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1.1. Introduction 

All operating systems provide services for programs they run. Typical services include executing a new 
program, opening a file, reading a file, allocating a region of memory, getting the current time of day, and so on. 
The focus of this text is to describe the services provided by various versions of the UNIX operating system. 

Describing the UNIX System in a strictly linear fashion, without any forward references to terms that haven't 
been described yet, is nearly impossible (and would probably be boring). This chapter provides a whirlwind tour 
of the UNIX System from a programmer's perspective. We'll give some brief descriptions and examples of 
terms and concepts that appear throughout the text. We describe these features in much more detail in later 
chapters. This chapter also provides an introduction and overview of the services provided by the UNIX System, 
for programmers new to this environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1.2. UNIX Architecture 

In a strict sense, an operating system can be defined as the software that controls the hardware resources of the 
computer and provides an environment under which programs can run. Generally, we call this software the 
kernel, since it is relatively small and resides at the core of the environment. Figure 1.1 shows a diagram of the 
UNIX System architecture. 

Figure 1.1. Architecture of the UNIX operating system 

 

 

The interface to the kernel is a layer of software called the system calls (the shaded portion in Figure 1.1). 
Libraries of common functions are built on top of the system call interface, but applications are free to use both. 
(We talk more about system calls and library functions in Section 1.11.) The shell is a special application that 
provides an interface for running other applications. 

In a broad sense, an operating system is the kernel and all the other software that makes a computer useful and 
gives the computer its personality. This other software includes system utilities, applications, shells, libraries of 
common functions, and so on. 

For example, Linux is the kernel used by the GNU operating system. Some people refer to this as the 
GNU/Linux operating system, but it is more commonly referred to as simply Linux. Although this usage may 
not be correct in a strict sense, it is understandable, given the dual meaning of the phrase operating system. (It 
also has the advantage of being more succinct.) 

 

 

 

 

 



1.3. Logging In 

Login Name 

When we log in to a UNIX system, we enter our login name, followed by our password. The system then looks 
up our login name in its password file, usually the file /etc/passwd . If we look at our entry in the password file 
we see that it's composed of seven colon-separated fields: the login name, encrypted password, numeric user ID 
(205), numeric group ID (105), a comment field, home directory (/home/sar ), and shell program (/bin/ksh ). 

   sar:x:205:105:Stephen Rago:/home/sar:/bin/ksh 

 

All contemporary systems have moved the encrypted password to a different file. In Chapter 6, we'll look at 
these files and some functions to access them. 

Shells 

Once we log in, some system information messages are typically displayed, and then we can type commands to 
the shell program. (Some systems start a window management program when you log in, but you generally end 
up with a shell running in one of the windows.) A shell is a command-line interpreter that reads user input and 
executes commands. The user input to a shell is normally from the terminal (an interactive shell) or sometimes 
from a file (called a shell script). The common shells in use are summarized in Figure 1.2. 

Figure 1.2. Common shells used on UNIX systems 

Name Path FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

Bourne shell /bin/sh  • link to bash  link to bash  • 

Bourne-again shell /bin/bash  optional • • • 

C shell /bin/csh  link to tcsh  link to tcsh  link to tcsh  • 

Korn shell /bin/ksh     • 

TENEX C shell /bin/tcsh  • • • • 

 

The system knows which shell to execute for us from the final field in our entry in the password file. 

The Bourne shell, developed by Steve Bourne at Bell Labs, has been in use since Version 7 and is provided with 
almost every UNIX system in existence. The control-flow constructs of the Bourne shell are reminiscent of 
Algol 68. 

The C shell, developed by Bill Joy at Berkeley, is provided with all the BSD releases. Additionally, the C shell 
was provided by AT&T with System V/386 Release 3.2 and is also in System V Release 4 (SVR4). (We'll have 
more to say about these different versions of the UNIX System in the next chapter.) The C shell was built on the 
6th Edition shell, not the Bourne shell. Its control flow looks more like the C language, and it supports 
additional features that weren't provided by the Bourne shell: job control, a history mechanism, and command 
line editing. 

The Korn shell is considered a successor to the Bourne shell and was first provided with SVR4. The Korn shell, 
developed by David Korn at Bell Labs, runs on most UNIX systems, but before SVR4 was usually an extra-cost 



add-on, so it is not as widespread as the other two shells. It is upward compatible with the Bourne shell and 
includes those features that made the C shell popular: job control, command line editing, and so on. 

The Bourne-again shell is the GNU shell provided with all Linux systems. It was designed to be POSIX-
conformant, while still remaining compatible with the Bourne shell. It supports features from both the C shell 
and the Korn shell. 

The TENEX C shell is an enhanced version of the C shell. It borrows several features, such as command 
completion, from the TENEX operating system (developed in 1972 at Bolt Beranek and Newman). The TENEX 
C shell adds many features to the C shell and is often used as a replacement for the C shell. 

Linux uses the Bourne-again shell for its default shell. In fact, /bin/sh  is a link to /bin/bash . The default user 
shell in FreeBSD and Mac OS X is the TENEX C shell, but they use the Bourne shell for their administrative 
shell scripts because the C shell's programming language is notoriously difficult to use. Solaris, having its 
heritage in both BSD and System V, provides all the shells shown in Figure 1.2. Free ports of most of the shells 
are available on the Internet. 

Throughout the text, we will use parenthetical notes such as this to describe historical notes and to compare 
different implementations of the UNIX System. Often the reason for a particular implementation technique 
becomes clear when the historical reasons are described. 

Throughout this text, we'll show interactive shell examples to execute a program that we've developed. These 
examples use features common to the Bourne shell, the Korn shell, and the Bourne-again shell. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 



1.4. Files and Directories 

File System 

The UNIX file system is a hierarchical arrangement of directories and files. Everything starts in the directory 
called root whose name is the single character / . 

A directory is a file that contains directory entries. Logically, we can think of each directory entry as containing 
a filename along with a structure of information describing the attributes of the file. The attributes of a file are 
such things as type of file—regular file, directory—the size of the file, the owner of the file, permissions for the 
file—whether other users may access this file—and when the file was last modified. The stat  and fstat  
functions return a structure of information containing all the attributes of a file. In Chapter 4, we'll examine all 
the attributes of a file in great detail. 

We make a distinction between the logical view of a directory entry and the way it is actually stored on disk. 
Most implementations of UNIX file systems don't store attributes in the directory entries themselves, because of 
the difficulty of keeping them in synch when a file has multiple hard links. This will become clear when we 
discuss hard links in Chapter 4. 

Filename 

The names in a directory are called filenames. The only two characters that cannot appear in a filename are the 
slash character (/ ) and the null character. The slash separates the filenames that form a pathname (described 
next) and the null character terminates a pathname. Nevertheless, it's good practice to restrict the characters in a 
filename to a subset of the normal printing characters. (We restrict the characters because if we use some of the 
shell's special characters in the filename, we have to use the shell's quoting mechanism to reference the filename, 
and this can get complicated.) 

Two filenames are automatically created whenever a new directory is created: .  (called dot) and ..  (called dot-
dot). Dot refers to the current directory, and dot-dot refers to the parent directory. In the root directory, dot-dot 
is the same as dot. 

The Research UNIX System and some older UNIX System V file systems restricted a filename to 14 characters. 
BSD versions extended this limit to 255 characters. Today, almost all commercial UNIX file systems support at 
least 255-character filenames. 

Pathname 

A sequence of one or more filenames, separated by slashes and optionally starting with a slash, forms a 
pathname. A pathname that begins with a slash is called an absolute pathname; otherwise, it's called a relative 
pathname. Relative pathnames refer to files relative to the current directory. The name for the root of the file 
system (/ ) is a special-case absolute pathname that has no filename component. 

Example 

Listing the names of all the files in a directory is not difficult. Figure 1.3 shows a bare-bones implementation of 
the ls (1) command. 

The notation ls (1) is the normal way to reference a particular entry in the UNIX system manuals. It refers to the 
entry for ls  in Section 1. The sections are normally numbered 1 through 8, and all the entries within each 
section are arranged alphabetically. Throughout this text, we assume that you have a copy of the manuals for 



your UNIX system. 

Historically, UNIX systems lumped all eight sections together into what was called the UNIX Programmer's 
Manual. As the page count increased, the trend changed to distributing the sections among separate manuals: 
one for users, one for programmers, and one for system administrators, for example. 

Some UNIX systems further divide the manual pages within a given section, using an uppercase letter. For 
example, all the standard input/output (I/O) functions in AT&T [1990e] are indicated as being in Section 3S, as 
in fopen (3S). Other systems have replaced the numeric sections with alphabetic ones, such as C for commands. 

Today, most manuals are distributed in electronic form. If your manuals are online, the way to see the manual 
pages for the ls  command would be something like 

   man 1 ls 

 

or 

   man -s1 ls 

 

Figure 1.3 is a program that just prints the name of every file in a directory, and nothing else. If the source file is 
named myls.c , we compile it into the default a.out  executable file by 

   cc myls.c 

 

Historically, cc(1)  is the C compiler. On systems with the GNU C compilation system, the C compiler is 
gcc (1). Here, cc  is often linked to gcc . 

Some sample output is 

   $ ./a.out /dev 
   . 
   .. 
   console 
   tty 
   mem 
   kmem 
   null 
   mouse 
   stdin 
   stdout 
   stderr 
   zero 
                       many more lines that aren't shown 
   cdrom 
   $ ./a.out /var/spool/cron 
   can't open /var/spool/cron: Permission denied 
   $ ./a.out /dev/tty 
   can't open /dev/tty: Not a directory 

 

Throughout this text, we'll show commands that we run and the resulting output in this fashion: Characters that 
we type are shown in this font , whereas output from programs is shown like this . If we need to add 



comments to this output, we'll show the comments in italics. The dollar sign that precedes our input is the 
prompt that is printed by the shell. We'll always show the shell prompt as a dollar sign. 

Note that the directory listing is not in alphabetical order. The ls  command sorts the names before printing 
them. 

There are many details to consider in this 20-line program. 

• First, we include a header of our own: apue.h . We include this header in almost every program in this 
text. This header includes some standard system headers and defines numerous constants and function 
prototypes that we use throughout the examples in the text. A listing of this header is in Appendix B. 

• The declaration of the main  function uses the style supported by the ISO C standard. (We'll have more to 
say about the ISO C standard in the next chapter.) 

• We take an argument from the command line, argv[1] , as the name of the directory to list. In Chapter 
7, we'll look at how the main  function is called and how the command-line arguments and environment 
variables are accessible to the program. 

• Because the actual format of directory entries varies from one UNIX system to another, we use the 
functions opendir , readdir , and closedir  to manipulate the directory. 

• The opendir  function returns a pointer to a DIR structure, and we pass this pointer to the readdir  
function. We don't care what's in the DIR structure. We then call readdir  in a loop, to read each 
directory entry. The readdir  function returns a pointer to a dirent  structure or, when it's finished with 
the directory, a null pointer. All we examine in the dirent  structure is the name of each directory entry 
(d_name). Using this name, we could then call the stat  function (Section 4.2) to determine all the 
attributes of the file. 

• We call two functions of our own to handle the errors: err_sys  and err_quit . We can see from the 
preceding output that the err_sys  function prints an informative message describing what type of error 
was encountered ("Permission denied" or "Not a directory"). These two error functions are shown and 
described in Appendix B. We also talk more about error handling in Section 1.7. 

• When the program is done, it calls the function exit  with an argument of 0. The function exit  
terminates a program. By convention, an argument of 0 means OK, and an argument between 1 and 255 
means that an error occurred. In Section 8.5, we show how any program, such as a shell or a program 
that we write, can obtain the exit  status of a program that it executes. 

Figure 1.3. List all the files in a directory 

#include "apue.h" 
#include <dirent.h> 
 
int 
main(int argc, char *argv[]) 
{ 
    DIR             *dp; 
    struct dirent   *dirp; 
 
    if (argc != 2) 
        err_quit("usage: ls directory_name");  
 
    if ((dp = opendir(argv[1])) == NULL) 
        err_sys("can't open %s", argv[1]); 
    while ((dirp = readdir(dp)) != NULL) 
        printf("%s\n", dirp->d_name); 
 



    closedir(dp); 
    exit(0); 
} 

 

Working Directory 

Every process has a working directory, sometimes called the current working directory. This is the directory 
from which all relative pathnames are interpreted. A process can change its working directory with the chdir  
function. 

For example, the relative pathname doc/memo/joe  refers to the file or directory joe , in the directory memo, in 
the directory doc , which must be a directory within the working directory. From looking just at this pathname, 
we know that both doc  and memo have to be directories, but we can't tell whether joe  is a file or a directory. The 
pathname /usr/lib/lint  is an absolute pathname that refers to the file or directory lint  in the directory lib , 
in the directory usr , which is in the root directory. 

Home Directory 

When we log in, the working directory is set to our home directory. Our home directory is obtained from our 
entry in the password file (Section 1.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.5. Input and Output 

File Descriptors 

File descriptors are normally small non-negative integers that the kernel uses to identify the files being accessed 
by a particular process. Whenever it opens an existing file or creates a new file, the kernel returns a file 
descriptor that we use when we want to read or write the file. 

Standard Input, Standard Output, and Standard Error 

By convention, all shells open three descriptors whenever a new program is run: standard input, standard output, 
and standard error. If nothing special is done, as in the simple command 

   ls 

 

then all three are connected to the terminal. Most shells provide a way to redirect any or all of these three 
descriptors to any file. For example, 

   ls > file.list 

 

executes the ls  command with its standard output redirected to the file named file.list . 

Unbuffered I/O 

Unbuffered I/O is provided by the functions open , read , write, lseek , and close . These functions all work 
with file descriptors. 

Example 

If we're willing to read from the standard input and write to the standard output, then the program in Figure 1.4 
copies any regular file on a UNIX system. 

The <unistd.h>  header, included by apue.h , and the two constants STDIN_FILENO and STDOUT_FILENO are 
part of the POSIX standard (about which we'll have a lot more to say in the next chapter). In this header are 
function prototypes for many of the UNIX system services, such as the read  and write functions that we call. 

The constants STDIN_FILENO and STDOUT_FILENO are defined in <unistd.h>  and specify the file descriptors 
for standard input and standard output. These values are typically 0 and 1, respectively, but we'll use the new 
names for portability. 

In Section 3.9, we'll examine the BUFFSIZE constant in detail, seeing how various values affect the efficiency of 
the program. Regardless of the value of this constant, however, this program still copies any regular file. 

The read  function returns the number of bytes that are read, and this value is used as the number of bytes to 
write. When the end of the input file is encountered, read  returns 0 and the program stops. If a read error 
occurs, read  returns -1. Most of the system functions return –1 when an error occurs. 

If we compile the program into the standard name (a.out ) and execute it as 



   ./a.out > data 

 

standard input is the terminal, standard output is redirected to the file data , and standard error is also the 
terminal. If this output file doesn't exist, the shell creates it by default. The program copies lines that we type to 
the standard output until we type the end-of-file character (usually Control-D). 

If we run 

   ./a.out < infile > outfile 

 

then the file named infile  will be copied to the file named outfile . 

Figure 1.4. List all the files in a directory 

#include "apue.h" 
 
#define BUFFSIZE    4096 
 
int 
main(void) 
{ 
    int     n; 
    char    buf[BUFFSIZE]; 
 
    while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)  
        if (write(STDOUT_FILENO, buf, n) != n) 
            err_sys("write error"); 
        if (n < 0) 
            err_sys("read error"); 
 
        exit(0); 
} 

 

In Chapter 3, we describe the unbuffered I/O functions in more detail. 

Standard I/O 

The standard I/O functions provide a buffered interface to the unbuffered I/O functions. Using standard I/O 
prevents us from having to worry about choosing optimal buffer sizes, such as the BUFFSIZE constant in Figure 
1.4. Another advantage of using the standard I/O functions is that they simplify dealing with lines of input (a 
common occurrence in UNIX applications). The fgets  function, for example, reads an entire line. The read  
function, on the other hand, reads a specified number of bytes. As we shall see in Section 5.4, the standard I/O 
library provides functions that let us control the style of buffering used by the library. 

The most common standard I/O function is printf . In programs that call printf , we'll always include 
<stdio.h> —normally by including apue.h —as this header contains the function prototypes for all the standard 
I/O functions. 

Example 



The program in Figure 1.5, which we'll examine in more detail in Section 5.8, is like the previous 
program that called read  and write. This program copies standard input to standard output and can 
copy any regular file. 

The function getc  reads one character at a time, and this character is written by putc . After the last 
byte of input has been read, getc  returns the constant EOF (defined in <stdio.h> ). The standard I/O 
constants stdin  and stdout  are also defined in the <stdio.h>  header and refer to the standard 
input and standard output. 

Figure 1.5. Copy standard input to standard output, using standard I/O 

#include "apue.h" 
 
int 
main(void) 
{ 
    int     c; 
 
    while ((c = getc(stdin)) != EOF)  
        if (putc(c, stdout) == EOF) 
            err_sys("output error");  
 
    if (ferror(stdin)) 
        err_sys("input error"); 
 
    exit(0); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.6. Programs and Processes 

Program 

A program is an executable file residing on disk in a directory. A program is read into memory and is executed 
by the kernel as a result of one of the six exec  functions. We'll cover these functions in Section 8.10. 

Processes and Process ID 

An executing instance of a program is called a process, a term used on almost every page of this text. Some 
operating systems use the term task to refer to a program that is being executed. 

The UNIX System guarantees that every process has a unique numeric identifier called the process ID. The 
process ID is always a non-negative integer. 

Example 

The program in Figure 1.6 prints its process ID. 

If we compile this program into the file a.out  and execute it, we have 

   $ ./a.out 
   hello world from process ID 851 
   $ ./a.out 
   hello world from process ID 854 

 

When this program runs, it calls the function getpid  to obtain its process ID. 

Figure 1.6. Print the process ID 

#include "apue.h" 
 
int 
main(void) 
{ 
    printf("hello world from process ID %d\n", getp id());  
    exit(0); 
} 

 

Process Control 

There are three primary functions for process control: fork , exec , and waitpid . (The exec  function has six 
variants, but we often refer to them collectively as simply the exec  function.) 

Example 

The process control features of the UNIX System are demonstrated using a simple program (Figure 1.7) that 
reads commands from standard input and executes the commands. This is a bare-bones implementation of a 
shell-like program. There are several features to consider in this 30-line program. 



• We use the standard I/O function fgets  to read one line at a time from the standard input. When we 
type the end-of-file character (which is often Control-D) as the first character of a line, fgets  returns a 
null pointer, the loop stops, and the process terminates. In Chapter 18, we describe all the special 
terminal characters—end of file, backspace one character, erase entire line, and so on—and how to 
change them. 

• Because each line returned by fgets  is terminated with a newline character, followed by a null byte, we 
use the standard C function strlen  to calculate the length of the string, and then replace the newline 
with a null byte. We do this because the execlp  function wants a null-terminated argument, not a 
newline-terminated argument. 

• We call fork  to create a new process, which is a copy of the caller. We say that the caller is the parent 
and that the newly created process is the child. Then fork  returns the non-negative process ID of the 
new child process to the parent, and returns 0 to the child. Because fork  creates a new process, we say 
that it is called once—by the parent—but returns twice—in the parent and in the child. 

• In the child, we call execlp  to execute the command that was read from the standard input. This 
replaces the child process with the new program file. The combination of a fork , followed by an exec , 
is what some operating systems call spawning a new process. In the UNIX System, the two parts are 
separated into individual functions. We'll have a lot more to say about these functions in Chapter 8. 

• Because the child calls execlp  to execute the new program file, the parent wants to wait for the child to 
terminate. This is done by calling waitpid , specifying which process we want to wait for: the pid  
argument, which is the process ID of the child. The waitpid  function also returns the termination status 
of the child—the status  variable—but in this simple program, we don't do anything with this value. We 
could examine it to determine exactly how the child terminated. 

• The most fundamental limitation of this program is that we can't pass arguments to the command that we 
execute. We can't, for example, specify the name of a directory to list. We can execute ls  only on the 
working directory. To allow arguments would require that we parse the input line, separating the 
arguments by some convention, probably spaces or tabs, and then pass each argument as a separate 
argument to the execlp  function. Nevertheless, this program is still a useful demonstration of the 
process control functions of the UNIX System. 

If we run this program, we get the following results. Note that our program has a different prompt—the percent 
sign—to distinguish it from the shell's prompt. 

   $ ./a.out 
   % date 
   Sun Aug 1 03:04:47 EDT 2004            programme rs work late 
   % who 
   sar     :0       Jul 26 22:54 
   sar     pts/0    Jul 26 22:54 (:0) 
   sar     pts/1    Jul 26 22:54 (:0) 
   sar     pts/2    Jul 26 22:54 (:0) 
   % pwd 
   /home/sar/bk/apue/2e 
   % ls 
   Makefile 
   a.out 
   shell1.c 
   % ^D                                   type the end-of-file character 
   $                                      the regul ar shell prompt 

 

 

 



Figure 1.7. Read commands from standard input and execute them 

#include "apue.h" 
#include <sys/wait.h> 
 
int 
main(void) 
{ 
    char    buf[MAXLINE];   /* from apue.h */ 
    pid_t   pid; 
    int     status; 
 
    printf("%% ");  /* print prompt (printf require s %% to print %) */  
    while (fgets(buf, MAXLINE, stdin) != NULL) { 
        if (buf[strlen(buf) - 1] == "\n") 
            buf[strlen(buf) - 1] = 0; /* replace ne wline with null */ 
 
        if ((pid = fork()) < 0) { 
            err_sys("fork error"); 
        } else if (pid == 0) {      /* child */ 
            execlp(buf, buf, (char *)0); 
            err_ret("couldn't execute: %s", buf); 
            exit(127); 
        } 
 
        /* parent */ 
        if ((pid = waitpid(pid, &status, 0)) < 0) 
            err_sys("waitpid error"); 
        printf("%% "); 
    } 
    exit(0); 
} 
 

The notation ̂D is used to indicate a control character. Control characters are special characters formed by 
holding down the control key—often labeled Control  or Ctrl —on your keyboard and then pressing another 
key at the same time. Control-D, or ^D, is the default end-of-file character. We'll see many more control 
characters when we discuss terminal I/O in Chapter 18. 

Threads and Thread IDs 

Usually, a process has only one thread of control—one set of machine instructions executing at a time. Some 
problems are easier to solve when more than one thread of control can operate on different parts of the problem. 
Additionally, multiple threads of control can exploit the parallelism possible on multiprocessor systems. 

All the threads within a process share the same address space, file descriptors, stacks, and process-related 
attributes. Because they can access the same memory, the threads need to synchronize access to shared data 
among themselves to avoid inconsistencies. 

As with processes, threads are identified by IDs. Thread IDs, however, are local to a process. A thread ID from 
one process has no meaning in another process. We use thread IDs to refer to specific threads as we manipulate 
the threads within a process. 

Functions to control threads parallel those used to control processes. Because threads were added to the UNIX 
System long after the process model was established, however, the thread model and the process model have 
some complicated interactions, as we shall see in Chapter 12. 



1.7. Error Handling 

When an error occurs in one of the UNIX System functions, a negative value is often returned, and the integer 
errno  is usually set to a value that gives additional information. For example, the open  function returns either a 
non-negative file descriptor if all is OK or –1 if an error occurs. An error from open  has about 15 possible 
errno  values, such as file doesn't exist, permission problem, and so on. Some functions use a convention other 
than returning a negative value. For example, most functions that return a pointer to an object return a null 
pointer to indicate an error. 

The file <errno.h>  defines the symbol errno  and constants for each value that errno  can assume. Each of 
these constants begins with the character E. Also, the first page of Section 2 of the UNIX system manuals, 
named intro (2), usually lists all these error constants. For example, if errno  is equal to the constant EACCES, 
this indicates a permission problem, such as insufficient permission to open the requested file. 

On Linux, the error constants are listed in the errno (3) manual page. 

POSIX and ISO C define errno  as a symbol expanding into a modifiable lvalue of type integer. This can be 
either an integer that contains the error number or a function that returns a pointer to the error number. The 
historical definition is 

   extern int errno; 

 

But in an environment that supports threads, the process address space is shared among multiple threads, and 
each thread needs its own local copy of errno  to prevent one thread from interfering with another. Linux, for 
example, supports multithreaded access to errno  by defining it as 

   extern int *_ _errno_location(void); 
   #define errno  (*_ _errno_location()) 

 

There are two rules to be aware of with respect to errno . First, its value is never cleared by a routine if an error 
does not occur. Therefore, we should examine its value only when the return value from a function indicates 
that an error occurred. Second, the value of errno  is never set to 0 by any of the functions, and none of the 
constants defined in <errno.h>  has a value of 0. 

Two functions are defined by the C standard to help with printing error messages. 

#include <string.h> 
 
char *strerror(int errnum); 

 

Returns: pointer to message string 

 

This function maps errnum, which is typically the errno  value, into an error message string and returns a 
pointer to the string. 

The perror  function produces an error message on the standard error, based on the current value of errno , and 
returns. 



#include <stdio.h> 
 
void perror(const char *msg);  

 

 

It outputs the string pointed to by msg, followed by a colon and a space, followed by the error message 
corresponding to the value of errno , followed by a newline. 

Example 

Figure 1.8 shows the use of these two error functions. 

If this program is compiled into the file a.out , we have 

   $ ./a.out 
   EACCES: Permission denied 
   ./a.out: No such file or directory 

 

Note that we pass the name of the program—argv[0] , whose value is ./a.out —as the argument to perror . 
This is a standard convention in the UNIX System. By doing this, if the program is executed as part of a 
pipeline, as in 

   prog1 < inputfile | prog2 | prog3 > outputfile 

 

we are able to tell which of the three programs generated a particular error message. 

Figure 1.8. Demonstrate strerror and perror 

#include "apue.h" 
#include <errno.h> 
 
int 
main(int argc, char *argv[]) 
{ 
    fprintf(stderr, "EACCES: %s\n", strerror(EACCES ));  
    errno = ENOENT; 
    perror(argv[0]); 
    exit(0); 
} 

 

Instead of calling either strerror  or perror  directly, all the examples in this text use the error functions shown 
in Appendix B. The error functions in this appendix let us use the variable argument list facility of ISO C to 
handle error conditions with a single C statement. 

Error Recovery 

The errors defined in <errno.h>  can be divided into two categories: fatal and nonfatal. A fatal error has no 
recovery action. The best we can do is print an error message on the user's screen or write an error message into 
a log file, and then exit. Nonfatal errors, on the other hand, can sometimes be dealt with more robustly. Most 



nonfatal errors are temporary in nature, such as with a resource shortage, and might not occur when there is less 
activity on the system. 

Resource-related nonfatal errors include EAGAIN, ENFILE , ENOBUFS, ENOLCK, ENOSPC, ENOSR, EWOULDBLOCK, and 
sometimes ENOMEM. EBUSY can be treated as a nonfatal error when it indicates that a shared resource is in use. 
Sometimes, EINTR can be treated as a nonfatal error when it interrupts a slow system call (more on this in 
Section 10.5). 

The typical recovery action for a resource-related nonfatal error is to delay a little and try again later. This 
technique can be applied in other circumstances. For example, if an error indicates that a network connection is 
no longer functioning, it might be possible for the application to delay a short time and then reestablish the 
connection. Some applications use an exponential backoff algorithm, waiting a longer period of time each 
iteration. 

Ultimately, it is up to the application developer to determine which errors are recoverable. If a reasonable 
strategy can be used to recover from an error, we can improve the robustness of our application by avoiding an 
abnormal exit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.8. User Identification 

User ID 

The user ID from our entry in the password file is a numeric value that identifies us to the system. This user ID 
is assigned by the system administrator when our login name is assigned, and we cannot change it. The user ID 
is normally assigned to be unique for every user. We'll see how the kernel uses the user ID to check whether we 
have the appropriate permissions to perform certain operations. 

We call the user whose user ID is 0 either root or the superuser. The entry in the password file normally has a 
login name of root , and we refer to the special privileges of this user as superuser privileges. As we'll see in 
Chapter 4, if a process has superuser privileges, most file permission checks are bypassed. Some operating 
system functions are restricted to the superuser. The superuser has free rein over the system. 

Client versions of Mac OS X ship with the superuser account disabled; server versions ship with the account 
already enabled. Instructions are available on Apple's Web site describing how to enable it. See 
http://docs.info.apple.com/article.html?artnum=1062 90. 

Group ID 

Our entry in the password file also specifies our numeric group ID. This too is assigned by the system 
administrator when our login name is assigned. Typically, the password file contains multiple entries that 
specify the same group ID. Groups are normally used to collect users together into projects or departments. This 
allows the sharing of resources, such as files, among members of the same group. We'll see in Section 4.5 that 
we can set the permissions on a file so that all members of a group can access the file, whereas others outside 
the group cannot. 

There is also a group file that maps group names into numeric group IDs. The group file is usually /etc/group . 

The use of numeric user IDs and numeric group IDs for permissions is historical. With every file on disk, the 
file system stores both the user ID and the group ID of a file's owner. Storing both of these values requires only 
four bytes, assuming that each is stored as a two-byte integer. If the full ASCII login name and group name 
were used instead, additional disk space would be required. In addition, comparing strings during permission 
checks is more expensive than comparing integers. 

Users, however, work better with names than with numbers, so the password file maintains the mapping 
between login names and user IDs, and the group file provides the mapping between group names and group 
IDs. The ls -l  command, for example, prints the login name of the owner of a file, using the password file to 
map the numeric user ID into the corresponding login name. 

Early UNIX systems used 16-bit integers to represent user and group IDs. Contemporary UNIX systems use 32-
bit integers. 

Example 

The program in Figure 1.9 prints the user ID and the group ID. 

We call the functions getuid  and getgid  to return the user ID and the group ID. Running the program yields 

   $ ./a.out 
   uid = 205, gid = 105 



Figure 1.9. Print user ID and group ID 

#include "apue.h" 
 
int 
main(void) 
{ 
    printf("uid = %d, gid = %d\n", getuid(), getgid ());  
    exit(0); 
} 

 

Supplementary Group IDs 

In addition to the group ID specified in the password file for a login name, most versions of the UNIX System 
allow a user to belong to additional groups. This started with 4.2BSD, which allowed a user to belong to up to 
16 additional groups. These supplementary group IDs are obtained at login time by reading the file /etc/group  
and finding the first 16 entries that list the user as a member. As we shall see in the next chapter, POSIX 
requires that a system support at least eight supplementary groups per process, but most systems support at least 
16. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.9. Signals 

Signals are a technique used to notify a process that some condition has occurred. For example, if a process 
divides by zero, the signal whose name is SIGFPE (floating-point exception) is sent to the process. The process 
has three choices for dealing with the signal. 

1. Ignore the signal. This option isn't recommended for signals that denote a hardware exception, such as 
dividing by zero or referencing memory outside the address space of the process, as the results are 
undefined. 

2. Let the default action occur. For a divide-by-zero condition, the default is to terminate the process. 
3. Provide a function that is called when the signal occurs (this is called "catching" the signal). By 

providing a function of our own, we'll know when the signal occurs and we can handle it as we wish. 

Many conditions generate signals. Two terminal keys, called the interrupt key— often the DELETE key or 
Control-C—and the quit key—often Control-backslash—are used to interrupt the currently running process. 
Another way to generate a signal is by calling the kill  function. We can call this function from a process to 
send a signal to another process. Naturally, there are limitations: we have to be the owner of the other process 
(or the superuser) to be able to send it a signal. 

Example 

Recall the bare-bones shell example (Figure 1.7). If we invoke this program and press the interrupt 
key, the process terminates because the default action for this signal, named SIGINT , is to terminate 
the process. The process hasn't told the kernel to do anything other than the default with this signal, 
so the process terminates. 

To catch this signal, the program needs to call the signal  function, specifying the name of the 
function to call when the SIGINT  signal is generated. The function is named sig_int ; when it's 
called, it just prints a message and a new prompt. Adding 11 lines to the program in Figure 1.7 gives 
us the version in Figure 1.10. (The 11 new lines are indicated with a plus sign at the beginning of the 
line.) 

In Chapter 10, we'll take a long look at signals, as most nontrivial applications deal with them. 

Figure 1.10. Read commands from standard input and execute them 

  #include "apue.h" 
  #include <sys/wait.h> 
 
+ static void sig_int(int);       /* our signal-cat ching function */ 
+ 
  int 
  main(void) 
  { 
      char    buf[MAXLINE];    /* from apue.h */ 
      pid_t   pid; 
      int     status; 
 
+     if (signal(SIGINT, sig_int) == SIG_ERR) 
+         err_sys("signal error"); 
+ 
      printf("%% ");  /* print prompt (printf requi res %% to print %) */  
      while (fgets(buf, MAXLINE, stdin) != NULL) { 



          if (buf[strlen(buf) - 1] == "\n") 
              buf[strlen(buf) - 1] = 0; /* replace newline with null */ 
 
          if ((pid = fork()) < 0) { 
              err_sys("fork error"); 
          } else if (pid == 0) {        /* child */  
              execlp(buf, buf, (char *)0); 
              err_ret("couldn't execute: %s", buf);  
              exit(127); 
          } 
 
          /* parent */ 
          if ((pid = waitpid(pid, &status, 0)) < 0)  
              err_sys("waitpid error"); 
          printf("%% "); 
      } 
      exit(0); 
  } 
+ 
+ void 
+ sig_int(int signo) 
+ { 
+     printf("interrupt\n%% "); 
+ } 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1.10. Time Values 

Historically, UNIX systems have maintained two different time values: 

1. Calendar time. This value counts the number of seconds since the Epoch: 00:00:00 January 1, 1970, 
Coordinated Universal Time (UTC). (Older manuals refer to UTC as Greenwich Mean Time.) These 
time values are used to record the time when a file was last modified, for example. 

The primitive system data type time_t  holds these time values. 

2. Process time. This is also called CPU time and measures the central processor resources used by a 
process. Process time is measured in clock ticks, which have historically been 50, 60, or 100 ticks per 
second. 

The primitive system data type clock_t  holds these time values. (We'll show how to obtain the number 
of clock ticks per second with the sysconf  function in Section 2.5.4.) 

When we measure the execution time of a process, as in Section 3.9, we'll see that the UNIX System maintains 
three values for a process: 

• Clock time 
• User CPU time 
• System CPU time 

The clock time, sometimes called wall clock time, is the amount of time the process takes to run, and its value 
depends on the number of other processes being run on the system. Whenever we report the clock time, the 
measurements are made with no other activities on the system. 

The user CPU time is the CPU time attributed to user instructions. The system CPU time is the CPU time 
attributed to the kernel when it executes on behalf of the process. For example, whenever a process executes a 
system service, such as read  or write , the time spent within the kernel performing that system service is 
charged to the process. The sum of user CPU time and system CPU time is often called the CPU time. 

It is easy to measure the clock time, user time, and system time of any process: simply execute the time (1) 
command, with the argument to the time  command being the command we want to measure. For example: 

   $ cd /usr/include 
   $ time -p grep _POSIX_SOURCE */*.h > /dev/null 
 
   real    0m0.81s 
   user    0m0.11s 
   sys     0m0.07s 

 

The output format from the time  command depends on the shell being used, because some shells don't run 
/usr/bin/time , but instead have a separate built-in function to measure the time it takes commands to run. 

In Section 8.16, we'll see how to obtain these three times from a running process. The general topic of times and 
dates is covered in Section 6.10. 

 
 



1.11. System Calls and Library Functions 

All operating systems provide service points through which programs request services from the kernel. All 
implementations of the UNIX System provide a well-defined, limited number of entry points directly into the 
kernel called system calls (recall Figure 1.1). Version 7 of the Research UNIX System provided about 50 
system calls, 4.4BSD provided about 110, and SVR4 had around 120. Linux has anywhere between 240 and 
260 system calls, depending on the version. FreeBSD has around 320. 

The system call interface has always been documented in Section 2 of the UNIX Programmer's Manual. Its 
definition is in the C language, regardless of the actual implementation technique used on any given system to 
invoke a system call. This differs from many older operating systems, which traditionally defined the kernel 
entry points in the assembler language of the machine. 

The technique used on UNIX systems is for each system call to have a function of the same name in the 
standard C library. The user process calls this function, using the standard C calling sequence. This function 
then invokes the appropriate kernel service, using whatever technique is required on the system. For example, 
the function may put one or more of the C arguments into general registers and then execute some machine 
instruction that generates a software interrupt in the kernel. For our purposes, we can consider the system calls 
as being C functions. 

Section 3 of the UNIX Programmer's Manual defines the general-purpose functions available to programmers. 
These functions aren't entry points into the kernel, although they may invoke one or more of the kernel's system 
calls. For example, the printf  function may use the write  system call to output a string, but the strcpy  (copy 
a string) and atoi  (convert ASCII to integer) functions don't involve the kernel at all. 

From an implementor's point of view, the distinction between a system call and a library function is 
fundamental. But from a user's perspective, the difference is not as critical. From our perspective in this text, 
both system calls and library functions appear as normal C functions. Both exist to provide services for 
application programs. We should realize, however, that we can replace the library functions, if desired, whereas 
the system calls usually cannot be replaced. 

Consider the memory allocation function malloc  as an example. There are many ways to do memory allocation 
and its associated garbage collection (best fit, first fit, and so on). No single technique is optimal for all 
programs. The UNIX system call that handles memory allocation, sbrk (2), is not a general-purpose memory 
manager. It increases or decreases the address space of the process by a specified number of bytes. How that 
space is managed is up to the process. The memory allocation function, malloc (3), implements one particular 
type of allocation. If we don't like its operation, we can define our own malloc  function, which will probably 
use the sbrk  system call. In fact, numerous software packages implement their own memory allocation 
algorithms with the sbrk  system call. Figure 1.11 shows the relationship between the application, the malloc  
function, and the sbrk  system call. 

 

 

 

 

 

 



Figure 1.11. Separation of malloc function and sbrk system call 

 

 

Here we have a clean separation of duties: the system call in the kernel allocates an additional chunk of space 
on behalf of the process. The malloc  library function manages this space from user level. 

Another example to illustrate the difference between a system call and a library function is the interface the 
UNIX System provides to determine the current time and date. Some operating systems provide one system call 
to return the time and another to return the date. Any special handling, such as the switch to or from daylight 
saving time, is handled by the kernel or requires human intervention. The UNIX System, on the other hand, 
provides a single system call that returns the number of seconds since the Epoch: midnight, January 1, 1970, 
Coordinated Universal Time. Any interpretation of this value, such as converting it to a human-readable time 
and date using the local time zone, is left to the user process. The standard C library provides routines to handle 
most cases. These library routines handle such details as the various algorithms for daylight saving time. 

An application can call either a system call or a library routine. Also realize that many library routines invoke a 
system call. This is shown in Figure 1.12. 

 

 

 

 

 



Figure 1.12. Difference between C library functions and system calls 

 

 

Another difference between system calls and library functions is that system calls usually provide a minimal 
interface, whereas library functions often provide more elaborate functionality. We've seen this already in the 
difference between the sbrk  system call and the malloc  library function. We'll see this difference later, when 
we compare the unbuffered I/O functions (Chapter 3) and the standard I/O functions (Chapter 5). 

The process control system calls (fork , exec , and wait ) are usually invoked by the user's application code 
directly. (Recall the bare-bones shell in Figure 1.7.) But some library routines exist to simplify certain common 
cases: the system  and popen  library routines, for example. In Section 8.13, we'll show an implementation of the 
system  function that invokes the basic process control system calls. We'll enhance this example in Section 
10.18 to handle signals correctly. 

To define the interface to the UNIX System that most programmers use, we have to describe both the system 
calls and some of the library functions. If we described only the sbrk  system call, for example, we would skip 
the more programmer-friendly malloc  library function that many applications use. In this text, we'll use the 
term function to refer to both system calls and library functions, except when the distinction is necessary. 

 
 
 
 
 
 
 
 
 



1.12. Summary 

This chapter has been a short tour of the UNIX System. We've described some of the fundamental terms that 
we'll encounter over and over again. We've seen numerous small examples of UNIX programs to give us a feel 
for what the remainder of the text talks about. 

The next chapter is about standardization of the UNIX System and the effect of work in this area on current 
systems. Standards, particularly the ISO C standard and the POSIX.1 standard, will affect the rest of the text. 



Chapter 2. UNIX Standardization and Implementations 
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2.1. Introduction 

Much work has gone into standardizing the UNIX programming environment and the C programming language. 
Although applications have always been quite portable across different versions of the UNIX operating system, 
the proliferation of versions and differences during the 1980s led many large users, such as the U.S. government, 
to call for standardization. 

In this chapter we first look at the various standardization efforts that have been under way over the past two 
decades. We then discuss the effects of these UNIX programming standards on the operating system 
implementations that are described in this book. An important part of all the standardization efforts is the 
specification of various limits that each implementation must define, so we look at these limits and the various 
ways to determine their values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.2. UNIX Standardization 

2.2.1. ISO C 

In late 1989, ANSI Standard X3.159–1989 for the C programming language was approved. This standard has 
also been adopted as international standard ISO/IEC 9899:1990. ANSI is the American National Standards 
Institute, the U.S. member in the International Organization for Standardization (ISO). IEC stands for the 
International Electrotechnical Commission. 

The C standard is now maintained and developed by the ISO/IEC international standardization working group 
for the C programming language, known as ISO/IEC JTC1/SC22/WG14, or WG14 for short. The intent of the 
ISO C standard is to provide portability of conforming C programs to a wide variety of operating systems, not 
only the UNIX System. This standard defines not only the syntax and semantics of the programming language 
but also a standard library [Chapter 7 of ISO 1999; Plauger 1992; Appendix B of Kernighan and Ritchie 1988]. 
This library is important because all contemporary UNIX systems, such as the ones described in this book, 
provide the library routines that are specified in the C standard. 

In 1999, the ISO C standard was updated and approved as ISO/IEC 9899:1999, largely to improve support for 
applications that perform numerical processing. The changes don't affect the POSIX standards described in this 
book, except for the addition of the restrict  keyword to some of the function prototypes. This keyword is 
used to tell the compiler which pointer references can be optimized, by indicating that the object to which the 
pointer refers is accessed in the function only via that pointer. 

As with most standards, there is a delay between the standard's approval and the modification of software to 
conform to it. As each vendor's compilation systems evolve, they add more support for the latest version of the 
ISO C standard. 

A summary of the current level of conformance of gcc  to the 1999 version of the ISO C standard is available at 
http://www.gnu.org/software/gcc/c99status.html . 

The ISO C library can be divided into 24 areas, based on the headers defined by the standard. Figure 2.1 lists 
the headers defined by the C standard. The POSIX.1 standard includes these headers, as well as others. We also 
list which of these headers are supported by the four implementations (FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 
10.3, and Solaris 9) that are described later in this chapter. 

Figure 2.1. Headers defined by the ISO C standard 

Header FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

<assert.h>  • • • • verify program assertion 

<complex.h>  • • •   complex arithmetic support 

<ctype.h>  • • • • character types 

<errno.h>  • • • • error codes (Section 1.7) 

<fenv.h>    • •   floating-point environment 

<float.h>  • • • • floating-point constants 



Figure 2.1. Headers defined by the ISO C standard 

Header FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

<inttypes.h>  • • • • integer type format conversion 

<iso646.h>  • • • • alternate relational operator macros 

<limits.h>  • • • • implementation constants (Section 2.5) 

<locale.h>  • • • • locale categories 

<math.h>  • • • • mathematical constants 

<setjmp.h>  • • • • nonlocal goto (Section 7.10) 

<signal.h>  • • • • signals (Chapter 10) 

<stdarg.h>  • • • • variable argument lists 

<stdbool.h>  • • • • boolean type and values 

<stddef.h>  • • • • standard definitions 

<stdint.h>  • • •   integer types 

<stdio.h>  • • • • standard I/O library (Chapter 5) 

<stdlib.h>  • • • • utility functions 

<string.h>  • • • • string operations 

<tgmath.h>    •     type-generic math macros 

<time.h>  • • • • time and date (Section 6.10) 

<wchar.h>  • • • • extended multibyte and wide character 
support 

<wctype.h>  • • • • wide character classification and 
mapping support 

 

The ISO C headers depend on which version of the C compiler is used with the operating system. When 
considering Figure 2.1, note that FreeBSD 5.2.1 ships with version 3.3.3 of gcc , Solaris 9 ships with both 
version 2.95.3 and version 3.2 of gcc , Mandrake 9.2 (Linux 2.4.22) ships with version 3.3.1 of gcc , and Mac 
OS X 10.3 ships with version 3.3 of gcc . Mac OS X also includes older versions of gcc . 

2.2.2. IEEE POSIX 

POSIX is a family of standards developed by the IEEE (Institute of Electrical and Electronics Engineers). 
POSIX stands for Portable Operating System Interface. It originally referred only to the IEEE Standard 1003.1–
1988—the operating system interface—but was later extended to include many of the standards and draft 
standards with the 1003 designation, including the shell and utilities (1003.2). 



Of specific interest to this book is the 1003.1 operating system interface standard, whose goal is to promote the 
portability of applications among various UNIX System environments. This standard defines the services that 
must be provided by an operating system if it is to be "POSIX compliant," and has been adopted by most 
computer vendors. Although the 1003.1 standard is based on the UNIX operating system, the standard is not 
restricted to UNIX and UNIX-like systems. Indeed, some vendors supplying proprietary operating systems 
claim that these systems have been made POSIX compliant, while still leaving all their proprietary features in 
place. 

Because the 1003.1 standard specifies an interface and not an implementation, no distinction is made between 
system calls and library functions. All the routines in the standard are called functions. 

Standards are continually evolving, and the 1003.1 standard is no exception. The 1988 version of this standard, 
IEEE Standard 1003.1–1988, was modified and submitted to the International Organization for Standardization. 
No new interfaces or features were added, but the text was revised. The resulting document was published as 
IEEE Std 1003.1–1990 [IEEE 1990]. This is also the international standard ISO/IEC 9945–1:1990. This 
standard is commonly referred to as POSIX.1, which we'll use in this text. 

The IEEE 1003.1 working group continued to make changes to the standard. In 1993, a revised version of the 
IEEE 1003.1 standard was published. It included 1003.1-1990 standard and the 1003.1b-1993 real-time 
extensions standard. In 1996, the standard was again updated as international standard ISO/IEC 9945–1:1996. It 
included interfaces for multithreaded programming, called pthreads for POSIX threads. More real-time 
interfaces were added in 1999 with the publication of IEEE Standard 1003.1d-1999. A year later, IEEE 
Standard 1003.1j-2000 was published, including even more real-time interfaces, and IEEE Standard 1003.1q-
2000 was published, adding event-tracing extensions to the standard. 

The 2001 version of 1003.1 departed from the prior versions in that it combined several 1003.1 amendments, 
the 1003.2 standard, and portions of the Single UNIX Specification (SUS), Version 2 (more on this later). The 
resulting standard, IEEE Standard 1003.1-2001, includes the following other standards: 

• ISO/IEC 9945-1 (IEEE Standard 1003.1-1996), which includes 
o IEEE Standard 1003.1-1990 
o IEEE Standard 1003.1b-1993 (real-time extensions) 
o IEEE Standard 1003.1c-1995 (pthreads) 
o IEEE Standard 1003.1i-1995 (real-time technical corrigenda) 

• IEEE P1003.1a draft standard (system interface revision) 
• IEEE Standard 1003.1d-1999 (advanced real-time extensions) 
• IEEE Standard 1003.1j-2000 (more advanced real-time extensions) 
• IEEE Standard 1003.1q-2000 (tracing) 
• IEEE Standard 1003.2d-1994 (batch extensions) 
• IEEE P1003.2b draft standard (additional utilities) 
• Parts of IEEE Standard 1003.1g-2000 (protocol-independent interfaces) 
• ISO/IEC 9945-2 (IEEE Standard 1003.2-1993) 
• The Base Specifications of the Single UNIX Specification, version 2, which include 

o System Interface Definitions, Issue 5 
o Commands and Utilities, Issue 5 
o System Interfaces and Headers, Issue 5 

• Open Group Technical Standard, Networking Services, Issue 5.2 
• ISO/IEC 9899:1999, Programming Languages - C 

Figure 2.2, Figure 2.3, and Figure 2.4 summarize the required and optional headers as specified by POSIX.1. 
Because POSIX.1 includes the ISO C standard library functions, it also requires the headers listed in Figure 2.1. 
All four figures summarize which headers are included in the implementations discussed in this book. 



Figure 2.2. Required headers defined by the POSIX standard 

Header FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

<dirent.h>  • • • • directory entries (Section 4.21) 

<fcntl.h>  • • • • file control (Section 3.14) 

<fnmatch.h>  • • • • filename-matching types 

<glob.h>  • • • • pathname pattern-matching types 

<grp.h>  • • • • group file (Section 6.4) 

<netdb.h>  • • • • network database operations 

<pwd.h>  • • • • password file (Section 6.2) 

<regex.h>  • • • • regular expressions 

<tar.h>  • • • • tar  archive values 

<termios.h>  • • • • terminal I/O (Chapter 18) 

<unistd.h>  • • • • symbolic constants 

<utime.h>  • • • • file times (Section 4.19) 

<wordexp.h>  • •   • word-expansion types 

<arpa/inet.h>  • • • • Internet definitions (Chapter 16) 

<net/if.h>  • • • • socket local interfaces (Chapter 16) 

<netinet/in.h>  • • • • Internet address family (Section 
16.3) 

<netinet/tcp.h>  • • • • Transmission Control Protocol 
definitions 

<sys/mman.h>  • • • • memory management declarations 

<sys/select.h>  • • • • select  function (Section 14.5.1) 

<sys/socket.h>  • • • • sockets interface (Chapter 16) 

<sys/stat.h>  • • • • file status (Chapter 4) 

<sys/times.h>  • • • • process times (Section 8.16) 

<sys/types.h>  • • • • primitive system data types (Section 
2.8) 

<sys/un.h>  • • • • UNIX domain socket definitions 
(Section 17.3) 

<sys/utsname.h>  • • • • system name (Section 6.9) 



Figure 2.2. Required headers defined by the POSIX standard 

Header FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

<sys/wait.h>  • • • • process control (Section 8.6) 

 

Figure 2.3. XSI extension headers defined by the POSIX standard 

Header FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

<cpio.h>  • •   • cpio  archive values 

<dlfcn.h>  • • • • dynamic linking 

<fmtmsg.h>  • •   • message display structures 

<ftw.h>    •   • file tree walking (Section 4.21) 

<iconv.h>    • • • codeset conversion utility 

<langinfo.h>  • • • • language information constants 

<libgen.h>  • • • • definitions for pattern-matching 
function 

<monetary.h>  • • • • monetary types 

<ndbm.h>  •   • • database operations 

<nl_types.h>  • • • • message catalogs 

<poll.h>  • • • • poll function (Section 14.5.2) 

<search.h>  • • • • search tables 

<strings.h>  • • • • string operations 

<syslog.h>  • • • • system error logging (Section 
13.4) 

<ucontext.h>  • • • • user context 

<ulimit.h>  • • • • user limits 

<utmpx.h>    •   • user accounting database 

<sys/ipc.h>  • • • • IPC (Section 15.6) 

<sys/msg.h>  • •   • message queues (Section 15.7) 

<sys/resource.h>  • • • • resource operations (Section 7.11) 

<sys/sem.h>  • • • • semaphores (Section 15.8) 

<sys/shm.h>  • • • • shared memory (Section 15.9) 



Figure 2.3. XSI extension headers defined by the POSIX standard 

Header FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

<sys/statvfs.h>  • •   • file system information 

<sys/time.h>  • • • • time types 

<sys/timeb.h>  • • • • additional date and time 
definitions 

<sys/uio.h>  • • • • vector I/O operations (Section 
14.7) 

 

Figure 2.4. Optional headers defined by the POSIX standard 

Header FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

<aio.h>  • • • • asynchronous I/O 

<mqueue.h>  •     • message queues 

<pthread.h>  • • • • threads (Chapters 11 and 12) 

<sched.h>  • • • • execution scheduling 

<semaphore.h>  • • • • semaphores 

<spawn.h>    •     real-time spawn interface 

<stropts.h>    •   • XSI STREAMS interface (Section 
14.4) 

<trace.h>          event tracing 

 

In this text we describe the 2001 version of POSIX.1, which includes the functions specified in the ISO C 
standard. Its interfaces are divided into required ones and optional ones. The optional interfaces are further 
divided into 50 sections, based on functionality. The sections containing nonobsolete programming interfaces 
are summarized in Figure 2.5 with their respective option codes. Option codes are two- to three-character 
abbreviations that help identify the interfaces that belong to each functional area. The option codes highlight 
text on manual pages where interfaces depend on the support of a particular option. Many of the options deal 
with real-time extensions. 

Figure 2.5. POSIX.1 optional interface groups and codes 

Code SUS mandatory Symbolic constant Description 

ADV   _POSIX_ADVISORY_INFO advisory information (real-time) 



Figure 2.5. POSIX.1 optional interface groups and codes 

Code SUS mandatory Symbolic constant Description 

AIO   _POSIX_ASYNCHRONOUS_IO asynchronous input and output (real-time) 

BAR   _POSIX_BARRIERS barriers (real-time) 

CPT   _POSIX_CPUTIME process CPU time clocks (real-time) 

CS   _POSIX_CLOCK_SELECTION clock selection (real-time) 

CX •   extension to ISO C standard 

FSC • _POSIX_FSYNC file synchronization 

IP6   _POSIX_IPV6  IPv6 interfaces 

MF • _POSIX_MAPPED_FILES memory-mapped files 

ML   _POSIX_MEMLOCK process memory locking (real-time) 

MLR   _POSIX_MEMLOCK_RANGE memory range locking (real-time) 

MON   _POSIX_MONOTONIC_CLOCK monotonic clock (real-time) 

MPR • _POSIX_MEMORY_PROTECTION memory protection 

MSG   _POSIX_MESSAGE_PASSING message passing (real-time) 

MX     IEC 60559 floating-point option 

PIO   _POSIX_PRIORITIZED_IO  prioritized input and output 

PS   _POSIX_PRIORITIZED_SCHEDULING process scheduling (real-time) 

RS   _POSIX_RAW_SOCKETS raw sockets 

RTS   _POSIX_REALTIME_SIGNALS real-time signals extension 

SEM   _POSIX_SEMAPHORES semaphores (real-time) 

SHM   _POSIX_SHARED_MEMORY_OBJECTS shared memory objects (real-time) 

SIO   _POSIX_SYNCHRONIZED_IO synchronized input and output (real-time) 

SPI   _POSIX_SPIN_LOCKS spin locks (real-time) 

SPN   _POSIX_SPAWN spawn (real-time) 

SS   _POSIX_SPORADIC_SERVER process sporadic server (real-time) 

TCT   _POSIX_THREAD_CPUTIME thread CPU time clocks (real-time) 

TEF   _POSIX_TRACE_EVENT_FILTER trace event filter 

THR • _POSIX_THREADS threads 

TMO   _POSIX_TIMEOUTS timeouts (real-time) 



Figure 2.5. POSIX.1 optional interface groups and codes 

Code SUS mandatory Symbolic constant Description 

TMR   _POSIX_TIMERS timers (real-time) 

TPI   _POSIX_THREAD_PRIO_INHERIT thread priority inheritance (real-time) 

TPP   _POSIX_THREAD_PRIO_PROTECT thread priority protection (real-time) 

TPS   _POSIX_THREAD_PRIORITY_SCHEDULING thread execution scheduling (real-time) 

TRC   _POSIX_TRACE trace 

TRI   _POSIX_TRACE_INHERIT trace inherit 

TRL   _POSIX_TRACE_LOG trace log 

TSA • _POSIX_THREAD_ATTR_STACKADDR thread stack address attribute 

TSF • _POSIX_THREAD_SAFE_FUNCTIONS thread-safe functions 

TSH • _POSIX_THREAD_PROCESS_SHARED thread process-shared synchronization 

TSP   _POSIX_THREAD_SPORADIC_SERVER thread sporadic server (real-time) 

TSS • _POSIX_THREAD_ATTR_STACKSIZE thread stack address size 

TYM   _POSIX_TYPED_MEMORY_OBJECTS typed memory objects (real-time) 

XSI • _XOPEN_UNIX X/Open extended interfaces 

XSR   _XOPEN_STREAMS XSI STREAMS 

 

POSIX.1 does not include the notion of a superuser. Instead, certain operations require "appropriate privileges," 
although POSIX.1 leaves the definition of this term up to the implementation. UNIX systems that conform to 
the Department of Defense security guidelines have many levels of security. In this text, however, we use the 
traditional terminology and refer to operations that require superuser privilege. 

After almost twenty years of work, the standards are mature and stable. The POSIX.1 standard is maintained by 
an open working group known as the Austin Group (http://www.opengroup.org/austin ). To ensure that 
they are still relevant, the standards need to be either updated or reaffirmed every so often. 

2.2.3. The Single UNIX Specification 

The Single UNIX Specification, a superset of the POSIX.1 standard, specifies additional interfaces that extend 
the functionality provided by the basic POSIX.1 specification. The complete set of system interfaces is called 
the X/Open System Interface (XSI). The _XOPEN_UNIX symbolic constant identifies interfaces that are part of 
the XSI extensions to the base POSIX.1 interfaces. 

The XSI also defines which optional portions of POSIX.1 must be supported for an implementation to be 
deemed XSI conforming. These include file synchronization, memory-mapped files, memory protection, and 
thread interfaces, and are marked in Figure 2.5 as "SUS mandatory." Only XSI-conforming implementations 
can be called UNIX systems. 



The Open Group owns the UNIX trademark and uses the Single UNIX Specification to define the interfaces an 
implementation must support to call itself a UNIX system. Implementations must file conformance statements, 
pass test suites that verify conformance, and license the right to use the UNIX trademark. 

Some of the additional interfaces defined in the XSI are required, whereas others are optional. The interfaces 
are divided into option groups based on common functionality, as follows: 

• Encryption: denoted by the _XOPEN_CRYPT symbolic constant 
• Real-time: denoted by the _XOPEN_REALTIME symbolic constant 
• Advanced real-time 
• Real-time threads: denoted by the _XOPEN_REALTIME_THREADS symbolic constant 
• Advanced real-time threads 
• Tracing 
• XSI STREAMS: denoted by the _XOPEN_STREAMS symbolic constant 
• Legacy: denoted by the _XOPEN_LEGACY symbolic constant 

The Single UNIX Specification (SUS) is a publication of The Open Group, which was formed in 1996 as a 
merger of X/Open and the Open Software Foundation (OSF), both industry consortia. X/Open used to publish 
the X/Open Portability Guide, which adopted specific standards and filled in the gaps where functionality was 
missing. The goal of these guides was to improve application portability past what was possible by merely 
conforming to published standards. 

The first version of the Single UNIX Specification was published by X/Open in 1994. It was also known as 
"Spec 1170," because it contained roughly 1,170 interfaces. It grew out of the Common Open Software 
Environment (COSE) initiative, whose goal was to further improve application portability across all 
implementations of the UNIX operating system. The COSE group—Sun, IBM, HP, Novell/USL, and OSF—
went further than endorsing standards. In addition, they investigated interfaces used by common commercial 
applications. The resulting 1,170 interfaces were selected from these applications, and also included the X/Open 
Common Application Environment (CAE), Issue 4 (known as "XPG4" as a historical reference to its 
predecessor, the X/Open Portability Guide), the System V Interface Definition (SVID), Edition 3, Level 1 
interfaces, and the OSF Application Environment Specification (AES) Full Use interfaces. 

The second version of the Single UNIX Specification was published by The Open Group in 1997. The new 
version added support for threads, real-time interfaces, 64-bit processing, large files, and enhanced multibyte 
character processing. 

The third version of the Single UNIX Specification (SUSv3, for short) was published by The Open Group in 
2001. The Base Specifications of SUSv3 are the same as the IEEE Standard 1003.1-2001 and are divided into 
four sections: Base Definitions, System Interfaces, Shell and Utilities, and Rationale. SUSv3 also includes 
X/Open Curses Issue 4, Version 2, but this specification is not part of POSIX.1. 

In 2002, ISO approved this version as International Standard ISO/IEC 9945:2002. The Open Group updated the 
1003.1 standard again in 2003 to include technical corrections, and ISO approved this as International Standard 
ISO/IEC 9945:2003. In April 2004, The Open Group published the Single UNIX Specification, Version 3, 2004 
Edition. It included more technical corrections edited in with the main text of the standard. 

2.2.4. FIPS 

FIPS stands for Federal Information Processing Standard. It was published by the U.S. government, which used 
it for the procurement of computer systems. FIPS 151–1 (April 1989) was based on the IEEE Std. 1003.1–1988 
and a draft of the ANSI C standard. This was followed by FIPS 151–2 (May 1993), which was based on the 



IEEE Standard 1003.1–1990. FIPS 151–2 required some features that POSIX.1 listed as optional. All these 
options have been included as mandatory in POSIX.1-2001. 

