing files. This is because the command-line arguments in this case are

 /bin/awk /usr/local/bin/awkexample file1 FILENAM E2 f3

and awk is trying to interpret the string /usr/local/bin/awkexample as an awk program. If we couldn't pass at
least a single optional argument to the interpreter (-f in this case), these interpreter files would be usable only
with the shells.

Figure 8.21. An awk program as an interpreter file

#!/bin/awk -f
BEGIN {
 for (i = 0; i < ARGC; i++)
 printf "ARGV[%d] = %s\n", i, ARGV[i]
 exit
}

Are interpreter files required? Not really. They provide an efficiency gain for the user at some expense in the
kernel (since it's the kernel that recognizes these files). Interpreter files are useful for the following reasons.

1. They hide that certain programs are scripts in some other language. For example, to execute the program
in Figure 8.21, we just say

2. awkexample optional-arguments

instead of needing to know that the program is really an awk script that we would otherwise have to
execute as

 awk -f awkexample optional-arguments

3. Interpreter scripts provide an efficiency gain. Consider the previous example again. We could still hide
that the program is an awk script, by wrapping it in a shell script:

4. awk 'BEGIN {
5. for (i = 0; i < ARGC; i++)
6. printf "ARGV[%d] = %s\n", i, ARGV[i]
7. exit
8. }' $*

The problem with this solution is that more work is required. First, the shell reads the command and tries
to execlp the filename. Because the shell script is an executable file, but isn't a machine executable, an
error is returned, and execlp assumes that the file is a shell script (which it is). Then /bin/sh is
executed with the pathname of the shell script as its argument. The shell correctly runs our script, but to
run the awk program, the shell does a fork , exec , and wait . Thus, there is more overhead in replacing
an interpreter script with a shell script.

9. Interpreter scripts let us write shell scripts using shells other than /bin/sh . When it finds an executable
file that isn't a machine executable, execlp has to choose a shell to invoke, and it always uses /bin/sh .
Using an interpreter script, however, we can simply write

10. #!/bin/csh
11. (C shell script follows in the interpreter file)

Again, we could wrap this all in a /bin/sh script (that invokes the C shell), as we described earlier, but
more overhead is required.

None of this would work as we've shown if the three shells and awk didn't use the pound sign as their comment
character.

8.13. system Function

It is convenient to execute a command string from within a program. For example, assume that we want to put a
time-and-date stamp into a certain file. We could use the functions we describe in Section 6.10 to do this: call
time to get the current calendar time, then call localtime to convert it to a broken-down time, and then call
strftime to format the result, and write the results to the file. It is much easier, however, to say

system("date > file");

ISO C defines the system function, but its operation is strongly system dependent. POSIX.1 includes the
system interface, expanding on the ISO C definition to describe its behavior in a POSIX environment.

#include <stdlib.h>

int system(const char *cmdstring);

Returns: (see below)

If cmdstring is a null pointer, system returns nonzero only if a command processor is available. This feature
determines whether the system function is supported on a given operating system. Under the UNIX System,
system is always available.

Because system is implemented by calling fork , exec , and waitpid , there are three types of return values.

1. If either the fork fails or waitpid returns an error other than EINTR, system returns –1 with errno set
to indicate the error.

2. If the exec fails, implying that the shell can't be executed, the return value is as if the shell had executed
exit(127) .

3. Otherwise, all three functions—fork , exec , and waitpid —succeed, and the return value from system
is the termination status of the shell, in the format specified for waitpid .

Some older implementations of system returned an error (EINTR) if waitpid was interrupted by a
caught signal. Because there is no cleanup strategy that an application can use to recover from this type
of error, POSIX later added the requirement that system not return an error in this case. (We discuss
interrupted system calls in Section 10.5.)

Figure 8.22 shows an implementation of the system function. The one feature that it doesn't handle is signals.
We'll update this function with signal handling in Section 10.18.

Figure 8.22. The system function, without signal handling

#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>

int
system(const char *cmdstring) /* version without signal handling */
{
 pid_t pid;
 int status;

 if (cmdstring == NULL)
 return(1); /* always a command process or with UNIX */

 if ((pid = fork()) < 0) {
 status = -1; /* probably out of processe s */
 } else if (pid == 0) { /* child */
 execl("/bin/sh", "sh", "-c", cmdstring, (ch ar *)0);
 _exit(127); /* execl error */
 } else { /* parent */
 while (waitpid(pid, &status, 0) < 0) {
 if (errno != EINTR) {
 status = -1; /* error other than EI NTR from waitpid() */
 break;
 }
 }
 }

 return(status);
}

The shell's -c option tells it to take the next command-line argument—cmdstring, in this case—as its command
input instead of reading from standard input or from a given file. The shell parses this null-terminated C string
and breaks it up into separate command-line arguments for the command. The actual command string that is
passed to the shell can contain any valid shell commands. For example, input and output redirection using < and
> can be used.

If we didn't use the shell to execute the command, but tried to execute the command ourself, it would be more
difficult. First, we would want to call execlp instead of execl , to use the PATH variable, like the shell. We
would also have to break up the null-terminated C string into separate command-line arguments for the call to
execlp . Finally, we wouldn't be able to use any of the shell metacharacters.

Note that we call _exit instead of exit . We do this to prevent any standard I/O buffers, which would have
been copied from the parent to the child across the fork , from being flushed in the child.

We can test this version of system with the program shown in Figure 8.23. (The pr_exit function was defined
in Figure 8.5.)

Figure 8.23. Calling the system function

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
 int status;

 if ((status = system("date")) < 0)
 err_sys("system() error");
 pr_exit(status);

 if ((status = system("nosuchcommand")) < 0)
 err_sys("system() error");
 pr_exit(status);

 if ((status = system("who; exit 44")) < 0)

 err_sys("system() error");
 pr_exit(status);

 exit(0);
}

Running the program in Figure 8.23 gives us

 $./a.out
 Sun Mar 21 18:41:32 EST 2004
 normal termination, exit status = 0 for date
 sh: nosuchcommand: command not found
 normal termination, exit status = 127 for nosu chcommand
 sar :0 Mar 18 19:45
 sar pts/0 Mar 18 19:45 (:0)
 sar pts/1 Mar 18 19:45 (:0)
 sar pts/2 Mar 18 19:45 (:0)
 sar pts/3 Mar 18 19:45 (:0)
 normal termination, exit status = 44 for exit

The advantage in using system , instead of using fork and exec directly, is that system does all the required
error handling and (in our next version of this function in Section 10.18) all the required signal handling.

Earlier systems, including SVR3.2 and 4.3BSD, didn't have the waitpid function available. Instead, the parent
waited for the child, using a statement such as

 while ((lastpid = wait(&status)) != pid && lastp id != -1)
 ;

A problem occurs if the process that calls system has spawned its own children before calling system . Because
the while statement above keeps looping until the child that was generated by system terminates, if any
children of the process terminate before the process identified by pid , then the process ID and termination
status of these other children are discarded by the while statement. Indeed, this inability to wait for a specific
child is one of the reasons given in the POSIX.1 Rationale for including the waitpid function. We'll see in
Section 15.3 that the same problem occurs with the popen and pclose functions, if the system doesn't provide a
waitpid function.

Set-User-ID Programs

What happens if we call system from a set-user-ID program? Doing so is a security hole and should never be
done. Figure 8.24 shows a simple program that just calls system for its command-line argument.

Figure 8.24. Execute the command-line argument using system

#include "apue.h"

int
main(int argc, char *argv[])
{
 int status;

 if (argc < 2)
 err_quit("command-line argument required");

 if ((status = system(argv[1])) < 0)
 err_sys("system() error");
 pr_exit(status);

 exit(0);
}

We'll compile this program into the executable file tsys .

Figure 8.25 shows another simple program that prints its real and effective user IDs.

Figure 8.25. Print real and effective user IDs

#include "apue.h"

int
main(void)
{
 printf("real uid = %d, effective uid = %d\n", g etuid(), geteuid());
 exit(0);
}

We'll compile this program into the executable file printuids . Running both programs gives us the following:

 $ tsys printuids normal execution, no special privileges
 real uid = 205, effective uid = 205
 normal termination, exit status = 0
 $ su become superuser
 Password: enter superuser password
 # chown root tsys change owner
 # chmod u+s tsys make s et-user-ID
 # ls -l tsys verify file's permissions and owner
 -rwsrwxr-x 1 root 16361 Mar 16 16:59 tsys
 # exit leave superuser shell
 $ tsys printuids
 real uid = 205, effective uid = 0 oops, this is a security hole
 normal termination, exit status = 0

The superuser permissions that we gave the tsys program are retained across the fork and exec that are done
by system .

When /bin/sh is bash version 2, the previous example doesn't work, because bash will reset the effective user
ID to the real user ID when they don't match.

If it is running with special permissions—either set-user-ID or set-group-ID—and wants to spawn another
process, a process should use fork and exec directly, being certain to change back to normal permissions after
the fork , before calling exec . The system function should never be used from a set-user-ID or a set-group-ID
program.

One reason for this admonition is that system invokes the shell to parse the command string, and the shell uses
its IFS variable as the input field separator. Older versions of the shell didn't reset this variable to a normal set
of characters when invoked. This allowed a malicious user to set IFS before system was called, causing system
to execute a different program.

8.14. Process Accounting

Most UNIX systems provide an option to do process accounting. When enabled, the kernel writes an accounting
record each time a process terminates. These accounting records are typically a small amount of binary data
with the name of the command, the amount of CPU time used, the user ID and group ID, the starting time, and
so on. We'll take a closer look at these accounting records in this section, as it gives us a chance to look at
processes again and to use the fread function from Section 5.9.

Process accounting is not specified by any of the standards. Thus, all the implementations have annoying
differences. For example, the I/O counts maintained on Solaris 9 are in units of bytes, whereas FreeBSD 5.2.1
and Mac OS X 10.3 maintain units of blocks, although there is no distinction between different block sizes,
making the counter effectively useless. Linux 2.4.22, on the other hand, doesn't try to maintain I/O statistics at
all.

Each implementation also has its own set of administrative commands to process raw accounting data. For
example, Solaris provides runacct (1m) and acctcom (1), whereas FreeBSD provides the sa (8) command to
process and summarize the raw accounting data.

A function we haven't described (acct) enables and disables process accounting. The only use of this function
is from the accton (8) command (which happens to be one of the few similarities among platforms). A
superuser executes accton with a pathname argument to enable accounting. The accounting records are written
to the specified file, which is usually /var/account/acct on FreeBSD and Mac OS X, /var/account/pacct
on Linux, and /var/adm/pacct on Solaris. Accounting is turned off by executing accton without any
arguments.

The structure of the accounting records is defined in the header <sys/acct.h> and looks something like

typedef u_short comp_t; /* 3-bit base 8 exponent ; 13-bit fraction */

struct acct
{
 char ac_flag; /* flag (see Figure 8.26) */
 char ac_stat; /* termination status (signal & core flag only) */
 /* (Solaris only) */
 uid_t ac_uid; /* real user ID */
 gid_t ac_gid; /* real group ID */
 dev_t ac_tty; /* controlling terminal */
 time_t ac_btime; /* starting calendar time */
 comp_t ac_utime; /* user CPU time (clock ticks) */
 comp_t ac_stime; /* system CPU time (clock tic ks) */
 comp_t ac_etime; /* elapsed time (clock ticks) */
 comp_t ac_mem; /* average memory usage */
 comp_t ac_io; /* bytes transferred (by read and write) */
 /* "blocks" on BSD systems */
 comp_t ac_rw; /* blocks read or written */
 /* (not present on BSD system s) */
 char ac_comm[8]; /* command name: [8] for Sola ris, */
 /* [10] for Mac OS X, [16] fo r FreeBSD, and */
 /* [17] for Linux */
};

The ac_flag member records certain events during the execution of the process. These events are described in
Figure 8.26.

Figure 8.26. Values for ac_flag from accounting record

ac_flag Description FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

AFORK process is the result of fork , but never
called exec

• • • •

ASU process used superuser privileges • • •

ACOMPAT process used compatibility mode

ACORE process dumped core • • •

AXSIG process was killed by a signal • • •

AEXPND expanded accounting entry •

The data required for the accounting record, such as CPU times and number of characters transferred, is kept by
the kernel in the process table and initialized whenever a new process is created, as in the child after a fork .
Each accounting record is written when the process terminates. This means that the order of the records in the
accounting file corresponds to the termination order of the processes, not the order in which they were started.
To know the starting order, we would have to go through the accounting file and sort by the starting calendar
time. But this isn't perfect, since calendar times are in units of seconds (Section 1.10), and it's possible for many
processes to be started in any given second. Alternatively, the elapsed time is given in clock ticks, which are
usually between 60 and 128 ticks per second. But we don't know the ending time of a process; all we know is its
starting time and ending order. This means that even though the elapsed time is more accurate than the starting
time, we still can't reconstruct the exact starting order of various processes, given the data in the accounting file.

The accounting records correspond to processes, not programs. A new record is initialized by the kernel for the
child after a fork , not when a new program is executed. Although exec doesn't create a new accounting record,
the command name changes, and the AFORK flag is cleared. This means that if we have a chain of three
programs—A exec s B, then B exec s C, and C exit s—only a single accounting record is written. The
command name in the record corresponds to program C, but the CPU times, for example, are the sum for
programs A, B, and C.

Example

To have some accounting data to examine, we'll create a test program to implement the diagram shown in
Figure 8.27.

The source for the test program is shown in Figure 8.28. It calls fork four times. Each child does something
different and then terminates.

We'll run the test program on Solaris and then use the program in Figure 8.29 to print out selected fields from
the accounting records.

BSD-derived platforms don't support the ac_flag member, so we define the HAS_SA_STAT constant on the

platforms that do support this member. Basing the defined symbol on the feature instead of on the platform
reads better and allows us to modify the program simply by adding the additional definition to our compilation
command. The alternative would be to use

#if defined(BSD) || defined(MACOS)

which becomes unwieldy as we port our application to additional platforms.

We define similar constants to determine whether the platform supports the ACORE and AXSIG accounting flags.
We can't use the flag symbols themselves, because on Linux, they are defined as enum values, which we can't
use in a #ifdef expression.

To perform our test, we do the following:

1. Become superuser and enable accounting, with the accton command. Note that when this command
terminates, accounting should be on; therefore, the first record in the accounting file should be from this
command.

2. Exit the superuser shell and run the program in Figure 8.28. This should append six records to the
accounting file: one for the superuser shell, one for the test parent, and one for each of the four test
children.

A new process is not created by the execl in the second child. There is only a single accounting record
for the second child.

3. Become superuser and turn accounting off. Since accounting is off when this accton command
terminates, it should not appear in the accounting file.

4. Run the program in Figure 8.29 to print the selected fields from the accounting file.

The output from step 4 follows. We have appended to each line the description of the process in italics, for the
discussion later.

 accton e = 6, chars = 0, stat = 0: S
 sh e = 2106, chars = 15632, stat = 0: S
 dd e = 8, chars = 273344, stat = 0: second child
 a.out e = 202, chars = 921, stat = 0: parent
 a.out e = 407, chars = 0, stat = 13 4: F first child
 a.out e = 600, chars = 0, stat = 9: F fourth child
 a.out e = 801, chars = 0, stat = 0: F third child

The elapsed time values are measured in units of clock ticks per second. From Figure 2.14, the value on this
system is 100. For example, the sleep(2) in the parent corresponds to the elapsed time of 202 clock ticks. For
the first child, the sleep(4) becomes 407 clock ticks. Note that the amount of time a process sleeps is not
exact. (We'll return to the sleep function in Chapter 10.) Also, the calls to fork and exit take some amount of
time.

Note that the ac_stat member is not the true termination status of the process, but corresponds to a portion of
the termination status that we discussed in Section 8.6. The only information in this byte is a core-flag bit

(usually the high-order bit) and the signal number (usually the seven low-order bits), if the process terminated
abnormally. If the process terminated normally, we are not able to obtain the exit status from the accounting
file. For the first child, this value is 128 + 6. The 128 is the core flag bit, and 6 happens to be the value on this
system for SIGABRT, which is generated by the call to abort . The value 9 for the fourth child corresponds to the
value of SIGKILL . We can't tell from the accounting data that the parent's argument to exit was 2 and that the
third child's argument to exit was 0.

The size of the file /etc/termcap that the dd process copies in the second child is 136,663 bytes. The number
of characters of I/O is just over twice this value. It is twice the value, as 136,663 bytes are read in, then 136,663
bytes are written out. Even though the output goes to the null device, the bytes are still accounted for.

The ac_flag values are as we expect. The F flag is set for all the child processes except the second child, which
does the execl . The F flag is not set for the parent, because the interactive shell that executed the parent did a
fork and then an exec of the a.out file. The first child process calls abort , which generates a SIGABRT signal
to generate the core dump. Note that neither the X flag nor the D flag is on, as they are not supported on Solaris;
the information they represent can be derived from the ac_stat field. The fourth child also terminates because
of a signal, but the SIGKILL signal does not generate a core dump; it only terminates the process.

As a final note, the first child has a 0 count for the number of characters of I/O, yet this process generated a
core file. It appears that the I/O required to write the core file is not charged to the process.

Figure 8.27. Process structure for accounting example

Figure 8.28. Program to generate accounting data

#include "apue.h"

int
main(void)
{

 pid_t pid;

 if ((pid = fork()) < 0)
 err_sys("fork error");
 else if (pid != 0) { /* parent */
 sleep(2);
 exit(2); /* terminate with ex it status 2 */
 }

 /* first child */
 if ((pid = fork()) < 0)
 err_sys("fork error");
 else if (pid != 0) {
 sleep(4);
 abort(); /* terminate with co re dump */
 }

 /* second child */
 if ((pid = fork()) < 0)
 err_sys("fork error");
 else if (pid != 0) {
 execl("/bin/dd", "dd", "if=/etc/termcap", "o f=/dev/null", NULL);
 exit(7); /* shouldn't get her e */
 }

 /* third child */
 if ((pid = fork()) < 0)
 err_sys("fork error");
 else if (pid != 0) {
 sleep(8);
 exit(0); /* normal exit */
 }

 /* fourth child */
 sleep(6);
 kill(getpid(), SIGKILL); /* terminate w/signa l, no core dump */
 exit(6); /* shouldn't get her e */
}

Figure 8.29. Print selected fields from system's accounting file

#include "apue.h"
#include <sys/acct.h>

#ifdef HAS_SA_STAT
#define FMT "%-*.*s e = %6ld, chars = %7ld, stat = %3u: %c %c %c %c\n"
#else
#define FMT "%-*.*s e = %6ld, chars = %7ld, %c %c %c %c\n"
#endif
#ifndef HAS_ACORE
#define ACORE 0
#endif
#ifndef HAS_AXSIG
#define AXSIG 0
#endif

static unsigned long
compt2ulong(comp_t comptime) /* convert comp_t t o unsigned long */
{
 unsigned long val;
 int exp;

 val = comptime & 0x1fff; /* 13-bit fraction */
 exp = (comptime >> 13) & 7; /* 3-bit exponent (0-7) */
 while (exp-- > 0)
 val *= 8;
 return(val);
}
int
main(int argc, char *argv[])

{
 struct acct acdata;
 FILE *fp;

 if (argc != 2)
 err_quit("usage: pracct filename");
 if ((fp = fopen(argv[1], "r")) == NULL)
 err_sys("can't open %s", argv[1]);
 while (fread(&acdata, sizeof(acdata), 1, fp) == 1) {
 printf(FMT, (int)sizeof(acdata.ac_comm),
 (int)sizeof(acdata.ac_comm), acdata.ac_ comm,
 compt2ulong(acdata.ac_etime), compt2ulo ng(acdata.ac_io),
#ifdef HAS_SA_STAT
 (unsigned char) acdata.ac_stat,
#endif
 acdata.ac_flag & ACORE ? 'D' : ' ',
 acdata.ac_flag & AXSIG ? 'X' : ' ',
 acdata.ac_flag & AFORK ? 'F' : ' ',
 acdata.ac_flag & ASU ? 'S' : ' ');
 }
 if (ferror(fp))
 err_sys("read error");
 exit(0);
}

8.15. User Identification

Any process can find out its real and effective user ID and group ID. Sometimes, however, we want to find out
the login name of the user who's running the program. We could call getpwuid(getuid()) , but what if a single
user has multiple login names, each with the same user ID? (A person might have multiple entries in the
password file with the same user ID to have a different login shell for each entry.) The system normally keeps
track of the name we log in under (Section 6.8), and the getlogin function provides a way to fetch that login
name.

#include <unistd.h>

char *getlogin(void);

Returns: pointer to string giving login name if OK, NULL on error

This function can fail if the process is not attached to a terminal that a user logged in to. We normally call these
processes daemons. We discuss them in Chapter 13.

Given the login name, we can then use it to look up the user in the password file—to determine the login shell,
for example—using getpwnam .

To find the login name, UNIX systems have historically called the ttyname function (Section 18.9) and then
tried to find a matching entry in the utmp file (Section 6.8). FreeBSD and Mac OS X store the login name in the
session structure associated with the process table entry and provide system calls to fetch and store this name.

System V provided the cuserid function to return the login name. This function called getlogin and, if that
failed, did a getpwuid(getuid()) . The IEEE Standard 1003.1–1988 specified cuserid , but it called for the
effective user ID to be used, instead of the real user ID. The 1990 version of POSIX.1 dropped the cuserid
function.

The environment variable LOGNAME is usually initialized with the user's login name by login (1) and inherited
by the login shell. Realize, however, that a user can modify an environment variable, so we shouldn't use
LOGNAME to validate the user in any way. Instead, getlogin should be used.

8.16. Process Times

In Section 1.10, we described three times that we can measure: wall clock time, user CPU time, and system
CPU time. Any process can call the times function to obtain these values for itself and any terminated children.

#include <sys/times.h>

clock_t times(struct tms *buf);

Returns: elapsed wall clock time in clock ticks if OK, –1 on error

This function fills in the tms structure pointed to by buf:

 struct tms {
 clock_t tms_utime; /* user CPU time */
 clock_t tms_stime; /* system CPU time */
 clock_t tms_cutime; /* user CPU time, termina ted children */
 clock_t tms_cstime; /* system CPU time, termi nated children */
 };

Note that the structure does not contain any measurement for the wall clock time. Instead, the function returns
the wall clock time as the value of the function, each time it's called. This value is measured from some
arbitrary point in the past, so we can't use its absolute value; instead, we use its relative value. For example, we
call times and save the return value. At some later time, we call times again and subtract the earlier return
value from the new return value. The difference is the wall clock time. (It is possible, though unlikely, for a
long-running process to overflow the wall clock time; see Exercise 1.6.)

The two structure fields for child processes contain values only for children that we have waited for with wait ,
waitid , or waitpid .

All the clock_t values returned by this function are converted to seconds using the number of clock ticks per
second—the _SC_CLK_TCK value returned by sysconf (Section 2.5.4).

Most implementations provide the getrusage (2) function. This function returns the CPU times and 14 other
values indicating resource usage. Historically, this function originated with the BSD operating system, so BSD-
derived implementations generally support more of the fields than do other implementations.

Example

The program in Figure 8.30 executes each command-line argument as a shell command string, timing the
command and printing the values from the tms structure.

If we run this program, we get

 $./a.out "sleep 5" "date"

 command: sleep 5
 real: 5.02
 user: 0.00
 sys: 0.00
 child user: 0.01

 child sys: 0.00
 normal termination, exit status = 0

 command: date
 Mon Mar 22 00:43:58 EST 2004
 real: 0.01
 user: 0.00
 sys: 0.00
 child user: 0.01
 child sys: 0.00
 normal termination, exit status = 0

In these two examples, all the CPU time appears in the child process, which is where the shell and the command
execute.

Figure 8.30. Time and execute all command-line arguments

#include "apue.h"
#include <sys/times.h>

static void pr_times(clock_t, struct tms *, struct tms *);
static void do_cmd(char *);

int
main(int argc, char *argv[])
{

 int i;

 setbuf(stdout, NULL);
 for (i = 1; i < argc; i++)
 do_cmd(argv[i]); /* once for each comman d-line arg */
 exit(0);
}

static void
do_cmd(char *cmd) /* execute and time the "c md" */
{
 struct tms tmsstart, tmsend;
 clock_t start, end;
 int status;

 printf("\ncommand: %s\n", cmd);

 if ((start = times(&tmsstart)) == -1) /* st arting values */
 err_sys("times error");

 if ((status = system(cmd)) < 0) /* execute command */
 err_sys("system() error");

 if ((end = times(&tmsend)) == -1) /* end ing values */
 err_sys("times error");

 pr_times(end-start, &tmsstart, &tmsend);
 pr_exit(status);
}
static void
pr_times(clock_t real, struct tms *tmsstart, struct tms *tmsend)
{
 static long clktck = 0;

 if (clktck == 0) /* fetch clock ticks per se cond first time */
 if ((clktck = sysconf(_SC_CLK_TCK)) < 0)
 err_sys("sysconf error");
 printf(" real: %7.2f\n", real / (double) clkt ck);
 printf(" user: %7.2f\n",
 (tmsend->tms_utime - tmsstart->tms_utime) / (double) clktck);
 printf(" sys: %7.2f\n",
 (tmsend->tms_stime - tmsstart->tms_stime) / (double) clktck);
 printf(" child user: %7.2f\n",
 (tmsend->tms_cutime - tmsstart->tms_cutime) / (double) clktck);
 printf(" child sys: %7.2f\n",
 (tmsend->tms_cstime - tmsstart->tms_cstime) / (double) clktck);
}

8.17. Summary

A thorough understanding of the UNIX System's process control is essential for advanced programming. There
are only a few functions to master: fork , the exec family, _exit , wait , and waitpid . These primitives are used
in many applications. The fork function also gave us an opportunity to look at race conditions.

Our examination of the system function and process accounting gave us another look at all these process
control functions. We also looked at another variation of the exec functions: interpreter files and how they
operate. An understanding of the various user IDs and group IDs that are provided—real, effective, and saved—
is critical to writing safe set-user-ID programs.

Given an understanding of a single process and its children, in the next chapter we examine the relationship of a
process to other processes—sessions and job control. We then complete our discussion of processes in Chapter
10 when we describe signals.

Chapter 9. Process Relationships

Section 9.1. Introduction

Section 9.2. Terminal Logins

Section 9.3. Network Logins

Section 9.4. Process Groups

Section 9.5. Sessions

Section 9.6. Controlling Terminal

Section 9.7. tcgetpgrp, tcsetpgrp, and tcgetsid Functions

Section 9.8. Job Control

Section 9.9. Shell Execution of Programs

Section 9.10. Orphaned Process Groups

Section 9.11. FreeBSD Implementation

Section 9.12. Summary

9.1. Introduction

We learned in the previous chapter that there are relationships between processes. First, every process has a
parent process (the initial kernel-level process is usually its own parent). The parent is notified when the child
terminates, and the parent can obtain the child's exit status. We also mentioned process groups when we
described the waitpid function (Section 8.6) and how we can wait for any process in a process group to
terminate.

In this chapter, we'll look at process groups in more detail and the concept of sessions that was introduced by
POSIX.1. We'll also look at the relationship between the login shell that is invoked for us when we log in and
all the processes that we start from our login shell.

It is impossible to describe these relationships without talking about signals, and to talk about signals, we need
many of the concepts in this chapter. If you are unfamiliar with the UNIX System signal mechanism, you may
want to skim through Chapter 10 at this point.

9.2. Terminal Logins

Let's start by looking at the programs that are executed when we log in to a UNIX system. In early UNIX
systems, such as Version 7, users logged in using dumb terminals that were connected to the host with hard-
wired connections. The terminals were either local (directly connected) or remote (connected through a modem).
In either case, these logins came through a terminal device driver in the kernel. For example, the common
devices on PDP-11s were DH-11s and DZ-11s. A host had a fixed number of these terminal devices, so there
was a known upper limit on the number of simultaneous logins.

As bit-mapped graphical terminals became available, windowing systems were developed to provide users with
new ways to interact with host computers. Applications were developed to create "terminal windows" to
emulate character-based terminals, allowing users to interact with hosts in familiar ways (i.e., via the shell
command line).

Today, some platforms allow you to start a windowing system after logging in, whereas other platforms
automatically start the windowing system for you. In the latter case, you might still have to log in, depending on
how the windowing system is configured (some windowing systems can be configured to log you in
automatically).

The procedure that we now describe is used to log in to a UNIX system using a terminal. The procedure is
similar regardless of the type of terminal we use—it could be a character-based terminal, a graphical terminal
emulating a simple character-based terminal, or a graphical terminal running a windowing system.

BSD Terminal Logins

This procedure has not changed much over the past 30 years. The system administrator creates a file, usually
/etc/ttys , that has one line per terminal device. Each line specifies the name of the device and other
parameters that are passed to the getty program. One parameter is the baud rate of the terminal, for example.
When the system is bootstrapped, the kernel creates process ID 1, the init process, and it is init that brings
the system up multiuser. The init process reads the file /etc/ttys and, for every terminal device that allows a
login, does a fork followed by an exec of the program getty . This gives us the processes shown in Figure 9.1.

Figure 9.1. Processes invoked by init to allow terminal logins

All the processes shown in Figure 9.1 have a real user ID of 0 and an effective user ID of 0 (i.e., they all have
superuser privileges). The init process also exec s the getty program with an empty environment.

It is getty that calls open for the terminal device. The terminal is opened for reading and writing. If the device
is a modem, the open may delay inside the device driver until the modem is dialed and the call is answered.
Once the device is open, file descriptors 0, 1, and 2 are set to the device. Then getty outputs something like
login: and waits for us to enter our user name. If the terminal supports multiple speeds, getty can detect
special characters that tell it to change the terminal's speed (baud rate). Consult your UNIX system manuals for
additional details on the getty program and the data files (gettytab) that can drive its actions.

When we enter our user name, getty 's job is complete, and it then invokes the login program, similar to

 execle("/bin/login", "login", "-p", username, (c har *)0, envp);

(There can be options in the gettytab file to have it invoke other programs, but the default is the login
program.) init invokes getty with an empty environment; getty creates an environment for login (the envp
argument) with the name of the terminal (something like TERM=foo, where the type of terminal foo is taken
from the gettytab file) and any environment strings that are specified in the gettytab . The -p flag to login
tells it to preserve the environment that it is passed and to add to that environment, not replace it. Figure 9.2
shows the state of these processes right after login has been invoked.

Figure 9.2. State of processes after login has been invoked

All the processes shown in Figure 9.2 have superuser privileges, since the original init process has superuser
privileges. The process ID of the bottom three processes in Figure 9.2 is the same, since the process ID does not
change across an exec . Also, all the processes other than the original init process have a parent process ID of
1.

The login program does many things. Since it has our user name, it can call getpwnam to fetch our password
file entry. Then login calls getpass (3) to display the prompt Password: and read our password (with echoing
disabled, of course). It calls crypt (3) to encrypt the password that we entered and compares the encrypted
result to the pw_passwd field from our shadow password file entry. If the login attempt fails because of an
invalid password (after a few tries), login calls exit with an argument of 1. This termination will be noticed by

the parent (init), and it will do another fork followed by an exec of getty , starting the procedure over again
for this terminal.

This is the traditional authentication procedure used on UNIX systems. Modern UNIX systems have evolved to
support multiple authentication procedures. For example, FreeBSD, Linux, Mac OS X, and Solaris all support a
more flexible scheme known as PAM (Pluggable Authentication Modules). PAM allows an administrator to
configure the authentication methods to be used to access services that are written to use the PAM library.

If our application needs to verify that a user has the appropriate permission to perform a task, we can either hard
code the authentication mechanism in the application, or we can use the PAM library to give us the equivalent
functionality. The advantage to using PAM is that administrators can configure different ways to authenticate
users for different tasks, based on the local site policies.

If we log in correctly, login will

• Change to our home directory (chdir)
• Change the ownership of our terminal device (chown) so we own it
• Change the access permissions for our terminal device so we have permission to read from and write to

it
• Set our group IDs by calling setgid and initgroups
• Initialize the environment with all the information that login has: our home directory (HOME), shell

(SHELL), user name (USER and LOGNAME), and a default path (PATH)
• Change to our user ID (setuid) and invoke our login shell, as in
• execl("/bin/sh", "-sh", (char *)0);

The minus sign as the first character of argv[0] is a flag to all the shells that they are being invoked as a
login shell. The shells can look at this character and modify their start-up accordingly.

The login program really does more than we've described here. It optionally prints the message-of-the-day file,
checks for new mail, and performs other tasks. We're interested only in the features that we've described.

Recall from our discussion of the setuid function in Section 8.11 that since it is called by a superuser process,
setuid changes all three user IDs: the real user ID, effective user ID, and saved set-user-ID. The call to setgid
that was done earlier by login has the same effect on all three group IDs.

At this point, our login shell is running. Its parent process ID is the original init process (process ID 1), so
when our login shell terminates, init is notified (it is sent a SIGCHLD signal), and it can start the whole
procedure over again for this terminal. File descriptors 0, 1, and 2 for our login shell are set to the terminal
device. Figure 9.3 shows this arrangement.

Figure 9.3. Arrangement of processes after everything is set for a terminal login

Our login shell now reads its start-up files (.profile for the Bourne shell and Korn
shell; .bash_profile , .bash_login , or .profile for the GNU Bourne-again shell; and .cshrc and .login
for the C shell). These start-up files usually change some of the environment variables and add many additional
variables to the environment. For example, most users set their own PATH and often prompt for the actual
terminal type (TERM). When the start-up files are done, we finally get the shell's prompt and can enter commands.

Mac OS X Terminal Logins

On Mac OS X, the terminal login process follows the same steps as in the BSD login process, since Mac OS X
is based in part on FreeBSD. With Mac OS X, however, we are presented with a graphical-based login screen
from the start.

Linux Terminal Logins

The Linux login procedure is very similar to the BSD procedure. Indeed, the Linux login command is derived
from the 4.3BSD login command. The main difference between the BSD login procedure and the Linux login
procedure is in the way the terminal configuration is specified.

On Linux, /etc/inittab contains the configuration information specifying the terminal devices for which
init should start a getty process, similar to the way it is done on System V. Depending on the version of
getty in use, the terminal characteristics are specified either on the command line (as with agetty) or in the
file /etc/gettydefs (as with mgetty).

Solaris Terminal Logins

Solaris supports two forms of terminal logins: (a) getty style, as described previously for BSD, and (b) ttymon
logins, a feature introduced with SVR4. Normally, getty is used for the console, and ttymon is used for other
terminal logins.

The ttymon command is part of a larger facility termed SAF, the Service Access Facility. The goal of the SAF
was to provide a consistent way to administer services that provide access to a system. (See Chapter 6 of Rago
[1993] for more details.) For our purposes, we end up with the same picture as in Figure 9.3, with a different set
of steps between init and the login shell. init is the parent of sac (the service access controller), which does a
fork and exec of the ttymon program when the system enters multiuser state. The ttymon program monitors
all the terminal ports listed in its configuration file and does a fork when we've entered our login name. This
child of ttymon does an exec of login , and login prompts us for our password. Once this is done, login

exec s our login shell, and we're at the position shown in Figure 9.3. One difference is that the parent of our
login shell is now ttymon , whereas the parent of the login shell from a getty login is init .

9.3. Network Logins

The main (physical) difference between logging in to a system through a serial terminal and logging in to a
system through a network is that the connection between the terminal and the computer isn't point-to-point. In
this case, login is simply a service available, just like any other network service, such as FTP or SMTP.

With the terminal logins that we described in the previous section, init knows which terminal devices are
enabled for logins and spawns a getty process for each device. In the case of network logins, however, all the
logins come through the kernel's network interface drivers (e.g., the Ethernet driver), and we don't know ahead
of time how many of these will occur. Instead of having a process waiting for each possible login, we now have
to wait for a network connection request to arrive.

To allow the same software to process logins over both terminal logins and network logins, a software driver
called a pseudo terminal is used to emulate the behavior of a serial terminal and map terminal operations to
network operations, and vice versa. (In Chapter 19, we'll talk about pseudo terminals in detail.)

BSD Network Logins

In BSD, a single process waits for most network connections: the inetd process, sometimes called the Internet
superserver. In this section, we'll look at the sequence of processes involved in network logins for a BSD
system. We are not interested in the detailed network programming aspects of these processes; refer to Stevens,
Fenner, and Rudoff [2004] for all the details.

As part of the system start-up, init invokes a shell that executes the shell script /etc/rc . One of the daemons
that is started by this shell script is inetd . Once the shell script terminates, the parent process of inetd becomes
init ; inetd waits for TCP/IP connection requests to arrive at the host. When a connection request arrives for it
to handle, inetd does a fork and exec of the appropriate program.

Let's assume that a TCP connection request arrives for the TELNET server. TELNET is a remote login
application that uses the TCP protocol. A user on another host (that is connected to the server's host through a
network of some form) or on the same host initiates the login by starting the TELNET client:

 telnet hostname

The client opens a TCP connection to hostname, and the program that's started on hostname is called the
TELNET server. The client and the server then exchange data across the TCP connection using the TELNET
application protocol. What has happened is that the user who started the client program is now logged in to the
server's host. (This assumes, of course, that the user has a valid account on the server's host.) Figure 9.4 shows
the sequence of processes involved in executing the TELNET server, called telnetd .

Figure 9.4. Sequence of processes involved in executing TELNET server

The telnetd process then opens a pseudo-terminal device and splits into two processes using fork . The parent
handles the communication across the network connection, and the child does an exec of the login program.
The parent and the child are connected through the pseudo terminal. Before doing the exec , the child sets up
file descriptors 0, 1, and 2 to the pseudo terminal. If we log in correctly, login performs the same steps we
described in Section 9.2: it changes to our home directory and sets our group IDs, user ID, and our initial
environment. Then login replaces itself with our login shell by calling exec . Figure 9.5 shows the arrangement
of the processes at this point.

Figure 9.5. Arrangement of processes after everything is set for a network login

Obviously, a lot is going on between the pseudo-terminal device driver and the actual user at the terminal. We'll
show all the processes involved in this type of arrangement in Chapter 19 when we talk about pseudo terminals
in more detail.

The important thing to understand is that whether we log in through a terminal (Figure 9.3) or a network (Figure
9.5), we have a login shell with its standard input, standard output, and standard error connected to either a
terminal device or a pseudo-terminal device. We'll see in the coming sections that this login shell is the start of a
POSIX.1 session, and that the terminal or pseudo terminal is the controlling terminal for the session.

Mac OS X Network Logins

Logging in to a Mac OS X system over a network is identical to a BSD system, because Mac OS X is based
partially on FreeBSD.

Linux Network Logins

Network logins under Linux are the same as under BSD, except that an alternate inetd process is used, called
the extended Internet services daemon, xinetd . The xinetd process provides a finer level of control over
services it starts than does inetd .

Solaris Network Logins

The scenario for network logins under Solaris is almost identical to the steps under BSD and Linux. An inetd
server is used similar to the BSD version. The Solaris version has the additional ability to run under the service
access facility framework, although it is not configured to do so. Instead, the inetd server is started by init .
Either way, we end up with the same overall picture as in Figure 9.5.

9.4. Process Groups

In addition to having a process ID, each process also belongs to a process group. We'll encounter process
groups again when we discuss signals in Chapter 10.

A process group is a collection of one or more processes, usually associated with the same job (job control is
discussed in Section 9.8), that can receive signals from the same terminal. Each process group has a unique
process group ID. Process group IDs are similar to process IDs: they are positive integers and can be stored in a
pid_t data type. The function getpgrp returns the process group ID of the calling process.

#include <unistd.h>

pid_t getpgrp(void);

Returns: process group ID of calling process

In older BSD-derived systems, the getpgrp function took a pid argument and returned the process group for
that process. The Single UNIX Specification defines the getpgid function as an XSI extension that mimics this
behavior.

#include <unistd.h>

pid_t getpgid(pid_t pid);

Returns: process group ID if OK, –1 on error

If pid is 0, the process group ID of the calling process is returned. Thus,

 getpgid(0);

is equivalent to

 getpgrp();

Each process group can have a process group leader. The leader is identified by its process group ID being
equal to its process ID.

It is possible for a process group leader to create a process group, create processes in the group, and then
terminate. The process group still exists, as long as at least one process is in the group, regardless of whether the
group leader terminates. This is called the process group lifetime—the period of time that begins when the
group is created and ends when the last remaining process leaves the group. The last remaining process in the
process group can either terminate or enter some other process group.

A process joins an existing process group or creates a new process group by calling setpgid . (In the next
section, we'll see that setsid also creates a new process group.)

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Returns: 0 if OK, –1 on error

This function sets the process group ID to pgid in the process whose process ID equals pid. If the two
arguments are equal, the process specified by pid becomes a process group leader. If pid is 0, the process ID of
the caller is used. Also, if pgid is 0, the process ID specified by pid is used as the process group ID.

A process can set the process group ID of only itself or any of its children. Furthermore, it can't change the
process group ID of one of its children after that child has called one of the exec functions.

In most job-control shells, this function is called after a fork to have the parent set the process group ID of the
child, and to have the child set its own process group ID. One of these calls is redundant, but by doing both, we
are guaranteed that the child is placed into its own process group before either process assumes that this has
happened. If we didn't do this, we would have a race condition, since the child's process group membership
would depend on which process executes first.

When we discuss signals, we'll see how we can send a signal to either a single process (identified by its process
ID) or a process group (identified by its process group ID). Similarly, the waitpid function from Section 8.6
lets us wait for either a single process or one process from a specified process group.

9.5. Sessions

A session is a collection of one or more process groups. For example, we could have the arrangement shown in
Figure 9.6. Here we have three process groups in a single session.

Figure 9.6. Arrangement of processes into process groups and sessions

The processes in a process group are usually placed there by a shell pipeline. For example, the arrangement
shown in Figure 9.6 could have been generated by shell commands of the form

 proc1 | proc2 &
 proc3 | proc4 | proc5

A process establishes a new session by calling the setsid function.

#include <unistd.h>

pid_t setsid(void);

Returns: process group ID if OK, –1 on error

If the calling process is not a process group leader, this function creates a new session. Three things happen.

1. The process becomes the session leader of this new session. (A session leader is the process that creates
a session.) The process is the only process in this new session.

2. The process becomes the process group leader of a new process group. The new process group ID is the
process ID of the calling process.

3. The process has no controlling terminal. (We'll discuss controlling terminals in the next section.) If the
process had a controlling terminal before calling setsid , that association is broken.

This function returns an error if the caller is already a process group leader. To ensure this is not the case, the
usual practice is to call fork and have the parent terminate and the child continue. We are guaranteed that the
child is not a process group leader, because the process group ID of the parent is inherited by the child, but the
child gets a new process ID. Hence, it is impossible for the child's process ID to equal its inherited process
group ID.

The Single UNIX Specification talks only about a "session leader." There is no "session ID" similar to a process
ID or a process group ID. Obviously, a session leader is a single process that has a unique process ID, so we
could talk about a session ID that is the process ID of the session leader. This concept of a session ID was
introduced in SVR4. Historically, BSD-based systems didn't support this notion, but have since been updated to
include it. The getsid function returns the process group ID of a process's session leader. The getsid function
is included as an XSI extension in the Single UNIX Specification.

Some implementations, such as Solaris, join with the Single UNIX Specification in the practice of avoiding the
use of the phrase "session ID," opting instead to refer to this as the "process group ID of the session leader." The
two are equivalent, since the session leader is always the leader of a process group.

#include <unistd.h>

pid_t getsid(pid_t pid);

Returns: session leader's process group ID if OK, –1 on error

If pid is 0, getsid returns the process group ID of the calling process's session leader. For security reasons,
some implementations may restrict the calling process from obtaining the process group ID of the session leader
if pid doesn't belong to the same session as the caller.

9.6. Controlling Terminal

Sessions and process groups have a few other characteristics.

• A session can have a single controlling terminal. This is usually the terminal device (in the case of a
terminal login) or pseudo-terminal device (in the case of a network login) on which we log in.

• The session leader that establishes the connection to the controlling terminal is called the controlling
process.

• The process groups within a session can be divided into a single foreground process group and one or
more background process groups.

• If a session has a controlling terminal, it has a single foreground process group, and all other process
groups in the session are background process groups.

• Whenever we type the terminal's interrupt key (often DELETE or Control-C), this causes the interrupt
signal be sent to all processes in the foreground process group.

• Whenever we type the terminal's quit key (often Control-backslash), this causes the quit signal to be sent
to all processes in the foreground process group.

• If a modem (or network) disconnect is detected by the terminal interface, the hang-up signal is sent to
the controlling process (the session leader).

These characteristics are shown in Figure 9.7.

Figure 9.7. Process groups and sessions showing controlling terminal

Usually, we don't have to worry about the controlling terminal; it is established automatically when we log in.

POSIX.1 leaves the choice of the mechanism used to allocate a controlling terminal up to each individual
implementation. We'll show the actual steps in Section 19.4.

Systems derived from UNIX System V allocate the controlling terminal for a session when the session leader
opens the first terminal device that is not already associated with a session. This assumes that the call to open
by the session leader does not specify the O_NOCTTY flag (Section 3.3).

BSD-based systems allocate the controlling terminal for a session when the session leader calls ioctl with a
request argument of TIOCSCTTY (the third argument is a null pointer). The session cannot already have a

controlling terminal for this call to succeed. (Normally, this call to ioctl follows a call to setsid , which
guarantees that the process is a session leader without a controlling terminal.) The POSIX.1 O_NOCTTY flag to
open is not used by BSD-based systems, except in compatibility-mode support for other systems.

There are times when a program wants to talk to the controlling terminal, regardless of whether the standard
input or standard output is redirected. The way a program guarantees that it is talking to the controlling terminal
is to open the file /dev/tty . This special file is a synonym within the kernel for the controlling terminal.
Naturally, if the program doesn't have a controlling terminal, the open of this device will fail.

The classic example is the getpass (3) function, which reads a password (with terminal echoing turned off, of
course). This function is called by the crypt (1) program and can be used in a pipeline. For example,

 crypt < salaries | lpr

decrypts the file salaries and pipes the output to the print spooler. Because crypt reads its input file on its
standard input, the standard input can't be used to enter the password. Also, crypt is designed so that we have
to enter the encryption password each time we run the program, to prevent us from saving the password in a file
(which could be a security hole).

There are known ways to break the encoding used by the crypt program. See Garfinkel et al. [2003] for more
details on encrypting files.

9.7. tcgetpgrp, tcsetpgrp, and tcgetsid Functions

We need a way to tell the kernel which process group is the foreground process group, so that the terminal
device driver knows where to send the terminal input and the terminal-generated signals (Figure 9.7).

#include <unistd.h>

pid_t tcgetpgrp(int filedes);

Returns: process group ID of foreground process group if OK, –1 on error

int tcsetpgrp(int filedes, pid_t pgrpid);

Returns: 0 if OK, –1 on error

The function tcgetpgrp returns the process group ID of the foreground process group associated with the
terminal open on filedes.

If the process has a controlling terminal, the process can call tcsetpgrp to set the foreground process group ID
to pgrpid. The value of pgrpid must be the process group ID of a process group in the same session, and filedes
must refer to the controlling terminal of the session.

Most applications don't call these two functions directly. They are normally called by job-control shells.

The Single UNIX Specification defines an XSI extension called tcgetsid to allow an application to obtain the
process group ID for the session leader given a file descriptor for the controlling TTY.

#include <termios.h>

pid_t tcgetsid(int filedes);

Returns: session leader's process group ID if OK, –1 on error

Applications that need to manage controlling terminals can use tcgetsid to identify the session ID of the
controlling terminal's session leader (which is equivalent to the session leader's process group ID).

9.8. Job Control

Job control is a feature added to BSD around 1980. This feature allows us to start multiple jobs (groups of
processes) from a single terminal and to control which jobs can access the terminal and which jobs are to run in
the background. Job control requires three forms of support:

1. A shell that supports job control
2. The terminal driver in the kernel must support job control
3. The kernel must support certain job-control signals

SVR3 provided a different form of job control called shell layers. The BSD form of job control,
however, was selected by POSIX.1 and is what we describe here. In earlier versions of the standard, job
control support was optional, but POSIX.1 now requires platforms to support it.

From our perspective, using job control from a shell, we can start a job in either the foreground or the
background. A job is simply a collection of processes, often a pipeline of processes. For example,

 vi main.c

starts a job consisting of one process in the foreground. The commands

 pr *.c | lpr &
 make all &

start two jobs in the background. All the processes invoked by these background jobs are in the background.

As we said, to use the features provided by job control, we need to be using a shell that supports job control.
With older systems, it was simple to say which shells supported job control and which didn't. The C shell
supported job control, the Bourne shell didn't, and it was an option with the Korn shell, depending whether the
host supported job control. But the C shell has been ported to systems (e.g., earlier versions of System V) that
don't support job control, and the SVR4 Bourne shell, when invoked by the name jsh instead of sh , supports
job control. The Korn shell continues to support job control if the host does. The Bourne-again shell also
supports job control. We'll just talk generically about a shell that supports job control, versus one that doesn't,
when the difference between the various shells doesn't matter.

When we start a background job, the shell assigns it a job identifier and prints one or more of the process IDs.
The following script shows how the Korn shell handles this:

 $ make all > Make.out &
 [1] 1475
 $ pr *.c | lpr &
 [2] 1490
 $ just press RETU RN
 [2] + Done pr *.c | lpr &
 [1] + Done make all > Make.out &

The make is job number 1 and the starting process ID is 1475. The next pipeline is job number 2 and the process
ID of the first process is 1490. When the jobs are done and when we press RETURN, the shell tells us that the
jobs are complete. The reason we have to press RETURN is to have the shell print its prompt. The shell doesn't

print the changed status of background jobs at any random time—only right before it prints its prompt, to let us
enter a new command line. If the shell didn't do this, it could output while we were entering an input line.

The interaction with the terminal driver arises because a special terminal character affects the foreground job:
the suspend key (typically Control-Z). Entering this character causes the terminal driver to send the SIGTSTP
signal to all processes in the foreground process group. The jobs in any background process groups aren't
affected. The terminal driver looks for three special characters, which generate signals to the foreground process
group.

• The interrupt character (typically DELETE or Control-C) generates SIGINT .
• The quit character (typically Control-backslash) generates SIGQUIT.
• The suspend character (typically Control-Z) generates SIGTSTP.

In Chapter 18, we'll see how we can change these three characters to be any characters we choose and how we
can disable the terminal driver's processing of these special characters.

Another job control condition can arise that must be handled by the terminal driver. Since we can have a
foreground job and one or more background jobs, which of these receives the characters that we enter at the
terminal? Only the foreground job receives terminal input. It is not an error for a background job to try to read
from the terminal, but the terminal driver detects this and sends a special signal to the background job: SIGTTIN .
This signal normally stops the background job; by using the shell, we are notified of this and can bring the job
into the foreground so that it can read from the terminal. The following demonstrates this:

 $ cat > temp.foo & start in background, but it'll read from standard input
 [1] 1681
 $ we press RETURN
 [1] + Stopped (SIGTTIN) cat > temp.foo &
 $ fg %1 bring job number 1 i nto the foreground
 cat > temp.foo the shell tells us w hich job is now in the foreground

 hello, world enter one line

 ^D type the end-of-file character
 $ cat temp.foo check that the one l ine was put into the file
 hello, world

The shell starts the cat process in the background, but when cat tries to read its standard input (the controlling
terminal), the terminal driver, knowing that it is a background job, sends the SIGTTIN signal to the background
job. The shell detects this change in status of its child (recall our discussion of the wait and waitpid function
in Section 8.6) and tells us that the job has been stopped. We then move the stopped job into the foreground
with the shell's fg command. (Refer to the manual page for the shell that you are using, for all the details on its
job control commands, such as fg and bg, and the various ways to identify the different jobs.) Doing this causes
the shell to place the job into the foreground process group (tcsetpgrp) and send the continue signal (SIGCONT)
to the process group. Since it is now in the foreground process group, the job can read from the controlling
terminal.

What happens if a background job outputs to the controlling terminal? This is an option that we can allow or
disallow. Normally, we use the stty (1) command to change this option. (We'll see in Chapter 18 how we can
change this option from a program.) The following shows how this works:

 $ cat temp.foo & execute in backgrou nd
 [1] 1719
 $ hello, world the output from the background job appears after the
prompt
 we press RETURN
 [1] + Done cat temp.foo &
 $ stty tostop disable ability of ba ckground jobs to output to
 controlling terminal
 $ cat temp.foo & try it again in the background
 [1] 1721
 $ we press RETURN and find the job is stopped
 [1] + Stopped(SIGTTOU) cat temp.fo o &
 $ fg %1 resume stopped job in the foreground
 cat temp.foo the shell tells us which job is now in the foreground
 hello, world and here is its out put

When we disallow background jobs from writing to the controlling terminal, cat will block when it tries to
write to its standard output, because the terminal driver identifies the write as coming from a background
process and sends the job the SIGTTOU signal. As with the previous example, when we use the shell's fg
command to bring the job into the foreground, the job completes.

Figure 9.8 summarizes some of the features of job control that we've been describing. The solid lines through
the terminal driver box mean that the terminal I/O and the terminal-generated signals are always connected from
the foreground process group to the actual terminal. The dashed line corresponding to the SIGTTOU signal means
that whether the output from a process in the background process group appears on the terminal is an option.

Figure 9.8. Summary of job control features with foreground and background jobs, and terminal
driver

Is job control necessary or desirable? Job control was originally designed and implemented before windowing
terminals were widespread. Some people claim that a well-designed windowing system removes any need for
job control. Some complain that the implementation of job control—requiring support from the kernel, the
terminal driver, the shell, and some applications—is a hack. Some use job control with a windowing system,
claiming a need for both. Regardless of your opinion, job control is a required feature of POSIX.1.

9.9. Shell Execution of Programs

Let's examine how the shells execute programs and how this relates to the concepts of process groups,
controlling terminals, and sessions. To do this, we'll use the ps command again.

First, we'll use a shell that doesn't support job control—the classic Bourne shell running on Solaris. If we
execute

 ps -o pid,ppid,pgid,sid,comm

the output is

 PID PPID PGID SID COMMAND
 949 947 949 949 sh
 1774 949 949 949 ps

The parent of the ps command is the shell, which we would expect. Both the shell and the ps command are in
the same session and foreground process group (949). We say that 949 is the foreground process group because
that is what you get when you execute a command with a shell that doesn't support job control.

Some platforms support an option to have the ps (1) command print the process group ID associated with the
session's controlling terminal. This value would be shown under the TPGID column. Unfortunately, the output
of the ps command often differs among versions of the UNIX System. For example, Solaris 9 doesn't support
this option. Under FreeBSD 5.2.1 and Mac OS X 10.3, the command

 ps -o pid,ppid,pgid,sess,tpgid,command

and under Linux 2.4.22, the command

 ps -o pid,ppid,pgrp,session,tpgid,comm

print exactly the information we want.

Note that it is a misnomer to associate a process with a terminal process group ID (the TPGID column). A
process does not have a terminal process control group. A process belongs to a process group, and the process
group belongs to a session. The session may or may not have a controlling terminal. If the session does have a
controlling terminal, then the terminal device knows the process group ID of the foreground process. This value
can be set in the terminal driver with the tcsetpgrp function, as we show in Figure 9.8. The foreground process
group ID is an attribute of the terminal, not the process. This value from the terminal device driver is what ps
prints as the TPGID. If it finds that the session doesn't have a controlling terminal, ps prints –1.

If we execute the command in the background,

 ps -o pid,ppid,pgid,sid,comm &

the only value that changes is the process ID of the command:

 PID PPID PGID SID COMMAND

 949 947 949 949 sh
 1812 949 949 949 ps

This shell doesn't know about job control, so the background job is not put into its own process group and the
controlling terminal isn't taken away from the background job.

Let's now look at how the Bourne shell handles a pipeline. When we execute

 ps -o pid,ppid,pgid,sid,comm | cat1

the output is

 PID PPID PGID SID COMMAND
 949 947 949 949 sh
 1823 949 949 949 cat1
 1824 1823 949 949 ps

(The program cat1 is just a copy of the standard cat program, with a different name. We have another copy of
cat with the name cat2 , which we'll use later in this section. When we have two copies of cat in a pipeline, the
different names let us differentiate between the two programs.) Note that the last process in the pipeline is the
child of the shell and that the first process in the pipeline is a child of the last process. It appears that the shell
fork s a copy of itself and that this copy then fork s to make each of the previous processes in the pipeline.

If we execute the pipeline in the background,

 ps -o pid,ppid,pgid,sid,comm | cat1 &

only the process IDs change. Since the shell doesn't handle job control, the process group ID of the background
processes remains 949, as does the process group ID of the session.

What happens in this case if a background process tries to read from its controlling terminal? For example,
suppose that we execute

 cat > temp.foo &

With job control, this is handled by placing the background job into a background process group, which causes
the signal SIGTTIN to be generated if the background job tries to read from the controlling terminal. The way
this is handled without job control is that the shell automatically redirects the standard input of a background
process to /dev/null , if the process doesn't redirect standard input itself. A read from /dev/null generates an
end of file. This means that our background cat process immediately reads an end of file and terminates
normally.

The previous paragraph adequately handles the case of a background process accessing the controlling terminal
through its standard input, but what happens if a background process specifically opens /dev/tty and reads
from the controlling terminal? The answer is "it depends," but it's probably not what we want. For example,

 crypt < salaries | lpr &

is such a pipeline. We run it in the background, but the crypt program opens /dev/tty , changes the terminal
characteristics (to disable echoing), reads from the device, and resets the terminal characteristics. When we
execute this background pipeline, the prompt Password: from crypt is printed on the terminal, but what we
enter (the encryption password) is read by the shell, which tries to execute a command of that name. The next
line we enter to the shell is taken as the password, and the file is not encrypted correctly, sending junk to the
printer. Here we have two processes trying to read from the same device at the same time, and the result
depends on the system. Job control, as we described earlier, handles this multiplexing of a single terminal
between multiple processes in a better fashion.

Returning to our Bourne shell example, if we execute three processes in the pipeline, we can examine the
process control used by this shell:

 ps -o pid,ppid,pgid,sid,comm | cat1 | cat2

generates the following output

 PID PPID PGID SID COMMAND
 949 947 949 949 sh
 1988 949 949 949 cat2
 1989 1988 949 949 ps
 1990 1988 949 949 cat1

Don't be alarmed if the output on your system doesn't show the proper command names. Sometimes you might
get results such as

 PID PPID PGID SID COMMAND
 949 947 949 949 sh
 1831 949 949 949 sh
 1832 1831 949 949 ps
 1833 1831 949 949 sh

What's happening here is that the ps process is racing with the shell, which is forking and executing the cat
commands. In this case, the shell hasn't yet completed the call to exec when ps has obtained the list of
processes to print.

Again, the last process in the pipeline is the child of the shell, and all previous processes in the pipeline are
children of the last process. Figure 9.9 shows what is happening. Since the last process in the pipeline is the
child of the login shell, the shell is notified when that process (cat2) terminates.

Figure 9.9. Processes in the pipeline ps | cat1 | cat2 when invoked by Bourne shell

Now let's examine the same examples using a job-control shell running on Linux. This shows the way these
shells handle background jobs. We'll use the Bourne-again shell in this example; the results with other job-
control shells are almost identical.

 ps -o pid,ppid,pgrp,session,tpgid,comm

gives us

 PID PPID PGRP SESS TPGID COMMAND
 2837 2818 2837 2837 5796 bash
 5796 2837 5796 2837 5796 ps

(Starting with this example, we show the foreground process group in a bolder font .) We immediately have a
difference from our Bourne shell example. The Bourne-again shell places the foreground job (ps) into its own
process group (5796). The ps command is the process group leader and the only process in this process group.

Furthermore, this process group is the foreground process group, since it has the controlling terminal. Our login
shell is a background process group while the ps command executes. Note, however, that both process groups,
2837 and 5796, are members of the same session. Indeed, we'll see that the session never changes through our
examples in this section.

Executing this process in the background,

 ps -o pid,ppid,pgrp,session,tpgid,comm &

gives us

 PID PPID PGRP SESS TPGID COMMAND
 2837 2818 2837 2837 2837 bash
 5797 2837 5797 2837 2837 ps

Again, the ps command is placed into its own process group, but this time the process group (5797) is no longer
the foreground process group. It is a background process group. The TPGID of 2837 indicates that the
foreground process group is our login shell.

Executing two processes in a pipeline, as in

 ps -o pid,ppid,pgrp,session,tpgid,comm | cat1

gives us

 PID PPID PGRP SESS TPGID COMMAND
 2837 2818 2837 2837 5799 bash
 5799 2837 5799 2837 5799 ps
 5800 2837 5799 2837 5799 cat1

Both processes, ps and cat1 , are placed into a new process group (5799), and this is the foreground process
group. We can also see another difference between this example and the similar Bourne shell example. The
Bourne shell created the last process in the pipeline first, and this final process was the parent of the first
process. Here, the Bourne-again shell is the parent of both processes. If we execute this pipeline in the
background,

 ps -o pid,ppid,pgrp,session,tpgid,comm | cat1 &

the results are similar, but now ps and cat1 are placed in the same background process group:

 PID PPID PGRP SESS TPGID COMMAND
 2837 2818 2837 2837 2837 bash
 5801 2837 5801 2837 2837 ps
 5802 2837 5801 2837 2837 cat1

Note that the order in which a shell creates processes can differ depending on the particular shell in use.

9.10. Orphaned Process Groups

We've mentioned that a process whose parent terminates is called an orphan and is inherited by the init
process. We now look at entire process groups that can be orphaned and how POSIX.1 handles this situation.

Example

Consider a process that fork s a child and then terminates. Although this is nothing abnormal (it happens all the
time), what happens if the child is stopped (using job control) when the parent terminates? How will the child
ever be continued, and does the child know that it has been orphaned? Figure 9.10 shows this situation: the
parent process has fork ed a child that stops, and the parent is about to exit.

The program that creates this situation is shown in Figure 9.11. This program has some new features. Here, we
are assuming a job-control shell. Recall from the previous section that the shell places the foreground process
into its own process group (6099 in this example) and that the shell stays in its own process group (2837). The
child inherits the process group of its parent (6099). After the fork ,

• The parent sleeps for 5 seconds. This is our (imperfect) way of letting the child execute before the parent
terminates.

• The child establishes a signal handler for the hang-up signal (SIGHUP). This is so we can see whether
SIGHUP is sent to the child. (We discuss signal handlers in Chapter 10.)

• The child sends itself the stop signal (SIGTSTP) with the kill function. This stops the child, similar to
our stopping a foreground job with our terminal's suspend character (Control-Z).

• When the parent terminates, the child is orphaned, so the child's parent process ID becomes 1, the init
process ID.

• At this point, the child is now a member of an orphaned process group. The POSIX.1 definition of an
orphaned process group is one in which the parent of every member is either itself a member of the
group or is not a member of the group's session. Another way of wording this is that the process group is
not orphaned as long as a process in the group has a parent in a different process group but in the same
session. If the process group is not orphaned, there is a chance that one of those parents in a different
process group but in the same session will restart a stopped process in the process group that is not
orphaned. Here, the parent of every process in the group (e.g., process 1 is the parent of process 6100)
belongs to another session.

• Since the process group is orphaned when the parent terminates, POSIX.1 requires that every process in
the newly orphaned process group that is stopped (as our child is) be sent the hang-up signal (SIGHUP)
followed by the continue signal (SIGCONT).

• This causes the child to be continued, after processing the hang-up signal. The default action for the
hang-up signal is to terminate the process, so we have to provide a signal handler to catch the signal. We
therefore expect the printf in the sig_hup function to appear before the printf in the pr_ids
function.

Here is the output from the program shown in Figure 9.11:

 $./a.out
 parent: pid = 6099, ppid = 2837, pgrp = 6099, tp grp = 6099
 child: pid = 6100, ppid = 6099, pgrp = 6099, tpg rp = 6099
 $ SIGHUP received, pid = 6100
 child: pid = 6100, ppid = 1, pgrp = 6099, tpgrp = 2837
 read error from controlling TTY, errno = 5

Note that our shell prompt appears with the output from the child, since two processes—our login shell and the

child—are writing to the terminal. As we expect, the parent process ID of the child has become 1.

After calling pr_ids in the child, the program tries to read from standard input. As we saw earlier in this
chapter, when a background process group tries to read from its controlling terminal, SIGTTIN is generated for
the background process group. But here we have an orphaned process group; if the kernel were to stop it with
this signal, the processes in the process group would probably never be continued. POSIX.1 specifies that the
read is to return an error with errno set to EIO (whose value is 5 on this system) in this situation.

Finally, note that our child was placed in a background process group when the parent terminated, since the
parent was executed as a foreground job by the shell.

Figure 9.10. Example of a process group about to be orphaned

Figure 9.11. Creating an orphaned process group

#include "apue.h"
#include <errno.h>

static void
sig_hup(int signo)
{
 printf("SIGHUP received, pid = %d\n", getpid()) ;
}

static void
pr_ids(char *name)
{
 printf("%s: pid = %d, ppid = %d, pgrp = %d, tpg rp = %d\n",
 name, getpid(), getppid(), getpgrp(), tcget pgrp(STDIN_FILENO));
 fflush(stdout);
}

int
main(void)

{
 char c;
 pid_t pid;

 pr_ids("parent");
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid > 0) { /* parent */
 sleep(5); /*sleep to let child stop itself */
 exit(0); /* then parent exits */
 } else { /* child */
 pr_ids("child");
 signal(SIGHUP, sig_hup); /* establish s ignal handler */
 kill(getpid(), SIGTSTP); /* stop oursel f */
 pr_ids("child"); /* prints only if we'r e continued */
 if (read(STDIN_FILENO, &c, 1) != 1)
 printf("read error from controlling TT Y, errno = %d\n",
 errno);
 exit(0);
 }
}

We'll see another example of orphaned process groups in Section 19.5 with the pty program.

9.11. FreeBSD Implementation

Having talked about the various attributes of a process, process group, session, and controlling terminal, it's
worth looking at how all this can be implemented. We'll look briefly at the implementation used by FreeBSD.
Some details of the SVR4 implementation of these features can be found in Williams [1989]. Figure 9.12 shows
the various data structures used by FreeBSD.

Figure 9.12. FreeBSD implementation of sessions and process groups

Let's look at all the fields that we've labeled, starting with the session structure. One of these structures is
allocated for each session (e.g., each time setsid is called).

• s_count is the number of process groups in the session. When this counter is decremented to 0, the
structure can be freed.

• s_leader is a pointer to the proc structure of the session leader.
• s_ttyvp is a pointer to the vnode structure of the controlling terminal.
• s_ttyp is a pointer to the tty structure of the controlling terminal.
• s_sid is the session ID. Recall that the concept of a session ID is not part of the Single UNIX

Specification.

When setsid is called, a new session structure is allocated within the kernel. Now s_count is set to 1,
s_leader is set to point to the proc structure of the calling process, s_sid is set to the process ID, and s_ttyvp
and s_ttyp are set to null pointers, since the new session doesn't have a controlling terminal.

Let's move to the tty structure. The kernel contains one of these structures for each terminal device and each
pseudo-terminal device. (We talk more about pseudo terminals in Chapter 19.)

• t_session points to the session structure that has this terminal as its controlling terminal. (Note that
the tty structure points to the session structure and vice versa.) This pointer is used by the terminal to
send a hang-up signal to the session leader if the terminal loses carrier (Figure 9.7).

• t_pgrp points to the pgrp structure of the foreground process group. This field is used by the terminal
driver to send signals to the foreground process group. The three signals generated by entering special
characters (interrupt, quit, and suspend) are sent to the foreground process group.

• t_termios is a structure containing all the special characters and related information for this terminal,
such as baud rate, is echo on or off, and so on. We'll return to this structure in Chapter 18.

• t_winsize is a winsize structure that contains the current size of the terminal window. When the size
of the terminal window changes, the SIGWINCH signal is sent to the foreground process group. We show
how to set and fetch the terminal's current window size in Section 18.12.

Note that to find the foreground process group of a particular session, the kernel has to start with the session
structure, follow s_ttyp to get to the controlling terminal's tty structure, and then follow t_pgrp to get to the
foreground process group's pgrp structure. The pgrp structure contains the information for a particular process
group.

• pg_id is the process group ID.
• pg_session points to the session structure for the session to which this process group belongs.
• pg_members is a pointer to the list of proc structures that are members of this process group. The

p_pglist structure in that proc structure is a doubly-linked list entry that points to both the next process
and the previous process in the group, and so on, until a null pointer is encountered in the proc structure
of the last process in the group.

The proc structure contains all the information for a single process.

• p_pid contains the process ID.
• p_pptr is a pointer to the proc structure of the parent process.
• p_pgrp points to the pgrp structure of the process group to which this process belongs.
• p_pglist is a structure containing pointers to the next and previous processes in the process group, as

we mentioned earlier.

Finally, we have the vnode structure. This structure is allocated when the controlling terminal device is opened.
All references to /dev/tty in a process go through this vnode structure. We show the actual i-node as being
part of the v-node.

9.12. Summary

This chapter has described the relationships between groups of processes: sessions, which are made up of
process groups. Job control is a feature supported by most UNIX systems today, and we've described how it's
implemented by a shell that supports job control. The controlling terminal for a process, /dev/tty , is also
involved in these process relationships.

We've made numerous references to the signals that are used in all these process relationships. The next chapter
continues the discussion of signals, looking at all the UNIX System signals in detail.

Chapter 10. Signals

Section 10.1. Introduction

Section 10.2. Signal Concepts

Section 10.3. signal Function

Section 10.4. Unreliable Signals

Section 10.5. Interrupted System Calls

Section 10.6. Reentrant Functions

Section 10.7. SIGCLD Semantics

Section 10.8. Reliable-Signal Terminology and Semantics

Section 10.9. kill and raise Functions

Section 10.10. alarm and pause Functions

Section 10.11. Signal Sets

Section 10.12. sigprocmask Function

Section 10.13. sigpending Function

Section 10.14. sigaction Function

Section 10.15. sigsetjmp and siglongjmp Functions

Section 10.16. sigsuspend Function

Section 10.17. abort Function

Section 10.18. system Function

Section 10.19. sleep Function

Section 10.20. Job-Control Signals

Section 10.21. Additional Features

Section 10.22. Summary

Exercises

10.1. Introduction

Signals are software interrupts. Most nontrivial application programs need to deal with signals. Signals provide
a way of handling asynchronous events: a user at a terminal typing the interrupt key to stop a program or the
next program in a pipeline terminating prematurely.

Signals have been provided since the early versions of the UNIX System, but the signal model provided with
systems such as Version 7 was not reliable. Signals could get lost, and it was difficult for a process to turn off
selected signals when executing critical regions of code. Both 4.3BSD and SVR3 made changes to the signal
model, adding what are called reliable signals. But the changes made by Berkeley and AT&T were
incompatible. Fortunately, POSIX.1 standardized the reliable-signal routines, and that is what we describe here.

In this chapter, we start with an overview of signals and a description of what each signal is normally used for.
Then we look at the problems with earlier implementations. It is often important to understand what is wrong
with an implementation before seeing how to do things correctly. This chapter contains numerous examples that
are not entirely correct and a discussion of the defects.

10.2. Signal Concepts

First, every signal has a name. These names all begin with the three characters SIG. For example, SIGABRT is
the abort signal that is generated when a process calls the abort function. SIGALRM is the alarm signal that is
generated when the timer set by the alarm function goes off. Version 7 had 15 different signals; SVR4 and
4.4BSD both have 31 different signals. FreeBSD 5.2.1, Mac OS X 10.3, and Linux 2.4.22 support 31 different
signals, whereas Solaris 9 supports 38 different signals. Both Linux and Solaris, however, support additional
application-defined signals as real-time extensions (the real-time extensions in POSIX aren't covered in this
book; refer to Gallmeister [1995] for more information).

These names are all defined by positive integer constants (the signal number) in the header <signal.h> .

Implementations actually define the individual signals in an alternate header file, but this header file is included
by <signal.h> . It is considered bad form for the kernel to include header files meant for user-level applications,
so if the applications and the kernel both need the same definitions, the information is placed in a kernel header
file that is then included by the user-level header file. Thus, both FreeBSD 5.2.1 and Mac OS X 10.3 define the
signals in <sys/signal.h> . Linux 2.4.22 defines the signals in <bits/signum.h> , and Solaris 9 defines them
in <sys/iso/signal_iso.h> .

No signal has a signal number of 0. We'll see in Section 10.9 that the kill function uses the signal number of 0
for a special case. POSIX.1 calls this value the null signal.

Numerous conditions can generate a signal.

• The terminal-generated signals occur when users press certain terminal keys. Pressing the DELETE key
on the terminal (or Control-C on many systems) normally causes the interrupt signal (SIGINT) to be
generated. This is how to stop a runaway program. (We'll see in Chapter 18 how this signal can be
mapped to any character on the terminal.)

• Hardware exceptions generate signals: divide by 0, invalid memory reference, and the like. These
conditions are usually detected by the hardware, and the kernel is notified. The kernel then generates the
appropriate signal for the process that was running at the time the condition occurred. For example,
SIGSEGV is generated for a process that executes an invalid memory reference.

• The kill (2) function allows a process to send any signal to another process or process group. Naturally,
there are limitations: we have to be the owner of the process that we're sending the signal to, or we have
to be the superuser.

• The kill (1) command allows us to send signals to other processes. This program is just an interface to
the kill function. This command is often used to terminate a runaway background process.

• Software conditions can generate signals when something happens about which the process should be
notified. These aren't hardware-generated conditions (as is the divide-by-0 condition), but software
conditions. Examples are SIGURG (generated when out-of-band data arrives over a network connection),
SIGPIPE (generated when a process writes to a pipe after the reader of the pipe has terminated), and
SIGALRM (generated when an alarm clock set by the process expires).

Signals are classic examples of asynchronous events. Signals occur at what appear to be random times to the
process. The process can't simply test a variable (such as errno) to see whether a signal has occurred; instead,
the process has to tell the kernel "if and when this signal occurs, do the following."

We can tell the kernel to do one of three things when a signal occurs. We call this the disposition of the signal,
or the action associated with a signal.

1. Ignore the signal. This works for most signals, but two signals can never be ignored: SIGKILL and
SIGSTOP. The reason these two signals can't be ignored is to provide the kernel and the superuser with a
surefire way of either killing or stopping any process. Also, if we ignore some of the signals that are
generated by a hardware exception (such as illegal memory reference or divide by 0), the behavior of the
process is undefined.

2. Catch the signal. To do this, we tell the kernel to call a function of ours whenever the signal occurs. In
our function, we can do whatever we want to handle the condition. If we're writing a command
interpreter, for example, when the user generates the interrupt signal at the keyboard, we probably want
to return to the main loop of the program, terminating whatever command we were executing for the
user. If the SIGCHLD signal is caught, it means that a child process has terminated, so the signal-catching
function can call waitpid to fetch the child's process ID and termination status. As another example, if
the process has created temporary files, we may want to write a signal-catching function for the SIGTERM
signal (the termination signal that is the default signal sent by the kill command) to clean up the
temporary files. Note that the two signals SIGKILL and SIGSTOP can't be caught.

3. Let the default action apply. Every signal has a default action, shown in Figure 10.1. Note that the
default action for most signals is to terminate the process.

Figure 10.1. UNIX System signals

Name Description ISO
C

SUS FreeBSD
5.2.1

Linux
2.4.22

Mac
OS X
10.3

Solaris
9

Default action

SIGABRT abnormal
termination
(abort)

• • • • • • terminate+core

SIGALRM timer expired
(alarm)

 • • • • • terminate

SIGBUS hardware fault • • • • • terminate+core

SIGCANCEL threads library
internal use

 • ignore

SIGCHLD change in status of
child

 • • • • • ignore

SIGCONT continue stopped
process

 • • • • • continue/ignore

SIGEMT hardware fault • • • • terminate+core

SIGFPE arithmetic
exception

• • • • • • terminate+core

SIGFREEZE checkpoint freeze • ignore

SIGHUP hangup • • • • • terminate

SIGILL illegal instruction • • • • • • terminate+core

SIGINFO status request
from keyboard

 • • ignore

Figure 10.1. UNIX System signals

Name Description ISO
C

SUS FreeBSD
5.2.1

Linux
2.4.22

Mac
OS X
10.3

Solaris
9

Default action

SIGINT terminal interrupt
character

• • • • • • terminate

SIGIO asynchronous I/O • • • • terminate/ignore

SIGIOT hardware fault • • • • terminate+core

SIGKILL termination • • • • • terminate

SIGLWP threads library
internal use

 • ignore

SIGPIPE write to pipe with
no readers

 • • • • • terminate

SIGPOLL pollable event
(poll)

 XSI • • terminate

SIGPROF profiling time
alarm
(setitimer)

 XSI • • • • terminate

SIGPWR power fail/restart • • terminate/ignore

SIGQUIT terminal quit
character

 • • • • • terminate+core

SIGSEGV invalid memory
reference

• • • • • • terminate+core

SIGSTKFLT coprocessor stack
fault

 • terminate

SIGSTOP stop • • • • • stop process

SIGSYS invalid system call XSI • • • • terminate+core

SIGTERM termination • • • • • • terminate

SIGTHAW checkpoint thaw • ignore

SIGTRAP hardware fault XSI • • • • terminate+core

SIGTSTP terminal stop
character

 • • • • • stop process

SIGTTIN background read
from control tty

 • • • • • stop process

SIGTTOU background write
to control tty

 • • • • • stop process

Figure 10.1. UNIX System signals

Name Description ISO
C

SUS FreeBSD
5.2.1

Linux
2.4.22

Mac
OS X
10.3

Solaris
9

Default action

SIGURG urgent condition
(sockets)

 • • • • • ignore

SIGUSR1 user-defined
signal

 • • • • • terminate

SIGUSR2 user-defined
signal

 • • • • • terminate

SIGVTALRM virtual time alarm
(setitimer)

 XSI • • • • terminate

SIGWAITING threads library
internal use

 • ignore

SIGWINCH terminal window
size change

 • • • • ignore

SIGXCPU CPU limit
exceeded
(setrlimit)

 XSI • • • • terminate+core/ignore

SIGXFSZ file size limit
exceeded
(setrlimit)

 XSI • • • • terminate+core/ignore

SIGXRES resource control
exceeded

 • ignore

Figure 10.1 lists the names of all the signals, an indication of which systems support the signal, and the default
action for the signal. The SUS column contains • if the signal is defined as part of the base POSIX.1
specification and XSI if it is defined as an XSI extension to the base.

When the default action is labeled "terminate+core," it means that a memory image of the process is left in the
file named core of the current working directory of the process. (Because the file is named core , it shows how
long this feature has been part of the UNIX System.) This file can be used with most UNIX System debuggers
to examine the state of the process at the time it terminated.

The generation of the core file is an implementation feature of most versions of the UNIX System. Although
this feature is not part of POSIX.1, it is mentioned as a potential implementation-specific action in the Single
UNIX Specification's XSI extension.

The name of the core file varies among implementations. On FreeBSD 5.2.1, for example, the core file is named
cmdname.core, where cmdname is the name of the command corresponding to the process that received the
signal. On Mac OS X 10.3, the core file is named core.pid, where pid is the ID of the process that received the
signal. (These systems allow the core filename to be configured via a sysctl parameter.)

Most implementations leave the core file in the current working directory of the corresponding process; Mac OS
X places all core files in /cores instead.

The core file will not be generated if (a) the process was set-user-ID and the current user is not the owner of the
program file, or (b) the process was set-group-ID and the current user is not the group owner of the file, (c) the
user does not have permission to write in the current working directory, (d) the file already exists and the user
does not have permission to write to it, or (e) the file is too big (recall the RLIMIT_CORE limit in Section 7.11).
The permissions of the core file (assuming that the file doesn't already exist) are usually user-read and user-
write, although Mac OS X sets only user-read.

In Figure 10.1, the signals with a description "hardware fault" correspond to implementation-defined hardware
faults. Many of these names are taken from the original PDP-11 implementation of the UNIX System. Check
your system's manuals to determine exactly what type of error these signals correspond to.

We now describe each of these signals in more detail.

SIGABRT This signal is generated by calling the abort function (Section 10.17). The process terminates
abnormally.

SIGALRM This signal is generated when a timer set with the alarm function expires (see Section 10.10 for
more details). This signal is also generated when an interval timer set by the setitimer (2)
function expires.

SIGBUS This indicates an implementation-defined hardware fault. Implementations usually generate this
signal on certain types of memory faults, as we describe in Section 14.9.

SIGCANCEL This signal is used internally by the Solaris threads library. It is not meant for general use.

SIGCHLD Whenever a process terminates or stops, the SIGCHLD signal is sent to the parent. By default, this
signal is ignored, so the parent must catch this signal if it wants to be notified whenever a child's
status changes. The normal action in the signal-catching function is to call one of the wait
functions to fetch the child's process ID and termination status.

Earlier releases of System V had a similar signal named SIGCLD (without the H). The semantics of
this signal were different from those of other signals, and as far back as SVR2, the manual page
strongly discouraged its use in new programs. (Strangely enough, this warning disappeared in the
SVR3 and SVR4 versions of the manual page.) Applications should use the standard SIGCHLD
signal, but be aware that many systems define SIGCLD to be the same as SIGCHLD for backward
compatibility. If you maintain software that uses SIGCLD, you need to check your system's manual
page to see what semantics it follows. We discuss these two signals in Section 10.7.

SIGCONT This job-control signal is sent to a stopped process when it is continued. The default action is to
continue a stopped process, but to ignore the signal if the process wasn't stopped. A full-screen
editor, for example, might catch this signal and use the signal handler to make a note to redraw
the terminal screen. See Section 10.20 for additional details.

SIGEMT This indicates an implementation-defined hardware fault.

The name EMT comes from the PDP-11 "emulator trap" instruction. Not all platforms support
this signal. On Linux, for example, SIGEMT is supported only for selected architectures, such as
SPARC, MIPS, and PA-RISC.

SIGFPE This signals an arithmetic exception, such as divide by 0, floating-point overflow, and so on.

SIGABRT This signal is generated by calling the abort function (Section 10.17). The process terminates
abnormally.

SIGFREEZE This signal is defined only by Solaris. It is used to notify processes that need to take special action
before freezing the system state, such as might happen when a system goes into hibernation or
suspended mode.

SIGHUP This signal is sent to the controlling process (session leader) associated with a controlling
terminal if a disconnect is detected by the terminal interface. Referring to Figure 9.12, we see that
the signal is sent to the process pointed to by the s_leader field in the session structure. This
signal is generated for this condition only if the terminal's CLOCAL flag is not set. (The CLOCAL
flag for a terminal is set if the attached terminal is local. The flag tells the terminal driver to
ignore all modem status lines. We describe how to set this flag in Chapter 18.)

Note that the session leader that receives this signal may be in the background; see Figure 9.7 for
an example. This differs from the normal terminal-generated signals (interrupt, quit, and
suspend), which are always delivered to the foreground process group.

This signal is also generated if the session leader terminates. In this case, the signal is sent to each
process in the foreground process group.

This signal is commonly used to notify daemon processes (Chapter 13) to reread their
configuration files. The reason SIGHUP is chosen for this is that a daemon should not have a
controlling terminal and would normally never receive this signal.

SIGILL This signal indicates that the process has executed an illegal hardware instruction.

4.3BSD generated this signal from the abort function. SIGABRT is now used for this.

SIGINFO This BSD signal is generated by the terminal driver when we type the status key (often Control-
T). This signal is sent to all processes in the foreground process group (refer to Figure 9.8). This
signal normally causes status information on processes in the foreground process group to be
displayed on the terminal.

Linux doesn't provide support for SIGINFO except on the Alpha platform, where it is defined to be
the same value as SIGPWR.

SIGINT This signal is generated by the terminal driver when we type the interrupt key (often DELETE or
Control-C). This signal is sent to all processes in the foreground process group (refer to Figure
9.8). This signal is often used to terminate a runaway program, especially when it's generating a
lot of unwanted output on the screen.

SIGIO This signal indicates an asynchronous I/O event. We discuss it in Section 14.6.2.

In Figure 10.1, we labeled the default action for SIGIO as either "terminate" or "ignore."
Unfortunately, the default depends on the system. Under System V, SIGIO is identical to
SIGPOLL, so its default action is to terminate the process. Under BSD, the default is to ignore the
signal.

Linux 2.4.22 and Solaris 9 define SIGIO to be the same value as SIGPOLL, so the default behavior
is to terminate the process. On FreeBSD 5.2.1 and Mac OS X 10.3, the default is to ignore the
signal.

SIGIOT This indicates an implementation-defined hardware fault.

SIGABRT This signal is generated by calling the abort function (Section 10.17). The process terminates
abnormally.

The name IOT comes from the PDP-11 mnemonic for the "input/output TRAP" instruction.
Earlier versions of System V generated this signal from the abort function. SIGABRT is now used
for this.

On FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9, SIGIOT is defined to be the same
value as SIGABRT.

SIGKILL This signal is one of the two that can't be caught or ignored. It provides the system administrator
with a sure way to kill any process.

SIGLWP This signal is used internally by the Solaris threads library, and is not available for general use.

SIGPIPE If we write to a pipeline but the reader has terminated, SIGPIPE is generated. We describe pipes in
Section 15.2. This signal is also generated when a process writes to a socket of type SOCK_STREAM
that is no longer connected. We describe sockets in Chapter 16.

SIGPOLL This signal can be generated when a specific event occurs on a pollable device. We describe this
signal with the poll function in Section 14.5.2. SIGPOLL originated with SVR3, and loosely
corresponds to the BSD SIGIO and SIGURG signals.

On Linux and Solaris, SIGPOLL is defined to have the same value as SIGIO .

SIGPROF This signal is generated when a profiling interval timer set by the setitimer (2) function expires.

SIGPWR This signal is system dependent. Its main use is on a system that has an uninterruptible power
supply (UPS). If power fails, the UPS takes over and the software can usually be notified.
Nothing needs to be done at this point, as the system continues running on battery power. But if
the battery gets low (if the power is off for an extended period), the software is usually notified
again; at this point, it behooves the system to shut everything down within about 15–30 seconds.
This is when SIGPWR should be sent. Most systems have the process that is notified of the low-
battery condition send the SIGPWR signal to the init process, and init handles the shutdown.

Linux 2.4.22 and Solaris 9 have entries in the inittab file for this purpose: powerfail and
powerwait (or powerokwait).

In Figure 10.1, we labeled the default action for SIGPWR as either "terminate" or "ignore."
Unfortunately, the default depends on the system. The default on Linux is to terminate the
process. On Solaris, the signal is ignored by default.

SIGQUIT This signal is generated by the terminal driver when we type the terminal quit key (often Control-
backslash). This signal is sent to all processes in the foreground process group (refer to Figure
9.8). This signal not only terminates the foreground process group (as does SIGINT), but also
generates a core file.

SIGSEGV This signal indicates that the process has made an invalid memory reference.

The name SEGV stands for "segmentation violation."

SIGSTKFLT This signal is defined only by Linux. This signal showed up in the earliest versions of Linux,
intended to be used for stack faults taken by the math coprocessor. This signal is not generated by
the kernel, but remains for backward compatibility.

SIGABRT This signal is generated by calling the abort function (Section 10.17). The process terminates
abnormally.

SIGSTOP This job-control signal stops a process. It is like the interactive stop signal (SIGTSTP), but
SIGSTOP cannot be caught or ignored.

SIGSYS This signals an invalid system call. Somehow, the process executed a machine instruction that the
kernel thought was a system call, but the parameter with the instruction that indicates the type of
system call was invalid. This might happen if you build a program that uses a new system call and
you then try to run the same binary on an older version of the operating system where the system
call doesn't exist.

SIGTERM This is the termination signal sent by the kill (1) command by default.

SIGTHAW This signal is defined only by Solaris and is used to notify processes that need to take special
action when the system resumes operation after being suspended.

SIGTRAP This indicates an implementation-defined hardware fault.

The signal name comes from the PDP-11 TRAP instruction. Implementations often use this signal
to transfer control to a debugger when a breakpoint instruction is executed.

SIGTSTP This interactive stop signal is generated by the terminal driver when we type the terminal suspend
key (often Control-Z). This signal is sent to all processes in the foreground process group (refer to
Figure 9.8).

Unfortunately, the term stop has different meanings. When discussing job control and signals, we
talk about stopping and continuing jobs. The terminal driver, however, has historically used the
term stop to refer to stopping and starting the terminal output using the Control-S and Control-Q
characters. Therefore, the terminal driver calls the character that generates the interactive stop
signal the suspend character, not the stop character.

SIGTTIN This signal is generated by the terminal driver when a process in a background process group tries
to read from its controlling terminal. (Refer to the discussion of this topic in Section 9.8.) As
special cases, if either (a) the reading process is ignoring or blocking this signal or (b) the process
group of the reading process is orphaned, then the signal is not generated; instead, the read
operation returns an error with errno set to EIO.

SIGTTOU This signal is generated by the terminal driver when a process in a background process group tries
to write to its controlling terminal. (Refer to the discussion of this topic in Section 9.8.) Unlike the
SIGTTIN signal just described, a process has a choice of allowing background writes to the
controlling terminal. We describe how to change this option in Chapter 18.

If background writes are not allowed, then like the SIGTTIN signal, there are two special cases: if
either (a) the writing process is ignoring or blocking this signal or (b) the process group of the
writing process is orphaned, then the signal is not generated; instead, the write operation returns
an error with errno set to EIO.

Regardless of whether background writes are allowed, certain terminal operations (other than
writing) can also generate the SIGTTOU signal: tcsetattr , tcsendbreak , tcdrain , tcflush ,
tcflow , and tcsetpgrp . We describe these terminal operations in Chapter 18.

SIGURG This signal notifies the process that an urgent condition has occurred. This signal is optionally
generated when out-of-band data is received on a network connection.

SIGABRT This signal is generated by calling the abort function (Section 10.17). The process terminates
abnormally.

SIGUSR1 This is a user-defined signal, for use in application programs.

SIGUSR2 This is another user-defined signal, similar to SIGUSR1, for use in application programs.

SIGVTALRM This signal is generated when a virtual interval timer set by the setitimer (2) function expires.

SIGWAITING This signal is used internally by the Solaris threads library, and is not available for general use.

SIGWINCH The kernel maintains the size of the window associated with each terminal and pseudo terminal.
A process can get and set the window size with the ioctl function, which we describe in Section
18.12. If a process changes the window size from its previous value using the ioctl set-window-
size command, the kernel generates the SIGWINCH signal for the foreground process group.

SIGXCPU The Single UNIX Specification supports the concept of resource limits as an XSI extension; refer
to Section 7.11. If the process exceeds its soft CPU time limit, the SIGXCPU signal is generated.

In Figure 10.1, we labeled the default action for SIGXCPU as either "terminate with a core file" or
"ignore." Unfortunately, the default depends on the operating system. Linux 2.4.22 and Solaris 9
support a default action of terminate with a core file, whereas FreeBSD 5.2.1 and Mac OS X 10.3
support a default action of ignore. The Single UNIX Specification requires that the default action
be to terminate the process abnormally. Whether a core file is generated is left up to the
implementation.

SIGXFSZ This signal is generated if the process exceeds its soft file size limit; refer to Section 7.11.

Just as with SIGXCPU, the default action taken with SIGXFSZ depends on the operating system. On
Linux 2.4.22 and Solaris 9, the default is to terminate the process and create a core file. On
FreeBSD 5.2.1 and Mac OS X 10.3, the default is to be ignored. The Single UNIX Specification
requires that the default action be to terminate the process abnormally. Whether a core file is
generated is left up to the implementation.

SIGXRES This signal is defined only by Solaris. This signal is optionally used to notify processes that have
exceeded a preconfigured resource value. The Solaris resource control mechanism is a general
facility for controlling the use of shared resources among independent application sets.

10.3. signal Function

The simplest interface to the signal features of the UNIX System is the signal function.

#include <signal.h>

void (*signal(int signo, void (*func)(int)))(int);

Returns: previous disposition of signal (see following) if OK, SIG_ERR on error

The signal function is defined by ISO C, which doesn't involve multiple processes, process groups, terminal
I/O, and the like. Therefore, its definition of signals is vague enough to be almost useless for UNIX systems.

Implementations derived from UNIX System V support the signal function, but it provides the old unreliable-
signal semantics. (We describe these older semantics in Section 10.4.) This function provides backward
compatibility for applications that require the older semantics. New applications should not use these unreliable
signals.

4.4BSD also provides the signal function, but it is defined in terms of the sigaction function (which we
describe in Section 10.14), so using it under 4.4BSD provides the newer reliable-signal semantics. FreeBSD
5.2.1 and Mac OS X 10.3 follow this strategy.

Solaris 9 has roots in both System V and BSD, but it chooses to follow the System V semantics for the signal
function.

On Linux 2.4.22, the semantic of signal can follow either the BSD or System V semantics, depending on the
version of the C library and how you compile your application.

Because the semantics of signal differ among implementations, it is better to use the sigaction function
instead. When we describe the sigaction function in Section 10.14, we provide an implementation of signal
that uses it. All the examples in this text use the signal function that we show in Figure 10.18.

The signo argument is just the name of the signal from Figure 10.1. The value of func is (a) the constant
SIG_IGN , (b) the constant SIG_DFL, or (c) the address of a function to be called when the signal occurs. If we
specify SIG_IGN , we are telling the system to ignore the signal. (Remember that we cannot ignore the two
signals SIGKILL and SIGSTOP.) When we specify SIG_DFL, we are setting the action associated with the signal
to its default value (see the final column in Figure 10.1). When we specify the address of a function to be called
when the signal occurs, we are arranging to "catch" the signal. We call the function either the signal handler or
the signal-catching function.

The prototype for the signal function states that the function requires two arguments and returns a pointer to a
function that returns nothing (void). The signal function's first argument, signo, is an integer. The second
argument is a pointer to a function that takes a single integer argument and returns nothing. The function whose
address is returned as the value of signal takes a single integer argument (the final (int)). In plain English,
this declaration says that the signal handler is passed a single integer argument (the signal number) and that it
returns nothing. When we call signal to establish the signal handler, the second argument is a pointer to the
function. The return value from signal is the pointer to the previous signal handler.

Many systems call the signal handler with additional, implementation-dependent arguments. We discuss this
further in Section 10.14.

The perplexing signal function prototype shown at the beginning of this section can be made much simpler
through the use of the following typedef [Plauger 1992]:

 typedef void Sigfunc(int);

Then the prototype becomes

 Sigfunc *signal(int, Sigfunc *);

We've included this typedef in apue.h (Appendix B) and use it with the functions in this chapter.

If we examine the system's header <signal.h> , we probably find declarations of the form

 #define SIG_ERR (void (*)())-1
 #define SIG_DFL (void (*)())0
 #define SIG_IGN (void (*)())1

These constants can be used in place of the "pointer to a function that takes an integer argument and returns
nothing," the second argument to signal , and the return value from signal . The three values used for these
constants need not be -1, 0, and 1. They must be three values that can never be the address of any declarable
function. Most UNIX systems use the values shown.

Example

Figure 10.2 shows a simple signal handler that catches either of the two user-defined signals and prints the
signal number. In Section 10.10, we describe the pause function, which simply suspends the calling process
until a signal is received.

We invoke the program in the background and use the kill (1) command to send it signals. Note that the term
kill in the UNIX System is a misnomer. The kill (1) command and the kill (2) function just send a signal to a
process or process group. Whether or not that signal terminates the process depends on which signal is sent and
whether the process has arranged to catch the signal.

 $./a.out & start process in b ackground
 [1] 7216 job-control shell prints job number and process ID
 $ kill -USR1 7216 send it SIGUSR1
 received SIGUSR1
 $ kill -USR2 7216 send it SIGUSR2
 received SIGUSR2
 $ kill 7216 now send it SIGTER M
 [1]+ Terminated ./a.out

When we send the SIGTERM signal, the process is terminated, since it doesn't catch the signal, and the default
action for the signal is termination.

Figure 10.2. Simple program to catch SIGUSR1 and SIGUSR2

#include "apue.h"

static void sig_usr(int); /* one handler for both signals */

int
main(void)
{
 if (signal(SIGUSR1, sig_usr) == SIG_ERR)
 err_sys("can't catch SIGUSR1");
 if (signal(SIGUSR2, sig_usr) == SIG_ERR)
 err_sys("can't catch SIGUSR2");
 for (; ;)
 pause();
}

static void
sig_usr(int signo) /* argument is signal numbe r */
{
 if (signo == SIGUSR1)
 printf("received SIGUSR1\n");
 else if (signo == SIGUSR2)
 printf("received SIGUSR2\n");
 else
 err_dump("received signal %d\n", signo);
}

Program Start-Up

When a program is executed, the status of all signals is either default or ignore. Normally, all signals are set to
their default action, unless the process that calls exec is ignoring the signal. Specifically, the exec functions
change the disposition of any signals being caught to their default action and leave the status of all other signals
alone. (Naturally, a signal that is being caught by a process that calls exec cannot be caught by the same
function in the new program, since the address of the signal- catching function in the caller probably has no
meaning in the new program file that is executed.)

One specific example is how an interactive shell treats the interrupt and quit signals for a background process.
With a shell that doesn't support job control, when we execute a process in the background, as in

 cc main.c &

the shell automatically sets the disposition of the interrupt and quit signals in the background process to be
ignored. This is so that if we type the interrupt character, it doesn't affect the background process. If this weren't
done and we typed the interrupt character, it would terminate not only the foreground process, but also all the
background processes.

Many interactive programs that catch these two signals have code that looks like

 void sig_int(int), sig_quit(int);

 if (signal(SIGINT, SIG_IGN) != SIG_IGN)
 signal(SIGINT, sig_int);
 if (signal(SIGQUIT, SIG_IGN) != SIG_IGN)
 signal(SIGQUIT, sig_quit);

Doing this, the process catches the signal only if the signal is not currently being ignored.

These two calls to signal also show a limitation of the signal function: we are not able to determine the
current disposition of a signal without changing the disposition. We'll see later in this chapter how the
sigaction function allows us to determine a signal's disposition without changing it.

Process Creation

When a process calls fork , the child inherits the parent's signal dispositions. Here, since the child starts off with
a copy of the parent's memory image, the address of a signal-catching function has meaning in the child.

10.4. Unreliable Signals

In earlier versions of the UNIX System (such as Version 7), signals were unreliable. By this we mean that
signals could get lost: a signal could occur and the process would never know about it. Also, a process had little
control over a signal: a process could catch the signal or ignore it. Sometimes, we would like to tell the kernel to
block a signal: don't ignore it, just remember if it occurs, and tell us later when we're ready.

Changes were made with 4.2BSD to provide what are called reliable signals. A different set of changes was
then made in SVR3 to provide reliable signals under System V. POSIX.1 chose the BSD model to standardize.

One problem with these early versions is that the action for a signal was reset to its default each time the signal
occurred. (In the previous example, when we ran the program in Figure 10.2, we avoided this detail by catching
each signal only once.) The classic example from programming books that described these earlier systems
concerns how to handle the interrupt signal. The code that was described usually looked like

 int sig_int(); /* my signal han dling function */

 ...
 signal(SIGINT, sig_int); /* establish han dler */
 ...

 sig_int()
 {
 signal(SIGINT, sig_int); /* reestablish h andler for next time */
 ... /* process the s ignal ... */
 }

(The reason the signal handler is declared as returning an integer is that these early systems didn't support the
ISO C void data type.)

The problem with this code fragment is that there is a window of time—after the signal has occurred, but before
the call to signal in the signal handler—when the interrupt signal could occur another time. This second signal
would cause the default action to occur, which for this signal terminates the process. This is one of those
conditions that works correctly most of the time, causing us to think that it is correct, when it isn't.

Another problem with these earlier systems is that the process was unable to turn a signal off when it didn't
want the signal to occur. All the process could do was ignore the signal. There are times when we would like to
tell the system "prevent the following signals from occurring, but remember if they do occur." The classic
example that demonstrates this flaw is shown by a piece of code that catches a signal and sets a flag for the
process that indicates that the signal occurred:

 int sig_int_flag; /* set nonzero when signal occurs */

 main()
 {
 int sig_int(); /* my signal ha ndling function */
 ...
 signal(SIGINT, sig_int); /* establish ha ndler */
 ...
 while (sig_int_flag == 0)
 pause(); /* go to sleep, waiting for signal */
 ...
 }

 sig_int()

 {
 signal(SIGINT, sig_int); /* reestablish handler for next time */
 sig_int_flag = 1; /* set flag for main loop to examine */
 }

Here, the process is calling the pause function to put it to sleep until a signal is caught. When the signal is
caught, the signal handler just sets the flag sig_int_flag to a nonzero value. The process is automatically
awakened by the kernel after the signal handler returns, notices that the flag is nonzero, and does whatever it
needs to do. But there is a window of time when things can go wrong. If the signal occurs after the test of
sig_int_flag , but before the call to pause , the process could go to sleep forever (assuming that the signal is
never generated again). This occurrence of the signal is lost. This is another example of some code that isn't
right, yet it works most of the time. Debugging this type of problem can be difficult.

10.5. Interrupted System Calls

A characteristic of earlier UNIX systems is that if a process caught a signal while the process was blocked in a
"slow" system call, the system call was interrupted. The system call returned an error and errno was set to
EINTR. This was done under the assumption that since a signal occurred and the process caught it, there is a
good chance that something has happened that should wake up the blocked system call.

Here, we have to differentiate between a system call and a function. It is a system call within the kernel that is
interrupted when a signal is caught.

To support this feature, the system calls are divided into two categories: the "slow" system calls and all the
others. The slow system calls are those that can block forever. Included in this category are

• Reads that can block the caller forever if data isn't present with certain file types (pipes, terminal devices,
and network devices)

• Writes that can block the caller forever if the data can't be accepted immediately by these same file types
• Opens that block until some condition occurs on certain file types (such as an open of a terminal device

that waits until an attached modem answers the phone)
• The pause function (which by definition puts the calling process to sleep until a signal is caught) and the

wait function
• Certain ioctl operations
• Some of the interprocess communication functions (Chapter 15)

The notable exception to these slow system calls is anything related to disk I/O. Although a read or a write of a
disk file can block the caller temporarily (while the disk driver queues the request and then the request is
executed), unless a hardware error occurs, the I/O operation always returns and unblocks the caller quickly.

One condition that is handled by interrupted system calls, for example, is when a process initiates a read from a
terminal device and the user at the terminal walks away from the terminal for an extended period. In this
example, the process could be blocked for hours or days and would remain so unless the system was taken
down.

POSIX.1 semantics for interrupted read s and write s changed with the 2001 version of the standard. Earlier
versions gave implementations a choice for how to deal with read s and write s that have processed partial
amounts of data. If read has received and transferred data to an application's buffer, but has not yet received all
that the application requested and is then interrupted, the operating system could either fail the system call with
errno set to EINTR or allow the system call to succeed, returning the partial amount of data received. Similarly,
if write is interrupted after transferring some of the data in an application's buffer, the operation system could
either fail the system call with errno set to EINTR or allow the system call to succeed, returning the partial
amount of data written. Historically, implementations derived from System V fail the system call, whereas
BSD-derived implementations return partial success. With the 2001 version of the POSIX.1 standard, the BSD-
style semantics are required.

The problem with interrupted system calls is that we now have to handle the error return explicitly. The typical
code sequence (assuming a read operation and assuming that we want to restart the read even if it's interrupted)
would be

 again:
 if ((n = read(fd, buf, BUFFSIZE)) < 0) {
 if (errno == EINTR)
 goto again; /* just an interrup ted system call */
 /* handle other errors */

 }

To prevent applications from having to handle interrupted system calls, 4.2BSD introduced the automatic
restarting of certain interrupted system calls. The system calls that were automatically restarted are ioctl , read ,
readv , write , writev , wait , and waitpid . As we've mentioned, the first five of these functions are interrupted
by a signal only if they are operating on a slow device; wait and waitpid are always interrupted when a signal
is caught. Since this caused a problem for some applications that didn't want the operation restarted if it was
interrupted, 4.3BSD allowed the process to disable this feature on a per signal basis.

POSIX.1 allows an implementation to restart system calls, but it is not required. The Single UNIX Specification
defines the SA_RESTART flag as an XSI extension to sigaction to allow applications to request that interrupted
system calls be restarted.

System V has never restarted system calls by default. BSD, on the other hand, restarts them if interrupted by
signals. By default, FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 restart system calls interrupted by signals.
The default on Solaris 9, however, is to return an error (EINTR) instead.

One of the reasons 4.2BSD introduced the automatic restart feature is that sometimes we don't know that the
input or output device is a slow device. If the program we write can be used interactively, then it might be
reading or writing a slow device, since terminals fall into this category. If we catch signals in this program, and
if the system doesn't provide the restart capability, then we have to test every read or write for the interrupted
error return and reissue the read or write.

Figure 10.3 summarizes the signal functions and their semantics provided by the various implementations.

Figure 10.3. Features provided by various signal implementations

Functions System Signal handler
remains installed

Ability to block
signals

Automatic restart of
interrupted system calls?

ISO C, POSIX.1 unspecified unspecified unspecified

V7, SVR2, SVR3, SVR4,
Solaris

 never

4.2BSD • • always
signal

4.3BSD, 4.4BSD, FreeBSD,
Linux, Mac OS X

• •
default

XSI • • unspecified
sigset

SVR3, SVR4, Linux, Solaris • • never

4.2BSD • • always
sigvec

4.3BSD, 4.4BSD, FreeBSD,
Mac OS X

• • default

POSIX.1 • • unspecified

sigaction XSI, 4.4BSD, SVR4,
FreeBSD, Mac OS X, Linux,
Solaris

• • optional

We don't discuss the older sigset and sigvec functions. Their use has been superceded by the sigaction
function; they are included only for completeness. In contrast, some implementations promote the signal
function as a simplified interface to sigaction .

Be aware that UNIX systems from other vendors can have values different from those shown in this figure. For
example, sigaction under SunOS 4.1.2 restarts an interrupted system call by default, different from the
platforms listed in Figure 10.3.

In Figure 10.18, we provide our own version of the signal function that automatically tries to restart
interrupted system calls (other than for the SIGALRM signal). In Figure 10.19, we provide another function,
signal_intr , that tries to never do the restart.

We talk more about interrupted system calls in Section 14.5 with regard to the select and poll functions.

10.6. Reentrant Functions

When a signal that is being caught is handled by a process, the normal sequence of instructions being executed
by the process is temporarily interrupted by the signal handler. The process then continues executing, but the
instructions in the signal handler are now executed. If the signal handler returns (instead of calling exit or
longjmp , for example), then the normal sequence of instructions that the process was executing when the signal
was caught continues executing. (This is similar to what happens when a hardware interrupt occurs.) But in the
signal handler, we can't tell where the process was executing when the signal was caught. What if the process
was in the middle of allocating additional memory on its heap using malloc , and we call malloc from the
signal handler? Or, what if the process was in the middle of a call to a function, such as getpwnam (Section 6.2),
that stores its result in a static location, and we call the same function from the signal handler? In the malloc
example, havoc can result for the process, since malloc usually maintains a linked list of all its allocated areas,
and it may have been in the middle of changing this list. In the case of getpwnam , the information returned to
the normal caller can get overwritten with the information returned to the signal handler.

The Single UNIX Specification specifies the functions that are guaranteed to be reentrant. Figure 10.4 lists these
reentrant functions.

Figure 10.4. Reentrant functions that may be called from a signal handler

accept fchmod lseek sendto stat

access fchown lstat setgid symlink

aio_error fcntl mkdir setpgid sysconf

aio_return fdatasync mkfifo setsid tcdrain

aio_suspend fork open setsockopt tcflow

alarm fpathconf pathconf setuid tcflush

bind fstat pause shutdown tcgetattr

cfgetispeed fsync pipe sigaction tcgetpgrp

cfgetospeed ftruncate poll sigaddset tcsendbreak

cfsetispeed getegid posix_trace_event sigdelset tcsetattr

cfsetospeed geteuid pselect sigemptyset tcsetpgrp

chdir getgid raise sigfillset time

chmod getgroups read sigismember timer_getoverrun

chown getpeername readlink signal timer_gettime

clock_gettime getpgrp recv sigpause timer_settime

close getpid recvfrom sigpending times

connect getppid recvmsg sigprocmask umask

creat getsockname rename sigqueue uname

dup getsockopt rmdir sigset unlink

dup2 getuid select sigsuspend utime

execle kill sem_post sleep wait

Figure 10.4. Reentrant functions that may be called from a signal handler

accept fchmod lseek sendto stat

execve link send socket waitpid

_Exit & _exit listen sendmsg socketpair write

Most functions that are not in Figure 10.4 are missing because (a) they are known to use static data structures,
(b) they call malloc or free , or (c) they are part of the standard I/O library. Most implementations of the
standard I/O library use global data structures in a nonreentrant way. Note that even though we call printf
from signal handlers in some of our examples, it is not guaranteed to produce the expected results, since the
signal hander can interrupt a call to printf from our main program.

Be aware that even if we call a function listed in Figure 10.4 from a signal handler, there is only one errno
variable per thread (recall the discussion of errno and threads in Section 1.7), and we might modify its value.
Consider a signal handler that is invoked right after main has set errno . If the signal handler calls read , for
example, this call can change the value of errno , wiping out the value that was just stored in main . Therefore,
as a general rule, when calling the functions listed in Figure 10.4 from a signal handler, we should save and
restore errno . (Be aware that a commonly caught signal is SIGCHLD, and its signal handler usually calls one of
the wait functions. All the wait functions can change errno .)

Note that longjmp (Section 7.10) and siglongjmp (Section 10.15) are missing from Figure 10.4, because the
signal may have occurred while the main routine was updating a data structure in a nonreentrant way. This data
structure could be left half updated if we call siglongjmp instead of returning from the signal handler. If it is
going to do such things as update global data structures, as we describe here, while catching signals that cause
sigsetjmp to be executed, an application needs to block the signals while updating the data structures.

Example

Figure 10.5 shows a program that calls the nonreentrant function getpwnam from a signal handler
that is called every second. We describe the alarm function in Section 10.10. We use it here to
generate a SIGALRM signal every second.

When this program was run, the results were random. Usually, the program would be terminated by
a SIGSEGV signal when the signal handler returned after several iterations. An examination of the
core file showed that the main function had called getpwnam , but that some internal pointers had
been corrupted when the signal handler called the same function. Occasionally, the program would
run for several seconds before crashing with a SIGSEGV error. When the main function did run
correctly after the signal had been caught, the return value was sometimes corrupted and sometimes
fine. Once (on Mac OS X), messages were printed from the malloc library routine warning about
freeing pointers not allocated through malloc .

As shown by this example, if we call a nonreentrant function from a signal handler, the results are
unpredictable.

Figure 10.5. Call a nonreentrant function from a signal handler

#include "apue.h"
#include <pwd.h>

static void
my_alarm(int signo)
{
 struct passwd *rootptr;

 printf("in signal handler\n");
 if ((rootptr = getpwnam("root")) == NULL)
 err_sys("getpwnam(root) error");
 alarm(1);
}

int
main(void)
{
 struct passwd *ptr;

 signal(SIGALRM, my_alarm);
 alarm(1);
 for (; ;) {
 if ((ptr = getpwnam("sar")) == NULL)
 err_sys("getpwnam error");
 if (strcmp(ptr->pw_name, "sar") != 0)
 printf("return value corrupted!, pw_nam e = %s\n",
 ptr->pw_name);
 }
}

10.7. SIGCLD Semantics

Two signals that continually generate confusion are SIGCLD and SIGCHLD. First, SIGCLD (without the H) is the
System V name, and this signal has different semantics from the BSD signal, named SIGCHLD. The POSIX.1
signal is also named SIGCHLD.

The semantics of the BSD SIGCHLD signal are normal, in that its semantics are similar to those of all other
signals. When the signal occurs, the status of a child has changed, and we need to call one of the wait functions
to determine what has happened.

System V, however, has traditionally handled the SIGCLD signal differently from other signals. SVR4-based
systems continue this questionable tradition (i.e., compatibility constraint) if we set its disposition using either
signal or sigset (the older, SVR3-compatible functions to set the disposition of a signal). This older handling
of SIGCLD consists of the following.

1. If the process specifically sets its disposition to SIG_IGN , children of the calling process will not
generate zombie processes. Note that this is different from its default action (SIG_DFL), which from
Figure 10.1 is to be ignored. Instead, on termination, the status of these child processes is discarded. If it
subsequently calls one of the wait functions, the calling process will block until all its children have
terminated, and then wait returns –1 with errno set to ECHILD. (The default disposition of this signal is
to be ignored, but this default will not cause the preceding semantics to occur. Instead, we specifically
have to set its disposition to SIG_IGN .)

POSIX.1 does not specify what happens when SIGCHLD is ignored, so this behavior is allowed. The
Single UNIX Specification includes an XSI extension specifying that this behavior be supported for
SIGCHLD.

4.4BSD always generates zombies if SIGCHLD is ignored. If we want to avoid zombies, we have to wait
for our children. FreeBSD 5.2.1 works like 4.4BSD. Mac OS X 10.3, however, doesn't create zombies
when SIGCHLD is ignored.

With SVR4, if either signal or sigset is called to set the disposition of SIGCHLD to be ignored,
zombies are never generated. Solaris 9 and Linux 2.4.22 follow SVR4 in this behavior.

With sigaction , we can set the SA_NOCLDWAIT flag (Figure 10.16) to avoid zombies. This action is
supported on all four platforms: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9.

2. If we set the disposition of SIGCLD to be caught, the kernel immediately checks whether any child
processes are ready to be wait ed for and, if so, calls the SIGCLD handler.

Item 2 changes the way we have to write a signal handler for this signal, as illustrated in the following example.

Example

Recall from Section 10.4 that the first thing to do on entry to a signal handler is to call signal again,
to reestablish the handler. (This action was to minimize the window of time when the signal is reset
back to its default and could get lost.) We show this in Figure 10.6. This program doesn't work on
some platforms. If we compile and run it under a traditional System V platform, such as OpenServer
5 or UnixWare 7, the output is a continual string of SIGCLD received lines. Eventually, the process
runs out of stack space and terminates abnormally.

FreeBSD 5.2.1 and Mac OS X 10.3 don't exhibit this problem, because BSD-based systems
generally don't support historic System V semantics for SIGCLD. Linux 2.4.22 also doesn't exhibit
this problem, because it doesn't call the SIGCHLD signal handler when a process arranges to catch
SIGCHLD and child processes are ready to be wait ed for, even though SIGCLD and SIGCHLD are
defined to be the same value. Solaris 9, on the other hand, does call the signal handler in this
situation, but includes extra code in the kernel to avoid this problem.

Although the four platforms described in this book solve this problem, realize that platforms (such
as UnixWare) still exist that haven't addressed it.

The problem with this program is that the call to signal at the beginning of the signal handler
invokes item 2 from the preceding discussion—the kernel checks whether a child needs to be
wait ed for (which there is, since we're processing a SIGCLD signal), so it generates another call to
the signal handler. The signal handler calls signal , and the whole process starts over again.

To fix this program, we have to move the call to signal after the call to wait . By doing this, we call
signal after fetching the child's termination status; the signal is generated again by the kernel only
if some other child has since terminated.

POSIX.1 states that when we establish a signal handler for SIGCHLD and there exists a terminated
child we have not yet wait ed for, it is unspecified whether the signal is generated. This allows the
behavior described previously. But since POSIX.1 does not reset a signal's disposition to its default
when the signal occurs (assuming that we're using the POSIX.1 sigaction function to set its
disposition), there is no need for us to ever establish a signal handler for SIGCHLD within that
handler.

Figure 10.6. System V SIGCLD handler that doesn't work

#include "apue.h"
#include <sys/wait.h>

static void sig_cld(int);

int
main()
{
 pid_t pid;

 if (signal(SIGCLD, sig_cld) == SIG_ERR)
 perror("signal error");
 if ((pid = fork()) < 0) {
 perror("fork error");
 } else if (pid == 0) { /* child */
 sleep(2);
 _exit(0);
 }
 pause(); /* parent */
 exit(0);
}

static void
sig_cld(int signo) /* interrupts pause() */
{
 pid_t pid;
 int status;

 printf("SIGCLD received\n");
 if (signal(SIGCLD, sig_cld) == SIG_ERR) /* rees tablish handler */
 perror("signal error");
 if ((pid = wait(&status)) < 0) /* fetch ch ild status */
 perror("wait error");
 printf("pid = %d\n", pid);
}

Be cognizant of the SIGCHLD semantics for your implementation. Be especially aware of some systems that
#define SIGCHLD to be SIGCLD or vice versa. Changing the name may allow you to compile a program that
was written for another system, but if that program depends on the other semantics, it may not work.

On the four platforms described in this text, SIGCLD is equivalent to SIGCHLD.

10.8. Reliable-Signal Terminology and Semantics

We need to define some of the terms used throughout our discussion of signals. First, a signal is generated for a
process (or sent to a process) when the event that causes the signal occurs. The event could be a hardware
exception (e.g., divide by 0), a software condition (e.g., an alarm timer expiring), a terminal-generated signal,
or a call to the kill function. When the signal is generated, the kernel usually sets a flag of some form in the
process table.

We say that a signal is delivered to a process when the action for a signal is taken. During the time between the
generation of a signal and its delivery, the signal is said to be pending.

A process has the option of blocking the delivery of a signal. If a signal that is blocked is generated for a
process, and if the action for that signal is either the default action or to catch the signal, then the signal remains
pending for the process until the process either (a) unblocks the signal or (b) changes the action to ignore the
signal. The system determines what to do with a blocked signal when the signal is delivered, not when it's
generated. This allows the process to change the action for the signal before it's delivered. The sigpending
function (Section 10.13) can be called by a process to determine which signals are blocked and pending.

What happens if a blocked signal is generated more than once before the process unblocks the signal? POSIX.1
allows the system to deliver the signal either once or more than once. If the system delivers the signal more than
once, we say that the signals are queued. Most UNIX systems, however, do not queue signals unless they
support the real-time extensions to POSIX.1. Instead, the UNIX kernel simply delivers the signal once.

The manual pages for SVR2 claimed that the SIGCLD signal was queued while the process was executing its
SIGCLD signal handler. Although this might have been true on a conceptual level, the actual implementation was
different. Instead, the signal was regenerated by the kernel as we described in Section 10.7. In SVR3, the
manual was changed to indicate that the SIGCLD signal was ignored while the process was executing its signal
handler for SIGCLD. The SVR4 manual removed any mention of what happens to SIGCLD signals that are
generated while a process is executing its SIGCLD signal handler.

The SVR4 sigaction (2) manual page in AT&T [1990e] claims that the SA_SIGINFO flag (Figure 10.16) causes
signals to be reliably queued. This is wrong. Apparently, this feature was partially implemented within the
kernel, but it is not enabled in SVR4. Curiously, the SVID doesn't make the same claims of reliable queuing.

What happens if more than one signal is ready to be delivered to a process? POSIX.1 does not specify the order
in which the signals are delivered to the process. The Rationale for POSIX.1 does suggest, however, that signals
related to the current state of the process be delivered before other signals. (SIGSEGV is one such signal.)

Each process has a signal mask that defines the set of signals currently blocked from delivery to that process.
We can think of this mask as having one bit for each possible signal. If the bit is on for a given signal, that
signal is currently blocked. A process can examine and change its current signal mask by calling sigprocmask ,
which we describe in Section 10.12.

Since it is possible for the number of signals to exceed the number of bits in an integer, POSIX.1 defines a data
type, called sigset_t , that holds a signal set. The signal mask, for example, is stored in one of these signal sets.
We describe five functions that operate on signal sets in Section 10.11.

10.9. kill and raise Functions

The kill function sends a signal to a process or a group of processes. The raise function allows a process to
send a signal to itself.

raise was originally defined by ISO C. POSIX.1 includes it to align itself with the ISO C standard, but
POSIX.1 extends the specification of raise to deal with threads (we discuss how threads interact with signals
in Section 12.8). Since ISO C does not deal with multiple processes, it could not define a function, such as kill ,
that requires a process ID argument.

#include <signal.h>

int kill(pid_t pid, int signo);

int raise(int signo);

Both return: 0 if OK, –1 on error

The call

 raise(signo);

is equivalent to the call

 kill(getpid(), signo);

There are four different conditions for the pid argument to kill .

pid
> 0

The signal is sent to the process whose process ID is pid.

pid
== 0

The signal is sent to all processes whose process group ID equals the process group ID of the sender and
for which the sender has permission to send the signal. Note that the term all processes excludes an
implementation-defined set of system processes. For most UNIX systems, this set of system processes
includes the kernel processes and init (pid 1).

pid
< 0

The signal is sent to all processes whose process group ID equals the absolute value of pid and for which
the sender has permission to send the signal. Again, the set of all processes excludes certain system
processes, as described earlier.

pid
== –
1

The signal is sent to all processes on the system for which the sender has permission to send the signal.
As before, the set of processes excludes certain system processes.

As we've mentioned, a process needs permission to send a signal to another process. The superuser can send a
signal to any process. For other users, the basic rule is that the real or effective user ID of the sender has to
equal the real or effective user ID of the receiver. If the implementation supports _POSIX_SAVED_IDS (as
POSIX.1 now requires), the saved set-user-ID of the receiver is checked instead of its effective user ID. There is

also one special case for the permission testing: if the signal being sent is SIGCONT, a process can send it to any
other process in the same session.

POSIX.1 defines signal number 0 as the null signal. If the signo argument is 0, then the normal error checking is
performed by kill , but no signal is sent. This is often used to determine if a specific process still exists. If we
send the process the null signal and it doesn't exist, kill returns –1 and errno is set to ESRCH. Be aware,
however, that UNIX systems recycle process IDs after some amount of time, so the existence of a process with
a given process ID does not mean that it's the process that you think it is.

Also understand that the test for process existence is not atomic. By the time that kill returns the answer to the
caller, the process in question might have exited, so the answer is of limited value.

If the call to kill causes the signal to be generated for the calling process and if the signal is not blocked, either
signo or some other pending, unblocked signal is delivered to the process before kill returns. (Additional
conditions occur with threads; see Section 12.8 for more information.)

10.10. alarm and pause Functions

The alarm function allows us to set a timer that will expire at a specified time in the future. When the timer
expires, the SIGALRM signal is generated. If we ignore or don't catch this signal, its default action is to terminate
the process.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Returns: 0 or number of seconds until previously set alarm

The seconds value is the number of clock seconds in the future when the signal should be generated. Be aware
that when that time occurs, the signal is generated by the kernel, but there could be additional time before the
process gets control to handle the signal, because of processor scheduling delays.

Earlier UNIX System implementations warned that the signal could also be sent up to 1 second early. POSIX.1
does not allow this.

There is only one of these alarm clocks per process. If, when we call alarm , a previously registered alarm clock
for the process has not yet expired, the number of seconds left for that alarm clock is returned as the value of
this function. That previously registered alarm clock is replaced by the new value.

If a previously registered alarm clock for the process has not yet expired and if the seconds value is 0, the
previous alarm clock is canceled. The number of seconds left for that previous alarm clock is still returned as
the value of the function.

Although the default action for SIGALRM is to terminate the process, most processes that use an alarm clock
catch this signal. If the process then wants to terminate, it can perform whatever cleanup is required before
terminating. If we intend to catch SIGALRM, we need to be careful to install its signal handler before calling
alarm . If we call alarm first and are sent SIGALRM before we can install the signal handler, our process will
terminate.

The pause function suspends the calling process until a signal is caught.

#include <unistd.h>

int pause(void);

Returns: –1 with errno set to EINTR

The only time pause returns is if a signal handler is executed and that handler returns. In that case, pause
returns –1 with errno set to EINTR.

Example

Using alarm and pause , we can put a process to sleep for a specified amount of time. The sleep1

function in Figure 10.7 appears to do this (but it has problems, as we shall see shortly).

This function looks like the sleep function, which we describe in Section 10.19, but this simple
implementation has three problems.

1. If the caller already has an alarm set, that alarm is erased by the first call to alarm . We can
correct this by looking at the return value from the first call to alarm . If the number of
seconds until some previously set alarm is less than the argument, then we should wait only
until the previously set alarm expires. If the previously set alarm will go off after ours, then
before returning we should reset this alarm to occur at its designated time in the future.

2. We have modified the disposition for SIGALRM. If we're writing a function for others to call,
we should save the disposition when we're called and restore it when we're done. We can
correct this by saving the return value from signal and resetting the disposition before we
return.

3. There is a race condition between the first call to alarm and the call to pause . On a busy
system, it's possible for the alarm to go off and the signal handler to be called before we call
pause . If that happens, the caller is suspended forever in the call to pause (assuming that
some other signal isn't caught).

Earlier implementations of sleep looked like our program, with problems 1 and 2 corrected as
described. There are two ways to correct problem 3. The first uses setjmp , which we show in the
next example. The other uses sigprocmask and sigsuspend , and we describe it in Section 10.19.

Figure 10.7. Simple, incomplete implementation of sleep

#include <signal.h>
#include <unistd.h>

static void
sig_alrm(int signo)
{
 /* nothing to do, just return to wake up the pa use */
}

unsigned int
sleep1(unsigned int nsecs)
{
 if (signal(SIGALRM, sig_alrm) == SIG_ERR)
 return(nsecs);
 alarm(nsecs); /* start the timer */
 pause(); /* next caught signal wakes us up */
 return(alarm(0)); /* turn off timer, return u nslept time */
}

Example

The SVR2 implementation of sleep used setjmp and longjmp (Section 7.10) to avoid the race condition
described in problem 3 of the previous example. A simple version of this function, called sleep2 , is shown in
Figure 10.8. (To reduce the size of this example, we don't handle problems 1 and 2 described earlier.)

The sleep2 function avoids the race condition from Figure 10.7. Even if the pause is never executed, the
sleep2 function returns when the SIGALRM occurs.

There is, however, another subtle problem with the sleep2 function that involves its interaction with other
signals. If the SIGALRM interrupts some other signal handler, when we call longjmp , we abort the other signal
handler. Figure 10.9 shows this scenario. The loop in the SIGINT handler was written so that it executes for
longer than 5 seconds on one of the systems used by the author. We simply want it to execute longer than the
argument to sleep2 . The integer k is declared volatile to prevent an optimizing compiler from discarding the
loop. Executing the program shown in Figure 10.9 gives us

 $./a.out

 ^? we type the interrupt c haracter
 sig_int starting
 sleep2 returned: 0

We can see that the longjmp from the sleep2 function aborted the other signal handler, sig_int , even though
it wasn't finished. This is what you'll encounter if you mix the SVR2 sleep function with other signal handling.
See Exercise 10.3.