The effect of the POSIX.1 FIPS was to require any vendor that wished to sell POSIX.1-compliant computer 
systems to the U.S. government to support some of the optional features of POSIX.1. The POSIX.1 FIPS has 
since been withdrawn, so we won't consider it further in this text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.3. UNIX System Implementations 

The previous section described ISO C, IEEE POSIX, and the Single UNIX Specification; three standards 
created by independent organizations. Standards, however, are interface specifications. How do these standards 
relate to the real world? These standards are taken by vendors and turned into actual implementations. In this 
book, we are interested in both these standards and their implementation. 

Section 1.1 of McKusick et al. [1996] gives a detailed history (and a nice picture) of the UNIX System family 
tree. Everything starts from the Sixth Edition (1976) and Seventh Edition (1979) of the UNIX Time-Sharing 
System on the PDP-11 (usually called Version 6 and Version 7). These were the first releases widely distributed 
outside of Bell Laboratories. Three branches of the tree evolved. 

1. One at AT&T that led to System III and System V, the so-called commercial versions of the UNIX 
System. 

2. One at the University of California at Berkeley that led to the 4.xBSD implementations. 
3. The research version of the UNIX System, developed at the Computing Science Research Center of 

AT&T Bell Laboratories, that led to the UNIX Time-Sharing System 8th Edition, 9th Edition, and ended 
with the 10th Edition in 1990. 

2.3.1. UNIX System V Release 4 

UNIX System V Release 4 (SVR4) was a product of AT&T's UNIX System Laboratories (USL, formerly 
AT&T's UNIX Software Operation). SVR4 merged functionality from AT&T UNIX System V Release 3.2 
(SVR3.2), the SunOS operating system from Sun Microsystems, the 4.3BSD release from the University of 
California, and the Xenix system from Microsoft into one coherent operating system. (Xenix was originally 
developed from Version 7, with many features later taken from System V.) The SVR4 source code was released 
in late 1989, with the first end-user copies becoming available during 1990. SVR4 conformed to both the 
POSIX 1003.1 standard and the X/Open Portability Guide, Issue 3 (XPG3). 

AT&T also published the System V Interface Definition (SVID) [AT&T 1989]. Issue 3 of the SVID specified 
the functionality that an operating system must offer to qualify as a conforming implementation of UNIX 
System V Release 4. As with POSIX.1, the SVID specified an interface, not an implementation. No distinction 
was made in the SVID between system calls and library functions. The reference manual for an actual 
implementation of SVR4 must be consulted to see this distinction [AT&T 1990e]. 

2.3.2. 4.4BSD 

The Berkeley Software Distribution (BSD) releases were produced and distributed by the Computer Systems 
Research Group (CSRG) at the University of California at Berkeley; 4.2BSD was released in 1983 and 4.3BSD 
in 1986. Both of these releases ran on the VAX minicomputer. The next release, 4.3BSD Tahoe in 1988, also 
ran on a particular minicomputer called the Tahoe. (The book by Leffler et al. [1989] describes the 4.3BSD 
Tahoe release.) This was followed in 1990 with the 4.3BSD Reno release; 4.3BSD Reno supported many of the 
POSIX.1 features. 

The original BSD systems contained proprietary AT&T source code and were covered by AT&T licenses. To 
obtain the source code to the BSD system you had to have a UNIX source license from AT&T. This changed as 
more and more of the AT&T source code was replaced over the years with non-AT&T source code and as many 
of the new features added to the Berkeley system were derived from non-AT&T sources. 

In 1989, Berkeley identified much of the non-AT&T source code in the 4.3BSD Tahoe release and made it 
publicly available as the BSD Networking Software, Release 1.0. This was followed in 1991 with Release 2.0 



of the BSD Networking Software, which was derived from the 4.3BSD Reno release. The intent was that most, 
if not all, of the 4.4BSD system would be free of any AT&T license restrictions, thus making the source code 
available to all. 

4.4BSD-Lite was intended to be the final release from the CSRG. Its introduction was delayed, however, 
because of legal battles with USL. Once the legal differences were resolved, 4.4BSD-Lite was released in 1994, 
fully unencumbered, so no UNIX source license was needed to receive it. The CSRG followed this with a bug-
fix release in 1995. This release, 4.4BSD-Lite, release 2, was the final version of BSD from the CSRG. (This 
version of BSD is described in the book by McKusick et al. [1996].) 

The UNIX system development done at Berkeley started with PDP-11s, then moved to the VAX minicomputer, 
and then to other so-called workstations. During the early 1990s, support was provided to Berkeley for the 
popular 80386-based personal computers, leading to what is called 386BSD. This was done by Bill Jolitz and 
was documented in a series of monthly articles in Dr. Dobb's Journal throughout 1991. Much of this code 
appears in the BSD Networking Software, Release 2.0. 

2.3.3. FreeBSD 

FreeBSD is based on the 4.4BSD-Lite operating system. The FreeBSD project was formed to carry on the BSD 
line after the Computing Science Research Group at the University of California at Berkeley decided to end its 
work on the BSD versions of the UNIX operating system, and the 386BSD project seemed to be neglected for 
too long. 

All software produced by the FreeBSD project is freely available in both binary and source forms. The 
FreeBSD 5.2.1 operating system was one of the four used to test the examples in this book. 

Several other BSD-based free operating systems are available. The NetBSD project (http://www.netbsd.org ) 
is similar to the FreeBSD project, with an emphasis on portability between hardware platforms. The OpenBSD 
project (http://www.openbsd.org ) is similar to FreeBSD but with an emphasis on security. 

2.3.4. Linux 

Linux is an operating system that provides a rich UNIX programming environment, and is freely available 
under the GNU Public License. The popularity of Linux is somewhat of a phenomenon in the computer industry. 
Linux is distinguished by often being the first operating system to support new hardware. 

Linux was created in 1991 by Linus Torvalds as a replacement for MINIX. A grass-roots effort then sprang up, 
whereby many developers across the world volunteered their time to use and enhance it. 

The Mandrake 9.2 distribution of Linux was one of the operating systems used to test the examples in this book. 
That distribution uses the 2.4.22 version of the Linux operating system kernel. 

2.3.5. Mac OS X 

Mac OS X is based on entirely different technology than prior versions. The core operating system is called 
"Darwin," and is based on a combination of the Mach kernel (Accetta et al. [1986]) and the FreeBSD operating 
system. Darwin is managed as an open source project, similar to FreeBSD and Linux. 

Mac OS X version 10.3 (Darwin 7.4.0) was used as one of the operating systems to test the examples in this 
book. 



2.3.6. Solaris 

Solaris is the version of the UNIX System developed by Sun Microsystems. It is based on System V Release 4, 
with more than ten years of enhancements from the engineers at Sun Microsystems. It is the only commercially 
successful SVR4 descendant, and is formally certified to be a UNIX system. (For more information on UNIX 
certification, see http://www.opengroup.org/certification/idx/unix.htm l .) 

The Solaris 9 UNIX system was one of the operating systems used to test the examples in this book. 

2.3.7. Other UNIX Systems 

Other versions of the UNIX system that have been certified in the past include 

• AIX, IBM's version of the UNIX System 
• HP-UX, Hewlett-Packard's version of the UNIX System 
• IRIX, the UNIX System version shipped by Silicon Graphics 
• UnixWare, the UNIX System descended from SVR4 and currently sold by SCO 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.4. Relationship of Standards and Implementations 

The standards that we've mentioned define a subset of any actual system. The focus of this book is on four real 
systems: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9. Although only Solaris can call itself a 
UNIX system, all four provide a UNIX programming environment. Because all four are POSIX compliant to 
varying degrees, we will also concentrate on the features that are required by the POSIX.1 standard, noting any 
differences between POSIX and the actual implementations of these four systems. Those features and routines 
that are specific to only a particular implementation are clearly marked. As SUSv3 is a superset of POSIX.1, 
we'll also note any features that are part of SUSv3 but not part of POSIX.1. 

Be aware that the implementations provide backward compatibility for features in earlier releases, such as 
SVR3.2 and 4.3BSD. For example, Solaris supports both the POSIX.1 specification for nonblocking I/O 
(O_NONBLOCK) and the traditional System V method (O_NDELAY). In this text, we'll use only the POSIX.1 feature, 
although we'll mention the nonstandard feature that it replaces. Similarly, both SVR3.2 and 4.3BSD provided 
reliable signals in a way that differs from the POSIX.1 standard. In Chapter 10 we describe only the POSIX.1 
signal mechanism. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.5. Limits 

The implementations define many magic numbers and constants. Many of these have been hard coded into 
programs or were determined using ad hoc techniques. With the various standardization efforts that we've 
described, more portable methods are now provided to determine these magic numbers and implementation-
defined limits, greatly aiding the portability of our software. 

Two types of limits are needed: 

1. Compile-time limits (e.g., what's the largest value of a short integer?) 
2. Runtime limits (e.g., how many characters in a filename?) 

Compile-time limits can be defined in headers that any program can include at compile time. But runtime limits 
require the process to call a function to obtain the value of the limit. 

Additionally, some limits can be fixed on a given implementation—and could therefore be defined statically in 
a header—yet vary on another implementation and would require a runtime function call. An example of this 
type of limit is the maximum number of characters in a filename. Before SVR4, System V historically allowed 
only 14 characters in a filename, whereas BSD-derived systems increased this number to 255. Most UNIX 
System implementations these days support multiple file system types, and each type has its own limit. This is 
the case of a runtime limit that depends on where in the file system the file in question is located. A filename in 
the root file system, for example, could have a 14-character limit, whereas a filename in another file system 
could have a 255-character limit. 

To solve these problems, three types of limits are provided: 

1. Compile-time limits (headers) 
2. Runtime limits that are not associated with a file or directory (the sysconf  function) 
3. Runtime limits that are associated with a file or a directory (the pathconf  and fpathconf  functions) 

To further confuse things, if a particular runtime limit does not vary on a given system, it can be defined 
statically in a header. If it is not defined in a header, however, the application must call one of the three conf  
functions (which we describe shortly) to determine its value at runtime. 

2.5.1. ISO C Limits 

All the limits defined by ISO C are compile-time limits. Figure 2.6 shows the limits from the C standard that are 
defined in the file <limits.h> . These constants are always defined in the header and don't change in a given 
system. The third column shows the minimum acceptable values from the ISO C standard. This allows for a 
system with 16-bit integers using one's-complement arithmetic. The fourth column shows the values from a 
Linux system with 32-bit integers using two's-complement arithmetic. Note that none of the unsigned data types 
has a minimum value, as this value must be 0 for an unsigned data type. On a 64-bit system, the values for long  
integer maximums match the maximum values for long long  integers. 

Figure 2.6. Sizes of integral values from <limits.h> 

Name Description 
Minimum acceptable 

value Typical value 

CHAR_BIT bits in a char  8 8 



Figure 2.6. Sizes of integral values from <limits.h> 

Name Description 
Minimum acceptable 

value Typical value 

CHAR_MAX max value of char  (see later) 127 

CHAR_MIN min value of char  (see later) –128 

SCHAR_MAX max value of signed char  127 127 

SCHAR_MIN min value of signed char  –127 –128 

UCHAR_MAX max value of unsigned char  255 255 

INT_MAX max value of int  32,767 2,147,483,647 

INT_MIN  min value of int  –32,767 –2,147,483,648 

UINT_MAX max value of unsigned int  65,535 4,294,967,295 

SHRT_MIN min value of short  –32,767 –32,768 

SHRT_MAX max value of short  32,767 32,767 

USHRT_MAX max value of unsigned short  65,535 65,535 

LONG_MAX max value of long  2,147,483,647 2,147,483,647 

LONG_MIN min value of long  –2,147,483,647 –2,147,483,648 

ULONG_MAX max value of unsigned long  4,294,967,295 4,294,967,295 

LLONG_MAX max value of long long  9,223,372,036,854,775,807 9,223,372,036,854,775,807 

LLONG_MIN min value of long long  –9,223,372,036,854,775,807 –9,223,372,036,854,775,808 

ULLONG_MAX max value of unsigned long long  18,446,744,073,709,551,615 18,446,744,073,709,551,615 

MB_LEN_MAX max number of bytes in a multibyte 
character constant 

1 16 

 

One difference that we will encounter is whether a system provides signed or unsigned character values. From 
the fourth column in Figure 2.6, we see that this particular system uses signed characters. We see that CHAR_MIN 
equals SCHAR_MIN and that CHAR_MAX equals SCHAR_MAX. If the system uses unsigned characters, we would have 
CHAR_MIN equal to 0 and CHAR_MAX equal to UCHAR_MAX. 

The floating-point data types in the header <float.h>  have a similar set of definitions. Anyone doing serious 
floating-point work should examine this file. 

Another ISO C constant that we'll encounter is FOPEN_MAX, the minimum number of standard I/O streams that 
the implementation guarantees can be open at once. This value is in the <stdio.h>  header, and its minimum 
value is 8. The POSIX.1 value STREAM_MAX, if defined, must have the same value as FOPEN_MAX. 



ISO C also defines the constant TMP_MAX in <stdio.h> . It is the maximum number of unique filenames 
generated by the tmpnam function. We'll have more to say about this constant in Section 5.13. 

In Figure 2.7, we show the values of FOPEN_MAX and TMP_MAX on the four platforms we discuss in this book. 

Figure 2.7. ISO limits on various platforms 

Limit FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

FOPEN_MAX 20 16 20 20 

TMP_MAX 308,915,776 238,328 308,915,776 17,576 

 

ISO C also defines the constant FILENAME_MAX, but we avoid using it, because some operating system 
implementations historically have defined it to be too small to be of use. 

2.5.2. POSIX Limits 

POSIX.1 defines numerous constants that deal with implementation limits of the operating system. 
Unfortunately, this is one of the more confusing aspects of POSIX.1. Although POSIX.1 defines numerous 
limits and constants, we'll only concern ourselves with the ones that affect the base POSIX.1 interfaces. These 
limits and constants are divided into the following five categories: 

1. Invariant minimum values: the 19 constants in Figure 2.8 
2. Invariant value: SSIZE_MAX 
3. Runtime increasable values: CHARCLASS_NAME_MAX, COLL_WEIGHTS_MAX, LINE_MAX, NGROUPS_MAX, and 

RE_DUP_MAX 
4. Runtime invariant values, possibly indeterminate: ARG_MAX, CHILD_MAX, HOST_NAME_MAX, 

LOGIN_NAME_MAX, OPEN_MAX, PAGESIZE, RE_DUP_MAX, STREAM_MAX, SYMLOOP_MAX, TTY_NAME_MAX, and 
TZNAME_MAX 

5. Pathname variable values, possibly indeterminate: FILESIZEBITS , LINK_MAX, MAX_CANON, MAX_INPUT, 
NAME_MAX, PATH_MAX, PIPE_BUF, and SYMLINK_MAX 

Figure 2.8. POSIX.1 invariant minimum values from <limits.h> 

Name Description: minimum acceptable value for Value 

_POSIX_ARG_MAX length of arguments to exec  functions 4,096 

_POSIX_CHILD_MAX number of child processes per real user ID 25 

_POSIX_HOST_NAME_MAX maximum length of a host name as returned by gethostname  255 

_POSIX_LINK_MAX number of links to a file 8 

_POSIX_LOGIN_NAME_MAX maximum length of a login name 9 

_POSIX_MAX_CANON number of bytes on a terminal's canonical input queue 255 

_POSIX_MAX_INPUT space available on a terminal's input queue 255 



Figure 2.8. POSIX.1 invariant minimum values from <limits.h> 

Name Description: minimum acceptable value for Value 

_POSIX_NAME_MAX number of bytes in a filename, not including the terminating null 14 

_POSIX_NGROUPS_MAX number of simultaneous supplementary group IDs per process 8 

_POSIX_OPEN_MAX number of open files per process 20 

_POSIX_PATH_MAX number of bytes in a pathname, including the terminating null 256 

_POSIX_PIPE_BUF number of bytes that can be written atomically to a pipe 512 

_POSIX_RE_DUP_MAX number of repeated occurrences of a basic regular expression permitted by 
the regexec  and regcomp  functions when using the interval notation 
\{m,n\}  

255 

_POSIX_SSIZE_MAX value that can be stored in ssize_t  object 32,767 

_POSIX_STREAM_MAX number of standard I/O streams a process can have open at once 8 

_POSIX_SYMLINK_MAX number of bytes in a symbolic link 255 

_POSIX_SYMLOOP_MAX number of symbolic links that can be traversed during pathname resolution 8 

_POSIX_TTY_NAME_MAX length of a terminal device name, including the terminating null 9 

_POSIX_TZNAME_MAX number of bytes for the name of a time zone 6 

 

Of these 44 limits and constants, some may be defined in <limits.h> , and others may or may not be defined, 
depending on certain conditions. We describe the limits and constants that may or may not be defined in Section 
2.5.4, when we describe the sysconf , pathconf , and fpathconf  functions. The 19 invariant minimum values 
are shown in Figure 2.8. 

These values are invariant; they do not change from one system to another. They specify the most restrictive 
values for these features. A conforming POSIX.1 implementation must provide values that are at least this large. 
This is why they are called minimums, although their names all contain MAX. Also, to ensure portability, a 
strictly-conforming application must not require a larger value. We describe what each of these constants refers 
to as we proceed through the text. 

A strictly-conforming POSIX application is different from an application that is merely POSIX conforming. A 
POSIX-conforming application uses only interfaces defined in IEEE Standard 1003.1-2001. A strictly-
conforming application is a POSIX-conforming application that does not rely on any undefined behavior, does 
not use any obsolescent interfaces, and does not require values of constants larger than the minimums shown in 
Figure 2.8. 

Unfortunately, some of these invariant minimum values are too small to be of practical use. For example, most 
UNIX systems today provide far more than 20 open files per process. Also, the minimum limit of 255 for 
_POSIX_PATH_MAX is too small. Pathnames can exceed this limit. This means that we can't use the two constants 
_POSIX_OPEN_MAX and _POSIX_PATH_MAX as array sizes at compile time. 



Each of the 19 invariant minimum values in Figure 2.8 has an associated implementation value whose name is 
formed by removing the _POSIX_ prefix from the name in Figure 2.8. The names without the leading _POSIX_ 
were intended to be the actual values that a given implementation supports. (These 19 implementation values 
are items 2–5 from our list earlier in this section: the invariant value, the runtime increasable value, the runtime 
invariant values, and the pathname variable values.) The problem is that not all of the 19 implementation values 
are guaranteed to be defined in the <limits.h>  header. 

For example, a particular value may not be included in the header if its actual value for a given process depends 
on the amount of memory on the system. If the values are not defined in the header, we can't use them as array 
bounds at compile time. So, POSIX.1 decided to provide three runtime functions for us to call—sysconf , 
pathconf , and fpathconf —to determine the actual implementation value at runtime. There is still a problem, 
however, because some of the values are defined by POSIX.1 as being possibly "indeterminate" (logically 
infinite). This means that the value has no practical upper bound. On Linux, for example, the number of iovec  
structures you can use with readv  or writev  is limited only by the amount of memory on the system. Thus, 
IOV_MAX is considered indeterminate on Linux. We'll return to this problem of indeterminate runtime limits in 
Section 2.5.5. 

2.5.3. XSI Limits 

The XSI also defines constants that deal with implementation limits. They include: 

1. Invariant minimum values: the ten constants in Figure 2.9 
2. Numerical limits: LONG_BIT and WORD_BIT 
3. Runtime invariant values, possibly indeterminate: ATEXIT_MAX, IOV_MAX, and PAGE_SIZE 

Figure 2.9. XSI invariant minimum values from <limits.h> 

Name Description Minimum acceptable 
value 

Typical 
value 

NL_ARGMAX maximum value of digit in calls to printf  and 
scanf  

9 9 

NL_LANGMAX maximum number of bytes in LANG environment 
variable 

14 14 

NL_MSGMAX maximum message number 32,767 32,767 

NL_NMAX maximum number of bytes in N-to-1 mapping 
characters 

(none specified) 1 

NL_SETMAX maximum set number 255 255 

NL_TEXTMAX maximum number of bytes in a message string _POSIX2_LINE_MAX 2,048 

NZERO default process priority 20 20 

_XOPEN_IOV_MAX maximum number of iovec  structures that can be 
used with readv  or writev  

16 16 

_XOPEN_NAME_MAX number of bytes in a filename 255 255 

_XOPEN_PATH_MAX number of bytes in a pathname 1,024 1,024 



 

The invariant minimum values are listed in Figure 2.9. Many of these values deal with message catalogs. The 
last two illustrate the situation in which the POSIX.1 minimums were too small—presumably to allow for 
embedded POSIX.1 implementations—so the Single UNIX Specification added symbols with larger minimum 
values for XSI-conforming systems. 

2.5.4. sysconf, pathconf, and fpathconf Functions 

We've listed various minimum values that an implementation must support, but how do we find out the limits 
that a particular system actually supports? As we mentioned earlier, some of these limits might be available at 
compile time; others must be determined at runtime. We've also mentioned that some don't change in a given 
system, whereas others can change because they are associated with a file or directory. The runtime limits are 
obtained by calling one of the following three functions. 

#include <unistd.h> 
 
long sysconf(int name); 
 
long pathconf(const char *pathname, int name); 
 
long fpathconf(int filedes, int name); 

 

All three return: corresponding value if OK, –1 on error (see later) 

 

The difference between the last two functions is that one takes a pathname as its argument and the other takes a 
file descriptor argument. 

Figure 2.10 lists the name arguments that sysconf  uses to identify system limits. Constants beginning with 
_SC_ are used as arguments to sysconf  to identify the runtime limit. Figure 2.11 lists the name arguments that 
are used by pathconf  and fpathconf  to identify system limits. Constants beginning with _PC_ are used as 
arguments to pathconf  and fpathconf  to identify the runtime limit. 

Figure 2.10. Limits and name arguments to sysconf 

Name of limit Description name argument 

ARG_MAX maximum length, in bytes, of arguments to the exec  functions _SC_ARG_MAX  

ATEXIT_MAX maximum number of functions that can be registered with the 
atexit  function 

_SC_ATEXIT_MAX  

CHILD_MAX maximum number of processes per real user ID _SC_CHILD_MAX  

clock ticks/second number of clock ticks per second _SC_CLK_TCK  

COLL_WEIGHTS_MAX maximum number of weights that can be assigned to an entry 
of the LC_COLLATE order keyword in the locale definition file 

_SC_COLL_WEIGHTS_MAX  

HOST_NAME_MAX maximum length of a host name as returned by gethostname  _SC_HOST_NAME_MAX  



Figure 2.10. Limits and name arguments to sysconf 

Name of limit Description name argument 

IOV_MAX maximum number of iovec  structures that can be used with 
readv  or writev  

_SC_IOV_MAX  

LINE_MAX maximum length of a utility's input line _SC_LINE_MAX  

LOGIN_NAME_MAX maximum length of a login name _SC_LOGIN_NAME_MAX  

NGROUPS_MAX maximum number of simultaneous supplementary process 
group IDs per process 

_SC_NGROUPS_MAX  

OPEN_MAX maximum number of open files per process _SC_OPEN_MAX  

PAGESIZE system memory page size, in bytes _SC_PAGESIZE  

PAGE_SIZE system memory page size, in bytes _SC_PAGE_SIZE  

RE_DUP_MAX number of repeated occurrences of a basic regular expression 
permitted by the regexec  and regcomp  functions when using 
the interval notation \{m,n\}  

_SC_RE_DUP_MAX  

STREAM_MAX maximum number of standard I/O streams per process at any 
given time; if defined, it must have the same value as 
FOPEN_MAX 

_SC_STREAM_MAX  

SYMLOOP_MAX number of symbolic links that can be traversed during 
pathname resolution 

_SC_SYMLOOP_MAX  

TTY_NAME_MAX length of a terminal device name, including the terminating 
null 

_SC_TTY_NAME_MAX  

TZNAME_MAX maximum number of bytes for the name of a time zone _SC_TZNAME_MAX  

 

Figure 2.11. Limits and name arguments to pathconf and fpathconf 

Name of limit Description name argument 

FILESIZEBITS  minimum number of bits needed to represent, as a signed integer value, 
the maximum size of a regular file allowed in the specified directory 

_PC_FILESIZEBITS   

LINK_MAX maximum value of a file's link count _PC_LINK_MAX  

MAX_CANON maximum number of bytes on a terminal's canonical input queue _PC_MAX_CANON  

MAX_INPUT number of bytes for which space is available on terminal's input queue _PC_MAX_INPUT  

NAME_MAX maximum number of bytes in a filename (does not include a null at end) _PC_NAME_MAX 

PATH_MAX maximum number of bytes in a relative pathname, including the 
terminating null 

_PC_PATH_MAX  

PIPE_BUF maximum number of bytes that can be written atomically to a pipe _PC_PIPE_BUF  



Figure 2.11. Limits and name arguments to pathconf and fpathconf 

Name of limit Description name argument 

SYMLINK_MAX number of bytes in a symbolic link _PC_SYMLINK_MAX  

 

We need to look in more detail at the different return values from these three functions. 

1. All three functions return –1 and set errno  to EINVAL if the name isn't one of the appropriate constants. 
The third column in Figures 2.10 and 2.11 lists the limit constants we'll deal with throughout the rest of 
this book. 

2. Some names can return either the value of the variable (a return value 0) or an indication that the 
value is indeterminate. An indeterminate value is indicated by returning –1 and not changing the value 
of errno . 

3. The value returned for _SC_CLK_TCK is the number of clock ticks per second, for use with the return 
values from the times  function (Section 8.16). 

There are some restrictions for the pathname argument to pathconf  and the filedes argument to fpathconf . If 
any of these restrictions isn't met, the results are undefined. 

1. The referenced file for _PC_MAX_CANON and _PC_MAX_INPUT must be a terminal file. 
2. The referenced file for _PC_LINK_MAX can be either a file or a directory. If the referenced file is a 

directory, the return value applies to the directory itself, not to the filename entries within the directory. 
3. The referenced file for _PC_FILESIZEBITS  and _PC_NAME_MAX must be a directory. The return value 

applies to filenames within the directory. 
4. The referenced file for _PC_PATH_MAX must be a directory. The value returned is the maximum length of 

a relative pathname when the specified directory is the working directory. (Unfortunately, this isn't the 
real maximum length of an absolute pathname, which is what we want to know. We'll return to this 
problem in Section 2.5.5.) 

5. The referenced file for _PC_PIPE_BUF must be a pipe, FIFO, or directory. In the first two cases (pipe or 
FIFO) the return value is the limit for the referenced pipe or FIFO. For the other case (a directory) the 
return value is the limit for any FIFO created in that directory. 

6. The referenced file for _PC_SYMLINK_MAX must be a directory. The value returned is the maximum 
length of the string that a symbolic link in that directory can contain. 

Example 

The awk(1) program shown in Figure 2.12 builds a C program that prints the value of each pathconf  and 
sysconf  symbol. 

The awk program reads two input files—pathconf.sym  and sysconf.sym —that contain lists of the limit name 
and symbol, separated by tabs. All symbols are not defined on every platform, so the awk program surrounds 
each call to pathconf  and sysconf  with the necessary #ifdef  statements. 

For example, the awk program transforms a line in the input file that looks like 

   NAME_MAX      _PC_NAME_MAX 

 



into the following C code: 

#ifdef NAME_MAX 
     printf("NAME_MAX is defined to be %d\n", NAME_ MAX+0); 
#else 
     printf("no symbol for NAME_MAX\n"); 
#endif 
#ifdef _PC_NAME_MAX 
     pr_pathconf("NAME_MAX =", argv[1], _PC_NAME_MA X); 
#else 
     printf("no symbol for _PC_NAME_MAX\n"); 
#endif 

 

The program in Figure 2.13, generated by the awk program, prints all these limits, handling the case in which a 
limit is not defined. 

Figure 2.14 summarizes results from Figure 2.13 for the four systems we discuss in this book. The entry "no 
symbol" means that the system doesn't provide a corresponding _SC or _PC symbol to query the value of the 
constant. Thus, the limit is undefined in this case. In contrast, the entry "unsupported" means that the symbol is 
defined by the system but unrecognized by the sysconf  or pathconf  functions. The entry "no limit" means that 
the system defines no limit for the constant, but this doesn't mean that the limit is infinite. 

We'll see in Section 4.14 that UFS is the SVR4 implementation of the Berkeley fast file system. PCFS is the 
MS-DOS FAT file system implementation for Solaris. 

Figure 2.12. Build C program to print all supported configuration limits 

BEGIN   { 
    printf("#include \"apue.h\"\n") 
    printf("#include <errno.h>\n") 
    printf("#include <limits.h>\n") 
    printf("\n") 
    printf("static void pr_sysconf(char *, int);\n" ) 
    printf("static void pr_pathconf(char *, char *,  int);\n") 
    printf("\n") 
    printf("int\n") 
    printf("main(int argc, char *argv[])\n") 
    printf("{\n") 
    printf("\tif (argc != 2)\n") 
    printf("\t\terr_quit(\"usage: a.out <dirname>\" );\n\n") 
    FS="\t+" 
    while (getline <"sysconf.sym" > 0) { 
        printf("#ifdef %s\n", $1) 
        printf("\tprintf(\"%s defined to be %%d\\n\ ", %s+0);\n", $1, $1)  
        printf("#else\n") 
        printf("\tprintf(\"no symbol for %s\\n\");\ n", $1) 
        printf("#endif\n") 
        printf("#ifdef %s\n", $2) 
        printf("\tpr_sysconf(\"%s =\", %s);\n", $1,  $2) 
        printf("#else\n") 
        printf("\tprintf(\"no symbol for %s\\n\");\ n", $2) 
        printf("#endif\n") 
    } 
    close("sysconf.sym") 
    while (getline <"pathconf.sym" > 0) { 
        printf("#ifdef %s\n", $1) 



        printf("\tprintf(\"%s defined to be %%d\\n\ ", %s+0);\n", $1, $1)  
        printf("#else\n") 
        printf("\tprintf(\"no symbol for %s\\n\");\ n", $1) 
        printf("#endif\n") 
        printf("#ifdef %s\n", $2) 
        printf("\tpr_pathconf(\"%s =\", argv[1], %s );\n", $1, $2) 
        printf("#else\n") 
        printf("\tprintf(\"no symbol for %s\\n\");\ n", $2) 
        printf("#endif\n") 
    } 
    close("pathconf.sym") 
    exit 
} 
END { 
    printf("\texit(0);\n") 
    printf("}\n\n") 
    printf("static void\n") 
    printf("pr_sysconf(char *mesg, int name)\n") 
    printf("{\n") 
    printf("\tlong val;\n\n") 
    printf("\tfputs(mesg, stdout);\n") 
    printf("\terrno = 0;\n") 
    printf("\tif ((val = sysconf(name)) < 0) {\n") 
    printf("\t\tif (errno != 0) {\n") 
    printf("\t\t\tif (errno == EINVAL)\n") 
    printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n") 
    printf("\t\t\telse\n") 
    printf("\t\t\t\terr_sys(\"sysconf error\");\n")  
    printf("\t\t} else {\n") 
    printf("\t\t\tfputs(\" (no limit)\\n\", stdout) ;\n") 
    printf("\t\t}\n") 
    printf("\t} else {\n") 
    printf("\t\tprintf(\" %%ld\\n\", val);\n") 
    printf("\t}\n") 
    printf("}\n\n") 
    printf("static void\n") 
    printf("pr_pathconf(char *mesg, char *path, int  name)\n") 
    printf("{\n") 
    printf("\tlong val;\n") 
    printf("\n") 
    printf("\tfputs(mesg, stdout);\n") 
    printf("\terrno = 0;\n") 
    printf("\tif ((val = pathconf(path, name)) < 0)  {\n") 
    printf("\t\tif (errno != 0) {\n") 
    printf("\t\t\tif (errno == EINVAL)\n") 
    printf("\t\t\t\tfputs(\" (not supported)\\n\", stdout);\n") 
    printf("\t\t\telse\n") 
    printf("\t\t\t\terr_sys(\"pathconf error, path = %%s\", path);\n") 
    printf("\t\t} else {\n") 
    printf("\t\t\tfputs(\" (no limit)\\n\", stdout) ;\n") 
    printf("\t\t}\n") 
    printf("\t} else {\n") 
    printf("\t\tprintf(\" %%ld\\n\", val);\n") 
    printf("\t}\n") 
    printf("}\n") 
} 

Figure 2.13. Print all possible sysconf and pathconf values 

#include "apue.h" 
#include <errno.h> 
#include <limits.h> 



 
static void pr_sysconf(char *, int); 
static void pr_pathconf(char *, char *, int); 
 
int 
main(int argc, char *argv[]) 
{ 
    if (argc != 2) 
        err_quit("usage: a.out <dirname>"); 
 
#ifdef ARG_MAX 
    printf("ARG_MAX defined to be %d\n", ARG_MAX+0) ; 
#else 
    printf("no symbol for ARG_MAX\n"); 
#endif 
#ifdef _SC_ARG_MAX 
    pr_sysconf("ARG_MAX =", _SC_ARG_MAX); 
#else 
    printf("no symbol for _SC_ARG_MAX\n"); 
#endif 
 
/* similar processing for all the rest of the sysco nf symbols... */ 
 
#ifdef MAX_CANON 
    printf("MAX_CANON defined to be %d\n", MAX_CANO N+0); 
#else 
    printf("no symbol for MAX_CANON\n"); 
#endif 
#ifdef _PC_MAX_CANON 
    pr_pathconf("MAX_CANON =", argv[1], _PC_MAX_CAN ON); 
#else 
    printf("no symbol for _PC_MAX_CANON\n"); 
#endif 
 
/* similar processing for all the rest of the pathc onf symbols... */  
 
   exit(0); 
} 
static void 
pr_sysconf(char *mesg, int name) 
{ 
    long    val; 
 
    fputs(mesg, stdout); 
    errno = 0; 
    if ((val = sysconf(name)) < 0) { 
        if (errno != 0) { 
            if (errno == EINVAL) 
                fputs(" (not supported)\n", stdout) ; 
            else 
                err_sys("sysconf error"); 
        } else { 
            fputs(" (no limit)\n", stdout); 
        } 
    } else { 
        printf(" %ld\n", val); 
    } 
} 
 
static void 
pr_pathconf(char *mesg, char *path, int name) 
{ 



    long    val; 
 
    fputs(mesg, stdout); 
    errno = 0; 
    if ((val = pathconf(path, name)) < 0) { 
        if (errno != 0) { 
            if (errno == EINVAL) 
                fputs(" (not supported)\n", stdout) ; 
            else 
                err_sys("pathconf error, path = %s" , path); 
        } else { 
            fputs(" (no limit)\n", stdout); 
        } 
    } else { 
        printf(" %ld\n", val); 
    } 
} 

Figure 2.14. Examples of configuration limits 

Solaris 9 
Limit FreeBSD 

5.2.1 
Linux 2.4.22 Mac OS X 

10.3 UFS file 
system 

PCFS file 
system 

ARG_MAX 65,536 131,072 262,144 1,048,320 1,048,320 

ATEXIT_MAX 32 2,147,483,647 no symbol no limit no limit 

CHARCLASS_NAME_MAX no symbol 2,048 no symbol 14 14 

CHILD_MAX 867 999 100 7,877 7,877 

clock ticks/second 128 100 100 100 100 

COLL_WEIGHTS_MAX 0 255 2 10 10 

FILESIZEBITS  unsupported 64 no symbol 41 unsupported 

HOST_NAME_MAX 255 unsupported no symbol no symbol no symbol 

IOV_MAX 1,024 no limit no symbol 16 16 

LINE_MAX 2,048 2,048 2,048 2,048 2,048 

LINK_MAX 32,767 32,000 32,767 32,767 1 

LOGIN_NAME_MAX 17 256 no symbol 9 9 

MAX_CANON 255 255 255 256 256 

MAX_INPUT 255 255 255 512 512 

NAME_MAX 255 255 765 255 8 

NGROUPS_MAX 16 32 16 16 16 

OPEN_MAX 1,735 1,024 256 256 256 

PAGESIZE 4,096 4,096 4,096 8,192 8,192 



Figure 2.14. Examples of configuration limits 

Solaris 9 
Limit FreeBSD 

5.2.1 
Linux 2.4.22 Mac OS X 

10.3 UFS file 
system 

PCFS file 
system 

PAGE_SIZE 4,096 4,096 no symbol 8,192 8,192 

PATH_MAX 1,024 4,096 1,024 1,024 1,024 

PIPE_BUF 512 4,096 512 5,120 5,120 

RE_DUP_MAX 255 32,767 255 255 255 

STREAM_MAX 1,735 16 20 256 256 

SYMLINK_MAX unsupported no limit no symbol no symbol no symbol 

SYMLOOP_MAX 32 no limit no symbol no symbol no symbol 

TTY_NAME_MAX 255 32 no symbol 128 128 

TZNAME_MAX 255 6 255 no limit no limit 

 
 

2.5.5. Indeterminate Runtime Limits 

We mentioned that some of the limits can be indeterminate. The problem we encounter is that if these limits 
aren't defined in the <limits.h>  header, we can't use them at compile time. But they might not be defined at 
runtime if their value is indeterminate! Let's look at two specific cases: allocating storage for a pathname and 
determining the number of file descriptors. 

Pathnames 

Many programs need to allocate storage for a pathname. Typically, the storage has been allocated at compile 
time, and various magic numbers—few of which are the correct value—have been used by different programs 
as the array size: 256, 512, 1024, or the standard I/O constant BUFSIZ. The 4.3BSD constant MAXPATHLEN in the 
header <sys/param.h>  is the correct value, but many 4.3BSD applications didn't use it. 

POSIX.1 tries to help with the PATH_MAX value, but if this value is indeterminate, we're still out of luck. Figure 
2.15 shows a function that we'll use throughout this text to allocate storage dynamically for a pathname. 

Figure 2.15. Dynamically allocate space for a pathname 

#include "apue.h" 
#include <errno.h> 
#include <limits.h> 
 
#ifdef  PATH_MAX 
static int  pathmax = PATH_MAX; 
#else 
static int  pathmax = 0; 
#endif 



 
#define SUSV3   200112L 
 
static long posix_version = 0; 
 
/* If PATH_MAX is indeterminate, no guarantee this is adequate */ 
#define PATH_MAX_GUESS  1024 
 
char * 
path_alloc(int *sizep) /* also return allocated siz e, if nonnull */ 
{ 
    char    *ptr; 
    int size; 
 
    if (posix_version == 0) 
        posix_version = sysconf(_SC_VERSION); 
 
    if (pathmax == 0) {     /* first time through * / 
        errno = 0; 
        if ((pathmax = pathconf("/", _PC_PATH_MAX))  < 0) { 
            if (errno == 0) 
                pathmax = PATH_MAX_GUESS; /* it's i ndeterminate */ 
            else 
                err_sys("pathconf error for _PC_PAT H_MAX"); 
        } else { 
            pathmax++;      /* add one since it's r elative to root */  
        } 
    } 
    if (posix_version < SUSV3) 
        size = pathmax + 1; 
    else 
        size = pathmax; 
 
    if ((ptr = malloc(size)) == NULL) 
        err_sys("malloc error for pathname"); 
 
    if (sizep != NULL) 
        *sizep = size; 
    return(ptr); 
} 

If the constant PATH_MAX is defined in <limits.h> , then we're all set. If it's not, we need to call pathconf . The 
value returned by pathconf  is the maximum size of a relative pathname when the first argument is the working 
directory, so we specify the root as the first argument and add 1 to the result. If pathconf  indicates that 
PATH_MAX is indeterminate, we have to punt and just guess a value. 

Standards prior to SUSv3 were unclear as to whether or not PATH_MAX included a null byte at the end of the 
pathname. If the operating system implementation conforms to one of these prior versions, we need to add 1 to 
the amount of memory we allocate for a pathname, just to be on the safe side. 

The correct way to handle the case of an indeterminate result depends on how the allocated space is being used. 
If we were allocating space for a call to getcwd , for example—to return the absolute pathname of the current 
working directory; see Section 4.22—and if the allocated space is too small, an error is returned and errno  is 
set to ERANGE. We could then increase the allocated space by calling realloc  (see Section 7.8 and Exercise 
4.16) and try again. We could keep doing this until the call to getcwd  succeeded. 

Maximum Number of Open Files 



A common sequence of code in a daemon process—a process that runs in the background, not connected to a 
terminal—is one that closes all open files. Some programs have the following code sequence, assuming the 
constant NOFILE was defined in the <sys/param.h>  header: 

   #include  <sys/param.h> 
 
   for (i = 0; i < NOFILE; i++) 
       close(i); 

 

Other programs use the constant _NFILE  that some versions of <stdio.h>  provide as the upper limit. Some 
hard code the upper limit as 20. 

We would hope to use the POSIX.1 value OPEN_MAX to determine this value portably, but if the value is 
indeterminate, we still have a problem. If we wrote the following and if OPEN_MAX was indeterminate, the loop 
would never execute, since sysconf  would return -1: 

   #include  <unistd.h> 
 
   for (i = 0; i < sysconf(_SC_OPEN_MAX); i++) 
       close(i); 

 

Our best option in this case is just to close all descriptors up to some arbitrary limit, say 256. As with our 
pathname example, this is not guaranteed to work for all cases, but it's the best we can do. We show this 
technique in Figure 2.16. 

Figure 2.16. Determine the number of file descriptors 

#include "apue.h" 
#include <errno.h> 
#include <limits.h> 
 
#ifdef  OPEN_MAX 
static long openmax = OPEN_MAX; 
#else 
static long openmax = 0; 
#endif 
 
/* 
 * If OPEN_MAX is indeterminate, we're not 
 * guaranteed that this is adequate. 
 */ 
#define OPEN_MAX_GUESS 256 
 
long 
open_max(void) 
{ 
    if (openmax == 0) {      /* first time through */ 
        errno = 0; 
        if ((openmax = sysconf(_SC_OPEN_MAX)) < 0) { 
           if (errno == 0) 
               openmax = OPEN_MAX_GUESS;    /* it's  indeterminate */  
           else 
               err_sys("sysconf error for _SC_OPEN_ MAX"); 
        } 
    } 
 



    return(openmax); 
} 

We might be tempted to call close  until we get an error return, but the error return from close  (EBADF) doesn't 
distinguish between an invalid descriptor and a descriptor that wasn't open. If we tried this technique and 
descriptor 9 was not open but descriptor 10 was, we would stop on 9 and never close 10. The dup  function 
(Section 3.12) does return a specific error when OPEN_MAX is exceeded, but duplicating a descriptor a couple of 
hundred times is an extreme way to determine this value. 

Some implementations will return LONG_MAX for limits values that are effectively unlimited. Such is the case 
with the Linux limit for ATEXIT_MAX (see Figure 2.14). This isn't a good idea, because it can cause programs to 
behave badly. 

For example, we can use the ulimit  command built into the Bourne-again shell to change the maximum 
number of files our processes can have open at one time. This generally requires special (superuser) privileges if 
the limit is to be effectively unlimited. But once set to infinite, sysconf  will report LONG_MAX as the limit for 
OPEN_MAX. A program that relies on this value as the upper bound of file descriptors to close as shown in Figure 
2.16 will waste a lot of time trying to close 2,147,483,647 file descriptors, most of which aren't even in use. 

Systems that support the XSI extensions in the Single UNIX Specification will provide the getrlimit (2) 
function (Section 7.11). It can be used to return the maximum number of descriptors that a process can have 
open. With it, we can detect that there is no configured upper bound to the number of open files our processes 
can open, so we can avoid this problem. 

The OPEN_MAX value is called runtime invariant by POSIX, meaning that its value should not change during the 
lifetime of a process. But on systems that support the XSI extensions, we can call the setrlimit (2) function 
(Section 7.11) to change this value for a running process. (This value can also be changed from the C shell with 
the limit  command, and from the Bourne, Bourne-again, and Korn shells with the ulimit  command.) If our 
system supports this functionality, we could change the function in Figure 2.16 to call sysconf  every time it is 
called, not only the first time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.6. Options 

We saw the list of POSIX.1 options in Figure 2.5 and discussed XSI option groups in Section 2.2.3. If we are to 
write portable applications that depend on any of these optionally-supported features, we need a portable way to 
determine whether an implementation supports a given option. 

Just as with limits (Section 2.5), the Single UNIX Specification defines three ways to do this. 

1. Compile-time options are defined in <unistd.h> . 
2. Runtime options that are not associated with a file or a directory are identified with the sysconf  

function. 
3. Runtime options that are associated with a file or a directory are discovered by calling either the 

pathconf  or the fpathconf  function. 

The options include the symbols listed in the third column of Figure 2.5, as well as the symbols listed in Figures 
2.17 and 2.18. If the symbolic constant is not defined, we must use sysconf , pathconf , or fpathconf  to 
determine whether the option is supported. In this case, the name argument to the function is formed by 
replacing the _POSIX at the beginning of the symbol with _SC or _PC. For constants that begin with _XOPEN, the 
name argument is formed by prepending the string with _SC or _PC. For example, if the constant 
_POSIX_THREADS is undefined, we can call sysconf  with the name argument set to _SC_THREADS to determine 
whether the platform supports the POSIX threads option. If the constant _XOPEN_UNIX is undefined, we can call 
sysconf  with the name argument set to _SC_XOPEN_UNIX to determine whether the platform supports the XSI 
extensions. 

Figure 2.17. Options and name arguments to sysconf 

Name of option Description name argument 

_POSIX_JOB_CONTROL indicates whether the implementation 
supports job control 

_SC_JOB_CONTROL  

_POSIX_READER_WRITER_LOCKS indicates whether the implementation 
supports reader–writer locks 

_SC_READER_WRITER_LOCKS  

_POSIX_SAVED_IDS indicates whether the implementation 
supports the saved set-user-ID and the 
saved set-group-ID 

_SC_SAVED_IDS  

_POSIX_SHELL indicates whether the implementation 
supports the POSIX shell 

_SC_SHELL  

_POSIX_VERSION indicates the POSIX.1 version _SC_VERSION  

_XOPEN_CRYPT indicates whether the implementation 
supports the XSI encryption option 
group 

_SC_XOPEN_CRYPT  

_XOPEN_LEGACY indicates whether the implementation 
supports the XSI legacy option group 

_SC_XOPEN_LEGACY  

_XOPEN_REALTIME indicates whether the implementation 
supports the XSI real-time option group 

_SC_XOPEN_REALTIME  



Figure 2.17. Options and name arguments to sysconf 

Name of option Description name argument 

_XOPEN_REALTIME_THREADS indicates whether the implementation 
supports the XSI real-time threads option 
group 

_SC_XOPEN_REALTIME_THREADS  

_XOPEN_VERSION indicates the XSI version _SC_XOPEN_VERSION  

 

Figure 2.18. Options and name arguments to pathconf and fpathconf 

Name of option Description name argument 

_POSIX_CHOWN_RESTRICTED indicates whether use of chown  is restricted _PC_CHOWN_RESTRICTED  

_POSIX_NO_TRUNC indicates whether pathnames longer than NAME_MAX 
generate an error 

_PC_NO_TRUNC  

_POSIX_VDISABLE if defined, terminal special characters can be disabled 
with this value 

_PC_VDISABLE  

_POSIX_ASYNC_IO indicates whether asynchronous I/O can be used with 
the associated file 

_PC_ASYNC_IO  

_POSIX_PRIO_IO  indicates whether prioritized I/O can be used with the 
associated file 

_PC_PRIO_IO  

_POSIX_SYNC_IO indicates whether synchronized I/O can be used with 
the associated file 

_PC_SYNC_IO  

 

If the symbolic constant is defined by the platform, we have three possibilities. 

1. If the symbolic constant is defined to have the value –1, then the corresponding option is unsupported by 
the platform. 

2. If the symbolic constant is defined to be greater than zero, then the corresponding option is supported. 
3. If the symbolic constant is defined to be equal to zero, then we must call sysconf , pathconf , or 

fpathconf  to determine whether the option is supported. 

Figure 2.17 summarizes the options and their symbolic constants that can be used with sysconf , in addition to 
those listed in Figure 2.5. 

The symbolic constants used with pathconf  and fpathconf  are summarized in Figure 2.18. As with the system 
limits, there are several points to note regarding how options are treated by sysconf , pathconf , and fpathconf . 

1. The value returned for _SC_VERSION indicates the four-digit year and two-digit month of the standard. 
This value can be 198808L, 199009L, 199506L, or some other value for a later version of the standard. 
The value associated with Version 3 of the Single UNIX Specification is 200112L. 

2. The value returned for _SC_XOPEN_VERSION indicates the version of the XSI that the system complies 
with. The value associated with Version 3 of the Single UNIX Specification is 600. 



3. The values _SC_JOB_CONTROL, _SC_SAVED_IDS, and _PC_VDISABLE no longer represent optional 
features. As of Version 3 of the Single UNIX Specification, these features are now required, although 
these symbols are retained for backward compatibility. 

4. _PC_CHOWN_RESTRICTED and _PC_NO_TRUNC return –1 without changing errno  if the feature is not 
supported for the specified pathname or filedes. 

5. The referenced file for _PC_CHOWN_RESTRICTED must be either a file or a directory. If it is a directory, 
the return value indicates whether this option applies to files within that directory. 

6. The referenced file for _PC_NO_TRUNC must be a directory. The return value applies to filenames within 
the directory. 

7. The referenced file for _PC_VDISABLE must be a terminal file. 

In Figure 2.19 we show several configuration options and their corresponding values on the four sample 
systems we discuss in this text. Note that several of the systems haven't yet caught up to the latest version of the 
Single UNIX Specification. For example, Mac OS X 10.3 supports POSIX threads but defines _POSIX_THREADS 
as 

   #define _POSIX_THREADS 

 

without specifying a value. To conform to Version 3 of the Single UNIX Specification, the symbol, if defined, 
should be set to -1, 0, or 200112. 

Figure 2.19. Examples of configuration options 

Solaris 9 
Limit FreeBSD 

5.2.1 
Linux 
2.4.22 

Mac OS X 
10.3 UFS file 

system 
PCFS file 

system 

_POSIX_CHOWN_RESTRICTED 1 1 1 1 1 

_POSIX_JOB_CONTROL 1 1 1 1 1 

_POSIX_NO_TRUNC 1 1 1 1 unsupported 

_POSIX_SAVED_IDS unsupported 1 unsupported 1 1 

_POSIX_THREADS 200112 200112 defined 1 1 

_POSIX_VDISABLE 255 0 255 0 0 

_POSIX_VERSION 200112 200112 198808 199506 199506 

_XOPEN_UNIX unsupported 1 undefined 1 1 

_XOPEN_VERSION unsupported 500 undefined 3 3 

 

An entry is marked as "undefined" if the feature is not defined, i.e., the system doesn't define the symbolic 
constant or its corresponding _PC or _SC name. In contrast, the "defined" entry means that the symbolic constant 
is defined, but no value is specified, as in the preceding _POSIX_THREADS example. An entry is "unsupported" if 
the system defines the symbolic constant, but it has a value of -1, or it has a value of 0 but the corresponding 
sysconf  or pathconf  call returned -1. 



Note that pathconf  returns a value of –1 for _PC_NO_TRUNC when used with a file from a PCFS file system on 
Solaris. The PCFS file system supports the DOS format (for floppy disks), and DOS filenames are silently 
truncated to the 8.3 format limit that the DOS file system requires. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.7. Feature Test Macros 

The headers define numerous POSIX.1 and XSI symbols, as we've described. But most implementations can 
add their own definitions to these headers, in addition to the POSIX.1 and XSI definitions. If we want to 
compile a program so that it depends only on the POSIX definitions and doesn't use any implementation-
defined limits, we need to define the constant _POSIX_C_SOURCE. All the POSIX.1 headers use this constant to 
exclude any implementation-defined definitions when _POSIX_C_SOURCE is defined. 

Previous versions of the POSIX.1 standard defined the _POSIX_SOURCE constant. This has been superseded by 
the _POSIX_C_SOURCE constant in the 2001 version of POSIX.1. 

The constants _POSIX_C_SOURCE and _XOPEN_SOURCE are called feature test macros. All feature test macros 
begin with an underscore. When used, they are typically defined in the cc  command, as in 

   cc -D_POSIX_C_SOURCE=200112 file.c 

 

This causes the feature test macro to be defined before any header files are included by the C program. If we 
want to use only the POSIX.1 definitions, we can also set the first line of a source file to 

   #define _POSIX_C_SOURCE 200112 

 

To make the functionality of Version 3 of the Single UNIX Specification available to applications, we need to 
define the constant _XOPEN_SOURCE to be 600. This has the same effect as defining _POSIX_C_SOURCE to be 
200112L as far as POSIX.1 functionality is concerned. 

The Single UNIX Specification defines the c99  utility as the interface to the C compilation environment. With it 
we can compile a file as follows: 

   c99 -D_XOPEN_SOURCE=600 file.c -o file 

 

To enable the 1999 ISO C extensions in the gcc  C compiler, we use the -std=c99  option, as in 

   gcc -D_XOPEN_SOURCE=600 -std=c99 file.c -o file 

 

Another feature test macro is _ _STDC_ _ , which is automatically defined by the C compiler if the compiler 
conforms to the ISO C standard. This allows us to write C programs that compile under both ISO C compilers 
and non-ISO C compilers. For example, to take advantage of the ISO C prototype feature, if supported, a header 
could contain 

   #ifdef _ _STDC_ _ 
   void  *myfunc(const char *, int); 
   #else 
   void  *myfunc(); 
   #endif 

 

Although most C compilers these days support the ISO C standard, this use of the _ _STDC_ _  feature test 
macro can still be found in many header files. 



2.8. Primitive System Data Types 

Historically, certain C data types have been associated with certain UNIX system variables. For example, the 
major and minor device numbers have historically been stored in a 16-bit short integer, with 8 bits for the major 
device number and 8 bits for the minor device number. But many larger systems need more than 256 values for 
these device numbers, so a different technique is needed. (Indeed, Solaris uses 32 bits for the device number: 14 
bits for the major and 18 bits for the minor.) 

The header <sys/types.h>  defines some implementation-dependent data types, called the primitive system 
data types. More of these data types are defined in other headers also. These data types are defined in the 
headers with the C typedef  facility. Most end in _t . Figure 2.20 lists many of the primitive system data types 
that we'll encounter in this text. 

Figure 2.20. Some common primitive system data types 

Type Description 

caddr_t  core address (Section 14.9) 

clock_t  counter of clock ticks (process time) (Section 1.10) 

comp_t  compressed clock ticks (Section 8.14) 

dev_t  device numbers (major and minor) (Section 4.23) 

fd_set  file descriptor sets (Section 14.5.1) 

fpos_t  file position (Section 5.10) 

gid_t  numeric group IDs 

ino_t  i-node numbers (Section 4.14) 

mode_t  file type, file creation mode (Section 4.5) 

nlink_t  link counts for directory entries (Section 4.14) 

off_t  file sizes and offsets (signed) (lseek , Section 3.6) 

pid_t  process IDs and process group IDs (signed) (Sections 8.2 and 9.4) 

ptrdiff_t  result of subtracting two pointers (signed) 

rlim_t  resource limits (Section 7.11) 

sig_atomic_t  data type that can be accessed atomically (Section 10.15) 

sigset_t  signal set (Section 10.11) 

size_t  sizes of objects (such as strings) (unsigned) (Section 3.7) 

ssize_t  functions that return a count of bytes (signed) (read , write , Section 3.7) 

time_t  counter of seconds of calendar time (Section 1.10) 

uid_t  numeric user IDs 



Figure 2.20. Some common primitive system data types 

Type Description 

wchar_t  can represent all distinct character codes 

 

By defining these data types this way, we do not build into our programs implementation details that can change 
from one system to another. We describe what each of these data types is used for when we encounter them 
later in the text. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.9. Conflicts Between Standards 

All in all, these various standards fit together nicely. Our main concern is any differences between the ISO C 
standard and POSIX.1, since SUSv3 is a superset of POSIX.1. There are some differences. 

ISO C defines the function clock  to return the amount of CPU time used by a process. The value returned is a 
clock_t  value. To convert this value to seconds, we divide it by CLOCKS_PER_SEC, which is defined in the 
<time.h>  header. POSIX.1 defines the function times  that returns both the CPU time (for the caller and all its 
terminated children) and the clock time. All these time values are clock_t  values. The sysconf  function is 
used to obtain the number of clock ticks per second for use with the return values from the times  function. 
What we have is the same term, clock ticks per second, defined differently by ISO C and POSIX.1. Both 
standards also use the same data type (clock_t ) to hold these different values. The difference can be seen in 
Solaris, where clock  returns microseconds (hence CLOCKS_PER_SEC is 1 million), whereas sysyconf  returns 
the value 100 for clock ticks per second. 

Another area of potential conflict is when the ISO C standard specifies a function, but doesn't specify it as 
strongly as POSIX.1 does. This is the case for functions that require a different implementation in a POSIX 
environment (with multiple processes) than in an ISO C environment (where very little can be assumed about 
the host operating system). Nevertheless, many POSIX-compliant systems implement the ISO C function, for 
compatibility. The signal  function is an example. If we unknowingly use the signal  function provided by 
Solaris (hoping to write portable code that can be run in ISO C environments and under older UNIX systems), 
it'll provide semantics different from the POSIX.1 sigaction  function. We'll have more to say about the 
signal  function in Chapter 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2.10. Summary 

Much has happened over the past two decades with the standardization of the UNIX programming environment. 
We've described the dominant standards—ISO C, POSIX, and the Single UNIX Specification—and their effect 
on the four implementations that we'll examine in this text: FreeBSD, Linux, Mac OS X, and Solaris. These 
standards try to define certain parameters that can change with each implementation, but we've seen that these 
limits are imperfect. We'll encounter many of these limits and magic constants as we proceed through the text. 

The bibliography specifies how one can obtain copies of the standards that we've discussed. 
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3.1. Introduction 

We'll start our discussion of the UNIX System by describing the functions available for file I/O—open a file, 
read a file, write a file, and so on. Most file I/O on a UNIX system can be performed using only five functions: 
open , read , write , lseek , and close . We then examine the effect of various buffer sizes on the read  and 
write  functions. 

The functions described in this chapter are often referred to as unbuffered I/O, in contrast to the standard I/O 
routines, which we describe in Chapter 5. The term unbuffered means that each read  or write  invokes a system 
call in the kernel. These unbuffered I/O functions are not part of ISO C, but are part of POSIX.1 and the Single 
UNIX Specification. 

Whenever we describe the sharing of resources among multiple processes, the concept of an atomic operation 
becomes important. We examine this concept with regard to file I/O and the arguments to the open  function. 
This leads to a discussion of how files are shared among multiple processes and the kernel data structures 
involved. After describing these features, we describe the dup , fcntl , sync , fsync , and ioctl  functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.2. File Descriptors 

To the kernel, all open files are referred to by file descriptors. A file descriptor is a non-negative integer. When 
we open an existing file or create a new file, the kernel returns a file descriptor to the process. When we want to 
read or write a file, we identify the file with the file descriptor that was returned by open  or creat  as an 
argument to either read  or write . 

By convention, UNIX System shells associate file descriptor 0 with the standard input of a process, file 
descriptor 1 with the standard output, and file descriptor 2 with the standard error. This convention is used by 
the shells and many applications; it is not a feature of the UNIX kernel. Nevertheless, many applications would 
break if these associations weren't followed. 

The magic numbers 0, 1, and 2 should be replaced in POSIX-compliant applications with the symbolic 
constants STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO. These constants are defined in the <unistd.h>  
header. 

File descriptors range from 0 through OPEN_MAX. (Recall Figure 2.10.) Early historical implementations of the 
UNIX System had an upper limit of 19, allowing a maximum of 20 open files per process, but many systems 
increased this limit to 63. 

With FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, the limit is essentially infinite, bounded by the amount of 
memory on the system, the size of an integer, and any hard and soft limits configured by the system 
administrator. Linux 2.4.22 places a hard limit of 1,048,576 on the number of file descriptors per process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.3. open Function 

A file is opened or created by calling the open  function. 

#include <fcntl.h> 
 
int open(const char *pathname, int oflag, ... /* mo de_t mode   */ );  

 

Returns: file descriptor if OK, –1 on error 

 

We show the third argument as ... , which is the ISO C way to specify that the number and types of the 
remaining arguments may vary. For this function, the third argument is used only when a new file is being 
created, as we describe later. We show this argument as a comment in the prototype. 

The pathname is the name of the file to open or create. This function has a multitude of options, which are 
specified by the oflag argument. This argument is formed by ORing together one or more of the following 
constants from the <fcntl.h>  header: 

O_RDONLY Open for reading only. 

O_WRONLY Open for writing only. 

O_RDWR Open for reading and writing. 

 

Most implementations define O_RDONLY as 0, O_WRONLY as 1, and O_RDWR as 2, for compatibility with older 
programs. 

One and only one of these three constants must be specified. The following constants are optional: 

O_APPEND Append to the end of file on each write. We describe this option in detail in Section 3.11. 

O_CREAT Create the file if it doesn't exist. This option requires a third argument to the open  function, the 
mode, which specifies the access permission bits of the new file. (When we describe a file's 
access permission bits in Section 4.5, we'll see how to specify the mode and how it can be 
modified by the umask value of a process.) 

O_EXCL Generate an error if O_CREAT is also specified and the file already exists. This test for whether the 
file already exists and the creation of the file if it doesn't exist is an atomic operation. We describe 
atomic operations in more detail in Section 3.11. 

O_TRUNC If the file exists and if it is successfully opened for either write-only or read–write, truncate its 
length to 0. 

O_NOCTTY If the pathname refers to a terminal device, do not allocate the device as the controlling terminal 
for this process. We talk about controlling terminals in Section 9.6. 

O_NONBLOCK If the pathname refers to a FIFO, a block special file, or a character special file, this option sets 
the nonblocking mode for both the opening of the file and subsequent I/O. We describe this mode 
in Section 14.2. 

 



In earlier releases of System V, the O_NDELAY (no delay) flag was introduced. This option is similar to the 
O_NONBLOCK (nonblocking) option, but an ambiguity was introduced in the return value from a read operation. 
The no-delay option causes a read to return 0 if there is no data to be read from a pipe, FIFO, or device, but this 
conflicts with a return value of 0, indicating an end of file. SVR4-based systems still support the no-delay 
option, with the old semantics, but new applications should use the nonblocking option instead. 

The following three flags are also optional. They are part of the synchronized input and output option of the 
Single UNIX Specification (and thus POSIX.1): 

O_DSYNC Have each write  wait for physical I/O to complete, but don't wait for file attributes to be updated if 
they don't affect the ability to read the data just written. 

O_RSYNC Have each read  operation on the file descriptor wait until any pending writes for the same portion of 
the file are complete. 

O_SYNC Have each write  wait for physical I/O to complete, including I/O necessary to update file attributes 
modified as a result of the write . We use this option in Section 3.14. 

 

The O_DSYNC and O_SYNC flags are similar, but subtly different. The O_DSYNC flag affects a file's attributes only 
when they need to be updated to reflect a change in the file's data (for example, update the file's size to reflect 
more data). With the O_SYNC flag, data and attributes are always updated synchronously. When overwriting an 
existing part of a file opened with the O_DSYNC flag, the file times wouldn't be updated synchronously. In 
contrast, if we had opened the file with the O_SYNC flag, every write  to the file would update the file's times 
before the write  returns, regardless of whether we were writing over existing bytes or appending to the file. 

Solaris 9 supports all three flags. FreeBSD 5.2.1 and Mac OS X 10.3 have a separate flag (O_FSYNC) that does 
the same thing as O_SYNC. Because the two flags are equivalent, FreeBSD 5.2.1 defines them to have the same 
value (but curiously, Mac OS X 10.3 doesn't define O_SYNC). FreeBSD 5.2.1 and Mac OS X 10.3 don't support 
the O_DSYNC or O_RSYNC flags. Linux 2.4.22 treats both flags the same as O_SYNC. 

The file descriptor returned by open  is guaranteed to be the lowest-numbered unused descriptor. This fact is 
used by some applications to open a new file on standard input, standard output, or standard error. For example, 
an application might close standard output—normally, file descriptor 1—and then open another file, knowing 
that it will be opened on file descriptor 1. We'll see a better way to guarantee that a file is open on a given 
descriptor in Section 3.12 with the dup2  function. 

Filename and Pathname Truncation 

What happens if NAME_MAX is 14 and we try to create a new file in the current directory with a filename 
containing 15 characters? Traditionally, early releases of System V, such as SVR2, allowed this to happen, 
silently truncating the filename beyond the 14th character. BSD-derived systems returned an error status, with 
errno  set to ENAMETOOLONG. Silently truncating the filename presents a problem that affects more than simply 
the creation of new files. If NAME_MAX is 14 and a file exists whose name is exactly 14 characters, any function 
that accepts a pathname argument, such as open  or stat , has no way to determine what the original name of the 
file was, as the original name might have been truncated. 

With POSIX.1, the constant _POSIX_NO_TRUNC determines whether long filenames and long pathnames are 
truncated or whether an error is returned. As we saw in Chapter 2, this value can vary based on the type of the 
file system. 



Whether or not an error is returned is largely historical. For example, SVR4-based systems do not generate an 
error for the traditional System V file system, S5. For the BSD-style file system (known as UFS), however, 
SVR4-based systems do generate an error. 

As another example, see Figure 2.19. Solaris will return an error for UFS, but not for PCFS, the DOS-
compatible file system, as DOS silently truncates filenames that don't fit in an 8.3 format. 

BSD-derived systems and Linux always return an error. 

If _POSIX_NO_TRUNC is in effect, errno  is set to ENAMETOOLONG, and an error status is returned if the entire 
pathname exceeds PATH_MAX or any filename component of the pathname exceeds NAME_MAX. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.4. creat Function 

A new file can also be created by calling the creat  function. 

#include <fcntl.h> 
 
int creat(const char *pathname, mode_t mode); 

 

Returns: file descriptor opened for write-only if OK, –1 on error 

 

Note that this function is equivalent to 

    open (pathname, O_WRONLY | O_CREAT | O_TRUNC, m ode); 

 

Historically, in early versions of the UNIX System, the second argument to open  could be only 0, 1, or 2. There 
was no way to open  a file that didn't already exist. Therefore, a separate system call, creat , was needed to 
create new files. With the O_CREAT and O_TRUNC options now provided by open , a separate creat  function is no 
longer needed. 

We'll show how to specify mode in Section 4.5 when we describe a file's access permissions in detail. 

One deficiency with creat  is that the file is opened only for writing. Before the new version of open  was 
provided, if we were creating a temporary file that we wanted to write and then read back, we had to call creat , 
close , and then open . A better way is to use the open  function, as in 

    open (pathname, O_RDWR | O_CREAT | O_TRUNC, mod e); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.5. close Function 

An open file is closed by calling the close  function. 

#include <unistd.h> 
 
int close(int filedes);  

 

Returns: 0 if OK, –1 on error 

 

Closing a file also releases any record locks that the process may have on the file. We'll discuss this in Section 
14.3. 

When a process terminates, all of its open files are closed automatically by the kernel. Many programs take 
advantage of this fact and don't explicitly close open files. See the program in Figure 1.4, for example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.6. lseek Function 

Every open file has an associated "current file offset," normally a non-negative integer that measures the 
number of bytes from the beginning of the file. (We describe some exceptions to the "non-negative" qualifier 
later in this section.) Read and write operations normally start at the current file offset and cause the offset to be 
incremented by the number of bytes read or written. By default, this offset is initialized to 0 when a file is 
opened, unless the O_APPEND option is specified. 

An open file's offset can be set explicitly by calling lseek . 

#include <unistd.h> 
 
off_t lseek(int filedes, off_t offset, int whence);  

 

Returns: new file offset if OK, –1 on error 

 

The interpretation of the offset depends on the value of the whence argument. 

• If whence is SEEK_SET, the file's offset is set to offset bytes from the beginning of the file. 
• If whence is SEEK_CUR, the file's offset is set to its current value plus the offset. The offset can be 

positive or negative. 
• If whence is SEEK_END, the file's offset is set to the size of the file plus the offset. The offset can be 

positive or negative. 

Because a successful call to lseek  returns the new file offset, we can seek zero bytes from the current position 
to determine the current offset: 

    off_t    currpos; 
 
    currpos = lseek(fd, 0, SEEK_CUR); 

 

This technique can also be used to determine if a file is capable of seeking. If the file descriptor refers to a pipe, 
FIFO, or socket, lseek  sets errno  to ESPIPE and returns –1. 

The three symbolic constants—SEEK_SET, SEEK_CUR, and SEEK_END—were introduced with System V. Prior to 
this, whence was specified as 0 (absolute), 1 (relative to current offset), or 2 (relative to end of file). Much 
software still exists with these numbers hard coded. 

The character l  in the name lseek  means "long integer." Before the introduction of the off_t  data type, the 
offset argument and the return value were long integers. lseek  was introduced with Version 7 when long 
integers were added to C. (Similar functionality was provided in Version 6 by the functions seek  and tell .) 

Example 

The program in Figure 3.1 tests its standard input to see whether it is capable of seeking. 

If we invoke this program interactively, we get 

   $ ./a.out < /etc/motd 



   seek OK 
   $ cat < /etc/motd | ./a.out 
   cannot seek 
   $ ./a.out < /var/spool/cron/FIFO 
   cannot seek 

 

Figure 3.1. Test whether standard input is capable of seeking 

#include "apue.h" 
 
int 
main(void) 
{ 
    if (lseek(STDIN_FILENO, 0, SEEK_CUR) == -1)  
       printf("cannot seek\n"); 
    else 
       printf("seek OK\n"); 
    exit(0); 
} 

 

Normally, a file's current offset must be a non-negative integer. It is possible, however, that certain devices 
could allow negative offsets. But for regular files, the offset must be non-negative. Because negative offsets are 
possible, we should be careful to compare the return value from lseek  as being equal to or not equal to –1 and 
not test if it's less than 0. 

The /dev/kmem  device on FreeBSD for the Intel x86 processor supports negative offsets. 

Because the offset (off_t ) is a signed data type (Figure 2.20), we lose a factor of 2 in the maximum file size. If 
off_t  is a 32-bit integer, the maximum file size is 231-1 bytes. 

lseek  only records the current file offset within the kernel—it does not cause any I/O to take place. This offset 
is then used by the next read or write operation. 

The file's offset can be greater than the file's current size, in which case the next write  to the file will extend the 
file. This is referred to as creating a hole in a file and is allowed. Any bytes in a file that have not been written 
are read back as 0. 

A hole in a file isn't required to have storage backing it on disk. Depending on the file system implementation, 
when you write after seeking past the end of the file, new disk blocks might be allocated to store the data, but 
there is no need to allocate disk blocks for the data between the old end of file and the location where you start 
writing. 

Example 

The program shown in Figure 3.2 creates a file with a hole in it. 

Running this program gives us 

    $ ./a.out 
    $ ls -l file.hole                  check its si ze 
    -rw-r--r-- 1 sar          16394 Nov 25 01:01 fi le.hole 
    $ od -c file.hole                  let's look a t the actual contents 



    0000000   a  b  c  d  e  f  g  h  i  j \0 \0 \0  \0 \0 \0 
    0000020  \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0  \0 \0 \0 
    * 
    0040000   A  B  C  D  E  F  G  H  I  J 
    0040012 

 

We use the od(1) command to look at the contents of the file. The -c  flag tells it to print the contents as 
characters. We can see that the unwritten bytes in the middle are read back as zero. The seven-digit number at 
the beginning of each line is the byte offset in octal. 

To prove that there is really a hole in the file, let's compare the file we've just created with a file of the same 
size, but without holes: 

    $ ls -ls file.hole file.nohole    compare sizes  
      8 -rw-r--r-- 1 sar        16394 Nov 25 01:01 file.hole 
     20 -rw-r--r-- 1 sar        16394 Nov 25 01:03 file.nohole 

 

Although both files are the same size, the file without holes consumes 20 disk blocks, whereas the file with 
holes consumes only 8 blocks. 

In this example, we call the write  function (Section 3.8). We'll have more to say about files with holes in 
Section 4.12. 

Figure 3.2. Create a file with a hole in it 

#include "apue.h" 
#include <fcntl.h> 
 
char    buf1[] = "abcdefghij"; 
char    buf2[] = "ABCDEFGHIJ"; 
 
int 
main(void) 
{ 
    int     fd; 
 
    if ((fd = creat("file.hole", FILE_MODE)) < 0)  
        err_sys("creat error"); 
 
    if (write(fd, buf1, 10) != 10) 
        err_sys("buf1 write error"); 
    /* offset now = 10 */ 
 
    if (lseek(fd, 16384, SEEK_SET) == -1) 
        err_sys("lseek error"); 
    /* offset now = 16384 */ 
 
    if (write(fd, buf2, 10) != 10) 
        err_sys("buf2 write error"); 
    /* offset now = 16394 */ 
 
    exit(0); 
} 

 



Because the offset address that lseek  uses is represented by an off_t , implementations are allowed to support 
whatever size is appropriate on their particular platform. Most platforms today provide two sets of interfaces to 
manipulate file offsets: one set that uses 32-bit file offsets and another set that uses 64-bit file offsets. 

The Single UNIX Specification provides a way for applications to determine which environments are supported 
through the sysconf  function (Section 2.5.4.). Figure 3.3 summarizes the sysconf  constants that are defined. 

Figure 3.3. Data size options and name arguments to sysconf 

Name of option Description name argument 

_POSIX_V6_ILP32_OFF32  int , long , pointer, and off_t  types are 32 bits. _SC_V6_ILP32_OFF32   

_POSIX_V6_ILP32_OFFBIG  int, long , and pointer types are 32 bits; off_t  types 
are at least 64 bits. 

_SC_V6_ILP32_OFFBIG  

_POSIX_V6_LP64_OFF64 int  types are 32 bits; long , pointer, and off_t  types are 
64 bits. 

_SC_V6_LP64_OFF64 

_POSIX_V6_LP64_OFFBIG int  types are 32 bits; long , pointer, and off_t  types are 
at least 64 bits. 

_SC_V6_LP64_OFFBIG  

 

The c99  compiler requires that we use the getconf (1) command to map the desired data size model to the flags 
necessary to compile and link our programs. Different flags and libraries might be needed, depending on the 
environments supported by each platform. 

Unfortunately, this is one area in which implementations haven't caught up to the standards. Confusing things 
further is the name changes that were made between Version 2 and Version 3 of the Single UNIX Specification. 

To get around this, applications can set the _FILE_OFFSET_BITS  constant to 64 to enable 64-bit offsets. Doing 
so changes the definition of off_t  to be a 64-bit signed integer. Setting _FILE_OFFSET_BITS  to 32 enables 32-
bit file offsets. Be aware, however, that although all four platforms discussed in this text support both 32-bit and 
64-bit file offsets by setting the _FILE_OFFSET_BITS  constant to the desired value, this is not guaranteed to be 
portable. 

Note that even though you might enable 64-bit file offsets, your ability to create a file larger than 2 TB (231-1 
bytes) depends on the underlying file system type. 

 
 
 
 
 
 
 
 
 
 
 
 



3.7. read Function 

Data is read from an open file with the read  function. 

#include <unistd.h> 
 
ssize_t read(int filedes, void *buf, size_t nbytes) ;  

 

Returns: number of bytes read, 0 if end of file, –1 on error 

 

If the read  is successful, the number of bytes read is returned. If the end of file is encountered, 0 is returned. 

There are several cases in which the number of bytes actually read is less than the amount requested: 

• When reading from a regular file, if the end of file is reached before the requested number of bytes has 
been read. For example, if 30 bytes remain until the end of file and we try to read 100 bytes, read  
returns 30. The next time we call read , it will return 0 (end of file). 

• When reading from a terminal device. Normally, up to one line is read at a time. (We'll see how to 
change this in Chapter 18.) 

• When reading from a network. Buffering within the network may cause less than the requested amount 
to be returned. 

• When reading from a pipe or FIFO. If the pipe contains fewer bytes than requested, read  will return 
only what is available. 

• When reading from a record-oriented device. Some record-oriented devices, such as magnetic tape, can 
return up to a single record at a time. 

• When interrupted by a signal and a partial amount of data has already been read. We discuss this further 
in Section 10.5. 

The read operation starts at the file's current offset. Before a successful return, the offset is incremented by the 
number of bytes actually read. 

POSIX.1 changed the prototype for this function in several ways. The classic definition is 

    int read(int filedes, char *buf, unsigned nbyte s); 

 

• First, the second argument was changed from a char *  to a void *  to be consistent with ISO C: the 
type void *  is used for generic pointers. 

• Next, the return value must be a signed integer (ssize_t ) to return a positive byte count, 0 (for end of 
file), or –1 (for an error). 

• Finally, the third argument historically has been an unsigned integer, to allow a 16-bit implementation to 
read or write up to 65,534 bytes at a time. With the 1990 POSIX.1 standard, the primitive system data 
type ssize_t  was introduced to provide the signed return value, and the unsigned size_t  was used for 
the third argument. (Recall the SSIZE_MAX constant from Section 2.5.2.) 

 
 
 
 



3.8. write Function 

Data is written to an open file with the write  function. 

#include <unistd.h> 
 
ssize_t write(int filedes, const void *buf, size_t nbytes);  

 

Returns: number of bytes written if OK, –1 on error 

 

The return value is usually equal to the nbytes argument; otherwise, an error has occurred. A common cause for 
a write  error is either filling up a disk or exceeding the file size limit for a given process (Section 7.11 and 
Exercise 10.11). 

For a regular file, the write starts at the file's current offset. If the O_APPEND option was specified when the file 
was opened, the file's offset is set to the current end of file before each write operation. After a successful write, 
the file's offset is incremented by the number of bytes actually written. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.9. I/O Efficiency 

The program in Figure 3.4 copies a file, using only the read  and write  functions. The following caveats apply 
to this program. 

Figure 3.4. Copy standard input to standard output 

#include "apue.h" 
 
#define BUFFSIZE 4096 
 
int 
main(void) 
{ 
    int    n; 
    char   buf[BUFFSIZE]; 
 
    while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0)  
        if (write(STDOUT_FILENO, buf, n) != n) 
            err_sys("write error"); 
 
    if (n < 0) 
        err_sys("read error"); 
 
    exit(0); 
} 

 

• It reads from standard input and writes to standard output, assuming that these have been set up by the 
shell before this program is executed. Indeed, all normal UNIX system shells provide a way to open a 
file for reading on standard input and to create (or rewrite) a file on standard output. This prevents the 
program from having to open the input and output files. 

• Many applications assume that standard input is file descriptor 0 and that standard output is file 
descriptor 1. In this example, we use the two defined names, STDIN_FILENO and STDOUT_FILENO, from 
<unistd.h> . 

• The program doesn't close the input file or output file. Instead, the program uses the feature of the UNIX 
kernel that closes all open file descriptors in a process when that process terminates. 

• This example works for both text files and binary files, since there is no difference between the two to 
the UNIX kernel. 

One question we haven't answered, however, is how we chose the BUFFSIZE value. Before answering that, let's 
run the program using different values for BUFFSIZE. Figure 3.5 shows the results for reading a 103,316,352-
byte file, using 20 different buffer sizes. 

The file was read using the program shown in Figure 3.4, with standard output redirected to /dev/null . The 
file system used for this test was the Linux ext2  file system with 4,096-byte blocks. (The st_blksize  value, 
which we describe in Section 4.12, is 4,096.) This accounts for the minimum in the system time occurring at a 
BUFFSIZE of 4,096. Increasing the buffer size beyond this has little positive effect. 

Most file systems support some kind of read-ahead to improve performance. When sequential reads are detected, 
the system tries to read in more data than an application requests, assuming that the application will read it 
shortly. From the last few entries in Figure 3.5, it appears that read-ahead in ext2  stops having an effect after 
128 KB. 



Figure 3.5. Timing results for reading with different buffer sizes on Linux 

BUFFSIZE User CPU (seconds) System CPU (seconds) Clock time (seconds) #loops 

1 124.89 161.65 288.64 103,316,352 

2 63.10 80.96 145.81 51,658,#176 

4 31.84 40.00 72.75 25,829,088 

8 15.17 21.01 36.85 12,914,544 

16 7.86 10.27 18.76 6,457,272 

32 4.13 5.01 9.76 3,228,636 

64 2.11 2.48 6.76 1,614,318 

128 1.01 1.27 6.82 807,159 

256 0.56 0.62 6.80 403,579 

512 0.27 0.41 7.03 201,789 

1,024 0.17 0.23 7.84 100,894 

2,048 0.05 0.19 6.82 50,447 

4,096 0.03 0.16 6.86 25,223 

8,192 0.01 0.18 6.67 12,611 

16,384 0.02 0.18 6.87 6,305 

32,768 0.00 0.16 6.70 3,152 

65,536 0.02 0.19 6.92 1,576 

131,072 0.00 0.16 6.84 788 

262,144 0.01 0.25 7.30 394 

524,288 0.00 0.22 7.35 198 

 

We'll return to this timing example later in the text. In Section 3.14, we show the effect of synchronous writes; 
in Section 5.8, we compare these unbuffered I/O times with the standard I/O library. 

Beware when trying to measure the performance of programs that read and write files. The operating system 
will try to cache the file incore, so if you measure the performance of the program repeatedly, the successive 
timings will likely be better than the first. This is because the first run will cause the file to be entered into the 
system's cache, and successive runs will access the file from the system's cache instead of from the disk. (The 
term incore means in main memory. Back in the day, a computer's main memory was built out of ferrite core. 
This is where the phrase "core dump" comes from: the main memory image of a program stored in a file on disk 
for diagnosis.) 



In the tests reported in Figure 3.5, each run with a different buffer size was made using a different copy of the 
file so that the current run didn't find the data in the cache from the previous run. The files are large enough that 
they all don't remain in the cache (the test system was configured with 512 MB of RAM). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.10. File Sharing 

The UNIX System supports the sharing of open files among different processes. Before describing the dup  
function, we need to describe this sharing. To do this, we'll examine the data structures used by the kernel for all 
I/O. 

The following description is conceptual. It may or may not match a particular implementation. Refer to Bach 
[1986] for a discussion of these structures in System V. McKusick et al. [1996] describes these structures in 
4.4BSD. McKusick and Neville-Neil [2005] cover FreeBSD 5.2. For a similar discussion of Solaris, see Mauro 
and McDougall [2001]. 

The kernel uses three data structures to represent an open file, and the relationships among them determine the 
effect one process has on another with regard to file sharing. 

1. Every process has an entry in the process table. Within each process table entry is a table of open file 
descriptors, which we can think of as a vector, with one entry per descriptor. Associated with each file 
descriptor are 

a. The file descriptor flags (close-on-exec; refer to Figure 3.6 and Section 3.14) 
b. A pointer to a file table entry 

2. The kernel maintains a file table for all open files. Each file table entry contains 
a. The file status flags for the file, such as read, write, append, sync, and nonblocking; more on 

these in Section 3.14 
b. The current file offset 
c. A pointer to the v-node table entry for the file 

3. Each open file (or device) has a v-node structure that contains information about the type of file and 
pointers to functions that operate on the file. For most files, the v-node also contains the i-node for the 
file. This information is read from disk when the file is opened, so that all the pertinent information 
about the file is readily available. For example, the i-node contains the owner of the file, the size of the 
file, pointers to where the actual data blocks for the file are located on disk, and so on. (We talk more 
about i-nodes in Section 4.14 when we describe the typical UNIX file system in more detail.) 

Linux has no v-node. Instead, a generic i-node structure is used. Although the implementations differ, 
the v-node is conceptually the same as a generic i-node. Both point to an i-node structure specific to the 
file system. 

We're ignoring some implementation details that don't affect our discussion. For example, the table of open file 
descriptors can be stored in the user area instead of the process table. These tables can be implemented in 
numerous ways—they need not be arrays; they could be implemented as linked lists of structures, for example. 
These implementation details don't affect our discussion of file sharing. 

Figure 3.6 shows a pictorial arrangement of these three tables for a single process that has two different files 
open: one file is open on standard input (file descriptor 0), and the other is open on standard output (file 
descriptor 1). The arrangement of these three tables has existed since the early versions of the UNIX System 
[Thompson 1978], and this arrangement is critical to the way files are shared among processes. We'll return to 
this figure in later chapters, when we describe additional ways that files are shared. 

Figure 3.6. Kernel data structures for open files 



 
 

The v-node was invented to provide support for multiple file system types on a single computer system. This 
work was done independently by Peter Weinberger (Bell Laboratories) and Bill Joy (Sun Microsystems). Sun 
called this the Virtual File System and called the file system–independent portion of the i-node the v-node 
[Kleiman 1986]. The v-node propagated through various vendor implementations as support for Sun's Network 
File System (NFS) was added. The first release from Berkeley to provide v-nodes was the 4.3BSD Reno release, 
when NFS was added. 

In SVR4, the v-node replaced the file system–independent i-node of SVR3. Solaris is derived from SVR4 and 
thus uses v-nodes. 

Instead of splitting the data structures into a v-node and an i-node, Linux uses a file system–independent i-node 
and a file system–dependent i-node. 

If two independent processes have the same file open, we could have the arrangement shown in Figure 3.7. We 
assume here that the first process has the file open on descriptor 3 and that the second process has that same file 
open on descriptor 4. Each process that opens the file gets its own file table entry, but only a single v-node table 
entry is required for a given file. One reason each process gets its own file table entry is so that each process has 
its own current offset for the file. 

Figure 3.7. Two independent processes with the same file open 



 
 

Given these data structures, we now need to be more specific about what happens with certain operations that 
we've already described. 

• After each write  is complete, the current file offset in the file table entry is incremented by the number 
of bytes written. If this causes the current file offset to exceed the current file size, the current file size in 
the i-node table entry is set to the current file offset (for example, the file is extended). 

• If a file is opened with the O_APPEND flag, a corresponding flag is set in the file status flags of the file 
table entry. Each time a write  is performed for a file with this append flag set, the current file offset in 
the file table entry is first set to the current file size from the i-node table entry. This forces every write  
to be appended to the current end of file. 

• If a file is positioned to its current end of file using lseek , all that happens is the current file offset in the 
file table entry is set to the current file size from the i-node table entry. (Note that this is not the same as 
if the file was opened with the O_APPEND flag, as we will see in Section 3.11.) 

• The lseek  function modifies only the current file offset in the file table entry. No I/O takes place. 

It is possible for more than one file descriptor entry to point to the same file table entry, as we'll see when we 
discuss the dup  function in Section 3.12. This also happens after a fork  when the parent and the child share the 
same file table entry for each open descriptor (Section 8.3). 

Note the difference in scope between the file descriptor flags and the file status flags. The former apply only to 
a single descriptor in a single process, whereas the latter apply to all descriptors in any process that point to the 
given file table entry. When we describe the fcntl  function in Section 3.14, we'll see how to fetch and modify 
both the file descriptor flags and the file status flags. 

Everything that we've described so far in this section works fine for multiple processes that are reading the same 
file. Each process has its own file table entry with its own current file offset. Unexpected results can arise, 
however, when multiple processes write to the same file. To see how to avoid some surprises, we need to 
understand the concept of atomic operations. 



3.11. Atomic Operations 

Appending to a File 

Consider a single process that wants to append to the end of a file. Older versions of the UNIX System didn't 
support the O_APPEND option to open , so the program was coded as follows: 

     if (lseek(fd, 0L, 2) < 0)                /* po sition to EOF */ 
        err_sys("lseek error"); 
     if (write(fd, buf, 100) != 100)          /* an d write */ 
        err_sys("write error"); 

 

This works fine for a single process, but problems arise if multiple processes use this technique to append to the 
same file. (This scenario can arise if multiple instances of the same program are appending messages to a log 
file, for example.) 

Assume that two independent processes, A and B, are appending to the same file. Each has opened the file but 
without the O_APPEND flag. This gives us the same picture as Figure 3.7. Each process has its own file table 
entry, but they share a single v-node table entry. Assume that process A does the lseek  and that this sets the 
current offset for the file for process A to byte offset 1,500 (the current end of file). Then the kernel switches 
processes, and B continues running. Process B then does the lseek , which sets the current offset for the file for 
process B to byte offset 1,500 also (the current end of file). Then B calls write, which increments B's current file 
offset for the file to 1,600. Because the file's size has been extended, the kernel also updates the current file size 
in the v-node to 1,600. Then the kernel switches processes and A resumes. When A calls write, the data is 
written starting at the current file offset for A, which is byte offset 1,500. This overwrites the data that B wrote 
to the file. 

The problem here is that our logical operation of "position to the end of file and write" requires two separate 
function calls (as we've shown it). The solution is to have the positioning to the current end of file and the write 
be an atomic operation with regard to other processes. Any operation that requires more than one function call 
cannot be atomic, as there is always the possibility that the kernel can temporarily suspend the process between 
the two function calls (as we assumed previously). 

The UNIX System provides an atomic way to do this operation if we set the O_APPEND flag when a file is 
opened. As we described in the previous section, this causes the kernel to position the file to its current end of 
file before each write. We no longer have to call lseek  before each write. 

pread and pwrite Functions 

The Single UNIX Specification includes XSI extensions that allow applications to seek and perform I/O 
atomically. These extensions are pread  and pwrite . 

#include <unistd.h> 
 
ssize_t pread(int filedes, void *buf, size_t nbytes , off_t offset);  

 

Returns: number of bytes read, 0 if end of file, –1 on error 

ssize_t pwrite(int filedes, const void *buf, 
 size_t nbytes, off_t offset); 



#include <unistd.h> 
 
ssize_t pread(int filedes, void *buf, size_t nbytes , off_t offset);  

 

 

Returns: number of bytes written if OK, –1 on error 

 

Calling pread  is equivalent to calling lseek  followed by a call to read , with the following exceptions. 

• There is no way to interrupt the two operations using pread . 
• The file pointer is not updated. 

Calling pwrite  is equivalent to calling lseek  followed by a call to write, with similar exceptions. 

Creating a File 

We saw another example of an atomic operation when we described the O_CREAT and O_EXCL options for the 
open  function. When both of these options are specified, the open  will fail if the file already exists. We also 
said that the check for the existence of the file and the creation of the file was performed as an atomic operation. 
If we didn't have this atomic operation, we might try 

    if ((fd = open(pathname, O_WRONLY)) < 0) { 
        if (errno == ENOENT) { 
            if ((fd = creat(pathname, mode)) < 0) 
                 err_sys("creat error"); 
        } else { 
            err_sys("open error"); 
        } 
    } 

 

The problem occurs if the file is created by another process between the open  and the creat . If the file is 
created by another process between these two function calls, and if that other process writes something to the 
file, that data is erased when this creat  is executed. Combining the test for existence and the creation into a 
single atomic operation avoids this problem. 

In general, the term atomic operation refers to an operation that might be composed of multiple steps. If the 
operation is performed atomically, either all the steps are performed, or none are performed. It must not be 
possible for a subset of the steps to be performed. We'll return to the topic of atomic operations when we 
describe the link  function (Section 4.15) and record locking (Section 14.3). 

 
 
 
 
 
 
 
 
 



3.12. dup and dup2 Functions 

An existing file descriptor is duplicated by either of the following functions. 

#include <unistd.h> 
 
int dup(int filedes); 
 
int dup2(int filedes, int filedes2); 

 

Both return: new file descriptor if OK, –1 on error 

 

The new file descriptor returned by dup  is guaranteed to be the lowest-numbered available file descriptor. With 
dup2 , we specify the value of the new descriptor with the filedes2 argument. If filedes2 is already open, it is 
first closed. If filedes equals filedes2, then dup2  returns filedes2 without closing it. 

The new file descriptor that is returned as the value of the functions shares the same file table entry as the 
filedes argument. We show this in Figure 3.8. 

Figure 3.8. Kernel data structures after dup(1) 

 
 

In this figure, we're assuming that when it's started, the process executes 

    newfd = dup(1); 

 

We assume that the next available descriptor is 3 (which it probably is, since 0, 1, and 2 are opened by the shell). 
Because both descriptors point to the same file table entry, they share the same file status flags—read, write, 
append, and so on—and the same current file offset. 

Each descriptor has its own set of file descriptor flags. As we describe in the next section, the close-on-exec file 
descriptor flag for the new descriptor is always cleared by the dup  functions. 

Another way to duplicate a descriptor is with the fcntl  function, which we describe in Section 3.14. Indeed, the 
call 

    dup(filedes); 

 



is equivalent to 

    fcntl(filedes, F_DUPFD, 0); 

 

Similarly, the call 

    dup2(filedes, filedes2); 

 

is equivalent to 

    close(filedes2); 
    fcntl(filedes, F_DUPFD, filedes2); 

 

In this last case, the dup2  is not exactly the same as a close  followed by an fcntl . The differences are as 
follows. 

1. dup2  is an atomic operation, whereas the alternate form involves two function calls. It is possible in the 
latter case to have a signal catcher called between the close  and the fcntl  that could modify the file 
descriptors. (We describe signals in Chapter 10.) 

2. There are some errno  differences between dup2  and fcntl . 

The dup2  system call originated with Version 7 and propagated through the BSD releases. The fcntl  
method for duplicating file descriptors appeared with System III and continued with System V. SVR3.2 
picked up the dup2  function, and 4.2BSD picked up the fcntl  function and the F_DUPFD functionality. 
POSIX.1 requires both dup2  and the F_DUPFD feature of fcntl . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.13. sync, fsync, and fdatasync Functions 

Traditional implementations of the UNIX System have a buffer cache or page cache in the kernel through which 
most disk I/O passes. When we write data to a file, the data is normally copied by the kernel into one of its 
buffers and queued for writing to disk at some later time. This is called delayed write. (Chapter 3 of Bach 
[1986] discusses this buffer cache in detail.) 

The kernel eventually writes all the delayed-write blocks to disk, normally when it needs to reuse the buffer for 
some other disk block. To ensure consistency of the file system on disk with the contents of the buffer cache, 
the sync , fsync , and fdatasync  functions are provided. 

#include <unistd.h> 
 
int fsync(int filedes); 
 
int fdatasync(int filedes);  

 

Returns: 0 if OK, –1 on error 

    void sync(void); 

 

 

The sync  function simply queues all the modified block buffers for writing and returns; it does not wait for the 
disk writes to take place. 

The function sync  is normally called periodically (usually every 30 seconds) from a system daemon, often 
called update . This guarantees regular flushing of the kernel's block buffers. The command sync (1) also calls 
the sync  function. 

The function fsync  refers only to a single file, specified by the file descriptor filedes, and waits for the disk 
writes to complete before returning. The intended use of fsync  is for an application, such as a database, that 
needs to be sure that the modified blocks have been written to the disk. 

The fdatasync  function is similar to fsync , but it affects only the data portions of a file. With fsync , the file's 
attributes are also updated synchronously. 

All four of the platforms described in this book support sync  and fsync . However, FreeBSD 5.2.1 and Mac OS 
X 10.3 do not support fdatasync . 

 
 
 
 
 
 
 
 
 
 
 



3.14. fcntl Function 

The fcntl  function can change the properties of a file that is already open. 

#include <fcntl.h> 
 
int fcntl(int filedes, int cmd, ... /* int arg */ ) ;  

 

Returns: depends on cmd if OK (see following), –1 on error 

 

In the examples in this section, the third argument is always an integer, corresponding to the comment in the 
function prototype just shown. But when we describe record locking in Section 14.3, the third argument 
becomes a pointer to a structure. 

The fcntl  function is used for five different purposes. 

1. Duplicate an existing descriptor (cmd = F_DUPFD) 
2. Get/set file descriptor flags (cmd = F_GETFD or F_SETFD) 
3. Get/set file status flags (cmd = F_GETFL or F_SETFL) 
4. Get/set asynchronous I/O ownership (cmd = F_GETOWN or F_SETOWN) 
5. Get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW) 

We'll now describe the first seven of these ten cmd values. (We'll wait until Section 14.3 to describe the last 
three, which deal with record locking.) Refer to Figure 3.6, since we'll be referring to both the file descriptor 
flags associated with each file descriptor in the process table entry and the file status flags associated with each 
file table entry. 

F_DUPFD Duplicate the file descriptor filedes. The new file descriptor is returned as the value of the function. It 
is the lowest-numbered descriptor that is not already open, that is greater than or equal to the third 
argument (taken as an integer). The new descriptor shares the same file table entry as filedes. (Refer 
to Figure 3.8.) But the new descriptor has its own set of file descriptor flags, and its FD_CLOEXEC file 
descriptor flag is cleared. (This means that the descriptor is left open across an exec , which we 
discuss in Chapter 8.) 

F_GETFD Return the file descriptor flags for filedes as the value of the function. Currently, only one file 
descriptor flag is defined: the FD_CLOEXEC flag. 

F_SETFD Set the file descriptor flags for filedes. The new flag value is set from the third argument (taken as an 
integer). 

Be aware that some existing programs that deal with the file descriptor flags don't use the constant 
FD_CLOEXEC. Instead, the programs set the flag to either 0 (don't close-on-exec, the default) or 1 (do 
close-on-exec). 

F_GETFL Return the file status flags for filedes as the value of the function. We described the file status flags 
when we described the open  function. They are listed in Figure 3.9. 

 

Figure 3.9. File status flags for fcntl 



File status flag Description 

O_RDONLY open for reading only 

O_WRONLY open for writing only 

O_RDWR open for reading and writing 

O_APPEND append on each write 

O_NONBLOCK nonblocking mode 

O_SYNC wait for writes to complete (data and attributes) 

O_DSYNC wait for writes to complete (data only) 

O_RSYNC synchronize reads and writes 

O_FSYNC wait for writes to complete (FreeBSD and Mac OS X only) 

O_ASYNC asynchronous I/O (FreeBSD and Mac OS X only) 

 

  Unfortunately, the three access-mode flags—O_RDONLY, O_WRONLY, and O_RDWR—are not separate 
bits that can be tested. (As we mentioned earlier, these three often have the values 0, 1, and 2, 
respectively, for historical reasons. Also, these three values are mutually exclusive; a file can have 
only one of the three enabled.) Therefore, we must first use the O_ACCMODE mask to obtain the 
access-mode bits and then compare the result against any of the three values. 

F_SETFL Set the file status flags to the value of the third argument (taken as an integer). The only flags that 
can be changed are O_APPEND, O_NONBLOCK, O_SYNC, O_DSYNC, O_RSYNC, O_FSYNC, and O_ASYNC. 

F_GETOWN Get the process ID or process group ID currently receiving the SIGIO  and SIGURG signals. We 
describe these asynchronous I/O signals in Section 14.6.2. 

F_SETOWN Set the process ID or process group ID to receive the SIGIO  and SIGURG signals. A positive arg 
specifies a process ID. A negative arg implies a process group ID equal to the absolute value of arg. 

 

The return value from fcntl  depends on the command. All commands return –1 on an error or some other 
value if OK. The following four commands have special return values: F_DUPFD, F_GETFD, F_GETFL, and 
F_GETOWN. The first returns the new file descriptor, the next two return the corresponding flags, and the final 
one returns a positive process ID or a negative process group ID. 

Example 

The program in Figure 3.10 takes a single command-line argument that specifies a file descriptor and prints a 
description of selected file flags for that descriptor. 

Note that we use the feature test macro _POSIX_C_SOURCE and conditionally compile the file access flags that 
are not part of POSIX.1. The following script shows the operation of the program, when invoked from bash  
(the Bourne-again shell). Results vary, depending on which shell you use. 

     $ ./a.out 0 < /dev/tty 
     read only 
     $ ./a.out 1 > temp.foo 
     $ cat temp.foo 



     write only 
     $ ./a.out 2 2>>temp.foo 
     write only, append 
     $ ./a.out 5 5<>temp.foo 
     read write 

 

The clause 5<>temp.foo  opens the file temp.foo  for reading and writing on file descriptor 5. 

Figure 3.10. Print file flags for specified descriptor 

#include "apue.h" 
#include <fcntl.h> 
int 
main(int argc, char *argv[]) 
{ 
 
    int       val; 
 
    if (argc != 2) 
        err_quit("usage: a.out <descriptor#>"); 
 
    if ((val = fcntl(atoi(argv[1]), F_GETFL, 0)) < 0) 
        err_sys("fcntl error for fd %d", atoi(argv[ 1]));  
 
    switch (val & O_ACCMODE) { 
    case O_RDONLY: 
        printf("read only"); 
        break; 
 
    case O_WRONLY: 
        printf("write only"); 
        break; 
 
    case O_RDWR: 
        printf("read write"); 
        break; 
 
    default: 
        err_dump("unknown access mode"); 
    } 
 
    if (val & O_APPEND) 
        printf(", append"); 
    if (val & O_NONBLOCK) 
        printf(", nonblocking"); 
#if defined(O_SYNC) 
    if (val & O_SYNC) 
        printf(", synchronous writes"); 
#endif 
#if !defined(_POSIX_C_SOURCE) && defined(O_FSYNC) 
    if (val & O_FSYNC) 
        printf(", synchronous writes"); 
#endif 
    putchar('\n'); 
    exit(0); 
} 
 
 
      

 



Example 

When we modify either the file descriptor flags or the file status flags, we must be careful to fetch the existing 
flag value, modify it as desired, and then set the new flag value. We can't simply do an F_SETFD or an F_SETFL, 
as this could turn off flag bits that were previously set. 

Figure 3.11 shows a function that sets one or more of the file status flags for a descriptor. 

If we change the middle statement to 

   val &= ~flags;          /* turn flags off */ 

 

we have a function named clr_fl , which we'll use in some later examples. This statement logically ANDs the 
one's complement of flags  with the current val . 

If we call set_fl  from Figure 3.4 by adding the line 

    set_fl(STDOUT_FILENO, O_SYNC); 

 

at the beginning of the program, we'll turn on the synchronous-write flag. This causes each write  to wait for the 
data to be written to disk before returning. Normally in the UNIX System, a write  only queues the data for 
writing; the actual disk write operation can take place sometime later. A database system is a likely candidate 
for using O_SYNC, so that it knows on return from a write  that the data is actually on the disk, in case of an 
abnormal system failure. 

We expect the O_SYNC flag to increase the clock time when the program runs. To test this, we can run the 
program in Figure 3.4, copying 98.5 MB of data from one file on disk to another and compare this with a 
version that does the same thing with the O_SYNC flag set. The results from a Linux system using the ext2  file 
system are shown in Figure 3.12. 

The six rows in Figure 3.12 were all measured with a BUFFSIZE of 4,096. The results in Figure 3.5 were 
measured reading a disk file and writing to /dev/null , so there was no disk output. The second row in Figure 
3.12 corresponds to reading a disk file and writing to another disk file. This is why the first and second rows in 
Figure 3.12 are different. The system time increases when we write to a disk file, because the kernel now copies 
the data from our process and queues the data for writing by the disk driver. We expect the clock time to 
increase also when we write to a disk file, but it doesn't increase significantly for this test, which indicates that 
our writes go to the system cache, and we don't measure the cost to actually write the data to disk. 

When we enable synchronous writes, the system time and the clock time should increase significantly. As the 
third row shows, the time for writing synchronously is about the same as when we used delayed writes. This 
implies that the Linux ext2  file system isn't honoring the O_SYNC flag. This suspicion is supported by the sixth 
line, which shows that the time to do synchronous writes followed by a call to fsync  is just as large as calling 
fsync  after writing the file without synchronous writes (line 5). After writing a file synchronously, we expect 
that a call to fsync  will have no effect. 

Figure 3.13 shows timing results for the same tests on Mac OS X 10.3. Note that the times match our 
expectations: synchronous writes are far more expensive than delayed writes, and using fsync  with 
synchronous writes makes no measurable difference. Note also that adding a call to fsync  at the end of the 
delayed writes makes no measurable difference. It is likely that the operating system flushed previously written 



data to disk as we were writing new data to the file, so by the time that we called fsync , very little work was 
left to be done. 

Compare fsync  and fdatasync , which update a file's contents when we say so, with the O_SYNC flag, which 
updates a file's contents every time we write to the file. 

Figure 3.11. Turn on one or more of the file status flags for a descriptor 

#include "apue.h" 
#include <fcntl.h> 
 
void 
set_fl(int fd, int flags) /* flags are file status flags to turn on */  
{ 
    int     val; 
 
    if ((val = fcntl(fd, F_GETFL, 0)) < 0) 
        err_sys("fcntl F_GETFL error"); 
 
    val |= flags;       /* turn on flags */ 
 
    if (fcntl(fd, F_SETFL, val) < 0) 
        err_sys("fcntl F_SETFL error"); 
} 

 

Figure 3.12. Linux ext2 timing results using various synchronization mechanisms 

Operation User CPU 
(seconds) 

System CPU 
(seconds) 

Clock time 
(seconds) 

read time from Figure 3.5 for BUFFSIZE = 
4,096 

0.03 0.16 6.86 

normal write  to disk file 0.02 0.30 6.87 

write  to disk file with O_SYNC set 0.03 0.30 6.83 

write  to disk followed by fdatasync  0.03 0.42 18.28 

write  to disk followed by fsync  0.03 0.37 17.95 

write  to disk with O_SYNC set followed by 
fsync  

0.05 0.44 17.95 

 

Figure 3.13. Mac OS X timing results using various synchronization mechanisms 

Operation User CPU 
(seconds) 

System CPU 
(seconds) 

Clock time 
(seconds) 

write  to /dev/null  0.06 0.79 4.33 

normal write  to disk file 0.05 3.56 14.40 

write  to disk file with O_FSYNC set 0.13 9.53 22.48 



Figure 3.13. Mac OS X timing results using various synchronization mechanisms 

Operation User CPU 
(seconds) 

System CPU 
(seconds) 

Clock time 
(seconds) 

write  to disk followed by fsync  0.11 3.31 14.12 

write  to disk with O_FSYNC set followed by 
fsync  

0.17 9.14 22.12 

 

With this example, we see the need for fcntl . Our program operates on a descriptor (standard output), never 
knowing the name of the file that was opened by the shell on that descriptor. We can't set the O_SYNC flag when 
the file is opened, since the shell opened the file. With fcntl , we can modify the properties of a descriptor, 
knowing only the descriptor for the open file. We'll see another need for fcntl  when we describe nonblocking 
pipes (Section 15.2), since all we have with a pipe is a descriptor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.15. ioctl Function 

The ioctl  function has always been the catchall for I/O operations. Anything that couldn't be expressed using 
one of the other functions in this chapter usually ended up being specified with an ioctl . Terminal I/O was the 
biggest user of this function. (When we get to Chapter 18, we'll see that POSIX.1 has replaced the terminal I/O 
operations with separate functions.) 

#include <unistd.h>        /* System V */ 
#include <sys/ioctl.h>     /* BSD and Linux */  
#include <stropts.h>       /* XSI STREAMS */ 
 
int ioctl(int filedes, int request, ...); 

 

Returns: –1 on error, something else if OK 

 

The ioctl  function is included in the Single UNIX Specification only as an extension for dealing with 
STREAMS devices [Rago 1993]. UNIX System implementations, however, use it for many miscellaneous 
device operations. Some implementations have even extended it for use with regular files. 

The prototype that we show corresponds to POSIX.1. FreeBSD 5.2.1 and Mac OS X 10.3 declare the second 
argument as an unsigned long . This detail doesn't matter, since the second argument is always a #define d 
name from a header. 

For the ISO C prototype, an ellipsis is used for the remaining arguments. Normally, however, there is only one 
more argument, and it's usually a pointer to a variable or a structure. 

In this prototype, we show only the headers required for the function itself. Normally, additional device-specific 
headers are required. For example, the ioctl  commands for terminal I/O, beyond the basic operations specified 
by POSIX.1, all require the <termios.h>  header. 

Each device driver can define its own set of ioctl  commands. The system, however, provides generic ioctl  
commands for different classes of devices. Examples of some of the categories for these generic ioctl  
commands supported in FreeBSD are summarized in Figure 3.14. 

Figure 3.14. Common FreeBSD ioctl operations 

Category Constant names Header Number of ioctls 

disk labels DIOxxx  <sys/disklabel.h>  6 

file I/O FIOxxx  <sys/filio.h>  9 

mag tape I/O MTIOxxx  <sys/mtio.h>  11 

socket I/O SIOxxx  <sys/sockio.h>  60 

terminal I/O TIOxxx  <sys/ttycom.h>  44 

 



The mag tape operations allow us to write end-of-file marks on a tape, rewind a tape, space forward over a 
specified number of files or records, and the like. None of these operations is easily expressed in terms of the 
other functions in the chapter (read , write , lseek , and so on), so the easiest way to handle these devices has 
always been to access their operations using ioctl . 

We use the ioctl  function in Section 14.4 when we describe the STREAMS system, in Section 18.12 to fetch 
and set the size of a terminal's window, and in Section 19.7 when we access the advanced features of pseudo 
terminals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.16. /dev/fd 

Newer systems provide a directory named /dev/fd  whose entries are files named 0, 1, 2, and so on. Opening 
the file /dev/fd/ n is equivalent to duplicating descriptor n, assuming that descriptor n is open. 

The /dev/fd  feature was developed by Tom Duff and appeared in the 8th Edition of the Research UNIX 
System. It is supported by all of the systems described in this book: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 
10.3, and Solaris 9. It is not part of POSIX.1. 

In the function call 

    fd = open("/dev/fd/0", mode); 

 

most systems ignore the specified mode, whereas others require that it be a subset of the mode used when the 
referenced file (standard input, in this case) was originally opened. Because the previous open  is equivalent to 

    fd = dup(0); 

 

the descriptors 0 and fd  share the same file table entry (Figure 3.8). For example, if descriptor 0 was opened 
read-only, we can only read on fd . Even if the system ignores the open mode, and the call 

    fd = open("/dev/fd/0", O_RDWR); 

 

succeeds, we still can't write to fd . 

We can also call creat  with a /dev/fd  pathname argument, as well as specifying O_CREAT in a call to open . 
This allows a program that calls creat  to still work if the pathname argument is /dev/fd/1 , for example. 

Some systems provide the pathnames /dev/stdin , /dev/stdout , and /dev/stderr . These pathnames are 
equivalent to /dev/fd/0 , /dev/fd/1 , and /dev/fd/2 . 

The main use of the /dev/fd  files is from the shell. It allows programs that use pathname arguments to handle 
standard input and standard output in the same manner as other pathnames. For example, the cat (1) program 
specifically looks for an input filename of -  and uses this to mean standard input. The command 

    filter file2 | cat file1 - file3 | lpr 

 

is an example. First, cat  reads file1 , next its standard input (the output of the filter  program on file2 ), then 
file3 . If /dev/fd  is supported, the special handling of -  can be removed from cat , and we can enter 

    filter file2 | cat file1 /dev/fd/0 file3 | lpr 

 

The special meaning of -  as a command-line argument to refer to the standard input or standard output is a 
kludge that has crept into many programs. There are also problems if we specify -  as the first file, as it looks 
like the start of another command-line option. Using /dev/fd  is a step toward uniformity and cleanliness. 

 



3.17. Summary 

This chapter has described the basic I/O functions provided by the UNIX System. These are often called the 
unbuffered I/O functions because each read  or write  invokes a system call into the kernel. Using only read  
and write , we looked at the effect of various I/O sizes on the amount of time required to read a file. We also 
looked at several ways to flush written data to disk and their effect on application performance. 

Atomic operations were introduced when multiple processes append to the same file and when multiple 
processes create the same file. We also looked at the data structures used by the kernel to share information 
about open files. We'll return to these data structures later in the text. 

We also described the ioctl  and fcntl  functions. We return to both of these functions in Chapter 14, where 
we'll use ioctl  with the STREAMS I/O system, and fcntl  for record locking. 
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4.1. Introduction 

In the previous chapter we covered the basic functions that perform I/O. The discussion centered around I/O for 
regular files—opening a file, and reading or writing a file. We'll now look at additional features of the file 
system and the properties of a file. We'll start with the stat  functions and go through each member of the stat  
structure, looking at all the attributes of a file. In this process, we'll also describe each of the functions that 
modify these attributes: change the owner, change the permissions, and so on. We'll also look in more detail at 
the structure of a UNIX file system and symbolic links. We finish this chapter with the functions that operate on 
directories, and we develop a function that descends through a directory hierarchy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.2. stat, fstat, and lstat Functions 

The discussion in this chapter centers around the three stat  functions and the information they return. 

#include <sys/stat.h> 
 
int stat(const char *restrict pathname, struct stat  *restrict buf); 
 
int fstat(int filedes, struct stat *buf); 
 
int lstat(const char *restrict pathname, struct sta t *restrict buf);  

 

All three return: 0 if OK, –1 on error 

 

Given a pathname, the stat  function returns a structure of information about the named file. The fstat  
function obtains information about the file that is already open on the descriptor filedes. The lstat  function is 
similar to stat , but when the named file is a symbolic link, lstat  returns information about the symbolic link, 
not the file referenced by the symbolic link. (We'll need lstat  in Section 4.21 when we walk down a directory 
hierarchy. We describe symbolic links in more detail in Section 4.16.) 

The second argument is a pointer to a structure that we must supply. The function fills in the structure pointed 
to by buf. The definition of the structure can differ among implementations, but it could look like 

     struct stat { 
       mode_t    st_mode;      /* file type & mode (permissions) */ 
       ino_t     st_ino;       /* i-node number (se rial number) */ 
       dev_t     st_dev;       /* device number (fi le system) */ 
       dev_t     st_rdev;      /* device number for  special files */ 
       nlink_t   st_nlink;     /* number of links * / 
       uid_t     st_uid;       /* user ID of owner */ 
       gid_t     st_gid;       /* group ID of owner  */ 
       off_t     st_size;      /* size in bytes, fo r regular files */ 
       time_t    st_atime;     /* time of last acce ss */ 
       time_t    st_mtime;     /* time of last modi fication */ 
       time_t    st_ctime;     /* time of last file  status change */ 
       blksize_t st_blksize;   /* best I/O block si ze */ 
       blkcnt_t  st_blocks;    /* number of disk bl ocks allocated */ 
     }; 

 

The st_rdev , st_blksize , and st_blocks  fields are not required by POSIX.1. They are defined as XSI 
extensions in the Single UNIX Specification. 

Note that each member is specified by a primitive system data type (see Section 2.8). We'll go through each 
member of this structure to examine the attributes of a file. 

The biggest user of the stat  functions is probably the ls -l  command, to learn all the information about a file. 

 
 
 
 
 



4.3. File Types 

We've talked about two different types of files so far: regular files and directories. Most files on a UNIX system 
are either regular files or directories, but there are additional types of files. The types are: 

1. Regular file. The most common type of file, which contains data of some form. There is no distinction to 
the UNIX kernel whether this data is text or binary. Any interpretation of the contents of a regular file is 
left to the application processing the file. 

One notable exception to this is with binary executable files. To execute a program, the kernel must 
understand its format. All binary executable files conform to a format that allows the kernel to identify 
where to load a program's text and data. 

2. Directory file. A file that contains the names of other files and pointers to information on these files. 
Any process that has read permission for a directory file can read the contents of the directory, but only 
the kernel can write directly to a directory file. Processes must use the functions described in this chapter 
to make changes to a directory. 

3. Block special file. A type of file providing buffered I/O access in fixed-size units to devices such as disk 
drives. 

4. Character special file. A type of file providing unbuffered I/O access in variable-sized units to devices. 
All devices on a system are either block special files or character special files. 

5. FIFO. A type of file used for communication between processes. It's sometimes called a named pipe. We 
describe FIFOs in Section 15.5. 

6. Socket. A type of file used for network communication between processes. A socket can also be used for 
non-network communication between processes on a single host. We use sockets for interprocess 
communication in Chapter 16. 

7. Symbolic link. A type of file that points to another file. We talk more about symbolic links in Section 
4.16. 

The type of a file is encoded in the st_mode  member of the stat  structure. We can determine the file type with 
the macros shown in Figure 4.1. The argument to each of these macros is the st_mode  member from the stat  
structure. 

Figure 4.1. File type macros in <sys/stat.h> 

Macro Type of file 

S_ISREG()  regular file 

S_ISDIR()  directory file 

S_ISCHR()  character special file 

S_ISBLK()  block special file 

S_ISFIFO()  pipe or FIFO 

S_ISLNK()  symbolic link 

S_ISSOCK()  socket 

 



POSIX.1 allows implementations to represent interprocess communication (IPC) objects, such as message 
queues and semaphores, as files. The macros shown in Figure 4.2 allow us to determine the type of IPC object 
from the stat  structure. Instead of taking the st_mode  member as an argument, these macros differ from those 
in Figure 4.1 in that their argument is a pointer to the stat  structure. 

Figure 4.2. IPC type macros in <sys/stat.h> 

Macro Type of object 

S_TYPEISMQ()  message queue 

S_TYPEISSEM()  semaphore 

S_TYPEISSHM()  shared memory object 

 

Message queues, semaphores, and shared memory objects are discussed in Chapter 15. However, none of the 
various implementations of the UNIX System discussed in this book represent these objects as files. 

Example 

The program in Figure 4.3 prints the type of file for each command-line argument. 

Sample output from Figure 4.3 is 

    $ ./a.out /etc/passwd /etc /dev/initctl /dev/lo g /dev/tty \ 
    > /dev/scsi/host0/bus0/target0/lun0/cd /dev/cdr om 
    /etc/passwd: regular 
    /etc: directory 
    /dev/initctl: fifo 
    /dev/log: socket 
    /dev/tty: character special 
    /dev/scsi/host0/bus0/target0/lun0/cd: block spe cial 
    /dev/cdrom: symbolic link 

 

(Here, we have explicitly entered a backslash at the end of the first command line, telling the shell that we want 
to continue entering the command on another line. The shell then prompts us with its secondary prompt, >, on 
the next line.) We have specifically used the lstat  function instead of the stat  function to detect symbolic 
links. If we used the stat  function, we would never see symbolic links. 

To compile this program on a Linux system, we must define _GNU_SOURCE to include the definition of the 
S_ISSOCK macro. 

Figure 4.3. Print type of file for each command-line argument 

#include "apue.h" 
 
int 
main(int argc, char *argv[]) 
{ 
 
    int         i; 
    struct stat buf; 



    char        *ptr; 
 
    for (i = 1; i < argc; i++) { 
        printf("%s: ", argv[i]); 
        if (lstat(argv[i], &buf) < 0) { 
            err_ret("lstat error"); 
            continue; 
 
         } 
         if (S_ISREG(buf.st_mode)) 
            ptr = "regular"; 
         else if (S_ISDIR(buf.st_mode)) 
            ptr = "directory"; 
         else if (S_ISCHR(buf.st_mode)) 
            ptr = "character special"; 
         else if (S_ISBLK(buf.st_mode)) 
            ptr = "block special"; 
         else if (S_ISFIFO(buf.st_mode))  
            ptr = "fifo"; 
         else if (S_ISLNK(buf.st_mode)) 
            ptr = "symbolic link"; 
         else if (S_ISSOCK(buf.st_mode))  
            ptr = "socket"; 
         else 
            ptr = "** unknown mode **"; 
         printf("%s\n", ptr); 
  } 
   exit(0); 
} 
 
 
      

 

Historically, early versions of the UNIX System didn't provide the S_ISxxx  macros. Instead, we had to logically 
AND the st_mode  value with the mask S_IFMT and then compare the result with the constants whose names are 
S_IFxxx . Most systems define this mask and the related constants in the file <sys/stat.h> . If we examine this 
file, we'll find the S_ISDIR  macro defined something like 

    #define S_ISDIR(mode) (((mode) & S_IFMT) == S_I FDIR) 

 

We've said that regular files are predominant, but it is interesting to see what percentage of the files on a given 
system are of each file type. Figure 4.4 shows the counts and percentages for a Linux system that is used as a 
single-user workstation. This data was obtained from the program that we show in Section 4.21. 

Figure 4.4. Counts and percentages of different file types 

File type Count Percentage 

regular file 226,856 88.22 % 

directory 23,017 8.95 

symbolic link 6,442 2.51 

character special 447 0.17 



Figure 4.4. Counts and percentages of different file types 

File type Count Percentage 

block special 312 0.12 

socket 69 0.03 

FIFO 1 0.00 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.4. Set-User-ID and Set-Group-ID 

Every process has six or more IDs associated with it. These are shown in Figure 4.5. 

Figure 4.5. User IDs and group IDs associated with each process 

real user ID  
real group ID 

who we really are 

effective user ID  
effective group ID  
supplementary group IDs 

used for file access permission checks 

saved set-user-ID  
saved set-group-ID 

saved by exec  functions 

 

• The real user ID and real group ID identify who we really are. These two fields are taken from our entry 
in the password file when we log in. Normally, these values don't change during a login session, 
although there are ways for a superuser process to change them, which we describe in Section 8.11. 

• The effective user ID, effective group ID, and supplementary group IDs determine our file access 
permissions, as we describe in the next section. (We defined supplementary group IDs in Section 1.8.) 

• The saved set-user-ID and saved set-group-ID contain copies of the effective user ID and the effective 
group ID when a program is executed. We describe the function of these two saved values when we 
describe the setuid  function in Section 8.11. 

The saved IDs are required with the 2001 version of POSIX.1. They used to be optional in older 
versions of POSIX. An application can test for the constant _POSIX_SAVED_IDS at compile time or can 
call sysconf  with the _SC_SAVED_IDS argument at runtime, to see whether the implementation supports 
this feature. 

Normally, the effective user ID equals the real user ID, and the effective group ID equals the real group ID. 

Every file has an owner and a group owner. The owner is specified by the st_uid  member of the stat  
structure; the group owner, by the st_gid  member. 

When we execute a program file, the effective user ID of the process is usually the real user ID, and the 
effective group ID is usually the real group ID. But the capability exists to set a special flag in the file's mode 
word (st_mode ) that says "when this file is executed, set the effective user ID of the process to be the owner of 
the file (st_uid )." Similarly, another bit can be set in the file's mode word that causes the effective group ID to 
be the group owner of the file (st_gid ). These two bits in the file's mode word are called the set-user-ID bit and 
the set-group-ID bit. 