Figure 10.8. Another (imperfect) implementation of sleep

#include <setjmp.h>
#include <signal.h>
#include <unistd.h>

static jmp_buf env_alrm;

static void
sig_alrm(int signo)
{
 longjmp(env_alrm, 1);
}

unsigned int
sleep2(unsigned int nsecs)
{
 if (signal(SIGALRM, sig_alrm) == SIG_ERR)
 return(nsecs);
 if (setjmp(env_alrm) == 0) {
 alarm(nsecs); /* start the timer */
 pause(); /* next caught signal w akes us up */
 }
 return(alarm(0)); /* turn off timer, retu rn unslept time */
}

Figure 10.9. Calling sleep2 from a program that catches other signals

#include "apue.h"

unsigned int sleep2(unsigned int);
static void sig_int(int);

int
main(void)
{
 unsigned int unslept;

 if (signal(SIGINT, sig_int) == SIG_ERR)

 err_sys("signal(SIGINT) error");
 unslept = sleep2(5);
 printf("sleep2 returned: %u\n", unslept);
 exit(0);
}

static void
sig_int(int signo)
{
 int i, j;
 volatile int k;

 /*
 * Tune these loops to run for more than 5 seco nds
 * on whatever system this test program is run.
 */
 printf("\nsig_int starting\n");
 for (i = 0; i < 300000; i++)
 for (j = 0; j < 4000; j++)
 k += i * j;
 printf("sig_int finished\n");
}

The purpose of these two examples, the sleep1 and sleep2 functions, is to show the pitfalls in dealing naively
with signals. The following sections will show ways around all these problems, so we can handle signals
reliably, without interfering with other pieces of code.

Example

A common use for alarm , in addition to implementing the sleep function, is to put an upper time
limit on operations that can block. For example, if we have a read operation on a device that can
block (a "slow" device, as described in Section 10.5), we might want the read to time out after some
amount of time. The program in Figure 10.10 does this, reading one line from standard input and
writing it to standard output.

This sequence of code is common in UNIX applications, but this program has two problems.

1. The program in Figure 10.10 has one of the same flaws that we described in Figure 10.7: a
race condition between the first call to alarm and the call to read . If the kernel blocks the
process between these two function calls for longer than the alarm period, the read could
block forever. Most operations of this type use a long alarm period, such as a minute or
more, making this unlikely; nevertheless, it is a race condition.

2. If system calls are automatically restarted, the read is not interrupted when the SIGALRM
signal handler returns. In this case, the timeout does nothing.

Here, we specifically want a slow system call to be interrupted. POSIX.1 does not give us a portable
way to do this; however, the XSI extension in the Single UNIX Specification does. We'll discuss this
more in Section 10.14.

Figure 10.10. Calling read with a timeout

#include "apue.h"

static void sig_alrm(int);

int
main(void)
{
 int n;
 char line[MAXLINE];

 if (signal(SIGALRM, sig_alrm) == SIG_ERR)
 err_sys("signal(SIGALRM) error");

 alarm(10);
 if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0)
 err_sys("read error");
 alarm(0);

 write(STDOUT_FILENO, line, n);
 exit(0);
}

static void
sig_alrm(int signo)
{
 /* nothing to do, just return to interrupt the read */
}

Example

Let's redo the preceding example using longjmp . This way, we don't need to worry about whether a
slow system call is interrupted.

This version works as expected, regardless of whether the system restarts interrupted system calls.
Realize, however, that we still have the problem of interactions with other signal handlers, as in
Figure 10.8.

Figure 10.11. Calling read with a timeout, using longjmp

#include "apue.h"
#include <setjmp.h>

static void sig_alrm(int);
static jmp_buf env_alrm;

int
main(void)
{
 int n;
 char line[MAXLINE];

 if (signal(SIGALRM, sig_alrm) == SIG_ERR)
 err_sys("signal(SIGALRM) error");
 if (setjmp(env_alrm) != 0)
 err_quit("read timeout");

 alarm(10);
 if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0)
 err_sys("read error");
 alarm(0);

 write(STDOUT_FILENO, line, n);

 exit(0);
}

static void
sig_alrm(int signo)
{
 longjmp(env_alrm, 1);
}

If we want to set a time limit on an I/O operation, we need to use longjmp , as shown previously, realizing its
possible interaction with other signal handlers. Another option is to use the select or poll functions, described
in Sections 14.5.1 and 14.5.2.

10.11. Signal Sets

We need a data type to represent multiple signals—a signal set. We'll use this with such functions as
sigprocmask (in the next section) to tell the kernel not to allow any of the signals in the set to occur. As we
mentioned earlier, the number of different signals can exceed the number of bits in an integer, so in general, we
can't use an integer to represent the set with one bit per signal. POSIX.1 defines the data type sigset_t to
contain a signal set and the following five functions to manipulate signal sets.

#include <signal.h>

int sigemptyset(sigset_t *set);

int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signo);

int sigdelset(sigset_t *set, int signo);

All four return: 0 if OK, –1 on error

int sigismember(const sigset_t *set, int signo);

Returns: 1 if true, 0 if false, –1 on error

The function sigemptyset initializes the signal set pointed to by set so that all signals are excluded. The
function sigfillset initializes the signal set so that all signals are included. All applications have to call either
sigemptyset or sigfillset once for each signal set, before using the signal set, because we cannot assume
that the C initialization for external and static variables (0) corresponds to the implementation of signal sets on a
given system.

Once we have initialized a signal set, we can add and delete specific signals in the set. The function sigaddset
adds a single signal to an existing set, and sigdelset removes a single signal from a set. In all the functions
that take a signal set as an argument, we always pass the address of the signal set as the argument.

Implementation

If the implementation has fewer signals than bits in an integer, a signal set can be implemented using one bit per
signal. For the remainder of this section, assume that an implementation has 31 signals and 32-bit integers. The
sigemptyset function zeros the integer, and the sigfillset function turns on all the bits in the integer. These
two functions can be implemented as macros in the <signal.h> header:

 #define sigemptyset(ptr) (*(ptr) = 0)
 #define sigfillset(ptr) (*(ptr) = ~(sigset_t)0, 0)

Note that sigfillset must return 0, in addition to setting all the bits on in the signal set, so we use C's comma
operator, which returns the value after the comma as the value of the expression.

Using this implementation, sigaddset turns on a single bit and sigdelset turns off a single bit; sigismember
tests a certain bit. Since no signal is ever numbered 0, we subtract 1 from the signal number to obtain the bit to
manipulate. Figure 10.12 shows implementations of these functions.

Figure 10.12. An implementation of sigaddset, sigdelset, and sigismember

#include <signal.h>
#include <errno.h>

/* <signal.h> usually defines NSIG to include signa l number 0 */
#define SIGBAD(signo) ((signo) <= 0 || (signo) >= NSIG)

int
sigaddset(sigset_t *set, int signo)
{
 if (SIGBAD(signo)) { errno = EINVAL; return(-1) ; }

 set |= 1 << (signo - 1); / turn bit on */
 return(0);
}

int
sigdelset(sigset_t *set, int signo)
{
 if (SIGBAD(signo)) { errno = EINVAL; return(-1) ; }

 set &= ~(1 << (signo - 1)); / turn bit off */
 return(0);
}

int
sigismember(const sigset_t *set, int signo)
{
 if (SIGBAD(signo)) { errno = EINVAL; return(-1); }

 return((*set & (1 << (signo - 1))) != 0);
}

We might be tempted to implement these three functions as one-line macros in the <signal.h> header, but
POSIX.1 requires us to check the signal number argument for validity and to set errno if it is invalid. This is
more difficult to do in a macro than in a function.

10.12. sigprocmask Function

Recall from Section 10.8 that the signal mask of a process is the set of signals currently blocked from delivery
to that process. A process can examine its signal mask, change its signal mask, or perform both operations in
one step by calling the following function.

#include <signal.h>

int sigprocmask(int how, const sigset_t *restrict s et,
 sigset_t *restrict oset);

Returns: 0 if OK, –1 on error

First, if oset is a non-null pointer, the current signal mask for the process is returned through oset.

Second, if set is a non-null pointer, the how argument indicates how the current signal mask is modified. Figure
10.13 describes the possible values for how. SIG_BLOCK is an inclusive-OR operation, whereas SIG_SETMASK is
an assignment. Note that SIGKILL and SIGSTOP can't be blocked.

Figure 10.13. Ways to change current signal mask using sigprocmask

how Description

SIG_BLOCK The new signal mask for the process is the union of its current signal mask and the signal set
pointed to by set. That is, set contains the additional signals that we want to block.

SIG_UNBLOCK The new signal mask for the process is the intersection of its current signal mask and the
complement of the signal set pointed to by set. That is, set contains the signals that we want to
unblock.

SIG_SETMASK The new signal mask for the process is replaced by the value of the signal set pointed to by set.

If set is a null pointer, the signal mask of the process is not changed, and how is ignored.

After calling sigprocmask , if any unblocked signals are pending, at least one of these signals is delivered to the
process before sigprocmask returns.

The sigprocmask function is defined only for single-threaded processes. A separate function is provided to
manipulate a thread's signal mask in a multithreaded process. We'll discuss this in Section 12.8.

Example

Figure 10.14 shows a function that prints the names of the signals in the signal mask of the calling
process. We call this function from the programs shown in Figure 10.20 and Figure 10.22.

To save space, we don't test the signal mask for every signal that we listed in Figure 10.1. (See
Exercise 10.9.)

Figure 10.14. Print the signal mask for the process

#include "apue.h"
#include <errno.h>

void
pr_mask(const char *str)
{
 sigset_t sigset;
 int errno_save;

 errno_save = errno; /* we can be called by signal handlers */
 if (sigprocmask(0, NULL, &sigset) < 0)
 err_sys("sigprocmask error");

 printf("%s", str);
 if (sigismember(&sigset, SIGINT)) printf("SIG INT ");
 if (sigismember(&sigset, SIGQUIT)) printf("SIG QUIT ");
 if (sigismember(&sigset, SIGUSR1)) printf("SIG USR1 ");
 if (sigismember(&sigset, SIGALRM)) printf("SIG ALRM ");

 /* remaining signals can go here */

 printf("\n");
 errno = errno_save;
}

10.13. sigpending Function

The sigpending function returns the set of signals that are blocked from delivery and currently pending for the
calling process. The set of signals is returned through the set argument.

#include <signal.h>

int sigpending(sigset_t *set);

Returns: 0 if OK, –1 on error

Example

Figure 10.15 shows many of the signal features that we've been describing.

The process blocks SIGQUIT, saving its current signal mask (to reset later), and then goes to sleep for 5 seconds.
Any occurrence of the quit signal during this period is blocked and won't be delivered until the signal is
unblocked. At the end of the 5-second sleep, we check whether the signal is pending and unblock the signal.

Note that we saved the old mask when we blocked the signal. To unblock the signal, we did a SIG_SETMASK of
the old mask. Alternatively, we could SIG_UNBLOCK only the signal that we had blocked. Be aware, however, if
we write a function that can be called by others and if we need to block a signal in our function, we can't use
SIG_UNBLOCK to unblock the signal. In this case, we have to use SIG_SETMASK and reset the signal mask to its
prior value, because it's possible that the caller had specifically blocked this signal before calling our function.
We'll see an example of this in the system function in Section 10.18.

If we generate the quit signal during this sleep period, the signal is now pending and unblocked, so it is
delivered before sigprocmask returns. We'll see this occur because the printf in the signal handler is output
before the printf that follows the call to sigprocmask .

The process then goes to sleep for another 5 seconds. If we generate the quit signal during this sleep period, the
signal should terminate the process, since we reset the handling of the signal to its default when we caught it. In
the following output, the terminal prints ^\ when we input Control-backslash, the terminal quit character:

 $./a.out

 ^\ generate signal once (before 5 seconds are up)
 SIGQUIT pending after return from slee p
 caught SIGQUIT in signal handler
 SIGQUIT unblocked after return from sigp rocmask
 ^\Quit(coredump) generate signal again
 $./a.out

 ^\^\^\^\^\^\^\^\^\^\ generate signal 10 tim es (before 5 seconds are up)
 SIGQUIT pending
 caught SIGQUIT signal is generated on ly once
 SIGQUIT unblocked
 ^\Quit(coredump) generate signal again

The message Quit(coredump) is printed by the shell when it sees that its child terminated abnormally. Note
that when we run the program the second time, we generate the quit signal ten times while the process is asleep,
yet the signal is delivered only once to the process when it's unblocked. This demonstrates that signals are not
queued on this system.

Figure 10.15. Example of signal sets and sigprocmask

#include "apue.h"

static void sig_quit(int);

int
main(void)
{
 sigset_t newmask, oldmask, pendmask;

 if (signal(SIGQUIT, sig_quit) == SIG_ERR)
 err_sys("can't catch SIGQUIT");

 /*
 * Block SIGQUIT and save current signal mask.
 */
 sigemptyset(&newmask);
 sigaddset(&newmask, SIGQUIT);
 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
 err_sys("SIG_BLOCK error");

 sleep(5); /* SIGQUIT here will remain pending */
 if (sigpending(&pendmask) < 0)
 err_sys("sigpending error");
 if (sigismember(&pendmask, SIGQUIT))
 printf("\nSIGQUIT pending\n");

 /*
 * Reset signal mask which unblocks SIGQUIT.
 */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");
 printf("SIGQUIT unblocked\n");

 sleep(5); /* SIGQUIT here will terminate with core file */
 exit(0);
}

static void
sig_quit(int signo)
{
 printf("caught SIGQUIT\n");
 if (signal(SIGQUIT, SIG_DFL) == SIG_ERR)
 err_sys("can't reset SIGQUIT");
}

10.14. sigaction Function

The sigaction function allows us to examine or modify (or both) the action associated with a particular signal.
This function supersedes the signal function from earlier releases of the UNIX System. Indeed, at the end of
this section, we show an implementation of signal using sigaction .

#include <signal.h>

int sigaction(int signo, const struct sigaction *re strict act,
 struct sigaction *restrict oact);

Returns: 0 if OK, –1 on error

The argument signo is the signal number whose action we are examining or modifying. If the act pointer is non-
null, we are modifying the action. If the oact pointer is non-null, the system returns the previous action for the
signal through the oact pointer. This function uses the following structure:

 struct sigaction {
 void (*sa_handler)(int); /* addr of s ignal handler, */
 /* or SIG_IG N, or SIG_DFL */
 sigset_t sa_mask; /* additiona l signals to block */
 int sa_flags; /* signal op tions, Figure 10.16 */

 /* alternate handler */
 void (*sa_sigaction)(int, siginfo_t *, v oid *);
 };

When changing the action for a signal, if the sa_handler field contains the address of a signal-catching
function (as opposed to the constants SIG_IGN or SIG_DFL), then the sa_mask field specifies a set of signals that
are added to the signal mask of the process before the signal-catching function is called. If and when the signal-
catching function returns, the signal mask of the process is reset to its previous value. This way, we are able to
block certain signals whenever a signal handler is invoked. The operating system includes the signal being
delivered in the signal mask when the handler is invoked. Hence, we are guaranteed that whenever we are
processing a given signal, another occurrence of that same signal is blocked until we're finished processing the
first occurrence. Recall from Section 10.8 that additional occurrences of the same signal are usually not queued.
If the signal occurs five times while it is blocked, when we unblock the signal, the signal-handling function for
that signal will usually be invoked only one time.

Once we install an action for a given signal, that action remains installed until we explicitly change it by calling
sigaction . Unlike earlier systems with their unreliable signals, POSIX.1 requires that a signal handler remain
installed until explicitly changed.

The sa_flags field of the act structure specifies various options for the handling of this signal. Figure 10.16
details the meaning of these options when set. The SUS column contains • if the flag is defined as part of the
base POSIX.1 specification, and XSI if it is defined as an XSI extension to the base.

Figure 10.16. Option flags (sa_flags) for the handling of each signal

Option SUS FreeBSD
5.2.1

Linux
2.4.22

Mac
OS X
10.3

Solaris
9

Description

SA_INTERRUPT • System calls interrupted by this signal are not
automatically restarted (the XSI default for
sigaction). See Section 10.5 for more
information.

SA_NOCLDSTOP • • • • • If signo is SIGCHLD, do not generate this signal
when a child process stops (job control). This
signal is still generated, of course, when a child
terminates (but see the SA_NOCLDWAIT option
below). As an XSI extension, SIGCHLD won't be
sent when a stopped child continues if this flag is
set.

SA_NOCLDWAIT XSI • • • • If signo is SIGCHLD, this option prevents the
system from creating zombie processes when
children of the calling process terminate. If it
subsequently calls wait , the calling process
blocks until all its child processes have
terminated and then returns –1 with errno set to
ECHILD. (Recall Section 10.7.)

SA_NODEFER XSI • • • • When this signal is caught, the signal is not
automatically blocked by the system while the
signal-catching function executes (unless the
signal is also included in sa_mask). Note that this
type of operation corresponds to the earlier
unreliable signals.

SA_ONSTACK XSI • • • • If an alternate stack has been declared with
sigaltstack (2), this signal is delivered to the
process on the alternate stack.

SA_RESETHAND XSI • • • • The disposition for this signal is reset to SIG_DFL,
and the SA_SIGINFO flag is cleared on entry to the
signal-catching function. Note that this type of
operation corresponds to the earlier unreliable
signals. The disposition for the two signals
SIGILL and SIGTRAP can't be reset automatically,
however. Setting this flag causes sigaction to
behave as if SA_NODEFER is also set.

SA_RESTART XSI • • • • System calls interrupted by this signal are
automatically restarted. (Refer to Section 10.5.)

SA_SIGINFO • • • • • This option provides additional information to a
signal handler: a pointer to a siginfo structure
and a pointer to an identifier for the process
context.

The sa_sigaction field is an alternate signal handler used when the SA_SIGINFO flag is used with sigaction .
Implementations might use the same storage for both the sa_sigaction field and the sa_handler field, so
applications can use only one of these fields at a time.

Normally, the signal handler is called as

 void handler(int signo);

but if the SA_SIGINFO flag is set, the signal handler is called as

 void handler(int signo, siginfo_t *info, void *c ontext);

The siginfo_t structure contains information about why the signal was generated. An example of what it
might look like is shown below. All POSIX.1-compliant implementations must include at least the si_signo
and si_code members. Additionally, implementations that are XSI compliant contain at least the following
fields:

 struct siginfo {
 int si_signo; /* signal number */
 int si_errno; /* if nonzero, errno value from <errno.h> */
 int si_code; /* additional info (depends on signal) */
 pid_t si_pid; /* sending process ID */
 uid_t si_uid; /* sending process real use r ID */
 void *si_addr; /* address that caused the fault */
 int si_status; /* exit value or signal num ber */
 long si_band; /* band number for SIGPOLL */
 /* possibly other fields also */
 };

Figure 10.17 shows values of si_code for various signals, as defined by the Single UNIX Specification. Note
that implementations may define additional code values.

Figure 10.17. siginfo_t code values

Signal Code Reason

 ILL_ILLOPC illegal opcode

 ILL_ILLOPN illegal operand

 ILL_ILLADR illegal addressing mode

SIGILL ILL_ILLTRP illegal trap

 ILL_PRVOPC privileged opcode

 ILL_PRVREG privileged register

 ILL_COPROC coprocessor error

 ILL_BADSTK internal stack error

Figure 10.17. siginfo_t code values

Signal Code Reason

 FPE_INTDIV integer divide by zero

 FPE_INTOVF integer overflow

 FPE_FLTDIV floating-point divide by zero

 FPE_FLTOVF floating-point overflow

SIGFPE FPE_FLTUND floating-point underflow

 FPE_FLTRES floating-point inexact result

 FPE_FLTINV invalid floating-point operation

 FPE_FLTSUB subscript out of range

SIGSEGV SEGV_MAPERR address not mapped to object

 SEGV_ACCERR invalid permissions for mapped object

 BUS_ADRALN invalid address alignment

SIGBUS BUS_ADRERR nonexistent physical address

 BUS_OBJERR object-specific hardware error

 TRAP_BRKPT process breakpoint trap

SIGTRAP TRAP_TRACE process trace trap

 CLD_EXITED child has exited

 CLD_KILLED child has terminated abnormally (no core)

 CLD_DUMPED child has terminated abnormally with core

SIGCHLD CLD_TRAPPED traced child has trapped

 CLD_STOPPED child has stopped

 CLD_CONTINUED stopped child has continued

 POLL_IN data can be read

 POLL_OUT data can be written

SIGPOLL POLL_MSG input message available

 POLL_ERR I/O error

 POLL_PRI high-priority message available

 POLL_HUP device disconnected

 SI_USER signal sent by kill

Figure 10.17. siginfo_t code values

Signal Code Reason

 SI_QUEUE signal sent by sigqueue (real-time extension)

Any SI_TIMER expiration of a timer set by timer_settime (real-time extension)

 SI_ASYNCIO completion of asynchronous I/O request (real-time extension)

 SI_MESGQ arrival of a message on a message queue (real-time extension)

If the signal is SIGCHLD, then the si_pid , si_status , and si_uid field will be set. If the signal is SIGILL or
SIGSEGV, then the si_addr contains the address responsible for the fault, although the address might not be
accurate. If the signal is SIGPOLL, then the si_band field will contain the priority band for STREAMS
messages that generate the POLL_IN, POLL_OUT, or POLL_MSG events. (For a complete discussion of priority
bands, see Rago [1993].) The si_errno field contains the error number corresponding to the condition that
caused the signal to be generated, although its use is implementation defined.

The context argument to the signal handler is a typeless pointer that can be cast to a ucontext_t structure
identifying the process context at the time of signal delivery.

When an implementation supports the real-time signal extensions, signal handlers established with the
SA_SIGINFO flag will result in signals being queued reliably. A separate range of reserved signals is available
for real-time application use. The siginfo structure can contain application-specific data if the signal is
generated by sigqueue . We do not discuss the real-time extensions further. Refer to Gallmeister [1995] for
more details.

Example—signal Function

Let's now implement the signal function using sigaction . This is what many platforms do (and what a note in
the POSIX.1 Rationale states was the intent of POSIX). Systems with binary compatibility constraints, on the
other hand, might provide a signal function that supports the older, unreliable-signal semantics. Unless you
specifically require these older, unreliable semantics (for backward compatibility), you should use the following
implementation of signal or call sigaction directly. (As you might guess, an implementation of signal with
the old semantics could call sigaction specifying SA_RESETHAND and SA_NODEFER.) All the examples in this
text that call signal call the function shown in Figure 10.18.

Note that we must use sigemptyset to initialize the sa_mask member of the structure. We're not guaranteed
that

 act.sa_mask = 0;

does the same thing.

We intentionally try to set the SA_RESTART flag for all signals other than SIGALRM, so that any system call
interrupted by these other signals is automatically restarted. The reason we don't want SIGALRM restarted is to
allow us to set a timeout for I/O operations. (Recall the discussion of Figure 10.10.)

Some older systems, such as SunOS, define the SA_INTERRUPT flag. These systems restart interrupted system
calls by default, so specifying this flag causes system calls to be interrupted. Linux defines the SA_INTERRUPT
flag for compatibility with applications that use it, but the default is to not restart system calls when the signal
handler is installed with sigaction . The XSI extension of the Single UNIX Specification specifies that the
sigaction function not restart interrupted system calls unless the SA_RESTART flag is specified.

Figure 10.18. An implementation of signal using sigaction

#include "apue.h"

/* Reliable version of signal(), using POSIX sigact ion(). */
Sigfunc *
signal(int signo, Sigfunc *func)
{
 struct sigaction act, oact;

 act.sa_handler = func;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 if (signo == SIGALRM) {
#ifdef SA_INTERRUPT
 act.sa_flags |= SA_INTERRUPT;
#endif
 } else {
#ifdef SA_RESTART
 act.sa_flags |= SA_RESTART;
#endif
 }
 if (sigaction(signo, &act, &oact) < 0)
 return(SIG_ERR);
 return(oact.sa_handler);
}

Example—signal_intr Function

Figure 10.19 shows a version of the signal function that tries to prevent any interrupted system
calls from being restarted.

For improved portability, we specify the SA_INTERRUPT flag, if defined by the system, to prevent
interrupted system calls from being restarted.

Figure 10.19. The signal_intr function

#include "apue.h"

Sigfunc *
signal_intr(int signo, Sigfunc *func)
{
 struct sigaction act, oact;

 act.sa_handler = func;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
#ifdef SA_INTERRUPT
 act.sa_flags |= SA_INTERRUPT;
#endif
 if (sigaction(signo, &act, &oact) < 0)
 return(SIG_ERR);

 return(oact.sa_handler);
}

10.15. sigsetjmp and siglongjmp Functions

In Section 7.10, we described the setjmp and longjmp functions, which can be used for nonlocal branching.
The longjmp function is often called from a signal handler to return to the main loop of a program, instead of
returning from the handler. We saw this in Figures 10.8 and 10.11.

There is a problem in calling longjmp , however. When a signal is caught, the signal-catching function is
entered with the current signal automatically being added to the signal mask of the process. This prevents
subsequent occurrences of that signal from interrupting the signal handler. If we longjmp out of the signal
handler, what happens to the signal mask for the process?

Under FreeBSD 5.2.1 and Mac OS X 10.3, setjmp and longjmp save and restore the signal mask. Linux 2.4.22
and Solaris 9, however, do not do this. FreeBSD and Mac OS X provide the functions _setjmp and _longjmp ,
which do not save and restore the signal mask.

To allow either form of behavior, POSIX.1 does not specify the effect of setjmp and longjmp on signal masks.
Instead, two new functions, sigsetjmp and siglongjmp , are defined by POSIX.1. These two functions should
always be used when branching from a signal handler.

#include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savemask);

Returns: 0 if called directly, nonzero if returning from a call to siglongjmp

void siglongjmp(sigjmp_buf env, int val);

The only difference between these functions and the setjmp and longjmp functions is that sigsetjmp has an
additional argument. If savemask is nonzero, then sigsetjmp also saves the current signal mask of the process
in env. When siglongjmp is called, if the env argument was saved by a call to sigsetjmp with a nonzero
savemask, then siglongjmp restores the saved signal mask.

Example

The program in Figure 10.20 demonstrates how the signal mask that is installed by the system when a signal
handler is invoked automatically includes the signal being caught. The program also illustrates the use of the
sigsetjmp and siglongjmp functions.

This program demonstrates another technique that should be used whenever siglongjmp is called from a signal
handler. We set the variable canjump to a nonzero value only after we've called sigsetjmp . This variable is
also examined in the signal handler, and siglongjmp is called only if the flag canjump is nonzero. This
provides protection against the signal handler being called at some earlier or later time, when the jump buffer
isn't initialized by sigsetjmp . (In this trivial program, we terminate quickly after the siglongjmp , but in larger
programs, the signal handler may remain installed long after the siglongjmp .) Providing this type of protection
usually isn't required with longjmp in normal C code (as opposed to a signal handler). Since a signal can occur
at any time, however, we need the added protection in a signal handler.

Here, we use the data type sig_atomic_t , which is defined by the ISO C standard to be the type of variable
that can be written without being interrupted. By this we mean that a variable of this type should not extend

across page boundaries on a system with virtual memory and can be accessed with a single machine instruction,
for example. We always include the ISO type qualifier volatile for these data types too, since the variable is
being accessed by two different threads of control: the main function and the asynchronously executing signal
handler. Figure 10.21 shows a time line for this program.

We can divide Figure 10.21 into three parts: the left part (corresponding to main), the center part (sig_usr1),
and the right part (sig_alrm). While the process is executing in the left part, its signal mask is 0 (no signals are
blocked). While executing in the center part, its signal mask is SIGUSR1. While executing in the right part, its
signal mask is SIGUSR1|SIGALRM.

Let's examine the output when the program in Figure 10.20 is executed:

 $./a.out & start process i n background
 starting main:
 [1] 531 the job-control shell prints its process ID
 $ kill -USR1 531 send the proces s SIGUSR1
 starting sig_usr1: SIGUSR1
 $ in sig_alrm: SIGUSR1 SIGALRM
 finishing sig_usr1: SIGUSR1
 ending main:
 just press RETU RN
 [1] + Done ./a.out &

The output is as we expect: when a signal handler is invoked, the signal being caught is added to the current
signal mask of the process. The original mask is restored when the signal handler returns. Also, siglongjmp
restores the signal mask that was saved by sigsetjmp .

If we change the program in Figure 10.20 so that the calls to sigsetjmp and siglongjmp are replaced with
calls to setjmp and longjmp on Linux (or _setjmp and _longjmp on FreeBSD), the final line of output
becomes

 ending main: SIGUSR1

This means that the main function is executing with the SIGUSR1 signal blocked, after the call to setjmp . This
probably isn't what we want.

Figure 10.20. Example of signal masks, sigsetjmp, and siglongjmp

#include "apue.h"
#include <setjmp.h>
#include <time.h>

static void sig_usr1(int), sig_alrm(int);
static sigjmp_buf jmpbuf;
static volatile sig_atomic_t canjump;

int
main(void)
{
 if (signal(SIGUSR1, sig_usr1) == SIG_ERR)

 err_sys("signal(SIGUSR1) error");
 if (signal(SIGALRM, sig_alrm) == SIG_ERR)
 err_sys("signal(SIGALRM) error");
 pr_mask("starting main: "); /* Figure 10.14 */

 if (sigsetjmp(jmpbuf, 1)) {
 pr_mask("ending main: ");
 exit(0);
 }
 canjump = 1; /* now sigsetjmp() is OK * /

 for (; ;)
 pause();
}
static void
sig_usr1(int signo)
{
 time_t starttime;

 if (canjump == 0)
 return; /* unexpected signal, ignore */

 pr_mask("starting sig_usr1: ");
 alarm(3); /* SIGALRM in 3 seconds */
 starttime = time(NULL);
 for (; ;) /* busy wait for 5 seco nds */
 if (time(NULL) > starttime + 5)
 break;
 pr_mask("finishing sig_usr1: ");

 canjump = 0;
 siglongjmp(jmpbuf, 1); /* jump back to main, d on't return */
}

static void
sig_alrm(int signo)
{
 pr_mask("in sig_alrm: ");
}

Figure 10.21. Time line for example program handling two signals

10.16. sigsuspend Function

We have seen how we can change the signal mask for a process to block and unblock selected signals. We can
use this technique to protect critical regions of code that we don't want interrupted by a signal. What if we want
to unblock a signal and then pause , waiting for the previously blocked signal to occur? Assuming that the
signal is SIGINT , the incorrect way to do this is

 sigset_t newmask, oldmask;

 sigemptyset(&newmask);
 sigaddset(&newmask, SIGINT);

 /* block SIGINT and save current signal mask */
 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
 err_sys("SIG_BLOCK error");

 /* critical region of code */

 /* reset signal mask, which unblocks SIGINT * /
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");

 /* window is open */
 pause(); /* wait for signal to occur */

 /* continue processing */

If the signal is sent to the process while it is blocked, the signal delivery will be deferred until the signal is
unblocked. To the application, this can look as if the signal occurs between the unblocking and the pause
(depending on how the kernel implements signals). If this happens, or if the signal does occur between the
unblocking and the pause , we have a problem. Any occurrence of the signal in this window of time is lost in the
sense that we might not see the signal again, in which case the pause will block indefinitely. This is another
problem with the earlier unreliable signals.

To correct this problem, we need a way to both reset the signal mask and put the process to sleep in a single
atomic operation. This feature is provided by the sigsuspend function.

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

Returns: –1 with errno set to EINTR

The signal mask of the process is set to the value pointed to by sigmask. Then the process is suspended until a
signal is caught or until a signal occurs that terminates the process. If a signal is caught and if the signal handler
returns, then sigsuspend returns, and the signal mask of the process is set to its value before the call to
sigsuspend .

Note that there is no successful return from this function. If it returns to the caller, it always returns –1 with
errno set to EINTR (indicating an interrupted system call).

Example

Figure 10.22 shows the correct way to protect a critical region of code from a specific signal.

Note that when sigsuspend returns, it sets the signal mask to its value before the call. In this example, the
SIGINT signal will be blocked. We therefore reset the signal mask to the value that we saved earlier (oldmask).

Running the program from Figure 10.22 produces the following output:

 $./a.out
 program start:
 in critical region: SIGINT

 ^? type the interr upt character
 in sig_int: SIGINT SIGUSR1
 after return from sigsuspend: SIGINT
 program exit:

We added SIGUSR1 to the mask installed when we called sigsuspend so that when the signal handler ran, we
could tell that the mask had actually changed. We can see that when sigsuspend returns, it restores the signal
mask to its value before the call.

Figure 10.22. Protecting a critical region from a signal

#include "apue.h"

static void sig_int(int);

int
main(void)
{
 sigset_t newmask, oldmask, waitmask;

 pr_mask("program start: ");

 if (signal(SIGINT, sig_int) == SIG_ERR)
 err_sys("signal(SIGINT) error");
 sigemptyset(&waitmask);
 sigaddset(&waitmask, SIGUSR1);
 sigemptyset(&newmask);
 sigaddset(&newmask, SIGINT);

 /*
 * Block SIGINT and save current signal mask.
 */
 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
 err_sys("SIG_BLOCK error");

 /*
 * Critical region of code.
 */
 pr_mask("in critical region: ");

 /*
 * Pause, allowing all signals except SIGUSR1.
 */
 if (sigsuspend(&waitmask) != -1)
 err_sys("sigsuspend error");

 pr_mask("after return from sigsuspend: ");

 /*
 * Reset signal mask which unblocks SIGINT.
 */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");

 /*
 * And continue processing ...
 */
 pr_mask("program exit: ");

 exit(0);
}

static void
sig_int(int signo)
{
 pr_mask("\nin sig_int: ");
}

Example

Another use of sigsuspend is to wait for a signal handler to set a global variable. In the program shown in
Figure 10.23, we catch both the interrupt signal and the quit signal, but want to wake up the main routine only
when the quit signal is caught.

Sample output from this program is

 $./a.out

 ^? type the interrupt character
 interrupt

 ^? type the interrupt character a gain
 interrupt

 ^? and again
 interrupt

 ^? and again
 interrupt

 ^? and again
 interrupt

 ^? and again
 interrupt

 ^? and again
 interrupt

 ^\ $ now terminate with quit charac ter

Figure 10.23. Using sigsuspend to wait for a global variable to be set

#include "apue.h"

volatile sig_atomic_t quitflag; /* set nonzer o by signal handler */

static void
sig_int(int signo) /* one signal handler for SIGIN T and SIGQUIT */
{
 if (signo == SIGINT)
 printf("\ninterrupt\n");
 else if (signo == SIGQUIT)
 quitflag = 1; /* set flag for main loop * /
}

int
main(void)
{
 sigset_t newmask, oldmask, zeromask;

 if (signal(SIGINT, sig_int) == SIG_ERR)
 err_sys("signal(SIGINT) error");
 if (signal(SIGQUIT, sig_int) == SIG_ERR)
 err_sys("signal(SIGQUIT) error");

 sigemptyset(&zeromask);
 sigemptyset(&newmask);
 sigaddset(&newmask, SIGQUIT);

 /*
 * Block SIGQUIT and save current signal mask.
 */
 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
 err_sys("SIG_BLOCK error");

 while (quitflag == 0)
 sigsuspend(&zeromask);

 /*
 * SIGQUIT has been caught and is now blocked; do whatever.
 */
 quitflag = 0;

 /*
 * Reset signal mask which unblocks SIGQUIT.
 */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");

 exit(0);
}

For portability between non-POSIX systems that support ISO C, and POSIX.1 systems, the only thing we
should do within a signal handler is assign a value to a variable of type sig_atomic_t , and nothing else.
POSIX.1 goes further and specifies a list of functions that are safe to call from within a signal handler (Figure
10.4), but if we do this, our code may not run correctly on non-POSIX systems.

Example

As another example of signals, we show how signals can be used to synchronize a parent and child.
Figure 10.24 shows implementations of the five routines TELL_WAIT, TELL_PARENT, TELL_CHILD,
WAIT_PARENT, and WAIT_CHILD from Section 8.9.

We use the two user-defined signals: SIGUSR1 is sent by the parent to the child, and SIGUSR2 is sent
by the child to the parent. In Figure 15.7, we show another implementation of these five functions
using pipes.

Figure 10.24. Routines to allow a parent and child to synchronize

#include "apue.h"

static volatile sig_atomic_t sigflag; /* set nonzer o by sig handler */
static sigset_t newmask, oldmask, zeromask;

static void
sig_usr(int signo) /* one signal handler for SIGU SR1 and SIGUSR2 */
{
 sigflag = 1;
}

void
TELL_WAIT(void)
{
 if (signal(SIGUSR1, sig_usr) == SIG_ERR)
 err_sys("signal(SIGUSR1) error");
 if (signal(SIGUSR2, sig_usr) == SIG_ERR)
 err_sys("signal(SIGUSR2) error");
 sigemptyset(&zeromask);
 sigemptyset(&newmask);
 sigaddset(&newmask, SIGUSR1);
 sigaddset(&newmask, SIGUSR2);

 /*
 * Block SIGUSR1 and SIGUSR2, and save current signal mask.
 */
 if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)
 err_sys("SIG_BLOCK error");
}

void
TELL_PARENT(pid_t pid)
{
 kill(pid, SIGUSR2); /* tell parent we're done */
}

void
WAIT_PARENT(void)
{
 while (sigflag == 0)
 sigsuspend(&zeromask); /* and wait for pa rent */
 sigflag = 0;

 /*
 * Reset signal mask to original value.
 */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");
}

void
TELL_CHILD(pid_t pid)
{
 kill(pid, SIGUSR1); /* tell child w e're done */
}

void
WAIT_CHILD(void)
{
 while (sigflag == 0)
 sigsuspend(&zeromask); /* and wait for chi ld */
 sigflag = 0;

 /*
 * Reset signal mask to original value.
 */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");
}

The sigsuspend function is fine if we want to go to sleep while waiting for a signal to occur (as we've shown
in the previous two examples), but what if we want to call other system functions while we're waiting?
Unfortunately, this problem has no bulletproof solution unless we use multiple threads and dedicate a separate
thread to handling signals, as we discuss in Section 12.8.

Without using threads, the best we can do is to set a global variable in the signal handler when the signal occurs.
For example, if we catch both SIGINT and SIGALRM and install the signal handlers using the signal_intr
function, the signals will interrupt any slow system call that is blocked. The signals are most likely to occur
when we're blocked in a call to the select function (Section 14.5.1), waiting for input from a slow device.
(This is especially true for SIGALRM, since we set the alarm clock to prevent us from waiting forever for input.)
The code to handle this looks similar to the following:

 if (intr_flag) /* flag set by our SIGI NT handler */
 handle_intr();
 if (alrm_flag) /* flag set by our SIGA LRM handler */
 handle_alrm();

 /* signals occurring in here are lost */

 while (select(...) < 0) {
 if (errno == EINTR) {
 if (alrm_flag)
 handle_alrm();
 else if (intr_flag)
 handle_intr();
 } else {
 /* some other error */
 }
 }

We test each of the global flags before calling select and again if select returns an interrupted system call
error. The problem occurs if either signal is caught between the first two if statements and the subsequent call
to select . Signals occurring in here are lost, as indicated by the code comment. The signal handlers are called,
and they set the appropriate global variable, but the select never returns (unless some data is ready to be read).

What we would like to be able to do is the following sequence of steps, in order.

1. Block SIGINT and SIGALRM.
2. Test the two global variables to see whether either signal has occurred and, if so, handle the condition.
3. Call select (or any other system function, such as read) and unblock the two signals, as an atomic

operation.

The sigsuspend function helps us only if step 3 is a pause operation.

10.17. abort Function

We mentioned earlier that the abort function causes abnormal program termination.

#include <stdlib.h>

void abort(void);

This function never returns

This function sends the SIGABRT signal to the caller. (Processes should not ignore this signal.) ISO C states that
calling abort will deliver an unsuccessful termination notification to the host environment by calling
raise(SIGABRT) .

ISO C requires that if the signal is caught and the signal handler returns, abort still doesn't return to its caller. If
this signal is caught, the only way the signal handler can't return is if it calls exit , _exit , _Exit , longjmp , or
siglongjmp . (Section 10.15 discusses the differences between longjmp and siglongjmp .) POSIX.1 also
specifies that abort overrides the blocking or ignoring of the signal by the process.

The intent of letting the process catch the SIGABRT is to allow it to perform any cleanup that it wants to do
before the process terminates. If the process doesn't terminate itself from this signal handler, POSIX.1 states
that, when the signal handler returns, abort terminates the process.

The ISO C specification of this function leaves it up to the implementation as to whether output streams are
flushed and whether temporary files (Section 5.13) are deleted. POSIX.1 goes further and requires that if the
call to abort terminates the process, then the effect on the open standard I/O streams in the process will be the
same as if the process had called fclose on each stream before terminating.

Earlier versions of System V generated the SIGIOT signal from the abort function. Furthermore, it was possible
for a process to ignore this signal or to catch it and return from the signal handler, in which case abort returned
to its caller.

4.3BSD generated the SIGILL signal. Before doing this, the 4.3BSD function unblocked the signal and reset its
disposition to SIG_DFL (terminate with core file). This prevented a process from either ignoring the signal or
catching it.

Historically, implementations of abort differ in how they deal with standard I/O streams. For defensive
programming and improved portability, if we want standard I/O streams to be flushed, we specifically do it
before calling abort . We do this in the err_dump function (Appendix B).

Since most UNIX System implementations of tmpfile call unlink immediately after creating the file, the ISO
C warning about temporary files does not usually concern us.

Example

Figure 10.25 shows an implementation of the abort function as specified by POSIX.1.

We first see whether the default action will occur; if so, we flush all the standard I/O streams. This is
not equivalent to an fclose on all the open streams (since it just flushes them and doesn't close

them), but when the process terminates, the system closes all open files. If the process catches the
signal and returns, we flush all the streams again, since the process could have generated more
output. The only condition we don't handle is if the process catches the signal and calls _exit or
_Exit . In this case, any unflushed standard I/O buffers in memory are discarded. We assume that a
caller that does this doesn't want the buffers flushed.

Recall from Section 10.9 that if calling kill causes the signal to be generated for the caller, and if
the signal is not blocked (which we guarantee in Figure 10.25), then the signal (or some other
pending, unlocked signal) is delivered to the process before kill returns. We block all signals
except SIGABRT, so we know that if the call to kill returns, the process caught the signal and the
signal handler returned.

Figure 10.25. Implementation of POSIX.1 abort

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void
abort(void) /* POSIX-style abort() function */
{
 sigset_t mask;
 struct sigaction action;

 /*
 * Caller can't ignore SIGABRT, if so reset to default.
 */
 sigaction(SIGABRT, NULL, &action);
 if (action.sa_handler == SIG_IGN) {
 action.sa_handler = SIG_DFL;
 sigaction(SIGABRT, &action, NULL);
 }
 if (action.sa_handler == SIG_DFL)
 fflush(NULL); /* flush all open s tdio streams */

 /*
 * Caller can't block SIGABRT; make sure it's u nblocked.
 */
 sigfillset(&mask);
 sigdelset(&mask, SIGABRT); /* mask has only SI GABRT turned off */
 sigprocmask(SIG_SETMASK, &mask, NULL);
 kill(getpid(), SIGABRT); /* send the signal */

 /*
 * If we're here, process caught SIGABRT and re turned.
 */
 fflush(NULL); /* flush all open s tdio streams */
 action.sa_handler = SIG_DFL;
 sigaction(SIGABRT, &action, NULL); /* reset to default */
 sigprocmask(SIG_SETMASK, &mask, NULL); /* just in case ... */
 kill(getpid(), SIGABRT); /* and one more time */
 exit(1); /* this should never be executed .. . */
}

10.18. system Function

In Section 8.13, we showed an implementation of the system function. That version, however, did not do any
signal handling. POSIX.1 requires that system ignore SIGINT and SIGQUIT and block SIGCHLD. Before
showing a version that correctly handles these signals, let's see why we need to worry about signal handling.

Example

The program shown in Figure 10.26 uses the version of system from Section 8.13 to invoke the ed(1) editor.
(This editor has been part of UNIX systems for a long time. We use it here because it is an interactive program
that catches the interrupt and quit signals. If we invoke ed from a shell and type the interrupt character, it
catches the interrupt signal and prints a question mark. The ed program also sets the disposition of the quit
signal so that it is ignored.) The program in Figure 10.26 catches both SIGINT and SIGCHLD. If we invoke the
program, we get

 $./a.out

 a append text to the ed itor's buffer

 Here is one line of text

 . period on a line by i tself stops append mode

 1,$p print first through l ast lines of buffer to see what's
there
 Here is one line of text
 w temp.foo write the buffer to a file
 25 editor says it wrote 25 bytes

 q and leave the editor
 caught SIGCHLD

When the editor terminates, the system sends the SIGCHLD signal to the parent (the a.out process). We catch it
and return from the signal handler. But if it is catching the SIGCHLD signal, the parent should be doing so
because it has created its own children, so that it knows when its children have terminated. The delivery of this
signal in the parent should be blocked while the system function is executing. Indeed, this is what POSIX.1
specifies. Otherwise, when the child created by system terminates, it would fool the caller of system into
thinking that one of its own children terminated. The caller would then use one of the wait functions to get the
termination status of the child, thus preventing the system function from being able to obtain the child's
termination status for its return value.

If we run the program again, this time sending the editor an interrupt signal, we get

 $./a.out

 a append text to the editor's buff er

 hello, world

 . period on a line by itself stops append mode

 1,$p print first through last lines t o see what's there

 hello, world
 w temp.foo write the buffer to a file
 13 editor says it wrote 13 bytes

 ^? type the interrupt character
 ? editor catches signal, prints qu estion mark
 caught SIGINT and so does the parent process

 q leave editor
 caught SIGCHLD

Recall from Section 9.6 that typing the interrupt character causes the interrupt signal to be sent to all the
processes in the foreground process group. Figure 10.27 shows the arrangement of the processes when the
editor is running.

In this example, SIGINT is sent to all three foreground processes. (The shell ignores it.) As we can see from the
output, both the a.out process and the editor catch the signal. But when we're running another program with
the system function, we shouldn't have both the parent and the child catching the two terminal-generated
signals: interrupt and quit. These two signals should really be sent to the program that is running: the child.
Since the command that is executed by system can be an interactive command (as is the ed program in this
example) and since the caller of system gives up control while the program executes, waiting for it to finish, the
caller of system should not be receiving these two terminal-generated signals. This is why POSIX.1 specifies
that the system function should ignore these two signals while waiting for the command to complete.

Figure 10.26. Using system to invoke the ed editor

#include "apue.h"

static void
sig_int(int signo)
{
 printf("caught SIGINT\n");
}

static void
sig_chld(int signo)
{
 printf("caught SIGCHLD\n");
}

int
main(void)
{
 if (signal(SIGINT, sig_int) == SIG_ERR)
 err_sys("signal(SIGINT) error");
 if (signal(SIGCHLD, sig_chld) == SIG_ERR)
 err_sys("signal(SIGCHLD) error");
 if (system("/bin/ed") < 0)
 err_sys("system() error");
 exit(0);
}

Figure 10.27. Foreground and background process groups for Figure 10.26

Example

Figure 10.28 shows an implementation of the system function with the required signal handling.

If we link the program in Figure 10.26 with this implementation of the system function, the resulting binary
differs from the last (flawed) one in the following ways.

1. No signal is sent to the calling process when we type the interrupt or quit character.
2. When the ed command exits, SIGCHLD is not sent to the calling process. Instead, it is blocked until we

unblock it in the last call to sigprocmask , after the system function retrieves the child's termination
status by calling waitpid .

POSIX.1 states that if wait or waitpid returns the status of a child process while SIGCHLD is pending,
then SIGCHLD should not be delivered to the process unless the status of another child process is also
available. None of the four implementations discussed in this book implements this semantic. Instead,
SIGCHLD remains pending after the system function calls waitpid ; when the signal is unblocked, it is
delivered to the caller. If we called wait in the sig_chld function in Figure 10.26, it would return –1
with errno set to ECHILD, since the system function already retrieved the termination status of the child.

Many older texts show the ignoring of the interrupt and quit signals as follows:

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) {
 /* child */
 execl(...);
 _exit(127);
 }

 /* parent */
 old_intr = signal(SIGINT, SIG_IGN);
 old_quit = signal(SIGQUIT, SIG_IGN);
 waitpid(pid, &status, 0)
 signal(SIGINT, old_intr);
 signal(SIGQUIT, old_quit);

The problem with this sequence of code is that we have no guarantee after the fork whether the parent or child
runs first. If the child runs first and the parent doesn't run for some time after, it's possible for an interrupt signal
to be generated before the parent is able to change its disposition to be ignored. For this reason, in Figure 10.28,
we change the disposition of the signals before the fork .

Note that we have to reset the dispositions of these two signals in the child before the call to execl . This allows
execl to change their dispositions to the default, based on the caller's dispositions, as we described in Section
8.10.

Figure 10.28. Correct POSIX.1 implementation of system function

#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <unistd.h>

int
system(const char *cmdstring) /* with appropriate signal handling */
{
 pid_t pid;
 int status;
 struct sigaction ignore, saveintr, savequit;
 sigset_t chldmask, savemask;

 if (cmdstring == NULL)
 return(1); /* always a command process or with UNIX */

 ignore.sa_handler = SIG_IGN; /* ignore SIGIN T and SIGQUIT */
 sigemptyset(&ignore.sa_mask);
 ignore.sa_flags = 0;
 if (sigaction(SIGINT, &ignore, &saveintr) < 0)
 return(-1);
 if (sigaction(SIGQUIT, &ignore, &savequit) < 0)
 return(-1);
 sigemptyset(&chldmask); /* now block SI GCHLD */
 sigaddset(&chldmask, SIGCHLD);
 if (sigprocmask(SIG_BLOCK, &chldmask, &savemask) < 0)
 return(-1);

 if ((pid = fork()) < 0) {
 status = -1; /* probably out of processe s */
 } else if (pid == 0) { /* child */
 /* restore previous signal actions & reset signal mask */
 sigaction(SIGINT, &saveintr, NULL);
 sigaction(SIGQUIT, &savequit, NULL);
 sigprocmask(SIG_SETMASK, &savemask, NULL);

 execl("/bin/sh", "sh", "-c", cmdstring, (ch ar *)0);
 _exit(127); /* exec error */
 } else { /* parent */
 while (waitpid(pid, &status, 0) < 0)
 if (errno != EINTR) {
 status = -1; /* error other than EIN TR from waitpid() */
 break;
 }
 }

 /* restore previous signal actions & reset sign al mask */
 if (sigaction(SIGINT, &saveintr, NULL) < 0)
 return(-1);
 if (sigaction(SIGQUIT, &savequit, NULL) < 0)
 return(-1);
 if (sigprocmask(SIG_SETMASK, &savemask, NULL) < 0)
 return(-1);

 return(status);
}

Return Value from system

Beware of the return value from system . It is the termination status of the shell, which isn't always the
termination status of the command string. We saw some examples in Figure 8.23, and the results were as we

expected: if we execute a simple command, such as date , the termination status is 0. Executing the shell
command exit 44 gave us a termination status of 44. What happens with signals?

Let's run the program in Figure 8.24 and send some signals to the command that's executing:

 $ tsys "sleep 30"

 ^?normal termination, exit status = 130 we ty pe the interrupt key
 $ tsys "sleep 30"

 ^\sh: 946 Quit we ty pe the quit key
 normal termination, exit status = 131

When we terminate the sleep with the interrupt signal, the pr_exit function (Figure 8.5) thinks that it
terminated normally. The same thing happens when we kill the sleep with the quit key. What is happening here
is that the Bourne shell has a poorly documented feature that its termination status is 128 plus the signal number,
when the command it was executing is terminated by a signal. We can see this with the shell interactively.

 $ sh make sure we're running the Bourne shell
 $ sh -c "sleep 30"

 ^? type the interr upt key
 $ echo $? print terminati on status of last command
 130
 $ sh -c "sleep 30"

 ^\sh: 962 Quit - core dumped type the quit k ey
 $ echo $? print terminati on status of last command
 131
 $ exit leave Bourne sh ell

On the system being used, SIGINT has a value of 2 and SIGQUIT has a value of 3, giving us the shell's
termination statuses of 130 and 131.

Let's try a similar example, but this time we'll send a signal directly to the shell and see what gets returned by
system :

 $ tsys "sleep 30" & start it in background this time
 9257
 $ ps -f look at the process IDs
 UID PID PPID TTY TIME CMD
 sar 9260 949 pts/5 0:00 ps -f
 sar 9258 9257 pts/5 0:00 sh -c sleep 60
 sar 949 947 pts/5 0:01 /bin/sh
 sar 9257 949 pts/5 0:00 tsys sleep 60
 sar 9259 9258 pts/5 0:00 sleep 60
 $ kill -KILL 9258 kill the sh ell itself
 abnormal termination, signal number = 9

Here, we can see that the return value from system reports an abnormal termination only when the shell itself
abnormally terminates.

When writing programs that use the system function, be sure to interpret the return value correctly. If you call
fork , exec , and wait yourself, the termination status is not the same as if you call system .

10.19. sleep Function

We've used the sleep function in numerous examples throughout the text, and we showed two flawed
implementations of it in Figures 10.7 and 10.8.

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Returns: 0 or number of unslept seconds

This function causes the calling process to be suspended until either

1. The amount of wall clock time specified by seconds has elapsed.
2. A signal is caught by the process and the signal handler returns.

As with an alarm signal, the actual return may be at a time later than requested, because of other system activity.

In case 1, the return value is 0. When sleep returns early, because of some signal being caught (case 2), the
return value is the number of unslept seconds (the requested time minus the actual time slept).

Although sleep can be implemented with the alarm function (Section 10.10), this isn't required. If alarm is
used, however, there can be interactions between the two functions. The POSIX.1 standard leaves all these
interactions unspecified. For example, if we do an alarm(10) and 3 wall clock seconds later do a sleep(5) ,
what happens? The sleep will return in 5 seconds (assuming that some other signal isn't caught in that time),
but will another SIGALRM be generated 2 seconds later? These details depend on the implementation.

Solaris 9 implements sleep using alarm . The Solaris sleep(3) manual page says that a previously scheduled
alarm is properly handled. For example, in the preceding scenario, before sleep returns, it will reschedule the
alarm to happen 2 seconds later; sleep returns 0 in this case. (Obviously, sleep must save the address of the
signal handler for SIGALRM and reset it before returning.) Also, if we do an alarm(6) and 3 wall clock seconds
later do a sleep(5) , the sleep returns in 3 seconds (when the alarm goes off), not in 5 seconds. Here, the
return value from sleep is 2 (the number of unslept seconds).

FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3, on the other hand, use another technique: the delay is
provided by nanosleep (2). This function is specified to be a high-resolution delay by the real-time extensions
in the Single UNIX Specification. This function allows the implementation of sleep to be independent of
signals.

For portability, you shouldn't make any assumptions about the implementation of sleep , but if you have any
intentions of mixing calls to sleep with any other timing functions, you need to be aware of possible
interactions.

Example

Figure 10.29 shows an implementation of the POSIX.1 sleep function. This function is a
modification of Figure 10.7, which handles signals reliably, avoiding the race condition in the earlier
implementation. We still do not handle any interactions with previously set alarms. (As we

mentioned, these interactions are explicitly undefined by POSIX.1.)

It takes more code to write this reliable implementation than what is shown in Figure 10.7. We don't
use any form of nonlocal branching (as we did in Figure 10.8 to avoid the race condition between
the alarm and pause), so there is no effect on other signal handlers that may be executing when the
SIGALRM is handled.

Figure 10.29. Reliable implementation of sleep

#include "apue.h"

static void
sig_alrm(int signo)
{
 /* nothing to do, just returning wakes up sigsu spend() */
}

unsigned int
sleep(unsigned int nsecs)
{
 struct sigaction newact, oldact;
 sigset_t newmask, oldmask, suspmask;
 unsigned int unslept;

 /* set our handler, save previous information * /
 newact.sa_handler = sig_alrm;
 sigemptyset(&newact.sa_mask);
 newact.sa_flags = 0;
 sigaction(SIGALRM, &newact, &oldact);

 /* block SIGALRM and save current signal mask * /
 sigemptyset(&newmask);
 sigaddset(&newmask, SIGALRM);
 sigprocmask(SIG_BLOCK, &newmask, &oldmask);

 alarm(nsecs);

 suspmask = oldmask;
 sigdelset(&suspmask, SIGALRM); /* make sure SIGALRM isn't blocked */
 sigsuspend(&suspmask); /* wait for a ny signal to be caught */

 /* some signal has been caught, SIGALRM is no w blocked */

 unslept = alarm(0);
 sigaction(SIGALRM, &oldact, NULL); /* reset pr evious action */

 /* reset signal mask, which unblocks SIGALRM */
 sigprocmask(SIG_SETMASK, &oldmask, NULL);
 return(unslept);
}

10.20. Job-Control Signals

Of the signals shown in Figure 10.1, POSIX.1 considers six to be job-control signals:

SIGCHLD Child process has stopped or terminated.

SIGCONT Continue process, if stopped.

SIGSTOP Stop signal (can't be caught or ignored).

SIGTSTP Interactive stop signal.

SIGTTIN Read from controlling terminal by member of a background process group.

SIGTTOU Write to controlling terminal by member of a background process group.

Except for SIGCHLD, most application programs don't handle these signals: interactive shells usually do all the
work required to handle these signals. When we type the suspend character (usually Control-Z), SIGTSTP is sent
to all processes in the foreground process group. When we tell the shell to resume a job in the foreground or
background, the shell sends all the processes in the job the SIGCONT signal. Similarly, if SIGTTIN or SIGTTOU is
delivered to a process, the process is stopped by default, and the job-control shell recognizes this and notifies us.

An exception is a process that is managing the terminal: the vi (1) editor, for example. It needs to know when
the user wants to suspend it, so that it can restore the terminal's state to the way it was when vi was started.
Also, when it resumes in the foreground, the vi editor needs to set the terminal state back to the way it wants it,
and it needs to redraw the terminal screen. We see how a program such as vi handles this in the example that
follows.

There are some interactions between the job-control signals. When any of the four stop signals (SIGTSTP,
SIGSTOP, SIGTTIN , or SIGTTOU) is generated for a process, any pending SIGCONT signal for that process is
discarded. Similarly, when the SIGCONT signal is generated for a process, any pending stop signals for that same
process are discarded.

Note that the default action for SIGCONT is to continue the process, if it is stopped; otherwise, the signal is
ignored. Normally, we don't have to do anything with this signal. When SIGCONT is generated for a process that
is stopped, the process is continued, even if the signal is blocked or ignored.

Example

The program in Figure 10.30 demonstrates the normal sequence of code used when a program
handles job control. This program simply copies its standard input to its standard output, but
comments are given in the signal handler for typical actions performed by a program that manages a
screen. When the program in Figure 10.30 starts, it arranges to catch the SIGTSTP signal only if the
signal's disposition is SIG_DFL. The reason is that when the program is started by a shell that doesn't
support job control (/bin/sh , for example), the signal's disposition should be set to SIG_IGN . In
fact, the shell doesn't explicitly ignore this signal; init sets the disposition of the three job-control
signals (SIGTSTP, SIGTTIN , and SIGTTOU) to SIG_IGN . This disposition is then inherited by all login
shells. Only a job-control shell should reset the disposition of these three signals to SIG_DFL.

When we type the suspend character, the process receives the SIGTSTP signal, and the signal handler
is invoked. At this point, we would do any terminal-related processing: move the cursor to the
lower-left corner, restore the terminal mode, and so on. We then send ourself the same signal,

SIGTSTP, after resetting its disposition to its default (stop the process) and unblocking the signal. We
have to unblock it since we're currently handling that same signal, and the system blocks it
automatically while it's being caught. At this point, the system stops the process. It is continued only
when it receives (usually from the job-control shell, in response to an interactive fg command)
aSIGCONT signal. We don't catch SIGCONT. Its default disposition is to continue the stopped process;
when this happens, the program continues as though it returned from the kill function. When the
program is continued, we reset the disposition for the SIGTSTP signal and do whatever terminal
processing we want (we could redraw the screen, for example).

Figure 10.30. How to handle SIGTSTP

#include "apue.h"

#define BUFFSIZE 1024

static void sig_tstp(int);

int
main(void)
{
 int n;
 char buf[BUFFSIZE];

 /*
 * Only catch SIGTSTP if we're running with a j ob-control shell.
 */
 if (signal(SIGTSTP, SIG_IGN) == SIG_DFL)
 signal(SIGTSTP, sig_tstp);

 while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)
 if (write(STDOUT_FILENO, buf, n) != n)
 err_sys("write error");

 if (n < 0)
 err_sys("read error");

 exit(0);
}

static void
sig_tstp(int signo) /* signal handler for SIGTSTP * /
{
 sigset_t mask;

 /* ... move cursor to lower left corner, reset tty mode ... */

 /*
 * Unblock SIGTSTP, since it's blocked while we 're handling it.
 */
 sigemptyset(&mask);
 sigaddset(&mask, SIGTSTP);
 sigprocmask(SIG_UNBLOCK, &mask, NULL);

 signal(SIGTSTP, SIG_DFL); /* reset dispositio n to default */

 kill(getpid(), SIGTSTP); /* and send the sig nal to ourself */

 /* we won't return from the kill until we're co ntinued */

 signal(SIGTSTP, sig_tstp); /* reestablish sign al handler */

 /* ... reset tty mode, redraw screen ... */
}

10.21. Additional Features

In this section, we describe some additional implementation-dependent features of signals.

Signal Names

Some systems provide the array

 extern char *sys_siglist[];

The array index is the signal number, giving a pointer to the character string name of the signal.

FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 all provide this array of signal names. Solaris 9 does, too, but
it uses the name _sys_siglist instead.

These systems normally provide the function psignal also.

#include <signal.h>

void psignal(int signo, const char *msg);

The string msg (which is normally the name of the program) is output to the standard error, followed by a colon
and a space, followed by a description of the signal, followed by a newline. This function is similar to perror
(Section 1.7).

Another common function is strsignal . This function is similar to strerror (also described in Section 1.7).

#include <string.h>

char *strsignal(int signo);

Returns: a pointer to a string describing the signal

Given a signal number, strsignal will return a string that describes the signal. This string can be used by
applications to print error messages about signals received.

All the platforms discussed in this book provide the psignal and strsignal functions, but differences do
occur. On Solaris 9, strsignal will return a null pointer if the signal number is invalid, whereas FreeBSD 5.2.1,
Linux 2.4.22, and Mac OS X 10.3 return a string indicating that the signal number is unrecognized. Also, to get
the function prototype for psignal on Solaris, you need to include <siginfo.h> .

Signal Mappings

Solaris provides a couple of functions to map a signal number to a signal name and vice versa.

#include <signal.h>

int sig2str(int signo, char *str);

int str2sig(const char *str, int *signop);

Both return: 0 if OK, –1 on error

These functions are useful when writing interactive programs that need to accept and print signal names and
numbers.

The sig2str function translates the given signal number into a string and stores the result in the memory
pointed to by str. The caller must ensure that the memory is large enough to hold the longest string, including
the terminating null byte. Solaris provides the constant SIG2STR_MAX in <signal.h> to define the maximum
string length. The string consists of the signal name without the "SIG" prefix. For example, translating SIGKILL
would result in the string "KILL" being stored in the str memory buffer.

The str2sig function translates the given name into a signal number. The signal number is stored in the integer
pointed to by signop. The name can be either the signal name without the "SIG" prefix or a string representation
of the decimal signal number (i.e., "9").

Note that sig2str and str2sig depart from common practice and don't set errno when they fail.

10.22. Summary

Signals are used in most nontrivial applications. An understanding of the hows and whys of signal handling is
essential to advanced UNIX System programming. This chapter has been a long and thorough look at UNIX
System signals. We started by looking at the warts in previous implementations of signals and how they
manifest themselves. We then proceeded to the POSIX.1 reliable-signal concept and all the related functions.
Once we covered all these details, we were able to provide implementations of the POSIX.1 abort , system ,
and sleep functions. We finished with a look at the job-control signals and the ways that we can convert
between signal names and signal numbers.

Chapter 11. Threads

Section 11.1. Introduction

Section 11.2. Thread Concepts

Section 11.3. Thread Identification

Section 11.4. Thread Creation

Section 11.5. Thread Termination

Section 11.6. Thread Synchronization

Section 11.7. Summary

11.1. Introduction

We discussed processes in earlier chapters. We learned about the environment of a UNIX process, the
relationships between processes, and ways to control processes. We saw that a limited amount of sharing can
occur between related processes.

In this chapter, we'll look inside a process further to see how we can use multiple threads of control (or simply
threads) to perform multiple tasks within the environment of a single process. All threads within a single
process have access to the same process components, such as file descriptors and memory.

Any time you try to share a single resource among multiple users, you have to deal with consistency. We'll
conclude the chapter with a look at the synchronization mechanisms available to prevent multiple threads from
viewing inconsistencies in their shared resources.

11.2. Thread Concepts

A typical UNIX process can be thought of as having a single thread of control: each process is doing only one
thing at a time. With multiple threads of control, we can design our programs to do more than one thing at a
time within a single process, with each thread handling a separate task. This approach can have several benefits.

• We can simplify code that deals with asynchronous events by assigning a separate thread to handle each
event type. Each thread can then handle its event using a synchronous programming model. A
synchronous programming model is much simpler than an asynchronous one.

• Multiple processes have to use complex mechanisms provided by the operating system to share memory
and file descriptors, as we will see in Chapters 15 and 17. Threads, on the other hand, automatically
have access to the same memory address space and file descriptors.

• Some problems can be partitioned so that overall program throughput can be improved. A single process
that has multiple tasks to perform implicitly serializes those tasks, because there is only one thread of
control. With multiple threads of control, the processing of independent tasks can be interleaved by
assigning a separate thread per task. Two tasks can be interleaved only if they don't depend on the
processing performed by each other.

• Similarly, interactive programs can realize improved response time by using multiple threads to separate
the portions of the program that deal with user input and output from the other parts of the program.

Some people associate multithreaded programming with multiprocessor systems. The benefits of a
multithreaded programming model can be realized even if your program is running on a uniprocessor. A
program can be simplified using threads regardless of the number of processors, because the number of
processors doesn't affect the program structure. Furthermore, as long as your program has to block when
serializing tasks, you can still see improvements in response time and throughput when running on a
uniprocessor, because some threads might be able to run while others are blocked.

A thread consists of the information necessary to represent an execution context within a process. This includes
a thread ID that identifies the thread within a process, a set of register values, a stack, a scheduling priority and
policy, a signal mask, an errno variable (recall Section 1.7), and thread-specific data (Section 12.6). Everything
within a process is sharable among the threads in a process, including the text of the executable program, the
program's global and heap memory, the stacks, and the file descriptors.

The threads interface we're about to see is from POSIX.1-2001. The threads interface, also known as "pthreads"
for "POSIX threads," is an optional feature in POSIX.1-2001. The feature test macro for POSIX threads is
_POSIX_THREADS. Applications can either use this in an #ifdef test to determine at compile time whether
threads are supported or call sysconf with the _SC_THREADS constant to determine at runtime whether threads
are supported.

11.3. Thread Identification

Just as every process has a process ID, every thread has a thread ID. Unlike the process ID, which is unique in
the system, the thread ID has significance only within the context of the process to which it belongs.

Recall that a process ID, represented by the pid_t data type, is a non-negative integer. A thread ID is
represented by the pthread_t data type. Implementations are allowed to use a structure to represent the
pthread_t data type, so portable implementations can't treat them as integers. Therefore, a function must be
used to compare two thread IDs.

#include <pthread.h>

int pthread_equal(pthread_t tid1, pthread_t tid2);

Returns: nonzero if equal, 0 otherwise

Linux 2.4.22 uses an unsigned long integer for the pthread_t data type. Solaris 9 represents the pthread_t
data type as an unsigned integer. FreeBSD 5.2.1 and Mac OS X 10.3 use a pointer to the pthread structure for
the pthread_t data type.

A consequence of allowing the pthread_t data type to be a structure is that there is no portable way to print its
value. Sometimes, it is useful to print thread IDs during program debugging, but there is usually no need to do
so otherwise. At worst, this results in nonportable debug code, so it is not much of a limitation.

A thread can obtain its own thread ID by calling the pthread_self function.

#include <pthread.h>

pthread_t pthread_self(void);

Returns: the thread ID of the calling thread

This function can be used with pthread_equal when a thread needs to identify data structures that are tagged
with its thread ID. For example, a master thread might place work assignments on a queue and use the thread ID
to control which jobs go to each worker thread. This is illustrated in Figure 11.1. A single master thread places
new jobs on a work queue. A pool of three worker threads removes jobs from the queue. Instead of allowing
each thread to process whichever job is at the head of the queue, the master thread controls job assignment by
placing the ID of the thread that should process the job in each job structure. Each worker thread then removes
only jobs that are tagged with its own thread ID.

Figure 11.1. Work queue example

11.4. Thread Creation

The traditional UNIX process model supports only one thread of control per process. Conceptually, this is the
same as a threads-based model whereby each process is made up of only one thread. With pthreads, when a
program runs, it also starts out as a single process with a single thread of control. As the program runs, its
behavior should be indistinguishable from the traditional process, until it creates more threads of control.
Additional threads can be created by calling the pthread_create function.

#include <pthread.h>

int pthread_create(pthread_t *restrict tidp,
 const pthread_attr_t *restrict a ttr,
 void *(*start_rtn)(void), void * restrict arg);

Returns: 0 if OK, error number on failure

The memory location pointed to by tidp is set to the thread ID of the newly created thread when
pthread_create returns successfully. The attr argument is used to customize various thread attributes. We'll
cover thread attributes in Section 12.3, but for now, we'll set this to NULL to create a thread with the default
attributes.

The newly created thread starts running at the address of the start_rtn function. This function takes a single
argument, arg, which is a typeless pointer. If you need to pass more than one argument to the start_rtn function,
then you need to store them in a structure and pass the address of the structure in arg.

When a thread is created, there is no guarantee which runs first: the newly created thread or the calling thread.
The newly created thread has access to the process address space and inherits the calling thread's floating-point
environment and signal mask; however, the set of pending signals for the thread is cleared.

Note that the pthread functions usually return an error code when they fail. They don't set errno like the other
POSIX functions. The per thread copy of errno is provided only for compatibility with existing functions that
use it. With threads, it is cleaner to return the error code from the function, thereby restricting the scope of the
error to the function that caused it, instead of relying on some global state that is changed as a side effect of the
function.

Example

Although there is no portable way to print the thread ID, we can write a small test program that does, to gain
some insight into how threads work. The program in Figure 11.2 creates one thread and prints the process and
thread IDs of the new thread and the initial thread.

This example has two oddities, necessary to handle races between the main thread and the new thread. (We'll
learn better ways to deal with these later in this chapter.) The first is the need to sleep in the main thread. If it
doesn't sleep, the main thread might exit, thereby terminating the entire process before the new thread gets a
chance to run. This behavior is dependent on the operating system's threads implementation and scheduling
algorithms.

The second oddity is that the new thread obtains its thread ID by calling pthread_self instead of reading it out
of shared memory or receiving it as an argument to its thread-start routine. Recall that pthread_create will
return the thread ID of the newly created thread through the first parameter (tidp). In our example, the main

thread stores this in ntid , but the new thread can't safely use it. If the new thread runs before the main thread
returns from calling pthread_create , then the new thread will see the uninitialized contents of ntid instead of
the thread ID.

Running the program in Figure 11.2 on Solaris gives us

 $./a.out
 main thread: pid 7225 tid 1 (0x1)
 new thread: pid 7225 tid 4 (0x4)

As we expect, both threads have the same process ID, but different thread IDs. Running the program in Figure
11.2 on FreeBSD gives us

 $./a.out
 main thread: pid 14954 tid 134529024 (0x804c000)
 new thread: pid 14954 tid 134530048 (0x804c400)

As we expect, both threads have the same process ID. If we look at the thread IDs as decimal integers, the
values look strange, but if we look at them in hexadecimal, they make more sense. As we noted earlier,
FreeBSD uses a pointer to the thread data structure for its thread ID.

We would expect Mac OS X to be similar to FreeBSD; however, the thread ID for the main thread is from a
different address range than the thread IDs for threads created with pthread_create :

 $./a.out
 main thread: pid 779 tid 2684396012 (0xa000a1ec)
 new thread: pid 779 tid 25166336 (0x1800200)

Running the same program on Linux gives us slightly different results:

 $./a.out
 new thread: pid 6628 tid 1026 (0x402)
 main thread: pid 6626 tid 1024 (0x400)

The Linux thread IDs look more reasonable, but the process IDs don't match. This is an artifact of the Linux
threads implementation, where the clone system call is used to implement pthread_create . The clone system
call creates a child process that can share a configurable amount of its parent's execution context, such as file
descriptors and memory.

Note also that the output from the main thread appears before the output from the thread we create, except on
Linux. This illustrates that we can't make any assumptions about how threads will be scheduled.

Figure 11.2. Printing thread IDs

#include "apue.h"
#include <pthread.h>

pthread_t ntid;

void

printids(const char *s)
{
 pid_t pid;
 pthread_t tid;

 pid = getpid();
 tid = pthread_self();
 printf("%s pid %u tid %u (0x%x)\n", s, (unsigne d int)pid,
 (unsigned int)tid, (unsigned int)tid);
}

void *
thr_fn(void *arg)
{
 printids("new thread: ");
 return((void *)0);
}

int
main(void)
{
 int err;

 err = pthread_create(&ntid, NULL, thr_fn, NULL) ;
 if (err != 0)
 err_quit("can't create thread: %s\n", strer ror(err));
 printids("main thread:");
 sleep(1);
 exit(0);
}

11.5. Thread Termination

If any thread within a process calls exit , _Exit , or _exit , then the entire process terminates. Similarly, when
the default action is to terminate the process, a signal sent to a thread will terminate the entire process (we'll talk
more about the interactions between signals and threads in Section 12.8).

A single thread can exit in three ways, thereby stopping its flow of control, without terminating the entire
process.

1. The thread can simply return from the start routine. The return value is the thread's exit code.
2. The thread can be canceled by another thread in the same process.
3. The thread can call pthread_exit .

#include <pthread.h>

void pthread_exit(void *rval_ptr);

The rval_ptr is a typeless pointer, similar to the single argument passed to the start routine. This pointer is
available to other threads in the process by calling the pthread_join function.

#include <pthread.h>

int pthread_join(pthread_t thread, void **rval_ptr) ;

Returns: 0 if OK, error number on failure

The calling thread will block until the specified thread calls pthread_exit , returns from its start routine, or is
canceled. If the thread simply returned from its start routine, rval_ptr will contain the return code. If the thread
was canceled, the memory location specified by rval_ptr is set to PTHREAD_CANCELED.

By calling pthread_join , we automatically place a thread in the detached state (discussed shortly) so that its
resources can be recovered. If the thread was already in the detached state, calling pthread_join fails,
returning EINVAL.

If we're not interested in a thread's return value, we can set rval_ptr to NULL. In this case, calling pthread_join
allows us to wait for the specified thread, but does not retrieve the thread's termination status.

Example

Figure 11.3 shows how to fetch the exit code from a thread that has terminated.

Running the program in Figure 11.3 gives us

 $./a.out
 thread 1 returning
 thread 2 exiting
 thread 1 exit code 1
 thread 2 exit code 2

As we can see, when a thread exits by calling pthread_exit or by simply returning from the start routine, the
exit status can be obtained by another thread by calling pthread_join .

Figure 11.3. Fetching the thread exit status

#include "apue.h"
#include <pthread.h>

void *
thr_fn1(void *arg)
{
 printf("thread 1 returning\n");
 return((void *)1);
}

void *
thr_fn2(void *arg)
{
 printf("thread 2 exiting\n");
 pthread_exit((void *)2);
}

int
main(void)
{
 int err;
 pthread_t tid1, tid2;
 void *tret;

 err = pthread_create(&tid1, NULL, thr_fn1, NULL);
 if (err != 0)
 err_quit("can't create thread 1: %s\n", str error(err));
 err = pthread_create(&tid2, NULL, thr_fn2, NULL);
 if (err != 0)
 err_quit("can't create thread 2: %s\n", str error(err));
 err = pthread_join(tid1, &tret);
 if (err != 0)
 err_quit("can't join with thread 1: %s\n", strerror(err));
 printf("thread 1 exit code %d\n", (int)tret);
 err = pthread_join(tid2, &tret);
 if (err != 0)
 err_quit("can't join with thread 2: %s\n", strerror(err));
 printf("thread 2 exit code %d\n", (int)tret);
 exit(0);
}

The typeless pointer passed to pthread_create and pthread_exit can be used to pass more than a single
value. The pointer can be used to pass the address of a structure containing more complex information. Be
careful that the memory used for the structure is still valid when the caller has completed. If the structure was
allocated on the caller's stack, for example, the memory contents might have changed by the time the structure
is used. For example, if a thread allocates a structure on its stack and passes a pointer to this structure to
pthread_exit , then the stack might be destroyed and its memory reused for something else by the time the
caller of pthread_join tries to use it.

Example

The program in Figure 11.4 shows the problem with using an automatic variable (allocated on the stack) as the
argument to pthread_exit .

When we run this program on Linux, we get

 $./a.out
 thread 1:
 structure at 0x409a2abc
 foo.a = 1
 foo.b = 2
 foo.c = 3
 foo.d = 4
 parent starting second thread
 thread 2: ID is 32770
 parent:
 structure at 0x409a2abc
 foo.a = 0
 foo.b = 32770
 foo.c = 1075430560
 foo.d = 1073937284

Of course, the results vary, depending on the memory architecture, the compiler, and the implementation of the
threads library. The results on FreeBSD are similar:

 $./a.out
 thread 1:
 structure at 0xbfafefc0
 foo.a = 1
 foo.b = 2
 foo.c = 3
 foo.d = 4
 parent starting second thread
 thread 2: ID is 134534144
 parent:
 structure at 0xbfafefc0
 foo.a = 0
 foo.b = 134534144
 foo.c = 3
 foo.d = 671642590

As we can see, the contents of the structure (allocated on the stack of thread tid1) have changed by the time the
main thread can access the structure. Note how the stack of the second thread (tid2) has overwritten the first
thread's stack. To solve this problem, we can either use a global structure or allocate the structure using malloc .

Figure 11.4. Incorrect use of pthread_exit argument

#include "apue.h"
#include <pthread.h>

struct foo {
 int a, b, c, d;
};

void
printfoo(const char *s, const struct foo *fp)
{

 printf(s);
 printf(" structure at 0x%x\n", (unsigned)fp);
 printf(" foo.a = %d\n", fp->a);
 printf(" foo.b = %d\n", fp->b);
 printf(" foo.c = %d\n", fp->c);
 printf(" foo.d = %d\n", fp->d);
}

void *
thr_fn1(void *arg)
{

 struct foo foo = {1, 2, 3, 4};

 printfoo("thread 1:\n", &foo);
 pthread_exit((void *)&foo);
}

void *
thr_fn2(void *arg)
{
 printf("thread 2: ID is %d\n", pthread_self());
 pthread_exit((void *)0);
}
int
main(void)
{
 int err;
 pthread_t tid1, tid2;
 struct foo *fp;

 err = pthread_create(&tid1, NULL, thr_fn1, NULL);
 if (err != 0)
 err_quit("can't create thread 1: %s\n", str error(err));
 err = pthread_join(tid1, (void *)&fp);
 if (err != 0)
 err_quit("can't join with thread 1: %s\n", strerror(err));
 sleep(1);
 printf("parent starting second thread\n");
 err = pthread_create(&tid2, NULL, thr_fn2, NULL);
 if (err != 0)
 err_quit("can't create thread 2: %s\n", str error(err));
 sleep(1);
 printfoo("parent:\n", fp);
 exit(0);
}

One thread can request that another in the same process be canceled by calling the pthread_cancel function.

#include <pthread.h>

int pthread_cancel(pthread_t tid);

Returns: 0 if OK, error number on failure

In the default circumstances, pthread_cancel will cause the thread specified by tid to behave as if it had called
pthread_exit with an argument of PTHREAD_CANCELED. However, a thread can elect to ignore or otherwise

control how it is canceled. We will discuss this in detail in Section 12.7. Note that pthread_cancel doesn't
wait for the thread to terminate. It merely makes the request.

A thread can arrange for functions to be called when it exits, similar to the way that the atexit function
(Section 7.3) can be used by a process to arrange that functions can be called when the process exits. The
functions are known as thread cleanup handlers. More than one cleanup handler can be established for a thread.
The handlers are recorded in a stack, which means that they are executed in the reverse order from that with
which they were registered.

#include <pthread.h>

void pthread_cleanup_push(void (*rtn)(void *), void *arg);

void pthread_cleanup_pop(int execute);

The pthread_cleanup_push function schedules the cleanup function, rtn, to be called with the single argument,
arg, when the thread performs one of the following actions:

• Makes a call to pthread_exit
• Responds to a cancellation request
• Makes a call to pthread_cleanup_pop with a nonzero execute argument

If the execute argument is set to zero, the cleanup function is not called. In either case, pthread_cleanup_pop
removes the cleanup handler established by the last call to pthread_cleanup_push .

A restriction with these functions is that, because they can be implemented as macros, they must be used in
matched pairs within the same scope in a thread. The macro definition of pthread_cleanup_push can include a
{ character, in which case the matching } character is in the pthread_cleanup_pop definition.

Example

Figure 11.5 shows how to use thread cleanup handlers. Although the example is somewhat contrived, it
illustrates the mechanics involved. Note that although we never intend to pass a nonzero argument to the thread
start-up routines, we still need to match calls to pthread_cleanup_pop with the calls to
pthread_cleanup_push ; otherwise, the program might not compile.

Running the program in Figure 11.5 gives us

 $./a.out
 thread 1 start
 thread 1 push complete
 thread 2 start
 thread 2 push complete
 cleanup: thread 2 second handler
 cleanup: thread 2 first handler
 thread 1 exit code 1
 thread 2 exit code 2

From the output, we can see that both threads start properly and exit, but that only the second thread's cleanup
handlers are called. Thus, if the thread terminates by returning from its start routine, its cleanup handlers are not

called. Also note that the cleanup handlers are called in the reverse order from which they were installed.

Figure 11.5. Thread cleanup handler

#include "apue.h"
#include <pthread.h>

void
cleanup(void *arg)
{
 printf("cleanup: %s\n", (char *)arg);
}

void *
thr_fn1(void *arg)
{
 printf("thread 1 start\n");
 pthread_cleanup_push(cleanup, "thread 1 first h andler");
 pthread_cleanup_push(cleanup, "thread 1 second handler");
 printf("thread 1 push complete\n");
 if (arg)
 return((void *)1);
 pthread_cleanup_pop(0);
 pthread_cleanup_pop(0);
 return((void *)1);
}

void *
thr_fn2(void *arg)
{
 printf("thread 2 start\n");
 pthread_cleanup_push(cleanup, "thread 2 first h andler");
 pthread_cleanup_push(cleanup, "thread 2 second handler");
 printf("thread 2 push complete\n");
 if (arg)
 pthread_exit((void *)2);
 pthread_cleanup_pop(0);
 pthread_cleanup_pop(0);
 pthread_exit((void *)2);
}

int
main(void)
{
 int err;
 pthread_t tid1, tid2;
 void *tret;

 err = pthread_create(&tid1, NULL, thr_fn1, (voi d *)1);
 if (err != 0)
 err_quit("can't create thread 1: %s\n", str error(err));
 err = pthread_create(&tid2, NULL, thr_fn2, (voi d *)1);
 if (err != 0)
 err_quit("can't create thread 2: %s\n", str error(err));
 err = pthread_join(tid1, &tret);
 if (err != 0)
 err_quit("can't join with thread 1: %s\n", strerror(err));
 printf("thread 1 exit code %d\n", (int)tret);
 err = pthread_join(tid2, &tret);
 if (err != 0)
 err_quit("can't join with thread 2: %s\n", strerror(err));

 printf("thread 2 exit code %d\n", (int)tret);
 exit(0);
}

By now, you should begin to see similarities between the thread functions and the process functions. Figure
11.6 summarizes the similar functions.

Figure 11.6. Comparison of process and thread primitives

Process primitive Thread primitive Description

fork pthread_create create a new flow of control

exit pthread_exit exit from an existing flow of control

waitpid pthread_join get exit status from flow of control

atexit pthread_cancel_push register function to be called at exit from flow of control

getpid pthread_self get ID for flow of control

abort pthread_cancel request abnormal termination of flow of control

By default, a thread's termination status is retained until pthread_join is called for that thread. A thread's
underlying storage can be reclaimed immediately on termination if that thread has been detached. When a
thread is detached, the pthread_join function can't be used to wait for its termination status. A call to
pthread_join for a detached thread will fail, returning EINVAL. We can detach a thread by calling
pthread_detach .

#include <pthread.h>

int pthread_detach(pthread_t tid);

Returns: 0 if OK, error number on failure

As we will see in the next chapter, we can create a thread that is already in the detached state by modifying the
thread attributes we pass to pthread_create .

11.6. Thread Synchronization

When multiple threads of control share the same memory, we need to make sure that each thread sees a
consistent view of its data. If each thread uses variables that other threads don't read or modify, no consistency
problems exist. Similarly, if a variable is read-only, there is no consistency problem with more than one thread
reading its value at the same time. However, when one thread can modify a variable that other threads can read
or modify, we need to synchronize the threads to ensure that they don't use an invalid value when accessing the
variable's memory contents.

When one thread modifies a variable, other threads can potentially see inconsistencies when reading the value
of the variable. On processor architectures in which the modification takes more than one memory cycle, this
can happen when the memory read is interleaved between the memory write cycles. Of course, this behavior is
architecture dependent, but portable programs can't make any assumptions about what type of processor
architecture is being used.

Figure 11.7 shows a hypothetical example of two threads reading and writing the same variable. In this example,
thread A reads the variable and then writes a new value to it, but the write operation takes two memory cycles.
If thread B reads the same variable between the two write cycles, it will see an inconsistent value.

Figure 11.7. Interleaved memory cycles with two threads

To solve this problem, the threads have to use a lock that will allow only one thread to access the variable at a
time. Figure 11.8 shows this synchronization. If it wants to read the variable, thread B acquires a lock. Similarly,
when thread A updates the variable, it acquires the same lock. Thus, thread B will be unable to read the variable
until thread A releases the lock.

Figure 11.8. Two threads synchronizing memory access

You also need to synchronize two or more threads that might try to modify the same variable at the same time.
Consider the case in which you increment a variable (Figure 11.9). The increment operation is usually broken
down into three steps.

1. Read the memory location into a register.
2. Increment the value in the register.
3. Write the new value back to the memory location.

Figure 11.9. Two unsynchronized threads incrementing the same variable

If two threads try to increment the same variable at almost the same time without synchronizing with each other,
the results can be inconsistent. You end up with a value that is either one or two greater than before, depending
on the value observed when the second thread starts its operation. If the second thread performs step 1 before
the first thread performs step 3, the second thread will read the same initial value as the first thread, increment it,
and write it back, with no net effect.

If the modification is atomic, then there isn't a race. In the previous example, if the increment takes only one
memory cycle, then no race exists. If our data always appears to be sequentially consistent, then we need no
additional synchronization. Our operations are sequentially consistent when multiple threads can't observe
inconsistencies in our data. In modern computer systems, memory accesses take multiple bus cycles, and
multiprocessors generally interleave bus cycles among multiple processors, so we aren't guaranteed that our
data is sequentially consistent.

In a sequentially consistent environment, we can explain modifications to our data as a sequential step of
operations taken by the running threads. We can say such things as "Thread A incremented the variable, then
thread B incremented the variable, so its value is two greater than before" or "Thread B incremented the
variable, then thread A incremented the variable, so its value is two greater than before." No possible ordering
of the two threads can result in any other value of the variable.

Besides the computer architecture, races can arise from the ways in which our programs use variables, creating
places where it is possible to view inconsistencies. For example, we might increment a variable and then make a
decision based on its value. The combination of the increment step and the decision-making step aren't atomic,
so this opens a window where inconsistencies can arise.

Mutexes

We can protect our data and ensure access by only one thread at a time by using the pthreads mutual-exclusion
interfaces. A mutex is basically a lock that we set (lock) before accessing a shared resource and release (unlock)
when we're done. While it is set, any other thread that tries to set it will block until we release it. If more than
one thread is blocked when we unlock the mutex, then all threads blocked on the lock will be made runnable,
and the first one to run will be able to set the lock. The others will see that the mutex is still locked and go back
to waiting for it to become available again. In this way, only one thread will proceed at a time.

This mutual-exclusion mechanism works only if we design our threads to follow the same data-access rules.
The operating system doesn't serialize access to data for us. If we allow one thread to access a shared resource
without first acquiring a lock, then inconsistencies can occur even though the rest of our threads do acquire the
lock before attempting to access the shared resource.

A mutex variable is represented by the pthread_mutex_t data type. Before we can use a mutex variable, we
must first initialize it by either setting it to the constant PTHREAD_MUTEX_INITIALIZER (for statically-allocated
mutexes only) or calling pthread_mutex_init . If we allocate the mutex dynamically (by calling malloc , for
example), then we need to call pthread_mutex_destroy before freeing the memory.

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *restrict mu tex,
 const pthread_mutexattr_t *r estrict attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Both return: 0 if OK, error number on failure

To initialize a mutex with the default attributes, we set attr to NULL. We will discuss nondefault mutex attributes
in Section 12.4.

To lock a mutex, we call pthread_mutex_lock . If the mutex is already locked, the calling thread will block
until the mutex is unlocked. To unlock a mutex, we call pthread_mutex_unlock .

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

All return: 0 if OK, error number on failure

If a thread can't afford to block, it can use pthread_mutex_trylock to lock the mutex conditionally. If the
mutex is unlocked at the time pthread_mutex_trylock is called, then pthread_mutex_trylock will lock the
mutex without blocking and return 0. Otherwise, pthread_mutex_trylock will fail, returning EBUSY without
locking the mutex.

Example

Figure 11.10 illustrates a mutex used to protect a data structure. When more than one thread needs to
access a dynamically-allocated object, we can embed a reference count in the object to ensure that
we don't free its memory before all threads are done using it.

We lock the mutex before incrementing the reference count, decrementing the reference count, and
checking whether the reference count reaches zero. No locking is necessary when we initialize the
reference count to 1 in the foo_alloc function, because the allocating thread is the only reference to
it so far. If we were to place the structure on a list at this point, it could be found by other threads, so
we would need to lock it first.

Before using the object, threads are expected to add a reference count to it. When they are done, they
must release the reference. When the last reference is released, the object's memory is freed.

Figure 11.10. Using a mutex to protect a data structure

#include <stdlib.h>
#include <pthread.h>

struct foo {
 int f_count;
 pthread_mutex_t f_lock;
 /* ... more stuff here ... */
};

struct foo *
foo_alloc(void) /* allocate the object */
{
 struct foo *fp;

 if ((fp = malloc(sizeof(struct foo))) != NULL) {
 fp->f_count = 1;
 if (pthread_mutex_init(&fp->f_lock, NULL) ! = 0) {
 free(fp);
 return(NULL);
 }
 /* ... continue initialization ... */
 }
 return(fp);
}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{
 pthread_mutex_lock(&fp->f_lock);
 fp->f_count++;
 pthread_mutex_unlock(&fp->f_lock);
}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{
 pthread_mutex_lock(&fp->f_lock);
 if (--fp->f_count == 0) { /* last reference */
 pthread_mutex_unlock(&fp->f_lock);
 pthread_mutex_destroy(&fp->f_lock);
 free(fp);
 } else {

 pthread_mutex_unlock(&fp->f_lock);
 }
}

Deadlock Avoidance

A thread will deadlock itself if it tries to lock the same mutex twice, but there are less obvious ways to create
deadlocks with mutexes. For example, when we use more than one mutex in our programs, a deadlock can
occur if we allow one thread to hold a mutex and block while trying to lock a second mutex at the same time
that another thread holding the second mutex tries to lock the first mutex. Neither thread can proceed, because
each needs a resource that is held by the other, so we have a deadlock.

Deadlocks can be avoided by carefully controlling the order in which mutexes are locked. For example, assume
that you have two mutexes, A and B, that you need to lock at the same time. If all threads always lock mutex A
before mutex B, no deadlock can occur from the use of the two mutexes (but you can still deadlock on other
resources). Similarly, if all threads always lock mutex B before mutex A, no deadlock will occur. You'll have
the potential for a deadlock only when one thread attempts to lock the mutexes in the opposite order from
another thread.

Sometimes, an application's architecture makes it difficult to apply a lock ordering. If enough locks and data
structures are involved that the functions you have available can't be molded to fit a simple hierarchy, then
you'll have to try some other approach. In this case, you might be able to release your locks and try again at a
later time. You can use the pthread_mutex_trylock interface to avoid deadlocking in this case. If you are
already holding locks and pthread_mutex_trylock is successful, then you can proceed. If it can't acquire the
lock, however, you can release the locks you already hold, clean up, and try again later.

Example

In this example, we update Figure 11.10 to show the use of two mutexes. We avoid deadlocks by
ensuring that when we need to acquire two mutexes at the same time, we always lock them in the
same order. The second mutex protects a hash list that we use to keep track of the foo data
structures. Thus, the hashlock mutex protects both the fh hash table and the f_next hash link field
in the foo structure. The f_lock mutex in the foo structure protects access to the remainder of the
foo structure's fields.

Comparing Figure 11.11 with Figure 11.10, we see that our allocation function now locks the hash
list lock, adds the new structure to a hash bucket, and before unlocking the hash list lock, locks the
mutex in the new structure. Since the new structure is placed on a global list, other threads can find
it, so we need to block them if they try to access the new structure, until we are done initializing it.

The foo_find function locks the hash list lock and searches for the requested structure. If it is
found, we increase the reference count and return a pointer to the structure. Note that we honor the
lock ordering by locking the hash list lock in foo_find before foo_hold locks the foo structure's
f_lock mutex.

Now with two locks, the foo_rele function is more complicated. If this is the last reference, we
need to unlock the structure mutex so that we can acquire the hash list lock, since we'll need to
remove the structure from the hash list. Then we reacquire the structure mutex. Because we could
have blocked since the last time we held the structure mutex, we need to recheck the condition to see
whether we still need to free the structure. If another thread found the structure and added a
reference to it while we blocked to honor the lock ordering, we simply need to decrement the

reference count, unlock everything, and return.

This locking is complex, so we need to revisit our design. We can simplify things considerably by
using the hash list lock to protect the structure reference count, too. The structure mutex can be used
to protect everything else in the foo structure. Figure 11.12 reflects this change.

Note how much simpler the program in Figure 11.12 is compared to the program in Figure 11.11.
The lock-ordering issues surrounding the hash list and the reference count go away when we use the
same lock for both purposes. Multithreaded software design involves these types of tradeoffs. If
your locking granularity is too coarse, you end up with too many threads blocking behind the same
locks, with little improvement possible from concurrency. If your locking granularity is too fine,
then you suffer bad performance from excess locking overhead, and you end up with complex code.
As a programmer, you need to find the correct balance between code complexity and performance,
and still satisfy your locking requirements.

Figure 11.11. Using two mutexes

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(fp) (((unsigned long)fp)%NHASH)
struct foo *fh[NHASH];

pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZE R;

struct foo {
 int f_count;
 pthread_mutex_t f_lock;
 struct foo *f_next; /* protected by hashloc k */
 int f_id;
 /* ... more stuff here ... */
};

struct foo *
foo_alloc(void) /* allocate the object */
{
 struct foo *fp;
 int idx;

 if ((fp = malloc(sizeof(struct foo))) != NULL) {
 fp->f_count = 1;
 if (pthread_mutex_init(&fp->f_lock, NULL) ! = 0) {
 free(fp);
 return(NULL);
 }
 idx = HASH(fp);
 pthread_mutex_lock(&hashlock);
 fp->f_next = fh[idx];
 fh[idx] = fp->f_next;
 pthread_mutex_lock(&fp->f_lock);
 pthread_mutex_unlock(&hashlock);
 /* ... continue initialization ... */
 pthread_mutex_unlock(&fp->f_lock);
 }
 return(fp);
}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{
 pthread_mutex_lock(&fp->f_lock);
 fp->f_count++;
 pthread_mutex_unlock(&fp->f_lock);
}

struct foo *
foo_find(int id) /* find an existing object */
{
 struct foo *fp;
 int idx;

 idx = HASH(fp);

 pthread_mutex_lock(&hashlock);
 for (fp = fh[idx]; fp != NULL; fp = fp->f_next) {
 if (fp->f_id == id) {
 foo_hold(fp);
 break;
 }
 }
 pthread_mutex_unlock(&hashlock);
 return(fp);
}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{
 struct foo *tfp;
 int idx;

 pthread_mutex_lock(&fp->f_lock);
 if (fp->f_count == 1) { /* last reference */
 pthread_mutex_unlock(&fp->f_lock);
 pthread_mutex_lock(&hashlock);
 pthread_mutex_lock(&fp->f_lock);
 /* need to recheck the condition */
 if (fp->f_count != 1) {
 fp->f_count--;
 pthread_mutex_unlock(&fp->f_lock);
 pthread_mutex_unlock(&hashlock);
 return;
 }
 /* remove from list */
 idx = HASH(fp);
 tfp = fh[idx];
 if (tfp == fp) {
 fh[idx] = fp->f_next;
 } else {
 while (tfp->f_next != fp)
 tfp = tfp->f_next;
 tfp->f_next = fp->f_next;
 }
 pthread_mutex_unlock(&hashlock);
 pthread_mutex_unlock(&fp->f_lock);
 pthread_mutex_destroy(&fp->f_lock);
 free(fp);
 } else {
 fp->f_count--;
 pthread_mutex_unlock(&fp->f_lock);

 }
}

Figure 11.12. Simplified locking

#include <stdlib.h>
#include <pthread.h>

#define NHASH 29
#define HASH(fp) (((unsigned long)fp)%NHASH)

struct foo *fh[NHASH];
pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZE R;

struct foo {
 int f_count; /* protected by hashlo ck */
 pthread_mutex_t f_lock;
 struct foo *f_next; /* protected by hashloc k */
 int f_id;
 /* ... more stuff here ... */
};

struct foo *
foo_alloc(void) /* allocate the object */
{
 struct foo *fp;
 int idx;

 if ((fp = malloc(sizeof(struct foo))) != NULL) {
 fp->f_count = 1;
 if (pthread_mutex_init(&fp->f_lock, NULL) ! = 0) {
 free(fp);
 return(NULL);
 }
 idx = HASH(fp);
 pthread_mutex_lock(&hashlock);
 fp->f_next = fh[idx];
 fh[idx] = fp->f_next;
 pthread_mutex_lock(&fp->f_lock);
 pthread_mutex_unlock(&hashlock);
 /* ... continue initialization ... */
 }
 return(fp);

}

void
foo_hold(struct foo *fp) /* add a reference to the object */
{
 pthread_mutex_lock(&hashlock);
 fp->f_count++;
 pthread_mutex_unlock(&hashlock);
}

struct foo *
foo_find(int id) /* find a existing object */
{
 struct foo *fp;
 int idx;

 idx = HASH(fp);
 pthread_mutex_lock(&hashlock);

 for (fp = fh[idx]; fp != NULL; fp = fp->f_next) {
 if (fp->f_id == id) {
 fp->f_count++;
 break;
 }
 }
 pthread_mutex_unlock(&hashlock);
 return(fp);
}

void
foo_rele(struct foo *fp) /* release a reference to the object */
{
 struct foo *tfp;
 int idx;

 pthread_mutex_lock(&hashlock);
 if (--fp->f_count == 0) { /* last reference, re move from list */
 idx = HASH(fp);
 tfp = fh[idx];
 if (tfp == fp) {
 fh[idx] = fp->f_next;

 } else {
 while (tfp->f_next != fp)
 tfp = tfp->f_next;
 tfp->f_next = fp->f_next;
 }
 pthread_mutex_unlock(&hashlock);
 pthread_mutex_destroy(&fp->f_lock);
 free(fp);
 } else {
 pthread_mutex_unlock(&hashlock);
 }
}

Reader–Writer Locks

Reader–writer locks are similar to mutexes, except that they allow for higher degrees of parallelism. With a
mutex, the state is either locked or unlocked, and only one thread can lock it at a time. Three states are possible
with a reader–writer lock: locked in read mode, locked in write mode, and unlocked. Only one thread at a time
can hold a reader–writer lock in write mode, but multiple threads can hold a reader–writer lock in read mode at
the same time.

When a reader–writer lock is write-locked, all threads attempting to lock it block until it is unlocked. When a
reader–writer lock is read-locked, all threads attempting to lock it in read mode are given access, but any
threads attempting to lock it in write mode block until all the threads have relinquished their read locks.
Although implementations vary, reader–writer locks usually block additional readers if a lock is already held in
read mode and a thread is blocked trying to acquire the lock in write mode. This prevents a constant stream of
readers from starving waiting writers.

Reader–writer locks are well suited for situations in which data structures are read more often than they are
modified. When a reader–writer lock is held in write mode, the data structure it protects can be modified safely,
since only one thread at a time can hold the lock in write mode. When the reader–writer lock is held in read
mode, the data structure it protects can be read by multiple threads, as long as the threads first acquire the lock
in read mode.

Reader–writer locks are also called shared–exclusive locks. When a reader–writer lock is read-locked, it is said
to be locked in shared mode. When it is write-locked, it is said to be locked in exclusive mode.

As with mutexes, reader–writer locks must be initialized before use and destroyed before freeing their
underlying memory.

#include <pthread.h>

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
 const pthread_rwlockattr_t *restrict attr);

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

Both return: 0 if OK, error number on failure

A reader–writer lock is initialized by calling pthread_rwlock_init . We can pass a null pointer for attr if we
want the reader–writer lock to have the default attributes. We discuss reader–writer lock attributes in Section
12.4.

Before freeing the memory backing a reader–writer lock, we need to call pthread_rwlock_destroy to clean it
up. If pthread_rwlock_init allocated any resources for the reader–writer lock, pthread_rwlock_destroy
frees those resources. If we free the memory backing a reader–writer lock without first calling
pthread_rwlock_destroy , any resources assigned to the lock will be lost.

To lock a reader–writer lock in read mode, we call pthread_rwlock_rdlock . To write-lock a reader–writer
lock, we call pthread_rwlock_wrlock . Regardless of how we lock a reader–writer lock, we can call
pthread_rwlock_unlock to unlock it.

#include <pthread.h>

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) ;

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) ;

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) ;

All return: 0 if OK, error number on failure

Implementations might place a limit on the number of times a reader–writer lock can be locked in shared mode,
so we need to check the return value of pthread_rwlock_rdlock . Even though pthread_rwlock_wrlock and
pthread_rwlock_unlock have error returns, we don't need to check them if we design our locking properly.
The only error returns defined are when we use them improperly, such as with an uninitialized lock, or when we
might deadlock by attempting to acquire a lock we already own.

The Single UNIX Specification also defines conditional versions of the reader–writer locking primitives.

#include <pthread.h>

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlo ck);

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlo ck);

Both return: 0 if OK, error number on failure

When the lock can be acquired, these functions return 0. Otherwise, they return the error EBUSY. These
functions can be used in situations in which conforming to a lock hierarchy isn't enough to avoid a deadlock, as
we discussed previously.

Example

The program in Figure 11.13 illustrates the use of reader–writer locks. A queue of job requests is
protected by a single reader–writer lock. This example shows a possible implementation of Figure
11.1, whereby multiple worker threads obtain jobs assigned to them by a single master thread.

In this example, we lock the queue's reader–writer lock in write mode whenever we need to add a
job to the queue or remove a job from the queue. Whenever we search the queue, we grab the lock in
read mode, allowing all the worker threads to search the queue concurrently. Using a reader–writer
lock will improve performance in this case only if threads search the queue much more frequently
than they add or remove jobs.

The worker threads take only those jobs that match their thread ID off the queue. Since the job
structures are used only by one thread at a time, they don't need any extra locking.

Figure 11.13. Using reader–writer locks

#include <stdlib.h>
#include <pthread.h>

struct job {
 struct job *j_next;
 struct job *j_prev;
 pthread_t j_id; /* tells which thread handl es this job */
 /* ... more stuff here ... */
};

struct queue {
 struct job *q_head;
 struct job *q_tail;
 pthread_rwlock_t q_lock;
};

/*
* Initialize a queue.
*/
int
queue_init(struct queue *qp)
{
 int err;

 qp->q_head = NULL;
 qp->q_tail = NULL;

 err = pthread_rwlock_init(&qp->q_lock, NULL);
 if (err != 0)
 return(err);

 /* ... continue initialization ... */

 return(0);
}

/*
 * Insert a job at the head of the queue.
 */
void
job_insert(struct queue *qp, struct job *jp)
{
 pthread_rwlock_wrlock(&qp->q_lock);
 jp->j_next = qp->q_head;
 jp->j_prev = NULL;
 if (qp->q_head != NULL)
 qp->q_head->j_prev = jp;
 else
 qp->q_tail = jp; /* list was empty */
 qp->q_head = jp;
 pthread_rwlock_unlock(&qp->q_lock);
}

/*
 * Append a job on the tail of the queue.
 */
void
job_append(struct queue *qp, struct job *jp)
{
 pthread_rwlock_wrlock(&qp->q_lock);
 jp->j_next = NULL;
 jp->j_prev = qp->q_tail;
 if (qp->q_tail != NULL)
 qp->q_tail->j_next = jp;
 else
 qp->q_head = jp; /* list was empty */
 qp->q_tail = jp;
 pthread_rwlock_unlock(&qp->q_lock);
}

/*
 * Remove the given job from a queue.
 */
void
job_remove(struct queue *qp, struct job *jp)
{
 pthread_rwlock_wrlock(&qp->q_lock);
 if (jp == qp->q_head) {
 qp->q_head = jp->j_next;
 if (qp->q_tail == jp)
 qp->q_tail = NULL;
 } else if (jp == qp->q_tail) {
 qp->q_tail = jp->j_prev;
 if (qp->q_head == jp)
 qp->q_head = NULL;
 } else {
 jp->j_prev->j_next = jp->j_next;
 jp->j_next->j_prev = jp->j_prev;
 }

 pthread_rwlock_unlock(&qp->q_lock);
}
/*
 * Find a job for the given thread ID.
 */
struct job *
job_find(struct queue *qp, pthread_t id)
{
 struct job *jp;

 if (pthread_rwlock_rdlock(&qp->q_lock) != 0)
 return(NULL);

 for (jp = qp->q_head; jp != NULL; jp = jp->j_ne xt)
 if (pthread_equal(jp->j_id, id))
 break;

 pthread_rwlock_unlock(&qp->q_lock);
 return(jp);
}

Condition Variables

Condition variables are another synchronization mechanism available to threads. Condition variables provide a
place for threads to rendezvous. When used with mutexes, condition variables allow threads to wait in a race-
free way for arbitrary conditions to occur.

The condition itself is protected by a mutex. A thread must first lock the mutex to change the condition state.
Other threads will not notice the change until they acquire the mutex, because the mutex must be locked to be
able to evaluate the condition.

Before a condition variable is used, it must first be initialized. A condition variable, represented by the
pthread_cond_t data type, can be initialized in two ways. We can assign the constant
PTHREAD_COND_INITIALIZER to a statically-allocated condition variable, but if the condition variable is
allocated dynamically, we can use the pthread_cond_init function to initialize it.

We can use the pthread_mutex_destroy function to deinitialize a condition variable before freeing its
underlying memory.

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *restrict cond ,
 pthread_condattr_t *restrict attr);

int pthread_cond_destroy(pthread_cond_t *cond);

Both return: 0 if OK, error number on failure

Unless you need to create a conditional variable with nondefault attributes, the attr argument to
pthread_cond_init can be set to NULL. We will discuss condition variable attributes in Section 12.4.

We use pthread_cond_wait to wait for a condition to be true. A variant is provided to return an error code if
the condition hasn't been satisfied in the specified amount of time.

#include <pthread.h>

int pthread_cond_wait(pthread_cond_t *restrict cond ,
 pthread_mutex_t *restrict mut ex);

int pthread_cond_timedwait(pthread_cond_t *restrict cond,
 pthread_mutex_t *restric t mutex,
 const struct timespec *r estrict timeout);

Both return: 0 if OK, error number on failure

The mutex passed to pthread_cond_wait protects the condition. The caller passes it locked to the function,
which then atomically places the calling thread on the list of threads waiting for the condition and unlocks the
mutex. This closes the window between the time that the condition is checked and the time that the thread goes
to sleep waiting for the condition to change, so that the thread doesn't miss a change in the condition. When
pthread_cond_wait returns, the mutex is again locked.

The pthread_cond_timedwait function works the same as the pthread_cond_wait function with the addition
of the timeout. The timeout value specifies how long we will wait. It is specified by the timespec structure,
where a time value is represented by a number of seconds and partial seconds. Partial seconds are specified in
units of nanoseconds:

 struct timespec {
 time_t tv_sec; /* seconds */
 long tv_nsec; /* nanoseconds */
 };

Using this structure, we need to specify how long we are willing to wait as an absolute time instead of a relative
time. For example, if we are willing to wait 3 minutes, instead of translating 3 minutes into a timespec
structure, we need to translate now + 3 minutes into a timespec structure.

We can use gettimeofday (Section 6.10) to get the current time expressed as a timeval structure and translate
this into a timespec structure. To obtain the absolute time for the timeout value, we can use the following
function:

 void
 maketimeout(struct timespec *tsp, long minutes)
 {
 struct timeval now;

 /* get the current time */
 gettimeofday(&now);
 tsp->tv_sec = now.tv_sec;
 tsp->tv_nsec = now.tv_usec * 1000; /* usec to nsec */
 /* add the offset to get timeout value */
 tsp->tv_sec += minutes * 60;
 }

If the timeout expires without the condition occurring, pthread_cond_timedwait will reacquire the mutex and
return the error ETIMEDOUT. When it returns from a successful call to pthread_cond_wait or

pthread_cond_timedwait , a thread needs to reevaluate the condition, since another thread might have run and
already changed the condition.

There are two functions to notify threads that a condition has been satisfied. The pthread_cond_signal
function will wake up one thread waiting on a condition, whereas the pthread_cond_broadcast function will
wake up all threads waiting on a condition.

The POSIX specification allows for implementations of pthread_cond_signal to wake up more than one
thread, to make the implementation simpler.

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);

int pthread_cond_broadcast(pthread_cond_t *cond);

Both return: 0 if OK, error number on failure

When we call pthread_cond_signal or pthread_cond_broadcast , we are said to be signaling the thread or
condition. We have to be careful to signal the threads only after changing the state of the condition.

Example

Figure 11.14 shows an example of how to use condition variables and mutexes together to
synchronize threads.

The condition is the state of the work queue. We protect the condition with a mutex and evaluate the
condition in a while loop. When we put a message on the work queue, we need to hold the mutex,
but we don't need to hold the mutex when we signal the waiting threads. As long as it is okay for a
thread to pull the message off the queue before we call cond_signal , we can do this after releasing
the mutex. Since we check the condition in a while loop, this doesn't present a problem: a thread
will wake up, find that the queue is still empty, and go back to waiting again. If the code couldn't
tolerate this race, we would need to hold the mutex when we signal the threads.

Figure 11.14. Using condition variables

#include <pthread.h>

struct msg {
 struct msg *m_next;
 /* ... more stuff here ... */
};
struct msg *workq;
pthread_cond_t qready = PTHREAD_COND_INITIALIZER;
pthread_mutex_t qlock = PTHREAD_MUTEX_INITIALIZER;

void
process_msg(void)
{
 struct msg *mp;

 for (;;) {
 pthread_mutex_lock(&qlock);

 while (workq == NULL)
 pthread_cond_wait(&qready, &qlock);
 mp = workq;
 workq = mp->m_next;
 pthread_mutex_unlock(&qlock);
 /* now process the message mp */
 }
}

void
enqueue_msg(struct msg *mp)
{
 pthread_mutex_lock(&qlock);
 mp->m_next = workq;
 workq = mp;
 pthread_mutex_unlock(&qlock);
 pthread_cond_signal(&qready);
}

11.7. Summary

In this chapter, we introduced the concept of threads and discussed the POSIX.1 primitives available to create
and destroy them. We also introduced the problem of thread synchronization. We discussed three fundamental
synchronization mechanisms—mutexes, reader–writer locks, and condition variables—and we saw how to use
them to protect shared resources.

Chapter 12. Thread Control

Section 12.1. Introduction

Section 12.2. Thread Limits

Section 12.3. Thread Attributes

Section 12.4. Synchronization Attributes

Section 12.5. Reentrancy

Section 12.6. Thread-Specific Data

Section 12.7. Cancel Options

Section 12.8. Threads and Signals

Section 12.9. Threads and fork

Section 12.10. Threads and I/O

Section 12.11. Summary

12.1. Introduction

In Chapter 11, we learned the basics about threads and thread synchronization. In this chapter, we will learn the
details of controlling thread behavior. We will look at thread attributes and synchronization primitive attributes,
which we ignored in the previous chapter in favor of the default behaviors.

We will follow this with a look at how threads can keep data private from other threads in the same process.
Then we will wrap up the chapter with a look at how some process-based system calls interact with threads.

12.2. Thread Limits

We discussed the sysconf function in Section 2.5.4. The Single UNIX Specification defines several limits
associated with the operation of threads, which we didn't show in Figure 2.10. As with other system limits, the
thread limits can be queried using sysconf . Figure 12.1 summarizes these limits.

Figure 12.1. Thread limits and name arguments to sysconf

Name of limit Description name argument

PTHREAD_DESTRUCTOR_ITERATIONS maximum number of times an
implementation will try to
destroy the thread-specific data
when a thread exits (Section
12.6)

_SC_THREAD_DESTRUCTOR_ITERATIONS

PTHREAD_KEYS_MAX maximum number of keys that
can be created by a process
(Section 12.6)

_SC_THREAD_KEYS_MAX

PTHREAD_STACK_MIN minimum number of bytes that
can be used for a thread's stack
(Section 12.3)

_SC_THREAD_STACK_MIN

PTHREAD_THREADS_MAX maximum number of threads
that can be created in a process
(Section 12.3)

_SC_THREAD_THREADS_MAX

As with the other limits reported by sysconf , use of these limits is intended to promote application portability
among different operating system implementations. For example, if your application requires that you create
four threads for every file you manage, you might have to limit the number of files you can manage
concurrently if the system won't let you create enough threads.

Figure 12.2 shows the values of the thread limits for the four implementations described in this book. When the
implementation doesn't define the corresponding sysconf symbol (starting with _SC_), "no symbol" is listed. If
the implementation's limit is indeterminate, "no limit" is listed. This doesn't mean that the value is unlimited,
however. An "unsupported" entry means that the implementation defines the corresponding sysconf limit
symbol, but the sysconf function doesn't recognize it.

Note that although an implementation may not provide access to these limits, that doesn't mean that the limits
don't exist. It just means that the implementation doesn't provide us with a way to get at them using sysconf .

Figure 12.2. Examples of thread configuration limits

Limit FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

PTHREAD_DESTRUCTOR_ITERATIONS no symbol unsupported no symbol no limit

PTHREAD_KEYS_MAX no symbol unsupported no symbol no limit

Figure 12.2. Examples of thread configuration limits

Limit FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

PTHREAD_STACK_MIN no symbol unsupported no symbol 4,096

PTHREAD_THREADS_MAX no symbol unsupported no symbol no limit

12.3. Thread Attributes

In all the examples in which we called pthread_create in Chapter 11, we passed in a null pointer instead of
passing in a pointer to a pthread_attr_t structure. We can use the pthread_attr_t structure to modify the
default attributes, and associate these attributes with threads that we create. We use the pthread_attr_init
function to initialize the pthread_attr_t structure. After calling pthread_attr_init , the pthread_attr_t
structure contains the default values for all the thread attributes supported by the implementation. To change
individual attributes, we need to call other functions, as described later in this section.

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

int pthread_attr_destroy(pthread_attr_t *attr);

Both return: 0 if OK, error number on failure

To deinitialize a pthread_attr_t structure, we call pthread_attr_destroy . If an implementation of
pthread_attr_init allocated any dynamic memory for the attribute object, pthread_attr_destroy will free
that memory. In addition, pthread_attr_destroy will initialize the attribute object with invalid values, so if it
is used by mistake, pthread_create will return an error.

The pthread_attr_t structure is opaque to applications. This means that applications aren't supposed to know
anything about its internal structure, thus promoting application portability. Following this model, POSIX.1
defines separate functions to query and set each attribute.

The thread attributes defined by POSIX.1 are summarized in Figure 12.3. POSIX.1 defines additional attributes
in the real-time threads option, but we don't discuss those here. In Figure 12.3, we also show which platforms
support each thread attribute. If the attribute is accessible through an obsolete interface, we show ob in the table
entry.

Figure 12.3. POSIX.1 thread attributes

Name Description FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

detachstate detached thread attribute • • • •

guardsize guard buffer size in bytes at end of thread
stack

 • • •

stackaddr lowest address of thread stack ob • • ob

stacksize size in bytes of thread stack • • • •

In Section 11.5, we introduced the concept of detached threads. If we are no longer interested in an existing
thread's termination status, we can use pthread_detach to allow the operating system to reclaim the thread's
resources when the thread exits.

If we know that we don't need the thread's termination status at the time we create the thread, we can arrange for
the thread to start out in the detached state by modifying the detachstate thread attribute in the pthread_attr_t
structure. We can use the pthread_attr_setdetachstate function to set the detachstate thread attribute to
one of two legal values: PTHREAD_CREATE_DETACHED to start the thread in the detached state or
PTHREAD_CREATE_JOINABLE to start the thread normally, so its termination status can be retrieved by the
application.

#include <pthread.h>

int pthread_attr_getdetachstate(const pthread_attr_ t *restrict attr,
 int *detachstate);

int pthread_attr_setdetachstate(pthread_attr_t *att r, int detachstate);

Both return: 0 if OK, error number on failure

We can call pthread_attr_getdetachstate to obtain the current detachstate attribute. The integer pointed to
by the second argument is set to either PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE, depending
on the value of the attribute in the given pthread_attr_t structure.

Example

Figure 12.4 shows a function that can be used to create a thread in the detached state.

Note that we ignore the return value from the call to pthread_attr_destroy . In this case, we
initialized the thread attributes properly, so pthread_attr_destroy shouldn't fail. Nonetheless, if it
does fail, cleaning up would be difficult: we would have to destroy the thread we just created, which
is possibly already running, asynchronous to the execution of this function. By ignoring the error
return from pthread_attr_destroy , the worst that can happen is that we leak a small amount of
memory if pthread_attr_init allocated any. But if pthread_attr_init succeeded in initializing
the thread attributes and then pthread_attr_destroy failed to clean up, we have no recovery
strategy anyway, because the attributes structure is opaque to the application. The only interface
defined to clean up the structure is pthread_attr_destroy , and it just failed.

Figure 12.4. Creating a thread in the detached state

#include "apue.h"
#include <pthread.h>

int
makethread(void *(*fn)(void *), void *arg)
{
 int err;
 pthread_t tid;
 pthread_attr_t attr;

 err = pthread_attr_init(&attr);
 if (err != 0)
 return(err);
 err = pthread_attr_setdetachstate(&attr, PTHREA D_CREATE_DETACHED);
 if (err == 0)
 err = pthread_create(&tid, &attr, fn, arg);
 pthread_attr_destroy(&attr);

 return(err);
}

Support for thread stack attributes is optional for a POSIX-conforming operating system, but is required if the
system is to conform to the XSI. At compile time, you can check whether your system supports each thread
stack attribute using the _POSIX_THREAD_ATTR_STACKADDR and _POSIX_THREAD_ATTR_STACKSIZE symbols. If
one is defined, then the system supports the corresponding thread stack attribute. You can also check at runtime,
by using the _SC_THREAD_ATTR_STACKADDR and _SC_THREAD_ATTR_STACKSIZE parameters to the sysconf
function.

POSIX.1 defines several interfaces to manipulate thread stack attributes. Two older functions,
pthread_attr_getstackaddr and pthread_attr_setstackaddr , are marked as obsolete in Version 3 of the
Single UNIX Specification, although many pthreads implementations still provide them. The preferred way to
query and modify a thread's stack attributes is to use the newer functions pthread_attr_getstack and
pthread_attr_setstack . These functions clear up ambiguities present in the definition of the older interfaces.

#include <pthread.h>

int pthread_attr_getstack(const pthread_attr_t *res trict attr,
 void **restrict stackaddr ,
 size_t *restrict stacksiz e);

int pthread_attr_setstack(const pthread_attr_t *att r,
 void *stackaddr, size_t * stacksize);

Both return: 0 if OK, error number on failure

These two functions are used to manage both the stackaddr and the stacksize thread attributes.

With a process, the amount of virtual address space is fixed. Since there is only one stack, its size usually isn't a
problem. With threads, however, the same amount of virtual address space must be shared by all the thread
stacks. You might have to reduce your default thread stack size if your application uses so many threads that the
cumulative size of their stacks exceeds the available virtual address space. On the other hand, if your threads
call functions that allocate large automatic variables or call functions many stack frames deep, you might need
more than the default stack size.

If you run out of virtual address space for thread stacks, you can use malloc or mmap (see Section 14.9) to
allocate space for an alternate stack and use pthread_attr_setstack to change the stack location of threads
you create. The address specified by the stackaddr parameter is the lowest addressable address in the range of
memory to be used as the thread's stack, aligned at the proper boundary for the processor architecture.

The stackaddr thread attribute is defined as the lowest memory address for the stack. This is not necessarily the
start of the stack, however. If stacks grow from higher address to lower addresses for a given processor
architecture, the stackaddr thread attribute will be the end of the stack instead of the beginning.

The drawback with pthread_attr_getstackaddr and pthread_attr_setstackaddr is that the stackaddr
parameter was underspecified. It could have been interpreted as the start of the stack or as the lowest memory
address of the memory extent to use as the stack. On architectures in which the stacks grow down from higher
memory addresses to lower addresses, if the stackaddr parameter is the lowest memory address of the stack,

then you need to know the stack size to determine the start of the stack. The pthread_attr_getstack and
pthread_attr_setstack functions correct these shortcomings.

An application can also get and set the stacksize thread attribute using the pthread_attr_getstacksize and
pthread_attr_setstacksize functions.

#include <pthread.h>

int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,
 size_t *restrict stac ksize);

int pthread_attr_setstacksize(pthread_attr_t *attr
, size_t stacksize);

Both return: 0 if OK, error number on failure

The pthread_attr_setstacksize function is useful when you want to change the default stack size but don't
want to deal with allocating the thread stacks on your own.

The guardsize thread attribute controls the size of the memory extent after the end of the thread's stack to
protect against stack overflow. By default, this is set to PAGESIZE bytes. We can set the guardsize thread
attribute to 0 to disable this feature: no guard buffer will be provided in this case. Also, if we change the
stackaddr thread attribute, the system assumes that we will be managing our own stacks and disables stack
guard buffers, just as if we had set the guardsize thread attribute to 0.

#include <pthread.h>

int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
 size_t *restrict guar dsize);

int pthread_attr_setguardsize(pthread_attr_t *attr
, size_t guardsize);

Both return: 0 if OK, error number on failure

If the guardsize thread attribute is modified, the operating system might round it up to an integral multiple of the
page size. If the thread's stack pointer overflows into the guard area, the application will receive an error,
possibly with a signal.

The Single UNIX Specification defines several other optional thread attributes as part of the real-time threads
option. We will not discuss them here.

More Thread Attributes

Threads have other attributes not represented by the pthread_attr_t structure:

• The cancelability state (discussed in Section 12.7)
• The cancelability type (also discussed in Section 12.7)
• The concurrency level

The concurrency level controls the number of kernel threads or processes on top of which the user-level threads
are mapped. If an implementation keeps a one-to-one mapping between kernel-level threads and user-level
threads, then changing the concurrency level will have no effect, since it is possible for all user-level threads to
be scheduled. If the implementation multiplexes user-level threads on top of kernel-level threads or processes,
however, you might be able to improve performance by increasing the number of user-level threads that can run
at a given time. The pthread_setconcurrency function can be used to provide a hint to the system of the
desired level of concurrency.

#include <pthread.h>

int pthread_getconcurrency(void);

Returns: current concurrency level

int pthread_setconcurrency(int level);

Returns: 0 if OK, error number on failure

The pthread_getconcurrency function returns the current concurrency level. If the operating system is
controlling the concurrency level (i.e., if no prior call to pthread_setconcurrency has been made), then
pthread_getconcurrency will return 0.

The concurrency level specified by pthread_setconcurrency is only a hint to the system. There is no
guarantee that the requested concurrency level will be honored. You can tell the system that you want it to
decide for itself what concurrency level to use by passing a level of 0. Thus, an application can undo the effects
of a prior call to pthread_setconcurrency with a nonzero value of level by calling it again with level set to 0.

12.4. Synchronization Attributes

Just as threads have attributes, so too do their synchronization objects. In this section, we discuss the attributes
of mutexes, reader–writer locks, and condition variables.

Mutex Attributes

We use pthread_mutexattr_init to initialize a pthread_mutexattr_t structure and
pthread_mutexattr_destroy to deinitialize one.

#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *att r);

int pthread_mutexattr_destroy(pthread_mutexattr_t * attr);

Both return: 0 if OK, error number on failure

The pthread_mutexattr_init function will initialize the pthread_mutexattr_t structure with the default
mutex attributes. Two attributes of interest are the process-shared attribute and the type attribute. Within
POSIX.1, the process-shared attribute is optional; you can test whether a platform supports it by checking
whether the _POSIX_THREAD_PROCESS_SHARED symbol is defined. You can also check at runtime by passing the
_SC_THREAD_PROCESS_SHARED parameter to the sysconf function. Although this option is not required to be
provided by POSIX-conforming operating systems, the Single UNIX Specification requires that XSI-
conforming operating systems do support this option.

Within a process, multiple threads can access the same synchronization object. This is the default behavior, as
we saw in Chapter 11. In this case, the process-shared mutex attribute is set to PTHREAD_PROCESS_PRIVATE.

As we shall see in Chapters 14 and 15, mechanisms exist that allow independent processes to map the same
extent of memory into their independent address spaces. Access to shared data by multiple processes usually
requires synchronization, just as does access to shared data by multiple threads. If the process-shared mutex
attribute is set to PTHREAD_PROCESS_SHARED, a mutex allocated from a memory extent shared between multiple
processes may be used for synchronization by those processes.

We can use the pthread_mutexattr_getpshared function to query a pthread_mutexattr_t structure for its
process-shared attribute. We can change the process-shared attribute with the
pthread_mutexattr_setpshared function.

#include <pthread.h>

int pthread_mutexattr_getpshared(const pthread_mute xattr_t *
 restrict attr,
 int *restrict psha red);

int pthread_mutexattr_setpshared(pthread_mutexattr_ t *attr,
 int pshared);

Both return: 0 if OK, error number on failure

The process-shared mutex attribute allows the pthread library to provide more efficient mutex implementations
when the attribute is set to PTHREAD_PROCESS_PRIVATE, which is the default case with multithreaded
applications. Then the pthread library can restrict the more expensive implementation to the case in which
mutexes are shared among processes.