For example, if the owner of the file is the superuser and if the file's set-user-ID bit is set, then while that 
program file is running as a process, it has superuser privileges. This happens regardless of the real user ID of 
the process that executes the file. As an example, the UNIX System program that allows anyone to change his 
or her password, passwd (1), is a set-user-ID program. This is required so that the program can write the new 
password to the password file, typically either /etc/passwd  or /etc/shadow , files that should be writable only 
by the superuser. Because a process that is running set-user-ID to some other user usually assumes extra 
permissions, it must be written carefully. We'll discuss these types of programs in more detail in Chapter 8. 



Returning to the stat  function, the set-user-ID bit and the set-group-ID bit are contained in the file's st_mode  
value. These two bits can be tested against the constants S_ISUID  and S_ISGID . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.5. File Access Permissions 

The st_mode  value also encodes the access permission bits for the file. When we say file, we mean any of the 
file types that we described earlier. All the file types—directories, character special files, and so on—have 
permissions. Many people think only of regular files as having access permissions. 

There are nine permission bits for each file, divided into three categories. These are shown in Figure 4.6. 

Figure 4.6. The nine file access permission bits, from <sys/stat.h> 

st_mode mask Meaning 

S_IRUSR user-read 

S_IWUSR user-write 

S_IXUSR user-execute 

S_IRGRP group-read 

S_IWGRP group-write 

S_IXGRP group-execute 

S_IROTH other-read 

S_IWOTH other-write 

S_IXOTH other-execute 

 

The term user in the first three rows in Figure 4.6 refers to the owner of the file. The chmod(1) command, which 
is typically used to modify these nine permission bits, allows us to specify u for user (owner), g for group, and o 
for other. Some books refer to these three as owner, group, and world; this is confusing, as the chmod command 
uses o to mean other, not owner. We'll use the terms user, group, and other, to be consistent with the chmod 
command. 

The three categories in Figure 4.6—read, write, and execute—are used in various ways by different functions. 
We'll summarize them here, and return to them when we describe the actual functions. 

• The first rule is that whenever we want to open any type of file by name, we must have execute 
permission in each directory mentioned in the name, including the current directory, if it is implied. This 
is why the execute permission bit for a directory is often called the search bit. 

For example, to open the file /usr/include/stdio.h , we need execute permission in the directory / , 
execute permission in the directory /usr , and execute permission in the directory /usr/include . We 
then need appropriate permission for the file itself, depending on how we're trying to open it: read-only, 
read–write, and so on. 

If the current directory is /usr/include , then we need execute permission in the current directory to 
open the file stdio.h . This is an example of the current directory being implied, not specifically 
mentioned. It is identical to our opening the file ./stdio.h . 



Note that read permission for a directory and execute permission for a directory mean different things. 
Read permission lets us read the directory, obtaining a list of all the filenames in the directory. Execute 
permission lets us pass through the directory when it is a component of a pathname that we are trying to 
access. (We need to search the directory to look for a specific filename.) 

Another example of an implicit directory reference is if the PATH environment variable, described in 
Section 8.10, specifies a directory that does not have execute permission enabled. In this case, the shell 
will never find executable files in that directory. 

• The read permission for a file determines whether we can open an existing file for reading: the 
O_RDONLY and O_RDWR flags for the open  function. 

• The write permission for a file determines whether we can open an existing file for writing: the 
O_WRONLY and O_RDWR flags for the open  function. 

• We must have write permission for a file to specify the O_TRUNC flag in the open  function. 
• We cannot create a new file in a directory unless we have write permission and execute permission in 

the directory. 
• To delete an existing file, we need write permission and execute permission in the directory containing 

the file. We do not need read permission or write permission for the file itself. 
• Execute permission for a file must be on if we want to execute the file using any of the six exec  

functions (Section 8.10). The file also has to be a regular file. 

The file access tests that the kernel performs each time a process opens, creates, or deletes a file depend on the 
owners of the file (st_uid  and st_gid ), the effective IDs of the process (effective user ID and effective group 
ID), and the supplementary group IDs of the process, if supported. The two owner IDs are properties of the file, 
whereas the two effective IDs and the supplementary group IDs are properties of the process. The tests 
performed by the kernel are as follows. 

1. If the effective user ID of the process is 0 (the superuser), access is allowed. This gives the superuser 
free rein throughout the entire file system. 

2. If the effective user ID of the process equals the owner ID of the file (i.e., the process owns the file), 
access is allowed if the appropriate user access permission bit is set. Otherwise, permission is denied. By 
appropriate access permission bit, we mean that if the process is opening the file for reading, the user-
read bit must be on. If the process is opening the file for writing, the user-write bit must be on. If the 
process is executing the file, the user-execute bit must be on. 

3. If the effective group ID of the process or one of the supplementary group IDs of the process equals the 
group ID of the file, access is allowed if the appropriate group access permission bit is set. Otherwise, 
permission is denied. 

4. If the appropriate other access permission bit is set, access is allowed. Otherwise, permission is denied. 

These four steps are tried in sequence. Note that if the process owns the file (step 2), access is granted or denied 
based only on the user access permissions; the group permissions are never looked at. Similarly, if the process 
does not own the file, but belongs to an appropriate group, access is granted or denied based only on the group 
access permissions; the other permissions are not looked at. 

 
 
 
 
 
 
 



4.6. Ownership of New Files and Directories 

When we described the creation of a new file in Chapter 3, using either open  or creat , we never said what 
values were assigned to the user ID and group ID of the new file. We'll see how to create a new directory in 
Section 4.20 when we describe the mkdir  function. The rules for the ownership of a new directory are identical 
to the rules in this section for the ownership of a new file. 

The user ID of a new file is set to the effective user ID of the process. POSIX.1 allows an implementation to 
choose one of the following options to determine the group ID of a new file. 

1. The group ID of a new file can be the effective group ID of the process. 
2. The group ID of a new file can be the group ID of the directory in which the file is being created. 

FreeBSD 5.2.1 and Mac OS X 10.3 always uses the group ID of the directory as the group ID of the new 
file. 

The Linux ext2  and ext3  file systems allow the choice between these two POSIX.1 options to be made 
on a file system basis, using a special flag to the mount (1) command. On Linux 2.4.22 (with the proper 
mount option) and Solaris 9, the group ID of a new file depends on whether the set-group-ID bit is set 
for the directory in which the file is being created. If this bit is set for the directory, the group ID of the 
new file is set to the group ID of the directory; otherwise, the group ID of the new file is set to the 
effective group ID of the process. 

Using the second option—inheriting the group ID of the directory—assures us that all files and directories 
created in that directory will have the group ID belonging to the directory. This group ownership of files and 
directories will then propagate down the hierarchy from that point. This is used, for example, in the 
/var/spool/mail  directory on Linux. 

As we mentioned, this option for group ownership is the default for FreeBSD 5.2.1 and Mac OS X 10.3, but an 
option for Linux and Solaris. Under Linux 2.4.22 and Solaris 9, we have to enable the set-group-ID bit, and the 
mkdir  function has to propagate a directory's set-group-ID bit automatically for this to work. (This is described 
in Section 4.20.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.7. access Function 

As we described earlier, when we open a file, the kernel performs its access tests based on the effective user and 
group IDs. There are times when a process wants to test accessibility based on the real user and group IDs. This 
is useful when a process is running as someone else, using either the set-user-ID or the set-group-ID feature. 
Even though a process might be set-user-ID to root, it could still want to verify that the real user can access a 
given file. The access  function bases its tests on the real user and group IDs. (Replace effective with real in the 
four steps at the end of Section 4.5.) 

#include <unistd.h> 
 
int access(const char *pathname, int mode);  

 

Returns: 0 if OK, –1 on error 

 

The mode is the bitwise OR of any of the constants shown in Figure 4.7. 

Figure 4.7. The mode constants for access function, from <unistd.h> 

mode Description 

R_OK test for read permission 

W_OK test for write permission 

X_OK test for execute permission 

F_OK test for existence of file 

 
 

Example 

Figure 4.8 shows the use of the access  function. 

Here is a sample session with this program: 

         $ ls -l a.out 
         -rwxrwxr-x 1 sar         15945 Nov 30 12:1 0 a.out 
         $ ./a.out a.out 
         read access OK 
         open for reading OK 
         $ ls -l /etc/shadow 
         -r-------- 1 root         1315 Jul 17 2002  /etc/shadow 
         $ ./a.out /etc/shadow 
         access error for /etc/shadow: Permission d enied 
         open error for /etc/shadow: Permission den ied 
         $ su                        become superus er 
         Password:                  enter superuser  password 
         # chown root a.out         change file's u ser ID to root 
         # chmod u+s a.out          and turn on set -user-ID bit 
         # ls -l a.out              check owner and  SUID bit 



         -rwsrwxr-x 1 root     15945 Nov 30 12:10 a .out 
         # exit                     go back to norm al user 
         $ ./a.out /etc/shadow 
         access error for /etc/shadow: Permission d enied 
         open for reading OK 

 

In this example, the set-user-ID program can determine that the real user cannot normally read the file, even 
though the open  function will succeed. 

Figure 4.8. Example of access function 

#include "apue.h" 
#include <fcntl.h> 
 
int 
main(int argc, char *argv[]) 
{ 
    if (argc != 2) 
        err_quit("usage: a.out <pathname>"); 
    if (access(argv[1], R_OK) < 0) 
        err_ret("access error for %s", argv[1]);  
    else 
        printf("read access OK\n"); 
    if (open(argv[1], O_RDONLY) < 0) 
        err_ret("open error for %s", argv[1]); 
    else 
        printf("open for reading OK\n"); 
    exit(0); 
} 

 

In the preceding example and in Chapter 8, we'll sometimes switch to become the superuser, to demonstrate 
how something works. If you're on a multiuser system and do not have superuser permission, you won't be able 
to duplicate these examples completely. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.8. umask Function 

Now that we've described the nine permission bits associated with every file, we can describe the file mode 
creation mask that is associated with every process. 

The umask function sets the file mode creation mask for the process and returns the previous value. (This is one 
of the few functions that doesn't have an error return.) 

#include <sys/stat.h> 
 
mode_t umask(mode_t cmask); 

 

Returns: previous file mode creation mask 

 

The cmask argument is formed as the bitwise OR of any of the nine constants from Figure 4.6: S_IRUSR, 
S_IWUSR, and so on. 

The file mode creation mask is used whenever the process creates a new file or a new directory. (Recall from 
Sections 3.3 and 3.4 our description of the open  and creat  functions. Both accept a mode argument that 
specifies the new file's access permission bits.) We describe how to create a new directory in Section 4.20. Any 
bits that are on in the file mode creation mask are turned off in the file's mode. 

Example 

The program in Figure 4.9 creates two files, one with a umask of 0 and one with a umask that disables all the 
group and other permission bits. 

If we run this program, we can see how the permission bits have been set. 

       $ umask                    first print the c urrent file mode creation mask 
       002 
       $ ./a.out 
       $ ls -l foo bar 
       -rw------- 1 sar            0 Dec 7 21:20 ba r 
       -rw-rw-rw- 1 sar            0 Dec 7 21:20 fo o 
       $ umask                    see if the file m ode creation mask changed 
       002 
 
 
      

 

Figure 4.9. Example of umask function 

#include "apue.h" 
#include <fcntl.h> 
 
#define RWRWRW (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_I ROTH|S_IWOTH) 
 
int 
main(void) 
{ 
    umask(0); 



    if (creat("foo", RWRWRW) < 0) 
        err_sys("creat error for foo"); 
    umask(S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH); 
    if (creat("bar", RWRWRW) < 0) 
        err_sys("creat error for bar"); 
    exit(0); 
} 

 

Most users of UNIX systems never deal with their umask value. It is usually set once, on login, by the shell's 
start-up file, and never changed. Nevertheless, when writing programs that create new files, if we want to 
ensure that specific access permission bits are enabled, we must modify the umask value while the process is 
running. For example, if we want to ensure that anyone can read a file, we should set the umask to 0. Otherwise, 
the umask value that is in effect when our process is running can cause permission bits to be turned off. 

In the preceding example, we use the shell's umask command to print the file mode creation mask before we run 
the program and after. This shows us that changing the file mode creation mask of a process doesn't affect the 
mask of its parent (often a shell). All of the shells have a built-in umask command that we can use to set or print 
the current file mode creation mask. 

Users can set the umask value to control the default permissions on the files they create. The value is expressed 
in octal, with one bit representing one permission to be masked off, as shown in Figure 4.10. Permissions can be 
denied by setting the corresponding bits. Some common umask values are 002 to prevent others from writing 
your files, 022 to prevent group members and others from writing your files, and 027 to prevent group members 
from writing your files and others from reading, writing, or executing your files. 

Figure 4.10. The umask file access permission bits 

Mask bit Meaning 

0400  user-read 

0200  user-write 

0100  user-execute 

0040  group-read 

0020  group-write 

0010  group-execute 

0004  other-read 

0002  other-write 

0001  other-execute 

 

The Single UNIX Specification requires that the shell support a symbolic form of the umask command. Unlike 
the octal format, the symbolic format specifies which permissions are to be allowed (i.e., clear in the file 
creation mask) instead of which ones are to be denied (i.e., set in the file creation mask). Compare both forms of 
the command, shown below. 



       $ umask                        first print t he current file mode creation mask 
       002 
       $ umask -S                     print the sym bolic form 
       u=rwx,g=rwx,o=rx 
       $ umask 027                    change the fi le mode creation mask 
       $ umask -S                     print the sym bolic form 
       u=rwx,g=rx,o= 
 
 
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.9. chmod and fchmod Functions 

These two functions allow us to change the file access permissions for an existing file. 

#include <sys/stat.h> 
 
int chmod(const char *pathname, mode_t mode);  
 
int fchmod(int filedes, mode_t mode); 

 

Both return: 0 if OK, –1 on error 

 

The chmod function operates on the specified file, whereas the fchmod  function operates on a file that has 
already been opened. 

To change the permission bits of a file, the effective user ID of the process must be equal to the owner ID of the 
file, or the process must have superuser permissions. 

The mode is specified as the bitwise OR of the constants shown in Figure 4.11. 

Figure 4.11. The mode constants for chmod functions, from <sys/stat.h> 

mode Description 

S_ISUID  set-user-ID on execution 

S_ISGID  set-group-ID on execution 

S_ISVTX saved-text (sticky bit) 

S_IRWXU read, write, and execute by user (owner) 

S_IRUSR read by user (owner) 

S_IWUSR write by user (owner) 

S_IXUSR execute by user (owner) 

S_IRWXG read, write, and execute by group 

S_IRGRP read by group 

S_IWGRP write by group 

S_IXGRP execute by group 

S_IRWXO read, write, and execute by other (world) 

S_IROTH read by other (world) 

S_IWOTH write by other (world) 

S_IXOTH execute by other (world) 

 



Note that nine of the entries in Figure 4.11 are the nine file access permission bits from Figure 4.6. We've added 
the two set-ID constants (S_ISUID  and S_ISGID ), the saved-text constant (S_ISVTX), and the three combined 
constants (S_IRWXU, S_IRWXG, and S_IRWXO). 

The saved-text bit (S_ISVTX) is not part of POSIX.1. It is defined as an XSI extension in the Single UNIX 
Specification. We describe its purpose in the next section. 

Example 

Recall the final state of the files foo  and bar  when we ran the program in Figure 4.9 to demonstrate the umask 
function: 

       $ ls -l foo bar 
       -rw------- 1 sar                0 Dec 7 21:2 0 bar 
       -rw-rw-rw- 1 sar                0 Dec 7 21:2 0 foo 

 

The program shown in Figure 4.12 modifies the mode of these two files. 

After running the program in Figure 4.12, we see that the final state of the two files is 

     $ ls -l foo bar 
     -rw-r--r-- 1 sar           0 Dec 7 21:20 bar 
     -rw-rwSrw- 1 sar           0 Dec 7 21:20 foo 

 

In this example, we have set the permissions of the file bar  to an absolute value, regardless of the current 
permission bits. For the file foo , we set the permissions relative to their current state. To do this, we first call 
stat  to obtain the current permissions and then modify them. We have explicitly turned on the set-group-ID bit 
and turned off the group-execute bit. Note that the ls  command lists the group-execute permission as S to 
signify that the set-group-ID bit is set without the group-execute bit being set. 

On Solaris, the ls  command displays an l  instead of an S to indicate that mandatory file and record locking has 
been enabled for this file. This applies only to regular files, but we'll discuss this more in Section 14.3. 

Finally, note that the time and date listed by the ls  command did not change after we ran the program in Figure 
4.12. We'll see in Section 4.18 that the chmod function updates only the time that the i-node was last changed. 
By default, the ls -l  lists the time when the contents of the file were last modified. 

Figure 4.12. Example of chmod function 

#include "apue.h" 
 
int 
main(void) 
{ 
     struct stat      statbuf; 
 
     /* turn on set-group-ID and turn off group-exe cute */ 
 
     if (stat("foo", &statbuf) < 0) 
         err_sys("stat error for foo"); 
     if (chmod("foo", (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)  
         err_sys("chmod error for foo"); 
 



     /* set absolute mode to "rw-r--r--" */ 
 
     if (chmod("bar", S_IRUSR | S_IWUSR | S_IRGRP |  S_IROTH) < 0) 
         err_sys("chmod error for bar"); 
 
     exit(0); 
} 

 

The chmod functions automatically clear two of the permission bits under the following conditions: 

• On systems, such as Solaris, that place special meaning on the sticky bit when used with regular files, if 
we try to set the sticky bit (S_ISVTX) on a regular file and do not have superuser privileges, the sticky bit 
in the mode is automatically turned off. (We describe the sticky bit in the next section.) This means that 
only the superuser can set the sticky bit of a regular file. The reason is to prevent malicious users from 
setting the sticky bit and adversely affecting system performance. 

On FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9, only the superuser can set the sticky bit on a regular 
file. Linux 2.4.22 places no such restriction on the setting of the sticky bit, because the bit has no 
meaning when applied to regular files on Linux. Although the bit also has no meaning when applied to 
regular files on FreeBSD and Mac OS X, these systems prevent everyone but the superuser from setting 
it on a regular file. 

• It is possible that the group ID of a newly created file is a group that the calling process does not belong 
to. Recall from Section 4.6 that it's possible for the group ID of the new file to be the group ID of the 
parent directory. Specifically, if the group ID of the new file does not equal either the effective group ID 
of the process or one of the process's supplementary group IDs and if the process does not have 
superuser privileges, then the set-group-ID bit is automatically turned off. This prevents a user from 
creating a set-group-ID file owned by a group that the user doesn't belong to. 

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 add another security feature to try to 
prevent misuse of some of the protection bits. If a process that does not have superuser privileges writes 
to a file, the set-user-ID and set-group-ID bits are automatically turned off. If malicious users find a set-
group-ID or a set-user-ID file they can write to, even though they can modify the file, they lose the 
special privileges of the file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.10. Sticky Bit 

The S_ISVTX bit has an interesting history. On versions of the UNIX System that predated demand paging, this 
bit was known as the sticky bit. If it was set for an executable program file, then the first time the program was 
executed, a copy of the program's text was saved in the swap area when the process terminated. (The text 
portion of a program is the machine instructions.) This caused the program to load into memory more quickly 
the next time it was executed, because the swap area was handled as a contiguous file, compared to the possibly 
random location of data blocks in a normal UNIX file system. The sticky bit was often set for common 
application programs, such as the text editor and the passes of the C compiler. Naturally, there was a limit to the 
number of sticky files that could be contained in the swap area before running out of swap space, but it was a 
useful technique. The name sticky came about because the text portion of the file stuck around in the swap area 
until the system was rebooted. Later versions of the UNIX System referred to this as the saved-text bit; hence, 
the constant S_ISVTX. With today's newer UNIX systems, most of which have a virtual memory system and a 
faster file system, the need for this technique has disappeared. 

On contemporary systems, the use of the sticky bit has been extended. The Single UNIX Specification allows 
the sticky bit to be set for a directory. If the bit is set for a directory, a file in the directory can be removed or 
renamed only if the user has write permission for the directory and one of the following: 

• Owns the file 
• Owns the directory 
• Is the superuser 

The directories /tmp  and /var/spool/uucppublic  are typical candidates for the sticky bit—they are 
directories in which any user can typically create files. The permissions for these two directories are often read, 
write, and execute for everyone (user, group, and other). But users should not be able to delete or rename files 
owned by others. 

The saved-text bit is not part of POSIX.1. It is an XSI extension to the basic POSIX.1 functionality defined in 
the Single UNIX Specification, and is supported by FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9. 

Solaris 9 places special meaning on the sticky bit if it is set on a regular file. In this case, if none of the execute 
bits is set, the operating system will not cache the contents of the file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.11. chown, fchown, and lchown Functions 

The chown  functions allow us to change the user ID of a file and the group ID of a file. 

#include <unistd.h> 
 
int chown(const char *pathname, uid_t owner, gid_t group);  
 
int fchown(int filedes, uid_t owner, gid_t group); 
 
int lchown(const char *pathname, uid_t owner, 
 gid_t group); 

 

All three return: 0 if OK, –1 on error 

 

These three functions operate similarly unless the referenced file is a symbolic link. In that case, lchown  
changes the owners of the symbolic link itself, not the file pointed to by the symbolic link. 

The lchown  function is an XSI extension to the POSIX.1 functionality defined in the Single UNIX 
Specification. As such, all UNIX System implementations are expected to provide it. 

If either of the arguments owner or group is -1, the corresponding ID is left unchanged. 

Historically, BSD-based systems have enforced the restriction that only the superuser can change the ownership 
of a file. This is to prevent users from giving away their files to others, thereby defeating any disk space quota 
restrictions. System V, however, has allowed any user to change the ownership of any files they own. 

POSIX.1 allows either form of operation, depending on the value of _POSIX_CHOWN_RESTRICTED. 

With Solaris 9, this functionality is a configuration option, whose default value is to enforce the restriction. 
FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 always enforce the chown  restriction. 

Recall from Section 2.6 that the _POSIX_CHOWN_RESTRICTED constant can optionally be defined in the header 
<unistd.h> , and can always be queried using either the pathconf  function or the fpathconf  function. Also 
recall that this option can depend on the referenced file; it can be enabled or disabled on a per file system basis. 
We'll use the phrase, if _POSIX_CHOWN_RESTRICTED is in effect, to mean if it applies to the particular file that 
we're talking about, regardless of whether this actual constant is defined in the header. 

If _POSIX_CHOWN_RESTRICTED is in effect for the specified file, then 

1. Only a superuser process can change the user ID of the file. 
2. A nonsuperuser process can change the group ID of the file if the process owns the file (the effective 

user ID equals the user ID of the file), owner is specified as –1 or equals the user ID of the file, and 
group equals either the effective group ID of the process or one of the process's supplementary group 
IDs. 

This means that when _POSIX_CHOWN_RESTRICTED is in effect, you can't change the user ID of other users' files. 
You can change the group ID of files that you own, but only to groups that you belong to. 



If these functions are called by a process other than a superuser process, on successful return, both the set-user-
ID and the set-group-ID bits are cleared. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.12. File Size 

The st_size  member of the stat  structure contains the size of the file in bytes. This field is meaningful only 
for regular files, directories, and symbolic links. 

Solaris also defines the file size for a pipe as the number of bytes that are available for reading from the pipe. 
We'll discuss pipes in Section 15.2. 

For a regular file, a file size of 0 is allowed. We'll get an end-of-file indication on the first read of the file. 

For a directory, the file size is usually a multiple of a number, such as 16 or 512. We talk about reading 
directories in Section 4.21. 

For a symbolic link, the file size is the number of bytes in the filename. For example, in the following case, the 
file size of 7 is the length of the pathname usr/lib : 

    lrwxrwxrwx 1 root           7 Sep 25 07:14 lib -> usr/lib 

 

(Note that symbolic links do not contain the normal C null byte at the end of the name, as the length is always 
specified by st_size .) 

Most contemporary UNIX systems provide the fields st_blksize  and st_blocks . The first is the preferred 
block size for I/O for the file, and the latter is the actual number of 512-byte blocks that are allocated. Recall 
from Section 3.9 that we encountered the minimum amount of time required to read a file when we used 
st_blksize  for the read  operations. The standard I/O library, which we describe in Chapter 5, also tries to read 
or write st_blksize  bytes at a time, for efficiency. 

Be aware that different versions of the UNIX System use units other than 512-byte blocks for st_blocks . 
Using this value is nonportable. 

Holes in a File 

In Section 3.6, we mentioned that a regular file can contain "holes." We showed an example of this in Figure 
3.2. Holes are created by seeking past the current end of file and writing some data. As an example, consider the 
following: 

     $ ls -l core 
     -rw-r--r-- 1 sar       8483248 Nov 18 12:18 co re 
     $ du -s core 
     272        core 

 

The size of the file core  is just over 8 MB, yet the du command reports that the amount of disk space used by 
the file is 272 512-byte blocks (139,264 bytes). (The du command on many BSD-derived systems reports the 
number of 1,024-byte blocks; Solaris reports the number of 512-byte blocks.) Obviously, this file has many 
holes. 

As we mentioned in Section 3.6, the read  function returns data bytes of 0 for any byte positions that have not 
been written. If we execute the following, we can see that the normal I/O operations read up through the size of 
the file: 



     $ wc -c core 
      8483248 core 

 

The wc(1) command with the -c  option counts the number of characters (bytes) in the file. 

If we make a copy of this file, using a utility such as cat (1), all these holes are written out as actual data bytes 
of 0: 

       $ cat core > core.copy 
       $ ls -l core* 
       -rw-r--r--  1 sar      8483248 Nov 18 12:18 core 
       -rw-rw-r--  1 sar      8483248 Nov 18 12:27 core.copy 
       $ du -s core* 
       272     core 
       16592   core.copy 

 

Here, the actual number of bytes used by the new file is 8,495,104 (512 x 16,592). The difference between this 
size and the size reported by ls  is caused by the number of blocks used by the file system to hold pointers to the 
actual data blocks. 

Interested readers should refer to Section 4.2 of Bach [1986], Sections 7.2 and 7.3 of McKusick et al. [1996] (or 
Sections 8.2 and 8.3 in McKusick and Neville-Neil [2005]), and Section 14.2 of Mauro and McDougall [2001] 
for additional details on the physical layout of files. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.13. File Truncation 

There are times when we would like to truncate a file by chopping off data at the end of the file. Emptying a file, 
which we can do with the O_TRUNC flag to open , is a special case of truncation. 

#include <unistd.h> 
 
int truncate(const char *pathname, off_t length);  
 
int ftruncate(int filedes, off_t length); 

 

Both return: 0 if OK, –1 on error 

 

These two functions truncate an existing file to length bytes. If the previous size of the file was greater than 
length, the data beyond length is no longer accessible. If the previous size was less than length, the effect is 
system dependent, but XSI-conforming systems will increase the file size. If the implementation does extend a 
file, data between the old end of file and the new end of file will read as 0 (i.e., a hole is probably created in the 
file). 

The ftruncate  function is part of POSIX.1. The truncate  function is an XSI extension to the POSIX.1 
functionality defined in the Single UNIX Specification. 

BSD releases prior to 4.4BSD could only make a file smaller with truncate . 

Solaris also includes an extension to fcntl  (F_FREESP) that allows us to free any part of a file, not just a chunk 
at the end of the file. 

We use ftruncate  in the program shown in Figure 13.6 when we need to empty a file after obtaining a lock on 
the file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.14. File Systems 

To appreciate the concept of links to a file, we need a conceptual understanding of the structure of the UNIX 
file system. Understanding the difference between an i-node and a directory entry that points to an i-node is also 
useful. 

Various implementations of the UNIX file system are in use today. Solaris, for example, supports several 
different types of disk file systems: the traditional BSD-derived UNIX file system (called UFS), a file system 
(called PCFS) to read and write DOS-formatted diskettes, and a file system (called HSFS) to read CD file 
systems. We saw one difference between file system types in Figure 2.19. UFS is based on the Berkeley fast file 
system, which we describe in this section. 

We can think of a disk drive being divided into one or more partitions. Each partition can contain a file system, 
as shown in Figure 4.13. 

Figure 4.13. Disk drive, partitions, and a file system 

 

The i-nodes are fixed-length entries that contain most of the information about a file. 

If we examine the i-node and data block portion of a cylinder group in more detail, we could have what is 
shown in Figure 4.14. 

Figure 4.14. Cylinder group's i-nodes and data blocks in more detail 

 
 

Note the following points from Figure 4.14. 



• We show two directory entries that point to the same i-node entry. Every i-node has a link count that 
contains the number of directory entries that point to the i-node. Only when the link count goes to 0 can 
the file be deleted (i.e., can the data blocks associated with the file be released). This is why the 
operation of "unlinking a file" does not always mean "deleting the blocks associated with the file." This 
is why the function that removes a directory entry is called unlink , not delete. In the stat  structure, the 
link count is contained in the st_nlink  member. Its primitive system data type is nlink_t . These types 
of links are called hard links. Recall from Section 2.5.2 that the POSIX.1 constant LINK_MAX specifies 
the maximum value for a file's link count. 

• The other type of link is called a symbolic link. With a symbolic link, the actual contents of the file—the 
data blocks—store the name of the file that the symbolic link points to. In the following example, the 
filename in the directory entry is the three-character string lib  and the 7 bytes of data in the file are 
usr/lib : 

•     lrwxrwxrwx 1 root         7 Sep 25 07:14 lib ->  usr/lib 

 

The file type in the i-node would be S_IFLNK  so that the system knows that this is a symbolic link. 

• The i-node contains all the information about the file: the file type, the file's access permission bits, the 
size of the file, pointers to the file's data blocks, and so on. Most of the information in the stat  structure 
is obtained from the i-node. Only two items of interest are stored in the directory entry: the filename and 
the i-node number; the other items—the length of the filename and the length of the directory record—
are not of interest to this discussion. The data type for the i-node number is ino_t . 

• Because the i-node number in the directory entry points to an i-node in the same file system, we cannot 
have a directory entry point to an i-node in a different file system. This is why the ln (1) command 
(make a new directory entry that points to an existing file) can't cross file systems. We describe the link  
function in the next section. 

• When renaming a file without changing file systems, the actual contents of the file need not be moved—
all that needs to be done is to add a new directory entry that points to the existing i-node, and then unlink 
the old directory entry. The link count will remain the same. For example, to rename the file 
/usr/lib/foo  to /usr/foo , the contents of the file foo  need not be moved if the directories /usr/lib  
and /usr  are on the same file system. This is how the mv(1) command usually operates. 

We've talked about the concept of a link count for a regular file, but what about the link count field for a 
directory? Assume that we make a new directory in the working directory, as in 

   $ mkdir testdir 

 

Figure 4.15 shows the result. Note that in this figure, we explicitly show the entries for dot and dot-dot. 

Figure 4.15. Sample cylinder group after creating the directory testdir 



 
 

The i-node whose number is 2549 has a type field of "directory" and a link count equal to 2. Any leaf directory 
(a directory that does not contain any other directories) always has a link count of 2. The value of 2 is from the 
directory entry that names the directory (testdir ) and from the entry for dot in that directory. The i-node 
whose number is 1267 has a type field of "directory" and a link count that is greater than or equal to 3. The 
reason we know that the link count is greater than or equal to 3 is that minimally, it is pointed to from the 
directory entry that names it (which we don't show in Figure 4.15), from dot, and from dot-dot in the testdir  
directory. Note that every subdirectory in a parent directory causes the parent directory's link count to be 
increased by 1. 

This format is similar to the classic format of the UNIX file system, which is described in detail in Chapter 4 of 
Bach [1986]. Refer to Chapter 7 of McKusick et al. [1996] or Chapter 8 of McKusick and Neville-Neil [2005] 
for additional information on the changes made with the Berkeley fast file system. See Chapter 14 of Mauro and 
McDougall [2001] for details on UFS, the Solaris version of the Berkeley fast file system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.15. link, unlink, remove, and rename Functions 

As we saw in the previous section, any file can have multiple directory entries pointing to its i-node. The way 
we create a link to an existing file is with the link  function. 

#include <unistd.h> 
 
int link(const char *existingpath, const char *newp ath);  

 

Returns: 0 if OK, –1 on error 

 

This function creates a new directory entry, newpath, that references the existing file existingpath. If the 
newpath already exists, an error is returned. Only the last component of the newpath is created. The rest of the 
path must already exist. 

The creation of the new directory entry and the increment of the link count must be an atomic operation. (Recall 
the discussion of atomic operations in Section 3.11.) 

Most implementations require that both pathnames be on the same file system, although POSIX.1 allows an 
implementation to support linking across file systems. If an implementation supports the creation of hard links 
to directories, it is restricted to only the superuser. The reason is that doing this can cause loops in the file 
system, which most utilities that process the file system aren't capable of handling. (We show an example of a 
loop introduced by a symbolic link in Section 4.16.) Many file system implementations disallow hard links to 
directories for this reason. 

To remove an existing directory entry, we call the unlink  function. 

#include <unistd.h> 
 
int unlink(const char *pathname);  

 

Returns: 0 if OK, –1 on error 

 

This function removes the directory entry and decrements the link count of the file referenced by pathname. If 
there are other links to the file, the data in the file is still accessible through the other links. The file is not 
changed if an error occurs. 

We've mentioned before that to unlink a file, we must have write permission and execute permission in the 
directory containing the directory entry, as it is the directory entry that we will be removing. Also, we 
mentioned in Section 4.10 that if the sticky bit is set in this directory we must have write permission for the 
directory and one of the following: 

• Own the file 
• Own the directory 
• Have superuser privileges 

Only when the link count reaches 0 can the contents of the file be deleted. One other condition prevents the 
contents of a file from being deleted: as long as some process has the file open, its contents will not be deleted. 



When a file is closed, the kernel first checks the count of the number of processes that have the file open. If this 
count has reached 0, the kernel then checks the link count; if it is 0, the file's contents are deleted. 

Example 

The program shown in Figure 4.16 opens a file and then unlinks it. The program then goes to sleep for 15 
seconds before terminating. 

Running this program gives us 

    $ ls -l tempfile            look at how big the  file is 
    -rw-r----- 1 sar     413265408 Jan 21 07:14 tem pfile 
    $ df /home                  check how much free  space is available 
    Filesystem  1K-blocks     Used  Available  Use%   Mounted  on 
    /dev/hda4    11021440  1956332    9065108   18%   /home 
    $ ./a.out &                 run the program in Figure 4.16  in the background 
    1364                        the shell prints it s process ID 
    $ file unlinked             the file is unlinke d 
    ls -l tempfile              see if the filename  is still there 
    ls: tempfile: No such file or directory           the directory entry is gone 
    $ df /home                  see if the space is  available yet 
    Filesystem  1K-blocks     Used  Available  Use%   Mounted  on 
    /dev/hda4    11021440  1956332    9065108   18%   /home 
    $ done                      the program is done , all open files are closed 
    df /home                    now the disk space should be available 
    Filesystem  1K-blocks     Used  Available  Use%   Mounted on 
    /dev/hda4    11021440  1552352    9469088   15%   /home 
                                now the 394.1 MB of  disk space are available 
 
 
      

 

Figure 4.16. Open a file and then unlink it 

#include "apue.h" 
#include <fcntl.h> 
 
int 
main(void) 
{ 
    if (open("tempfile", O_RDWR) < 0)  
        err_sys("open error"); 
    if (unlink("tempfile") < 0) 
        err_sys("unlink error"); 
    printf("file unlinked\n"); 
    sleep(15); 
    printf("done\n"); 
    exit(0); 
} 

 

This property of unlink  is often used by a program to ensure that a temporary file it creates won't be left around 
in case the program crashes. The process creates a file using either open  or creat  and then immediately calls 
unlink . The file is not deleted, however, because it is still open. Only when the process either closes the file or 
terminates, which causes the kernel to close all its open files, is the file deleted. 



If pathname is a symbolic link, unlink  removes the symbolic link, not the file referenced by the link. There is 
no function to remove the file referenced by a symbolic link given the name of the link. 

The superuser can call unlink  with pathname specifying a directory, but the function rmdir  should be used 
instead to unlink a directory. We describe the rmdir  function in Section 4.20. 

We can also unlink a file or a directory with the remove  function. For a file, remove  is identical to unlink . For 
a directory, remove  is identical to rmdir . 

#include <stdio.h> 
 
int remove(const char *pathname);  

 

Returns: 0 if OK, –1 on error 

 

ISO C specifies the remove  function to delete a file. The name was changed from the historical UNIX name of 
unlink  because most non-UNIX systems that implement the C standard didn't support the concept of links to a 
file at the time. 

A file or a directory is renamed with the rename  function. 

#include <stdio.h> 
 
int rename(const char *oldname, const char *newname );  

 

Returns: 0 if OK, –1 on error 

 

This function is defined by ISO C for files. (The C standard doesn't deal with directories.) POSIX.1 expanded 
the definition to include directories and symbolic links. 

There are several conditions to describe, depending on whether oldname refers to a file, a directory, or a 
symbolic link. We must also describe what happens if newname already exists. 

1. If oldname specifies a file that is not a directory, then we are renaming a file or a symbolic link. In this 
case, if newname exists, it cannot refer to a directory. If newname exists and is not a directory, it is 
removed, and oldname is renamed to newname. We must have write permission for the directory 
containing oldname and for the directory containing newname, since we are changing both directories. 

2. If oldname specifies a directory, then we are renaming a directory. If newname exists, it must refer to a 
directory, and that directory must be empty. (When we say that a directory is empty, we mean that the 
only entries in the directory are dot and dot-dot.) If newname exists and is an empty directory, it is 
removed, and oldname is renamed to newname. Additionally, when we're renaming a directory, 
newname cannot contain a path prefix that names oldname. For example, we can't rename /usr/foo  to 
/usr/foo/testdir , since the old name (/usr/foo ) is a path prefix of the new name and cannot be 
removed. 

3. If either oldname or newname refers to a symbolic link, then the link itself is processed, not the file to 
which it resolves. 

4. As a special case, if the oldname and newname refer to the same file, the function returns successfully 
without changing anything. 



If newname already exists, we need permissions as if we were deleting it. Also, because we're removing the 
directory entry for oldname and possibly creating a directory entry for newname, we need write permission and 
execute permission in the directory containing oldname and in the directory containing newname. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.16. Symbolic Links 

A symbolic link is an indirect pointer to a file, unlike the hard links from the previous section, which pointed 
directly to the i-node of the file. Symbolic links were introduced to get around the limitations of hard links. 

• Hard links normally require that the link and the file reside in the same file system 
• Only the superuser can create a hard link to a directory 

There are no file system limitations on a symbolic link and what it points to, and anyone can create a symbolic 
link to a directory. Symbolic links are typically used to move a file or an entire directory hierarchy to another 
location on a system. 

Symbolic links were introduced with 4.2BSD and subsequently supported by SVR4. 

When using functions that refer to a file by name, we always need to know whether the function follows a 
symbolic link. If the function follows a symbolic link, a pathname argument to the function refers to the file 
pointed to by the symbolic link. Otherwise, a pathname argument refers to the link itself, not the file pointed to 
by the link. Figure 4.17 summarizes whether the functions described in this chapter follow a symbolic link. The 
functions mkdir , mkfifo , mknod, and rmdir  are not in this figure, as they return an error when the pathname is a 
symbolic link. Also, the functions that take a file descriptor argument, such as fstat  and fchmod , are not listed, 
as the handling of a symbolic link is done by the function that returns the file descriptor (usually open ). 
Whether or not chown  follows a symbolic link depends on the implementation. 

In older versions of Linux (those before version 2.1.81), chown  didn't follow symbolic links. From version 
2.1.81 onward, chown  follows symbolic links. With FreeBSD 5.2.1 and Mac OS X 10.3, chown  follows 
symbolic links. (Prior to 4.4BSD, chown  didn't follow symbolic links, but this was changed in 4.4BSD.) In 
Solaris 9, chown  also follows symbolic links. All of these platforms provide implementations of lchown  to 
change the ownership of symbolic links themselves. 

One exception to Figure 4.17 is when the open  function is called with both O_CREAT and O_EXCL set. In this case, 
if the pathname refers to a symbolic link, open  will fail with errno  set to EEXIST. This behavior is intended to 
close a security hole so that privileged processes can't be fooled into writing to the wrong files. 

Figure 4.17. Treatment of symbolic links by various functions 

Function Does not follow symbolic link Follows symbolic link 

access    • 

chdir    • 

chmod   • 

chown  • • 

creat    • 

exec    • 

lchown  •   

link    • 



Figure 4.17. Treatment of symbolic links by various functions 

Function Does not follow symbolic link Follows symbolic link 

lstat  •   

open    • 

opendir    • 

pathconf    • 

readlink  •   

remove  •   

rename  •   

stat    • 

truncate    • 

unlink  •   

 
 

Example 

It is possible to introduce loops into the file system by using symbolic links. Most functions that look up a 
pathname return an errno  of ELOOP when this occurs. Consider the following commands: 

     $ mkdir foo                   make a new direc tory 
     $ touch foo/a                 create a 0-lengt h file 
     $ ln -s ../foo foo/testdir    create a symboli c link 
     $ ls -l foo 
     total 0 
     -rw-r----- 1 sar            0 Jan 22 00:16 a 
     lrwxrwxrwx 1 sar            6 Jan 22 00:16 tes tdir -> ../foo 

 

This creates a directory foo  that contains the file a and a symbolic link that points to foo . We show this 
arrangement in Figure 4.18, drawing a directory as a circle and a file as a square. If we write a simple program 
that uses the standard function ftw (3) on Solaris to descend through a file hierarchy, printing each pathname 
encountered, the output is 

    foo 
    foo/a 
    foo/testdir 
    foo/testdir/a 
    foo/testdir/testdir 
    foo/testdir/testdir/a 
    foo/testdir/testdir/testdir 
    foo/testdir/testdir/testdir/a 

 



(many more lines until we encounter an ELOOP error) 

In Section 4.21, we provide our own version of the ftw  function that uses lstat  instead of stat , to prevent it 
from following symbolic links. 

Note that on Linux, the ftw  function uses lstat , so it doesn't display this behavior. 

A loop of this form is easy to remove. We are able to unlink  the file foo/testdir , as unlink  does not follow 
a symbolic link. But if we create a hard link that forms a loop of this type, its removal is much more difficult. 
This is why the link  function will not form a hard link to a directory unless the process has superuser 
privileges. 

Indeed, Rich Stevens did this on his own system as an experiment while writing the original version of this 
section. The file system got corrupted and the normal fsck (1) utility couldn't fix things. The deprecated tools 
clri (8) and dcheck (8) were needed to repair the file system. 

The need for hard links to directories has long since passed. With symbolic links and the mkdir  function, there 
is no longer any need for users to create hard links to directories. 

When we open a file, if the pathname passed to open  specifies a symbolic link, open  follows the link to the 
specified file. If the file pointed to by the symbolic link doesn't exist, open  returns an error saying that it can't 
open the file. This can confuse users who aren't familiar with symbolic links. For example, 

     $ ln -s /no/such/file myfile            create  a symbolic link 
     $ ls myfile 
     myfile                                  ls say s it's there 
     $ cat myfile                            so we try to look at it 
     cat: myfile: No such file or directory 
     $ ls -l myfile                          try -l  option 
     lrwxrwxrwx 1 sar        13 Jan 22 00:26 myfile  -> /no/such/file 

 

The file myfile  does exist, yet cat  says there is no such file, because myfile  is a symbolic link and the file 
pointed to by the symbolic link doesn't exist. The -l  option to ls  gives us two hints: the first character is an l , 
which means a symbolic link, and the sequence ->  also indicates a symbolic link. The ls  command has another 
option (-F ) that appends an at-sign to filenames that are symbolic links, which can help spot symbolic links in a 
directory listing without the -l  option. 

Figure 4.18. Symbolic link testdir that creates a loop 

 



4.17. symlink and readlink Functions 

A symbolic link is created with the symlink  function. 

#include <unistd.h> 
 
int symlink(const char *actualpath, const char *sym path);  

 

Returns: 0 if OK, –1 on error 

 

A new directory entry, sympath, is created that points to actualpath. It is not required that actualpath exist when 
the symbolic link is created. (We saw this in the example at the end of the previous section.) Also, actualpath 
and sympath need not reside in the same file system. 

Because the open  function follows a symbolic link, we need a way to open the link itself and read the name in 
the link. The readlink  function does this. 

#include <unistd.h> 
 
ssize_t readlink(const char* restrict pathname,  
 char *restrict buf, 
                 size_t bufsize); 

 

Returns: number of bytes read if OK, –1 on error 

 

This function combines the actions of open , read , and close . If the function is successful, it returns the number 
of bytes placed into buf. The contents of the symbolic link that are returned in buf are not null terminated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.18. File Times 

Three time fields are maintained for each file. Their purpose is summarized in Figure 4.19. 

Figure 4.19. The three time values associated with each file 

Field Description Example ls(1) option 

st_atime  last-access time of file data read  -u  

st_mtime  last-modification time of file data write  default 

st_ctime  last-change time of i-node status chmod, chown  -c   

 

Note the difference between the modification time (st_mtime ) and the changed-status time (st_ctime ). The 
modification time is when the contents of the file were last modified. The changed-status time is when the i-
node of the file was last modified. In this chapter, we've described many operations that affect the i-node 
without changing the actual contents of the file: changing the file access permissions, changing the user ID, 
changing the number of links, and so on. Because all the information in the i-node is stored separately from the 
actual contents of the file, we need the changed-status time, in addition to the modification time. 

Note that the system does not maintain the last-access time for an i-node. This is why the functions access  and 
stat , for example, don't change any of the three times. 

The access time is often used by system administrators to delete files that have not been accessed for a certain 
amount of time. The classic example is the removal of files named a.out  or core  that haven't been accessed in 
the past week. The find (1) command is often used for this type of operation. 

The modification time and the changed-status time can be used to archive only those files that have had their 
contents modified or their i-node modified. 

The ls  command displays or sorts only on one of the three time values. By default, when invoked with either 
the -l  or the -t  option, it uses the modification time of a file. The -u  option causes it to use the access time, and 
the -c  option causes it to use the changed-status time. 

Figure 4.20 summarizes the effects of the various functions that we've described on these three times. Recall 
from Section 4.14 that a directory is simply a file containing directory entries: filenames and associated i-node 
numbers. Adding, deleting, or modifying these directory entries can affect the three times associated with that 
directory. This is why Figure 4.20 contains one column for the three times associated with the file or directory 
and another column for the three times associated with the parent directory of the referenced file or directory. 
For example, creating a new file affects the directory that contains the new file, and it affects the i-node for the 
new file. Reading or writing a file, however, affects only the i-node of the file and has no effect on the directory. 
(The mkdir  and rmdir  functions are covered in Section 4.20. The utime  function is covered in the next section. 
The six exec  functions are described in Section 8.10. We describe the mkfifo  and pipe  functions in Chapter 
15.) 

Figure 4.20. Effect of various functions on the access, modification, and changed-status times 



Referenced file or 
directory 

Parent directory of 
referenced file or directory Function 

a m c a m c 

Section Note 

chmod, fchmod      •       4.9   

chown , fchown      •       4.11   

creat  • • •   • • 3.4 O_CREAT new file 

creat    • •       3.4 O_TRUNC existing file 

exec  •           8.10   

lchown      •       4.11   

link      •   • • 4.15 parent of second 
argument 

mkdir  • • •   • • 4.20   

mkfifo  • • •   • • 15.5   

open  • • •   • • 3.3 O_CREAT new file 

open    • •       3.3 O_TRUNC existing file 

pipe  • • •       15.2   

read  •           3.7   

remove      •   • • 4.15 remove file = unlink  

remove          • • 4.15 remove directory = 
rmdir  

rename      •   • • 4.15 for both arguments 

rmdir          • • 4.20   

truncate , 
ftruncate  

  • •       4.13   

unlink      •   • • 4.15   

utime  • • •       4.19   

write    • •       3.8   

 
 
 
 
 
 
 
 
 
 



4.19. utime Function 

The access time and the modification time of a file can be changed with the utime  function. 

#include <utime.h> 
 
int utime(const char *pathname, const struct utimbu f *times);  

 

Returns: 0 if OK, –1 on error 

 

The structure used by this function is 

    struct utimbuf { 
      time_t actime;    /* access time */ 
      time_t modtime;   /* modification time */ 
    } 

 

The two time values in the structure are calendar times, which count seconds since the Epoch, as described in 
Section 1.10. 

The operation of this function, and the privileges required to execute it, depend on whether the times argument 
is NULL. 

• If times is a null pointer, the access time and the modification time are both set to the current time. To 
do this, either the effective user ID of the process must equal the owner ID of the file, or the process 
must have write permission for the file. 

• If times is a non-null pointer, the access time and the modification time are set to the values in the 
structure pointed to by times. For this case, the effective user ID of the process must equal the owner ID 
of the file, or the process must be a superuser process. Merely having write permission for the file is not 
adequate. 

Note that we are unable to specify a value for the changed-status time, st_ctime —the time the i-node was last 
changed—as this field is automatically updated when the utime  function is called. 

On some versions of the UNIX System, the touch (1) command uses this function. Also, the standard archive 
programs, tar (1) and cpio (1), optionally call utime  to set the times for a file to the time values saved when the 
file was archived. 

Example 

The program shown in Figure 4.21 truncates files to zero length using the O_TRUNC option of the open  function, 
but does not change their access time or modification time. To do this, the program first obtains the times with 
the stat  function, truncates the file, and then resets the times with the utime  function. 

We can demonstrate the program in Figure 4.21 with the following script: 

     $ ls -l changemod times           look at size s and last-modification times 
     -rwxrwxr-x 1 sar   15019   Nov  18  18:53  cha ngemod 
     -rwxrwxr-x 1 sar   16172   Nov  19  20:05  tim es 
     $ ls -lu changemod times          look at last -access times 



     -rwxrwxr-x 1 sar   15019   Nov  18  18:53  cha ngemod 
     -rwxrwxr-x 1 sar   16172   Nov  19  20:05  tim es 
     $ date                            print today' s date 
     Thu Jan 22 06:55:17 EST 2004 
     $ ./a.out changemod times         run the prog ram in Figure 4.21  
     $ ls -l changemod times           and check th e results 
     -rwxrwxr-x 1 sar        0  Nov  18  18:53  cha ngemod 
     -rwxrwxr-x 1 sar        0  Nov  19  20:05  tim es 
     $ ls -lu changemod times          check the la st-access times also 
     -rwxrwxr-x 1 sar        0  Nov  18  18:53  cha ngemod 
     -rwxrwxr-x 1 sar        0  Nov  19  20:05  tim es 
     $ ls -lc changemod times          and the chan ged-status times 
     -rwxrwxr-x 1 sar        0  Jan  22  06:55  cha ngemod 
     -rwxrwxr-x 1 sar        0  Jan  22  06:55  tim es 
 
 
      

 

As we expect, the last-modification times and the last-access times are not changed. The changed-status times, 
however, are changed to the time that the program was run. 

Figure 4.21. Example of utime function 

#include "apue.h" 
#include <fcntl.h> 
#include <utime.h> 
 
int 
main(int argc, char *argv[]) 
{ 
    int             i, fd; 
    struct stat     statbuf; 
    struct utimbuf  timebuf; 
 
    for (i = 1; i < argc; i++) { 
        if (stat(argv[i], &statbuf) < 0) { /* fetch  current times */ 
            err_ret("%s: stat error", argv[i]); 
            continue; 
        } 
        if ((fd = open(argv[i], O_RDWR | O_TRUNC)) < 0) { /* truncate */  
            err_ret("%s: open error", argv[i]); 
            continue; 
 
        }  
        close(fd); 
        timebuf.actime  =  statbuf.st_atime; 
        timebuf.modtime =  statbuf.st_mtime; 
        if (utime(argv[i], &timebuf) < 0) {     /* reset times */ 
            err_ret("%s: utime error", argv[i]); 
            continue; 
        } 
    } 
    exit(0); 
}      

 
 
 
 
 



4.20. mkdir and rmdir Functions 

Directories are created with the mkdir  function and deleted with the rmdir  function. 

#include <sys/stat.h> 
 
int mkdir(const char *pathname, mode_t mode);  

 

Returns: 0 if OK, –1 on error 

 

This function creates a new, empty directory. The entries for dot and dot-dot are automatically created. The 
specified file access permissions, mode, are modified by the file mode creation mask of the process. 

A common mistake is to specify the same mode as for a file: read and write permissions only. But for a 
directory, we normally want at least one of the execute bits enabled, to allow access to filenames within the 
directory. (See Exercise 4.16.) 

The user ID and group ID of the new directory are established according to the rules we described in Section 
4.6. 

Solaris 9 and Linux 2.4.22 also have the new directory inherit the set-group-ID bit from the parent directory. 
This is so that files created in the new directory will inherit the group ID of that directory. With Linux, the file 
system implementation determines whether this is supported. For example, the ext2  and ext3  file systems 
allow this behavior to be controlled by an option to the mount (1) command. With the Linux implementation of 
the UFS file system, however, the behavior is not selectable; it inherits the set-group-ID bit to mimic the 
historical BSD implementation, where the group ID of a directory is inherited from the parent directory. 

BSD-based implementations don't propagate the set-group-ID bit; they simply inherit the group ID as a matter 
of policy. Because FreeBSD 5.2.1 and Mac OS X 10.3 are based on 4.4BSD, they do not require this inheriting 
of the set-group-ID bit. On these platforms, newly created files and directories always inherit the group ID of 
the parent directory, regardless of the set-group-ID bit. 

Earlier versions of the UNIX System did not have the mkdir  function. It was introduced with 4.2BSD and 
SVR3. In the earlier versions, a process had to call the mknod function to create a new directory. But use of the 
mknod function was restricted to superuser processes. To circumvent this, the normal command that created a 
directory, mkdir (1), had to be owned by root with the set-user-ID bit on. To create a directory from a process, 
the mkdir (1) command had to be invoked with the system (3) function. 

An empty directory is deleted with the rmdir  function. Recall that an empty directory is one that contains 
entries only for dot and dot-dot. 

#include <unistd.h> 
 
int rmdir(const char *pathname);  

 

Returns: 0 if OK, –1 on error 

 



If the link count of the directory becomes 0 with this call, and if no other process has the directory open, then 
the space occupied by the directory is freed. If one or more processes have the directory open when the link 
count reaches 0, the last link is removed and the dot and dot-dot entries are removed before this function returns. 
Additionally, no new files can be created in the directory. The directory is not freed, however, until the last 
process closes it. (Even though some other process has the directory open, it can't be doing much in the 
directory, as the directory had to be empty for the rmdir  function to succeed.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.21. Reading Directories 

Directories can be read by anyone who has access permission to read the directory. But only the kernel can 
write to a directory, to preserve file system sanity. Recall from Section 4.5 that the write permission bits and 
execute permission bits for a directory determine if we can create new files in the directory and remove files 
from the directory—they don't specify if we can write to the directory itself. 

The actual format of a directory depends on the UNIX System implementation and the design of the file system. 
Earlier systems, such as Version 7, had a simple structure: each directory entry was 16 bytes, with 14 bytes for 
the filename and 2 bytes for the i-node number. When longer filenames were added to 4.2BSD, each entry 
became variable length, which means that any program that reads a directory is now system dependent. To 
simplify this, a set of directory routines were developed and are part of POSIX.1. Many implementations 
prevent applications from using the read  function to access the contents of directories, thereby further isolating 
applications from the implementation-specific details of directory formats. 

#include <dirent.h> 
 
DIR *opendir(const char *pathname); 

 

Returns: pointer if OK, NULL on error 

struct dirent *readdir(DIR *dp); 

 

Returns: pointer if OK, NULL at end of directory or error 

void rewinddir(DIR *dp); 
 
int closedir(DIR *dp); 

 

Returns: 0 if OK, –1 on error 

long telldir(DIR *dp); 

 

Returns: current location in directory associated with dp  

void seekdir(DIR *dp, long loc); 

 

 

The telldir  and seekdir  functions are not part of the base POSIX.1 standard. They are XSI extensions in the 
Single UNIX Specifications, so all conforming UNIX System implementations are expected to provide them. 

Recall our use of several of these functions in the program shown in Figure 1.3, our bare-bones implementation 
of the ls  command. 

The dirent  structure defined in the file <dirent.h>  is implementation dependent. Implementations define the 
structure to contain at least the following two members: 

      struct dirent { 
        ino_t d_ino;                  /* i-node num ber */ 
        char  d_name[NAME_MAX + 1];   /* null-termi nated filename */ 
      } 



 

The d_ino  entry is not defined by POSIX.1, since it's an implementation feature, but it is defined in the XSI 
extension to POSIX.1. POSIX.1 defines only the d_name entry in this structure. 

Note that NAME_MAX is not a defined constant with Solaris—its value depends on the file system in which the 
directory resides, and its value is usually obtained from the fpathconf  function. A common value for NAME_MAX 
is 255. (Recall Figure 2.14.) Since the filename is null terminated, however, it doesn't matter how the array 
d_name is defined in the header, because the array size doesn't indicate the length of the filename. 

The DIR structure is an internal structure used by these six functions to maintain information about the directory 
being read. The purpose of the DIR structure is similar to that of the FILE  structure maintained by the standard 
I/O library, which we describe in Chapter 5. 

The pointer to a DIR structure that is returned by opendir  is then used with the other five functions. The 
opendir  function initializes things so that the first readdir  reads the first entry in the directory. The ordering 
of entries within the directory is implementation dependent and is usually not alphabetical. 

Example 

We'll use these directory routines to write a program that traverses a file hierarchy. The goal is to 
produce the count of the various types of files that we show in Figure 4.4. The program shown in 
Figure 4.22 takes a single argument—the starting pathname—and recursively descends the hierarchy 
from that point. Solaris provides a function, ftw (3), that performs the actual traversal of the 
hierarchy, calling a user-defined function for each file. The problem with this function is that it calls 
the stat  function for each file, which causes the program to follow symbolic links. For example, if 
we start at the root and have a symbolic link named /lib  that points to /usr/lib , all the files in the 
directory /usr/lib  are counted twice. To correct this, Solaris provides an additional function, 
nftw (3), with an option that stops it from following symbolic links. Although we could use nftw , 
we'll write our own simple file walker to show the use of the directory routines. 

In the Single UNIX Specification, both ftw  and nftw  are included in the XSI extensions to the base 
POSIX.1 specification. Implementations are included in Solaris 9 and Linux 2.4.22. BSD-based 
systems have a different function, fts (3), that provides similar functionality. It is available in 
FreeBSD 5.2.1, Mac OS X 10.3, and Linux 2.4.22. 

We have provided more generality in this program than needed. This was done to illustrate the ftw  
function. For example, the function myfunc  always returns 0, even though the function that calls it is 
prepared to handle a nonzero return. 

Figure 4.22. Recursively descend a directory hierarchy, counting file types 

#include "apue.h" 
#include <dirent.h> 
#include <limits.h> 
 
/* function type that is called for each filename * / 
typedef int Myfunc(const char *, const struct stat *, int); 
 
static Myfunc     myfunc; 
static int        myftw(char *, Myfunc *); 
static int        dopath(Myfunc *); 
 



static long nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot; 
 
int 
main(int argc, char *argv[]) 
{ 
    int     ret; 
 
    if (argc != 2) 
        err_quit("usage: ftw <starting-pathname>");  
 
    ret = myftw(argv[1], myfunc);        /* does it  all */ 
 
    ntot = nreg + ndir + nblk + nchr + nfifo + nsli nk + nsock; 
    if (ntot == 0) 
        ntot = 1;       /* avoid divide by 0; print  0 for all counts */ 
    printf("regular files  = %7ld, %5.2f %%\n", nre g, 
      nreg*100.0/ntot); 
    printf("directories    = %7ld, %5.2f %%\n", ndi r, 
      ndir*100.0/ntot); 
    printf("block special  = %7ld, %5.2f %%\n", nbl k, 
      nblk*100.0/ntot); 
    printf("char special   = %7ld, %5.2f %%\n", nch r, 
      nchr*100.0/ntot); 
    printf("FIFOs          = %7ld, %5.2f %%\n", nfi fo, 
      nfifo*100.0/ntot); 
    printf("symbolic links = %7ld, %5.2f %%\n", nsl ink, 
      nslink*100.0/ntot); 
    printf("sockets        = %7ld, %5.2f %%\n", nso ck, 
      nsock*100.0/ntot); 
 
    exit(ret); 
} 
 
/* 
 * Descend through the hierarchy, starting at "path name". 
 * The caller's func() is called for every file. 
 */ 
#define FTW_F   1       /* file other than director y */ 
#define FTW_D   2       /* directory */ 
#define FTW_DNR 3       /* directory that can't be read */ 
#define FTW_NS  4       /* file that we can't stat */ 
 
static char *fullpath;      /* contains full pathna me for every file */ 
 
static int                  /* we return whatever f unc() returns */ 
myftw(char *pathname, Myfunc *func) 
{ 
 
    int len; 
    fullpath = path_alloc(&len);    /* malloc's for  PATH_MAX+1 bytes */ 
                                        /* ( Figure 2.15 ) */ 
    strncpy(fullpath, pathname, len);       /* prot ect against */ 
    fullpath[len-1] = 0;                    /* buff er overrun */ 
 
    return(dopath(func)); 
} 
/* 
 * Descend through the hierarchy, starting at "full path". 
 * If "fullpath" is anything other than a directory , we lstat() it, 
 * call func(), and return. For a directory, we cal l ourself 
 * recursively for each name in the directory. 
 */ 



static int                  /* we return whatever f unc() returns */ 
dopath(Myfunc* func) 
{ 
    struct stat     statbuf; 
    struct dirent   *dirp; 
    DIR             *dp; 
    int             ret; 
    char            *ptr; 
 
    if (lstat(fullpath, &statbuf) < 0) /* stat erro r */ 
        return(func(fullpath, &statbuf, FTW_NS)); 
    if (S_ISDIR(statbuf.st_mode) == 0) /* not a dir ectory */ 
        return(func(fullpath, &statbuf, FTW_F)); 
 
     /* 
      * It's a directory. First call func() for the  directory, 
      * then process each filename in the directory . 
      */ 
    if ((ret = func(fullpath, &statbuf, FTW_D)) != 0) 
        return(ret); 
 
    ptr = fullpath + strlen(fullpath);      /* poin t to end of fullpath */  
    *ptr++ = '/'; 
    *ptr = 0; 
 
     if ((dp = opendir(fullpath)) == NULL)     /* c an't read directory */ 
         return(func(fullpath, &statbuf, FTW_DNR));  
 
     while ((dirp = readdir(dp)) != NULL) { 
         if (strcmp(dirp->d_name, ".") == 0 || 
             strcmp(dirp->d_name, "..") == 0) 
                 continue;        /* ignore dot and  dot-dot */ 
 
         strcpy(ptr, dirp->d_name);   /* append nam e after slash */ 
 
         if ((ret = dopath(func)) != 0)          /*  recursive */ 
              break; /* time to leave */ 
     } 
     ptr[-1] = 0;    /* erase everything from slash  onwards */ 
 
     if (closedir(dp) < 0) 
         err_ret("can't close directory %s", fullpa th); 
 
     return(ret); 
} 
 
static int 
myfunc(const char *pathname, const struct stat *sta tptr, int type) 
{ 
    switch (type) { 
    case FTW_F: 
        switch (statptr->st_mode & S_IFMT) { 
        case S_IFREG:    nreg++;    break; 
        case S_IFBLK:    nblk++;    break; 
        case S_IFCHR:    nchr++;    break; 
        case S_IFIFO:    nfifo++;   break; 
        case S_IFLNK:    nslink++;  break; 
        case S_IFSOCK:   nsock++;   break; 
        case S_IFDIR: 
            err_dump("for S_IFDIR for %s", pathname ); 
                    /* directories should have type  = FTW_D */ 
        } 



        break; 
 
    case FTW_D: 
        ndir++; 
        break; 
 
    case FTW_DNR: 
        err_ret("can't read directory %s", pathname ); 
        break; 
 
    case FTW_NS: 
        err_ret("stat error for %s", pathname); 
        break; 
 
    default: 
        err_dump("unknown type %d for pathname %s",  type, pathname); 
    } 
 
    return(0); 
} 

For additional information on descending through a file system and the use of this technique in many standard 
UNIX System commands—find , ls , tar , and so on—refer to Fowler, Korn, and Vo [1989]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.22. chdir, fchdir, and getcwd Functions 

Every process has a current working directory. This directory is where the search for all relative pathnames 
starts (all pathnames that do not begin with a slash). When a user logs in to a UNIX system, the current working 
directory normally starts at the directory specified by the sixth field in the /etc/passwd  file—the user's home 
directory. The current working directory is an attribute of a process; the home directory is an attribute of a login 
name. 

We can change the current working directory of the calling process by calling the chdir  or fchdir  functions. 

#include <unistd.h> 
 
int chdir(const char *pathname);  
 
int fchdir(int filedes); 

 

Both return: 0 if OK, –1 on error 

 

We can specify the new current working directory either as a pathname or through an open file descriptor. 

The fchdir  function is not part of the base POSIX.1 specification. It is an XSI extension in the Single UNIX 
Specification. All four platforms discussed in this book support fchdir . 

Example 

Because it is an attribute of a process, the current working directory cannot affect processes that invoke the 
process that executes the chdir . (We describe the relationship between processes in more detail in Chapter 8.) 
This means that the program in Figure 4.23 doesn't do what we might expect. 

If we compile it and call the executable mycd, we get the following: 

    $ pwd 
    /usr/lib 
    $ mycd 
    chdir to /tmp succeeded 
    $ pwd 
    /usr/lib 

 

The current working directory for the shell that executed the mycd program didn't change. This is a side effect of 
the way that the shell executes programs. Each program is run in a separate process, so the current working 
directory of the shell is unaffected by the call to chdir  in the program. For this reason, the chdir  function has 
to be called directly from the shell, so the cd  command is built into the shells. 

Figure 4.23. Example of chdir function 

#include "apue.h" 
 
int 
main(void) 
{ 
 



     if (chdir("/tmp") < 0) 
         err_sys("chdir failed"); 
     printf("chdir to /tmp succeeded\n");  
     exit(0); 
} 

 

Because the kernel must maintain knowledge of the current working directory, we should be able to fetch its 
current value. Unfortunately, the kernel doesn't maintain the full pathname of the directory. Instead, the kernel 
keeps information about the directory, such as a pointer to the directory's v-node. 

What we need is a function that starts at the current working directory (dot) and works its way up the directory 
hierarchy, using dot-dot to move up one level. At each directory, the function reads the directory entries until it 
finds the name that corresponds to the i-node of the directory that it just came from. Repeating this procedure 
until the root is encountered yields the entire absolute pathname of the current working directory. Fortunately, a 
function is already provided for us that does this task. 

#include <unistd.h> 
 
char *getcwd(char *buf, size_t size);  

 

Returns: buf if OK, NULL on error 

 

We must pass to this function the address of a buffer, buf, and its size (in bytes). The buffer must be large 
enough to accommodate the absolute pathname plus a terminating null byte, or an error is returned. (Recall the 
discussion of allocating space for a maximum-sized pathname in Section 2.5.5.) 

Some older implementations of getcwd  allow the first argument buf to be NULL. In this case, the function calls 
malloc  to allocate size number of bytes dynamically. This is not part of POSIX.1 or the Single UNIX 
Specification and should be avoided. 

Example 

The program in Figure 4.24 changes to a specific directory and then calls getcwd  to print the working directory. 
If we run the program, we get 

    $ ./a.out 
    cwd = /var/spool/uucppublic 
    $ ls -l /usr/spool 
    lrwxrwxrwx 1 root 12 Jan 31 07:57 /usr/spool ->  ../var/spool 

 

Note that chdir  follows the symbolic link—as we expect it to, from Figure 4.17—but when it goes up the 
directory tree, getcwd  has no idea when it hits the /var/spool  directory that it is pointed to by the symbolic 
link /usr/spool . This is a characteristic of symbolic links. 

Figure 4.24. Example of getcwd function 

  #include "apue.h" 
 
  int 



  main(void) 
  { 
 
      char    *ptr; 
      int     size; 
 
      if (chdir("/usr/spool/uucppublic") < 0) 
          err_sys("chdir failed"); 
 
      ptr = path_alloc(&size); /* our own function */  
      if (getcwd(ptr, size) == NULL) 
          err_sys("getcwd failed"); 
 
      printf("cwd = %s\n", ptr); 
      exit(0); 
  } 

The getcwd  function is useful when we have an application that needs to return to the location in the file system 
where it started out. We can save the starting location by calling getcwd  before we change our working 
directory. After we complete our processing, we can pass the pathname obtained from getcwd  to chdir  to 
return to our starting location in the file system. 

The fchdir  function provides us with an easy way to accomplish this task. Instead of calling getcwd , we can 
open  the current directory and save the file descriptor before we change to a different location in the file system. 
When we want to return to where we started, we can simply pass the file descriptor to fchdir . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4.23. Device Special Files 

The two fields st_dev  and st_rdev  are often confused. We'll need to use these fields in Section 18.9 when we 
write the ttyname  function. The rules are simple. 

• Every file system is known by its major and minor device numbers, which are encoded in the primitive 
system data type dev_t . The major number identifies the device driver and sometimes encodes which 
peripheral board to communicate with; the minor number identifies the specific subdevice. Recall from 
Figure 4.13 that a disk drive often contains several file systems. Each file system on the same disk drive 
would usually have the same major number, but a different minor number. 

• We can usually access the major and minor device numbers through two macros defined by most 
implementations: major  and minor . This means that we don't care how the two numbers are stored in a 
dev_t  object. 

Early systems stored the device number in a 16-bit integer, with 8 bits for the major number and 8 bits 
for the minor number. FreeBSD 5.2.1 and Mac OS X 10.3 use a 32-bit integer, with 8 bits for the major 
number and 24 bits for the minor number. On 32-bit systems, Solaris 9 uses a 32-bit integer for dev_t , 
with 14 bits designated as the major number and 18 bits designated as the minor number. On 64-bit 
systems, Solaris 9 represents dev_t  as a 64-bit integer, with 32 bits for each number. On Linux 2.4.22, 
although dev_t  is a 64-bit integer, currently the major and minor numbers are each only 8 bits. 

POSIX.1 states that the dev_t  type exists, but doesn't define what it contains or how to get at its 
contents. The macros major  and minor  are defined by most implementations. Which header they are 
defined in depends on the system. They can be found in <sys/types.h>  on BSD-based systems. Solaris 
defines them in <sys/mkdev.h> . Linux defines these macros in <sys/sysmacros.h> , which is included 
by <sys/types.h> . 

• The st_dev  value for every filename on a system is the device number of the file system containing that 
filename and its corresponding i-node. 

• Only character special files and block special files have an st_rdev  value. This value contains the 
device number for the actual device. 

Example 

The program in Figure 4.25 prints the device number for each command-line argument. Additionally, if the 
argument refers to a character special file or a block special file, the st_rdev  value for the special file is also 
printed. 

Running this program gives us the following output: 

      $ ./a.out / /home/sar /dev/tty[01] 
      /: dev = 3/3 
      /home/sar: dev = 3/4 
      /dev/tty0: dev = 0/7 (character) rdev = 4/0 
      /dev/tty1: dev = 0/7 (character) rdev = 4/1 
      $ mount                      which directorie s are mounted on which devices? 
      /dev/hda3 on / type ext2 (rw,noatime) 
      /dev/hda4 on /home type ext2 (rw,noatime) 
      $ ls -lL /dev/tty[01] /dev/hda[34] 
      brw-------  1 root       3,   3 Dec 31  1969 /dev/hda3 
      brw-------  1 root       3,   4 Dec 31  1969 /dev/hda4 
      crw-------  1 root       4,   0 Dec 31  1969 /dev/tty0 
      crw-------  1 root       4,   1 Jan 18 15:36 /dev/tty1 



 
 
      

 

The first two arguments to the program are directories (/  and /home/sar ), and the next two are the device 
names /dev/tty[01] . (We use the shell's regular expression language to shorten the amount of typing we need 
to do. The shell will expand the string /dev/tty[01]  to /dev/tty0 /dev/tty1 .) 

We expect the devices to be character special files. The output from the program shows that the root directory 
has a different device number than does the /home/sar  directory. This indicates that they are on different file 
systems. Running the mount (1) command verifies this. 

We then use ls  to look at the two disk devices reported by mount  and the two terminal devices. The two disk 
devices are block special files, and the two terminal devices are character special files. (Normally, the only 
types of devices that are block special files are those that can contain random-access file systems: disk drives, 
floppy disk drives, and CD-ROMs, for example. Some older versions of the UNIX System supported magnetic 
tapes for file systems, but this was never widely used.) 

Note that the filenames and i-nodes for the two terminal devices (st_dev ) are on device 0/7—the devfs  pseudo 
file system, which implements the /dev —but that their actual device numbers are 4/0 and 4/1. 

Figure 4.25. Print st_dev and st_rdev values 

#include "apue.h" 
#ifdef SOLARIS 
#include <sys/mkdev.h> 
#endif 
 
int 
main(int argc, char *argv[]) 
{ 
 
    int         i; 
    struct stat buf; 
 
    for (i = 1; i < argc; i++) { 
        printf("%s: ", argv[i]); 
        if (stat(argv[i], &buf) < 0) { 
            err_ret("stat error"); 
            continue; 
         } 
 
         printf("dev = %d/%d", major(buf.st_dev), m inor(buf.st_dev));  
         if (S_ISCHR(buf.st_mode) || S_ISBLK(buf.st _mode)) { 
             printf(" (%s) rdev = %d/%d", 
                     (S_ISCHR(buf.st_mode)) ? "char acter" : "block", 
                     major(buf.st_rdev), minor(buf. st_rdev)); 
 
         } 
         printf("\n"); 
    } 
 
    exit(0); 
 
}      

 



4.24. Summary of File Access Permission Bits 

We've covered all the file access permission bits, some of which serve multiple purposes. Figure 4.26 
summarizes all these permission bits and their interpretation when applied to a regular file and a directory. 

Figure 4.26. Summary of file access permission bits 

Constant Description Effect on regular file Effect on directory 

S_ISUID  set-user-ID set effective user ID on execution (not used) 

S_ISGID  set-group-ID if group-execute set then set effective group ID on 
execution; otherwise enable mandatory record 
locking (if supported) 

set group ID of new files 
created in directory to group ID 
of directory 

S_ISVTX sticky bit control caching of file contents (if supported) restrict removal and renaming 
of files in directory 

S_IRUSR user-read user permission to read file user permission to read 
directory entries 

S_IWUSR user-write user permission to write file user permission to remove and 
create files in directory 

S_IXUSR user-execute user permission to execute file user permission to search for 
given pathname in directory 

S_IRGRP group-read group permission to read file group permission to read 
directory entries 

S_IWGRP group-write group permission to write file group permission to remove and 
create files in directory 

S_IXGRP group-
execute 

group permission to execute file group permission to search for 
given pathname in directory 

S_IROTH other-read other permission to read file other permission to read 
directory entries 

S_IWOTH other-write other permission to write file other permission to remove and 
create files in directory 

S_IXOTH other-
execute 

other permission to execute file other permission to search for 
given pathname in directory 

 

The final nine constants can also be grouped into threes, since 

      S_IRWXU = S_IRUSR | S_IWUSR | S_IXUSR 
      S_IRWXG = S_IRGRP | S_IWGRP | S_IXGRP 
      S_IRWXO = S_IROTH | S_IWOTH | S_IXOTH 
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5.2. Streams and FILE Objects 

In Chapter 3, all the I/O routines centered around file descriptors. When a file is opened, a file descriptor is 
returned, and that descriptor is then used for all subsequent I/O operations. With the standard I/O library, the 
discussion centers around streams. (Do not confuse the standard I/O term stream with the STREAMS I/O 
system that is part of System V and standardized in the XSI STREAMS option in the Single UNIX 
Specification.) When we open or create a file with the standard I/O library, we say that we have associated a 
stream with the file. 

With the ASCII character set, a single character is represented by a single byte. With international character sets, 
a character can be represented by more than one byte. Standard I/O file streams can be used with single-byte 
and multibyte ("wide") character sets. A stream's orientation determines whether the characters that are read and 
written are single-byte or multibyte. Initially, when a stream is created, it has no orientation. If a multibyte I/O 
function (see <wchar.h> ) is used on a stream without orientation, the stream's orientation is set to wide-oriented. 
If a byte I/O function is used on a stream without orientation, the stream's orientation is set to byte-oriented. 
Only two functions can change the orientation once set. The freopen  function (discussed shortly) will clear a 
stream's orientation; the fwide  function can be used to set a stream's orientation. 

#include <stdio.h> 
#include <wchar.h> 
 
int fwide(FILE *fp, int mode); 

 

Returns: positive if stream is wide-oriented,  
negative if stream is byte-oriented,  

or 0 if stream has no orientation 

 

The fwide  function performs different tasks, depending on the value of the mode argument. 

• If the mode argument is negative, fwide  will try to make the specified stream byte-oriented. 
• If the mode argument is positive, fwide  will try to make the specified stream wide-oriented. 
• If the mode argument is zero, fwide  will not try to set the orientation, but will still return a value 

identifying the stream's orientation. 

Note that fwide  will not change the orientation of a stream that is already oriented. Also note that there is no 
error return. Consider what would happen if the stream is invalid. The only recourse we have is to clear errno  
before calling fwide  and check the value of errno  when we return. Throughout the rest of this book, we will 
deal only with byte-oriented streams. 

When we open a stream, the standard I/O function fopen  returns a pointer to a FILE  object. This object is 
normally a structure that contains all the information required by the standard I/O library to manage the stream: 
the file descriptor used for actual I/O, a pointer to a buffer for the stream, the size of the buffer, a count of the 
number of characters currently in the buffer, an error flag, and the like. 

Application software should never need to examine a FILE  object. To reference the stream, we pass its FILE  
pointer as an argument to each standard I/O function. Throughout this text, we'll refer to a pointer to a FILE  
object, the type FILE *  as a file pointer. 



Throughout this chapter, we describe the standard I/O library in the context of a UNIX system. As we 
mentioned, this library has already been ported to a wide variety of other operating systems. But to provide 
some insight about how this library can be implemented, we will talk about its typical implementation on a 
UNIX system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.3. Standard Input, Standard Output, and Standard Error 

Three streams are predefined and automatically available to a process: standard input, standard output, and 
standard error. These streams refer to the same files as the file descriptors STDIN_FILENO, STDOUT_FILENO, and 
STDERR_FILENO, which we mentioned in Section 3.2. 

These three standard I/O streams are referenced through the predefined file pointers stdin , stdout , and stderr . 
The file pointers are defined in the <stdio.h>  header. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.4. Buffering 

The goal of the buffering provided by the standard I/O library is to use the minimum number of read  and write  
calls. (Recall Figure 3.5, where we showed the amount of CPU time required to perform I/O using various 
buffer sizes.) Also, it tries to do its buffering automatically for each I/O stream, obviating the need for the 
application to worry about it. Unfortunately, the single aspect of the standard I/O library that generates the most 
confusion is its buffering. 

Three types of buffering are provided: 

1. Fully buffered. In this case, actual I/O takes place when the standard I/O buffer is filled. Files residing 
on disk are normally fully buffered by the standard I/O library. The buffer used is usually obtained by 
one of the standard I/O functions calling malloc  (Section 7.8) the first time I/O is performed on a stream. 

The term flush describes the writing of a standard I/O buffer. A buffer can be flushed automatically by 
the standard I/O routines, such as when a buffer fills, or we can call the function fflush  to flush a 
stream. Unfortunately, in the UNIX environment, flush means two different things. In terms of the 
standard I/O library, it means writing out the contents of a buffer, which may be partially filled. In terms 
of the terminal driver, such as the tcflush  function in Chapter 18, it means to discard the data that's 
already stored in a buffer. 

2. Line buffered. In this case, the standard I/O library performs I/O when a newline character is 
encountered on input or output. This allows us to output a single character at a time (with the standard 
I/O fputc  function), knowing that actual I/O will take place only when we finish writing each line. Line 
buffering is typically used on a stream when it refers to a terminal: standard input and standard output, 
for example. 

Line buffering comes with two caveats. First, the size of the buffer that the standard I/O library is using 
to collect each line is fixed, so I/O might take place if we fill this buffer before writing a newline. 
Second, whenever input is requested through the standard I/O library from either (a) an unbuffered 
stream or (b) a line-buffered stream (that requires data to be requested from the kernel), all line-buffered 
output streams are flushed. The reason for the qualifier on (b) is that the requested data may already be 
in the buffer, which doesn't require data to be read from the kernel. Obviously, any input from an 
unbuffered stream, item (a), requires data to be obtained from the kernel. 

3. Unbuffered. The standard I/O library does not buffer the characters. If we write 15 characters with the 
standard I/O fputs  function, for example, we expect these 15 characters to be output as soon as possible, 
probably with the write  function from Section 3.8. 

The standard error stream, for example, is normally unbuffered. This is so that any error messages are 
displayed as quickly as possible, regardless of whether they contain a newline. 

ISO C requires the following buffering characteristics. 

• Standard input and standard output are fully buffered, if and only if they do not refer to an interactive 
device. 

• Standard error is never fully buffered. 

This, however, doesn't tell us whether standard input and standard output can be unbuffered or line buffered if 
they refer to an interactive device and whether standard error should be unbuffered or line buffered. Most 
implementations default to the following types of buffering. 



• Standard error is always unbuffered. 
• All other streams are line buffered if they refer to a terminal device; otherwise, they are fully buffered. 

The four platforms discussed in this book follow these conventions for standard I/O buffering: standard 
error is unbuffered, streams open to terminal devices are line buffered, and all other streams are fully 
buffered. 

We explore standard I/O buffering in more detail in Section 5.12 and Figure 5.11. 

If we don't like these defaults for any given stream, we can change the buffering by calling either of the 
following two functions. 

#include <stdio.h> 
 
void setbuf(FILE *restrict fp, char *restrict buf);  
 
int setvbuf(FILE *restrict fp, char *restrict buf, 
 int mode, 
            size_t size); 

 

Returns: 0 if OK, nonzero on error 

 

These functions must be called after the stream has been opened (obviously, since each requires a valid file 
pointer as its first argument) but before any other operation is performed on the stream. 

With setbuf , we can turn buffering on or off. To enable buffering, buf must point to a buffer of length BUFSIZ, 
a constant defined in <stdio.h> . Normally, the stream is then fully buffered, but some systems may set line 
buffering if the stream is associated with a terminal device. To disable buffering, we set buf to NULL. 

With setvbuf , we specify exactly which type of buffering we want. This is done with the mode argument: 

_IOFBF  fully buffered 

_IOLBF  line buffered 

_IONBF unbuffered 

 

If we specify an unbuffered stream, the buf and size arguments are ignored. If we specify fully buffered or line 
buffered, buf and size can optionally specify a buffer and its size. If the stream is buffered and buf is NULL, the 
standard I/O library will automatically allocate its own buffer of the appropriate size for the stream. By 
appropriate size, we mean the value specified by the constant BUFSIZ. 

Some C library implementations use the value from the st_blksize  member of the stat  structure (see Section 
4.2) to determine the optimal standard I/O buffer size. As we will see later in this chapter, the GNU C library 
uses this method. 

Figure 5.1 summarizes the actions of these two functions and their various options. 



Figure 5.1. Summary of the setbuf and setvbuf functions 

Function mode buf Buffer and length Type of buffering 

non-null user buf of length BUFSIZ fully buffered or line buffered 
setbuf    

NULL (no buffer) unbuffered 

non-null user buf of length size 
_IOLBF  

NULL system buffer of appropriate length 
fully buffered 

non-null user buf of length size 
_IOFBF  

NULL system buffer of appropriate length 
line buffered 

setvbuf  

_IONBF (ignored) (no buffer) unbuffered 

 

Be aware that if we allocate a standard I/O buffer as an automatic variable within a function, we have to close 
the stream before returning from the function. (We'll discuss this more in Section 7.8.) Also, some 
implementations use part of the buffer for internal bookkeeping, so the actual number of bytes of data that can 
be stored in the buffer is less than size. In general, we should let the system choose the buffer size and 
automatically allocate the buffer. When we do this, the standard I/O library automatically releases the buffer 
when we close the stream. 

At any time, we can force a stream to be flushed. 

#include <stdio.h> 
 
int fflush(FILE *fp); 

 

Returns: 0 if OK, EOF on error 

 

This function causes any unwritten data for the stream to be passed to the kernel. As a special case, if fp is NULL, 
this function causes all output streams to be flushed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.5. Opening a Stream 

The following three functions open a standard I/O stream. 

#include <stdio.h> 
 
FILE *fopen(const char *restrict pathname, const ch ar *restrict type); 
 
FILE *freopen(const char *restrict pathname, const char *restrict type,  
              FILE *restrict fp); 
 
FILE *fdopen(int filedes, const char *type); 

 

All three return: file pointer if OK, NULL on error 

 

The differences in these three functions are as follows. 

1. The fopen  function opens a specified file. 
2. The freopen  function opens a specified file on a specified stream, closing the stream first if it is already 

open. If the stream previously had an orientation, freopen  clears it. This function is typically used to 
open a specified file as one of the predefined streams: standard input, standard output, or standard error. 

3. The fdopen  function takes an existing file descriptor, which we could obtain from the open , dup , dup2 , 
fcntl , pipe , socket , socketpair , or accept  functions, and associates a standard I/O stream with the 
descriptor. This function is often used with descriptors that are returned by the functions that create 
pipes and network communication channels. Because these special types of files cannot be opened with 
the standard I/O fopen  function, we have to call the device-specific function to obtain a file descriptor, 
and then associate this descriptor with a standard I/O stream using fdopen . 

Both fopen  and freopen  are part of ISO C; fdopen  is part of POSIX.1, since ISO C doesn't deal with 
file descriptors. 

ISO C specifies 15 values for the type argument, shown in Figure 5.2. 

Figure 5.2. The type argument for opening a standard I/O stream 

type Description 

r  or rb  open for reading 

w or wb truncate to 0 length or create for writing 

a or ab append; open for writing at end of file, or create for writing 

r+  or r+b  or rb+  open for reading and writing 

w+ or w+b or wb+ truncate to 0 length or create for reading and writing 

a+ or a+b  or ab+  open or create for reading and writing at end of file 

 



Using the character b as part of the type allows the standard I/O system to differentiate between a text file and a 
binary file. Since the UNIX kernel doesn't differentiate between these types of files, specifying the character b 
as part of the type has no effect. 

With fdopen , the meanings of the type argument differ slightly. The descriptor has already been opened, so 
opening for write does not truncate the file. (If the descriptor was created by the open  function, for example, 
and the file already existed, the O_TRUNC flag would control whether or not the file was truncated. The fdopen  
function cannot simply truncate any file it opens for writing.) Also, the standard I/O append mode cannot create 
the file (since the file has to exist if a descriptor refers to it). 

When a file is opened with a type of append, each write will take place at the then current end of file. If multiple 
processes open the same file with the standard I/O append mode, the data from each process will be correctly 
written to the file. 

Versions of fopen  from Berkeley before 4.4BSD and the simple version shown on page 177 of Kernighan and 
Ritchie [1988] do not handle the append mode correctly. These versions do an lseek  to the end of file when the 
stream is opened. To correctly support the append mode when multiple processes are involved, the file must be 
opened with the O_APPEND flag, which we discussed in Section 3.3. Doing an lseek  before each write won't 
work either, as we discussed in Section 3.11. 

When a file is opened for reading and writing (the plus sign in the type), the following restrictions apply. 

• Output cannot be directly followed by input without an intervening fflush , fseek , fsetpos ,or rewind . 
• Input cannot be directly followed by output without an intervening fseek , fsetpos ,or rewind , or an 

input operation that encounters an end of file. 

We can summarize the six ways to open a stream from Figure 5.2 in Figure 5.3. 

Figure 5.3. Six ways to open a standard I/O stream 

Restriction r w a r+ w+ a+ 

file must already exist •     •     

previous contents of file discarded   •     •   

stream can be read •     • • • 

stream can be written   • • • • • 

stream can be written only at end     •     • 

 

Note that if a new file is created by specifying a type of either w or a, we are not able to specify the file's access 
permission bits, as we were able to do with the open  function and the creat  function in Chapter 3. 

By default, the stream that is opened is fully buffered, unless it refers to a terminal device, in which case it is 
line buffered. Once the stream is opened, but before we do any other operation on the stream, we can change the 
buffering if we want to, with the setbuf  or setvbuf  functions from the previous section. 

An open stream is closed by calling fclose . 



#include <stdio.h> 
 
int fclose(FILE *fp); 

 

Returns: 0 if OK, EOF on error 

 

Any buffered output data is flushed before the file is closed. Any input data that may be buffered is discarded. If 
the standard I/O library had automatically allocated a buffer for the stream, that buffer is released. 

When a process terminates normally, either by calling the exit  function directly or by returning from the main  
function, all standard I/O streams with unwritten buffered data are flushed, and all open standard I/O streams 
are closed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.6. Reading and Writing a Stream 

Once we open a stream, we can choose from among three types of unformatted I/O: 

1. Character-at-a-time I/O. We can read or write one character at a time, with the standard I/O functions 
handling all the buffering, if the stream is buffered. 

2. Line-at-a-time I/O. If we want to read or write a line at a time, we use fgets  and fputs . Each line is 
terminated with a newline character, and we have to specify the maximum line length that we can handle 
when we call fgets . We describe these two functions in Section 5.7. 

3. Direct I/O. This type of I/O is supported by the fread  and fwrite  functions. For each I/O operation, we 
read or write some number of objects, where each object is of a specified size. These two functions are 
often used for binary files where we read or write a structure with each operation. We describe these two 
functions in Section 5.9. 

The term direct I/O, from the ISO C standard, is known by many names: binary I/O, object-at-a-time I/O, 
record-oriented I/O, or structure-oriented I/O. 

(We describe the formatted I/O functions, such as printf  and scanf , in Section 5.11.) 

Input Functions 

Three functions allow us to read one character at a time. 

#include <stdio.h> 
 
int getc(FILE *fp); 
 
int fgetc(FILE *fp); 
 
int getchar(void); 

 

All three return: next character if OK, EOF on end of file or error 

 

The function getchar  is defined to be equivalent to getc(stdin) . The difference between the first two 
functions is that getc  can be implemented as a macro, whereas fgetc  cannot be implemented as a macro. This 
means three things. 

1. The argument to getc  should not be an expression with side effects. 
2. Since fgetc  is guaranteed to be a function, we can take its address. This allows us to pass the address of 

fgetc  as an argument to another function. 
3. Calls to fgetc  probably take longer than calls to getc , as it usually takes more time to call a function. 

These three functions return the next character as an unsigned char  converted to an int . The reason for 
specifying unsigned is so that the high-order bit, if set, doesn't cause the return value to be negative. The reason 
for requiring an integer return value is so that all possible character values can be returned, along with an 
indication that either an error occurred or the end of file has been encountered. The constant EOF in <stdio.h>  
is required to be a negative value. Its value is often –1. This representation also means that we cannot store the 
return value from these three functions in a character variable and compare this value later against the constant 
EOF. 



Note that these functions return the same value whether an error occurs or the end of file is reached. To 
distinguish between the two, we must call either ferror  or feof . 

#include <stdio.h> 
 
int ferror(FILE *fp); 
 
int feof(FILE *fp); 

 

Both return: nonzero (true) if condition is true, 0 (false) otherwise 

void clearerr(FILE * fp); 

 

In most implementations, two flags are maintained for each stream in the FILE  object: 

• An error flag 
• An end-of-file flag 

Both flags are cleared by calling clearerr . 

After reading from a stream, we can push back characters by calling ungetc . 

#include <stdio.h> 
 
int ungetc(int c, FILE *fp);  

 

Returns: c if OK, EOF on error 

 

The characters that are pushed back are returned by subsequent reads on the stream in reverse order of their 
pushing. Be aware, however, that although ISO C allows an implementation to support any amount of pushback, 
an implementation is required to provide only a single character of pushback. We should not count on more 
than a single character. 

The character that we push back does not have to be the same character that was read. We are not able to push 
back EOF. But when we've reached the end of file, we can push back a character. The next read will return that 
character, and the read after that will return EOF. This works because a successful call to ungetc  clears the end-
of-file indication for the stream. 

Pushback is often used when we're reading an input stream and breaking the input into words or tokens of some 
form. Sometimes we need to peek at the next character to determine how to handle the current character. It's 
then easy to push back the character that we peeked at, for the next call to getc  to return. If the standard I/O 
library didn't provide this pushback capability, we would have to store the character in a variable of our own, 
along with a flag telling us to use this character instead of calling getc  the next time we need a character. 

When we push characters back with ungetc , they don't get written back to the underlying file or device. They 
are kept incore in the standard I/O library's buffer for the stream. 



Output Functions 

We'll find an output function that corresponds to each of the input functions that we've already described. 

#include <stdio.h> 
 
int putc(int c, FILE *fp); 
 
int fputc(int c, FILE *fp); 
 
int putchar(int c); 

 

All three return: c if OK, EOF on error 

 

Like the input functions, putchar(c)  is equivalent to putc(c, stdout) , and putc  can be implemented as a 
macro, whereas fputc  cannot be implemented as a macro. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.7. Line-at-a-Time I/O 

Line-at-a-time input is provided by the following two functions. 

#include <stdio.h> 
 
char *fgets(char *restrict buf, int n, FILE *restri ct fp);  
 
char *gets(char *buf); 

 

Both return: buf  if OK, NULL on end of file or error 

 

Both specify the address of the buffer to read the line into. The gets  function reads from standard input, 
whereas fgets  reads from the specified stream. 

With fgets , we have to specify the size of the buffer, n. This function reads up through and including the next 
newline, but no more than n–1 characters, into the buffer. The buffer is terminated with a null byte. If the line, 
including the terminating newline, is longer than n–1, only a partial line is returned, but the buffer is always null 
terminated. Another call to fgets  will read what follows on the line. 

The gets  function should never be used. The problem is that it doesn't allow the caller to specify the buffer size. 
This allows the buffer to overflow, if the line is longer than the buffer, writing over whatever happens to follow 
the buffer in memory. For a description of how this flaw was used as part of the Internet worm of 1988, see the 
June 1989 issue (vol. 32, no. 6) of Communications of the ACM . An additional difference with gets  is that it 
doesn't store the newline in the buffer, as does fgets . 

This difference in newline handling between the two functions goes way back in the evolution of the UNIX 
System. Even the Version 7 manual (1979) states "gets  deletes a newline, fgets  keeps it, all in the name of 
backward compatibility." 

Even though ISO C requires an implementation to provide gets , use fgets  instead. 

Line-at-a-time output is provided by fputs  and puts . 

#include <stdio.h> 
 
int fputs(const char *restrict str, FILE *restrict fp);  
 
int puts(const char *str); 

 

Both return: non-negative value if OK, EOF on error 

 

The function fputs  writes the null-terminated string to the specified stream. The null byte at the end is not 
written. Note that this need not be line-at-a-time output, since the string need not contain a newline as the last 
non-null character. Usually, this is the case—the last non-null character is a newline—but it's not required. 

The puts  function writes the null-terminated string to the standard output, without writing the null byte. But 
puts  then writes a newline character to the standard output. 



The puts  function is not unsafe, like its counterpart gets . Nevertheless, we'll avoid using it, to prevent having 
to remember whether it appends a newline. If we always use fgets  and fputs , we know that we always have to 
deal with the newline character at the end of each line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.8. Standard I/O Efficiency 

Using the functions from the previous section, we can get an idea of the efficiency of the standard I/O system. 
The program in Figure 5.4 is like the one in Figure 3.4: it simply copies standard input to standard output, using 
getc  and putc . These two routines can be implemented as macros. 

Figure 5.4. Copy standard input to standard output using getc and putc 

#include "apue.h" 
 
int 
main(void) 
{ 
     int     c; 
 
     while ((c = getc(stdin)) != EOF)  
         if (putc(c, stdout) == EOF) 
             err_sys("output error");  
 
     if (ferror(stdin)) 
         err_sys("input error"); 
 
     exit(0); 
} 

 

We can make another version of this program that uses fgetc  and fputc , which should be functions, not 
macros. (We don't show this trivial change to the source code.) 

Finally, we have a version that reads and writes lines, shown in Figure 5.5. 

Figure 5.5. Copy standard input to standard output using fgets and fputs 

#include "apue.h" 
 
int 
main(void) 
{ 
    char    buf[MAXLINE]; 
 
    while (fgets(buf, MAXLINE, stdin) != NULL)  
        if (fputs(buf, stdout) == EOF) 
            err_sys("output error"); 
 
    if (ferror(stdin)) 
        err_sys("input error"); 
 
    exit(0); 
} 

 

Note that we do not close the standard I/O streams explicitly in Figure 5.4 or Figure 5.5. Instead, we know that 
the exit  function will flush any unwritten data and then close all open streams. (We'll discuss this in Section 
8.5.) It is interesting to compare the timing of these three programs with the timing data from Figure 3.5. We 
show this data when operating on the same file (98.5 MB with 3 million lines) in Figure 5.6. 



Figure 5.6. Timing results using standard I/O routines 

Function User CPU 
(seconds) 

System CPU 
(seconds) 

Clock time 
(seconds) 

Bytes of program 
text 

best time from Figure 3.5 0.01 0.18 6.67   

fgets , fputs  2.59 0.19 7.15 139 

getc , putc  10.84 0.27 12.07 120 

fgetc , fputc  10.44 0.27 11.42 120 

single byte time from 
Figure 3.5 

124.89 161.65 288.64   

 

For each of the three standard I/O versions, the user CPU time is larger than the best read  version from Figure 
3.5, because the character-at-a-time standard I/O versions have a loop that is executed 100 million times, and 
the loop in the line-at-a-time version is executed 3,144,984 times. In the read  version, its loop is executed only 
12,611 times (for a buffer size of 8,192). This difference in clock times is from the difference in user times and 
the difference in the times spent waiting for I/O to complete, as the system times are comparable. 

The system CPU time is about the same as before, because roughly the same number of kernel requests are 
being made. Note that an advantage of using the standard I/O routines is that we don't have to worry about 
buffering or choosing the optimal I/O size. We do have to determine the maximum line size for the version that 
uses fgets , but that's easier than trying to choose the optimal I/O size. 

The final column in Figure 5.6 is the number of bytes of text space—the machine instructions generated by the 
C compiler—for each of the main  functions. We can see that the version using getc  and putc  takes the same 
amount of space as the one using the fgetc  and fputc  functions. Usually, getc  and putc  are implemented as 
macros, but in the GNU C library implementation, the macro simply expands to a function call. 

The version using line-at-a-time I/O is almost twice as fast as the version using character-at-a-time I/O. If the 
fgets  and fputs  functions are implemented using getc  and putc  (see Section 7.7 of Kernighan and Ritchie 
[1988], for example), then we would expect the timing to be similar to the getc  version. Actually, we might 
expect the line-at-a-time version to take longer, since we would be adding the overhead of 200 million extra 
function calls to the existing 6 million ones. What is happening with this example is that the line-at-a-time 
functions are implemented using memccpy(3). Often, the memccpy function is implemented in assembler instead 
of C, for efficiency. 

The last point of interest with these timing numbers is that the fgetc  version is so much faster than the 
BUFFSIZE=1 version from Figure 3.5. Both involve the same number of function calls—about 200 million—yet 
the fgetc  version is almost 12 times faster in user CPU time and slightly more than 25 times faster in clock 
time. The difference is that the version using read  executes 200 million function calls, which in turn execute 
200 million system calls. With the fgetc  version, we still execute 200 million function calls, but this ends up 
being only 25,222 system calls. System calls are usually much more expensive than ordinary function calls. 

As a disclaimer, you should be aware that these timing results are valid only on the single system they were run 
on. The results depend on many implementation features that aren't the same on every UNIX system. 
Nevertheless, having a set of numbers such as these, and explaining why the various versions differ, helps us 



understand the system better. From this section and Section 3.9, we've learned that the standard I/O library is 
not much slower than calling the read  and write  functions directly. The approximate cost that we've seen is 
about 0.11 seconds of CPU time to copy a megabyte of data using getc  and putc . For most nontrivial 
applications, the largest amount of the user CPU time is taken by the application, not by the standard I/O 
routines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.9. Binary I/O 

The functions from Section 5.6 operated with one character at a time, and the functions from Section 5.7 
operated with one line at a time. If we're doing binary I/O, we often would like to read or write an entire 
structure at a time. To do this using getc  or putc , we have to loop through the entire structure, one byte at a 
time, reading or writing each byte. We can't use the line-at-a-time functions, since fputs  stops writing when it 
hits a null byte, and there might be null bytes within the structure. Similarly, fgets  won't work right on input if 
any of the data bytes are nulls or newlines. Therefore, the following two functions are provided for binary I/O. 

#include <stdio.h> 
 
size_t fread(void *restrict ptr, size_t size, 
 size_t nobj, 
             FILE *restrict fp); 
 
size_t fwrite(const void *restrict ptr, size_t size , size_t nobj,  
              FILE *restrict fp); 

 

Both return: number of objects read or written 

 

These functions have two common uses: 

1. Read or write a binary array. For example, to write elements 2 through 5 of a floating-point array, we 
could write 

2.      float data[10]; 
3.   
4.      if (fwrite(&data[2], sizeof(float), 4, fp) != 4 ) 
5.          err_sys("fwrite error"); 

 

Here, we specify size as the size of each element of the array and nobj as the number of elements. 

6. Read or write a structure. For example, we could write 
7.      struct { 
8.        short   count; 
9.        long    total; 
10.        char    name[NAMESIZE]; 
11.      } item; 
12.   
13.      if (fwrite(&item, sizeof(item), 1, fp) != 1) 
14.          err_sys("fwrite error"); 

 

Here, we specify size as the size of structure and nobj as one (the number of objects to write). 

The obvious generalization of these two cases is to read or write an array of structures. To do this, size would be 
the sizeof  the structure, and nobj would be the number of elements in the array. 



Both fread  and fwrite  return the number of objects read or written. For the read case, this number can be less 
than nobj if an error occurs or if the end of file is encountered. In this case ferror  or feof  must be called. For 
the write case, if the return value is less than the requested nobj, an error has occurred. 

A fundamental problem with binary I/O is that it can be used to read only data that has been written on the same 
system. This was OK many years ago, when all the UNIX systems were PDP-11s, but the norm today is to have 
heterogeneous systems connected together with networks. It is common to want to write data on one system and 
process it on another. These two functions won't work, for two reasons. 

1. The offset of a member within a structure can differ between compilers and systems, because of 
different alignment requirements. Indeed, some compilers have an option allowing structures to be 
packed tightly, to save space with a possible runtime performance penalty, or aligned accurately, to 
optimize runtime access of each member. This means that even on a single system, the binary layout of a 
structure can differ, depending on compiler options. 

2. The binary formats used to store multibyte integers and floating-point values differ among machine 
architectures. 

We'll touch on some of these issues when we discuss sockets in Chapter 16. The real solution for exchanging 
binary data among different systems is to use a higher-level protocol. Refer to Section 8.2 of Rago [1993] or 
Section 5.18 of Stevens, Fenner, & Rudoff [2004] for a description of some techniques various network 
protocols use to exchange binary data. 

We'll return to the fread  function in Section 8.14 when we'll use it to read a binary structure, the UNIX process 
accounting records. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.10. Positioning a Stream 

There are three ways to position a standard I/O stream: 

1. The two functions ftell  and fseek . They have been around since Version 7, but they assume that a 
file's position can be stored in a long integer. 

2. The two functions ftello  and fseeko . They were introduced in the Single UNIX Specification to allow 
for file offsets that might not fit in a long integer. They replace the long integer with the off_t  data type. 

3. The two functions fgetpos  and fsetpos . They were introduced by ISO C. They use an abstract data 
type, fpos_t , that records a file's position. This data type can be made as big as necessary to record a 
file's position. 

Portable applications that need to move to non-UNIX systems should use fgetpos  and fsetpos . 

#include <stdio.h> 
 
long ftell(FILE *fp); 

 

Returns: current file position indicator if OK, –1L on error 

int fseek(FILE *fp, long offset, int whence); 

 

Returns: 0 if OK, nonzero on error 

void rewind(FILE *fp); 

 

 

For a binary file, a file's position indicator is measured in bytes from the beginning of the file. The value 
returned by ftell  for a binary file is this byte position. To position a binary file using fseek , we must specify a 
byte offset and how that offset is interpreted. The values for whence are the same as for the lseek  function 
from Section 3.6: SEEK_SET means from the beginning of the file, SEEK_CUR means from the current file 
position, and SEEK_END means from the end of file. ISO C doesn't require an implementation to support the 
SEEK_END specification for a binary file, as some systems require a binary file to be padded at the end with 
zeros to make the file size a multiple of some magic number. Under the UNIX System, however, SEEK_END is 
supported for binary files. 

For text files, the file's current position may not be measurable as a simple byte offset. Again, this is mainly 
under non-UNIX systems that might store text files in a different format. To position a text file, whence has to 
be SEEK_SET, and only two values for offset are allowed: 0—meaning rewind the file to its beginning—or a 
value that was returned by ftell  for that file. A stream can also be set to the beginning of the file with the 
rewind  function. 

The ftello  function is the same as ftell , and the fseeko  function is the same as fseek , except that the type 
of the offset is off_t  instead of long . 

#include <stdio.h> 
 
off_t ftello(FILE *fp); 

 



#include <stdio.h> 
 
off_t ftello(FILE *fp); 

 

Returns: current file position indicator if OK, (off_t) –1 on error 

int fseeko(FILE *fp, off_t offset, int whence); 

 

Returns: 0 if OK, nonzero on error 

 

Recall the discussion of the off_t  data type in Section 3.6. Implementations can define the off_t  type to be 
larger than 32 bits. 

As we mentioned, the fgetpos  and fsetpos  functions were introduced by the ISO C standard. 

#include <stdio.h> 
 
int fgetpos(FILE *restrict fp, fpos_t *restrict pos );  
 
int fsetpos(FILE *fp, const fpos_t *pos); 

 

Both return: 0 if OK, nonzero on error 

 

The fgetpos  function stores the current value of the file's position indicator in the object pointed to by pos. 
This value can be used in a later call to fsetpos  to reposition the stream to that location. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.11. Formatted I/O 

Formatted Output 

Formatted output is handled by the four printf  functions. 

#include <stdio.h> 
 
int printf(const char *restrict format, ...); 
 
int fprintf(FILE *restrict fp, const char *restrict  format, ...); 

 

Both return: number of characters output if OK, negative value if output error 

int sprintf(char *restrict buf, const char *restric t format, ...); 
 
int snprintf(char *restrict buf, size_t n, 
             const char *restrict format, ...); 

 

Both return: number of characters stored in array if OK, negative value if encoding error 

 

The printf  function writes to the standard output, fprintf  writes to the specified stream, and sprintf  places 
the formatted characters in the array buf. The sprintf  function automatically appends a null byte at the end of 
the array, but this null byte is not included in the return value. 

Note that it's possible for sprintf  to overflow the buffer pointed to by buf. It's the caller's responsibility to 
ensure that the buffer is large enough. Because this can lead to buffer-overflow problems, snprintf  was 
introduced. With it, the size of the buffer is an explicit parameter; any characters that would have been written 
past the end of the buffer are discarded instead. The snprintf  function returns the number of characters that 
would have been written to the buffer had it been big enough. As with sprintf , the return value doesn't include 
the terminating null byte. If snprintf  returns a positive value less than the buffer size n, then the output was 
not truncated. If an encoding error occurs, snprintf  returns a negative value. 

The format specification controls how the remainder of the arguments will be encoded and ultimately displayed. 
Each argument is encoded according to a conversion specification that starts with a percent sign (%). Except for 
the conversion specifications, other characters in the format are copied unmodified. A conversion specification 
has four optional components, shown in square brackets below: 

    %[flags][fldwidth][precision][lenmodifier]convt ype 

 

The flags are summarized in Figure 5.7. 

Figure 5.7. The flags component of a conversion specification 

Flag Description 

-  left-justify the output in the field 



Figure 5.7. The flags component of a conversion specification 

Flag Description 

+ always display sign of a signed conversion 

(space) prefix by a space if no sign is generated 

# convert using alternate form (include 0x prefix for hex format, for example) 

0 prefix with leading zeros instead of padding with spaces 

 

The fldwidth  component specifies a minimum field width for the conversion. If the conversion results in fewer 
characters, it is padded with spaces. The field width is a non-negative decimal integer or an asterisk. 

The precision  component specifies the minimum number of digits to appear for integer conversions, the 
minimum number of digits to appear to the right of the decimal point for floating-point conversions, or the 
maximum number of bytes for string conversions. The precision is a period (.) followed by a optional non-
negative decimal integer or an asterisk. 

Both the field width and precision can be an asterisk. In this case, an integer argument specifies the value to be 
used. The argument appears directly before the argument to converted. 

The lenmodifier  component specifies the size of the argument. Possible values are summarized in Figure 5.8. 

Figure 5.8. The length modifier component of a conversion specification 

Length modifier Description 

hh signed or unsigned char   

h signed or unsigned short   

l  signed or unsigned long  or wide character 

ll  signed or unsigned long long   

j  intmax_t  or uintmax_t   

z  size_t   

t  ptrdiff_t  

L long double   

 

The convtype  component is not optional. It controls how the argument is interpreted. The various conversion 
types are summarized in Figure 5.9. 

Figure 5.9. The conversion type component of a conversion specification 



Conversion type Description 

d,i  signed decimal 

o unsigned octal 

u unsigned decimal 

x,X  unsigned hexadecimal 

f,F  double  floating-point number 

e,E  double  floating-point number in exponential format 

g,G  interpreted as f, F, e,  or E,  depending on value converted 

a,A  double  floating-point number in hexadecimal exponential format 

c  character (with l  length modifier, wide character) 

s  string (with l  length modifier, wide character string) 

p pointer to a void   

n pointer to a signed integer into which is written the number of characters written so far 

% a % character 

C wide character (an XSI extension, equivalent to lc ) 

S wide character string (an XSI extension, equivalent to ls ) 

 

The following four variants of the printf  family are similar to the previous four, but the variable argument list 
(... ) is replaced with arg. 

#include <stdarg.h> 
#include <stdio.h> 
 
int vprintf(const char *restrict format, va_list ar g); 
 
int vfprintf(FILE *restrict fp, const char *restric t format, 
             va_list arg); 

 

Both return: number of characters output if OK, negative value if output error 

int vsprintf(char *restrict buf, const char *restri ct format, 
             va_list arg); 
 
int vsnprintf(char *restrict buf, size_t n, 
              const char *restrict format, va_list arg); 

 

Both return: number of characters stored in array if OK, negative value if encoding error 

 

We use the vsnprintf  function in the error routines in Appendix B. 



Refer to Section 7.3 of Kernighan and Ritchie [1988] for additional details on handling variable-length 
argument lists with ISO Standard C. Be aware that the variable-length argument list routines provided with ISO 
C—the <stdarg.h>  header and its associated routines—differ from the <varargs.h>  routines that were 
provided with older UNIX systems. 

Formatted Input 

Formatted input is handled by the three scanf  functions. 

#include <stdio.h> 
 
int scanf(const char *restrict format, ...); 
 
int fscanf(FILE *restrict fp, const char *restrict format, ...); 
 
int sscanf(const char *restrict buf, const char *re strict format,  
           ...); 

 

All three return: number of input items assigned,  
EOF if input error or end of file before any conversion 

 

The scanf  family is used to parse an input string and convert character sequences into variables of specified 
types. The arguments following the format contain the addresses of the variables to initialize with the results of 
the conversions. 

The format specification controls how the arguments are converted for assignment. The percent sign (%) 
indicates the start of a conversion specification. Except for the conversion specifications and white space, other 
characters in the format have to match the input. If a character doesn't match, processing stops, leaving the 
remainder of the input unread. 

There are three optional components to a conversion specification, shown in square brackets below: 

    %[*][fldwidth][lenmodifier]convtype 

 

The optional leading asterisk is used to suppress conversion. Input is converted as specified by the rest of the 
conversion specification, but the result is not stored in an argument. 

The fldwidth  component specifies the maximum field width in characters. The lenmodifier  component 
specifies the size of the argument to be initialized with the result of the conversion. The same length modifiers 
supported by the printf  family of functions are supported by the scanf  family of functions (see Figure 5.8 for 
a list of the length modifiers). 

The convtype  field is similar to the conversion type field used by the printf  family, but there are some 
differences. One difference is that results that are stored in unsigned types can optionally be signed on input. 
For example, –1 will scan as 4294967295 into an unsigned integer. Figure 5.10 summarizes the conversion 
types supported by the scanf  family of functions. 



Figure 5.10. The conversion type component of a conversion specification 

Conversion  
type 

Description 

d signed decimal, base 10 

i  signed decimal, base determined by format of input 

o unsigned octal (input optionally signed) 

u unsigned decimal, base 10 (input optionally signed) 

x  unsigned hexadecimal (input optionally signed) 

a,A,e,E,f,F,g,G  floating-point number 

c  character (with l  length modifier, wide character) 

s  string (with l  length modifier, wide character string) 

[  matches a sequence of listed characters, ending with ]   

[^  matches all characters except the ones listed, ending with ]   

p pointer to a void   

n pointer to a signed integer into which is written the number of characters read so far 

% a % character 

C wide character (an XSI extension, equivalent to lc ) 

S wide character string (an XSI extension, equivalent to ls ) 

 

As with the printf  family, the scanf  family also supports functions that use variable argument lists as 
specified by <stdarg.h> . 

#include <stdarg.h> 
#include <stdio.h> 
 
int vscanf(const char *restrict format, va_list arg ); 
 
int vfscanf(FILE *restrict fp, const char *restrict  format, 
            va_list arg); 
 
int vsscanf(const char *restrict buf, const char *r estrict format,  
            va_list arg); 

 

All three return: number of input items assigned,  
EOF if input error or end of file before any conversion 

 

Refer to your UNIX system manual for additional details on the scanf  family of functions. 



5.12. Implementation Details 

As we've mentioned, under the UNIX System, the standard I/O library ends up calling the I/O routines that we 
described in Chapter 3. Each standard I/O stream has an associated file descriptor, and we can obtain the 
descriptor for a stream by calling fileno . 

Note that fileno  is not part of the ISO C standard, but an extension supported by POSIX.1. 

#include <stdio.h> 
 
int fileno(FILE *fp); 

 

Returns: the file descriptor associated with the stream 

 

We need this function if we want to call the dup  or fcntl  functions, for example. 

To look at the implementation of the standard I/O library on your system, start with the header <stdio.h> . This 
will show how the FILE  object is defined, the definitions of the per-stream flags, and any standard I/O routines, 
such as getc , that are defined as macros. Section 8.5 of Kernighan and Ritchie [1988] has a sample 
implementation that shows the flavor of many implementations on UNIX systems. Chapter 12 of Plauger [1992] 
provides the complete source code for an implementation of the standard I/O library. The implementation of the 
GNU standard I/O library is also publicly available. 

Example 

The program in Figure 5.11 prints the buffering for the three standard streams and for a stream that is associated 
with a regular file. 

Note that we perform I/O on each stream before printing its buffering status, since the first I/O operation usually 
causes the buffers to be allocated for a stream. The structure members _IO_file_flags , _IO_buf_base , and 
_IO_buf_end  and the constants _IO_UNBUFFERED and _IO_LINE_BUFFERED are defined by the GNU standard 
I/O library used on Linux. Be aware that other UNIX systems may have different implementations of the 
standard I/O library. 

If we run the program in Figure 5.11 twice, once with the three standard streams connected to the terminal and 
once with the three standard streams redirected to files, we get the following result: 

    $ ./a.out                       stdin, stdout, and stderr connected to terminal 
    enter any character 
                                    we type a newli ne 
    one line to standard error 
    stream = stdin, line buffered, buffer size = 10 24 
    stream = stdout, line buffered, buffer size = 1 024 
    stream = stderr, unbuffered, buffer size = 1 
    stream = /etc/motd, fully buffered, buffer size  = 4096 
    $ ./a.out < /etc/termcap > std.out 2> std.err 
                                    run it again wi th all three streams redirected 
 
    $ cat std.err 
    one line to standard error 
    $ cat std.out 
    enter any character 



    stream = stdin, fully buffered, buffer size = 4 096 
    stream = stdout, fully buffered, buffer size = 4096 
    stream = stderr, unbuffered, buffer size = 1 
    stream = /etc/motd, fully buffered, buffer size  = 4096 
 

We can see that the default for this system is to have standard input and standard output line buffered when 
they're connected to a terminal. The line buffer is 1,024 bytes. Note that this doesn't restrict us to 1,024-byte 
input and output lines; that's just the size of the buffer. Writing a 2,048-byte line to standard output will require 
two write  system calls. When we redirect these two streams to regular files, they become fully buffered, with 
buffer sizes equal to the preferred I/O size—the st_blksize  value from the stat  structure—for the file system. 
We also see that the standard error is always unbuffered, as it should be, and that a regular file defaults to fully 
buffered. 

Figure 5.11. Print buffering for various standard I/O streams 

 
#include "apue.h" 
 
void    pr_stdio(const char *, FILE *); 
 
int 
main(void) 
{ 
    FILE    *fp; 
 
    fputs("enter any character\n", stdout); 
    if (getchar() == EOF) 
        err_sys("getchar error"); 
    fputs("one line to standard error\n", stderr); 
 
    pr_stdio("stdin",  stdin); 
    pr_stdio("stdout", stdout); 
    pr_stdio("stderr", stderr); 
 
    if ((fp = fopen("/etc/motd", "r")) == NULL) 
        err_sys("fopen error"); 
    if (getc(fp) == EOF) 
        err_sys("getc error"); 
    pr_stdio("/etc/motd", fp); 
    exit(0); 
} 
 
void 
pr_stdio(const char *name, FILE *fp) 
{ 
    printf("stream = %s, ", name); 
 
    /* 
     * The following is nonportable. 
     */ 
    if (fp->_IO_file_flags & _IO_UNBUFFERED) 
        printf("unbuffered"); 
    else if (fp->_IO_file_flags & _IO_LINE_BUF) 
        printf("line buffered"); 
    else /* if neither of above */ 
        printf("fully buffered"); 
    printf(", buffer size = %d\n", fp->_IO_buf_end - fp->_IO_buf_base);  
}      

 



5.13. Temporary Files 

The ISO C standard defines two functions that are provided by the standard I/O library to assist in creating 
temporary files. 

#include <stdio.h> 
 
char *tmpnam(char *ptr); 

 

Returns: pointer to unique pathname 

FILE *tmpfile(void); 

 

Returns: file pointer if OK, NULL on error 

 

The tmpnam function generates a string that is a valid pathname and that is not the same name as an existing file. 
This function generates a different pathname each time it is called, up to TMP_MAX times. TMP_MAX is defined in 
<stdio.h> . 

Although ISO C defines TMP_MAX, the C standard requires only that its value be at least 25. The Single UNIX 
Specification, however, requires that XSI-conforming systems support a value of at least 10,000. Although this 
minimum value allows an implementation to use four digits (0000–9999), most implementations on UNIX 
systems use lowercase or uppercase characters. 

If ptr is NULL, the generated pathname is stored in a static area, and a pointer to this area is returned as the value 
of the function. Subsequent calls to tmpnam can overwrite this static area. (This means that if we call this 
function more than once and we want to save the pathname, we have to save a copy of the pathname, not a copy 
of the pointer.) If ptr is not NULL, it is assumed that it points to an array of at least L_tmpnam characters. (The 
constant L_tmpnam is defined in <stdio.h> .) The generated pathname is stored in this array, and ptr is also 
returned as the value of the function. 

The tmpfile  function creates a temporary binary file (type wb+) that is automatically removed when it is closed 
or on program termination. Under the UNIX System, it makes no difference that this file is a binary file. 

Example 

The program in Figure 5.12 demonstrates these two functions. 

If we execute the program in Figure 5.12, we get 

   $ ./a.out 
   /tmp/fileC1Icwc 
   /tmp/filemSkHSe 
   one line of output 

 

Figure 5.12. Demonstrate tmpnam and tmpfile functions 

#include "apue.h" 
 



int 
main(void) 
{ 
    char    name[L_tmpnam], line[MAXLINE]; 
    FILE    *fp; 
 
    printf("%s\n", tmpnam(NULL));       /* first te mp name */ 
 
    tmpnam(name);                       /* second t emp name */ 
    printf("%s\n", name); 
 
    if ((fp = tmpfile()) == NULL)       /* create t emp file */ 
        err_sys("tmpfile error"); 
    fputs("one line of output\n", fp);  /* write to  temp file */ 
    rewind(fp);                         /* then rea d it back */ 
    if (fgets(line, sizeof(line), fp) == NULL) 
        err_sys("fgets error"); 
    fputs(line, stdout);                /* print th e line we wrote */  
 
    exit(0); 
} 

 

The standard technique often used by the tmpfile  function is to create a unique pathname by calling tmpnam, 
then create the file, and immediately unlink  it. Recall from Section 4.15 that unlinking a file does not delete its 
contents until the file is closed. This way, when the file is closed, either explicitly or on program termination, 
the contents of the file are deleted. 

The Single UNIX Specification defines two additional functions as XSI extensions for dealing with temporary 
files. The first of these is the tempnam function. 

#include <stdio.h> 
 
char *tempnam(const char *directory, const char *pr efix);  

 

Returns: pointer to unique pathname 

 

The tempnam function is a variation of tmpnam that allows the caller to specify both the directory and a prefix 
for the generated pathname. There are four possible choices for the directory, and the first one that is true is 
used. 