The type mutex attribute controls the characteristics of the mutex. POSIX.1 defines four types. The
PTHREAD_MUTEX_NORMAL type is a standard mutex that doesn't do any special error checking or deadlock
detection. The PTHREAD_MUTEX_ERRORCHECK mutex type provides error checking.

The PTHREAD_MUTEX_RECURSIVE mutex type allows the same thread to lock it multiple times without first
unlocking it. A recursive mutex maintains a lock count and isn't released until it is unlocked the same number of
times it is locked. So if you lock a recursive mutex twice and then unlock it, the mutex remains locked until it is
unlocked a second time.

Finally, the PTHREAD_MUTEX_DEFAULT type can be used to request default semantics. Implementations are free
to map this to one of the other types. On Linux, for example, this type is mapped to the normal mutex type.

The behavior of the four types is shown in Figure 12.5. The "Unlock when not owned" column refers to one
thread unlocking a mutex that was locked by a different thread. The "Unlock when unlocked" column refers to
what happens when a thread unlocks a mutex that is already unlocked, which usually is a coding mistake.

Figure 12.5. Mutex type behavior

Mutex type Relock without
unlock?

Unlock when not
owned?

Unlock when
unlocked?

PTHREAD_MUTEX_NORMAL deadlock undefined undefined

PTHREAD_MUTEX_ERRORCHECK returns error returns error returns error

PTHREAD_MUTEX_RECURSIVE allowed returns error returns error

PTHREAD_MUTEX_DEFAULT undefined undefined undefined

We can use pthread_mutexattr_gettype to get the mutex type attribute and pthread_mutexattr_settype
to change the mutex type attribute.

#include <pthread.h>

int pthread_mutexattr_gettype(const pthread_mutexat tr_t *
 restrict attr, int *r estrict type);

int pthread_mutexattr_settype(pthread_mutexattr_t * attr, int type);

Both return: 0 if OK, error number on failure

Recall from Section 11.6 that a mutex is used to protect the condition that is associated with a condition variable.
Before blocking the thread, the pthread_cond_wait and the pthread_cond_timedwait functions release the
mutex associated with the condition. This allows other threads to acquire the mutex, change the condition,
release the mutex, and signal the condition variable. Since the mutex must be held to change the condition, it is
not a good idea to use a recursive mutex. If a recursive mutex is locked multiple times and used in a call to
pthread_cond_wait , the condition can never be satisfied, because the unlock done by pthread_cond_wait
doesn't release the mutex.

Recursive mutexes are useful when you need to adapt existing single-threaded interfaces to a multithreaded
environment, but can't change the interfaces to your functions because of compatibility constraints. However,
using recursive locks can be tricky, and they should be used only when no other solution is possible.

Example

Figure 12.6 illustrates a situation in which a recursive mutex might seem to solve a concurrency
problem. Assume that func1 and func2 are existing functions in a library whose interfaces can't be
changed, because applications exist that call them, and the applications can't be changed.

To keep the interfaces the same, we embed a mutex in the data structure whose address (x) is passed
in as an argument. This is possible only if we have provided an allocator function for the structure,
so the application doesn't know about its size (assuming we must increase its size when we add a
mutex to it).

This is also possible if we originally defined the structure with enough padding to allow us now to
replace some pad fields with a mutex. Unfortunately, most programmers are unskilled at predicting
the future, so this is not a common practice.

If both func1 and func2 must manipulate the structure and it is possible to access it from more than
one thread at a time, then func1 and func2 must lock the mutex before manipulating the data. If
func1 must call func2 , we will deadlock if the mutex type is not recursive. We could avoid using a
recursive mutex if we could release the mutex before calling func2 and reacquire it after func2
returns, but this opens a window where another thread can possibly grab control of the mutex and
change the data structure in the middle of func1 . This may not be acceptable, depending on what
protection the mutex is intended to provide.

Figure 12.7 shows an alternative to using a recursive mutex in this case. We can leave the interfaces
to func1 and func2 unchanged and avoid a recursive mutex by providing a private version of
func2 , called func2_locked . To call func2_locked , we must hold the mutex embedded in the data
structure whose address we pass as the argument. The body of func2_locked contains a copy of
func2 , and func2 now simply acquires the mutex, calls func2_locked , and then releases the mutex.

If we didn't have to leave the interfaces to the library functions unchanged, we could have added a
second parameter to each function to indicate whether the structure is locked by the caller. It is
usually better to leave the interfaces unchanged if we can, however, instead of polluting it with
implementation artifacts.

The strategy of providing locked and unlocked versions of functions is usually applicable in simple
situations. In more complex situations, such as when the library needs to call a function outside the
library, which then might call back into the library, we need to rely on recursive locks.

Figure 12.6. Recursive locking opportunity

Figure 12.7. Avoiding a recursive locking opportunity

Example

The program in Figure 12.8 illustrates another situation in which a recursive mutex is necessary.
Here, we have a "timeout" function that allows us to schedule another function to be run at some
time in the future. Assuming that threads are an inexpensive resource, we can create a thread for
each pending timeout. The thread waits until the time has been reached, and then it calls the function
we've requested.

The problem arises when we can't create a thread or when the scheduled time to run the function has
already passed. In these cases, we simply call the requested function now, from the current context.

Since the function acquires the same lock that we currently hold, a deadlock will occur unless the
lock is recursive.

We use the makethread function from Figure 12.4 to create a thread in the detached state. We want
the function to run in the future, and we don't want to wait around for the thread to complete.

We could call sleep to wait for the timeout to expire, but that gives us only second granularity. If
we want to wait for some time other than an integral number of seconds, we need to use
nanosleep (2), which provides similar functionality.

Although nanosleep is required to be implemented only in the real-time extensions of the Single
UNIX Specification, all the platforms discussed in this text support it.

The caller of timeout needs to hold a mutex to check the condition and to schedule the retry
function as an atomic operation. The retry function will try to lock the same mutex. Unless the
mutex is recursive, a deadlock will occur if the timeout function calls retry directly.

Figure 12.8. Using a recursive mutex

#include "apue.h"
#include <pthread.h>
#include <time.h>
#include <sys/time.h>

extern int makethread(void *(*)(void *), void *);

struct to_info {
 void (*to_fn)(void *); /* function */
 void *to_arg; /* argument */
 struct timespec to_wait; /* time to wait */
};

#define SECTONSEC 1000000000 /* seconds to nano seconds */
#define USECTONSEC 1000 /* microseconds to nanoseconds */

void *
timeout_helper(void *arg)
{
 struct to_info *tip;

 tip = (struct to_info *)arg;
 nanosleep(&tip->to_wait, NULL);
 (*tip->to_fn)(tip->to_arg);
 return(0);
}

void
timeout(const struct timespec *when, void (*func)(v oid *), void *arg)
{
 struct timespec now;
 struct timeval tv;
 struct to_info *tip;
 int err;

 gettimeofday(&tv, NULL);
 now.tv_sec = tv.tv_sec;
 now.tv_nsec = tv.tv_usec * USECTONSEC;
 if ((when->tv_sec > now.tv_sec) ||

 (when->tv_sec == now.tv_sec && when->tv_nsec > now.tv_nsec)) {
 tip = malloc(sizeof(struct to_info));
 if (tip != NULL) {
 tip->to_fn = func;
 tip->to_arg = arg;
 tip->to_wait.tv_sec = when->tv_sec - no w.tv_sec;
 if (when->tv_nsec >= now.tv_nsec) {
 tip->to_wait.tv_nsec = when->tv_nse c - now.tv_nsec;
 } else {
 tip->to_wait.tv_sec--;
 tip->to_wait.tv_nsec = SECTONSEC - now.tv_nsec +
 when->tv_nsec;

 }
 err = makethread(timeout_helper, (void *)tip);
 if (err == 0)
 return;
 }
 }

 /*
 * We get here if (a) when <= now, or (b) mallo c fails, or
 * (c) we can't make a thread, so we just call the function now.
 */
 (*func)(arg);
}

pthread_mutexattr_t attr;
pthread_mutex_t mutex;

void
retry(void *arg)
{
 pthread_mutex_lock(&mutex);
 /* perform retry steps ... */
 pthread_mutex_unlock(&mutex);
}

int
main(void)
{
 int err, condition, arg;
 struct timespec when;

 if ((err = pthread_mutexattr_init(&attr)) != 0)
 err_exit(err, "pthread_mutexattr_init faile d");
 if ((err = pthread_mutexattr_settype(&attr,
 PTHREAD_MUTEX_RECURSIVE)) != 0)
 err_exit(err, "can't set recursive type");
 if ((err = pthread_mutex_init(&mutex, &attr)) ! = 0)
 err_exit(err, "can't create recursive mutex ");
 /* ... */
 pthread_mutex_lock(&mutex);
 /* ... */
 if (condition) {
 /* calculate target time "when" */
 timeout(&when, retry, (void *)arg);
 }
 /* ... */
 pthread_mutex_unlock(&mutex);
 /* ... */
 exit(0);

}

Reader–Writer Lock Attributes

Reader–writer locks also have attributes, similar to mutexes. We use pthread_rwlockattr_init to initialize a
pthread_rwlockattr_t structure and pthread_rwlockattr_destroy to deinitialize the structure.

#include <pthread.h>

int pthread_rwlockattr_init(pthread_rwlockattr_t *a ttr);

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

Both return: 0 if OK, error number on failure

The only attribute supported for reader–writer locks is the process-shared attribute. It is identical to the mutex
process-shared attribute. Just as with the mutex process-shared attributes, a pair of functions is provided to get
and set the process-shared attributes of reader–writer locks.

#include <pthread.h>

int pthread_rwlockattr_getpshared(const pthread_rwl ockattr_t *
 restrict attr,
 int *restrict psh ared);

int pthread_rwlockattr_setpshared(pthread_rwlockatt r_t *attr,
 int pshared);

Both return: 0 if OK, error number on failure

Although POSIX defines only one reader–writer lock attribute, implementations are free to define additional,
nonstandard ones.

Condition Variable Attributes

Condition variables have attributes, too. There is a pair of functions for initializing and deinitializing them,
similar to mutexes and reader–writer locks.

#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr) ;

int pthread_condattr_destroy(pthread_condattr_t *at tr);

Both return: 0 if OK, error number on failure

Just as with the other synchronization primitives, condition variables support the process-shared attribute.

#include <pthread.h>

int pthread_condattr_getpshared(const pthread_conda ttr_t *
 restrict attr,
 int *restrict pshar ed);

int pthread_condattr_setpshared(pthread_condattr_t *attr,
 int pshared);

Both return: 0 if OK, error number on failure

12.5. Reentrancy

We discussed reentrant functions and signal handlers in Section 10.6. Threads are similar to signal handlers
when it comes to reentrancy. With both signal handlers and threads, multiple threads of control can potentially
call the same function at the same time.

If a function can be safely called by multiple threads at the same time, we say that the function is thread-safe.
All functions defined in the Single UNIX Specification are guaranteed to be thread-safe, except those listed in
Figure 12.9. In addition, the ctermid and tmpnam functions are not guaranteed to be thread-safe if they are
passed a null pointer. Similarly, there is no guarantee that wcrtomb and wcsrtombs are thread-safe when they
are passed a null pointer for their mbstate_t argument.

Figure 12.9. Functions not guaranteed to be thread-safe by POSIX.1

asctime ecvt gethostent getutxline putc_unlocked

basename encrypt getlogin gmtime putchar_unlocked

catgets endgrent getnetbyaddr hcreate putenv

crypt endpwent getnetbyname hdestroy pututxline

ctime endutxent getnetent hsearch rand

dbm_clearerr fcvt getopt inet_ntoa readdir

dbm_close ftw getprotobyname l64a setenv

dbm_delete gcvt getprotobynumber lgamma setgrent

dbm_error getc_unlocked getprotoent lgammaf setkey

dbm_fetch getchar_unlocked getpwent lgammal setpwent

dbm_firstkey getdate getpwnam localeconv setutxent

dbm_nextkey getenv getpwuid localtime strerror

dbm_open getgrent getservbyname lrand48 strtok

dbm_store getgrgid getservbyport mrand48 ttyname

dirname getgrnam getservent nftw unsetenv

dlerror gethostbyaddr getutxent nl_langinfo wcstombs

drand48 gethostbyname getutxid ptsname wctomb

Implementations that support thread-safe functions will define the _POSIX_THREAD_SAFE_FUNCTIONS symbol in
<unistd.h> . Applications can also use the _SC_THREAD_SAFE_FUNCTIONS argument with sysconf to check for
support of thread-safe functions at runtime. All XSI-conforming implementations are required to support
thread-safe functions.

When it supports the thread-safe functions feature, an implementation provides alternate, thread-safe versions of
some of the POSIX.1 functions that aren't thread-safe. Figure 12.10 lists the thread-safe versions of these
functions. Many functions are not thread-safe, because they return data stored in a static memory buffer. They
are made thread-safe by changing their interfaces to require that the caller provide its own buffer.

Figure 12.10. Alternate thread-safe functions

acstime_r gmtime_r

ctime_r localtime_r

getgrgid_r rand_r

getgrnam_r readdir_r

getlogin_r strerror_r

getpwnam_r strtok_r

getpwuid_r ttyname_r

The functions listed in Figure 12.10 are named the same as their non-thread-safe relatives, but with an _r
appended at the end of the name, signifying that these versions are reentrant.

If a function is reentrant with respect to multiple threads, we say that it is thread-safe. This doesn't tell us,
however, whether the function is reentrant with respect to signal handlers. We say that a function that is safe to
be reentered from an asynchronous signal handler is async-signal safe. We saw the async-signal safe functions
in Figure 10.4 when we discussed reentrant functions in Section 10.6.

In addition to the functions listed in Figure 12.10, POSIX.1 provides a way to manage FILE objects in a thread-
safe way. You can use flockfile and ftrylockfile to obtain a lock associated with a given FILE object. This
lock is recursive: you can acquire it again, while you already hold it, without deadlocking. Although the exact
implementation of the lock is unspecified, it is required that all standard I/O routines that manipulate FILE
objects behave as if they call flockfile and funlockfile internally.

#include <stdio.h>

int ftrylockfile(FILE *fp);

Returns: 0 if OK, nonzero if lock can't be acquired

void flockfile(FILE *fp);

void funlockfile(FILE *fp);

Although the standard I/O routines might be implemented to be thread-safe from the perspective of their own
internal data structures, it is still useful to expose the locking to applications. This allows applications to
compose multiple calls to standard I/O functions into atomic sequences. Of course, when dealing with multiple
FILE objects, you need to beware of potential deadlocks and to order your locks carefully.

If the standard I/O routines acquire their own locks, then we can run into serious performance degradation when
doing character-at-a-time I/O. In this situation, we end up acquiring and releasing a lock for every character
read or written. To avoid this overhead, unlocked versions of the character-based standard I/O routines are
available.

#include <stdio.h>

int getchar_unlocked(void);

int getc_unlocked(FILE *fp);

Both return: the next character if OK, EOF on end of file or error

int putchar_unlocked(int c);

int putc_unlocked(int c, FILE *fp);

Both return: c if OK, EOF on error

These four functions should not be called unless surrounded by calls to flockfile (or ftrylockfile) and
funlockfile . Otherwise, unpredictable results can occur (i.e., the types of problems that result from
unsynchronized access to data by multiple threads of control).

Once you lock the FILE object, you can make multiple calls to these functions before releasing the lock. This
amortizes the locking overhead across the amount of data read or written.

Example

Figure 12.11 shows a possible implementation of getenv (Section 7.9). This version is not reentrant.
If two threads call it at the same time, they will see inconsistent results, because the string returned
is stored in a single static buffer that is shared by all threads calling getenv .

We show a reentrant version of getenv in Figure 12.12. This version is called getenv_r . It uses the
pthread_once function (described in Section 12.6) to ensure that the thread_init function is
called only once per process.

To make getenv_r reentrant, we changed the interface so that the caller must provide its own
buffer. Thus, each thread can use a different buffer to avoid interfering with the others. Note,
however, that this is not enough to make getenv_r thread-safe. To make getenv_r thread-safe, we
need to protect against changes to the environment while we are searching for the requested string.
We can use a mutex to serialize access to the environment list by getenv_r and putenv .

We could have used a reader–writer lock to allow multiple concurrent calls to getenv_r , but the
added concurrency probably wouldn't improve the performance of our program by very much, for
two reasons. First, the environment list usually isn't very long, so we won't hold the mutex for too
long while we scan the list. Second, calls to getenv and putenv are infrequent, so if we improve
their performance, we won't affect the overall performance of the program very much.

If we make getenv_r thread-safe, that doesn't mean that it is reentrant with respect to signal
handlers. If we use a nonrecursive mutex, we run the risk that a thread will deadlock itself if it calls
getenv_r from a signal handler. If the signal handler interrupts the thread while it is executing
getenv_r , we will already be holding env_mutex locked, so another attempt to lock it will block,
causing the thread to deadlock. Thus, we must use a recursive mutex to prevent other threads from
changing the data structures while we look at them, and also prevent deadlocks from signal handlers.
The problem is that the pthread functions are not guaranteed to be async-signal safe, so we can't use

them to make another function async-signal safe.

Figure 12.11. A nonreentrant version of getenv

#include <limits.h>
#include <string.h>

static char envbuf[ARG_MAX];

extern char **environ;

char *
getenv(const char *name)
{
 int i, len;

 len = strlen(name);
 for (i = 0; environ[i] != NULL; i++) {
 if ((strncmp(name, environ[i], len) == 0) & &
 (environ[i][len] == '=')) {
 strcpy(envbuf, &environ[i][len+1]);
 return(envbuf);
 }
 }
 return(NULL);
 }

Figure 12.12. A reentrant (thread-safe) version of getenv

#include <string.h>
#include <errno.h>
#include <pthread.h>
#include <stdlib.h>

extern char **environ;

pthread_mutex_t env_mutex;
static pthread_once_t init_done = PTHREAD_ONCE_INIT ;

static void
thread_init(void)
{
 pthread_mutexattr_t attr;

 pthread_mutexattr_init(&attr);
 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ RECURSIVE);
 pthread_mutex_init(&env_mutex, &attr);
 pthread_mutexattr_destroy(&attr);
}

int
getenv_r(const char *name, char *buf, int buflen)
{
 int i, len, olen;

 pthread_once(&init_done, thread_init);
 len = strlen(name);
 pthread_mutex_lock(&env_mutex);
 for (i = 0; environ[i] != NULL; i++) {
 if ((strncmp(name, environ[i], len) == 0) & &

 (environ[i][len] == '=')) {
 olen = strlen(&environ[i][len+1]);
 if (olen >= buflen) {
 pthread_mutex_unlock(&env_mutex);
 return(ENOSPC);
 }
 strcpy(buf, &environ[i][len+1]);
 pthread_mutex_unlock(&env_mutex);
 return(0);
 }
 }
 pthread_mutex_unlock(&env_mutex);
 return(ENOENT);
}

12.6. Thread-Specific Data

Thread-specific data, also known as thread-private data, is a mechanism for storing and finding data associated
with a particular thread. The reason we call the data thread-specific, or thread-private, is that we'd like each
thread to access its own separate copy of the data, without worrying about synchronizing access with other
threads.

Many people went to a lot of trouble designing a threads model that promotes sharing process data and
attributes. So why would anyone want to promote interfaces that prevent sharing in this model? There are two
reasons.

First, sometimes we need to maintain data on a per thread basis. Since there is no guarantee that thread IDs are
small, sequential integers, we can't simply allocate an array of per thread data and use the thread ID as the index.
Even if we could depend on small, sequential thread IDs, we'd like a little extra protection so that one thread
can't mess with another's data.

The second reason for thread-private data is to provide a mechanism for adapting process-based interfaces to a
multithreaded environment. An obvious example of this is errno . Recall the discussion of errno in Section 1.7.
Older interfaces (before the advent of threads) defined errno as an integer accessible globally within the
context of a process. System calls and library routines set errno as a side effect of failing. To make it possible
for threads to use these same system calls and library routines, errno is redefined as thread-private data. Thus,
one thread making a call that sets errno doesn't affect the value of errno for the other threads in the process.

Recall that all threads in a process have access to the entire address space of the process. Other than using
registers, there is no way for one thread to prevent another from accessing its data. This is true even for thread-
specific data. Even though the underlying implementation doesn't prevent access, the functions provided to
manage thread-specific data promote data separation among threads.

Before allocating thread-specific data, we need to create a key to associate with the data. The key will be used
to gain access to the thread-specific data. We use pthread_key_create to create a key.

#include <pthread.h>

int pthread_key_create(pthread_key_t *keyp,
 void (*destructor)(void *));

Returns: 0 if OK, error number on failure

The key created is stored in the memory location pointed to by keyp. The same key can be used by all threads in
the process, but each thread will associate a different thread-specific data address with the key. When the key is
created, the data address for each thread is set to a null value.

In addition to creating a key, pthread_key_create associates an optional destructor function with the key.
When the thread exits, if the data address has been set to a non-null value, the destructor function is called with
the data address as the only argument. If destructor is null, then no destructor function is associated with the key.
When the thread exits normally, by calling pthread_exit or by returning, the destructor is called. But if the
thread calls exit , _exit , _Exit , or abort , or otherwise exits abnormally, the destructor is not called.

Threads usually use malloc to allocate memory for their thread-specific data. The destructor function usually
frees the memory that was allocated. If the thread exited without freeing the memory, then the memory would
be lost: leaked by the process.

A thread can allocate multiple keys for thread-specific data. Each key can have a destructor associated with it.
There can be a different destructor function for each key, or they can all use the same function. Each operating
system implementation can place a limit on the number of keys a process can allocate (recall
PTHREAD_KEYS_MAX from Figure 12.1).

When a thread exits, the destructors for its thread-specific data are called in an implementation-defined order. It
is possible for the destructor function to call another function that might create new thread-specific data and
associate it with the key. After all destructors are called, the system will check whether any non-null thread-
specific values were associated with the keys and, if so, call the destructors again. This process will repeat until
either all keys for the thread have null thread-specific data values or a maximum of
PTHREAD_DESTRUCTOR_ITERATIONS (Figure 12.1) attempts have been made.

We can break the association of a key with the thread-specific data values for all threads by calling
pthread_key_delete .

#include <pthread.h>

int pthread_key_delete(pthread_key_t *key);

Returns: 0 if OK, error number on failure

Note that calling pthread_key_delete will not invoke the destructor function associated with the key. To free
any memory associated with the key's thread-specific data values, we need to take additional steps in the
application.

We need to ensure that a key we allocate doesn't change because of a race during initialization. Code like the
following can result in two threads both calling pthread_key_create :

 void destructor(void *);

 pthread_key_t key;
 int init_done = 0;

 int
 threadfunc(void *arg)
 {
 if (!init_done) {
 init_done = 1;
 err = pthread_key_create(&key, destruc tor);
 }
 ...
 }

Depending on how the system schedules threads, some threads might see one key value, whereas other threads
might see a different value. The way to solve this race is to use pthread_once .

#include <pthread.h>

pthread_once_t initflag = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *initflag, void (*i nitfn)(void));

Returns: 0 if OK, error number on failure

The initflag must be a nonlocal variable (i.e., global or static) and initialized to PTHREAD_ONCE_INIT.

If each thread calls pthread_once , the system guarantees that the initialization routine, initfn, will be called
only once, on the first call to pthread_once . The proper way to create a key without a race is as follows:

 void destructor(void *);

 pthread_key_t key;
 pthread_once_t init_done = PTHREAD_ONCE_INIT;

 void
 thread_init(void)
 {
 err = pthread_key_create(&key, destructor) ;
 }

 int
 threadfunc(void *arg)
 {
 pthread_once(&init_done, thread_init);
 ...
 }

Once a key is created, we can associate thread-specific data with the key by calling pthread_setspecific . We
can obtain the address of the thread-specific data with pthread_getspecific .

#include <pthread.h>

void *pthread_getspecific(pthread_key_t key);

Returns: thread-specific data value or NULL if no value
has been associated with the key

int pthread_setspecific(pthread_key_t key, const vo id *value);

Returns: 0 if OK, error number on failure

If no thread-specific data has been associated with a key, pthread_getspecific will return a null pointer. We
can use this to determine whether we need to call pthread_setspecific .

Example

In Figure 12.11, we showed a hypothetical implementation of getenv . We came up with a new
interface to provide the same functionality, but in a thread-safe way (Figure 12.12). But what would
happen if we couldn't modify our application programs to use the new interface? In that case, we
could use thread-specific data to maintain a per thread copy of the data buffer used to hold the return
string. This is shown in Figure 12.13.

We use pthread_once to ensure that only one key is created for the thread-specific data we will use.
If pthread_getspecific returns a null pointer, we need to allocate the memory buffer and
associate it with the key. Otherwise, we use the memory buffer returned by pthread_getspecific .
For the destructor function, we use free to free the memory previously allocated by malloc . The
destructor function will be called with the value of the thread-specific data only if the value is non-
null.

Note that although this version of getenv is thread-safe, it is not async-signal safe. Even if we made
the mutex recursive, we could not make it reentrant with respect to signal handlers, because it calls
malloc , which itself is not async-signal safe.

Figure 12.13. A thread-safe, compatible version of getenv

#include <limits.h>
#include <string.h>
#include <pthread.h>
#include <stdlib.h>

static pthread_key_t key;
static pthread_once_t init_done = PTHREAD_ONCE_INIT ;
pthread_mutex_t env_mutex = PTHREAD_MUTEX_INITIALIZ ER;

extern char **environ;

static void
thread_init(void)
{
 pthread_key_create(&key, free);
}

char *
getenv(const char *name)
{
 int i, len;
 char *envbuf;

 pthread_once(&init_done, thread_init);
 pthread_mutex_lock(&env_mutex);
 envbuf = (char *)pthread_getspecific(key);
 if (envbuf == NULL) {
 envbuf = malloc(ARG_MAX);
 if (envbuf == NULL) {
 pthread_mutex_unlock(&env_mutex);
 return(NULL);
 }
 pthread_setspecific(key, envbuf);
 }
 len = strlen(name);
 for (i = 0; environ[i] != NULL; i++) {
 if ((strncmp(name, environ[i], len) == 0) & &
 (environ[i][len] == '=')) {
 strcpy(envbuf, &environ[i][len+1]);

 pthread_mutex_unlock(&env_mutex);
 return(envbuf);
 }
 }
 pthread_mutex_unlock(&env_mutex);
 return(NULL);
}

12.7. Cancel Options

Two thread attributes that are not included in the pthread_attr_t structure are the cancelability state and the
cancelability type. These attributes affect the behavior of a thread in response to a call to pthread_cancel
(Section 11.5).

The cancelability state attribute can be either PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE. A thread
can change its cancelability state by calling pthread_setcancelstate .

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);

Returns: 0 if OK, error number on failure

In one atomic operation, pthread_setcancelstate sets the current cancelability state to state and stores the
previous cancelability state in the memory location pointed to by oldstate.

Recall from Section 11.5 that a call to pthread_cancel doesn't wait for a thread to terminate. In the default
case, a thread will continue to execute after a cancellation request is made, until the thread reaches a
cancellation point. A cancellation point is a place where the thread checks to see whether it has been canceled,
and then acts on the request. POSIX.1 guarantees that cancellation points will occur when a thread calls any of
the functions listed in Figure 12.14.

Figure 12.14. Cancellation points defined by POSIX.1

accept mq_timedsend putpmsg sigsuspend

aio_suspend msgrcv pwrite sigtimedwait

clock_nanosleep msgsnd read sigwait

close msync readv sigwaitinfo

connect nanosleep recv sleep

creat open recvfrom system

fcntl2 pause recvmsg tcdrain

fsync poll select usleep

getmsg pread sem_timedwait wait

getpmsg pthread_cond_timedwait sem_wait waitid

lockf pthread_cond_wait send waitpid

mq_receive pthread_join sendmsg write

mq_send pthread_testcancel sendto writev

mq_timedreceive putmsg sigpause

A thread starts with a default cancelability state of PTHREAD_CANCEL_ENABLE. When the state is set to
PTHREAD_CANCEL_DISABLE, a call to pthread_cancel will not kill the thread. Instead, the cancellation request
remains pending for the thread. When the state is enabled again, the thread will act on any pending cancellation
requests at the next cancellation point.

In addition to the functions listed in Figure 12.14, POSIX.1 specifies the functions listed in Figure 12.15 as
optional cancellation points.

Figure 12.15. Optional cancellation points defined by POSIX.1

catclose ftell getwc printf

catgets ftello getwchar putc

catopen ftw getwd putc_unlocked

closedir fwprintf glob putchar

closelog fwrite iconv_close putchar_unlocked

ctermid fwscanf iconv_open puts

dbm_close getc ioctl pututxline

dbm_delete getc_unlocked lseek putwc

dbm_fetch getchar mkstemp putwchar

dbm_nextkey getchar_unlocked nftw readdir

dbm_open getcwd opendir readdir_r

dbm_store getdate openlog remove

dlclose getgrent pclose rename

dlopen getgrgid perror rewind

endgrent getgrgid_r popen rewinddir

endhostent getgrnam posix_fadvise scanf

endnetent getgrnam_r posix_fallocate seekdir

endprotoent gethostbyaddr posix_madvise semop

endpwent gethostbyname posix_spawn setgrent

endservent gethostent posix_spawnp sethostent

endutxent gethostname posix_trace_clear setnetent

fclose getlogin posix_trace_close setprotoent

fcntl getlogin_r posix_trace_create setpwent

fflush getnetbyaddr posix_trace_create_withlog setservent

fgetc getnetbyname posix_trace_eventtypelist_getnext_id setutxent

fgetpos getnetent posix_trace_eventtypelist_rewind strerror

fgets getprotobyname posix_trace_flush syslog

fgetwc getprotobynumber posix_trace_get_attr tmpfile

Figure 12.15. Optional cancellation points defined by POSIX.1

catclose ftell getwc printf

fgetws getprotoent posix_trace_get_filter tmpnam

fopen getpwent posix_trace_get_status ttyname

fprintf getpwnam posix_trace_getnext_event ttyname_r

fputc getpwnam_r posix_trace_open ungetc

fputs getpwuid posix_trace_rewind ungetwc

fputwc getpwuid_r posix_trace_set_filter unlink

fputws gets posix_trace_shutdown vfprintf

fread getservbyname posix_trace_timedgetnext_event vfwprintf

freopen getservbyport posix_typed_mem_open vprintf

fscanf getservent pthread_rwlock_rdlock vwprintf

fseek getutxent pthread_rwlock_timedrdlock wprintf

fseeko getutxid pthread_rwlock_timedwrlock wscanf

fsetpos getutxline pthread_rwlock_wrlock

Note that several of the functions listed in Figure 12.15 are not discussed further in this text. Many are optional
in the Single UNIX Specification.

If your application doesn't call one of the functions in Figure 12.14 or Figure 12.15 for a long period of time (if
it is compute-bound, for example), then you can call pthread_testcancel to add your own cancellation points
to the program.

#include <pthread.h>

void pthread_testcancel(void);

When you call pthread_testcancel , if a cancellation request is pending and if cancellation has not been
disabled, the thread will be canceled. When cancellation is disabled, however, calls to pthread_testcancel
have no effect.

The default cancellation type we have been describing is known as deferred cancellation. After a call to
pthread_cancel , the actual cancellation doesn't occur until the thread hits a cancellation point. We can change
the cancellation type by calling pthread_setcanceltype .

#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);

#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);

Returns: 0 if OK, error number on failure

The type parameter can be either PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS. The
pthread_setcanceltype function sets the cancellation type to type and returns the previous type in the integer
pointed to by oldtype.

Asynchronous cancellation differs from deferred cancellation in that the thread can be canceled at any time. The
thread doesn't necessarily need to hit a cancellation point for it to be canceled.

12.8. Threads and Signals

Dealing with signals can be complicated even with a process-based paradigm. Introducing threads into the
picture makes things even more complicated.

Each thread has its own signal mask, but the signal disposition is shared by all threads in the process. This
means that individual threads can block signals, but when a thread modifies the action associated with a given
signal, all threads share the action. Thus, if one thread chooses to ignore a given signal, another thread can undo
that choice by restoring the default disposition or installing a signal handler for the signal.

Signals are delivered to a single thread in the process. If the signal is related to a hardware fault or expiring
timer, the signal is sent to the thread whose action caused the event. Other signals, on the other hand, are
delivered to an arbitrary thread.

In Section 10.12, we discussed how processes can use sigprocmask to block signals from delivery. The
behavior of sigprocmask is undefined in a multithreaded process. Threads have to use pthread_sigmask
instead.

#include <signal.h>

int pthread_sigmask(int how, const sigset_t *restri ct set,
 sigset_t *restrict oset);

Returns: 0 if OK, error number on failure

The pthread_sigmask function is identical to sigprocmask , except that pthread_sigmask works with threads
and returns an error code on failure instead of setting errno and returning -1.

A thread can wait for one or more signals to occur by calling sigwait .

#include <signal.h>

int sigwait(const sigset_t *restrict set, int *rest rict signop);

Returns: 0 if OK, error number on failure

The set argument specifies the set of signals for which the thread is waiting. On return, the integer to which
signop points will contain the number of the signal that was delivered.

If one of the signals specified in the set is pending at the time sigwait is called, then sigwait will return
without blocking. Before returning, sigwait removes the signal from the set of signals pending for the process.
To avoid erroneous behavior, a thread must block the signals it is waiting for before calling sigwait . The
sigwait function will atomically unblock the signals and wait until one is delivered. Before returning, sigwait
will restore the thread's signal mask. If the signals are not blocked at the time that sigwait is called, then a
timing window is opened up where one of the signals can be delivered to the thread before it completes its call
to sigwait .

The advantage to using sigwait is that it can simplify signal handling by allowing us to treat asynchronously-
generated signals in a synchronous manner. We can prevent the signals from interrupting the threads by adding
them to each thread's signal mask. Then we can dedicate specific threads to handling the signals. These
dedicated threads can make function calls without having to worry about which functions are safe to call from a
signal handler, because they are being called from normal thread context, not from a traditional signal handler
interrupting a normal thread's execution.

If multiple threads are blocked in calls to sigwait for the same signal, only one of the threads will return from
sigwait when the signal is delivered. If a signal is being caught (the process has established a signal handler by
using sigaction , for example) and a thread is waiting for the same signal in a call to sigwait , it is left up to
the implementation to decide which way to deliver the signal. In this case, the implementation could either
allow sigwait to return or invoke the signal handler, but not both.

To send a signal to a process, we call kill (Section 10.9). To send a signal to a thread, we call pthread_kill .

#include <signal.h>

int pthread_kill(pthread_t thread, int signo);

Returns: 0 if OK, error number on failure

We can pass a signo value of 0 to check for existence of the thread. If the default action for a signal is to
terminate the process, then sending the signal to a thread will still kill the entire process.

Note that alarm timers are a process resource, and all threads share the same set of alarms. Thus, it is not
possible for multiple threads in a process to use alarm timers without interfering (or cooperating) with one
another (this is the subject of Exercise 12.6).

Example

Recall that in Figure 10.23, we waited for the signal handler to set a flag indicating that the main program
should exit. The only threads of control that could run were the main thread and the signal handler, so blocking
the signals was sufficient to avoid missing a change to the flag. With threads, we need to use a mutex to protect
the flag, as we show in the program in Figure 12.16.

Instead of relying on a signal handler that interrupts the main thread of control, we dedicate a separate thread of
control to handle the signals. We change the value of quitflag under the protection of a mutex so that the main
thread of control can't miss the wake-up call made when we call pthread_cond_signal . We use the same
mutex in the main thread of control to check the value of the flag, and atomically release the mutex and wait for
the condition.

Note that we block SIGINT and SIGQUIT in the beginning of the main thread. When we create the thread to
handle signals, the thread inherits the current signal mask. Since sigwait will unblock the signals, only one
thread is available to receive signals. This enables us to code the main thread without having to worry about
interrupts from these signals.

If we run this program, we get output similar to that from Figure 10.23:

 $./a.out
 ^? type the interrupt character

 interrupt
 ^? type the interrupt character again
 interrupt
 ^? and again
 interrupt
 ^\ $ now terminate with quit char acter

Figure 12.16. Synchronous signal handling

#include "apue.h"
#include <pthread.h>

int quitflag; /* set nonzero by thread */
sigset_t mask;

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t wait = PTHREAD_COND_INITIALIZER;

void *
thr_fn(void *arg)
{
 int err, signo;

 for (;;) {
 err = sigwait(&mask, &signo);
 if (err != 0)
 err_exit(err, "sigwait failed");
 switch (signo) {
 case SIGINT:
 printf("\ninterrupt\n");
 break;

 case SIGQUIT:
 pthread_mutex_lock(&lock);
 quitflag = 1;
 pthread_mutex_unlock(&lock);
 pthread_cond_signal(&wait);
 return(0);

 default:
 printf("unexpected signal %d\n", signo) ;
 exit(1);
 }
 }
}
int
main(void)
{
 int err;
 sigset_t oldmask;
 pthread_t tid;

 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);
 sigaddset(&mask, SIGQUIT);
 if ((err = pthread_sigmask(SIG_BLOCK, &mask, &o ldmask)) != 0)
 err_exit(err, "SIG_BLOCK error");

 err = pthread_create(&tid, NULL, thr_fn, 0);
 if (err != 0)

 err_exit(err, "can't create thread");

 pthread_mutex_lock(&lock);
 while (quitflag == 0)
 pthread_cond_wait(&wait, &lock);
 pthread_mutex_unlock(&lock);

 /* SIGQUIT has been caught and is now blocked; do whatever */
 quitflag = 0;

 /* reset signal mask which unblocks SIGQUIT */
 if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
 err_sys("SIG_SETMASK error");
 exit(0);
}

Linux implements threads as separate processes, sharing resources using clone (2). Because of this, the
behavior of threads on Linux differs from that on other implementations when it comes to signals. In the
POSIX.1 thread model, asynchronous signals are sent to a process, and then an individual thread within the
process is selected to receive the signal, based on which threads are not currently blocking the signal. On Linux,
an asynchronous signal is sent to a particular thread, and since each thread executes as a separate process, the
system is unable to select a thread that isn't currently blocking the signal. The result is that the thread may not
notice the signal. Thus, programs like the one in Figure 12.16 work when the signal is generated from the
terminal driver, which signals the process group, but when you try to send a signal to the process using kill , it
doesn't work as expected on Linux.

12.9. Threads and fork

When a thread calls fork , a copy of the entire process address space is made for the child. Recall the discussion
of copy-on-write in Section 8.3. The child is an entirely different process from the parent, and as long as neither
one makes changes to its memory contents, copies of the memory pages can be shared between parent and child.

By inheriting a copy of the address space, the child also inherits the state of every mutex, reader–writer lock,
and condition variable from the parent process. If the parent consists of more than one thread, the child will
need to clean up the lock state if it isn't going to call exec immediately after fork returns.

Inside the child process, only one thread exists. It is made from a copy of the thread that called fork in the
parent. If the threads in the parent process hold any locks, the locks will also be held in the child process. The
problem is that the child process doesn't contain copies of the threads holding the locks, so there is no way for
the child to know which locks are held and need to be unlocked.

This problem can be avoided if the child calls one of the exec functions directly after returning from fork . In
this case, the old address space is discarded, so the lock state doesn't matter. This is not always possible,
however, so if the child needs to continue processing, we need to use a different strategy.

To clean up the lock state, we can establish fork handlers by calling the function pthread_atfork .

#include <pthread.h>

int pthread_atfork(void (*prepare)(void), void (*pa rent)(void),
 void (*child)(void));

Returns: 0 if OK, error number on failure

With pthread_atfork , we can install up to three functions to help clean up the locks. The prepare fork handler
is called in the parent before fork creates the child process. This fork handler's job is to acquire all locks
defined by the parent. The parent fork handler is called in the context of the parent after fork has created the
child process, but before fork has returned. This fork handler's job is to unlock all the locks acquired by the
prepare fork handler. The child fork handler is called in the context of the child process before returning from
fork . Like the parent fork handler, the child fork handler too must release all the locks acquired by the prepare
fork handler.

Note that the locks are not locked once and unlocked twice, as it may appear. When the child address space is
created, it gets a copy of all locks that the parent defined. Because the prepare fork handler acquired all the
locks, the memory in the parent and the memory in the child start out with identical contents. When the parent
and the child unlock their "copy" of the locks, new memory is allocated for the child, and the memory contents
from the parent are copied to the child's memory (copy-on-write), so we are left with a situation that looks as if
the parent locked all its copies of the locks and the child locked all its copies of the locks. The parent and the
child end up unlocking duplicate locks stored in different memory locations, as if the following sequence of
events occurred.

1. The parent acquired all its locks.
2. The child acquired all its locks.
3. The parent released its locks.
4. The child released its locks.

We can call pthread_atfork multiple times to install more than one set of fork handlers. If we don't have a
need to use one of the handlers, we can pass a null pointer for the particular handler argument, and it will have
no effect. When multiple fork handlers are used, the order in which the handlers are called differs. The parent
and child fork handlers are called in the order in which they were registered, whereas the prepare fork handlers
are called in the opposite order from which they were registered. This allows multiple modules to register their
own fork handlers and still honor the locking hierarchy.

For example, assume that module A calls functions from module B and that each module has its own set of
locks. If the locking hierarchy is A before B, module B must install its fork handlers before module A. When
the parent calls fork , the following steps are taken, assuming that the child process runs before the parent.

1. The prepare fork handler from module A is called to acquire all module A's locks.
2. The prepare fork handler from module B is called to acquire all module B's locks.
3. A child process is created.
4. The child fork handler from module B is called to release all module B's locks in the child process.
5. The child fork handler from module A is called to release all module A's locks in the child process.
6. The fork function returns to the child.
7. The parent fork handler from module B is called to release all module B's locks in the parent process.
8. The parent fork handler from module A is called to release all module A's locks in the parent process.
9. The fork function returns to the parent.

If the fork handlers serve to clean up the lock state, what cleans up the state of condition variables? On some
implementations, condition variables might not need any cleaning up. However, an implementation that uses a
lock as part of the implementation of condition variables will require cleaning up. The problem is that no
interface exists to allow us to do this. If the lock is embedded in the condition variable data structure, then we
can't use condition variables after calling fork , because there is no portable way to clean up its state. On the
other hand, if an implementation uses a global lock to protect all condition variable data structures in a process,
then the implementation itself can clean up the lock in the fork library routine. Application programs shouldn't
rely on implementation details like this, however.

Example

The program in Figure 12.17 illustrates the use of pthread_atfork and fork handlers.

We define two mutexes, lock1 and lock2 . The prepare fork handler acquires them both, the child fork handler
releases them in the context of the child process, and the parent fork handler releases them in the context of the
parent process.

When we run this program, we get the following output:

 $./a.out
 thread started...
 parent about to fork...
 preparing locks...
 child unlocking locks...
 child returned from fork
 parent unlocking locks...
 parent returned from fork

As we can see, the prepare fork handler runs after fork is called, the child fork handler runs before fork returns
in the child, and the parent fork handler runs before fork returns in the parent.

Figure 12.17. pthread_atfork example

#include "apue.h"
#include <pthread.h>

pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER;

void
prepare(void)
{
 printf("preparing locks...\n");
 pthread_mutex_lock(&lock1);
 pthread_mutex_lock(&lock2);
}
void
parent(void)
{
 printf("parent unlocking locks...\n");
 pthread_mutex_unlock(&lock1);
 pthread_mutex_unlock(&lock2);
}

void
child(void)
{
 printf("child unlocking locks...\n");
 pthread_mutex_unlock(&lock1);
 pthread_mutex_unlock(&lock2);
}

void *
thr_fn(void *arg)
{
 printf("thread started...\n");
 pause();
 return(0);
}

int
main(void)
{
 int err;
 pid_t pid;
 pthread_t tid;

#if defined(BSD) || defined(MACOS)
 printf("pthread_atfork is unsupported\n");
#else
 if ((err = pthread_atfork(prepare, parent, chil d)) != 0)
 err_exit(err, "can't install fork handlers");
 err = pthread_create(&tid, NULL, thr_fn, 0);
 if (err != 0)
 err_exit(err, "can't create thread");
 sleep(2);
 printf("parent about to fork...\n");
 if ((pid = fork()) < 0)
 err_quit("fork failed");
 else if (pid == 0) /* child */
 printf("child returned from fork\n");
 else /* parent */
 printf("parent returned from fork\n");
#endif

 exit(0);
}

12.10. Threads and I/O

We introduced the pread and pwrite functions in Section 3.11. These functions are helpful in a multithreaded
environment, because all threads in a process share the same file descriptors.

Consider two threads reading from or writing to the same file descriptor at the same time.

Thread A Thread B

lseek(fd, 300, SEEK_SET); lseek(fd, 700, SEEK_SET);

read(fd, buf1, 100); read(fd, buf2, 100);

If thread A executes the lseek and then thread B calls lseek before thread A calls read , then both threads will
end up reading the same record. Clearly, this isn't what was intended.

To solve this problem, we can use pread to make the setting of the offset and the reading of the data one atomic
operation.

Thread A Thread B

pread(fd, buf1, 100, 300); pread(fd, buf2, 100, 700);

Using pread , we can ensure that thread A reads the record at offset 300, whereas thread B reads the record at
offset 700. We can use pwrite to solve the problem of concurrent threads writing to the same file.

12.11. Summary

Threads provide an alternate model for partitioning concurrent tasks in UNIX systems. Threads promote sharing
among separate threads of control, but present unique synchronization problems. In this chapter, we looked at
how we can fine-tune our threads and their synchronization primitives. We discussed reentrancy with threads.
We also looked at how threads interact with some of the process-oriented system calls.

Chapter 13. Daemon Processes

Section 13.1. Introduction

Section 13.2. Daemon Characteristics

Section 13.3. Coding Rules

Section 13.4. Error Logging

Section 13.5. Single-Instance Daemons

Section 13.6. Daemon Conventions

Section 13.7. Client–Server Model

Section 13.8. Summary

13.1. Introduction

Daemons are processes that live for a long time. They are often started when the system is bootstrapped and
terminate only when the system is shut down. Because they don't have a controlling terminal, we say that they
run in the background. UNIX systems have numerous daemons that perform day-to-day activities.

In this chapter, we look at the process structure of daemons and how to write a daemon. Since a daemon does
not have a controlling terminal, we need to see how a daemon can report error conditions when something goes
wrong.

For a discussion of the historical background of the term daemon as it applies to computer systems, see
Raymond [1996].

13.2. Daemon Characteristics

Let's look at some common system daemons and how they relate to the concepts of process groups, controlling
terminals, and sessions that we described in Chapter 9. The ps (1) command prints the status of various
processes in the system. There are a multitude of options—consult your system's manual for all the details.
We'll execute

 ps -axj

under BSD-based systems to see the information we need for this discussion. The -a option shows the status of
processes owned by others, and -x shows processes that don't have a controlling terminal. The -j option
displays the job-related information: the session ID, process group ID, controlling terminal, and terminal
process group ID. Under System V–based systems, a similar command is ps -efjc . (In an attempt to improve
security, some UNIX systems don't allow us to use ps to look at any processes other than our own.) The output
from ps looks like

PPID PID PGID SID TTY TPGID UID COMMAND

0 1 0 0 ? -1 0 init

1 2 1 1 ? -1 0 [keventd]

1 3 1 1 ? -1 0 [kapmd]

0 5 1 1 ? -1 0 [kswapd]

0 6 1 1 ? -1 0 [bdflush]

0 7 1 1 ? -1 0 [kupdated]

1 1009 1009 1009 ? -1 32 portmap

1 1048 1048 1048 ? -1 0 syslogd -m 0

1 1335 1335 1335 ? -1 0 xinetd -pidfile /var/run/xinetd.pid

1 1403 1 1 ? -1 0 [nfsd]

1 1405 1 1 ? -1 0 [lockd]

1405 1406 1 1 ? -1 0 [rpciod]

1 1853 1853 1853 ? -1 0 crond

1 2182 2182 2182 ? -1 0 /usr/sbin/cupsd

We have removed a few columns that don't interest us, such as the accumulated CPU time. The column
headings, in order, are the parent process ID, process ID, process group ID, session ID, terminal name, terminal
process group ID (the foreground process group associated with the controlling terminal), user ID, and
command string.

The system that this ps command was run on (Linux) supports the notion of a session ID, which we mentioned
with the setsid function in Section 9.5. The session ID is simply the process ID of the session leader. A BSD-

based system, however, will print the address of the session structure corresponding to the process group that
the process belongs to (Section 9.11).

The system processes you see will depend on the operating system implementation. Anything with a parent
process ID of 0 is usually a kernel process started as part of the system bootstrap procedure. (An exception to
this is init , since it is a user-level command started by the kernel at boot time.) Kernel processes are special
and generally exist for the entire lifetime of the system. They run with superuser privileges and have no
controlling terminal and no command line.

Process 1 is usually init , as we described in Section 8.2. It is a system daemon responsible for, among other
things, starting system services specific to various run levels. These services are usually implemented with the
help of their own daemons.

On Linux, the keventd daemon provides process context for running scheduled functions in the kernel. The
kapmd daemon provides support for the advanced power management features available with various computer
systems. The kswapd daemon is also known as the pageout daemon. It supports the virtual memory subsystem
by writing dirty pages to disk slowly over time, so the pages can be reclaimed.

The Linux kernel flushes cached data to disk using two additional daemons: bdflush and kupdated . The
bdflush daemon flushes dirty buffers from the buffer cache back to disk when available memory reaches a
low-water mark. The kupdated daemon flushes dirty pages back to disk at regular intervals to decrease data
loss in the event of a system failure.

The portmapper daemon, portmap , provides the service of mapping RPC (Remote Procedure Call) program
numbers to network port numbers. The syslogd daemon is available to any program to log system messages for
an operator. The messages may be printed on a console device and also written to a file. (We describe the
syslog facility in Section 13.4.)

We talked about the inetd daemon (xinetd) in Section 9.3. It listens on the system's network interfaces for
incoming requests for various network servers. The nfsd , lockd , and rpciod daemons provide support for the
Network File System (NFS).

The cron daemon (crond) executes commands at specified dates and times. Numerous system administration
tasks are handled by having programs executed regularly by cron . The cupsd daemon is a print spooler; it
handles print requests on the system.

Note that most of the daemons run with superuser privilege (a user ID of 0). None of the daemons has a
controlling terminal: the terminal name is set to a question mark, and the terminal foreground process group is –
1. The kernel daemons are started without a controlling terminal. The lack of a controlling terminal in the user-
level daemons is probably the result of the daemons having called setsid . All the user-level daemons are
process group leaders and session leaders and are the only processes in their process group and session. Finally,
note that the parent of most of these daemons is the init process.

13.3. Coding Rules

Some basic rules to coding a daemon prevent unwanted interactions from happening. We state these rules and
then show a function, daemonize , that implements them.

1. The first thing to do is call umask to set the file mode creation mask to 0. The file mode creation mask
that's inherited could be set to deny certain permissions. If the daemon process is going to create files, it
may want to set specific permissions. For example, if it specifically creates files with group-read and
group-write enabled, a file mode creation mask that turns off either of these permissions would undo its
efforts.

2. Call fork and have the parent exit . This does several things. First, if the daemon was started as a
simple shell command, having the parent terminate makes the shell think that the command is done.
Second, the child inherits the process group ID of the parent but gets a new process ID, so we're
guaranteed that the child is not a process group leader. This is a prerequisite for the call to setsid that is
done next.

3. Call setsid to create a new session. The three steps listed in Section 9.5 occur. The process (a) becomes
a session leader of a new session, (b) becomes the process group leader of a new process group, and (c)
has no controlling terminal.

Under System V–based systems, some people recommend calling fork again at this point and having
the parent terminate. The second child continues as the daemon. This guarantees that the daemon is not a
session leader, which prevents it from acquiring a controlling terminal under the System V rules
(Section 9.6). Alternatively, to avoid acquiring a controlling terminal, be sure to specify O_NOCTTY
whenever opening a terminal device.

4. Change the current working directory to the root directory. The current working directory inherited from
the parent could be on a mounted file system. Since daemons normally exist until the system is rebooted,
if the daemon stays on a mounted file system, that file system cannot be unmounted.

Alternatively, some daemons might change the current working directory to some specific location,
where they will do all their work. For example, line printer spooling daemons often change to their spool
directory.

5. Unneeded file descriptors should be closed. This prevents the daemon from holding open any
descriptors that it may have inherited from its parent (which could be a shell or some other process). We
can use our open_max function (Figure 2.16) or the getrlimit function (Section 7.11) to determine the
highest descriptor and close all descriptors up to that value.

6. Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any library routines that try to read
from standard input or write to standard output or standard error will have no effect. Since the daemon is
not associated with a terminal device, there is nowhere for output to be displayed; nor is there anywhere
to receive input from an interactive user. Even if the daemon was started from an interactive session, the
daemon runs in the background, and the login session can terminate without affecting the daemon. If
other users log in on the same terminal device, we wouldn't want output from the daemon showing up on
the terminal, and the users wouldn't expect their input to be read by the daemon.

Example

Figure 13.1 shows a function that can be called from a program that wants to initialize itself as a daemon.

If the daemonize function is called from a main program that then goes to sleep, we can check the status of the

daemon with the ps command:

 $./a.out
 $ ps -axj
 PPID PID PGID SID TTY TPGID UID COMMAND
 1 3346 3345 3345 ? -1 501 ./a.out
 $ ps -axj | grep 3345
 1 3346 3345 3345 ? -1 501 ./a.out

We can also use ps to verify that no active process exists with ID 3345. This means that our daemon is in an
orphaned process group (Section 9.10) and is not a session leader and thus has no chance of allocating a
controlling terminal. This is a result of performing the second fork in the daemonize function. We can see that
our daemon has been initialized correctly.

Figure 13.1. Initialize a daemon process

#include "apue.h"
#include <syslog.h>
#include <fcntl.h>
#include <sys/resource.h>

void
daemonize(const char *cmd)
{
 int i, fd0, fd1, fd2;
 pid_t pid;
 struct rlimit rl;
 struct sigaction sa;
 /*
 * Clear file creation mask.
 */
 umask(0);

 /*
 * Get maximum number of file descriptors.
 */
 if (getrlimit(RLIMIT_NOFILE, &rl) < 0)
 err_quit("%s: can't get file limit", cmd);

 /*
 * Become a session leader to lose controlling TTY.
 */
 if ((pid = fork()) < 0)
 err_quit("%s: can't fork", cmd);
 else if (pid != 0) /* parent */
 exit(0);
 setsid();

 /*
 * Ensure future opens won't allocate controlli ng TTYs.
 */
 sa.sa_handler = SIG_IGN;
 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 if (sigaction(SIGHUP, &sa, NULL) < 0)
 err_quit("%s: can't ignore SIGHUP");
 if ((pid = fork()) < 0)
 err_quit("%s: can't fork", cmd);
 else if (pid != 0) /* parent */

 exit(0);

 /*
 * Change the current working directory to the root so
 * we won't prevent file systems from being unm ounted.
 */
 if (chdir("/") < 0)
 err_quit("%s: can't change directory to /") ;

 /*
 * Close all open file descriptors.
 */
 if (rl.rlim_max == RLIM_INFINITY)
 rl.rlim_max = 1024;
 for (i = 0; i < rl.rlim_max; i++)
 close(i);

 /*
 * Attach file descriptors 0, 1, and 2 to /dev/ null.
 */
 fd0 = open("/dev/null", O_RDWR);
 fd1 = dup(0);
 fd2 = dup(0);

 /*
 * Initialize the log file.
 */
 openlog(cmd, LOG_CONS, LOG_DAEMON);
 if (fd0 != 0 || fd1 != 1 || fd2 != 2) {
 syslog(LOG_ERR, "unexpected file descriptor s %d %d %d",
 fd0, fd1, fd2);
 exit(1);
 }
}

3.4. Error Logging

One problem a daemon has is how to handle error messages. It can't simply write to standard error, since it
shouldn't have a controlling terminal. We don't want all the daemons writing to the console device, since on
many workstations, the console device runs a windowing system. We also don't want each daemon writing its
own error messages into a separate file. It would be a headache for anyone administering the system to keep up
with which daemon writes to which log file and to check these files on a regular basis. A central daemon error-
logging facility is required.

The BSD syslog facility was developed at Berkeley and used widely in 4.2BSD. Most systems derived from
BSD support syslog .

Until SVR4, System V never had a central daemon logging facility.

The syslog function is included as an XSI extension in the Single UNIX Specification.

The BSD syslog facility has been widely used since 4.2BSD. Most daemons use this facility. Figure 13.2
illustrates its structure.

Figure 13.2. The BSD syslog facility

There are three ways to generate log messages:

1. Kernel routines can call the log function. These messages can be read by any user process that open s
and read s the /dev/klog device. We won't describe this function any further, since we're not interested
in writing kernel routines.

2. Most user processes (daemons) call the syslog (3) function to generate log messages. We describe its
calling sequence later. This causes the message to be sent to the UNIX domain datagram socket
/dev/log .

3. A user process on this host, or on some other host that is connected to this host by a TCP/IP network,
can send log messages to UDP port 514. Note that the syslog function never generates these UDP
datagrams: they require explicit network programming by the process generating the log message.

Refer to Stevens, Fenner, and Rudoff [2004] for details on UNIX domain sockets and UDP sockets.

Normally, the syslogd daemon reads all three forms of log messages. On start-up, this daemon reads a
configuration file, usually /etc/syslog.conf , which determines where different classes of messages are to be
sent. For example, urgent messages can be sent to the system administrator (if logged in) and printed on the
console, whereas warnings may be logged to a file.

Our interface to this facility is through the syslog function.

#include <syslog.h>

void openlog(const char *ident, int option, int fac ility);

void syslog(int priority, const char *format, ...);

void closelog(void);

int setlogmask(int maskpri);

Returns: previous log priority mask value

Calling openlog is optional. If it's not called, the first time syslog is called, openlog is called automatically.
Calling closelog is also optional—it just closes the descriptor that was being used to communicate with the
syslogd daemon.

Calling openlog lets us specify an ident that is added to each log message. This is normally the name of the
program (cron , inetd , etc.). The option argument is a bitmask specifying various options. Figure 13.3
describes the available options, including a bullet in the XSI column if the option is included in the openlog
definition in the Single UNIX Specification.

Figure 13.3. The option argument for openlog

option XSI Description

LOG_CONS • If the log message can't be sent to syslogd via the UNIX domain datagram, the message is
written to the console instead.

LOG_NDELAY • Open the UNIX domain datagram socket to the syslogd daemon immediately; don't wait
until the first message is logged. Normally, the socket is not opened until the first message
is logged.

LOG_NOWAIT • Do not wait for child processes that might have been created in the process of logging the
message. This prevents conflicts with applications that catch SIGCHLD, since the application

Figure 13.3. The option argument for openlog

option XSI Description

might have retrieved the child's status by the time that syslog calls wait .

LOG_ODELAY • Delay the open of the connection to the syslogd daemon until the first message is logged.

LOG_PERROR Write the log message to standard error in addition to sending it to syslogd . (Unavailable
on Solaris.)

LOG_PID • Log the process ID with each message. This is intended for daemons that fork a child
process to handle different requests (as compared to daemons, such as syslogd , that never
call fork).

The facility argument for openlog is taken from Figure 13.4. Note that the Single UNIX Specification defines
only a subset of the facility codes typically available on a given platform. The reason for the facility argument is
to let the configuration file specify that messages from different facilities are to be handled differently. If we
don't call openlog , or if we call it with a facility of 0, we can still specify the facility as part of the priority
argument to syslog .

Figure 13.4. The facility argument for openlog

facility XSI Description

LOG_AUTH authorization programs: login, su, getty , ...

LOG_AUTHPRIV same as LOG_AUTH, but logged to file with restricted permissions

LOG_CRON cron and at

LOG_DAEMON system daemons: inetd, routed, ...

LOG_FTP the FTP daemon (ftpd)

LOG_KERN messages generated by the kernel

LOG_LOCAL0 • reserved for local use

LOG_LOCAL1 • reserved for local use

LOG_LOCAL2 • reserved for local use

LOG_LOCAL3 • reserved for local use

LOG_LOCAL4 • reserved for local use

LOG_LOCAL5 • reserved for local use

LOG_LOCAL6 • reserved for local use

LOG_LOCAL7 • reserved for local use

LOG_LPR line printer system: lpd, lpc , ...

Figure 13.4. The facility argument for openlog

facility XSI Description

LOG_MAIL the mail system

LOG_NEWS the Usenet network news system

LOG_SYSLOG the syslogd daemon itself

LOG_USER • messages from other user processes (default)

LOG_UUCP the UUCP system

We call syslog to generate a log message. The priority argument is a combination of the facility shown in
Figure 13.4 and a level, shown in Figure 13.5. These levels are ordered by priority, from highest to lowest.

Figure 13.5. The syslog levels (ordered)

level Description

LOG_EMERG emergency (system is unusable) (highest priority)

LOG_ALERT condition that must be fixed immediately

LOG_CRIT critical condition (e.g., hard device error)

LOG_ERR error condition

LOG_WARNING warning condition

LOG_NOTICE normal, but significant condition

LOG_INFO informational message

LOG_DEBUG debug message (lowest priority)

The format argument and any remaining arguments are passed to the vsprintf function for formatting. Any
occurrence of the two characters %m in the format are first replaced with the error message string (strerror)
corresponding to the value of errno .

The setlogmask function can be used to set the log priority mask for the process. This function returns the
previous mask. When the log priority mask is set, messages are not logged unless their priority is set in the log
priority mask. Note that attempts to set the log priority mask to 0 will have no effect.

The logger (1) program is also provided by many systems as a way to send log messages to the syslog facility.
Some implementations allow optional arguments to this program, specifying the facility, level, and ident,
although the Single UNIX Specification doesn't define any options. The logger command is intended for a
shell script running noninteractively that needs to generate log messages.

Example

In a (hypothetical) line printer spooler daemon, you might encounter the sequence

 openlog("lpd", LOG_PID, LOG_LPR);
 syslog(LOG_ERR, "open error for %s: %m", filenam e);

The first call sets the ident string to the program name, specifies that the process ID should always be printed,
and sets the default facility to the line printer system. The call to syslog specifies an error condition and a
message string. If we had not called openlog , the second call could have been

 syslog(LOG_ERR | LOG_LPR, "open error for %s: %m ", filename);

Here, we specify the priority argument as a combination of a level and a facility.

In addition to syslog , many platforms provide a variant that handles variable argument lists.

#include <syslog.h>
#include <stdarg.h>

void vsyslog(int priority, const char *format,
 va_list arg);

All four platforms described in this book provide vsyslog , but it is not included in the Single UNIX
Specification.

Most syslogd implementations will queue messages for a short time. If a duplicate message arrives during this
time, the syslog daemon will not write it to the log. Instead, the daemon will print out a message similar to
"last message repeated N times."

13.5. Single-Instance Daemons

Some daemons are implemented so that only a single copy of the daemon should be running at a time for proper
operation. The daemon might need exclusive access to a device, for example. In the case of the cron daemon, if
multiple instances were running, each copy might try to start a single scheduled operation, resulting in duplicate
operations and probably an error.

If the daemon needs to access a device, the device driver will sometimes prevent multiple opens of the
corresponding device node in /dev . This restricts us to one copy of the daemon running at a time. If no such
device is available, however, we need to do the work ourselves.

The file- and record-locking mechanism provides the basis for one way to ensure that only one copy of a
daemon is running. (We discuss file and record locking in Section 14.3.) If each daemon creates a file and
places a write lock on the entire file, only one such write lock will be allowed to be created. Successive attempts
to create write locks will fail, serving as an indication to successive copies of the daemon that another instance
is already running.

File and record locking provides a convenient mutual-exclusion mechanism. If the daemon obtains a write-lock
on an entire file, the lock will be removed automatically if the daemon exits. This simplifies recovery, removing
the need for us to clean up from the previous instance of the daemon.

Example

The function shown in Figure 13.6 illustrates the use of file and record locking to ensure that only
one copy of a daemon is running.

Each copy of the daemon will try to create a file and write its process ID in it. This will allow
administrators to identify the process easily. If the file is already locked, the lockfile function will
fail with errno set to EACCES or EAGAIN, so we return 1, indicating that the daemon is already
running. Otherwise, we truncate the file, write our process ID to it, and return 0.

We need to truncate the file, because the previous instance of the daemon might have had a process
ID larger than ours, with a larger string length. For example, if the previous instance of the daemon
was process ID 12345, and the new instance is process ID 9999, when we write the process ID to the
file, we will be left with 99995 in the file. Truncating the file prevents data from the previous
daemon appearing as if it applies to the current daemon.

Figure 13.6. Ensure that only one copy of a daemon is running

#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <syslog.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <sys/stat.h>

#define LOCKFILE "/var/run/daemon.pid"
#define LOCKMODE (S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)

extern int lockfile(int);

int

already_running(void)
{
 int fd;
 char buf[16];

 fd = open(LOCKFILE, O_RDWR|O_CREAT, LOCKMODE);
 if (fd < 0) {
 syslog(LOG_ERR, "can't open %s: %s", LOCKFI LE, strerror(errno));
 exit(1);
 }
 if (lockfile(fd) < 0) {
 if (errno == EACCES || errno == EAGAIN) {
 close(fd);
 return(1);
 }
 syslog(LOG_ERR, "can't lock %s: %s", LOCKFI LE, strerror(errno));
 exit(1);
 }
 ftruncate(fd, 0);
 sprintf(buf, "%ld", (long)getpid());
 write(fd, buf, strlen(buf)+1);
 return(0);
}

13.6. Daemon Conventions

Several common conventions are followed by daemons in the UNIX System.

• If the daemon uses a lock file, the file is usually stored in /var/run . Note, however, that the daemon
might need superuser permissions to create a file here. The name of the file is usually name.pid , where
name is the name of the daemon or the service. For example, the name of the cron daemon's lock file is
/var/run/crond.pid .

• If the daemon supports configuration options, they are usually stored in /etc . The configuration file is
named name.conf , where name is the name of the daemon or the name of the service. For example, the
configuration for the syslogd daemon is /etc/syslog.conf .

• Daemons can be started from the command line, but they are usually started from one of the system
initialization scripts (/etc/rc* or /etc/init.d/*). If the daemon should be restarted automatically
when it exits, we can arrange for init to restart it if we include a respawn entry for it in /etc/inittab .

• If a daemon has a configuration file, the daemon reads it when it starts, but usually won't look at it again.
If an administrator changes the configuration, the daemon would need to be stopped and restarted to
account for the configuration changes. To avoid this, some daemons will catch SIGHUP and reread their
configuration files when they receive the signal. Since they aren't associated with terminals and are
either session leaders without controlling terminals or members of orphaned process groups, daemons
have no reason to expect to receive SIGHUP. Thus, they can safely reuse it.

Example

The program shown in Figure 13.7 shows one way a daemon can reread its configuration file. The
program uses sigwait and multiple threads, as discussed in Section 12.8.

We call daemonize from Figure 13.1 to initialize the daemon. When it returns, we call
already_running from Figure 13.6 to ensure that only one copy of the daemon is running. At this
point, SIGHUP is still ignored, so we need to reset the disposition to the default behavior; otherwise,
the thread calling sigwait may never see the signal.

We block all signals, as is recommended for multithreaded programs, and create a thread to handle
signals. The thread's only job is to wait for SIGHUP and SIGTERM. When it receives SIGHUP, the
thread calls reread to reread its configuration file. When it receives SIGTERM, the thread logs a
message and exits.

Recall from Figure 10.1 that the default action for SIGHUP and SIGTERM is to terminate the process.
Because we block these signals, the daemon will not die when one of them is sent to the process.
Instead, the thread calling sigwait will return with an indication that the signal has been received.

Figure 13.7. Daemon rereading configuration files

#include "apue.h"
#include <pthread.h>
#include <syslog.h>

sigset_t mask;

extern int already_running(void);

void
reread(void)
{

 /* ... */
}

void *
thr_fn(void *arg)
{
 int err, signo;

 for (;;) {
 err = sigwait(&mask, &signo);
 if (err != 0) {
 syslog(LOG_ERR, "sigwait failed");
 exit(1);
 }

 switch (signo) {
 case SIGHUP:
 syslog(LOG_INFO, "Re-reading configurat ion file");
 reread();
 break;

 case SIGTERM:
 syslog(LOG_INFO, "got SIGTERM; exiting");
 exit(0);

 default:
 syslog(LOG_INFO, "unexpected signal %d\ n", signo);
 }
 }
 return(0);
}

int
main(int argc, char *argv[])
{
 int err;
 pthread_t tid;
 char *cmd;
 struct sigaction sa;

 if ((cmd = strrchr(argv[0], '/')) == NULL)
 cmd = argv[0];
 else
 cmd++;

 /*
 * Become a daemon.
 */
 daemonize(cmd);

 /*
 * Make sure only one copy of the daemon is run ning.
 */
 if (already_running()) {
 syslog(LOG_ERR, "daemon already running");
 exit(1);
 }

 /*
 * Restore SIGHUP default and block all signals .
 */
 sa.sa_handler = SIG_DFL;

 sigemptyset(&sa.sa_mask);
 sa.sa_flags = 0;
 if (sigaction(SIGHUP, &sa, NULL) < 0)
 err_quit("%s: can't restore SIGHUP default");
 sigfillset(&mask);
 if ((err = pthread_sigmask(SIG_BLOCK, &mask, NU LL)) != 0)
 err_exit(err, "SIG_BLOCK error");

 /*
 * Create a thread to handle SIGHUP and SIGTERM .
 */
 err = pthread_create(&tid, NULL, thr_fn, 0);
 if (err != 0)
 err_exit(err, "can't create thread");
 /*
 * Proceed with the rest of the daemon.
 */
 /* ... */
 exit(0);
}

Example

As noted in Section 12.8, Linux threads behave differently with respect to signals. Because of this,
identifying the proper process to signal in Figure 13.7 will be difficult. In addition, we aren't
guaranteed that the daemon will react as we expect, because of the implementation differences.

The program in Figure 13.8 shows how a daemon can catch SIGHUP and reread its configuration file
without using multiple threads.

After initializing the daemon, we install signal handlers for SIGHUP and SIGTERM. We can either
place the reread logic in the signal handler or just set a flag in the handler and have the main thread
of the daemon do all the work instead.

Figure 13.8. Alternate implementation of daemon rereading configuration files

#include "apue.h"
#include <syslog.h>
#include <errno.h>

extern int lockfile(int);
extern int already_running(void);

void
reread(void)
{
 /* ... */
}

void
sigterm(int signo)
{
 syslog(LOG_INFO, "got SIGTERM; exiting");
 exit(0);
}

void
sighup(int signo)
{

 syslog(LOG_INFO, "Re-reading configuration file ");
 reread();
}
int
main(int argc, char *argv[])
{
 char *cmd;
 struct sigaction sa;
 if ((cmd = strrchr(argv[0], '/')) == NULL)
 cmd = argv[0];
 else
 cmd++;

 /*
 * Become a daemon.
 */
 daemonize(cmd);

 /*
 * Make sure only one copy of the daemon is run ning.
 */
 if (already_running()) {
 syslog(LOG_ERR, "daemon already running");
 exit(1);
 }

 /*
 * Handle signals of interest.
 */
 sa.sa_handler = sigterm;
 sigemptyset(&sa.sa_mask);
 sigaddset(&sa.sa_mask, SIGHUP);
 sa.sa_flags = 0;
 if (sigaction(SIGTERM, &sa, NULL) < 0) {
 syslog(LOG_ERR, "can't catch SIGTERM: %s", strerror(errno));
 exit(1);
 }
 sa.sa_handler = sighup;
 sigemptyset(&sa.sa_mask);
 sigaddset(&sa.sa_mask, SIGTERM);
 sa.sa_flags = 0;
 if (sigaction(SIGHUP, &sa, NULL) < 0) {
 syslog(LOG_ERR, "can't catch SIGHUP: %s", s trerror(errno));
 exit(1);
 }

 /*
 * Proceed with the rest of the daemon.
 */
 /* ... */
 exit(0);
}

13.7. Client–Server Model

A common use for a daemon process is as a server process. Indeed, in Figure 13.2, we can call the syslogd
process a server that has messages sent to it by user processes (clients) using a UNIX domain datagram socket.

In general, a server is a process that waits for a client to contact it, requesting some type of service. In Figure
13.2, the service being provided by the syslogd server is the logging of an error message.

In Figure 13.2, the communication between the client and the server is one-way. The client sends its service
request to the server; the server sends nothing back to the client. In the upcoming chapters, we'll see numerous
examples of two-way communication between a client and a server. The client sends a request to the server, and
the server sends a reply back to the client.

13.8. Summary

Daemon processes are running all the time on most UNIX systems. Initializing our own process to run as a
daemon takes some care and an understanding of the process relationships that we described in Chapter 9. In
this chapter, we developed a function that can be called by a daemon process to initialize itself correctly.

We also discussed the ways a daemon can log error messages, since a daemon normally doesn't have a
controlling terminal. We discussed several conventions that daemons follow on most UNIX systems and
showed examples of how to implement some of these conventions.

Chapter 14. Advanced I/O

Section 14.1. Introduction

Section 14.2. Nonblocking I/O

Section 14.3. Record Locking

Section 14.4. STREAMS

Section 14.5. I/O Multiplexing

Section 14.6. Asynchronous I/O

Section 14.7. readv and writev Functions

Section 14.8. readn and writen Functions

Section 14.9. Memory-Mapped I/O

Section 14.10. Summary

14.1. Introduction

This chapter covers numerous topics and functions that we lump under the term advanced I/O: nonblocking I/O,
record locking, System V STREAMS, I/O multiplexing (the select and poll functions), the readv and writev
functions, and memory-mapped I/O (mmap). We need to cover these topics before describing interprocess
communication in Chapter 15, Chapter 17, and many of the examples in later chapters.

14.2. Nonblocking I/O

In Section 10.5, we said that the system calls are divided into two categories: the "slow" ones and all the others.
The slow system calls are those that can block forever. They include

• Reads that can block the caller forever if data isn't present with certain file types (pipes, terminal devices,
and network devices)

• Writes that can block the caller forever if the data can't be accepted immediately by these same file types
(no room in the pipe, network flow control, etc.)

• Opens that block until some condition occurs on certain file types (such as an open of a terminal device
that waits until an attached modem answers the phone, or an open of a FIFO for writing-only when no
other process has the FIFO open for reading)

• Reads and writes of files that have mandatory record locking enabled
• Certain ioctl operations
• Some of the interprocess communication functions (Chapter 15)

We also said that system calls related to disk I/O are not considered slow, even though the read or write of a
disk file can block the caller temporarily.

Nonblocking I/O lets us issue an I/O operation, such as an open , read , or write , and not have it block forever.
If the operation cannot be completed, the call returns immediately with an error noting that the operation would
have blocked.

There are two ways to specify nonblocking I/O for a given descriptor.

1. If we call open to get the descriptor, we can specify the O_NONBLOCK flag (Section 3.3).
2. For a descriptor that is already open, we call fcntl to turn on the O_NONBLOCK file status flag (Section

3.14). Figure 3.11 shows a function that we can call to turn on any of the file status flags for a descriptor.

Earlier versions of System V used the flag O_NDELAY to specify nonblocking mode. These versions of
System V returned a value of 0 from the read function if there wasn't any data to be read. Since this use
of a return value of 0 overlapped with the normal UNIX System convention of 0 meaning the end of file,
POSIX.1 chose to provide a nonblocking flag with a different name and different semantics. Indeed,
with these older versions of System V, when we get a return of 0 from read , we don't know whether the
call would have blocked or whether the end of file was encountered. We'll see that POSIX.1 requires
that read return –1 with errno set to EAGAIN if there is no data to read from a nonblocking descriptor.
Some platforms derived from System V support both the older O_NDELAY and the POSIX.1 O_NONBLOCK,
but in this text, we'll use only the POSIX.1 feature. The older O_NDELAY is for backward compatibility
and should not be used in new applications.

4.3BSD provided the FNDELAY flag for fcntl , and its semantics were slightly different. Instead of
affecting only the file status flags for the descriptor, the flags for either the terminal device or the socket
were also changed to be nonblocking, affecting all users of the terminal or socket, not only the users
sharing the same file table entry (4.3BSD nonblocking I/O worked only on terminals and sockets). Also,
4.3BSD returned EWOULDBLOCK if an operation on a nonblocking descriptor could not complete without
blocking. Today, BSD-based systems provide the POSIX.1 O_NONBLOCK flag and define EWOULDBLOCK to
be the same as EAGAIN. These systems provide nonblocking semantics consistent with other POSIX-
compatible systems: changes in file status flags affect all users of the same file table entry, but are
independent of accesses to the same device through other file table entries. (Refer to Figures 3.6 and
3.8.)

Example

Let's look at an example of nonblocking I/O. The program in Figure 14.1 reads up to 500,000 bytes from the
standard input and attempts to write it to the standard output. The standard output is first set nonblocking. The
output is in a loop, with the results of each write being printed on the standard error. The function clr_fl is
similar to the function set_fl that we showed in Figure 3.11. This new function simply clears one or more of
the flag bits.

If the standard output is a regular file, we expect the write to be executed once:

$ ls -l /etc/termcap prin t file size
-rw-r--r-- 1 root 702559 Feb 23 2002 /etc/ter mcap
$./a.out < /etc/termcap > temp.file try a regular file first
read 500000 bytes
nwrite = 500000, errno = 0 a si ngle write
$ ls -l temp.file veri fy size of output file
-rw-rw-r-- 1 sar 500000 Jul 8 04:19 temp.fi le

But if the standard output is a terminal, we expect the write to return a partial count sometimes and an error at
other times. This is what we see:

$./a.out < /etc/termcap 2>stderr.out output to terminal
 lots of output to terminal ...
$ cat stderr.out
read 500000 bytes
nwrite = 216041, errno = 0
nwrite = -1, errno = 11 1,497 of these errors
...
nwrite = 16015, errno = 0
nwrite = -1, errno = 11 1,856 of these errors
...
nwrite = 32081, errno = 0
nwrite = -1, errno = 11 1,654 of these errors
...
nwrite = 48002, errno = 0
nwrite = -1, errno = 11 1,460 of these errors
...
 and so on ...
nwrite = 7949, errno = 0

On this system, the errno of 11 is EAGAIN. The amount of data accepted by the terminal driver varies from
system to system. The results will also vary depending on how you are logged in to the system: on the system
console, on a hardwired terminal, on network connection using a pseudo terminal. If you are running a
windowing system on your terminal, you are also going through a pseudo-terminal device.

Figure 14.1. Large nonblocking write

#include "apue.h"
#include <errno.h>
#include <fcntl.h>

char buf[500000];

int
main(void)
{
 int ntowrite, nwrite;
 char *ptr;

 ntowrite = read(STDIN_FILENO, buf, sizeof(buf)) ;
 fprintf(stderr, "read %d bytes\n", ntowrite);

 set_fl(STDOUT_FILENO, O_NONBLOCK); /* set nonbl ocking */

 ptr = buf;
 while (ntowrite > 0) {
 errno = 0;
 nwrite = write(STDOUT_FILENO, ptr, ntowrite);
 fprintf(stderr, "nwrite = %d, errno = %d\n" , nwrite, errno);

 if (nwrite > 0) {
 ptr += nwrite;
 ntowrite -= nwrite;
 }
 }

 clr_fl(STDOUT_FILENO, O_NONBLOCK); /* clear non blocking */

 exit(0);
}

In this example, the program issues thousands of write calls, even though only between 10 and 20 are needed
to output the data. The rest just return an error. This type of loop, called polling, is a waste of CPU time on a
multiuser system. In Section 14.5, we'll see that I/O multiplexing with a nonblocking descriptor is a more
efficient way to do this.

Sometimes, we can avoid using nonblocking I/O by designing our applications to use multiple threads (see
Chapter 11). We can allow individual threads to block in I/O calls if we can continue to make progress in other
threads. This can sometimes simplify the design, as we shall see in Chapter 21; sometimes, however, the
overhead of synchronization can add more complexity than is saved from using threads.

14.3. Record Locking

What happens when two people edit the same file at the same time? In most UNIX systems, the final state of the
file corresponds to the last process that wrote the file. In some applications, however, such as a database system,
a process needs to be certain that it alone is writing to a file. To provide this capability for processes that need it,
commercial UNIX systems provide record locking. (In Chapter 20, we develop a database library that uses
record locking.)

Record locking is the term normally used to describe the ability of a process to prevent other processes from
modifying a region of a file while the first process is reading or modifying that portion of the file. Under the
UNIX System, the adjective "record" is a misnomer, since the UNIX kernel does not have a notion of records in
a file. A better term is byte-range locking, since it is a range of a file (possibly the entire file) that is locked.

History

One of the criticisms of early UNIX systems was that they couldn't be used to run database systems, because
there was no support for locking portions of files. As UNIX systems found their way into business computing
environments, various groups added support record locking (differently, of course).

Early Berkeley releases supported only the flock function. This function locks only entire files, not regions of a
file.

Record locking was added to System V Release 3 through the fcntl function. The lockf function was built on
top of this, providing a simplified interface. These functions allowed callers to lock arbitrary byte ranges in a
file, from the entire file down to a single byte within the file.

POSIX.1 chose to standardize on the fcntl approach. Figure 14.2 shows the forms of record locking provided
by various systems. Note that the Single UNIX Specification includes lockf in the XSI extension.

Figure 14.2. Forms of record locking supported by various UNIX systems

System Advisory Mandatory fcntl lockf flock

SUS • • XSI

FreeBSD 5.2.1 • • • •

Linux 2.4.22 • • • • •

Mac OS X 10.3 • • • •

Solaris 9 • • • • •

We describe the difference between advisory locking and mandatory locking later in this section. In this text,
we describe only the POSIX.1 fcntl locking.

Record locking was originally added to Version 7 in 1980 by John Bass. The system call entry into the kernel
was a function named locking . This function provided mandatory record locking and propagated through many
versions of System III. Xenix systems picked up this function, and some Intel-based System V derivatives, such
as OpenServer 5, still support it in a Xenix-compatibility library.

fcntl Record Locking

Let's repeat the prototype for the fcntl function from Section 3.14.

#include <fcntl.h>

int fcntl(int filedes, int cmd, ... /* struct flock *flockptr */);

Returns: depends on cmd if OK (see following), –1 on error

For record locking, cmd is F_GETLK, F_SETLK, or F_SETLKW. The third argument (which we'll call flockptr) is a
pointer to an flock structure.

 struct flock {
 short l_type; /* F_RDLCK, F_WRLCK, or F_UNLC K */
 off_t l_start; /* offset in bytes, relative t o l_whence */
 short l_whence; /* SEEK_SET, SEEK_CUR, or SEEK _END */
 off_t l_len; /* length, in bytes; 0 means l ock to EOF */
 pid_t l_pid; /* returned with F_GETLK */
 };

This structure describes

• The type of lock desired: F_RDLCK (a shared read lock), F_WRLCK (an exclusive write lock), or F_UNLCK
(unlocking a region)

• The starting byte offset of the region being locked or unlocked (l_start and l_whence)
• The size of the region in bytes (l_len)
• The ID (l_pid) of the process holding the lock that can block the current process (returned by F_GETLK

only)

There are numerous rules about the specification of the region to be locked or unlocked.

• The two elements that specify the starting offset of the region are similar to the last two arguments of the
lseek function (Section 3.6). Indeed, the l_whence member is specified as SEEK_SET, SEEK_CUR, or
SEEK_END.

• Locks can start and extend beyond the current end of file, but cannot start or extend before the beginning
of the file.

• If l_len is 0, it means that the lock extends to the largest possible offset of the file. This allows us to
lock a region starting anywhere in the file, up through and including any data that is appended to the file.
(We don't have to try to guess how many bytes might be appended to the file.)

• To lock the entire file, we set l_start and l_whence to point to the beginning of the file and specify a
length (l_len) of 0. (There are several ways to specify the beginning of the file, but most applications
specify l_start as 0 and l_whence as SEEK_SET.)

We mentioned two types of locks: a shared read lock (l_type of F_RDLCK) and an exclusive write lock
(F_WRLCK). The basic rule is that any number of processes can have a shared read lock on a given byte, but only
one process can have an exclusive write lock on a given byte. Furthermore, if there are one or more read locks
on a byte, there can't be any write locks on that byte; if there is an exclusive write lock on a byte, there can't be
any read locks on that byte. We show this compatibility rule in Figure 14.3.

Figure 14.3. Compatibility between different lock types

The compatibility rule applies to lock requests made from different processes, not to multiple lock requests
made by a single process. If a process has an existing lock on a range of a file, a subsequent attempt to place a
lock on the same range by the same process will replace the existing lock with the new one. Thus, if a process
has a write lock on bytes 16–32 of a file and then tries to place a read lock on bytes 16–32, the request will
succeed (assuming that we're not racing with any other processes trying to lock the same portion of the file), and
the write lock will be replaced by a read lock.

To obtain a read lock, the descriptor must be open for reading; to obtain a write lock, the descriptor must be
open for writing.

We can now describe the three commands for the fcntl function.

F_GETLK Determine whether the lock described by flockptr is blocked by some other lock. If a lock exists that
would prevent ours from being created, the information on that existing lock overwrites the
information pointed to by flockptr. If no lock exists that would prevent ours from being created, the
structure pointed to by flockptr is left unchanged except for the l_type member, which is set to
F_UNLCK.

F_SETLK Set the lock described by flockptr. If we are trying to obtain a read lock (l_type of F_RDLCK) or a
write lock (l_type of F_WRLCK) and the compatibility rule prevents the system from giving us the
lock (Figure 14.3), fcntl returns immediately with errno set to either EACCES or EAGAIN.

Although POSIX allows an implementation to return either error code, all four implementations
described in this text return EAGAIN if the locking request cannot be satisfied.

This command is also used to clear the lock described by flockptr (l_type of F_UNLCK).

F_SETLKW This command is a blocking version of F_SETLK. (The W in the command name means wait.) If the
requested read lock or write lock cannot be granted because another process currently has some part
of the requested region locked, the calling process is put to sleep. The process wakes up either when
the lock becomes available or when interrupted by a signal.

Be aware that testing for a lock with F_GETLK and then trying to obtain that lock with F_SETLK or F_SETLKW is
not an atomic operation. We have no guarantee that, between the two fcntl calls, some other process won't
come in and obtain the same lock. If we don't want to block while waiting for a lock to become available to us,
we must handle the possible error returns from F_SETLK.

Note that POSIX.1 doesn't specify what happens when one process read-locks a range of a file, a second process
blocks while trying to get a write lock on the same range, and a third processes then attempts to get another read
lock on the range. If the third process is allowed to place a read lock on the range just because the range is
already read-locked, then the implementation might starve processes with pending write locks. This means that
as additional requests to read lock the same range arrive, the time that the process with the pending write-lock
request has to wait is extended. If the read-lock requests arrive quickly enough without a lull in the arrival rate,
then the writer could wait for a long time.

When setting or releasing a lock on a file, the system combines or splits adjacent areas as required. For example,
if we lock bytes 100 through 199 and then unlock byte 150, the kernel still maintains the locks on bytes 100
through 149 and bytes 151 through 199. Figure 14.4 illustrates the byte-range locks in this situation.

Figure 14.4. File byte-range lock diagram

If we were to lock byte 150, the system would coalesce the adjacent locked regions into a single region from
byte 100 through 199. The resulting picture would be the first diagram in Figure 14.4, the same as when we
started.

Example—Requesting and Releasing a Lock

To save ourselves from having to allocate an flock structure and fill in all the elements each time, the function
lock_reg in Figure 14.5 handles all these details.

Since most locking calls are to lock or unlock a region (the command F_GETLK is rarely used), we normally use
one of the following five macros, which are defined in apue.h (Appendix B).

#define read_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLK, F_RDLCK, (offse t), (whence), (len))
#define readw_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLKW, F_RDLCK, (offs et), (whence), (len))
#define write_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLK, F_WRLCK, (offse t), (whence), (len))

#define writew_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLKW, F_WRLCK, (offs et), (whence), (len))
#define un_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLK, F_UNLCK, (offse t), (whence), (len))

We have purposely defined the first three arguments to these macros in the same order as the lseek function.

Figure 14.5. Function to lock or unlock a region of a file

#include "apue.h"
#include <fcntl.h>

int
lock_reg(int fd, int cmd, int type, off_t offset, i nt whence, off_t len)
{
 struct flock lock;

 lock.l_type = type; /* F_RDLCK, F_WRLCK, F_ UNLCK */
 lock.l_start = offset; /* byte offset, relativ e to l_whence */
 lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
 lock.l_len = len; /* #bytes (0 means to E OF) */

 return(fcntl(fd, cmd, &lock));
}

Example—Testing for a Lock

Figure 14.6 defines the function lock_test that we'll use to test for a lock.

If a lock exists that would block the request specified by the arguments, this function returns the process ID of
the process holding the lock. Otherwise, the function returns 0 (false). We normally call this function from the
following two macros (defined in apue.h):

#define is_read_lockable(fd, offset, whence, len) \
 (lock_test((fd), F_RDLCK, (offset), (when ce), (len)) == 0)
#define is_write_lockable(fd, offset, whence, len) \
 (lock_test((fd), F_WRLCK, (offset), (when ce), (len)) == 0)

Note that the lock_test function can't be used by a process to see whether it is currently holding a portion of a
file locked. The definition of the F_GETLK command states that the information returned applies to an existing
lock that would prevent us from creating our own lock. Since the F_SETLK and F_SETLKW commands always
replace a process's existing lock if it exists, we can never block on our own lock; thus, the F_GETLK command
will never report our own lock.

Figure 14.6. Function to test for a locking condition

#include "apue.h"
#include <fcntl.h>

pid_t
lock_test(int fd, int type, off_t offset, int whenc e, off_t len)
{
 struct flock lock;

 lock.l_type = type; /* F_RDLCK or F_WRLCK * /
 lock.l_start = offset; /* byte offset, relativ e to l_whence */
 lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
 lock.l_len = len; /* #bytes (0 means to E OF) */

 if (fcntl(fd, F_GETLK, &lock) < 0)
 err_sys("fcntl error");

 if (lock.l_type == F_UNLCK)
 return(0); /* false, region isn't lock ed by another proc */
 return(lock.l_pid); /* true, return pid of lock owner */
}

Example—Deadlock

Deadlock occurs when two processes are each waiting for a resource that the other has locked. The potential for
deadlock exists if a process that controls a locked region is put to sleep when it tries to lock another region that
is controlled by a different process.

Figure 14.7 shows an example of deadlock. The child locks byte 0 and the parent locks byte 1. Then each tries
to lock the other's already locked byte. We use the parent–child synchronization routines from Section 8.9
(TELL_xxx and WAIT_xxx) so that each process can wait for the other to obtain its lock. Running the program in
Figure 14.7 gives us

 $./a.out
 parent: got the lock, byte 1
 child: got the lock, byte 0
 child: writew_lock error: Resource deadlock avoi ded
 parent: got the lock, byte 0

When a deadlock is detected, the kernel has to choose one process to receive the error return. In this example,
the child was chosen, but this is an implementation detail. On some systems, the child always receives the error.
On other systems, the parent always gets the error. On some systems, you might even see the errors split
between the child and the parent as multiple lock attempts are made.

Figure 14.7. Example of deadlock detection

#include "apue.h"
#include <fcntl.h>

static void
lockabyte(const char *name, int fd, off_t offset)
{
 if (writew_lock(fd, offset, SEEK_SET, 1) < 0)
 err_sys("%s: writew_lock error", name);
 printf("%s: got the lock, byte %ld\n", name, of fset);
}

int
main(void)
{
 int fd;
 pid_t pid;

 /*

 * Create a file and write two bytes to it.
 */
 if ((fd = creat("templock", FILE_MODE)) < 0)
 err_sys("creat error");
 if (write(fd, "ab", 2) != 2)
 err_sys("write error");

 TELL_WAIT();
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 lockabyte("child", fd, 0);
 TELL_PARENT(getppid());
 WAIT_PARENT();
 lockabyte("child", fd, 1);
 } else { /* parent */
 lockabyte("parent", fd, 1);
 TELL_CHILD(pid);
 WAIT_CHILD();
 lockabyte("parent", fd, 0);
 }
 exit(0);
}

Implied Inheritance and Release of Locks

Three rules govern the automatic inheritance and release of record locks.

1. Locks are associated with a process and a file. This has two implications. The first is obvious: when a
process terminates, all its locks are released. The second is far from obvious: whenever a descriptor is
closed, any locks on the file referenced by that descriptor for that process are released. This means that if
we do

2. fd1 = open(pathname, ...);
3. read_lock(fd1, ...);
4. fd2 = dup(fd1);
5. close(fd2);

after the close(fd2) , the lock that was obtained on fd1 is released. The same thing would happen if we
replaced the dup with open , as in

 fd1 = open(pathname, ...);
 read_lock(fd1, ...);
 fd2 = open(pathname, ...)
 close(fd2);

to open the same file on another descriptor.

6. Locks are never inherited by the child across a fork . This means that if a process obtains a lock and then
calls fork , the child is considered another process with regard to the lock that was obtained by the
parent. The child has to call fcntl to obtain its own locks on any descriptors that were inherited across
the fork . This makes sense because locks are meant to prevent multiple processes from writing to the

same file at the same time. If the child inherited locks across a fork , both the parent and the child could
write to the same file at the same time.

7. Locks are inherited by a new program across an exec . Note, however, that if the close-on-exec flag is
set for a file descriptor, all locks for the underlying file are released when the descriptor is closed as part
of an exec .

FreeBSD Implementation

Let's take a brief look at the data structures used in the FreeBSD implementation. This should help clarify rule 1,
that locks are associated with a process and a file.

Consider a process that executes the following statements (ignoring error returns):

 fd1 = open(pathname, ...);
 write_lock(fd1, 0, SEEK_SET, 1); /* parent wr ite locks byte 0 */
 if ((pid = fork()) > 0) { /* parent */
 fd2 = dup(fd1);
 fd3 = open(pathname, ...);
 } else if (pid == 0) {
 read_lock(fd1, 1, SEEK_SET, 1); /* child rea d locks byte 1 */
 }
 pause();

Figure 14.8 shows the resulting data structures after both the parent and the child have paused.

Figure 14.8. The FreeBSD data structures for record locking

We've shown the data structures that result from the open , fork , and dup earlier (Figures 3.8 and 8.2). What is
new are the lockf structures that are linked together from the i-node structure. Note that each lockf structure
describes one locked region (defined by an offset and length) for a given process. We show two of these
structures: one for the parent's call to write_lock and one for the child's call to read_lock . Each structure
contains the corresponding process ID.

In the parent, closing any one of fd1 , fd2 , or fd3 causes the parent's lock to be released. When any one of these
three file descriptors is closed, the kernel goes through the linked list of locks for the corresponding i-node and
releases the locks held by the calling process. The kernel can't tell (and doesn't care) which descriptor of the
three was used by the parent to obtain the lock.

Example

In the program in Figure 13.6, we saw how a daemon can use a lock on a file to ensure that only one copy of the
daemon is running. Figure 14.9 shows the implementation of the lockfile function used by the daemon to
place a write lock on a file.

Alternatively, we could define the lockfile function in terms of the write_lock function:

 #define lockfile(fd) write_lock((fd), 0, SEEK_SE T, 0)

Figure 14.9. Place a write lock on an entire file

#include <unistd.h>
#include <fcntl.h>

int
lockfile(int fd)
{
 struct flock fl;

 fl.l_type = F_WRLCK;
 fl.l_start = 0;
 fl.l_whence = SEEK_SET;
 fl.l_len = 0;
 return(fcntl(fd, F_SETLK, &fl));
}

Locks at End of File

Use caution when locking or unlocking relative to the end of file. Most implementations convert an l_whence
value of SEEK_CUR or SEEK_END into an absolute file offset, using l_start and the file's current position or
current length. Often, however, we need to specify a lock relative to the file's current position or current length,
because we can't call lseek to obtain the current file offset, since we don't have a lock on the file. (There's a
chance that another process could change the file's length between the call to lseek and the lock call.)

Consider the following sequence of steps:

 writew_lock(fd, 0, SEEK_END, 0);
 write(fd, buf, 1);
 un_lock(fd, 0, SEEK_END);
 write(fd, buf, 1);

This sequence of code might not do what you expect. It obtains a write lock from the current end of the file
onward, covering any future data we might append to the file. Assuming that we are at end of file when we
perform the first write , that will extend the file by one byte, and that byte will be locked. The unlock that
follows has the effect of removing the locks for future writes that append data to the file, but it leaves a lock on

the last byte in the file. When the second write occurs, the end of file is extended by one byte, but this byte is
not locked. The state of the file locks for this sequence of steps is shown in Figure 14.10

Figure 14.10. File range lock diagram

When a portion of a file is locked, the kernel converts the offset specified into an absolute file offset. In addition
to specifying an absolute file offset (SEEK_SET), fcntl allows us to specify this offset relative to a point in the
file: current (SEEK_CUR) or end of file (SEEK_END). The kernel needs to remember the locks independent of the
current file offset or end of file, because the current offset and end of file can change, and changes to these
attributes shouldn't affect the state of existing locks.

If we intended to remove the lock covering the byte we wrote in the first write, we could have specified the
length as -1. Negative-length values represent the bytes before the specified offset.

Advisory versus Mandatory Locking

Consider a library of database access routines. If all the functions in the library handle record locking in a
consistent way, then we say that any set of processes using these functions to access a database are cooperating
processes. It is feasible for these database access functions to use advisory locking if they are the only ones
being used to access the database. But advisory locking doesn't prevent some other process that has write
permission for the database file from writing whatever it wants to the database file. This rogue process would be
an uncooperating process, since it's not using the accepted method (the library of database functions) to access
the database.

Mandatory locking causes the kernel to check every open , read , and write to verify that the calling process
isn't violating a lock on the file being accessed. Mandatory locking is sometimes called enforcement-mode
locking.

We saw in Figure 14.2 that Linux 2.4.22 and Solaris 9 provide mandatory record locking, but FreeBSD 5.2.1
and Mac OS X 10.3 do not. Mandatory record locking is not part of the Single UNIX Specification. On Linux,
if you want mandatory locking, you need to enable it on a per file system basis by using the -o mand option to
the mount command.

Mandatory locking is enabled for a particular file by turning on the set-group-ID bit and turning off the group-
execute bit. (Recall Figure 4.12.) Since the set-group-ID bit makes no sense when the group-execute bit is off,
the designers of SVR3 chose this way to specify that the locking for a file is to be mandatory locking and not
advisory locking.

What happens to a process that tries to read or write a file that has mandatory locking enabled and the
specified part of the file is currently read-locked or write-locked by another process? The answer depends on
the type of operation (read or write), the type of lock held by the other process (read lock or write lock), and
whether the descriptor for the read or write is nonblocking. Figure 14.11 shows the eight possibilities.

Figure 14.11. Effect of mandatory locking on reads and writes by other processes

Blocking descriptor, tries
to

Nonblocking descriptor, tries
to Type of existing lock on region held by other

process read write read write

read lock OK blocks OK EAGAIN

write lock blocks blocks EAGAIN EAGAIN

In addition to the read and write functions in Figure 14.11, the open function can also be affected by
mandatory record locks held by another process. Normally, open succeeds, even if the file being opened has
outstanding mandatory record locks. The next read or write follows the rules listed in Figure 14.11. But if the
file being opened has outstanding mandatory record locks (either read locks or write locks), and if the flags in
the call to open specify either O_TRUNC or O_CREAT, then open returns an error of EAGAIN immediately,
regardless of whether O_NONBLOCK is specified.

Only Solaris treats the O_CREAT flag as an error case. Linux allows the O_CREAT flag to be specified when
opening a file with an outstanding mandatory lock. Generating the open error for O_TRUNC makes sense,
because the file cannot be truncated if it is read-locked or write-locked by another process. Generating the error
for O_CREAT, however, makes little sense; this flag says to create the file only if it doesn't already exist, but it
has to exist to be record-locked by another process.

This handling of locking conflicts with open can lead to surprising results. While developing the exercises in
this section, a test program was run that opened a file (whose mode specified mandatory locking), established a
read lock on an entire file, and then went to sleep for a while. (Recall from Figure 14.11 that a read lock should
prevent writing to the file by other processes.) During this sleep period, the following behavior was seen in
other typical UNIX System programs.

• The same file could be edited with the ed editor, and the results written back to disk! The mandatory
record locking had no effect at all. Using the system call trace feature provided by some versions of the
UNIX System, it was seen that ed wrote the new contents to a temporary file, removed the original file,
and then renamed the temporary file to be the original file. The mandatory record locking has no effect
on the unlink function, which allowed this to happen.

Under Solaris, the system call trace of a process is obtained by the truss (1) command. FreeBSD and
Mac OS X use the ktrace (1) and kdump(1) commands. Linux provides the strace (1) command for
tracing the system calls made by a process.

• The vi editor was never able to edit the file. It could read the file's contents, but whenever we tried to
write new data to the file, EAGAIN was returned. If we tried to append new data to the file, the write
blocked. This behavior from vi is what we expect.

• Using the Korn shell's > and >> operators to overwrite or append to the file resulted in the error "cannot
create."

• Using the same two operators with the Bourne shell resulted in an error for >, but the >> operator just
blocked until the mandatory lock was removed, and then proceeded. (The difference in the handling of
the append operator is because the Korn shell open s the file with O_CREAT and O_APPEND, and we
mentioned earlier that specifying O_CREAT generates an error. The Bourne shell, however, doesn't
specify O_CREAT if the file already exists, so the open succeeds but the next write blocks.)

Results will vary, depending on the version of the operating system you are using. The bottom line with this
exercise is to be wary of mandatory record locking. As seen with the ed example, it can be circumvented.

Mandatory record locking can also be used by a malicious user to hold a read lock on a file that is publicly
readable. This can prevent anyone from writing to the file. (Of course, the file has to have mandatory record
locking enabled for this to occur, which may require the user be able to change the permission bits of the file.)
Consider a database file that is world readable and has mandatory record locking enabled. If a malicious user
were to hold a read lock on the entire file, the file could not be written to by other processes.

Example

The program in Figure 14.12 determines whether mandatory locking is supported by a system.

This program creates a file and enables mandatory locking for the file. The program then splits into parent and
child, with the parent obtaining a write lock on the entire file. The child first sets its descriptor nonblocking and
then attempts to obtain a read lock on the file, expecting to get an error. This lets us see whether the system
returns EACCES or EAGAIN. Next, the child rewinds the file and tries to read from the file. If mandatory locking
is provided, the read should return EACCES or EAGAIN (since the descriptor is nonblocking). Otherwise, the
read returns the data that it read. Running this program under Solaris 9 (which supports mandatory locking)
gives us

$./a.out temp.lock
read_lock of already-locked region returns 11
read failed (mandatory locking works): Resource tem porarily unavailable

If we look at either the system's headers or the intro (2) manual page, we see that an errno of 11 corresponds
to EAGAIN. Under FreeBSD 5.2.1, we get

$./a.out temp.lock
read_lock of already-locked region returns 35
read OK (no mandatory locking), buf = ab

Here, an errno of 35 corresponds to EAGAIN. Mandatory locking is not supported.

Figure 14.12. Determine whether mandatory locking is supported

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[])
{
 int fd;
 pid_t pid;
 char buf[5];
 struct stat statbuf;
 if (argc != 2) {
 fprintf(stderr, "usage: %s filename\n", arg v[0]);
 exit(1);
 }
 if ((fd = open(argv[1], O_RDWR | O_CREAT | O_TR UNC, FILE_MODE)) < 0)
 err_sys("open error");
 if (write(fd, "abcdef", 6) != 6)
 err_sys("write error");

 /* turn on set-group-ID and turn off group-exec ute */
 if (fstat(fd, &statbuf) < 0)
 err_sys("fstat error");
 if (fchmod(fd, (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)
 err_sys("fchmod error");

 TELL_WAIT();

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid > 0) { /* parent */
 /* write lock entire file */
 if (write_lock(fd, 0, SEEK_SET, 0) < 0)
 err_sys("write_lock error");

 TELL_CHILD(pid);

 if (waitpid(pid, NULL, 0) < 0)
 err_sys("waitpid error");
 } else { /* child */
 WAIT_PARENT(); /* wait for parent to s et lock */

 set_fl(fd, O_NONBLOCK);

 /* first let's see what error we get if regi on is locked */
 if (read_lock(fd, 0, SEEK_SET, 0) != -1) /* no wait */
 err_sys("child: read_lock succeeded");
 printf("read_lock of already-locked region r eturns %d\n",
 errno);

 /* now try to read the mandatory locked file */
 if (lseek(fd, 0, SEEK_SET) == -1)
 err_sys("lseek error");
 if (read(fd, buf, 2) < 0)
 err_ret("read failed (mandatory locking works)");
 else
 printf("read OK (no mandatory locking), buf = %2.2s\n",
 buf);
 }
 exit(0);
}

Example

Let's return to the first question of this section: what happens when two people edit the same file at
the same time? The normal UNIX System text editors do not use record locking, so the answer is
still that the final result of the file corresponds to the last process that wrote the file.

Some versions of the vi editor use advisory record locking. Even if we were using one of these
versions of vi , it still doesn't prevent users from running another editor that doesn't use advisory
record locking.

If the system provides mandatory record locking, we could modify our favorite editor to use it (if we
have the sources). Not having the source code to the editor, we might try the following. We write
our own program that is a front end to vi . This program immediately calls fork , and the parent just
waits for the child to complete. The child opens the file specified on the command line, enables
mandatory locking, obtains a write lock on the entire file, and then executes vi . While vi is running,
the file is write-locked, so other users can't modify it. When vi terminates, the parent's wait returns,
and our front end terminates.

A small front-end program of this type can be written, but it doesn't work. The problem is that it is
common for most editors to read their input file and then close it. A lock is released on a file
whenever a descriptor that references that file is closed. This means that when the editor closes the
file after reading its contents, the lock is gone. There is no way to prevent this in the front-end
program.

We'll use record locking in Chapter 20 in our database library to provide concurrent access to multiple
processes. We'll also provide some timing measurements to see what effect record locking has on a process.

14.4. STREAMS

The STREAMS mechanism is provided by System V as a general way to interface communication drivers into
the kernel. We need to discuss STREAMS to understand the terminal interface in System V, the use of the poll
function for I/O multiplexing (Section 14.5.2), and the implementation of STREAMS-based pipes and named
pipes (Sections 17.2 and 17.2.1).

Be careful not to confuse this usage of the word stream with our previous usage of it in the standard I/O library
(Section 5.2). The streams mechanism was developed by Dennis Ritchie [Ritchie 1984] as a way of cleaning up
the traditional character I/O system (c-lists) and to accommodate networking protocols. The streams mechanism
was later added to SVR3, after enhancing it a bit and capitalizing the name. Complete support for STREAMS
(i.e., a STREAMS-based terminal I/O system) was provided with SVR4. The SVR4 implementation is
described in [AT&T 1990d]. Rago [1993] discusses both user-level STREAMS programming and kernel-level
STREAMS programming.

STREAMS is an optional feature in the Single UNIX Specification (included as the XSI STREAMS Option
Group). Of the four platforms discussed in this text, only Solaris provides native support for STREAMS. A
STREAMS subsystem is available for Linux, but you need to add it yourself. It is not usually included by
default.

A stream provides a full-duplex path between a user process and a device driver. There is no need for a stream
to talk to a hardware device; a stream can also be used with a pseudo-device driver. Figure 14.13 shows the
basic picture for what is called a simple stream.

Figure 14.13. A simple stream

Beneath the stream head, we can push processing modules onto the stream. This is done using an ioctl
command. Figure 14.14 shows a stream with a single processing module. We also show the connection between
these boxes with two arrows to stress the full-duplex nature of streams and to emphasize that the processing in
one direction is separate from the processing in the other direction.

Figure 14.14. A stream with a processing module

Any number of processing modules can be pushed onto a stream. We use the term push, because each new
module goes beneath the stream head, pushing any previously pushed modules down. (This is similar to a last-
in, first-out stack.) In Figure 14.14, we have labeled the downstream and upstream sides of the stream. Data that
we write to a stream head is sent downstream. Data read by the device driver is sent upstream.

STREAMS modules are similar to device drivers in that they execute as part of the kernel, and they are
normally link edited into the kernel when the kernel is built. If the system supports dynamically-loadable kernel
modules (as do Linux and Solaris), then we can take a STREAMS module that has not been link edited into the
kernel and try to push it onto a stream; however, there is no guarantee that arbitrary combinations of modules
and drivers will work properly together.

We access a stream with the functions from Chapter 3: open , close , read , write , and ioctl . Additionally,
three new functions were added to the SVR3 kernel to support STREAMS (getmsg , putmsg , and poll), and
another two (getpmsg and putpmsg) were added with SVR4 to handle messages with different priority bands
within a stream. We describe these five new functions later in this section.

The pathname that we open for a stream normally lives beneath the /dev directory. Simply looking at the
device name using ls -l , we can't tell whether the device is a STREAMS device. All STREAMS devices are
character special files.

Although some STREAMS documentation implies that we can write processing modules and push them willy-
nilly onto a stream, the writing of these modules requires the same skills and care as writing a device driver.
Generally, only specialized applications or functions push and pop STREAMS modules.

Before STREAMS, terminals were handled with the existing c-list mechanism. (Section 10.3.1 of Bach [1986]
and Section 10.6 of McKusick et al. [1996] describe c-lists in SVR2 and 4.4BSD, respectively.) Adding other
character-based devices to the kernel usually involved writing a device driver and putting everything into the
driver. Access to the new device was typically through the raw device, meaning that every user read or write

ended up directly in the device driver. The STREAMS mechanism cleans up this way of interacting, allowing
the data to flow between the stream head and the driver in STREAMS messages and allowing any number of
intermediate processing modules to operate on the data.

STREAMS Messages

All input and output under STREAMS is based on messages. The stream head and the user process exchange
messages using read , write , ioctl , getmsg , getpmsg , putmsg , and putpmsg . Messages are also passed up and
down a stream between the stream head, the processing modules, and the device driver.

Between the user process and the stream head, a message consists of a message type, optional control
information, and optional data. We show in Figure 14.15 how the various message types are generated by the
arguments to write , putmsg , and putpmsg . The control information and data are specified by strbuf
structures:

 struct strbuf
 int maxlen; /* size of buffer */
 int len; /* number of bytes currently in b uffer */
 char *buf; /* pointer to buffer */
 };

Figure 14.15. Type of STREAMS message generated for write, putmsg, and putpmsg

Function Control? Data? band flag Message type generated

write N/A yes N/A N/A M_DATA (ordinary)

putmsg no no N/A 0 no message sent, returns 0

putmsg no yes N/A 0 M_DATA (ordinary)

putmsg yes yes or no N/A 0 M_PROTO (ordinary)

putmsg yes yes or no N/A RS_HIPRI M_PCPROTO (high-priority)

putmsg no yes or no N/A RS_HIPRI error, EINVAL

putpmsg yes or no yes or no 0–255 0 error, EINVAL

putpmsg no no 0–255 MSG_BAND no message sent, returns 0

putpmsg no yes 0 MSG_BAND M_DATA (ordinary)

putpmsg no yes 1–255 MSG_BAND M_DATA (priority band)

putpmsg yes yes or no 0 MSG_BAND M_PROTO (ordinary)

putpmsg yes yes or no 1–255 MSG_BAND M_PROTO (priority band)

putpmsg yes yes or no 0 MSG_HIPRI M_PCPROTO (high-priority)

putpmsg no yes or no 0 MSG_HIPRI error, EINVAL

putpmsg yes or no yes or no nonzero MSG_HIPRI error, EINVAL

When we send a message with putmsg or putpmsg , len specifies the number of bytes of data in the buffer.
When we receive a message with getmsg or getpmsg , maxlen specifies the size of the buffer (so the kernel
won't overflow the buffer), and len is set by the kernel to the amount of data stored in the buffer. We'll see that
a zero-length message is OK and that a len of –1 can specify that there is no control or data.

Why do we need to pass both control information and data? Providing both allows us to implement service
interfaces between a user process and a stream. Olander, McGrath, and Israel [1986] describe the original
implementation of service interfaces in System V. Chapter 5 of AT&T [1990d] describes service interfaces in
detail, along with a simple example. Probably the best-known service interface, described in Chapter 4 of Rago
[1993], is the System V Transport Layer Interface (TLI), which provides an interface to the networking system.

Another example of control information is sending a connectionless network message (a datagram). To send the
message, we need to specify the contents of the message (the data) and the destination address for the message
(the control information). If we couldn't send control and data together, some ad hoc scheme would be required.
For example, we could specify the address using an ioctl , followed by a write of the data. Another technique
would be to require that the address occupy the first N bytes of the data that is written using write . Separating
the control information from the data, and providing functions that handle both (putmsg and getmsg) is a
cleaner way to handle this.

There are about 25 different types of messages, but only a few of these are used between the user process and
the stream head. The rest are passed up and down a stream within the kernel. (These message types are of
interest to people writing STREAMS processing modules, but can safely be ignored by people writing user-
level code.) We'll encounter only three of these message types with the functions we use (read , write , getmsg ,
getpmsg , putmsg , and putpmsg):

• M_DATA (user data for I/O)
• M_PROTO (protocol control information)
• M_PCPROTO (high-priority protocol control information)

Every message on a stream has a queueing priority:

• High-priority messages (highest priority)
• Priority band messages
• Ordinary messages (lowest priority)

Ordinary messages are simply priority band messages with a band of 0. Priority band messages have a band of
1–255, with a higher band specifying a higher priority. High-priority messages are special in that only one is
queued by the stream head at a time. Additional high-priority messages are discarded when one is already on
the stream head's read queue.

Each STREAMS module has two input queues. One receives messages from the module above (messages
moving downstream from the stream head toward the driver), and one receives messages from the module
below (messages moving upstream from the driver toward the stream head). The messages on an input queue
are arranged by priority. We show in Figure 14.15 how the arguments to write , putmsg , and putpmsg cause
these various priority messages to be generated.

There are other types of messages that we don't consider. For example, if the stream head receives an M_SIG
message from below, it generates a signal. This is how a terminal line discipline module sends the terminal-
generated signals to the foreground process group associated with a controlling terminal.

putmsg and putpmsg Functions

A STREAMS message (control information or data, or both) is written to a stream using either putmsg or
putpmsg . The difference in these two functions is that the latter allows us to specify a priority band for the
message.

#include <stropts.h>

int putmsg(int filedes, const struct strbuf *ctlptr ,
 const struct strbuf *dataptr, int flag);

int putpmsg(int filedes, const struct strbuf *ctlpt r,
 const struct strbuf *dataptr, int band
, int flag);

Both return: 0 if OK, –1 on error

We can also write to a stream, which is equivalent to a putmsg without any control information and with a flag
of 0.

These two functions can generate the three different priorities of messages: ordinary, priority band, and high
priority. Figure 14.15 details the combinations of the arguments to these two functions that generate the various
types of messages.

The notation "N/A" means not applicable. In this figure, a "no" for the control portion of the message
corresponds to either a null ctlptr argument or ctlptr–>len being –1. A "yes" for the control portion corresponds
to ctlptr being non-null and ctlptr–>len being greater than or equal to 0. The data portion of the message is
handled equivalently (using dataptr instead of ctlptr).

STREAMS ioctl Operations

In Section 3.15, we said that the ioctl function is the catchall for anything that can't be done with the other I/O
functions. The STREAMS system continues this tradition.

Between Linux and Solaris, there are almost 40 different operations that can be performed on a stream using
ioctl . Most of these operations are documented in the streamio (7) manual page. The header <stropts.h>
must be included in C code that uses any of these operations. The second argument for ioctl , request, specifies
which of the operations to perform. All the requests begin with I_ . The third argument depends on the request.
Sometimes, the third argument is an integer value; sometimes, it's a pointer to an integer or a structure.

Example—isastream Function

We sometimes need to determine if a descriptor refers to a stream or not. This is similar to calling the isatty
function to determine if a descriptor refers to a terminal device (Section 18.9). Linux and Solaris provide the
isastream function.

#include <stropts.h>

int isastream(int filedes);

Returns: 1 (true) if STREAMS device, 0 (false) otherwise

Like isatty , this is usually a trivial function that merely tries an ioctl that is valid only on a STREAMS
device. Figure 14.16 shows one possible implementation of this function. We use the I_CANPUT ioctl
command, which checks if the band specified by the third argument (0 in the example) is writable. If the ioctl
succeeds, the stream is not changed.

We can use the program in Figure 14.17 to test this function.

Running this program on Solaris 9 shows the various errors returned by the ioctl function:

 $./a.out /dev/tty /dev/fb /dev/null /etc/motd
 /dev/tty: streams device
 /dev/fb: not a stream: Invalid argument
 /dev/null: not a stream: No such device or addre ss
 /etc/motd: not a stream: Inappropriate ioctl for device

Note that /dev/tty is a STREAMS device, as we expect under Solaris. The character special file /dev/fb is
not a STREAMS device, but it supports other ioctl requests. These devices return EINVAL when the ioctl
request is unknown. The character special file /dev/null does not support any ioctl operations, so the error
ENODEV is returned. Finally, /etc/motd is a regular file, not a character special file, so the classic error ENOTTY
is returned. We never receive the error we might expect: ENOSTR ("Device is not a stream").

The message for ENOTTY used to be "Not a typewriter," a historical artifact because the UNIX kernel returns
ENOTTY whenever an ioctl is attempted on a descriptor that doesn't refer to a character special device. This
message has been updated on Solaris to "Inappropriate ioctl for device."

Figure 14.16. Check if descriptor is a STREAMS device

#include <stropts.h>
#include <unistd.h>

int
isastream(int fd)
{
 return(ioctl(fd, I_CANPUT, 0) != -1);
}

Figure 14.17. Test the isastream function

#include "apue.h"
#include <fcntl.h>

int
main(int argc, char *argv[])
{
 int i, fd;

 for (i = 1; i < argc; i++) {
 if ((fd = open(argv[i], O_RDONLY)) < 0) {
 err_ret("%s: can't open", argv[i]);

 continue;
 }

 if (isastream(fd) == 0)
 err_ret("%s: not a stream", argv[i]);
 else
 err_msg("%s: streams device", argv[i]);
 }

 exit(0);
}

Example

If the ioctl request is I_LIST , the system returns the names of all the modules on the stream—the ones that
have been pushed onto the stream, including the topmost driver. (We say topmost because in the case of a
multiplexing driver, there may be more than one driver. Chapter 12 of Rago [1993] discusses multiplexing
drivers in detail.) The third argument must be a pointer to a str_list structure:

 struct str_list {
 int sl_nmods; /* number of en tries in array */
 struct str_mlist *sl_modlist; /* ptr to first element of array */
 };

We have to set sl_modlist to point to the first element of an array of str_mlist structures and set sl_nmods
to the number of entries in the array:

 struct str_mlist {
 char l_name[FMNAMESZ+1]; /* null terminated mo dule name */
 };

The constant FMNAMESZ is defined in the header <sys/conf.h> and is often 8. The extra byte in l_name is for
the terminating null byte.

If the third argument to the ioctl is 0, the count of the number of modules is returned (as the value of ioctl)
instead of the module names. We'll use this to determine the number of modules and then allocate the required
number of str_mlist structures.

Figure 14.18 illustrates the I_LIST operation. Since the returned list of names doesn't differentiate between the
modules and the driver, when we print the module names, we know that the final entry in the list is the driver at
the bottom of the stream.

If we run the program in Figure 14.18 from both a network login and a console login, to see which STREAMS
modules are pushed onto the controlling terminal, we get the following:

 $ who
 sar console May 1 18:27
 sar pts/7 Jul 12 06:53
 $./a.out /dev/console
 #modules = 5
 module: redirmod
 module: ttcompat

 module: ldterm
 module: ptem
 driver: pts
 $./a.out /dev/pts/7
 #modules = 4
 module: ttcompat
 module: ldterm
 module: ptem
 driver: pts

The modules are the same in both cases, except that the console has an extra module on top that helps with
virtual console redirection. On this computer, a windowing system was running on the console, so
/dev/console actually refers to a pseudo terminal instead of to a hardwired device. We'll return to the pseudo
terminal case in Chapter 19.

Figure 14.18. List the names of the modules on a stream

#include "apue.h"
#include <fcntl.h>
#include <stropts.h>
#include <sys/conf.h>

int
main(int argc, char *argv[])
{
 int fd, i, nmods;
 struct str_list list;

 if (argc != 2)
 err_quit("usage: %s <pathname>", argv[0]);

 if ((fd = open(argv[1], O_RDONLY)) < 0)
 err_sys("can't open %s", argv[1]);
 if (isastream(fd) == 0)
 err_quit("%s is not a stream", argv[1]);

 /*
 * Fetch number of modules.
 */
 if ((nmods = ioctl(fd, I_LIST, (void *) 0)) < 0)
 err_sys("I_LIST error for nmods");
 printf("#modules = %d\n", nmods);

 /*
 * Allocate storage for all the module names.
 */
 list.sl_modlist = calloc(nmods, sizeof(struct s tr_mlist));
 if (list.sl_modlist == NULL)
 err_sys("calloc error");
 list.sl_nmods = nmods;

 /*
 * Fetch the module names.
 */
 if (ioctl(fd, I_LIST, &list) < 0)
 err_sys("I_LIST error for list");

 /*
 * Print the names.

 */
 for (i = 1; i <= nmods; i++)
 printf(" %s: %s\n", (i == nmods) ? "driver" : "module",
 list.sl_modlist++->l_name);

 exit(0);
}

write to STREAMS Devices

In Figure 14.15 we said that a write to a STREAMS device generates an M_DATA message. Although this is
generally true, there are some additional details to consider. First, with a stream, the topmost processing module
specifies the minimum and maximum packet sizes that can be sent downstream. (We are unable to query the
module for these values.) If we write more than the maximum, the stream head normally breaks the data into
packets of the maximum size, with one final packet that can be smaller than the maximum.

The next thing to consider is what happens if we write zero bytes to a stream. Unless the stream refers to a pipe
or FIFO, a zero-length message is sent downstream. With a pipe or FIFO, the default is to ignore the zero-length
write , for compatibility with previous versions. We can change this default for pipes and FIFOs using an
ioctl to set the write mode for the stream.

Write Mode

Two ioctl commands fetch and set the write mode for a stream. Setting request to I_GWROPT requires that the
third argument be a pointer to an integer, and the current write mode for the stream is returned in that integer. If
request is I_SWROPT, the third argument is an integer whose value becomes the new write mode for the stream.
As with the file descriptor flags and the file status flags (Section 3.14), we should always fetch the current write
mode value and modify it rather than set the write mode to some absolute value (possibly turning off some other
bits that were enabled).

Currently, only two write mode values are defined.

SNDZERO A zero-length write to a pipe or FIFO will cause a zero-length message to be sent downstream. By
default, this zero-length write sends no message.

SNDPIPE Causes SIGPIPE to be sent to the calling process that calls either write or putmsg after an error has
occurred on a stream.

A stream also has a read mode, and we'll look at it after describing the getmsg and getpmsg functions.

getmsg and getpmsg Functions

STREAMS messages are read from a stream head using read , getmsg , or getpmsg .

#include <stropts.h>

int getmsg(int filedes, struct strbuf *restrict ctl ptr,
 struct strbuf *restrict dataptr, int *re strict flagptr);

int getpmsg(int filedes, struct strbuf *restrict ct lptr,
 struct strbuf *restrict dataptr, int *r estrict bandptr,
 int *restrict flagptr);

Both return: non-negative value if OK, –1 on error

Note that flagptr and bandptr are pointers to integers. The integer pointed to by these two pointers must be set
before the call to specify the type of message desired, and the integer is also set on return to the type of message
that was read.

If the integer pointed to by flagptr is 0, getmsg returns the next message on the stream head's read queue. If the
next message is a high-priority message, the integer pointed to by flagptr is set to RS_HIPRI on return. If we
want to receive only high-priority messages, we must set the integer pointed to by flagptr to RS_HIPRI before
calling getmsg .

A different set of constants is used by getpmsg . We can set the integer pointed to by flagptr to MSG_HIPRI to
receive only high-priority messages. We can set the integer to MSG_BAND and then set the integer pointed to by
bandptr to a nonzero priority value to receive only messages from that band, or higher (including high-priority
messages). If we only want to receive the first available message, we can set the integer pointed to by flagptr to
MSG_ANY; on return, the integer will be overwritten with either MSG_HIPRI or MSG_BAND, depending on the type
of message received. If the message we retrieved was not a high-priority message, the integer pointed to by
bandptr will contain the message's priority band.

If ctlptr is null or ctlptr–>maxlen is –1, the control portion of the message will remain on the stream head's read
queue, and we will not process it. Similarly, if dataptr is null or dataptr–>maxlen is –1, the data portion of the
message is not processed and remains on the stream head's read queue. Otherwise, we will retrieve as much
control and data portions of the message as our buffers will hold, and any remainder will be left on the head of
the queue for the next call.

If the call to getmsg or getpmsg retrieves a message, the return value is 0. If part of the control portion of the
message is left on the stream head read queue, the constant MORECTL is returned. Similarly, if part of the data
portion of the message is left on the queue, the constant MOREDATA is returned. If both control and data are left,
the return value is (MORECTL|MOREDATA).

Read Mode

We also need to consider what happens if we read from a STREAMS device. There are two potential problems.

1. What happens to the record boundaries associated with the messages on a stream?
2. What happens if we call read and the next message on the stream has control information?

The default handling for condition 1 is called byte-stream mode. In this mode, a read takes data from the
stream until the requested number of bytes has been read or until there is no more data. The message boundaries
associated with the STREAMS messages are ignored in this mode. The default handling for condition 2 causes

the read to return an error if there is a control message at the front of the queue. We can change either of these
defaults.

Using ioctl , if we set request to I_GRDOPT, the third argument is a pointer to an integer, and the current read
mode for the stream is returned in that integer. A request of I_SRDOPT takes the integer value of the third
argument and sets the read mode to that value. The read mode is specified by one of the following three
constants:

RNORM Normal, byte-stream mode (the default), as described previously.

RMSGN Message-nondiscard mode. A read takes data from a stream until the requested number of bytes have
been read or until a message boundary is encountered. If the read uses a partial message, the rest of the
data in the message is left on the stream for a subsequent read .

RMSGD Message-discard mode. This is like the nondiscard mode, but if a partial message is used, the remainder
of the message is discarded.

Three additional constants can be specified in the read mode to set the behavior of read when it encounters
messages containing protocol control information on a stream:

RPROTNORM Protocol-normal mode: read returns an error of EBADMSG. This is the default.

RPROTDAT Protocol-data mode: read returns the control portion as data.

RPROTDIS Protocol-discard mode: read discards the control information but returns any data in the message.