1. If the environment variable TMPDIR is defined, it is used as the directory. (We describe environment 
variables in Section 7.9.) 

2. If directory is not NULL, it is used as the directory. 
3. The string P_tmpdir  in <stdio.h>  is used as the directory. 
4. A local directory, usually /tmp , is used as the directory. 

If the prefix argument is not NULL, it should be a string of up to five bytes to be used as the first characters of the 
filename. 

This function calls the malloc  function to allocate dynamic storage for the constructed pathname. We can free 
this storage when we're done with the pathname. (We describe the malloc  and free  functions in Section 7.8.) 



Example 

The program in Figure 5.13 shows the use of tempnam. 

Note that if either command-line argument—the directory or the prefix—begins with a blank, we pass a null 
pointer to the function. We can now show the various ways to use it: 

   $ ./a.out /home/sar TEMP                specify both directory and prefix 
   /home/sar/TEMPsf00zi 
   $ ./a.out " " PFX                       use defa ult directory: P_tmpdir 
   /tmp/PFXfBw7Gi 
   $ TMPDIR=/var/tmp ./a.out /usr/tmp " "  use envi ronment variable; no prefix 
   /var/tmp/file8fVYNi                     environm ent variable overrides directory 
   $ TMPDIR=/no/such/dir ./a.out /home/sar/tmp QQQ 
   /home/sar/tmp/QQQ98s8Ui                 invalid environment directory is ignored 
 
 
      

 

As the four steps that we listed earlier for specifying the directory name are tried in order, this function also 
checks whether the corresponding directory name makes sense. If the directory doesn't exist (the /no/such/dir  
example), that case is skipped, and the next choice for the directory name is tried. From this example, we can 
see that for this implementation, the P_tmpdir  directory is /tmp . The technique that we used to set the 
environment variable, specifying TMPDIR= before the program name, is used by the Bourne shell, the Korn shell, 
and bash . 

Figure 5.13. Demonstrate tempnam function 

#include "apue.h" 
 
int 
main(int argc, char *argv[]) 
{ 
    if (argc != 3) 
        err_quit("usage: a.out <directory> <prefix> "); 
 
    printf("%s\n", tempnam(argv[1][0] != ' ' ? argv [1] : NULL,  
      argv[2][0] != ' ' ?  argv[2] : NULL)); 
 
    exit(0); 
} 

 

The second function that XSI defines is mkstemp . It is similar to tmpfile , but returns an open file descriptor for 
the temporary file instead of a file pointer. 

#include <stdlib.h> 
 
int mkstemp(char *template); 

 

Returns: file descriptor if OK, –1 on error 

 



The returned file descriptor is open for reading and writing. The name of the temporary file is selected using the 
template string. This string is a pathname whose last six characters are set to XXXXXX. The function replaces 
these with different characters to create a unique pathname. If mkstemp  returns success, it modifies the template 
string to reflect the name of the temporary file. 

Unlike tmpfile , the temporary file created by mkstemp  is not removed automatically for us. If we want to 
remove it from the file system namespace, we need to unlink it ourselves. 

There is a drawback to using tmpnam and tempnam: a window exists between the time that the unique pathname 
is returned and the time that an application creates a file with that name. During this timing window, another 
process can create a file of the same name. The tempfile  and mkstemp  functions should be used instead, as 
they don't suffer from this problem. 

The mktemp function is similar to mkstemp , except that it creates a name suitable only for use as a temporary 
file. The mktemp function doesn't create a file, so it suffers from the same drawback as tmpnam and tempnam. 
The mktemp function is marked as a legacy interface in the Single UNIX Specification. Legacy interfaces might 
be withdrawn in future versions of the Single UNIX Specification, and so should be avoided. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.14. Alternatives to Standard I/O 

The standard I/O library is not perfect. Korn and Vo [1991] list numerous defects: some in the basic design, but 
most in the various implementations. 

One inefficiency inherent in the standard I/O library is the amount of data copying that takes place. When we 
use the line-at-a-time functions, fgets  and fputs , the data is usually copied twice: once between the kernel and 
the standard I/O buffer (when the corresponding read  or write  is issued) and again between the standard I/O 
buffer and our line buffer. The Fast I/O library [fio (3) in AT&T 1990a] gets around this by having the function 
that reads a line return a pointer to the line instead of copying the line into another buffer. Hume [1988] reports 
a threefold increase in the speed of a version of the grep (1) utility, simply by making this change. 

Korn and Vo [1991] describe another replacement for the standard I/O library: sfio. This package is similar in 
speed to the fio library and normally faster than the standard I/O library. The sfio package also provides some 
new features that aren't in the others: I/O streams generalized to represent both files and regions of memory, 
processing modules that can be written and stacked on an I/O stream to change the operation of a stream, and 
better exception handling. 

Krieger, Stumm, and Unrau [1992] describe another alternative that uses mapped files—the mmap function that 
we describe in Section 14.9. This new package is called ASI, the Alloc Stream Interface. The programming 
interface resembles the UNIX System memory allocation functions (malloc , realloc , and free , described in 
Section 7.8). As with the sfio package, ASI attempts to minimize the amount of data copying by using pointers. 

Several implementations of the standard I/O library are available in C libraries that were designed for systems 
with small memory footprints, such as embedded systems. These implementations emphasize modest memory 
requirements over portability, speed, or functionality. Two such implementations are the uClibc C library (see 
http://www.uclibc.org for more information) and the newlibc C library (http://sources.redhat.com/newlib). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5.15. Summary 

The standard I/O library is used by most UNIX applications. We have looked at all the functions provided by 
this library, as well as at some implementation details and efficiency considerations. Be aware of the buffering 
that takes place with this library, as this is the area that generates the most problems and confusion. 
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6.1. Introduction 

A UNIX system requires numerous data files for normal operation: the password file /etc/passwd  and the 
group file /etc/group  are two files that are frequently used by various programs. For example, the password 
file is used every time a user logs in to a UNIX system and every time someone executes an ls -l  command. 

Historically, these data files have been ASCII text files and were read with the standard I/O library. But for 
larger systems, a sequential scan through the password file becomes time consuming. We want to be able to 
store these data files in a format other than ASCII text, but still provide an interface for an application program 
that works with any file format. The portable interfaces to these data files are the subject of this chapter. We 
also cover the system identification functions and the time and date functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.2. Password File 

The UNIX System's password file, called the user database by POSIX.1, contains the fields shown in Figure 6.1. 
These fields are contained in a passwd  structure that is defined in <pwd.h> . 

Figure 6.1. Fields in /etc/passwd file 

Description 
struct passwd 

member POSIX.1 
FreeBSD 

5.2.1 
Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

user name char *pw_name  • • • • • 

encrypted password char *pw_passwd    • • • • 

numerical user ID uid_t pw_uid  • • • • • 

numerical group ID gid_t pw_gid  • • • • • 

comment field char *pw_gecos    • • • • 

initial working 
directory 

char *pw_dir  • • • • • 

initial shell (user 
program) 

char *pw_shell  • • • • • 

user access class char *pw_class    •   •   

next time to change 
password 

time_t pw_change    •   •   

account expiration time time_t pw_expire    •   •   

 

Note that POSIX.1 specifies only five of the ten fields in the passwd  structure. Most platforms support at least 
seven of the fields. The BSD-derived platforms support all ten. 

Historically, the password file has been stored in /etc/passwd  and has been an ASCII file. Each line contains 
the fields described in Figure 6.1, separated by colons. For example, four lines from the /etc/passwd  file on 
Linux could be 

    root:x:0:0:root:/root:/bin/bash 
    squid:x:23:23::/var/spool/squid:/dev/null 
    nobody:x:65534:65534:Nobody:/home:/bin/sh 
    sar:x:205:105:Stephen Rago:/home/sar:/bin/bash 

 

Note the following points about these entries. 

• There is usually an entry with the user name root . This entry has a user ID of 0 (the superuser). 
• The encrypted password field contains a single character as a placeholder where older versions of the 

UNIX System used to store the encrypted password. Because it is a security hole to store the encrypted 
password in a file that is readable by everyone, encrypted passwords are now kept elsewhere. We'll 
cover this issue in more detail in the next section when we discuss passwords. 



• Some fields in a password file entry can be empty. If the encrypted password field is empty, it usually 
means that the user does not have a password. (This is not recommended.) The entry for squid  has one 
blank field: the comment field. An empty comment field has no effect. 

• The shell field contains the name of the executable program to be used as the login shell for the user. 
The default value for an empty shell field is usually /bin/sh . Note, however, that the entry for squid  
has /dev/null  as the login shell. Obviously, this is a device and cannot be executed, so its use here is to 
prevent anyone from logging in to our system as user squid . 

Many services have separate user IDs for the daemon processes (Chapter 13) that help implement the 
service. The squid  entry is for the processes implementing the squid  proxy cache service. 

• There are several alternatives to using /dev/null  to prevent a particular user from logging in to a 
system. It is common to see /bin/false  used as the login shell. It simply exits with an unsuccessful 
(nonzero) status; the shell evaluates the exit status as false. It is also common to see /bin/true  used to 
disable an account. All it does is exit with a successful (zero) status. Some systems provide the nologin  
command. It prints a customizable error message and exits with a nonzero exit status. 

• The nobody  user name can be used to allow people to log in to a system, but with a user ID (65534) and 
group ID (65534) that provide no privileges. The only files that this user ID and group ID can access are 
those that are readable or writable by the world. (This assumes that there are no files specifically owned 
by user ID 65534 or group ID 65534, which should be the case.) 

• Some systems that provide the finger (1) command support additional information in the comment field. 
Each of these fields is separated by a comma: the user's name, office location, office phone number, and 
home phone number. Additionally, an ampersand in the comment field is replaced with the login name 
(capitalized) by some utilities. For example, we could have 

•     sar:x:205:105:Steve Rago, SF 5-121, 555-1111, 5 55-2222:/home/sar:/bin/sh 
•  
•  

      

 

Then we could use finger  to print information about Steve Rago. 

    $ finger -p sar 
    Login: sar                      Name: Steve Rag o 
    Directory: /home/sar            Shell: /bin/sh 
    Office:  SF 5-121,  555-1111    Home Phone:  55 5-2222 
    On since Mon Jan 19 03:57 (EST) on ttyv0 (messa ges off) 
    No Mail. 

 

Even if your system doesn't support the finger  command, these fields can still go into the comment 
field, since that field is simply a comment and not interpreted by system utilities. 

Some systems provide the vipw  command to allow administrators to edit the password file. The vipw  command 
serializes changes to the password file and makes sure that any additional files are consistent with the changes 
made. It is also common for systems to provide similar functionality through graphical user interfaces. 

POSIX.1 defines only two functions to fetch entries from the password file. These functions allow us to look up 
an entry given a user's login name or numerical user ID. 



#include <pwd.h> 
 
struct passwd *getpwuid(uid_t uid); 
 
struct passwd *getpwnam(const char *name);  

 

Both return: pointer if OK, NULL on error 

 

The getpwuid  function is used by the ls (1) program to map the numerical user ID contained in an i-node into a 
user's login name. The getpwnam  function is used by the login (1) program when we enter our login name. 

Both functions return a pointer to a passwd  structure that the functions fill in. This structure is usually a static  
variable within the function, so its contents are overwritten each time we call either of these functions. 

These two POSIX.1 functions are fine if we want to look up either a login name or a user ID, but some 
programs need to go through the entire password file. The following three functions can be used for this. 

#include <pwd.h> 
 
struct passwd *getpwent(void); 

 

Returns: pointer if OK, NULL on error or end of file 

void setpwent(void); 
 
void endpwent(void); 

 

 

These three functions are not part of the base POSIX.1 standard. They are defined as XSI extensions in the 
Single UNIX Specification. As such, all UNIX systems are expected to provide them. 

We call getpwent  to return the next entry in the password file. As with the two POSIX.1 functions, getpwent  
returns a pointer to a structure that it has filled in. This structure is normally overwritten each time we call this 
function. If this is the first call to this function, it opens whatever files it uses. There is no order implied when 
we use this function; the entries can be in any order, because some systems use a hashed version of the file 
/etc/passwd . 

The function setpwent  rewinds whatever files it uses, and endpwent  closes these files. When using getpwent , 
we must always be sure to close these files by calling endpwent  when we're through. Although getpwent  is 
smart enough to know when it has to open its files (the first time we call it), it never knows when we're through. 

Example 

Figure 6.2 shows an implementation of the function getpwnam . 

The call to setpwent  at the beginning is self-defense: we ensure that the files are rewound, in case 
the caller has already opened them by calling getpwent . The call to endpwent  when we're done is 
because neither getpwnam  nor getpwuid  should leave any of the files open. 



Figure 6.2. The getpwnam function 

#include <pwd.h> 
#include <stddef.h> 
#include <string.h> 
 
struct passwd * 
getpwnam(const char *name) 
{ 
    struct passwd  *ptr; 
 
    setpwent(); 
    while ((ptr = getpwent()) != NULL) 
        if (strcmp(name, ptr->pw_name) == 0) 
            break;      /* found a match */ 
    endpwent(); 
    return(ptr);    /*a ptr is NULL if no match fou nd */  
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.3. Shadow Passwords 

The encrypted password is a copy of the user's password that has been put through a one-way encryption 
algorithm. Because this algorithm is one-way, we can't guess the original password from the encrypted version. 

Historically, the algorithm that was used (see Morris and Thompson [1979]) always generated 13 printable 
characters from the 64-character set [a-zA-Z0-9./] . Some newer systems use an MD5 algorithm to encrypt 
passwords, generating 31 characters per encrypted password. (The more characters used to store the encrypted 
password, the more combinations there are, and the harder it will be to guess the password by trying all possible 
variations.) When we place a single character in the encrypted password field, we ensure that an encrypted 
password will never match this value. 

Given an encrypted password, we can't apply an algorithm that inverts it and returns the plaintext password. 
(The plaintext password is what we enter at the Password:  prompt.) But we could guess a password, run it 
through the one-way algorithm, and compare the result to the encrypted password. If user passwords were 
randomly chosen, this brute-force approach wouldn't be too successful. Users, however, tend to choose 
nonrandom passwords, such as spouse's name, street names, or pet names. A common experiment is for 
someone to obtain a copy of the password file and try guessing the passwords. (Chapter 4 of Garfinkel et al. 
[2003] contains additional details and history on passwords and the password encryption scheme used on UNIX 
systems.) 

To make it more difficult to obtain the raw materials (the encrypted passwords), systems now store the 
encrypted password in another file, often called the shadow password file. Minimally, this file has to contain the 
user name and the encrypted password. Other information relating to the password is also stored here (Figure 
6.3). 

Figure 6.3. Fields in /etc/shadow file 

Description struct spwd member 

user login name char *sp_namp   

encrypted password char *sp_pwdp   

days since Epoch of last password change int sp_lstchg   

days until change allowed int sp_min   

days before change required int sp_max   

days warning for expiration int sp_warn   

days before account inactive int sp_inact   

days since Epoch when account expires int sp_expire . 

reserved unsigned int sp_flag   

 

The only two mandatory fields are the user's login name and encrypted password. The other fields control how 
often the password is to change—known as "password aging"—and how long an account is allowed to remain 
active. 



The shadow password file should not be readable by the world. Only a few programs need to access encrypted 
passwords—login (1) and passwd (1), for example—and these programs are often set-user-ID root. With 
shadow passwords, the regular password file, /etc/passwd , can be left readable by the world. 

On Linux 2.4.22 and Solaris 9, a separate set of functions is available to access the shadow password file, 
similar to the set of functions used to access the password file. 

#include <shadow.h> 
 
struct spwd *getspnam(const char *name);  
 
struct spwd *getspent(void); 

 

Both return: pointer if OK, NULL on error 

void setspent(void); 
 
void endspent(void); 

 

 

On FreeBSD 5.2.1 and Mac OS X 10.3, there is no shadow password structure. The additional account 
information is stored in the password file (refer back to Figure 6.1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.4. Group File 

The UNIX System's group file, called the group database by POSIX.1, contains the fields shown in Figure 6.4. 
These fields are contained in a group  structure that is defined in <grp.h> . 

Figure 6.4. Fields in /etc/group file 

Description 
struct group 

member POSIX.1 
FreeBSD 

5.2.1 
Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

group name char *gr_name  • • • • • 

encrypted password char *gr_passwd    • • • • 

numerical group ID int gr_gid  • • • • • 

array of pointers to 
individual user names 

char **gr_mem  • • • • • 

 

The field gr_mem is an array of pointers to the user names that belong to this group. This array is terminated by 
a null pointer. 

We can look up either a group name or a numerical group ID with the following two functions, which are 
defined by POSIX.1. 

#include <grp.h> 
 
struct group *getgrgid(gid_t gid); 
 
struct group *getgrnam(const char *name);  

 

Both return: pointer if OK, NULL on error 

 

As with the password file functions, both of these functions normally return pointers to a static  variable, 
which is overwritten on each call. 

If we want to search the entire group file, we need some additional functions. The following three functions are 
like their counterparts for the password file. 

#include <grp.h> 
 
struct group *getgrent(void); 

 

Returns: pointer if OK, NULL on error or end of file 

void setgrent(void); 
 
void endgrent(void); 

 



 

These three functions are not part of the base POSIX.1 standard. They are defined as XSI extensions in the 
Single UNIX Specification. All UNIX Systems provide them. 

The setgrent  function opens the group file, if it's not already open, and rewinds it. The getgrent  function 
reads the next entry from the group file, opening the file first, if it's not already open. The endgrent  function 
closes the group file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.5. Supplementary Group IDs 

The use of groups in the UNIX System has changed over time. With Version 7, each user belonged to a single 
group at any point in time. When we logged in, we were assigned the real group ID corresponding to the 
numerical group ID in our password file entry. We could change this at any point by executing newgrp (1). If the 
newgrp  command succeeded (refer to the manual page for the permission rules), our real group ID was changed 
to the new group's ID, and this was used for all subsequent file access permission checks. We could always go 
back to our original group by executing newgrp  without any arguments. 

This form of group membership persisted until it was changed in 4.2BSD (circa 1983). With 4.2BSD, the 
concept of supplementary group IDs was introduced. Not only did we belong to the group corresponding to the 
group ID in our password file entry, but we also could belong to up to 16 additional groups. The file access 
permission checks were modified so that not only was the effective group ID compared to the file's group ID, 
but also all the supplementary group IDs were compared to the file's group ID. 

Supplementary group IDs are a required feature of POSIX.1. (In older versions of POSIX.1, they were 
optional.) The constant NGROUPS_MAX (Figure 2.10) specifies the number of supplementary group IDs. A 
common value is 16 (Figure 2.14). 

The advantage in using supplementary group IDs is that we no longer have to change groups explicitly. It is not 
uncommon to belong to multiple groups (i.e., participate in multiple projects) at the same time. 

Three functions are provided to fetch and set the supplementary group IDs. 

#include <unistd.h> 
 
int getgroups(int gidsetsize, gid_t grouplist[]); 

 

Returns: number of supplementary group IDs if OK, –1 on error 

#include <grp.h>     /* on Linux */ 
#include <unistd.h>  /* on FreeBSD, Mac OS X, and S olaris */  
 
int setgroups(int ngroups, const gid_t grouplist[]) ; 
 
#include <grp.h>     /* on Linux and Solaris */ 
#include <unistd.h>  /* on FreeBSD and Mac OS X */ 
 
int initgroups(const char *username, gid_t basegid) ; 

 

Both return: 0 if OK, –1 on error 

 

Of these three functions, only getgroups  is specified by POSIX.1. Because setgroups  and initgroups  are 
privileged operations, they are not part of POSIX.1. All four platforms covered in this book, however, support 
all three functions. 

On Mac OS X 10.3, basegid is declared to be of type int . 

The getgroups  function fills in the array grouplist with the supplementary group IDs. Up to gidsetsize elements 
are stored in the array. The number of supplementary group IDs stored in the array is returned by the function. 



As a special case, if gidsetsize is 0, the function returns only the number of supplementary group IDs. The array 
grouplist is not modified. (This allows the caller to determine the size of the grouplist array to allocate.) 

The setgroups  function can be called by the superuser to set the supplementary group ID list for the calling 
process: grouplist contains the array of group IDs, and ngroups specifies the number of elements in the array. 
The value of ngroups cannot be larger than NGROUPS_MAX. 

The only use of setgroups  is usually from the initgroups  function, which reads the entire group file—with 
the functions getgrent , setgrent , and endgrent , which we described earlier—and determines the group 
membership for username. It then calls setgroups  to initialize the supplementary group ID list for the user. 
One must be superuser to call initgroups , since it calls setgroups . In addition to finding all the groups that 
username is a member of in the group file, initgroups  also includes basegid in the supplementary group ID 
list; basegid is the group ID from the password file for username. 

The initgroups  function is called by only a few programs: the login (1) program, for example, calls it when 
we log in. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.6. Implementation Differences 

We've already discussed the shadow password file supported by Linux and Solaris. FreeBSD and Mac OS X 
store encrypted passwords differently. Figure 6.5 summarizes how the four platforms covered in this book store 
user and group information. 

Figure 6.5. Account implementation differences 

Information 
FreeBSD  

5.2.1 
Linux  
2.4.22 Mac OS X 10.3 

Solaris  
9 

Account information /etc/passwd  /etc/passwd  netinfo  /etc/passwd   

Encrypted passwords /etc/master.passwd  /etc/shadow  netinfo  /etc/shadow   

Hashed password files? yes no no no 

Group information /etc/group  /etc/group  netinfo  /etc/group   

 

On FreeBSD, the shadow password file is /etc/master.passwd . Special commands are used to edit it, which 
in turn generate a copy of /etc/passwd  from the shadow password file. In addition, hashed versions of the files 
are also generated: /etc/pwd.db  is the hashed version of /etc/passwd , and /etc/spwd.db  is the hashed 
version of /etc/master.passwd . These provide better performance for large installations. 

On Mac OS X, however, /etc/passwd  and /etc/master.passwd  are used only in single-user mode (when the 
system is undergoing maintenance; single-user mode usually means that no system services are enabled). In 
multiuser mode—during normal operation—the netinfo  directory service provides access to account 
information for users and groups. 

Although Linux and Solaris support similar shadow password interfaces, there are some subtle differences. For 
example, the integer fields shown in Figure 6.3 are defined as type int  on Solaris, but as long int  on Linux. 
Another difference is the account-inactive field. Solaris defines it to be the number of days since the user last 
logged in to the system, whereas Linux defines it to be the number of days after which the maximum password 
age has been reached. 

On many systems, the user and group databases are implemented using the Network Information Service (NIS). 
This allows administrators to edit a master copy of the databases and distribute them automatically to all servers 
in an organization. Client systems contact servers to look up information about users and groups. NIS+ and the 
Lightweight Directory Access Protocol (LDAP) provide similar functionality. Many systems control the method 
used to administer each type of information through the /etc/nsswitch.conf  configuration file. 

 
 
 
 
 
 
 
 
 



6.7. Other Data Files 

We've discussed only two of the system's data files so far: the password file and the group file. Numerous other 
files are used by UNIX systems in normal day-to-day operation. For example, the BSD networking software has 
one data file for the services provided by the various network servers (/etc/services ), one for the protocols 
(/etc/protocols ), and one for the networks (/etc/networks ). Fortunately, the interfaces to these various files 
are like the ones we've already described for the password and group files. 

The general principle is that every data file has at least three functions: 

1. A get  function that reads the next record, opening the file if necessary. These functions normally return 
a pointer to a structure. A null pointer is returned when the end of file is reached. Most of the get  
functions return a pointer to a static  structure, so we always have to copy it if we want to save it. 

2. A set  function that opens the file, if not already open, and rewinds the file. This function is used when 
we know we want to start again at the beginning of the file. 

3. An end  entry that closes the data file. As we mentioned earlier, we always have to call this when we're 
done, to close all the files. 

Additionally, if the data file supports some form of keyed lookup, routines are provided to search for a record 
with a specific key. For example, two keyed lookup routines are provided for the password file: getpwnam  looks 
for a record with a specific user name, and getpwuid  looks for a record with a specific user ID. 

Figure 6.6 shows some of these routines, which are common to UNIX systems. In this figure, we show the 
functions for the password files and group file, which we discussed earlier in this chapter, and some of the 
networking functions. There are get , set , and end  functions for all the data files in this figure. 

Figure 6.6. Similar routines for accessing system data files 

Description Data file Header Structure Additional keyed lookup functions 

passwords /etc/passwd  <pwd.h>  passwd  getpwnam , getpwuid   

groups /etc/group  <grp.h>  group  getgrnam , getgrgid   

shadow /etc/shadow  <shadow.h>  spwd getspnam   

hosts /etc/hosts  <netdb.h>  hostent  gethostbyname , gethostbyaddr   

networks /etc/networks  <netdb.h>  netent  getnetbyname , getnetbyaddr   

protocols /etc/protocols  <netdb.h>  protoent  getprotobyname , getprotobynumber   

services /etc/services  <netdb.h>  servent  getservbyname , getservbyport   

 

Under Solaris, the last four data files in Figure 6.6 are symbolic links to files of the same name in the directory 
/etc/inet . Most UNIX System implementations have additional functions that are like these, but the 
additional functions tend to deal with system administration files and are specific to each implementation. 

 
 
 



6.8. Login Accounting 

Two data files that have been provided with most UNIX systems are the utmp  file, which keeps track of all the 
users currently logged in, and the wtmp file, which keeps track of all logins and logouts. With Version 7, one 
type of record was written to both files, a binary record consisting of the following structure: 

   struct utmp { 
     char  ut_line[8]; /* tty line: "ttyh0", "ttyd0 ", "ttyp0", ... */ 
     char  ut_name[8]; /* login name */ 
     long  ut_time;    /* seconds since Epoch */ 
   }; 

 

On login, one of these structures was filled in and written to the utmp  file by the login  program, and the same 
structure was appended to the wtmp file. On logout, the entry in the utmp  file was erased—filled with null 
bytes—by the init  process, and a new entry was appended to the wtmp file. This logout entry in the wtmp file 
had the ut_name  field zeroed out. Special entries were appended to the wtmp file to indicate when the system 
was rebooted and right before and after the system's time and date was changed. The who(1) program read the 
utmp  file and printed its contents in a readable form. Later versions of the UNIX System provided the last (1) 
command, which read through the wtmp file and printed selected entries. 

Most versions of the UNIX System still provide the utmp  and wtmp files, but as expected, the amount of 
information in these files has grown. The 20-byte structure that was written by Version 7 grew to 36 bytes with 
SVR2, and the extended utmp  structure with SVR4 takes over 350 bytes! 

The detailed format of these records in Solaris is given in the utmpx (4) manual page. With Solaris 9, both files 
are in the /var/adm  directory. Solaris provides numerous functions described in getutx (3) to read and write 
these two files. 

On FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3, the utmp (5) manual page gives the format of their 
versions of these login records. The pathnames of these two files are /var/run/utmp  and /var/log/wtmp . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.9. System Identification 

POSIX.1 defines the uname function to return information on the current host and operating system. 

#include <sys/utsname.h> 
 
int uname(struct utsname *name); 

 

Returns: non-negative value if OK, –1 on error 

 

We pass the address of a utsname  structure, and the function fills it in. POSIX.1 defines only the minimum 
fields in the structure, which are all character arrays, and it's up to each implementation to set the size of each 
array. Some implementations provide additional fields in the structure. 

   struct utsname { 
     char  sysname[];    /* name of the operating s ystem */ 
     char  nodename[];   /* name of this node */ 
     char  release[];    /* current release of oper ating system */ 
     char  version[];    /* current version of this  release */ 
     char  machine[];    /* name of hardware type * / 
   }; 

 

Each string is null-terminated. The maximum name lengths supported by the four platforms discussed in this 
book are listed in Figure 6.7. The information in the utsname  structure can usually be printed with the uname(1) 
command. 

POSIX.1 warns that the nodename element may not be adequate to reference the host on a communications 
network. This function is from System V, and in older days, the nodename element was adequate for referencing 
the host on a UUCP network. 

Realize also that the information in this structure does not give any information on the POSIX.1 level. This 
should be obtained using _POSIX_VERSION, as described in Section 2.6. 

Finally, this function gives us a way only to fetch the information in the structure; there is nothing specified by 
POSIX.1 about initializing this information. 

Historically, BSD-derived systems provide the gethostname  function to return only the name of the host. This 
name is usually the name of the host on a TCP/IP network. 

#include <unistd.h> 
 
int gethostname(char *name, int namelen);  

 

Returns: 0 if OK, –1 on error 

 

The namelen argument specifies the size of the name buffer. If enough space is provided, the string returned 
through name is null terminated. If insufficient room is provided, however, it is unspecified whether the string is 
null terminated. 



The gethostname  function, now defined as part of POSIX.1, specifies that the maximum host name length is 
HOST_NAME_MAX. The maximum name lengths supported by the four implementations covered in this book are 
summarized in Figure 6.7. 

Figure 6.7. System identification name limits 

Maximum name length Interface 

FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

uname 256 65 256 257 

gethostname  256 64 256 256 

 

If the host is connected to a TCP/IP network, the host name is normally the fully qualified domain name of the 
host. 

There is also a hostname (1) command that can fetch or set the host name. (The host name is set by the 
superuser using a similar function, sethostname .) The host name is normally set at bootstrap time from one of 
the start-up files invoked by /etc/rc  or init . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.10. Time and Date Routines 

The basic time service provided by the UNIX kernel counts the number of seconds that have passed since the 
Epoch: 00:00:00 January 1, 1970, Coordinated Universal Time (UTC). In Section 1.10, we said that these 
seconds are represented in a time_t  data type, and we call them calendar times. These calendar times represent 
both the time and the date. The UNIX System has always differed from other operating systems in (a) keeping 
time in UTC instead of the local time, (b) automatically handling conversions, such as daylight saving time, and 
(c) keeping the time and date as a single quantity. 

The time  function returns the current time and date. 

#include <time.h> 
 
time_t time(time_t *calptr); 

 

Returns: value of time if OK, –1 on error 

 

The time value is always returned as the value of the function. If the argument is non- null, the time value is 
also stored at the location pointed to by calptr. 

We haven't said how the kernel's notion of the current time is initialized. Historically, on implementations 
derived from System V, the stime (2) function was called, whereas BSD-derived systems used 
settimeofday (2). 

The Single UNIX Specification doesn't specify how a system sets its current time. 

The gettimeofday  function provides greater resolution (up to a microsecond) than the time  function. This is 
important for some applications. 

#include <sys/time.h> 
 
int gettimeofday(struct timeval *restrict tp, void *restrict tzp);  

 

Returns: 0 always 

 

This function is defined as an XSI extension in the Single UNIX Specification. The only legal value for tzp is 
NULL; other values result in unspecified behavior. Some platforms support the specification of a time zone 
through the use of tzp, but this is implementation-specific and not defined by the Single UNIX Specification. 

The gettimeofday  function stores the current time as measured from the Epoch in the memory pointed to by tp. 
This time is represented as a timeval  structure, which stores seconds and microseconds: 

   struct timeval { 
           time_t tv_sec;    /* seconds */ 
           long   tv_usec;   /* microseconds */ 
   }; 

 



Once we have the integer value that counts the number of seconds since the Epoch, we normally call one of the 
other time functions to convert it to a human-readable time and date. Figure 6.8 shows the relationships between 
the various time functions. 

Figure 6.8. Relationship of the various time functions 

 

(The four functions in this figure that are shown with dashed lines—localtime , mktime , ctime , and 
strftime —are all affected by the TZ environment variable, which we describe later in this section.) 

The two functions localtime  and gmtime  convert a calendar time into what's called a broken-down time, a tm 
structure. 

   struct tm {        /* a broken-down time */ 
     int  tm_sec;     /* seconds after the minute: [0 - 60] */ 
     int  tm_min;     /* minutes after the hour: [0  - 59] */ 
     int  tm_hour;    /* hours after midnight: [0 -  23] */ 
     int  tm_mday;    /* day of the month: [1 - 31]  */ 
     int  tm_mon;     /* months since January: [0 -  11] */ 
     int  tm_year;    /* years since 1900 */ 
     int  tm_wday;    /* days since Sunday: [0 - 6]  */ 
     int  tm_yday;    /* days since January 1: [0 -  365] */ 
     int  tm_isdst;   /* daylight saving time flag:  <0, 0, >0 */ 
   }; 

 

The reason that the seconds can be greater than 59 is to allow for a leap second. Note that all the fields except 
the day of the month are 0-based. The daylight saving time flag is positive if daylight saving time is in effect, 0 
if it's not in effect, and negative if the information isn't available. 

In previous versions of the Single UNIX Specification, double leap seconds were allowed. Thus, the valid range 
of values for the tm_sec  member was 0–61. The formal definition of UTC doesn't allow for double leap 
seconds, so the valid range for seconds is now defined to be 0–60. 



#include <time.h> 
 
struct tm *gmtime(const time_t *calptr); 
 
struct tm *localtime(const time_t *calptr);  

 

Both return: pointer to broken-down time 

 

The difference between localtime  and gmtime  is that the first converts the calendar time to the local time, 
taking into account the local time zone and daylight saving time flag, whereas the latter converts the calendar 
time into a broken-down time expressed as UTC. 

The function mktime  takes a broken-down time, expressed as a local time, and converts it into a time_t  value. 

#include <time.h> 
 
time_t mktime(struct tm *tmptr); 

 

Returns: calendar time if OK, –1 on error 

 

The asctime  and ctime  functions produce the familiar 26-byte string that is similar to the default output of the 
date (1) command: 

    Tue Feb 10 18:27:38 2004\n\0 

 

#include <time.h> 
 
char *asctime(const struct tm *tmptr);  
 
char *ctime(const time_t *calptr); 

 

Both return: pointer to null-terminated string 

 

The argument to asctime  is a pointer to a broken-down string, whereas the argument to ctime  is a pointer to a 
calendar time. 

The final time function, strftime , is the most complicated. It is a printf -like function for time values. 

#include <time.h> 
 
size_t strftime(char *restrict buf, size_t maxsize,  
                const char *restrict format, 
                const struct tm *restrict tmptr); 

 

Returns: number of characters stored in array if room, 0 otherwise 

 



The final argument is the time value to format, specified by a pointer to a broken-down time value. The 
formatted result is stored in the array buf whose size is maxsize characters. If the size of the result, including the 
terminating null, fits in the buffer, the function returns the number of characters stored in buf, excluding the 
terminating null. Otherwise, the function returns 0. 

The format argument controls the formatting of the time value. Like the printf  functions, conversion specifiers 
are given as a percent followed by a special character. All other characters in the format string are copied to the 
output. Two percents in a row generate a single percent in the output. Unlike the printf  functions, each 
conversion specified generates a different fixed-size output string—there are no field widths in the format string. 
Figure 6.9 describes the 37 ISO C conversion specifiers. The third column of this figure is from the output of 
strftime  under Linux, corresponding to the time and date Tue Feb 10 18:27:38 EST 2004 . 

Figure 6.9. Conversion specifiers for strftime 

Format Description Example 

%a abbreviated weekday name Tue  

%A full weekday name Tuesday   

%b abbreviated month name Feb  

%B full month name February   

%c date and time Tue Feb 10 18:27:38 2004   

%C year/100: [00–99] 20  

%d day of the month: [01–31] 10  

%D date [MM/DD/YY] 02/10/04   

%e day of month (single digit preceded by space) [1–31] 10  

%F ISO 8601 date format [YYYY–MM–DD] 2004-02-10   

%g last two digits of ISO 8601 week-based year [00–99] 04  

%G ISO 8601 week-based year 2004   

%h same as %b Feb  

%H hour of the day (24-hour format): [00–23] 18  

%I hour of the day (12-hour format): [01–12] 06  

%j day of the year: [001–366] 041   

%m month: [01–12] 02  

%M minute: [00–59] 27  

%n newline character   

%p AM/PM PM 

%r locale's time (12-hour format) 06:27:38 PM   



Figure 6.9. Conversion specifiers for strftime 

Format Description Example 

%R same as "%H:%M" 18:27   

%S second: [00–60] 38  

%t horizontal tab character   

%T same as "%H:%M:%S" 18:27:38   

%u ISO 8601 weekday [Monday=1, 1–7] 2  

%U Sunday week number: [00–53] 06  

%V ISO 8601 week number: [01–53] 07  

%w weekday: [0=Sunday, 0–6] 2  

%W Monday week number: [00–53] 06  

%x date 02/10/04   

%X time 18:27:38   

%y last two digits of year: [00–99] 04  

%Y year 2004   

%z offset from UTC in ISO 8601 format -0500   

%Z time zone name EST  

%% translates to a percent sign %  

 

The only specifiers that are not self-evident are %U, %V, and %W. The %U specifier represents the week number of 
the year, where the week containing the first Sunday is week 1. The %W specifier represents the week number of 
the year, where the week containing the first Monday is week 1. The %V specifier is different. If the week 
containing the first day in January has four or more days in the new year, then this is treated as week 1. 
Otherwise, it is treated as the last week of the previous year. In both cases, Monday is treated as the first day of 
the week. 

As with printf , strftime  supports modifiers for some of the conversion specifiers. The E and O modifiers can 
be used to generate an alternate format if supported by the locale. 

Some systems support additional, nonstandard extensions to the format string for strftime . 

We mentioned that the four functions in Figure 6.8 with dashed lines were affected by the TZ environment 
variable: localtime , mktime , ctime , and strftime . If defined, the value of this environment variable is used 
by these functions instead of the default time zone. If the variable is defined to be a null string, such as TZ=, 
then UTC is normally used. The value of this environment variable is often something like TZ=EST5EDT, but 
POSIX.1 allows a much more detailed specification. Refer to the Environment Variables chapter of the Single 
UNIX Specification [Open Group 2004] for all the details on the TZ variable. 



All the time and date functions described in this section, except gettimeofday , are defined by the ISO C 
standard. POSIX.1, however, added the TZ environment variable. On FreeBSD 5.2.1, Linux 2.4.22, and Mac OS 
X 10.3, more information on the TZ variable can be found in the tzset (3) manual page. On Solaris 9, this 
information is in the environ (5) manual page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6.11. Summary 

The password file and the group file are used on all UNIX systems. We've looked at the various functions that 
read these files. We've also talked about shadow passwords, which can help system security. Supplementary 
group IDs provide a way to participate in multiple groups at the same time. We also looked at how similar 
functions are provided by most systems to access other system-related data files. We discussed the POSIX.1 
functions that programs can use to identify the system on which they are running. We finished the chapter with 
a look at the time and date functions provided by ISO C and the Single UNIX Specification. 
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7.1. Introduction 

Before looking at the process control primitives in the next chapter, we need to examine the environment of a 
single process. In this chapter, we'll see how the main  function is called when the program is executed, how 
command-line arguments are passed to the new program, what the typical memory layout looks like, how to 
allocate additional memory, how the process can use environment variables, and various ways for the process to 
terminate. Additionally, we'll look at the longjmp  and setjmp  functions and their interaction with the stack. We 
finish the chapter by examining the resource limits of a process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.2. main Function 

A C program starts execution with a function called main . The prototype for the main  function is 

    int main(int argc, char *argv[]); 

 

where argc is the number of command-line arguments, and argv is an array of pointers to the arguments. We 
describe these arguments in Section 7.4. 

When a C program is executed by the kernel—by one of the exec  functions, which we describe in Section 
8.10—a special start-up routine is called before the main  function is called. The executable program file 
specifies this routine as the starting address for the program; this is set up by the link editor when it is invoked 
by the C compiler. This start-up routine takes values from the kernel—the command-line arguments and the 
environment—and sets things up so that the main  function is called as shown earlier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.3. Process Termination 

There are eight ways for a process to terminate. Normal termination occurs in five ways: 

1. Return from main  
2. Calling exit  
3. Calling _exit  or _Exit  
4. Return of the last thread from its start routine (Section 11.5) 
5. Calling pthread_exit  (Section 11.5) from the last thread 

Abnormal termination occurs in three ways: 

6. Calling abort  (Section 10.17) 
7. Receipt of a signal (Section 10.2) 
8. Response of the last thread to a cancellation request (Sections 11.5 and 12.7) 

For now, we'll ignore the three termination methods specific to threads until we discuss threads in 
Chapters 11 and 12. 

The start-up routine that we mentioned in the previous section is also written so that if the main  function returns, 
the exit  function is called. If the start-up routine were coded in C (it is often coded in assembler) the call to 
main  could look like 

    exit(main(argc, argv)); 

 
 

Exit Functions 

Three functions terminate a program normally: _exit  and _Exit , which return to the kernel immediately, and 
exit , which performs certain cleanup processing and then returns to the kernel. 

#include <stdlib.h> 
 
void exit(int status); 
 
void _Exit(int status);  
 
#include <unistd.h> 
 
void _exit(int status);  

 

 

We'll discuss the effect of these three functions on other processes, such as the children and the parent of the 
terminating process, in Section 8.5. 

The reason for the different headers is that exit  and _Exit  are specified by ISO C, whereas _exit  is specified 
by POSIX.1. 



Historically, the exit  function has always performed a clean shutdown of the standard I/O library: the fclose  
function is called for all open streams. Recall from Section 5.5 that this causes all buffered output data to be 
flushed (written to the file). 

All three exit functions expect a single integer argument, which we call the exit status. Most UNIX System 
shells provide a way to examine the exit status of a process. If (a) any of these functions is called without an 
exit status, (b) main  does a return  without a return value, or (c) the main  function is not declared to return an 
integer, the exit status of the process is undefined. However, if the return type of main  is an integer and main  
"falls off the end" (an implicit return), the exit status of the process is 0. 

This behavior is new with the 1999 version of the ISO C standard. Historically, the exit status was undefined if 
the end of the main  function was reached without an explicit return  statement or call to the exit  function. 

Returning an integer value from the main  function is equivalent to calling exit  with the same value. Thus 

    exit(0); 

 

is the same as 

    return(0); 

 

from the main  function. 

Example 

The program in Figure 7.1 is the classic "hello, world" example. 

When we compile and run the program in Figure 7.1, we see that the exit code is random. If we compile the 
same program on different systems, we are likely to get different exit codes, depending on the contents of the 
stack and register contents at the time that the main  function returns: 

    $ cc hello.c 
    $ ./a.out 
    hello, world 
    $ echo $?                    print the exit sta tus 
    13 

 

Now if we enable the 1999 ISO C compiler extensions, we see that the exit code changes: 

    $ cc -std=c99 hello.c         enable gcc's 1999  ISO C extensions 
    hello.c:4: warning: return type defaults to 'in t' 
    $ ./a.out 
    hello, world 
    $ echo $?                      role="italicAlt" print the exit status 
    0 

 

Note the compiler warning when we enable the 1999 ISO C extensions. This warning is printed because the 
type of the main  function is not explicitly declared to be an integer. If we were to add this declaration, the 
message would go away. However, if we were to enable all recommended warnings from the compiler (with the 



-Wall  flag), then we would see a warning message something like "control reaches end of nonvoid function." 

The declaration of main  as returning an integer and the use of exit  instead of return  produces needless 
warnings from some compilers and the lint (1) program. The problem is that these compilers don't know that 
an exit  from main  is the same as a return . One way around these warnings, which become annoying after a 
while, is to use return  instead of exit  from main . But doing this prevents us from using the UNIX System's 
grep  utility to locate all calls to exit  from a program. Another solution is to declare main  as returning void , 
instead of int , and continue calling exit . This gets rid of the compiler warning but doesn't look right 
(especially in a programming text), and can generate other compiler warnings, since the return type of main  is 
supposed to be a signed integer. In this text, we show main  as returning an integer, since that is the definition 
specified by both ISO C and POSIX.1. 

Different compilers vary in the verbosity of their warnings. Note that the GNU C compiler usually doesn't emit 
these extraneous compiler warnings unless additional warning options are used. 

Figure 7.1. Classic C program 

#include <stdio.h> 
 
main() 
{ 
    printf("hello, world\n");  
} 

 

In the next chapter, we'll see how any process can cause a program to be executed, wait for the process to 
complete, and then fetch its exit status. 

atexit Function 

With ISO C, a process can register up to 32 functions that are automatically called by exit . These are called 
exit handlers and are registered by calling the atexit  function. 

#include <stdlib.h> 
 
int atexit(void (*func)(void));  

 

Returns: 0 if OK, nonzero on error 

 

This declaration says that we pass the address of a function as the argument to atexit . When this function is 
called, it is not passed any arguments and is not expected to return a value. The exit  function calls these 
functions in reverse order of their registration. Each function is called as many times as it was registered. 

These exit handlers first appeared in the ANSI C Standard in 1989. Systems that predate ANSI C, such as SVR3 
and 4.3BSD, did not provide these exit handlers. 

ISO C requires that systems support at least 32 exit handlers. The sysconf  function can be used to determine 
the maximum number of exit handlers supported by a given platform (see Figure 2.14). 



With ISO C and POSIX.1, exit  first calls the exit handlers and then closes (via fclose ) all open streams. 
POSIX.1 extends the ISO C standard by specifying that any exit handlers installed will be cleared if the 
program calls any of the exec  family of functions. Figure 7.2 summarizes how a C program is started and the 
various ways it can terminate. 

Figure 7.2. How a C program is started and how it terminates 

 
 

Note that the only way a program is executed by the kernel is when one of the exec  functions is called. The 
only way a process voluntarily terminates is when _exit  or _Exit  is called, either explicitly or implicitly (by 
calling exit ). A process can also be involuntarily terminated by a signal (not shown in Figure 7.2). 

Example 

The program in Figure 7.3 demonstrates the use of the atexit  function. 

Executing the program in Figure 7.3 yields 

    $ ./a.out 
    main is done 
    first exit handler 
    first exit handler 
    second exit handler 

 

An exit handler is called once for each time it is registered. In Figure 7.3, the first exit handler is registered 
twice, so it is called two times. Note that we don't call exit ; instead, we return from main . 

 

 



Figure 7.3. Example of exit handlers 

#include "apue.h" 
 
static void my_exit1(void); 
static void my_exit2(void); 
 
int 
main(void) 
{ 
     if (atexit(my_exit2) != 0) 
         err_sys("can't register my_exit2");  
 
     if (atexit(my_exit1) != 0) 
         err_sys("can't register my_exit1");  
 
     if (atexit(my_exit1) != 0) 
         err_sys("can't register my_exit1");  
 
     printf("main is done\n"); 
     return(0); 
} 
 
static void 
my_exit1(void) 
{ 
   printf("first exit handler\n"); 
} 
 
static void 
my_exit2(void) 
{ 
   printf("second exit handler\n"); 
}      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.4. Command-Line Arguments 

When a program is executed, the process that does the exec  can pass command-line arguments to the new 
program. This is part of the normal operation of the UNIX system shells. We have already seen this in many of 
the examples from earlier chapters. 

Example 

The program in Figure 7.4 echoes all its command-line arguments to standard output. Note that the normal 
echo (1) program doesn't echo the zeroth argument. 

If we compile this program and name the executable echoarg , we have 

    $ ./echoarg arg1 TEST foo 
    argv[0]: ./echoarg 
    argv[1]: arg1 
    argv[2]: TEST 
    argv[3]: foo 

 

We are guaranteed by both ISO C and POSIX.1 that argv[argc]  is a null pointer. This lets us alternatively 
code the argument-processing loop as 

    for (i = 0; argv[i] != NULL; i++) 

 

Figure 7.4. Echo all command-line arguments to standard output 

#include "apue.h" 
 
int 
main(int argc, char *argv[]) 
{ 
    int     i; 
 
    for (i = 0; i < argc;  i++)     /* echo all com mand-line args */  
        printf("argv[%d]: %s\n", i, argv[i]); 
    exit(0); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.5. Environment List 

Each program is also passed an environment list. Like the argument list, the environment list is an array of 
character pointers, with each pointer containing the address of a null-terminated C string. The address of the 
array of pointers is contained in the global variable environ : 

    extern char **environ; 

 

For example, if the environment consisted of five strings, it could look like Figure 7.5. Here we explicitly show 
the null bytes at the end of each string. We'll call environ  the environment pointer, the array of pointers the 
environment list, and the strings they point to the environment strings. 

Figure 7.5. Environment consisting of five C character strings 

 
 

By convention, the environment consists of 

name=value 

strings, as shown in Figure 7.5. Most predefined names are entirely uppercase, but this is only a convention. 

Historically, most UNIX systems have provided a third argument to the main  function that is the address of the 
environment list: 

    int main(int argc, char *argv[], char *envp[]);  

 

Because ISO C specifies that the main  function be written with two arguments, and because this third argument 
provides no benefit over the global variable environ , POSIX.1 specifies that environ  should be used instead of 
the (possible) third argument. Access to specific environment variables is normally through the getenv  and 
putenv  functions, described in Section 7.9, instead of through the environ  variable. But to go through the 
entire environment, the environ  pointer must be used. 

 
 
 
 
 
 



7.6. Memory Layout of a C Program 

Historically, a C program has been composed of the following pieces: 

• Text segment, the machine instructions that the CPU executes. Usually, the text segment is sharable so 
that only a single copy needs to be in memory for frequently executed programs, such as text editors, the 
C compiler, the shells, and so on. Also, the text segment is often read-only, to prevent a program from 
accidentally modifying its instructions. 

• Initialized data segment, usually called simply the data segment, containing variables that are 
specifically initialized in the program. For example, the C declaration 

•     int   maxcount = 99; 

 

appearing outside any function causes this variable to be stored in the initialized data segment with its 
initial value. 

• Uninitialized data segment, often called the "bss" segment, named after an ancient assembler operator 
that stood for "block started by symbol." Data in this segment is initialized by the kernel to arithmetic 0 
or null pointers before the program starts executing. The C declaration 

•     long  sum[1000]; 

 

appearing outside any function causes this variable to be stored in the uninitialized data segment. 

• Stack, where automatic variables are stored, along with information that is saved each time a function is 
called. Each time a function is called, the address of where to return to and certain information about the 
caller's environment, such as some of the machine registers, are saved on the stack. The newly called 
function then allocates room on the stack for its automatic and temporary variables. This is how 
recursive functions in C can work. Each time a recursive function calls itself, a new stack frame is used, 
so one set of variables doesn't interfere with the variables from another instance of the function. 

• Heap, where dynamic memory allocation usually takes place. Historically, the heap has been located 
between the uninitialized data and the stack. 

Figure 7.6 shows the typical arrangement of these segments. This is a logical picture of how a program looks; 
there is no requirement that a given implementation arrange its memory in this fashion. Nevertheless, this gives 
us a typical arrangement to describe. With Linux on an Intel x86 processor, the text segment starts at location 
0x08048000 , and the bottom of the stack starts just below 0xC0000000 . (The stack grows from higher-
numbered addresses to lower-numbered addresses on this particular architecture.) The unused virtual address 
space between the top of the heap and the top of the stack is large. 

Figure 7.6. Typical memory arrangement 



 

Several more segment types exist in an a.out , containing the symbol table, debugging information, linkage 
tables for dynamic shared libraries, and the like. These additional sections don't get loaded as part of the 
program's image executed by a process. 

Note from Figure 7.6 that the contents of the uninitialized data segment are not stored in the program file on 
disk. This is because the kernel sets it to 0 before the program starts running. The only portions of the program 
that need to be saved in the program file are the text segment and the initialized data. 

The size (1) command reports the sizes (in bytes) of the text, data, and bss segments. For example: 

    $ size /usr/bin/cc /bin/sh 
       text     data   bss     dec     hex   filena me 
      79606     1536   916   82058   1408a   /usr/b in/cc 
     619234    21120 18260  658614   a0cb6   /bin/s h 

 

The fourth and fifth columns are the total of the three sizes, displayed in decimal and hexadecimal, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 



7.7. Shared Libraries 

Most UNIX systems today support shared libraries. Arnold [1986] describes an early implementation under 
System V, and Gingell et al. [1987] describe a different implementation under SunOS. Shared libraries remove 
the common library routines from the executable file, instead maintaining a single copy of the library routine 
somewhere in memory that all processes reference. This reduces the size of each executable file but may add 
some runtime overhead, either when the program is first executed or the first time each shared library function 
is called. Another advantage of shared libraries is that library functions can be replaced with new versions 
without having to relink edit every program that uses the library. (This assumes that the number and type of 
arguments haven't changed.) 

Different systems provide different ways for a program to say that it wants to use or not use the shared libraries. 
Options for the cc (1) and ld (1) commands are typical. As an example of the size differences, the following 
executable file—the classic hello.c  program—was first created without shared libraries: 

    $ cc -static hello1.c             prevent gcc f rom using shared libraries 
    $ ls -l a.out 
    -rwxrwxr-x 1 sar         475570 Feb 18 23:17 a. out 
    $ size a.out 
       text     data     bss     dec     hex    fil ename 
     375657     3780    3220  382657   5d6c1    a.o ut 
 
 
      

 

If we compile this program to use shared libraries, the text and data sizes of the executable file are greatly 
decreased: 

    $ cc hello1.c                    gcc defaults t o use shared libraries 
    $ ls -l a.out 
    -rwxrwxr-x 1 sar         11410 Feb 18 23:19 a.o ut 
    $ size a.out 
       text     data     bss   dec       hex    fil ename 
        872      256       4  1132       46c    a.o ut 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.8. Memory Allocation 

ISO C specifies three functions for memory allocation: 

1. malloc , which allocates a specified number of bytes of memory. The initial value of the memory is 
indeterminate. 

2. calloc , which allocates space for a specified number of objects of a specified size. The space is 
initialized to all 0 bits. 

3. realloc , which increases or decreases the size of a previously allocated area. When the size increases, it 
may involve moving the previously allocated area somewhere else, to provide the additional room at the 
end. Also, when the size increases, the initial value of the space between the old contents and the end of 
the new area is indeterminate. 

#include <stdlib.h> 
 
void *malloc(size_t size); 
 
void *calloc(size_t nobj, size_t size); 
 
void *realloc(void *ptr, size_t newsize); 

 

All three return: non-null pointer if OK, NULL on error 

void free(void *ptr); 

 

 

The pointer returned by the three allocation functions is guaranteed to be suitably aligned so that it can be used 
for any data object. For example, if the most restrictive alignment requirement on a particular system requires 
that double s must start at memory locations that are multiples of 8, then all pointers returned by these three 
functions would be so aligned. 

Because the three alloc  functions return a generic void *  pointer, if we #include <stdlib.h>  (to obtain the 
function prototypes), we do not explicitly have to cast the pointer returned by these functions when we assign it 
to a pointer of a different type. 

The function free  causes the space pointed to by ptr to be deallocated. This freed space is usually put into a 
pool of available memory and can be allocated in a later call to one of the three alloc  functions. 

The realloc  function lets us increase or decrease the size of a previously allocated area. (The most common 
usage is to increase an area.) For example, if we allocate room for 512 elements in an array that we fill in at 
runtime but find that we need room for more than 512 elements, we can call realloc . If there is room beyond 
the end of the existing region for the requested space, then realloc  doesn't have to move anything; it simply 
allocates the additional area at the end and returns the same pointer that we passed it. But if there isn't room at 
the end of the existing region, realloc  allocates another area that is large enough, copies the existing 512-
element array to the new area, frees the old area, and returns the pointer to the new area. Because the area may 
move, we shouldn't have any pointers into this area. Exercise 4.16 shows the use of realloc  with getcwd  to 
handle any length pathname. Figure 17.36 shows an example that uses realloc  to avoid arrays with fixed, 
compile-time sizes. 



Note that the final argument to realloc  is the new size of the region, not the difference between the old and 
new sizes. As a special case, if ptr is a null pointer, realloc  behaves like malloc  and allocates a region of the 
specified newsize. 

Older versions of these routines allowed us to realloc  a block that we had free d since the last call to malloc , 
realloc , or calloc . This trick dates back to Version 7 and exploited the search strategy of malloc  to perform 
storage compaction. Solaris still supports this feature, but many other platforms do not. This feature is 
deprecated and should not be used. 

The allocation routines are usually implemented with the sbrk (2) system call. This system call expands (or 
contracts) the heap of the process. (Refer to Figure 7.6.) A sample implementation of malloc  and free  is given 
in Section 8.7 of Kernighan and Ritchie [1988]. 

Although sbrk  can expand or contract the memory of a process, most versions of malloc  and free  never 
decrease their memory size. The space that we free is available for a later allocation, but the freed space is not 
usually returned to the kernel; that space is kept in the malloc  pool. 

It is important to realize that most implementations allocate a little more space than is requested and use the 
additional space for record keeping—the size of the allocated block, a pointer to the next allocated block, and 
the like. This means that writing past the end of an allocated area could overwrite this record-keeping 
information in a later block. These types of errors are often catastrophic, but difficult to find, because the error 
may not show up until much later. Also, it is possible to overwrite this record keeping by writing before the start 
of the allocated area. 

Writing past the end or before the beginning of a dynamically-allocated buffer can corrupt more than internal 
record-keeping information. The memory before and after a dynamically-allocated buffer can potentially be 
used for other dynamically-allocated objects. These objects can be unrelated to the code corrupting them, 
making it even more difficult to find the source of the corruption. 

Other possible errors that can be fatal are freeing a block that was already freed and calling free  with a pointer 
that was not obtained from one of the three alloc  functions. If a process calls malloc , but forgets to call free , 
its memory usage continually increases; this is called leakage. By not calling free  to return unused space, the 
size of a process's address space slowly increases until no free space is left. During this time, performance can 
degrade from excess paging overhead. 

Because memory allocation errors are difficult to track down, some systems provide versions of these functions 
that do additional error checking every time one of the three alloc  functions or free  is called. These versions 
of the functions are often specified by including a special library for the link editor. There are also publicly 
available sources that you can compile with special flags to enable additional runtime checking. 

FreeBSD, Mac OS X, and Linux support additional debugging through the setting of environment variables. In 
addition, options can be passed to the FreeBSD library through the symbolic link /etc/malloc.conf . 

Alternate Memory Allocators 

Many replacements for malloc  and free  are available. Some systems already include libraries providing 
alternate memory allocator implementations. Other systems provide only the standard allocator, leaving it up to 
software developers to download alternatives, if desired. We discuss some of the alternatives here. 



libmalloc 

SVR4-based systems, such as Solaris, include the libmalloc  library, which provides a set of interfaces 
matching the ISO C memory allocation functions. The libmalloc  library includes mallopt , a function that 
allows a process to set certain variables that control the operation of the storage allocator. A function called 
mallinfo  is also available to provide statistics on the memory allocator. 

vmalloc 

Vo [1996] describes a memory allocator that allows processes to allocate memory using different techniques for 
different regions of memory. In addition to the functions specific to vmalloc , the library also provides 
emulations of the ISO C memory allocation functions. 

quick-fit 

Historically, the standard malloc  algorithm used either a best-fit or a first-fit memory allocation strategy. 
Quick-fit is faster than either, but tends to use more memory. Weinstock and Wulf [1988] describe the 
algorithm, which is based on splitting up memory into buffers of various sizes and maintaining unused buffers 
on different free lists, depending on the size of the buffers. Free implementations of malloc  and free  based on 
quick-fit are readily available from several FTP sites. 

alloca Function 

One additional function is also worth mentioning. The function alloca  has the same calling sequence as 
malloc ; however, instead of allocating memory from the heap, the memory is allocated from the stack frame of 
the current function. The advantage is that we don't have to free the space; it goes away automatically when the 
function returns. The alloca  function increases the size of the stack frame. The disadvantage is that some 
systems can't support alloca , if it's impossible to increase the size of the stack frame after the function has been 
called. Nevertheless, many software packages use it, and implementations exist for a wide variety of systems. 

All four platforms discussed in this text provide the alloca  function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.9. Environment Variables 

As we mentioned earlier, the environment strings are usually of the form 

name=value 

The UNIX kernel never looks at these strings; their interpretation is up to the various applications. The shells, 
for example, use numerous environment variables. Some, such as HOME and USER, are set automatically at login, 
and others are for us to set. We normally set environment variables in a shell start-up file to control the shell's 
actions. If we set the environment variable MAILPATH, for example, it tells the Bourne shell, GNU Bourne-again 
shell, and Korn shell where to look for mail. 

ISO C defines a function that we can use to fetch values from the environment, but this standard says that the 
contents of the environment are implementation defined. 

#include <stdlib.h> 
 
char *getenv(const char *name); 

 

Returns: pointer to value associated with name, NULL if not found 

 

Note that this function returns a pointer to the value of a name=value string. We should always use getenv  to 
fetch a specific value from the environment, instead of accessing environ  directly. 

Some environment variables are defined by POSIX.1 in the Single UNIX Specification, whereas others are 
defined only if the XSI extensions are supported. Figure 7.7 lists the environment variables defined by the 
Single UNIX Specification and also notes which implementations support the variables. Any environment 
variable defined by POSIX.1 is marked with •; otherwise, it is an XSI extension. Many additional 
implementation-dependent environment variables are used in the four implementations described in this book. 
Note that ISO C doesn't define any environment variables. 