Only one of the message read modes and one of the protocol read modes can be set at a time. The default read
mode is (RNORM|RPROTNORM).

Example

The program in Figure 14.19 is the same as the one in Figure 3.4, but recoded to use getmsg instead of read .

If we run this program under Solaris, where both pipes and terminals are implemented using STREAMS, we get
the following output:

 $ echo hello, world | ./a.out requires STREAMS-based pipes
 flag = 0, ctl.len = -1, dat.len = 13
 hello, world
 flag = 0, ctl.len = 0, dat.len = 0 indicates a STREAMS hangup
 $./a.out requires STREAMS-based terminals
 this is line 1
 flag = 0, ctl.len = -1, dat.len = 15
 this is line 1
 and line 2
 flag = 0, ctl.len = -1, dat.len = 11
 and line 2
 ^D type the terminal EOF character
 flag = 0, ctl.len = -1, dat.len = 0 tty end o f file is not the same as a hangup
 $./a.out < /etc/motd
 getmsg error: Not a stream device

When the pipe is closed (when echo terminates), it appears to the program in Figure 14.19 as a STREAMS
hangup, with both the control length and the data length set to 0. (We discuss pipes in Section 15.2.) With a
terminal, however, typing the end-of-file character causes only the data length to be returned as 0. This terminal
end of file is not the same as a STREAMS hangup. As expected, when we redirect standard input to be a non-
STREAMS device, getmsg returns an error.

Figure 14.19. Copy standard input to standard output using getmsg

#include "apue.h"
#include <stropts.h>

#define BUFFSIZE 4096

int
main(void)
{
 int n, flag;
 char ctlbuf[BUFFSIZE], datbuf[BUFFSI ZE];
 struct strbuf ctl, dat;

 ctl.buf = ctlbuf;
 ctl.maxlen = BUFFSIZE;
 dat.buf = datbuf;
 dat.maxlen = BUFFSIZE;
 for (; ;) {
 flag = 0; /* return any message */
 if ((n = getmsg(STDIN_FILENO, &ctl, &dat, & flag)) < 0)
 err_sys("getmsg error");
 fprintf(stderr, "flag = %d, ctl.len = %d, d at.len = %d\n",
 flag, ctl.len, dat.len);
 if (dat.len == 0)
 exit(0);
 else if (dat.len > 0)
 if (write(STDOUT_FILENO, dat.buf, dat.l en) != dat.len)
 err_sys("write error");
 }
}

14.5. I/O Multiplexing

When we read from one descriptor and write to another, we can use blocking I/O in a loop, such as

 while ((n = read(STDIN_FILENO, buf, BUFSIZ)) > 0)
 if (write(STDOUT_FILENO, buf, n) != n)
 err_sys("write error");

We see this form of blocking I/O over and over again. What if we have to read from two descriptors? In this
case, we can't do a blocking read on either descriptor, as data may appear on one descriptor while we're
blocked in a read on the other. A different technique is required to handle this case.

Let's look at the structure of the telnet (1) command. In this program, we read from the terminal (standard
input) and write to a network connection, and we read from the network connection and write to the terminal
(standard output). At the other end of the network connection, the telnetd daemon reads what we typed and
presents it to a shell as if we were logged in to the remote machine. The telnetd daemon sends any output
generated by the commands we type back to us through the telnet command, to be displayed on our terminal.
Figure 14.20 shows a picture of this.

Figure 14.20. Overview of telnet program

The telnet process has two inputs and two outputs. We can't do a blocking read on either of the inputs, as we
never know which input will have data for us.

One way to handle this particular problem is to divide the process in two pieces (using fork), with each half
handling one direction of data. We show this in Figure 14.21. (The cu (1) command provided with System V's
uucp communication package was structured like this.)

Figure 14.21. The telnet program using two processes

If we use two processes, we can let each process do a blocking read . But this leads to a problem when the
operation terminates. If an end of file is received by the child (the network connection is disconnected by the
telnetd daemon), then the child terminates, and the parent is notified by the SIGCHLD signal. But if the parent

terminates (the user enters an end of file at the terminal), then the parent has to tell the child to stop. We can use
a signal for this (SIGUSR1, for example), but it does complicate the program somewhat.

Instead of two processes, we could use two threads in a single process. This avoids the termination complexity,
but requires that we deal with synchronization between the threads, which could add more complexity than it
saves.

We could use nonblocking I/O in a single process by setting both descriptors nonblocking and issuing a read on
the first descriptor. If data is present, we read it and process it. If there is no data to read, the call returns
immediately. We then do the same thing with the second descriptor. After this, we wait for some amount of
time (a few seconds, perhaps) and then try to read from the first descriptor again. This type of loop is called
polling. The problem is that it wastes CPU time. Most of the time, there won't be data to read, so we waste time
performing the read system calls. We also have to guess how long to wait each time around the loop. Although
it works on any system that supports nonblocking I/O, polling should be avoided on a multitasking system.

Another technique is called asynchronous I/O. To do this, we tell the kernel to notify us with a signal when a
descriptor is ready for I/O. There are two problems with this. First, not all systems support this feature (it is an
optional facility in the Single UNIX Specification). System V provides the SIGPOLL signal for this technique,
but this signal works only if the descriptor refers to a STREAMS device. BSD has a similar signal, SIGIO , but it
has similar limitations: it works only on descriptors that refer to terminal devices or networks. The second
problem with this technique is that there is only one of these signals per process (SIGPOLL or SIGIO). If we
enable this signal for two descriptors (in the example we've been talking about, reading from two descriptors),
the occurrence of the signal doesn't tell us which descriptor is ready. To determine which descriptor is ready, we
still need to set each nonblocking and try them in sequence. We describe asynchronous I/O briefly in Section
14.6.

A better technique is to use I/O multiplexing. To do this, we build a list of the descriptors that we are interested
in (usually more than one descriptor) and call a function that doesn't return until one of the descriptors is ready
for I/O. On return from the function, we are told which descriptors are ready for I/O.

Three functions—poll , pselect , and select —allow us to perform I/O multiplexing. Figure 14.22 summarizes
which platforms support them. Note that select is defined by the base POSIX.1 standard, but poll is an XSI
extension to the base.

Figure 14.22. I/O multiplexing supported by various UNIX systems

System poll pselect select <sys/select.h>

SUS XSI • • •

FreeBSD 5.2.1 • • •

Linux 2.4.22 • • • •

Mac OS X 10.3 • • •

Solaris 9 • • •

POSIX specifies that <sys/select> be included to pull the information for select into your program.
Historically, however, we have had to include three other header files, and some of the implementations haven't

yet caught up to the standard. Check the select manual page to see what your system supports. Older systems
require that you include <sys/types.h> , <sys/time.h> , and <unistd.h> .

I/O multiplexing was provided with the select function in 4.2BSD. This function has always worked with any
descriptor, although its main use has been for terminal I/O and network I/O. SVR3 added the poll function
when the STREAMS mechanism was added. Initially, however, poll worked only with STREAMS devices. In
SVR4, support was added to allow poll to work on any descriptor.

14.5.1. select and pselect Functions

The select function lets us do I/O multiplexing under all POSIX-compatible platforms. The arguments we pass
to select tell the kernel

• Which descriptors we're interested in.
• What conditions we're interested in for each descriptor. (Do we want to read from a given descriptor?

Do we want to write to a given descriptor? Are we interested in an exception condition for a given
descriptor?)

• How long we want to wait. (We can wait forever, wait a fixed amount of time, or not wait at all.)

On the return from select , the kernel tells us

• The total count of the number of descriptors that are ready
• Which descriptors are ready for each of the three conditions (read, write, or exception condition)

With this return information, we can call the appropriate I/O function (usually read or write) and know that
the function won't block.

#include <sys/select.h>

int select(int maxfdp1, fd_set *restrict readfds,
 fd_set *restrict writefds, fd_set *restr ict exceptfds,
 struct timeval *restrict tvptr);

Returns: count of ready descriptors, 0 on timeout, –1 on error

Let's look at the last argument first. This specifies how long we want to wait:

 struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
 };

There are three conditions.

 tvptr == NULL

Wait forever. This infinite wait can be interrupted if we catch a signal. Return is made when one of the specified
descriptors is ready or when a signal is caught. If a signal is caught, select returns –1 with errno set to EINTR.

 tvptr->tv_sec == 0 && tvptr->tv_usec == 0

Don't wait at all. All the specified descriptors are tested, and return is made immediately. This is a way to poll
the system to find out the status of multiple descriptors, without blocking in the select function.

 tvptr->tv_sec != 0 || tvptr->tv_usec != 0

Wait the specified number of seconds and microseconds. Return is made when one of the specified descriptors
is ready or when the timeout value expires. If the timeout expires before any of the descriptors is ready, the
return value is 0. (If the system doesn't provide microsecond resolution, the tvptr–>tv_usec value is rounded up
to the nearest supported value.) As with the first condition, this wait can also be interrupted by a caught signal.

POSIX.1 allows an implementation to modify the timeval structure, so after select returns, you can't rely on
the structure containing the same values it did before calling select . FreeBSD 5.2.1, Mac OS X 10.3, and
Solaris 9 all leave the structure unchanged, but Linux 2.4.22 will update it with the time remaining if select
returns before the timeout value expires.

The middle three arguments—readfds, writefds, and exceptfds—are pointers to descriptor sets. These three sets
specify which descriptors we're interested in and for which conditions (readable, writable, or an exception
condition). A descriptor set is stored in an fd_set data type. This data type is chosen by the implementation so
that it can hold one bit for each possible descriptor. We can consider it to be just a big array of bits, as shown in
Figure 14.23.

Figure 14.23. Specifying the read, write, and exception descriptors for select

The only thing we can do with the fd_set data type is allocate a variable of this type, assign a variable of this
type to another variable of the same type, or use one of the following four functions on a variable of this type.

#include <sys/select.h>

int FD_ISSET(int fd, fd_set *fdset);

Returns: nonzero if fd is in set, 0 otherwise

#include <sys/select.h>

int FD_ISSET(int fd, fd_set *fdset);

void FD_CLR(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_ZERO(fd_set *fdset);

These interfaces can be implemented as either macros or functions. An fd_set is set to all zero bits by calling
FD_ZERO. To turn on a single bit in a set, we use FD_SET. We can clear a single bit by calling FD_CLR. Finally,
we can test whether a given bit is turned on in the set with FD_ISSET.

After declaring a descriptor set, we must zero the set using FD_ZERO. We then set bits in the set for each
descriptor that we're interested in, as in

 fd_set rset;
 int fd;

 FD_ZERO(&rset);
 FD_SET(fd, &rset);
 FD_SET(STDIN_FILENO, &rset);

On return from select , we can test whether a given bit in the set is still on using FD_ISSET:

 if (FD_ISSET(fd, &rset)) {
 ...
 }

Any (or all) of the middle three arguments to select (the pointers to the descriptor sets) can be null pointers if
we're not interested in that condition. If all three pointers are NULL, then we have a higher precision timer than
provided by sleep . (Recall from Section 10.19 that sleep waits for an integral number of seconds. With
select , we can wait for intervals less than 1 second; the actual resolution depends on the system's clock.)
Exercise 14.6 shows such a function.

The first argument to select , maxfdp1, stands for "maximum file descriptor plus 1." We calculate the highest
descriptor that we're interested in, considering all three of the descriptor sets, add 1, and that's the first argument.
We could just set the first argument to FD_SETSIZE, a constant in <sys/select.h> that specifies the maximum
number of descriptors (often 1,024), but this value is too large for most applications. Indeed, most applications
probably use between 3 and 10 descriptors. (Some applications need many more descriptors, but these UNIX
programs are atypical.) By specifying the highest descriptor that we're interested in, we can prevent the kernel
from going through hundreds of unused bits in the three descriptor sets, looking for bits that are turned on.

As an example, Figure 14.24 shows what two descriptor sets look like if we write

 fd_set readset, writeset;

 FD_ZERO(&readset);
 FD_ZERO(&writeset);
 FD_SET(0, &readset);
 FD_SET(3, &readset);

 FD_SET(1, &writeset);
 FD_SET(2, &writeset);
 select(4, &readset, &writeset, NULL, NULL);

Figure 14.24. Example descriptor sets for select

The reason we have to add 1 to the maximum descriptor number is that descriptors start at 0, and the first
argument is really a count of the number of descriptors to check (starting with descriptor 0).

There are three possible return values from select .

1. A return value of –1 means that an error occurred. This can happen, for example, if a signal is caught
before any of the specified descriptors are ready. In this case, none of the descriptor sets will be
modified.

2. A return value of 0 means that no descriptors are ready. This happens if the time limit expires before any
of the descriptors are ready. When this happens, all the descriptor sets will be zeroed out.

3. A positive return value specifies the number of descriptors that are ready. This value is the sum of the
descriptors ready in all three sets, so if the same descriptor is ready to be read and written, it will be
counted twice in the return value. The only bits left on in the three descriptor sets are the bits
corresponding to the descriptors that are ready.

We now need to be more specific about what "ready" means.

• A descriptor in the read set (readfds) is considered ready if a read from that descriptor won't block.
• A descriptor in the write set (writefds) is considered ready if a write to that descriptor won't block.
• A descriptor in the exception set (exceptfds) is considered ready if an exception condition is pending on

that descriptor. Currently, an exception condition corresponds to either the arrival of out-of-band data on
a network connection or certain conditions occurring on a pseudo terminal that has been placed into
packet mode. (Section 15.10 of Stevens [1990] describes this latter condition.)

• File descriptors for regular files always return ready for reading, writing, and exception conditions.

It is important to realize that whether a descriptor is blocking or not doesn't affect whether select blocks. That
is, if we have a nonblocking descriptor that we want to read from and we call select with a timeout value of 5
seconds, select will block for up to 5 seconds. Similarly, if we specify an infinite timeout, select blocks until
data is ready for the descriptor or until a signal is caught.

If we encounter the end of file on a descriptor, that descriptor is considered readable by select . We then call
read and it returns 0, the way to signify end of file on UNIX systems. (Many people incorrectly assume that
select indicates an exception condition on a descriptor when the end of file is reached.)

POSIX.1 also defines a variant of select called pselect .

#include <sys/select.h>

int pselect(int maxfdp1, fd_set *restrict readfds,
 fd_set *restrict writefds, fd_set *rest rict exceptfds,
 const struct timespec *restrict tsptr,
 const sigset_t *restrict sigmask);

Returns: count of ready descriptors, 0 on timeout, –1 on error

The pselect function is identical to select , with the following exceptions.

• The timeout value for select is specified by a timeval structure, but for pselect , a timespec
structure is used. (Recall the definition of the timespec structure in Section 11.6.) Instead of seconds
and microseconds, the timespec structure represents the timeout value in seconds and nanoseconds.
This provides a higher-resolution timeout if the platform supports that fine a level of granularity.

• The timeout value for pselect is declared const , and we are guaranteed that its value will not change
as a result of calling pselect .

• An optional signal mask argument is available with pselect . If sigmask is null, pselect behaves as
select does with respect to signals. Otherwise, sigmask points to a signal mask that is atomically
installed when pselect is called. On return, the previous signal mask is restored.

14.5.2. poll Function

The poll function is similar to select , but the programmer interface is different. As we'll see, poll is tied to
the STREAMS system, since it originated with System V, although we are able to use it with any type of file
descriptor.

#include <poll.h>

int poll(struct pollfd fdarray[], nfds_t nfds, int timeout);

Returns: count of ready descriptors, 0 on timeout, –1 on error

With poll , instead of building a set of descriptors for each condition (readability, writability, and exception
condition), as we did with select , we build an array of pollfd structures, with each array element specifying a
descriptor number and the conditions that we're interested in for that descriptor:

 struct pollfd {
 int fd; /* file descriptor to check, o r <0 to ignore */
 short events; /* events of interest on fd */
 short revents; /* events that occurred on fd */
 };

The number of elements in the fdarray array is specified by nfds.

Historically, there have been differences in how the nfds parameter was declared. SVR3 specified the number of
elements in the array as an unsigned long , which seems excessive. In the SVR4 manual [AT&T 1990d], the
prototype for poll showed the data type of the second argument as size_t . (Recall the primitive system data
types, Figure 2.20.) But the actual prototype in the <poll.h> header still showed the second argument as an
unsigned long . The Single UNIX Specification defines the new type nfds_t to allow the implementation to
select the appropriate type and hide the details from applications. Note that this type has to be large enough to
hold an integer, since the return value represents the number of entries in the array with satisfied events.

The SVID corresponding to SVR4 [AT&T 1989] showed the first argument to poll as struct pollfd
fdarray[] , whereas the SVR4 manual page [AT&T 1990d] showed this argument as struct pollfd * fdarray.
In the C language, both declarations are equivalent. We use the first declaration to reiterate that fdarray points
to an array of structures and not a pointer to a single structure.

To tell the kernel what events we're interested in for each descriptor, we have to set the events member of each
array element to one or more of the values in Figure 14.25. On return, the revents member is set by the kernel,
specifying which events have occurred for each descriptor. (Note that poll doesn't change the events member.
This differs from select , which modifies its arguments to indicate what is ready.)

Figure 14.25. The events and revents flags for poll

Name
Input to
events?

Result from
revents? Description

POLLIN • • Data other than high priority can be read without blocking
(equivalent to POLLRDNORM|POLLRDBAND).

POLLRDNORM • • Normal data (priority band 0) can be read without blocking.

POLLRDBAND • • Data from a nonzero priority band can be read without
blocking.

POLLPRI • • High-priority data can be read without blocking.

POLLOUT • • Normal data can be written without blocking.

POLLWRNORM • • Same as POLLOUT.

POLLWRBAND • • Data for a nonzero priority band can be written without
blocking.

POLLERR • An error has occurred.

POLLHUP • A hangup has occurred.

POLLNVAL • The descriptor does not reference an open file.

The first four rows of Figure 14.25 test for readability, the next three test for writability, and the final three are
for exception conditions. The last three rows in Figure 14.25 are set by the kernel on return. These three values
are returned in revents when the condition occurs, even if they weren't specified in the events field.

When a descriptor is hung up (POLLHUP), we can no longer write to the descriptor. There may, however, still be
data to be read from the descriptor.

The final argument to poll specifies how long we want to wait. As with select , there are three cases.

 timeout == -1

Wait forever. (Some systems define the constant INFTIM in <stropts.h> as –1.) We return when one of the
specified descriptors is ready or when a signal is caught. If a signal is caught, poll returns –1 with errno set to
EINTR.

 timeout == 0

Don't wait. All the specified descriptors are tested, and we return immediately. This is a way to poll the system
to find out the status of multiple descriptors, without blocking in the call to poll .

 timeout > 0

Wait timeout milliseconds. We return when one of the specified descriptors is ready or when the timeout
expires. If the timeout expires before any of the descriptors is ready, the return value is 0. (If your system
doesn't provide millisecond resolution, timeout is rounded up to the nearest supported value.)

It is important to realize the difference between an end of file and a hangup. If we're entering data from the
terminal and type the end-of-file character, POLLIN is turned on so we can read the end-of-file indication (read
returns 0). POLLHUP is not turned on in revents . If we're reading from a modem and the telephone line is hung
up, we'll receive the POLLHUP notification.

As with select , whether a descriptor is blocking or not doesn't affect whether poll blocks.

Interruptibility of select and poll

When the automatic restarting of interrupted system calls was introduced with 4.2BSD (Section 10.5), the
select function was never restarted. This characteristic continues with most systems even if the SA_RESTART
option is specified. But under SVR4, if SA_RESTART was specified, even select and poll were automatically
restarted. To prevent this from catching us when we port software to systems derived from SVR4, we'll always
use the signal_intr function (Figure 10.19) if the signal could interrupt a call to select or poll .

None of the implementations described in this book restart poll or select when a signal is received, even if
the SA_RESTART flag is used.

14.6. Asynchronous I/O

Using select and poll , as described in the previous section, is a synchronous form of notification. The system
doesn't tell us anything until we ask (by calling either select or poll). As we saw in Chapter 10, signals
provide an asynchronous form of notification that something has happened. All systems derived from BSD and
System V provide some form of asynchronous I/O, using a signal (SIGPOLL in System V; SIGIO in BSD) to
notify the process that something of interest has happened on a descriptor.

We saw that select and poll work with any descriptors. But with asynchronous I/O, we now encounter
restrictions. On systems derived from System V, asynchronous I/O works only with STREAMS devices and
STREAMS pipes. On systems derived from BSD, asynchronous I/O works only with terminals and networks.

One limitation of asynchronous I/O is that there is only one signal per process. If we enable more than one
descriptor for asynchronous I/O, we cannot tell which descriptor the signal corresponds to when the signal is
delivered.

The Single UNIX Specification includes an optional generic asynchronous I/O mechanism, adopted from the
real-time draft standard. It is unrelated to the mechanisms we describe here. This mechanism solves a lot of the
limitations that exist with these older asynchronous I/O mechanisms, but we will not discuss it further.

14.6.1. System V Asynchronous I/O

In System V, asynchronous I/O is part of the STREAMS system and works only with STREAMS devices and
STREAMS pipes. The System V asynchronous I/O signal is SIGPOLL.

To enable asynchronous I/O for a STREAMS device, we have to call ioctl with a second argument (request)
of I_SETSIG . The third argument is an integer value formed from one or more of the constants in Figure 14.26.
These constants are defined in <stropts.h> .

Figure 14.26. Conditions for generating SIGPOLL signal

Constant Description

S_INPUT A message other than a high-priority message has arrived.

S_RDNORM An ordinary message has arrived.

S_RDBAND A message with a nonzero priority band has arrived.

S_BANDURG If this constant is specified with S_RDBAND, the SIGURG signal is generated instead of SIGPOLL
when a nonzero priority band message has arrived.

S_HIPRI A high-priority message has arrived.

S_OUTPUT The write queue is no longer full.

S_WRNORM Same as S_OUTPUT.

S_WRBAND We can send a nonzero priority band message.

S_MSG A STREAMS signal message that contains the SIGPOLL signal has arrived.

S_ERROR An M_ERROR message has arrived.

Figure 14.26. Conditions for generating SIGPOLL signal

Constant Description

S_HANGUP An M_HANGUP message has arrived.

In Figure 14.26, whenever we say "has arrived," we mean "has arrived at the stream head's read queue."

In addition to calling ioctl to specify the conditions that should generate the SIGPOLL signal, we also have to
establish a signal handler for this signal. Recall from Figure 10.1 that the default action for SIGPOLL is to
terminate the process, so we should establish the signal handler before calling ioctl .

14.6.2. BSD Asynchronous I/O

Asynchronous I/O in BSD-derived systems is a combination of two signals: SIGIO and SIGURG. The former is
the general asynchronous I/O signal, and the latter is used only to notify the process that out-of-band data has
arrived on a network connection.

To receive the SIGIO signal, we need to perform three steps.

1. Establish a signal handler for SIGIO , by calling either signal or sigaction .

2. Set the process ID or process group ID to receive the signal for the descriptor, by calling fcntl with a
command of F_SETOWN (Section 3.14).

3. Enable asynchronous I/O on the descriptor by calling fcntl with a command of F_SETFL to set the
O_ASYNC file status flag (Figure 3.9).

Step 3 can be performed only on descriptors that refer to terminals or networks, which is a fundamental
limitation of the BSD asynchronous I/O facility.

For the SIGURG signal, we need perform only steps 1 and 2. SIGURG is generated only for descriptors that refer
to network connections that support out-of-band data.

14.7. readv and writev Functions

The readv and writev functions let us read into and write from multiple noncontiguous buffers in a single
function call. These operations are called scatter read and gather write.

#include <sys/uio.h>

ssize_t readv(int filedes, const struct iovec *iov
, int iovcnt);

ssize_t writev(int filedes, const struct iovec *iov , int iovcnt);

Both return: number of bytes read or written, –1 on error

The second argument to both functions is a pointer to an array of iovec structures:

 struct iovec {
 void *iov_base; /* starting address of buf fer */
 size_t iov_len; /* size of buffer */
 };

The number of elements in the iov array is specified by iovcnt. It is limited to IOV_MAX (Recall Figure 2.10).
Figure 14.27 shows a picture relating the arguments to these two functions and the iovec structure.

Figure 14.27. The iovec structure for readv and writev

The writev function gathers the output data from the buffers in order: iov[0], iov[1], through iov[iovcnt–1];
writev returns the total number of bytes output, which should normally equal the sum of all the buffer lengths.

The readv function scatters the data into the buffers in order, always filling one buffer before proceeding to the
next. readv returns the total number of bytes that were read. A count of 0 is returned if there is no more data
and the end of file is encountered.

These two functions originated in 4.2BSD and were later added to SVR4. These two functions are included in
the XSI extension of the Single UNIX Specification.

Although the Single UNIX Specification defines the buffer address to be a void * , many implementations that
predate the standard still use a char * instead.

Example

In Section 20.8, in the function _db_writeidx , we need to write two buffers consecutively to a file.
The second buffer to output is an argument passed by the caller, and the first buffer is one we create,
containing the length of the second buffer and a file offset of other information in the file. There are
three ways we can do this.

1. Call write twice, once for each buffer.
2. Allocate a buffer of our own that is large enough to contain both buffers, and copy both into

the new buffer. We then call write once for this new buffer.
3. Call writev to output both buffers.

The solution we use in Section 20.8 is to use writev , but it's instructive to compare it to the other
two solutions.

Figure 14.28 shows the results from the three methods just described.

The test program that we measured output a 100-byte header followed by 200 bytes of data. This
was done 1,048,576 times, generating a 300-megabyte file. The test program has three separate
cases—one for each of the techniques measured in Figure 14.28. We used times (Section 8.16) to
obtain the user CPU time, system CPU time, and wall clock time before and after the writes. All
three times are shown in seconds.

As we expect, the system time increases when we call write twice, compared to calling either
write or writev once. This correlates with the results in Figure 3.5.

Next, note that the sum of the CPU times (user plus system) is less when we do a buffer copy
followed by a single write compared to a single call to writev . With the single write , we copy the
buffers to a staging buffer at user level, and then the kernel will copy the data to its internal buffers
when we call write . With writev , we should do less copying, because the kernel only needs to
copy the data directly into its staging buffers. The fixed cost of using writev for such small amounts
of data, however, is greater than the benefit. As the amount of data we need to copy increases, the
more expensive it will be to copy the buffers in our program, and the writev alternative will be
more attractive.

Be careful not to infer too much about the relative performance of Linux to Mac OS X from the
numbers shown in Figure 14.28. The two computers were very different: they had different
processor architectures, different amounts of RAM, and disks with different speeds. To do an
apples-to-apples comparison of one operating system to another, we need to use the same hardware
for each operating system.

Figure 14.28. Timing results comparing writev and other techniques

Linux (Intel x86) Mac OS X (PowerPC)

Operation User System Clock User System Clock

two write s 1.29 3.15 7.39 1.60 17.40 19.84

buffer copy, then one write 1.03 1.98 6.47 1.10 11.09 12.54

one writev 0.70 2.72 6.41 0.86 13.58 14.72

In summary, we should always try to use the fewest number of system calls necessary to get the job done. If we
are writing small amounts of data, we will find it less expensive to copy the data ourselves and use a single
write instead of using writev . We might find, however, that the performance benefits aren't worth the extra
complexity cost needed to manage our own staging buffers.

14.8. readn and writen Functions

Pipes, FIFOs, and some devices, notably terminals, networks, and STREAMS devices, have the following two
properties.

1. A read operation may return less than asked for, even though we have not encountered the end of file.
This is not an error, and we should simply continue reading from the device.

2. A write operation can also return less than we specified. This may be caused by flow control
constraints by downstream modules, for example. Again, it's not an error, and we should continue
writing the remainder of the data. (Normally, this short return from a write occurs only with a
nonblocking descriptor or if a signal is caught.)

We'll never see this happen when reading or writing a disk file, except when the file system runs out of space or
we hit our quota limit and we can't write all that we requested.

Generally, when we read from or write to a pipe, network device, or terminal, we need to take these
characteristics into consideration. We can use the following two functions to read or write N bytes of data,
letting these functions handle a possible return value that's less than requested. These two functions simply call
read or write as many times as required to read or write the entire N bytes of data.

#include "apue.h"

ssize_t readn(int filedes, void *buf, size_t nbytes);

ssize_t writen(int filedes, void *buf, size_t nbyte s);

Both return: number of bytes read or written, –1 on error

We define these functions as a convenience for later examples, similar to the error-handling routines used in
many of the examples in this text. The readn and writen functions are not part of any standard.

We call writen whenever we're writing to one of the file types that we mentioned, but we call readn only when
we know ahead of time that we will be receiving a certain number of bytes. Figure 14.29 shows
implementations of readn and writen that we will use in later examples.

Figure 14.29. The readn and writen functions

#include "apue.h"

ssize_t /* Read "n" bytes from a descri ptor */
readn(int fd, void *ptr, size_t n)
{
 size_t nleft;
 ssize_t nread;

 nleft = n;
 while (nleft > 0) {
 if ((nread = read(fd, ptr, nleft)) < 0) {
 if (nleft == n)
 return(-1); /* error, return -1 */
 else
 break; /* error, return amount read so far */

 } else if (nread == 0) {
 break; /* EOF */
 }
 nleft -= nread;
 ptr += nread;
 }
 return(n - nleft); /* return >= 0 */
}

ssize_t /* Write "n" bytes to a descrip tor */
writen(int fd, const void *ptr, size_t n)
{
 size_t nleft;
 ssize_t nwritten;

 nleft = n;
 while (nleft > 0) {
 if ((nwritten = write(fd, ptr, nleft)) < 0) {
 if (nleft == n)
 return(-1); /* error, return -1 */
 else
 break; /* error, return amount written so far */
 } else if (nwritten == 0) {
 break;
 }
 nleft -= nwritten;
 ptr += nwritten;
 }
 return(n - nleft); /* return >= 0 */
}

Note that if we encounter an error and have previously read or written any data, we return the amount of data
transferred instead of the error. Similarly, if we reach end of file while reading, we return the number of bytes
copied to the caller's buffer if we already read some data successfully and have not yet satisfied the amount
requested.

14.9. Memory-Mapped I/O

Memory-mapped I/O lets us map a file on disk into a buffer in memory so that, when we fetch bytes from the
buffer, the corresponding bytes of the file are read. Similarly, when we store data in the buffer, the
corresponding bytes are automatically written to the file. This lets us perform I/O without using read or write .

Memory-mapped I/O has been in use with virtual memory systems for many years. In 1981, 4.1BSD provided a
different form of memory-mapped I/O with its vread and vwrite functions. These two functions were then
removed in 4.2BSD and were intended to be replaced with the mmap function. The mmap function, however, was
not included with 4.2BSD (for reasons described in Section 2.5 of McKusick et al. [1996]). Gingell, Moran, and
Shannon [1987] describe one implementation of mmap. The mmap function is included in the memory-mapped
files option in the Single UNIX Specification and is required on all XSI-conforming systems; most UNIX
systems support it.

To use this feature, we have to tell the kernel to map a given file to a region in memory. This is done by the
mmap function.

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int fl ag, int filedes,
 off_t off);

Returns: starting address of mapped region if OK, MAP_FAILED on error

The addr argument lets us specify the address of where we want the mapped region to start. We normally set
this to 0 to allow the system to choose the starting address. The return value of this function is the starting
address of the mapped area.

The filedes argument is the file descriptor specifying the file that is to be mapped. We have to open this file
before we can map it into the address space. The len argument is the number of bytes to map, and off is the
starting offset in the file of the bytes to map. (Some restrictions on the value of off are described later.)

The prot argument specifies the protection of the mapped region.

We can specify the protection as either PROT_NONE or the bitwise OR of any combination of PROT_READ,
PROT_WRITE, and PROT_EXEC. The protection specified for a region can't allow more access than the open mode
of the file. For example, we can't specify PROT_WRITE if the file was opened read-only.

Before looking at the flag argument, let's see what's going on here. Figure 14.31 shows a memory-mapped file.
(Recall the memory layout of a typical process, Figure 7.6.) In this figure, "start addr" is the return value from
mmap. We have shown the mapped memory being somewhere between the heap and the stack: this is an
implementation detail and may differ from one implementation to the next.

Figure 14.31. Example of a memory-mapped file

The flag argument affects various attributes of the mapped region.

MAP_FIXED The return value must equal addr. Use of this flag is discouraged, as it hinders portability. If this
flag is not specified and if addr is nonzero, then the kernel uses addr as a hint of where to place
the mapped region, but there is no guarantee that the requested address will be used. Maximum
portability is obtained by specifying addr as 0.

Support for the MAP_FIXED flag is optional on POSIX-conforming systems, but required on XSI-
conforming systems.

MAP_SHARED This flag describes the disposition of store operations into the mapped region by this process.
This flag specifies that store operations modify the mapped file—that is, a store operation is
equivalent to a write to the file. Either this flag or the next (MAP_PRIVATE), but not both, must
be specified.

MAP_PRIVATE This flag says that store operations into the mapped region cause a private copy of the mapped
file to be created. All successive references to the mapped region then reference the copy. (One
use of this flag is for a debugger that maps the text portion of a program file but allows the user
to modify the instructions. Any modifications affect the copy, not the original program file.)

Each implementation has additional MAP_xxx flag values, which are specific to that implementation. Check the
mmap(2) manual page on your system for details.

The value of off and the value of addr (if MAP_FIXED is specified) are required to be multiples of the system's
virtual memory page size. This value can be obtained from the sysconf function (Section 2.5.4) with an
argument of _SC_PAGESIZE or _SC_PAGE_SIZE. Since off and addr are often specified as 0, this requirement is
not a big deal.

Since the starting offset of the mapped file is tied to the system's virtual memory page size, what happens if the
length of the mapped region isn't a multiple of the page size? Assume that the file size is 12 bytes and that the
system's page size is 512 bytes. In this case, the system normally provides a mapped region of 512 bytes, and
the final 500 bytes of this region are set to 0. We can modify the final 500 bytes, but any changes we make to
them are not reflected in the file. Thus, we cannot append to a file with mmap. We must first grow the file, as we
will see in Figure 14.32.

Figure 14.32. Copy a file using memory-mapped I/O

#include "apue.h"
#include <fcntl.h>
#include <sys/mman.h>

int
main(int argc, char *argv[])
{
 int fdin, fdout;
 void *src, *dst;
 struct stat statbuf;

 if (argc != 3)
 err_quit("usage: %s <fromfile> <tofile>", a rgv[0]);

 if ((fdin = open(argv[1], O_RDONLY)) < 0)
 err_sys("can't open %s for reading", argv[1]);

 if ((fdout = open(argv[2], O_RDWR | O_CREAT | O _TRUNC,
 FILE_MODE)) < 0)
 err_sys("can't creat %s for writing", argv[2]);

 if (fstat(fdin, &statbuf) < 0) /* need size o f input file */
 err_sys("fstat error");

 /* set size of output file */
 if (lseek(fdout, statbuf.st_size - 1, SEEK_SET) == -1)
 err_sys("lseek error");
 if (write(fdout, "", 1) != 1)
 err_sys("write error");

 if ((src = mmap(0, statbuf.st_size, PROT_READ, MAP_SHARED,
 fdin, 0)) == MAP_FAILED)
 err_sys("mmap error for input");

 if ((dst = mmap(0, statbuf.st_size, PROT_READ | PROT_WRITE,
 MAP_SHARED, fdout, 0)) == MAP_FAILED)
 err_sys("mmap error for output");

 memcpy(dst, src, statbuf.st_size); /* does the file copy */
 exit(0);
}

Two signals are normally used with mapped regions. SIGSEGV is the signal normally used to indicate that we
have tried to access memory that is not available to us. This signal can also be generated if we try to store into a
mapped region that we specified to mmap as read-only. The SIGBUS signal can be generated if we access a
portion of the mapped region that does not make sense at the time of the access. For example, assume that we
map a file using the file's size, but before we reference the mapped region, the file's size is truncated by some
other process. If we then try to access the memory-mapped region corresponding to the end portion of the file
that was truncated, we'll receive SIGBUS.

A memory-mapped region is inherited by a child across a fork (since it's part of the parent's address space), but
for the same reason, is not inherited by the new program across an exec .

We can change the permissions on an existing mapping by calling mprotect .

#include <sys/mman.h>

int mprotect(void *addr, size_t len, int prot);

Returns: 0 if OK, –1 on error

The legal values for prot are the same as those for mmap (Figure 14.30). The address argument must be an
integral multiple of the system's page size.

Figure 14.30. Protection of memory-mapped region

prot Description

PROT_READ Region can be read.

PROT_WRITE Region can be written.

PROT_EXEC Region can be executed.

PROT_NONE Region cannot be accessed.

The mprotect function is included as part of the memory protection option in the Single UNIX Specification,
but all XSI-conforming systems are required to support it.

If the pages in a shared mapping have been modified, we can call msync to flush the changes to the file that
backs the mapping. The msync function is similar to fsync (Section 3.13), but works on memory-mapped
regions.

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

Returns: 0 if OK, –1 on error

If the mapping is private, the file mapped is not modified. As with the other memory-mapped functions, the
address must be aligned on a page boundary.

The flags argument allows us some control over how the memory is flushed. We can specify the MS_ASYNC flag
to simply schedule the pages to be written. If we want to wait for the writes to complete before returning, we
can use the MS_SYNC flag. Either MS_ASYNC or MS_SYNC must be specified.

An optional flag, MS_INVALIDATE, lets us tell the operating system to discard any pages that are out of sync with
the underlying storage. Some implementations will discard all pages in the specified range when we use this
flag, but this behavior is not required.

A memory-mapped region is automatically unmapped when the process terminates or by calling munmap
directly. Closing the file descriptor filedes does not unmap the region.

#include <sys/mman.h>

int munmap(caddr_t addr, size_t len);

Returns: 0 if OK, –1 on error

munmap does not affect the object that was mapped—that is, the call to munmap does not cause the contents of
the mapped region to be written to the disk file. The updating of the disk file for a MAP_SHARED region happens
automatically by the kernel's virtual memory algorithm as we store into the memory-mapped region.
Modifications to memory in a MAP_PRIVATE region are discarded when the region is unmapped.

Example

The program in Figure 14.32 copies a file (similar to the cp (1) command) using memory-mapped
I/O.

We first open both files and then call fstat to obtain the size of the input file. We need this size for
the call to mmap for the input file, and we also need to set the size of the output file. We call lseek
and then write one byte to set the size of the output file. If we don't set the output file's size, the call
to mmap for the output file is OK, but the first reference to the associated memory region generates
SIGBUS. We might be tempted to use ftruncate to set the size of the output file, but not all systems
extend the size of a file with this function. (See Section 4.13.)

Extending a file with ftruncate works on the four platforms discussed in this text.

We then call mmap for each file, to map the file into memory, and finally call memcpy to copy from
the input buffer to the output buffer. As the bytes of data are fetched from the input buffer (src), the
input file is automatically read by the kernel; as the data is stored in the output buffer (dst), the data
is automatically written to the output file.

Exactly when the data is written to the file is dependent on the system's page management
algorithms. Some systems have daemons that write dirty pages to disk slowly over time. If we want
to ensure that the data is safely written to the file, we need to call msync with the MS_SYNC flag
before exiting.

Let's compare this memory-mapped file copy to a copy that is done by calling read and write (with
a buffer size of 8,192). Figure 14.33 shows the results. The times are given in seconds, and the size
of the file being copied was 300 megabytes.

For Solaris 9, the total CPU time (user + system) is almost the same for both types of copies: 9.88
seconds versus 9.62 seconds. For Linux 2.4.22, the total CPU time is almost doubled when we use
mmap and memcpy (1.06 seconds versus 1.95 seconds). The difference is probably because the two

systems implement process time accounting differently.

As far as elapsed time is concerned, the version with mmap and memcpy is faster than the version with
read and write . This makes sense, because we're doing less work with mmap and memcpy. With
read and write , we copy the data from the kernel's buffer to the application's buffer (read), and
then copy the data from the application's buffer to the kernel's buffer (write). With mmap and
memcpy, we copy the data directly from one kernel buffer mapped into our address space into
another kernel buffer mapped into our address space.

Figure 14.33. Timing results comparing read/write versus mmap/memcpy

Linux 2.4.22 (Intel x86) Solaris 9 (SPARC)

Operation User System Clock User System Clock

read/write 0.04 1.02 39.76 0.18 9.70 41.66

mmap/memcpy 0.64 1.31 24.26 1.68 7.94 28.53

Memory-mapped I/O is faster when copying one regular file to another. There are limitations. We can't use it to
copy between certain devices (such as a network device or a terminal device), and we have to be careful if the
size of the underlying file could change after we map it. Nevertheless, some applications can benefit from
memory-mapped I/O, as it can often simplify the algorithms, since we manipulate memory instead of reading
and writing a file. One example that can benefit from memory-mapped I/O is the manipulation of a frame buffer
device that references a bit-mapped display.

Krieger, Stumm, and Unrau [1992] describe an alternative to the standard I/O library (Chapter 5) that uses
memory-mapped I/O.

We return to memory-mapped I/O in Section 15.9, showing an example of how it can be used to provide shared
memory between related processes.

14.10. Summary

In this chapter, we've described numerous advanced I/O functions, most of which are used in the examples in
later chapters:

• Nonblocking I/O—issuing an I/O operation without letting it block
• Record locking (which we'll look at in more detail through an example, the database library in Chapter

20)
• System V STREAMS (which we'll need in Chapter 17 to understand STREAMS-based pipes, passing

file descriptors, and System V client–server connections)
• I/O multiplexing—the select and poll functions (we'll use these in many of the later examples)
• The readv and writev functions (also used in many of the later examples)
• Memory-mapped I/O (mmap)

Chapter 15. Interprocess Communication

Section 15.1. Introduction

Section 15.2. Pipes

Section 15.3. popen and pclose Functions

Section 15.4. Coprocesses

Section 15.5. FIFOs

Section 15.6. XSI IPC

Section 15.7. Message Queues

Section 15.8. Semaphores

Section 15.9. Shared Memory

Section 15.10. Client–Server Properties

Section 15.11. Summary

15.1. Introduction

In Chapter 8, we described the process control primitives and saw how to invoke multiple processes. But the
only way for these processes to exchange information is by passing open files across a fork or an exec or
through the file system. We'll now describe other techniques for processes to communicate with each other: IPC,
or interprocess communication.

In the past, UNIX System IPC was a hodgepodge of various approaches, few of which were portable across all
UNIX system implementations. Through the POSIX and The Open Group (formerly X/Open) standardization
efforts, the situation has improved, but differences still exist. Figure 15.1 summarizes the various forms of IPC
that are supported by the four implementations discussed in this text.

Figure 15.1. Summary of UNIX System IPC

IPC type SUS FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

half-duplex pipes • (full) • • (full)

FIFOs • • • • •

full-duplex pipes allowed •,UDS opt, UDS UDS •, UDS

named full-duplex pipes XSI option UDS opt, UDS UDS •, UDS

message queues XSI • • •

semaphores XSI • • • •

shared memory XSI • • • •

sockets • • • • •

STREAMS XSI option opt •

Note that the Single UNIX Specification (the "SUS" column) allows an implementation to support full-duplex
pipes, but requires only half-duplex pipes. An implementation that supports full-duplex pipes will still work
with correctly written applications that assume that the underlying operating system supports only half-duplex
pipes. We use "(full)" instead of a bullet to show implementations that support half-duplex pipes by using full-
duplex pipes.

In Figure 15.1, we show a bullet where basic functionality is supported. For full-duplex pipes, if the feature can
be provided through UNIX domain sockets (Section 17.3), we show "UDS" in the column. Some
implementations support the feature with pipes and UNIX domain sockets, so these entries have both "UDS"
and a bullet.

As we mentioned in Section 14.4, support for STREAMS is optional in the Single UNIX Specification. Named
full-duplex pipes are provided as mounted STREAMS-based pipes and so are also optional in the Single UNIX
Specification. On Linux, support for STREAMS is available in a separate, optional package called "LiS" (for
Linux STREAMS). We show "opt" where the platform provides support for the feature through an optional
package—one that is not usually installed by default.

The first seven forms of IPC in Figure 15.1 are usually restricted to IPC between processes on the same host.
The final two rows—sockets and STREAMS—are the only two that are generally supported for IPC between
processes on different hosts.

We have divided the discussion of IPC into three chapters. In this chapter, we examine classical IPC: pipes,
FIFOs, message queues, semaphores, and shared memory. In the next chapter, we take a look at network IPC
using the sockets mechanism. In Chapter 17, we take a look at some advanced features of IPC.

15.2. Pipes

Pipes are the oldest form of UNIX System IPC and are provided by all UNIX systems. Pipes have two
limitations.

1. Historically, they have been half duplex (i.e., data flows in only one direction). Some systems now
provide full-duplex pipes, but for maximum portability, we should never assume that this is the case.

2. Pipes can be used only between processes that have a common ancestor. Normally, a pipe is created by a
process, that process calls fork , and the pipe is used between the parent and the child.

We'll see that FIFOs (Section 15.5) get around the second limitation, and that UNIX domain sockets (Section
17.3) and named STREAMS-based pipes (Section 17.2.2) get around both limitations.

Despite these limitations, half-duplex pipes are still the most commonly used form of IPC. Every time you type
a sequence of commands in a pipeline for the shell to execute, the shell creates a separate process for each
command and links the standard output of one to the standard input of the next using a pipe.

A pipe is created by calling the pipe function.

#include <unistd.h>

int pipe(int filedes[2]);

Returns: 0 if OK, –1 on error

Two file descriptors are returned through the filedes argument: filedes[0] is open for reading, and filedes[1] is
open for writing. The output of filedes[1] is the input for filedes[0].

Pipes are implemented using UNIX domain sockets in 4.3BSD, 4.4BSD, and Mac OS X 10.3. Even though
UNIX domain sockets are full duplex by default, these operating systems hobble the sockets used with pipes so
that they operate in half-duplex mode only.

POSIX.1 allows for an implementation to support full-duplex pipes. For these implementations, filedes[0] and
filedes[1] are open for both reading and writing.

Two ways to picture a half-duplex pipe are shown in Figure 15.2. The left half of the figure shows the two ends
of the pipe connected in a single process. The right half of the figure emphasizes that the data in the pipe flows
through the kernel.

Figure 15.2. Two ways to view a half-duplex pipe

The fstat function (Section 4.2) returns a file type of FIFO for the file descriptor of either end of a pipe. We
can test for a pipe with the S_ISFIFO macro.

POSIX.1 states that the st_size member of the stat structure is undefined for pipes. But when the fstat
function is applied to the file descriptor for the read end of the pipe, many systems store in st_size the number
of bytes available for reading in the pipe. This is, however, nonportable.

A pipe in a single process is next to useless. Normally, the process that calls pipe then calls fork , creating an
IPC channel from the parent to the child or vice versa. Figure 15.3 shows this scenario.

Figure 15.3. Half-duplex pipe after a fork

What happens after the fork depends on which direction of data flow we want. For a pipe from the parent to the
child, the parent closes the read end of the pipe (fd[0]), and the child closes the write end (fd[1]). Figure 15.4
shows the resulting arrangement of descriptors.

Figure 15.4. Pipe from parent to child

For a pipe from the child to the parent, the parent closes fd[1] , and the child closes fd[0] .

When one end of a pipe is closed, the following two rules apply.

1. If we read from a pipe whose write end has been closed, read returns 0 to indicate an end of file after
all the data has been read. (Technically, we should say that this end of file is not generated until there are
no more writers for the pipe. It's possible to duplicate a pipe descriptor so that multiple processes have
the pipe open for writing. Normally, however, there is a single reader and a single writer for a pipe.
When we get to FIFOs in the next section, we'll see that often there are multiple writers for a single
FIFO.)

2. If we write to a pipe whose read end has been closed, the signal SIGPIPE is generated. If we either
ignore the signal or catch it and return from the signal handler, write returns –1 with errno set to EPIPE.

When we're writing to a pipe (or FIFO), the constant PIPE_BUF specifies the kernel's pipe buffer size. A write
of PIPE_BUF bytes or less will not be interleaved with the write s from other processes to the same pipe (or
FIFO). But if multiple processes are writing to a pipe (or FIFO), and if we write more than PIPE_BUF bytes,
the data might be interleaved with the data from the other writers. We can determine the value of PIPE_BUF by
using pathconf or fpathconf (recall Figure 2.11).

Example

Figure 15.5 shows the code to create a pipe between a parent and its child and to send data down the
pipe.

Figure 15.5. Send data from parent to child over a pipe

#include "apue.h"

int
main(void)
{
 int n;
 int fd[2];
 pid_t pid;
 char line[MAXLINE];

 if (pipe(fd) < 0)
 err_sys("pipe error");
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid > 0) { /* parent */
 close(fd[0]);
 write(fd[1], "hello world\n", 12);
 } else { /* child */
 close(fd[1]);
 n = read(fd[0], line, MAXLINE);
 write(STDOUT_FILENO, line, n);
 }
 exit(0);
}

In the previous example, we called read and write directly on the pipe descriptors. What is more interesting is
to duplicate the pipe descriptors onto standard input or standard output. Often, the child then runs some other
program, and that program can either read from its standard input (the pipe that we created) or write to its
standard output (the pipe).

Example

Consider a program that displays some output that it has created, one page at a time. Rather than
reinvent the pagination done by several UNIX system utilities, we want to invoke the user's favorite
pager. To avoid writing all the data to a temporary file and calling system to display that file, we
want to pipe the output directly to the pager. To do this, we create a pipe, fork a child process, set
up the child's standard input to be the read end of the pipe, and exec the user's pager program.
Figure 15.6 shows how to do this. (This example takes a command-line argument to specify the
name of a file to display. Often, a program of this type would already have the data to display to the
terminal in memory.)

Before calling fork , we create a pipe. After the fork , the parent closes its read end, and the child
closes its write end. The child then calls dup2 to have its standard input be the read end of the pipe.
When the pager program is executed, its standard input will be the read end of the pipe.

When we duplicate a descriptor onto another (fd[0] onto standard input in the child), we have to be
careful that the descriptor doesn't already have the desired value. If the descriptor already had the
desired value and we called dup2 and close , the single copy of the descriptor would be closed.
(Recall the operation of dup2 when its two arguments are equal, discussed in Section 3.12). In this
program, if standard input had not been opened by the shell, the fopen at the beginning of the
program should have used descriptor 0, the lowest unused descriptor, so fd[0] should never equal
standard input. Nevertheless, whenever we call dup2 and close to duplicate a descriptor onto
another, we'll always compare the descriptors first, as a defensive programming measure.

Note how we try to use the environment variable PAGER to obtain the name of the user's pager
program. If this doesn't work, we use a default. This is a common usage of environment variables.

Figure 15.6. Copy file to pager program

#include "apue.h"
#include <sys/wait.h>

#define DEF_PAGER "/bin/more" /* default page r program */

int
main(int argc, char *argv[])
{
 int n;
 int fd[2];
 pid_t pid;
 char *pager, *argv0;
 char line[MAXLINE];
 FILE *fp;

 if (argc != 2)
 err_quit("usage: a.out <pathname>");

 if ((fp = fopen(argv[1], "r")) == NULL)
 err_sys("can't open %s", argv[1]);
 if (pipe(fd) < 0)
 err_sys("pipe error");

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid > 0) { /* parent */
 close(fd[0]); /* close read end */

 /* parent copies argv[1] to pipe */
 while (fgets(line, MAXLINE, fp) != NULL) {
 n = strlen(line);
 if (write(fd[1], line, n) != n)
 err_sys("write error to pipe");
 }
 if (ferror(fp))
 err_sys("fgets error");

 close(fd[1]); /* close write end of pipe for reader */

 if (waitpid(pid, NULL, 0) < 0)
 err_sys("waitpid error");
 exit(0);
 } else { /* child */
 close(fd[1]); /* close write end */
 if (fd[0] != STDIN_FILENO) {
 if (dup2(fd[0], STDIN_FILENO) != STDIN_ FILENO)
 err_sys("dup2 error to stdin");
 close(fd[0]); /* don't need this afte r dup2 */
 }

 /* get arguments for execl() */
 if ((pager = getenv("PAGER")) == NULL)
 pager = DEF_PAGER;
 if ((argv0 = strrchr(pager, '/')) != NULL)
 argv0++; /* step past rightmost slash */
 else
 argv0 = pager; /* no slash in pager */

 if (execl(pager, argv0, (char *)0) < 0)
 err_sys("execl error for %s", pager);
 }
 exit(0);
}

Example

Recall the five functions TELL_WAIT, TELL_PARENT, TELL_CHILD, WAIT_PARENT, and WAIT_CHILD
from Section 8.9. In Figure 10.24, we showed an implementation using signals. Figure 15.7 shows
an implementation using pipes.

We create two pipes before the fork , as shown in Figure 15.8. The parent writes the character "p"
across the top pipe when TELL_CHILD is called, and the child writes the character "c" across the
bottom pipe when TELL_PARENT is called. The corresponding WAIT_xxx functions do a blocking
read for the single character.

Note that each pipe has an extra reader, which doesn't matter. That is, in addition to the child reading
from pfd1[0] , the parent also has this end of the top pipe open for reading. This doesn't affect us,
since the parent doesn't try to read from this pipe.

Figure 15.7. Routines to let a parent and child synchronize

#include "apue.h"

static int pfd1[2], pfd2[2];

void
TELL_WAIT(void)
{
 if (pipe(pfd1) < 0 || pipe(pfd2) < 0)
 err_sys("pipe error");
}

void
TELL_PARENT(pid_t pid)
{
 if (write(pfd2[1], "c", 1) != 1)
 err_sys("write error");
}

void
WAIT_PARENT(void)
{
 char c;

 if (read(pfd1[0], &c, 1) != 1)
 err_sys("read error");

 if (c != 'p')
 err_quit("WAIT_PARENT: incorrect data");
}

void
TELL_CHILD(pid_t pid)
{
 if (write(pfd1[1], "p", 1) != 1)
 err_sys("write error");
}

void
WAIT_CHILD(void)
{
 char c;

 if (read(pfd2[0], &c, 1) != 1)

 err_sys("read error");

 if (c != 'c')
 err_quit("WAIT_CHILD: incorrect data");
}

Figure 15.8. Using two pipes for parent–child synchronization

15.3. popen and pclose Functions

Since a common operation is to create a pipe to another process, to either read its output or send it input, the
standard I/O library has historically provided the popen and pclose functions. These two functions handle all
the dirty work that we've been doing ourselves: creating a pipe, fork ing a child, closing the unused ends of the
pipe, executing a shell to run the command, and waiting for the command to terminate.

#include <stdio.h>

FILE *popen(const char *cmdstring, const char *type);

Returns: file pointer if OK, NULL on error

int pclose(FILE *fp);

Returns: termination status of cmdstring, or –1 on error

The function popen does a fork and exec to execute the cmdstring, and returns a standard I/O file pointer. If
type is "r" , the file pointer is connected to the standard output of cmdstring (Figure 15.9).

Figure 15.9. Result of fp = popen(cmdstring, "r")

If type is "w" , the file pointer is connected to the standard input of cmdstring, as shown in Figure 15.10.

Figure 15.10. Result of fp = popen(cmdstring, "w")

One way to remember the final argument to popen is to remember that, like fopen , the returned file pointer is
readable if type is "r" or writable if type is "w" .

The pclose function closes the standard I/O stream, waits for the command to terminate, and returns the
termination status of the shell. (We described the termination status in Section 8.6. The system function,
described in Section 8.13, also returns the termination status.) If the shell cannot be executed, the termination
status returned by pclose is as if the shell had executed exit(127) .

The cmdstring is executed by the Bourne shell, as in

sh -c cmdstring

This means that the shell expands any of its special characters in cmdstring. This allows us to say, for example,

 fp = popen("ls *.c", "r");

or

 fp = popen("cmd 2>&1", "r");

Example

Let's redo the program from Figure 15.6, using popen . This is shown in Figure 15.11.

Using popen reduces the amount of code we have to write.

The shell command ${PAGER:-more} says to use the value of the shell variable PAGER if it is defined
and non-null; otherwise, use the string more .

Figure 15.11. Copy file to pager program using popen

#include "apue.h"
#include <sys/wait.h>

#define PAGER "${PAGER:-more}" /* environment var iable, or default */

int
main(int argc, char *argv[])
{
 char line[MAXLINE];
 FILE *fpin, *fpout;

 if (argc != 2)
 err_quit("usage: a.out <pathname>");
 if ((fpin = fopen(argv[1], "r")) == NULL)
 err_sys("can't open %s", argv[1]);

 if ((fpout = popen(PAGER, "w")) == NULL)
 err_sys("popen error");

 /* copy argv[1] to pager */
 while (fgets(line, MAXLINE, fpin) != NULL) {
 if (fputs(line, fpout) == EOF)
 err_sys("fputs error to pipe");
 }
 if (ferror(fpin))
 err_sys("fgets error");
 if (pclose(fpout) == -1)
 err_sys("pclose error");

 exit(0);
}

Example—popen and pclose Functions

Figure 15.12 shows our version of popen and pclose .

Although the core of popen is similar to the code we've used earlier in this chapter, there are many
details that we need to take care of. First, each time popen is called, we have to remember the
process ID of the child that we create and either its file descriptor or FILE pointer. We choose to
save the child's process ID in the array childpid , which we index by the file descriptor. This way,
when pclose is called with the FILE pointer as its argument, we call the standard I/O function
fileno to get the file descriptor, and then have the child process ID for the call to waitpid . Since
it's possible for a given process to call popen more than once, we dynamically allocate the childpid
array (the first time popen is called), with room for as many children as there are file descriptors.

Calling pipe and fork and then duplicating the appropriate descriptors for each process is similar to
what we did earlier in this chapter.

POSIX.1 requires that popen close any streams that are still open in the child from previous calls to
popen . To do this, we go through the childpid array in the child, closing any descriptors that are
still open.

What happens if the caller of pclose has established a signal handler for SIGCHLD? The call to
waitpid from pclose would return an error of EINTR. Since the caller is allowed to catch this signal
(or any other signal that might interrupt the call to waitpid), we simply call waitpid again if it is
interrupted by a caught signal.

Note that if the application calls waitpid and obtains the exit status of the child created by popen ,
we will call waitpid when the application calls pclose , find that the child no longer exists, and
return –1 with errno set to ECHILD. This is the behavior required by POSIX.1 in this situation.

Some early versions of pclose returned an error of EINTR if a signal interrupted the wait . Also,
some early versions of pclose blocked or ignored the signals SIGINT , SIGQUIT, and SIGHUP during
the wait . This is not allowed by POSIX.1.

Figure 15.12. The popen and pclose functions

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <sys/wait.h>

/*
 * Pointer to array allocated at run-time.
 */
static pid_t *childpid = NULL;

/*
 * From our open_max(), Figure 2.16 .
 */
static int maxfd;

FILE *
popen(const char *cmdstring, const char *type)
{
 int i;
 int pfd[2];
 pid_t pid;
 FILE *fp;

 /* only allow "r" or "w" */

 if ((type[0] != 'r' && type[0] != 'w') || type[1] != 0) {
 errno = EINVAL; /* required by POSIX */
 return(NULL);
 }

 if (childpid == NULL) { /* first time throu gh */
 /* allocate zeroed out array for child pids */
 maxfd = open_max();
 if ((childpid = calloc(maxfd, sizeof(pid_t))) == NULL)
 return(NULL);
 }

 if (pipe(pfd) < 0)
 return(NULL); /* errno set by pipe() */

 if ((pid = fork()) < 0) {
 return(NULL); /* errno set by fork() */
 } else if (pid == 0) { /* child */
 if (*type == 'r') {
 close(pfd[0]);
 if (pfd[1] != STDOUT_FILENO) {
 dup2(pfd[1], STDOUT_FILENO);
 close(pfd[1]);
 }
 } else {
 close(pfd[1]);
 if (pfd[0] != STDIN_FILENO) {
 dup2(pfd[0], STDIN_FILENO);
 close(pfd[0]);
 }
 }

 /* close all descriptors in childpid[] */
 for (i = 0; i < maxfd; i++)
 if (childpid[i] > 0)
 close(i);

 execl("/bin/sh", "sh", "-c", cmdstring, (ch ar *)0);
 _exit(127);
 }

 /* parent continues... */
 if (*type == 'r') {
 close(pfd[1]);
 if ((fp = fdopen(pfd[0], type)) == NULL)
 return(NULL);
 } else {
 close(pfd[0]);
 if ((fp = fdopen(pfd[1], type)) == NULL)
 return(NULL);
 }

 childpid[fileno(fp)] = pid; /* remember child p id for this fd */
 return(fp);
}

int
pclose(FILE *fp)
{
 int fd, stat;
 pid_t pid;

 if (childpid == NULL) {
 errno = EINVAL;
 return(-1); /* popen() has never been c alled */
 }

 fd = fileno(fp);
 if ((pid = childpid[fd]) == 0) {
 errno = EINVAL;
 return(-1); /* fp wasn't opened by pope n() */
 }

 childpid[fd] = 0;
 if (fclose(fp) == EOF)
 return(-1);

 while (waitpid(pid, &stat, 0) < 0)
 if (errno != EINTR)
 return(-1); /* error other than EINTR f rom waitpid() */

 return(stat); /* return child's termination s tatus */
}

Note that popen should never be called by a set-user-ID or set-group-ID program. When it executes the
command, popen does the equivalent of

 execl("/bin/sh", "sh", "-c", command, NULL);

which executes the shell and command with the environment inherited by the caller. A malicious user can
manipulate the environment so that the shell executes commands other than those intended, with the elevated
permissions granted by the set-ID file mode.

One thing that popen is especially well suited for is executing simple filters to transform the input or output of
the running command. Such is the case when a command wants to build its own pipeline.

Example

Consider an application that writes a prompt to standard output and reads a line from standard input.
With popen , we can interpose a program between the application and its input to transform the
input. Figure 15.13 shows the arrangement of processes.

The transformation could be pathname expansion, for example, or providing a history mechanism
(remembering previously entered commands).

Figure 15.14 shows a simple filter to demonstrate this operation. The filter copies standard input to
standard output, converting any uppercase character to lowercase. The reason we're careful to
fflush standard output after writing a newline is discussed in the next section when we talk about
coprocesses.

We compile this filter into the executable file myuclc , which we then invoke from the program in
Figure 15.15 using popen .

We need to call fflush after writing the prompt, because the standard output is normally line
buffered, and the prompt does not contain a newline.

Figure 15.13. Transforming input using popen

Figure 15.14. Filter to convert uppercase characters to lowercase

#include "apue.h"
#include <ctype.h>

int
main(void)
{
 int c;

 while ((c = getchar()) != EOF) {
 if (isupper(c))
 c = tolower(c);
 if (putchar(c) == EOF)
 err_sys("output error");
 if (c == '\n')
 fflush(stdout);
 }
 exit(0);
}

Figure 15.15. Invoke uppercase/lowercase filter to read commands

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
 char line[MAXLINE];
 FILE *fpin;

 if ((fpin = popen("myuclc", "r")) == NULL)
 err_sys("popen error");
 for (; ;) {
 fputs("prompt> ", stdout);
 fflush(stdout);
 if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */
 break;
 if (fputs(line, stdout) == EOF)
 err_sys("fputs error to pipe");
 }
 if (pclose(fpin) == -1)
 err_sys("pclose error");
 putchar('\n');
 exit(0);

15.4. Coprocesses

A UNIX system filter is a program that reads from standard input and writes to standard output. Filters are
normally connected linearly in shell pipelines. A filter becomes a coprocess when the same program generates
the filter's input and reads the filter's output.

The Korn shell provides coprocesses [Bolsky and Korn 1995]. The Bourne shell, the Bourne-again shell, and
the C shell don't provide a way to connect processes together as coprocesses. A coprocess normally runs in the
background from a shell, and its standard input and standard output are connected to another program using a
pipe. Although the shell syntax required to initiate a coprocess and connect its input and output to other
processes is quite contorted (see pp. 62–63 of Bolsky and Korn [1995] for all the details), coprocesses are also
useful from a C program.

Whereas popen gives us a one-way pipe to the standard input or from the standard output of another process,
with a coprocess, we have two one-way pipes to the other process: one to its standard input and one from its
standard output. We want to write to its standard input, let it operate on the data, and then read from its standard
output.

Example

Let's look at coprocesses with an example. The process creates two pipes: one is the standard input
of the coprocess, and the other is the standard output of the coprocess. Figure 15.16 shows this
arrangement.

The program in Figure 15.17 is a simple coprocess that reads two numbers from its standard input,
computes their sum, and writes the sum to its standard output. (Coprocesses usually do more
interesting work than we illustrate here. This example is admittedly contrived so that we can study
the plumbing needed to connect the processes.)

We compile this program and leave the executable in the file add2 .

The program in Figure 15.18 invokes the add2 coprocess after reading two numbers from its
standard input. The value from the coprocess is written to its standard output.

Here, we create two pipes, with the parent and the child closing the ends they don't need. We have to
use two pipes: one for the standard input of the coprocess and one for its standard output. The child
then calls dup2 to move the pipe descriptors onto its standard input and standard output, before
calling execl .

If we compile and run the program in Figure 15.18, it works as expected. Furthermore, if we kill
the add2 coprocess while the program in Figure 15.18 is waiting for our input and then enter two
numbers, the signal handler is invoked when the program writes to the pipe that has no reader. (See
Exercise 15.4.)

Recall from Figure 15.1 that not all systems provide full-duplex pipes using the pipe function. In
Figure 17.4, we provide another version of this example using a single full-duplex pipe instead of
two half-duplex pipes, for those systems that support full-duplex pipes.

Figure 15.16. Driving a coprocess by writing its standard input and reading its standard output

Figure 15.17. Simple filter to add two numbers

#include "apue.h"

int
main(void)
{
 int n, int1, int2;
 char line[MAXLINE];

 while ((n = read(STDIN_FILENO, line, MAXLINE)) > 0) {
 line[n] = 0; /* null terminate */
 if (sscanf(line, "%d%d", &int1, &int2) == 2) {
 sprintf(line, "%d\n", int1 + int2);
 n = strlen(line);
 if (write(STDOUT_FILENO, line, n) != n)
 err_sys("write error");
 } else {
 if (write(STDOUT_FILENO, "invalid args\ n", 13) != 13)
 err_sys("write error");
 }
 }
 exit(0);
}

Figure 15.18. Program to drive the add2 filter

#include "apue.h"

static void sig_pipe(int); /* our signal handl er */

int
main(void)
{
 int n, fd1[2], fd2[2];
 pid_t pid;
 char line[MAXLINE];

 if (signal(SIGPIPE, sig_pipe) == SIG_ERR)
 err_sys("signal error");

 if (pipe(fd1) < 0 || pipe(fd2) < 0)
 err_sys("pipe error");

 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid > 0) { / * parent */
 close(fd1[0]);
 close(fd2[1]);
 while (fgets(line, MAXLINE, stdin) != NULL) {

 n = strlen(line);
 if (write(fd1[1], line, n) != n)
 err_sys("write error to pipe");
 if ((n = read(fd2[0], line, MAXLINE)) < 0)
 err_sys("read error from pipe");
 if (n == 0) {
 err_msg("child closed pipe");
 break;
 }
 line[n] = 0; /* null terminate */
 if (fputs(line, stdout) == EOF)
 err_sys("fputs error");
 }
 if (ferror(stdin))
 err_sys("fgets error on stdin");
 exit(0);
 } else { /* ch ild */
 close(fd1[1]);
 close(fd2[0]);
 if (fd1[0] != STDIN_FILENO) {
 if (dup2(fd1[0], STDIN_FILENO) != STDIN _FILENO)
 err_sys("dup2 error to stdin");
 close(fd1[0]);
 }

 if (fd2[1] != STDOUT_FILENO) {
 if (dup2(fd2[1], STDOUT_FILENO) != STDO UT_FILENO)
 err_sys("dup2 error to stdout");
 close(fd2[1]);
 }
 if (execl("./add2", "add2", (char *)0) < 0)
 err_sys("execl error");
 }
 exit(0);
}

static void
sig_pipe(int signo)
{
 printf("SIGPIPE caught\n");
 exit(1);
}

Example

In the coprocess add2 (Figure 15.17), we purposely used low-level I/O (UNIX system calls): read and write .
What happens if we rewrite this coprocess to use standard I/O? Figure 15.19 shows the new version.

If we invoke this new coprocess from the program in Figure 15.18, it no longer works. The problem is the
default standard I/O buffering. When the program in Figure 15.19 is invoked, the first fgets on the standard
input causes the standard I/O library to allocate a buffer and choose the type of buffering. Since the standard
input is a pipe, the standard I/O library defaults to fully buffered. The same thing happens with the standard
output. While add2 is blocked reading from its standard input, the program in Figure 15.18 is blocked reading
from the pipe. We have a deadlock.

Here, we have control over the coprocess that's being run. We can change the program in Figure 15.19 by
adding the following four lines before the while loop:

 if (setvbuf(stdin, NULL, _IOLBF, 0) != 0)

 err_sys("setvbuf error");
 if (setvbuf(stdout, NULL, _IOLBF, 0) != 0)
 err_sys("setvbuf error");

These lines cause fgets to return when a line is available and cause printf to do an fflush when a newline is
output (refer back to Section 5.4 for the details on standard I/O buffering). Making these explicit calls to
setvbuf fixes the program in Figure 15.19.

If we aren't able to modify the program that we're piping the output into, other techniques are required. For
example, if we use awk(1) as a coprocess from our program (instead of the add2 program), the following won't
work:

 #! /bin/awk -f
 { print $1 + $2 }

The reason this won't work is again the standard I/O buffering. But in this case, we cannot change the way awk
works (unless we have the source code for it). We are unable to modify the executable of awk in any way to
change the way the standard I/O buffering is handled.

The solution for this general problem is to make the coprocess being invoked (awk in this case) think that its
standard input and standard output are connected to a terminal. That causes the standard I/O routines in the
coprocess to line buffer these two I/O streams, similar to what we did with the explicit calls to setvbuf
previously. We use pseudo terminals to do this in Chapter 19.

Figure 15.19. Filter to add two numbers, using standard I/O

#include "apue.h"

int
main(void)
{
 int int1, int2;
 char line[MAXLINE];

 while (fgets(line, MAXLINE, stdin) != NULL) {
 if (sscanf(line, "%d%d", &int1, &int2) == 2) {
 if (printf("%d\n", int1 + int2) == EOF)
 err_sys("printf error");
 } else {
 if (printf("invalid args\n") == EOF)
 err_sys("printf error");
 }
 }
 exit(0);
}

15.5. FIFOs

FIFOs are sometimes called named pipes. Pipes can be used only between related processes when a common
ancestor has created the pipe. (An exception to this is mounted STREAMS-based pipes, which we discuss in
Section 17.2.2.) With FIFOs, however, unrelated processes can exchange data.

We saw in Chapter 4 that a FIFO is a type of file. One of the encodings of the st_mode member of the stat
structure (Section 4.2) indicates that a file is a FIFO. We can test for this with the S_ISFIFO macro.

Creating a FIFO is similar to creating a file. Indeed, the pathname for a FIFO exists in the file system.

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

Returns: 0 if OK, –1 on error

The specification of the mode argument for the mkfifo function is the same as for the open function (Section
3.3). The rules for the user and group ownership of the new FIFO are the same as we described in Section 4.6.

Once we have used mkfifo to create a FIFO, we open it using open . Indeed, the normal file I/O functions
(close , read , write , unlink , etc.) all work with FIFOs.

Applications can create FIFOs with the mknod function. Because POSIX.1 originally didn't include mknod, the
mkfifo function was invented specifically for POSIX.1. The mknod function is now included as an XSI
extension. On most systems, the mkfifo function calls mknod to create the FIFO.

POSIX.1 also includes support for the mkfifo (1) command. All four platforms discussed in this text provide
this command. This allows a FIFO to be created using a shell command and then accessed with the normal shell
I/O redirection.

When we open a FIFO, the nonblocking flag (O_NONBLOCK) affects what happens.

• In the normal case (O_NONBLOCK not specified), an open for read-only blocks until some other process
opens the FIFO for writing. Similarly, an open for write-only blocks until some other process opens the
FIFO for reading.

• If O_NONBLOCK is specified, an open for read-only returns immediately. But an open for write-only
returns –1 with errno set to ENXIO if no process has the FIFO open for reading.

As with a pipe, if we write to a FIFO that no process has open for reading, the signal SIGPIPE is generated.
When the last writer for a FIFO closes the FIFO, an end of file is generated for the reader of the FIFO.

It is common to have multiple writers for a given FIFO. This means that we have to worry about atomic writes
if we don't want the writes from multiple processes to be interleaved. (We'll see a way around this problem in
Section 17.2.2.) As with pipes, the constant PIPE_BUF specifies the maximum amount of data that can be
written atomically to a FIFO.

There are two uses for FIFOs.

1. FIFOs are used by shell commands to pass data from one shell pipeline to another without creating
intermediate temporary files.

2. FIFOs are used as rendezvous points in client–server applications to pass data between the clients and
the servers.

We discuss each of these uses with an example.

Example—Using FIFOs to Duplicate Output Streams

FIFOs can be used to duplicate an output stream in a series of shell commands. This prevents writing the data to
an intermediate disk file (similar to using pipes to avoid intermediate disk files). But whereas pipes can be used
only for linear connections between processes, a FIFO has a name, so it can be used for nonlinear connections.

Consider a procedure that needs to process a filtered input stream twice. Figure 15.20 shows this arrangement.

With a FIFO and the UNIX program tee (1), we can accomplish this procedure without using a temporary file.
(The tee program copies its standard input to both its standard output and to the file named on its command
line.)

 mkfifo fifo1
 prog3 < fifo1 &
 prog1 < infile | tee fifo1 | prog2

We create the FIFO and then start prog3 in the background, reading from the FIFO. We then start prog1 and
use tee to send its input to both the FIFO and prog2 . Figure 15.21 shows the process arrangement.

Figure 15.20. Procedure that processes a filtered input stream twice

Figure 15.21. Using a FIFO and tee to send a stream to two different processes

Example—Client–Server Communication Using a FIFO

Another use for FIFOs is to send data between a client and a server. If we have a server that is
contacted by numerous clients, each client can write its request to a well-known FIFO that the server
creates. (By "well-known" we mean that the pathname of the FIFO is known to all the clients that
need to contact the server.) Figure 15.22 shows this arrangement. Since there are multiple writers for
the FIFO, the requests sent by the clients to the server need to be less than PIPE_BUF bytes in size.
This prevents any interleaving of the client write s.

The problem in using FIFOs for this type of client–server communication is how to send replies
back from the server to each client. A single FIFO can't be used, as the clients would never know
when to read their response versus responses for other clients. One solution is for each client to send
its process ID with the request. The server then creates a unique FIFO for each client, using a
pathname based on the client's process ID. For example, the server can create a FIFO with the name
/tmp/serv1.XXXXX , where XXXXX is replaced with the client's process ID. Figure 15.23 shows this
arrangement.

This arrangement works, although it is impossible for the server to tell whether a client crashes. This
causes the client-specific FIFOs to be left in the file system. The server also must catch SIGPIPE ,
since it's possible for a client to send a request and terminate before reading the response, leaving the
client-specific FIFO with one writer (the server) and no reader. We'll see a more elegant approach to
this problem when we discuss mounted STREAMS-based pipes and connld in Section 17.2.2.

With the arrangement shown in Figure 15.23, if the server opens its well-known FIFO read-only
(since it only read s from it) each time the number of clients goes from 1 to 0, the server will read
an end of file on the FIFO. To prevent the server from having to handle this case, a common trick is
just to have the server open its well-known FIFO for read–write. (See Exercise 15.10.)

Figure 15.22. Clients sending requests to a server using a FIFO

Figure 15.23. Client–server communication using FIFOs

15.6. XSI IPC

The three types of IPC that we call XSI IPC—message queues, semaphores, and shared memory—have many
similarities. In this section, we cover these similar features; in the following sections, we look at the specific
functions for each of the three IPC types.

The XSI IPC functions are based closely on the System V IPC functions. These three types of IPC originated in
the 1970s in an internal AT&T version of the UNIX System called "Columbus UNIX." These IPC features were
later added to System V. They are often criticized for inventing their own namespace instead of using the file
system.

Recall from Figure 15.1 that message queues, semaphores, and shared memory are defined as XSI extensions in
the Single UNIX Specification.

15.6.1. Identifiers and Keys

Each IPC structure (message queue, semaphore, or shared memory segment) in the kernel is referred to by a
non-negative integer identifier. To send or fetch a message to or from a message queue, for example, all we
need know is the identifier for the queue. Unlike file descriptors, IPC identifiers are not small integers. Indeed,
when a given IPC structure is created and then removed, the identifier associated with that structure continually
increases until it reaches the maximum positive value for an integer, and then wraps around to 0.

The identifier is an internal name for an IPC object. Cooperating processes need an external naming scheme to
be able to rendezvous using the same IPC object. For this purpose, an IPC object is associated with a key that
acts as an external name.

Whenever an IPC structure is being created (by calling msgget , semget , or shmget), a key must be specified.
The data type of this key is the primitive system data type key_t , which is often defined as a long integer in the
header <sys/types.h> . This key is converted into an identifier by the kernel.

There are various ways for a client and a server to rendezvous at the same IPC structure.

1. The server can create a new IPC structure by specifying a key of IPC_PRIVATE and store the returned
identifier somewhere (such as a file) for the client to obtain. The key IPC_PRIVATE guarantees that the
server creates a new IPC structure. The disadvantage to this technique is that file system operations are
required for the server to write the integer identifier to a file, and then for the clients to retrieve this
identifier later.

The IPC_PRIVATE key is also used in a parent–child relationship. The parent creates a new IPC structure
specifying IPC_PRIVATE , and the resulting identifier is then available to the child after the fork . The
child can pass the identifier to a new program as an argument to one of the exec functions.

2. The client and the server can agree on a key by defining the key in a common header, for example. The
server then creates a new IPC structure specifying this key. The problem with this approach is that it's
possible for the key to already be associated with an IPC structure, in which case the get function
(msgget , semget , or shmget) returns an error. The server must handle this error, deleting the existing
IPC structure, and try to create it again.

3. The client and the server can agree on a pathname and project ID (the project ID is a character value
between 0 and 255) and call the function ftok to convert these two values into a key. This key is then
used in step 2. The only service provided by ftok is a way of generating a key from a pathname and
project ID.

#include <sys/ipc.h>

key_t ftok(const char *path, int id);

Returns: key if OK, (key_t) -1 on error

The path argument must refer to an existing file. Only the lower 8 bits of id are used when generating the key.

The key created by ftok is usually formed by taking parts of the st_dev and st_ino fields in the stat structure
(Section 4.2) corresponding to the given pathname and combining them with the project ID. If two pathnames
refer to two different files, then ftok usually returns two different keys for the two pathnames. However,
because both i-node numbers and keys are often stored in long integers, there can be information loss creating a
key. This means that two different pathnames to different files can generate the same key if the same project ID
is used.

The three get functions (msgget , semget , and shmget) all have two similar arguments: a key and an integer
flag. A new IPC structure is created (normally, by a server) if either key is IPC_PRIVATE or key is not currently
associated with an IPC structure of the particular type and the IPC_CREAT bit of flag is specified. To reference
an existing queue (normally done by a client), key must equal the key that was specified when the queue was
created, and IPC_CREAT must not be specified.

Note that it's never possible to specify IPC_PRIVATE to reference an existing queue, since this special key value
always creates a new queue. To reference an existing queue that was created with a key of IPC_PRIVATE , we
must know the associatedidentifier and then use that identifier in the other IPC calls (such as msgsnd and
msgrcv), bypassing the get function.

If we want to create a new IPC structure, making sure that we don't reference an existing one with the same
identifier, we must specify a flag with both the IPC_CREAT and IPC_EXCL bits set. Doing this causes an error
return of EEXIST if the IPC structure already exists. (This is similar to an open that specifies the O_CREAT and
O_EXCL flags.)

15.6.2. Permission Structure

XSI IPC associates an ipc_perm structure with each IPC structure. This structure defines the permissions and
owner and includes at least the following members:

 struct ipc_perm {
 uid_t uid; /* owner's effective user id */
 gid_t gid; /* owner's effective group id */
 uid_t cuid; /* creator's effective user id */
 gid_t cgid; /* creator's effective group id * /
 mode_t mode; /* access modes */
 .
 .
 .
 };

Each implementation includes additional members. See <sys/ipc.h> on your system for the complete
definition.

All the fields are initialized when the IPC structure is created. At a later time, we can modify the uid , gid , and
mode fields by calling msgctl , semctl , or shmctl . To change these values, the calling process must be either
the creator of the IPC structure or the superuser. Changing these fields is similar to calling chown or chmod for a
file.

The values in the mode field are similar to the values we saw in Figure 4.6, but there is nothing corresponding to
execute permission for any of the IPC structures. Also, message queues and shared memory use the terms read
and write, but semaphores use the terms read and alter. Figure 15.24 shows the six permissions for each form of
IPC.

Figure 15.24. XSI IPC permissions

Permission Bit

user-read 0400

user-write (alter) 0200

group-read 0040

group-write (alter) 0020

other-read 0004

other-write (alter) 0002

Some implementations define symbolic constants to represent each permission, however, these constants are not
standardized by the Single UNIX Specification.

15.6.3. Configuration Limits

All three forms of XSI IPC have built-in limits that we may encounter. Most of these limits can be changed by
reconfiguring the kernel. We describe the limits when we describe each of the three forms of IPC.

Each platform provides its own way to report and modify a particular limit. FreeBSD 5.2.1, Linux 2.4.22, and
Mac OS X 10.3 provide the sysctl command to view and modify kernel configuration parameters. On Solaris
9, changes to kernel configuration parameters are made by modifying the file /etc/system and rebooting.

On Linux, you can display the IPC-related limits by running ipcs -l . On FreeBSD, the equivalent command is
ipcs -T . On Solaris, you can discover the tunable parameters by running sysdef -i .

15.6.4. Advantages and Disadvantages

A fundamental problem with XSI IPC is that the IPC structures are systemwide and do not have a reference
count. For example, if we create a message queue, place some messages on the queue, and then terminate, the
message queue and its contents are not deleted. They remain in the system until specifically read or deleted by
some process calling msgrcv or msgctl , by someone executing the ipcrm (1) command, or by the system being
rebooted. Compare this with a pipe, which is completely removed when the last process to reference it
terminates. With a FIFO, although the name stays in the file system until explicitly removed, any data left in a
FIFO is removed when the last process to reference the FIFO terminates.

Another problem with XSI IPC is that these IPC structures are not known by names in the file system. We can't
access them and modify their properties with the functions we described in Chapters 3 and 4. Almost a dozen
new system calls (msgget , semop, shmat , and so on) were added to the kernel to support these IPC objects. We
can't see the IPC objects with an ls command, we can't remove them with the rm command, and we can't
change their permissions with the chmod command. Instead, two new commands —ipcs (1) and ipcrm (1)—
were added.

Since these forms of IPC don't use file descriptors, we can't use the multiplexed I/O functions (select and
poll) with them. This makes it harder to use more than one of these IPC structures at a time or to use any of
these IPC structures with file or device I/O. For example, we can't have a server wait for a message to be placed
on one of two message queues without some form of busy–wait loop.

An overview of a transaction processing system built using System V IPC is given in Andrade, Carges, and
Kovach [1989]. They claim that the namespace used by System V IPC (the identifiers) is an advantage, not a
problem as we said earlier, because using identifiers allows a process to send a message to a message queue
with a single function call (msgsnd), whereas other forms of IPC normally require an open , write , and close .
This argument is false. Clients still have to obtain the identifier for the server's queue somehow, to avoid using a
key and calling msgget . The identifier assigned to a particular queue depends on how many other message
queues exist when the queue is created and how many times the table in the kernel assigned to the new queue
has been used since the kernel was bootstrapped. This is a dynamic value that can't be guessed or stored in a
header. As we mentioned in Section 15.6.1, minimally a server has to write the assigned queue identifier to a
file for its clients to read.

Other advantages listed by these authors for message queues are that they're reliable, flow controlled, record
oriented, and can be processed in other than first-in, first-out order. As we saw in Section 14.4, the STREAMS
mechanism also possesses all these properties, although an open is required before sending data to a stream, and
a close is required when we're finished. Figure 15.25 compares some of the features of these various forms of
IPC.

Figure 15.25. Comparison of features of various forms of IPC

IPC type Connectionless? Reliable? Flow
control?

Records? Message types or
priorities?

message queues no yes yes yes yes

STREAMS no yes yes yes yes

UNIX domain stream
socket

no yes yes no no

UNIX domain datagram
socket

yes yes no yes no

FIFOs (non-STREAMS) no yes yes no no

(We describe stream and datagram sockets in Chapter 16. We describe UNIX domain sockets in Section 17.3.)
By "connectionless," we mean the ability to send a message without having to call some form of an open
function first. As described previously, we don't consider message queues connectionless, since some technique
is required to obtain the identifier for a queue. Since all these forms of IPC are restricted to a single host, all are
reliable. When the messages are sent across a network, the possibility of messages being lost becomes a concern.

"Flow control" means that the sender is put to sleep if there is a shortage of system resources (buffers) or if the
receiver can't accept any more messages. When the flow control condition subsides, the sender should
automatically be awakened.

One feature that we don't show in Figure 15.25 is whether the IPC facility can automatically create a unique
connection to a server for each client. We'll see in Chapter 17 that STREAMS and UNIX stream sockets
provide this capability.

The next three sections describe each of the three forms of XSI IPC in detail.

15.7. Message Queues

A message queue is a linked list of messages stored within the kernel and identified by a message queue
identifier. We'll call the message queue just a queue and its identifier a queue ID.

The Single UNIX Specification includes an alternate IPC message queue implementation in the message-
passing option of its real-time extensions. We do not cover the real-time extensions in this text.

A new queue is created or an existing queue opened by msgget . New messages are added to the end of a queue
by msgsnd . Every message has a positive long integer type field, a non-negative length, and the actual data
bytes (corresponding to the length), all of which are specified to msgsnd when the message is added to a queue.
Messages are fetched from a queue by msgrcv . We don't have to fetch the messages in a first-in, first-out order.
Instead, we can fetch messages based on their type field.

Each queue has the following msqid_ds structure associated with it:

 struct msqid_ds {
 struct ipc_perm msg_perm; /* see Section 15.6.2 */
 msgqnum_t msg_qnum; /* # of message s on queue */
 msglen_t msg_qbytes; /* max # of byt es on queue */
 pid_t msg_lspid; /* pid of last msgsnd() */
 pid_t msg_lrpid; /* pid of last msgrcv() */
 time_t msg_stime; /* last-msgsnd() time */
 time_t msg_rtime; /* last-msgrcv() time */
 time_t msg_ctime; /* last-change time */
 .
 .
 .
 };

This structure defines the current status of the queue. The members shown are the ones defined by the Single
UNIX Specification. Implementations include additional fields not covered by the standard.

Figure 15.26 lists the system limits that affect message queues. We show "notsup" where the platform doesn't
support the feature. We show "derived" whenever a limit is derived from other limits. For example, the
maximum number of messages in a Linux system is based on the maximum number of queues and the
maximum amount of data allowed on the queues. If the minimum message size is 1 byte, that would limit the
number of messages systemwide to maximum # queues * maximum size of a queue. Given the limits in Figure
15.26, Linux has an upper bound of 262,144 messages with the default configuration. (Even though a message
can contain zero bytes of data, Linux treats it as if it contained 1 byte, to limit the number of messages queued.)

Figure 15.26. System limits that affect message queues

Typical values
Description FreeBSD

5.2.1
Linux
2.4.22

Mac OS X
10.3

Solaris
9

Size in bytes of largest message we can send 16,384 8,192 notsup 2,048

The maximum size in bytes of a particular queue (i.e., the
sum of all the messages on the queue)

2,048 16,384 notsup 4,096

Figure 15.26. System limits that affect message queues

Typical values
Description FreeBSD

5.2.1
Linux
2.4.22

Mac OS X
10.3

Solaris
9

The maximum number of messages queues, systemwide 40 16 notsup 50

The maximum number of messages, systemwide 40 derived notsup 40

Recall from Figure 15.1 that Mac OS X 10.3 doesn't support XSI message queues. Since Mac OS X is based in
part on FreeBSD, and FreeBSD supports message queues, it is possible for Mac OS X to support them, too.
Indeed, a good Internet search engine will provide pointers to a third-party port of XSI message queues for Mac
OS X.

The first function normally called is msgget to either open an existing queue or create a new queue.

#include <sys/msg.h>

int msgget(key_t key, int flag);

Returns: message queue ID if OK, –1 on error

In Section 15.6.1, we described the rules for converting the key into an identifier and discussed whether a new
queue is created or an existing queue is referenced. When a new queue is created, the following members of the
msqid_ds structure are initialized.

• The ipc_perm structure is initialized as described in Section 15.6.2. The mode member of this structure
is set to the corresponding permission bits of flag. These permissions are specified with the values from
Figure 15.24.

• msg_qnum, msg_lspid , msg_lrpid , msg_stime , and msg_rtime are all set to 0.
• msg_ctime is set to the current time.
• msg_qbytes is set to the system limit.

On success, msgget returns the non-negative queue ID. This value is then used with the other three message
queue functions.

The msgctl function performs various operations on a queue. This function and the related functions for
semaphores and shared memory (semctl and shmctl) are the ioctl -like functions for XSI IPC (i.e., the
garbage-can functions).

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Returns: 0 if OK, –1 on error

The cmd argument specifies the command to be performed on the queue specified by msqid.

IPC_STAT Fetch the msqid_ds structure for this queue, storing it in the structure pointed to by buf.

IPC_SET Copy the following fields from the structure pointed to by buf to the msqid_ds structure associated
with this queue: msg_perm.uid , msg_perm.gid , msg_perm.mode , and msg_qbytes . This command
can be executed only by a process whose effective user ID equals msg_perm.cuid or msg_perm.uid
or by a process with superuser privileges. Only the superuser can increase the value of msg_qbytes .

IPC_RMID Remove the message queue from the system and any data still on the queue. This removal is
immediate. Any other process still using the message queue will get an error of EIDRM on its next
attempted operation on the queue. This command can be executed only by a process whose effective
user ID equals msg_perm.cuid or msg_perm.uid or by a process with superuser privileges.

We'll see that these three commands (IPC_STAT, IPC_SET, and IPC_RMID) are also provided for semaphores and
shared memory.

Data is placed onto a message queue by calling msgsnd .

#include <sys/msg.h>

int msgsnd(int msqid, const void *ptr, size_t nbyte s, int flag);

Returns: 0 if OK, –1 on error

As we mentioned earlier, each message is composed of a positive long integer type field, a non-negative length
(nbytes), and the actual data bytes (corresponding to the length). Messages are always placed at the end of the
queue.

The ptr argument points to a long integer that contains the positive integer message type, and it is immediately
followed by the message data. (There is no message data if nbytes is 0.) If the largest message we send is 512
bytes, we can define the following structure:

 struct mymesg {
 long mtype; /* positive message type */
 char mtext[512]; /* message data, of length n bytes */
 };

The ptr argument is then a pointer to a mymesg structure. The message type can be used by the receiver to fetch
messages in an order other than first in, first out.

Some platforms support both 32-bit and 64-bit environments. This affects the size of long integers and pointers.
For example, on 64-bit SPARC systems, Solaris allows both 32-bit and 64-bit applications to coexist. If a 32-bit
application were to exchange this structure over a pipe or a socket with a 64-bit application, problems would
arise, because the size of a long integer is 4 bytes in a 32-bit application, but 8 bytes in a 64-bit application. This
means that a 32-bit application will expect that the mtext field will start 4 bytes after the start of the structure,

whereas a 64-bit application will expect the mtext field to start 8 bytes after the start of the structure. In this
situation, part of the 64-bit application's mtype field will appear as part of the mtext field to the 32-bit
application, and the first 4 bytes in the 32-bit application's mtext field will be interpreted as a part of the mtype
field by the 64-bit application.

This problem doesn't happen with XSI message queues, however. Solaris implements the 32-bit version of the
IPC system calls with different entry points than the 64-bit version of the IPC system calls. The system calls
know how to deal with a 32-bit application communicating with a 64-bit application, and treat the type field
specially to avoid it interfering with the data portion of the message. The only potential problem is a loss of
information when a 64-bit application sends a message with a value in the 8-byte type field that is larger than
will fit in a 32-bit application's 4-byte type field. In this case, the 32-bit application will see a truncated type
value.

A flag value of IPC_NOWAIT can be specified. This is similar to the nonblocking I/O flag for file I/O (Section
14.2). If the message queue is full (either the total number of messages on the queue equals the system limit, or
the total number of bytes on the queue equals the system limit), specifying IPC_NOWAIT causes msgsnd to return
immediately with an error of EAGAIN. If IPC_NOWAIT is not specified, we are blocked until there is room for the
message, the queue is removed from the system, or a signal is caught and the signal handler returns. In the
second case, an error of EIDRM is returned ("identifier removed"); in the last case, the error returned is EINTR.

Note how ungracefully the removal of a message queue is handled. Since a reference count is not maintained
with each message queue (as there is for open files), the removal of a queue simply generates errors on the next
queue operation by processes still using the queue. Semaphores handle this removal in the same fashion. In
contrast, when a file is removed, the file's contents are not deleted until the last open descriptor for the file is
closed.

When msgsnd returns successfully, the msqid_ds structure associated with the message queue is updated to
indicate the process ID that made the call (msg_lspid), the time that the call was made (msg_stime), and that
one more message is on the queue (msg_qnum).

Messages are retrieved from a queue by msgrcv .

#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *ptr, size_t nbytes
, long type, int flag);

Returns: size of data portion of message if OK, –1 on error

As with msgsnd , the ptr argument points to a long integer (where the message type of the returned message is
stored) followed by a data buffer for the actual message data. nbytes specifies the size of the data buffer. If the
returned message is larger than nbytes and the MSG_NOERROR bit in flag is set, the message is truncated. (In this
case, no notification is given to us that the message was truncated, and the remainder of the message is
discarded.) If the message is too big and this flag value is not specified, an error of E2BIG is returned instead
(and the message stays on the queue).

The type argument lets us specify which message we want.

type ==
0

The first message on the queue is returned.

type > 0 The first message on the queue whose message type equals type is returned.

type < 0 The first message on the queue whose message type is the lowest value less than or equal to the
absolute value of type is returned.

A nonzero type is used to read the messages in an order other than first in, first out. For example, the type could
be a priority value if the application assigns priorities to the messages. Another use of this field is to contain the
process ID of the client if a single message queue is being used by multiple clients and a single server (as long
as a process ID fits in a long integer).

We can specify a flag value of IPC_NOWAIT to make the operation nonblocking, causing msgrcv to return -1
with errno set to ENOMSG if a message of the specified type is not available. If IPC_NOWAIT is not specified, the
operation blocks until a message of the specified type is available, the queue is removed from the system (-1 is
returned with errno set to EIDRM), or a signal is caught and the signal handler returns (causing msgrcv to return
–1 with errno set to EINTR).

When msgrcv succeeds, the kernel updates the msqid_ds structure associated with the message queue to
indicate the caller's process ID (msg_lrpid), the time of the call (msg_rtime), and that one less message is on
the queue (msg_qnum).

Example—Timing Comparison of Message Queues versus Stream Pipes

If we need a bidirectional flow of data between a client and a server, we can use either message
queues or full-duplex pipes. (Recall from Figure 15.1 that full-duplex pipes are available through the
UNIX domain sockets mechanism (Section 17.3), although some platforms provide a full-duplex
pipe mechanism through the pipe function.)

Figure 15.27 shows a timing comparison of three of these techniques on Solaris: message queues,
STREAMS-based pipes, and UNIX domain sockets. The tests consisted of a program that created
the IPC channel, called fork , and then sent about 200 megabytes of data from the parent to the
child. The data was sent using 100,000 calls to msgsnd , with a message length of 2,000 bytes for the
message queue, and 100,000 calls to write , with a length of 2,000 bytes for the STREAMS-based
pipe and UNIX domain socket. The times are all in seconds.

These numbers show us that message queues, originally implemented to provide higher-than-
normal-speed IPC, are no longer that much faster than other forms of IPC (in fact, STREAMS-based
pipes are faster than message queues). (When message queues were implemented, the only other
form of IPC available was half-duplex pipes.) When we consider the problems in using message
queues (Section 15.6.4), we come to the conclusion that we shouldn't use them for new applications.

Figure 15.27. Timing comparison of IPC alternatives on Solaris

Operation User System Clock

message queue 0.57 3.63 4.22

STREAMS pipe 0.50 3.21 3.71

Figure 15.27. Timing comparison of IPC alternatives on Solaris

Operation User System Clock

UNIX domain socket 0.43 4.45 5.59

15.8. Semaphores

A semaphore isn't a form of IPC similar to the others that we've described (pipes, FIFOs, and message queues).
A semaphore is a counter used to provide access to a shared data object for multiple processes.

The Single UNIX Specification includes an alternate set of semaphore interfaces in the semaphore option of its
real-time extensions. We do not discuss these interfaces in this text.

To obtain a shared resource, a process needs to do the following:

1. Test the semaphore that controls the resource.
2. If the value of the semaphore is positive, the process can use the resource. In this case, the process

decrements the semaphore value by 1, indicating that it has used one unit of the resource.
3. Otherwise, if the value of the semaphore is 0, the process goes to sleep until the semaphore value is

greater than 0. When the process wakes up, it returns to step 1.

When a process is done with a shared resource that is controlled by a semaphore, the semaphore value is
incremented by 1. If any other processes are asleep, waiting for the semaphore, they are awakened.

To implement semaphores correctly, the test of a semaphore's value and the decrementing of this value must be
an atomic operation. For this reason, semaphores are normally implemented inside the kernel.

A common form of semaphore is called a binary semaphore. It controls a single resource, and its value is
initialized to 1. In general, however, a semaphore can be initialized to any positive value, with the value
indicating how many units of the shared resource are available for sharing.

XSI semaphores are, unfortunately, more complicated than this. Three features contribute to this unnecessary
complication.

1. A semaphore is not simply a single non-negative value. Instead, we have to define a semaphore as a set
of one or more semaphore values. When we create a semaphore, we specify the number of values in the
set.

2. The creation of a semaphore (semget) is independent of its initialization (semctl). This is a fatal flaw,
since we cannot atomically create a new semaphore set and initialize all the values in the set.

3. Since all forms of XSI IPC remain in existence even when no process is using them, we have to worry
about a program that terminates without releasing the semaphores it has been allocated. The undo
feature that we describe later is supposed to handle this.

The kernel maintains a semid_ds structure for each semaphore set:

 struct semid_ds {
 struct ipc_perm sem_perm; /* see Section 15. 6.2 */
 unsigned short sem_nsems; /* # of semaphores in set */
 time_t sem_otime; /* last-semop() ti me */
 time_t sem_ctime; /* last-change tim e */
 .
 .
 .
 };

The Single UNIX Specification defines the fields shown, but implementations can define additional members in
the semid_ds structure.

Each semaphore is represented by an anonymous structure containing at least the following members:

 struct {
 unsigned short semval; /* semaphore value, always >= 0 */
 pid_t sempid; /* pid for last oper ation */
 unsigned short semncnt; /* # processes await ing semval>curval */
 unsigned short semzcnt; /* # processes await ing semval==0 */
 .
 .
 .
 };

Figure 15.28 lists the system limits (Section 15.6.3) that affect semaphore sets.

Figure 15.28. System limits that affect semaphores

Typical values
Description FreeBSD

5.2.1
Linux
2.4.22

Mac OS X
10.3

Solaris
9

The maximum value of any semaphore 32,767 32,767 32,767 32,767

The maximum value of any semaphore's adjust-on-
exit value

16,384 32,767 16,384 16,384

The maximum number of semaphore sets,
systemwide

10 128 87,381 10

The maximum number of semaphores, systemwide 60 32,000 87,381 60

The maximum number of semaphores per semaphore
set

60 250 87,381 25

The maximum number of undo structures,
systemwide

30 32,000 87,381 30

The maximum number of undo entries per undo
structures

10 32 10 10

The maximum number of operations per semop call 100 32 100 10

The first function to call is semget to obtain a semaphore ID.

#include <sys/sem.h>

int semget(key_t key, int nsems, int flag);

Returns: semaphore ID if OK, –1 on error

In Section 15.6.1, we described the rules for converting the key into an identifier and discussed whether a new
set is created or an existing set is referenced. When a new set is created, the following members of the
semid_ds structure are initialized.

• The ipc_perm structure is initialized as described in Section 15.6.2. The mode member of this structure
is set to the corresponding permission bits of flag. These permissions are specified with the values from
Figure 15.24.

• sem_otime is set to 0.
• sem_ctime is set to the current time.
• sem_nsems is set to nsems.

The number of semaphores in the set is nsems. If a new set is being created (typically in the server), we must
specify nsems. If we are referencing an existing set (a client), we can specify nsems as 0.

The semctl function is the catchall for various semaphore operations.

#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd,
 ... /* union semun arg */);

Returns: (see following)

The fourth argument is optional, depending on the command requested, and if present, is of type semun, a union
of various command-specific arguments:

 union semun {
 int val; /* for SETVAL */
 struct semid_ds *buf; /* for IPC_STAT and I PC_SET */
 unsigned short *array; /* for GETALL and SET ALL */
 };

Note that the optional argument is the actual union, not a pointer to the union.

The cmd argument specifies one of the following ten commands to be performed on the set specified by semid.
The five commands that refer to one particular semaphore value use semnum to specify one member of the set.
The value of semnum is between 0 and nsems-1, inclusive.

IPC_STAT Fetch the semid_ds structure for this set, storing it in the structure pointed to by arg.buf.

IPC_SET Set the sem_perm.uid , sem_perm.gid , and sem_perm.mode fields from the structure pointed to by
arg.buf in the semid_ds structure associated with this set. This command can be executed only by a
process whose effective user ID equals sem_perm.cuid or sem_perm.uid or by a process with
superuser privileges.

IPC_RMID Remove the semaphore set from the system. This removal is immediate. Any other process still
using the semaphore will get an error of EIDRM on its next attempted operation on the semaphore.
This command can be executed only by a process whose effective user ID equals sem_perm.cuid or
sem_perm.uid or by a process with superuser privileges.

IPC_STAT Fetch the semid_ds structure for this set, storing it in the structure pointed to by arg.buf.

GETVAL Return the value of semval for the member semnum.

SETVAL Set the value of semval for the member semnum. The value is specified by arg.val.

GETPID Return the value of sempid for the member semnum.

GETNCNT Return the value of semncnt for the member semnum.

GETZCNT Return the value of semzcnt for the member semnum.

GETALL Fetch all the semaphore values in the set. These values are stored in the array pointed to by
arg.array.

SETALL Set all the semaphore values in the set to the values pointed to by arg.array.

For all the GET commands other than GETALL, the function returns the corresponding value. For the remaining
commands, the return value is 0.

The function semop atomically performs an array of operations on a semaphore set.

#include <sys/sem.h>

int semop(int semid, struct sembuf semoparray[], si ze_t nops);

Returns: 0 if OK, –1 on error

The semoparray argument is a pointer to an array of semaphore operations, represented by sembuf structures:

 struct sembuf {
 unsigned short sem_num; /* member # in set (0, 1, ..., nsems-1) */
 short sem_op; /* operation (negative , 0, or positive) */
 short sem_flg; /* IPC_NOWAIT, SEM_UND O */
 };

The nops argument specifies the number of operations (elements) in the array.

The operation on each member of the set is specified by the corresponding sem_op value. This value can be
negative, 0, or positive. (In the following discussion, we refer to the "undo" flag for a semaphore. This flag
corresponds to the SEM_UNDO bit in the corresponding sem_flg member.)

1. The easiest case is when sem_op is positive. This case corresponds to the returning of resources by the
process. The value of sem_op is added to the semaphore's value. If the undo flag is specified, sem_op is
also subtracted from the semaphore's adjustment value for this process.

2. If sem_op is negative, we want to obtain resources that the semaphore controls.

If the semaphore's value is greater than or equal to the absolute value of sem_op (the resources are
available), the absolute value of sem_op is subtracted from the semaphore's value. This guarantees that
the resulting value for the semaphore is greater than or equal to 0. If the undo flag is specified, the
absolute value of sem_op is also added to the semaphore's adjustment value for this process.

If the semaphore's value is less than the absolute value of sem_op (the resources are not available), the
following conditions apply.

a. If IPC_NOWAIT is specified, semop returns with an error of EAGAIN.
b. If IPC_NOWAIT is not specified, the semncnt value for this semaphore is incremented (since the

caller is about to go to sleep), and the calling process is suspended until one of the following
occurs.

i. The semaphore's value becomes greater than or equal to the absolute value of sem_op
(i.e., some other process has released some resources). The value of semncnt for this
semaphore is decremented (since the calling process is done waiting), and the absolute
value of sem_op is subtracted from the semaphore's value. If the undo flag is specified,
the absolute value of sem_op is also added to the semaphore's adjustment value for this
process.

ii. The semaphore is removed from the system. In this case, the function returns an error of
EIDRM.

iii. A signal is caught by the process, and the signal handler returns. In this case, the value of
semncnt for this semaphore is decremented (since the calling process is no longer
waiting), and the function returns an error of EINTR.

3. If sem_op is 0, this means that the calling process wants to wait until the semaphore's value becomes 0.

If the semaphore's value is currently 0, the function returns immediately.

If the semaphore's value is nonzero, the following conditions apply.

a. If IPC_NOWAIT is specified, return is made with an error of EAGAIN.
b. If IPC_NOWAIT is not specified, the semzcnt value for this semaphore is incremented (since the

caller is about to go to sleep), and the calling process is suspended until one of the following
occurs.

i. The semaphore's value becomes 0. The value of semzcnt for this semaphore is
decremented (since the calling process is done waiting).

ii. The semaphore is removed from the system. In this case, the function returns an error of
EIDRM.

iii. A signal is caught by the process, and the signal handler returns. In this case, the value of
semzcnt for this semaphore is decremented (since the calling process is no longer
waiting), and the function returns an error of EINTR.

The semop function operates atomically; it does either all the operations in the array or none of them.

Semaphore Adjustment on exit

As we mentioned earlier, it is a problem if a process terminates while it has resources allocated through a
semaphore. Whenever we specify the SEM_UNDO flag for a semaphore operation and we allocate resources (a
sem_op value less than 0), the kernel remembers how many resources we allocated from that particular
semaphore (the absolute value of sem_op). When the process terminates, either voluntarily or involuntarily, the
kernel checks whether the process has any outstanding semaphore adjustments and, if so, applies the adjustment
to the corresponding semaphore.

If we set the value of a semaphore using semctl , with either the SETVAL or SETALL commands, the adjustment
value for that semaphore in all processes is set to 0.

Example—Timing Comparison of Semaphores versus Record Locking

If we are sharing a single resource among multiple processes, we can use either a semaphore or
record locking. It's interesting to compare the timing differences between the two techniques.

With a semaphore, we create a semaphore set consisting of a single member and initialize the
semaphore's value to 1. To allocate the resource, we call semop with a sem_op of -1; to release the
resource, we perform a sem_op of +1. We also specify SEM_UNDO with each operation, to handle the
case of a process that terminates without releasing its resource.

With record locking, we create an empty file and use the first byte of the file (which need not exist)
as the lock byte. To allocate the resource, we obtain a write lock on the byte; to release it, we unlock
the byte. The properties of record locking guarantee that if a process terminates while holding a
lock, then the lock is automatically released by the kernel.

Figure 15.29 shows the time required to perform these two locking techniques on Linux. In each
case, the resource was allocated and then released 100,000 times. This was done simultaneously by
three different processes. The times in Figure 15.29 are the totals in seconds for all three processes.

On Linux, there is about a 60 percent penalty in the elapsed time for record locking compared to
semaphore locking.

Even though record locking is slower than semaphore locking, if we're locking a single resource
(such as a shared memory segment) and don't need all the fancy features of XSI semaphores, record
locking is preferred. The reasons are that it is much simpler to use, and the system takes care of any
lingering locks when a process terminates.

Figure 15.29. Timing comparison of locking alternatives on Linux

Operation User System Clock

semaphores with undo 0.38 0.48 0.86

advisory record locking 0.41 0.95 1.36

15.9. Shared Memory

Shared memory allows two or more processes to share a given region of memory. This is the fastest form of
IPC, because the data does not need to be copied between the client and the server. The only trick in using
shared memory is synchronizing access to a given region among multiple processes. If the server is placing data
into a shared memory region, the client shouldn't try to access the data until the server is done. Often,
semaphores are used to synchronize shared memory access. (But as we saw at the end of the previous section,
record locking can also be used.)

The Single UNIX Specification includes an alternate set of interfaces to access shared memory in the shared
memory objects option of its real-time extensions. We do not cover the real-time extensions in this text.

The kernel maintains a structure with at least the following members for each shared memory segment:

 struct shmid_ds {
 struct ipc_perm shm_perm; /* see Section 1 5.6.2 */
 size_t shm_segsz; /* size of segme nt in bytes */
 pid_t shm_lpid; /* pid of last s hmop() */
 pid_t shm_cpid; /* pid of creato r */
 shmatt_t shm_nattch; /* number of cur rent attaches */
 time_t shm_atime; /* last-attach t ime */
 time_t shm_dtime; /* last-detach t ime */
 time_t shm_ctime; /* last-change t ime */
 .
 .
 .
 };

(Each implementation adds other structure members as needed to support shared memory segments.)

The type shmatt_t is defined to be an unsigned integer at least as large as an unsigned short . Figure 15.30
lists the system limits (Section 15.6.3) that affect shared memory.

Figure 15.30. System limits that affect shared memory

Typical values
Description FreeBSD

5.2.1
Linux
2.4.22

Mac OS X
10.3 Solaris 9

The maximum size in bytes of a shared memory
segment

33,554,432 33,554,432 4,194,304 8,388,608

The minimum size in bytes of a shared memory
segment

1 1 1 1

The maximum number of shared memory segments,
systemwide

192 4,096 32 100

The maximum number of shared memory segments,
per process

128 4,096 8 6

The first function called is usually shmget , to obtain a shared memory identifier.

#include <sys/shm.h>

int shmget(key_t key, size_t size, int flag);

Returns: shared memory ID if OK, –1 on error

In Section 15.6.1, we described the rules for converting the key into an identifier and whether a new segment is
created or an existing segment is referenced. When a new segment is created, the following members of the
shmid_ds structure are initialized.

• The ipc_perm structure is initialized as described in Section 15.6.2. The mode member of this structure
is set to the corresponding permission bits of flag. These permissions are specified with the values from
Figure 15.24.

• shm_lpid , shm_nattach , shm_atime , and shm_dtime are all set to 0.
• shm_ctime is set to the current time.
• shm_segsz is set to the size requested.

The size parameter is the size of the shared memory segment in bytes. Implementations will usually round up
the size to a multiple of the system's page size, but if an application specifies size as a value other than an
integral multiple of the system's page size, the remainder of the last page will be unavailable for use. If a new
segment is being created (typically in the server), we must specify its size. If we are referencing an existing
segment (a client), we can specify size as 0. When a new segment is created, the contents of the segment are
initialized with zeros.

The shmctl function is the catchall for various shared memory operations.

#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Returns: 0 if OK, –1 on error

The cmd argument specifies one of the following five commands to be performed, on the segment specified by
shmid.

IPC_STAT Fetch the shmid_ds structure for this segment, storing it in the structure pointed to by buf.

IPC_SET Set the following three fields from the structure pointed to by buf in the shmid_ds structure
associated with this shared memory segment: shm_perm.uid , shm_perm.gid , and shm_perm.mode .
This command can be executed only by a process whose effective user ID equals shm_perm.cuid or
shm_perm.uid or by a process with superuser privileges.

IPC_RMID Remove the shared memory segment set from the system. Since an attachment count is maintained
for shared memory segments (the shm_nattch field in the shmid_ds structure), the segment is not
removed until the last process using the segment terminates or detaches it. Regardless of whether the
segment is still in use, the segment's identifier is immediately removed so that shmat can no longer

IPC_STAT Fetch the shmid_ds structure for this segment, storing it in the structure pointed to by buf.

attach the segment. This command can be executed only by a process whose effective user ID equals
shm_perm.cuid or shm_perm.uid or by a process with superuser privileges.

Two additional commands are provided by Linux and Solaris, but are not part of the Single UNIX Specification.

SHM_LOCK Lock the shared memory segment in memory. This command can be executed only by the
superuser.

SHM_UNLOCK Unlock the shared memory segment. This command can be executed only by the superuser.

Once a shared memory segment has been created, a process attaches it to its address space by calling shmat .

#include <sys/shm.h>

void *shmat(int shmid, const void *addr, int flag);

Returns: pointer to shared memory segment if OK, –1 on error

The address in the calling process at which the segment is attached depends on the addr argument and whether
the SHM_RND bit is specified in flag.

• If addr is 0, the segment is attached at the first available address selected by the kernel. This is the
recommended technique.

• If addr is nonzero and SHM_RND is not specified, the segment is attached at the address given by addr.
• If addr is nonzero and SHM_RND is specified, the segment is attached at the address given by (addr - (addr

modulus SHMLBA)). The SHM_RND command stands for "round." SHMLBA stands for "low boundary
address multiple" and is always a power of 2. What the arithmetic does is round the address down to the
next multiple of SHMLBA.

Unless we plan to run the application on only a single type of hardware (which is highly unlikely today), we
should not specify the address where the segment is to be attached. Instead, we should specify an addr of 0 and
let the system choose the address.

If the SHM_RDONLY bit is specified in flag, the segment is attached read-only. Otherwise, the segment is attached
read–write.

The value returned by shmat is the address at which the segment is attached, or –1 if an error occurred. If shmat
succeeds, the kernel will increment the shm_nattch counter in the shmid_ds structure associated with the
shared memory segment.

When we're done with a shared memory segment, we call shmdt to detach it. Note that this does not remove the
identifier and its associated data structure from the system. The identifier remains in existence until some
process (often a server) specifically removes it by calling shmctl with a command of IPC_RMID.

#include <sys/shm.h>

int shmdt(void *addr);

Returns: 0 if OK, –1 on error

The addr argument is the value that was returned by a previous call to shmat . If successful, shmdt will
decrement the shm_nattch counter in the associated shmid_ds structure.

Example

Where a kernel places shared memory segments that are attached with an address of 0 is highly system
dependent. Figure 15.31 shows a program that prints some information on where one particular system places
various types of data.

Running this program on an Intel-based Linux system gives us the following output:

$./a.out
array[] from 804a080 to 8053cc0
stack around bffff9e4
malloced from 8053cc8 to 806c368
shared memory attached from 40162000 to 4017a6a0

Figure 15.32 shows a picture of this, similar to what we said was a typical memory layout in Figure 7.6. Note
that the shared memory segment is placed well below the stack.

Figure 15.31. Print where various types of data are stored

#include "apue.h"
#include <sys/shm.h>

#define ARRAY_SIZE 40000
#define MALLOC_SIZE 100000
#define SHM_SIZE 100000
#define SHM_MODE 0600 /* user read/write */

char array[ARRAY_SIZE]; /* uninitialized data = bss */

int
main(void)
{
 int shmid;
 char *ptr, *shmptr;

 printf("array[] from %lx to %lx\n", (unsigned l ong)&array[0],
 (unsigned long)&array[ARRAY_SIZE]);
 printf("stack around %lx\n", (unsigned long)&sh mid);

 if ((ptr = malloc(MALLOC_SIZE)) == NULL)
 err_sys("malloc error");
 printf("malloced from %lx to %lx\n", (unsigned long)ptr,
 (unsigned long)ptr+MALLOC_SIZE);

 if ((shmid = shmget(IPC_PRIVATE, SHM_SIZE, SHM_ MODE)) < 0)

 err_sys("shmget error");
 if ((shmptr = shmat(shmid, 0, 0)) == (void *)-1)
 err_sys("shmat error");
 printf("shared memory attached from %lx to %lx\ n",
 (unsigned long)shmptr, (unsigned long)shmptr+ SHM_SIZE);

 if (shmctl(shmid, IPC_RMID, 0) < 0)
 err_sys("shmctl error");

 exit(0);
}

Figure 15.32. Memory layout on an Intel-based Linux system

Recall that the mmap function (Section 14.9) can be used to map portions of a file into the address space of a
process. This is conceptually similar to attaching a shared memory segment using the shmat XSI IPC function.
The main difference is that the memory segment mapped with mmap is backed by a file, whereas no file is
associated with an XSI shared memory segment.

Example—Memory Mapping of /dev/zero

Shared memory can be used between unrelated processes. But if the processes are related, some
implementations provide a different technique.

The following technique works on FreeBSD 5.2.1, Linux 2.4.22, and Solaris 9. Mac OS X 10.3
currently doesn't support the mapping of character devices into the address space of a process.

The device /dev/zero is an infinite source of 0 bytes when read. This device also accepts any data
that is written to it, ignoring the data. Our interest in this device for IPC arises from its special
properties when it is memory mapped.

• An unnamed memory region is created whose size is the second argument to mmap, rounded
up to the nearest page size on the system.

• The memory region is initialized to 0.
• Multiple processes can share this region if a common ancestor specifies the MAP_SHARED flag

to mmap.

The program in Figure 15.33 is an example that uses this special device.

The program opens the /dev/zero device and calls mmap, specifying a size of a long integer. Note
that once the region is mapped, we can close the device. The process then creates a child. Since
MAP_SHARED was specified in the call to mmap, writes to the memory-mapped region by one process
are seen by the other process. (If we had specified MAP_PRIVATE instead, this example wouldn't
work.)

The parent and the child then alternate running, incrementing a long integer in the shared memory-
mapped region, using the synchronization functions from Section 8.9. The memory-mapped region
is initialized to 0 by mmap. The parent increments it to 1, then the child increments it to 2, then the
parent increments it to 3, and so on. Note that we have to use parentheses when we increment the
value of the long integer in the update function, since we are incrementing the value and not the
pointer.

The advantage of using /dev/zero in the manner that we've shown is that an actual file need not
exist before we call mmap to create the mapped region. Mapping /dev/zero automatically creates a
mapped region of the specified size. The disadvantage of this technique is that it works only between
related processes. With related processes, however, it is probably simpler and more efficient to use
threads (Chapters 11 and 12). Note that regardless of which technique is used, we still need to
synchronize access to the shared data.

Figure 15.33. IPC between parent and child using memory mapped I/O of /dev/zero

#include "apue.h"
#include <fcntl.h>
#include <sys/mman.h>

#define NLOOPS 1000
#define SIZE sizeof(long) /* size of sh ared memory area */

static int
update(long *ptr)
{
 return((*ptr)++); /* return value before inc rement */
}

int
main(void)
{
 int fd, i, counter;
 pid_t pid;
 void *area;

 if ((fd = open("/dev/zero", O_RDWR)) < 0)
 err_sys("open error");
 if ((area = mmap(0, SIZE, PROT_READ | PROT_WRIT E, MAP_SHARED,
 fd, 0)) == MAP_FAILED)
 err_sys("mmap error");
 close(fd); /* can close /dev/zero now that it's mapped */

 TELL_WAIT();

 if ((pid = fork()) < 0) {

 err_sys("fork error");
 } else if (pid > 0) { /* parent */
 for (i = 0; i < NLOOPS; i += 2) {
 if ((counter = update((long *)area)) != i)
 err_quit("parent: expected %d, got %d", i, counter);

 TELL_CHILD(pid);
 WAIT_CHILD();
 }
 } else { /* child */
 for (i = 1; i < NLOOPS + 1; i += 2) {
 WAIT_PARENT();

 if ((counter = update((long *)area)) != i)
 err_quit("child: expected %d, got % d", i, counter);

 TELL_PARENT(getppid());
 }
 }

 exit(0);
}

Example—Anonymous Memory Mapping

Many implementations provide anonymous memory mapping, a facility similar to the /dev/zero feature. To
use this facility, we specify the MAP_ANON flag to mmap and specify the file descriptor as -1. The resulting region
is anonymous (since it's not associated with a pathname through a file descriptor) and creates a memory region
that can be shared with descendant processes.

The anonymous memory-mapping facility is supported by all four platforms discussed in this text. Note,
however, that Linux defines the MAP_ANONYMOUS flag for this facility, but defines the MAP_ANON flag to be the
same value for improved application portability.

To modify the program in Figure 15.33 to use this facility, we make three changes: (a) remove the open of
/dev/zero , (b) remove the close of fd , and (c) change the call to mmap to the following:

if ((area = mmap(0, SIZE, PROT_READ | PROT_WRITE,
 MAP_ANON | MAP_SHARED, -1, 0)) == MAP_FAILED)

In this call, we specify the MAP_ANON flag and set the file descriptor to -1. The rest of the program from Figure
15.33 is unchanged.

The last two examples illustrate sharing memory among multiple related processes. If shared memory is
required between unrelated processes, there are two alternatives. Applications can use the XSI shared memory
functions, or they can use mmap to map the same file into their address spaces using the MAP_SHARED flag.

5.10. Client–Server Properties

Let's detail some of the properties of clients and servers that are affected by the various types of IPC used
between them. The simplest type of relationship is to have the client fork and exec the desired server. Two
half-duplex pipes can be created before the fork to allow data to be transferred in both directions. Figure 15.16
is an example of this. The server that is executed can be a set-user-ID program, giving it special privileges. Also,
the server can determine the real identity of the client by looking at its real user ID. (Recall from Section 8.10
that the real user ID and real group ID don't change across an exec .)

With this arrangement, we can build an open server. (We show an implementation of this client–server in
Section 17.5.) It opens files for the client instead of the client calling the open function. This way, additional
permission checking can be added, above and beyond the normal UNIX system user/group/other permissions.
We assume that the server is a set-user-ID program, giving it additional permissions (root permission, perhaps).
The server uses the real user ID of the client to determine whether to give it access to the requested file. This
way, we can build a server that allows certain users permissions that they don't normally have.

In this example, since the server is a child of the parent, all the server can do is pass back the contents of the file
to the parent. Although this works fine for regular files, it can't be used for special device files, for example. We
would like to be able to have the server open the requested file and pass back the file descriptor. Whereas a
parent can pass a child an open descriptor, a child cannot pass a descriptor back to the parent (unless special
programming techniques are used, which we cover in Chapter 17).

We showed the next type of server in Figure 15.23. The server is a daemon process that is contacted using some
form of IPC by all clients. We can't use pipes for this type of client–server. A form of named IPC is required,
such as FIFOs or message queues. With FIFOs, we saw that an individual per client FIFO is also required if the
server is to send data back to the client. If the client–server application sends data only from the client to the
server, a single well-known FIFO suffices. (The System V line printer spooler used this form of client–server
arrangement. The client was the lp (1) command, and the server was the lpsched daemon process. A single
FIFO was used, since the flow of data was only from the client to the server. Nothing was sent back to the
client.)

Multiple possibilities exist with message queues.

1. A single queue can be used between the server and all the clients, using the type field of each message to
indicate the message recipient. For example, the clients can send their requests with a type field of 1.
Included in the request must be the client's process ID. The server then sends the response with the type
field set to the client's process ID. The server receives only the messages with a type field of 1 (the
fourth argument for msgrcv), and the clients receive only the messages with a type field equal to their
process IDs.

2. Alternatively, an individual message queue can be used for each client. Before sending the first request
to a server, each client creates its own message queue with a key of IPC_PRIVATE . The server also has
its own queue, with a key or identifier known to all clients. The client sends its first request to the
server's well-known queue, and this request must contain the message queue ID of the client's queue.
The server sends its first response to the client's queue, and all future requests and responses are
exchanged on this queue.

One problem with this technique is that each client-specific queue usually has only a single message on
it: a request for the server or a response for a client. This seems wasteful of a limited systemwide
resource (a message queue), and a FIFO can be used instead. Another problem is that the server has to
read messages from multiple queues. Neither select nor poll works with message queues.

Either of these two techniques using message queues can be implemented using shared memory segments and a
synchronization method (a semaphore or record locking).

The problem with this type of client–server relationship (the client and the server being unrelated processes) is
for the server to identify the client accurately. Unless the server is performing a nonprivileged operation, it is
essential that the server know who the client is. This is required, for example, if the server is a set-user-ID
program. Although all these forms of IPC go through the kernel, there is no facility provided by them to have
the kernel identify the sender.

With message queues, if a single queue is used between the client and the server (so that only a single message
is on the queue at a time, for example), the msg_lspid of the queue contains the process ID of the other process.
But when writing the server, we want the effective user ID of the client, not its process ID. There is no portable
way to obtain the effective user ID, given the process ID. (Naturally, the kernel maintains both values in the
process table entry, but other than rummaging around through the kernel's memory, we can't obtain one, given
the other.)

We'll use the following technique in Section 17.3 to allow the server to identify the client. The same technique
can be used with FIFOs, message queues, semaphores, or shared memory. For the following description,
assume that FIFOs are being used, as in Figure 15.23. The client must create its own FIFO and set the file
access permissions of the FIFO so that only user-read and user-write are on. We assume that the server has
superuser privileges (or else it probably wouldn't care about the client's true identity), so the server can still read
and write to this FIFO. When the server receives the client's first request on the server's well-known FIFO
(which must contain the identity of the client-specific FIFO), the server calls either stat or fstat on the client-
specific FIFO. The server assumes that the effective user ID of the client is the owner of the FIFO (the st_uid
field of the stat structure). The server verifies that only the user-read and user-write permissions are enabled.
As another check, the server should also look at the three times associated with the FIFO (the st_atime ,
st_mtime , and st_ctime fields of the stat structure) to verify that they are recent (no older than 15 or 30
seconds, for example). If a malicious client can create a FIFO with someone else as the owner and set the file's
permission bits to user-read and user-write only, then the system has other fundamental security problems.

To use this technique with XSI IPC, recall that the ipc_perm structure associated with each message queue,
semaphore, and shared memory segment identifies the creator of the IPC structure (the cuid and cgid fields).
As with the example using FIFOs, the server should require the client to create the IPC structure and have the
client set the access permissions to user-read and user-write only. The times associated with the IPC structure
should also be verified by the server to be recent (since these IPC structures hang around until explicitly
deleted).

We'll see in Section 17.2.2 that a far better way of doing this authentication is for the kernel to provide the
effective user ID and effective group ID of the client. This is done by the STREAMS subsystem when file
descriptors are passed between processes.

15.11. Summary

We've detailed numerous forms of interprocess communication: pipes, named pipes (FIFOs), and the three
forms of IPC commonly called XSI IPC (message queues, semaphores, and shared memory). Semaphores are
really a synchronization primitive, not true IPC, and are often used to synchronize access to a shared resource,
such as a shared memory segment. With pipes, we looked at the implementation of the popen function, at
coprocesses, and the pitfalls that can be encountered with the standard I/O library's buffering.

After comparing the timing of message queues versus full-duplex pipes, and semaphores versus record locking,
we can make the following recommendations: learn pipes and FIFOs, since these two basic techniques can still
be used effectively in numerous applications. Avoid using message queues and semaphores in any new
applications. Full-duplex pipes and record locking should be considered instead, as they are far simpler. Shared
memory still has its use, although the same functionality can be provided through the use of the mmap function
(Section 14.9).

In the next chapter, we will look at network IPC, which can allow processes to communicate across machine
boundaries.

Chapter 16. Network IPC: Sockets

Section 16.1. Introduction

Section 16.2. Socket Descriptors

Section 16.3. Addressing

Section 16.4. Connection Establishment

Section 16.5. Data Transfer

Section 16.6. Socket Options

Section 16.7. Out-of-Band Data

Section 16.8. Nonblocking and Asynchronous I/O

Section 16.9. Summary

16.1. Introduction

In the previous chapter, we looked at pipes, FIFOs, message queues, semaphores, and shared memory: the
classical methods of IPC provided by various UNIX systems. These mechanisms allow processes running on
the same computer to communicate with one another. In this chapter, we look at the mechanisms that allow
processes running on different computers (connected to a common network) to communicate with one another:
network IPC.

In this chapter, we describe the socket network IPC interface, which can be used by processes to communicate
with other processes, regardless of where they are running: on the same machine or on different machines.
Indeed, this was one of the design goals of the socket interface. The same interfaces can be used for both
intermachine communication and intramachine communication. Although the socket interface can be used to
communicate using many different network protocols, we will restrict our discussion to the TCP/IP protocol
suite in this chapter, since it is the de facto standard for communicating over the Internet.

The socket API as specified by POSIX.1 is based on the 4.4BSD socket interface. Although minor changes have
been made over the years, the current socket interface closely resembles the interface when it was originally
introduced in 4.2BSD in the early 1980s.

This chapter is only an overview of the socket API. Stevens, Fenner, and Rudoff [2004] discuss the socket
interface in detail in the definitive text on network programming in the UNIX System.

16.2. Socket Descriptors

A socket is an abstraction of a communication endpoint. Just as they would use file descriptors to access a file,
applications use socket descriptors to access sockets. Socket descriptors are implemented as file descriptors in
the UNIX System. Indeed, many of the functions that deal with file descriptors, such as read and write , will
work with a socket descriptor.

To create a socket, we call the socket function.

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Returns: file (socket) descriptor if OK, –1 on error

The domain argument determines the nature of the communication, including the address format (described in
more detail in the next section). Figure 16.1 summarizes the domains specified by POSIX.1. The constants start
with AF_ (for address family) because each domain has its own format for representing an address.

Figure 16.1. Socket communication domains

Domain Description

AF_INET IPv4 Internet domain

AF_INET6 IPv6 Internet domain

AF_UNIX UNIX domain

AF_UNSPEC unspecified

We discuss the UNIX domain in Section 17.3. Most systems define the AF_LOCAL domain also, which is an alias
for AF_UNIX. The AF_UNSPEC domain is a wildcard that represents "any" domain. Historically, some platforms
provide support for additional network protocols, such as AF_IPX for the NetWare protocol family, but domain
constants for these protocols are not defined by the POSIX.1 standard.

The type argument determines the type of the socket, which further determines the communication
characteristics. The socket types defined by POSIX.1 are summarized in Figure 16.2, but implementations are
free to add support for additional types.

Figure 16.2. Socket types

Type Description

SOCK_DGRAM fixed-length, connectionless, unreliable messages

SOCK_RAW datagram interface to IP (optional in POSIX.1)

Figure 16.2. Socket types

Type Description

SOCK_SEQPACKET fixed-length, sequenced, reliable, connection-oriented messages

SOCK_STREAM sequenced, reliable, bidirectional, connection-oriented byte streams

The protocol argument is usually zero, to select the default protocol for the given domain and socket type.
When multiple protocols are supported for the same domain and socket type, we can use the protocol argument
to select a particular protocol. The default protocol for a SOCK_STREAM socket in the AF_INET communication
domain is TCP (Transmission Control Protocol). The default protocol for a SOCK_DGRAM socket in the AF_INET
communication domain is UDP (User Datagram Protocol).

With a datagram (SOCK_DGRAM) interface, no logical connection needs to exist between peers for them to
communicate. All you need to do is send a message addressed to the socket being used by the peer process.

A datagram, therefore, provides a connectionless service. A byte stream (SOCK_STREAM), on the other hand,
requires that, before you can exchange data, you set up a logical connection between your socket and the socket
belonging to the peer you want to communicate with.

A datagram is a self-contained message. Sending a datagram is analogous to mailing someone a letter. You can
mail many letters, but you can't guarantee the order of delivery, and some might get lost along the way. Each
letter contains the address of the recipient, making the letter independent from all the others. Each letter can
even go to different recipients.

In contrast, using a connection-oriented protocol for communicating with a peer is like making a phone call.
First, you need to establish a connection by placing a phone call, but after the connection is in place, you can
communicate bidirectionally with each other. The connection is a peer-to-peer communication channel over
which you talk. Your words contain no addressing information, as a point-to-point virtual connection exists
between both ends of the call, and the connection itself implies a particular source and destination.

With a SOCK_STREAM socket, applications are unaware of message boundaries, since the socket provides a byte
stream service. This means that when we read data from a socket, it might not return the same number of bytes
written by the process sending us data. We will eventually get everything sent to us, but it might take several
function calls.

A SOCK_SEQPACKET socket is just like a SOCK_STREAM socket except that we get a message-based service instead
of a byte-stream service. This means that the amount of data received from a SOCK_SEQPACKET socket is the
same amount as was written. The Stream Control Transmission Protocol (SCTP) provides a sequential packet
service in the Internet domain.

A SOCK_RAW socket provides a datagram interface directly to the underlying network layer (which means IP in
the Internet domain). Applications are responsible for building their own protocol headers when using this
interface, because the transport protocols (TCP and UDP, for example) are bypassed. Superuser privileges are
required to create a raw socket to prevent malicious applications from creating packets that might bypass
established security mechanisms.

Calling socket is similar to calling open . In both cases, you get a file descriptor that can be used for I/O. When
you are done using the file descriptor, you call close to relinquish access to the file or socket and free up the
file descriptor for reuse.

Although a socket descriptor is actually a file descriptor, you can't use a socket descriptor with every function
that accepts a file descriptor argument. Figure 16.3 summarizes most of the functions we've described so far that
are used with file descriptors and describes how they behave when used with a socket descriptor. Unspecified
and implementation-defined behavior usually means that the function doesn't work with socket descriptors. For
example, lseek doesn't work with sockets, since sockets don't support the concept of a file offset.

Figure 16.3. How file descriptor functions act with sockets

Function Behavior with socket

close (Section 3.3) deallocates the socket

dup , dup2 (Section 3.12) duplicates the file descriptor as normal

fchdir (Section 4.22) fails with errno set to ENOTDIR

fchmod (Section 4.9) unspecified

fchown (Section 4.11) implementation defined

fcntl (Section 3.14) some commands supported, including F_DUPFD, F_GETFD, F_GETFL,
F_GETOWN, F_SETFD, F_SETFL, and F_SETOWN

fdatasync , fsync (Section 3.13) implementation defined

fstat (Section 4.2) some stat structure members supported, but how left up to the
implementation

ftruncate (Section 4.13) unspecified

getmsg , getpmsg (Section 14.4) works if sockets are implemented with STREAMS (i.e., on Solaris)

ioctl (Section 3.15) some commands work, depending on underlying device driver

lseek (Section 3.6) implementation defined (usually fails with errno set to ESPIPE)

mmap (Section 14.9) unspecified

poll (Section 14.5.2) works as expected

putmsg , putpmsg (Section 14.4) works if sockets are implemented with STREAMS (i.e., on Solaris)

read (Section 3.7) and readv
(Section 14.7)

equivalent to recv (Section 16.5) without any flags

select (Section 14.5.1) works as expected

write (Section 3.8) and writev
(Section 14.7)

equivalent to send (Section 16.5) without any flags

Communication on a socket is bidirectional. We can disable I/O on a socket with the shutdown function.

#include <sys/socket.h>

int shutdown (int sockfd, int how);

Returns: 0 if OK, –1 on error

If how is SHUT_RD, then reading from the socket is disabled. If how is SHUT_WR, then we can't use the socket for
transmitting data. We can use SHUT_RDWR to disable both data transmission and reception.

Given that we can close a socket, why is shutdown needed? There are several reasons. First, close will
deallocate the network endpoint only when the last active reference is closed. This means that if we duplicate
the socket (with dup , for example), the socket won't be deallocated until we close the last file descriptor
referring to it. The shutdown function allows us to deactivate a socket independently of the number of active
file descriptors referencing it. Second, it is sometimes convenient to shut a socket down in one direction only.
For example, we can shut a socket down for writing if we want the process we are communicating with to be
able to determine when we are done transmitting data, while still allowing us to use the socket to receive data
sent to us by the process.

16.3. Addressing

In the previous section, we learned how to create and destroy a socket. Before we learn to do something useful
with a socket, we need to learn how to identify the process that we want to communicate with. Identifying the
process has two components. The machine's network address helps us identify the computer on the network we
wish to contact, and the service helps us identify the particular process on the computer.

16.3.1. Byte Ordering

When communicating with processes running on the same computer, we generally don't have to worry about
byte ordering. The byte order is a characteristic of the processor architecture, dictating how bytes are ordered
within larger data types, such as integers. Figure 16.4 shows how the bytes within a 32-bit integer are numbered.

Figure 16.4. Byte order in a 32-bit integer

If the processor architecture supports big-endian byte order, then the highest byte address occurs in the least
significant byte (LSB). Little-endian byte order is the opposite: the least significant byte contains the lowest
byte address. Note that regardless of the byte ordering, the most significant byte (MSB) is always on the left,
and the least significant byte is always on the right. Thus, if we were to assign a 32-bit integer the value
0x04030201 , the most significant byte would contain 4, and the least significant byte would contain 1,
regardless of the byte ordering. If we were then to cast a character pointer (cp) to the address of the integer, we
would see a difference from the byte ordering. On a little-endian processor, cp[0] would refer to the least
significant byte and contain 1; cp[3] would refer to the most significant byte and contain 4. Compare that to a
big-endian processor, where cp[0] would contain 4, referring to the most significant byte, and cp[3] would
contain 1, referring to the least significant byte. Figure 16.5 summarizes the byte ordering for the four platforms
discussed in this text.

Figure 16.5. Byte order for test platforms

Operating system Processor architecture Byte order

FreeBSD 5.2.1 Intel Pentium little-endian

Linux 2.4.22 Intel Pentium little-endian

Mac OS X 10.3 PowerPC big-endian

Solaris 9 Sun SPARC big-endian

To confuse matters further, some processors can be configured for either little-endian or big-endian operation.

Network protocols specify a byte ordering so that heterogeneous computer systems can exchange protocol
information without confusing the byte ordering. The TCP/IP protocol suite uses big-endian byte order. The
byte ordering becomes visible to applications when they exchange formatted data. With TCP/IP, addresses are
presented in network byte order, so applications sometimes need to translate them between the processor 's byte
order and the network byte order. This is common when printing an address in a human-readable form, for
example.

Four common functions are provided to convert between the processor byte order and the network byte order
for TCP/IP applications.

#include <arpa/inet.h>

uint32_t htonl(uint32_t hostint32);

Returns: 32-bit integer in network byte order

uint16_t htons(uint16_t hostint16);

Returns: 16-bit integer in network byte order

uint32_t ntohl(uint32_t netint32);

Returns: 32-bit integer in host byte order

uint16_t ntohs(uint16_t netint16);

Returns: 16-bit integer in host byte order

The h is for "host" byte order, and the n is for "network" byte order. The l is for "long" (i.e., 4-byte) integer,
and the s is for "short" (i.e., 2-byte) integer. These four functions are defined in <arpa/inet.h> , although some
older systems define them in <netinet/in.h> .

16.3.2. Address Formats

An address identifies a socket endpoint in a particular communication domain. The address format is specific to
the particular domain. So that addresses with different formats can be passed to the socket functions, the
addresses are cast to a generic sockaddr address structure:

 struct sockaddr {
 sa_family_t sa_family; /* address family * /
 char sa_data[]; /* variable-length address */
 .
 .
 .
 };

Implementations are free to add additional members and define a size for the sa_data member. For example,
on Linux, the structure is defined as

 struct sockaddr {
 sa_family_t sa_family; /* address family */
 char sa_data[14]; /* variable-length address */
 };

But on FreeBSD, the structure is defined as

 struct sockaddr {
 unsigned char sa_len; /* total length */
 sa_family_t sa_family; /* address famil y */
 char sa_data[14]; /* variable-leng th address */
 };

Internet addresses are defined in <netinet/in.h> . In the IPv4 Internet domain (AF_INET), a socket address is
represented by a sockaddr_in structure:

 struct in_addr {
 in_addr_t s_addr; /* IPv4 address */
 };

 struct sockaddr_in {
 sa_family_t sin_family; /* address family */
 in_port_t sin_port; /* port number */
 struct in_addr sin_addr; /* IPv4 address * /
 };

The in_port_t data type is defined to be a uint16_t . The in_addr_t data type is defined to be a uint32_t .
These integer data types specify the number of bits in the data type and are defined in <stdint.h> .

In contrast to the AF_INET domain, the IPv6 Internet domain (AF_INET6) socket address is represented by a
sockaddr_in6 structure:

 struct in6_addr {
 uint8_t s6_addr[16]; /* IPv6 addres s */
 };

 struct sockaddr_in6 {
 sa_family_t sin6_family; /* address fa mily */
 in_port_t sin6_port; /* port numbe r */
 uint32_t sin6_flowinfo; /* traffic cl ass and flow info */
 struct in6_addr sin6_addr; /* IPv6 addre ss */
 uint32_t sin6_scope_id; /* set of int erfaces for scope */
 };

These are the definitions required by the Single UNIX Specification. Individual implementations are free to add
additional fields. For example, on Linux, the sockaddr_in structure is defined as

 struct sockaddr_in {
 sa_family_t sin_family; /* address fam ily */
 in_port_t sin_port; /* port number */

 struct in_addr sin_addr; /* IPv4 addres s */
 unsigned char sin_zero[8]; /* filler */
 };

where the sin_zero member is a filler field that should be set to all-zero values.

Note that although the sockaddr_in and sockaddr_in6 structures are quite different, they are both passed to
the socket routines cast to a sockaddr structure. In Section 17.3, we will see that the structure of a UNIX
domain socket address is different from both of the Internet domain socket address formats.

It is sometimes necessary to print an address in a format that is understandable by a person instead of a
computer. The BSD networking software included the inet_addr and inet_ntoa functions to convert between
the binary address format and a string in dotted-decimal notation (a.b.c.d). These functions, however, work only
with IPv4 addresses. Two new functions—inet_ntop and inet_pton —support similar functionality and work
with both IPv4 and IPv6 addresses.

#include <arpa/inet.h>

const char *inet_ntop(int domain, const void *restr ict addr,
 char *restrict str,
 socklen_t size);

Returns: pointer to address string on success, NULL on error

int inet_pton(int domain, const char *restrict str,
 void *restrict addr);

Returns: 1 on success, 0 if the format is invalid, or –1 on error

The inet_ntop function converts a binary address in network byte order into a text string; inet_pton converts
a text string into a binary address in network byte order. Only two domain values are supported: AF_INET and
AF_INET6 .

For inet_ntop , the size parameter specifies the size of the buffer (str) to hold the text string. Two constants are
defined to make our job easier: INET_ADDRSTRLEN is large enough to hold a text string representing an IPv4
address, and INET6_ADDRSTRLEN is large enough to hold a text string representing an IPv6 address. For
inet_pton , the addr buffer needs to be large enough to hold a 32-bit address if domain is AF_INET or large
enough to hold a 128-bit address if domain is AF_INET6 .

16.3.3. Address Lookup

Ideally, an application won't have to be aware of the internal structure of a socket address. If an application
simply passes socket addresses around as sockaddr structures and doesn't rely on any protocol-specific features,
then the application will work with many different protocols that provide the same type of service.

Historically, the BSD networking software has provided interfaces to access the various network configuration
information. In Section 6.7, we briefly discussed the networking data files and the functions used to access them.
In this section, we discuss them in a little more detail and introduce the newer functions used to look up
addressing information.

The network configuration information returned by these functions can be kept in a number of places. They can
be kept in static files (/etc/hosts , /etc/services , etc.), or they can be managed by a name service, such as
DNS (Domain Name System) or NIS (Network Information Service). Regardless of where the information is
kept, the same functions can be used to access it.

The hosts known by a given computer system are found by calling gethostent .

#include <netdb.h>

struct hostent *gethostent(void);

Returns: pointer if OK, NULL on error

void sethostent(int stayopen);

void endhostent(void);

If the host database file isn't already open, gethostent will open it. The gethostent function returns the next
entry in the file. The sethostent function will open the file or rewind it if it is already open. The endhostent
function will close the file.

When gethostent returns, we get a pointer to a hostent structure which might point to a static data buffer that
is overwritten each time we call gethostent . The hostent structure is defined to have at least the following
members:

 struct hostent {
 char *h_name; /* name of host */
 char **h_aliases; /* pointer to alternate host name array */
 int h_addrtype; /* address type */
 int h_length; /* length in bytes of ad dress */
 char **h_addr_list; /* pointer to array of n etwork addresses */
 .
 .
 .
 };

The addresses returned are in network byte order.

Two additional functions—gethostbyname and gethostbyaddr —originally were included with the hostent
functions, but are now considered to be obsolete. We'll see replacements for them shortly.

We can get network names and numbers with a similar set of interfaces.

#include <netdb.h>

struct netent *getnetbyaddr(uint32_t net, int type) ;

struct netent *getnetbyname(const char *name);

struct netent *getnetent(void);

#include <netdb.h>

struct netent *getnetbyaddr(uint32_t net, int type) ;

struct netent *getnetbyname(const char *name);

struct netent *getnetent(void);

All return: pointer if OK, NULL on error

void setnetent(int stayopen);

void endnetent(void);

The netent structure contains at least the following fields:

 struct netent {
 char *n_name; /* network name */
 char **n_aliases; /* alternate network na me array pointer */
 int n_addrtype; /* address type */
 uint32_t n_net; /* network number */
 .
 .
 .
 };

The network number is returned in network byte order. The address type is one of the address family constants
(AF_INET, for example).

We can map between protocol names and numbers with the following functions.

#include <netdb.h>

struct protoent *getprotobyname(const char *name);

struct protoent *getprotobynumber(int proto);

struct protoent *getprotoent(void);

All return: pointer if OK, NULL on error

void setprotoent(int stayopen);

void endprotoent(void);

The protoent structure as defined by POSIX.1 has at least the following members:

 struct protoent {
 char *p_name; /* protocol name */
 char **p_aliases; /* pointer to alternate pr otocol name array */

 int p_proto; /* protocol number */
 .
 .
 .
 };

Services are represented by the port number portion of the address. Each service is offered on a unique, well-
known port number. We can map a service name to a port number with getservbyname , map a port number to
a service name with getservbyport , or scan the services database sequentially with getservent .

#include <netdb.h>

struct servent *getservbyname(const char *name,
 const char *proto);

struct servent *getservbyport(int port, const char *proto);

struct servent *getservent(void);

All return: pointer if OK, NULL on error

void setservent(int stayopen);

void endservent(void);

The servent structure is defined to have at least the following members:

 struct servent {
 char *s_name; /* service name */
 char **s_aliases; /* pointer to alternate s ervice name array */
 int s_port; /* port number */
 char *s_proto; /* name of protocol */
 .
 .
 .
 };

POSIX.1 defines several new functions to allow an application to map from a host name and a service name to
an address and vice versa. These functions replace the older gethostbyname and gethostbyaddr functions.

The getaddrinfo function allows us to map a host name and a service name to an address.

#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict host,
 const char *restrict service,
 const struct addrinfo *restrict hin t,
 struct addrinfo **restrict res);

Returns: 0 if OK, nonzero error code on error

#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict host,
 const char *restrict service,
 const struct addrinfo *restrict hin t,
 struct addrinfo **restrict res);

void freeaddrinfo(struct addrinfo *ai);

We need to provide the host name, the service name, or both. If we provide only one name, the other should be
a null pointer. The host name can be either a node name or the host address in dotted-decimal notation.

The getaddrinfo function returns a linked list of addrinfo structures. We can use freeaddrinfo to free one
or more of these structures, depending on how many structures are linked together using the ai_next field.

The addrinfo structure is defined to include at least the following members:

 struct addrinfo {
 int ai_flags; /* customize behavior */
 int ai_family; /* address f amily */
 int ai_socktype; /* socket ty pe */
 int ai_protocol; /* protocol */
 socklen_t ai_addrlen; /* length in bytes of address */
 struct sockaddr *ai_addr; /* address * /
 char *ai_canonname; /* canonical name of host */
 struct addrinfo *ai_next; /* next in l ist */
 .
 .
 .
 };

We can supply an optional hint to select addresses that meet certain criteria. The hint is a template used for
filtering addresses and uses only the ai_family , ai_flags , ai_protocol , and ai_socktype fields. The
remaining integer fields must be set to 0, and the pointer fields must be null. Figure 16.6 summarizes the flags
we can use in the ai_flags field to customize how addresses and names are treated.

Figure 16.6. Flags for addrinfo structure

Flag Description

AI_ADDRCONFIG Query for whichever address type (IPv4 or IPv6) is configured.

AI_ALL Look for both IPv4 and IPv6 addresses (used only with AI_V4MAPPED).

AI_CANONNAME Request a canonical name (as opposed to an alias).

AI_NUMERICHOST Return the host address in numeric format.

AI_NUMERICSERV Return the service as a port number.

Figure 16.6. Flags for addrinfo structure

Flag Description

AI_PASSIVE Socket address is intended to be bound for listening.

AI_V4MAPPED If no IPv6 addresses are found, return IPv4 addresses mapped in IPv6 format.

If getaddrinfo fails, we can't use perror or strerror to generate an error message. Instead, we need to call
gai_strerror to convert the error code returned into an error message.

#include <netdb.h>

const char *gai_strerror(int error);

Returns: a pointer to a string describing the error

The getnameinfo function converts an address into a host name and a service name.

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *restrict add r,
 socklen_t alen, char *restrict host ,
 socklen_t hostlen, char *restrict s ervice,
 socklen_t servlen, unsigned int fla gs);

Returns: 0 if OK, nonzero on error

The socket address (addr) is translated into a host name and a service name. If host is non-null, it points to a
buffer hostlen bytes long that will be used to return the host name. Similarly, if service is non-null, it points to a
buffer servlen bytes long that will be used to return the service name.

The flags argument gives us some control over how the translation is done. Figure 16.7 summarizes the
supported flags.

Figure 16.7. Flags for the getnameinfo function

Flag Description

NI_DGRAM The service is datagram based instead of stream based.

NI_NAMEREQD If the host name can't be found, treat this as an error.

NI_NOFQDN Return only the node name portion of the fully-qualified domain name for local hosts.

NI_NUMERICHOST Return the numeric form of the host address instead of the name.

Figure 16.7. Flags for the getnameinfo function

Flag Description

NI_NUMERICSERV Return the numeric form of the service address (i.e., the port number) instead of the name.

Example

Figure 16.8 illustrates the use of the getaddrinfo function.

This program illustrates the use of the getaddrinfo function. If multiple protocols provide the given service for
the given host, the program will print more than one entry. In this example, we print out the address information
only for the protocols that work with IPv4 (ai_family equals AF_INET). If we wanted to restrict the output to
the AF_INET protocol family, we could set the ai_family field in the hint.

When we run the program on one of the test systems, we get

 $./a.out harry nfs
 flags canon family inet type stream protocol TCP
 host harry address 192.168.1.105 port 2049
 flags canon family inet type datagram protocol U DP
 host harry address 192.168.1.105 port 2049

Figure 16.8. Print host and service information

#include "apue.h"
#include <netdb.h>
#include <arpa/inet.h>
#if defined(BSD) || defined(MACOS)
#include <sys/socket.h>
#include <netinet/in.h>
#endif

void
print_family(struct addrinfo *aip)
{
 printf(" family ");
 switch (aip->ai_family) {
 case AF_INET:
 printf("inet");
 break;
 case AF_INET6:
 printf("inet6");
 break;
 case AF_UNIX:
 printf("unix");
 break;
 case AF_UNSPEC:
 printf("unspecified");
 break;
 default:
 printf("unknown");
 }

}
void
print_type(struct addrinfo *aip)
{
 printf(" type ");
 switch (aip->ai_socktype) {
 case SOCK_STREAM:
 printf("stream");
 break;
 case SOCK_DGRAM:
 printf("datagram");
 break;
 case SOCK_SEQPACKET:
 printf("seqpacket");
 break;
 case SOCK_RAW:
 printf("raw");
 break;
 default:
 printf("unknown (%d)", aip->ai_socktype);
 }
}

void
print_protocol(struct addrinfo *aip)
{
 printf(" protocol ");
 switch (aip->ai_protocol) {
 case 0:
 printf("default");
 break;
 case IPPROTO_TCP:
 printf("TCP");
 break;
 case IPPROTO_UDP:
 printf("UDP");
 break;
 case IPPROTO_RAW:
 printf("raw");
 break;
 default:
 printf("unknown (%d)", aip->ai_protocol);
 }
}

void
print_flags(struct addrinfo *aip)
{
 printf("flags");
 if (aip->ai_flags == 0) {
 printf(" 0");

 } else {
 if (aip->ai_flags & AI_PASSIVE)
 printf(" passive");
 if (aip->ai_flags & AI_CANONNAME)
 printf(" canon");
 if (aip->ai_flags & AI_NUMERICHOST)
 printf(" numhost");
#if defined(AI_NUMERICSERV)
 if (aip->ai_flags & AI_NUMERICSERV)
 printf(" numserv");

#endif
#if defined(AI_V4MAPPED)
 if (aip->ai_flags & AI_V4MAPPED)
 printf(" v4mapped");
#endif
#if defined(AI_ALL)
 if (aip->ai_flags & AI_ALL)
 printf(" all");
#endif
 }
}
int
main(int argc, char *argv[])
{
 struct addrinfo *ailist, *aip;
 struct addrinfo hint;
 struct sockaddr_in *sinp;
 const char *addr;
 int err;
 char abuf[INET_ADDRSTRLEN];

 if (argc != 3)
 err_quit("usage: %s nodename service", argv [0]);
 hint.ai_flags = AI_CANONNAME;
 hint.ai_family = 0;
 hint.ai_socktype = 0;
 hint.ai_protocol = 0;
 hint.ai_addrlen = 0;
 hint.ai_canonname = NULL;
 hint.ai_addr = NULL;
 hint.ai_next = NULL;
 if ((err = getaddrinfo(argv[1], argv[2], &hint, &ailist)) != 0)
 err_quit("getaddrinfo error: %s", gai_strer ror(err));
 for (aip = ailist; aip != NULL; aip = aip->ai_n ext) {
 print_flags(aip);
 print_family(aip);
 print_type(aip);
 print_protocol(aip);
 printf("\n\thost %s", aip->ai_canonname?aip ->ai_canonname:"-");
 if (aip->ai_family == AF_INET) {

 sinp = (struct sockaddr_in *)aip->ai_add r;
 addr = inet_ntop(AF_INET, &sinp->sin_add r, abuf,
 INET_ADDRSTRLEN);
 printf(" address %s", addr?addr:"unknown ");
 printf(" port %d", ntohs(sinp->sin_port));
 }
 printf("\n");
 }
 exit(0);
}

16.3.4. Associating Addresses with Sockets

The address associated with a client's socket is of little interest, and we can let the system choose a default
address for us. For a server, however, we need to associate a well-known address with the server's socket on
which client requests will arrive. Clients need a way to discover the address to use to contact a server, and the
simplest scheme is for a server to reserve an address and register it in /etc/services or with a name service.

We use the bind function to associate an address with a socket.

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr,
 socklen_t len);

Returns: 0 if OK, –1 on error

There are several restrictions on the address we can use:

• The address we specify must be valid for the machine on which the process is running; we can't specify
an address belonging to some other machine.

• The address must match the format supported by the address family we used to create the socket.
• The port number in the address cannot be less than 1,024 unless the process has the appropriate privilege

(i.e., is the superuser).
• Usually, only one socket endpoint can be bound to a given address, although some protocols allow

duplicate bindings.

For the Internet domain, if we specify the special IP address INADDR_ANY, the socket endpoint will be bound to
all the system's network interfaces. This means that we can receive packets from any of the network interface
cards installed in the system. We'll see in the next section that the system will choose an address and bind it to
our socket for us if we call connect or listen without first binding an address to the socket.

We can use the getsockname function to discover the address bound to a socket.

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *restri ct addr,
 socklen_t *restrict alenp);

Returns: 0 if OK, –1 on error

Before calling getsockname , we set alenp to point to an integer containing the size of the sockaddr buffer. On
return, the integer is set to the size of the address returned. If the address won't fit in the buffer provided, the
address is silently truncated. If no address is currently bound to the socket, the results are undefined.

If the socket is connected to a peer, we can find out the peer's address by calling the getpeername function.

#include <sys/socket.h>

int getpeername(int sockfd, struct sockaddr *restri ct addr,
 socklen_t *restrict alenp);

Returns: 0 if OK, –1 on error

Other than returning the peer's address, the getpeername function is identical to the getsockname function.

16.4. Connection Establishment

If we're dealing with a connection-oriented network service (SOCK_STREAM or SOCK_SEQPACKET), then before
we can exchange data, we need to create a connection between the socket of the process requesting the service
(the client) and the process providing the service (the server). We use the connect function to create a
connection.

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr , socklen_t len);

Returns: 0 if OK, –1 on error

The address we specify with connect is the address of the server with which we wish to communicate. If
sockfd is not bound to an address, connect will bind a default address for the caller.

When we try to connect to a server, the connect request might fail for several reasons. The machine to which we
are trying to connect must be up and running, the server must be bound to the address we are trying to contact,
and there must be room in the server's pending connect queue (we'll learn more about this shortly). Thus,
applications must be able to handle connect error returns that might be caused by transient conditions.

Example

Figure 16.9 shows one way to handle transient connect errors. This is likely with a server that is
running on a heavily loaded system.

This function shows what is known as an exponential backoff algorithm. If the call to connect fails,
the process goes to sleep for a short time and then tries again, increasing the delay each time through
the loop, up to a maximum delay of about 2 minutes.

Figure 16.9. Connect with retry

#include "apue.h"
#include <sys/socket.h>

#define MAXSLEEP 128

int
connect_retry(int sockfd, const struct sockaddr *ad dr, socklen_t alen)
{
 int nsec;

 /*
 * Try to connect with exponential backoff.
 */
 for (nsec = 1; nsec <= MAXSLEEP; nsec <<= 1) {
 if (connect(sockfd, addr, alen) == 0) {
 /*
 * Connection accepted.
 */
 return(0);
 }

 /*
 * Delay before trying again.
 */
 if (nsec <= MAXSLEEP/2)
 sleep(nsec);
 }
 return(-1);
}

If the socket descriptor is in nonblocking mode, which we discuss further in Section 16.8, connect will return –
1 with errno set to the special error code EINPROGRESS if the connection can't be established immediately. The
application can use either poll or select to determine when the file descriptor is writable. At this point, the
connection is complete.

The connect function can also be used with a connectionless network service (SOCK_DGRAM). This might seem
like a contradiction, but it is an optimization instead. If we call connect with a SOCK_DGRAM socket, the
destination address of all messages we send is set to the address we specified in the connect call, relieving us
from having to provide the address every time we transmit a message. In addition, we will receive datagrams
only from the address we've specified.

A server announces that it is willing to accept connect requests by calling the listen function.

#include <sys/socket.h>

int listen(int sockfd, int backlog);

Returns: 0 if OK, –1 on error

The backlog argument provides a hint to the system of the number of outstanding connect requests that it should
enqueue on behalf of the process. The actual value is determined by the system, but the upper limit is specified
as SOMAXCONN in <sys/socket.h> .

On Solaris, the SOMAXCONN value in <sys/socket.h> is ignored. The particular maximum depends on the
implementation of each protocol. For TCP, the default is 128.

Once the queue is full, the system will reject additional connect requests, so the backlog value must be chosen
based on the expected load of the server and the amount of processing it must do to accept a connect request
and start the service.

Once a server has called listen , the socket used can receive connect requests. We use the accept function to
retrieve a connect request and convert that into a connection.

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *restrict ad dr,
 socklen_t *restrict len);

Returns: file (socket) descriptor if OK, –1 on error

The file descriptor returned by accept is a socket descriptor that is connected to the client that called connect .
This new socket descriptor has the same socket type and address family as the original socket (sockfd). The
original socket passed to accept is not associated with the connection, but instead remains available to receive
additional connect requests.

If we don't care about the client's identity, we can set the addr and len parameters to NULL. Otherwise, before
calling accept , we need to set the addr parameter to a buffer large enough to hold the address and set the
integer pointed to by len to the size of the buffer. On return, accept will fill in the client's address in the buffer
and update the integer pointed to by len to reflect the size of the address.

If no connect requests are pending, accept will block until one arrives. If sockfd is in nonblocking mode,
accept will return –1 and set errno to either EAGAIN or EWOULDBLOCK.

All four platforms discussed in this text define EAGAIN to be the same as EWOULDBLOCK.

If a server calls accept and no connect request is present, the server will block until one arrives. Alternatively,
a server can use either poll or select to wait for a connect request to arrive. In this case, a socket with pending
connect requests will appear to be readable.

Example

Figure 16.10 shows a function we can use to allocate and initialize a socket for use by a server
process.

We'll see that TCP has some strange rules regarding address reuse that make this example
inadequate. Figure 16.20 shows a version of this function that bypasses these rules, solving the
major drawback with this version.

Figure 16.10. Initialize a socket endpoint for use by a server

#include "apue.h"
#include <errno.h>
#include <sys/socket.h>

int
initserver(int type, const struct sockaddr *addr, s ocklen_t alen,
 int qlen)
{
 int fd;
 int err = 0;

 if ((fd = socket(addr->sa_family, type, 0)) < 0)
 return(-1);
 if (bind(fd, addr, alen) < 0) {
 err = errno;
 goto errout;
 }
 if (type == SOCK_STREAM || type == SOCK_SEQPACK ET) {
 if (listen(fd, qlen) < 0) {
 err = errno;
 goto errout;
 }
 }
 return(fd);

errout:

 close(fd);
 errno = err;
 return(-1);
}

16.5. Data Transfer

Since a socket endpoint is represented as a file descriptor, we can use read and write to communicate with a
socket, as long as it is connected. Recall that a datagram socket can be "connected" if we set the default peer
address using the connect function. Using read and write with socket descriptors is significant, because it
means that we can pass socket descriptors to functions that were originally designed to work with local files.
We can also arrange to pass the socket descriptors to child processes that execute programs that know nothing
about sockets.

Although we can exchange data using read and write , that is about all we can do with these two functions. If
we want to specify options, receive packets from multiple clients, or send out-of-band data, we need to use one
of the six socket functions designed for data transfer.

Three functions are available for sending data, and three are available for receiving data. First, we'll look at the
ones used to send data.

The simplest one is send . It is similar to write , but allows us to specify flags to change how the data we want
to transmit is treated.

#include <sys/socket.h>

ssize_t send(int sockfd, const void *buf, size_t nb ytes, int flags);

Returns: number of bytes sent if OK, –1 on error

Like write , the socket has to be connected to use send . The buf and nbytes arguments have the same meaning
as they do with write .

Unlike write , however, send supports a fourth flags argument. Two flags are defined by the Single UNIX
Specification, but it is common for implementations to support additional ones. They are summarized in Figure
16.11.

Figure 16.11. Flags used with send socket calls

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS
X 10.3

Solaris
9

MSG_DONTROUTE Don't route packet outside of local
network.

 • • • •

MSG_DONTWAIT Enable nonblocking operation
(equivalent to using O_NONBLOCK).

 • • •

MSG_EOR This is the end of record if
supported by protocol.

• • • •

MSG_OOB Send out-of-band data if supported
by protocol (see Section 16.7).

• • • • •

If send returns success, it doesn't necessarily mean that the process at the other end of the connection receives
the data. All we are guaranteed is that when send succeeds, the data has been delivered to the network drivers
without error.

With a protocol that supports message boundaries, if we try to send a single message larger than the maximum
supported by the protocol, send will fail with errno set to EMSGSIZE. With a byte-stream protocol, send will
block until the entire amount of data has been transmitted.

The sendto function is similar to send . The difference is that sendto allows us to specify a destination address
to be used with connectionless sockets.

#include <sys/socket.h>

ssize_t sendto(int sockfd, const void *buf, size_t nbytes, int flags,
 const struct sockaddr *destaddr,
 socklen_t destlen);

Returns: number of bytes sent if OK, –1 on error

With a connection-oriented socket, the destination address is ignored, as the destination is implied by the
connection. With a connectionless socket, we can't use send unless the destination address is first set by calling
connect , so sendto gives us an alternate way to send a message.

We have one more choice when transmitting data over a socket. We can call sendmsg with a msghdr structure
to specify multiple buffers from which to transmit data, similar to the writev function (Section 14.7).

#include <sys/socket.h>

ssize_t sendmsg(int sockfd, const struct msghdr *ms g, int flags);

Returns: number of bytes sent if OK, –1 on error

POSIX.1 defines the msghdr structure to have at least the following members:

 struct msghdr {
 void *msg_name; /* optional a ddress */
 socklen_t msg_namelen; /* address si ze in bytes */
 struct iovec *msg_iov; /* array of I /O buffers */
 int msg_iovlen; /* number of elements in array */
 void *msg_control; /* ancillary data */
 socklen_t msg_controllen; /* number of ancillary bytes */
 int msg_flags; /* flags for received message */
 .
 .
 .
 };

We saw the iovec structure in Section 14.7. We'll see the use of ancillary data in Section 17.4.2.

The recv function is similar to read , but allows us to specify some options to control how we receive the data.

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buf, size_t nbytes,
 int flags);

Returns: length of message in bytes, 0 if no messages are available and peer has done an orderly shutdown, or –
1 on error

The flags that can be passed to recv are summarized in Figure 16.12. Only three are defined by the Single
UNIX Specification.

Figure 16.12. Flags used with recv socket calls

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
5.2.1

Mac OS
X 10.3

Solaris
9

MSG_OOB Retrieve out-of-band data if supported
by protocol (see Section 16.7).

• • • • •

MSG_PEEK Return packet contents without
consuming packet.

• • • • •

MSG_TRUNC Request that the real length of the
packet be returned, even if it was
truncated.

 •

MSG_WAITALL Wait until all data is available
(SOCK_STREAM only).

• • • • •

When we specify the MSG_PEEK flag, we can peek at the next data to be read without actually consuming it. The
next call to read or one of the recv functions will return the same data we peeked at.

With SOCK_STREAM sockets, we can receive less data than we requested. The MSG_WAITALL flag inhibits this
behavior, preventing recv from returning until all the data we requested has been received. With SOCK_DGRAM
and SOCK_SEQPACKET sockets, the MSG_WAITALL flag provides no change in behavior, because these message-
based socket types already return an entire message in a single read.

If the sender has called shutdown (Section 16.2) to end transmission, or if the network protocol supports orderly
shutdown by default and the sender has closed the socket, then recv will return 0 when we have received all the
data.

If we are interested in the identity of the sender, we can use recvfrom to obtain the source address from which
the data was sent.

#include <sys/socket.h>

ssize_t recvfrom(int sockfd, void *restrict buf,
 size_t len, int flags,
 struct sockaddr *restrict addr,
 socklen_t *restrict addrlen);

Returns: length of message in bytes, 0 if no messages are available and peer has done an orderly shutdown, or –
1 on error

If addr is non-null, it will contain the address of the socket endpoint from which the data was sent. When calling
recvfrom , we need to set the addrlen parameter to point to an integer containing the size in bytes of the socket
buffer to which addr points. On return, the integer is set to the actual size of the address in bytes.

Because it allows us to retrieve the address of the sender, recvfrom is usually used with connectionless sockets.
Otherwise, recvfrom behaves identically to recv .

To receive data into multiple buffers, similar to readv (Section 14.7), or if we want to receive ancillary data
(Section 17.4.2), we can use recvmsg .

#include <sys/socket.h>

ssize_t recvmsg(int sockfd, struct msghdr *msg,
 int flags);

Returns: length of message in bytes, 0 if no messages are available and peer has done an orderly shutdown, or –
1 on error

The msghdr structure (which we saw used with sendmsg) is used by recvmsg to specify the input buffers to be
used to receive the data. We can set the flags argument to change the default behavior of recvmsg . On return,
the msg_flags field of the msghdr structure is set to indicate various characteristics of the data received. (The
msg_flags field is ignored on entry to recvmsg). The possible values on return from recvmsg are summarized
in Figure 16.13. We'll see an example that uses recvmsg in Chapter 17.

Figure 16.13. Flags returned in msg_flags by recvmsg

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

MSG_CTRUNC Control data was truncated. • • • • •

MSG_DONTWAIT recvmsg was called in
nonblocking mode.

 • •

MSG_EOR End of record was received. • • • • •

MSG_OOB Out-of-band data was received. • • • • •

Figure 16.13. Flags returned in msg_flags by recvmsg

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

MSG_TRUNC Normal data was truncated. • • • • •

Example—Connection-Oriented Client

Figure 16.14 shows a client command that communicates with a server to obtain the output from a
system's uptime command. We call this service "remote uptime" (or "ruptime" for short).

This program connects to a server, reads the string sent by the server, and prints the string on the
standard output. Since we're using a SOCK_STREAM socket, we can't be guaranteed that we will read
the entire string in one call to recv , so we need to repeat the call until it returns 0.

The getaddrinfo function might return more than one candidate address for us to use if the server
supports multiple network interfaces or multiple network protocols. We try each one in turn, giving
up when we find one that allows us to connect to the service. We use the connect_retry function
from Figure 16.9 to establish a connection with the server.

Figure 16.14. Client command to get uptime from server

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <sys/socket.h>

#define MAXADDRLEN 256

#define BUFLEN 128

extern int connect_retry(int, const struct sockaddr *, socklen_t);

void
print_uptime(int sockfd)
{
 int n;
 char buf[BUFLEN];

 while ((n = recv(sockfd, buf, BUFLEN, 0)) > 0)
 write(STDOUT_FILENO, buf, n);
 if (n < 0)
 err_sys("recv error");
}

int
main(int argc, char *argv[])
{
 struct addrinfo *ailist, *aip;
 struct addrinfo hint;
 int sockfd, err;

 if (argc != 2)

 err_quit("usage: ruptime hostname");
 hint.ai_flags = 0;
 hint.ai_family = 0;
 hint.ai_socktype = SOCK_STREAM;
 hint.ai_protocol = 0;
 hint.ai_addrlen = 0;
 hint.ai_canonname = NULL;
 hint.ai_addr = NULL;
 hint.ai_next = NULL;
 if ((err = getaddrinfo(argv[1], "ruptime", &hin t, &ailist)) != 0)
 err_quit("getaddrinfo error: %s", gai_strer ror(err));
 for (aip = ailist; aip != NULL; aip = aip->ai_n ext) {
 if ((sockfd = socket(aip->ai_family, SOCK_S TREAM, 0)) < 0)
 err = errno;
 if (connect_retry(sockfd, aip->ai_addr, aip ->ai_addrlen) < 0) {
 err = errno;
 } else {
 print_uptime(sockfd);
 exit(0);
 }
 }
 fprintf(stderr, "can't connect to %s: %s\n", ar gv[1],
 strerror(err));
 exit(1);
}

Example—Connection-Oriented Server

Figure 16.15 shows the server that provides the uptime command's output to the client program
from Figure 16.14.

To find out its address, the server needs to get the name of the host on which it is running. Some
systems don't define the _SC_HOST_NAME_MAX constant, so we use HOST_NAME_MAX in this case. If the
system doesn't define HOST_NAME_MAX, we define it ourselves. POSIX.1 states that the minimum
value for the host name is 255 bytes, not including the terminating null, so we define
HOST_NAME_MAX to be 256 to include the terminating null.

The server gets the host name by calling gethostname and looks up the address for the remote
uptime service. Multiple addresses can be returned, but we simply choose the first one for which we
can establish a passive socket endpoint. Handling multiple addresses is left as an exercise.

We use the initserver function from Figure 16.10 to initialize the socket endpoint on which we
will wait for connect requests to arrive. (Actually, we use the version from Figure 16.20; we'll see
why when we discuss socket options in Section 16.6.)

Figure 16.15. Server program to provide system uptime

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <syslog.h>
#include <sys/socket.h>

#define BUFLEN 128
#define QLEN 10

#ifndef HOST_NAME_MAX

#define HOST_NAME_MAX 256
#endif

extern int initserver(int, struct sockaddr *, sockl en_t, int);

void
serve(int sockfd)
{
 int clfd;
 FILE *fp;
 char buf[BUFLEN];

 for (;;) {
 clfd = accept(sockfd, NULL, NULL);
 if (clfd < 0) {
 syslog(LOG_ERR, "ruptimed: accept error : %s",
 strerror(errno));
 exit(1);
 }
 if ((fp = popen("/usr/bin/uptime", "r")) == NULL) {
 sprintf(buf, "error: %s\n", strerror(er rno));
 send(clfd, buf, strlen(buf), 0);
 } else {
 while (fgets(buf, BUFLEN, fp) != NULL)
 send(clfd, buf, strlen(buf), 0);
 pclose(fp);
 }
 close(clfd);
 }
}

int
main(int argc, char *argv[])
{
 struct addrinfo *ailist, *aip;
 struct addrinfo hint;
 int sockfd, err, n;
 char *host;

 if (argc != 1)
 err_quit("usage: ruptimed");
#ifdef _SC_HOST_NAME_MAX
 n = sysconf(_SC_HOST_NAME_MAX);
 if (n < 0) /* best guess */
#endif
 n = HOST_NAME_MAX;
 host = malloc(n);
 if (host == NULL)
 err_sys("malloc error");
 if (gethostname(host, n) < 0)
 err_sys("gethostname error");
 daemonize("ruptimed");
 hint.ai_flags = AI_CANONNAME;
 hint.ai_family = 0;
 hint.ai_socktype = SOCK_STREAM;
 hint.ai_protocol = 0;
 hint.ai_addrlen = 0;
 hint.ai_canonname = NULL;
 hint.ai_addr = NULL;
 hint.ai_next = NULL;
 if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {
 syslog(LOG_ERR, "ruptimed: getaddrinfo erro r: %s",

 gai_strerror(err));
 exit(1);
 }
 for (aip = ailist; aip != NULL; aip = aip->ai_n ext) {
 if ((sockfd = initserver(SOCK_STREAM, aip-> ai_addr,
 aip->ai_addrlen, QLEN)) >= 0) {
 serve(sockfd);
 exit(0);
 }
 }
 exit(1);
}

Example—Alternate Connection-Oriented Server

Previously, we stated that using file descriptors to access sockets was significant, because it allowed
programs that knew nothing about networking to be used in a networked environment. The version
of the server shown in Figure 16.16 illustrates this point. Instead of reading the output of the uptime
command and sending it to the client, the server arranges to have the standard output and standard
error of the uptime command be the socket endpoint connected to the client.

Instead of using popen to run the uptime command and reading the output from the pipe connected
to the command's standard output, we use fork to create a child process and then use dup2 to
arrange that the child's copy of STDIN_FILENO is open to /dev/null and that both STDOUT_FILENO
and STDERR_FILENO are open to the socket endpoint. When we execute uptime , the command writes
the results to its standard output, which is connected to the socket, and the data is sent back to the
ruptime client command.

The parent can safely close the file descriptor connected to the client, because the child still has it
open. The parent waits for the child to complete before proceeding, so that the child doesn't become
a zombie. Since it shouldn't take too long to run the uptime command, the parent can afford to wait
for the child to exit before accepting the next connect request. This strategy might not be appropriate
if the child takes a long time, however.

Figure 16.16. Server program illustrating command writing directly to socket

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <syslog.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/wait.h>

#define QLEN 10

#ifndef HOST_NAME_MAX
#define HOST_NAME_MAX 256
#endif

extern int initserver(int, struct sockaddr *, sockl en_t, int);

void
serve(int sockfd)
{
 int clfd, status;
 pid_t pid;

 for (;;) {
 clfd = accept(sockfd, NULL, NULL);
 if (clfd < 0) {
 syslog(LOG_ERR, "ruptimed: accept error : %s",
 strerror(errno));
 exit(1);
 }
 if ((pid = fork()) < 0) {
 syslog(LOG_ERR, "ruptimed: fork error: %s",
 strerror(errno));
 exit(1);
 } else if (pid == 0) { /* child */
 /*
 * The parent called daemonize (Figure 13.1), so
 * STDIN_FILENO, STDOUT_FILENO, and STD ERR_FILENO
 * are already open to /dev/null. Thus, the call to
 * close doesn't need to be protected b y checks that
 * clfd isn't already equal to one of t hese values.
 */
 if (dup2(clfd, STDOUT_FILENO) != STDOUT _FILENO ||
 dup2(clfd, STDERR_FILENO) != STDERR_F ILENO) {
 syslog(LOG_ERR, "ruptimed: unexpect ed error");
 exit(1);
 }
 close(clfd);
 execl("/usr/bin/uptime", "uptime", (cha r *)0);
 syslog(LOG_ERR, "ruptimed: unexpected r eturn from exec: %s",
 strerror(errno));
 } else { /* parent */
 close(clfd);
 waitpid(pid, &status, 0);
 }
 }
}

int
main(int argc, char *argv[])
{
 struct addrinfo *ailist, *aip;
 struct addrinfo hint;
 int sockfd, err, n;
 char *host;

 if (argc != 1)
 err_quit("usage: ruptimed");
#ifdef _SC_HOST_NAME_MAX
 n = sysconf(_SC_HOST_NAME_MAX);
 if (n < 0) /* best guess */
#endif
 n = HOST_NAME_MAX;
 host = malloc(n);
 if (host == NULL)
 err_sys("malloc error");
 if (gethostname(host, n) < 0)
 err_sys("gethostname error");
 daemonize("ruptimed");
 hint.ai_flags = AI_CANONNAME;
 hint.ai_family = 0;
 hint.ai_socktype = SOCK_STREAM;
 hint.ai_protocol = 0;
 hint.ai_addrlen = 0;

 hint.ai_canonname = NULL;
 hint.ai_addr = NULL;
 hint.ai_next = NULL;
 if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {
 syslog(LOG_ERR, "ruptimed: getaddrinfo erro r: %s",
 gai_strerror(err));
 exit(1);
 }
 for (aip = ailist; aip != NULL; aip = aip->ai_n ext) {
 if ((sockfd = initserver(SOCK_STREAM, aip-> ai_addr,
 aip->ai_addrlen, QLEN)) >= 0) {
 serve(sockfd);
 exit(0);
 }
 }
 exit(1);
}

The previous examples have used connection-oriented sockets. But how do we choose the appropriate type?
When do we use a connection-oriented socket, and when do we use a connectionless socket? The answer
depends on how much work we want to do and what kind of tolerance we have for errors.

With a connectionless socket, packets can arrive out of order, so if we can't fit all our data in one packet, we
will have to worry about ordering in our application. The maximum packet size is a characteristic of the
communication protocol. Also, with a connectionless socket, the packets can be lost. If our application can't
tolerate this loss, we should use connection-oriented sockets.

Tolerating packet loss means that we have two choices. If we intend to have reliable communication with our
peer, we have to number our packets and request retransmission from the peer application when we detect a
missing packet. We will also have to identify duplicate packets and discard them, since a packet might be
delayed and appear to be lost, but show up after we have requested retransmission.

The other choice we have is to deal with the error by letting the user retry the command. For simple applications,
this might be adequate, but for complex applications, this usually isn't a viable alternative, so it is generally
better to use connection-oriented sockets in this case.

The drawbacks to connection-oriented sockets are that more work and time are needed to establish a connection,
and each connection consumes more resources from the operating system.

Example—Connectionless Client

The program in Figure 16.17 is a version of the uptime client command that uses the datagram
socket interface.

The main function for the datagram-based client is similar to the one for the connection-oriented
client, with the addition of installing a signal handler for SIGALRM. We use the alarm function to
avoid blocking indefinitely in the call to recvfrom .

With the connection-oriented protocol, we needed to connect to the server before exchanging data.
The arrival of the connect request was enough for the server to determine that it needed to provide
service to a client. But with the datagram-based protocol, we need a way to notify the server that we
want it to perform its service on our behalf. In this example, we simply send the server a 1-byte
message. The server will receive it, get our address from the packet, and use this address to transmit
its response. If the server offered multiple services, we could use this request message to indicate the

service we want, but since the server does only one thing, the content of the 1-byte message doesn't
matter.

If the server isn't running, the client will block indefinitely in the call to recvfrom . With the
connection-oriented example, the connect call will fail if the server isn't running. To avoid blocking
indefinitely, we set an alarm clock before calling recvfrom .

Figure 16.17. Client command using datagram service

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <sys/socket.h>

#define BUFLEN 128
#define TIMEOUT 20

void
sigalrm(int signo)
{
}

void
print_uptime(int sockfd, struct addrinfo *aip)
{
 int n;
 char buf[BUFLEN];

 buf[0] = 0;
 if (sendto(sockfd, buf, 1, 0, aip->ai_addr, aip ->ai_addrlen) < 0)
 err_sys("sendto error");
 alarm(TIMEOUT);
 if ((n = recvfrom(sockfd, buf, BUFLEN, 0, NULL, NULL)) < 0) {
 if (errno != EINTR)
 alarm(0);
 err_sys("recv error");
 }
 alarm(0);
 write(STDOUT_FILENO, buf, n);
}
int
main(int argc, char *argv[])
{
 struct addrinfo *ailist, *aip;
 struct addrinfo hint;
 int sockfd, err;
 struct sigaction sa;

 if (argc != 2)
 err_quit("usage: ruptime hostname");
 sa.sa_handler = sigalrm;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_mask);
 if (sigaction(SIGALRM, &sa, NULL) < 0)
 err_sys("sigaction error");
 hint.ai_flags = 0;
 hint.ai_family = 0;
 hint.ai_socktype = SOCK_DGRAM;
 hint.ai_protocol = 0;
 hint.ai_addrlen = 0;

 hint.ai_canonname = NULL;
 hint.ai_addr = NULL;
 hint.ai_next = NULL;
 if ((err = getaddrinfo(argv[1], "ruptime", &hin t, &ailist)) != 0)
 err_quit("getaddrinfo error: %s", gai_strer ror(err));

 for (aip = ailist; aip != NULL; aip = aip->ai_n ext) {
 if ((sockfd = socket(aip->ai_family, SOCK_D GRAM, 0)) < 0) {
 err = errno;
 } else {
 print_uptime(sockfd, aip);
 exit(0);
 }
 }

 fprintf(stderr, "can't contact %s: %s\n", argv [1], strerror(err));
 exit(1);
}

Example—Connectionless Server

The program in Figure 16.18 is the datagram version of the uptime server.

The server blocks in recvfrom for a request for service. When a request arrives, we save the
requester's address and use popen to run the uptime command. We send the output back to the client
using the sendto function, with the destination address set to the requester's address.

Figure 16.18. Server providing system uptime over datagrams

#include "apue.h"
#include <netdb.h>
#include <errno.h>
#include <syslog.h>
#include <sys/socket.h>

#define BUFLEN 128
#define MAXADDRLEN 256

#ifndef HOST_NAME_MAX
#define HOST_NAME_MAX 256
#endif

extern int initserver(int, struct sockaddr *, sockl en_t, int);

void
serve(int sockfd)
{
 int n;
 socklen_t alen;
 FILE *fp;
 char buf[BUFLEN];
 char abuf[MAXADDRLEN];

 for (;;) {
 alen = MAXADDRLEN;
 if ((n = recvfrom(sockfd, buf, BUFLEN, 0,
 (struct sockaddr *)abuf, &alen)) < 0) {
 syslog(LOG_ERR, "ruptimed: recvfrom err or: %s",
 strerror(errno));
 exit(1);

 }
 if ((fp = popen("/usr/bin/uptime", "r")) == NULL) {
 sprintf(buf, "error: %s\n", strerror(er rno));
 sendto(sockfd, buf, strlen(buf), 0,
 (struct sockaddr *)abuf, alen);
 } else {
 if (fgets(buf, BUFLEN, fp) != NULL)
 sendto(sockfd, buf, strlen(buf), 0,

 (struct sockaddr *)abuf, alen);
 pclose(fp);
 }

 }

}

int
main(int argc, char *argv[])
{
 struct addrinfo *ailist, *aip;
 struct addrinfo hint;
 int sockfd, err, n;
 char *host;

 if (argc != 1)
 err_quit("usage: ruptimed");
#ifdef _SC_HOST_NAME_MAX
 n = sysconf(_SC_HOST_NAME_MAX);
 if (n < 0) /* best guess */
#endif
 n = HOST_NAME_MAX;
 host = malloc(n);
 if (host == NULL)
 err_sys("malloc error");
 if (gethostname(host, n) < 0)
 err_sys("gethostname error");
 daemonize("ruptimed");
 hint.ai_flags = AI_CANONNAME;
 hint.ai_family = 0;
 hint.ai_socktype = SOCK_DGRAM;
 hint.ai_protocol = 0;
 hint.ai_addrlen = 0;
 hint.ai_canonname = NULL;
 hint.ai_addr = NULL;
 hint.ai_next = NULL;
 if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {
 syslog(LOG_ERR, "ruptimed: getaddrinfo erro r: %s",
 gai_strerror(err));
 exit(1);
 }
 for (aip = ailist; aip != NULL; aip = aip->ai_n ext) {
 if ((sockfd = initserver(SOCK_DGRAM, aip->a i_addr,
 aip->ai_addrlen, 0)) >= 0) {
 serve(sockfd);
 exit(0);
 }
 }
 exit(1);
}

16.6. Socket Options

The socket mechanism provides two socket-option interfaces for us to control the behavior of sockets. One
interface is used to set an option, and another interface allows us to query the state of an option. We can get and
set three kinds of options:

1. Generic options that work with all socket types
2. Options that are managed at the socket level, but depend on the underlying protocols for support
3. Protocol-specific options unique to each individual protocol

The Single UNIX Specification defines only the socket-layer options (the first two option types in the preceding
list).

We can set a socket option with the setsockopt function.

#include <sys/socket.h>

int setsockopt(int sockfd, int level, int option,
 const void *val,
 socklen_t len);

Returns: 0 if OK, –1 on error

The level argument identifies the protocol to which the option applies. If the option is a generic socket-level
option, then level is set to SOL_SOCKET. Otherwise, level is set to the number of the protocol that controls the
option. Examples are IPPROTO_TCP for TCP options and IPPROTO_IP for IP options. Figure 16.19 summarizes
the generic socket-level options defined by the Single UNIX Specification.

Figure 16.19. Socket options

Option Type of val argument Description

SO_ACCEPTCONN int Return whether a socket is enabled for listening (getsockopt only).

SO_BROADCAST int Broadcast datagrams if *val is nonzero.

SO_DEBUG int Debugging in network drivers enabled if *val is nonzero.

SO_DONTROUTE int Bypass normal routing if *val is nonzero.

SO_ERROR int Return and clear pending socket error (getsockopt only).

SO_KEEPALIVE int Periodic keep-alive messages enabled if *val is nonzero.

SO_LINGER struct linger Delay time when unsent messages exist and socket is closed.

SO_OOBINLINE int Out-of-band data placed inline with normal data if *val is nonzero.

SO_RCVBUF int The size in bytes of the receive buffer.

SO_RCVLOWAT int The minimum amount of data in bytes to return on a receive call.

Figure 16.19. Socket options

Option Type of val argument Description

SO_RCVTIMEO struct timeval The timeout value for a socket receive call.

SO_REUSEADDR int Reuse addresses in bind if *val is nonzero.

SO_SNDBUF int The size in bytes of the send buffer.

SO_SNDLOWAT int The minimum amount of data in bytes to transmit in a send call.

SO_SNDTIMEO struct timeval The timeout value for a socket send call.

SO_TYPE int Identify the socket type (getsockopt only).

The val argument points to a data structure or an integer, depending on the option. Some options are on/off
switches. If the integer is nonzero, then the option is enabled. If the integer is zero, then the option is disabled.
The len argument specifies the size of the object to which val points.

We can find out the current value of an option with the getsockopt function.

#include <sys/socket.h>

int getsockopt(int sockfd, int level, int option,
 void *restrict val,
 socklen_t *restrict lenp);

Returns: 0 if OK, –1 on error

Note that the lenp argument is a pointer to an integer. Before calling getsockopt , we set the integer to the size
of the buffer where the option is to be copied. If the actual size of the option is greater than this size, the option
is silently truncated. If the actual size of the option is less than or equal to this size, then the integer is updated
with the actual size on return.

Example

The function in Figure 16.10 fails to operate properly when the server terminates and we try to
restart it immediately. Normally, the implementation of TCP will prevent us from binding the same
address until a timeout expires, which is usually on the order of several minutes. Luckily, the
SO_REUSEADDR socket option allows us to bypass this restriction, as illustrated in Figure 16.20.

To enable the SO_REUSEADDR option, we set an integer to a nonzero value and pass the address of the
integer as the val argument to setsockopt . We set the len argument to the size of an integer to
indicate the size of the object to which val points.

Figure 16.20. Initialize a socket endpoint for use by a server with address reuse

#include "apue.h"
#include <errno.h>

#include <sys/socket.h>

int
initserver(int type, const struct sockaddr *addr, s ocklen_t alen,
 int qlen)
{
 int fd, err;
 int reuse = 1;

 if ((fd = socket(addr->sa_family, type, 0)) < 0)
 return(-1);
 if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &r euse,
 sizeof(int)) < 0) {
 err = errno;
 goto errout;
 }
 if (bind(fd, addr, alen) < 0) {
 err = errno;
 goto errout;
 }
 if (type == SOCK_STREAM || type == SOCK_SEQPACK ET) {
 if (listen(fd, qlen) < 0) {
 err = errno;
 goto errout;
 }
 }
 return(fd);

errout:
 close(fd);
 errno = err;
 return(-1);
}

16.7. Out-of-Band Data

Out-of-band data is an optional feature supported by some communication protocols, allowing higher-priority
delivery of data than normal. Out-of-band data is sent ahead of any data that is already queued for transmission.
TCP supports out-of-band data, but UDP doesn't. The socket interface to out-of-band data is heavily influenced
by TCP's implementation of out-of-band data.

TCP refers to out-of-band data as "urgent" data. TCP supports only a single byte of urgent data, but allows
urgent data to be delivered out of band from the normal data delivery mechanisms. To generate urgent data, we
specify the MSG_OOB flag to any of the three send functions. If we send more than one byte with the MSG_OOB
flag, the last byte will be treated as the urgent-data byte.

When urgent data is received, we are sent the SIGURG signal if we have arranged for signal generation by the
socket. In Sections 3.14 and 14.6.2, we saw that we could use the F_SETOWN command to fcntl to set the
ownership of a socket. If the third argument to fcntl is positive, it specifies a process ID. If it is a negative
value other than -1, it represents the process group ID. Thus, we can arrange that our process receive signals
from a socket by calling

 fcntl(sockfd, F_SETOWN, pid);

The F_GETOWN command can be used to retrieve the current socket ownership. As with the F_SETOWN command,
a negative value represents a process group ID, and a positive value represents a process ID. Thus, the call

 owner = fcntl(sockfd, F_GETOWN, 0);

will return with owner equal to the ID of the process configured to receive signals from the socket if owner is
positive and with the absolute value of owner equal to the ID of the process group configured to receive signals
from the socket if owner is negative.

TCP supports the notion of an urgent mark : the point in the normal data stream where the urgent data would go.
We can choose to receive the urgent data inline with the normal data if we use the SO_OOBINLINE socket option.
To help us identify when we have reached the urgent mark, we can use the sockatmark function.

#include <sys/socket.h>

int sockatmark(int sockfd);

Returns: 1 if at mark, 0 if not at mark, –1 on error

When the next byte to be read is where the urgent mark is located, sockatmark will return 1.

When out-of-band data is present in a socket's read queue, the select function (Section 14.5.1) will return the
file descriptor as having an exception condition pending. We can choose to receive the urgent data inline with
the normal data, or we can use the MSG_OOB flag with one of the recv functions to receive the urgent data ahead
of any other queue data. TCP queues only one byte of urgent data. If another urgent byte arrives before we
receive the current one, the existing one is discarded.

16.8. Nonblocking and Asynchronous I/O

Normally, the recv functions will block when no data is immediately available. Similarly, the send functions
will block when there is not enough room in the socket's output queue to send the message. This behavior
changes when the socket is in nonblocking mode. In this case, these functions will fail instead of blocking,
setting errno to either EWOULDBLOCK or EAGAIN. When this happens, we can use either poll or select to
determine when we can receive or transmit data.

The real-time extensions in the Single UNIX Specification include support for a generic asynchronous I/O
mechanism. The socket mechanism has its own way of handling asynchronous I/O, but this isn't standardized in
the Single UNIX Specification. Some texts refer to the classic socket-based asynchronous I/O mechanism as
"signal-based I/O" to distinguish it from the asynchronous I/O mechanism in the real-time extensions.

With socket-based asynchronous I/O, we can arrange to be sent the SIGIO signal when we can read data from a
socket or when space becomes available in a socket's write queue. Enabling asynchronous I/O is a two-step
process.

1. Establish socket ownership so signals can be delivered to the proper processes.
2. Inform the socket that we want it to signal us when I/O operations won't block.

We can accomplish the first step in three ways.

1. Use the F_SETOWN command with fcntl .
2. Use the FIOSETOWN command with ioctl .
3. Use the SIOCSPGRP command with ioctl .

To accomplish the second step, we have two choices.

1. Use the F_SETFL command with fcntl and enable the O_ASYNC file flag.
2. Use the FIOASYNC command with ioctl .

We have several options, but they are not universally supported. Figure 16.21 summarizes the support for these

options provided by the platforms discussed in this text. We show • where support is provided and where
support depends on the particular domain. For example, on Linux, the UNIX domain sockets don't support
FIOSETOWN or SIOCSPGRP.

Figure 16.21. Socket asynchronous I/O management commands

Mechanism POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

fcntl(fd, F_SETOWN, pid) • • • • •

ioctl(fd, FIOSETOWN, pid) •

• •

ioctl(fd, SIOCSPGRP, pid) •

• •

fcntl(fd, F_SETFL,
flags|O_ASYNC)

 • • •

Figure 16.21. Socket asynchronous I/O management commands

Mechanism POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

ioctl(fd, FIOASYNC, &n); • • • •

16.9. Summary

In this chapter, we looked at the IPC mechanisms that allow processes to communicate with other processes on
different machines as well as within the same machine. We discussed how socket endpoints are named and how
we can discover the addresses to use when contacting servers.

We presented examples of clients and servers that use connectionless (i.e., datagram-based) sockets and
connection-oriented sockets. We briefly discussed asynchronous and nonblocking socket I/O and the interfaces
used to manage socket options.

In the next chapter, we will look at some advanced IPC topics, including how we can use sockets to pass file
descriptors between processes running on the same machine.

Chapter 17. Advanced IPC

Section 17.1. Introduction

Section 17.2. STREAMS-Based Pipes

Section 17.3. UNIX Domain Sockets

Section 17.4. Passing File Descriptors

Section 17.5. An Open Server, Version 1

Section 17.6. An Open Server, Version 2

Section 17.7. Summary

17.1. Introduction

In the previous two chapters, we discussed various forms of IPC, including pipes and sockets. In this chapter,
we look at two advanced forms of IPC—STREAMS-based pipes and UNIX domain sockets—and what we can
do with them. With these forms of IPC, we can pass open file descriptors between processes, servers can
associate names with their file descriptors, and clients can use these names to rendezvous with the servers. We'll
also see how the operating system provides a unique IPC channel per client. Many of the ideas that form the
basis for the techniques described in this chapter come from the paper by Presotto and Ritchie [1990].

17.2. STREAMS-Based Pipes

A STREAMS-based pipe ("STREAMS pipe," for short) is a bidirectional (full-duplex) pipe. To obtain
bidirectional data flow between a parent and a child, only a single STREAMS pipe is required.

Recall from Section 15.1 that STREAMS pipes are supported by Solaris and are available in an optional add-on
package with Linux.

Figure 17.1 shows the two ways to view a STREAMS pipe. The only difference between this picture and Figure
15.2 is that the arrows have heads on both ends; since the STREAMS pipe is full duplex, data can flow in both
directions.

Figure 17.1. Two ways to view a STREAMS pipe

If we look inside a STREAMS pipe (Figure 17.2), we see that it is simply two stream heads, with each write
queue (WQ) pointing at the other's read queue (RQ). Data written to one end of the pipe is placed in messages
on the other's read queue.

Figure 17.2. Inside a STREAMS pipe

Since a STREAMS pipe is a stream, we can push a STREAMS module onto either end of the pipe to process
data written to the pipe (Figure 17.3). But if we push a module on one end, we can't pop it off the other end. If
we want to remove it, we need to remove it from the same end on which it was pushed.

Figure 17.3. Inside a STREAMS pipe with a module

Assuming that we don't do anything fancy, such as pushing modules, a STREAMS pipe behaves just like a non-
STREAMS pipe, except that it supports most of the STREAMS ioctl commands described in streamio (7). In
Section 17.2.2, we'll see an example of pushing a module on a STREAMS pipe to provide unique connections
when we give the pipe a name in the file system.

Example

Let's redo the coprocess example, Figure 15.18, with a single STREAMS pipe. Figure 17.4 shows
the new main function. The add2 coprocess is the same (Figure 15.17). We call a new function,
s_pipe , to create a single STREAMS pipe. (We show versions of this function for both STREAMS
pipes and UNIX domain sockets shortly.)

The parent uses only fd[0] , and the child uses only fd[1] . Since each end of the STREAMS pipe is
full duplex, the parent reads and writes fd[0] , and the child duplicates fd[1] to both standard input
and standard output. Figure 17.5 shows the resulting descriptors. Note that this example also works
with full-duplex pipes that are not based on STREAMS, because it doesn't make use of any
STREAMS features other than the full-duplex nature of STREAMS-based pipes.

Rago [1993] covers STREAMS-based pipes in more detail. Recall from Figure 15.1 that FreeBSD
supports full-duplex pipes, but these pipes are not based on the STREAMS mechanism.

Figure 17.4. Program to drive the add2 filter, using a STREAMS pipe

#include "apue.h"

static void sig_pipe(int); /* our signal handl er */

int
main(void)
{
 int n;
 int fd[2];
 pid_t pid;
 char line[MAXLINE];

 if (signal(SIGPIPE, sig_pipe) == SIG_ERR)
 err_sys("signal error");

 if (s_pipe(fd) < 0) /* need only a sing le stream pipe */
 err_sys("pipe error");
 if ((pid = fork()) < 0) {

 err_sys("fork error");
 } else if (pid > 0) { /* parent */
 close(fd[1]);
 while (fgets(line, MAXLINE, stdin) != NULL) {
 n = strlen(line);
 if (write(fd[0], line, n) != n)
 err_sys("write error to pipe");
 if ((n = read(fd[0], line, MAXLINE)) < 0)
 err_sys("read error from pipe");
 if (n == 0) {
 err_msg("child closed pipe");
 break;
 }
 line[n] = 0; /* null terminate */
 if (fputs(line, stdout) == EOF)
 err_sys("fputs error");
 }
 if (ferror(stdin))
 err_sys("fgets error on stdin");
 exit(0);
 } else { /* child */
 close(fd[0]);
 if (fd[1] != STDIN_FILENO &&
 dup2(fd[1], STDIN_FILENO) != STDIN_FILENO)
 err_sys("dup2 error to stdin");
 if (fd[1] != STDOUT_FILENO &&
 dup2(fd[1], STDOUT_FILENO) != STDOUT_FILE NO)
 err_sys("dup2 error to stdout");
 if (execl("./add2", "add2", (char *)0) < 0)
 err_sys("execl error");
 }
 exit(0);
}
static void
sig_pipe(int signo)
{
 printf("SIGPIPE caught\n");
 exit(1);
}

Figure 17.5. Arrangement of descriptors for coprocess

We define the function s_pipe to be similar to the standard pipe function. Both functions take the same
argument, but the descriptors returned by s_pipe are open for reading and writing.

Example—STREAMS-Based s_pipe Function

Figure 17.6 shows the STREAMS-based version of the s_pipe function. This version simply calls
the standard pipe function, which creates a full-duplex pipe.

Figure 17.6. STREAMS version of the s_pipe function

#include "apue.h"
/*
 * Returns a STREAMS-based pipe, with the two file descriptors
 * returned in fd[0] and fd[1].
 */
int
s_pipe(int fd[2])
{
 return(pipe(fd));
}

17.2.1. Naming STREAMS Pipes

Normally, pipes can be used only between related processes: child processes inheriting pipes from their parent
processes. In Section 15.5, we saw that unrelated processes can communicate using FIFOs, but this provides
only a one-way communication path. The STREAMS mechanism provides a way for processes to give a pipe a
name in the file system. This bypasses the problem of dealing with unidirectional FIFOs.

We can use the fattach function to give a STREAMS pipe a name in the file system.

#include <stropts.h>

int fattach(int filedes, const char *path);

Returns: 0 if OK, –1 on error

The path argument must refer to an existing file, and the calling process must either own the file and have write
permissions to it or be running with superuser privileges.

Once a STREAMS pipe is attached to the file system namespace, the underlying file is inaccessible. Any
process that opens the name will gain access to the pipe, not the underlying file. Any processes that had the
underlying file open before fattach was called, however, can continue to access the underlying file. Indeed,
these processes generally will be unaware that the name now refers to a different file.

Figure 17.7 shows a pipe attached to the pathname /tmp/pipe . Only one end of the pipe is attached to a name
in the file system. The other end is used to communicate with processes that open the attached filename. Even
though it can attach any kind of STREAMS file descriptor to a name in the file system, the fattach function is
most commonly used to give a name to a STREAMS pipe.

Figure 17.7. A pipe mounted on a name in the file system

A process can call fdetach to undo the association between a STREAMS file and the name in the file system.

#include <stropts.h>

int fdetach(const char *path);

Returns: 0 if OK, –1 on error

After fdetach is called, any processes that had accessed the STREAMS pipe by opening the path will still
continue to access the stream, but subsequent opens of the path will access the original file residing in the file
system.

17.2.2. Unique Connections

Although we can attach one end of a STREAMS pipe to the file system namespace, we still have problems if
multiple processes want to communicate with a server using the named STREAMS pipe. Data from one client
will be interleaved with data from the other clients writing to the pipe. Even if we guarantee that the clients
write less than PIPE_BUF bytes so that the writes are atomic, we have no way to write back to an individual
client and guarantee that the intended client will read the message. With multiple clients reading from the same
pipe, we cannot control which one will be scheduled and actually read what we send.

The connld STREAMS module solves this problem. Before attaching a STREAMS pipe to a name in the file
system, a server process can push the connld module on the end of the pipe that is to be attached. This results in
the configuration shown in Figure 17.8.

Figure 17.8. Setting up connld for unique connections

In Figure 17.8, the server process has attached one end of its pipe to the path /tmp/pipe . We show a dotted line
to indicate a client process in the middle of opening the attached STREAMS pipe. Once the open completes, we
have the configuration shown in Figure 17.9.

Figure 17.9. Using connld to make unique connections

The client process never receives an open file descriptor for the end of the pipe that it opened. Instead, the
operating system creates a new pipe and returns one end to the client process as the result of opening
/tmp/pipe . The system sends the other end of the new pipe to the server process by passing its file descriptor
over the existing (attached) pipe, resulting in a unique connection between the client process and the server
process. We'll see the mechanics of passing file descriptors using STREAMS pipes in Section 17.4.1.

The fattach function is built on top of the mount system call. This facility is known as mounted streams.
Mounted streams and the connld module were developed by Presotto and Ritchie [1990] for the Research
UNIX system. These mechanisms were then picked up by SVR4.

We will now develop three functions that can be used to create unique connections between unrelated processes.
These functions mimic the connection-oriented socket functions discussed in Section 16.4. We use STREAMS
pipes for the underlying communication mechanism here, but we'll see alternate implementations of these
functions that use UNIX domain sockets in Section 17.3.

#include "apue.h"

int serv_listen(const char *name);

Returns: file descriptor to listen on if OK, negative value on error

int serv_accept(int listenfd, uid_t *uidptr);

Returns: new file descriptor if OK, negative value on error

int cli_conn(const char *name);

Returns: file descriptor if OK, negative value on error

The serv_listen function (Figure 17.10) can be used by a server to announce its willingness to listen for client
connect requests on a well-known name (some pathname in the file system). Clients will use this name when
they want to connect to the server. The return value is the server's end of the STREAMS pipe.

Figure 17.10. The serv_listen function using STREAMS pipes

#include "apue.h"
#include <fcntl.h>
#include <stropts.h>

/* pipe permissions: user rw, group rw, others rw * /
#define FIFO_MODE (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP| S_IROTH|S_IWOTH)

/*
 * Establish an endpoint to listen for connect requ ests.
 * Returns fd if all OK, <0 on error
 */
int
serv_listen(const char *name)
{
 int tempfd;
 int fd[2];

 /*
 * Create a file: mount point for fattach().
 */
 unlink(name);
 if ((tempfd = creat(name, FIFO_MODE)) < 0)
 return(-1);
 if (close(tempfd) < 0)
 return(-2);
 if (pipe(fd) < 0)
 return(-3);
 /*
 * Push connld & fattach() on fd[1].
 */

 if (ioctl(fd[1], I_PUSH, "connld") < 0) {
 close(fd[0]);
 close(fd[1]);
 return(-4);
 }
 if (fattach(fd[1], name) < 0) {
 close(fd[0]);
 close(fd[1]);
 return(-5);
 }
 close(fd[1]); /* fattach holds this end open */

 return(fd[0]); /* fd[0] is where client connecti ons arrive */
}

The serv_accept function (Figure 17.11) is used by a server to wait for a client's connect request to arrive.
When one arrives, the system automatically creates a new STREAMS pipe, and the function returns one end to
the server. Additionally, the effective user ID of the client is stored in the memory to which uidptr points.

Figure 17.11. The serv_accept function using STREAMS pipes

#include "apue.h"
#include <stropts.h>

/*
 * Wait for a client connection to arrive, and acce pt it.
 * We also obtain the client's user ID.
 * Returns new fd if all OK, <0 on error.
 */
int
serv_accept(int listenfd, uid_t *uidptr)
{
 struct strrecvfd recvfd;
 if (ioctl(listenfd, I_RECVFD, &recvfd) < 0)
 return(-1); /* could be EINTR if signal caught */
 if (uidptr != NULL)
 uidptr = recvfd.uid; / effective uid of caller */
 return(recvfd.fd); /* return the new descripto r */
}

A client calls cli_conn (Figure 17.12) to connect to a server. The name argument specified by the client must
be the same name that was advertised by the server's call to serv_listen . On return, the client gets a file
descriptor connected to the server.

Figure 17.12. The cli_conn function using STREAMS pipes

#include "apue.h"
#include <fcntl.h>
#include <stropts.h>

/*
 * Create a client endpoint and connect to a server .
 * Returns fd if all OK, <0 on error.
 */
int
cli_conn(const char *name)
{

 int fd;

 /* open the mounted stream */
 if ((fd = open(name, O_RDWR)) < 0)
 return(-1);
 if (isastream(fd) == 0) {
 close(fd);
 return(-2);
 }
 return(fd);
}

We double-check that the returned descriptor refers to a STREAMS device, in case the server has not been
started but the pathname still exists in the file system. In Section 17.6, we'll see how these three functions are
used.

17.3. UNIX Domain Sockets

UNIX domain sockets are used to communicate with processes running on the same machine. Although Internet
domain sockets can be used for this same purpose, UNIX domain sockets are more efficient. UNIX domain
sockets only copy data; they have no protocol processing to perform, no network headers to add or remove, no
checksums to calculate, no sequence numbers to generate, and no acknowledgements to send.

UNIX domain sockets provide both stream and datagram interfaces. The UNIX domain datagram service is
reliable, however. Messages are neither lost nor delivered out of order. UNIX domain sockets are like a cross
between sockets and pipes. You can use the network-oriented socket interfaces with them, or you can use the
socketpair function to create a pair of unnamed, connected, UNIX domain sockets.

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol,
 int sockfd[2]);

Returns: 0 if OK, –1 on error

Although the interface is sufficiently general to allow socketpair to be used with arbitrary domains, operating
systems typically provide support only for the UNIX domain.

Example—s_pipe Function Using UNIX Domain Sockets

Figure 17.13 shows the socket-based version of the s_pipe function previously shown in Figure
17.6. The function creates a pair of connected UNIX domain stream sockets.

Some BSD-based systems use UNIX domain sockets to implement pipes. But when pipe is called,
the write end of the first descriptor and the read end of the second descriptor are both closed. To get
a full-duplex pipe, we must call socketpair directly.

Figure 17.13. Socket version of the s_pipe function

#include "apue.h"
#include <sys/socket.h>

/*
 * Returns a full-duplex "stream" pipe (a UNIX doma in socket)
 * with the two file descriptors returned in fd[0] and fd[1].
 */
int
s_pipe(int fd[2])
{
 return(socketpair(AF_UNIX, SOCK_STREAM, 0, fd)) ;
}

17.3.1. Naming UNIX Domain Sockets

Although the socketpair function creates sockets that are connected to each other, the individual sockets don't
have names. This means that they can't be addressed by unrelated processes.

In Section 16.3.4, we learned how to bind an address to an Internet domain socket. Just as with Internet domain
sockets, UNIX domain sockets can be named and used to advertise services. The address format used with
UNIX domain sockets differs from Internet domain sockets, however.

Recall from Section 16.3 that socket address formats differ from one implementation to the next. An address for
a UNIX domain socket is represented by a sockaddr_un structure. On Linux 2.4.22 and Solaris 9, the
sockaddr_un structure is defined in the header <sys/un.h> as follows:

 struct sockaddr_un {
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[108]; /* pathname */
 };

On FreeBSD 5.2.1 and Mac OS X 10.3, however, the sockaddr_un structure is defined as

 struct sockaddr_un {
 unsigned char sun_len; /* length i ncluding null */
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[104]; /* pathname */
 };

The sun_path member of the sockaddr_un structure contains a pathname. When we bind an address to a
UNIX domain socket, the system creates a file of type S_IFSOCK with the same name.

This file exists only as a means of advertising the socket name to clients. The file can't be opened or otherwise
used for communication by applications.

If the file already exists when we try to bind the same address, the bind request will fail. When we close the
socket, this file is not automatically removed, so we need to make sure that we unlink it before our application
exits.

Example

The program in Figure 17.14 shows an example of binding an address to a UNIX domain socket.

When we run this program, the bind request succeeds, but if we run the program a second time, we get an error,
because the file already exists. The program won't succeed again until we remove the file.

$./a.out run the program
UNIX domain socket bound
$ ls -l foo.socket loo k at the socket file
srwxrwxr-x 1 sar 0 Aug 22 12:43 foo.socket
$./a.out try to run the program again
bind failed: Address already in use
$ rm foo.socket rem ove the socket file
$./a.out run the program a third time
UNIX domain socket bound now it succeeds

The way we determine the size of the address to bind is to determine the offset of the sun_path member in the

sockaddr_un structure and add to this the length of the pathname, not including the terminating null byte. Since
implementations vary in what members precede sun_path in the sockaddr_un structure, we use the offsetof
macro from <stddef.h> (included by apue.h) to calculate the offset of the sun_path member from the start of
the structure. If you look in <stddef.h> , you'll see a definition similar to the following:

#define offsetof(TYPE, MEMBER) ((int)&((TYPE *)0)-> MEMBER)

The expression evaluates to an integer, which is the starting address of the member, assuming that the structure
begins at address 0.

Figure 17.14. Binding an address to a UNIX domain socket

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>

int
main(void)
{
 int fd, size;
 struct sockaddr_un un;

 un.sun_family = AF_UNIX;
 strcpy(un.sun_path, "foo.socket");
 if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
 err_sys("socket failed");
 size = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);
 if (bind(fd, (struct sockaddr *)&un, size) < 0)
 err_sys("bind failed");
 printf("UNIX domain socket bound\n");
 exit(0);
}

17.3.2. Unique Connections

A server can arrange for unique UNIX domain connections to clients using the standard bind , listen , and
accept functions. Clients use connect to contact the server; after the connect request is accepted by the server,
a unique connection exists between the client and the server. This style of operation is the same that we
illustrated with Internet domain sockets in Figures 16.14 and 16.15.

Figure 17.15 shows the UNIX domain socket version of the serv_listen function.

Figure 17.15. The serv_listen function for UNIX domain sockets

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>

#define QLEN 10

/*
 * Create a server endpoint of a connection.
 * Returns fd if all OK, <0 on error.

 */
int
serv_listen(const char *name)
{
 int fd, len, err, rval;
 struct sockaddr_un un;

 /* create a UNIX domain stream socket */
 if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
 return(-1);
 unlink(name); /* in case it already exists */

 /* fill in socket address structure */
 memset(&un, 0, sizeof(un));
 un.sun_family = AF_UNIX;
 strcpy(un.sun_path, name);
 len = offsetof(struct sockaddr_un, sun_path) + strlen(name);

 /* bind the name to the descriptor */
 if (bind(fd, (struct sockaddr *)&un, len) < 0) {
 rval = -2;
 goto errout;
 }
 if (listen(fd, QLEN) < 0) { /* tell kernel we'r e a server */
 rval = -3;
 goto errout;
 }
 return(fd);

errout:
 err = errno;
 close(fd);
 errno = err;
 return(rval);
}

First, we create a single UNIX domain socket by calling socket . We then fill in a sockaddr_un structure with
the well-known pathname to be assigned to the socket. This structure is the argument to bind . Note that we
don't need to set the sun_len field present on some platforms, because the operating system sets this for us
using the address length we pass to the bind function.

Finally, we call listen (Section 16.4) to tell the kernel that the process will be acting as a server awaiting
connections from clients. When a connect request from a client arrives, the server calls the serv_accept
function (Figure 17.16).

Figure 17.16. The serv_accept function for UNIX domain sockets

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>
#include <time.h>
#include <errno.h>

#define STALE 30 /* client's name can't be older than this (sec) */

/*
 * Wait for a client connection to arrive, and acce pt it.
 * We also obtain the client's user ID from the pat hname
 * that it must bind before calling us.

 * Returns new fd if all OK, <0 on error
 */
int
serv_accept(int listenfd, uid_t *uidptr)
{
 int clifd, len, err, rval;
 time_t staletime;
 struct sockaddr_un un;
 struct stat statbuf;

 len = sizeof(un);
 if ((clifd = accept(listenfd, (struct sockaddr *)&un, &len)) < 0)
 return(-1); /* often errno=EINTR, if si gnal caught */

 /* obtain the client's uid from its calling add ress */
 len - = offsetof(struct sockaddr_un, sun_path); /* len of pathname */
 un.sun_path[len] = 0; /* null termina te */

 if (stat(un.sun_path, &statbuf) < 0) {
 rval = -2;
 goto errout;
 }
#ifdef S_ISSOCK /* not defined for SVR4 */
 if (S_ISSOCK(statbuf.st_mode) == 0) {
 rval = -3; /* not a socket */
 goto errout;
 }
#endif
 if ((statbuf.st_mode & (S_IRWXG | S_IRWXO)) ||
 (statbuf.st_mode & S_IRWXU) != S_IRWXU) {
 rval = -4; /* is not rwx------ */
 goto errout;
 }

 staletime = time(NULL) - STALE;
 if (statbuf.st_atime < staletime ||
 statbuf.st_ctime < staletime ||
 statbuf.st_mtime < staletime) {
 rval = -5; /* i-node is too old */
 goto errout;
 }
 if (uidptr != NULL)
 uidptr = statbuf.st_uid; / return uid o f caller */
 unlink(un.sun_path); /* we're done with pathname now */
 return(clifd);

errout:
 err = errno;
 close(clifd);
 errno = err;
 return(rval);
}

The server blocks in the call to accept , waiting for a client to call cli_conn . When accept returns, its return
value is a brand new descriptor that is connected to the client. (This is somewhat similar to what the connld
module does with the STREAMS subsystem.) Additionally, the pathname that the client assigned to its socket
(the name that contained the client's process ID) is also returned by accept , through the second argument (the
pointer to the sockaddr_un structure). We null terminate this pathname and call stat . This lets us verify that
the pathname is indeed a socket and that the permissions allow only user-read, user-write, and user-execute. We

also verify that the three times associated with the socket are no older than 30 seconds. (Recall from Section
6.10 that the time function returns the current time and date in seconds past the Epoch.)

If all these checks are OK, we assume that the identity of the client (its effective user ID) is the owner of the
socket. Although this check isn't perfect, it's the best we can do with current systems. (It would be better if the
kernel returned the effective user ID to accept as the I_RECVFD ioctl command does.)

The client initiates the connection to the server by calling the cli_conn function (Figure 17.17).

Figure 17.17. The cli_conn function for UNIX domain sockets

#include "apue.h"
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>

#define CLI_PATH "/var/tmp/" /* +5 for pid = 14 chars */
#define CLI_PERM S_IRWXU /* rwx for use r only */

/*
 * Create a client endpoint and connect to a server .
 * Returns fd if all OK, <0 on error.
 */
int
cli_conn(const char *name)
{
 int fd, len, err, rval;
 struct sockaddr_un un;

 /* create a UNIX domain stream socket */
 if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
 return(-1);

 /* fill socket address structure with our addre ss */
 memset(&un, 0, sizeof(un));
 un.sun_family = AF_UNIX;
 sprintf(un.sun_path, "%s%05d", CLI_PATH, getpid ());
 len = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);

 unlink(un.sun_path); /* in case it alrea dy exists */
 if (bind(fd, (struct sockaddr *)&un, len) < 0) {
 rval = -2;
 goto errout;
 }
 if (chmod(un.sun_path, CLI_PERM) < 0) {
 rval = -3;
 goto errout;
 }
 /* fill socket address structure with server's address */
 memset(&un, 0, sizeof(un));
 un.sun_family = AF_UNIX;
 strcpy(un.sun_path, name);
 len = offsetof(struct sockaddr_un, sun_path) + strlen(name);
 if (connect(fd, (struct sockaddr *)&un, len) < 0) {
 rval = -4;
 goto errout;
 }
 return(fd);

errout:

 err = errno;
 close(fd);
 errno = err;
 return(rval);
}

We call socket to create the client's end of a UNIX domain socket. We then fill in a sockaddr_un structure
with a client-specific name.

We don't let the system choose a default address for us, because the server would be unable to distinguish one
client from another. Instead, we bind our own address, a step we usually don't take when developing a client
program that uses sockets.

The last five characters of the pathname we bind are made from the process ID of the client. We call unlink ,
just in case the pathname already exists. We then call bind to assign a name to the client's socket. This creates a
socket file in the file system with the same name as the bound pathname. We call chmod to turn off all
permissions other than user-read, user-write, and user-execute. In serv_accept , the server checks these
permissions and the user ID of the socket to verify the client's identity.

We then have to fill in another sockaddr_un structure, this time with the well-known pathname of the server.
Finally, we call the connect function to initiate the connection with the server.

17.4. Passing File Descriptors

The ability to pass an open file descriptor between processes is powerful. It can lead to different ways of
designing client–server applications. It allows one process (typically a server) to do everything that is required
to open a file (involving such details as translating a network name to a network address, dialing a modem,
negotiating locks for the file, etc.) and simply pass back to the calling process a descriptor that can be used with
all the I/O functions. All the details involved in opening the file or device are hidden from the client.

We must be more specific about what we mean by "passing an open file descriptor" from one process to another.
Recall Figure 3.7, which showed two processes that have opened the same file. Although they share the same v-
node, each process has its own file table entry.

When we pass an open file descriptor from one process to another, we want the passing process and the
receiving process to share the same file table entry. Figure 17.18 shows the desired arrangement.

Figure 17.18. Passing an open file from the top process to the bottom process

Technically, we are passing a pointer to an open file table entry from one process to another. This pointer is
assigned the first available descriptor in the receiving process. (Saying that we are passing an open descriptor
mistakenly gives the impression that the descriptor number in the receiving process is the same as in the sending
process, which usually isn't true.) Having two processes share an open file table is exactly what happens after a
fork (recall Figure 8.2).

What normally happens when a descriptor is passed from one process to another is that the sending process,
after passing the descriptor, then closes the descriptor. Closing the descriptor by the sender doesn't really close
the file or device, since the descriptor is still considered open by the receiving process (even if the receiver
hasn't specifically received the descriptor yet).

We define the following three functions that we use in this chapter to send and receive file descriptors. Later in
this section, we'll show the code for these three functions for both STREAMS and sockets.

#include "apue.h"

int send_fd(int fd, int fd_to_send);
int send_err(int fd, int status, const char *errmsg);

Both return: 0 if OK, –1 on error

int recv_fd(int fd, ssize_t (*userfunc)(int, const void *, size_t));

Returns: file descriptor if OK, negative value on error

A process (normally a server) that wants to pass a descriptor to another process calls either send_fd or
send_err . The process waiting to receive the descriptor (the client) calls recv_fd .

The send_fd function sends the descriptor fd_to_send across using the STREAMS pipe or UNIX domain
socket represented by fd.

We'll use the term s-pipe to refer to a bidirectional communication channel that could be implemented as either
a STREAMS pipe or a UNIX domain stream socket.

The send_err function sends the errmsg using fd, followed by the status byte. The value of status must be in
the range –1 through –255.

Clients call recv_fd to receive a descriptor. If all is OK (the sender called send_fd), the non-negative
descriptor is returned as the value of the function. Otherwise, the value returned is the status that was sent by
send_err (a negative value in the range –1 through -255). Additionally, if an error message was sent by the
server, the client's userfunc is called to process the message. The first argument to userfunc is the constant
STDERR_FILENO, followed by a pointer to the error message and its length. The return value from userfunc is the
number of bytes written or a negative number on error. Often, the client specifies the normal write function as
the userfunc.

We implement our own protocol that is used by these three functions. To send a descriptor, send_fd sends two
bytes of 0, followed by the actual descriptor. To send an error, send_err sends the errmsg, followed by a byte
of 0, followed by the absolute value of the status byte (1 through 255). The recv_fd function reads everything
on the s-pipe until it encounters a null byte. Any characters read up to this point are passed to the caller's
userfunc. The next byte read by recv_fd is the status byte. If the status byte is 0, a descriptor was passed;
otherwise, there is no descriptor to receive.

The function send_err calls the send_fd function after writing the error message to the s-pipe. This is shown
in Figure 17.19.

Figure 17.19. The send_err function

#include "apue.h"
/*
 * Used when we had planned to send an fd using sen d_fd(),
 * but encountered an error instead. We send the er ror back

 * using the send_fd()/recv_fd() protocol.
 */
int
send_err(int fd, int errcode, const char *msg)
{
 int n;

 if ((n = strlen(msg)) > 0)
 if (writen(fd, msg, n) != n) /* send the error message */
 return(-1);

 if (errcode >= 0)
 errcode = -1; /* must be negative */

 if (send_fd(fd, errcode) < 0)
 return(-1);

 return(0);
}

In the next two sections, we'll look at the implementation of the send_fd and recv_fd functions.

17.4.1. Passing File Descriptors over STREAMS-Based Pipes

With STREAMS pipes, file descriptors are exchanged using two ioctl commands: I_SENDFD and I_RECVFD.
To send a descriptor, we set the third argument for ioctl to the actual descriptor. This is shown in Figure 17.20.

Figure 17.20. The send_fd function for STREAMS pipes

#include "apue.h"
#include <stropts.h>

/*
 * Pass a file descriptor to another process.
 * If fd<0, then -fd is sent back instead as the er ror status.
 */
int
send_fd(int fd, int fd_to_send)
{
 char buf[2]; /* send_fd()/recv_fd() 2-by te protocol */

 buf[0] = 0; /* null byte flag to recv_f d() */
 if (fd_to_send < 0) {
 buf[1] = -fd_to_send; /* nonzero status m eans error */
 if (buf[1] == 0)
 buf[1] = 1; /* -256, etc. would screw u p protocol */
 } else {
 buf[1] = 0; /* zero status means OK */
 }

 if (write(fd, buf, 2) != 2)
 return(-1);
 if (fd_to_send >= 0)
 if (ioctl(fd, I_SENDFD, fd_to_send) < 0)
 return(-1);
 return(0);
}

When we receive a descriptor, the third argument for ioctl is a pointer to a strrecvfd structure:

 struct strrecvfd {
 int fd; /* new descriptor */
 uid_t uid; /* effective user ID of sen der */
 gid_t gid; /* effective group ID of se nder */
 char fill[8];
 };

The recv_fd function reads the STREAMS pipe until the first byte of the 2-byte protocol (the null byte) is
received. When we issue the I_RECVFD ioctl command, the next message on the stream head's read queue
must be a descriptor from an I_SENDFD call, or we get an error. This function is shown in Figure 17.21.

Figure 17.21. The recv_fd function for STREAMS pipes

#include "apue.h"
#include <stropts.h>

/*
 * Receive a file descriptor from another process (a server).
 * In addition, any data received from the server i s passed
 * to (*userfunc)(STDERR_FILENO, buf, nbytes). We h ave a
 * 2-byte protocol for receiving the fd from send_f d().
 */
int
recv_fd(int fd, ssize_t (*userfunc)(int, const void *, size_t))
{
 int newfd, nread, flag, status;
 char *ptr;
 char buf[MAXLINE];
 struct strbuf dat;
 struct strrecvfd recvfd;

 status = -1;
 for (; ;) {
 dat.buf = buf;
 dat.maxlen = MAXLINE;
 flag = 0;
 if (getmsg(fd, NULL, &dat, &flag) < 0)
 err_sys("getmsg error");
 nread = dat.len;
 if (nread == 0) {
 err_ret("connection closed by server");
 return(-1);
 }
 /*
 * See if this is the final data with null & status.
 * Null must be next to last byte of buffer , status
 * byte is last byte. Zero status means the re must
 * be a file descriptor to receive.
 */
 for (ptr = buf; ptr < &buf[nread];) {
 if (*ptr++ == 0) {
 if (ptr != &buf[nread-1])
 err_dump("message format error");
 status = *ptr & 0xFF; /* prevent sign extension */
 if (status == 0) {
 if (ioctl(fd, I_RECVFD, &recvf d) < 0)
 return(-1);
 newfd = recvfd.fd; /* new des criptor */

 } else {
 newfd = -status;
 }
 nread -= 2;
 }
 }
 if (nread > 0)
 if ((*userfunc)(STDERR_FILENO, buf, nre ad) != nread)
 return(-1);

 if (status >= 0) /* final data has arriv ed */
 return(newfd); /* descriptor, or -stat us */
 }
}

17.4.2. Passing File Descriptors over UNIX Domain Sockets

To exchange file descriptors using UNIX domain sockets, we call the sendmsg (2) and recvmsg (2) functions
(Section 16.5). Both functions take a pointer to a msghdr structure that contains all the information on what to
send or receive. The structure on your system might look similar to the following:

 struct msghdr {
 void *msg_name; /* optional address */
 socklen_t msg_namelen; /* address s ize in bytes */
 struct iovec *msg_iov; /* array of I/O buffers */
 int msg_iovlen; /* number of elements in array */
 void *msg_control; /* ancillary data */
 socklen_t msg_controllen; /* number of ancillary bytes */
 int msg_flags; /* flags for received message */
 };

The first two elements are normally used for sending datagrams on a network connection, where the destination
address can be specified with each datagram. The next two elements allow us to specify an array of buffers
(scatter read or gather write), as we described for the readv and writev functions (Section 14.7). The
msg_flags field contains flags describing the message received, as summarized in Figure 16.13.

Two elements deal with the passing or receiving of control information. The msg_control field points to a
cmsghdr (control message header) structure, and the msg_controllen field contains the number of bytes of
control information.

 struct cmsghdr {
 socklen_t cmsg_len; /* data byte count , including header */
 int cmsg_level; /* originating pro tocol */
 int cmsg_type; /* protocol-specif ic type */
 /* followed by the actual control message d ata */
 };

To send a file descriptor, we set cmsg_len to the size of the cmsghdr structure, plus the size of an integer (the
descriptor). The cmsg_level field is set to SOL_SOCKET, and cmsg_type is set to SCM_RIGHTS, to indicate that
we are passing access rights. (SCM stands for socket-level control message.) Access rights can be passed only
across a UNIX domain socket. The descriptor is stored right after the cmsg_type field, using the macro
CMSG_DATA to obtain the pointer to this integer.

Three macros are used to access the control data, and one macro is used to help calculate the value to be used
for cmsg_len .

#include <sys/socket.h>

unsigned char *CMSG_DATA(struct cmsghdr *cp);

Returns: pointer to data associated with cmsghdr structure

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *mp);

Returns: pointer to first cmsghdr structure associated
with the msghdr structure, or NULL if none exists

struct cmsghdr *CMSG_NXTHDR(struct msghdr *mp,
 struct cmsghdr *cp);

Returns: pointer to next cmsghdr structure associated with
the msghdr structure given the current cmsghdr

structure, or NULL if we're at the last one

unsigned int CMSG_LEN(unsigned int nbytes);

Returns: size to allocate for data object nbytes large

The Single UNIX Specification defines the first three macros, but omits CMSG_LEN.

The CMSG_LEN macro returns the number of bytes needed to store a data object of size nbytes, after adding the
size of the cmsghdr structure, adjusting for any alignment constraints required by the processor architecture,
and rounding up.

The program in Figure 17.22 is the send_fd function for UNIX domain sockets.

Figure 17.22. The send_fd function for UNIX domain sockets

#include "apue.h"
#include <sys/socket.h>

/* size of control buffer to send/recv one file des criptor */
#define CONTROLLEN CMSG_LEN(sizeof(int))

static struct cmsghdr *cmptr = NULL; /* malloc'e d first time */

/*
 * Pass a file descriptor to another process.
 * If fd<0, then -fd is sent back instead as the er ror status.
 */
int
send_fd(int fd, int fd_to_send)
{
 struct iovec iov[1];
 struct msghdr msg;

 char buf[2]; /* send_fd()/recv_fd() 2-byte protocol */

 iov[0].iov_base = buf;
 iov[0].iov_len = 2;
 msg.msg_iov = iov;
 msg.msg_iovlen = 1;
 msg.msg_name = NULL;
 msg.msg_namelen = 0;
 if (fd_to_send < 0) {
 msg.msg_control = NULL;
 msg.msg_controllen = 0;
 buf[1] = -fd_to_send; /* nonzero status m eans error */
 if (buf[1] == 0)
 buf[1] = 1; /* -256, etc. would screw u p protocol */
 } else {
 if (cmptr == NULL && (cmptr = malloc(CONTRO LLEN)) == NULL)
 return(-1);
 cmptr->cmsg_level = SOL_SOCKET;
 cmptr->cmsg_type = SCM_RIGHTS;
 cmptr->cmsg_len = CONTROLLEN;
 msg.msg_control = cmptr;
 msg.msg_controllen = CONTROLLEN;
 *(int *)CMSG_DATA(cmptr) = fd_to_send; /* the fd to pass */
 buf[1] = 0; /* zero status means O K */
 }
 buf[0] = 0; /* null byte flag to r ecv_fd() */
 if (sendmsg(fd, &msg, 0) != 2)
 return(-1);
 return(0);
}

In the sendmsg call, we send both the protocol data (the null and the status byte) and the descriptor.

To receive a descriptor (Figure 17.23), we allocate enough room for a cmsghdr structure and a descriptor, set
msg_control to point to the allocated area, and call recvmsg . We use the CMSG_LEN macro to calculate the
amount of space needed.

We read from the socket until we read the null byte that precedes the final status byte. Everything up to this null
byte is an error message from the sender. This is shown in Figure 17.23.

Figure 17.23. The recv_fd function for UNIX domain sockets

#include "apue.h"
#include <sys/socket.h> /* struct msghdr */

/* size of control buffer to send/recv one file des criptor */
#define CONTROLLEN CMSG_LEN(sizeof(int))

static struct cmsghdr *cmptr = NULL; /* mall oc'ed first time */

/*
 * Receive a file descriptor from a server process. Also, any data
 * received is passed to (*userfunc)(STDERR_FILENO, buf, nbytes).
 * We have a 2-byte protocol for receiving the fd f rom send_fd().
 */
int
recv_fd(int fd, ssize_t (*userfunc)(int, const void *, size_t))
{
 int newfd, nr, status;

 char *ptr;
 char buf[MAXLINE];
 struct iovec iov[1];
 struct msghdr msg;

 status = -1;
 for (; ;) {
 iov[0].iov_base = buf;
 iov[0].iov_len = sizeof(buf);
 msg.msg_iov = iov;
 msg.msg_iovlen = 1;
 msg.msg_name = NULL;
 msg.msg_namelen = 0;
 if (cmptr == NULL && (cmptr = malloc(CONTROL LEN)) == NULL)
 return(-1);
 msg.msg_control = cmptr;
 msg.msg_controllen = CONTROLLEN;
 if ((nr = recvmsg(fd, &msg, 0)) < 0) {
 err_sys("recvmsg error");
 } else if (nr == 0) {
 err_ret("connection closed by server");
 return(-1);
 }
 /*
 * See if this is the final data with null & status. Null
 * is next to last byte of buffer; status by te is last byte.
 * Zero status means there is a file descrip tor to receive.
 */
 for (ptr = buf; ptr < &buf[nr];) {
 if (*ptr++ == 0) {
 if (ptr != &buf[nr-1])
 err_dump("message format error") ;
 status = *ptr & 0xFF; /* prevent si gn extension */
 if (status == 0) {
 if (msg.msg_controllen != CONTRO LLEN)
 err_dump("status = 0 but no fd");
 newfd = *(int *)CMSG_DATA(cmptr) ;
 } else {
 newfd = -status;
 }
 nr -= 2;
 }
 }
 if (nr > 0 && (*userfunc)(STDERR_FILENO, bu f, nr) != nr)
 return(-1);
 if (status >= 0) /* final data has arriv ed */
 return(newfd); /* descriptor, or -stat us */
 }
}

Note that we are always prepared to receive a descriptor (we set msg_control and msg_controllen before
each call to recvmsg), but only if msg_controllen is nonzero on return did we receive a descriptor.

When it comes to passing file descriptors, one difference between UNIX domain sockets and STREAMS pipes
is that we get the identity of the sending process with STREAMS pipes. Some versions of UNIX domain
sockets provide similar functionality, but their interfaces differ.

FreeBSD 5.2.1 and Linux 2.4.22 provide support for sending credentials over UNIX domain sockets, but they
do it differently. Mac OS X 10.3 is derived in part from FreeBSD, but has credential passing disabled. Solaris 9
doesn't support sending credentials over UNIX domain sockets.

With FreeBSD, credentials are transmitted as a cmsgcred structure:

 #define CMGROUP_MAX 16
 struct cmsgcred {
 pid_t cmcred_pid; /* send er's process ID */
 uid_t cmcred_uid; /* send er's real UID */
 uid_t cmcred_euid; /* send er's effective UID */
 gid_t cmcred_gid; /* send er's real GID */
 short cmcred_ngroups; /* numb er of groups */
 gid_t cmcred_groups[CMGROUP_MAX]; /* grou ps */
 };

When we transmit credentials, we need to reserve space only for the cmsgcred structure. The kernel will fill it
in for us to prevent an application from pretending to have a different identity.

On Linux, credentials are transmitted as a ucred structure:

 struct ucred {
 uint32_t pid; /* sender's process ID */
 uint32_t uid; /* sender's user ID */
 uint32_t gid; /* sender's group ID */
 };

Unlike FreeBSD, Linux requires that we initialize this structure before transmission. The kernel will ensure that
applications either use values that correspond to the caller or have the appropriate privilege to use other values.

Figure 17.24 shows the send_fd function updated to include the credentials of the sending process.

Figure 17.24. Sending credentials over UNIX domain sockets

#include "apue.h"
#include <sys/socket.h>

#if defined(SCM_CREDS) /* BSD interface */
#define CREDSTRUCT cmsgcred
#define SCM_CREDTYPE SCM_CREDS
#elif defined(SCM_CREDENTIALS) /* Linux interface */
#define CREDSTRUCT ucred
#define SCM_CREDTYPE SCM_CREDENTIALS
#else
#error passing credentials is unsupported!
#endif

/* size of control buffer to send/recv one file des criptor */
#define RIGHTSLEN CMSG_LEN(sizeof(int))
#define CREDSLEN CMSG_LEN(sizeof(struct CREDSTRU CT))
#define CONTROLLEN (RIGHTSLEN + CREDSLEN)

static struct cmsghdr *cmptr = NULL; /* malloc'e d first time */

/*
 * Pass a file descriptor to another process.
 * If fd<0, then -fd is sent back instead as the er ror status.
 */
int
send_fd(int fd, int fd_to_send)
{

 struct CREDSTRUCT *credp;
 struct cmsghdr *cmp;
 struct iovec iov[1];
 struct msghdr msg;
 char buf[2]; /* send_fd/recv_ufd 2-byte protocol */

 iov[0].iov_base = buf;
 iov[0].iov_len = 2;
 msg.msg_iov = iov;
 msg.msg_iovlen = 1;
 msg.msg_name = NULL;
 msg.msg_namelen = 0;
 msg.msg_flags = 0;
 if (fd_to_send < 0) {
 msg.msg_control = NULL;
 msg.msg_controllen = 0;
 buf[1] = -fd_to_send; /* nonzero status m eans error */
 if (buf[1] == 0)
 buf[1] = 1; /* -256, etc. would screw u p protocol */
 } else {
 if (cmptr == NULL && (cmptr = malloc(CONTRO LLEN)) == NULL)
 return(-1);
 msg.msg_control = cmptr;
 msg.msg_controllen = CONTROLLEN;
 cmp = cmptr;
 cmp->cmsg_level = SOL_SOCKET;
 cmp->cmsg_type = SCM_RIGHTS;
 cmp->cmsg_len = RIGHTSLEN;
 *(int *)CMSG_DATA(cmp) = fd_to_send; /* t he fd to pass */

 cmp = CMSG_NXTHDR(&msg, cmp);
 cmp->cmsg_level = SOL_SOCKET;
 cmp->cmsg_type = SCM_CREDTYPE;
 cmp->cmsg_len = CREDSLEN;
 credp = (struct CREDSTRUCT *)CMSG_DATA(cmp) ;
#if defined(SCM_CREDENTIALS)
 credp->uid = geteuid();
 credp->gid = getegid();
 credp->pid = getpid();
#endif
 buf[1] = 0; /* zero status means OK */
 }
 buf[0] = 0; /* null byte flag to recv_u fd() */
 if (sendmsg(fd, &msg, 0) != 2)
 return(-1);
 return(0);
}

Note that we need to initialize the credentials structure only on Linux.

The function in Figure 17.25 is a modified version of recv_fd , called recv_ufd , that returns the user ID of the
sender through a reference parameter.

Figure 17.25. Receiving credentials over UNIX domain sockets

#include "apue.h"
#include <sys/socket.h> /* struct msghdr */
#include <sys/un.h>

#if defined(SCM_CREDS) /* BSD interface */

#define CREDSTRUCT cmsgcred
#define CR_UID cmcred_uid
#define CREDOPT LOCAL_PEERCRED
#define SCM_CREDTYPE SCM_CREDS
#elif defined(SCM_CREDENTIALS) /* Linux interface */
#define CREDSTRUCT ucred
#define CR_UID uid
#define CREDOPT SO_PASSCRED
#define SCM_CREDTYPE SCM_CREDENTIALS
#else
#error passing credentials is unsupported!
#endif

/* size of control buffer to send/recv one file des criptor */
#define RIGHTSLEN CMSG_LEN(sizeof(int))
#define CREDSLEN CMSG_LEN(sizeof(struct CREDSTRU CT))
#define CONTROLLEN (RIGHTSLEN + CREDSLEN)

17.5. An Open Server, Version 1

Using file descriptor passing, we now develop an open server: a program that is executed by a process to open
one or more files. But instead of sending the contents of the file back to the calling process, the server sends
back an open file descriptor. This lets the server work with any type of file (such as a device or a socket) and
not simply regular files. It also means that a minimum of information is exchanged using IPC: the filename and
open mode from the client to the server, and the returned descriptor from the server to the client. The contents
of the file are not exchanged using IPC.

There are several advantages in designing the server to be a separate executable program (either one that is
executed by the client, as we develop in this section, or a daemon server, which we develop in the next section).

• The server can easily be contacted by any client, similar to the client calling a library function. We are
not hard coding a particular service into the application, but designing a general facility that others can
reuse.

• If we need to change the server, only a single program is affected. Conversely, updating a library
function can require that all programs that call the function be updated (i.e., relinked with the link editor).
Shared libraries can simplify this updating (Section 7.7).

• The server can be a set-user-ID program, providing it with additional permissions that the client does not
have. Note that a library function (or shared library function) can't provide this capability.

The client process creates an s-pipe (either a STREAMS-based pipe or a UNIX domain socket pair) and then
calls fork and exec to invoke the server. The client sends requests across the s-pipe, and the server sends back
responses across the s-pipe.

We define the following application protocol between the client and the server.

1. The client sends a request of the form "open <pathname> <openmode>\0" across the s-pipe to the server.
The <openmode> is the numeric value, in ASCII decimal, of the second argument to the open function.
This request string is terminated by a null byte.

2. The server sends back an open descriptor or an error by calling either send_fd or send_err .

This is an example of a process sending an open descriptor to its parent. In Section 17.6, we'll modify this
example to use a single daemon server, where the server sends a descriptor to a completely unrelated process.

We first have the header, open.h (Figure 17.26), which includes the standard headers and defines the function
prototypes.

Figure 17.26. The open.h header

#include "apue.h"
#include <errno.h>

#define CL_OPEN "open" /* client's request f or server */

int csopen(char *, int);

The main function (Figure 17.27) is a loop that reads a pathname from standard input and copies the file to
standard output. The function calls csopen to contact the open server and return an open descriptor.

Figure 17.27. The client main function, version 1

#include "open.h"
#include <fcntl.h>

#define BUFFSIZE 8192

int
main(int argc, char *argv[])
{
 int n, fd;
 char buf[BUFFSIZE], line[MAXLINE];

 /* read filename to cat from stdin */
 while (fgets(line, MAXLINE, stdin) != NULL) {
 if (line[strlen(line) - 1] == '\n')
 line[strlen(line) - 1] = 0; /* replace newline with null */

 /* open the file */
 if ((fd = csopen(line, O_RDONLY)) < 0)
 continue; /* csopen() prints error fr om server */

 /* and cat to stdout */
 while ((n = read(fd, buf, BUFFSIZE)) > 0)
 if (write(STDOUT_FILENO, buf, n) != n)
 err_sys("write error");
 if (n < 0)
 err_sys("read error");
 close(fd);
 }

 exit(0);
}

The function csopen (Figure 17.28) does the fork and exec of the server, after creating the s-pipe.

Figure 17.28. The csopen function, version 1

#include "open.h"
#include <sys/uio.h> /* struct iovec */

/*
 * Open the file by sending the "name" and "oflag" to the
 * connection server and reading a file descriptor back.
 */
int
csopen(char *name, int oflag)
{
 pid_t pid;
 int len;
 char buf[10];
 struct iovec iov[3];
 static int fd[2] = { -1, -1 };

 if (fd[0] < 0) { /* fork/exec our open serve r first time */
 if (s_pipe(fd) < 0)
 err_sys("s_pipe error");
 if ((pid = fork()) < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 close(fd[0]);
 if (fd[1] != STDIN_FILENO &&
 dup2(fd[1], STDIN_FILENO) != STDIN_FI LENO)

 err_sys("dup2 error to stdin");
 if (fd[1] != STDOUT_FILENO &&
 dup2(fd[1], STDOUT_FILENO) != STDOUT_ FILENO)
 err_sys("dup2 error to stdout");
 if (execl("./opend", "opend", (char *)0) < 0)
 err_sys("execl error");
 }
 close(fd[1]); /* parent */
 }
 sprintf(buf, " %d", oflag); /* oflag to asc ii */
 iov[0].iov_base = CL_OPEN " "; /* string c oncatenation */
 iov[0].iov_len = strlen(CL_OPEN) + 1;
 iov[1].iov_base = name;
 iov[1].iov_len = strlen(name);
 iov[2].iov_base = buf;
 iov[2].iov_len = strlen(buf) + 1; /* +1 for n ull at end of buf */
 len = iov[0].iov_len + iov[1].iov_len + iov[2]. iov_len;
 if (writev(fd[0], &iov[0], 3) != len)
 err_sys("writev error");

 /* read descriptor, returned errors handled by write() */
 return(recv_fd(fd[0], write));
}

The child closes one end of the pipe, and the parent closes the other. For the server that it executes, the child
also duplicates its end of the pipe onto its standard input and standard output. (Another option would have been
to pass the ASCII representation of the descriptor fd[1] as an argument to the server.)

The parent sends to the server the request containing the pathname and open mode. Finally, the parent calls
recv_fd to return either the descriptor or an error. If an error is returned by the server, write is called to output
the message to standard error.

Now let's look at the open server. It is the program opend that is executed by the client in Figure 17.28. First,
we have the opend.h header (Figure 17.29), which includes the standard headers and declares the global
variables and function prototypes.

Figure 17.29. The opend.h header, version 1

#include "apue.h"
#include <errno.h>

#define CL_OPEN "open" /* client's request for server */

extern char errmsg[]; /* error message string to return to client */
extern int oflag; /* open() flag: O_xxx ... * /
extern char *pathname; /* of file to open() for cl ient */

int cli_args(int, char **);
void request(char *, int, int);

The main function (Figure 17.30) reads the requests from the client on the s-pipe (its standard input) and calls
the function request .

Figure 17.30. The server main function, version 1

#include "opend.h"

char errmsg[MAXLINE];
int oflag;
char *pathname;

int
main(void)
{
 int nread;
 char buf[MAXLINE];

 for (; ;) { /* read arg buffer from client, process request */
 if ((nread = read(STDIN_FILENO, buf, MAXLIN E)) < 0)
 err_sys("read error on stream pipe");
 else if (nread == 0)
 break; /* client has closed the st ream pipe */
 request(buf, nread, STDOUT_FILENO);
 }
 exit(0);
}

The function request in Figure 17.31 does all the work. It calls the function buf_args to break up the client's
request into a standard argv -style argument list and calls the function cli_args to process the client's
arguments. If all is OK, open is called to open the file, and then send_fd sends the descriptor back to the client
across the s-pipe (its standard output). If an error is encountered, send_err is called to send back an error
message, using the client–server protocol that we described earlier.

Figure 17.31. The request function, version 1

#include "opend.h"
#include <fcntl.h>

void
request(char *buf, int nread, int fd)
{
 int newfd;

 if (buf[nread-1] != 0) {
 sprintf(errmsg, "request not null terminate d: %*.*s\n",
 nread, nread, buf);
 send_err(fd, -1, errmsg);
 return;
 }
 if (buf_args(buf, cli_args) < 0) { /* parse ar gs & set options */
 send_err(fd, -1, errmsg);
 return;
 }
 if ((newfd = open(pathname, oflag)) < 0) {
 sprintf(errmsg, "can't open %s: %s\n", path name,
 strerror(errno));
 send_err(fd, -1, errmsg);
 return;
 }
 if (send_fd(fd, newfd) < 0) /* send the des criptor */
 err_sys("send_fd error");
 close(newfd); /* we're done with descript or */
}

The client's request is a null-terminated string of white-space-separated arguments. The function buf_args in
Figure 17.32 breaks this string into a standard argv -style argument list and calls a user function to process the
arguments. We'll use the buf_args function later in this chapter. We use the ISO C function strtok to tokenize
the string into separate arguments.

Figure 17.32. The buf_args function

#include "apue.h"

#define MAXARGC 50 /* max number of arguments in buf */
#define WHITE " \t\n" /* white space for tokenizi ng arguments */

/*
 * buf[] contains white-space-separated arguments. We convert it to an
 * argv-style array of pointers, and call the user' s function (optfunc)
 * to process the array. We return -1 if there's a problem parsing buf,
 * else we return whatever optfunc() returns. Note that user's buf[]
 * array is modified (nulls placed after each token).
 */
int
buf_args(char *buf, int (*optfunc)(int, char **))
{
 char *ptr, *argv[MAXARGC];
 int argc;

 if (strtok(buf, WHITE) == NULL) /* an argv[0] is required */
 return(-1);
 argv[argc = 0] = buf;
 while ((ptr = strtok(NULL, WHITE)) != NULL) {
 if (++argc >= MAXARGC-1) /* -1 for room for NULL at end */
 return(-1);
 argv[argc] = ptr;
 }
 argv[++argc] = NULL;

 /*
 * Since argv[] pointers point into the user's buf[],
 * user's function can just copy the pointers, even
 * though argv[] array will disappear on return .
 */
 return((*optfunc)(argc, argv));
}

The server's function that is called by buf_args is cli_args (Figure 17.33). It verifies that the client sent the
right number of arguments and stores the pathname and open mode in global variables.

Figure 17.33. The cli_args function

#include "opend.h"

/*
 * This function is called by buf_args(), which is called by
 * request(). buf_args() has broken up the client' s buffer
 * into an argv[]-style array, which we now process .
 */
int
cli_args(int argc, char **argv)
{
 if (argc != 3 || strcmp(argv[0], CL_OPEN) != 0) {
 strcpy(errmsg, "usage: <pathname> <oflag>\n ");

 return(-1);
 }
 pathname = argv[1]; /* save ptr to pathname to open */
 oflag = atoi(argv[2]);
 return(0);
}

This completes the open server that is invoked by a fork and exec from the client. A single s-pipe is created
before the fork and is used to communicate between the client and the server. With this arrangement, we have
one server per client.

17.6. An Open Server, Version 2

In the previous section, we developed an open server that was invoked by a fork and exec by the client,
demonstrating how we can pass file descriptors from a child to a parent. In this section, we develop an open
server as a daemon process. One server handles all clients. We expect this design to be more efficient, since a
fork and exec are avoided. We still use an s-pipe between the client and the server and demonstrate passing file
descriptors between unrelated processes. We'll use the three functions serv_listen , serv_accept , and
cli_conn introduced in Section 17.2.2. This server also demonstrates how a single server can handle multiple
clients, using both the select and poll functions from Section 14.5.

The client is similar to the client from Section 17.5. Indeed, the file main.c is identical (Figure 17.27). We add
the following line to the open.h header (Figure 17.26):

#define CS_OPEN "/home/sar/opend" /* server's well- known name */

The file open.c does change from Figure 17.28, since we now call cli_conn instead of doing the fork and
exec . This is shown in Figure 17.34.

Figure 17.34. The csopen function, version 2

#include "open.h"
#include <sys/uio.h> /* struct iovec */

/*
 * Open the file by sending the "name" and "oflag" to the
 * connection server and reading a file descriptor back.
 */
int
csopen(char *name, int oflag)
{
 int len;
 char buf[10];
 struct iovec iov[3];
 static int csfd = -1;

 if (csfd < 0) { /* open connection to conn server */
 if ((csfd = cli_conn(CS_OPEN)) < 0)
 err_sys("cli_conn error");
 }

 sprintf(buf, " %d", oflag); /* oflag to asc ii */
 iov[0].iov_base = CL_OPEN " "; /* string conca tenation */
 iov[0].iov_len = strlen(CL_OPEN) + 1;
 iov[1].iov_base = name;
 iov[1].iov_len = strlen(name);
 iov[2].iov_base = buf;
 iov[2].iov_len = strlen(buf) + 1; /* null alw ays sent */
 len = iov[0].iov_len + iov[1].iov_len + iov[2]. iov_len;
 if (writev(csfd, &iov[0], 3) != len)
 err_sys("writev error");

 /* read back descriptor; returned errors handle d by write() */
 return(recv_fd(csfd, write));
}

The protocol from the client to the server remains the same.

Next, we'll look at the server. The header opend.h (Figure 17.35) includes the standard headers and declares the
global variables and the function prototypes.

Figure 17.35. The opend.h header, version 2

#include "apue.h"
#include <errno.h>

#define CS_OPEN "/home/sar/opend" /* well-known n ame */
#define CL_OPEN "open" /* client's req uest for server */

extern int debug; /* nonzero if interactive (not daemon) */
extern char errmsg[]; /* error message string to return to client */
extern int oflag; /* open flag: O_xxx ... */
extern char *pathname; /* of file to open for clie nt */

typedef struct { /* one Client struct per connec ted client */
 int fd; /* fd, or -1 if available */
 uid_t uid;
} Client;

extern Client *client; /* ptr to malloc'ed array */
extern int client_size; /* # entries in cli ent[] array */

int cli_args(int, char **);
int client_add(int, uid_t);
void client_del(int);
void loop(void);
void request(char *, int, int, uid_t);

Since this server handles all clients, it must maintain the state of each client connection. This is done with the
client array declared in the opend.h header. Figure 17.36 defines three functions that manipulate this array.

Figure 17.36. Functions to manipulate client array

#include "opend.h"

#define NALLOC 10 /* # client structs to alloc/r ealloc for */

static void
client_alloc(void) /* alloc more entries in the c lient[] array */
{
 int i;

 if (client == NULL)
 client = malloc(NALLOC * sizeof(Client));
 else
 client = realloc(client, (client_size+NALLO C)*sizeof(Client));
 if (client == NULL)
 err_sys("can't alloc for client array");

 /* initialize the new entries */
 for (i = client_size; i < client_size + NALLOC; i++)
 client[i].fd = -1; /* fd of -1 means entry available */

 client_size += NALLOC;
}

/*
 * Called by loop() when connection request from a new client arrives.
 */
int
client_add(int fd, uid_t uid)
{
 int i;

 if (client == NULL) /* first time we're cal led */
 client_alloc();
again:
 for (i = 0; i < client_size; i++) {
 if (client[i].fd == -1) { /* find an avai lable entry */
 client[i].fd = fd;
 client[i].uid = uid;
 return(i); /* return index in client[] array */
 }
 }
 /* client array full, time to realloc for more */
 client_alloc();
 goto again; /* and search again (will work this time) */
}
/*
 * Called by loop() when we're done with a client.
 */
void
client_del(int fd)
{
 int i;

 for (i = 0; i < client_size; i++) {
 if (client[i].fd == fd) {
 client[i].fd = -1;
 return;
 }
 }
 log_quit("can't find client entry for fd %d", f d);
}

The first time client_add is called, it calls client_alloc , which calls malloc to allocate space for ten entries
in the array. After these ten entries are all in use, a later call to client_add causes realloc to allocate
additional space. By dynamically allocating space this way, we have not limited the size of the client array at
compile time to some value that we guessed and put into a header. These functions call the log_ functions
(Appendix B) if an error occurs, since we assume that the server is a daemon.