Figure 7.7. Environment variables defined in the Single UNIX Specification 

Variable POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

COLUMNS • • • • • terminal width 

DATEMSK XSI   •   • getdate (3) template file 
pathname 

HOME • • • • • home directory 

LANG • • • • • name of locale 

LC_ALL • • • • • name of locale 

LC_COLLATE • • • • • name of locale for collation 

LC_CTYPE • • • • • name of locale for character 



Figure 7.7. Environment variables defined in the Single UNIX Specification 

Variable POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Description 

classification 

LC_MESSAGES • • • • • name of locale for messages 

LC_MONETARY • • • • • name of locale for monetary 
editing 

LC_NUMERIC • • • • • name of locale for numeric 
editing 

LC_TIME • • • • • name of locale for date/time 
formatting 

LINES  • • • • • terminal height 

LOGNAME • • • • • login name 

MSGVERB XSI •     • fmtmsg (3) message components 
to process 

NLSPATH XSI • • • • sequence of templates for 
message catalogs 

PATH • • • • • list of path prefixes to search for 
executable file 

PWD • • • • • absolute pathname of current 
working directory 

SHELL • • • • • name of user's preferred shell 

TERM • • • • • terminal type 

TMPDIR • • • • • pathname of directory for creating 
temporary files 

TZ • • • • • time zone information 

 

In addition to fetching the value of an environment variable, sometimes we may want to set an environment 
variable. We may want to change the value of an existing variable or add a new variable to the environment. (In 
the next chapter, we'll see that we can affect the environment of only the current process and any child 
processes that we invoke. We cannot affect the environment of the parent process, which is often a shell. 
Nevertheless, it is still useful to be able to modify the environment list.) Unfortunately, not all systems support 
this capability. Figure 7.8 shows the functions that are supported by the various standards and implementations. 

Figure 7.8. Support for various environment list functions 

Function ISO C POSIX.1 FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 



Figure 7.8. Support for various environment list functions 

Function ISO C POSIX.1 FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

getenv  • • • • • • 

putenv    XSI • • • • 

setenv    • • • •   

unsetenv    • • • •   

clearenv        •     

 

clearenv  is not part of the Single UNIX Specification. It is used to remove all entries from the environment list. 

The prototypes for the middle three functions listed in Figure 7.8 are 

  #include <stdlib.h> 
 
  int putenv(char *str); 
 
  int setenv(const char *name, const char *value,  
 int rewrite); 
 
  int unsetenv(const char *name); 

 

All return: 0 if OK, nonzero on error 

 

The operation of these three functions is as follows. 

• The putenv  function takes a string of the form name=value and places it in the environment list. If name 
already exists, its old definition is first removed. 

• The setenv  function sets name to value. If name already exists in the environment, then (a) if rewrite is 
nonzero, the existing definition for name is first removed; (b) if rewrite is 0, an existing definition for 
name is not removed, name is not set to the new value, and no error occurs. 

• The unsetenv  function removes any definition of name. It is not an error if such a definition does not 
exist. 

Note the difference between putenv  and setenv . Whereas setenv  must allocate memory to create the 
name=value string from its arguments, putenv  is free to place the string passed to it directly into the 
environment. Indeed, on Linux and Solaris, the putenv  implementation places the address of the string 
we pass to it directly into the environment list. In this case, it would be an error to pass it a string 
allocated on the stack, since the memory would be reused after we return from the current function. 

It is interesting to examine how these functions must operate when modifying the environment list. Recall 
Figure 7.6: the environment list—the array of pointers to the actual name=value strings—and the environment 
strings are typically stored at the top of a process's memory space, above the stack. Deleting a string is simple; 
we simply find the pointer in the environment list and move all subsequent pointers down one. But adding a 
string or modifying an existing string is more difficult. The space at the top of the stack cannot be expanded, 



because it is often at the top of the address space of the process and so can't expand upward; it can't be 
expanded downward, because all the stack frames below it can't be moved. 

1. If we're modifying an existing name: 
a. If the size of the new value is less than or equal to the size of the existing value, we can just copy 

the new string over the old string. 
b. If the size of the new value is larger than the old one, however, we must malloc  to obtain room 

for the new string, copy the new string to this area, and then replace the old pointer in the 
environment list for name with the pointer to this allocated area. 

2. If we're adding a new name, it's more complicated. First, we have to call malloc  to allocate room for the 
name=value string and copy the string to this area. 

a. Then, if it's the first time we've added a new name, we have to call malloc  to obtain room for a 
new list of pointers. We copy the old environment list to this new area and store a pointer to the 
name=value string at the end of this list of pointers. We also store a null pointer at the end of this 
list, of course. Finally, we set environ  to point to this new list of pointers. Note from Figure 7.6 
that if the original environment list was contained above the top of the stack, as is common, then 
we have moved this list of pointers to the heap. But most of the pointers in this list still point to 
name=value strings above the top of the stack. 

b. If this isn't the first time we've added new strings to the environment list, then we know that 
we've already allocated room for the list on the heap, so we just call realloc  to allocate room 
for one more pointer. The pointer to the new name=value string is stored at the end of the list (on 
top of the previous null pointer), followed by a null pointer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.10. setjmp and longjmp Functions 

In C, we can't goto  a label that's in another function. Instead, we must use the setjmp  and longjmp  functions to 
perform this type of branching. As we'll see, these two functions are useful for handling error conditions that 
occur in a deeply nested function call. 

Consider the skeleton in Figure 7.9. It consists of a main loop that reads lines from standard input and calls the 
function do_line  to process each line. This function then calls get_token  to fetch the next token from the 
input line. The first token of a line is assumed to be a command of some form, and a switch  statement selects 
each command. For the single command shown, the function cmd_add is called. 

Figure 7.9. Typical program skeleton for command processing 

#include "apue.h" 
 
#define TOK_ADD    5 
 
void     do_line(char *); 
void     cmd_add(void); 
int      get_token(void); 
 
int 
main(void) 
{ 
     char    line[MAXLINE]; 
 
     while (fgets(line, MAXLINE, stdin) != NULL) 
         do_line(line); 
     exit(0); 
} 
 
char     *tok_ptr;       /* global pointer for get_ token() */  
 
void 
do_line(char *ptr)       /* process one line of inp ut */ 
{ 
    int    cmd; 
 
    tok_ptr = ptr; 
    while ((cmd = get_token()) > 0) { 
        switch (cmd) { /* one case for each command  */ 
        case TOK_ADD: 
                cmd_add(); 
                break; 
        } 
    } 
} 
 
void 
cmd_add(void) 
{ 
   int      token; 
    
   token = get_token(); 
   /* rest of processing for this command */ 
} 
 
int 
get_token(void) 
{ 



   /* fetch next token from line pointed to by tok_ ptr */ 
} 

The skeleton in Figure 7.9 is typical for programs that read commands, determine the command type, and then 
call functions to process each command. Figure 7.10 shows what the stack could look like after cmd_add has 
been called. 

Figure 7.10. Stack frames after cmd_add has been called 

 

Storage for the automatic variables is within the stack frame for each function. The array line  is in the stack 
frame for main , the integer cmd is in the stack frame for do_line , and the integer token  is in the stack frame for 
cmd_add. 

As we've said, this type of arrangement of the stack is typical, but not required. Stacks do not have to grow 
toward lower memory addresses. On systems that don't have built-in hardware support for stacks, a C 
implementation might use a linked list for its stack frames. 

The coding problem that's often encountered with programs like the one shown in Figure 7.9 is how to handle 
nonfatal errors. For example, if the cmd_add function encounters an error—say, an invalid number—it might 
want to print an error, ignore the rest of the input line, and return to the main  function to read the next input line. 
But when we're deeply nested numerous levels down from the main  function, this is difficult to do in C. (In this 
example, in the cmd_add function, we're only two levels down from main , but it's not uncommon to be five or 
more levels down from where we want to return to.) It becomes messy if we have to code each function with a 
special return value that tells it to return one level. 

The solution to this problem is to use a nonlocal goto : the setjmp  and longjmp  functions. The adjective 
nonlocal is because we're not doing a normal C goto  statement within a function; instead, we're branching back 
through the call frames to a function that is in the call path of the current function. 

  #include <setjmp.h> 
 
  int setjmp(jmp_buf env); 

 

Returns: 0 if called directly, nonzero if returning from a call to longjmp   

  void longjmp(jmp_buf env, int val); 



  #include <setjmp.h> 
 
  int setjmp(jmp_buf env); 

 

 

 

We call setjmp  from the location that we want to return to, which in this example is in the main  function. In 
this case, setjmp  returns 0 because we called it directly. In the call to setjmp , the argument env is of the special 
type jmp_buf . This data type is some form of array that is capable of holding all the information required to 
restore the status of the stack to the state when we call longjmp . Normally, the env variable is a global variable, 
since we'll need to reference it from another function. 

When we encounter an error—say, in the cmd_add  function—we call longjmp  with two arguments. The first is 
the same env that we used in a call to setjmp , and the second, val, is a nonzero value that becomes the return 
value from setjmp . The reason for the second argument is to allow us to have more than one longjmp  for each 
setjmp . For example, we could longjmp  from cmd_add with a val of 1 and also call longjmp  from get_token  
with a val of 2. In the main  function, the return value from setjmp  is either 1 or 2, and we can test this value, if 
we want, and determine whether the longjmp  was from cmd_add or get_token . 

Let's return to the example. Figure 7.11 shows both the main  and cmd_add functions. (The other two functions, 
do_line  and get_token , haven't changed.) 

Figure 7.11. Example of setjmp and longjmp 

#include "apue.h" 
#include <setjmp.h> 
 
#define TOK_ADD    5 
 
jmp_buf jmpbuffer; 
 
int 
main(void) 
{ 
     char    line[MAXLINE]; 
 
     if (setjmp(jmpbuffer) != 0) 
         printf("error"); 
     while (fgets(line, MAXLINE, stdin) != NULL) 
        do_line(line); 
     exit(0); 
} 
 
 ... 
 
void 
cmd_add(void) 
{ 
    int     token; 
 
    token = get_token(); 
    if (token < 0)    /* an error has occurred */  
        longjmp(jmpbuffer, 1); 
    /* rest of processing for this command */ 
} 



When main  is executed, we call setjmp , which records whatever information it needs to in the variable 
jmpbuffer  and returns 0. We then call do_line , which calls cmd_add, and assume that an error of some form is 
detected. Before the call to longjmp  in cmd_add, the stack looks like that in Figure 7.10. But longjmp  causes 
the stack to be "unwound" back to the main  function, throwing away the stack frames for cmd_add and do_line  
(Figure 7.12). Calling longjmp  causes the setjmp  in main  to return, but this time it returns with a value of 1 
(the second argument for longjmp ). 

Figure 7.12. Stack frame after longjmp has been called 

 

 

Automatic, Register, and Volatile Variables 

We've seen what the stack looks like after calling longjmp . The next question is, "what are the states of the 
automatic variables and register variables in the main  function?" When main  is returned to by the longjmp , do 
these variables have values corresponding to when the setjmp  was previously called (i.e., are their values rolled 
back), or are their values left alone so that their values are whatever they were when do_line  was called (which 
caused cmd_add to be called, which caused longjmp  to be called)? Unfortunately, the answer is "it depends." 
Most implementations do not try to roll back these automatic variables and register variables, but the standards 
say only that their values are indeterminate. If you have an automatic variable that you don't want rolled back, 
define it with the volatile  attribute. Variables that are declared global or static are left alone when longjmp  is 
executed. 

Example 

The program in Figure 7.13 demonstrates the different behavior that can be seen with automatic, global, 
register, static, and volatile variables after calling longjmp . 

If we compile and test the program in Figure 7.13, with and without compiler optimizations, the results are 
different: 

    $ cc testjmp.c               compile without an y optimization 
    $ ./a.out 
    in f1(): 
    globval = 95, autoval = 96, regival = 97, volav al = 98, statval = 99 
    after longjmp: 
    globval = 95, autoval = 96, regival = 97, volav al = 98, statval = 99 
    $ cc -O testjmp.c            compile with full optimization 
    $ ./a.out 



    in f1(): 
    globval = 95, autoval = 96, regival = 97, volav al = 98, statval = 99 
    after longjmp: 
    globval = 95, autoval = 2, regival = 3, volaval  = 98, statval = 99 

 

Note that the optimizations don't affect the global, static, and volatile variables; their values after the longjmp  
are the last values that they assumed. The setjmp (3) manual page on one system states that variables stored in 
memory will have values as of the time of the longjmp , whereas variables in the CPU and floating-point 
registers are restored to their values when setjmp  was called. This is indeed what we see when we run the 
program in Figure 7.13. Without optimization, all five variables are stored in memory (the register  hint is 
ignored for regival ). When we enable optimization, both autoval  and regival  go into registers, even though 
the former wasn't declared register , and the volatile  variable stays in memory. The thing to realize with this 
example is that you must use the volatile  attribute if you're writing portable code that uses nonlocal jumps. 
Anything else can change from one system to the next. 

Some printf  format strings in Figure 7.13 are longer than will fit comfortably for display in a programming 
text. Instead of making multiple calls to printf , we rely on ISO C's string concatenation feature, where the 
sequence 

    "string1" "string2" 

 

is equivalent to 

    "string1string2" 

 

Figure 7.13. Effect of longjmp on various types of variables 

#include "apue.h" 
#include <setjmp.h> 
 
static void f1(int, int, int, int); 
static void f2(void); 
 
static jmp_buf jmpbuffer; 
static int     globval; 
 
int 
main(void) 
{ 
     int             autoval; 
     register int    regival; 
     volatile int    volaval; 
     static int      statval; 
 
     globval = 1; autoval = 2; regival = 3; volaval  = 4; statval = 5;  
 
     if (setjmp(jmpbuffer) != 0) { 
         printf("after longjmp:\n"); 
         printf("globval = %d, autoval = %d, regiva l = %d," 
             " volaval = %d, statval = %d\n", 
             globval, autoval, regival, volaval, st atval); 
         exit(0); 
     } 
 



     /* 
      * Change variables after setjmp, but before l ongjmp. 
      */ 
     globval = 95; autoval = 96; regival = 97; vola val = 98; 
     statval = 99; 
 
     f1(autoval, regival, volaval, statval); /* nev er returns */ 
     exit(0); 
} 
 
static void 
f1(int i, int j, int k, int l) 
{ 
    printf("in f1():\n"); 
    printf("globval = %d, autoval = %d, regival = % d," 
        " volaval = %d, statval = %d\n", globval, i , j, k, l); 
    f2(); 
} 
static void 
f2(void) 
{ 
    longjmp(jmpbuffer, 1); 
} 

We'll return to these two functions, setjmp  and longjmp , in Chapter 10 when we discuss signal handlers and 
their signal versions: sigsetjmp  and siglongjmp . 

Potential Problem with Automatic Variables 

Having looked at the way stack frames are usually handled, it is worth looking at a potential error in dealing 
with automatic variables. The basic rule is that an automatic variable can never be referenced after the function 
that declared it returns. There are numerous warnings about this throughout the UNIX System manuals. 

Figure 7.14 shows a function called open_data  that opens a standard I/O stream and sets the buffering for the 
stream. 

Figure 7.14. Incorrect usage of an automatic variable 

#include    <stdio.h> 
 
#define DATAFILE    "datafile" 
 
FILE * 
open_data(void) 
{ 
    FILE    *fp; 
    char    databuf[BUFSIZ];   /* setvbuf makes thi s the stdio buffer */  
 
    if ((fp = fopen(DATAFILE, "r")) == NULL) 
        return(NULL); 
    if (setvbuf(fp, databuf, _IOLBF, BUFSIZ) != 0) 
        return(NULL); 
    return(fp);     /* error */ 
} 

The problem is that when open_data  returns, the space it used on the stack will be used by the stack frame for 
the next function that is called. But the standard I/O library will still be using that portion of memory for its 



stream buffer. Chaos is sure to result. To correct this problem, the array databuf  needs to be allocated from 
global memory, either statically (static  or extern ) or dynamically (one of the alloc  functions). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7.11. getrlimit and setrlimit Functions 

Every process has a set of resource limits, some of which can be queried and changed by the getrlimit  and 
setrlimit  functions. 

  #include <sys/resource.h> 
 
  int getrlimit(int resource, struct rlimit *rlptr) ; 
 
  int setrlimit(int resource, const struct rlimit * rlptr);  

 

Both return: 0 if OK, nonzero on error 

 

These two functions are defined as XSI extensions in the Single UNIX Specification. The resource limits for a 
process are normally established by process 0 when the system is initialized and then inherited by each 
successive process. Each implementation has its own way of tuning the various limits. 

Each call to these two functions specifies a single resource and a pointer to the following structure: 

    struct rlimit { 
      rlim_t  rlim_cur;   /* soft limit: current li mit */ 
      rlim_t  rlim_max;   /* hard limit: maximum va lue for rlim_cur */ 
    }; 

Three rules govern the changing of the resource limits. 

1. A process can change its soft limit to a value less than or equal to its hard limit. 
2. A process can lower its hard limit to a value greater than or equal to its soft limit. This lowering of the 

hard limit is irreversible for normal users. 
3. Only a superuser process can raise a hard limit. 

An infinite limit is specified by the constant RLIM_INFINITY . 

The resource argument takes on one of the following values. Figure 7.15 shows which limits are defined by the 
Single UNIX Specification and supported by each implementation. 

Figure 7.15. Support for resource limits 

Limit XSI  FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

RLIMIT_AS  •   •   • 

RLIMIT_CORE • • • • • 

RLIMIT_CPU • • • • • 

RLIMIT_DATA  • • • • • 

RLIMIT_FSIZE  • • • • • 

RLIMIT_LOCKS     •     



Figure 7.15. Support for resource limits 

Limit XSI  FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

RLIMIT_MEMLOCK   • • •   

RLIMIT_NOFILE  • • • • • 

RLIMIT_NPROC   • • •   

RLIMIT_RSS    • • •   

RLIMIT_SBSIZE    •       

RLIMIT_STACK • • • • • 

RLIMIT_VMEM   •     • 

 
RLIMIT_AS  The maximum size in bytes of a process's total available memory. This affects the sbrk  

function (Section 1.11) and the mmap function (Section 14.9). 

RLIMIT_CORE The maximum size in bytes of a core file. A limit of 0 prevents the creation of a core file. 

RLIMIT_CPU The maximum amount of CPU time in seconds. When the soft limit is exceeded, the 
SIGXCPU signal is sent to the process. 

RLIMIT_DATA  The maximum size in bytes of the data segment: the sum of the initialized data, uninitialized 
data, and heap from Figure 7.6. 

RLIMIT_FSIZE  The maximum size in bytes of a file that may be created. When the soft limit is exceeded, the 
process is sent the SIGXFSZ signal. 

RLIMIT_LOCKS The maximum number of file locks a process can hold. (This number also includes file 
leases, a Linux-specific feature. See the Linux fcntl (2) manual page for more information.) 

RLIMIT_MEMLOCK The maximum amount of memory in bytes that a process can lock into memory using 
mlock (2). 

RLIMIT_NOFILE  The maximum number of open files per process. Changing this limit affects the value 
returned by the sysconf  function for its _SC_OPEN_MAX argument (Section 2.5.4). See Figure 
2.16 also. 

RLIMIT_NPROC The maximum number of child processes per real user ID. Changing this limit affects the 
value returned for _SC_CHILD_MAX by the sysconf  function (Section 2.5.4). 

RLIMIT_RSS  Maximum resident set size (RSS) in bytes. If available physical memory is low, the kernel 
takes memory from processes that exceed their RSS. 

RLIMIT_SBSIZE  The maximum size in bytes of socket buffers that a user can consume at any given time. 

RLIMIT_STACK The maximum size in bytes of the stack. See Figure 7.6. 

RLIMIT_VMEM This is a synonym for RLIMIT_AS . 

 

The resource limits affect the calling process and are inherited by any of its children. This means that the setting 
of resource limits needs to be built into the shells to affect all our future processes. Indeed, the Bourne shell, the 



GNU Bourne-again shell, and the Korn shell have the built-in ulimit  command, and the C shell has the built-in 
limit  command. (The umask and chdir  functions also have to be handled as shell built-ins.) 

Example 

The program in Figure 7.16 prints out the current soft limit and hard limit for all the resource limits supported 
on the system. To compile this program on all the various implementations, we have conditionally included the 
resource names that differ. Note also that we must use a different printf  format on platforms that define 
rlim_t  to be an unsigned long long  instead of an unsigned long . 

Note that we've used the ISO C string-creation operator (#) in the doit  macro, to generate the string value for 
each resource name. When we say 

    doit(RLIMIT_CORE); 

 

the C preprocessor expands this into 

    pr_limits("RLIMIT_CORE", RLIMIT_CORE); 

 

Running this program under FreeBSD gives us the following: 

    $ ./a.out 
    RLIMIT_CORE       (infinite) (infinite) 
    RLIMIT_CPU        (infinite) (infinite) 
    RLIMIT_DATA        536870912  536870912 
    RLIMIT_FSIZE      (infinite) (infinite) 
    RLIMIT_MEMLOCK    (infinite) (infinite) 
    RLIMIT_NOFILE           1735       1735 
    RLIMIT_NPROC             867        867 
    RLIMIT_RSS        (infinite) (infinite) 
    RLIMIT_SBSIZE     (infinite) (infinite) 
    RLIMIT_STACK        67108864   67108864 
    RLIMIT_VMEM       (infinite) (infinite) 

Solaris gives us the following results: 

    $ ./a.out 
    RLIMIT_AS          (infinite) (infinite) 
    RLIMIT_CORE        (infinite) (infinite) 
    RLIMIT_CPU         (infinite) (infinite) 
    RLIMIT_DATA        (infinite) (infinite) 
    RLIMIT_FSIZE       (infinite) (infinite) 
    RLIMIT_NOFILE             256      65536 
    RLIMIT_STACK          8388608 (infinite) 
    RLIMIT_VMEM        (infinite) (infinite) 

 

Figure 7.16. Print the current resource limits 

#include "apue.h" 
#if defined(BSD) || defined(MACOS) 
#include <sys/time.h> 
#define FMT "%10lld " 
#else 
#define FMT "%10ld " 



#endif 
#include <sys/resource.h> 
 
#define doit(name) pr_limits(#name, name) 
 
static void pr_limits(char *, int); 
 
int 
main(void) 
{ 
 
#ifdef  RLIMIT_AS 
    doit(RLIMIT_AS); 
#endif 
    doit(RLIMIT_CORE); 
    doit(RLIMIT_CPU); 
    doit(RLIMIT_DATA); 
    doit(RLIMIT_FSIZE); 
#ifdef  RLIMIT_LOCKS 
    doit(RLIMIT_LOCKS); 
#endif 
#ifdef  RLIMIT_MEMLOCK 
    doit(RLIMIT_MEMLOCK); 
#endif 
    doit(RLIMIT_NOFILE); 
#ifdef  RLIMIT_NPROC 
    doit(RLIMIT_NPROC); 
#endif 
#ifdef  RLIMIT_RSS 
    doit(RLIMIT_RSS); 
#endif 
#ifdef  RLIMIT_SBSIZE 
    doit(RLIMIT_SBSIZE); 
#endif 
    doit(RLIMIT_STACK); 
#ifdef  RLIMIT_VMEM 
    doit(RLIMIT_VMEM); 
#endif 
    exit(0); 
} 
 
static void 
pr_limits(char *name, int resource) 
{ 
    struct rlimit limit; 
 
    if (getrlimit(resource, &limit) < 0) 
        err_sys("getrlimit error for %s", name);  
    printf("%-14s ", name); 
    if (limit.rlim_cur == RLIM_INFINITY) 
        printf("(infinite) "); 
    else 
        printf(FMT, limit.rlim_cur); 
    if (limit.rlim_max == RLIM_INFINITY) 
        printf("(infinite)"); 
    else 
        printf(FMT, limit.rlim_max); 
    putchar((int)'\n'); 
} 

Exercise 10.11 continues the discussion of resource limits, after we've covered signals. 



7.12. Summary 

Understanding the environment of a C program in a UNIX system's environment is a prerequisite to 
understanding the process control features of the UNIX System. In this chapter, we've looked at how a process 
is started, how it can terminate, and how it's passed an argument list and an environment. Although both are 
uninterpreted by the kernel, it is the kernel that passes both from the caller of exec  to the new process. 

We've also examined the typical memory layout of a C program and how a process can dynamically allocate 
and free memory. It is worthwhile to look in detail at the functions available for manipulating the environment, 
since they involve memory allocation. The functions setjmp  and longjmp  were presented, providing a way to 
perform nonlocal branching within a process. We finished the chapter by describing the resource limits that 
various implementations provide. 
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8.1. Introduction 

We now turn to the process control provided by the UNIX System. This includes the creation of new processes, 
program execution, and process termination. We also look at the various IDs that are the property of the 
process—real, effective, and saved; user and group IDs—and how they're affected by the process control 
primitives. Interpreter files and the system  function are also covered. We conclude the chapter by looking at the 
process accounting provided by most UNIX systems. This lets us look at the process control functions from a 
different perspective. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8.2. Process Identifiers 

Every process has a unique process ID, a non-negative integer. Because the process ID is the only well-known 
identifier of a process that is always unique, it is often used as a piece of other identifiers, to guarantee 
uniqueness. For example, applications sometimes include the process ID as part of a filename in an attempt to 
generate unique filenames. 

Although unique, process IDs are reused. As processes terminate, their IDs become candidates for reuse. Most 
UNIX systems implement algorithms to delay reuse, however, so that newly created processes are assigned IDs 
different from those used by processes that terminated recently. This prevents a new process from being 
mistaken for the previous process to have used the same ID. 

There are some special processes, but the details differ from implementation to implementation. Process ID 0 is 
usually the scheduler process and is often known as the swapper. No program on disk corresponds to this 
process, which is part of the kernel and is known as a system process. Process ID 1 is usually the init  process 
and is invoked by the kernel at the end of the bootstrap procedure. The program file for this process was 
/etc/init  in older versions of the UNIX System and is /sbin/init  in newer versions. This process is 
responsible for bringing up a UNIX system after the kernel has been bootstrapped. init  usually reads the 
system-dependent initialization files—the /etc/rc*  files or /etc/inittab  and the files in /etc/init.d —and 
brings the system to a certain state, such as multiuser. The init  process never dies. It is a normal user process, 
not a system process within the kernel, like the swapper, although it does run with superuser privileges. Later in 
this chapter, we'll see how init  becomes the parent process of any orphaned child process. 

Each UNIX System implementation has its own set of kernel processes that provide operating system services. 
For example, on some virtual memory implementations of the UNIX System, process ID 2 is the pagedaemon. 
This process is responsible for supporting the paging of the virtual memory system. 

In addition to the process ID, there are other identifiers for every process. The following functions return these 
identifiers. 

#include <unistd.h> 
 
pid_t getpid(void); 

 

Returns: process ID of calling process 

pid_t getppid(void); 

 

Returns: parent process ID of calling process 

uid_t getuid(void); 

 

Returns: real user ID of calling process 

uid_t geteuid(void); 

 

Returns: effective user ID of calling process 

gid_t getgid(void); 

 



#include <unistd.h> 
 
pid_t getpid(void); 

 

Returns: real group ID of calling process 

gid_t getegid(void); 

 

Returns: effective group ID of calling process 

 

Note that none of these functions has an error return. We'll return to the parent process ID in the next section 
when we discuss the fork  function. The real and effective user and group IDs were discussed in Section 4.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.3. fork Function 

An existing process can create a new one by calling the fork  function. 

#include <unistd.h> 
 
pid_t fork(void); 

 

Returns: 0 in child, process ID of child in parent, –1 on error 

 

The new process created by fork  is called the child process. This function is called once but returns twice. The 
only difference in the returns is that the return value in the child is 0, whereas the return value in the parent is 
the process ID of the new child. The reason the child's process ID is returned to the parent is that a process can 
have more than one child, and there is no function that allows a process to obtain the process IDs of its children. 
The reason fork  returns 0 to the child is that a process can have only a single parent, and the child can always 
call getppid  to obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel, so it's not 
possible for 0 to be the process ID of a child.) 

Both the child and the parent continue executing with the instruction that follows the call to fork . The child is a 
copy of the parent. For example, the child gets a copy of the parent's data space, heap, and stack. Note that this 
is a copy for the child; the parent and the child do not share these portions of memory. The parent and the child 
share the text segment (Section 7.6). 

Current implementations don't perform a complete copy of the parent's data, stack, and heap, since a fork  is 
often followed by an exec . Instead, a technique called copy-on-write (COW) is used. These regions are shared 
by the parent and the child and have their protection changed by the kernel to read-only. If either process tries to 
modify these regions, the kernel then makes a copy of that piece of memory only, typically a "page" in a virtual 
memory system. Section 9.2 of Bach [1986] and Sections 5.6 and 5.7 of McKusick et al. [1996] provide more 
detail on this feature. 

Variations of the fork  function are provided by some platforms. All four platforms discussed in this book 
support the vfork (2) variant discussed in the next section. 

Linux 2.4.22 also provides new process creation through the clone (2) system call. This is a generalized form of 
fork  that allows the caller to control what is shared between parent and child. 

FreeBSD 5.2.1 provides the rfork (2) system call, which is similar to the Linux clone  system call. The rfork  
call is derived from the Plan 9 operating system (Pike et al. [1995]). 

Solaris 9 provides two threads libraries: one for POSIX threads (pthreads) and one for Solaris threads. The 
behavior of fork  differs between the two thread libraries. For POSIX threads, fork  creates a process containing 
only the calling thread, but for Solaris threads, fork  creates a process containing copies of all threads from the 
process of the calling thread. To provide similar semantics as POSIX threads, Solaris provides the fork1  
function, which can be used to create a process that duplicates only the calling thread, regardless of the thread 
library used. Threads are discussed in detail in Chapters 11 and 12. 

Example 

The program in Figure 8.1 demonstrates the fork  function, showing how changes to variables in a child process 



do not affect the value of the variables in the parent process. 

If we execute this program, we get 

$ ./a.out 
a write to stdout 
before fork 
pid = 430, glob = 7, var = 89      child's variable s were changed 
pid = 429, glob = 6, var = 88      parent's copy wa s not changed 
$ ./a.out > temp.out 
$ cat temp.out 
a write to stdout 
before fork 
pid = 432, glob = 7, var = 89 
before fork 
pid = 431, glob = 6, var = 88 

 

In general, we never know whether the child starts executing before the parent or vice versa. This depends on 
the scheduling algorithm used by the kernel. If it's required that the child and parent synchronize, some form of 
interprocess communication is required. In the program shown in Figure 8.1, we simply have the parent put 
itself to sleep for 2 seconds, to let the child execute. There is no guarantee that this is adequate, and we talk 
about this and other types of synchronization in Section 8.9 when we discuss race conditions. In Section 10.16, 
we show how to use signals to synchronize a parent and a child after a fork . 

When we write to standard output, we subtract 1 from the size of buf  to avoid writing the terminating null byte. 
Although strlen  will calculate the length of a string not including the terminating null byte, sizeof  calculates 
the size of the buffer, which does include the terminating null byte. Another difference is that using strlen  
requires a function call, whereas sizeof  calculates the buffer length at compile time, as the buffer is initialized 
with a known string, and its size is fixed. 

Note the interaction of fork  with the I/O functions in the program in Figure 8.1. Recall from Chapter 3 that the 
write  function is not buffered. Because write  is called before the fork , its data is written once to standard 
output. The standard I/O library, however, is buffered. Recall from Section 5.12 that standard output is line 
buffered if it's connected to a terminal device; otherwise, it's fully buffered. When we run the program 
interactively, we get only a single copy of the printf  line, because the standard output buffer is flushed by the 
newline. But when we redirect standard output to a file, we get two copies of the printf  line. In this second 
case, the printf  before the fork  is called once, but the line remains in the buffer when fork  is called. This 
buffer is then copied into the child when the parent's data space is copied to the child. Both the parent and the 
child now have a standard I/O buffer with this line in it. The second printf , right before the exit , just appends 
its data to the existing buffer. When each process terminates, its copy of the buffer is finally flushed. 

Figure 8.1. Example of fork function 

#include "apue.h" 
 
int     glob = 6;       /* external variable in ini tialized data */  
char    buf[] = "a write to stdout\n"; 
 
int 
main(void) 
{ 
    int       var;      /* automatic variable on th e stack */ 
    pid_t     pid; 
 



    var = 88; 
    if (write(STDOUT_FILENO, buf, sizeof(buf)-1) !=  sizeof(buf)-1) 
        err_sys("write error"); 
    printf("before fork\n");    /* we don't flush s tdout */ 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {      /* child */ 
        glob++;                 /* modify variables  */ 
        var++; 
    } else { 
        sleep(2);               /* parent */ 
    } 
 
    printf("pid = %d, glob = %d, var = %d\n", getpi d(), glob, var);  
    exit(0); 
} 

File Sharing 

When we redirect the standard output of the parent from the program in Figure 8.1, the child's standard output is 
also redirected. Indeed, one characteristic of fork  is that all file descriptors that are open in the parent are 
duplicated in the child. We say "duplicated" because it's as if the dup  function had been called for each 
descriptor. The parent and the child share a file table entry for every open descriptor (recall Figure 3.8). 

Consider a process that has three different files opened for standard input, standard output, and standard error. 
On return from fork , we have the arrangement shown in Figure 8.2. 

Figure 8.2. Sharing of open files between parent and child after fork 

 
 

It is important that the parent and the child share the same file offset. Consider a process that fork s a child, then 
wait s for the child to complete. Assume that both processes write to standard output as part of their normal 
processing. If the parent has its standard output redirected (by a shell, perhaps) it is essential that the parent's 



file offset be updated by the child when the child writes to standard output. In this case, the child can write to 
standard output while the parent is wait ing for it; on completion of the child, the parent can continue writing to 
standard output, knowing that its output will be appended to whatever the child wrote. If the parent and the 
child did not share the same file offset, this type of interaction would be more difficult to accomplish and would 
require explicit actions by the parent. 

If both parent and child write to the same descriptor, without any form of synchronization, such as having the 
parent wait  for the child, their output will be intermixed (assuming it's a descriptor that was open before the 
fork ). Although this is possible—we saw it in Figure 8.2—it's not the normal mode of operation. 

There are two normal cases for handling the descriptors after a fork . 

1. The parent waits for the child to complete. In this case, the parent does not need to do anything with its 
descriptors. When the child terminates, any of the shared descriptors that the child read from or wrote to 
will have their file offsets updated accordingly. 

2. Both the parent and the child go their own ways. Here, after the fork , the parent closes the descriptors 
that it doesn't need, and the child does the same thing. This way, neither interferes with the other's open 
descriptors. This scenario is often the case with network servers. 

Besides the open files, there are numerous other properties of the parent that are inherited by the child: 

• Real user ID, real group ID, effective user ID, effective group ID 
• Supplementary group IDs 
• Process group ID 
• Session ID 
• Controlling terminal 
• The set-user-ID and set-group-ID flags 
• Current working directory 
• Root directory 
• File mode creation mask 
• Signal mask and dispositions 
• The close-on-exec flag for any open file descriptors 
• Environment 
• Attached shared memory segments 
• Memory mappings 
• Resource limits 

The differences between the parent and child are 

• The return value from fork  
• The process IDs are different 
• The two processes have different parent process IDs: the parent process ID of the child is the parent; the 

parent process ID of the parent doesn't change 
• The child's tms_utime , tms_stime , tms_cutime , and tms_cstime  values are set to 0 
• File locks set by the parent are not inherited by the child 
• Pending alarms are cleared for the child 
• The set of pending signals for the child is set to the empty set 

Many of these features haven't been discussed yet—we'll cover them in later chapters. 



The two main reasons for fork  to fail are (a) if too many processes are already in the system, which usually 
means that something else is wrong, or (b) if the total number of processes for this real user ID exceeds the 
system's limit. Recall from Figure 2.10 that CHILD_MAX specifies the maximum number of simultaneous 
processes per real user ID. 

There are two uses for fork : 

1. When a process wants to duplicate itself so that the parent and child can each execute different sections 
of code at the same time. This is common for network servers—the parent waits for a service request 
from a client. When the request arrives, the parent calls fork  and lets the child handle the request. The 
parent goes back to waiting for the next service request to arrive. 

2. When a process wants to execute a different program. This is common for shells. In this case, the child 
does an exec  (which we describe in Section 8.10) right after it returns from the fork . 

Some operating systems combine the operations from step 2—a fork  followed by an exec —into a single 
operation called a spawn. The UNIX System separates the two, as there are numerous cases where it is useful to 
fork  without doing an exec . Also, separating the two allows the child to change the per-process attributes 
between the fork  and the exec , such as I/O redirection, user ID, signal disposition, and so on. We'll see 
numerous examples of this in Chapter 15. 

The Single UNIX Specification does include spawn  interfaces in the advanced real-time option group. These 
interfaces are not intended to be replacements for fork  and exec , however. They are intended to support 
systems that have difficulty implementing fork  efficiently, especially systems without hardware support for 
memory management. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.4. vfork Function 

The function vfork  has the same calling sequence and same return values as fork . But the semantics of the two 
functions differ. 

The vfork  function originated with 2.9BSD. Some consider the function a blemish, but all the platforms 
covered in this book support it. In fact, the BSD developers removed it from the 4.4BSD release, but all the 
open source BSD distributions that derive from 4.4BSD added support for it back into their own releases. The 
vfork  function is marked as an obsolete interface in Version 3 of the Single UNIX Specification. 

The vfork  function is intended to create a new process when the purpose of the new process is to exec  a new 
program (step 2 at the end of the previous section). The bare-bones shell in the program from Figure 1.7 is also 
an example of this type of program. The vfork  function creates the new process, just like fork , without 
copying the address space of the parent into the child, as the child won't reference that address space; the child 
simply calls exec  (or exit ) right after the vfork . Instead, while the child is running and until it calls either 
exec  or exit , the child runs in the address space of the parent. This optimization provides an efficiency gain on 
some paged virtual-memory implementations of the UNIX System. (As we mentioned in the previous section, 
implementations use copy-on-write to improve the efficiency of a fork  followed by an exec , but no copying is 
still faster than some copying.) 

Another difference between the two functions is that vfork  guarantees that the child runs first, until the child 
calls exec  or exit . When the child calls either of these functions, the parent resumes. (This can lead to 
deadlock if the child depends on further actions of the parent before calling either of these two functions.) 

Example 

The program in Figure 8.3 is a modified version of the program from Figure 8.1. We've replaced the call to 
fork  with vfork  and removed the write  to standard output. Also, we don't need to have the parent call sleep , 
as we're guaranteed that it is put to sleep by the kernel until the child calls either exec  or exit . 

Running this program gives us 

$ ./a.out 
before vfork 
pid = 29039, glob = 7, var = 89 

 

Here, the incrementing of the variables done by the child changes the values in the parent. Because the child 
runs in the address space of the parent, this doesn't surprise us. This behavior, however, differs from fork . 

Note in Figure 8.3 that we call _exit  instead of exit . As we described in Section 7.3, _exit  does not perform 
any flushing of standard I/O buffers. If we call exit  instead, the results are indeterminate. Depending on the 
implementation of the standard I/O library, we might see no difference in the output, or we might find that the 
output from the parent's printf  has disappeared. 

If the child calls exit , the implementation flushes the standard I/O streams. If this is the only action taken by 
the library, then we will see no difference with the output generated if the child called _exit . If the 
implementation also closes the standard I/O streams, however, the memory representing the FILE  object for the 
standard output will be cleared out. Because the child is borrowing the parent's address space, when the parent 
resumes and calls printf , no output will appear and printf  will return -1. Note that the parent's 
STDOUT_FILENO is still valid, as the child gets a copy of the parent's file descriptor array (refer back to Figure 



8.2). 

Most modern implementations of exit  will not bother to close the streams. Because the process is about to exit, 
the kernel will close all the file descriptors open in the process. Closing them in the library simply adds 
overhead without any benefit. 

Figure 8.3. Example of vfork function 

#include "apue.h" 
 
int     glob = 6;       /* external variable in ini tialized data */  
 
int 
main(void) 
{ 
    int     var;        /* automatic variable on th e stack */ 
    pid_t   pid; 
 
    var = 88; 
    printf("before vfork\n");   /* we don't flush s tdio */ 
    if ((pid = vfork()) < 0) { 
        err_sys("vfork error"); 
    } else if (pid == 0) {      /* child */ 
        glob++;                 /* modify parent's variables */ 
        var++; 
        _exit(0);               /* child terminates  */ 
    } 
    /* 
     * Parent continues here. 
     */ 
    printf("pid = %d, glob = %d, var = %d\n", getpi d(), glob, var);  
    exit(0); 
} 

Section 5.6 of McKusick et al. [1996] contains additional information on the implementation issues of fork  and 
vfork . Exercises 8.1 and 8.2 continue the discussion of vfork . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.5. exit Functions 

As we described in Section 7.3, a process can terminate normally in five ways: 

1. Executing a return  from the main  function. As we saw in Section 7.3, this is equivalent to calling exit . 
2. Calling the exit  function. This function is defined by ISO C and includes the calling of all exit handlers 

that have been registered by calling atexit  and closing all standard I/O streams. Because ISO C does 
not deal with file descriptors, multiple processes (parents and children), and job control, the definition of 
this function is incomplete for a UNIX system. 

3. Calling the _exit  or _Exit  function. ISO C defines _Exit  to provide a way for a process to terminate 
without running exit handlers or signal handlers. Whether or not standard I/O streams are flushed 
depends on the implementation. On UNIX systems, _Exit  and _exit  are synonymous and do not flush 
standard I/O streams. The _exit  function is called by exit  and handles the UNIX system-specific 
details; _exit  is specified by POSIX.1. 

In most UNIX system implementations, exit (3) is a function in the standard C library, whereas 
_exit (2) is a system call. 

4. Executing a return  from the start routine of the last thread in the process. The return value of the thread 
is not used as the return value of the process, however. When the last thread returns from its start routine, 
the process exits with a termination status of 0. 

5. Calling the pthread_exit  function from the last thread in the process. As with the previous case, the 
exit status of the process in this situation is always 0, regardless of the argument passed to 
pthread_exit . We'll say more about pthread_exit  in Section 11.5. 

The three forms of abnormal termination are as follows: 

1. Calling abort . This is a special case of the next item, as it generates the SIGABRT signal. 
2. When the process receives certain signals. (We describe signals in more detail in Chapter 10). The signal 

can be generated by the process itself—for example, by calling the abort  function—by some other 
process, or by the kernel. Examples of signals generated by the kernel include the process referencing a 
memory location not within its address space or trying to divide by 0. 

3. The last thread responds to a cancellation request. By default, cancellation occurs in a deferred manner: 
one thread requests that another be canceled, and sometime later, the target thread terminates. We 
discuss cancellation requests in detail in Sections 11.5 and 12.7. 

Regardless of how a process terminates, the same code in the kernel is eventually executed. This kernel code 
closes all the open descriptors for the process, releases the memory that it was using, and the like. 

For any of the preceding cases, we want the terminating process to be able to notify its parent how it terminated. 
For the three exit functions (exit , _exit , and _Exit ), this is done by passing an exit status as the argument to 
the function. In the case of an abnormal termination, however, the kernel, not the process, generates a 
termination status to indicate the reason for the abnormal termination. In any case, the parent of the process can 
obtain the termination status from either the wait  or the waitpid  function (described in the next section). 

Note that we differentiate between the exit status, which is the argument to one of the three exit functions or the 
return value from main , and the termination status. The exit status is converted into a termination status by the 
kernel when _exit  is finally called (recall Figure 7.2). Figure 8.4 describes the various ways the parent can 
examine the termination status of a child. If the child terminated normally, the parent can obtain the exit status 
of the child. 



Figure 8.4. Macros to examine the termination status returned by wait and waitpid 

Macro Description 

WIFEXITED(status) True if status was returned for a child that terminated normally. In this case, we can 
execute  

WEXITSTATUS (status) 

to fetch the low-order 8 bits of the argument that the child passed to exit , _exit ,or 
_Exit . 

WIFSIGNALED 
(status) 

True if status was returned for a child that terminated abnormally, by receipt of a signal 
that it didn't catch. In this case, we can execute  

WTERMSIG (status) 

to fetch the signal number that caused the termination. 

Additionally, some implementations (but not the Single UNIX Specification) define the 
macro 

WCOREDUMP (status) 

that returns true if a core file of the terminated process was generated. 

WIFSTOPPED (status) True if status was returned for a child that is currently stopped. In this case, we can 
execute  

WSTOPSIG (status) 

to fetch the signal number that caused the child to stop. 

WIFCONTINUED 
(status) 

True if status was returned for a child that has been continued after a job control stop 
(XSI extension to POSIX.1; waitpid  only). 

 

When we described the fork  function, it was obvious that the child has a parent process after the call to fork . 
Now we're talking about returning a termination status to the parent. But what happens if the parent terminates 
before the child? The answer is that the init  process becomes the parent process of any process whose parent 
terminates. We say that the process has been inherited by init . What normally happens is that whenever a 
process terminates, the kernel goes through all active processes to see whether the terminating process is the 
parent of any process that still exists. If so, the parent process ID of the surviving process is changed to be 1 (the 
process ID of init ). This way, we're guaranteed that every process has a parent. 

Another condition we have to worry about is when a child terminates before its parent. If the child completely 
disappeared, the parent wouldn't be able to fetch its termination status when and if the parent were finally ready 
to check if the child had terminated. The kernel keeps a small amount of information for every terminating 
process, so that the information is available when the parent of the terminating process calls wait  or waitpid . 
Minimally, this information consists of the process ID, the termination status of the process, and the amount of 
CPU time taken by the process. The kernel can discard all the memory used by the process and close its open 
files. In UNIX System terminology, a process that has terminated, but whose parent has not yet waited for it, is 



called a zombie. The ps (1) command prints the state of a zombie process as Z. If we write a long-running 
program that fork s many child processes, they become zombies unless we wait for them and fetch their 
termination status. 

Some systems provide ways to prevent the creation of zombies, as we describe in Section 10.7. 

The final condition to consider is this: what happens when a process that has been inherited by init  terminates? 
Does it become a zombie? The answer is "no," because init  is written so that whenever one of its children 
terminates, init  calls one of the wait  functions to fetch the termination status. By doing this, init  prevents the 
system from being clogged by zombies. When we say "one of init 's children," we mean either a process that 
init  generates directly (such as getty , which we describe in Section 9.2) or a process whose parent has 
terminated and has been subsequently inherited by init . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.6. wait and waitpid Functions 

When a process terminates, either normally or abnormally, the kernel notifies the parent by sending the 
SIGCHLD signal to the parent. Because the termination of a child is an asynchronous event—it can happen at any 
time while the parent is running—this signal is the asynchronous notification from the kernel to the parent. The 
parent can choose to ignore this signal, or it can provide a function that is called when the signal occurs: a signal 
handler. The default action for this signal is to be ignored. We describe these options in Chapter 10. For now, 
we need to be aware that a process that calls wait  or waitpid  can 

• Block, if all of its children are still running 
• Return immediately with the termination status of a child, if a child has terminated and is waiting for its 

termination status to be fetched 
• Return immediately with an error, if it doesn't have any child processes 

If the process is calling wait  because it received the SIGCHLD signal, we expect wait  to return immediately. But 
if we call it at any random point in time, it can block. 

#include <sys/wait.h> 
 
pid_t wait(int *statloc); 
 
pid_t waitpid(pid_t pid, int *statloc, int options) ;  

 

Both return: process ID if OK, 0 (see later), or –1 on error 

 

The differences between these two functions are as follows. 

• The wait  function can block the caller until a child process terminates, whereas waitpid  has an option 
that prevents it from blocking. 

• The waitpid  function doesn't wait for the child that terminates first; it has a number of options that 
control which process it waits for. 

If a child has already terminated and is a zombie, wait  returns immediately with that child's status. Otherwise, it 
blocks the caller until a child terminates. If the caller blocks and has multiple children, wait  returns when one 
terminates. We can always tell which child terminated, because the process ID is returned by the function. 

For both functions, the argument statloc is a pointer to an integer. If this argument is not a null pointer, the 
termination status of the terminated process is stored in the location pointed to by the argument. If we don't care 
about the termination status, we simply pass a null pointer as this argument. 

Traditionally, the integer status that these two functions return has been defined by the implementation, with 
certain bits indicating the exit status (for a normal return), other bits indicating the signal number (for an 
abnormal return), one bit to indicate whether a core file was generated, and so on. POSIX.1 specifies that the 
termination status is to be looked at using various macros that are defined in <sys/wait.h> . Four mutually 
exclusive macros tell us how the process terminated, and they all begin with WIF. Based on which of these four 
macros is true, other macros are used to obtain the exit status, signal number, and the like. The four mutually-
exclusive macros are shown in Figure 8.4. 

We'll discuss how a process can be stopped in Section 9.8 when we discuss job control. 



Example 

The function pr_exit  in Figure 8.5 uses the macros from Figure 8.4 to print a description of the termination 
status. We'll call this function from numerous programs in the text. Note that this function handles the 
WCOREDUMP macro, if it is defined. 

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 all support the WCOREDUMP macro. 

The program shown in Figure 8.6 calls the pr_exit  function, demonstrating the various values for the 
termination status. If we run the program in Figure 8.6, we get 

   $ ./a.out 
   normal termination, exit status = 7 
   abnormal termination, signal number = 6 (core fi le generated) 
   abnormal termination, signal number = 8 (core fi le generated) 

 

Unfortunately, there is no portable way to map the signal numbers from WTERMSIG into descriptive names. (See 
Section 10.21 for one method.) We have to look at the <signal.h>  header to verify that SIGABRT has a value of 
6 and that SIGFPE has a value of 8. 

Figure 8.5. Print a description of the exit status 

#include "apue.h" 
#include <sys/wait.h> 
 
void 
pr_exit(int status) 
{ 
    if (WIFEXITED(status)) 
        printf("normal termination, exit status = % d\n", 
                WEXITSTATUS(status)); 
    else if (WIFSIGNALED(status)) 
        printf("abnormal termination, signal number  = %d%s\n", 
                WTERMSIG(status), 
#ifdef  WCOREDUMP 
                WCOREDUMP(status) ? " (core file ge nerated)" : "");  
#else 
                ""); 
#endif 
    else if (WIFSTOPPED(status)) 
        printf("child stopped, signal number = %d\n ", 
                WSTOPSIG(status)); 
} 

Figure 8.6. Demonstrate various exit statuses 

#include "apue.h" 
#include <sys/wait.h> 
 
int 
main(void) 
{ 
    pid_t   pid; 
    int     status; 
 
    if ((pid = fork()) < 0) 
        err_sys("fork error"); 



    else if (pid == 0)              /* child */ 
        exit(7); 
 
    if (wait(&status) != pid)       /* wait for chi ld */ 
        err_sys("wait error"); 
    pr_exit(status);                /* and print it s status */ 
 
    if ((pid = fork()) < 0) 
        err_sys("fork error"); 
    else if (pid == 0)              /* child */ 
        abort();                    /* generates SI GABRT */ 
 
    if (wait(&status) != pid)       /* wait for chi ld */ 
        err_sys("wait error"); 
    pr_exit(status);                /* and print it s status */ 
 
    if ((pid = fork()) < 0) 
        err_sys("fork error"); 
    else if (pid == 0)              /* child */ 
        status /= 0;                /* divide by 0 generates SIGFPE */  
 
    if (wait(&status) != pid)       /* wait for chi ld */ 
        err_sys("wait error"); 
    pr_exit(status);                /* and print it s status */ 
 
    exit(0); 
} 

As we mentioned, if we have more than one child, wait  returns on termination of any of the children. What if 
we want to wait for a specific process to terminate (assuming we know which process ID we want to wait for)? 
In older versions of the UNIX System, we would have to call wait  and compare the returned process ID with 
the one we're interested in. If the terminated process wasn't the one we wanted, we would have to save the 
process ID and termination status and call wait  again. We would need to continue doing this until the desired 
process terminated. The next time we wanted to wait for a specific process, we would go through the list of 
already terminated processes to see whether we had already waited for it, and if not, call wait  again. What we 
need is a function that waits for a specific process. This functionality (and more) is provided by the POSIX.1 
waitpid  function. 

The interpretation of the pid argument for waitpid  depends on its value: 

pid == –
1 

Waits for any child process. In this respect, waitpid  is equivalent to wait . 

pid > 0 Waits for the child whose process ID equals pid. 

pid == 0 Waits for any child whose process group ID equals that of the calling process. (We discuss process 
groups in Section 9.4.) 

pid < –1 Waits for any child whose process group ID equals the absolute value of pid. 

 

The waitpid  function returns the process ID of the child that terminated and stores the child's termination status 
in the memory location pointed to by statloc. With wait , the only real error is if the calling process has no 
children. (Another error return is possible, in case the function call is interrupted by a signal. We'll discuss this 
in Chapter 10.) With waitpid , however, it's also possible to get an error if the specified process or process 
group does not exist or is not a child of the calling process. 



The options argument lets us further control the operation of waitpid . This argument is either 0 or is 
constructed from the bitwise OR of the constants in Figure 8.7. 

Figure 8.7. The options constants for waitpid 

Constant Description 

WCONTINUED If the implementation supports job control, the status of any child specified by pid that has been 
continued after being stopped, but whose status has not yet been reported, is returned (XSI 
extension to POSIX.1). 

WNOHANG The waitpid  function will not block if a child specified by pid is not immediately available. In 
this case, the return value is 0. 

WUNTRACED If the implementation supports job control, the status of any child specified by pid that has 
stopped, and whose status has not been reported since it has stopped, is returned. The 
WIFSTOPPED macro determines whether the return value corresponds to a stopped child process. 

 

Solaris supports one additional, but nonstandard, option constant. WNOWAIT has the system keep the process 
whose termination status is returned by waitpid  in a wait state, so that it may be waited for again. 

The waitpid  function provides three features that aren't provided by the wait  function. 

1. The waitpid  function lets us wait for one particular process, whereas the wait  function returns the 
status of any terminated child. We'll return to this feature when we discuss the popen  function. 

2. The waitpid  function provides a nonblocking version of wait . There are times when we want to fetch a 
child's status, but we don't want to block. 

3. The waitpid  function provides support for job control with the WUNTRACED and WCONTINUED options. 

Example 

Recall our discussion in Section 8.5 about zombie processes. If we want to write a process so that it fork s a 
child but we don't want to wait for the child to complete and we don't want the child to become a zombie until 
we terminate, the trick is to call fork  twice. The program in Figure 8.8 does this. 

We call sleep  in the second child to ensure that the first child terminates before printing the parent process ID. 
After a fork , either the parent or the child can continue executing; we never know which will resume execution 
first. If we didn't put the second child to sleep, and if it resumed execution after the fork  before its parent, the 
parent process ID that it printed would be that of its parent, not process ID 1. 

Executing the program in Figure 8.8 gives us 

   $ ./a.out 
   $ second child, parent pid = 1 

 

Note that the shell prints its prompt when the original process terminates, which is before the second child 
prints its parent process ID. 

Figure 8.8. Avoid zombie processes by calling fork twice 



#include "apue.h" 
#include <sys/wait.h> 
 
int 
main(void) 
{ 
    pid_t   pid; 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {     /* first child */ 
        if ((pid = fork()) < 0) 
            err_sys("fork error"); 
        else if (pid > 0) 
            exit(0);    /* parent from second fork == first child */ 
        /* 
         * We're the second child; our parent becom es init as soon 
         * as our real parent calls exit() in the s tatement above. 
         * Here's where we'd continue executing, kn owing that when 
         * we're done, init will reap our status. 
         */ 
        sleep(2); 
        printf("second child, parent pid = %d\n", g etppid()); 
        exit(0); 
    } 
     
    if (waitpid(pid, NULL, 0) != pid)  /* wait for first child */ 
        err_sys("waitpid error"); 
 
    /* 
     * We're the parent (the original process); we continue executing,  
     * knowing that we're not the parent of the sec ond child. 
     */ 
    exit(0); 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.7. waitid Function 

The XSI extension of the Single UNIX Specification includes an additional function to retrieve the exit status of 
a process. The waitid  function is similar to waitpid , but provides extra flexibility. 

#include <sys/wait.h> 
 
int waitid(idtype_t idtype, id_t id, siginfo_t *inf op, int options);  

 

Returns: 0 if OK, –1 on error 

Like waitpid , waitid  allows a process to specify which children to wait for. Instead of encoding this 
information in a single argument combined with the process ID or process group ID, two separate arguments are 
used. The id parameter is interpreted based on the value of idtype. The types supported are summarized in 
Figure 8.9. 

Figure 8.9. The idtype constants for waitid 

Constant Description 

P_PID  Wait for a particular process: id contains the process ID of the child to wait for. 

P_PGID Wait for any child process in a particular process group: id contains the process group ID of the 
children to wait for. 

P_ALL Wait for any child process: id is ignored. 

The options argument is a bitwise OR of the flags shown in Figure 8.10. These flags indicate which state 
changes the caller is interested in. 

Figure 8.10. The options constants for waitid 

Constant Description 

WCONTINUED Wait for a process that has previously stopped and has been continued, and whose status has not 
yet been reported. 

WEXITED Wait for processes that have exited. 

WNOHANG Return immediately instead of blocking if there is no child exit status available. 

WNOWAIT Don't destroy the child exit status. The child's exit status can be retrieved by a subsequent call to 
wait , waitid ,or waitpid . 

WSTOPPED Wait for a process that has stopped and whose status has not yet been reported. 

The infop argument is a pointer to a siginfo  structure. This structure contains detailed information about the 
signal generated that caused the state change in the child process. The siginfo  structure is discussed further in 
Section 10.14. 

Of the four platforms covered in this book, only Solaris provides support for waitid . 



8.8. wait3 and wait4 Functions 

Most UNIX system implementations provide two additional functions: wait3  and wait4 . Historically, these 
two variants descend from the BSD branch of the UNIX System. The only feature provided by these two 
functions that isn't provided by the wait , waitid , and waitpid  functions is an additional argument that allows 
the kernel to return a summary of the resources used by the terminated process and all its child processes. 

#include <sys/types.h> 
#include <sys/wait.h> 
#include <sys/time.h> 
#include <sys/resource.h> 
 
pid_t wait3(int *statloc, int options, struct rusag e *rusage);  
 
pid_t wait4(pid_t pid, int *statloc, int options, 
 struct rusage *rusage); 

 

Both return: process ID if OK, 0, or –1 on error 

 

The resource information includes such statistics as the amount of user CPU time, the amount of system CPU 
time, number of page faults, number of signals received, and the like. Refer to the getrusage (2) manual page 
for additional details. (This resource information differs from the resource limits we described in Section 7.11.) 
Figure 8.11 details the various arguments supported by the wait  functions. 

Figure 8.11. Arguments supported by wait functions on various systems 

Function pid options rusage POSIX.1 Free BSD 5.2.1 Linux 2.4.22 Mac OSX 10.3 Solaris 9 

wait        • • • • • 

waitid  • •   XSI       • 

waitpid  • •   • • • • • 

wait3    • •   • • • • 

wait4  • • •   • • • • 

 

The wait3  function was included in earlier versions of the Single UNIX Specification. In Version 2, wait3  was 
moved to the legacy category; wait3  was removed from the specification in Version 3. 

 
 
 
 
 
 
 
 
 



8.9. Race Conditions 

For our purposes, a race condition occurs when multiple processes are trying to do something with shared data 
and the final outcome depends on the order in which the processes run. The fork  function is a lively breeding 
ground for race conditions, if any of the logic after the fork  either explicitly or implicitly depends on whether 
the parent or child runs first after the fork . In general, we cannot predict which process runs first. Even if we 
knew which process would run first, what happens after that process starts running depends on the system load 
and the kernel's scheduling algorithm. 

We saw a potential race condition in the program in Figure 8.8 when the second child printed its parent process 
ID. If the second child runs before the first child, then its parent process will be the first child. But if the first 
child runs first and has enough time to exit , then the parent process of the second child is init . Even calling 
sleep , as we did, guarantees nothing. If the system was heavily loaded, the second child could resume after 
sleep  returns, before the first child has a chance to run. Problems of this form can be difficult to debug because 
they tend to work "most of the time." 

A process that wants to wait for a child to terminate must call one of the wait  functions. If a process wants to 
wait for its parent to terminate, as in the program from Figure 8.8, a loop of the following form could be used: 

   while (getppid() != 1) 
      sleep(1); 

 

The problem with this type of loop, called polling, is that it wastes CPU time, as the caller is awakened every 
second to test the condition. 

To avoid race conditions and to avoid polling, some form of signaling is required between multiple processes. 
Signals can be used, and we describe one way to do this in Section 10.16. Various forms of interprocess 
communication (IPC) can also be used. We'll discuss some of these in Chapters 15 and 17. 