The main function (Figure 17.37) defines the global variables, processes the command-line options, and calls
the function loop . If we invoke the server with the -d option, the server runs interactively instead of as a
daemon. This is used when testing the server.

Figure 17.37. The server main function, version 2

#include "opend.h"
#include <syslog.h>

int debug, oflag, client_size, log_to_stderr;
char errmsg[MAXLINE];
char *pathname;
Client *client = NULL;

int
main(int argc, char *argv[])
{
 int c;

 log_open("open.serv", LOG_PID, LOG_USER);

 opterr = 0; /* don't want getopt() writing to stderr */
 while ((c = getopt(argc, argv, "d")) != EOF) {
 switch (c) {
 case 'd': /* debug */
 debug = log_to_stderr = 1;
 break;

 case '?':
 err_quit("unrecognized option: -%c", op topt);
 }
 }

 if (debug == 0)
 daemonize("opend");

 loop(); /* never returns */
}

The function loop is the server's infinite loop. We'll show two versions of this function. Figure 17.38 shows one
version that uses select ; Figure 17.39 shows another version that uses poll .

Figure 17.38. The loop function using select

#include "opend.h"
#include <sys/time.h>
#include <sys/select.h>

void
loop(void)
{
 int i, n, maxfd, maxi, listenfd, clifd, nre ad;
 char buf[MAXLINE];
 uid_t uid;
 fd_set rset, allset;

 FD_ZERO(&allset);

 /* obtain fd to listen for client requests on * /
 if ((listenfd = serv_listen(CS_OPEN)) < 0)
 log_sys("serv_listen error");
 FD_SET(listenfd, &allset);
 maxfd = listenfd;
 maxi = -1;

 for (; ;) {
 rset = allset; /* rset gets modified each time around */
 if ((n = select(maxfd + 1, &rset, NULL, NUL L, NULL)) < 0)
 log_sys("select error");

 if (FD_ISSET(listenfd, &rset)) {
 /* accept new client request */
 if ((clifd = serv_accept(listenfd, &uid)) < 0)
 log_sys("serv_accept error: %d", cl ifd);
 i = client_add(clifd, uid);

 FD_SET(clifd, &allset);
 if (clifd > maxfd)
 maxfd = clifd; /* max fd for selec t() */
 if (i > maxi)
 maxi = i; /* max index in client[] array */
 log_msg("new connection: uid %d, fd %d" , uid, clifd);
 continue;
 }
 for (i = 0; i <= maxi; i++) { /* go throu gh client[] array */
 if ((clifd = client[i].fd) < 0)
 continue;
 if (FD_ISSET(clifd, &rset)) {
 /* read argument buffer from client */
 if ((nread = read(clifd, buf, MAXLI NE)) < 0) {
 log_sys("read error on fd %d", clifd);
 } else if (nread == 0) {
 log_msg("closed: uid %d, fd %d" ,
 client[i].uid, clifd);
 client_del(clifd); /* client h as closed cxn */
 FD_CLR(clifd, &allset);
 close(clifd);
 } else { /* process client's req uest */
 request(buf, nread, clifd, clie nt[i].uid);
 }
 }
 }
 }
}

This function calls serv_listen to create the server's endpoint for the client connections. The remainder of the
function is a loop that starts with a call to select . Two conditions can be true after select returns.

1. The descriptor listenfd can be ready for reading, which means that a new client has called cli_conn .
To handle this, we call serv_accept and then update the client array and associated bookkeeping
information for the new client. (We keep track of the highest descriptor number for the first argument to
select . We also keep track of the highest index in use in the client array.)

2. An existing client's connection can be ready for reading. This means that the client has either terminated
or sent a new request. We find out about a client termination by read returning 0 (end of file). If read
returns a value greater than 0, there is a new request to process, which we handle by calling request .

We keep track of which descriptors are currently in use in the allset descriptor set. As new clients connect to
the server, the appropriate bit is turned on in this descriptor set. The appropriate bit is turned off when the client
terminates.

We always know when a client terminates, whether the termination is voluntary or not, since all the client's
descriptors (including the connection to the server) are automatically closed by the kernel. This differs from the
XSI IPC mechanisms.

The loop function that uses poll is shown in Figure 17.39.

Figure 17.39. The loop function using poll

#include "opend.h"
#include <poll.h>
#if !defined(BSD) && !defined(MACOS)
#include <stropts.h>

#endif

void
loop(void)
{
 int i, maxi, listenfd, clifd, nread ;
 char buf[MAXLINE];
 uid_t uid;
 struct pollfd *pollfd;

 if ((pollfd = malloc(open_max() * sizeof(struct pollfd))) == NULL)
 err_sys("malloc error");

 /* obtain fd to listen for client requests on * /
 if ((listenfd = serv_listen(CS_OPEN)) < 0)
 log_sys("serv_listen error");
 client_add(listenfd, 0); /* we use [0] for l istenfd */
 pollfd[0].fd = listenfd;
 pollfd[0].events = POLLIN;
 maxi = 0;

 for (; ;) {
 if (poll(pollfd, maxi + 1, -1) < 0)
 log_sys("poll error");

 if (pollfd[0].revents & POLLIN) {
 /* accept new client request */
 if ((clifd = serv_accept(listenfd, &uid)) > 0)
 log_sys("serv_accept error: %d", cl ifd);
 i = client_add(clifd, uid);
 pollfd[i].fd = clifd;
 pollfd[i].events = POLLIN;
 if (i > maxi)
 maxi = i;
 log_msg("new connection: uid %d, fd %d" , uid, clifd);
 }

 for (i = 1; i <= maxi; i++) {
 if ((clifd = client[i].fd) < 0)
 continue;
 if (pollfd[i].revents & POLLHUP) {
 goto hungup;
 } else if (pollfd[i].revents & POLLIN) {
 /* read argument buffer from client */
 if ((nread = read(clifd, buf, MAXLI NE)) < 0) {
 log_sys("read error on fd %d", clifd);
 } else if (nread == 0) {
hungup:
 log_msg("closed: uid %d, fd %d" ,
 client[i].uid, clifd);
 client_del(clifd); /* client h as closed conn */
 pollfd[i].fd = -1;
 close(clifd);
 } else { /* process client's request */
 request(buf, nread, clifd, clie nt[i].uid);
 }
 }
 }
 }
}

To allow for as many clients as there are possible open descriptors, we dynamically allocate space for the array
of pollfd structures. (Recall the open_max function from Figure 2.16.)

We use the first entry (index 0) of the client array for the listenfd descriptor. That way, a client's index in
the client array is the same index that we use in the pollfd array. The arrival of a new client connection is
indicated by a POLLIN on the listenfd descriptor. As before, we call serv_accept to accept the connection.

For an existing client, we have to handle two different events from poll : a client termination is indicated by
POLLHUP, and a new request from an existing client is indicated by POLLIN. Recall from Exercise 15.7 that the
hang-up message can arrive at the stream head while there is still data to be read from the stream. With a pipe,
we want to read all the data before processing the hangup. But with this server, when we receive the hangup
from the client, we can close the connection (the stream) to the client, effectively throwing away any data still
on the stream. There is no reason to process any requests still on the stream, since we can't send any responses
back.

As with the select version of this function, new requests from a client are handled by calling the request
function (Figure 17.40). This function is similar to the earlier version (Figure 17.31). It calls the same function,
buf_args (Figure 17.32), that calls cli_args (Figure 17.33), but since it runs from a daemon process, it logs
error messages instead of printing them on the standard error stream.

Figure 17.40. The request function, version 2

#include "opend.h"
#include <fcntl.h>

void
request(char *buf, int nread, int clifd, uid_t uid)
{
 int newfd;

 if (buf[nread-1] != 0) {
 sprintf(errmsg,
 "request from uid %d not null terminated: %*.*s\n",
 uid, nread, nread, buf);
 send_err(clifd, -1, errmsg);
 return;
 }
 log_msg("request: %s, from uid %d", buf, uid);

 /* parse the arguments, set options */
 if (buf_args(buf, cli_args) < 0) {
 send_err(clifd, -1, errmsg);
 log_msg(errmsg);
 return;
 }

 if ((newfd = open(pathname, oflag)) < 0) {
 sprintf(errmsg, "can't open %s: %s\n",
 pathname, strerror(errno));
 send_err(clifd, -1, errmsg);
 log_msg(errmsg);
 return;
 }

 /* send the descriptor */
 if (send_fd(clifd, newfd) < 0)
 log_sys("send_fd error");
 log_msg("sent fd %d over fd %d for %s", newfd, clifd, pathname);

 close(newfd); /* we're done with descript or */
}

This completes the second version of the open server, using a single daemon to handle all the client requests.

17.7. Summary

The key points in this chapter are the ability to pass file descriptors between processes and the ability of a server
to accept unique connections from clients. We've seen how to do this using both STREAMS pipes and UNIX
domain sockets. Although all platforms provide support for UNIX domain sockets (refer back to Figure 15.1),
we've seen that there are differences in each implementation, which makes it more difficult for us to develop
portable applications.

We presented two versions of an open server. One version was invoked directly by the client, using fork and
exec . The second was a daemon server that handled all client requests. Both versions used the file descriptor
passing and receiving functions. The final version also used the client–server connection functions introduced in
Section 17.2.2 and the I/O multiplexing functions from Section 14.5.

Chapter 18. Terminal I/O

Section 18.1. Introduction

Section 18.2. Overview

Section 18.3. Special Input Characters

Section 18.4. Getting and Setting Terminal Attributes

Section 18.5. Terminal Option Flags

Section 18.6. stty Command

Section 18.7. Baud Rate Functions

Section 18.8. Line Control Functions

Section 18.9. Terminal Identification

Section 18.10. Canonical Mode

Section 18.11. Noncanonical Mode

Section 18.12. Terminal Window Size

Section 18.13. termcap, terminfo, and curses

Section 18.14. Summary

18.1. Introduction

The handling of terminal I/O is a messy area, regardless of the operating system. The UNIX System is no
exception. The manual page for terminal I/O is usually one of the longest in most editions of the programmer's
manuals.

With the UNIX System, a schism formed in the late 1970s when System III developed a different set of terminal
routines from those of Version 7. The System III style of terminal I/O continued through System V, and the
Version 7 style became the standard for the BSD-derived systems. As with signals, this difference between the
two worlds has been conquered by POSIX.1. In this chapter, we look at all the POSIX.1 terminal functions and
some of the platform-specific additions.

Part of the complexity of the terminal I/O system occurs because people use terminal I/O for so many different
things: terminals, hardwired lines between computers, modems, printers, and so on.

18.2. Overview

Terminal I/O has two modes:

1. Canonical mode input processing. In this mode, terminal input is processed as lines. The terminal driver
returns at most one line per read request.

2. Noncanonical mode input processing. The input characters are not assembled into lines.

If we don't do anything special, canonical mode is the default. For example, if the shell redirects standard input
to the terminal and we use read and write to copy standard input to standard output, the terminal is in
canonical mode, and each read returns at most one line. Programs that manipulate the entire screen, such as the
vi editor, use noncanonical mode, since the commands may be single characters and are not terminated by
newlines. Also, this editor doesn't want processing by the system of the special characters, since they may
overlap with the editor commands. For example, the Control-D character is often the end-of-file character for
the terminal, but it's also a vi command to scroll down one-half screen.

The Version 7 and older BSD-style terminal drivers supported three modes for terminal input: (a) cooked mode
(the input is collected into lines, and the special characters are processed), (b) raw mode (the input is not
assembled into lines, and there is no processing of special characters), and (c) cbreak mode (the input is not
assembled into lines, but some of the special characters are processed). Figure 18.20 shows a POSIX.1 function
that places a terminal in cbreak or raw mode.

POSIX.1 defines 11 special input characters, 9 of which we can change. We've been using some of these
throughout the text: the end-of-file character (usually Control-D) and the suspend character (usually Control-Z),
for example. Section 18.3 describes each of these characters.

We can think of a terminal device as being controlled by a terminal driver, usually within the kernel. Each
terminal device has an input queue and an output queue, shown in Figure 18.1.

Figure 18.1. Logical picture of input and output queues for a terminal device

There are several points to consider from this picture.

• If echoing is enabled, there is an implied link between the input queue and the output queue.
• The size of the input queue, MAX_INPUT (see Figure 2.11), is finite. When the input queue for a particular

device fills, the system behavior is implementation dependent. Most UNIX systems echo the bell
character when this happens.

• There is another input limit, MAX_CANON, that we don't show here. This limit is the maximum number of
bytes in a canonical input line.

• Although the size of the output queue is finite, no constants defining that size are accessible to the
program, because when the output queue starts to fill up, the kernel simply puts the writing process to
sleep until room is available.

• We'll see how the tcflush flush function allows us to flush either the input queue or the output queue.
Similarly, when we describe the tcsetattr function, we'll see how we can tell the system to change the
attributes of a terminal device only after the output queue is empty. (We want to do this, for example, if
we're changing the output attributes.) We can also tell the system to discard everything in the input
queue when changing the terminal attributes. (We want to do this if we're changing the input attributes
or changing between canonical and noncanonical modes, so that previously entered characters aren't
interpreted in the wrong mode.)

Most UNIX systems implement all the canonical processing in a module called the terminal line discipline. We
can think of this module as a box that sits between the kernel's generic read and write functions and the actual
device driver (see Figure 18.2).

Figure 18.2. Terminal line discipline

Note the similarity of this picture and the diagram of a stream shown in Figure 14.14. We'll return to this picture
in Chapter 19, when we discuss pseudo terminals.

All the terminal device characteristics that we can examine and change are contained in a termios structure.
This structure is defined in the header <termios.h> , which we use throughout this chapter:

 struct termios {
 tcflag_t c_iflag; /* input flags */
 tcflag_t c_oflag; /* output flags */

 tcflag_t c_cflag; /* control flags */
 tcflag_t c_lflag; /* local flags */
 cc_t c_cc[NCCS]; /* control characters */
 };

Roughly speaking, the input flags control the input of characters by the terminal device driver (strip eighth bit
on input, enable input parity checking, etc.), the output flags control the driver output (perform output
processing, map newline to CR/LF, etc.), the control flags affect the RS-232 serial lines (ignore modem status
lines, one or two stop bits per character, etc.), and the local flags affect the interface between the driver and the
user (echo on or off, visually erase characters, enable terminal-generated signals, job control stop signal for
background output, etc.).

The type tcflag_t is big enough to hold each of the flag values and is often defined as an unsigned int or an
unsigned long . The c_cc array contains all the special characters that we can change. NCCS is the number of
elements in this array and is typically between 15 and 20 (since most implementations of the UNIX System
support more than the 11 POSIX-defined special characters). The cc_t type is large enough to hold each special
character and is typically an unsigned char .

Versions of System V that predated the POSIX standard had a header named <termio.h> and a structure
named termio . POSIX.1 added an s to the names, to differentiate them from their predecessors.

Figures 18.3 through 18.6 list all the terminal flags that we can change to affect the characteristics of a terminal
device. Note that even though the Single UNIX Specification defines a common subset that all platforms start
from, all the implementations have their own additions. Most of these additions come from the historical
differences between the systems. We'll discuss each of these flag values in detail in Section 18.5.

Figure 18.3. c_cflag terminal flags

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

CBAUDEXT extended baud rate •

CCAR_OFLOW DCD flow control of output • •

CCTS_OFLOW CTS flow control of output • • •

CDSR_OFLOW DSR flow control of output • •

CDTR_IFLOW DTR flow control of input • •

CIBAUDEXT extended input baud rate •

CIGNORE ignore control flags • •

CLOCAL ignore modem status lines • • • • •

CREAD enable receiver • • • • •

CRTSCTS enable hardware flow control • • • •

CRTS_IFLOW RTS flow control of input • • •

CRTSXOFF enable input hardware flow •

Figure 18.3. c_cflag terminal flags

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

control

CSIZE character size mask • • • • •

CSTOPB send two stop bits, else one • • • • •

HUPCL hang up on last close • • • • •

MDMBUF same as CCAR_OFLOW • •

PARENB parity enable • • • • •

PAREXT mark or space parity •

PARODD odd parity, else even • • • • •

Figure 18.4. c_iflag terminal flags

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

BRKINT generate SIGINT on BREAK • • • • •

ICRNL map CR to NL on input • • • • •

IGNBRK ignore BREAK condition • • • • •

IGNCR ignore CR • • • • •

IGNPAR ignore characters with parity
errors

• • • • •

IMAXBEL ring bell on input queue full • • • •

INLCR map NL to CR on input • • • • •

INPCK enable input parity checking • • • • •

ISTRIP strip eighth bit off input
characters

• • • • •

IUCLC map uppercase to lowercase on
input

 • •

IXANY enable any characters to restart
output

XSI • • • •

IXOFF enable start/stop input flow
control

• • • • •

IXON enable start/stop output flow • • • • •

Figure 18.4. c_iflag terminal flags

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

control

PARMRK mark parity errors • • • • •

Figure 18.5. c_lflag terminal flags

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

ALTWERASE use alternate WERASE
algorithm

 • •

ECHO enable echo • • • • •

ECHOCTL echo control chars as ^(Char) • • • •

ECHOE visually erase chars • • • • •

ECHOK echo kill • • • • •

ECHOKE visual erase for kill • • • •

ECHONL echo NL • • • • •

ECHOPRT visual erase mode for hard
copy

 • • • •

EXTPROC external character processing • •

FLUSHO output being flushed • • • •

ICANON canonical input • • • • •

IEXTEN enable extended input char
processing

• • • • •

ISIG enable terminal-generated
signals

• • • • •

NOFLSH disable flush after interrupt or
quit

• • • • •

NOKERNINFO no kernel output from
STATUS

 • •

PENDIN retype pending input • • • •

TOSTOP send SIGTTOU for background
output

• • • • •

XCASE canonical upper/lower • •

Figure 18.5. c_lflag terminal flags

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

presentation

Figure 18.6. c_oflag terminal flags

Flag Description POSIX.1 FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

BSDLY backspace delay mask XSI • •

CMSPAR mark or space parity •

CRDLY CR delay mask XSI • •

FFDLY form feed delay mask XSI • •

NLDLY NL delay mask XSI • •

OCRNL map CR to NL on output XSI • • •

OFDEL fill is DEL, else NUL XSI • •

OFILL use fill character for delay XSI • •

OLCUC map lowercase to uppercase on
output

 • •

ONLCR map NL to CR-NL XSI • • • •

ONLRET NL performs CR function XSI • • •

ONOCR no CR output at column 0 XSI • • •

ONOEOT discard EOTs (^D) on output • •

OPOST perform output processing • • • • •

OXTABS expand tabs to spaces • •

TABDLY horizontal tab delay mask XSI • •

VTDLY vertical tab delay mask XSI • •

Given all the options available, how do we examine and change these characteristics of a terminal device?
Figure 18.7 summarizes the various functions defined by the Single UNIX Specification that operate on
terminal devices. (All the functions listed are part of the base POSIX specification, except for tcgetsid , which
is an XSI extension. We described tcgetpgrp , tcgetsid , and tcsetpgrp in Section 9.7.)

Figure 18.7. Summary of terminal I/O functions

Function Description

tcgetattr fetch attributes (termios structure)

tcsetattr set attributes (termios structure)

cfgetispeed get input speed

cfgetospeed get output speed

cfsetispeed set input speed

cfsetospeed set output speed

tcdrain wait for all output to be transmitted

tcflow suspend transmit or receive

tcflush flush pending input and/or output

tcsendbreak send BREAK character

tcgetpgrp get foreground process group ID

tcsetpgrp set foreground process group ID

tcgetsid get process group ID of session leader for controlling
TTY (XSI extension)

Note that the Single UNIX Specification doesn't use the classic ioctl on terminal devices. Instead, it uses the
13 functions shown in Figure 18.7. The reason is that the ioctl function for terminal devices uses a different
data type for its final argument, which depends on the action being performed. This makes type checking of the
arguments impossible.

Although only 13 functions operate on terminal devices, the first two functions in Figure 18.7 (tcgetattr and
tcsetattr) manipulate almost 70 different flags (see Figures 18.3 through 18.6). The handling of terminal
devices is complicated by the large number of options available for terminal devices and trying to determine
which options are required for a particular device (be it a terminal, modem, printer, or whatever).

The relationships among the 13 functions shown in Figure 18.7 are shown in Figure 18.8.

Figure 18.8. Relationships among the terminal-related functions

POSIX.1 doesn't specify where in the termios structure the baud rate information is stored; that is an
implementation detail. Some systems, such as Linux and Solaris, store this information in the c_cflag field.
BSD-derived systems, such as FreeBSD and Mac OS X, have two separate fields in the structure: one for the
input speed and one for the output speed.

18.3. Special Input Characters

POSIX.1 defines 11 characters that are handled specially on input. Implementations define additional special
characters. Figure 18.9 summarizes these special characters.

Figure 18.9. Summary of special terminal input characters

Characte
r

Descriptio
n

c_cc
subscrip

t
Enabled by Typica

l value
POSIX.

1
FreeBS
D 5.2.1

Linu
x

2.4.2
2

Ma
c

OS
X

10.3

Solari
s 9

 field flag

CR carriage
return

(can't
change)

c_lfla
g

ICANON \r • • • • •

DISCAR
D

discard
output

VDISCAR
D

c_lfla
g

IEXTEN ^O • • • •

DSUSP delayed
suspend
(SIGTSTP)

VDSUSP c_lfla
g

ISIG ^Y • • •

EOF end of file VEOF c_lfla
g

ICANON ^D • • • • •

EOL end of line VEOL c_lfla
g

ICANON • • • • •

EOL2 alternate
end of line

VEOL2 c_lfla
g

ICANON • • • •

ERASE backspace
one
character

VERASE c_lfla
g

ICANON ^H, ^? • • • • •

ERASE2 alternate
backspace
character

VERASE2 c_lfla
g

ICANON ^H, ^? •

INTR interrupt
signal
(SIGINT)

VINTR c_lfla
g

ISIG ^?, ^C • • • • •

KILL erase line VKILL c_lfla
g

ICANON ^U • • • • •

LNEXT literal next VLNEXT c_lfla
g

IEXTEN ^V • • • •

NL line feed
(newline)

(can't
change)

c_lfla
g

ICANON \n • • • • •

QUIT quit signal VQUIT c_lfla
g

ISIG ^\ • • • • •

Figure 18.9. Summary of special terminal input characters

Characte
r

Descriptio
n

c_cc
subscrip

t
Enabled by Typica

l value
POSIX.

1
FreeBS
D 5.2.1

Linu
x

2.4.2
2

Ma
c

OS
X

10.3

Solari
s 9

 field flag

(SIGQUIT)

REPRIN
T

reprint all
input

VREPRIN
T

c_lfla
g

ICANON ^R • • • •

START resume
output

VSTART c_ifla
g

IXON/IXOF
F

^Q • • • • •

STATUS status
request

VSTATUS c_lfla
g

ICANON ^T • •

STOP stop output VSTOP c_ifla
g

IXON/IXOF
F

^S • • • • •

SUSP suspend
signal
(SIGTSTP)

VSUSP c_lfla
g

ISIG ^Z • • • • •

WERAS
E

backspace
one word

VWERASE c_lfla
g

ICANON ^W • • • •

Of the 11 POSIX.1 special characters, we can change 9 of them to almost any value that we like. The
exceptions are the newline and carriage return characters (\n and \r , respectively) and perhaps the STOP and
START characters (depends on the implementation). To do this, we modify the appropriate entry in the c_cc
array of the termios structure. The elements in this array are referred to by name, with each name beginning
with a V (the third column in Figure 18.9).

POSIX.1 allows us to disable these characters. If we set the value of an entry in the c_cc array to the value of
_POSIX_VDISABLE, then we disable the corresponding special character.

In older versions of the Single UNIX Specification, support for _POSIX_VDISABLE was optional. It is now
required.

All four platforms discussed in this text support this feature. Linux 2.4.22 and Solaris 9 define
_POSIX_VDISABLE as 0; FreeBSD 5.2.1 and Mac OS X 10.3 define it as 0xff .

Some earlier UNIX systems disabled a feature if the corresponding special input character was 0.

Example

Before describing all the special characters in detail, let's look at a small program that changes them.
The program in Figure 18.10 disables the interrupt character and sets the end-of-file character to

Control-B.

Note the following in this program.

• We modify the terminal characters only if standard input is a terminal device. We call
isatty (Section 18.9) to check this.

• We fetch the _POSIX_VDISABLE value using fpathconf .
• The function tcgetattr (Section 18.4) fetches a termios structure from the kernel. After

we've modified this structure, we call tcsetattr to set the attributes. The only attributes that
change are the ones we specifically modified.

• Disabling the interrupt key is different from ignoring the interrupt signal. The program in
Figure 18.10 simply disables the special character that causes the terminal driver to generate
SIGINT . We can still use the kill function to send the signal to the process.

Figure 18.10. Disable interrupt character and change end-of-file character

#include "apue.h"
#include <termios.h>

int
main(void)
{
 struct termios term;
 long vdisable;

 if (isatty(STDIN_FILENO) == 0)
 err_quit("standard input is not a terminal device");

 if ((vdisable = fpathconf(STDIN_FILENO, _PC_VDI SABLE)) < 0)
 err_quit("fpathconf error or _POSIX_VDISABL E not in effect");

 if (tcgetattr(STDIN_FILENO, &term) < 0) /* fetc h tty state */
 err_sys("tcgetattr error");

 term.c_cc[VINTR] = vdisable; /* disable INTR character */
 term.c_cc[VEOF] = 2; /* EOF is Contr ol-B */

 if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &term) < 0)
 err_sys("tcsetattr error");

 exit(0);
}

We now describe each of the special characters in more detail. We call these the special input characters, but
two of the characters, STOP and START (Control-S and Control-Q), are also handled specially when output.
Note that when recognized by the terminal driver and processed specially, most of these special characters are
then discarded: they are not returned to the process in a read operation. The exceptions to this are the newline
characters (NL, EOL, EOL2) and the carriage return (CR).

CR The carriage return character. We cannot change this character. This character is recognized on
input in canonical mode. When both ICANON (canonical mode) and ICRNL (map CR to NL) are set
and IGNCR (ignore CR) is not set, the CR character is translated to NL and has the same effect as a
NL character. This character is returned to the reading process (perhaps after being translated to a
NL).

DISCARD The discard character. This character, recognized on input in extended mode (IEXTEN), causes
subsequent output to be discarded until another DISCARD character is entered or the discard
condition is cleared (see the FLUSHO option). This character is discarded when processed (i.e., it is
not passed to the process).

DSUSP The delayed-suspend job-control character. This character is recognized on input in extended mode
(IEXTEN) if job control is supported and if the ISIG flag is set. Like the SUSP character, this
delayed-suspend character generates the SIGTSTP signal that is sent to all processes in the
foreground process group (refer to Figure 9.7). But the delayed-suspend character generates a
signal only when a process reads from the controlling terminal, not when the character is typed.
This character is discarded when processed (i.e., it is not passed to the process).

EOF The end-of-file character. This character is recognized on input in canonical mode (ICANON). When
we type this character, all bytes waiting to be read are immediately passed to the reading process. If
no bytes are waiting to be read, a count of 0 is returned. Entering an EOF character at the beginning
of the line is the normal way to indicate an end of file to a program. This character is discarded
when processed in canonical mode (i.e., it is not passed to the process).

EOL The additional line delimiter character, like NL. This character is recognized on input in canonical
mode (ICANON) and is returned to the reading process; however, this character is not normally used.

EOL2 Another line delimiter character, like NL. This character is treated identically to the EOL character.

ERASE The erase character (backspace). This character is recognized on input in canonical mode (ICANON)
and erases the previous character in the line, not erasing beyond the beginning of the line. This
character is discarded when processed in canonical mode (i.e., it is not passed to the process).

ERASE2 The alternate erase character (backspace). This character is treated exactly like the erase character
(ERASE).

INTR The interrupt character. This character is recognized on input if the ISIG flag is set and generates
the SIGINT signal that is sent to all processes in the foreground process group (refer to Figure 9.7).
This character is discarded when processed (i.e., it is not passed to the process).

KILL The kill character. (The name "kill" is overused; recall the kill function used to send a signal to a
process. This character should be called the line-erase character; it has nothing to do with signals.)
It is recognized on input in canonical mode (ICANON). It erases the entire line and is discarded when
processed (i.e., it is not passed to the process).

LNEXT The literal-next character. This character is recognized on input in extended mode (IEXTEN) and
causes any special meaning of the next character to be ignored. This works for all special characters
listed in this section. We can use this character to type any character to a program. The LNEXT
character is discarded when processed, but the next character entered is passed to the process.

NL The newline character, which is also called the line delimiter. We cannot change this character.
This character is recognized on input in canonical mode (ICANON). This character is returned to the
reading process.

QUIT The quit character. This character is recognized on input if the ISIG flag is set. The quit character
generates the SIGQUIT signal, which is sent to all processes in the foreground process group (refer

CR The carriage return character. We cannot change this character. This character is recognized on
input in canonical mode. When both ICANON (canonical mode) and ICRNL (map CR to NL) are set
and IGNCR (ignore CR) is not set, the CR character is translated to NL and has the same effect as a
NL character. This character is returned to the reading process (perhaps after being translated to a
NL).

to Figure 9.7). This character is discarded when processed (i.e., it is not passed to the process).

 Recall from Figure 10.1 that the difference between INTR and QUIT is that the QUIT character not
only terminates the process by default, but also generates a core file.

REPRINT The reprint character. This character is recognized on input in extended, canonical mode (both
IEXTEN and ICANON flags set) and causes all unread input to be output (reechoed). This character is
discarded when processed (i.e., it is not passed to the process).

START The start character. This character is recognized on input if the IXON flag is set and is automatically
generated as output if the IXOFF flag is set. A received START character with IXON set causes
stopped output (from a previously entered STOP character) to restart. In this case, the START
character is discarded when processed (i.e., it is not passed to the process).

 When IXOFF is set, the terminal driver automatically generates a START character to resume input
that it had previously stopped, when the new input will not overflow the input buffer.

STATUS The BSD status-request character. This character is recognized on input in extended, canonical
mode (both IEXTEN and ICANON flags set) and generates the SIGINFO signal, which is sent to all
processes in the foreground process group (refer to Figure 9.7). Additionally, if the NOKERNINFO
flag is not set, status information on the foreground process group is also displayed on the terminal.
This character is discarded when processed (i.e., it is not passed to the process).

STOP The stop character. This character is recognized on input if the IXON flag is set and is automatically
generated as output if the IXOFF flag is set. A received STOP character with IXON set stops the
output. In this case, the STOP character is discarded when processed (i.e., it is not passed to the
process). The stopped output is restarted when a START character is entered.

 When IXOFF is set, the terminal driver automatically generates a STOP character to prevent the
input buffer from overflowing.

SUSP The suspend job-control character. This character is recognized on input if job control is supported
and if the ISIG flag is set. The suspend character generates the SIGTSTP signal, which is sent to all
processes in the foreground process group (refer to Figure 9.7). This character is discarded when
processed (i.e., it is not passed to the process).

WERASE The word-erase character. This character is recognized on input in extended, canonical mode (both
IEXTEN and ICANON flags set) and causes the previous word to be erased. First, it skips backward
over any white space (spaces or tabs), then backward over the previous token, leaving the cursor
positioned where the first character of the previous token was located. Normally, the previous
token ends when a white space character is encountered. We can change this, however, by setting
the ALTWERASE flag. This flag causes the previous token to end when the first nonalphanumeric
character is encountered. The word-erase character is discarded when processed (i.e., it is not
passed to the process).

Another "character" that we need to define for terminal devices is the BREAK character. BREAK is not really a
character, but rather a condition that occurs during asynchronous serial data transmission. A BREAK condition
is signaled to the device driver in various ways, depending on the serial interface.

Most old serial terminals have a key labeled BREAK that generates the BREAK condition, which is why most
people think of BREAK as a character. Some newer terminal keyboards don't have a BREAK key. On PCs, the
break key might be mapped for other purpose. For example, the Windows command interpreter can be
interrupted by typing Control-BREAK.

For asynchronous serial data transmission, a BREAK is a sequence of zero-valued bits that continues for longer
than the time required to send one byte. The entire sequence of zero-valued bits is considered a single BREAK.
In Section 18.8, we'll see how to send a BREAK with the tcsendbreak function.

18.4. Getting and Setting Terminal Attributes

To get and set a termios structure, we call two functions: tcgetattr and tcsetattr . This is how we examine
and modify the various option flags and special characters to make the terminal operate the way we want it to.

#include <termios.h>

int tcgetattr(int filedes, struct termios *termptr) ;

int tcsetattr(int filedes, int opt, const struct te rmios *termptr);

Both return: 0 if OK, –1 on error

Both functions take a pointer to a termios structure and either return the current terminal attributes or set the
terminal's attributes. Since these two functions operate only on terminal devices, errno is set to ENOTTY and –1
is returned if filedes does not refer to a terminal device.

The argument opt for tcsetattr lets us specify when we want the new terminal attributes to take effect. This
argument is specified as one of the following constants.

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output has been transmitted. This option should be used if we are
changing the output parameters.

TCSAFLUSH The change occurs after all output has been transmitted. Furthermore, when the change takes place,
all input data that has not been read is discarded (flushed).

The return status of tcsetattr confuses the programming. This function returns OK if it was able to perform
any of the requested actions, even if it couldn't perform all the requested actions. If the function returns OK, it is
our responsibility to see whether all the requested actions were performed. This means that after we call
tcsetattr to set the desired attributes, we need to call tcgetattr and compare the actual terminal's attributes
to the desired attributes to detect any differences.

18.5. Terminal Option Flags

In this section, we list all the various terminal option flags, expanding the descriptions of all the options from
Figures 18.3 through 18.6. This list is alphabetical and indicates in which of the four terminal flag fields the
option appears. (The field a given option is controlled by is usually not apparent from the option name alone.)
We also note whether each option is defined by the Single UNIX Specification and list the platforms that
support it.

All the flags listed specify one or more bits that we turn on or clear, unless we call the flag a mask. A mask
defines multiple bits grouped together from which a set of values is defined. We have a defined name for the
mask and a name for each value. For example, to set the character size, we first zero the bits using the character-
size mask CSIZE, and then set one of the values CS5, CS6, CS7, or CS8.

The six delay values supported by Linux and Solaris are also masks: BSDLY, CRDLY, FFDLY, NLDLY, TABDLY, and
VTDLY. Refer to the termio (7I) manual page on Solaris for the length of each delay value. In all cases, a delay
mask of 0 means no delay. If a delay is specified, the OFILL and OFDEL flags determine whether the driver does
an actual delay or whether fill characters are transmitted instead.

Example

Figure 18.11 demonstrates the use of these masks to extract a value and to set a value.

Figure 18.11. Example of tcgetattr and tcsetattr

#include "apue.h"
#include <termios.h>

int
main(void)
{
 struct termios term;

 if (tcgetattr(STDIN_FILENO, &term) < 0)
 err_sys("tcgetattr error");

 switch (term.c_cflag & CSIZE) {
 case CS5:
 printf("5 bits/byte\n");
 break;
 case CS6:
 printf("6 bits/byte\n");
 break;
 case CS7:
 printf("7 bits/byte\n");
 break;
 case CS8:
 printf("8 bits/byte\n");
 break;
 default:
 printf("unknown bits/byte\n");
 }

 term.c_cflag &= ~CSIZE; /* zero out the bits */
 term.c_cflag |= CS8; /* set 8 bits/byte */
 if (tcsetattr(STDIN_FILENO, TCSANOW, &term) < 0)
 err_sys("tcsetattr error");

 exit(0);
}

We now describe each of the flags.

ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the
WERASE character is entered. Instead of moving backward until the previous white space
character, this flag causes the WERASE character to move backward until the first
nonalphanumeric character is encountered.

BRKINT (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If this flag is set and IGNBRK is not set,
the input and output queues are flushed when a BREAK is received, and a SIGINT signal is
generated. This signal is generated for the foreground process group if the terminal device is a
controlling terminal.

 If neither IGNBRK nor BRKINT is set, then a BREAK is read as a single character \0 , unless PARMRK
is set, in which case the BREAK is read as the 3-byte sequence \377 , \0 , \0 .

BSDLY (c_oflag , XSI, Linux, Solaris) Backspace delay mask. The values for the mask are BS0 or BS1.

CBAUDEXT (c_cflag , Solaris) Extended baud rates. Used to enable baud rates greater than B38400. (We
discuss baud rates in Section 18.7.)

CCAR_OFLOW (c_cflag , FreeBSD, Mac OS X) Enable hardware flow control of the output using the RS-232
modem carrier signal (DCD, known as Data- Carrier-Detect). This is the same as the old MDMBUF
flag.

CCTS_OFLOW (c_cflag , FreeBSD, Mac OS X, Solaris) Enable hardware flow control of the output using the
Clear-To-Send (CTS) RS-232 signal.

CDSR_OFLOW (c_cflag , FreeBSD, Mac OS X) Flow control the output according to the Data-Set-Ready (DSR)
RS-232 signal.

CDTR_IFLOW (c_cflag , FreeBSD, Mac OS X) Flow control the input according to the Data-Terminal-Ready
(DTR) RS-232 signal.

CIBAUDEXT (c_cflag , Solaris) Extended input baud rates. Used to enable input baud rates greater than
B38400. (We discuss baud rates in Section 18.7.)

CIGNORE (c_cflag , FreeBSD, Mac OS X) Ignore control flags.

CLOCAL (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the modem status lines are
ignored. This usually means that the device is directly attached. When this flag is not set, an open
of a terminal device usually blocks until the modem answers a call and establishes a connection,
for example.

CMSPAR (c_oflag , Linux) Select mark or space parity. If PARODD is set, the parity bit is always 1 (mark
parity). Otherwise, the parity bit is always 0 (space parity).

CRDLY (c_oflag , XSI, Linux, Solaris) Carriage return delay mask. The values for the mask are CR0, CR1,
CR2, or CR3.

CREAD (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the receiver is enabled, and
characters can be received.

CRTSCTS (c_cflag , FreeBSD, Linux, Mac OS X, Solaris) Behavior depends on platform. For Solaris,
enables outbound hardware flow control if set. On the other three platforms, enables both inbound

ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the
WERASE character is entered. Instead of moving backward until the previous white space
character, this flag causes the WERASE character to move backward until the first
nonalphanumeric character is encountered.

and outbound hardware flow control (equivalent to CCTS_OFLOW|CRTS_IFLOW).

CRTS_IFLOW (c_cflag , FreeBSD, Mac OS X, Solaris) Request-To-Send (RTS) flow control of input.

CRTSXOFF (c_cflag , Solaris) If set, inbound hardware flow control is enabled. The state of the Request-To-
Send RS-232 signal controls the flow control.

CSIZE (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) This field is a mask that specifies the
number of bits per byte for both transmission and reception. This size does not include the parity
bit, if any. The values for the field defined by this mask are CS5, CS6, CS7, and CS8, for 5, 6, 7,
and 8 bits per byte, respectively.

CSTOPB (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, two stop bits are used;
otherwise, one stop bit is used.

ECHO (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, input characters are echoed back
to the terminal device. Input characters can be echoed in either canonical or noncanonical mode.

ECHOCTL (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set and if ECHO is set, ASCII control characters
(those characters in the range 0 through octal 37, inclusive) other than the ASCII TAB, the ASCII
NL, and the START and STOP characters are echoed as ^X, where X is the character formed by
adding octal 100 to the control character. This means that the ASCII Control-A character (octal 1)
is echoed as ^A. Also, the ASCII DELETE character (octal 177) is echoed as ̂? . If this flag is not
set, the ASCII control characters are echoed as themselves. As with the ECHO flag, this flag affects
the echoing of control characters in both canonical and noncanonical modes.

 Be aware that some systems echo the EOF character differently, since its typical value is Control-
D. (Control-D is the ASCII EOT character, which can cause some terminals to hang up.) Check
your manual.

ECHOE (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the ERASE
character erases the last character in the current line from the display. This is usually done in the
terminal driver by writing the three-character sequence backspace, space, backspace.

 If the WERASE character is supported, ECHOE causes the previous word to be erased using one or
more of the same three-character sequence.

 If the ECHOPRT flag is supported, the actions described here for ECHOE assume that the ECHOPRT
flag is not set.

ECHOK (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the KILL
character erases the current line from the display or outputs the NL character (to emphasize that
the entire line was erased).

 If the ECHOKE flag is supported, this description of ECHOK assumes that ECHOKE is not set.

ECHOKE (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the KILL character is
echoed by erasing each character on the line. The way in which each character is erased is
selected by the ECHOE and ECHOPRT flags.

ECHONL (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the NL
character is echoed, even if ECHO is not set.

ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the
WERASE character is entered. Instead of moving backward until the previous white space
character, this flag causes the WERASE character to move backward until the first
nonalphanumeric character is encountered.

ECHOPRT (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set and if both ICANON and ECHO are set, then
the ERASE character (and WERASE character, if supported) cause all the characters being erased
to be printed as they are erased. This is often useful on a hard-copy terminal to see exactly which
characters are being deleted.

EXTPROC (c_lflag , FreeBSD, Mac OS X) If set, canonical character processing is performed external to
the operating system. This can be the case if the serial communication peripheral card can offload
the host processor by doing some of the line discipline processing. This can also be the case when
using pseudo terminals (Chapter 19).

FFDLY (c_oflag , XSI, Linux, Solaris) Form feed delay mask. The values for the mask are FF0 or FF1.

FLUSHO (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set, output is being flushed. This flag is set
when we type the DISCARD character; the flag is cleared when we type another DISCARD
character. We can also set or clear this condition by setting or clearing this terminal flag.

HUPCL (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the modem control lines are
lowered (i.e., the modem connection is broken) when the last process closes the device.

ICANON (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, canonical mode is in effect
(Section 18.10). This enables the following characters: EOF, EOL, EOL2, ERASE, KILL,
REPRINT, STATUS, and WERASE. The input characters are assembled into lines.

 If canonical mode is not enabled, read requests are satisfied directly from the input queue. A read
does not return until at least MIN bytes have been received or the timeout value TIME has
expired between bytes. Refer to Section 18.11 for additional details.

ICRNL (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if IGNCR is not set, a
received CR character is translated into a NL character.

IEXTEN (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the extended, implementation-
defined special characters are recognized and processed.

IGNBRK (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, a BREAK condition on
input is ignored. See BRKINT for a way to have a BREAK condition either generate a SIGINT
signal or be read as data.

IGNCR (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, a received CR character is
ignored. If this flag is not set, it is possible to translate the received CR into a NL character if the
ICRNL flag is set.

IGNPAR (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, an input byte with a framing
error (other than a BREAK) or an input byte with a parity error is ignored.

IMAXBEL (c_iflag , FreeBSD, Linux, Mac OS X, Solaris) Ring bell when input queue is full.

INLCR (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, a received NL character is
translated into a CR character.

INPCK (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, input parity checking is
enabled. If INPCK is not set, input parity checking is disabled.

 Parity "generation and detection" and "input parity checking" are two different things. The

ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the
WERASE character is entered. Instead of moving backward until the previous white space
character, this flag causes the WERASE character to move backward until the first
nonalphanumeric character is encountered.

generation and detection of parity bits is controlled by the PARENB flag. Setting this flag usually
causes the device driver for the serial interface to generate parity for outgoing characters and to
verify the parity of incoming characters. The flag PARODD determines whether the parity should be
odd or even. If an input character arrives with the wrong parity, then the state of the INPCK flag is
checked. If this flag is set, then the IGNPAR flag is checked (to see whether the input byte with the
parity error should be ignored); if the byte should not be ignored, then the PARMRK flag is checked
to see what characters should be passed to the reading process.

ISIG (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the input characters are
compared against the special characters that cause the terminal-generated signals to be generated
(INTR, QUIT, SUSP, and DSUSP); if equal, the corresponding signal is generated.

ISTRIP (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, valid input bytes are
stripped to 7 bits. When this flag is not set, all 8 bits are processed.

IUCLC (c_iflag , Linux, Solaris) Map uppercase to lowercase on input.

IXANY (c_iflag , XSI, FreeBSD, Linux, Mac OS X, Solaris) Enable any characters to restart output.

IXOFF (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, start–stop input control is
enabled. When it notices that the input queue is getting full, the terminal driver outputs a STOP
character. This character should be recognized by the device that is sending the data and cause the
device to stop. Later, when the characters on the input queue have been processed, the terminal
driver will output a START character. This should cause the device to resume sending data.

IXON (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, start–stop output control is
enabled. When the terminal driver receives a STOP character, output stops. While the output is
stopped, the next START character resumes the output. If this flag is not set, the START and
STOP characters are read by the process as normal characters.

MDMBUF (c_cflag , FreeBSD, Mac OS X) Flow control the output according to the modem carrier flag.
This is the old name for the CCAR_OFLOW flag.

NLDLY (c_oflag , XSI, Linux, Solaris) Newline delay mask. The values for the mask are NL0 or NL1.

NOFLSH (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) By default, when the terminal driver
generates the SIGINT and SIGQUIT signals, both the input and output queues are flushed. Also,
when it generates the SIGSUSP signal, the input queue is flushed. If the NOFLSH flag is set, this
normal flushing of the queues does not occur when these signals are generated.

NOKERNINFO (c_lflag , FreeBSD, Mac OS X) When set, this flag prevents the STATUS character from
printing information on the foreground process group. Regardless of this flag, however, the
STATUS character still causes the SIGINFO signal to be sent to the foreground process group.

OCRNL (c_oflag , XSI, FreeBSD, Linux, Solaris) If set, map CR to NL on output.

OFDEL (c_oflag , XSI, Linux, Solaris) If set, the output fill character is ASCII DEL; otherwise, it's
ASCII NUL. See the OFILL flag.

OFILL (c_oflag , XSI, Linux, Solaris) If set, fill characters (either ASCII DEL or ASCII NUL; see the
OFDEL flag) are transmitted for a delay, instead of using a timed delay. See the six delay masks:
BSDLY, CRDLY, FFDLY, NLDLY, TABDLY, and VTDLY.

ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the
WERASE character is entered. Instead of moving backward until the previous white space
character, this flag causes the WERASE character to move backward until the first
nonalphanumeric character is encountered.

OLCUC (c_oflag , Linux, Solaris) If set, map lowercase characters to uppercase characters on output.

ONLCR (c_oflag , XSI, FreeBSD, Linux, Mac OS X, Solaris) If set, map NL to CR-NL on output.

ONLRET (c_oflag , XSI, FreeBSD, Linux, Solaris) If set, the NL character is assumed to perform the
carriage return function on output.

ONOCR (c_oflag , XSI, FreeBSD, Linux, Solaris) If set, a CR is not output at column 0.

ONOEOT (c_oflag , FreeBSD, Mac OS X) If set, EOT (^D) characters are discarded on output. This may be
necessary on some terminals that interpret the Control-D as a hangup.

OPOST (c_oflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, implementation-defined output
processing takes place. Refer to Figure 18.6 for the various implementation-defined flags for the
c_oflag word.

OXTABS (c_oflag , FreeBSD, Mac OS X) If set, tabs are expanded to spaces on output. This produces the
same effect as setting the horizontal tab delay (TABDLY)to XTABS or TAB3.

PARENB (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, parity generation is enabled for
outgoing characters, and parity checking is performed on incoming characters. The parity is odd if
PARODD is set; otherwise, it is even parity. See also the discussion of the INPCK, IGNPAR, and
PARMRK flags.

PAREXT (c_cflag , Solaris) Select mark or space parity. If PARODD is set, the parity bit is always 1 (mark
parity). Otherwise, the parity bit is always 0 (space parity).

PARMRK (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set and if IGNPAR is not set, a
byte with a framing error (other than a BREAK) or a byte with a parity error is read by the
process as the three-character sequence \377 , \0 , X, where X is the byte received in error. If
ISTRIP is not set, a valid \377 is passed to the process as \377 , \377 . If neither IGNPAR nor
PARMRK is set, a byte with a framing error (other than a BREAK) or with a parity error is read as a
single character \0 .

PARODD (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the parity for outgoing and
incoming characters is odd parity. Otherwise, the parity is even parity. Note that the PARENB flag
controls the generation and detection of parity.

 The PARODD flag also controls whether mark or space parity is used when either the CMSPAR or
PAREXT flag is set.

PENDIN (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set, any input that has not been read is
reprinted by the system when the next character is input. This action is similar to what happens
when we type the REPRINT character.

TABDLY (c_oflag , XSI, Linux, Solaris) Horizontal tab delay mask. The values for the mask are TAB0,
TAB1, TAB2, or TAB3.

 The value XTABS is equal to TAB3. This value causes the system to expand tabs into spaces. The
system assumes a tab stop every eight spaces, and we can't change this assumption.

TOSTOP (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if the implementation
supports job control, the SIGTTOU signal is sent to the process group of a background process that

ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the
WERASE character is entered. Instead of moving backward until the previous white space
character, this flag causes the WERASE character to move backward until the first
nonalphanumeric character is encountered.

tries to write to its controlling terminal. By default, this signal stops all the processes in the
process group. This signal is not generated by the terminal driver if the background process that is
writing to the controlling terminal is either ignoring or blocking the signal.

VTDLY (c_oflag , XSI, Linux, Solaris) Vertical tab delay mask. The values for the mask are VT0 or VT1.

XCASE (c_lflag , Linux, Solaris) If set and if ICANON is also set, the terminal is assumed to be uppercase
only, and all input is converted to lowercase. To input an uppercase character, precede it with a
backslash. Similarly, an uppercase character is output by the system by being preceded by a
backslash. (This option flag is obsolete today, since most, if not all, uppercase-only terminals
have disappeared.)

18.6. stty Command

All the options described in the previous section can be examined and changed from within a program, with the
tcgetattr and tcsetattr functions (Section 18.4) or from the command line (or a shell script), with the
stty (1) command. This command is simply an interface to the first six functions that we listed in Figure 18.7.
If we execute this command with its -a option, it displays all the terminal options:

$ stty -a
speed 9600 baud; 25 rows; 80 columns;
lflags: icanon isig iexten echo echoe -echok echoke -echonl echoctl
 -echoprt -altwerase -noflsh -tostop -flusho pendin -nokerninfo
 -extproc
iflags: -istrip icrnl -inlcr -igncr ixon -ixoff ixa ny imaxbel -ignbrk
 brkint -inpck -ignpar -parmrk
oflags: opost onlcr -ocrnl -oxtabs -onocr -onlret
cflags: cread cs8 -parenb -parodd hupcl -clocal -cs topb -crtscts
 -dsrflow -dtrflow -mdmbuf
cchars: discard = ^O; dsusp = ^Y; eof = ^D; eol = < undef>;
 eol2 = <undef>; erase = ^H; erase2 = ^?; in tr = ^C; kill = ^U;
 lnext = ^V; min = 1; quit = ^; reprint = ^R ; start = ^Q;
 status = ^T; stop = ^S; susp = ^Z; time = 0 ; werase = ^W;

Option names preceded by a hyphen are disabled. The last four lines display the current settings for each of the
terminal special characters (Section 18.3). The first line displays the number of rows and columns for the
current terminal window; we discuss this in Section 18.12.

The stty command uses its standard input to get and set the terminal option flags. Although some older
implementations used standard output, POSIX.1 requires that the standard input be used. All four
implementations discussed in this text provide versions of stty that operate on standard input. This means that
we can type

 stty -a </dev/tty1a

if we are interested in discovering the settings on the terminal named tty1a .

18.7. Baud Rate Functions

The term baud rate is a historical term that should be referred to today as "bits per second." Although most
terminal devices use the same baud rate for both input and output, the capability exists to set the two to different
values, if the hardware allows this.

#include <termios.h>

speed_t cfgetispeed(const struct termios *termptr);

speed_t cfgetospeed(const struct termios *termptr);

Both return: baud rate value

int cfsetispeed(struct termios *termptr, speed_t sp eed);

int cfsetospeed(struct termios *termptr, speed_t sp eed);

Both return: 0 if OK, –1 on error

The return value from the two cfget functions and the speed argument to the two cfset functions are one of
the following constants: B50, B75, B110, B134, B150, B200, B300, B600, B1200 , B1800 , B2400 , B4800 , B9600 ,
B19200 , or B38400 . The constant B0 means "hang up." When B0 is specified as the output baud rate when
tcsetattr is called, the modem control lines are no longer asserted.

Most systems define additional baud rate values, such as B57600 and B115200 .

To use these functions, we must realize that the input and output baud rates are stored in the device's termios
structure, as shown in Figure 18.8. Before calling either of the cfget functions, we first have to obtain the
device's termios structure using tcgetattr . Similarly, after calling either of the two cfset functions, all we've
done is set the baud rate in a termios structure. For this change to affect the device, we have to call tcsetattr .
If there is an error in either of the baud rates that we set, we may not find out about the error until we call
tcsetattr .

The four baud rate functions exist to insulate applications from differences in the way that implementations
represent baud rates in the termios structure. BSD-derived platforms tend to store baud rates as numeric values
equal to the rates (i.e., 9,600 baud is stored as the value 9,600), whereas Linux and System V–derived platforms
tend to encode the baud rate in a bitmask. The speed values we get from the cfget functions and pass to the
cfset functions are untranslated from their representation as they are stored in the termios structure.

18.8. Line Control Functions

The following four functions provide line control capability for terminal devices. All four require that filedes
refer to a terminal device; otherwise, an error is returned with errno set to ENOTTY.

#include <termios.h>

int tcdrain(int filedes);

int tcflow(int filedes, int action);

int tcflush(int filedes, int queue);

int tcsendbreak(int filedes, int duration);

All four return: 0 if OK, –1 on error

The tcdrain function waits for all output to be transmitted. The tcflow function gives us control over both
input and output flow control. The action argument must be one of the following four values:

TCOOFF Output is suspended.

TCOON Output that was previously suspended is restarted.

TCIOFF The system transmits a STOP character, which should cause the terminal device to stop sending data.

TCION The system transmits a START character, which should cause the terminal device to resume sending
data.

The tcflush function lets us flush (throw away) either the input buffer (data that has been received by the
terminal driver, which we have not read) or the output buffer (data that we have written, which has not yet been
transmitted). The queue argument must be one of the following three constants:

TCIFLUSH The input queue is flushed.

TCOFLUSH The output queue is flushed.

TCIOFLUSH Both the input and the output queues are flushed.

The tcsendbreak function transmits a continuous stream of zero bits for a specified duration. If the duration
argument is 0, the transmission lasts between 0.25 seconds and 0.5 seconds. POSIX.1 specifies that if duration
is nonzero, the transmission time is implementation dependent.

18.9. Terminal Identification

Historically, the name of the controlling terminal in most versions of the UNIX System has been /dev/tty .
POSIX.1 provides a runtime function that we can call to determine the name of the controlling terminal.

#include <stdio.h>

char *ctermid(char *ptr);

Returns: pointer to name of controlling terminal
on success, pointer to empty string on error

If ptr is non-null, it is assumed to point to an array of at least L_ctermid bytes, and the name of the controlling
terminal of the process is stored in the array. The constant L_ctermid is defined in <stdio.h> . If ptr is a null
pointer, the function allocates room for the array (usually as a static variable). Again, the name of the
controlling terminal of the process is stored in the array.

In both cases, the starting address of the array is returned as the value of the function. Since most UNIX systems
use /dev/tty as the name of the controlling terminal, this function is intended to aid portability to other
operating systems.

All four platforms described in this text return the string /dev/tty when we call ctermid .

Example—ctermid Function

Figure 18.12 shows an implementation of the POSIX.1 ctermid function.

Note that we can't protect against overrunning the caller's buffer, because we have no way to
determine its size.

Figure 18.12. Implementation of POSIX.1 ctermid function

#include <stdio.h>
#include <string.h>

static char ctermid_name[L_ctermid];

char *
ctermid(char *str)
{
 if (str == NULL)
 str = ctermid_name;
 return(strcpy(str, "/dev/tty")); /* strcpy() returns str */
}

Two functions that are more interesting for a UNIX system are isatty , which returns true if a file descriptor
refers to a terminal device, and ttyname , which returns the pathname of the terminal device that is open on a
file descriptor.

#include <unistd.h>

int isatty(int filedes);

Returns: 1 (true) if terminal device, 0 (false) otherwise

char *ttyname(int filedes);

Returns: pointer to pathname of terminal, NULL on error

Example—isatty Function

The isatty function is trivial to implement, as we show in Figure 18.13. We simply try one of the terminal-
specific functions (that doesn't change anything if it succeeds) and look at the return value.

We test our isatty function with the program in Figure 18.14.

When we run the program from Figure 18.14, we get the following output:

 $./a.out
 fd 0: tty
 fd 1: tty
 fd 2: tty
 $./a.out </etc/passwd 2>/dev/null
 fd 0: not a tty
 fd 1: tty
 fd 2: not a tty

Figure 18.13. Implementation of POSIX.1 isatty function

#include <termios.h>

int
isatty(int fd)
{
 struct termios ts;
 return(tcgetattr(fd, &ts) != -1); /* true if no error (is a tty) */
}

Figure 18.14. Test the isatty function

#include "apue.h"

int
main(void)
{
 printf("fd 0: %s\n", isatty(0) ? "tty" : "not a tty");
 printf("fd 1: %s\n", isatty(1) ? "tty" : "not a tty");
 printf("fd 2: %s\n", isatty(2) ? "tty" : "not a tty");
 exit(0);
}

Example—ttyname Function

The ttyname function (Figure 18.15) is longer, as we have to search all the device entries, looking for a match.

The technique is to read the /dev directory, looking for an entry with the same device number and i-node
number. Recall from Section 4.23 that each file system has a unique device number (the st_dev field in the
stat structure, from Section 4.2), and each directory entry in that file system has a unique i-node number (the
st_ino field in the stat structure). We assume in this function that when we hit a matching device number and
matching i-node number, we've located the desired directory entry. We could also verify that the two entries
have matching st_rdev fields (the major and minor device numbers for the terminal device) and that the
directory entry is also a character special file. But since we've already verified that the file descriptor argument
is both a terminal device and a character special file, and since a matching device number and i-node number is
unique on a UNIX system, there is no need for the additional comparisons.

The name of our terminal might reside in a subdirectory in /dev . Thus, we might need to search the entire file
system tree under /dev . We skip several directories that might produce incorrect or odd-looking results:
/dev/. , /dev/.. , and /dev/fd . We also skip the aliases /dev/stdin , /dev/stdout , and /dev/stderr , since
they are symbolic links to files in /dev/fd .

We can test this implementation with the program shown in Figure 18.16.

Running the program from Figure 18.16 gives us

 $./a.out < /dev/console 2> /dev/null
 fd 0: /dev/console
 fd 1: /dev/ttyp3
 fd 2: not a tty

Figure 18.15. Implementation of POSIX.1 ttyname function

#include <sys/stat.h>
#include <dirent.h>
#include <limits.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include <stdlib.h>

struct devdir {
 struct devdir *d_next;
 char *d_name;
};

static struct devdir *head;
static struct devdir *tail;
static char pathname[_POSIX_PATH_MAX + 1];

static void
add(char *dirname)
{
 struct devdir *ddp;
 int len;

 len = strlen(dirname);

 /*

 * Skip ., .., and /dev/fd.
 */
 if ((dirname[len-1] == '.') && (dirname[len-2] == '/' ||
 (dirname[len-2] == '.' && dirname[len-3] == ' /')))
 return;
 if (strcmp(dirname, "/dev/fd") == 0)
 return;
 ddp = malloc(sizeof(struct devdir));
 if (ddp == NULL)
 return;

 ddp->d_name = strdup(dirname);
 if (ddp->d_name == NULL) {
 free(ddp);
 return;
 }
 ddp->d_next = NULL;
 if (tail == NULL) {
 head = ddp;
 tail = ddp;
 } else {
 tail->d_next = ddp;
 tail = ddp;
 }
}

static void
cleanup(void)
{
 struct devdir *ddp, *nddp;

 ddp = head;
 while (ddp != NULL) {
 nddp = ddp->d_next;
 free(ddp->d_name);
 free(ddp);
 ddp = nddp;
 }
 head = NULL;
 tail = NULL;
}

static char *
searchdir(char *dirname, struct stat *fdstatp)
{
 struct stat devstat;
 DIR *dp;
 int devlen;
 struct dirent *dirp;

 strcpy(pathname, dirname);
 if ((dp = opendir(dirname)) == NULL)
 return(NULL);
 strcat(pathname, "/");
 devlen = strlen(pathname);
 while ((dirp = readdir(dp)) != NULL) {
 strncpy(pathname + devlen, dirp->d_name,
 _POSIX_PATH_MAX - devlen);
 /*
 * Skip aliases.
 */
 if (strcmp(pathname, "/dev/stdin") == 0 ||

 strcmp(pathname, "/dev/stdout") == 0 ||
 strcmp(pathname, "/dev/stderr") == 0)
 continue;
 if (stat(pathname, &devstat) < 0)
 continue;
 if (S_ISDIR(devstat.st_mode)) {
 add(pathname);
 continue;
 }
 if (devstat.st_ino == fdstatp->st_ino &&
 devstat.st_dev == fdstatp->st_dev) { /* f ound a match */
 closedir(dp);
 return(pathname);
 }
 }
 closedir(dp);
 return(NULL);
}

char *
ttyname(int fd)
{
 struct stat fdstat;
 struct devdir *ddp;
 char *rval;

 if (isatty(fd) == 0)
 return(NULL);
 if (fstat(fd, &fdstat) < 0)
 return(NULL);
 if (S_ISCHR(fdstat.st_mode) == 0)
 return(NULL);

 rval = searchdir("/dev", &fdstat);
 if (rval == NULL) {
 for (ddp = head; ddp != NULL; ddp = ddp->d_ next)
 if ((rval = searchdir(ddp->d_name, &fds tat)) != NULL)
 break;
 }

 cleanup();
 return(rval);
}

Figure 18.16. Test the ttyname function

#include "apue.h"

int
main(void)
{
 char *name;

 if (isatty(0)) {
 name = ttyname(0);
 if (name == NULL)
 name = "undefined";
 } else {
 name = "not a tty";
 }
 printf("fd 0: %s\n", name);
 if (isatty(1)) {

 name = ttyname(1);
 if (name == NULL)
 name = "undefined";
 } else {
 name = "not a tty";
 }
 printf("fd 1: %s\n", name);
 if (isatty(2)) {
 name = ttyname(2);
 if (name == NULL)
 name = "undefined";
 } else {
 name = "not a tty";
 }
 printf("fd 2: %s\n", name);
 exit(0);
}

18.10. Canonical Mode

Canonical mode is simple: we issue a read, and the terminal driver returns when a line has been entered. Several
conditions cause the read to return.

• The read returns when the requested number of bytes have been read. We don't have to read a complete
line. If we read a partial line, no information is lost; the next read starts where the previous read stopped.

• The read returns when a line delimiter is encountered. Recall from Section 18.3 that the following
characters are interpreted as end of line in canonical mode: NL, EOL, EOL2, and EOF. Also, recall from
Section 18.5 that if ICRNL is set and if IGNCR is not set, then the CR character also terminates a line,
since it acts just like the NL character.

Realize that of these five line delimiters, one (EOF) is discarded by the terminal driver when it's
processed. The other four are returned to the caller as the last character of the line.

• The read also returns if a signal is caught and if the function is not automatically restarted (Section 10.5).

Example—getpass Function

We now show the function getpass , which reads a password of some type from the user at a
terminal. This function is called by the login (1) and crypt (1) programs. To read the password, the
function must turn off echoing, but it can leave the terminal in canonical mode, as whatever we type
as the password forms a complete line. Figure 18.17 shows a typical implementation on a UNIX
system.

There are several points to consider in this example.

• Instead of hardwiring /dev/tty into the program, we call the function ctermid to open the
controlling terminal.

• We read and write only to the controlling terminal and return an error if we can't open this
device for reading and writing. There are other conventions to use. The BSD version of
getpass reads from standard input and writes to standard error if the controlling terminal
can't be opened for reading and writing. The System V version always writes to standard
error but reads only from the controlling terminal.

• We block the two signals SIGINT and SIGTSTP. If we didn't do this, entering the INTR
character would abort the program and leave the terminal with echoing disabled. Similarly,
entering the SUSP character would stop the program and return to the shell with echoing
disabled. We choose to block the signals while we have echoing disabled. If they are
generated while we're reading the password, they are held until we return. There are other
ways to handle these signals. Some versions just ignore SIGINT (saving its previous action)
while in getpass , resetting the action for this signal to its previous value before returning.
This means that any occurrence of the signal while it's ignored is lost. Other versions catch
SIGINT (saving its previous action) and if the signal is caught, send themselves the signal
with the kill function after resetting the terminal state and signal action. None of the
versions of getpass catch, ignore, or block SIGQUIT, so entering the QUIT character aborts
the program and probably leaves the terminal with echoing disabled.

• Be aware that some shells, notably the Korn shell, turn echoing back on whenever they read
interactive input. These shells are the ones that provide command-line editing and therefore
manipulate the state of the terminal every time we enter an interactive command. So, if we
invoke this program under one of these shells and abort it with the QUIT character, it may
reenable echoing for us. Other shells that don't provide this form of command-line editing,

such as the Bourne shell, will abort the program and leave the terminal in no-echo mode. If
we do this to our terminal, the stty command can reenable echoing.

• We use standard I/O to read and write the controlling terminal. We specifically set the stream
to be unbuffered; otherwise, there might be some interactions between the writing and
reading of the stream (we would need some calls to fflush). We could have also used
unbuffered I/O (Chapter 3), but we would have to simulate the getc function using read .

• We store only up to eight characters as the password. Any additional characters that are
entered are ignored.

The program in Figure 18.18 calls getpass and prints what we enter to let us verify that the ERASE
and KILL characters work (as they should in canonical mode).

Whenever a program that calls getpass is done with the cleartext password, the program should
zero it out in memory, just to be safe. If the program were to generate a core file that others might
be able to read or if some other process were somehow able to read our memory, they might be able
to read the cleartext password. (By "cleartext," we mean the password that we type at the prompt
that is printed by getpass . Most UNIX system programs then modify this cleartext password into an
"encrypted" password. The field pw_passwd in the password file, for example, contains the
encrypted password, not the cleartext password.)

Figure 18.17. Implementation of getpass function

#include <signal.h>
#include <stdio.h>
#include <termios.h>

#define MAX_PASS_LEN 8 /* max #chars for us er to enter */

char *
getpass(const char *prompt)
{
 static char buf[MAX_PASS_LEN + 1]; /* null byte at end */
 char *ptr;
 sigset_t sig, osig;
 struct termios ts, ots;
 FILE *fp;
 int c;

 if ((fp = fopen(ctermid(NULL), "r+")) == NULL)
 return(NULL);
 setbuf(fp, NULL);

 sigemptyset(&sig);
 sigaddset(&sig, SIGINT); /* block SIGINT */
 sigaddset(&sig, SIGTSTP); /* block SIGTST P */
 sigprocmask(SIG_BLOCK, &sig, &osig); /* and save mask */

 tcgetattr(fileno(fp), &ts); /* save tty sta te */
 ots = ts; /* structure co py */
 ts.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);
 tcsetattr(fileno(fp), TCSAFLUSH, &ts);
 fputs(prompt, fp);

 ptr = buf;
 while ((c = getc(fp)) != EOF && c != '\n')
 if (ptr < &buf[MAX_PASS_LEN])
 *ptr++ = c;

 ptr = 0; / null terminate */
 putc('\n', fp); /* we echo a newline */

 tcsetattr(fileno(fp), TCSAFLUSH, &ots); /* rest ore TTY state */
 sigprocmask(SIG_SETMASK, &osig, NULL); /* rest ore mask */
 fclose(fp); /* done with /dev/tty */
 return(buf);
}

Figure 18.18. Call the getpass function

#include "apue.h"

char *getpass(const char *);

int
main(void)
{
 char *ptr;

 if ((ptr = getpass("Enter password:")) == NULL)
 err_sys("getpass error");
 printf("password: %s\n", ptr);

 /* now use password (probably encrypt it) ... * /

 while (*ptr != 0)
 ptr++ = 0; / zero it out when we're done with it */
 exit(0);
}

18.11. Noncanonical Mode

Noncanonical mode is specified by turning off the ICANON flag in the c_lflag field of the termios structure. In
noncanonical mode, the input data is not assembled into lines. The following special characters (Section 18.3)
are not processed: ERASE, KILL, EOF, NL, EOL, EOL2, CR, REPRINT, STATUS, and WERASE.

As we said, canonical mode is easy: the system returns up to one line at a time. But with noncanonical mode,
how does the system know when to return data to us? If it returned one byte at a time, overhead would be
excessive. (Recall Figure 3.5, which showed the overhead in reading one byte at a time. Each time we doubled
the amount of data returned, we halved the system call overhead.) The system can't always return multiple bytes
at a time, since sometimes we don't know how much data to read until we start reading it.

The solution is to tell the system to return when either a specified amount of data has been read or after a given
amount of time has passed. This technique uses two variables in the c_cc array in the termios structure: MIN
and TIME. These two elements of the array are indexed by the names VMIN and VTIME.

MIN specifies the minimum number of bytes before a read returns. TIME specifies the number of tenths of a
second to wait for data to arrive. There are four cases.

Case A: MIN > 0, TIME > 0

TIME specifies an interbyte timer that is started only when the first byte is received. If MIN bytes are received
before the timer expires, read returns MIN bytes. If the timer expires before MIN bytes are received, read
returns the bytes received. (At least one byte is returned if the timer expires, because the timer is not started
until the first byte is received.) In this case, the caller blocks until the first byte is received. If data is already
available when read is called, it is as if the data had been received immediately after the read .

Case B: MIN > 0, TIME == 0

The read does not return until MIN bytes have been received. This can cause a read to block indefinitely.

Case C: MIN == 0, TIME > 0

TIME specifies a read timer that is started when read is called. (Compare this to case A, in which a nonzero
TIME represented an interbyte timer that was not started until the first byte was received.) The read returns
when a single byte is received or when the timer expires. If the timer expires, read returns 0.

Case D: MIN == 0, TIME == 0

If some data is available, read returns up to the number of bytes requested. If no data is available, read returns
0 immediately.

Realize in all these cases that MIN is only a minimum. If the program requests more than MIN bytes of data, it's
possible to receive up to the requested amount. This also applies to cases C and D, in which MIN is 0.

Figure 18.19 summarizes the four cases for noncanonical input. In this figure, nbytes is the third argument to
read (the maximum number of bytes to return).

Figure 18.19. Four cases for noncanonical input

Be aware that POSIX.1 allows the subscripts VMIN and VTIME to have the same values as VEOF and VEOL,
respectively. Indeed, Solaris does this for backward compatibility with older versions of System V. This creates
a portability problem, however. In going from noncanonical to canonical mode, we must now restore VEOF and
VEOL also. If VMIN equals VEOF and we don't restore their values, when we set VMIN to its typical value of 1, the
end-of-file character becomes Control-A. The easiest way around this problem is to save the entire termios
structure when going into noncanonical mode and restore it when going back to canonical mode.

Example

The program in Figure 18.20 defines the tty_cbreak and tty_raw functions that set the terminal in cbreak
mode and raw mode. (The terms cbreak and raw come from the Version 7 terminal driver.) We can reset the
terminal to its original state (the state before either of these functions was called) by calling the function
tty_reset .

If we've called tty_cbreak , we need to call tty_reset before calling tty_raw . The same goes for calling
tty_cbreak after calling tty_raw . This improves the chances that the terminal will be left in a usable state if
we encounter any errors.

Two additional functions are also provided: tty_atexit can be established as an exit handler to ensure that the
terminal mode is reset by exit , and tty_termios returns a pointer to the original canonical mode termios
structure.

Our definition of cbreak mode is the following:

• Noncanonical mode. As we mentioned at the beginning of this section, this mode turns off some input
character processing. It does not turn off signal handling, so the user can always type one of the
terminal-generated signals. Be aware that the caller should catch these signals, or there's a chance that
the signal will terminate the program, and the terminal will be left in cbreak mode.

As a general rule, whenever we write a program that changes the terminal mode, we should catch most
signals. This allows us to reset the terminal mode before terminating.

• Echo off.
• One byte at a time input. To do this, we set MIN to 1 and TIME to 0. This is case B from Figure 18.19.

A read won't return until at least one byte is available.

We define raw mode as follows:

• Noncanonical mode. We also turn off processing of the signal-generating characters (ISIG) and the
extended input character processing (IEXTEN). Additionally, we disable a BREAK character from
generating a signal, by turning off BRKINT.

• Echo off.
• We disable the CR-to-NL mapping on input (ICRNL), input parity detection (INPCK), the stripping of the

eighth bit on input (ISTRIP), and output flow control (IXON).
• Eight-bit characters (CS8), and parity checking is disabled (PARENB).
• All output processing is disabled (OPOST).
• One byte at a time input (MIN = 1, TIME = 0).

The program in Figure 18.21 tests raw and cbreak modes.

Running the program in Figure 18.21, we can see what happens with these two terminal modes:

$./a.out
Enter raw mode characters, terminate with DELETE
 4
 33
 133
 61
 70
 176
 type DELETE
Enter cbreak mode characters, terminate with SIGINT
1 type Control-A
10 type backspace
signal caught type interrupt key

In raw mode, the characters entered were Control-D (04) and the special function key F7. On the terminal being
used, this function key generated five characters: ESC (033), [(0133), 1 (061), 8 (070), and ~ (0176). Note that
with the output processing turned off in raw mode (~OPOST), we do not get a carriage return output after each
character. Also note that special-character processing is disabled in cbreak mode (so, for example, Control-D,
the end-of-file character, and backspace aren't handled specially), whereas the terminal-generated signals are
still processed.

Figure 18.20. Set terminal mode to cbreak or raw

#include "apue.h"
#include <termios.h>
#include <errno.h>

static struct termios save_termios;
static int ttysavefd = -1;
static enum { RESET, RAW, CBREAK } ttystate = RESET ;

int
tty_cbreak(int fd) /* put terminal into a cbreak mo de */
{
 int err;
 struct termios buf;

 if (ttystate != RESET) {
 errno = EINVAL;
 return(-1);
 }

 if (tcgetattr(fd, &buf) < 0)
 return(-1);
 save_termios = buf; /* structure copy */

 /*
 * Echo off, canonical mode off.
 */
 buf.c_lflag &= ~(ECHO | ICANON);

 /*
 * Case B: 1 byte at a time, no timer.
 */
 buf.c_cc[VMIN] = 1;
 buf.c_cc[VTIME] = 0;
 if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)
 return(-1);

 /*
 * Verify that the changes stuck. tcsetattr can return 0 on
 * partial success.
 */
 if (tcgetattr(fd, &buf) < 0) {
 err = errno;
 tcsetattr(fd, TCSAFLUSH, &save_termios);
 errno = err;
 return(-1);
 }
 if ((buf.c_lflag & (ECHO | ICANON)) || buf.c_cc [VMIN] != 1 ||
 buf.c_cc[VTIME] != 0) {
 /*
 * Only some of the changes were made. Rest ore the
 * original settings.
 */
 tcsetattr(fd, TCSAFLUSH, &save_termios);
 errno = EINVAL;
 return(-1);
 }

 ttystate = CBREAK;
 ttysavefd = fd;
 return(0);
}

int
tty_raw(int fd) /* put terminal into a raw mode */
{
 int err;
 struct termios buf;

 if (ttystate != RESET) {
 errno = EINVAL;
 return(-1);
 }
 if (tcgetattr(fd, &buf) < 0)
 return(-1);
 save_termios = buf; /* structure copy */

 /*
 * Echo off, canonical mode off, extended input
 * processing off, signal chars off.
 */
 buf.c_lflag &= ~(ECHO | ICANON | IEXTEN | ISIG) ;

 /*
 * No SIGINT on BREAK, CR-to-NL off, input pari ty
 * check off, don't strip 8th bit on input, out put
 * flow control off.
 */
 buf.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRI P | IXON);

 /*
 * Clear size bits, parity checking off.
 */
 buf.c_cflag &= ~(CSIZE | PARENB);

 /*
 * Set 8 bits/char.
 */
 buf.c_cflag |= CS8;

 /*
 * Output processing off.
 */
 buf.c_oflag &= ~(OPOST);

 /*
 * Case B: 1 byte at a time, no timer.
 */
 buf.c_cc[VMIN] = 1;
 buf.c_cc[VTIME] = 0;
 if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)
 return(-1);

 /*
 * Verify that the changes stuck. tcsetattr can return 0 on
 * partial success.
 */
 if (tcgetattr(fd, &buf) < 0) {
 err = errno;
 tcsetattr(fd, TCSAFLUSH, &save_termios);
 errno = err;
 return(-1);
 }
 if ((buf.c_lflag & (ECHO | ICANON | IEXTEN | IS IG)) ||
 (buf.c_iflag & (BRKINT | ICRNL | INPCK | ISTR IP | IXON)) ||
 (buf.c_cflag & (CSIZE | PARENB | CS8)) != CS8 ||
 (buf.c_oflag & OPOST) || buf.c_cc[VMIN] != 1 ||
 buf.c_cc[VTIME] != 0) {
 /*
 * Only some of the changes were made. Rest ore the
 * original settings.
 */
 tcsetattr(fd, TCSAFLUSH, &save_termios);
 errno = EINVAL;
 return(-1);
 }

 ttystate = RAW;
 ttysavefd = fd;
 return(0);
}

int
tty_reset(int fd) /* restore terminal's mode * /

{
 if (ttystate == RESET)
 return(0);
 if (tcsetattr(fd, TCSAFLUSH, &save_termios) < 0)
 return(-1);
 ttystate = RESET;
 return(0);
}
void
tty_atexit(void) /* can be set up by atexit(tty_atexit) */
{
 if (ttysavefd >= 0)
 tty_reset(ttysavefd);
}

struct termios *
tty_termios(void) /* let caller see original tty state */
{
 return(&save_termios);
}

Figure 18.21. Test raw and cbreak terminal modes

#include "apue.h"

static void
sig_catch(int signo)
{
 printf("signal caught\n");
 tty_reset(STDIN_FILENO);
 exit(0);
}

int
main(void)
{
 int i;
 char c;

 if (signal(SIGINT, sig_catch) == SIG_ERR) /* catch signals */
 err_sys("signal(SIGINT) error");
 if (signal(SIGQUIT, sig_catch) == SIG_ERR)
 err_sys("signal(SIGQUIT) error");
 if (signal(SIGTERM, sig_catch) == SIG_ERR)
 err_sys("signal(SIGTERM) error");

 if (tty_raw(STDIN_FILENO) < 0)
 err_sys("tty_raw error");
 printf("Enter raw mode characters, terminate wi th DELETE\n");
 while ((i = read(STDIN_FILENO, &c, 1)) == 1) {
 if ((c &= 255) == 0177) /* 0177 = ASCII DELETE */
 break;
 printf("%o\n", c);
 }
 if (tty_reset(STDIN_FILENO) < 0)
 err_sys("tty_reset error");
 if (i <= 0)
 err_sys("read error");
 if (tty_cbreak(STDIN_FILENO) < 0)
 err_sys("tty_cbreak error");
 printf("\nEnter cbreak mode characters, termina te with SIGINT\n");
 while ((i = read(STDIN_FILENO, &c, 1)) == 1) {

 c &= 255;
 printf("%o\n", c);
 }
 if (tty_reset(STDIN_FILENO) < 0)
 err_sys("tty_reset error");
 if (i <= 0)
 err_sys("read error");
 exit(0);
}

18.12. Terminal Window Size

Most UNIX systems provide a way to keep track of the current terminal window size and to have the kernel
notify the foreground process group when the size changes. The kernel maintains a winsize structure for every
terminal and pseudo terminal:

 struct winsize {
 unsigned short ws_row; /* rows, in chara cters */
 unsigned short ws_col; /* columns, in ch aracters */
 unsigned short ws_xpixel; /* horizontal siz e, pixels (unused) */
 unsigned short ws_ypixel; /* vertical size, pixels (unused) */
 };

The rules for this structure are as follows.

• We can fetch the current value of this structure using an ioctl (Section 3.15) of TIOCGWINSZ.
• We can store a new value of this structure in the kernel using an ioctl of TIOCSWINSZ. If this new value

differs from the current value stored in the kernel, a SIGWINCH signal is sent to the foreground process
group. (Note from Figure 10.1 that the default action for this signal is to be ignored.)

• Other than storing the current value of the structure and generating a signal when the value changes, the
kernel does nothing else with this structure. Interpreting the structure is entirely up to the application.

The reason for providing this feature is to notify applications (such as the vi editor) when the window size
changes. When it receives the signal, the application can fetch the new size and redraw the screen.

Example

Figure 18.22 shows a program that prints the current window size and goes to sleep. Each time the window size
changes, SIGWINCH is caught and the new size is printed. We have to terminate this program with a signal.

Running the program in Figure 18.22 on a windowed terminal gives us

$./a.out
35 rows, 80 columns initial size
SIGWINCH received change window size: signa l is caught
40 rows, 123 columns
SIGWINCH received and again
42 rows, 33 columns
^? $ type the interrupt key to terminate

Figure 18.22. Print window size

#include "apue.h"
#include <termios.h>
#ifndef TIOCGWINSZ
#include <sys/ioctl.h>
#endif

static void
pr_winsize(int fd)
{
 struct winsize size;

 if (ioctl(fd, TIOCGWINSZ, (char *) &size) < 0)

 err_sys("TIOCGWINSZ error");
 printf("%d rows, %d columns\n", size.ws_row, si ze.ws_col);
}

static void
sig_winch(int signo)
{
 printf("SIGWINCH received\n");
 pr_winsize(STDIN_FILENO);
}

int
main(void)
{
 if (isatty(STDIN_FILENO) == 0)
 exit(1);
 if (signal(SIGWINCH, sig_winch) == SIG_ERR)
 err_sys("signal error");
 pr_winsize(STDIN_FILENO); /* print initial si ze */
 for (; ;) /* and sleep foreve r */
 pause();
}

18.13. termcap, terminfo, and curses

termcap stands for "terminal capability," and it refers to the text file /etc/termcap and a set of routines to read
this file. The termcap scheme was developed at Berkeley to support the vi editor. The termcap file contains
descriptions of various terminals: what features the terminal supports (how many lines and rows, whether the
terminal support backspace, etc.) and how to make the terminal perform certain operations (clear the screen,
move the cursor to a given location, etc.). Taking this information out of the compiled program and placing it
into a text file that can easily be edited allows the vi editor to run on many different terminals.

The routines that support the termcap file were then extracted from the vi editor and placed into a separate
curses library. Many features were added to make this library usable for any program that wanted to
manipulate the screen.

The termcap scheme was not perfect. As more and more terminals were added to the data file, it took longer to
scan the file, looking for a specific terminal. The data file also used two-character names to identify the various
terminal attributes. These deficiencies led to development of the terminfo scheme and its associated curses
library. The terminal descriptions in terminfo are basically compiled versions of a textual description and can
be located faster at runtime. terminfo appeared with SVR2 and has been in all System V releases since then.

Historically, System V–based systems used terminfo , and BSD-derived systems used termcap , but it is now
common for systems to provide both. Mac OS X, however, supports only terminfo .

A description of terminfo and the curses library is provided by Goodheart [1991], but this is currently out of
print. Strang [1986] describes the Berkeley version of the curses library. Strang, Mui, and O'Reilly [1988]
provide a description of termcap and terminfo .

The ncurses library, a free version that is compatible with the SVR4 curses interface, can be found at
http://invisible-island.net/ncurses/ncurses.html .

Neither termcap nor terminfo , by itself, addresses the problems we've been looking at in this chapter:
changing the terminal's mode, changing one of the terminal special characters, handling the window size, and so
on. What they do provide is a way to perform typical operations (clear the screen, move the cursor) on a wide
variety of terminals. On the other hand, curses does help with some of the details that we've addressed in this
chapter. Functions are provided by curses to set raw mode, set cbreak mode, turn echo on and off, and the like.
But the curses library is designed for character-based dumb terminals, which have mostly been replaced by
pixel-based graphics terminals today.

18.14. Summary

Terminals have many features and options, most of which we're able to change to suit our needs. In this chapter,
we've described numerous functions that change a terminal's operation: special input characters and the option
flags. We've looked at all the terminal special characters and the many options that can be set or reset for a
terminal device.

There are two modes of terminal input—canonical (line at a time) and noncanonical. We showed examples of
both modes and provided functions that map between the POSIX.1 terminal options and the older BSD cbreak
and raw modes. We also described how to fetch and change the window size of a terminal.

Chapter 19. Pseudo Terminals

Section 19.1. Introduction

Section 19.2. Overview

Section 19.3. Opening Pseudo-Terminal Devices

Section 19.4. pty_fork Function

Section 19.5. pty Program

Section 19.6. Using the pty Program

Section 19.7. Advanced Features

Section 19.8. Summary

19.1. Introduction

In Chapter 9, we saw that terminal logins come in through a terminal device, automatically providing terminal
semantics. A terminal line discipline (Figure 18.2) exists between the terminal and the programs that we run, so
we can set the terminal's special characters (backspace, line erase, interrupt, etc.) and the like. When a login
arrives on a network connection, however, a terminal line discipline is not automatically provided between the
incoming network connection and the login shell. Figure 9.5 showed that a pseudo-terminal device driver is
used to provide terminal semantics.

In addition to network logins, pseudo terminals have other uses that we explore in this chapter. We start with an
overview on how to use pseudo terminals, followed by a discussion of specific use cases. We then provide
functions to create pseudo terminals on various platforms and then use these functions to write a program that
we call pty . We'll show various uses of this program: making a transcript of all the character input and output
on the terminal (the script (1) program) and running coprocesses to avoid the buffering problems we
encountered in the program from Figure 15.19.

19.2. Overview

The term pseudo terminal implies that it looks like a terminal to an application program, but it's not a real
terminal. Figure 19.1 shows the typical arrangement of the processes involved when a pseudo terminal is being
used. The key points in this figure are the following.

Figure 19.1. Typical arrangement of processes using a pseudo terminal

• Normally, a process opens the pseudo-terminal master and then calls fork . The child establishes a new
session, opens the corresponding pseudo-terminal slave, duplicates the file descriptor to the standard
input, standard output, and standard error, and then calls exec . The pseudo-terminal slave becomes the
controlling terminal for the child process.

• It appears to the user process above the slave that its standard input, standard output, and standard error
are a terminal device. The process can issue all the terminal I/O functions from Chapter 18 on these
descriptors. But since there is not a real terminal device beneath the slave, functions that don't make
sense (change the baud rate, send a break character, set odd parity, etc.) are just ignored.

• Anything written to the master appears as input to the slave and vice versa. Indeed, all the input to the
slave comes from the user process above the pseudo-terminal master. This behaves like a bidirectional
pipe, but with the terminal line discipline module above the slave, we have additional capabilities over a
plain pipe.

Figure 19.1 shows what a pseudo terminal looks like on a FreeBSD, Mac OS X, or Linux system. In Sections
19.3.2 and 19.3.3, we show how to open these devices.

Under Solaris, a pseudo terminal is built using the STREAMS subsystem (Section 14.4). Figure 19.2 details the
arrangement of the pseudo-terminal STREAMS modules under Solaris. The two STREAMS modules that are

shown as dashed boxes are optional. The pckt and ptem modules help provide semantics specific to pseudo
terminals. The other two modules (ldterm and ttcompat) provide line discipline processing.

Figure 19.2. Arrangement of pseudo terminals under Solaris

Note that the three STREAMS modules above the slave are the same as the output from the program shown in
Figure 14.18 for a network login. In Section 19.3.1, we show how to build this arrangement of STREAMS
modules.

From this point on, we'll simplify the figures by not showing the "read and write functions" from Figure 19.1 or
the "stream head" from Figure 19.2. We'll also use the abbreviation PTY for pseudo terminal and lump all the
STREAMS modules above the slave PTY in Figure 19.2 into a box called "terminal line discipline," as in
Figure 19.1.

We'll now examine some of the typical uses of pseudo terminals.

Network Login Servers

Pseudo terminals are built into servers that provide network logins. The typical examples are the telnetd and
rlogind servers. Chapter 15 of Stevens [1990] details the steps involved in the rlogin service. Once the login
shell is running on the remote host, we have the arrangement shown in Figure 19.3. A similar arrangement is
used by the telnetd server.

Figure 19.3. Arrangement of processes for rlogind server

We show two calls to exec between the rlogind server and the login shell, because the login program is
usually between the two to validate the user.

A key point in this figure is that the process driving the PTY master is normally reading and writing another I/O
stream at the same time. In this example, the other I/O stream is the TCP/IP box. This implies that the process
must be using some form of I/O multiplexing (Section 14.5), such as select or poll , or must be divided into
two processes or threads.

script Program

The script (1) program that is supplied with most UNIX systems makes a copy in a file of everything that is
input and output during a terminal session. The program does this by placing itself between the terminal and a
new invocation of our login shell. Figure 19.4 details the interactions involved in the script program. Here, we
specifically show that the script program is normally run from a login shell, which then waits for script to
terminate.

Figure 19.4. The script program

While script is running, everything output by the terminal line discipline above the PTY slave is copied to the
script file (usually called typescript). Since our keystrokes are normally echoed by that line discipline module,
the script file also contains our input. The script file won't contain any passwords that we enter, however, since
passwords aren't echoed.

While writing the first edition of this book, Rich Stevens used the script program to capture the output of the
example programs. This avoided typographical errors that could have occurred if he had copied the program
output by hand. The drawback to using script , however, is having to deal with control characters that are
present in the script file.

After developing the general pty program in Section 19.5, we'll see that a trivial shell script turns it into a
version of the script program.

expect Program

Pseudo terminals can be used to drive interactive programs in noninteractive modes. Numerous programs are
hardwired to require a terminal to run. One example is the passwd (1) command, which requires that the user
enter a password in response to a prompt.

Rather than modify all the interactive programs to support a batch mode of operation, a better solution is to
provide a way to drive any interactive program from a script. The expect program [Libes 1990, 1991, 1994]
provides a way to do this. It uses pseudo terminals to run other programs, similar to the pty program in Section
19.5. But expect also provides a programming language to examine the output of the program being run to
make decisions about what to send the program as input. When an interactive program is being run from a script,
we can't just copy everything from the script to the program and vice versa. Instead, we have to send the
program some input, look at its output, and decide what to send it next.

Running Coprocesses

In the coprocess example in Figure 15.19, we couldn't invoke a coprocess that used the standard I/O library for
its input and output, because when we talked to the coprocess across a pipe, the standard I/O library fully
buffered the standard input and standard output, leading to a deadlock. If the coprocess is a compiled program
for which we don't have the source code, we can't add fflush statements to solve this problem. Figure 15.16
showed a process driving a coprocess. What we need to do is place a pseudo terminal between the two
processes, as shown in Figure 19.5, to trick the coprocess into thinking that it is being driven from a terminal
instead of from another process.

Figure 19.5. Driving a coprocess using a pseudo terminal

Now the standard input and standard output of the coprocess look like a terminal device, so the standard I/O
library will set these two streams to be line buffered.

The parent can obtain a pseudo terminal between itself and the coprocess in two ways. (The parent in this case
could be either the program in Figure 15.18, which used two pipes to communicate with the coprocess, or the
program in Figure 17.4, which used a single STREAMS pipe.) One way is for the parent to call the pty_fork
function directly (Section 19.4) instead of calling fork . Another is to exec the pty program (Section 19.5) with
the coprocess as its argument. We'll look at these two solutions after showing the pty program.

Watching the Output of Long-Running Programs

If we have a program that runs for a long time, we can easily run it in the background using any of the standard
shells. But if we redirect its standard output to a file, and if it doesn't generate much output, we can't easily
monitor its progress, because the standard I/O library will fully buffer its standard output. All that we'll see are
blocks of output written by the standard I/O library to the output file, possibly in chunks as large as 8,192 bytes.

If we have the source code, we can insert calls to fflush . Alternatively, we can run the program under the pty
program, making its standard I/O library think that its standard output is a terminal. Figure 19.6 shows this
arrangement, where we have called the slow output program slowout . The fork/exec arrow from the login
shell to the pty process is shown as a dashed arrow to reiterate that the pty process is running as a background
job.

Figure 19.6. Running a slow output program using a pseudo terminal

19.3. Opening Pseudo-Terminal Devices

The way we open a pseudo-terminal device differs among platforms. The Single UNIX Specification includes
several functions as XSI extensions in an attempt to unify the methods. These extensions are based on the
functions originally provided to manage STREAMS-based pseudo terminals in System V Release 4.

The posix_openpt function is provided as a portable way to open an available pseudo-terminal master device.

#include <stdlib.h>
#include <fcntl.h>

int posix_openpt(int oflag);

Returns: file descriptor of next available PTY master if OK, –1 on error

The oflag argument is a bitmask that specifies how the master device is to be opened, similar to the same
argument used with open (2). Not all open flags are supported, however. With posix_openpt , we can specify
O_RDWR to open the master device for reading and writing, and we can specify O_NOCTTY to prevent the master
device from becoming a controlling terminal for the caller. All other open flags result in unspecified behavior.

Before a slave pseudo-terminal device can be used, its permissions need to be set so that it is accessible to
applications. The grantpt function does just this. It sets the user ID of the slave's device node to be the caller's
real user ID and sets the node's group ID to an unspecified value, usually some group that has access to terminal
devices. The permissions are set to allow read and write access to individual owners and write access to group
owners (0620).

#include <stdlib.h>

int grantpt(int filedes);

int unlockpt(int filedes);

Both return: 0 on success, –1 on error

To change permission on the slave device node, grantpt might need to fork and exec a set-user-ID program
(/usr/lib/pt_chmod on Solaris, for example). Thus, the behavior is unspecified if the caller is catching
SIGCHLD.

The unlockpt function is used to grant access to the slave pseudo-terminal device, thereby allowing
applications to open the device. By preventing others from opening the slave device, applications setting up the
devices have an opportunity to initialize the slave and master devices properly before they can be used.

Note that in both grantpt and unlockpt , the file descriptor argument is the file descriptor associated with the
master pseudo-terminal device.

The ptsname function is used to find the pathname of the slave pseudo-terminal device, given the file descriptor
of the master. This allows applications to identify the slave independent of any particular conventions that

might be followed by a given platform. Note that the name returned might be stored in static memory, so it can
be overwritten on successive calls.

#include <stdlib.h>

char *ptsname(int filedes);

Returns: pointer to name of PTY slave if OK, NULL on error

Figure 19.7 summarizes the pseudo-terminal functions in the Single UNIX Specification and indicates which
functions are supported by the platforms discussed in this text.

Figure 19.7. XSI pseudo-terminal functions

Function Description XSI FreeBSD
5.2.1

Linux
2.4.22

Mac OS X
10.3

Solaris
9

grantpt Change permissions of slave PTY
device.

• • • •

posix_openpt Open a master PTY device. • •

ptsname Return name of slave PTY
device.

• • • •

unlockpt Allow slave PTY device to be
opened.

• • • •

On FreeBSD, unlockpt does nothing; the O_NOCTTY flag is defined only for compatibility with applications that
call posix_openpt . FreeBSD does not allocate a controlling terminal as a side effect of opening a terminal
device, so the O_NOCTTY flag has no effect.

Even though the Single UNIX Specification has tried to improve portability in this area, implementations are
still catching up, as illustrated by Figure 19.7. Thus, we provide two functions that handle all the details:
ptym_open to open the next available PTY master device and ptys_open to open the corresponding slave
device.

#include "apue.h"

int ptym_open(char *pts_name, int pts_namesz);

Returns: file descriptor of PTY master if OK, –1 on error

int ptys_open(char *pts_name);

Returns: file descriptor of PTY slave if OK, –1 on error

Normally, we don't call these two functions directly; the function pty_fork (Section 19.4) calls them and also
fork s a child process.

The ptym_open function determines the next available PTY master and opens the device. The caller must
allocate an array to hold the name of either the master or the slave; if the call succeeds, the name of the
corresponding slave is returned through pts_name. This name is then passed to ptys_open , which opens the
slave device. The length of the buffer in bytes is passed in pts_namesz so that the ptym_open function doesn't
copy a string that is longer than the buffer.

The reason for providing two functions to open the two devices will become obvious when we show the
pty_fork function. Normally, a process calls ptym_open to open the master and obtain the name of the slave.
The process then fork s, and the child calls ptys_open to open the slave after calling setsid to establish a new
session. This is how the slave becomes the controlling terminal for the child.

19.3.1. STREAMS-Based Pseudo Terminals

The details of the STREAMS implementation of pseudo terminals under Solaris are covered in Appendix C of
Sun Microsystems [2002]. The next available PTY master device is accessed through a STREAMS clone device.
A clone device is a special device that returns an unused device when it is opened. (STREAMS clone opens are
discussed in detail in Rago [1993].)

The STREAMS-based PTY master clone device is /dev/ptmx . When we open it, the clone open routine
automatically determines the first unused PTY master device and opens that unused device. (We'll see in the
next section that, under BSD-based systems, we have to find the first unused PTY master ourselves.)

Figure 19.8. STREAMS-based pseudo-terminal open functions

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <stropts.h>

int
ptym_open(char *pts_name, int pts_namesz)
{
 char *ptr;
 int fdm;

 /*
 * Return the name of the master device so that on failure
 * the caller can print an error message. Null terminate
 * to handle case where strlen("/dev/ptmx") > p ts_namesz.
 */
 strncpy(pts_name, "/dev/ptmx", pts_namesz);
 pts_name[pts_namesz - 1] = '\0';
 if ((fdm = open(pts_name, O_RDWR)) < 0)
 return(-1);
 if (grantpt(fdm) < 0) { /* grant access to slave */
 close(fdm);
 return(-2);
 }
 if (unlockpt(fdm) < 0) { /* clear slave's lo ck flag */
 close(fdm);
 return(-3);
 }
 if ((ptr = ptsname(fdm)) == NULL) { /* get slav e's name */

 close(fdm);
 return(-4);
 }

 /*
 * Return name of slave. Null terminate to han dle
 * case where strlen(ptr) > pts_namesz.
 */
 strncpy(pts_name, ptr, pts_namesz);
 pts_name[pts_namesz - 1] = '\0';
 return(fdm); /* return fd of master */
}

int
ptys_open(char *pts_name)
{
 int fds, setup;

 /*
 * The following open should allocate a control ling terminal.
 */
 if ((fds = open(pts_name, O_RDWR)) < 0)
 return(-5);

 /*
 * Check if stream is already set up by autopus h facility.
 */
 if ((setup = ioctl(fds, I_FIND, "ldterm")) < 0) {
 close(fds);
 return(-6);
 }
 if (setup == 0) {
 if (ioctl(fds, I_PUSH, "ptem") < 0) {
 close(fds);
 return(-7);
 }
 if (ioctl(fds, I_PUSH, "ldterm") < 0) {
 close(fds);
 return(-8);
 }
 if (ioctl(fds, I_PUSH, "ttcompat") < 0) {
 close(fds);
 return(-9);
 }
 }
 return(fds);
}

We first open the clone device /dev/ptmx to get a file descriptor for the PTY master. Opening this master
device automatically locks out the corresponding slave device.

We then call grantpt to change permissions of the slave device. On Solaris, it changes the ownership of the
slave to the real user ID, changes the group ownership to the group tty , and changes the permissions to allow
only user-read, user-write, and group-write. The reason for setting the group ownership to tty and enabling
group-write permission is that the programs wall (1) and write (1) are set-group-ID to the group tty . Calling
grantpt executes the program /usr/lib/pt_chmod , which is set-user-ID to root so that it can modify the
ownership and permissions of the slave.

The function unlockpt is called to clear an internal lock on the slave device. We have to do this before we can
open the slave. Additionally, we must call ptsname to obtain the name of the slave device. This name is of the
form /dev/pts/ NNN.

The next function in the file is ptys_open , which does the actual open of the slave device. Solaris follows the
historical System V behavior: if the caller is a session leader that does not already have a controlling terminal,
this call to open allocates the PTY slave as the controlling terminal. If we didn't want this to happen, we could
specify the O_NOCTTY flag for open .

After opening the slave device, we might need to push three STREAMS modules onto the slave's stream.
Together, the pseudo terminal emulation module (ptem) and the terminal line discipline module (ldterm) act
like a real terminal. The ttcompat module provides compatibility for older V7, 4BSD, and Xenix ioctl calls.
It's an optional module, but since it's automatically pushed for console logins and network logins (see the output
from the program shown in Figure 14.18), we push it onto the slave's stream.

The reason that we might not need to push these three modules is that they might be there already. The
STREAMS system supports a facility known as autopush, which allows an administrator to configure a list of
modules to be pushed onto a stream whenever a particular device is opened (see Rago [1993] for more details).
We use the I_FIND ioctl command to see whether ldterm is already on the stream. If so, we assume that the
stream has been configured by the autopush mechanism and avoid pushing the modules a second time.

The result of calling ptym_open and ptys_open is two file descriptors open in the calling process: one for the
master and one for the slave.

19.3.2. BSD-Based Pseudo Terminals

Under BSD-based systems and Linux-based systems, we provide our own versions of the XSI functions, which
we can optionally include in our library, depending on which functions (if any) are provided by the underlying
platform.

In our version of posix_openpt , we have to determine the first available PTY master device. To do this, we
start at /dev/ptyp0 and keep trying until we successfully open a PTY master or until we run out of devices. We
can get two different errors from open : EIO means that the device is already in use; ENOENT means that the
device doesn't exist. In the latter case, we can terminate the search, as all pseudo terminals are in use. Once we
are able to open a PTY master, say /dev/pty MN, the name of the corresponding slave is /dev/tty MN. On
Linux, if the name of the PTY master is /dev/pty/m XX, then the name of the corresponding PTY slave is
/dev/pty/s XX.

In our version of grantpt , we call chown and chmod but realize that these two functions won't work unless the
calling process has superuser permissions. If it is important that the ownership and protection be changed, these
two function calls need to be placed into a set-user-ID root executable, similar to the way Solaris implements it.

The function ptys_open in Figure 19.9 simply opens the slave device. No other initialization is necessary. The
open of the slave PTY under BSD-based systems does not have the side effect of allocating the device as the
controlling terminal. In Section 19.4, we'll see how to allocate the controlling terminal under BSD-based
systems.

Figure 19.9. Pseudo-terminal open functions for BSD and Linux

#include "apue.h"
#include <errno.h>

#include <fcntl.h>
#include <grp.h>

#ifndef _HAS_OPENPT
int
posix_openpt(int oflag)
{
 int fdm;
 char *ptr1, *ptr2;
 char ptm_name[16];

 strcpy(ptm_name, "/dev/ptyXY");
 /* array index: 0123456789 (for references in following code) */
 for (ptr1 = "pqrstuvwxyzPQRST"; *ptr1 != 0; ptr 1++) {
 ptm_name[8] = *ptr1;
 for (ptr2 = "0123456789abcdef"; *ptr2 != 0; ptr2++) {
 ptm_name[9] = *ptr2;

 /*
 * Try to open the master.
 */
 if ((fdm = open(ptm_name, oflag)) < 0) {
 if (errno == ENOENT) /* differen t from EIO */
 return(-1); /* out of p ty devices */
 else
 continue; /* try next pty device */
 }
 return(fdm); /* got it, return f d of master */
 }
 }
 errno = EAGAIN;
 return(-1); /* out of pty devices */
}
#endif

#ifndef _HAS_PTSNAME
char *
ptsname(int fdm)
{
 static char pts_name[16];
 char *ptm_name;

 ptm_name = ttyname(fdm);
 if (ptm_name == NULL)
 return(NULL);
 strncpy(pts_name, ptm_name, sizeof(pts_name));
 pts_name[sizeof(pts_name) - 1] = '\0';
 if (strncmp(pts_name, "/dev/pty/", 9) == 0)
 pts_name[9] = 's'; /* change /dev/pty/mXX to /dev/pty/sXX */
 else
 pts_name[5] = 't'; /* change "pty" to "tty " */
 return(pts_name);
}
#endif

#ifndef _HAS_GRANTPT
int
grantpt(int fdm)
{
 struct group *grptr;
 int gid;
 char *pts_name;

 pts_name = ptsname(fdm);
 if ((grptr = getgrnam("tty")) != NULL)
 gid = grptr->gr_gid;
 else
 gid = -1; /* group tty is not in the group file */

 /*
 * The following two calls won't work unless we 're the superuser.
 */
 if (chown(pts_name, getuid(), gid) < 0)
 return(-1);
 return(chmod(pts_name, S_IRUSR | S_IWUSR | S_IW GRP));
}
#endif

#ifndef _HAS_UNLOCKPT
int
unlockpt(int fdm)
{

 return(0); /* nothing to do */
}
#endif

int
ptym_open(char *pts_name, int pts_namesz)
{
 char *ptr;
 int fdm;

 /*
 * Return the name of the master device so that on failure
 * the caller can print an error message. Null terminate
 * to handle case where string length > pts_nam esz.
 */
 strncpy(pts_name, "/dev/ptyXX", pts_namesz);
 pts_name[pts_namesz - 1] = '\0';
 if ((fdm = posix_openpt(O_RDWR)) < 0)
 return(-1);
 if (grantpt(fdm) < 0) { /* grant access to slave */
 close(fdm);
 return(-2);
 }
 if (unlockpt(fdm) < 0) { /* clear slave's lo ck flag */
 close(fdm);
 return(-3);
 }
 if ((ptr = ptsname(fdm)) == NULL) { /* get slav e's name */
 close(fdm);
 return(-4);
 }

 /*
 * Return name of slave. Null terminate to han dle
 * case where strlen(ptr) > pts_namesz.
 */
 strncpy(pts_name, ptr, pts_namesz);
 pts_name[pts_namesz - 1] = '\0';
 return(fdm); /* return fd of master */
}

int
ptys_open(char *pts_name)
{
 int fds;

 if ((fds = open(pts_name, O_RDWR)) < 0)
 return(-5);
 return(fds);
}

Our version of posix_openpt tries 16 different groups of 16 PTY master devices: /dev/ptyp0 through
/dev/ptyTf . The actual number of PTY devices available depends on two factors: (a) the number configured
into the kernel, and (b) the number of special device files that have been created in the /dev directory. The
number available to any program is the lesser of (a) or (b).

19.3.3. Linux-Based Pseudo Terminals

Linux supports the BSD method for accessing pseudo terminals, so the same functions shown in Figure 19.9
will also work on Linux. However, Linux also supports a clone-style interface to pseudo terminals using
/dev/ptmx (but this is not a STREAMS device). The clone interface requires extra steps to identify and unlock
a slave device. The functions we can use to access these pseudo terminals on Linux are shown in Figure 19.10.

Figure 19.10. Pseudo-terminal open functions for Linux

#include "apue.h"
#include <fcntl.h>

#ifndef _HAS_OPENPT
int
posix_openpt(int oflag)
{
 int fdm;

 fdm = open("/dev/ptmx", oflag);
 return(fdm);
}
#endif

#ifndef _HAS_PTSNAME
char *
ptsname(int fdm)
{
 int sminor;
 static char pts_name[16];

 if (ioctl(fdm, TIOCGPTN, &sminor) < 0)
 return(NULL);
 snprintf(pts_name, sizeof(pts_name), "/dev/pts/ %d", sminor);
 return(pts_name);
}
#endif

#ifndef _HAS_GRANTPT
int
grantpt(int fdm)
{
 char *pts_name;

 pts_name = ptsname(fdm);
 return(chmod(pts_name, S_IRUSR | S_IWUSR | S_IW GRP));
}
#endif

#ifndef _HAS_UNLOCKPT
int
unlockpt(int fdm)
{
 int lock = 0;

 return(ioctl(fdm, TIOCSPTLCK, &lock));
}
#endif

int
ptym_open(char *pts_name, int pts_namesz)
{
 char *ptr;
 int fdm;

 /*
 * Return the name of the master device so that on failure
 * the caller can print an error message. Null terminate
 * to handle case where string length > pts_nam esz.
 */
 strncpy(pts_name, "/dev/ptmx", pts_namesz);
 pts_name[pts_namesz - 1] = '\0';

 fdm = posix_openpt(O_RDWR);
 if (fdm < 0)
 return(-1);
 if (grantpt(fdm) < 0) { /* grant access to slave */
 close(fdm);
 return(-2);
 }
 if (unlockpt(fdm) < 0) { /* clear slave's lo ck flag */
 close(fdm);
 return(-3);
 }
 if ((ptr = ptsname(fdm)) == NULL) { /* get slav e's name */
 close(fdm);
 return(-4);
 }
 /*
 * Return name of slave. Null terminate to han dle case
 * where strlen(ptr) > pts_namesz.
 */
 strncpy(pts_name, ptr, pts_namesz);
 pts_name[pts_namesz - 1] = '\0';
 return(fdm); /* return fd of master */
}

int
ptys_open(char *pts_name)
{
 int fds;

 if ((fds = open(pts_name, O_RDWR)) < 0)
 return(-5);
 return(fds);
}

On Linux, the PTY slave device is already owned by group tty , so all we need to do in grantpt is ensure that
the permissions are correct.

19.4. pty_fork Function

We now use the two functions from the previous section, ptym_open and ptys_open , to write a new function
that we call pty_fork . This new function combines the opening of the master and the slave with a call to fork ,
establishing the child as a session leader with a controlling terminal.

#include "apue.h"
#include <termios.h>
#include <sys/ioctl.h> /* find struct winsize on BSD systems */

pid_t pty_fork(int *ptrfdm, char *slave_name, int s lave_namesz,
 const struct termios *slave_termios,
 const struct winsize *slave_winsize) ;

Returns: 0 in child, process ID of child in parent, –1 on error

The file descriptor of the PTY master is returned through the ptrfdm pointer.

If slave_name is non-null, the name of the slave device is stored at that location. The caller has to allocate the
storage pointed to by this argument.

If the pointer slave_termios is non-null, the system uses the referenced structure to initialize the terminal line
discipline of the slave. If this pointer is null, the system sets the slave's termios structure to an implementation-
defined initial state. Similarly, if the slave_winsize pointer is non-null, the referenced structure initializes the
slave's window size. If this pointer is null, the winsize structure is normally initialized to 0.

Figure 19.11 shows the code for this function. It works on all four platforms described in this text, calling the
appropriate ptym_open and ptys_open functions.

Figure 19.11. The pty_fork function

#include "apue.h"
#include <termios.h>
#ifndef TIOCGWINSZ
#include <sys/ioctl.h>
#endif

pid_t
pty_fork(int *ptrfdm, char *slave_name, int slave_n amesz,
 const struct termios *slave_termios,
 const struct winsize *slave_winsize)
{
 int fdm, fds;
 pid_t pid;
 char pts_name[20];

 if ((fdm = ptym_open(pts_name, sizeof(pts_name))) < 0)
 err_sys("can't open master pty: %s, error % d", pts_name, fdm);

 if (slave_name != NULL) {
 /*
 * Return name of slave. Null terminate to handle case
 * where strlen(pts_name) > slave_namesz.
 */

 strncpy(slave_name, pts_name, slave_namesz) ;
 slave_name[slave_namesz - 1] = '\0';
 }

 if ((pid = fork()) < 0) {
 return(-1);
 } else if (pid == 0) { /* child */
 if (setsid() < 0)
 err_sys("setsid error");

 /*
 * System V acquires controlling terminal o n open().
 */
 if ((fds = ptys_open(pts_name)) < 0)
 err_sys("can't open slave pty");
 close(fdm); /* all done with master in child */

#if defined(TIOCSCTTY)
 /*
 * TIOCSCTTY is the BSD way to acquire a co ntrolling terminal.
 */
 if (ioctl(fds, TIOCSCTTY, (char *)0) < 0)
 err_sys("TIOCSCTTY error");
#endif

 /*
 * Set slave's termios and window size.
 */
 if (slave_termios != NULL) {
 if (tcsetattr(fds, TCSANOW, slave_termi os) < 0)
 err_sys("tcsetattr error on slave p ty");
 }
 if (slave_winsize != NULL) {
 if (ioctl(fds, TIOCSWINSZ, slave_winsiz e) < 0)
 err_sys("TIOCSWINSZ error on slave pty");
 }
 /*
 * Slave becomes stdin/stdout/stderr of chi ld.
 */
 if (dup2(fds, STDIN_FILENO) != STDIN_FILENO)
 err_sys("dup2 error to stdin");
 if (dup2(fds, STDOUT_FILENO) != STDOUT_FILE NO)
 err_sys("dup2 error to stdout");
 if (dup2(fds, STDERR_FILENO) != STDERR_FILE NO)
 err_sys("dup2 error to stderr");
 if (fds != STDIN_FILENO && fds != STDOUT_FI LENO &&
 fds != STDERR_FILENO)
 close(fds);
 return(0); /* child returns 0 just lik e fork() */
 } else { /* parent */
 ptrfdm = fdm; / return fd of master */
 return(pid); /* parent returns pid of ch ild */
 }
}

After opening the PTY master, fork is called. As we mentioned before, we want to wait to call ptys_open until
in the child and after calling setsid to establish a new session. When it calls setsid , the child is not a process
group leader, so the three steps listed in Section 9.5 occur: (a) a new session is created with the child as the
session leader, (b) a new process group is created for the child, and (c) the child loses any association it might
have had with its previous controlling terminal. Under Linux and Solaris, the slave becomes the controlling

terminal of this new session when ptys_open is called. Under FreeBSD and Mac OS X, we have to call ioctl
with an argument of TIOCSCTTY to allocate the controlling terminal. (Linux also supports the TIOCSCTTY ioctl
command.) The two structures termios and winsize are then initialized in the child. Finally, the slave file
descriptor is duplicated onto standard input, standard output, and standard error in the child. This means that
whatever process the caller exec s from the child will have these three descriptors connected to the slave PTY
(its controlling terminal).

After the call to fork , the parent just returns the PTY master descriptor and the process ID of the child. In the
next section, we use the pty_fork function in the pty program.

19.5. pty Program

The goal in writing the pty program is to be able to type

 pty prog arg1 arg2

instead of

 prog arg1 arg2

When we use pty to execute another program, that program is executed in a session of its own, connected to a
pseudo terminal.

Let's look at the source code for the pty program. The first file (Figure 19.12) contains the main function. It
calls the pty_fork function from the previous section.

Figure 19.12. The main function for the pty program

#include "apue.h"
#include <termios.h>
#ifndef TIOCGWINSZ
#include <sys/ioctl.h> /* for struct winsize */
#endif

#ifdef LINUX
#define OPTSTR "+d:einv"
#else
#define OPTSTR "d:einv"
#endif

static void set_noecho(int); /* at the end of th is file */
void do_driver(char *); /* in the file driv er.c */
void loop(int, int); /* in the file loop .c */

int
main(int argc, char *argv[])
{
 int fdm, c, ignoreeof, interactive, noecho, verbose;
 pid_t pid;
 char *driver;
 char slave_name[20];
 struct termios orig_termios;
 struct winsize size;

 interactive = isatty(STDIN_FILENO);
 ignoreeof = 0;
 noecho = 0;
 verbose = 0;
 driver = NULL;

 opterr = 0; /* don't want getopt() writing to stderr */
 while ((c = getopt(argc, argv, OPTSTR)) != EOF) {
 switch (c) {
 case 'd': /* driver for stdin/stdout */
 driver = optarg;
 break;
 case 'e': /* noecho for slave pty's line discipline */

 noecho = 1;
 break;

 case 'i': /* ignore EOF on standard i nput */
 ignoreeof = 1;
 break;

 case 'n': /* not interactive */
 interactive = 0;
 break;

 case 'v': /* verbose */
 verbose = 1;
 break;

 case '?':
 err_quit("unrecognized option: -%c", op topt);
 }
 }
 if (optind >= argc)
 err_quit("usage: pty [-d driver -einv] pr ogram [arg ...]");

 if (interactive) { /* fetch current termios an d window size */
 if (tcgetattr(STDIN_FILENO, &orig_termios) < 0)
 err_sys("tcgetattr error on stdin");
 if (ioctl(STDIN_FILENO, TIOCGWINSZ, (char *) &size) < 0)
 err_sys("TIOCGWINSZ error");
 pid = pty_fork(&fdm, slave_name, sizeof(sla ve_name),
 &orig_termios, &size);
 } else {
 pid = pty_fork(&fdm, slave_name, sizeof(sla ve_name),
 NULL, NULL);
 }

 if (pid < 0) {
 err_sys("fork error");
 } else if (pid == 0) { /* child */
 if (noecho)
 set_noecho(STDIN_FILENO); /* stdin is slave pty */

 if (execvp(argv[optind], &argv[optind]) < 0)
 err_sys("can't execute: %s", argv[optin d]);
 }

 if (verbose) {
 fprintf(stderr, "slave name = %s\n", slave_ name);
 if (driver != NULL)
 fprintf(stderr, "driver = %s\n", driver);
 }

 if (interactive && driver == NULL) {
 if (tty_raw(STDIN_FILENO) < 0) /* user's t ty to raw mode */
 err_sys("tty_raw error");
 if (atexit(tty_atexit) < 0) /* reset us er's tty on exit */
 err_sys("atexit error");
 }

 if (driver)
 do_driver(driver); /* changes our stdin/s tdout */

 loop(fdm, ignoreeof); /* copies stdin -> pty m, ptym -> stdout */

 exit(0);
}

static void
set_noecho(int fd) /* turn off echo (for slave pty) */
{
 struct termios stermios;

 if (tcgetattr(fd, &stermios) < 0)
 err_sys("tcgetattr error");

 stermios.c_lflag &= ~(ECHO | ECHOE | ECHOK | EC HONL);

 /*
 * Also turn off NL to CR/NL mapping on output.
 */
 stermios.c_oflag &= ~(ONLCR);

 if (tcsetattr(fd, TCSANOW, &stermios) < 0)
 err_sys("tcsetattr error");
}

In the next section, we'll look at the various command-line options when we examine different uses of the pty
program. The getopt function helps us parse command-line arguments in a consistent manner. We'll discuss
getopt in more detail in Chapter 21.

Before calling pty_fork , we fetch the current values for the termios and winsize structures, passing these as
arguments to pty_fork . This way, the PTY slave assumes the same initial state as the current terminal.

After returning from pty_fork , the child optionally turns off echoing for the slave PTY and then calls execvp
to execute the program specified on the command line. All remaining command-line arguments are passed as
arguments to this program.

The parent optionally sets the user's terminal to raw mode. In this case, the parent also sets an exit handler to
reset the terminal state when exit is called. We describe the do_driver function in the next section.

The parent then calls the function loop (Figure 19.13), which copies everything received from the standard
input to the PTY master and everything from the PTY master to standard output. For variety, we have coded it
in two processes this time, although a single process using select , poll , or multiple threads would also work.

Figure 19.13. The loop function

#include "apue.h"

#define BUFFSIZE 512

static void sig_term(int);
static volatile sig_atomic_t sigcaught; /* set b y signal handler */

void
loop(int ptym, int ignoreeof)
{
 pid_t child;
 int nread;
 char buf[BUFFSIZE];

 if ((child = fork()) < 0) {

 err_sys("fork error");
 } else if (child == 0) { /* child copies std in to ptym */
 for (; ;) {
 if ((nread = read(STDIN_FILENO, buf, BU FFSIZE)) < 0)
 err_sys("read error from stdin");
 else if (nread == 0)
 break; /* EOF on stdin means w e're done */
 if (writen(ptym, buf, nread) != nread)
 err_sys("writen error to master pty ");
 }

 /*
 * We always terminate when we encounter an EOF on stdin,
 * but we notify the parent only if ignoree of is 0.
 */
 if (ignoreeof == 0)
 kill(getppid(), SIGTERM); /* notify p arent */
 exit(0); /* and terminate; child can't r eturn */
 }

 /*
 * Parent copies ptym to stdout.
 */
 if (signal_intr(SIGTERM, sig_term) == SIG_ERR)
 err_sys("signal_intr error for SIGTERM");

 for (; ;) {
 if ((nread = read(ptym, buf, BUFFSIZE)) <= 0)
 break; /* signal caught, error, or EOF */
 if (writen(STDOUT_FILENO, buf, nread) != nr ead)
 err_sys("writen error to stdout");
 }

 /*
 * There are three ways to get here: sig_term() below caught the
 * SIGTERM from the child, we read an EOF on th e pty master (which
 * means we have to signal the child to stop), or an error.
 */
 if (sigcaught == 0) /* tell child if it didn't send us the signal */
 kill(child, SIGTERM);
 /*
 * Parent returns to caller.
 */
}

/*
 * The child sends us SIGTERM when it gets EOF on t he pty slave or
 * when read() fails. We probably interrupted the read() of ptym.
 */
static void
sig_term(int signo)
{
 sigcaught = 1; /* just set flag and return */
}

Note that, with two processes, when one terminates, it has to notify the other. We use the SIGTERM signal for
this notification.

19.6. Using the pty Program

We'll now look at various examples with the pty program, seeing the need for the command-line options.

If our shell is the Korn shell, we can execute

pty ksh

and get a brand new invocation of the shell, running under a pseudo terminal.

If the file ttyname is the program we showed in Figure 18.16, we can run the pty program as follows:

 $ who
 sar :0 Oct 5 18:07
 sar pts/0 Oct 5 18:07
 sar pts/1 Oct 5 18:07
 sar pts/2 Oct 5 18:07
 sar pts/3 Oct 5 18:07
 sar pts/4 Oct 5 18:07 pts/4 is the hi ghest PTY currently in use
 $ pty ttyname run program in Figure 18.16 from PTY
 fd 0: /dev/pts/5 pts/5 is the ne xt available PTY
 fd 1: /dev/pts/5
 fd 2: /dev/pts/5

utmp File

In Section 6.8, we described the utmp file that records all users currently logged in to a UNIX system. The
question is whether a user running a program on a pseudo terminal is considered logged in. In the case of
remote logins, telnetd and rlogind , obviously an entry should be made in the utmp file for the user logged in
on the pseudo terminal. There is little agreement, however, whether users running a shell on a pseudo terminal
from a window system or from a program, such as script , should have entries made in the utmp file. Some
systems record these and some don't. If a system doesn't record these in the utmp file, the who(1) program
normally won't show the corresponding pseudo terminals as being used.

Unless the utmp file has other-write permission enabled (which is considered to be a security hole), random
programs that use pseudo terminals won't be able to write to this file.

Job Control Interaction

If we run a job-control shell under pty , it works normally. For example,

 pty ksh

runs the Korn shell under pty . We can run programs under this new shell and use job control just as we do with
our login shell. But if we run an interactive program other than a job-control shell under pty , asin

 pty cat

everything is fine until we type the job-control suspend character. At that point, the job-control character is
echoed as ^Z and is ignored. Under earlier BSD-based systems, the cat process terminates, the pty process
terminates, and we're back to our original shell. To understand what's going on here, we need to examine all the
processes involved, their process groups, and sessions. Figure 19.14 shows the arrangement when pty cat is
running.

Figure 19.14. Process groups and sessions for pty cat

When we type the suspend character (Control-Z), it is recognized by the line discipline module beneath the cat
process, since pty puts the terminal (beneath the pty parent) into raw mode. But the kernel won't stop the cat
process, because it belongs to an orphaned process group (Section 9.10). The parent of cat is the pty parent,
and it belongs to another session.

Historically, implementations have handled this condition differently. POSIX.1 says only that the SIGTSTP
signal can't be delivered to the process. Systems derived from 4.3BSD delivered SIGKILL instead, which the
process can't even catch. In 4.4BSD, this behavior was changed to conform to POSIX.1. Instead of sending
SIGKILL , the 4.4BSD kernel silently discards the SIGTSTP signal if it has the default disposition and is to be
delivered to a process in an orphaned process group. Most current implementations follow this behavior.

When we use pty to run a job-control shell, the jobs invoked by this new shell are never members of an
orphaned process group, because the job-control shell always belongs to the same session. In that case, the
Control-Z that we type is sent to the process invoked by the shell, not to the shell itself.

The only way to avoid this inability of the process invoked by pty to handle job-control signals is to add yet
another command-line flag to pty , telling it to recognize the job control suspend character itself (in the pty
child) instead of letting the character get all the way through to the other line discipline.

Watching the Output of Long-Running Programs

Another example of job-control interaction with the pty program is with the example in Figure 19.6. If we run
the program that generates output slowly as

 pty slowout > file.out &

the pty process is stopped immediately when the child tries to read from its standard input (the terminal). The
reason is that the job is a background job and gets job-control stopped when it tries to access the terminal. If we
redirect standard input so that pty doesn't try to read from the terminal, as in

 pty slowout < /dev/null > file.out &

the pty program stops immediately because it reads an end of file on its standard input and terminates. The
solution for this problem is the -i option, which says to ignore an end of file on the standard input:

 pty -i slowout < /dev/null > file.out &

This flag causes the pty child in Figure 19.13 to exit when the end of file is encountered, but the child doesn't
tell the parent to terminate. Instead, the parent continues copying the PTY slave output to standard output (the
file file.out in the example).

script Program

Using the pty program, we can implement the script(1) program as the following shell script:

 #!/bin/sh
 pty "${SHELL:-/bin/sh}" | tee typescript

Once we run this shell script, we can execute the ps command to see all the process relationships. Figure 19.15
details these relationships.

Figure 19.15. Arrangement of processes for script shell script

In this example, we assume that the SHELL variable is the Korn shell (probably /bin/ksh). As we mentioned
earlier, script copies only what is output by the new shell (and any processes that it invokes), but since the line
discipline module above the PTY slave normally has echo enabled, most of what we type also gets written to
the typescript file.

Running Coprocesses

In Figure 15.8, the coprocess couldn't use the standard I/O functions, because standard input and standard
output do not refer to a terminal, so the standard I/O functions treat them as fully buffered. If we run the
coprocess under pty by replacing the line

 if (execl("./add2", "add2", (char *)0) < 0)

with

 if (execl("./pty", "pty", "-e", "add2", (char *)0) < 0)

the program now works, even if the coprocess uses standard I/O.

Figure 19.16 shows the arrangement of processes when we run the coprocess with a pseudo terminal as its input
and output. It is an expansion of Figure 19.5, showing all the process connections and data flow. The box
labeled "driving program" is the program from Figure 15.8, with the execl changed as described previously.

Figure 19.16. Running a coprocess with a pseudo terminal as its input and output

This example shows the need for the -e (no echo) option for the pty program. The pty program is not running
interactively, because its standard input is not connected to a terminal. In Figure 19.12, the interactive flag
defaults to false, since the call to isatty returns false. This means that the line discipline above the actual
terminal remains in a canonical mode with echo enabled. By specifying the -e option, we turn off echo in the
line discipline module above the PTY slave. If we don't do this, everything we type is echoed twice—by both
line discipline modules.

We also have the -e option turn off the ONLCR flag in the termios structure to prevent all the output from the
coprocess from being terminated with a carriage return and a newline.

Testing this example on different systems showed another problem that we alluded to in Section 14.8 when we
described the readn and writen functions. The amount of data returned by a read , when the descriptor refers to
something other than an ordinary disk file, can differ between implementations. This coprocess example using
pty gave unexpected results that were tracked down to the read function on the pipe in the program from
Figure 15.8 returning less than a line. The solution was to not use the program shown in Figure 15.8, but to use
the version of this program from Exercise 15.5 that was modified to use the standard I/O library, with the
standard I/O streams for the both pipes set to line buffering. By doing this, the fgets function does as many
read s as required to obtain a complete line. The while loop in Figure 15.8 assumes that each line sent to the
coprocess causes one line to be returned.

Driving Interactive Programs Noninteractively

Although it's tempting to think that pty can run any coprocess, even a coprocess that is interactive, it doesn't
work. The problem is that pty just copies everything on its standard input to the PTY and everything from the
PTY to its standard output, never looking at what it sends or what it gets back.

As an example, we can run the telnet command under pty talking directly to the remote host:

 pty telnet 192.168.1.3

Doing this provides no benefit over just typing telnet 192.168.1.3 , but we would like to run the telnet
program from a script, perhaps to check some condition on the remote host. If the file telnet.cmd contains the
four lines

 sar
 passwd
 uptime
 exit

the first line is the user name we use to log in to the remote host, the second line is the password, the third line
is a command we'd like to run, and the fourth line terminates the session. But if we run this script as

 pty -i < telnet.cmd telnet 192.168.1.3

it doesn't do what we want. What happens is that the contents of the file telnet.cmd are sent to the remote host
before it has a chance to prompt us for an account name and password. When it turns off echoing to read the
password, login uses the tcsetattr option, which discards any data already queued. Thus, the data we send is
thrown away.

When we run the telnet program interactively, we wait for the remote host to prompt for a password before we
type it, but the pty program doesn't know to do this. This is why it takes a more sophisticated program than pty ,
such as expect , to drive an interactive program from a script file.

Even running pty from the program in Figure 15.8, as we showed earlier, doesn't help, because the program in
Figure 15.8 assumes that each line it writes to the pipe generates exactly one line on the other pipe. With an
interactive program, one line of input may generate many lines of output. Furthermore, the program in Figure
15.8 always sent a line to the coprocess before reading from it. This won't work when we want to read from the
coprocess before sending it anything.

There are a few ways to proceed from here to be able to drive an interactive program from a script. We could
add a command language and interpreter to pty , but a reasonable command language would probably be ten
times larger than the pty program. Another option is to take a command language and use the pty_fork
function to invoke interactive programs. This is what the expect program does.

We'll take a different path and just provide an option (-d) to allow pty to be connected to a driver process for its
input and output. The standard output of the driver is pty 's standard input and vice versa. This is similar to a
coprocess, but on "the other side" of pty . The resulting arrangement of processes is almost identical to Figure
19.16, but in the current scenario, pty does the fork and exec of the driver process. Also, instead of two half-
duplex pipes, we'll use a single bidirectional pipe between pty and the driver process.

Figure 19.17 shows the source for the do_driver function, which is called by the main function of pty (Figure
19.12) when the -d option is specified.

Figure 19.17. The do_driver function for the pty program

#include "apue.h"

void
do_driver(char *driver)
{
 pid_t child;

 int pipe[2];

 /*
 * Create a stream pipe to communicate with the driver.
 */
 if (s_pipe(pipe) < 0)
 err_sys("can't create stream pipe");

 if ((child = fork()) < 0) {
 err_sys("fork error");
 } else if (child == 0) { /* child */
 close(pipe[1]);

 /* stdin for driver */
 if (dup2(pipe[0], STDIN_FILENO) != STDIN_FI LENO)
 err_sys("dup2 error to stdin");

 /* stdout for driver */
 if (dup2(pipe[0], STDOUT_FILENO) != STDOUT_ FILENO)
 err_sys("dup2 error to stdout");
 if (pipe[0] != STDIN_FILENO && pipe[0] != S TDOUT_FILENO)
 close(pipe[0]);

 /* leave stderr for driver alone */
 execlp(driver, driver, (char *)0);
 err_sys("execlp error for: %s", driver);
 }
 close(pipe[0]); /* parent */
 if (dup2(pipe[1], STDIN_FILENO) != STDIN_FILENO)
 err_sys("dup2 error to stdin");
 if (dup2(pipe[1], STDOUT_FILENO) != STDOUT_FILE NO)
 err_sys("dup2 error to stdout");
 if (pipe[1] != STDIN_FILENO && pipe[1] != STDOU T_FILENO)
 close(pipe[1]);

 /*
 * Parent returns, but with stdin and stdout co nnected
 * to the driver.
 */
}

By writing our own driver program that is invoked by pty , we can drive interactive programs in any way
desired. Even though it has its standard input and standard output connected to pty , the driver process can still
interact with the user by reading and writing /dev/tty . This solution still isn't as general as the expect
program, but it provides a useful option to pty for fewer than 50 lines of code.

19.7. Advanced Features

Pseudo terminals have some additional capabilities that we briefly mention here. These capabilities are further
documented in Sun Microsystems [2002] and the BSD pty (4) manual page.

Packet Mode

Packet mode lets the PTY master learn of state changes in the PTY slave. On Solaris, this mode is enabled by
pushing the STREAMS module pckt onto the PTY master side. We showed this optional module in Figure 19.2.
On FreeBSD, Linux, and Mac OS X, this mode is enabled with the TIOCPKT ioctl command.

The details of packet mode differ between Solaris and the other platforms. Under Solaris, the process reading
the PTY master has to call getmsg to fetch the messages from the stream head, because the pckt module
converts certain events into nondata STREAMS messages. With the other platforms, each read from the PTY
master returns a status byte followed by optional data.

Regardless of the implementation details, the purpose of packet mode is to inform the process reading the PTY
master when the following events occur at the line discipline module above the PTY slave: when the read queue
is flushed, when the write queue is flushed, whenever output is stopped (e.g., Control-S), whenever output is
restarted, whenever XON/XOFF flow control is enabled after being disabled, and whenever XON/XOFF flow
control is disabled after being enabled. These events are used, for example, by the rlogin client and rlogind
server.

Remote Mode

A PTY master can set the PTY slave into remote mode by issuing an ioctl of TIOCREMOTE. Although FreeBSD
5.2.1, Mac OS X 10.3, and Solaris 9 use the same command to enable and disable this feature, under Solaris the
third argument to ioctl is an integer, whereas with FreeBSD and Mac OS X, it is a pointer to an integer.
(Linux 2.4.22 doesn't support this command.)

When it sets this mode, the PTY master is telling the PTY slave's line discipline module not to perform any
processing of the data that it receives from the PTY master, regardless of the canonical/noncanonical flag in the
slave's termios structure. Remote mode is intended for an application, such as a window manager, that does its
own line editing.

Window Size Changes

The process above the PTY master can issue the ioctl of TIOCSWINSZ to set the window size of the slave. If
the new size differs from the current size, a SIGWINCH signal is sent to the foreground process group of the PTY
slave.

Signal Generation

The process reading and writing the PTY master can send signals to the process group of the PTY slave. Under
Solaris 9, this is done with an ioctl of TIOCSIGNAL, with the third argument set to the signal number. With
FreeBSD 5.2.1 and Mac OS X 10.3, the ioctl is TIOCSIG, and the third argument is a pointer to the integer
signal number. (Linux 2.4.22 doesn't support this ioctl command either.)

19.8. Summary

We started this chapter with an overview of how to use pseudo terminals and a look at some use cases. We
continued by examining the code required to open a pseudo terminal under the four platforms discussed in this
text. We then used this code to provide the generic pty_fork function that can be used by many different
applications. We used this function as the basis for a small program (pty), which we then used to explore many
of the properties of pseudo terminals.

Pseudo terminals are used daily on most UNIX systems to provide network logins. We've examined other uses
for pseudo terminals, from the script program to driving interactive programs from a batch script.

Chapter 20. A Database Library

Section 20.1. Introduction

Section 20.2. History

Section 20.3. The Library

Section 20.4. Implementation Overview

Section 20.5. Centralized or Decentralized?

Section 20.6. Concurrency

Section 20.7. Building the Library

Section 20.8. Source Code

Section 20.9. Performance

Section 20.10. Summary

20.1. Introduction

During the early 1980s, the UNIX System was considered a hostile environment for running multiuser database
systems. (See Stonebraker [1981] and Weinberger [1982].) Earlier systems, such as Version 7, did indeed
present large obstacles, since they did not provide any form of IPC (other than half-duplex pipes) and did not
provide any form of byte-range locking. Many of these deficiencies were remedied, however. By the late 1980s,
the UNIX System had evolved to provide a suitable environment for running reliable, multiuser database
systems. Since then, numerous commercial firms have offered these types of database systems.

In this chapter, we develop a simple, multiuser database library of C functions that any program can call to fetch
and store records in a database. This library of C functions is usually only one part of a complete database
system. We do not develop the other pieces, such as a query language, leaving these items to the many
textbooks on database systems. Our interest is the UNIX System interface a database library requires and how
that interface relates to the topics we've already covered (such as record—byte-range—locking, in Section 14.3).

20.2. History

One popular library of database functions in the UNIX System is the dbm(3) library. This library was developed
by Ken Thompson and uses a dynamic hashing scheme. It was originally provided with Version 7, appears in all
BSD releases, and was also provided in SVR4's BSD-compatibility library [AT&T 1990c]. The BSD
developers extended the dbm library and called it ndbm. The ndbm library was included in BSD as well as in
SVR4. The ndbm functions are standardized in the XSI extensions of the Single UNIX Specification.

Seltzer and Yigit [1991] provide a detailed history of the dynamic hashing algorithm used by the dbm library
and other implementations of this library, including gdbm, the GNU version of the dbm library. Unfortunately, a
basic limitation of all these implementations is that none allows concurrent updating of the database by multiple
processes. These implementations provide no type of concurrency controls (such as record locking).

4.4BSD provided a new db(3) library that supports three forms of access: (a) record oriented, (b) hashing, and
(c) a B-tree. Again, no form of concurrency was provided (as was plainly stated in the BUGS section of the
db(3) manual page).

Sleepycat Software (http://www.sleepycat.com) provides versions of the db library that do support concurrent
access, locking, and transactions.

Most commercial database libraries do provide the concurrency controls required for multiple processes to
update a database simultaneously. These systems typically use advisory locking, as we described in Section
14.3, but they often implement their own locking primitives to avoid the overhead of a system call to acquire an
uncontested lock. These commercial systems usually implement their database using B+ trees [Comer 1979] or
some dynamic hashing technique, such as linear hashing [Litwin 1980] or extendible hashing [Fagin et al. 1979].

Figure 20.1 summarizes the database libraries commonly found in the four operating systems described in this
book. Note that on Linux, the gdbm library provides support for both dbm and ndbm functions.

Figure 20.1. Support for database libraries on various platforms

Library POSIX.1 FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9

dbm gdbm •

ndbm XSI • gdbm • •

db • • • •

20.3. The Library

The library we develop in this chapter will be similar to the ndbm library, but we'll add the concurrency control
mechanisms to allow multiple processes to update the same database at the same time. We first describe the C
interface to the database library, then in the next section describe the actual implementation.

When we open a database, we are returned a handle (an opaque pointer) representing the database. We'll pass
this handle to the remaining database functions.

#include "apue_db.h"

DBHANDLE db_open(const char *pathname, int oflag, . .. /* int mode */);

Returns: database handle if OK, NULL on error

void db_close(DBHANDLE db);

If db_open is successful, two files are created: pathname.idx is the index file, and pathname.dat is the data file.
The oflag argument is used as the second argument to open (Section 3.3) to specify how the files are to be
opened (read-only, read–write, create file if it doesn't exist, etc.). The mode argument is used as the third
argument to open (the file access permissions) if the database files are created.

When we're done with a database, we call db_close . It closes the index file and the data file and releases any
memory that it allocated for internal buffers.

When we store a new record in the database, we have to specify the key for the record and the data associated
with the key. If the database contained personnel records, the key could be the employee ID, and the data could
be the employee's name, address, telephone number, date of hire, and the like. Our implementation requires that
the key for each record be unique. (We can't have two employee records with the same employee ID, for
example.)

#include "apue_db.h"

int db_store(DBHANDLE db, const char *key, const ch ar *data,
 int flag);

Returns: 0 if OK, nonzero on error (see following)

The key and data arguments are null-terminated character strings. The only restriction on these two strings is
that neither can contain null bytes. They may contain, for example, newlines.

The flag argument can be DB_INSERT (to insert a new record), DB_REPLACE (to replace an existing record), or
DB_STORE (to either insert or replace, whichever is appropriate). These three constants are defined in the
apue_db.h header. If we specify either DB_INSERT or DB_STORE and the record does not exist, a new record is
inserted. If we specify either DB_REPLACE or DB_STORE and the record already exists, the existing record is
replaced with the new record. If we specify DB_REPLACE and the record doesn't exist, we set errno to ENOENT

and return –1 without adding the new record. If we specify DB_INSERT and the record already exists, no record
is inserted. In this case, the return value is 1 to distinguish this from a normal error return (–1).

We can fetch any record from the database by specifying its key.

#include "apue_db.h"

char *db_fetch(DBHANDLE db, const char *key);

Returns: pointer to data if OK, NULL if record not found

The return value is a pointer to the data that was stored with the key, if the record is found. We can also delete a
record from the database by specifying its key.

#include "apue_db.h"

int db_delete(DBHANDLE db, const char *key);

Returns: 0 if OK, –1 if record not found

In addition to fetching a record by specifying its key, we can go through the entire database, reading each record
in turn. To do this, we first call db_rewind to rewind the database to the first record and then call db_nextrec
in a loop to read each sequential record.

#include "apue_db.h"

void db_rewind(DBHANDLE db);

char *db_nextrec(DBHANDLE db, char *key);

Returns: pointer to data if OK, NULL on end of file

If key is a non-null pointer, db_nextrec returns the key by copying it to the memory starting at that location.

There is no order to the records returned by db_nextrec . All we're guaranteed is that we'll read each record in
the database once. If we store three records with keys of A, B, and C, in that order, we have no idea in which
order db_nextrec will return the three records. It might return B, then A, then C, or some other (apparently
random) order. The actual order depends on the implementation of the database.

These seven functions provide the interface to the database library. We now describe the actual implementation
that we have chosen.

20.4. Implementation Overview

Database access libraries often use two files to store the information: an index file and a data file. The index file
contains the actual index value (the key) and a pointer to the corresponding data record in the data file.
Numerous techniques can be used to organize the index file so that it can be searched quickly and efficiently for
any key: hashing and B+ trees are popular. We have chosen to use a fixed-size hash table with chaining for the
index file. We mentioned in the description of db_open that we create two files: one with a suffix of .idx and
one with a suffix of .dat .

We store the key and the index as null-terminated character strings; they cannot contain arbitrary binary data.
Some database systems store numerical data in a binary format (1, 2, or 4 bytes for an integer, for example) to
save storage space. This complicates the functions and requires more work to make the database files portable
between different systems. For example, if a network has two systems that use different formats for storing
binary integers, we need to handle this if we want both systems to access the database. (It is not at all
uncommon today to have systems with different architectures sharing files on a network.) Storing all the records,
both keys and data, as character strings simplifies everything. It does require additional disk space, but that is a
small cost for portability.

With db_store , only one record for each key is allowed. Some database systems allow a key to have multiple
records and then provide a way to access all the records associated with a given key. Additionally, we have only
a single index file, meaning that each data record can have only a single key (we don't support secondary keys).
Some database systems allow each record to have multiple keys and often use one index file per key. Each time
a new record is inserted or deleted, all index files must be updated accordingly. (An example of a file with
multiple indexes is an employee file. We could have one index whose key is the employee ID and another
whose key is the employee's Social Security number. Having an index whose key is the employee name could
be a problem, as names need not be unique.)

Figure 20.2 shows a general picture of the database implementation.

Figure 20.2. Arrangement of index file and data file

The index file consists of three portions: the free-list pointer, the hash table, and the index records. In Figure
20.2, all the fields called ptr are simply file offsets stored as an ASCII number.

To find a record in the database, given its key, db_fetch calculates the hash value of the key, which leads to
one hash chain in the hash table. (The chain ptr field could be 0, indicating an empty chain.) We then follow this
hash chain, which is a linked list of all the index records with this hash value. When we encounter a chain ptr
value of 0, we've hit the end of the hash chain.

Let's look at an actual database file. The program in Figure 20.3 creates a new database and writes three records
to it. Since we store all the fields in the database as ASCII characters, we can look at the actual index file and
data file using any of the standard UNIX System tools:

 $ ls -l db4.*
 -rw-r--r-- 1 sar 28 Oct 19 21:33 db4.dat
 -rw-r--r-- 1 sar 72 Oct 19 21:33 db4.idx
 $ cat db4.idx
 0 53 35 0
 0 10Alpha:0:6
 0 10beta:6:14
 17 11gamma:20:8
 $ cat db4.dat
 data1
 Data for beta
 record3

Figure 20.3. Create a database and write three records to it

#include "apue.h"
#include "apue_db.h"
#include <fcntl.h>

int
main(void)
{
 DBHANDLE db;

 if ((db = db_open("db4", O_RDWR | O_CREAT | O_T RUNC,
 FILE_MODE)) == NULL)
 err_sys("db_open error");

 if (db_store(db, "Alpha", "data1", DB_INSERT) ! = 0)
 err_quit("db_store error for alpha");
 if (db_store(db, "beta", "Data for beta", DB_IN SERT) != 0)
 err_quit("db_store error for beta");
 if (db_store(db, "gamma", "record3", DB_INSERT) != 0)
 err_quit("db_store error for gamma");

 db_close(db);
 exit(0);
}

To keep this example small, we have set the size of each ptr field to four ASCII characters; the number of hash
chains is three. Since each ptr is a file offset, a four-character field limits the total size of the index file and data
file to 10,000 bytes. When we do some performance measurements of the database system in Section 20.9, we
set the size of each ptr field to six characters (allowing file sizes up to 1 million bytes), and the number of hash
chains to more than 100.

The first line in the index file

 0 53 35 0

is the free-list pointer (0, the free list is empty) and the three hash chain pointers: 53, 35, and 0. The next line

 0 10Alpha:0:6

shows the format of each index record. The first field (0) is the four-character chain pointer. This record is the
end of its hash chain. The next field (10) is the four-character idx len, the length of the remainder of this index
record. We read each index record using two read s: one to read the two fixed-size fields (the chain ptr and idx
len) and another to read the remaining (variable-length) portion. The remaining three fields—key, dat off, and
dat len—are delimited by a separator character (a colon in this case). We need the separator character, since
each of these three fields is variable length. The separator character can't appear in the key. Finally, a newline
terminates the index record. The newline isn't required, since idx len contains the length of the record. We store
the newline to separate each index record so we can use the normal UNIX System tools, such as cat and more ,
with the index file. The key is the value that we specified when we wrote the record to the database. The data
offset (0) and data length (6) refer to the data file. We can see that the data record does start at offset 0 in the
data file and has a length of 6 bytes. (As with the index file, we automatically append a newline to each data
record, so we can use the normal UNIX System tools with the file. This newline at the end is not returned to the
caller by db_fetch .)

If we follow the three hash chains in this example, we see that the first record on the first hash chain is at offset
53 (gamma). The next record on this chain is at offset 17 (alpha), and this is the last record on the chain. The
first record on the second hash chain is at offset 35 (beta), and it's the last record on the chain. The third hash
chain is empty.

Note that the order of the keys in the index file and the order of their corresponding records in the data file is the
same as the order of the calls to db_store in Figure 20.3. Since the O_TRUNC flag was specified for db_open ,
the index file and the data file were both truncated and the database initialized from scratch. In this case,
db_store just appends the new index records and data records to the end of the corresponding file. We'll see
later that db_store can also reuse portions of these two files that correspond to deleted records.

The choice of a fixed-size hash table for the index is a compromise. It allows fast access as long as each hash
chain isn't too long. We want to be able to search for any key quickly, but we don't want to complicate the data
structures by using either a B-tree or dynamic hashing. Dynamic hashing has the advantage that any data record
can be located with only two disk accesses (see Litwin [1980] or Fagin et al. [1979] for details). B-trees have
the advantage of traversing the database in (sorted) key order (something that we can't do with the db_nextrec
function using a hash table.)

20.5. Centralized or Decentralized?

Given multiple processes accessing the same database, we can implement the functions in two ways:

1. Centralized. Have a single process that is the database manager, and have it be the only process that
accesses the database. The functions contact this central process using some form of IPC.

2. Decentralized. Have each function apply the required concurrency controls (locking) and then issue its
own I/O function calls.

Database systems have been built using each of these techniques. Given adequate locking routines, the
decentralized implementation is usually faster, because IPC is avoided. Figure 20.4 depicts the operation of the
centralized approach.

Figure 20.4. Centralized approach for database access

We purposely show the IPC going through the kernel, as most forms of message passing under the UNIX
System operate this way. (Shared memory, as described in Section 15.9, avoids this copying of the data.) We
see with the centralized approach that a record is read by the central process and then passed to the requesting
process using IPC. This is a disadvantage of this design. Note that the centralized database manager is the only
process that does I/O with the database files.

The centralized approach has the advantage that customer tuning of its operation may be possible. For example,
we might be able to assign different priorities to different processes through the centralized process. This could

affect the scheduling of I/O operations by the centralized process. With the decentralized approach, this is more
difficult to do. We are usually at the mercy of the kernel's disk I/O scheduling policy and locking policy; that is,
if three processes are waiting for a lock to become available, which process gets the lock next?

Another advantage of the centralized approach is that recovery is easier than with the decentralized approach.
All the state information is in one place in the centralized approach, so if the database processes are killed, we
have only one place to look to identify the outstanding transactions we need to resolve to restore the database to
a consistent state.

The decentralized approach is shown in Figure 20.5. This is the design that we'll implement in this chapter.

Figure 20.5. Decentralized approach for database access

The user processes that call the functions in the database library to perform I/O are considered cooperating
processes, since they use byte-range locking to provide concurrent access.

20.6. Concurrency

We purposely chose a two-file implementation (an index file and a data file) because that is a common
implementation technique. It requires us to handle the locking interactions of both files. But there are numerous
ways to handle the locking of these two files.

Coarse-Grained Locking

The simplest form of locking is to use one of the two files as a lock for the entire database and to require the
caller to obtain this lock before operating on the database. We call this coarse-grained locking. For example, we
can say that the process with a read lock on byte 0 of the index file has read access to the entire database. A
process with a write lock on byte 0 of the index file has write access to the entire database. We can use the
normal UNIX System byte-range locking semantics to allow any number of readers at one time, but only one
writer at a time. (Recall Figure 14.3.) The functions db_fetch and db_nextrec require a read lock, and
db_delete , db_store , and db_open all require a write lock. (The reason db_open requires a write lock is that if
the file is being created, it has to write the empty free list and hash chains at the front of the index file.)

The problem with coarse-grained locking is that it doesn't allow the maximum amount of concurrency. If a
process is adding a record to one hash chain, another process should be able to read a record on a different hash
chain.

Fine-Grained Locking

We enhance coarse-grained locking to allow more concurrency and call this fine-grained locking. We first
require a reader or a writer to obtain a read lock or a write lock on the hash chain for a given record. We allow
any number of readers at one time on any hash chain but only a single writer on a hash chain. Next, a writer
needing to access the free list (either db_delete or db_store) must obtain a write lock on the free list. Finally,
whenever it appends a new record to the end of either the index file or the data file, db_store has to obtain a
write lock on that portion of the file.

We expect fine-grained locking to provide more concurrency than coarse-grained locking. In Section 20.9, we'll
show some actual measurements. In Section 20.8, we show the source code to our implementation of fine-
grained locking and discuss the details of implementing locking. (Coarse-grained locking is merely a
simplification of the locking that we show.)

In the source code, we call read , readv , write , and writev directly. We do not use the standard I/O library.
Although it is possible to use byte-range locking with the standard I/O library, careful handling of buffering is
required. We don't want an fgets , for example, to return data that was read into a standard I/O buffer 10
minutes ago if the data was modified by another process 5 minutes ago.

Our discussion of concurrency is predicated on the simple needs of the database library. Commercial systems
often have additional requirements. See Chapter 16 of Date [2004] for additional details on concurrency.

20.7. Building the Library

The database library consists of two files: a public C header file and a C source file. We can build a static
library using the commands

gcc -I../include -Wall -c db.c
ar rsv libapue_db.a db.o

Applications that want to link with libapue_db.a will also need to link with libapue.a , since we use some of
our common functions in the database library.

If, on the other hand, we want to build a dynamic shared library version of the database library, we can use the
following commands:

gcc -I../include -Wall -fPIC -c db.c
gcc -shared -Wl,-soname,libapue_db.so.1 -o libapue_ db.so.1 \
 -L../lib -lapue -lc db.o

The resulting shared library, libapue_db.so.1 , needs to be placed in a common directory where the dynamic
linker/loader can find it. Alternatively, we can place it in a private directory and modify our LD_LIBRARY_PATH
environment variable to include the private directory in the search path of the dynamic linker/loader.

The steps used to build shared libraries vary among platforms. Here, we have shown how to do it on a Linux
system with the GNU C compiler.

20.8. Source Code

We start with the apue_db.h header shown first. This header is included by the library source code and all
applications that call the library.

For the remainder of this text, we depart from the style of the previous examples in several ways. First, because
the source code example is longer than usual, we number the lines. This makes it easier to link the discussion
with the corresponding source code. Second, we place the description of the source code immediately below the
source code on the same page.

This style was inspired by John Lions in his book documenting the UNIX Version 6 operating system source
code [Lions 1977, 1996]. It simplifies the task of studying large amounts of source code.

Note that we do not bother to number blank lines. Although this departs from the normal behavior of such tools
as pr (1), we have nothing interesting to say about blank lines.

1 #ifndef _APUE_DB_H
2 #define _APUE_DB_H

3 typedef void * DBHANDLE;

4 DBHANDLE db_open(const char *, int, ...);
5 void db_close(DBHANDLE);
6 char *db_fetch(DBHANDLE, const char *);
7 int db_store(DBHANDLE, const char *, cons t char *, int);
8 int db_delete(DBHANDLE, const char *);
9 void db_rewind(DBHANDLE);
10 char *db_nextrec(DBHANDLE, char *);

11 /*
12 * Flags for db_store().
13 */
14 #define DB_INSERT 1 /* insert new record only */
15 #define DB_REPLACE 2 /* replace existing r ecord */
16 #define DB_STORE 3 /* replace or insert */

17 /*
18 * Implementation limits.
19 */
20 #define IDXLEN_MIN 6 /* key, sep, start, s ep, length, \n */
21 #define IDXLEN_MAX 1024 /* arbitrary */
22 #define DATLEN_MIN 2 /* data byte, newline */
23 #define DATLEN_MAX 1024 /* arbitrary */

24 #endif /* _APUE_DB_H */

[1 –
3]

We use the _APUE_DB_H symbol to ensure that the contents of the header file are included only once. The
DBHANDLE type represents an active reference to the database and is used to isolate applications from the
implementation details of the database. Compare this technique with the way the standard I/O library
exposes the FILE structure to applications.

[4 –
10]

Next, we declare the prototypes for the database library's public functions. Since this header is included
by applications that want to use the library, we don't declare the prototypes for the library's private
functions here.

[1 –
3]

We use the _APUE_DB_H symbol to ensure that the contents of the header file are included only once. The
DBHANDLE type represents an active reference to the database and is used to isolate applications from the
implementation details of the database. Compare this technique with the way the standard I/O library
exposes the FILE structure to applications.

[11–
24]

The legal flags that can be passed to the db_store function are defined next, followed by fundamental
limits of the implementation. These limits can be changed, if desired, to support bigger databases.

 The minimum index record length is specified by IDXLEN_MIN. This represents a 1-byte key, a 1-byte
separator, a 1-byte starting offset, another 1-byte separator, a 1-byte length, and a terminating newline
character. (Recall the format of an index record from Figure 20.2.) An index record will usually be larger
than IDXLEN_MIN bytes, but this is the bare minimum size.

The next file is db.c , the C source file for the library. For simplicity, we include all functions in a single file.
This has the advantage that we can hide private functions by declaring them static .

1 #include "apue.h"
2 #include "apue_db.h"
3 #include <fcntl.h> /* open & db_open flags */
4 #include <stdarg.h>
5 #include <errno.h>
6 #include <sys/uio.h> /* struct iovec */

7 /*
8 * Internal index file constants.
9 * These are used to construct records in the
10 * index file and data file.
11 */
12 #define IDXLEN_SZ 4 /* index record len gth (ASCII chars) */
13 #define SEP ':' /* separator char i n index record */
14 #define SPACE ' ' /* space character */
15 #define NEWLINE '\n' /* newline characte r */

16 /*
17 * The following definitions are for hash chai ns and free
18 * list chain in the index file.
19 */
20 #define PTR_SZ 6 /* size of ptr fiel d in hash chain */
21 #define PTR_MAX 999999 /* max file offset = 10**PTR_SZ - 1 */
22 #define NHASH_DEF 137 /* default hash tab le size */
23 #define FREE_OFF 0 /* free list offset in index file */
24 #define HASH_OFF PTR_SZ /* hash table offse t in index file */

25 typedef unsigned long DBHASH; /* hash values */
26 typedef unsigned long COUNT; /* unsigned cou nter */

[1 –
6]

We include apue.h because we use some of the functions from our private library. In turn, apue.h
includes several standard header files, including <stdio.h> and <unistd.h> . We include <stdarg.h>
because the db_open function uses the variable-argument functions declared by <stdarg.h> .

[7 –
26]

The size of an index record is specified by IDXLEN_SZ. We use some characters, such as colon and
newline, as delimiters in the database. We use the space character as "white out" when we delete a record.

 Some of the values that we have defined as constants could also be made variable, with some added

[1 –
6]

We include apue.h because we use some of the functions from our private library. In turn, apue.h
includes several standard header files, including <stdio.h> and <unistd.h> . We include <stdarg.h>
because the db_open function uses the variable-argument functions declared by <stdarg.h> .

complexity in the implementation. For example, we set the size of the hash table to 137 entries. A better
technique would be to let the caller specify this as an argument to db_open , based on the expected size of
the database. We would then have to store this size at the beginning of the index file.

27 /*
28 * Library's private representation of the dat abase.
29 */
30 typedef struct {
31 int idxfd; /* fd for index file */
32 int datfd; /* fd for data file */
33 char *idxbuf; /* malloc'ed buffer for index record */
34 char *datbuf; /* malloc'ed buffer for data record*/
35 char *name; /* name db was opened under * /
36 off_t idxoff; /* offset in index file of in dex record */
37 /* key is at (idxoff + PTR_SZ + IDXLEN_SZ) */
38 size_t idxlen; /* length of index record */
39 /* excludes IDXLEN_SZ bytes a t front of record */
40 /* includes newline at end of index record */
41 off_t datoff; /* offset in data file of dat a record */
42 size_t datlen; /* length of data record */
43 /* includes newline at end */
44 off_t ptrval; /* contents of chain ptr in i ndex record */
45 off_t ptroff; /* chain ptr offset pointing to this idx record */
46 off_t chainoff; /* offset of hash chain for this index record */
47 off_t hashoff; /* offset in index file of hash table */
48 DBHASH nhash; /* current hash table size */
49 COUNT cnt_delok; /* delete OK */
50 COUNT cnt_delerr; /* delete error */
51 COUNT cnt_fetchok; /* fetch OK */
52 COUNT cnt_fetcherr; /* fetch error */
53 COUNT cnt_nextrec; /* nextrec */
54 COUNT cnt_stor1; /* store: DB_INSERT, no empty, appended */
55 COUNT cnt_stor2; /* store: DB_INSERT, fo und empty, reused */
56 COUNT cnt_stor3; /* store: DB_REPLACE, d iff len, appended */
57 COUNT cnt_stor4; /* store: DB_REPLACE, s ame len, overwrote */
58 COUNT cnt_storerr; /* store error */
59 } DB;

[27
–
48]

The DB structure is where we keep all the information for each open database. The DBHANDLE value that is
returned by db_open and used by all the other functions is really just a pointer to one of these structures,
but we hide that from the callers.

 Since we store pointers and lengths as ASCII in the database, we convert these to numeric values and
save them in the DB structure. We also save the hash table size even though it is fixed, just in case we
decide to enhance the library to allow callers to specify the size when the database is created (see
Exercise 20.7).

[49
–
59]

The last ten fields in the DB structure count both successful and unsuccessful operations. If we want to
analyze the performance of our database, we can write a function to return these statistics, but for now,
we only maintain the counters.

60 /*
61 * Internal functions.
62 */
63 static DB *_db_alloc(int);
64 static void _db_dodelete(DB *);
65 static int _db_find_and_lock(DB *, const c har *, int);
66 static int _db_findfree(DB *, int, int);
67 static void _db_free(DB *);
68 static DBHASH _db_hash(DB *, const char *);
69 static char *_db_readdat(DB *);
70 static off_t _db_readidx(DB *, off_t);
71 static off_t _db_readptr(DB *, off_t);
72 static void _db_writedat(DB *, const char * , off_t, int);
73 static void _db_writeidx(DB *, const char * , off_t, int, off_t);
74 static void _db_writeptr(DB *, off_t, off_t);

75 /*
76 * Open or create a database. Same arguments as open(2).
77 */
78 DBHANDLE
79 db_open(const char *pathname, int oflag, ...)
80 {
81 DB *db;
82 int len, mode;
83 size_t i;
84 char asciiptr[PTR_SZ + 1],
85 hash[(NHASH_DEF + 1) * PTR_SZ + 2];
86 /* +2 for newline and null */
87 struct stat statbuff;

88 /*
89 * Allocate a DB structure, and the buffers it needs.
90 */
91 len = strlen(pathname);
92 if ((db = _db_alloc(len)) == NULL)
93 err_dump("db_open: _db_alloc error for DB");

[60
–
74]

We have chosen to name all the user-callable (public) functions starting with db_ and all the internal
(private) functions starting with _db_ . The public functions were declared in the library's header file,
apue_db.h . We declare the internal functions as static so they are visible only to functions residing in
the same file (the file containing the library implementation).

[75
–
93]

The db_open function has the same arguments as open (2). If the caller wants to create the database files,
the optional third argument specifies the file permissions. The db_open function opens the index file and
the data file, initializing the index file, if necessary. The function starts by calling _db_alloc to allocate
and initialize a DB structure.

 94 db->nhash = NHASH_DEF;/* hash table size */
 95 db->hashoff = HASH_OFF; /* offset in index file of hash table */
 96 strcpy(db->name, pathname);
 97 strcat(db->name, ".idx");

 98 if (oflag & O_CREAT) {
 99 va_list ap;

100 va_start(ap, oflag);
101 mode = va_arg(ap, int);

102 va_end(ap);

103 /*
104 * Open index file and data file.
105 */
106 db->idxfd = open(db->name, oflag, mode) ;
107 strcpy(db->name + len, ".dat");
108 db->datfd = open(db->name, oflag, mode) ;
109 } else {
110 /*
111 * Open index file and data file.
112 */
113 db->idxfd = open(db->name, oflag);
114 strcpy(db->name + len, ".dat");
115 db->datfd = open(db->name, oflag);
116 }
117 if (db->idxfd < 0 || db->datfd < 0) {
118 _db_free(db);
119 return(NULL);
120 }

[94 –
97]

We continue to initialize the DB structure. The pathname passed in by the caller specifies the prefix of
the database filenames. We append the suffix .idx to create the name for the database index file.

[98 –
108]

If the caller wants to create the database files, we use the variable argument functions from <stdarg.h>
to find the optional third argument. Then we use open to create and open the index file and data file.
Note that the filename of the data file starts with the same prefix as the index file but has .dat as a
suffix instead.

[109 –
116]

If the caller doesn't specify the O_CREAT flag, then we're opening existing database files. In this case, we
simply call open with two arguments.

[117 –
120]

If we hit an error opening or creating either database file, we call _db_free to clean up the DB structure
and then return NULL to the caller. If one open succeeded and one failed, _db_free will take care of
closing the open file descriptor, as we shall see shortly.

121 if ((oflag & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC)) {
122 /*
123 * If the database was created, we have to initialize
124 * it. Write lock the entire file so that we can stat
125 * it, check its size, and initialize it, atomically.
126 */
127 if (writew_lock(db->idxfd, 0, SEEK_SET, 0) < 0)
128 err_dump("db_open: writew_lock error") ;

129 if (fstat(db->idxfd, &statbuff) < 0)
130 err_sys("db_open: fstat error");

131 if (statbuff.st_size == 0) {
132 /*
133 * We have to build a list of (NHASH_D EF + 1) chain
134 * ptrs with a value of 0. The +1 is f or the free
135 * list pointer that precedes the hash table.
136 */
137 sprintf(asciiptr, "%*d", PTR_SZ, 0);

[121 –
130]

We encounter locking if the database is being created. Consider two processes trying to create the same
database at about the same time. Assume that the first process calls fstat and is blocked by the kernel
after fstat returns. The second process calls db_open , finds that the length of the index file is 0, and
initializes the free list and hash chain. The second process then writes one record to the database. At this
point, the second process is blocked, and the first process continues executing right after the call to
fstat . The first process finds the size of the index file to be 0 (since fstat was called before the
second process initialized the index file), so the first process initializes the free list and hash chain,
wiping out the record that the second process stored in the database. The way to prevent this is to use
locking. We use the macros readw_lock , writew_lock , and un_lock from Section 14.3.

[131 –
137]

If the size of the index file is 0, we have just created it, so we need to initialize the free list and hash
chain pointers it contains. Note that we use the format string %*d to convert a database pointer from an
integer to an ASCII string. (We'll use this type of format again in _db_writeidx and _db_writeptr .)
This format tells sprintf to take the PTR_SZ argument and use it as the minimum field width for the
next argument, which is 0 in this instance (here we are initializing the pointers to 0, since we are
creating a new database). This has the effect of forcing the string created to be at least PTR_SZ
characters (padded on the left with spaces). In _db_writeidx and _db_writeptr , we will pass a
pointer value instead of zero, but we will first verify that the pointer value isn't greater than PTR_MAX, to
guarantee that every pointer string we write to the database occupies exactly PTR_SZ (6) characters.

138 hash[0] = 0;
139 for (i = 0; i < NHASH_DEF + 1; i++)
140 strcat(hash, asciiptr);
141 strcat(hash, "\n");
142 i = strlen(hash);
143 if (write(db->idxfd, hash, i) != i)
144 err_dump("db_open: index file ini t write error");
145 }
146 if (un_lock(db->idxfd, 0, SEEK_SET, 0) < 0)
147 err_dump("db_open: un_lock error");
148 }
149 db_rewind(db);
150 return(db);
151 }
152 /*
153 * Allocate & initialize a DB structure and it s buffers.
154 */
155 static DB *
156 _db_alloc(int namelen)
157 {
158 DB *db;
159 /*
160 * Use calloc, to initialize the structure t o zero.
161 */
162 if ((db = calloc(1, sizeof(DB))) == NULL)
163 err_dump("_db_alloc: calloc error for DB ");
164 db->idxfd = db->datfd = -1; /* descrip tors */

165 /*
166 * Allocate room for the name.
167 * +5 for ".idx" or ".dat" plus null at end.
168 */
169 if ((db->name = malloc(namelen + 5)) == NULL)
170 err_dump("_db_alloc: malloc error for na me");

[138 –
151]

We continue to initialize the newly created database. We build the hash table and write it to the index
file. Then we unlock the index file, reset the database file pointers, and return a pointer to the DB
structure as the opaque handle for the caller to use with the other database functions.

[152 –
164]

The _db_alloc function is called by db_open to allocate storage for the DB structure, an index buffer,
and a data buffer. We use calloc to allocate memory to hold the DB structure and ensure that it is
initialized to all zeros. Since this has the side effect of setting the database file descriptors to zero, we
need to reset them to –1 to indicate that they are not yet valid.

[165 –
170]

We allocate space to hold the name of the database file. We use this buffer to create both filenames by
changing the suffix to refer to either the index file or the data file, as we saw in db_open .

171 /*
172 * Allocate an index buffer and a data buffe r.
173 * +2 for newline and null at end.
174 */
175 if ((db->idxbuf = malloc(IDXLEN_MAX + 2)) == NULL)
176 err_dump("_db_alloc: malloc error for in dex buffer");
177 if ((db->datbuf = malloc(DATLEN_MAX + 2)) == NULL)
178 err_dump("_db_alloc: malloc error for da ta buffer");
179 return(db);
180 }

181 /*
182 * Relinquish access to the database.
183 */
184 void
185 db_close(DBHANDLE h)
186 {
187 _db_free((DB *)h); /* closes fds, free buffe rs & struct */
188 }

189 /*
190 * Free up a DB structure, and all the malloc' ed buffers it
191 * may point to. Also close the file descripto rs if still open.
192 */
193 static void
194 _db_free(DB *db)
195 {
196 if (db->idxfd >= 0)
197 close(db->idxfd);
198 if (db->datfd >= 0)
199 close(db->datfd);

[171 –
180]

We allocate space for buffers for the index and data files. The buffer sizes are defined in apue_db.h .
An enhancement to the database library would be to allow these buffers to expand as required. We
could keep track of the size of these two buffers and call realloc whenever we find we need a bigger
buffer. Finally, we return a pointer to the DB structure that we allocated.

[181 –
188]

The db_close function is a wrapper that casts a database handle to a DB structure pointer, passing it to
_db_free to release any resources and free the DB structure.

[189 –
199]

The _db_free function is called by db_open if an error occurs while opening the index file or data file
and is also called by db_close when an application is done using the database. If the file descriptor for
the database index file is valid, we close it. The same is done with the file descriptor for the data file.

[171 –
180]

We allocate space for buffers for the index and data files. The buffer sizes are defined in apue_db.h .
An enhancement to the database library would be to allow these buffers to expand as required. We
could keep track of the size of these two buffers and call realloc whenever we find we need a bigger
buffer. Finally, we return a pointer to the DB structure that we allocated.

(Recall that when we allocate a new DB structure in _db_alloc , we initialize each file descriptor to –1.
If we are unable to open one of the database files, the corresponding file descriptor will still be set to –
1, and we will avoid trying to close it.)

200 if (db->idxbuf != NULL)
201 free(db->idxbuf);
202 if (db->datbuf != NULL)
203 free(db->datbuf);
204 if (db->name != NULL)
205 free(db->name);
206 free(db);
207 }

208 /*
209 * Fetch a record. Return a pointer to the nul l-terminated data.
210 */
211 char *
212 db_fetch(DBHANDLE h, const char *key)
213 {
214 DB *db = h;
215 char *ptr;

216 if (_db_find_and_lock(db, key, 0) < 0) {
217 ptr = NULL; /* error, record not found */
218 db->cnt_fetcherr++;
219 } else {
220 ptr = _db_readdat(db); /* return pointer to data */
221 db->cnt_fetchok++;
222 }

223 /*
224 * Unlock the hash chain that _db_find_and_l ock locked.
225 */
226 if (un_lock(db->idxfd, db->chainoff, SEEK_SE T, 1) < 0)
227 err_dump("db_fetch: un_lock error");
228 return(ptr);
229 }

[200 –
207]

Next, we free any dynamically-allocated buffers. We can safely pass a null pointer to free , so we don't
need to check the value of each buffer pointer beforehand, but we do so anyway because we consider it
better style to free only those objects that we allocated. (Not all deallocator functions are as forgiving as
free .) Finally, we free the memory backing the DB structure.

[208 –
218]

The db_fetch function is used to read a record given its key. We first try to find the record by calling
_db_find_and_lock . If the record can't be found, we set the return value (ptr) to NULL and increment
the count of unsuccessful record searches. Because _db_find_and_lock returns with the database
index file locked, we can't return until we unlock it.

[219 –
229]

If the record is found, we call _db_readdat to read the corresponding data record and increment the
count of the successful record searches. Before returning, we unlock the index file by calling un_lock .

[200 –
207]

Next, we free any dynamically-allocated buffers. We can safely pass a null pointer to free , so we don't
need to check the value of each buffer pointer beforehand, but we do so anyway because we consider it
better style to free only those objects that we allocated. (Not all deallocator functions are as forgiving as
free .) Finally, we free the memory backing the DB structure.

Then we return a pointer to the record found (or NULL if the record wasn't found).

230 /*
231 * Find the specified record. Called by db_del ete, db_fetch,
232 * and db_store. Returns with the hash chain l ocked.
233 */
234 static int
235 _db_find_and_lock(DB *db, const char *key, int writelock)
236 {
237 off_t offset, nextoffset;

238 /*
239 * Calculate the hash value for this key, th en calculate the
240 * byte offset of corresponding chain ptr in hash table.
241 * This is where our search starts. First we calculate the
242 * offset in the hash table for this key.
243 */
244 db->chainoff = (_db_hash(db, key) * PTR_SZ) + db->hashoff;
245 db->ptroff = db->chainoff;

246 /*
247 * We lock the hash chain here. The caller m ust unlock it
248 * when done. Note we lock and unlock only t he first byte.
249 */
250 if (writelock) {
251 if (writew_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)
252 err_dump("_db_find_and_lock: writew_ lock error");
253 } else {
254 if (readw_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)
255 err_dump("_db_find_and_lock: readw_l ock error");
256 }

257 /*
258 * Get the offset in the index file of first record
259 * on the hash chain (can be 0).
260 */
261 offset = _db_readptr(db, db->ptroff);

[230 –
237]

The _db_find_and_lock function is used internally by the library to find a record given its key. We set
the writelock parameter to a nonzero value if we want to acquire a write lock on the index file while
we search for the record. If we set writelock to zero, we read-lock the index file while we search it.

[238 –
256]

We prepare to traverse a hash chain in _db_find_and_lock . We convert the key into a hash value,
which we use to calculate the starting address of the hash chain in the file (chainoff). We wait for the
lock to be granted before going through the hash chain. Note that we lock only the first byte in the start
of the hash chain. This increases concurrency by allowing multiple processes to search different hash
chains at the same time.

[257 –
261]

We call _db_readptr to read the first pointer in the hash chain. If this returns zero, the hash chain is
empty.

262 while (offset != 0) {
263 nextoffset = _db_readidx(db, offset);
264 if (strcmp(db->idxbuf, key) == 0)
265 break; /* found a match */
266 db->ptroff = offset; /* offset of this (unequal) record */
267 offset = nextoffset; /* next one to comp are */
268 }
269 /*
270 * offset == 0 on error (record not found).
271 */
272 return(offset == 0 ? -1 : 0);
273 }

274 /*
275 * Calculate the hash value for a key.
276 */
277 static DBHASH
278 _db_hash(DB *db, const char *key)
279 {
280 DBHASH hval = 0;
281 char c;
282 int i;

283 for (i = 1; (c = *key++) != 0; i++)
284 hval += c * i; /* ascii char times its 1-based index */
285 return(hval % db->nhash);
286 }

[262 –
268]

In the while loop, we go through each index record on the hash chain, comparing keys. We call
_db_readidx to read each index record. It populates the idxbuf field with the key of the current
record. If _db_readidx returns zero, we've reached the last entry in the chain.

[269 –
273]

If offset is zero after the loop, we've reached the end of a hash chain without finding a matching key,
so we return –1. Otherwise, we found a match (and exited the loop with the break statement), so we
return success (0). In this case, the ptroff field contains the address of the previous index record,
datoff contains the address of the data record, and datlen contains the size of the data record. As we
make our way through the hash chain, we save the previous index record that points to the current index
record. We'll use this when we delete a record, since we have to modify the chain pointer of the
previous record to delete the current record.

[274 –
286]

_db_hash calculates the hash value for a given key. It multiplies each ASCII character times its 1-based
index and divides the result by the number of hash table entries. The remainder from the division is the
hash value for this key. Recall that the number of hash table entries is 137, which is a prime number.
According to Knuth [1998], prime hashes generally provide good distribution characteristics.

287 /*
288 * Read a chain ptr field from anywhere in the index file:
289 * the free list pointer, a hash table chain p tr, or an
290 * index record chain ptr.
291 */
292 static off_t
293 _db_readptr(DB *db, off_t offset)
294 {
295 char asciiptr[PTR_SZ + 1];

296 if (lseek(db->idxfd, offset, SEEK_SET) == -1)
297 err_dump("_db_readptr: lseek error to pt r field");
298 if (read(db->idxfd, asciiptr, PTR_SZ) != PTR _SZ)
299 err_dump("_db_readptr: read error of ptr field");
300 asciiptr[PTR_SZ] = 0; /* null terminat e */
301 return(atol(asciiptr));
302 }

303 /*
304 * Read the next index record. We start at the specified offset
305 * in the index file. We read the index record into db->idxbuf
306 * and replace the separators with null bytes. If all is OK we
307 * set db->datoff and db->datlen to the offset and length of the
308 * corresponding data record in the data file.
309 */
310 static off_t
311 _db_readidx(DB *db, off_t offset)
312 {
313 ssize_t i;
314 char *ptr1, *ptr2;
315 char asciiptr[PTR_SZ + 1], asciil en[IDXLEN_SZ + 1];
316 struct iovec iov[2];

[287 –
302]

_db_readptr reads any one of three different chain pointers: (a) the pointer at the beginning of the
index file that points to the first index record on the free list, (b) the pointers in the hash table that point
to the first index record on each hash chain, and (c) the pointers that are stored at the beginning of each
index record (whether the index record is part of a hash chain or on the free list). We convert the pointer
from ASCII to a long integer before returning it. No locking is done by this function; that is up to the
caller.

[303 –
316]

The _db_readidx function is used to read the record at the specified offset from the index file. On
success, the function will return the offset of the next record in the list. In this case, the function will
populate several fields in the DB structure: idxoff contains the offset of the current record in the index
file, ptrval contains the offset of the next index entry in the list, idxlen contains the length of the
current index record, idxbuf contains the actual index record, datoff contains the offset of the record
in the data file, and datlen contains the length of the data record.

317 /*
318 * Position index file and record the offset . db_nextrec
319 * calls us with offset==0, meaning read fro m current offset.
320 * We still need to call lseek to record the current offset.
321 */
322 if ((db->idxoff = lseek(db->idxfd, offset,
323 offset == 0 ? SEEK_CUR : SEEK_SET)) == -1)
324 err_dump("_db_readidx: lseek error");

325 /*
326 * Read the ascii chain ptr and the ascii le ngth at
327 * the front of the index record. This tells us the
328 * remaining size of the index record.
329 */
330 iov[0].iov_base = asciiptr;
331 iov[0].iov_len = PTR_SZ;
332 iov[1].iov_base = asciilen;
333 iov[1].iov_len = IDXLEN_SZ;
334 if ((i = readv(db->idxfd, &iov[0], 2)) != PT R_SZ + IDXLEN_SZ) {

335 if (i == 0 && offset == 0)
336 return(-1); /* EOF for db_nextre c */
337 err_dump("_db_readidx: readv error of in dex record");
338 }

339 /*
340 * This is our return value; always >= 0.
341 */
342 asciiptr[PTR_SZ] = 0; /* null termina te */
343 db->ptrval = atol(asciiptr); /* offset of ne xt key in chain */

344 asciilen[IDXLEN_SZ] = 0; /* null termina te */
345 if ((db->idxlen = atoi(asciilen)) < IDXLEN_M IN ||
346 db->idxlen > IDXLEN_MAX)
347 err_dump("_db_readidx: invalid length");

[317 –
324]

We start by seeking to the index file offset provided by the caller. We record the offset in the DB
structure, so even if the caller wants to read the record at the current file offset (by setting offset to 0),
we still need to call lseek to determine the current offset. Since an index record will never be stored at
offset 0 in the index file, we can safely overload the value of 0 to mean "read from the current offset."

[325 –
338]

We call readv to read the two fixed-length fields at the beginning of the index record: the chain pointer
to the next index record and the size of the variable-length index record that follows.

[339 –
347]

We convert the offset of the next record to an integer and store it in the ptrval field (this will be used
as the return value for this function). Then we convert the length of the index record into an integer and
save it in the idxlen field.

348 /*
349 * Now read the actual index record. We read it into the key
350 * buffer that we malloced when we opened th e database.
351 */
352 if ((i = read(db->idxfd, db->idxbuf, db->idx len)) != db->idxlen)
353 err_dump("_db_readidx: read error of ind ex record");
354 if (db->idxbuf[db->idxlen-1] != NEWLINE) /* sanity check */
355 err_dump("_db_readidx: missing newline") ;
356 db->idxbuf[db->idxlen-1] = 0; /* replace newline with null */

357 /*
358 * Find the separators in the index record.
359 */
360 if ((ptr1 = strchr(db->idxbuf, SEP)) == NULL)
361 err_dump("_db_readidx: missing first sep arator");
362 *ptr1++ = 0; /* replace SEP w ith null */

363 if ((ptr2 = strchr(ptr1, SEP)) == NULL)
364 err_dump("_db_readidx: missing second se parator");
365 *ptr2++ = 0; /* replace SEP w ith null */

366 if (strchr(ptr2, SEP) != NULL)
367 err_dump("_db_readidx: too many separato rs");

368 /*
369 * Get the starting offset and length of the data record.
370 */
371 if ((db->datoff = atol(ptr1)) < 0)
372 err_dump("_db_readidx: starting offset < 0");

373 if ((db->datlen = atol(ptr2)) <= 0 || db->da tlen > DATLEN_MAX)
374 err_dump("_db_readidx: invalid length");
375 return(db->ptrval); /* return offset of next key in chain */
376 }

[348 –
356]

We read the variable-length index record into the idxbuf field in the DB structure. The record should be
terminated with a newline, which we replace with a null byte. If the index file is corrupt, we terminate
and drop core by calling err_dump .

[357 –
367]

We separate the index record into three fields: the key, the offset of the corresponding data record, and
the length of the data record. The strchr function finds the first occurrence of the specified character in
the given string. Here we look for the character that separates fields in the record (SEP, which we define
to be a colon).

[368 –
376]

We convert the data record offset and length into integers and store them in the DB structure. Then we
return the offset of the next record in the hash chain. Note that we do not read the data record. That is
left to the caller. In db_fetch , for example, we don't read the data record until _db_find_and_lock has
read the index record that matches the key that we're looking for.

377 /*
378 * Read the current data record into the data buffer.
379 * Return a pointer to the null-terminated dat a buffer.
380 */
381 static char *
382 _db_readdat(DB *db)
383 {
384 if (lseek(db->datfd, db->datoff, SEEK_SET) = = -1)
385 err_dump("_db_readdat: lseek error");
386 if (read(db->datfd, db->datbuf, db->datlen) != db->datlen)
387 err_dump("_db_readdat: read error");
388 if (db->datbuf[db->datlen-1] != NEWLINE) /* sanity check */
389 err_dump("_db_readdat: missing newline") ;
390 db->datbuf[db->datlen-1] = 0; /* replace new line with null */
391 return(db->datbuf); /* return pointer to data record */
392 }

393 /*
394 * Delete the specified record.
395 */
396 int
397 db_delete(DBHANDLE h, const char *key)
398 {
399 DB *db = h;
400 int rc = 0; /* assume record wil l be found */

401 if (_db_find_and_lock(db, key, 1) == 0) {
402 _db_dodelete(db);
403 db->cnt_delok++;
404 } else {
405 rc = -1; /* not found */
406 db->cnt_delerr++;
407 }
408 if (un_lock(db->idxfd, db->chainoff, SEEK_SE T, 1) < 0)
409 err_dump("db_delete: un_lock error");
410 return(rc);
411 }

[377 –
392]

The _db_readdat function populates the datbuf field in the DB structure with the contents of the data
record, expecting that the datoff and datlen fields have been properly initialized already.

[393 –
411]

The db_delete function is used to delete a record given its key. We use _db_find_and_lock to
determine whether the record exists in the database. If it does, we call _db_dodelete to do the work
needed to delete the record. The third argument to _db_find_and_lock controls whether the chain is
read-locked or write-locked. Here we are requesting a write lock, since we will potentially change the
list. Since _db_find_and_lock returns with the lock still held, we need to unlock it, regardless of
whether the record was found.

412 /*
413 * Delete the current record specified by the DB structure.
414 * This function is called by db_delete and db _store, after
415 * the record has been located by _db_find_and _lock.
416 */
417 static void
418 _db_dodelete(DB *db)
419 {
420 int i;
421 char *ptr;
422 off_t freeptr, saveptr;

423 /*
424 * Set data buffer and key to all blanks.
425 */
426 for (ptr = db->datbuf, i = 0; i < db->datlen - 1; i++)
427 *ptr++ = SPACE;
428 *ptr = 0; /* null terminate for _db_writed at */
429 ptr = db->idxbuf;
430 while (*ptr)
431 *ptr++ = SPACE;

432 /*
433 * We have to lock the free list.
434 */
435 if (writew_lock(db->idxfd, FREE_OFF, SEEK_SE T, 1) < 0)
436 err_dump("_db_dodelete: writew_lock erro r");

437 /*
438 * Write the data record with all blanks.
439 */
440 _db_writedat(db, db->datbuf, db->datoff, SEE K_SET);

[412 –
431]

The _db_dodelete function does all the work necessary to delete a record from the database. (This
function is also called by db_store .) Most of the function just updates two linked lists: the free list and
the hash chain for this key. When a record is deleted, we set its key and data record to blanks. This fact
is used by db_nextrec , which we'll examine later in this section.

[432 –
440]

We call writew_lock to write-lock the free list. This is to prevent two processes that are deleting
records at the same time, on two different hash chains, from interfering with each other. Since we'll add
the deleted record to the free list, which changes the free-list pointer, only one process at a time can be
doing this.

[412 –
431]

The _db_dodelete function does all the work necessary to delete a record from the database. (This
function is also called by db_store .) Most of the function just updates two linked lists: the free list and
the hash chain for this key. When a record is deleted, we set its key and data record to blanks. This fact
is used by db_nextrec , which we'll examine later in this section.

 We write the all-blank data record by calling _db_writedat . Note that there is no need for
_db_writedat to lock the data file in this case. Since db_delete has write-locked the hash chain for
this record, we know that no other process is reading or writing this particular data record.

441 /*
442 * Read the free list pointer. Its value bec omes the
443 * chain ptr field of the deleted index reco rd. This means
444 * the deleted record becomes the head of th e free list.
445 */
446 freeptr = _db_readptr(db, FREE_OFF);

447 /*
448 * Save the contents of index record chain p tr,
449 * before it's rewritten by _db_writeidx.
450 */
451 saveptr = db->ptrval;

452 /*
453 * Rewrite the index record. This also rewri tes the length
454 * of the index record, the data offset, and the data length,
455 * none of which has changed, but that's OK.
456 */
457 _db_writeidx(db, db->idxbuf, db->idxoff, SEE K_SET, freeptr);

458 /*
459 * Write the new free list pointer.
460 */
461 _db_writeptr(db, FREE_OFF, db->idxoff);

462 /*
463 * Rewrite the chain ptr that pointed to thi s record being
464 * deleted. Recall that _db_find_and_lock se ts db->ptroff to
465 * point to this chain ptr. We set this chai n ptr to the
466 * contents of the deleted record's chain pt r, saveptr.
467 */
468 _db_writeptr(db, db->ptroff, saveptr);
469 if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
470 err_dump("_db_dodelete: un_lock error");
471 }

[441 –
461]

We read the free-list pointer and then update the index record so that its next record pointer is set to the
first record on the free list. (If the free list was empty, this new chain pointer is 0.) We have already
cleared the key. Then we update the free-list pointer with the offset of the index record we are deleting.
This means that the free list is handled on a last-in, first-out basis; that is, deleted records are added to
the front of the free list (although we remove entries from the free list on a first-fit basis).

 We don't have a separate free list for each file. When we add a deleted index record to the free list, the
index record still points to the deleted data record. There are better ways to do this, in exchange for
added complexity.

[462 – We update the previous record in the hash chain to point to the record after the one we are deleting, thus

[441 –
461]

We read the free-list pointer and then update the index record so that its next record pointer is set to the
first record on the free list. (If the free list was empty, this new chain pointer is 0.) We have already
cleared the key. Then we update the free-list pointer with the offset of the index record we are deleting.
This means that the free list is handled on a last-in, first-out basis; that is, deleted records are added to
the front of the free list (although we remove entries from the free list on a first-fit basis).

471] removing the deleted record from the hash chain. Finally, we unlock the free list.

472 /*
473 * Write a data record. Called by _db_dodelete (to write
474 * the record with blanks) and db_store.
475 */
476 static void
477 _db_writedat(DB *db, const char *data, off_t o ffset, int whence)
478 {
479 struct iovec iov[2];
480 static char newline = NEWLINE;

481 /*
482 * If we're appending, we have to lock befor e doing the lseek
483 * and write to make the two an atomic opera tion. If we're
484 * overwriting an existing record, we don't have to lock.
485 */
486 if (whence == SEEK_END) /* we're appending, lock entire file */
487 if (writew_lock(db->datfd, 0, SEEK_SET, 0) < 0)
488 err_dump("_db_writedat: writew_lock error");

489 if ((db->datoff = lseek(db->datfd, offset, w hence)) == -1)
490 err_dump("_db_writedat: lseek error");
491 db->datlen = strlen(data) + 1; /* datlen in cludes newline */

492 iov[0].iov_base = (char *) data;
493 iov[0].iov_len = db->datlen - 1;
494 iov[1].iov_base = &newline;
495 iov[1].iov_len = 1;
496 if (writev(db->datfd, &iov[0], 2) != db->dat len)
497 err_dump("_db_writedat: writev error of data record");

498 if (whence == SEEK_END)
499 if (un_lock(db->datfd, 0, SEEK_SET, 0) < 0)
500 err_dump("_db_writedat: un_lock erro r");
501 }

[472 –
491]

We call _db_writedat to write a data record. When we delete a record, we use _db_writedat to
overwrite the record with blanks; _db_writedat doesn't need to lock the data file, because db_delete
has write-locked the hash chain for this record. Thus, no other process could be reading or writing this
particular data record. When we cover db_store later in this section, we'll encounter the case in which
_db_writedat is appending to the data file and has to lock it.

 We seek to the location where we want to write the data record. The amount to write is the record size
plus 1 byte for the terminating newline we add.

[492 –
501]

We set up the iovec array and call writev to write the data record and newline. We can't assume that
the caller's buffer has room at the end for us to append the newline, so we write the newline from a
separate buffer. If we are appending a record to the file, we release the lock we acquired earlier.

502 /*
503 * Write an index record. _db_writedat is cal led before
504 * this function to set the datoff and datlen fields in the
505 * DB structure, which we need to write the in dex record.
506 */
507 static void
508 _db_writeidx(DB *db, const char *key,
509 off_t offset, int whence, off_t p trval)
510 {
511 struct iovec iov[2];
512 char asciiptrlen[PTR_SZ + IDXLEN_ SZ +1];
513 int len;
514 char *fmt;

515 if ((db->ptrval = ptrval) < 0 || ptrval > PT R_MAX)
516 err_quit("_db_writeidx: invalid ptr: %d" , ptrval);
517 if (sizeof(off_t) == sizeof(long long))
518 fmt = "%s%c%lld%c%d\n";
519 else
520 fmt = "%s%c%ld%c%d\n";
521 sprintf(db->idxbuf, fmt, key, SEP, db->datof f, SEP, db->datlen);
522 if ((len = strlen(db->idxbuf)) < IDXLEN_MIN || len > IDXLEN_MAX)
523 err_dump("_db_writeidx: invalid length") ;
524 sprintf(asciiptrlen, "%*ld%*d", PTR_SZ, ptrv al, IDXLEN_SZ, len);

525 /*
526 * If we're appending, we have to lock befor e doing the lseek
527 * and write to make the two an atomic opera tion. If we're
528 * overwriting an existing record, we don't have to lock.
529 */
530 if (whence == SEEK_END) /* we're appendi ng */
531 if (writew_lock(db->idxfd, ((db->nhash+1)*PTR_SZ)+1,
532 SEEK_SET, 0) < 0)
533 err_dump("_db_writeidx: writew_lock error");

[502 –
524]

The _db_writeidx function is called to write an index record. After validating the next pointer in the
chain, we create the index record and store the second half of it in idxbuf . We need the size of this
portion of the index record to create the first half of the index record, which we store in the local
variable asciiptrlen .

 Note that we select the format string passed to sprintf based on the size of the off_t data type. Even
a 32-bit system can provide 64-bit file offsets, so we can't make any assumptions about the size of the
off_t data type.

[525 –
533]

As with _db_writedat , this function deals with locking only when a new index record is being
appended to the index file. When _db_dodelete calls this function, we're rewriting an existing index
record. In this case, the caller has write-locked the hash chain, so no additional locking is required.

534 /*
535 * Position the index file and record the of fset.
536 */
537 if ((db->idxoff = lseek(db->idxfd, offset, w hence)) == -1)
538 err_dump("_db_writeidx: lseek error");

539 iov[0].iov_base = asciiptrlen;
540 iov[0].iov_len = PTR_SZ + IDXLEN_SZ;

541 iov[1].iov_base = db->idxbuf;
542 iov[1].iov_len = len;
543 if (writev(db->idxfd, &iov[0], 2) != PTR_SZ + IDXLEN_SZ + len)
544 err_dump("_db_writeidx: writev error of index record");

545 if (whence == SEEK_END)
546 if (un_lock(db->idxfd, ((db->nhash+1)*PT R_SZ)+1,
547 SEEK_SET, 0) < 0)
548 err_dump("_db_writeidx: un_lock erro r");
549 }

550 /*
551 * Write a chain ptr field somewhere in the in dex file:
552 * the free list, the hash table, or in an ind ex record.
553 */
554 static void
555 _db_writeptr(DB *db, off_t offset, off_t ptrva l)
556 {
557 char asciiptr[PTR_SZ + 1];

558 if (ptrval < 0 || ptrval > PTR_MAX)
559 err_quit("_db_writeptr: invalid ptr: %d" , ptrval);
560 sprintf(asciiptr, "%*ld", PTR_SZ, ptrval);

561 if (lseek(db->idxfd, offset, SEEK_SET) == -1)
562 err_dump("_db_writeptr: lseek error to p tr field");
563 if (write(db->idxfd, asciiptr, PTR_SZ) != PT R_SZ)
564 err_dump("_db_writeptr: write error of p tr field");
565 }

[534 –
549]

We seek to the location where we want to write the index record and save this offset in the idxoff field
of the DB structure. Since we built the index record in two separate buffers, we use writev to store it in
the index file. If we were appending to the file, we release the lock we acquired before seeking. This
makes the seek and the write an atomic operation from the perspective of concurrently running
processes appending new records to the same database.

[550 –
565]

_db_writeptr is used to write a chain pointer to the index file. We validate that the chain pointer is
within bounds, then convert it to an ASCII string. We seek to the specified offset in the index file and
write the pointer.

566 /*
567 * Store a record in the database. Return 0 i f OK, 1 if record
568 * exists and DB_INSERT specified, -1 on error .
569 */
570 int
571 db_store(DBHANDLE h, const char *key, const ch ar *data, int flag)
572 {
573 DB *db = h;
574 int rc, keylen, datlen;
575 off_t ptrval;

576 if (flag != DB_INSERT && flag != DB_REPLACE &&
577 flag != DB_STORE) {
578 errno = EINVAL;
579 return(-1);
580 }
581 keylen = strlen(key);

582 datlen = strlen(data) + 1; /* +1 for ne wline at end */
583 if (datlen < DATLEN_MIN || datlen > DATLEN_M AX)
584 err_dump("db_store: invalid data length");

585 /*
586 * _db_find_and_lock calculates which hash t able this new record
587 * goes into (db->chainoff), regardless of w hether it already
588 * exists or not. The following calls to _db _writeptr change the
589 * hash table entry for this chain to point to the new record.
590 * The new record is added to the front of t he hash chain.
591 */
592 if (_db_find_and_lock(db, key, 1) < 0) { /* record not found */
593 if (flag == DB_REPLACE) {
594 rc = -1;
595 db->cnt_storerr++;
596 errno = ENOENT; /* error, record does not exist */
597 goto doreturn;
598 }

[566 –
584]

We use db_store to add a record to the database. We first validate the flag value we are passed. Then
we make sure that the length of the data record is valid. If it isn't, we drop core and exit. This is OK for
an example, but if we were building a production-quality library, we'd return an error status instead,
which would give the application a chance to recover.

[585 –
598]

We call _db_find_and_lock to see if the record already exists. It is OK if the record doesn't exist and
either DB_INSERT or DB_STORE is specified, or if the record already exists and either DB_REPLACE or
DB_STORE is specified. If we're replacing an existing record, that implies that the keys are identical but
that the data records probably differ. Note that the final argument to _db_find_and_lock specifies that
the hash chain must be write-locked, as we will probably be modifying this hash chain.

599 /*
600 * _db_find_and_lock locked the hash cha in for us; read
601 * the chain ptr to the first index reco rd on hash chain.
602 */
603 ptrval = _db_readptr(db, db->chainoff);

604 if (_db_findfree(db, keylen, datlen) < 0) {
605 /*
606 * Can't find an empty record big en ough. Append the
607 * new record to the ends of the ind ex and data files.
608 */
609 _db_writedat(db, data, 0, SEEK_END);
610 _db_writeidx(db, key, 0, SEEK_END, p trval);

611 /*
612 * db->idxoff was set by _db_writeid x. The new
613 * record goes to the front of the h ash chain.
614 */
615 _db_writeptr(db, db->chainoff, db->i dxoff);
616 db->cnt_stor1++;
617 } else {
618 /*
619 * Reuse an empty record. _db_findfr ee removed it from
620 * the free list and set both db->da toff and db->idxoff.
621 * Reused record goes to the front o f the hash chain.
622 */
623 _db_writedat(db, data, db->datoff, S EEK_SET);

624 _db_writeidx(db, key, db->idxoff, SE EK_SET, ptrval);
625 _db_writeptr(db, db->chainoff, db->i dxoff);
626 db->cnt_stor2++;
627 }

[599 –
603]

After we call _db_find_and_lock , the code divides into four cases. In the first two, no record was
found, so we are adding a new record. We read the offset of the first entry on the hash list.

[604 –
616]

Case 1: we call _db_findfree to search the free list for a deleted record with the same size key and
same size data. If no such record is found, we have to append the new record to the ends of the index
and data files. We call _db_writedat to write the data part, _db_writeidx to write the index part, and
_db_writeptr to place the new record on the front of the hash chain. We increment a count
(cnt_stor1) of the number of times we executed this case to allow us to characterize the behavior of
the database.

[617 –
627]

Case 2: _db_findfree found an empty record with the correct sizes and removed it from the free list
(we'll see the implementation of _db_findfree shortly). We write the data and index portions of the
new record and add the record to the front of the hash chain as we did in case 1. The cnt_stor2 field
counts how many times we've executed this case.

628 } else { /* record fo und */
629 if (flag == DB_INSERT) {
630 rc = 1; /* error, record already in db */
631 db->cnt_storerr++;
632 goto doreturn;
633 }

634 /*
635 * We are replacing an existing record. We know the new
636 * key equals the existing key, but we n eed to check if
637 * the data records are the same size.
638 */
639 if (datlen != db->datlen) {
640 _db_dodelete(db); /* delete the ex isting record */

641 /*
642 * Reread the chain ptr in the hash table
643 * (it may change with the deletion) .
644 */
645 ptrval = _db_readptr(db, db->chainof f);

646 /*
647 * Append new index and data records to end of files.
648 */
649 _db_writedat(db, data, 0, SEEK_END);
650 _db_writeidx(db, key, 0, SEEK_END, p trval);

651 /*
652 * New record goes to the front of t he hash chain.
653 */
654 _db_writeptr(db, db->chainoff, db->i dxoff);
655 db->cnt_stor3++;
656 } else {

[628 –
633]

Now we reach the two cases in which a record with the same key already exists in the database. If the
caller isn't replacing the record, we set the return code to indicate that a record exists, increment the
count of the number of store errors, and jump to the end of the function, where we handle the common
return logic.

[634 –
656]

Case 3: an existing record is being replaced, and the length of the new data record differs from the
length of the existing one. We call _db_dodelete to delete the existing record. Recall that this places
the deleted record at the head of the free list. Then we append the new record to the ends of the data and
index files by calling _db_writedat and _db_writeidx . (There are other ways to handle this case. We
could try to find a deleted record that has the correct data size.) The new record is added to the front of
the hash chain by calling _db_writeptr . The cnt_stor3 counter in the DB structure records the number
of times we've executed this case.

657 /*
658 * Same size data, just replace data record.
659 */
660 _db_writedat(db, data, db->datoff, S EEK_SET);
661 db->cnt_stor4++;
662 }
663 }
664 rc = 0; /* OK */

665 doreturn: /* unlock hash chain locked by _db_f ind_and_lock */
666 if (un_lock(db->idxfd, db->chainoff, SEEK_SE T, 1) < 0)
667 err_dump("db_store: un_lock error");
668 return(rc);
669 }

670 /*
671 * Try to find a free index record and accompa nying data record
672 * of the correct sizes. We're only called by db_store.
673 */
674 static int
675 _db_findfree(DB *db, int keylen, int datlen)
676 {
677 int rc;
678 off_t offset, nextoffset, saveoffset;

679 /*
680 * Lock the free list.
681 */
682 if (writew_lock(db->idxfd, FREE_OFF, SEEK_SE T, 1) < 0)
683 err_dump("_db_findfree: writew_lock erro r");

684 /*
685 * Read the free list pointer.
686 */
687 saveoffset = FREE_OFF;
688 offset = _db_readptr(db, saveoffset);

[657 –
663]

Case 4: An existing record is being replaced, and the length of the new data record equals the length of
the existing data record. This is the easiest case; we simply rewrite the data record and increment the
counter (cnt_stor4) for this case.

[664 – In the normal case, we set the return code to indicate success and fall through to the common return

[657 –
663]

Case 4: An existing record is being replaced, and the length of the new data record equals the length of
the existing data record. This is the easiest case; we simply rewrite the data record and increment the
counter (cnt_stor4) for this case.

669] logic. We unlock the hash chain that was locked as a result of calling _db_find_and_lock and return
to the caller.

[670 –
688]

The _db_findfree function tries to find a free index record and associated data record of the specified
sizes. We need to write-lock the free list to avoid interfering with any other processes using the free list.
After locking the free list, we get the pointer address at the head of the list.

689 while (offset != 0) {
690 nextoffset = _db_readidx(db, offset);
691 if (strlen(db->idxbuf) == keylen && db-> datlen == datlen)
692 break; /* found a match */
693 saveoffset = offset;
694 offset = nextoffset;
695 }

696 if (offset == 0) {
697 rc = -1; /* no match found */
698 } else {
699 /*
700 * Found a free record with matching siz es.
701 * The index record was read in by _db_r eadidx above,
702 * which sets db->ptrval. Also, saveoffs et points to
703 * the chain ptr that pointed to this em pty record on
704 * the free list. We set this chain ptr to db->ptrval,
705 * which removes the empty record from t he free list.
706 */
707 _db_writeptr(db, saveoffset, db->ptrval) ;
708 rc = 0;

709 /*
710 * Notice also that _db_readidx set both db->idxoff
711 * and db->datoff. This is used by the c aller, db_store,
712 * to write the new index record and dat a record.
713 */
714 }

715 /*
716 * Unlock the free list.
717 */
718 if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
719 err_dump("_db_findfree: un_lock error");
720 return(rc);
721 }

[689 –
695]

The while loop in _db_findfree goes through the free list, looking for a record with matching key and
data sizes. In this simple implementation, we reuse a deleted record only if the key length and data
length equal the lengths for the new record being inserted. There are a variety of better ways to reuse
this deleted space, in exchange for added complexity.

[696 –
714]

If we can't find an available record of the requested key and data sizes, we set the return code to
indicate failure. Otherwise, we write the previous record's chain pointer to point to the next chain
pointer value of the record we have found. This removes the record from the free list.

[689 –
695]

The while loop in _db_findfree goes through the free list, looking for a record with matching key and
data sizes. In this simple implementation, we reuse a deleted record only if the key length and data
length equal the lengths for the new record being inserted. There are a variety of better ways to reuse
this deleted space, in exchange for added complexity.

[715 –
721]

Once we are done with the free list, we release the write lock. Then we return the status to the caller.

722 /*
723 * Rewind the index file for db_nextrec.
724 * Automatically called by db_open.
725 * Must be called before first db_nextrec.
726 */
727 void
728 db_rewind(DBHANDLE h)
729 {
730 DB *db = h;
731 off_t offset;

732 offset = (db->nhash + 1) * PTR_SZ; /* +1 fo r free list ptr */

733 /*
734 * We're just setting the file offset for th is process
735 * to the start of the index records; no nee d to lock.
736 * +1 below for newline at end of hash table .
737 */
738 if ((db->idxoff = lseek(db->idxfd, offset+1, SEEK_SET)) == -1)
739 err_dump("db_rewind: lseek error");
740 }

741 /*
742 * Return the next sequential record.
743 * We just step our way through the index file , ignoring deleted
744 * records. db_rewind must be called before th is function is
745 * called the first time.
746 */
747 char *
748 db_nextrec(DBHANDLE h, char *key)
749 {
750 DB *db = h;
751 char c;
752 char *ptr;

[722 –
740]

The db_rewind function is used to reset the database to "the beginning;" we set the file offset for the
index file to point to the first record in the index file (immediately following the hash table). (Recall the
structure of the index file from Figure 20.2.)

[741 –
752]

The db_nextrec function returns the next record in the database. The return value is a pointer to the
data buffer. If the caller provides a non-null value for the key parameter, the corresponding key is
copied to this address. The caller is responsible for allocating a buffer big enough to store the key. A
buffer whose size is IDXLEN_MAX bytes is large enough to hold any key.

 Records are returned sequentially, in the order that they happen to be stored in the database file. Thus,
the records are not sorted by key value. Also, because we do not follow the hash chains, we can come
across records that have been deleted, but we will not return these to the caller.

753 /*
754 * We read lock the free list so that we don 't read
755 * a record in the middle of its being delet ed.
756 */
757 if (readw_lock(db->idxfd, FREE_OFF, SEEK_SET , 1) < 0)
758 err_dump("db_nextrec: readw_lock error") ;

759 do {
760 /*
761 * Read next sequential index record.
762 */
763 if (_db_readidx(db, 0) < 0) {
764 ptr = NULL; /* end of index file , EOF */
765 goto doreturn;
766 }

767 /*
768 * Check if key is all blank (empty reco rd).
769 */
770 ptr = db->idxbuf;
771 while ((c = *ptr++) != 0 && c == SPACE)
772 ; /* skip until null byte or nonbl ank */
773 } while (c == 0); /* loop until a nonblank key is found */

774 if (key != NULL)
775 strcpy(key, db->idxbuf); /* return ke y */
776 ptr = _db_readdat(db); /* return pointer to data buffer */
777 db->cnt_nextrec++;

778 doreturn:
779 if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
780 err_dump("db_nextrec: un_lock error");
781 return(ptr);
782 }

[753 –
758]

We first need to read-lock the free list so that no other processes can remove a record while we are
reading it.

[759 –
773]

We call _db_readidx to read the next record. We pass in an offset of 0 to tell _db_readidx to continue
reading from the current offset. Since we are reading the index file sequentially, we can come across
records that have been deleted. We want to return only valid records, so we skip any record whose key
is all spaces (recall that _db_dodelete clears a key by setting it to all spaces).

[774 –
782]

When we find a valid key, we copy it to the caller's buffer if one was supplied. Then we read the data
record and set the return value to point to the internal buffer containing the data record. We increment a
statistics counter, unlock the free list, and return the pointer to the data record.

The normal use of db_rewind and db_nextrec is in a loop of the form

db_rewind(db);
while ((ptr = db_nextrec(db, key)) != NULL) {
 /* process record */
}

As we warned earlier, there is no order to the returned records; they are not in key order.

If the database is being modified while db_nextrec is called from a loop, the records returned by db_nextrec
are simply a snapshot of a changing database at some point in time. db_nextrec always returns a "correct"
record when it is called; that is, it won't return a record that was deleted. But it is possible for a record returned
by db_nextrec to be deleted immediately after db_nextrec returns. Similarly, if a deleted record is reused
right after db_nextrec skips over the deleted record, we won't see that new record unless we rewind the
database and go through it again. If it's important to obtain an accurate "frozen" snapshot of the database using
db_nextrec , there must be no insertions or deletions going on at the same time.

Look at the locking used by db_nextrec . We're not going through any hash chain, and we can't determine the
hash chain that a record belongs on. Therefore, it is possible for an index record to be in the process of being
deleted when db_nextrec is reading the record. To prevent this, db_nextrec read-locks the free list, thereby
avoiding any interaction with _db_dodelete and _db_findfree .

Before we conclude our study of the db.c source file, we need to describe the locking when new index records
or data records are appended to the end of the file. In cases 1 and 3, db_store calls both _db_writeidx and
_db_writedat with a third argument of 0 and a fourth argument of SEEK_END. This fourth argument is the flag
to these two functions, indicating that the new record is being appended to the file. The technique used by
_db_writeidx is to write-lock the index file from the end of the hash chain to the end of file. This won't
interfere with any other readers or writers of the database (since they will lock a hash chain), but it does prevent
other callers of db_store from trying to append at the same time. The technique used by _db_writedat is to
write-lock the entire data file. Again, this won't interfere with other readers or writers of the database (since they
don't even try to lock the data file), but it does prevent other callers of db_store from trying to append to the
data file at the same time. (See Exercise 20.3.)

20.9. Performance

To test the database library and to obtain some timing measurements of the database access patterns of typical
applications, a test program was written. This program takes two command-line arguments: the number of
children to create and the number of database records (nrec) for each child to write to the database. The program
then creates an empty database (by calling db_open), fork s the number of child processes, and waits for all the
children to terminate. Each child performs the following steps.

1. Write nrec records to the database.
2. Read the nrec records back by key value.
3. Perform the following loop nrec x 5 times.

a. Read a random record.
b. Every 37 times through the loop, delete a random record.
c. Every 11 times through the loop, insert a new record and read the record back.
d. Every 17 times through the loop, replace a random record with a new record. Every other one of

these replacements is a record with the same size data, and the alternate is a record with a longer
data portion.

4. Delete all the records that this child wrote. Every time a record is deleted, ten random records are looked
up.

The number of operations performed on the database is counted by the cnt_xxx variables in the DB structure,
which were incremented in the functions. The number of operations differs from one child to the next, since the
random-number generator used to select records is initialized in each child to the child's process ID. A typical
count of the operations performed in each child, when nrec is 500, is shown in Figure 20.6.

Figure 20.6. Typical count of operations performed by each child when nrec is 500

Operation Count

db_store , DB_INSERT, no empty record, appended 678

db_store , DB_INSERT, empty record reused 164

db_store , DB_REPLACE, different data length, appended 97

db_store , DB_REPLACE, equal data length 109

db_store , record not found 19

db_fetch , record found 8,114

db_fetch , record not found 732

db_delete , record found 842

db_delete , record not found 110

We performed about ten times more fetches than stores or deletions, which is probably typical of many database
applications.

Each child is doing these operations (fetching, storing, and deleting) only with the records that the child wrote.
The concurrency controls are being exercised because all the children are operating on the same database (albeit

different records in the same database). The total number of records in the database increases in proportion to
the number of children. (With one child, nrec records are originally written to the database. With two children,
nrec x 2 records are originally written, and so on.)

To test the concurrency provided by coarse-grained locking versus fine-grained locking and to compare the
three types of locking (no locking, advisory locking, and mandatory locking), we ran three versions of the test
program. The first version used the source code shown in Section 20.8, which we've called fine-grained locking.
The second version changed the locking calls to implement coarse-grained locking, as described in Section 20.6.
The third version had all locking calls removed, so we could measure the overhead involved in locking. We can
run the first and second versions (fine-grained locking and coarse-grained locking) using either advisory or
mandatory locking, by changing the permission bits on the database files. (In all the tests reported in this section,
we measured the times for mandatory locking using only the implementation of fine-grained locking.)

All the timing tests in this section were done on a SPARC system running Solaris 9.

Single-Process Results

Figure 20.7 shows the results when only a single child process ran, with an nrec of 500, 1,000, and 2,000.

Figure 20.7. Single child, varying nrec, different locking techniques

Advisory locking Mandatory locking No locking

Coarse-grained locking Fine-grained locking Fine-grained locking

nrec User Sys Clock User Sys Clock User Sys Clock User Sys Clock

500 0.42 0.89 1.31 0.42 1.17 1.59 0.41 1.04 1.45 0.46 1.49 1.95

1,000 1.51 3.89 5.41 1.64 4.13 5.78 1.63 4.12 5.76 1.73 6.34 8.07

2,000 3.91 10.06 13.98 4.09 10.30 14.39 4.03 10.63 14.66 4.47 16.21 20.70

The last 12 columns give the corresponding times in seconds. In all cases, the user CPU time plus the system
CPU time approximately equals the clock time. This set of tests was CPU-limited and not disk-limited.

The six columns under "Advisory locking" are almost equal for each row. This makes sense because for a single
process, there is no difference between coarse-grained locking and fine-grained locking.

Comparing no locking versus advisory locking, we see that adding the locking calls adds between 2 percent and
31 percent to the system CPU time. Even though the locks are never used (since only a single process is
running), the system call overhead in the calls to fcntl adds time. Also note that the user CPU time is about the
same for all four versions of locking. Since the user code is almost equivalent (except for the number of calls to
fcntl), this makes sense.

The final point to note from Figure 20.7 is that mandatory locking adds between 43 percent and 54 percent to
the system CPU time, compared to advisory locking. Since the number of locking calls is the same for advisory
fine-grained locking and mandatory fine-grained locking, the additional system call overhead must be in the
reads and writes.

The final test was to try the no-locking program with multiple children. The results, as expected, were random
errors. Normally, records that were added to the database couldn't be found, and the test program aborted.
Different errors occurred every time the test program was run. This illustrates a classic race condition: multiple
processes updating the same file without using any form of locking.

Multiple-Process Results

The next set of measurements looks mainly at the differences between coarse-grained locking and fine-grained
locking. As we said earlier, intuitively, we expect fine-grained locking to provide additional concurrency, since
there is less time that portions of the database are locked from other processes. Figure 20.8 shows the results for
an nrec of 500, varying the number of children from 1 to 12.

Figure 20.8. Comparison of various locking techniques, nrec = 500

Advisory locking Mandatory locking

Coarse-grained locking Fine-grained locking ∆ Fine-grained locking ∆

#Proc User Sys Clock User Sys Clock Clock User Sys Clock Percent

1 0.41 1.00 1.42 0.41 1.05 1.47 0.05 0.47 1.40 1.87 33

2 1.10 2.81 3.92 1.11 2.80 3.92 0.00 1.15 4.06 5.22 45

3 2.17 5.27 7.44 2.19 5.18 7.37 –0.07 2.31 7.67 9.99 48

4 3.36 8.55 11.91 3.26 8.67 11.94 0.03 3.51 12.69 16.20 46

5 4.72 13.08 17.80 4.99 12.64 17.64 –0.16 4.91 19.21 24.14 52

6 6.45 17.96 24.42 6.83 17.29 24.14 –0.28 7.03 26.59 33.66 54

7 8.46 23.12 31.62 8.67 22.96 31.65 0.03 9.25 35.47 44.74 54

8 10.83 29.68 40.55 11.00 29.39 40.41 –0.14 11.67 45.90 57.63 56

9 13.35 36.81 50.23 13.43 36.28 49.76 –0.47 14.45 58.02 72.49 60

10 16.35 45.28 61.66 16.09 44.10 60.23 –1.43 17.43 70.90 88.37 61

11 18.97 54.24 73.24 19.13 51.70 70.87 –2.37 20.62 84.98 105.69 64

12 22.92 63.54 86.51 22.94 61.28 84.29 –2.22 24.41 101.68 126.20 66

All times are in seconds and are the total for the parent and all its children. There are many items to consider
from this data.

The eighth column, labeled "∆ clock," is the difference in seconds between the clock times from advisory
coarse-grained locking to advisory fine-grained locking. This is the measurement of how much concurrency we
obtain by going from coarse-grained locking to fine-grained locking. On the system used for these tests, coarse-
grained locking is roughly the same until we have more than seven processes. Even after seven processes, the
decrease in clock time using fine-grained locking isn't that great (less than 3 percent), which makes us wonder
whether the additional code required to implement fine-grained locking is worth the effort.

We would like the clock time to decrease from coarse-grained to fine-grained locking, as it eventually does, but
we expect the system time to remain higher for fine-grained locking, for any number of processes. The reason
we expect this is that with fine-grained locking, we are issuing more fcntl calls than with coarse-grained
locking. If we total the number of fcntl calls in Figure 20.6 for coarse-grained locking and fine-grained
locking, we have an average of 21,730 for coarse-grained locking and 25,292 for fine-grained locking. (To get
these numbers, realize that each operation in Figure 20.6 requires two calls to fcntl for coarse-grained locking
and that the first three calls to db_store along with record deletion [record found] each require four calls to
fcntl for fine-grained locking.) We expect this increase of 16 percent in the number of calls to fcntl to result
in an increased system time for fine-grained locking. Therefore, the slight decrease in system time for fine-
grained locking, when the number of processes exceeds seven, is puzzling.

The reason for the decrease is that with coarse-grained locking, we hold locks for longer periods of time, thus
increasing the likelihood that other processes will block on a lock. With fine-grained locking, the locking is
done over shorter intervals, so there is less chance that processes will block. If we analyze the system behavior
running 12 database processes, we will see that there is three times as much process switching with coarse-
grained locking as with fine-grained locking. This means that processes block on locks less often with fine-
grained locking.

The final column, labeled "∆ percent," is the percentage increase in the system CPU time from advisory fine-
grained locking to mandatory fine-grained locking. These percentages verify what we saw in Figure 20.7, that
mandatory locking adds significantly (between 33 percent and 66 percent) to the system time.

Since the user code for all these tests is almost identical (there are some additional fcntl calls for both advisory
fine-grained and mandatory fine-grained locking), we expect the user CPU times to be the same across any row.

The values in the first row of Figure 20.8 are similar to those for an nrec of 500 in Figure 20.7. This
corresponds to our expectation.

Figure 20.9 is a graph of the data from Figure 20.8 for advisory fine-grained locking. We plot the clock time as
the number of processes goes from 1 to 12. We also plot the user CPU time divided by the number of processes
and the system CPU time divided by the number of processes.

Figure 20.9. Values from Figure 20.8 for advisory fine-grained locking

Note that both CPU times, divided by the number of processes, are linear but that the plot of the clock time is
nonlinear. The probable reason is the added amount of CPU time used by the operating system to switch
between processes as the number of processes increases. This operating system overhead would show up as an
increased clock time, but shouldn't affect the CPU times of the individual processes.

The reason the user CPU time increases with the number of processes is that there are more records in the
database. Each hash chain is getting longer, so it takes the _db_find_and_lock function longer, on the average,
to find a record.

This chapter has taken a long look at the design and implementation of a database library. Although we've kept
the library small and simple for presentation purposes, it contains the record locking required to allow
concurrent access by multiple processes.

We've also looked at the performance of this library with various numbers of processes using no locking,
advisory locking (fine-grained and coarse-grained), and mandatory locking. We saw that advisory locking adds
less than 10 percent to the clock time over no locking and that mandatory locking adds another 33 percent to 66
percent over advisory locking.

Chapter 21. Communicating with a Network Printer

Section 21.1. Introduction

Section 21.2. The Internet Printing Protocol

Section 21.3. The Hypertext Transfer Protocol

Section 21.4. Printer Spooling

Section 21.5. Source Code

Section 21.6. Summary

21.1. Introduction

We now develop a program that can communicate with a network printer. These printers are connected to
multiple computers via Ethernet and often support PostScript files as well as plaintext files. Applications
generally use the Internet Printing Protocol (IPP) to communicate with these printers, although some support
alternate communication protocols.

We are about to describe two programs: a print spooler daemon that sends jobs to a printer and a command to
submit print jobs to the spooler daemon. Since the print spooler has to do multiple things (communicate with
clients submitting jobs, communicate with the printer, read files, scan directories, etc.), this gives us a chance to
use many of the functions from earlier chapters. For example, we use threads (Chapters 11 and 12) to simplify
the design of the print spooler and sockets (Chapter 16) to communicate between the program used to schedule
a file to be printed and the print spooler, and also between the print spooler and the network printer.

21.2. The Internet Printing Protocol

IPP specifies the communication rules for building network-based printing systems. By embedding an IPP
server inside a printer with an Ethernet card, the printer can service requests from many computer systems.
These computer systems need not be located on the same physical network, however. IPP is built on top of
standard Internet protocols, so any computer that can create a TCP/IP connection to the printer can submit a
print job.

Specifically, IPP is built on top of HTTP, the Hypertext Transfer Protocol (Section 21.3). HTTP, in turn, is built
on top of TCP/IP. The structure of an IPP message is shown in Figure 21.1.

Figure 21.1. Structure of an IPP message

IPP is a request–response protocol. A client sends a request message to a server, and the server answers with a
response message. The IPP header contains a field that indicates the requested operation. Operations are defined
to submit print jobs, cancel print jobs, get job attributes, get printer attributes, pause and restart the printer, place
a job on hold, and release a held job.

Figure 21.2 shows the structure of an IPP message header. The first 2 bytes are the IPP version number. For
protocol version 1.1, each byte has a value of 1. For a protocol request, the next 2 bytes contain a value
identifying the requested operation. For a protocol response, these 2 bytes contain a status code instead.

Figure 21.2. Structure of an IPP header

The next 4 bytes contain an integer identifying the request. Optional attributes follow this, terminated by an
end-of-attributes tag. Any data that might be associated with the request follows immediately after the end-of-
attributes tag.

In the header, integers are stored as signed, two's-complement, binary values in big-endian byte order (i.e.,
network byte order). Attributes are stored in groups. Each group starts with a single byte identifying the group.
Within each group, an attribute is generally represented as a 1-byte tag, followed by a 2-byte name length,

followed by the name of the attribute, followed by a 2-byte value length, and finally the value itself. The value
can be encoded as a string, a binary integer, or a more complex structure, such as a date/timestamp.

Figure 21.3 shows how the attributes-charset attribute would be encoded with a value of utf-8 .

Figure 21.3. Sample IPP attribute encoding

Depending on the operation requested, some attributes are required to be provided in the request message,
whereas others are optional. For example, Figure 21.4 shows the attributes defined for a print-job request.

Figure 21.4. Attributes of print-job request

Attribute Status Description

attributes-charset required The character set used by attributes of type text or name

attributes-natural-
language

required The natural language used by attributes of type text or name

printer-uri required The printer's Universal Resource Identifier

requesting-user-name optional Name of user submitting job (used for authentication, if enabled)

job-name optional Name of job used to distinguish between multiple jobs

ipp-attribute-
fidelity

optional If true, tells printer to reject job if all attributes can't be met; otherwise,
printer does its best to print the job

document-name optional The name of the document (suitable for printing in a banner, for
example)

document-format optional The format of the document (plaintext, PostScript, etc.)

document-natural-
language

optional The natural language of the document

compression optional The algorithm used to compress the document data

Figure 21.4. Attributes of print-job request

Attribute Status Description

job-k-octets optional Size of the document in 1,024-octet units

job-impressions optional Number of impressions (images imposed on a page) submitted in this job

job-media-sheets optional Number of sheets printed by this job

The IPP header contains a mixture of text and binary data. Attribute names are stored as text, but sizes are
stored as binary integers. This complicates the process of building and parsing the header, since we need to
worry about such things as network byte order and whether our host processor can address an integer on an
arbitrary byte boundary. A better alternative would have been to design the header to contain text only. This
simplifies processing at the cost of slightly larger protocol messages.

IPP is specified in a series of documents (Requests For Comments, or RFCs) available at
http://www.pwg.org/ipp . The main documents are listed in Figure 21.5, although many other documents are
available to further specify administrative procedures, job attributes, and the like.

Figure 21.5. Primary IPP RFCs

RFC Title

2567 Design Goals for an Internet Printing Protocol

2568 Rationale for the Structure of the Model and Protocol for the Internet Printing Protocol

2911 Internet Printing Protocol/1.1: Model and Semantics

2910 Internet Printing Protocol/1.1: Encoding and Transport

3196 Internet Printing Protocol/1.1: Implementor's Guide

21.3. The Hypertext Transfer Protocol

Version 1.1 of HTTP is specified in RFC 2616. HTTP is also a request–response protocol. A request message
contains a start line, followed by header lines, a blank line, and an optional entity body. The entity body
contains the IPP header and data in this case.

HTTP headers are ASCII, with each line terminated by a carriage return (\r) and a line feed (\n). The start line
consists of a method that indicates what operation the client is requesting, a Uniform Resource Locator (URL)
that describes the server and protocol, and a string indicating the HTTP version. The only method used by IPP
is POST, which is used to send data to a server.

The header lines specify attributes, such as the format and length of the entity body. A header line consists of an
attribute name followed by a colon, optional white space, and the attribute value, and is terminated by a carriage
return and a line feed. For example, to specify that the entity body contains an IPP message, we include the
header line

 Content-Type: application/ipp

The start line in an HTTP response message contains a version string followed by a numeric status code and a
status message, terminated by a carriage return and a line feed. The remainder of the HTTP response message
has the same format as the request message: headers followed by a blank line and an optional entity body.

The following is a sample HTTP header for a print request for the author's printer:

 POST /phaser860/ipp HTTP/1.1^M
 Content-Length: 21931^M
 Content-Type: application/ipp^M
 Host: phaser860:ipp^M
 ^M

The ̂ M at the end of the each line is the carriage return that precedes the line feed. The line feed doesn't show up
as a printable character. Note that the last line of the header is empty, except for the carriage return and line feed.

21.4. Printer Spooling

The programs that we develop in this chapter form the basis of a simple printer spooler. A simple user
command sends a file to the printer spooler; the spooler saves it to disk, queues the request, and ultimately
sends the file to the printer.

All UNIX Systems provide at least one print spooling system. FreeBSD ships LPD, the BSD print spooling
system (see lpd (8) and Chapter 13 of Stevens [1990]). Linux and Mac OS X include CUPS, the Common
UNIX Printing System (see cupsd (8)). Solaris ships with the standard System V printer spooler (see lp (1) and
lpsched (1M)). In this chapter, our interest is not in these spooling systems per se, but in communicating with a
network printer. We need to develop a spooling system to solve the problem of multiuser access to a single
resource (the printer).

We use a simple command that reads a file and sends it to the printer spooler daemon. The command has one
option to force the file to be treated as plaintext (the default assumes that the file is PostScript). We call this
command print .

In our printer spooler daemon, printd , we use multiple threads to divide up the work that the daemon needs to
accomplish.

• One thread listens on a socket for new print requests arriving from clients running the print command.
• A separate thread is spawned for each client to copy the file to be printed to a spooling area.
• One thread communicates with the printer, sending it queued jobs one at a time.
• One thread handles signals.

Figure 21.6 shows how these components fit together.

Figure 21.6. Printer spooling components

The print configuration file is /etc/printer.conf . It identifies the host name of the server running the printer
spooling daemon and the host name of the network printer. The spooling daemon is identified by a line starting
with the printserver keyword, followed by white space and the host name of the server. The printer is
identified by a line starting with the printer keyword, followed by white space and the host name of the printer.

A sample printer configuration file might contain the following lines:

 printserver blade
 printer phaser860

where blade is the host name of the computer system running the printer spooling daemon, and phaser860 is
the host name of the network printer.

Security

Programs that run with superuser privileges have the potential to open a computer system up to attack. Such
programs usually aren't more vulnerable than any other program, but when compromised can lead to attackers
obtaining full access to your system.

The printer spooling daemon in this chapter starts out with superuser privileges in this example to be able to
bind a socket to a privileged TCP port number. To make the daemon less vulnerable to attack, we can

• Design the daemon to conform to the principles of least privilege (Section 8.11). After we obtain a
socket bound to a privileged port address, we can change the user and group IDs of the daemon to
something other that root (lp , for example). All the files and directories used to store queued print jobs
should be owned by this nonprivileged user. This way, the daemon, if compromised, will provide the
attacker with access only to the printing subsystem. This is still a concern, but it is far less serious than
an attacker getting full access to your system.

• Audit the daemon's source code for all known potential vulnerabilities, such as buffer overruns.
• Log unexpected or suspicious behavior so that an administrator can take note and investigate further.

21.5. Source Code

The source code for this chapter comprises five files, not including some of the common library routines we've
used in earlier chapters:

ipp.h Header file containing IPP definitions

print.h Header containing common constants, data structure definitions, and utility routine declarations

util.c Utility routines used by the two programs

print.c The C source file for the command used to print a file

printd.c The C source file for the printer spooling daemon

We will study each file in the order listed.

We start with the ipp.h header file.

 1 #ifndef _IPP_H
 2 #define _IPP_H

 3 /*
 4 * Defines parts of the IPP protocol between the scheduler
 5 * and the printer. Based on RFC2911 and RFC2 910.
 6 */
 7 /*
 8 * Status code classes.
 9 */
 10 #define STATCLASS_OK(x) ((x) >= 0x0000 && (x) <= 0x00ff)
 11 #define STATCLASS_INFO(x) ((x) >= 0x0100 && (x) <= 0x01ff)
 12 #define STATCLASS_REDIR(x) ((x) >= 0x0200 && (x) <= 0x02ff)
 13 #define STATCLASS_CLIERR(x)((x) >= 0x0400 && (x) <= 0x04ff)
 14 #define STATCLASS_SRVERR(x)((x) >= 0x0500 && (x) <= 0x05ff)

 15 /*
 16 * Status codes.
 17 */
 18 #define STAT_OK 0x0000 /* success */
 19 #define STAT_OK_ATTRIGN 0x0001 /* OK; som e attrs ignored */
 20 #define STAT_OK_ATTRCON 0x0002 /* OK; som e attrs conflicted */

 21 #define STAT_CLI_BADREQ 0x0400 /* invalid client request */
 22 #define STAT_CLI_FORBID 0x0401 /* request is forbidden */
 23 #define STAT_CLI_NOAUTH 0x0402 /* authent ication required */
 24 #define STAT_CLI_NOPERM 0x0403 /* client not authorized */
 25 #define STAT_CLI_NOTPOS 0x0404 /* request not possible */
 26 #define STAT_CLI_TIMOUT 0x0405 /* client too slow */
 27 #define STAT_CLI_NOTFND 0x0406 /* no obje ct found for URI */
 28 #define STAT_CLI_OBJGONE 0x0407 /* object no longer available */
 29 #define STAT_CLI_TOOBIG 0x0408 /* request ed entity too big */
 30 #define STAT_CLI_TOOLNG 0x0409 /* attribu te value too large */
 31 #define STAT_CLI_BADFMT 0x040a /* unsuppo rted doc format */
 32 #define STAT_CLI_NOTSUP 0x040b /* attribu tes not supported */
 33 #define STAT_CLI_NOSCHM 0x040c /* URI sch eme not supported */
 34 #define STAT_CLI_NOCHAR 0x040d /* charset not supported */
 35 #define STAT_CLI_ATTRCON 0x040e /* attribu tes conflicted */
 36 #define STAT_CLI_NOCOMP 0x040f /* compres sion not supported */
 37 #define STAT_CLI_COMPERR 0x0410 /* data ca n't be decompressed */

 38 #define STAT_CLI_FMTERR 0x0411 /* documen t format error */
 39 #define STAT_CLI_ACCERR 0x0412 /* error a ccessing data */

[1–
14]

We start the ipp.h header with the standard #ifdef to prevent errors when it is included twice in the
same file. Then we define the classes of IPP status codes (see Section 13 in RFC 2911).

[15–
39]

We define specific status codes based on RFC 2911. We don't use these codes in the program shown
here; their use is left as an exercise (See Exercise 21.1).

 40 #define STAT_SRV_INTERN 0x0500 /* unexpect ed internal error */
 41 #define STAT_SRV_NOTSUP 0x0501 /* operatio n not supported */
 42 #define STAT_SRV_UNAVAIL 0x0502 /* service unavailable */
 43 #define STAT_SRV_BADVER 0x0503 /* version not supported */
 44 #define STAT_SRV_DEVERR 0x0504 /* device e rror */
 45 #define STAT_SRV_TMPERR 0x0505 /* temporar y error */
 46 #define STAT_SRV_REJECT 0x0506 /* server n ot accepting jobs */
 47 #define STAT_SRV_TOOBUSY 0x0507 /* server t oo busy */
 48 #define STAT_SRV_CANCEL 0x0508 /* job has been canceled */
 49 #define STAT_SRV_NOMULTI 0x0509 /* multi-do c jobs unsupported */

 50 /*
 51 * Operation IDs
 52 */
 53 #define OP_PRINT_JOB 0x02
 54 #define OP_PRINT_URI 0x03
 55 #define OP_VALIDATE_JOB 0x04
 56 #define OP_CREATE_JOB 0x05
 57 #define OP_SEND_DOC 0x06
 58 #define OP_SEND_URI 0x07
 59 #define OP_CANCEL_JOB 0x08
 60 #define OP_GET_JOB_ATTR 0x09
 61 #define OP_GET_JOBS 0x0a
 62 #define OP_GET_PRINTER_ATTR 0x0b
 63 #define OP_HOLD_JOB 0x0c
 64 #define OP_RELEASE_JOB 0x0d
 65 #define OP_RESTART_JOB 0x0e
 66 #define OP_PAUSE_PRINTER 0x10
 67 #define OP_RESUME_PRINTER 0x11
 68 #define OP_PURGE_JOBS 0x12

 69 /*
 70 * Attribute Tags.
 71 */
 72 #define TAG_OPERATION_ATTR 0x01 /* operat ion attributes tag */
 73 #define TAG_JOB_ATTR 0x02 /* job at tributes tag */
 74 #define TAG_END_OF_ATTR 0x03 /* end of attributes tag */
 75 #define TAG_PRINTER_ATTR 0x04 /* printe r attributes tag */
 76 #define TAG_UNSUPP_ATTR 0x05 /* unsupp orted attributes tag */

[40–
49]

We continue to define status codes. The ones in the range 0x500 to 0x5ff are server error codes. All
codes are described in Sections 13.1.1 through 13.1.5 in RFC 2911.

[50–
68]

We define the various operation IDs next. There is one ID for each task defined by IPP (see Section
4.4.15 in RFC 2911). In our example, we will use only the print-job operation.

[40–
49]

We continue to define status codes. The ones in the range 0x500 to 0x5ff are server error codes. All
codes are described in Sections 13.1.1 through 13.1.5 in RFC 2911.

[69–
76]

The attribute tags delimit the attribute groups in the IPP request and response messages. The tag values
are defined in Section 3.5.1 of RFC 2910.

 77 /*
 78 * Value Tags.
 79 */
 80 #define TAG_UNSUPPORTED 0x10 /* unsupp orted value */
 81 #define TAG_UNKNOWN 0x12 /* unknow n value */
 82 #define TAG_NONE 0x13 /* no val ue */
 83 #define TAG_INTEGER 0x21 /* intege r */
 84 #define TAG_BOOLEAN 0x22 /* boolea n */
 85 #define TAG_ENUM 0x23 /* enumer ation */
 86 #define TAG_OCTSTR 0x30 /* octetS tring */
 87 #define TAG_DATETIME 0x31 /* dateTi me */
 88 #define TAG_RESOLUTION 0x32 /* resolu tion */
 89 #define TAG_INTRANGE 0x33 /* rangeO fInteger */
 90 #define TAG_TEXTWLANG 0x35 /* textWi thLanguage */
 91 #define TAG_NAMEWLANG 0x36 /* nameWi thLanguage */
 92 #define TAG_TEXTWOLANG 0x41 /* textWi thoutLanguage */
 93 #define TAG_NAMEWOLANG 0x42 /* nameWi thoutLanguage */
 94 #define TAG_KEYWORD 0x44 /* keywor d */
 95 #define TAG_URI 0x45 /* URI */
 96 #define TAG_URISCHEME 0x46 /* uriSch eme */
 97 #define TAG_CHARSET 0x47 /* charse t */
 98 #define TAG_NATULANG 0x48 /* natura lLanguage */
 99 #define TAG_MIMETYPE 0x49 /* mimeMe diaType */

100 struct ipp_hdr {
101 int8_t major_version; /* always 1 */
102 int8_t minor_version; /* always 1 */
103 union {
104 int16_t op; /* operation ID */
105 int16_t st; /* status */
106 } u;
107 int32_t request_id; /* request ID */
108 char attr_group[1]; /* start of optional attributes group */
109 /* optional data follows */
110 };

111 #define operation u.op
112 #define status u.st

113 #endif /* _IPP_H */

[77–99] The value tags indicate the format of individual attributes and parameters. They are defined in Section
3.5.2 of RFC 2910.

[100–
113]

We define the structure of an IPP header. Request messages start with the same header as response
messages, except that the operation ID in the request is replaced by a status code in the response.

 We end the header file with a #endif to match the #ifdef at the start of the file.

The next file is the print.h header.

 1 #ifndef _PRINT_H
 2 #define _PRINT_H
 3 /*
 4 * Print server header file.
 5 */
 6 #include <sys/socket.h>
 7 #include <arpa/inet.h>
 8 #if defined(BSD) || defined(MACOS)
 9 #include <netinet/in.h>
10 #endif
11 #include <netdb.h>
12 #include <errno.h>

13 #define CONFIG_FILE "/etc/printer.conf"
14 #define SPOOLDIR "/var/spool/printer"
15 #define JOBFILE "jobno"
16 #define DATADIR "data"
17 #define REQDIR "reqs"

18 #define FILENMSZ 64
19 #define FILEPERM (S_IRUSR|S_IWUSR)
20 #define USERNM_MAX 64
21 #define JOBNM_MAX 256
22 #define MSGLEN_MAX 512

23 #ifndef HOST_NAME_MAX
24 #define HOST_NAME_MAX 256
25 #endif

26 #define IPP_PORT 631
27 #define QLEN 10
28 #define IBUFSZ 512 /* IPP header b uffer size */
29 #define HBUFSZ 512 /* HTTP header buffer size */
30 #define IOBUFSZ 8192 /* data buffer size */

[1–
12]

We include all header files that an application might need if it included this header. This makes it easy
for applications to include print.h without having to track down all the header dependencies.

[13–
17]

We define the files and directories for the implementation. Copies of the files to be printed will be stored
in the directory /var/spool/printer/data ; control information for each request will be stored in the
directory /var/spool/printer/reqs . The file containing the next job number is
/var/spool/printer/jobno .

[18–
30]

Next, we define limits and constants. FILEPERM is the permissions used when creating copies of files
submitted to be printed. The permissions are restrictive because we don't want ordinary users to be able
to read one another's files while they are waiting to be printed. IPP is defined to use port 631. The QLEN
is the backlog parameter we pass to listen (see Section 16.4 for details).

31 #ifndef ETIME
32 #define ETIME ETIMEDOUT
33 #endif

34 extern int getaddrlist(const char *, const cha r *,
35 struct addrinfo **);
36 extern char *get_printserver(void);
37 extern struct addrinfo *get_printaddr(void);
38 extern ssize_t tread(int, void *, size_t, unsi gned int);

39 extern ssize_t treadn(int, void *, size_t, uns igned int);
40 extern int connect_retry(int, const struct soc kaddr *, socklen_t);
41 extern int initserver(int, struct sockaddr *, socklen_t, int);

42 /*
43 * Structure describing a print request.
44 */
45 struct printreq {
46 long size; /* size in byte s */
47 long flags; /* see below */
48 char usernm[USERNM_MAX]; /* user's name */
49 char jobnm[JOBNM_MAX]; /* job's name * /
50 };

51 /*
52 * Request flags.
53 */
54 #define PR_TEXT 0x01 /* treat file a s plain text */

55 /*
56 * The response from the spooling daemon to th e print command.
57 */
58 struct printresp {
59 long retcode; /* 0=success, ! 0=error code */
60 long jobid; /* job ID */
61 char msg[MSGLEN_MAX]; /* error messag e */
62 };

63 #endif /* _PRINT_H */

[31–
33]

Some platforms don't define the error ETIME, so we define it to an alternate error code that makes sense
for these systems.

[34–
41]

Next, we declare all the public routines contained in util.c (we'll look at these next). Note that the
connect_retry function, from Figure 16.9, and the initserver function, from Figure 16.20, are not
included in util.c .

[42–
63]

The printreq and printresp structures define the protocol between the print command and the printer
spooling daemon. The print command sends the printreq structure defining the user name, job name,
and file size to the printer spooling daemon. The spooling daemon responds with a printresp structure
consisting of a return code, a job ID, and an error message if the request failed.

The next file we will look at is util.c , the file containing utility routines.

 1 #include "apue.h"
 2 #include "print.h"
 3 #include <ctype.h>
 4 #include <sys/select.h>

 5 #define MAXCFGLINE 512
 6 #define MAXKWLEN 16
 7 #define MAXFMTLEN 16

 8 /*
 9 * Get the address list for the given host and service and
 10 * return through ailistpp. Returns 0 on succe ss or an error

 11 * code on failure. Note that we do not set er rno if we
 12 * encounter an error.
 13 *
 14 * LOCKING: none.
 15 */
 16 int
 17 getaddrlist(const char *host, const char *serv ice,
 18 struct addrinfo **ailistpp)
 19 {
 20 int err;
 21 struct addrinfo hint;

 22 hint.ai_flags = AI_CANONNAME;
 23 hint.ai_family = AF_INET;
 24 hint.ai_socktype = SOCK_STREAM;
 25 hint.ai_protocol = 0;
 26 hint.ai_addrlen = 0;
 27 hint.ai_canonname = NULL;
 28 hint.ai_addr = NULL;
 29 hint.ai_next = NULL;
 30 err = getaddrinfo(host, service, &hint, ail istpp);
 31 return(err);
 32 }

[1–
7]

We first define the limits needed by the functions in this file. MAXCFGLINE is the maximum size of a line in
the printer configuration file, MAXKWLEN is the maximum size of a keyword in the configuration file, and
MAXFMTLEN is the maximum size of the format string we pass to sscanf .

[8–
32]

The first function is getaddrlist . It is a wrapper for getaddrinfo (Section 16.3.3), since we always call
getaddrinfo with the same hint structure. Note that we need no mutex locking in this function. The
LOCKING comment at the beginning of each function is intended only for documenting multithreaded
locking. This comment lists the assumptions, if any, that are made regarding the locking, tells which locks
the function might acquire or release, and tells which locks must be held to call the function.

 33 /*
 34 * Given a keyword, scan the configuration fil e for a match
 35 * and return the string value corresponding t o the keyword.
 36 *
 37 * LOCKING: none.
 38 */
 39 static char *
 40 scan_configfile(char *keyword)
 41 {
 42 int n, match;
 43 FILE *fp;
 44 char keybuf[MAXKWLEN], pattern[M AXFMTLEN];
 45 char line[MAXCFGLINE];
 46 static char valbuf[MAXCFGLINE];

 47 if ((fp = fopen(CONFIG_FILE, "r")) == NULL)
 48 log_sys("can't open %s", CONFIG_FILE);
 49 sprintf(pattern, "%%%ds %%%ds", MAXKWLEN-1, MAXCFGLINE-1);
 50 match = 0;
 51 while (fgets(line, MAXCFGLINE, fp) != NULL) {
 52 n = sscanf(line, pattern, keybuf, valbu f);
 53 if (n == 2 && strcmp(keyword, keybuf) = = 0) {
 54 match = 1;

 55 break;
 56 }
 57 }
 58 fclose(fp);
 59 if (match != 0)
 60 return(valbuf);
 61 else
 62 return(NULL);
 63 }

[33–
46]

The scan_configfile function searches through the printer configuration file for the specified
keyword.

[47–
63]

We open the configuration file for reading and build the format string corresponding to the search
pattern. The notation %%%ds builds a format specifier that limits the string size so we don't overrun the
buffers used to store the strings on the stack. We read the file one line at a time and scan for two strings
separated by white space; if we find them, we compare the first string with the keyword. If we find a
match or we reach the end of the file, the loop ends and we close the file. If the keyword matches, we
return a pointer to the buffer containing the string after the keyword; otherwise, we return NULL.

 The string returned is stored in a static buffer (valbuf), which can be overwritten on successive calls.
Thus, scan_configfile can't be called by a multithreaded application unless we take care to avoid
calling it from multiple threads at the same time.

 64 /*
 65 * Return the host name running the print serv er or NULL on error.
 66 *
 67 * LOCKING: none.
 68 */
 69 char *
 70 get_printserver(void)
 71 {
 72 return(scan_configfile("printserver"));
 73 }

 74 /*
 75 * Return the address of the network printer o r NULL on error.
 76 *
 77 * LOCKING: none.
 78 */
 79 struct addrinfo *
 80 get_printaddr(void)
 81 {
 82 int err;
 83 char *p;
 84 struct addrinfo *ailist;

 85 if ((p = scan_configfile("printer")) != NUL L) {
 86 if ((err = getaddrlist(p, "ipp", &ailis t)) != 0) {
 87 log_msg("no address information for %s", p);
 88 return(NULL);
 89 }
 90 return(ailist);
 91 }
 92 log_msg("no printer address specified");
 93 return(NULL);
 94 }

[64–
73]

The get_printserver function is simply a wrapper function that calls scan_configfile to find the
name of the computer system where the printer spooling daemon is running.

[74–
94]

We use the get_printaddr function to get the address of the network printer. It is similar to the
previous function except that when we find the name of the printer in the configuration file, we use the
name to find the corresponding network address.

 Both get_printserver and get_printaddr call scan_configfile . If it can't open the printer
configuration file, scan_configfile calls log_sys to print an error message and exit. Although
get_printserver is meant to be called from a client command and get_printaddr is meant to be
called from the daemon, having both call log_sys is OK, because we can arrange for the log functions to
print to the standard error instead of to the log file by setting a global variable.

 95 /*
 96 * "Timed" read - timout specifies the # of se conds to wait before
 97 * giving up (5th argument to select controls how long to wait for
 98 * data to be readable). Returns # of bytes r ead or -1 on error.
 99 *
100 * LOCKING: none.
101 */
102 ssize_t
103 tread(int fd, void *buf, size_t nbytes, unsign ed int timout)
104 {
105 int nfds;
106 fd_set readfds;
107 struct timeval tv;

108 tv.tv_sec = timout;
109 tv.tv_usec = 0;
110 FD_ZERO(&readfds);
111 FD_SET(fd, &readfds);
112 nfds = select(fd+1, &readfds, NULL, NULL, &t v);
113 if (nfds <= 0) {
114 if (nfds == 0)
115 errno = ETIME;
116 return(-1);
117 }
118 return(read(fd, buf, nbytes));
119 }

[95–
107]

We provide a function called tread to read a specified number of bytes, but block for at most timout
seconds before giving up. This function is useful when reading from a socket or a pipe. If we don't
receive data before the specified time limit, we return –1 with errno set to ETIME. If data is available
within the time limit, we return at most nbytes bytes of data, but we can return less than requested if all
the data doesn't arrive in time.

 We will use tread to prevent denial-of-service attacks on the printer spooling daemon. A malicious
user might repeatedly try to connect to the daemon without sending it data, just to prevent other users
from being able to submit print jobs. By giving up after a reasonable amount of time, we prevent this
from happening. The tricky part is selecting a suitable timeout value that is large enough to prevent

[95–
107]

We provide a function called tread to read a specified number of bytes, but block for at most timout
seconds before giving up. This function is useful when reading from a socket or a pipe. If we don't
receive data before the specified time limit, we return –1 with errno set to ETIME. If data is available
within the time limit, we return at most nbytes bytes of data, but we can return less than requested if all
the data doesn't arrive in time.

premature failures when the system is under load and tasks are taking longer to complete. If we choose
a value too large, however, we might enable denial-of-service attacks by allowing the daemon to
consume too many resources to process the pending requests.

[108–
119]

We use select to wait for the specified file descriptor to be readable. If the time limit expires before
data is available to be read, select returns 0, so we set errno to ETIME in this case. If select fails or
times out, we return –1. Otherwise, we return whatever data is available.

120 /*
121 * "Timed" read - timout specifies the number of seconds to wait
122 * per read call before giving up, but read ex actly nbytes bytes.
123 * Returns number of bytes read or -1 on error .
124 *
125 * LOCKING: none.
126 */
127 ssize_t
128 treadn(int fd, void *buf, size_t nbytes, unsig ned int timout)
129 {
130 size_t nleft;
131 ssize_t nread;

132 nleft = nbytes;
133 while (nleft > 0) {
134 if ((nread = tread(fd, buf, nleft, timou t)) < 0) {
135 if (nleft == nbytes)
136 return(-1); /* error, return -1 */
137 else
138 break; /* error, return amo unt read so far */
139 } else if (nread == 0) {
140 break; /* EOF */
141 }
142 nleft -= nread;
143 buf += nread;
144 }
145 return(nbytes - nleft); /* return >= 0 */
146 }

[120–
146]

We also provide a variation of tread , called treadn , that reads exactly the number of bytes requested.
This is similar to the readn function described in Section 14.8, but with the addition of the timeout
parameter.

 To read exactly nbytes bytes, we have to be prepared to make multiple calls to read . The difficult part
is trying to apply a single timeout value to multiple calls to read . We don't want to use an alarm,
because signals can be messy to deal with in multithreaded applications. We can't rely on the system
updating the timeval structure on return from select to indicate the amount of time left, because
many platforms do not support this (Section 14.5.1). Thus, we compromise and define the timeout
value in this case to apply to an individual read call. Instead of limiting the total amount of time we
wait, it limits the amount of time we'll wait in every iteration of the loop. The maximum time we can

[120–
146]

We also provide a variation of tread , called treadn , that reads exactly the number of bytes requested.
This is similar to the readn function described in Section 14.8, but with the addition of the timeout
parameter.

wait is bounded by (nbytes x timout) seconds (worst case, we'll receive only 1 byte at a time).

 We use nleft to record the number of bytes remaining to be read. If tread fails and we have received
data in a previous iteration, we break out of the while loop and return the number of bytes read;
otherwise, we return –1.

The command used to submit a print job is shown next. The C source file is print.c .

 1 /*
 2 * The client command for printing documents. Opens the file
 3 * and sends it to the printer spooling daemon . Usage:
 4 * print [-t] filename
 5 */
 6 #include "apue.h"
 7 #include "print.h"
 8 #include <fcntl.h>
 9 #include <pwd.h>

 10 /*
 11 * Needed for logging funtions.
 12 */
 13 int log_to_stderr = 1;

 14 void submit_file(int, int, const char *, size_ t, int);

 15 int
 16 main(int argc, char *argv[])
 17 {
 18 int fd, sockfd, err, text, c;
 19 struct stat sbuf;
 20 char *host;
 21 struct addrinfo *ailist, *aip;

 22 err = 0;
 23 text = 0;
 24 while ((c = getopt(argc, argv, "t")) != -1) {
 25 switch (c) {
 26 case 't':
 27 text = 1;
 28 break;

 29 case '?':
 30 err = 1;
 31 break;
 32 }
 33 }

[1–
14]

We need to define an integer called log_to_stderr to be able to use the log functions in our library. If
set to a nonzero value, error messages will be sent to the standard error stream instead of to a log file.
Although we don't use any logging functions in print.c , we do link util.o with print.o to build the
executable print command, and util.c contains functions for both user commands and daemons.

[1–
14]

We need to define an integer called log_to_stderr to be able to use the log functions in our library. If
set to a nonzero value, error messages will be sent to the standard error stream instead of to a log file.
Although we don't use any logging functions in print.c , we do link util.o with print.o to build the
executable print command, and util.c contains functions for both user commands and daemons.

[15–
33]

We support one option, -t , to force the file to be printed as text (instead of as a PostScript program, for
example). We use the getopt (3) function to process the command options.

 34 if (err || (optind != argc - 1))
 35 err_quit("usage: print [-t] filename");
 36 if ((fd = open(argv[optind], O_RDONLY)) < 0)
 37 err_sys("print: can't open %s", argv[1]);
 38 if (fstat(fd, &sbuf) < 0)
 39 err_sys("print: can't stat %s", argv[1]);
 40 if (!S_ISREG(sbuf.st_mode))
 41 err_quit("print: %s must be a regular f ile\n", argv[1]);

 42 /*
 43 * Get the hostname of the host acting as t he print server.
 44 */
 45 if ((host = get_printserver()) == NULL)
 46 err_quit("print: no print server define d");
 47 if ((err = getaddrlist(host, "print", &aili st)) != 0)
 48 err_quit("print: getaddrinfo error: %s" , gai_strerror(err));

 49 for (aip = ailist; aip != NULL; aip = aip-> ai_next) {
 50 if ((sockfd = socket(AF_INET, SOCK_STRE AM, 0)) < 0) {
 51 err = errno;
 52 } else if (connect_retry(sockfd, aip->a i_addr,
 53 aip->ai_addrlen) < 0) {
 54 err = errno;

[34–
41]

When getopt completes processing the command options, it leaves the variable optind set to the index
of the first nonoptional argument. If this is any value other than the index of the last argument, then the
wrong number of arguments was specified (we support only one nonoptional argument). Our error
processing includes checks to ensure that we can open the file to be printed and that it is a regular file (as
opposed to a directory or other type of file).

[42–
48]

We get the name of the printer spooling daemon by calling the get_printserver function from util.c
and then translate the host name into a network address by calling getaddrlist (also from util.c).

 Note that we specify the service as "print." As part of installing the printer spooling daemon on a system,
we need to make sure that /etc/services (or the equivalent database) has an entry for the printer
service. When we select a port number for the daemon, it would be a good idea to select one that is
privileged, to prevent malicious users from writing applications that pretend to be a printer spooling
daemon but instead steal copies of the files we try to print. This means that the port number should be
less than 1,024 (recall Section 16.3.4) and that our daemon will have to run with superuser privileges to
allow it to bind to a reserved port.

[49–
54]

We try to connect to the daemon using one address at a time from the list returned by getaddrinfo . We
will try to send the file to the daemon using the first address to which we can connect.

 55 } else {
 56 submit_file(fd, sockfd, argv[1], sb uf.st_size, text);
 57 exit(0);
 58 }
 59 }

 60 errno = err;
 61 err_ret("print: can't contact %s", host);
 62 exit(1);
 63 }

 64 /*
 65 * Send a file to the printer daemon.
 66 */
 67 void
 68 submit_file(int fd, int sockfd, const char *fn ame, size_t nbytes,
 69 int text)
 70 {
 71 int nr, nw, len;
 72 struct passwd *pwd;
 73 struct printreq req;
 74 struct printresp res;
 75 char buf[IOBUFSZ];

 76 /*
 77 * First build the header.
 78 */
 79 if ((pwd = getpwuid(geteuid())) == NULL)
 80 strcpy(req.usernm, "unknown");
 81 else
 82 strcpy(req.usernm, pwd->pw_name);
 83 req.size = htonl(nbytes);
 84 if (text)
 85 req.flags = htonl(PR_TEXT);
 86 else
 87 req.flags = 0;

[55–
63]

If we can make a connection, we call submit_file to transmit the file to the printer spooling daemon. If
we can't connect to any of the addresses, we print an error message and exit. We use err_ret and exit
instead of making a single call to err_sys to avoid a compiler warning, because the last line in main
wouldn't be a return statement or a call to exit .

[64–
87]

submit_file sends a print request to the daemon and reads the response.First, we build the printreq
request header. We use geteuid to get the caller's effective user ID and pass this to getpwuid to look for
the user in the system's password file. We copy the user's name to the request header or use the string
unknown if we can't identify the user. We store the size of the file to be printed in the header after
converting it to network byte order. Then we do the same with the PR_TEXT flag if the file is to be
printed as plaintext.

 88 if ((len = strlen(fname)) >= JOBNM_MAX) {
 89 /*
 90 * Truncate the filename (+-5 accounts for the leading
 91 * four characters and the terminating null).
 92 */
 93 strcpy(req.jobnm, "... ");
 94 strncat(req.jobnm, &fname[len-JOBNM_MAX +5], JOBNM_MAX-5);
 95 } else {
 96 strcpy(req.jobnm, fname);
 97 }

 98 /*
 99 * Send the header to the server.
100 */

101 nw = writen(sockfd, &req, sizeof(struct pri ntreq));
102 if (nw != sizeof(struct printreq)) {
103 if (nw < 0)
104 err_sys("can't write to print serve r");
105 else
106 err_quit("short write (%d/%d) to pr int server",
107 nw, sizeof(struct printreq));
108 }

109 /*
110 * Now send the file.
111 */
112 while ((nr = read(fd, buf, IOBUFSZ)) != 0) {
113 nw = writen(sockfd, buf, nr);
114 if (nw != nr) {
115 if (nw < 0)
116 err_sys("can't write to print s erver");
117 else
118 err_quit("short write (%d/%d) t o print server",
119 nw, nr);
120 }
121 }

[88–
108]

We set the job name to the name of the file being printed. If the name is longer than will fit in the
message, we truncate the beginning portion of the name and prepend an ellipsis to indicate that there
were more characters than would fit in the field. Then we send the request header to the daemon using
writen . If the write fails or if we transmit less than we expect, we print an error message and exit.

[109–
121]

After sending the header to the daemon, we send the file to be printed. We read the file IOBUFSZ bytes
at a time and use writen to send the data to the daemon. As with the header, if the write fails or we
write less than we expect, we print an error message and exit.

122 /*
123 * Read the response.
124 */
125 if ((nr = readn(sockfd, &res, sizeof(struct printresp))) !=
126 sizeof(struct printresp))
127 err_sys("can't read response from serve r");
128 if (res.retcode != 0) {
129 printf("rejected: %s\n", res.msg);
130 exit(1);
131 } else {
132 printf("job ID %ld\n", ntohl(res.jobid));
133 }
134 exit(0);
135 }

[122–
135]

After we send the file to be printed to the daemon, we read the daemon's response. If the request failed,
the return code (retcode) will be nonzero, so we print the textual error message included in the
response. If the request succeeded, we print the job ID so that the user knows how to refer to the
request in the future. (Writing a command to cancel the print request is left as an exercise; the job ID
can be used in the cancellation request to identify the job to be removed from the print queue.)

 Note that a successful response from the daemon does not mean that the printer was able to print the
file. It merely means that the daemon successfully added the print job to the queue.

Most of what we have seen in print.c was discussed in earlier chapters. The only topic that we haven't
covered is the getopt function, although we saw it earlier in the pty program from Chapter 19.

It is important that all commands on a system follow the same conventions, because this makes them easier to
use. If someone is familiar with the way command-line options are formed with one command, it would create
more chances for mistakes if another command followed different conventions.

This problem is sometimes visible when dealing with white space on the command line. Some commands
require that an option be separated from its argument by white space, but other commands require the argument
to follow immediate after its option, without any intervening spaces. Without a consistent set of rules to follow,
users either have to memorize the syntax of all commands or resort to a trial-and-error process when invoking
them.

The Single UNIX Specification includes a set of conventions and guidelines that promote consistent command-
line syntax. They include such suggestions as "Restrict each command-line option to a single alphanumeric
character" and "All options should be preceded by a - character."

Luckily, the getopt function exists to help command developers process command-line options in a consistent
manner.

#include <fcntl.h>

int getopt(int argc, const * const argv[], const ch ar *options);

extern int optind, opterr, optopt;
extern char *optarg;

Returns: the next option character, or
–1 when all options have been processed

The argc and argv arguments are the same ones passed to the main function of the program. The options
argument is a string containing the option characters supported by the command. If an option character is
followed by a colon, then the option takes an argument. Otherwise, the option exists by itself. For example, if
the usage statement for a command was

 command [-i] [-u username] [-z] filename

we would pass "iu:z" as the options string to getopt .

The normal use of getopt is in a loop that terminates when getopt returns –1. During each iteration of the loop,
getopt will return the next option processed. It is up to the application to sort out any conflict in options,
however; getopt simply parses the options and enforces a standard format.

When it encounters an invalid option, getopt returns a question mark instead of the character. If an option's
argument is missing, getopt will also return a question mark, but if the first character in the options string is a
colon, getopt returns a colon instead. The special pattern -- will cause getopt to stop processing options and

return –1. This allows users to provide command arguments that start with a minus sign but aren't options. For
example, if you have a file named -bar , you can't remove it by typing

 rm -bar

because rm will try to interpret -bar as options. The way to remove the file is to type

 rm -- -bar

The getopt function supports four external variables.

optarg If an option takes an argument, getopt sets optarg to point to the option's argument string when an
option is processed.

opterr If an option error is encountered, getopt will print an error message by default. To disable this
behavior, applications can set opterr to 0.

optind The index in the argv array of the next string to be processed. It starts out at 1 and is incremented for
each argument processed by getopt .

optopt If an error is encountered during options processing, getopt will set optopt to point to the option
string that caused the error.

The last file we will look at is the C source file for the printer spooling daemon.

 1 /*
 2 * Print server daemon.
 3 */
 4 #include "apue.h"
 5 #include "print.h"
 6 #include "ipp.h"
 7 #include <fcntl.h>
 8 #include <dirent.h>
 9 #include <ctype.h>
 10 #include <pwd.h>
 11 #include <pthread.h>
 12 #include <strings.h>
 13 #include <sys/select.h>
 14 #include <sys/uio.h>

 15 /*
 16 * These are for the HTTP response from the pr inter.
 17 */
 18 #define HTTP_INFO(x) ((x) >= 100 && (x) <= 1 99)
 19 #define HTTP_SUCCESS(x) ((x) >= 200 && (x) <= 299)

 20 /*
 21 * Describes a print job.
 22 */
 23 struct job {
 24 struct job *next; /* next in lis t */
 25 struct job *prev; /* previous in list */
 26 long jobid; /* job ID */
 27 struct printreq req; /* copy of pri nt request */
 28 };

 29 /*
 30 * Describes a thread processing a client requ est.
 31 */
 32 struct worker_thread {
 33 struct worker_thread *next; /* next in list */
 34 struct worker_thread *prev; /* previou s in list */
 35 pthread_t tid; /* thread ID */
 36 int sockfd; /* socket */
 37 };

[1–
19]

The printer spooling daemon includes the IPP header file that we saw earlier, because the daemon needs
to communicate with the printer using this protocol. The HTTP_INFO and HTTP_SUCCESS macros define
the status of the HTTP request (recall that IPP is built on top of HTTP).

[20–
37]

The job and worker_thread structures are used by the spooling daemon to keep track of print jobs and
threads accepting print requests, respectively.

 38 /*
 39 * Needed for logging.
 40 */
 41 int log_to_stderr = 0;

 42 /*
 43 * Printer-related stuff.
 44 */
 45 struct addrinfo *printer;
 46 char *printer_name;
 47 pthread_mutex_t configlock = PTHREAD_MU TEX_INITIALIZER;
 48 int reread;

 49 /*
 50 * Thread-related stuff.
 51 */
 52 struct worker_thread *workers;
 53 pthread_mutex_t workerlock = PTHREAD_MU TEX_INITIALIZER;
 54 sigset_t mask;

 55 /*
 56 * Job-related stuff.
 57 */
 58 struct job *jobhead, *jobtail;
 59 int jobfd;

[38–
41]

Our logging functions require that we define the log_to_stderr variable and set it to 0 to force log
messages to be sent to the system log instead of to the standard error. In print.c , we defined
log_to_stderr and set it to 1, even though we don't use the log functions in the user command. We
could have avoided this by splitting the utility functions into two separate files: one for the server and
one for the client commands.

[42–
48]

We use the global variable printer to hold the network address of the printer.We store the host name of
the printer in printer_name . The configlock mutex protects access to the reread variable, which is
used to indicate that the daemon needs to reread the configuration file, presumably because an

[38–
41]

Our logging functions require that we define the log_to_stderr variable and set it to 0 to force log
messages to be sent to the system log instead of to the standard error. In print.c , we defined
log_to_stderr and set it to 1, even though we don't use the log functions in the user command. We
could have avoided this by splitting the utility functions into two separate files: one for the server and
one for the client commands.

administrator changed the printer or its network address.

[49–
54]

Next, we define the thread-related variables. We use workers as the head of a doubly-linked list of
threads that are receiving files from clients. This list is protected by the mutex workerlock . The signal
mask used by the threads is held in the variable mask.

[55–
59]

For the list of pending jobs, we define jobhead to be the start of the list and jobtail to be the tail of the
list. This list is also doubly linked, but we need to add jobs to the end of the list, so we need to remember
a pointer to the list tail. With the list of worker threads, the order doesn't matter, so we can add them to
the head of the list and don't need to remember the tail pointer. jobfd is the file descriptor for the job
file.

 60 long nextjob;
 61 pthread_mutex_t joblock = PTHREAD_MUTEX _INITIALIZER;
 62 pthread_cond_t jobwait = PTHREAD_COND_ INITIALIZER;

 63 /*
 64 * Function prototypes.
 65 */
 66 void init_request(void);
 67 void init_printer(void);
 68 void update_jobno(void);
 69 long get_newjobno(void);
 70 void add_job(struct printreq *, long);
 71 void replace_job(struct job *);
 72 void remove_job(struct job *);
 73 void build_qonstart(void);
 74 void *client_thread(void *);
 75 void *printer_thread(void *);
 76 void *signal_thread(void *);
 77 ssize_t readmore(int, char **, int, int *);
 78 int printer_status(int, struct job *);
 79 void add_worker(pthread_t, int);
 80 void kill_workers(void);
 81 void client_cleanup(void *);

 82 /*
 83 * Main print server thread. Accepts connect requests from
 84 * clients and spawns additional threads to se rvice requests.
 85 *
 86 * LOCKING: none.
 87 */
 88 int
 89 main(int argc, char *argv[])
 90 {
 91 pthread_t tid;
 92 struct addrinfo *ailist, *aip;
 93 int sockfd, err, i, n, maxf d;
 94 char *host;
 95 fd_set rendezvous, rset;
 96 struct sigaction sa;
 97 struct passwd *pwdp;

[60–
62]

nextjob is the ID of the next print job to be received. The joblock mutex protects the linked list of
jobs, as well as the condition represented by the jobwait condition variable.

[63–
81]

We declare the function prototypes for the remaining functions in this file. Doing this up front allows us
to place the functions in the file without worrying about the order in which each is called.

[82–
97]

The main function for the printer spooling daemon has two tasks to perform: initialize the daemon and
then process connect requests from clients.

 98 if (argc != 1)
 99 err_quit("usage: printd");
100 daemonize("printd");

101 sigemptyset(&sa.sa_mask);
102 sa.sa_flags = 0;
103 sa.sa_handler = SIG_IGN;
104 if (sigaction(SIGPIPE, &sa, NULL) < 0)
105 log_sys("sigaction failed");
106 sigemptyset(&mask);
107 sigaddset(&mask, SIGHUP);
108 sigaddset(&mask, SIGTERM);
109 if ((err = pthread_sigmask(SIG_BLOCK, &mask , NULL)) != 0)
110 log_sys("pthread_sigmask failed");
111 init_request();
112 init_printer();

113 #ifdef _SC_HOST_NAME_MAX
114 n = sysconf(_SC_HOST_NAME_MAX);
115 if (n < 0) /* best guess */
116 #endif
117 n = HOST_NAME_MAX;

118 if ((host = malloc(n)) == NULL)
119 log_sys("malloc error");
120 if (gethostname(host, n) < 0)
121 log_sys("gethostname error");

[98–
100]

The daemon doesn't have any options, so if argc is not 1, we call err_quit to print an error message
and exit. We call the daemonize function from Figure 13.1 to become a daemon. After this point, we
can't print error messages to standard error; we need to log them instead.

[101–
112]

We arrange to ignore SIGPIPE . We will be writing to socket file descriptors, and we don't want a write
error to trigger SIGPIPE , because the default action is to kill the process. Next, we set the signal mask
of the thread to include SIGHUP and SIGTERM. All threads we create will inherit this signal mask. We'll
use SIGHUP to tell the daemon to reread the configuration file and SIGTERM to tell the daemon to clean
up and exit gracefully. We call init_request to initialize the job requests and ensure that only one
copy of the daemon is running, and we call init_printer to initialize the printer information (we'll
see both of these functions shortly).

[113–
121]

If the platform defines the _SC_HOST_NAME_MAX symbol, we call sysconf to get the maximum size of a
host name. If sysconf fails or the limit is undefined, we use HOST_NAME_MAX as a best guess.
Sometimes, this is defined for us by the platform, but if it isn't, we chose our own value in print.h .
We allocate memory to hold the host name and call gethostname to retrieve it.

122 if ((err = getaddrlist(host, "print", &ailis t)) != 0) {
123 log_quit("getaddrinfo error: %s", gai_st rerror(err));
124 exit(1);
125 }
126 FD_ZERO(&rendezvous);
127 maxfd = -1;
128 for (aip = ailist; aip != NULL; aip = aip->a i_next) {
129 if ((sockfd = initserver(SOCK_STREAM, ai p->ai_addr,
130 aip->ai_addrlen, QLEN)) >= 0) {
131 FD_SET(sockfd, &rendezvous);
132 if (sockfd > maxfd)
133 maxfd = sockfd;
134 }
135 }
136 if (maxfd == -1)
137 log_quit("service not enabled");

138 pwdp = getpwnam("lp");
139 if (pwdp == NULL)
140 log_sys("can't find user lp");
141 if (pwdp->pw_uid == 0)
142 log_quit("user lp is privileged");
143 if (setuid(pwdp->pw_uid) < 0)
144 log_sys("can't change IDs to user lp");

[122–
135]

Next, we try to find the network address that the daemon is supposed to use to provide printer spooling
service. We clear the rendezvous fd_set variable that we will use with select to wait for client
connect requests. We initialize the maximum file descriptor to –1 so that the first file descriptor we
allocate is sure to be greater than maxfd . For each network address on which we need to provide
service, we call initserver (from Figure 16.20) to allocate and initialize a socket. If initserver
succeeds, we add the file descriptor to the fd_set ; if it is greater than the maximum, we set maxfd
equal to the socket file descriptor.

[136–
137]

If maxfd is still –1 after stepping through the list of addrinfo structures, we can't enable the printer
spooling service, so we log a message and exit.

[138–
144]

Our daemon needs superuser privileges to bind a socket to a reserved port number. Now that this is
done, we can lower its privileges by changing its user ID to the one associated with user lp (recall the
security discussion in Section 21.4). We want to follow the principles of least privilege to avoid
exposing the system to any potential vulnerabilities in the daemon. We call getpwnam to find the
password entry associated with user lp . If no such user account exists, or if it exists with the same user
ID as the superuser, we log a message and exit. Otherwise, we call setuid to change both the real and
effective user IDs to the user ID for lp . To avoid exposing our system, we choose to provide no service
at all if we can't reduce our privileges.

145 pthread_create(&tid, NULL, printer_thread, N ULL);
146 pthread_create(&tid, NULL, signal_thread, NU LL);
147 build_qonstart();

148 log_msg("daemon initialized");

149 for (;;) {
150 rset = rendezvous;
151 if (select(maxfd+1, &rset, NULL, NULL, N ULL) < 0)

152 log_sys("select failed");
153 for (i = 0; i <= maxfd; i++) {
154 if (FD_ISSET(i, &rset)) {

155 /*
156 * Accept the connection and han dle
157 * the request.
158 */
159 sockfd = accept(i, NULL, NULL);
160 if (sockfd < 0)
161 log_ret("accept failed");
162 pthread_create(&tid, NULL, clien t_thread,
163 (void *)sockfd);
164 }
165 }
166 }
167 exit(1);
168 }

[145–
148]

We call pthread_create twice to create one thread to handle signals and one thread to communicate
with the printer. (By restricting printer communication to one thread, we can simplify the locking of the
printer-related data structures.) Then we call build_qonstart to search the directories in
/var/spool/printer for any pending jobs. For each job that we find on disk, we will create a
structure to let the printer thread know that it should send the file to the printer. At this point, we are
done setting up the daemon, so we log a message to indicate that the daemon has initialized
successfully.

[149–
168]

We copy the rendezvous fd_set structure to rset and call select to wait for one of the file
descriptors to become readable. We have to copy rendezvous , because select will modify the fd_set
structure that we pass to it to include only those file descriptors that satisfy the event. Since the sockets
have been initialized for use by a server, a readable file descriptor means that a connect request is
pending. After select returns, we check rset for a readable file descriptor. If we find one, we call
accept to accept the connection. If this fails, we log a message and continue checking for more
readable file descriptors. Otherwise, we create a thread to handle the client connection. The main thread
loops, farming requests out to other threads for processing, and should never reach the exit statement.

169 /*
170 * Initialize the job ID file. Use a record lo ck to prevent
171 * more than one printer daemon from running a t a time.
172 *
173 * LOCKING: none, except for record-lock on jo b ID file.
174 */
175 void
176 init_request(void)
177 {
178 int n;
179 char name[FILENMSZ];

180 sprintf(name, "%s/%s", SPOOLDIR, JOBFILE);
181 jobfd = open(name, O_CREAT|O_RDWR, S_IRUSR|S _IWUSR);
182 if (write_lock(jobfd, 0, SEEK_SET, 0) < 0)
183 log_quit("daemon already running");

184 /*
185 * Reuse the name buffer for the job counter .
186 */

187 if ((n = read(jobfd, name, FILENMSZ)) < 0)
188 log_sys("can't read job file");
189 if (n == 0)
190 nextjob = 1;
191 else
192 nextjob = atol(name);
193 }

[169–
183]

The init_request function does two things: it places a record lock on the job file,
/var/spool/printer/jobno , and it reads the file to determine the next job number to assign. We
place a write lock on the entire file to indicate that the daemon is running. If someone tries to start
additional copies of the printer spooling daemon while one is already running, these additional
daemons will fail to obtain the write lock and will exit. Thus, only one copy of the daemon can be
running at a time. (Recall that we used this technique in Figure 13.6; we discussed the write_lock
macro in Section 14.3.)

[184–
193]

The job file contains an ASCII integer string representing the next job number. If the file was just
created and therefore is empty, we set nextjob to 1. Otherwise, we use atol to convert the string to an
integer and use this as the next job number. We leave jobfd open to the job file so that we can update
the job number as jobs are created. We can't close the file, because this would release the write lock
that we've placed on it.

 On a system where a long integer is 64 bits wide, we need a buffer at least 21 bytes in size to fit a string
representing the largest possible long integer. We are safe reusing the filename buffer, because
FILENMSZ is defined to be 64 in print.h .

194 /*
195 * Initialize printer information.
196 *
197 * LOCKING: none.
198 */
199 void
200 init_printer(void)
201 {
202 printer = get_printaddr();
203 if (printer == NULL) {
204 log_msg("no printer device registered");
205 exit(1);
206 }
207 printer_name = printer->ai_canonname;
208 if (printer_name == NULL)
209 printer_name = "printer";
210 log_msg("printer is %s", printer_name);
211 }

212 /*
213 * Update the job ID file with the next job n umber.
214 *
215 * LOCKING: none.
216 */
217 void
218 update_jobno(void)
219 {
220 char buf[32];

221 lseek(jobfd, 0, SEEK_SET);

222 sprintf(buf, "%ld", nextjob);
223 if (write(jobfd, buf, strlen(buf)) < 0)
224 log_sys("can't update job file");
225 }

[194–
211]

The init_printer function is used to set the printer name and address. We get the printer address by
calling get_printaddr (from util.c). If this fails, we log a message and exit. We can't do this by
calling log_sys , because get_printaddr can fail without setting errno . When it fails and does set
errno , however, get_printaddr logs its own error message. We set the printer name to the
ai_canonname field in the addrinfo structure. If this field is null, we set the printer name to a default
value of printer . Note that we log the name of the printer we are using to aid administrators in
diagnosing problems with the spooling system.

[212–
225]

The update_jobno function is used to write the next job number to the job file,
/var/spool/printer/jobno . First, we seek to the beginning of the file. Then we convert the integer
job number into a string and write it to the file. If the write fails, we log an error message and exit.

226 /*
227 * Get the next job number.
228 *
229 * LOCKING: acquires and releases joblock.
230 */
231 long
232 get_newjobno(void)
233 {
234 long jobid;

235 pthread_mutex_lock(&joblock);
236 jobid = nextjob++;
237 if (nextjob <= 0)
238 nextjob = 1;
239 pthread_mutex_unlock(&joblock);
240 return(jobid);
241 }

242 /*
243 * Add a new job to the list of pending jobs. Then signal
244 * the printer thread that a job is pending.
245 *
246 * LOCKING: acquires and releases joblock.
247 */
248 void
249 add_job(struct printreq *reqp, long jobid)
250 {
251 struct job *jp;

252 if ((jp = malloc(sizeof(struct job))) == NUL L)
253 log_sys("malloc failed");
254 memcpy(&jp->req, reqp, sizeof(struct printre q));

[226–
241]

The get_newjobno function is used to get the next job number. We first lock the joblock mutex. We
increment the nextjob variable and handle the case where it wraps around. Then we unlock the mutex
and return the value nextjob had before we incremented it. Multiple threads can call get_newjobno at
the same time; we need to serialize access to the next job number so that each thread gets a unique job
number. (Refer to Figure 11.9 to see what could happen if we don't serialize the threads in this case.)

[242–
254]

The add_job function is used to add a new print request to the end of the list of pending print jobs. We
start by allocating space for the job structure. If this fails, we log a message and exit. At this point, the
print request is stored safely on disk; when the printer spooling daemon is restarted, it will pick the
request up. After we allocate memory for the new job, we copy the request structure from the client
into the job structure. Recall from print.h that a job structure consists of a pair of list pointers, a job
ID, and a copy of the printreq structure sent to us by the client print command.

255 jp->jobid = jobid;
256 jp->next = NULL;
257 pthread_mutex_lock(&joblock);
258 jp->prev = jobtail;
259 if (jobtail == NULL)
260 jobhead = jp;
261 else
262 jobtail->next = jp;
263 jobtail = jp;
264 pthread_mutex_unlock(&joblock);
265 pthread_cond_signal(&jobwait);
266 }

267 /*
268 * Replace a job back on the head of the list.
269 *
270 * LOCKING: acquires and releases joblock.
271 */
272 void
273 replace_job(struct job *jp)
274 {
275 pthread_mutex_lock(&joblock);
276 jp->prev = NULL;
277 jp->next = jobhead;
278 if (jobhead == NULL)
279 jobtail = jp;
280 else
281 jobhead->prev = jp;
282 jobhead = jp;
283 pthread_mutex_unlock(&joblock);
284 }

[255–
266]

We save the job ID and lock the joblock mutex to gain exclusive access to the linked list of print jobs.
We are about to add the new job structure to the end of the list. We set the new structure's previous
pointer to the last job on the list. If the list is empty, we set jobhead to point to the new structure.
Otherwise, we set the next pointer in the last entry on the list to point to the new structure. Then we set
jobtail to point to the new structure. We unlock the mutex and signal the printer thread that another
job is available.

[267–
284]

The replace_job function is used to insert a job at the head of the pending job list. We acquire the
joblock mutex, set the previous pointer in the job structure to null, and set the next pointer in the job

[255–
266]

We save the job ID and lock the joblock mutex to gain exclusive access to the linked list of print jobs.
We are about to add the new job structure to the end of the list. We set the new structure's previous
pointer to the last job on the list. If the list is empty, we set jobhead to point to the new structure.
Otherwise, we set the next pointer in the last entry on the list to point to the new structure. Then we set
jobtail to point to the new structure. We unlock the mutex and signal the printer thread that another
job is available.

structure to point to the head of the list. If the list is empty, we set jobtail to point to the job structure
we are replacing. Otherwise, we set the previous pointer in the first job structure on the list to point to
the job structure we are replacing. Then we set the jobhead pointer to the job structure we are
replacing. Finally, we release the joblock mutex.

285 /*
286 * Remove a job from the list of pending jobs.
287 *
288 * LOCKING: caller must hold joblock.
289 */
290 void
291 remove_job(struct job *target)
292 {
293 if (target->next != NULL)
294 target->next->prev = target->prev;
295 else
296 jobtail = target->prev;
297 if (target->prev != NULL)
298 target->prev->next = target->next;
299 else
300 jobhead = target->next;
301 }

302 /*
303 * Check the spool directory for pending jobs on start-up.
304 *
305 * LOCKING: none.
306 */
307 void
308 build_qonstart(void)
309 {
310 int fd, err, nr;
311 long jobid;
312 DIR *dirp;
313 struct dirent *entp;
314 struct printreq req;
315 char dname[FILENMSZ], fname[FILEN MSZ];

316 sprintf(dname, "%s/%s", SPOOLDIR, REQDIR);
317 if ((dirp = opendir(dname)) == NULL)
318 return;

[285–
301]

remove_job removes a job from the list of pending jobs given a pointer to the job to be removed. The
caller must already hold the joblock mutex. If the next pointer is non-null, we set the next entry's
previous pointer to the target's previous pointer. Otherwise, the entry is the last one on the list, so we
set jobtail to the target's previous pointer. If the target's previous pointer is non-null, we set the
previous entry's next pointer equal to the target's next pointer. Otherwise, this is the first entry in the
list, so we set jobhead to point to the next entry in the list after the target.

[285–
301]

remove_job removes a job from the list of pending jobs given a pointer to the job to be removed. The
caller must already hold the joblock mutex. If the next pointer is non-null, we set the next entry's
previous pointer to the target's previous pointer. Otherwise, the entry is the last one on the list, so we
set jobtail to the target's previous pointer. If the target's previous pointer is non-null, we set the
previous entry's next pointer equal to the target's next pointer. Otherwise, this is the first entry in the
list, so we set jobhead to point to the next entry in the list after the target.

[302–
318]

When the daemon starts, it calls build_qonstart to build an in-memory list of print jobs from the disk
files stored in /var/spool/printer/reqs . If we can't open the directory, no print jobs are pending, so
we return.

319 while ((entp = readdir(dirp)) != NULL) {
320 /*
321 * Skip "." and ".."
322 */
323 if (strcmp(entp->d_name, ".") == 0 ||
324 strcmp(entp->d_name, "..") == 0)
325 continue;

326 /*
327 * Read the request structure.
328 */
329 sprintf(fname, "%s/%s/%s", SPOOLDIR, REQ DIR, entp->d_name);
330 if ((fd = open(fname, O_RDONLY)) < 0)
331 continue;
332 nr = read(fd, &req, sizeof(struct printr eq));
333 if (nr != sizeof(struct printreq)) {
334 if (nr < 0)
335 err = errno;
336 else
337 err = EIO;
338 close(fd);
339 log_msg("build_qonstart: can't read %s: %s",
340 fname, strerror(err));
341 unlink(fname);
342 sprintf(fname, "%s/%s/%s", SPOOLDIR, DATADIR,
343 entp->d_name);
344 unlink(fname);
345 continue;
346 }
347 jobid = atol(entp->d_name);
348 log_msg("adding job %ld to queue", jobid);
349 add_job(&req, jobid);
350 }
351 closedir(dirp);
352 }

[319–
325]

We read each entry in the directory, one at a time. We skip the entries for dot and dot-dot.

[326–
346]

For each entry, we create the full pathname of the file and open it for reading. If the open call fails, we
just skip the file. Otherwise, we read the printreq structure stored in it. If we don't read the entire
structure, we close the file, log a message, and unlink the file. Then we create the full pathname of the
corresponding data file and unlink it, too.

[319–
325]

We read each entry in the directory, one at a time. We skip the entries for dot and dot-dot.

[347–
352]

If we were able to read a complete printreq structure, we convert the filename into a job ID (the name
of the file is its job ID), log a message, and then add the request to the list of pending print jobs. When
we are done reading the directory, readdir will return NULL, and we close the directory and return.

353 /*
354 * Accept a print job from a client.
355 *
356 * LOCKING: none.
357 */
358 void *
359 client_thread(void *arg)
360 {
361 int n, fd, sockfd, nr, nw, f irst;
362 long jobid;
363 pthread_t tid;
364 struct printreq req;
365 struct printresp res;
366 char name[FILENMSZ];
367 char buf[IOBUFSZ];

368 tid = pthread_self();
369 pthread_cleanup_push(client_cleanup, (void *)tid);
370 sockfd = (int)arg;
371 add_worker(tid, sockfd);

372 /*
373 * Read the request header.
374 */
375 if ((n = treadn(sockfd, &req, sizeof(struct printreq), 10)) !=
376 sizeof(struct printreq)) {
377 res.jobid = 0;
378 if (n < 0)
379 res.retcode = htonl(errno);
380 else
381 res.retcode = htonl(EIO);
382 strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);
383 writen(sockfd, &res, sizeof(struct print resp));
384 pthread_exit((void *)1);
385 }

[353–
371]

The client_thread is spawned from the main thread when a connect request is accepted. Its job is to
receive the file to be printed from the client print command. We create a separate thread for each
client print request.

 The first thing we do is install a thread cleanup handler (see Section 11.5 for a discussion of thread
cleanup handlers). The cleanup handler is client_cleanup , which we will see later. It takes a single
argument: our thread ID. Then we call add_worker to create a worker_thread structure and add it to
the list of active client threads.

[372–
385]

At this point, we are done with the thread's initialization tasks, so we read the request header from the
client. If the client sends less than we expect or we encounter an error, we respond with a message
indicating the reason for the error and call pthread_exit to terminate the thread.

386 req.size = ntohl(req.size);
387 req.flags = ntohl(req.flags);

388 /*
389 * Create the data file.
390 */
391 jobid = get_newjobno();
392 sprintf(name, "%s/%s/%ld", SPOOLDIR, DATADIR , jobid);
393 if ((fd = creat(name, FILEPERM)) < 0) {
394 res.jobid = 0;
395 if (n < 0)
396 res.retcode = htonl(errno);
397 else
398 res.retcode = htonl(EIO);
399 log_msg("client_thread: can't create %s: %s", name,
400 strerror(res.retcode));
401 strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);
402 writen(sockfd, &res, sizeof(struct print resp));
403 pthread_exit((void *)1);
404 }

405 /*
406 * Read the file and store it in the spool d irectory.
407 */
408 first = 1;
409 while ((nr = tread(sockfd, buf, IOBUFSZ, 20)) > 0) {
410 if (first) {
411 first = 0;
412 if (strncmp(buf, "%!PS", 4) != 0)
413 req.flags |= PR_TEXT;
414 }

[386–
404]

We convert the integer fields in the request header to host byte order and call get_newjobno to reserve
the next job ID for this print request. We create the job data file, named
/var/spool/printer/data/ jobid, where jobid is the request's job ID. We use permissions that
prevent others from being able read the files (FILEPERM is defined as S_IRUSR|S_IWUSR in print.h). If
we can't create the file, we log an error message, send a failure response back to the client, and
terminate the thread by calling pthread_exit .

[405–
414]

We read the file contents from the client, with the intent of writing the contents out to our private copy
of the data file. But before we write anything, we need to check if this is a PostScript file the first time
through the loop. If the file doesn't begin with the pattern %!PS, we can assume that the file is plaintext,
so we set the PR_TEXT flag in the request header in this case. (Recall that the client can also set this flag
if the -t flag is included when the print command is executed.) Although PostScript programs are not
required to start with the pattern %!PS, the document formatting guidelines (Adobe Systems [1999])
strongly recommends that they do.

415 nw = write(fd, buf, nr);
416 if (nw != nr) {
417 if (nw < 0)
418 res.retcode = htonl(errno);
419 else
420 res.retcode = htonl(EIO);
421 log_msg("client_thread: can't write %s: %s", name,
422 strerror(res.retcode));
423 close(fd);

424 strncpy(res.msg, strerror(res.retcod e), MSGLEN_MAX);
425 writen(sockfd, &res, sizeof(struct p rintresp));
426 unlink(name);
427 pthread_exit((void *)1);
428 }
429 }
430 close(fd);

431 /*
432 * Create the control file.
433 */
434 sprintf(name, "%s/%s/%ld", SPOOLDIR, REQDIR, jobid);
435 fd = creat(name, FILEPERM);
436 if (fd < 0) {
437 res.jobid = 0;
438 if (n < 0)
439 res.retcode = htonl(errno);
440 else
441 res.retcode = htonl(EIO);
442 log_msg("client_thread: can't create %s: %s", name,
443 strerror(res.retcode));
444 strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);
445 writen(sockfd, &res, sizeof(struct print resp));
446 sprintf(name, "%s/%s/%ld", SPOOLDIR, DAT ADIR, jobid);
447 unlink(name);
448 pthread_exit((void *)1);
449 }

[415–
430]

We write the data that we read from the client to the data file. If write fails, we log an error message,
close the file descriptor for the data file, send an error message back to the client, delete the data file,
and terminate the thread by calling pthread_exit . Note that we do not explicitly close the socket file
descriptor. This is done for us by our thread cleanup handler as part of the processing that occurs when
we call pthread_exit .

 When we receive all the data to be printed, we close the file descriptor for the data file.

[431–
449]

Next, we create a file, /var/spool/printer/reqs/ jobid, to remember the print request. If this fails,
we log an error message, send an error response to the client, remove the data file, and terminate the
thread.

450 nw = write(fd, &req, sizeof(struct printreq));
451 if (nw != sizeof(struct printreq)) {
452 res.jobid = 0;
453 if (nw < 0)
454 res.retcode = htonl(errno);
455 else
456 res.retcode = htonl(EIO);
457 log_msg("client_thread: can't write %s: %s", name,
458 strerror(res.retcode));
459 close(fd);
460 strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX);
461 writen(sockfd, &res, sizeof(struct print resp));
462 unlink(name);
463 sprintf(name, "%s/%s/%ld", SPOOLDIR, DAT ADIR, jobid);
464 unlink(name);
465 pthread_exit((void *)1);
466 }
467 close(fd);

468 /*
469 * Send response to client.
470 */
471 res.retcode = 0;
472 res.jobid = htonl(jobid);
473 sprintf(res.msg, "request ID %ld", jobid);
474 writen(sockfd, &res, sizeof(struct printresp));

475 /*
476 * Notify the printer thread, clean up, and exit.
477 */
478 log_msg("adding job %ld to queue", jobid);
479 add_job(&req, jobid);
480 pthread_cleanup_pop(1);
481 return((void *)0);
482 }

[450–
466]

We write the printreq structure to the control file. On error, we log a message, close the descriptor for
the control file, send a failure response back to the client, remove the data and control files, and
terminate the thread.

[467–
474]

We close the file descriptor for the control file and send a message containing the job ID and a
successful status (retcode set to 0) back to the client.

[475–
482]

We call add_job to add the received job to the list of pending print jobs and call
pthread_cleanup_pop to complete the cleanup processing. The thread terminates when we return.

 Note that before the thread exits, we must close any file descriptors we no longer need. Unlike process
termination, file descriptors are not closed automatically when a thread ends if other threads exist in the
process. If we didn't close unneeded file descriptors, we'd eventually run out of resources.

483 /*
484 * Add a worker to the list of worker threads .
485 *
486 * LOCKING: acquires and releases workerlock.
487 */
488 void
489 add_worker(pthread_t tid, int sockfd)
490 {
491 struct worker_thread *wtp;

492 if ((wtp = malloc(sizeof(struct worker_thre ad))) == NULL) {
493 log_ret("add_worker: can't malloc");
494 pthread_exit((void *)1);
495 }
496 wtp->tid = tid;
497 wtp->sockfd = sockfd;
498 pthread_mutex_lock(&workerlock);
499 wtp->prev = NULL;
500 wtp->next = workers;
501 if (workers == NULL)
502 workers = wtp;
503 else
504 workers->prev = wtp;
505 pthread_mutex_unlock(&workerlock);
506 }

507 /*
508 * Cancel (kill) all outstanding workers.
509 *
510 * LOCKING: acquires and releases workerlock.
511 */
512 void
513 kill_workers(void)
514 {
515 struct worker_thread *wtp;

516 pthread_mutex_lock(&workerlock);
517 for (wtp = workers; wtp != NULL; wtp = wtp- >next)
518 pthread_cancel(wtp->tid);
519 pthread_mutex_unlock(&workerlock);
520 }

[483–
506]

add_worker adds a worker_thread structure to the list of active threads. We allocate memory for the
structure, initialize it, lock the workerlock mutex, add the structure to the head of the list, and unlock
the mutex.

[507–
520]

The kill_workers function walks the list of worker threads and cancels each one. We hold the
workerlock mutex while we walk the list. Recall that pthread_cancel merely schedules a thread for
cancellation; actual cancellation happens when each thread reaches the next cancellation point.

521 /*
522 * Cancellation routine for the worker thread .
523 *
524 * LOCKING: acquires and releases workerlock.
525 */
526 void
527 client_cleanup(void *arg)
528 {
529 struct worker_thread *wtp;
530 pthread_t tid;

531 tid = (pthread_t)arg;
532 pthread_mutex_lock(&workerlock);
533 for (wtp = workers; wtp != NULL; wtp = wtp- >next) {
534 if (wtp->tid == tid) {
535 if (wtp->next != NULL)
536 wtp->next->prev = wtp->prev;
537 if (wtp->prev != NULL)
538 wtp->prev->next = wtp->next;
539 else
540 workers = wtp->next;
541 break;
542 }
543 }
544 pthread_mutex_unlock(&workerlock);
545 if (wtp != NULL) {
546 close(wtp->sockfd);
547 free(wtp);
548 }
549 }

[521–
543]

The client_cleanup function is the thread cleanup handler for the worker threads that communicate
with client commands. This function is called when the thread calls pthread_exit , calls
pthread_cleanup_pop with a nonzero argument, or responds to a cancellation request. The argument
is the thread ID of the thread terminating.

 We lock the workerlock mutex and search the list of worker threads until we find a matching thread
ID. When we find a match, we remove the worker thread structure from the list and stop the search.

[544–
549]

We unlock the workerlock mutex, close the socket file descriptor used by the thread to communicate
with the client, and free the memory backing the worker_thread structure.

 Since we try to acquire the workerlock mutex, if a thread reaches a cancellation point while the
kill_workers function is still walking the list, we will have to wait until kill_workers releases the
mutex before we can proceed.

550 /*
551 * Deal with signals.
552 *
553 * LOCKING: acquires and releases configlock.
554 */
555 void *
556 signal_thread(void *arg)
557 {
558 int err, signo;

559 for (;;) {
560 err = sigwait(&mask, &signo);
561 if (err != 0)
562 log_quit("sigwait failed: %s", stre rror(err));
563 switch (signo) {
564 case SIGHUP:
565 /*
566 * Schedule to re-read the configur ation file.
567 */
568 pthread_mutex_lock(&configlock);
569 reread = 1;
570 pthread_mutex_unlock(&configlock);
571 break;

572 case SIGTERM:
573 kill_workers();
574 log_msg("terminate with signal %s", strsignal(signo));
575 exit(0);

576 default:
577 kill_workers();
578 log_quit("unexpected signal %d", si gno);
579 }
580 }
581 }

[550–
563]

The signal_thread function is run by the thread that is responsible for handling signals. In the main
function, we initialized the signal mask to include SIGHUP and SIGTERM. Here, we call sigwait to wait
for one of these signals to occur. If sigwait fails, we log an error message and exit.

[564– If we receive SIGHUP, we acquire the configlock mutex, set the reread variable to 1, and release the

[550–
563]

The signal_thread function is run by the thread that is responsible for handling signals. In the main
function, we initialized the signal mask to include SIGHUP and SIGTERM. Here, we call sigwait to wait
for one of these signals to occur. If sigwait fails, we log an error message and exit.

571] mutex. This tells the printer daemon to reread the configuration file on the next iteration in its
processing loop.

[572–
575]

If we receive SIGTERM, we call kill_workers to kill all the worker threads, log a message, and call
exit to terminate the process.

[576–
581]

If we receive a signal we are not expecting, we kill the worker threads and call log_quit to log a
message and exit.

582 /*
583 * Add an option to the IPP header.
584 *
585 * LOCKING: none.
586 */
587 char *
588 add_option(char *cp, int tag, char *optname, char *optval)
589 {
590 int n;
591 union {
592 int16_t s;
593 char c[2];
594 } u;

595 *cp++ = tag;
596 n = strlen(optname);
597 u.s = htons(n);
598 *cp++ = u.c[0];
599 *cp++ = u.c[1];
600 strcpy(cp, optname);
601 cp += n;
602 n = strlen(optval);
603 u.s = htons(n);
604 *cp++ = u.c[0];
605 *cp++ = u.c[1];
606 strcpy(cp, optval);
607 return(cp + n);
608 }

[582–
594]

The add_option function is used to add an option to the IPP header that we build to send to the printer.
Recall from Figure 21.3 that the format of an attribute is a 1-byte tag describing the type of the
attribute, followed by the length of the attribute name stored in binary as a 2-byte integer, followed by
the name, the size of the attribute value, and finally the value itself.

 IPP makes no attempt to control the alignment of the binary integers embedded in the header. Some
processor architectures, such as the SPARC, can't load an integer from an arbitrary address. This means
that we can't store the integers in the header by casting a pointer to an int16_t to the address in the
header where the integer is to be stored. Instead, we need to copy the integer 1 byte at a time. This is
why we define the union containing a 16-bit integer and 2 bytes.

[595–
608]

We store the tag in the header and convert the length of the attribute name to network byte order. We
copy the length 1 byte at a time to the header. Then we copy the attribute name. We repeat this process

[582–
594]

The add_option function is used to add an option to the IPP header that we build to send to the printer.
Recall from Figure 21.3 that the format of an attribute is a 1-byte tag describing the type of the
attribute, followed by the length of the attribute name stored in binary as a 2-byte integer, followed by
the name, the size of the attribute value, and finally the value itself.

for the attribute value and return the address in the header where the next part of the header should
begin.

609 /*
610 * Single thread to communicate with the prin ter.
611 *
612 * LOCKING: acquires and releases joblock and configlock.
613 */
614 void *
615 printer_thread(void *arg)
616 {
617 struct job *jp;
618 int hlen, ilen, sockfd, fd, nr, nw;
619 char *icp, *hcp;
620 struct ipp_hdr *hp;
621 struct stat sbuf;
622 struct iovec iov[2];
623 char name[FILENMSZ];
624 char hbuf[HBUFSZ];
625 char ibuf[IBUFSZ];
626 char buf[IOBUFSZ];
627 char str[64];

628 for (;;) {
629 /*
630 * Get a job to print.
631 */
632 pthread_mutex_lock(&joblock);
633 while (jobhead == NULL) {
634 log_msg("printer_thread: waiting... ");
635 pthread_cond_wait(&jobwait, &jobloc k);
636 }
637 remove_job(jp = jobhead);
638 log_msg("printer_thread: picked up job %ld", jp->jobid);
639 pthread_mutex_unlock(&joblock);

640 update_jobno();

[609–
627]

The printer_thread function is run by the thread that communicates with the network printer. We'll
use icp and ibuf to build the IPP header. We'll use hcp and hbuf to build the HTTP header. We need
to build the headers in separate buffers. The HTTP header includes a length field in ASCII, and we
won't know how much space to reserve for it until we assemble the IPP header. We'll use writev to
write these two headers in one call.

[628–
640]

The printer thread runs in an infinite loop that waits for jobs to transmit to the printer. We use the
joblock mutex to protect the list of jobs. If a job is not pending, we use pthread_cond_wait to wait
for one to arrive. When a job is ready, we remove it from the list by calling remove_job . We still hold
the mutex at this point, so we release it and call update_jobno to write the next job number to
/var/spool/printer/jobno .

641 /*
642 * Check for a change in the config fil e.
643 */
644 pthread_mutex_lock(&configlock);
645 if (reread) {
646 freeaddrinfo(printer);
647 printer = NULL;
648 printer_name = NULL;
649 reread = 0;
650 pthread_mutex_unlock(&configlock);
651 init_printer();
652 } else {
653 pthread_mutex_unlock(&configlock);
654 }

655 /*
656 * Send job to printer.
657 */
658 sprintf(name, "%s/%s/%ld", SPOOLDIR, DA TADIR, jp->jobid);
659 if ((fd = open(name, O_RDONLY)) < 0) {
660 log_msg("job %ld canceled - can't o pen %s: %s",
661 jp->jobid, name, strerror(errno)) ;
662 free(jp);
663 continue;
664 }
665 if (fstat(fd, &sbuf) < 0) {
666 log_msg("job %ld canceled - can't f stat %s: %s",
667 jp->jobid, name, strerror(errno)) ;
668 free(jp);
669 close(fd);
670 continue;
671 }

[641–
654]

Now that we have a job to print, we check for a change in the configuration file. We lock the
configlock mutex and check the reread variable. If it is nonzero, then we free the old printer
addrinfo list, clear the pointers, unlock the mutex, and call init_printer to reinitialize the printer
information. Since only this context looks at and potentially changes the printer information after the
main thread initialized it, we don't need any synchronization other than using the configlock mutex to
protect the state of the reread flag.

 Note that although we acquire and release two different mutex locks in this function, we never hold
both at the same time, so we don't need to establish a lock hierarchy (Section 11.6).

[655–
671]

If we can't open the data file, we log a message, free the job structure, and continue. After opening the
file, we call fstat to find the size of the file. If this fails, we log a message, clean up, and continue.

672 if ((sockfd = socket(AF_INET, SOCK_STRE AM, 0)) < 0) {
673 log_msg("job %ld deferred - can't c reate socket: %s",
674 jp->jobid, strerror(errno));
675 goto defer;
676 }
677 if (connect_retry(sockfd, printer->ai_a ddr,
678 printer->ai_addrlen) < 0) {
679 log_msg("job %ld deferred - can't c ontact printer: %s",
680 jp->jobid, strerror(errno));
681 goto defer;
682 }

683 /*
684 * Set up the IPP header.
685 */
686 icp = ibuf;
687 hp = (struct ipp_hdr *)icp;
688 hp->major_version = 1;
689 hp->minor_version = 1;
690 hp->operation = htons(OP_PRINT_JOB);
691 hp->request_id = htonl(jp->jobid);
692 icp += offsetof(struct ipp_hdr, attr_gr oup);
693 *icp++ = TAG_OPERATION_ATTR;
694 icp = add_option(icp, TAG_CHARSET, "att ributes-charset",
695 "utf-8");
696 icp = add_option(icp, TAG_NATULANG,
697 "attributes-natural-language", "en-us ");
698 sprintf(str, "http://%s:%d", printer_na me, IPP_PORT);
699 icp = add_option(icp, TAG_URI, "printer -uri", str);

[672–
682]

We open a stream socket to communicate with the printer. If the socket call fails, we jump down to
defer , where we will clean up, delay, and try again later. If we can create a socket, we call
connect_retry to connect to the printer.

[683–
699]

Next, we set up the IPP header. The operation is a print-job request. We use htons to convert the 2-
byte operation ID from host to network byte order and htonl to convert the 4-byte job ID from host to
network byte order. After the initial portion of the header, we set the tag value to indicate that operation
attributes follow. We call add_option to add attributes to the message. Figure 21.4 lists the required
and optional attributes for print-job requests. The first three are required. We specify the character set
to be UTF-8, which the printer must support. We specify the language as en-us , which represents U.S.
English. Another required attribute is the printer Universal Resource Identifier (URI). We set it to
http:// printer_name:631 . (We really should ask the printer for a list of supported URIs and select
one from that list, but that would complicate this example without adding much value.)

700 icp = add_option(icp, TAG_NAMEWOLANG,
701 "requesting-user-name", jp->req.usern m);
702 icp = add_option(icp, TAG_NAMEWOLANG, " job-name",
703 jp->req.jobnm);
704 if (jp->req.flags & PR_TEXT) {
705 icp = add_option(icp, TAG_MIMETYPE, "document-format",
706 "text/plain");
707 } else {
708 icp = add_option(icp, TAG_MIMETYPE, "document-format",
709 "application/postscript");
710 }
711 *icp++ = TAG_END_OF_ATTR;
712 ilen = icp - ibuf;

713 /*
714 * Set up the HTTP header.
715 */
716 hcp = hbuf;
717 sprintf(hcp, "POST /%s/ipp HTTP/1.1\r\n ", printer_name);
718 hcp += strlen(hcp);
719 sprintf(hcp, "Content-Length: %ld\r\n",
720 (long)sbuf.st_size + ilen);
721 hcp += strlen(hcp);

722 strcpy(hcp, "Content-Type: application/ ipp\r\n");
723 hcp += strlen(hcp);
724 sprintf(hcp, "Host: %s:%d\r\n", printer _name, IPP_PORT);
725 hcp += strlen(hcp);
726 *hcp++ = '\r';
727 *hcp++ = '\n';
728 hlen = hcp - hbuf;

[700–
712]

The requesting-user-name attribute is recommended, but not required. The job-name attribute is
optional. Recall that the print command sends the name of the file being printed as the job name,
which can help users distinguish among multiple pending jobs. The last attribute we supply is the
document-format . If we omit it, the printer will assume that the file conforms to the printer's default
format. For a PostScript printer, this is probably PostScript, but some printers can autosense the format
and choose between PostScript and text or PostScript and PCL (HP's Printer Command Language). If
the PR_TEXT flag is set, we specify the document format as text/plain . Otherwise, we set it to
application/postscript . Then we delimit the end of the attributes portion of the header with an
end-of-attributes tag and calculate the size of the IPP header.

[713–
728]

Now that we know the IPP header size, we can set up the HTTP header. We set the Context-Length to
the size in bytes of the IPP header plus the size of the file to be printed. The Content-Type is
application/ipp . We mark the end of the HTTP header with a carriage return and a line feed.

729 /*
730 * Write the headers first. Then send t he file.
731 */
732 iov[0].iov_base = hbuf;
733 iov[0].iov_len = hlen;
734 iov[1].iov_base = ibuf;
735 iov[1].iov_len = ilen;
736 if ((nw = writev(sockfd, iov, 2)) != hl en + ilen) {
737 log_ret("can't write to printer");
738 goto defer;
739 }
740 while ((nr = read(fd, buf, IOBUFSZ)) > 0) {
741 if ((nw = write(sockfd, buf, nr)) ! = nr) {
742 if (nw < 0)
743 log_ret("can't write to print er");
744 else
745 log_msg("short write (%d/%d) to printer", nw, nr);
746 goto defer;
747 }
748 }
749 if (nr < 0) {
750 log_ret("can't read %s", name);
751 goto defer;
752 }

753 /*
754 * Read the response from the printer.
755 */
756 if (printer_status(sockfd, jp)) {
757 unlink(name);
758 sprintf(name, "%s/%s/%ld", SPOOLDIR , REQDIR, jp->jobid);
759 unlink(name);
760 free(jp);
761 jp = NULL;

762 }

[729–
739]

We set the first element of the iovec array to refer to the HTTP header and the second element to refer
to the IPP header. Then we use writev to send both headers to the printer. If the write fails, we log a
message and jump to defer , where we will clean up and delay before trying again.

[740–
752]

Next, we send the data file to the printer. We read the data file in IOBUFSZ chunks and write it to the
socket connected to the printer. If either read or write fails, we log a message and jump to defer .

[753–
762]

After sending the entire file to be printed, we call printer_status to receive the printer's response to
our print request. If printer_status succeeds, it returns a positive value, and we delete the data and
control files. Then we free the job structure, set its pointer to NULL, and fall through to the defer label.

763 defer:
764 close(fd);
765 if (sockfd >= 0)
766 close(sockfd);
767 if (jp != NULL) {
768 replace_job(jp);
769 sleep(60);
770 }
771 }
772 }

773 /*
774 * Read data from the printer, possibly incre asing the buffer.
775 * Returns offset of end of data in buffer or -1 on failure.
776 *
777 * LOCKING: none.
778 */
779 ssize_t
780 readmore(int sockfd, char **bpp, int off, int *bszp)
781 {
782 ssize_t nr;
783 char *bp = *bpp;
784 int bsz = *bszp;

785 if (off >= bsz) {
786 bsz += IOBUFSZ;
787 if ((bp = realloc(*bpp, bsz)) == NULL)
788 log_sys("readmore: can't allocate b igger read buffer");
789 *bszp = bsz;
790 *bpp = bp;
791 }
792 if ((nr = tread(sockfd, &bp[off], bsz-off, 1)) > 0)
793 return(off+nr);
794 else
795 return(-1);
796 }

[763–
772]

At the defer label, we close the file descriptor for the open data file. If the socket descriptor is valid,
we close it. On error, we place the job back on the head of the pending job list and delay for 1 minute.
On success, jp is NULL, so we simply go back to the top of the loop to get the next job to print.

[763–
772]

At the defer label, we close the file descriptor for the open data file. If the socket descriptor is valid,
we close it. On error, we place the job back on the head of the pending job list and delay for 1 minute.
On success, jp is NULL, so we simply go back to the top of the loop to get the next job to print.

[773–
796]

The readmore function is used to read part of the response message from the printer. If we're at the end
of the buffer, we reallocate a bigger buffer and return the new starting buffer address and buffer size
through the bpp and bszp parameters, respectively. In either case, we read as much as the buffer will
hold, starting at the end of the data already in the buffer. We return the new offset in the buffer
corresponding to the end of the data read. If the read fails or the timeout expires, we return –1.

797 /*
798 * Read and parse the response from the print er. Return 1
799 * if the request was successful, and 0 other wise.
800 *
801 * LOCKING: none.
802 */
803 int
804 printer_status(int sockfd, struct job *jp)
805 {
806 int i, success, code, len, foun d, bufsz;
807 long jobid;
808 ssize_t nr;
809 char *statcode, *reason, *cp, *c ontentlen;
810 struct ipp_hdr *hp;
811 char *bp;

812 /*
813 * Read the HTTP header followed by the IPP response header.
814 * They can be returned in multiple read at tempts. Use the
815 * Content-Length specifier to determine ho w much to read.
816 */
817 success = 0;
818 bufsz = IOBUFSZ;
819 if ((bp = malloc(IOBUFSZ)) == NULL)
820 log_sys("printer_status: can't allocate read buffer");

821 while ((nr = tread(sockfd, bp, IOBUFSZ, 5)) > 0) {
822 /*
823 * Find the status. Response starts wit h "HTTP/x.y"
824 * so we can skip the first 8 character s.
825 */
826 cp = bp + 8;
827 while (isspace((int)*cp))
828 cp++;
829 statcode = cp;
830 while (isdigit((int)*cp))
831 cp++;
832 if (cp == statcode) { /* Bad format; lo g it and move on */
833 log_msg(bp);

[797–
811]

The printer_status function reads the printer's response to a print-job request. We don't know how
the printer will respond; it might send a response in multiple messages, send the complete response in
one message, or include intermediate acknowledgements, such as HTTP 100 Continue messages. We
need to handle all these possibilities.

[812– We allocate a buffer and read from the printer, expecting a response to be available within about 5

[797–
811]

The printer_status function reads the printer's response to a print-job request. We don't know how
the printer will respond; it might send a response in multiple messages, send the complete response in
one message, or include intermediate acknowledgements, such as HTTP 100 Continue messages. We
need to handle all these possibilities.

833] seconds. We skip the HTTP/1.1 and any white space that starts the message. The numeric status code
should follow. If it doesn't, we log the contents of the message.

834 } else {
835 *cp++ = '\0';
836 reason = cp;
837 while (*cp != '\r' && *cp != '\n')
838 cp++;
839 *cp = '\0';
840 code = atoi(statcode);
841 if (HTTP_INFO(code))
842 continue;
843 if (!HTTP_SUCCESS(code)) { /* proba ble error: log it */
844 bp[nr] = '\0';
845 log_msg("error: %s", reason);
846 break;
847 }

848 /*
849 * The HTTP request was okay, but w e still
850 * need to check the IPP status. Fi rst
851 * search for the Content-Length sp ecifier.
852 */
853 i = cp - bp;
854 for (;;) {
855 while (*cp != 'C' && *cp != 'c' && i < nr) {
856 cp++;
857 i++;
858 }
859 if (i >= nr && /* get more head er */
860 ((nr = readmore(sockfd, &bp, i, &bufsz)) < 0))
861 goto out;
862 cp = &bp[i];

[834–
839]

If we have found a numeric status code in the response, we convert the first nondigit character to a null
byte. The reason string (a text message) should follow. We search for the terminating carriage return or
line feed, also terminating the text string with a null byte.

[840–
847]

We convert the code to an integer. If this is an informational message only, we ignore it and continue
the loop so we end up reading more. We expect to see either a success message or an error message. If
we get an error message, we log the error and break out of the loop.

[848–
862]

If the HTTP request was successful, we need to check the IPP status. We search through the message
until we find the Content-Length attribute, so we look for a C or c . HTTP header keywords are case-
insensitive, so we need to check both lowercase and uppercase characters.

 If we run out of buffer space, we read some more. Since readmore calls realloc , which might change
the address of the buffer, we need to reset cp to point to the correct place in the buffer.

863 if (strncasecmp(cp, "Content-Le ngth:", 15) == 0) {
864 cp += 15;

865 while (isspace((int)*cp))
866 cp++;
867 contentlen = cp;
868 while (isdigit((int)*cp))
869 cp++;
870 *cp++ = '\0';
871 i = cp - bp;
872 len = atoi(contentlen);
873 break;
874 } else {
875 cp++;
876 i++;
877 }
878 }
879 if (i >= nr && /* get more header * /
880 ((nr = readmore(sockfd, &bp, i, & bufsz)) < 0))
881 goto out;
882 cp = &bp[i];

883 found = 0;
884 while (!found) { /* look for en d of HTTP header */
885 while (i < nr - 2) {
886 if (*cp == '\n' && *(cp + 1) == '\r' &&
887 *(cp + 2) == '\n') {
888 found = 1;
889 cp += 3;
890 i += 3;
891 break;
892 }
893 cp++;
894 i++;
895 }
896 if (i >= nr && /* get more head er */
897 ((nr = readmore(sockfd, &bp, i, &bufsz)) < 0))
898 goto out;
899 cp = &bp[i];
900 }

[863–
882]

If we find the Content-Length attribute string, we search for its value. We convert this numeric string
into an integer, break out of the for loop, and read more from the printer if we've exhausted the
contents of the buffer. If we reach the end of the buffer without finding the Content-Length attribute,
we continue in the loop and read some more from the printer.

[883–
900]

Once we get the length of the message as specified by the Content-Length attribute, we search for the
end of the HTTP header (a blank line). If we find it, we set the found flag and skip past the blank line
in the message.

901 if (nr - i < len && /* get more hea der */
902 ((nr = readmore(sockfd, &bp, i, & bufsz)) < 0))
903 goto out;
904 cp = &bp[i];

905 hp = (struct ipp_hdr *)cp;
906 i = ntohs(hp->status);
907 jobid = ntohl(hp->request_id);
908 if (jobid != jp->jobid) {
909 /*
910 * Different jobs. Ignore it.

911 */
912 log_msg("jobid %ld status code %d", jobid, i);
913 break;
914 }

915 if (STATCLASS_OK(i))
916 success = 1;
917 break;
918 }
919 }

920 out:
921 free(bp);
922 if (nr < 0) {
923 log_msg("jobid %ld: error reading prin ter response: %s",
924 jobid, strerror(errno));
925 }
926 return(success);
927 }

[901–
904]

We continue searching for the end of the HTTP header. If we run out of space in the buffer, we read
more. When we find the end of the HTTP header, we calculate the number of bytes that the HTTP
header consumed. If the amount we've read minus the size of the HTTP header is not equal to the
amount of data in the IPP message (the value we calculated from the content length), then we read
some more.

[905–
927]

We get the status and job ID from the IPP header in the message. Both are stored as integers in network
byte order, so we need to convert them to the host byte order by calling ntohs and ntohl . If the job
IDs don't match, then this is not our response, so we log a message and break out of the outer while
loop. If the IPP status indicates success, then we save the return value and break out of the loop. We
return 1 if the print request was successful and 0 if it failed.

This concludes our look at the extended example in this chapter. The programs in this chapter were tested with a
Xerox Phaser 860 network-attached PostScript printer. Unfortunately, this printer doesn't recognize the
text/plain document format, but it does support the ability to autosense between plaintext and PostScript.
Therefore, with this printer, we can print PostScript files and text files, but we cannot print the source to a
PostScript program as plaintext unless we use some other utility, such as a2ps (1) to encapsulate the PostScript
program.

21.6. Summary

This chapter has examined in detail two complete programs: a print spooler daemon that sends a print job to a
network printer and a command that can be used to submit a job to be printed to the spooling daemon. This has
given us a chance to see lots of features that we described in earlier chapters used in a real program: threads, I/O
multiplexing, file I/O, socket I/O, and signals.

Appendix A. Function Prototypes

This appendix contains the function prototypes for the standard ISO C, POSIX, and UNIX System functions
described in the text. Often, we want to see only the arguments to a function ("Which argument is the file
pointer for fgets ?") or only the return value ("Does sprintf return a pointer or a count?"). These prototypes
also show which headers need to be included to obtain the definitions of any special constants and to obtain the
ISO C function prototype to help detect any compile-time errors.

The page number reference for each function prototype appears to the right of the first header file listed for the
function. The page number reference gives the page containing the prototype for the function. That page should
be consulted for additional information on the function.

Some functions are supported by only a few of the platforms described in this text. In addition, some platforms
support function flags that other platforms don't support. In these cases, we usually list the platforms for which
support is provided. In a few cases, however, we list platforms that lack support.

void abort (void);

 <stdlib.h>

This function never returns

p.
340

int accept(intsockfd, struct sockaddr *restrict addr,
 socklen_t *restrict len);

 <sys/socket.h>

Returns: file (socket) descriptor if OK, –1 on error

p.
563

int access(const char *pathname, int mode);
 <unistd.h>
 mode: R_OK, W_OK, X_OK, F_OK

 Returns: 0 if OK, –1 on error p. 95

unsigned
int

alarm(unsigned int seconds);

 <unistd.h>

Returns: 0 or number of seconds until previously set alarm

p.
313

char *asctime(const struct tm *tmptr);

 <time.h>

Returns: pointer to null-terminated string

p.
175

void abort (void);

int atexit(void (*func)(void));

 <stdlib.h>

Returns: 0 if OK, nonzero on error

p.
182

int bind(int sockfd, const struct sockaddr *addr,
 socklen_t len);

 <sys/socket.h>

Returns: 0 if OK, –1 on error

p.
560

void *calloc(size_t nobj, size_t size);

 <stdlib.h>

Returns: non-null pointer if OK, NULL on error

p.
189

speed_t cfgetispeed(const struct termios *termptr);

 <termios.h>

Returns: baud rate value

p.
652

speed_t cfgetospeed(const struct termios *termptr);

 <termios.h>

Returns: baud rate value

p.
652

int cfsetispeed(struct termios *termptr, speed_t speed) ;

 <termios.h>

Returns: 0 if OK, –1 on error

p.
652

int cfsetospeed(struct termios *termptr, speed_t speed) ;

 <termios.h>

Returns: 0 if OK, –1 on error

p.
652

int chdir(const char *pathname);

void abort (void);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
125

int chmod(const char *pathname, mode_t mode);

 <sys/stat.h>mode:
S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH)

Returns: 0 if OK, –1 on error

p. 99

int chown(const char *pathname, uid_t owner, gid_t grou p);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
102

void clearerr(FILE *fp);

 <stdio.h>

p.
141

int close(int filedes);

 <unistd.h>

Returns: 0 if OK, –1 on error

p. 63

int closedir(DIR *dp);

 <dirent.h>

Returns: 0 if OK, –1 on error

p.
120

void closelog(void);

 <syslog.h>

p.
430

unsigned
char

*CMSG_DATA(struct cmsghdr *cp);

 <sys/socket.h>

p.
607

void abort (void);

Returns: pointer to data associated with cmsghdr structure

struct
cmsghdr

*CMSG_FIRSTHDR(struct msghdr *mp);

 <sys/socket.h>

Returns: pointer to first cmsghdr structure associated with the msghdr
structure, or NULL if none exists

p.
607

unsigned
int

CMSG_LEN(unsigned int nbytes);

 <sys/socket.h>

Returns: size to allocate for data object nbytes large

p.
607

struct
cmsghdr

*CMSG_NXTHDR(struct msghdr *mp, struct cmsghdr *cp) ;

 <sys/socket.h>

Returns: pointer to next cmsghdr structure associated with the msghdr
structure given the current cmsghdr structure, or NULL if we're

at the last one

p.
607

int connect(int sockfd, const struct sockaddr *addr,
 socklen_t len);

 <sys/socket.h>

Returns: 0 if OK, –1 on error

p.
561

int creat(const char *pathname, mode_t mode);

 <fcntl.h>
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH)

Returns: file descriptor opened for write-only if OK, –1 on error

p. 62

char *ctermid(char *ptr);

 <stdio.h>

p.
654

void abort (void);

Returns: pointer to name of controlling terminal on success, pointer to
empty string on error

char *ctime(const time_t *calptr);

 <time.h>

Returns: pointer to null-terminated string

p.
175

int dup(int filedes);

 <unistd.h>

Returns: new file descriptor if OK, –1 on error

p. 76

int dup2(int filedes, int filedes2);

 <unistd.h>

Returns: new file descriptor if OK, –1 on error

p. 76

void endgrent(void);

 <grp.h>

p.
167

void endhostent(void);

 <netdb.h>

p.
553

void endnetent(void);

 <netdb.h>

p.
554

void endprotoent(void);

 <netdb.h>

p.
554

void endpwent(void);

 <pwd.h>

p.
164

void endservent(void);

void abort (void);

 <netdb.h>

p.
555

void endspent(void);

 <shadow.h>

Platforms: Linux 2.4.22, Solaris 9

p.
166

int execl(const char *pathname, const char *arg0, ... / * (char *) 0 */);

 <unistd.h>

Returns: –1 on error, no return on success

p.
231

int execle(const char *pathname, const char *arg0, ... /* (char *) 0,
 char *const envp[] */);

 <unistd.h>

Returns: –1 on error, no return on success

p.
231

int execlp(const char *filename, const char *arg0, ... /* (char *) 0 */);

 <unistd.h>

Returns: –1 on error, no return on success

p.
231

int execv(const char *pathname, char *const argv[]);

 <unistd.h>

Returns: –1 on error, no return on success

p.
231

int execve(const char *pathname, char *const argv[], ch ar *const envp[]);

 <unistd.h>

Returns: –1 on error, no return on success

p.
231

int execvp(const char *filename, char *const argv[]);

 <unistd.h> p.

void abort (void);

Returns: –1 on error, no return on success

231

void _Exit(int status);

 <stdlib.h>

This function never returns

p.
180

void _exit(int status);

 <unistd.h>

This function never returns

p.
180

void exit(int status);

 <stdlib.h>

This function never returns

p.
180

int fattach(int filedes, const char *path);

 <stropts.h>

Returns: 0 if OK, –1 on error
Platforms: Linux 2.4.22, Solaris 9

p.
589

int fchdir(int filedes);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
125

int fchmod(int filedes, mode_t mode);

 <sys/stat.h>
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH)

Returns: 0 if OK, –1 on error

p. 99

int fchown(int filedes, uid_t owner, gid_t group);

 <unistd.h> p.

void abort (void);

Returns: 0 if OK, –1 on error

102

int fclose(FILE *fp);

 <stdio.h>

Returns: 0 if OK, EOF on error

p.
139

int fcntl(int filedes, int cmd, ... /* int arg */);

 <fcntl.h>
cmd: F_DUPFD, F_GETFD, F_SETFD, F_GETFL, F_SETFL,
 F_GETOWN, F_SETOWN, F_GETLK, F_SETLK, F_SETLKW

Returns: depends on cmd if OK, –1 on error

p. 78

int fdatasync(int filedes);

 <unistd.h>

Returns: 0 if OK, –1 on error
Platforms : Linux 2.4.22, Solaris 9

p. 77

void FD_CLR(int fd, fd_set *fdset);

 <sys/select.h>

p.
476

int fdetach(const char *path);

 <stropts.h>

Returns: 0 if OK, –1 on error
Platforms: Linux 2.4.22, Solaris 9

p.
590

int FD_ISSET(int fd, fd_set *fdset);

 <sys/select.h>

Returns: nonzero if fd is in set, 0 otherwise

p.
476

FILE *fdopen(int filedes, const char *type);

 <stdio.h> p.

void abort (void);

type: "r", "w", "a", "r+", "w+", "a+",

Returns: file pointer if OK, NULL on error

138

void FD_SET(int fd, fd_set *fdset);

 <sys/select.h>

p.
476

void FD_ZERO(fd_set *fdset);

 <sys/select.h>

p.
476

int feof(FILE *fp);

 <stdio.h>

Returns: nonzero (true) if end of file on stream, 0 (false) otherwise

p.
141

int ferror(FILE *fp);

 <stdio.h>

Returns: nonzero (true) if error on stream, 0 (false) otherwise

p.
141

int fflush(FILE *fp);

 <stdio.h>

Returns: 0 if OK, EOF on error

p.
137

int fgetc(FILE *fp);

 <stdio.h>

Returns: next character if OK, EOF on end of file or error

p.
140

int fgetpos(FILE *restrict fp, fpos_t *restrict pos);

 <stdio.h>

Returns: 0 if OK, nonzero on error

p.
148

char *fgets(char *restrict buf, int n, FILE *restrict fp);

void abort (void);

 <stdio.h>

Returns: buf if OK, NULL on end of file or error

p.
142

int fileno(FILE *fp);

 <stdio.h>

Returns: file descriptor associated with the stream

p.
153

void flockfile(FILE *fp);

 <stdio.h>

p.
403

FILE *fopen(const char *restrict pathname, const char *r estrict type);

 <stdio.h>
type: "r", "w", "a", "r+", "w+", "a+",

Returns: file pointer if OK, NULL on error

p.
138

pid_t fork(void);

 <unistd.h>

Returns: 0 in child, process ID of child in parent, –1 on error

p.
211

long fpathconf(int filedes, int name);

 <unistd.h>
name: _PC_ASYNC_IO, _PC_CHOWN_RESTRICTED,
 _PC_FILESIZEBITS, _PC_LINK_MAX, _PC_MAX_CANON ,
 _PC_MAX_INPUT, _PC_NAME_MAX, _PC_NO_TRUNC,
 _PC_PATH_MAX, 'u'_PC_PIPE_BUF, _PC_PRIO_IO, _ PC_SYNC_IO,
 _PC_SYMLINK_MAX, _PC_VDISABLE

Returns: corresponding value if OK, –1 on error

p. 41

int fprintf(FILE *restrict fp, const char *restrict for mat, ...);

 <stdio.h>

Returns: number of characters output if OK, negative value if output error

p.
149

void abort (void);

int fputc(int c, FILE *fp);

 <stdio.h>

Returns: c if OK, EOF on error

p.
142

int fputs(const char *restrict str, FILE *restrict fp);

 <stdio.h>

Returns: non-negative value if OK, EOF on error

p.
143

size_t fread(void *restrict ptr, size_t size, size_t nobj
, FILE *restrict fp);

 <stdio.h>

Returns: number of objects read

p.
146

void free(void *ptr);

 <stdlib.h>

p.
189

void freeaddrinfo(struct addrinfo *ai);

 <sys/socket.h>
<netdb.h>

p.
555

FILE *freopen(const char *restrict pathname, const char *restrict type,
 FILE *restrict fp);

 <stdio.h>type: "r", "w", "a", "r+", "w+", "a+",

Returns: file pointer if OK, NULL on error

p.
138

int fscanf(FILE *restrict fp, const char *restrict form at, ...);

 <stdio.h>

Returns: number of input items assigned, EOF if input error or end of file
before any conversion

p.
151

int fseek(FILE *fp, long offset, int whence);

void abort (void);

 <stdio.h>
whence: SEEK_SET, SEEK_CUR, SEEK_END

Returns: 0 if OK, nonzero on error

p.
147

int fseeko(FILE *fp, off_t offset, int whence);

 <stdio.h>
whence: SEEK_SET, SEEK_CUR, SEEK_END

Returns: 0 if OK, nonzero on error

p.
148

int fsetpos(FILE *fp, const fpos_t *pos);

 <stdio.h>

Returns: 0 if OK, nonzero on error

p.
148

int fstat(int filedes, struct stat *buf);

 <sys/stat.h>

Returns: 0 if OK, –1 on error

p. 87

int fsync(int filedes);

 <unistd.h>

Returns: 0 if OK, –1 on error

p. 77

long ftell(FILE *fp);

 <stdio.h>

Returns: current file position indicator if OK, -1L on error

p.
147

off_t ftello(FILE *fp);

 <stdio.h>

Returns: current file position indicator if OK, (off_t) -1 on error

p.
148

key_t ftok(const char *path, int id);

void abort (void);

 <sys/ipc.h>

Returns: key if OK, (key_t) -1 on error

p.
519

int ftruncate(int filedes, off_t length);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
105

int ftrylockfile(FILE *fp);

 <stdio.h>

Returns: 0 if OK, nonzero if lock can't be acquired

p.
403

void funlockfile(FILE *fp);

 <stdio.h>

p.
403

int fwide(FILE *fp, int mode);

 <stdio.h>
<wchar.h>

Returns: positive if stream is wide oriented, negative if stream is
byte oriented, or 0 if stream has no orientation

p.
134

size_t fwrite(const void *restrict ptr, size_t size,
 size_t nobj,
 FILE *restrict fp);

 <stdio.h>

Returns: number of objects written

p.
146

const
char

*gai_strerror(int error);

 <netdb.h>

Returns: a pointer to a string describing the error

p.
556

int getaddrinfo(const char *restrict host, const char * restrict service,
 const struct addrinfo *restrict hint,
 struct addrinfo **restrict res);

void abort (void);

 <sys/socket.h> <netdb.h>

Returns: 0 if OK, nonzero error code on error

p.
555

int getc(FILE *fp);

 <stdio.h>

Returns: next character if OK, EOF on end of file or error

p.
140

int getchar(void);

 <stdio.h>

Returns: next character if OK, EOF on end of file or error

p.
140

int getchar_unlocked(void);

 <stdio.h>

Returns: the next character if OK, EOF on end of file or error

p.
403

int getc_unlocked(FILE *fp);

 <stdio.h>

Returns: the next character if OK, EOF on end of file or error

p.
403

char *getcwd(char *buf, size_t size);

 <unistd.h>

Returns: buf if OK, NULL on error

p.
126

gid_t getegid(void);

 <unistd.h>

Returns: effective group ID of calling process

p.
210

char *getenv(const char *name);

void abort (void);

 <stdlib.h>

Returns: pointer to value associated with name, NULL if not found

p.
192

uid_t geteuid(void);

 <unistd.h>

Returns: effective user ID of calling process

p.
210

gid_t getgid(void);

 <unistd.h>

Returns: real group ID of calling process

p.
210

structgroup

*getgrent(void);

 <grp.h>

Returns: pointer if OK, NULL on error or end of file

p.
167

structgroup

*getgrgid(gid_t gid);

 <grp.h>

Returns: pointer if OK, NULL on error

p.
166

structgroup

*getgrnam(const char *name);

 <grp.h>

Returns: pointer if OK, NULL on error

p.
166

int getgroups(int gidsetsize, gid_t grouplist[]);

 <unistd.h>

Returns: number of supplementary group IDs if OK, –1 on error

p.
168

structhostent

*gethostent(void);

 <netdb.h>

p.

void abort (void);

Returns: pointer if OK, NULL on error
553

int gethostname(char *name, int namelen);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
172

char *getlogin(void);

 <unistd.h>

Returns: pointer to string giving login name if OK, NULL on error

p.
256

int getmsg(int filedes, struct strbuf *restrict ctlptr,
 struct strbuf *restrict dataptr, int *restric t flagptr);

 <stropts.h>*
flagptr: 0, RS_HIPRI

Returns: non-negative value if OK, –1 on error
Platforms: Linux 2.4.22, Solaris 9

p.
469

int getnameinfo(const struct sockaddr *restrict addr,
 socklen_t alen,
 char *restrict host, socklen_t hostlen
, char *restrict service,
 socklen_t servlen, unsigned int flags);

 <sys/socket.h> <netdb.h>

Returns: 0 if OK, nonzero on error

p.
556

structnetent

*getnetbyaddr(uint32_t net, int type);

 <netdb.h>

Returns: pointer if OK, NULL on error

p.
554

structnetent

*getnetbyname(const char *name);

 <netdb.h>

Returns: pointer if OK, NULL on error

p.
554

void abort (void);

structnetent

*getnetent(void);

 <netdb.h>

Returns: pointer if OK, NULL on error

p.
554

int getopt(int argc, const * const argv[], const char * options);

 <fcntl.h>
extern int optind, opterr, optopt;
extern char *optarg;

Returns: the next option character, or –1 when all options have been processed

p.
774

int getpeername(int sockfd, struct sockaddr *restrict a ddr,
 socklen_t *restrict alenp);

 <sys/socket.h>

Returns: 0 if OK, –1 on error

p.
561

pid_t getpgid(pid_t pid);

 <unistd.h>

Returns: process group ID if OK, –1 on error

p.
269

pid_t getpgrp(void);

 <unistd.h>

Returns: process group ID of calling process

p.
269

pid_t getpid(void);

 <unistd.h>

Returns: process ID of calling process

p.
210

int getpmsg(int filedes, struct strbuf *restrict ctlptr ,
 struct strbuf *restrict dataptr, int *restr ict bandptr,
 int *restrict flagptr);

 <stropts.h>
 *flagptr: 0, MSG_HIPRI, MSG_BAND, MSG_ANY

p.
469

void abort (void);

Returns: non-negative value if OK, –1 on error
Platforms: Linux 2.4.22, Solaris 9

pid_t getppid(void);

 <unistd.h>

Returns: parent process ID of calling process

p.210

structprotoent

*getprotobyname(const char *name);

 <netdb.h>

Returns: pointer if OK, NULL on error

p.554

structprotoent

*getprotobynumber(int proto);

 <netdb.h>

Returns: pointer if OK, NULL on error

p.554

structprotoent

*getprotoent(void);

 <netdb.h>

Returns: pointer if OK, NULL on error.

p.554

structpasswd

*getpwent(void);

 <pwd.h>

Returns: pointer if OK, NULL on error or end of file

p.164

structpasswd

*getpwnam(const char *name);

 <pwd.h>

Returns: pointer if OK, NULL on error

p.163

structpasswd

*getpwuid(uid_tuid);

 <pwd.h>

p.163

void abort (void);

Returns: pointer if OK, NULL on error

int getrlimit(int resource, struct rlimit *rlptr);

 <sys/resource.h>

Returns: 0 if OK, nonzero on error

p.202

char *gets(char *buf);

 <stdio.h>

Returns: buf if OK, NULL on end of file or error

p142

structservent

*getservbyname(const char *name, const char *proto) ;

 <netdb.h>

Returns: pointer if OK, NULL on error

p.555

structservent

*getservbyport(int port, const char *proto);

 <netdb.h>

Returns: pointer if OK, NULL on error

p.555

structservent

*getservent(void);

 <netdb.h>

Returns: pointer if OK, NULL on error

p.555

pid_t getsid(pid_t pid);

 <unistd.h>

Returns: session leader's process group ID if OK, –1 on error

p.271

int getsockname(int sockfd, struct sockaddr *restrict a ddr,
 socklen_t *restrict alenp);

 <sys/socket.h>

p.561

void abort (void);

Returns: 0 if OK, –1 on error

int getsockopt(int sockfd, int level, int option, void *restrict val,
 socklen_t *restrict lenp);

 <sys/socket.h>

Returns: 0 if OK, –1 on error

p.579

structspwd

*getspent(void);

 <shadow.h>

Returns: pointer if OK, NULL on error

Platforms: Linux 2.4.22, Solaris 9

p.166

structspwd

*getspnam(const char *name);

 <shadow.h>

Returns: pointer if OK, NULL on error

Platforms: Linux 2.4.22, Solaris 9

p.166

int gettimeofday(struct timeval *restrict tp, void *res trict tzp);

 <sys/time.h>

Returns: 0 always

p.173

uid_t getuid(void);

 <unistd.h>

Returns: real user ID of calling process

p.210

structtm

*gmtime(const time_t *calptr);

 <time.h>

Returns: pointer to broken-down time

p.175

int grantpt(int filedes);

void abort (void);

 <stdlib.h>

Returns: 0 on success, –1 on error

Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9

p.682

uint32_t htonl(uint32_t hostint32);

 <arpa/inet.h>

Returns: 32-bit integer in network byte order

p.550

uint16_t htons(uint16_t hostint16);

 <arpa/inet.h>

Returns: 16-bit integer in network byte order

p.550

constchar

*inet_ntop(int domain, const void *restrict addr,
 char *restrict str,
 socklen_t size);

 <arpa/inet.h>

Returns: pointer to address string on success, NULL on error

p.552

int inet_pton(int domain, const char *restrict str,
 void *restrict addr);

 <arpa/inet.h>

Returns: 1 on success, 0 if the format is invalid, or –1 on error

p.552

int initgroups(const char *username, gid_t basegid);

 <grp.h> /* Linux & Solaris */
 <unistd.h> /* FreeBSD & Mac OS X */

Returns: 0 if OK, –1 on error

p.168

int ioctl(int filedes, int request, ...);

 <unistd.h> /* System V */
 <sys/ioctl.h> /* BSD and Linux */
 <stropts.h> /* XSI STREAMS */

p.83

void abort (void);

Returns: –1 on error, something else if OK

int isastream(int filedes);

 <stropts.h>

Returns: 1 (true) if STREAMS device, 0 (false) otherwise

Platforms: Linux 2.4.22, Solaris 9

p.465

int isatty(int filedes);

 <unistd.h>

Returns: 1 (true) if terminal device, 0 (false) otherwise

p.655

int kill(pid_t pid, int signo);

 <signal.h>

Returns: 0 if OK, –1 on error

p.312

int lchown(const char *pathname, uid_t owner, gid_t gro up);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.102

int link(const char *existingpath, const char *newpath) ;

 <unistd.h>

Returns: 0 if OK, –1 on error

p.109

int listen(int sockfd, int backlog);

 <sys/socket.h>

Returns: 0 if OK, –1 on error

p.563

structtm

*localtime(const time_t *calptr);

 <time.h>

p.175

void abort (void);

Returns: pointer to broken-down time

void longjmp(jmp_buf env, int val);

 <setjmp.h>

This function never returns

p.
197

off_t lseek(int filedes, off_t offset, int whence);

 <unistd.h>
whence; SEEK_SET, SEEK_CUR, SEEK_END

Returns: new file offset if OK, –1 on error

p.63

int lstat(const char *restrict pathname, struct stat *r estrict buf;

 <sys/stat.h>

Returns: 0 if OK, –1 on error

p.87

void *malloc(size_t size);

 <stdlib.h>

Returns: non-null pointer if OK, NULL on error

p.189

int mkdir(const char *pathname, mode_t mode;

 <sys/stat.h>
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH)

Returns: 0 if OK, –1 on error

p.119

int mkfifo(const char *pathname, mode_t mode);

 <sys/stat.h>
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH)

Returns: 0 if OK, –1 on error

p.514

int mkstemp(char *template);

 <stdlib.h> p.158

void abort (void);

Returns: file descriptor if OK, –1 on error

time_t mktime(struct tm *tmptr);

 <time.h>

Returns: calendar time if OK, –1 on error

p.175

caddr_t mmap(void *addr, size_t len, int prot, int flag,
 int filedes, off_t off);

 <sys/mman.h>
prot: PROT_READ, PROT_WRITE, PROT_EXEC, PROT_NONE
flag: MAP_FIXED, MAP_SHARED, MAP_PRIVATE

Returns: starting address of mapped region if OK, MAP_FAILED on error

p.487

int mprotect(void *addr, size_t len, int prot);

 <sys/mman.h>

Returns: 0 if OK, –1 on error

p.489

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

 <sys/msg.h>
cmd: IPC_STAT, IPC_SET, IPC_RMID

Returns: 0 if OK, –1 on error
Platforms: FreeBSD 5.2.1, Linux 2.4 .22, Solaris 9

p.524

int msgget(key_t key, int flag);

 <sys/msg.h>
flag: 0, IPC_CREAT, IPC_EXCL

Returns: message queue ID if OK, –1 on error
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9

p.524

ssize_t msgrcv(int msqid, void *ptr, size_t nbytes, long ty pe, int flag);

 <sys/msg.h>
flag: 0, IPC_NOWAIT, MSG_NOERROR

p.526

void abort (void);

Returns: size of data portion of message if OK, –1 on error
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9

int msgsnd(int msqid, const void *ptr, size_t nbytes,
 int flag);

 <sys/msg.h>
flag: 0, IPC_NOWAIT

Returns: 0 if OK, –1 on error
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9

p.525

int msync(void *addr, size_t len, int flags);

 <sys/mman.h>

Returns: 0 if OK, –1 on error

p.490

int munmap(caddr_t addr, size_t len);

 <sys/mman.h>

Returns: 0 if OK, –1 on error

p.490

uint32_t ntohl(uint32_tnetint32);

 <arpa/inet.h>

Returns: 32-bit integer in host byte order

p.550

uint16_t ntohs(uint16_t netint16);

 <arpa/inet.h>

Returns: 16-bit integer in host byte order

p.550

int open(const char *pathname, int oflag, ... /* mode_t mode */);

 <fcntl.h>
oflag: O_RDONLY, O_WRONLY, O_RDWR;
 O_APPEND, O_CREAT, O_DSYNC, O_EXCL, O_NOCTTY ,
 O_NONBLOCK, O_RSYNC, O_SYNC, O_TRUNC
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH)

p.60

void abort (void);

Returns: file descriptor if OK, –1 on error
Platforms: O_FSYNC flag on FreeBSD 5.2.1 and Mac OS X 10.3

DIR *opendir(const char *pathname);

 <direct.h>

Returns: pointer if OK, NULL on error

p.120

void openlog(char *ident, int option, int facility;

 <syslog.h>
 option: LOG_CONS, LOG_NDELAY, LOG_NOWAIT, LOG_ODE LAY,
 LOG_PERROR, LOG_PID
facility: LOG_AUTH, LOG_AUTHPRIV, LOG_CRON, LOG_DAE MON,
 LOG_FTP, LOG_KERN, LOG_LOCAL[0-7], LOG_LP R,
 LOG_MAIL, LOG_NEWS, LOG_SYSLOG, LOG_USER, LOG_UUCP

p.430

long pathconf(const char *pathname, int name);

 <unistd.h>
name: _PC_ASYNC_IO, _PC_CHOWN_RESTRICTED,
 _PC_FILESIZEBITS, _PC_LINK_MAX, _PC_MAX_CANON ,
 _PC_MAX_INPUT, _PC_NAME_MAX, _PC_NO_TRUNC,
 _PC_PATH_MAX, _PC_PIPE_BUF, _PC_PRIO_IO,
 _PC_SYMLINK_MAX, _PC_SYNC_IO, _PC_VDISABLE

Returns: corresponding value if OK, –1 on

p.41

int pause(void);

 <unistd.h>

Returns: –1 with errno set to EINTR

p.313

int pclose(FILE *fp);

 <stdio.h>

Returns: termination status of popen cmdstring, or –1 on error

p.503

void perror(const char *msg);

 <stdio.h>

p.15

int pipe(int filedes[2]);

void abort (void);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.497

int poll(struct pollfd fdarray[], nfds_t nfds, int time out);

 <poll.h>

Returns: count of ready descriptors, 0 on timeout, –1 on error
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9

p.479

FILE *popen(const char *cmdstring, const char *type);

 <stdio.h>
type: "r", "w"

Returns: file pointer if OK, NULL on error

p.503

int posix_openpt(int oflag);

 <stdlib.h>
<fcntl.h>
oflag: O_RWDR, O_NOCTTY

Returns: file descriptor of next available PTY master if OK, –1 on error
Platforms: FreeBSD 5.2.1

p.681

ssize_t pread(int filedes, void *buf, size_t nbytes, off_t offset);

 <unistd.h>

Returns: number of bytes read, 0 if end of file, –1 on error

p.75

int printf(const char *restrict format, ...);

 <stdio.h>

Returns: number of characters output if OK, negative value if output error

p.149

int pselect(int maxfdp1, fd_set *restrict readfds,
 fd_set *restrict writefds,
 fd_set *restrict exceptfds, const struct ti mespec *restrict tsptr,
 const sigset_t *restrict sigmask);

void abort (void);

 <sys/select.h>

Returns: count of ready descriptors, 0 on timeout, –1 on error
Platforms: FreeBSD 5.2 .1, Linux 2.4.22, Mac OS X 10.3

p.478

void psignal(int signo, const char *msg);

 <signal.h>
<siginfo.h> /* on Solaris */

p.352

int pthread_atfork(void (*prepare)(void), void (*parent)(void),
 void (*child)(void);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.417

int pthread_attr_destroy(pthread_attr_t *attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.389

int pthread_attr_getdetachstate(const pthread_attr_t *r estrict attr,
 int *detachstate);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.390

int pthread_attr_getguardsize(const pthread_attr_t *res trict attr,
 size_t *restricts guardsi ze);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.392

int pthread_attr_getstack(const pthread_attr_t *restric t attr, void
 **restrict stackaddr, size_t *restrictstacksize);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.391

int pthread_attr_getstacksize(const pthread_attr_t *res trict attr,

void abort (void);

 size_t *restrict stacksiz e);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.392

int pthread_attr_init(pthread_attr_t *attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.389

int pthread_attr_setdetachstate(pthread_attr_t *attr,
 int detachstate);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.390

int pthread_attr_setguardsize(pthread_attr_t *attr,
 size_t guardsize);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.392

int pthread_attr_setstack(const pthread_attr_t *attr,
 void *stackaddr,
 size_t *stacksize);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.391

int pthread_attr_setstacksize(pthread_attr_t *attr,
 size_t stacksize);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.392

int pthread_cancel(pthread_t tid);

 <pthread.h>

p.365

void abort (void);

Returns: 0 if OK, error number on failure

void pthread_cleanup_pop(int execute);

 <pthread.h>

p.365

void pthread_cleanup_push(void (*rtn)(void *), void *arg);

 <pthread.h>

p.365

int pthread_condattr_destroy(pthread_condattr_t *attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.401

int pthread_condattr_getpshared(const pthread_condattr_ t *restrict attr,
 int *restrict pshared);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.401

int pthread_condattr_init(pthread_condattr_t *attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.401

int pthread_condattr_setpshared(pthread_condattr_t *att r, int pshared);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.401

int pthread_cond_broadcast(pthread_cond_t *cond);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.384

int pthread_cond_destroy(pthread_cond_t *cond);

void abort (void);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.383

int pthread_cond_init(pthread_cond_t *restrict cond,
 pthread_condattr_t *restrict attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
383

int pthread_cond_signal(pthread_cond_t *cond);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
384

int pthread_cond_timedwait(pthread_cond_t *restrict con d,
 pthread_mutex_t *restrict mu tex,
 const struct timespec *restr ict timeout);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
383

int pthread_cond_wait(pthread_cond_t *restrict cond,
 pthread_mutex_t *restrict mutex);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
383

int pthread_create(pthread_t *restrict tidp,
 const pthread_attr_t *restrict attr,
 void *(*start_rtn)(void), void *rest rict arg);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
357

int pthread_detach(pthread_t tid);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
368

void abort (void);

int pthread_equal(pthread_t tid1, pthread_t tid2);

 <pthread.h>

Returns: nonzero if equal, 0 otherwise

p.
357

void pthread_exit(void *rval_ptr);

 <pthread.h>

p.
361

int pthread_getconcurrency(void);

 <pthread.h>

Returns: current concurrency level

p.
393

void *pthread_getspecific(pthread_key_t key);

 <pthread.h>

Returns: thread-specific data value or NULL if no value has been associated with the
key

p.
408

int pthread_join(pthread_t thread, void **rval_ptr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
361

int pthread_key_create(pthread_key_t *keyp, void (*dest ructor)(void *);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
406

int pthread_key_delete(pthread_key_t *key);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
407

int pthread_kill(pthread_t thread, int signo);

void abort (void);

 <signal.h>

Returns: 0 if OK, error number on failure

p.
414

int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
393

int pthread_mutexattr_getpshared(const pthread_mutexatt r_t *restrict attr, int
*restrict pshared);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
394

int pthread_mutexattr_gettype(const pthread_mutexattr_t *restrict attr,
 int *restrict type);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
395

int pthread_mutexattr_init(pthread_mutexattr_t *attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
393

int pthread_mutexattr_setpshared(pthread_mutexattr_t *a ttr, int pshared);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
394

int pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
395

int pthread_mutex_destroy(pthread_mutex_t *mutex);

void abort (void);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
371

int pthread_mutex_init(pthread_mutex_t *restrict mutex,
 const pthread_mutexattr_t *restr ict attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
371

int pthread_mutex_lock(pthread_mutex_t *mutex);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
371

int pthread_mutex_trylock(pthread_mutex_t *mutex);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
371

int pthread_mutex_unlock(pthread_mutex_t *mutex);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
371

int pthread_once(pthread_once_t *initflag, void (*initf n)(void);

 <pthread.h>
pthread_once_t initflag = PTHREAD_ONCE_INIT;

Returns: 0 if OK, error number on failure

p.
408

int pthread_rwlockattr_destroy(pthread_rwlockattr_t *at tr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
400

int pthread_rwlockattr_getpshared(const pthread_rwlocka ttr_t *restrict attr,

void abort (void);

 int *restrict pshared);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
400

int pthread_rwlockattr_init(pthread_rwlockattr_t *attr) ;

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
400

int pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
400

int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
379

int pthread_rwlock_init(pthread_rwlock_t *restrict rwlo ck,
 const pthread_rwlockattr_t *res trict attr);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
379

int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
379

int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
379

int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);

void abort (void);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
379

int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
379

int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
379

pthread_t pthread_self(void);

 <pthread.h>

Returns: thread ID of the calling thread

p.
357

int pthread_setcancelstate(int state, int *oldstate);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
410

int pthread_setcanceltype(int type, int *oldtype);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
411

int pthread_setconcurrency(int level);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
393

int pthread_setspecific(pthread_key_t key, const void * value);

void abort (void);

 <pthread.h>

Returns: 0 if OK, error number on failure

p.
408

int pthread_sigmask(int how, const sigset_t *restrict s et,
 sigset_t *restrict> oset);

 <signal.h>

Returns: 0 if OK, error number on failure

p.
413

void pthread_testcancel(void);

 <pthread.h>

p.
411

char *ptsname(int filedes);

 <stdlib.h>

Returns: pointer to name of PTY slave if OK, NULL on error

Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9

p.
682

int putc(int c, FILE *fp);

 <stdio.h>

Returns: c if OK, EOF on error

p.
142

int putchar(int c);

 <stdio.h>

Returns: c if OK, EOF on error

p.
142

int putchar_unlocked(int c);

 <stdio.h>

Returns: c if OK, EOF on error

p.
403

int putc_unlocked(int c, FILE *fp);

void abort (void);

 <stdio.h>

Returns: c if OK, EOF on error

p.
403

int putenv(char *str);

 <stdlib.h>

Returns: 0 if OK, nonzero on error

p.
194

int putmsg(int filedes, const struct strbuf *ctlptr,
 const struct strbuf *dataptr, int flag)

 <stropts.h>
flag: 0, RS_HIPRI

Returns: 0 if OK, –1 on error

Platforms: Linux 2.4.22, Solaris 9

p.
463

int putpmsg(int filedes, const struct strbuf *ctlptr,
 const struct strbuf *dataptr, int band,
 int flag);

 <stropts.h>
flag: 0, MSG_HIPRI, MSG_BAND

Returns: 0 if OK, –1 on error

Platforms: Linux 2.4.22, Solaris 9

p.
463

int puts(const char *str);

 <stdio.h>

Returns: non-negative value if OK, EOF on error

p.
143

ssize_t pwrite(int filedes, const void *buf, size_t nbytes
, off_t offset);

 <unistd.h>

Returns: number of bytes written if OK, –1 on error

p. 75

int raise(int signo);

void abort (void);

 <signal.h>

Returns: 0 if OK, –1 on error

p.
312

ssize_t read(int filedes, void *buf, size_t nbytes);

 <unistd.h>

Returns: number of bytes read if OK, 0 if end of file, –1 on error

p. 67

struct
dirent

*readdir(DIR *dp);

 <dirent.h>

Returns: pointer if OK, NULL at end of directory or error

p.
120

int readlink(const char *restrict pathname, char *restr ict buf,
 size_t bufsize);

 <unistd.h>

Returns: number of bytes read if OK, –1 on error

p.
115

ssize_t readv(int filedes, const struct iovec *iov, int iov cnt;

 <sys/uio.h>

Returns: number of bytes read if OK, –1 on error

p.
483

void *realloc(void *ptr, size_t newsize);

 <stdlib.h>

Returns: non-null pointer if OK, NULL on error

p.
189

ssize_t recv(int sockfd, void *buf, size_t nbytes, int flag s);

 <sys/socket.h>
flags: 0, MSG_PEEK, MSG_OOB, MSG_WAITALL

Returns: length of message in bytes, 0 if no messages are available and peer has
done an orderly shutdown, or –1 on error

p.
567

void abort (void);

Platforms: MSG_TRUNC flag on Linux 2.4.22

ssize_t recvfrom(int sockfd, void *restrict buf, size_t len , int flags,
 struct sockaddr *restrict addr, socklen_t *restrict addrlen);

 <sys/socket.h>
flags: 0, MSG_PEEK, MSG_OOB, MSG_WAITALL

Returns: length of message in bytes, 0 if no messages are available and peer has
done an orderly shutdown, or –1 on error

Platforms: MSG_TRUNC flag on Linux 2.4.22

p.
567

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags;

 <sys/socket.h>
flags: 0, MSG_PEEK, MSG_OOB, MSG_WAITALL

Returns: length of message in bytes, 0 if no messages are available

and peer has done an orderly shutdown, or –1 on error

Platforms: MSG_TRUNC flag on Linux 2.4.22

p.
568

int remove(const char *pathname);

 <stdio.h>

Returns: 0 if OK, –1 on error

p.
111

int rename(const char *oldname, const char *newname);

 <stdio.h>

Returns: 0 if OK, –1 on error

p.
111

void rewind(FILE *fp);

 <stdio.h>

p.
147

void rewinddir(DIR *dp);

 <dirent.h>

p.
120

int rmdir(const char *pathname);

void abort (void);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
120

int scanf(const char *restrict format, ...);

 <stdio.h>

Returns: number of input items assigned, EOF if input error or

end of file before any conversion

p.
151

void seekdir(DIR *dp, long loc);

 <dirent.h>

p.
120

int select(int maxfdp1, fd_set *restrict readfds,
 fd_set *restrict writefds, fd_set *restrict exceptfds, struct
timeval *restrict tvptr);

 <sys/select.h>

Returns: count of ready descriptors, 0 on timeout, –1 on error

p.
475

int semctl(int semid, int semnum, int cmd, ... /* union semun arg */);

 <sys/sem.h>
cmd: IPC_STAT, IPC_SET, IPC_RMID, GETPID, GETNCNT,
 GETZCNT, GETVAL, SETVAL, GETALL, SETALL

Returns: (depends on command)

p.
529

int semget(key_t key, int nsems, int flag);

 <sys/sem.h>
flag: 0, IPC_CREAT, IPC_EXCL

Returns: semaphore ID if OK, –1 on error

p.
529

int semop(int semid, struct sembuf semoparray[], size_t nops);

 <sys/sem.h> p.

void abort (void);

Returns: 0 if OK, –1 on error

530

ssize_t send(int sockfd, const void *buf, size_t nbytes,
 int flags);

 <sys/socket.h>
flags: 0, MSG_DONTROUTE, MSG_EOR, MSG_OOB

Returns: number of bytes sent if OK, –1 on error

Platforms: MSG_DONTWAIT flag on FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3
MSG_EOR flag not on Solaris 9

p.
565

ssize_t sendmsg(int sockfd, const struct msghdr *msg, int f lags);

 <sys/socket.h>
flags: 0, MSG_DONTROUTE, MSG_EOR, MSG_OOB

Returns: number of bytes sent if OK, –1 on error

Platforms: MSG_DONTWAIT flag on FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3
MSG_EOR flag not on Solaris 9

p.
566

ssize_t sendto(int sockfd, const void *buf, size_t nbytes,
 int flags,
 const struct sockaddr *destaddr, socklen_t d estlen);

 <sys/socket.h>
flags: 0, MSG_DONTROUTE, MSG_EOR, MSG_OOB

Returns: number of bytes sent if OK, –1 on error

Platforms: MSG_DONTWAIT flag on FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3
MSG_EOR flag not on Solaris 9

p.
566

void setbuf(FILE *restrict fp, char *restrict buf);

 <stdio.h>

p.
136

int setegid(gid_t gid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
241

void abort (void);

int setenv(const char *name, const char *value, int rew rite);

 <stdlib.h>

Returns: 0 if OK, nonzero on error

p.
194

int seteuid(uid_t uid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
241

int setgid(gid_t gid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
237

void setgrent(void);

 <grp.h>

p.
167

int setgroups(int ngroups, const gid_t grouplist[]);

 <grp.h> /* on Linux */
<unistd.h> /* on FreeBSD, Mac OS X, and Solaris */

Returns: 0 if OK, –1 on error

p.
168

void sethostent(int stayopen);

 <netdb.h>

p.
553

int setjmp(jmp_buf env);

 <setjmp.h>

Returns: 0 if called directly, nonzero if returning from a call to longjmp

p.
197

int setlogmask(int maskpri);

 <syslog.h>

p.
430

void abort (void);

Returns: previous log priority mask value

void setnetent(int stayopen);

 <netdb.h>

p.
554

int setpgid(pid_t pid, pid_t pgid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
269

void setprotoent(int stayopen);

 <netdb.h>

p.
554

void setpwent(void);

 <pwd.h>

p.
164

int setregid(gid_t rgid, gid_t egid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
240

int setreuid(uid_t ruid, uid_t euid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
240

int setrlimit(int resource, const struct rlimit *rlptr) ;

 <sys/resource.h>

Returns: 0 if OK, nonzero on error

p.
202

void setservent(int stayopen);

 <netdb.h>

p.
555

pid_t setsid(void);

void abort (void);

 <unistd.h>

Returns: process group ID if OK, –1 on error

p.
271

int setsockopt(int sockfd, int level, int option,
 const void *val, socklen_t len);

 <sys/socket.h>

Returns: 0 if OK, –1 on error

p.
579

void setspent(void);

 <shadow.h>

Platforms: Linux 2.4.22, Solaris 9

p.
166

int setuid(uid_t uid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
237

int setvbuf(FILE *restrict fp, char *restrict buf, int mode, size_t size);

 <stdio.h>
mode: _IOFBF, _IOLBF, _IONBF

Returns: 0 if OK, nonzero on error

p.
136

void *shmat(int shmid, const void *addr, int flag);

 <sys/shm.h>flag: 0, SHM_RND, SHM_RDONLY

Returns: pointer to shared memory segment if OK, –1 on error

p.
536

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

 <sys/shm.h>
cmd: IPC_STAT, IPC_SET, IPC_RMID,
 SHM_LOCK, SHM_UNLOCK

Returns: 0 if OK, –1 on error

p.
535

int shmdt(void *addr);

 <sys/shm.h> p.

void abort (void);

Returns: 0 if OK, –1 on error

536

int shmget(key_t key, int size, int flag);

 <sys/shm.h>
flag: 0, IPC_CREAT, IPC_EXCL

Returns: shared memory ID if OK, –1 on error

p.
534

int shutdown(int sockfd, int how);

 <sys/socket.h>
how: SHUT_RD, SHUT_WR, SHUT_RDWR

Returns: 0 if OK, –1 on error

p.
548

int sig2str(int signo, char *str);

 <signal.h>

Returns: 0 if OK, –1 on error Platforms: Solaris 9

p.
353

int sigaction(int signo, const struct sigaction *restri ct act,
 struct sigaction *restrict oact);

 <signal.h>

Returns: 0 if OK, –1 on error

p.
324

int sigaddset(sigset_t *set, int signo);

 <signal.h>

Returns: 0 if OK, –1 on error

p.
319

int sigdelset(sigset_t *set, int signo);

 <signal.h>

Returns: 0 if OK, –1 on error

p.
319

int sigemptyset(sigset_t *set);

void abort (void);

 <signal.h>

Returns: 0 if OK, –1 on error

p.
319

int sigfillset(sigset_t *set);

 <signal.h>

Returns: 0 if OK, –1 on error

p.
319

int sigismember(const sigset_t *set, int signo);

 <signal.h>

Returns: 1 if true, 0 if false, –1 on error

p.
319

void siglongjmp(sigjmp_buf env, int val);

 <setjmp.h>

This function never returns

p.
330

void (*signal(int signo, void (*func)(int)))(int);

 <signal.h>

Returns: previous disposition of signal if OK, SIG_ERR on error

p.
298

int sigpending(sigset_t *set);

 <signal.h>

Returns: 0 if OK, –1 on error

p.
322

int sigprocmask(int how, const sigset_t *restrict set,
 sigset_t *restrict oset);

 <signal.h>
how: SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK

Returns: 0 if OK, –1 on error

p.
320

int sigsetjmp(sigjmp_buf env, int savemask);

void abort (void);

 <setjmp.h>

Returns: 0 if called directly, nonzero if returning from a call to siglongjmp

p.
330

int sigsuspend(const sigset_t *sigmask);

 <signal.h>

Returns: –1 with errno set to EINTR

p.
334

int sigwait(const sigset_t *restrict set, int *restrict signop);

 <signal.h>

Returns: 0 if OK, error number on failure

p.
413

unsigned
int

sleep(unsigned int seconds);

 <unistd.h>

Returns: 0 or number of unslept seconds

p.
347

int snprintf(char *restrict buf, size_t n, const char * restrict format, ...);

 <stdio.h>

Returns: number of characters stored in array if OK, negative value if encoding
error

p.
149

int sockatmark(int sockfd);

 <sys/socket.h>

Returns: 1 if at mark, 0 if not at mark, –1 on error

p.
582

int socket(int domain, int type, int protocol);

 <sys/socket.h>

type: SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET,

Returns: file (socket) descriptor if OK, –1 on error

p.
546

void abort (void);

int socketpair(int domain, int type, int protocol, int sockfd[2]);

 <sys/socket.h>
type: SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET,

Returns: 0 if OK, –1 on error

p.
594

int sprintf(char *restrict buf, const char *restrict fo rmat, ...);

 <stdio.h>

Returns: number of characters stored in array if OK, negative value if encoding
error

p.
149

int sscanf(const char *restrict buf, const char *restri ct format, ...);

 <stdio.h>

Returns: number of input items assigned, EOF if input error or end of file before
any conversion

p.
151

int stat(const char *restrict pathname, struct stat *re strict buf);

 <sys/stat.h>

Returns: 0 if OK, –1 on error

p. 87

int str2sig(const char *str, int *signop);

 <signal.h>

Returns: 0 if OK, –1 on error Platforms: Solaris 9

p.
353

char *strerror(int errnum);

 <string.h>

Returns: pointer to message string

p. 15

size_t strftime(char *restrict buf, size_t maxsize,
 const char *restrict format, const struct tm *restrict tmptr);

 <time.h>

p.
176

void abort (void);

Returns: number of characters stored in array if room, 0 otherwise

char *strsignal(int signo);

 <string.h>

Returns: a pointer to a string describing the signal

p.
352

int symlink(const char *actualpath, const char *sympath);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
115

void sync(void);

 <unistd.h>

p. 77

long sysconf(int name);

 <unistd.h>
name: _SC_ARG_MAX, _SC_ATEXIT_MAX, _SC_CHILD_MAX,_S C_CLK_TCK,
_SC_COLL_WEIGHTS_MAX,
 _SC_HOST_NAME_MAX, _SC_IOV_MAX, _SC_JOB_CONTR OL,
 _SC_LINE_MAX, _SC_LOGIN_NAME_MAX, _SC_NGROUPS _MAX,
 _SC_OPEN_MAX, _SC_PAGESIZE, _SC_PAGE_SIZE,
 _SC_READER_WRITER_LOCKS, _SC_RE_DUP_MAX,
 _SC_SAVED_IDS, _SC_SHELL, _SC_STREAM_MAX,
 _SC_SYMLOOP_MAX, _SC_TTY_NAME_MAX, _SC_TZNAME _MAX,
 _SC_VERSION, _SC_XOPEN_CRYPT, _SC_XOPEN_LEGAC Y,
 _SC_XOPEN_REALTIME, _SC_XOPEN_REALTIME_THREAD S,
 _SC_XOPEN_VERSION

Returns: corresponding value if OK, –1 on error

p. 41

void syslog(int priority, char *format, ...);

 <syslog.h>

p.
430

int system(const char *cmdstring);

 <stdlib.h>

p.
246

void abort (void);

Returns: termination status of shell

int tcdrain(int filedes);

 <termios.h>

Returns: 0 if OK, –1 on error

p.
653

int tcflow(int filedes, int action);

 <termios.h>
action: TCOOFF, TCOON, TCIOFF, TCION

Returns: 0 if OK, –1 on error

p.
653

int tcflush(int filedes, int queue);

 <termios.h>
queue: TCIFLUSH, TCOFLUSH, TCIOFLUSH

Returns: 0 if OK, –1 on error

p.
653

int tcgetattr(int filedes, struct termios *termptr);

 <termios.h>

Returns: 0 if OK, –1 on error

p.
643

pid_t tcgetpgrp(int filedes);

 <unistd.h>

Returns: process group ID of foreground process group if OK, –1 on error

p.
273

pid_t tcgetsid(int filedes);

 <termios.h>

Returns: session leader's process group ID if OK, –1 on error

p.
274

int tcsendbreak(int filedes, int duration);

 <termios.h>

p.
653

void abort (void);

Returns: 0 if OK, –1 on error

int tcsetattr(int filedes, int opt, const struct termio s *termptr);

 <termios.h>
opt: TCSANOW, TCSADRAIN, TCSAFLUSH

Returns: 0 if OK, –1 on error

p.
643

int tcsetpgrp(int filedes, pid_t pgrpid);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
273

long telldir(DIR *dp);

 <dirent.h>

Returns: current location in directory associated with dp

p.
120

char *tempnam(const char *directory, const char *prefix) ;

 <stdio.h>

Returns: pointer to unique pathname

p.
157

time_t time(time_t *calptr);

 <time.h>

Returns: value of time if OK, –1 on error

p.
173

clock_t times(struct tms *buf);

 <sys/times.h>

Returns: elapsed wall clock time in clock ticks if OK, –1 on error

p.
257

FILE *tmpfile(void);

 <stdio.h>

p.
155

void abort (void);

Returns: file pointer if OK, NULL on error

char *tmpnam(char *ptr);

 <stdio.h>

Returns: pointer to unique pathname

p.
155

int truncate(const char *pathname, off_t length);

 <unistd.h>

Returns: 0 if OK, –1 on error

p.
105

char *ttyname(int filedes);

 <unistd.h>

Returns: pointer to pathname of terminal, NULL on error

p.
655

mode_t umask(mode_t cmask);

 <sys/stat.h>

Returns: previous file mode creation mask

p. 97

int uname(struct utsname *name);

 <sys/utsname.h>

Returns: non-negative value if OK, –1 on error

p.
171

int ungetc(int c, FILE *fp);

 <stdio.h>

Returns: c if OK, EOF on error

p.
141

int unlink(const char *pathname);

 <unistd.h>

p.
109

void abort (void);

Returns: 0 if OK, –1 on error

int unlockpt(int filedes);

 <stdlib.h>

Returns: 0 on success, –1 on error

Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9

p.
682

void unsetenv(const char *name);

 <stdlib.h>

p.
194

int utime(const char *pathname, const struct utimbuf *t imes);

 <utime.h>

Returns: 0 if OK, –1 on error

p.
116

int vfprintf(FILE *restrict fp, const char *restrict fo rmat, va_list arg);

 <stdarg.h>
<stdio.h>

Returns: number of characters output if OK, negative value if output error

p.
151

int vfscanf(FILE *restrict fp, const char *restrict for mat, va_list arg);

 <stdarg.h>
<stdio.h>

Returns: number of input items assigned, EOF if input error or end of file before
any conversion

p.
151

int vprintf(const char *restrict format, va_list arg);

 <stdarg.h>
<stdio.h>

Returns: number of characters output if OK, negative value if output error

p.
151

int vscanf(const char *restrict format, va_list arg);

void abort (void);

 <stdarg.h>
<stdio.h>

Returns: number of input items assigned, EOF if input error or end of file before
any conversion

p.
151

int vsnprintf(char *restrict buf, size_t n, const char *restrict format,
 va_list arg);

 <stdarg.h>
<stdio.h>

Returns: number of characters stored in array if OK, negative value if encoding
error

p.
151

int vsprintf(char *restrict buf, const char *restrict f ormat, va_list arg);

 <stdarg.h>
<stdio.h>

Returns: number of characters stored in array if OK, negative value if encoding
error

p.
151

int vsscanf(const char *restrict buf, const char *restr ict format,
 va_list arg);

 <stdarg.h>
<stdio.h>

Returns: number of input items assigned, EOF if input error or end of file before
any conversion

p.
151

void vsyslog (int priority, const char *format, va_list arg);

 <syslog.h>
<stdarg.h>

p.
432

pid_t wait(int *statloc);

 <sys/wait.h>

Returns: process ID if OK, 0, or –1 on error

p.
220

int waitid(idtype_t idtype, id_t id, siginfo_t *infop,
 int options);

void abort (void);

 <sys/wait.h>
idtype: P_PID, P_PGID, P_ALL
options: WCONTINUED, WEXITED, WNOHANG, WNOWAIT, WST OPPED

Returns: 0 if OK, –1 on error

Platforms: Solaris 9

p.
220

pid_t waitpid(pid_t pid, int *statloc, int options);

 <sys/wait.h>
options: 0, WCONTINUED, WNOHANG, WUNTRACED

Returns: process ID if OK, 0, or –1 on error

p.
220

pid_t wait3(int *statloc, int options, struct rusage *rus age);

 <sys/types.h>
<sys/wait.h>
<sys/time.h>
<sys/resource.h>
options: 0, WNOHANG, WUNTRACED

Returns: process ID if OK, 0, or –1 on error

p.
227

pid_t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage);

 <sys/types.h>
<sys/wait.h>
<sys/time.h>
<sys/resource.h>
options: 0, WNOHANG, WUNTRACED

Returns: process ID if OK, 0, or –1 on error

p.
227

ssize_t write(int filedes, const void *buf, size_t nbytes);

 <unistd.h>

Returns: number of bytes written if OK, –1 on error

p. 68

ssize_t writev(int filedes, const struct iovec *iov, int io vcnt);

 <sys/uio.h>

Returns: number of bytes written if OK, –1 on error

p.
483

Appendix B. Miscellaneous Source Code

Section B.1. Our Header File

B.2 Standard Error Routines

B.1. Our Header File

Most programs in the text include the header apue.h , shown in Figure B.1. It defines constants (such as
MAXLINE) and prototypes for our own functions.

Figure B.1. Our header: apue.h

/* Our own header, to be included before all standa rd system headers */

#ifndef _APUE_H
#define _APUE_H

#define _XOPEN_SOURCE 600 /* Single UNIX Specifi cation, Version 3 */

#include <sys/types.h> /* some systems still require this */
#include <sys/stat.h>
#include <sys/termios.h> /* for winsize */
#ifndef TIOCGWINSZ
#include <sys/ioctl.h>
#endif
#include <stdio.h> /* for convenience */
#include <stdlib.h> /* for convenience */
#include <stddef.h> /* for offsetof */
#include <string.h> /* for convenience */
#include <unistd.h> /* for convenience */
#include <signal.h> /* for SIG_ERR */

#define MAXLINE 4096 /* max line leng th */

/*
 * Default file access permissions for new files.
 */
#define FILE_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

/*
 * Default permissions for new directories.
 */
#define DIR_MODE (FILE_MODE | S_IXUSR | S_IXGRP | S_IXOTH)

typedef void Sigfunc(int); /* for signal handle rs */

#if defined(SIG_IGN) && !defined(SIG_ERR)
#define SIG_ERR ((Sigfunc *)-1)
#endif

#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))

/*
 * Prototypes for our own functions.
 */
char *path_alloc(int *); /* Figure 2.15 */

long open_max(void); /* Figure 2.16 */
void clr_fl(int, int); /* Figure 3.11 */
void set_fl(int, int); /* Figure 3.11 */
void pr_exit(int); /* Figure 8.5 */
void pr_mask(const char *); /* Figure 10.14 */
Sigfunc *signal_intr(int, Sigfunc *); /* Figure 10.19 */

int tty_cbreak(int); /* Figure 18.20 */
int tty_raw(int); /* Figure 18.20 */
int tty_reset(int); /* Figure 18.20 */
void tty_atexit(void); /* Figure 18.20 */
#ifdef ECHO /* only if <termios.h> has been in cluded */
struct termios *tty_termios(void); /* Figure 18.20 */
#endif

void sleep_us(unsigned int); /* Exercise 14.6 */
ssize_t readn(int, void *, size_t); /* Figure 14.29 */
ssize_t writen(int, const void *, size_t); /* Figure 14.29 */
void daemonize(const char *); /* Figure 13.1 */

int s_pipe(int *); /* Figures 17.6 and 17.13 */
int recv_fd(int, ssize_t (*func)(int,
 const void *, size_t));/* Figures 17.21 and 17.23 */
int send_fd(int, int); /* Figures 17.20 and 17.22 */
int send_err(int, int,
 const char *); /* Figure 17.19 */
int serv_listen(const char *); /* Figures 17.10 and 17.15 */
int serv_accept(int, uid_t *); /* Figures 17.11 and 17.16 */

int cli_conn(const char *); /* Figures 17.12 and 17.17 */
int buf_args(char *, int (*func)(int,
 char **)); /* Figure 17.32 */

int ptym_open(char *, int); /* Figures 19.8 , 19.9 , and 19.10 */
int ptys_open(char *); /* Figures 19.8 , 19.9 , and 19.10 */
#ifdef TIOCGWINSZ
pid_t pty_fork(int *, char *, int, const struct termios *,
 const struct winsize *); /* Figure 19.11 */
#endif

int lock_reg(int, int, int, off_t, int, off_t); /* Figure 14.5 */
#define read_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLK, F_RDLCK, (offse t), (whence), (len))
#define readw_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLKW, F_RDLCK, (offs et), (whence), (len))
#define write_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLK, F_WRLCK, (offse t), (whence), (len))
#define writew_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLKW, F_WRLCK, (offs et), (whence), (len))
#define un_lock(fd, offset, whence, len) \
 lock_reg((fd), F_SETLK, F_UNLCK, (offse t), (whence), (len))

pid_t lock_test(int, int, off_t, int, off_t); /* Figure 14.6 */

#define is_read_lockable(fd, offset, whence, len) \
 (lock_test((fd), F_RDLCK, (offset), (wh ence), (len)) == 0)
#define is_write_lockable(fd, offset, whence, len) \
 (lock_test((fd), F_WRLCK, (offset), (wh ence), (len)) == 0)

void err_dump(const char *, ...); /* Appendix B */
void err_msg(const char *, ...);
void err_quit(const char *, ...);

void err_exit(int, const char *, ...);
void err_ret(const char *, ...);
void err_sys(const char *, ...);

void log_msg(const char *, ...); /* Appendix B */
void log_open(const char *, int, int);
void log_quit(const char *, ...);
void log_ret(const char *, ...);
void log_sys(const char *, ...);

void TELL_WAIT(void); /* parent/child fro m Section 8.9 */
void TELL_PARENT(pid_t);
void TELL_CHILD(pid_t);
void WAIT_PARENT(void);
void WAIT_CHILD(void);

#endif /* _APUE_H */

Most programs need to include the following headers: <stdio.h> , <stdlib.h> (for the exit function
prototype), and <unistd.h> (for all the standard UNIX function prototypes). So our header automatically
includes these system headers, along with <string.h> . This also reduces the size of all the program listings in
the text.

The reasons we include our header before all the normal system headers are to allow us to define anything that
might be required by headers before they are included, control the order in which header files are included, and
allow us to redefine anything that needs to be fixed up to hide the differences between systems.

B.2 Standard Error Routines

Two sets of error functions are used in most of the examples throughout the text to handle error conditions. One
set begins with err_ and outputs an error message to standard error. The other set begins with log_ and is for
daemon processes (Chapter 13) that probably have no controlling terminal.

The reason for our own error functions is to let us write our error handling with a single line of C code, as in

 if (error condition)
 err_dump(printf format with any numbe r of arguments);

instead of

 if (error condition){
 char buf[200];
 sprintf(buf, printf format with any n umber of arguments);
 perror(buf);
 abort();
 }

Our error functions use the variable-length argument list facility from ISO C. See Section 7.3 of Kernighan and
Ritchie [1988] for additional details. Be aware that this ISO C facility differs from the varargs facility
provided by earlier systems (such as SVR3 and 4.3BSD). The names of the macros are the same, but the
arguments to some of the macros have changed.

Figure B.2 summarizes the differences between the various error functions.

Figure B.2. Our standard error functions

Function Adds string from strerror ? Parameter to strerror Terminate ?

err_dump yes errno abort();

err_exit yes explicit parameter exit(1);

err_msg no return;

err_quit no exit(1);

err_ret yes errno return;

err_sys yes errno exit(1);

log_msg no return;

log_quit no exit(2);

log_ret yes errno return;

log_sys yes errno exit(2);

Figure B.3 shows the error functions that output to standard error.

Figure B.3. Error functions that output to standard error

#include "apue.h"
#include <errno.h> /* for definition of errno */
#include <stdarg.h> /* ISO C variable aruments */

static void err_doit(int, int, const char *, va_lis t);

/*
 * Nonfatal error related to a system call.
 * Print a message and return.
 */
void
err_ret(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 err_doit(1, errno, fmt, ap);
 va_end(ap);
}

/*
 * Fatal error related to a system call.
 * Print a message and terminate.
 */
void
err_sys(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 err_doit(1, errno, fmt, ap);
 va_end(ap);
 exit(1);
}

/*
 * Fatal error unrelated to a system call.
 * Error code passed as explict parameter.
 * Print a message and terminate.
 */
void
err_exit(int error, const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 err_doit(1, error, fmt, ap);
 va_end(ap);
 exit(1);
}

/*
 * Fatal error related to a system call.
 * Print a message, dump core, and terminate.
 */
void
err_dump(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);

 err_doit(1, errno, fmt, ap);
 va_end(ap);
 abort(); /* dump core and terminate */
 exit(1); /* shouldn't get here */
}

/*
 * Nonfatal error unrelated to a system call.
 * Print a message and return.
 */
void
err_msg(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 err_doit(0, 0, fmt, ap);
 va_end(ap);
}

/*
 * Fatal error unrelated to a system call.
 * Print a message and terminate.
 */
void
err_quit(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 err_doit(0, 0, fmt, ap);
 va_end(ap);
 exit(1);
}

/*
 * Print a message and return to caller.
 * Caller specifies "errnoflag".
 */
static void
err_doit(int errnoflag, int error, const char *fmt, va_list ap)
{
 char buf[MAXLINE];
 vsnprintf(buf, MAXLINE, fmt, ap);
 if (errnoflag)
 snprintf(buf+strlen(buf), MAXLINE-strlen(buf), ": %s",
 strerror(error));
 strcat(buf, "\n");
 fflush(stdout); /* in case stdout and stderr are the same */
 fputs(buf, stderr);
 fflush(NULL); /* flushes all stdio output streams */
}

Figure B.4 shows the log_XXX error functions. These require the caller to define the variable log_to_stderr
and set it nonzero if the process is not running as a daemon. In this case, the error messages are sent to standard
error. If the log_to_stderr flag is 0, the syslog facility (Section 13.4) is used.

Figure B.4. Error functions for daemons

/*
 * Error routines for programs that can run as a da emon.
 */

#include "apue.h"
#include <errno.h> /* for definition of errno */
#include <stdarg.h> /* ISO C variable arguments */
#include <syslog.h>

static void log_doit(int, int, const char *, va_lis t ap);

/*
 * Caller must define and set this: nonzero if
 * interactive, zero if daemon
 */
extern int log_to_stderr;

/*
 * Initialize syslog(), if running as daemon.
 */
void
log_open(const char *ident, int option, int facilit y)
{
 if (log_to_stderr == 0)
 openlog(ident, option, facility);
}

/*
 * Nonfatal error related to a system call.
 * Print a message with the system's errno value an d return.
 */
void
log_ret(const char *fmt, ...)
{
 va_list ap;
 va_start(ap, fmt);
 log_doit(1, LOG_ERR, fmt, ap);
 va_end(ap);
}

/*
 * Fatal error related to a system call.
 * Print a message and terminate.
 */
void
log_sys(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 log_doit(1, LOG_ERR, fmt, ap);
 va_end(ap);
 exit(2);
}

/*
 * Nonfatal error unrelated to a system call.
 * Print a message and return.
 */
void
log_msg(const char *fmt, ...)
{

 va_list ap;

 va_start(ap, fmt);
 log_doit(0, LOG_ERR, fmt, ap);
 va_end(ap);
}

/*
 * Fatal error unrelated to a system call.
 * Print a message and terminate.
 */
void
log_quit(const char *fmt, ...)
{
 va_list ap;

 va_start(ap, fmt);
 log_doit(0, LOG_ERR, fmt, ap);
 va_end(ap);
 exit(2);
}

/*
 * Print a message and return to caller.
 * Caller specifies "errnoflag" and "priority".
 */
static void
log_doit(int errnoflag, int priority, const char *f mt, va_list ap)
{
 int errno_save;
 char buf[MAXLINE];

 errno_save = errno; /* value caller might w ant printed */
 vsnprintf(buf, MAXLINE, fmt, ap);
 if (errnoflag)
 snprintf(buf+strlen(buf), MAXLINE-strlen(bu f), ": %s",
 strerror(errno_save));
 strcat(buf, "\n");
 if (log_to_stderr) {
 fflush(stdout);
 fputs(buf, stderr);
 fflush(stderr);
 } else {
 syslog(priority, buf);
 }
}