For a parent and child relationship, we often have the following scenario. After the fork , both the parent and 
the child have something to do. For example, the parent could update a record in a log file with the child's 
process ID, and the child might have to create a file for the parent. In this example, we require that each process 
tell the other when it has finished its initial set of operations, and that each wait for the other to complete, before 
heading off on its own. The following code illustrates this scenario: 

#include  "apue.h" 
 
TELL_WAIT();    /* set things up for TELL_xxx & WAI T_xxx */ 
 
if ((pid = fork()) < 0) { 
    err_sys("fork error"); 
} else if (pid == 0) {            /* child */ 
 
    /* child does whatever is necessary ... */ 
 
    TELL_PARENT(getppid());     /* tell parent we'r e done */ 
    WAIT_PARENT();              /* and wait for par ent */ 
 
    /* and the child continues on its way ... */ 
 
    exit(0); 
} 
 
/* parent does whatever is necessary ... */ 



 
TELL_CHILD(pid);            /* tell child we're don e */ 
WAIT_CHILD();               /* and wait for child * / 
 
/* and the parent continues on its way ... */ 
 
exit(0); 

 

We assume that the header apue.h  defines whatever variables are required. The five routines TELL_WAIT, 
TELL_PARENT, TELL_CHILD, WAIT_PARENT, and WAIT_CHILD can be either macros or functions. 

We'll show various ways to implement these TELL and WAIT routines in later chapters: Section 10.16 shows an 
implementation using signals; Figure 15.7 shows an implementation using pipes. Let's look at an example that 
uses these five routines. 

Example 

The program in Figure 8.12 outputs two strings: one from the child and one from the parent. The program 
contains a race condition because the output depends on the order in which the processes are run by the kernel 
and for how long each process runs. 

We set the standard output unbuffered, so every character output generates a write . The goal in this example is 
to allow the kernel to switch between the two processes as often as possible to demonstrate the race condition. 
(If we didn't do this, we might never see the type of output that follows. Not seeing the erroneous output doesn't 
mean that the race condition doesn't exist; it simply means that we can't see it on this particular system.) The 
following actual output shows how the results can vary: 

   $ ./a.out 
   ooutput from child 
   utput from parent 
   $ ./a.out 
   ooutput from child 
   utput from parent 
   $ ./a.out 
   output from child 
   output from parent 

 

We need to change the program in Figure 8.12 to use the TELL and WAIT functions. The program in Figure 8.13 
does this. The lines preceded by a plus sign are new lines. 

When we run this program, the output is as we expect; there is no intermixing of output from the two processes. 

In the program shown in Figure 8.13, the parent goes first. The child goes first if we change the lines following 
the fork  to be 

} else if (pid == 0) { 
    charatatime("output from child\n"); 
    TELL_PARENT(getppid()); 
} else { 
    WAIT_CHILD();        /* child goes first */ 
    charatatime("output from parent\n"); 
} 

 



Exercise 8.3 continues this example. 

Figure 8.12. Program with a race condition 

#include "apue.h" 
 
static void charatatime(char *); 
 
int 
main(void) 
{ 
    pid_t   pid; 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) { 
        charatatime("output from child\n"); 
    } else { 
        charatatime("output from parent\n"); 
    } 
    exit(0); 
} 
 
static void 
charatatime(char *str) 
{ 
    char    *ptr; 
    int     c; 
 
    setbuf(stdout, NULL);           /* set unbuffer ed */  
    for (ptr = str; (c = *ptr++) != 0; ) 
        putc(c, stdout); 
} 

Figure 8.13. Modification of Figure 8.12 to avoid race condition 

   #include "apue.h" 
 
   static void charatatime(char *); 
 
   int 
   main(void) 
   { 
       pid_t   pid; 
 
+      TELL_WAIT(); 
+ 
       if ((pid = fork()) < 0) { 
           err_sys("fork error"); 
       } else if (pid == 0) { 
+          WAIT_PARENT();      /* parent goes first  */ 
           charatatime("output from child\n"); 
       } else { 
           charatatime("output from parent\n"); 
+          TELL_CHILD(pid); 
       } 
       exit(0); 
   } 
   static void 
   charatatime(char *str) 



   { 
       char    *ptr; 
       int     c; 
 
       setbuf(stdout, NULL);           /* set unbuf fered */  
       for (ptr = str; (c = *ptr++) != 0; ) 
           putc(c, stdout); 
   }      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.10. exec Functions 

We mentioned in Section 8.3 that one use of the fork  function is to create a new process (the child) that then 
causes another program to be executed by calling one of the exec  functions. When a process calls one of the 
exec  functions, that process is completely replaced by the new program, and the new program starts executing 
at its main  function. The process ID does not change across an exec , because a new process is not created; exec  
merely replaces the current process—its text, data, heap, and stack segments—with a brand new program from 
disk. 

There are six different exec  functions, but we'll often simply refer to "the exec  function," which means that we 
could use any of the six functions. These six functions round out the UNIX System process control primitives. 
With fork , we can create new processes; and with the exec  functions, we can initiate new programs. The exit  
function and the wait  functions handle termination and waiting for termination. These are the only process 
control primitives we need. We'll use these primitives in later sections to build additional functions, such as 
popen  and system . 

#include <unistd.h> 
 
int execl(const char *pathname, const char *arg0, . .. /* (char *)0 */ ); 
 
int execv(const char *pathname, char *const argv [] ); 
 
int execle(const char *pathname, const char *arg0, ... 
           /* (char *)0,  char *const envp[] */ ); 
 
int execve(const char *pathname, char *const argv[] , char *const envp []);  
 
int execlp(const char *filename, const char *arg0, 
 ... /* (char *)0 */ ); 
 
int execvp(const char *filename, char *const argv [ ]); 

 

All six return: –1 on error, no return on success 

 

The first difference in these functions is that the first four take a pathname argument, whereas the last two take a 
filename argument. When a filename argument is specified 

• If filename contains a slash, it is taken as a pathname. 
• Otherwise, the executable file is searched for in the directories specified by the PATH environment 

variable. 

The PATH variable contains a list of directories, called path prefixes, that are separated by colons. For example, 
the name=value environment string 

    PATH=/bin:/usr/bin:/usr/local/bin/:. 

 

specifies four directories to search. The last path prefix specifies the current directory. (A zero-length prefix 
also means the current directory. It can be specified as a colon at the beginning of the value, two colons in a row, 
or a colon at the end of the value.) 



There are security reasons for never including the current directory in the search path. See Garfinkel et al. 
[2003]. 

If either execlp  or execvp  finds an executable file using one of the path prefixes, but the file isn't a machine 
executable that was generated by the link editor, the function assumes that the file is a shell script and tries to 
invoke /bin/sh  with the filename as input to the shell. 

The next difference concerns the passing of the argument list (l  stands for list and v  stands for vector). The 
functions execl , execlp , and execle  require each of the command-line arguments to the new program to be 
specified as separate arguments. We mark the end of the arguments with a null pointer. For the other three 
functions (execv , execvp , and execve ), we have to build an array of pointers to the arguments, and the address 
of this array is the argument to these three functions. 

Before using ISO C prototypes, the normal way to show the command-line arguments for the three functions 
execl , execle , and execlp  was 

   char *arg0, char *arg1, ..., char *argn, (char * )0 

 

This specifically shows that the final command-line argument is followed by a null pointer. If this null pointer is 
specified by the constant 0, we must explicitly cast it to a pointer; if we don't, it's interpreted as an integer 
argument. If the size of an integer is different from the size of a char * , the actual arguments to the exec  
function will be wrong. 

The final difference is the passing of the environment list to the new program. The two functions whose names 
end in an e (execle  and execve ) allow us to pass a pointer to an array of pointers to the environment strings. 
The other four functions, however, use the environ  variable in the calling process to copy the existing 
environment for the new program. (Recall our discussion of the environment strings in Section 7.9 and Figure 
7.8. We mentioned that if the system supported such functions as setenv  and putenv , we could change the 
current environment and the environment of any subsequent child processes, but we couldn't affect the 
environment of the parent process.) Normally, a process allows its environment to be propagated to its children, 
but in some cases, a process wants to specify a certain environment for a child. One example of the latter is the 
login  program when a new login shell is initiated. Normally, login  creates a specific environment with only a 
few variables defined and lets us, through the shell start-up file, add variables to the environment when we log 
in. 

Before using ISO C prototypes, the arguments to execle  were shown as 

   char *pathname, char *arg0, ..., char *argn, (ch ar *)0, char *envp[] 

 

This specifically shows that the final argument is the address of the array of character pointers to the 
environment strings. The ISO C prototype doesn't show this, as all the command-line arguments, the null 
pointer, and the envp pointer are shown with the ellipsis notation (... ). 

The arguments for these six exec  functions are difficult to remember. The letters in the function names help 
somewhat. The letter p means that the function takes a filename argument and uses the PATH environment 
variable to find the executable file. The letter l  means that the function takes a list of arguments and is mutually 
exclusive with the letter v , which means that it takes an argv[]  vector. Finally, the letter e means that the 
function takes an envp[]  array instead of using the current environment. Figure 8.14 shows the differences 
among these six functions. 



Figure 8.14. Differences among the six exec functions 

Function pathname filename Arg list  argv[]  environ envp[] 

execl  •   •   •   

execlp    • •   •   

execle  •   •     • 

execv  •     • •  

execvp    •   • •   

execve  •     •   • 

(letter in name)   p l  v    e 

 

Every system has a limit on the total size of the argument list and the environment list. From Section 2.5.2 and 
Figure 2.8, this limit is given by ARG_MAX. This value must be at least 4,096 bytes on a POSIX.1 system. We 
sometimes encounter this limit when using the shell's filename expansion feature to generate a list of filenames. 
On some systems, for example, the command 

   grep getrlimit /usr/share/man/*/* 

 

can generate a shell error of the form 

Argument list too long 

 

Historically, the limit in older System V implementations was 5,120 bytes. Older BSD systems had a limit of 
20,480 bytes. The limit in current systems is much higher. (See the output from the program in Figure 2.13, 
which is summarized in Figure 2.14.) 

To get around the limitation in argument list size, we can use the xargs (1) command to break up long argument 
lists. To look for all the occurrences of getrlimit  in the man pages on our system, we could use 

   find /usr/share/man -type f -print | xargs grep getrlimit 

 

If the man pages on our system are compressed, however, we could try 

   find /usr/share/man -type f -print | xargs bzgre p getrlimit 

 

We use the type -f  option to the find  command to restrict the list to contain only regular files, because the 
grep  commands can't search for patterns in directories, and we want to avoid unnecessary error messages. 

We've mentioned that the process ID does not change after an exec , but the new program inherits additional 
properties from the calling process: 



• Process ID and parent process ID 
• Real user ID and real group ID 
• Supplementary group IDs 
• Process group ID 
• Session ID 
• Controlling terminal 
• Time left until alarm clock 
• Current working directory 
• Root directory 
• File mode creation mask 
• File locks 
• Process signal mask 
• Pending signals 
• Resource limits 
• Values for tms_utime , tms_stime , tms_cutime , and tms_cstime  

The handling of open files depends on the value of the close-on-exec flag for each descriptor. Recall from 
Figure 3.6 and our mention of the FD_CLOEXEC flag in Section 3.14 that every open descriptor in a process has a 
close-on-exec flag. If this flag is set, the descriptor is closed across an exec . Otherwise, the descriptor is left 
open across the exec . The default is to leave the descriptor open across the exec  unless we specifically set the 
close-on-exec flag using fcntl . 

POSIX.1 specifically requires that open directory streams (recall the opendir  function from Section 4.21) be 
closed across an exec . This is normally done by the opendir  function calling fcntl  to set the close-on-exec 
flag for the descriptor corresponding to the open directory stream. 

Note that the real user ID and the real group ID remain the same across the exec , but the effective IDs can 
change, depending on the status of the set-user-ID and the set- group-ID bits for the program file that is 
executed. If the set-user-ID bit is set for the new program, the effective user ID becomes the owner ID of the 
program file. Otherwise, the effective user ID is not changed (it's not set to the real user ID). The group ID is 
handled in the same way. 

In many UNIX system implementations, only one of these six functions, execve , is a system call within the 
kernel. The other five are just library functions that eventually invoke this system call. We can illustrate the 
relationship among these six functions as shown in Figure 8.15. 

Figure 8.15. Relationship of the six exec functions 

 
 

In this arrangement, the library functions execlp  and execvp  process the PATH environment variable, looking 
for the first path prefix that contains an executable file named filename. 

Example 



The program in Figure 8.16 demonstrates the exec  functions. 

We first call execle , which requires a pathname and a specific environment. The next call is to execlp , which 
uses a filename and passes the caller's environment to the new program. The only reason the call to execlp  
works is that the directory /home/sar/bin  is one of the current path prefixes. Note also that we set the first 
argument, argv[0]  in the new program, to be the filename component of the pathname. Some shells set this 
argument to be the complete pathname. This is a convention only. We can set argv[0]  to any string we like. 
The login  command does this when it executes the shell. Before executing the shell, login  adds a dash as a 
prefix to argv[0]  to indicate to the shell that it is being invoked as a login shell. A login shell will execute the 
start-up profile commands, whereas a nonlogin shell will not. 

The program echoall  that is executed twice in the program in Figure 8.16 is shown in Figure 8.17. It is a trivial 
program that echoes all its command-line arguments and its entire environment list. 

When we execute the program from Figure 8.16, we get 

  $ ./a.out 
  argv[0]: echoall 
  argv[1]: myarg1 
  argv[2]: MY ARG2 
  USER=unknown 
  PATH=/tmp 
  $ argv[0]: echoall 
  argv[1]: only 1 arg 
  USER=sar 
  LOGNAME=sar 
  SHELL=/bin/bash 
                             47 more lines that are n't shown 
  HOME=/home/sar 

 

Note that the shell prompt appeared before the printing of argv[0]  from the second exec . This is because the 
parent did not wait  for this child process to finish. 

Figure 8.16. Example of exec functions 

#include "apue.h" 
#include <sys/wait.h> 
 
char    *env_init[] = { "USER=unknown", "PATH=/tmp" , NULL }; 
 
int 
main(void) 
{ 
    pid_t   pid; 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {  /* specify pathname, sp ecify environment */  
        if (execle("/home/sar/bin/echoall", "echoal l", "myarg1", 
                "MY ARG2", (char *)0, env_init) < 0 ) 
            err_sys("execle error"); 
    } 
 
    if (waitpid(pid, NULL, 0) < 0) 
        err_sys("wait error"); 
 



    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {  /* specify filename, in herit environment */  
        if (execlp("echoall", "echoall", "only 1 ar g", (char *)0) < 0) 
            err_sys("execlp error"); 
    } 
 
    exit(0); 
} 

Figure 8.17. Echo all command-line arguments and all environment strings 

#include "apue.h" 
 
int 
main(int argc, char *argv[]) 
{ 
    int         i; 
    char        **ptr; 
    extern char **environ; 
 
    for (i = 0; i < argc; i++)      /* echo all com mand-line args */ 
        printf("argv[%d]: %s\n", i, argv[i]); 
 
    for (ptr = environ; *ptr != 0; ptr++)   /* and all env strings */  
        printf("%s\n", *ptr); 
 
    exit(0); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.11. Changing User IDs and Group IDs 

In the UNIX System, privileges, such as being able to change the system's notion of the current date, and access 
control, such as being able to read or write a particular file, are based on user and group IDs. When our 
programs need additional privileges or need to gain access to resources that they currently aren't allowed to 
access, they need to change their user or group ID to an ID that has the appropriate privilege or access. 
Similarly, when our programs need to lower their privileges or prevent access to certain resources, they do so by 
changing either their user ID or group ID to an ID without the privilege or ability access to the resource. 

In general, we try to use the least-privilege model when we design our applications. Following this model, our 
programs should use the least privilege necessary to accomplish any given task. This reduces the likelihood that 
security can be compromised by a malicious user trying to trick our programs into using their privileges in 
unintended ways. 

We can set the real user ID and effective user ID with the setuid  function. Similarly, we can set the real group 
ID and the effective group ID with the setgid  function. 

#include <unistd.h> 
 
int setuid(uid_t uid); 
 
int setgid(gid_t gid); 

 

Both return: 0 if OK, –1 on error 

 

There are rules for who can change the IDs. Let's consider only the user ID for now. (Everything we describe 
for the user ID also applies to the group ID.) 

1. If the process has superuser privileges, the setuid  function sets the real user ID, effective user ID, and 
saved set-user-ID to uid. 

2. If the process does not have superuser privileges, but uid equals either the real user ID or the saved set-
user-ID, setuid  sets only the effective user ID to uid. The real user ID and the saved set-user-ID are not 
changed. 

3. If neither of these two conditions is true, errno  is set to EPERM, and –1 is returned. 

Here, we are assuming that _POSIX_SAVED_IDS is true. If this feature isn't provided, then delete all preceding 
references to the saved set-user-ID. 

The saved IDs are a mandatory feature in the 2001 version of POSIX.1. They used to be optional in older 
versions of POSIX. To see whether an implementation supports this feature, an application can test for the 
constant _POSIX_SAVED_IDS at compile time or call sysconf  with the _SC_SAVED_IDS argument at runtime. 

We can make a few statements about the three user IDs that the kernel maintains. 

1. Only a superuser process can change the real user ID. Normally, the real user ID is set by the login (1) 
program when we log in and never changes. Because login  is a superuser process, it sets all three user 
IDs when it calls setuid . 

2. The effective user ID is set by the exec  functions only if the set-user-ID bit is set for the program file. If 
the set-user-ID bit is not set, the exec  functions leave the effective user ID as its current value. We can 



call setuid  at any time to set the effective user ID to either the real user ID or the saved set-user-ID. 
Naturally, we can't set the effective user ID to any random value. 

3. The saved set-user-ID is copied from the effective user ID by exec . If the file's set-user-ID bit is set, this 
copy is saved after exec  stores the effective user ID from the file's user ID. 

Figure 8.18 summarizes the various ways these three user IDs can be changed. 

Figure 8.18. Ways to change the three user IDs 

exec setuid(uid) ID 

set-user-ID bit off set-user-ID bit on superuser unprivileged 
user 

real user ID unchanged unchanged set to uid unchanged 

effective user 
ID 

unchanged set from user ID of program 
file 

set to uid set to uid  

saved set-user 
ID 

copied from effective user 
ID 

copied from effective user ID set to uid unchanged 

 

Note that we can obtain only the current value of the real user ID and the effective user ID with the functions 
getuid  and geteuid  from Section 8.2. We can't obtain the current value of the saved set-user-ID. 

Example 

To see the utility of the saved set-user-ID feature, let's examine the operation of a program that uses 
it. We'll look at the man(1) program, which is used to display online manual pages. The man program 
can be installed either set-user-ID or set-group-ID to a specific user or group, usually one reserved 
for man itself. The man program can be made to read and possibly overwrite files in locations that are 
chosen either through a configuration file (usually /etc/man.config  or /etc/manpath.config ) or 
using a command-line option. 

The man program might have to execute several other commands to process the files containing the 
manual page to be displayed. To prevent being tricked into running the wrong commands or 
overwriting the wrong files, the man command has to switch between two sets of privileges: those of 
the user running the man command and those of the user that owns the man executable file. The 
following steps take place. 

1. Assuming that the man program file is owned by the user name man and has its set-user-ID bit 
set, when we exec  it, we have 

 
                real user ID = our user ID 
         effective user ID = man 
      saved set-user-ID = man 

2. The man program accesses the required configuration files and manual pages. These files are 
owned by the user name man, but because the effective user ID is man, file access is allowed. 



3. Before man runs any command on our behalf, it calls setuid(getuid()) . Because we are 
not a superuser process, this changes only the effective user ID. We have 

 
          real user ID = our user ID (unchanged) 
   effective user ID = our user ID 
 saved set-user-ID = man (unchanged) 

Now the man process is running with our user ID as its effective user ID. This means that we 
can access only the files to which we have normal access. We have no additional 
permissions. It can safely execute any filter on our behalf. 

4. When the filter is done, man calls setuid( euid) , where euid is the numerical user ID for the 
user name man. (This was saved by man by calling geteuid .) This call is allowed because the 
argument to setuid  equals the saved set-user-ID. (This is why we need the saved set-user-
ID.) Now we have 

 
          real user ID = our user ID (unchanged) 
   effective user ID = man 
 saved set-user-ID = man (unchanged) 

5. The man program can now operate on its files, as its effective user ID is man. 

By using the saved set-user-ID in this fashion, we can use the extra privileges granted to us by the 
set-user-ID of the program file at the beginning of the process and at the end of the process. In 
between, however, the process runs with our normal permissions. If we weren't able to switch back 
to the saved set-user-ID at the end, we might be tempted to retain the extra permissions the whole 
time we were running (which is asking for trouble). 

Let's look at what happens if man spawns a shell for us while it is running. (The shell is spawned 
using fork  and exec .) Because the real user ID and the effective user ID are both our normal user 
ID (step 3), the shell has no extra permissions. The shell can't access the saved set-user-ID that is set 
to man while man is running, because the saved set-user-ID for the shell is copied from the effective 
user ID by exec . So in the child process that does the exec , all three user IDs are our normal user 
ID. 

Our description of how man uses the setuid  function is not correct if the program is set-user-ID to 
root, because a call to setuid  with superuser privileges sets all three user IDs. For the example to 
work as described, we need setuid  to set only the effective user ID. 

setreuid and setregid Functions 

Historically, BSD supported the swapping of the real user ID and the effective user ID with the setreuid  
function. 



   #include <unistd.h> 
 
   int setreuid(uid_t ruid, uid_t euid);  
 
   int setregid(gid_t rgid, gid_t egid);  

 

Both return: 0 if OK, –1 on error 

 

We can supply a value of –1 for any of the arguments to indicate that the corresponding ID should remain 
unchanged. 

The rule is simple: an unprivileged user can always swap between the real user ID and the effective user ID. 
This allows a set-user-ID program to swap to the user's normal permissions and swap back again later for set-
user-ID operations. When the saved set-user-ID feature was introduced with POSIX.1, the rule was enhanced to 
also allow an unprivileged user to set its effective user ID to its saved set-user-ID. 

Both setreuid  and setregid  are XSI extensions in the Single UNIX Specification. As such, all UNIX System 
implementations are expected to provide support for them. 

4.3BSD didn't have the saved set-user-ID feature described earlier. It used setreuid  and setregid  instead. 
This allowed an unprivileged user to swap back and forth between the two values. Be aware, however, that 
when programs that used this feature spawned a shell, they had to set the real user ID to the normal user ID 
before the exec . If they didn't do this, the real user ID could be privileged (from the swap done by setreuid ) 
and the shell process could call setreuid  to swap the two and assume the permissions of the more privileged 
user. As a defensive programming measure to solve this problem, programs set both the real user ID and the 
effective user ID to the normal user ID before the call to exec  in the child. 

seteuid and setegid Functions 

POSIX.1 includes the two functions seteuid  and setegid . These functions are similar to setuid  and setgid , 
but only the effective user ID or effective group ID is changed. 

#include <unistd.h> 
 
int seteuid(uid_t uid); 
 
int setegid(gid_t gid); 

 

Both return: 0 if OK, –1 on error 

 

An unprivileged user can set its effective user ID to either its real user ID or its saved set-user-ID. For a 
privileged user, only the effective user ID is set to uid. (This differs from the setuid  function, which changes 
all three user IDs.) 

Figure 8.19 summarizes all the functions that we've described here that modify the three user IDs. 

Figure 8.19. Summary of all the functions that set the various user IDs 
 



 
 
 

Group IDs 

Everything that we've said so far in this section also applies in a similar fashion to group IDs. The 
supplementary group IDs are not affected by setgid , setregid , or setegid . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.12. Interpreter Files 

All contemporary UNIX systems support interpreter files. These files are text files that begin with a line of the 
form 

    #! pathname [ optional-argument ] 

 

The space between the exclamation point and the pathname is optional. The most common of these interpreter 
files begin with the line 

   #!/bin/sh 

 

The pathname is normally an absolute pathname, since no special operations are performed on it (i.e., PATH is 
not used). The recognition of these files is done within the kernel as part of processing the exec  system call. 
The actual file that gets executed by the kernel is not the interpreter file, but the file specified by the pathname 
on the first line of the interpreter file. Be sure to differentiate between the interpreter file—a text file that begins 
with #! —and the interpreter, which is specified by the pathname on the first line of the interpreter file. 

Be aware that systems place a size limit on the first line of an interpreter file. This limit includes the #! , the 
pathname, the optional argument, the terminating newline, and any spaces. 

On FreeBSD 5.2.1, this limit is 128 bytes. Mac OS X 10.3 extends this limit to 512 bytes. Linux 2.4.22 supports 
a limit of 127 bytes, whereas Solaris 9 places the limit at 1,023 bytes. 

Example 

Let's look at an example to see what the kernel does with the arguments to the exec  function when the file being 
executed is an interpreter file and the optional argument on the first line of the interpreter file. The program in 
Figure 8.20 exec s an interpreter file. 

The following shows the contents of the one-line interpreter file that is executed and the result from running the 
program in Figure 8.20: 

   $ cat /home/sar/bin/testinterp 
   #!/home/sar/bin/echoarg foo 
   $ ./a.out 
   argv[0]: /home/sar/bin/echoarg 
   argv[1]: foo 
   argv[2]: /home/sar/bin/testinterp 
   argv[3]: myarg1 
   argv[4]: MY ARG2 

 

The program echoarg  (the interpreter) just echoes each of its command-line arguments. (This is the program 
from Figure 7.4.) Note that when the kernel exec s the interpreter (/home/sar/bin/echoarg ), argv[0]  is the 
pathname of the interpreter, argv[1]  is the optional argument from the interpreter file, and the remaining 
arguments are the pathname (/home/sar/bin/testinterp ) and the second and third arguments from the call to 
execl  in the program shown in Figure 8.20 (myarg1  and MY ARG2). Both argv[1]  and argv[2]  from the call to 
execl  have been shifted right two positions. Note that the kernel takes the pathname from the execl  call 
instead of the first argument (testinterp ), on the assumption that the pathname might contain more 
information than the first argument. 



Figure 8.20. A program that execs an interpreter file 

#include "apue.h" 
#include <sys/wait.h> 
 
int 
main(void) 
{ 
    pid_t   pid; 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {          /* child */ 
        if (execl("/home/sar/bin/testinterp", 
                  "testinterp", "myarg1", "MY ARG2" , (char *)0) < 0)  
            err_sys("execl error"); 
    } 
    if (waitpid(pid, NULL, 0) < 0) /* parent */ 
        err_sys("waitpid error"); 
    exit(0); 
} 

 

Example. Example 

A common use for the optional argument following the interpreter pathname is to specify the -f  option for 
programs that support this option. For example, an awk(1) program can be executed as 

   awk -f myfile 

 

which tells awk to read the awk program from the file myfile . 

Systems derived from UNIX System V often include two versions of the awk language. On these systems, awk 
is often called "old awk" and corresponds to the original version distributed with Version 7. In contrast, nawk 
(new awk) contains numerous enhancements and corresponds to the language described in Aho, Kernighan, and 
Weinberger [1988]. This newer version provides access to the command-line arguments, which we need for the 
example that follows. Solaris 9 provides both versions. 

The awk program is one of the utilities included by POSIX in its 1003.2 standard, which is now part of the base 
POSIX.1 specification in the Single UNIX Specification. This utility is also based on the language described in 
Aho, Kernighan, and Weinberger [1988]. 

The version of awk in Mac OS X 10.3 is based on the Bell Laboratories version that Lucent has placed in the 
public domain. FreeBSD 5.2.1 and Linux 2.4.22 ship with GNU awk, called gawk, which is linked to the name 
awk. The gawk version conforms to the POSIX standard, but also includes other extensions. Because they are 
more up-to-date, the version of awk from Bell Laboratories and gawk are preferred to either nawk or old awk. 
(The version of awk from Bell Laboratories is available at http://cm.bell-labs.com/cm/cs/awkbook/index.html.) 

Using the -f  option with an interpreter file lets us write 

   #!/bin/awk -f 
   (awk program follows in the interpreter file) 

 



For example, Figure 8.21 shows /usr/local/bin/awkexample  (an interpreter file). 

If one of the path prefixes is /usr/local/bin , we can execute the program in Figure 8.21 (assuming that we've 
turned on the execute bit for the file) as 

   $ awkexample file1 FILENAME2 f3 
   ARGV[0] = awk 
   ARGV[1] = file1 
   ARGV[2] = FILENAME2 
   ARGV[3] = f3 

 

When /bin/awk  is executed, its command-line arguments are 

   /bin/awk -f /usr/local/bin/awkexample file1 FILE NAME2 f3 

 

The pathname of the interpreter file (/usr/local/bin/awkexample ) is passed to the interpreter. The filename 
portion of this pathname (what we typed to the shell) isn't adequate, because the interpreter (/bin/awk  in this 
example) can't be expected to use the PATH variable to locate files. When it reads the interpreter file, awk ignores 
the first line, since the pound sign is awk's comment character. 

We can verify these command-line arguments with the following commands: 

    $ /bin/su                              become s uperuser 
    Password:                              enter su peruser password 
    # mv /bin/awk /bin/awk.save            save the  original program 
    # cp /home/sar/bin/echoarg /bin/awk    and repl ace it temporarily 
    # suspend                              suspend the superuser shell using job control 
    [1] + Stopped         /bin/su 
    $ awkexample file1 FILENAME2 f3 
    argv[0]: /bin/awk 
    argv[1]: -f 
    argv[2]: /usr/local/bin/awkexample 
    argv[3]: file1 
    argv[4]: FILENAME2 
    argv[5]: f3 
    $ fg                                    resume superuser shell using job control 
    /bin/su 
    # mv /bin/awk.save /bin/awk             restore  the original program 
    # exit                                  and exi t the superuser shell 
 
 
      

 

In this example, the -f  option for the interpreter is required. As we said, this tells awk where to look for the awk 
program. If we remove the -f  option from the interpreter file, an error message usually results when we try to 
run it. The exact text of the message varies, depending on where the interpreter file is stored and whether the 
remaining arguments represent existing files. This is because the command-line arguments in this case are 

   /bin/awk /usr/local/bin/awkexample file1 FILENAM E2 f3 

 



and awk is trying to interpret the string /usr/local/bin/awkexample  as an awk program. If we couldn't pass at 
least a single optional argument to the interpreter (-f  in this case), these interpreter files would be usable only 
with the shells. 

Figure 8.21. An awk program as an interpreter file 

#!/bin/awk -f 
BEGIN { 
    for (i = 0; i < ARGC; i++) 
        printf "ARGV[%d] = %s\n", i, ARGV[i]  
    exit 
} 

 

Are interpreter files required? Not really. They provide an efficiency gain for the user at some expense in the 
kernel (since it's the kernel that recognizes these files). Interpreter files are useful for the following reasons. 

1. They hide that certain programs are scripts in some other language. For example, to execute the program 
in Figure 8.21, we just say 

2.     awkexample optional-arguments 

 

instead of needing to know that the program is really an awk script that we would otherwise have to 
execute as 

   awk -f awkexample optional-arguments 

 

3. Interpreter scripts provide an efficiency gain. Consider the previous example again. We could still hide 
that the program is an awk script, by wrapping it in a shell script: 

4.      awk 'BEGIN { 
5.          for (i = 0; i < ARGC; i++) 
6.              printf "ARGV[%d] = %s\n", i, ARGV[i] 
7.          exit 
8.      }' $* 

 

The problem with this solution is that more work is required. First, the shell reads the command and tries 
to execlp  the filename. Because the shell script is an executable file, but isn't a machine executable, an 
error is returned, and execlp  assumes that the file is a shell script (which it is). Then /bin/sh  is 
executed with the pathname of the shell script as its argument. The shell correctly runs our script, but to 
run the awk program, the shell does a fork , exec , and wait . Thus, there is more overhead in replacing 
an interpreter script with a shell script. 

9. Interpreter scripts let us write shell scripts using shells other than /bin/sh . When it finds an executable 
file that isn't a machine executable, execlp  has to choose a shell to invoke, and it always uses /bin/sh . 
Using an interpreter script, however, we can simply write 

10.     #!/bin/csh 
11.     (C shell script follows in the interpreter file)  



 

Again, we could wrap this all in a /bin/sh  script (that invokes the C shell), as we described earlier, but 
more overhead is required. 

None of this would work as we've shown if the three shells and awk didn't use the pound sign as their comment 
character. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.13. system Function 

It is convenient to execute a command string from within a program. For example, assume that we want to put a 
time-and-date stamp into a certain file. We could use the functions we describe in Section 6.10 to do this: call 
time  to get the current calendar time, then call localtime  to convert it to a broken-down time, and then call 
strftime  to format the result, and write the results to the file. It is much easier, however, to say 

system("date > file"); 

 

ISO C defines the system  function, but its operation is strongly system dependent. POSIX.1 includes the 
system  interface, expanding on the ISO C definition to describe its behavior in a POSIX environment. 

#include <stdlib.h> 
 
int system(const char *cmdstring);  

 

Returns: (see below) 

 

If cmdstring is a null pointer, system  returns nonzero only if a command processor is available. This feature 
determines whether the system  function is supported on a given operating system. Under the UNIX System, 
system  is always available. 

Because system  is implemented by calling fork , exec , and waitpid , there are three types of return values. 

1. If either the fork  fails or waitpid  returns an error other than EINTR, system  returns –1 with errno  set 
to indicate the error. 

2. If the exec  fails, implying that the shell can't be executed, the return value is as if the shell had executed 
exit(127) . 

3. Otherwise, all three functions—fork , exec , and waitpid —succeed, and the return value from system  
is the termination status of the shell, in the format specified for waitpid . 

Some older implementations of system  returned an error (EINTR) if waitpid  was interrupted by a 
caught signal. Because there is no cleanup strategy that an application can use to recover from this type 
of error, POSIX later added the requirement that system  not return an error in this case. (We discuss 
interrupted system calls in Section 10.5.) 

Figure 8.22 shows an implementation of the system  function. The one feature that it doesn't handle is signals. 
We'll update this function with signal handling in Section 10.18. 

Figure 8.22. The system function, without signal handling 

#include    <sys/wait.h> 
#include    <errno.h> 
#include    <unistd.h> 
 
int 
system(const char *cmdstring)    /* version without  signal handling */ 
{ 
    pid_t   pid; 
    int     status; 



 
    if (cmdstring == NULL) 
        return(1);      /* always a command process or with UNIX */ 
 
    if ((pid = fork()) < 0) { 
        status = -1;    /* probably out of processe s */ 
    } else if (pid == 0) {              /* child */  
        execl("/bin/sh", "sh", "-c", cmdstring, (ch ar *)0); 
        _exit(127);     /* execl error */ 
    } else {                             /* parent */ 
        while (waitpid(pid, &status, 0) < 0) { 
            if (errno != EINTR) { 
                status = -1; /* error other than EI NTR from waitpid() */  
                break; 
            } 
        } 
    } 
 
    return(status); 
} 

The shell's -c  option tells it to take the next command-line argument—cmdstring, in this case—as its command 
input instead of reading from standard input or from a given file. The shell parses this null-terminated C string 
and breaks it up into separate command-line arguments for the command. The actual command string that is 
passed to the shell can contain any valid shell commands. For example, input and output redirection using < and 
> can be used. 

If we didn't use the shell to execute the command, but tried to execute the command ourself, it would be more 
difficult. First, we would want to call execlp  instead of execl , to use the PATH variable, like the shell. We 
would also have to break up the null-terminated C string into separate command-line arguments for the call to 
execlp . Finally, we wouldn't be able to use any of the shell metacharacters. 

Note that we call _exit  instead of exit . We do this to prevent any standard I/O buffers, which would have 
been copied from the parent to the child across the fork , from being flushed in the child. 

We can test this version of system  with the program shown in Figure 8.23. (The pr_exit  function was defined 
in Figure 8.5.) 

Figure 8.23. Calling the system function 

#include "apue.h" 
#include <sys/wait.h> 
 
int 
main(void) 
{ 
    int      status; 
 
    if ((status = system("date")) < 0) 
        err_sys("system() error"); 
    pr_exit(status); 
 
   if ((status = system("nosuchcommand")) < 0)  
       err_sys("system() error"); 
   pr_exit(status); 
 
   if ((status = system("who; exit 44")) < 0) 



       err_sys("system() error"); 
   pr_exit(status); 
 
   exit(0); 
} 

Running the program in Figure 8.23 gives us 

   $ ./a.out 
   Sun Mar 21 18:41:32 EST 2004 
   normal termination, exit status = 0     for date  
   sh: nosuchcommand: command not found 
   normal termination, exit status = 127   for nosu chcommand 
   sar      :0       Mar 18 19:45 
   sar      pts/0    Mar 18 19:45 (:0) 
   sar      pts/1    Mar 18 19:45 (:0) 
   sar      pts/2    Mar 18 19:45 (:0) 
   sar      pts/3    Mar 18 19:45 (:0) 
   normal termination, exit status = 44   for exit 

 

The advantage in using system , instead of using fork  and exec  directly, is that system  does all the required 
error handling and (in our next version of this function in Section 10.18) all the required signal handling. 

Earlier systems, including SVR3.2 and 4.3BSD, didn't have the waitpid  function available. Instead, the parent 
waited for the child, using a statement such as 

   while ((lastpid = wait(&status)) != pid && lastp id != -1) 
    ; 

 

A problem occurs if the process that calls system  has spawned its own children before calling system . Because 
the while  statement above keeps looping until the child that was generated by system  terminates, if any 
children of the process terminate before the process identified by pid , then the process ID and termination 
status of these other children are discarded by the while  statement. Indeed, this inability to wait  for a specific 
child is one of the reasons given in the POSIX.1 Rationale for including the waitpid  function. We'll see in 
Section 15.3 that the same problem occurs with the popen  and pclose  functions, if the system doesn't provide a 
waitpid  function. 

Set-User-ID Programs 

What happens if we call system  from a set-user-ID program? Doing so is a security hole and should never be 
done. Figure 8.24 shows a simple program that just calls system  for its command-line argument. 

Figure 8.24. Execute the command-line argument using system 

#include "apue.h" 
 
int 
main(int argc, char *argv[]) 
{ 
    int     status; 
 
    if (argc < 2) 
        err_quit("command-line argument required");  



 
    if ((status = system(argv[1])) < 0) 
        err_sys("system() error"); 
    pr_exit(status); 
 
    exit(0); 
} 

 

We'll compile this program into the executable file tsys . 

Figure 8.25 shows another simple program that prints its real and effective user IDs. 

Figure 8.25. Print real and effective user IDs 

#include "apue.h" 
 
int 
main(void) 
{ 
    printf("real uid = %d, effective uid = %d\n", g etuid(), geteuid());  
    exit(0); 
} 

 

We'll compile this program into the executable file printuids . Running both programs gives us the following: 

   $ tsys printuids                          normal  execution, no special privileges 
   real uid = 205, effective uid = 205 
   normal termination, exit status = 0 
   $ su                                      become  superuser 
   Password:                                 enter superuser password 
   # chown root tsys                         change  owner 
   # chmod u+s tsys                          make s et-user-ID 
   # ls -l tsys                              verify  file's permissions and owner 
   -rwsrwxr-x 1 root       16361 Mar 16 16:59 tsys 
   # exit                                    leave superuser shell 
   $ tsys printuids 
   real uid = 205, effective uid = 0         oops, this is a security hole 
   normal termination, exit status = 0 
 
 
      

 

The superuser permissions that we gave the tsys  program are retained across the fork  and exec  that are done 
by system . 

When /bin/sh  is bash  version 2, the previous example doesn't work, because bash  will reset the effective user 
ID to the real user ID when they don't match. 

If it is running with special permissions—either set-user-ID or set-group-ID—and wants to spawn another 
process, a process should use fork  and exec  directly, being certain to change back to normal permissions after 
the fork , before calling exec . The system  function should never be used from a set-user-ID or a set-group-ID 
program. 



One reason for this admonition is that system  invokes the shell to parse the command string, and the shell uses 
its IFS  variable as the input field separator. Older versions of the shell didn't reset this variable to a normal set 
of characters when invoked. This allowed a malicious user to set IFS  before system  was called, causing system  
to execute a different program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.14. Process Accounting 

Most UNIX systems provide an option to do process accounting. When enabled, the kernel writes an accounting 
record each time a process terminates. These accounting records are typically a small amount of binary data 
with the name of the command, the amount of CPU time used, the user ID and group ID, the starting time, and 
so on. We'll take a closer look at these accounting records in this section, as it gives us a chance to look at 
processes again and to use the fread  function from Section 5.9. 

Process accounting is not specified by any of the standards. Thus, all the implementations have annoying 
differences. For example, the I/O counts maintained on Solaris 9 are in units of bytes, whereas FreeBSD 5.2.1 
and Mac OS X 10.3 maintain units of blocks, although there is no distinction between different block sizes, 
making the counter effectively useless. Linux 2.4.22, on the other hand, doesn't try to maintain I/O statistics at 
all. 

Each implementation also has its own set of administrative commands to process raw accounting data. For 
example, Solaris provides runacct (1m) and acctcom (1), whereas FreeBSD provides the sa (8) command to 
process and summarize the raw accounting data. 

A function we haven't described (acct ) enables and disables process accounting. The only use of this function 
is from the accton (8) command (which happens to be one of the few similarities among platforms). A 
superuser executes accton  with a pathname argument to enable accounting. The accounting records are written 
to the specified file, which is usually /var/account/acct  on FreeBSD and Mac OS X, /var/account/pacct  
on Linux, and /var/adm/pacct  on Solaris. Accounting is turned off by executing accton  without any 
arguments. 

The structure of the accounting records is defined in the header <sys/acct.h>  and looks something like 

typedef  u_short comp_t;   /* 3-bit base 8 exponent ; 13-bit fraction */ 
 
struct  acct 
{ 
  char   ac_flag;     /* flag (see Figure 8.26 ) */ 
  char   ac_stat;     /* termination status (signal  & core flag only) */ 
                      /* (Solaris only) */ 
  uid_t  ac_uid;      /* real user ID */ 
  gid_t  ac_gid;      /* real group ID */ 
  dev_t  ac_tty;      /* controlling terminal */ 
  time_t ac_btime;    /* starting calendar time */ 
  comp_t ac_utime;    /* user CPU time (clock ticks ) */ 
  comp_t ac_stime;    /* system CPU time (clock tic ks) */ 
  comp_t ac_etime;    /* elapsed time (clock ticks)  */ 
  comp_t ac_mem;      /* average memory usage */ 
  comp_t ac_io;       /* bytes transferred (by read  and write) */ 
                      /* "blocks" on BSD systems */  
  comp_t ac_rw;       /* blocks read or written */ 
                      /* (not present on BSD system s) */ 
  char   ac_comm[8];  /* command name: [8] for Sola ris, */ 
                      /* [10] for Mac OS X, [16] fo r FreeBSD, and */ 
                      /* [17] for Linux */ 
}; 
 
 
      

 



The ac_flag  member records certain events during the execution of the process. These events are described in 
Figure 8.26. 

Figure 8.26. Values for ac_flag from accounting record 

ac_flag Description FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

AFORK process is the result of fork , but never 
called exec  

• • • • 

ASU process used superuser privileges   • • • 

ACOMPAT process used compatibility mode         

ACORE process dumped core • • •   

AXSIG process was killed by a signal • • •   

AEXPND expanded accounting entry       • 

 

The data required for the accounting record, such as CPU times and number of characters transferred, is kept by 
the kernel in the process table and initialized whenever a new process is created, as in the child after a fork . 
Each accounting record is written when the process terminates. This means that the order of the records in the 
accounting file corresponds to the termination order of the processes, not the order in which they were started. 
To know the starting order, we would have to go through the accounting file and sort by the starting calendar 
time. But this isn't perfect, since calendar times are in units of seconds (Section 1.10), and it's possible for many 
processes to be started in any given second. Alternatively, the elapsed time is given in clock ticks, which are 
usually between 60 and 128 ticks per second. But we don't know the ending time of a process; all we know is its 
starting time and ending order. This means that even though the elapsed time is more accurate than the starting 
time, we still can't reconstruct the exact starting order of various processes, given the data in the accounting file. 

The accounting records correspond to processes, not programs. A new record is initialized by the kernel for the 
child after a fork , not when a new program is executed. Although exec  doesn't create a new accounting record, 
the command name changes, and the AFORK flag is cleared. This means that if we have a chain of three 
programs—A exec s B, then B exec s C, and C exit s—only a single accounting record is written. The 
command name in the record corresponds to program C, but the CPU times, for example, are the sum for 
programs A, B, and C. 

Example 

To have some accounting data to examine, we'll create a test program to implement the diagram shown in 
Figure 8.27. 

The source for the test program is shown in Figure 8.28. It calls fork  four times. Each child does something 
different and then terminates. 

We'll run the test program on Solaris and then use the program in Figure 8.29 to print out selected fields from 
the accounting records. 

BSD-derived platforms don't support the ac_flag  member, so we define the HAS_SA_STAT constant on the 



platforms that do support this member. Basing the defined symbol on the feature instead of on the platform 
reads better and allows us to modify the program simply by adding the additional definition to our compilation 
command. The alternative would be to use 

#if defined(BSD) || defined(MACOS) 

 

which becomes unwieldy as we port our application to additional platforms. 

We define similar constants to determine whether the platform supports the ACORE and AXSIG accounting flags. 
We can't use the flag symbols themselves, because on Linux, they are defined as enum values, which we can't 
use in a #ifdef  expression. 

To perform our test, we do the following: 

1. Become superuser and enable accounting, with the accton  command. Note that when this command 
terminates, accounting should be on; therefore, the first record in the accounting file should be from this 
command. 

2. Exit the superuser shell and run the program in Figure 8.28. This should append six records to the 
accounting file: one for the superuser shell, one for the test parent, and one for each of the four test 
children. 

A new process is not created by the execl  in the second child. There is only a single accounting record 
for the second child. 

3. Become superuser and turn accounting off. Since accounting is off when this accton  command 
terminates, it should not appear in the accounting file. 

4. Run the program in Figure 8.29 to print the selected fields from the accounting file. 

The output from step 4 follows. We have appended to each line the description of the process in italics, for the 
discussion later. 

   accton    e =      6, chars =       0, stat =   0:       S 
   sh        e =   2106, chars =   15632, stat =   0:       S 
   dd        e =      8, chars =  273344, stat =   0:           second child 
   a.out     e =    202, chars =     921, stat =   0:           parent 
   a.out     e =    407, chars =       0, stat = 13 4:     F     first child 
   a.out     e =    600, chars =       0, stat =   9:     F     fourth child 
   a.out     e =    801, chars =       0, stat =   0:     F     third child 
 
 
      

 

The elapsed time values are measured in units of clock ticks per second. From Figure 2.14, the value on this 
system is 100. For example, the sleep(2)  in the parent corresponds to the elapsed time of 202 clock ticks. For 
the first child, the sleep(4)  becomes 407 clock ticks. Note that the amount of time a process sleeps is not 
exact. (We'll return to the sleep  function in Chapter 10.) Also, the calls to fork  and exit  take some amount of 
time. 

Note that the ac_stat  member is not the true termination status of the process, but corresponds to a portion of 
the termination status that we discussed in Section 8.6. The only information in this byte is a core-flag bit 



(usually the high-order bit) and the signal number (usually the seven low-order bits), if the process terminated 
abnormally. If the process terminated normally, we are not able to obtain the exit  status from the accounting 
file. For the first child, this value is 128 + 6. The 128 is the core flag bit, and 6 happens to be the value on this 
system for SIGABRT, which is generated by the call to abort . The value 9 for the fourth child corresponds to the 
value of SIGKILL . We can't tell from the accounting data that the parent's argument to exit  was 2 and that the 
third child's argument to exit  was 0. 

The size of the file /etc/termcap  that the dd process copies in the second child is 136,663 bytes. The number 
of characters of I/O is just over twice this value. It is twice the value, as 136,663 bytes are read in, then 136,663 
bytes are written out. Even though the output goes to the null device, the bytes are still accounted for. 

The ac_flag  values are as we expect. The F flag is set for all the child processes except the second child, which 
does the execl . The F flag is not set for the parent, because the interactive shell that executed the parent did a 
fork  and then an exec  of the a.out  file. The first child process calls abort , which generates a SIGABRT signal 
to generate the core dump. Note that neither the X flag nor the D flag is on, as they are not supported on Solaris; 
the information they represent can be derived from the ac_stat  field. The fourth child also terminates because 
of a signal, but the SIGKILL  signal does not generate a core dump; it only terminates the process. 

As a final note, the first child has a 0 count for the number of characters of I/O, yet this process generated a 
core  file. It appears that the I/O required to write the core  file is not charged to the process. 

Figure 8.27. Process structure for accounting example 

 
 
 

Figure 8.28. Program to generate accounting data 

#include "apue.h" 
 
int 
main(void) 
{ 
 
    pid_t   pid; 
 
    if ((pid = fork()) < 0) 
        err_sys("fork error"); 
    else if (pid != 0) {       /* parent */ 
        sleep(2); 
        exit(2);               /* terminate with ex it status 2 */ 
    } 



 
                               /* first child */ 
    if ((pid = fork()) < 0) 
        err_sys("fork error"); 
    else if (pid != 0) { 
        sleep(4); 
        abort();               /* terminate with co re dump */ 
    } 
 
                               /* second child */ 
   if ((pid = fork()) < 0) 
       err_sys("fork error"); 
   else if (pid != 0) { 
       execl("/bin/dd", "dd", "if=/etc/termcap", "o f=/dev/null", NULL);  
       exit(7);                /* shouldn't get her e */ 
   } 
 
                               /* third child */ 
   if ((pid = fork()) < 0) 
       err_sys("fork error"); 
   else if (pid != 0) { 
       sleep(8); 
       exit(0);                /* normal exit */ 
   } 
 
                               /* fourth child */ 
   sleep(6); 
   kill(getpid(), SIGKILL);    /* terminate w/signa l, no core dump */ 
   exit(6);                    /* shouldn't get her e */ 
} 

Figure 8.29. Print selected fields from system's accounting file 

#include "apue.h" 
#include <sys/acct.h> 
 
#ifdef HAS_SA_STAT 
#define FMT "%-*.*s  e = %6ld, chars = %7ld, stat =  %3u: %c %c %c %c\n"  
#else 
#define FMT "%-*.*s  e = %6ld, chars = %7ld, %c %c %c %c\n" 
#endif 
#ifndef HAS_ACORE 
#define ACORE 0 
#endif 
#ifndef HAS_AXSIG 
#define AXSIG 0 
#endif 
 
static unsigned long 
compt2ulong(comp_t comptime)    /* convert comp_t t o unsigned long */ 
{ 
    unsigned long   val; 
    int             exp; 
 
    val = comptime & 0x1fff;    /* 13-bit fraction */ 
    exp = (comptime >> 13) & 7; /* 3-bit exponent ( 0-7) */ 
    while (exp-- > 0) 
        val *= 8; 
    return(val); 
} 
int 
main(int argc, char *argv[]) 



{ 
    struct acct     acdata; 
    FILE            *fp; 
 
    if (argc != 2) 
        err_quit("usage: pracct filename"); 
    if ((fp = fopen(argv[1], "r")) == NULL) 
        err_sys("can't open %s", argv[1]); 
    while (fread(&acdata, sizeof(acdata), 1, fp) ==  1) { 
        printf(FMT, (int)sizeof(acdata.ac_comm), 
            (int)sizeof(acdata.ac_comm), acdata.ac_ comm, 
            compt2ulong(acdata.ac_etime), compt2ulo ng(acdata.ac_io), 
#ifdef HAS_SA_STAT 
            (unsigned char) acdata.ac_stat, 
#endif 
            acdata.ac_flag & ACORE ? 'D' : ' ', 
            acdata.ac_flag & AXSIG ? 'X' : ' ', 
            acdata.ac_flag & AFORK ? 'F' : ' ', 
            acdata.ac_flag & ASU   ? 'S' : ' '); 
    } 
    if (ferror(fp)) 
        err_sys("read error"); 
    exit(0); 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.15. User Identification 

Any process can find out its real and effective user ID and group ID. Sometimes, however, we want to find out 
the login name of the user who's running the program. We could call getpwuid(getuid()) , but what if a single 
user has multiple login names, each with the same user ID? (A person might have multiple entries in the 
password file with the same user ID to have a different login shell for each entry.) The system normally keeps 
track of the name we log in under (Section 6.8), and the getlogin  function provides a way to fetch that login 
name. 

#include <unistd.h> 
 
char *getlogin(void); 

 

Returns: pointer to string giving login name if OK, NULL on error 

 

This function can fail if the process is not attached to a terminal that a user logged in to. We normally call these 
processes daemons. We discuss them in Chapter 13. 

Given the login name, we can then use it to look up the user in the password file—to determine the login shell, 
for example—using getpwnam . 

To find the login name, UNIX systems have historically called the ttyname  function (Section 18.9) and then 
tried to find a matching entry in the utmp  file (Section 6.8). FreeBSD and Mac OS X store the login name in the 
session structure associated with the process table entry and provide system calls to fetch and store this name. 

System V provided the cuserid  function to return the login name. This function called getlogin  and, if that 
failed, did a getpwuid(getuid()) . The IEEE Standard 1003.1–1988 specified cuserid , but it called for the 
effective user ID to be used, instead of the real user ID. The 1990 version of POSIX.1 dropped the cuserid  
function. 

The environment variable LOGNAME is usually initialized with the user's login name by login (1) and inherited 
by the login shell. Realize, however, that a user can modify an environment variable, so we shouldn't use 
LOGNAME to validate the user in any way. Instead, getlogin  should be used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.16. Process Times 

In Section 1.10, we described three times that we can measure: wall clock time, user CPU time, and system 
CPU time. Any process can call the times  function to obtain these values for itself and any terminated children. 

#include <sys/times.h> 
 
clock_t times(struct tms *buf); 

 

Returns: elapsed wall clock time in clock ticks if OK, –1 on error 

 

This function fills in the tms  structure pointed to by buf: 

   struct tms { 
     clock_t  tms_utime;  /* user CPU time */ 
     clock_t  tms_stime;  /* system CPU time */ 
     clock_t  tms_cutime; /* user CPU time, termina ted children */ 
     clock_t  tms_cstime; /* system CPU time, termi nated children */ 
   }; 

 

Note that the structure does not contain any measurement for the wall clock time. Instead, the function returns 
the wall clock time as the value of the function, each time it's called. This value is measured from some 
arbitrary point in the past, so we can't use its absolute value; instead, we use its relative value. For example, we 
call times  and save the return value. At some later time, we call times  again and subtract the earlier return 
value from the new return value. The difference is the wall clock time. (It is possible, though unlikely, for a 
long-running process to overflow the wall clock time; see Exercise 1.6.) 

The two structure fields for child processes contain values only for children that we have waited for with wait , 
waitid , or waitpid . 

All the clock_t  values returned by this function are converted to seconds using the number of clock ticks per 
second—the _SC_CLK_TCK value returned by sysconf  (Section 2.5.4). 

Most implementations provide the getrusage (2) function. This function returns the CPU times and 14 other 
values indicating resource usage. Historically, this function originated with the BSD operating system, so BSD-
derived implementations generally support more of the fields than do other implementations. 

Example 

The program in Figure 8.30 executes each command-line argument as a shell command string, timing the 
command and printing the values from the tms  structure. 

If we run this program, we get 

   $ ./a.out "sleep 5" "date" 
 
   command: sleep 5 
     real:     5.02 
     user:     0.00 
     sys:      0.00 
     child user:     0.01 



     child sys:      0.00 
   normal termination, exit status = 0 
 
   command: date 
   Mon Mar 22 00:43:58 EST 2004 
     real:     0.01 
     user:     0.00 
     sys:      0.00 
     child user:     0.01 
     child sys:      0.00 
   normal termination, exit status = 0 

 

In these two examples, all the CPU time appears in the child process, which is where the shell and the command 
execute. 

Figure 8.30. Time and execute all command-line arguments 

#include "apue.h" 
#include <sys/times.h> 
 
static void pr_times(clock_t, struct tms *, struct tms *); 
static void do_cmd(char *); 
 
int 
main(int argc, char *argv[]) 
{ 
 
    int     i; 
 
    setbuf(stdout, NULL); 
    for (i = 1; i < argc; i++) 
        do_cmd(argv[i]);    /* once for each comman d-line arg */ 
    exit(0); 
} 
 
static void 
do_cmd(char *cmd)        /* execute and time the "c md" */ 
{ 
     struct tms  tmsstart, tmsend; 
     clock_t     start, end; 
     int         status; 
 
     printf("\ncommand: %s\n", cmd); 
 
     if ((start = times(&tmsstart)) == -1)    /* st arting values */ 
         err_sys("times error"); 
 
     if ((status = system(cmd)) < 0)     /* execute  command */ 
         err_sys("system() error"); 
 
     if ((end = times(&tmsend)) == -1)       /* end ing values */ 
         err_sys("times error"); 
 
     pr_times(end-start, &tmsstart, &tmsend); 
     pr_exit(status); 
} 
static void 
pr_times(clock_t real, struct tms *tmsstart, struct  tms *tmsend) 
{ 
    static long     clktck = 0; 



 
    if (clktck == 0)    /* fetch clock ticks per se cond first time */ 
        if ((clktck = sysconf(_SC_CLK_TCK)) < 0) 
            err_sys("sysconf error"); 
     printf(" real:  %7.2f\n", real / (double) clkt ck); 
     printf(" user:  %7.2f\n", 
       (tmsend->tms_utime - tmsstart->tms_utime) / (double) clktck); 
     printf(" sys:   %7.2f\n", 
       (tmsend->tms_stime - tmsstart->tms_stime) / (double) clktck); 
     printf(" child user:   %7.2f\n", 
       (tmsend->tms_cutime - tmsstart->tms_cutime) / (double) clktck);  
     printf(" child sys:    %7.2f\n", 
       (tmsend->tms_cstime - tmsstart->tms_cstime) / (double) clktck);  
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



8.17. Summary 

A thorough understanding of the UNIX System's process control is essential for advanced programming. There 
are only a few functions to master: fork , the exec  family, _exit , wait , and waitpid . These primitives are used 
in many applications. The fork  function also gave us an opportunity to look at race conditions. 

Our examination of the system  function and process accounting gave us another look at all these process 
control functions. We also looked at another variation of the exec  functions: interpreter files and how they 
operate. An understanding of the various user IDs and group IDs that are provided—real, effective, and saved—
is critical to writing safe set-user-ID programs. 

Given an understanding of a single process and its children, in the next chapter we examine the relationship of a 
process to other processes—sessions and job control. We then complete our discussion of processes in Chapter 
10 when we describe signals. 
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9.1. Introduction 

We learned in the previous chapter that there are relationships between processes. First, every process has a 
parent process (the initial kernel-level process is usually its own parent). The parent is notified when the child 
terminates, and the parent can obtain the child's exit status. We also mentioned process groups when we 
described the waitpid  function (Section 8.6) and how we can wait for any process in a process group to 
terminate. 

In this chapter, we'll look at process groups in more detail and the concept of sessions that was introduced by 
POSIX.1. We'll also look at the relationship between the login shell that is invoked for us when we log in and 
all the processes that we start from our login shell. 

It is impossible to describe these relationships without talking about signals, and to talk about signals, we need 
many of the concepts in this chapter. If you are unfamiliar with the UNIX System signal mechanism, you may 
want to skim through Chapter 10 at this point. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



9.2. Terminal Logins 

Let's start by looking at the programs that are executed when we log in to a UNIX system. In early UNIX 
systems, such as Version 7, users logged in using dumb terminals that were connected to the host with hard-
wired connections. The terminals were either local (directly connected) or remote (connected through a modem). 
In either case, these logins came through a terminal device driver in the kernel. For example, the common 
devices on PDP-11s were DH-11s and DZ-11s. A host had a fixed number of these terminal devices, so there 
was a known upper limit on the number of simultaneous logins. 

As bit-mapped graphical terminals became available, windowing systems were developed to provide users with 
new ways to interact with host computers. Applications were developed to create "terminal windows" to 
emulate character-based terminals, allowing users to interact with hosts in familiar ways (i.e., via the shell 
command line). 

Today, some platforms allow you to start a windowing system after logging in, whereas other platforms 
automatically start the windowing system for you. In the latter case, you might still have to log in, depending on 
how the windowing system is configured (some windowing systems can be configured to log you in 
automatically). 

The procedure that we now describe is used to log in to a UNIX system using a terminal. The procedure is 
similar regardless of the type of terminal we use—it could be a character-based terminal, a graphical terminal 
emulating a simple character-based terminal, or a graphical terminal running a windowing system. 

BSD Terminal Logins 

This procedure has not changed much over the past 30 years. The system administrator creates a file, usually 
/etc/ttys , that has one line per terminal device. Each line specifies the name of the device and other 
parameters that are passed to the getty  program. One parameter is the baud rate of the terminal, for example. 
When the system is bootstrapped, the kernel creates process ID 1, the init  process, and it is init  that brings 
the system up multiuser. The init  process reads the file /etc/ttys  and, for every terminal device that allows a 
login, does a fork  followed by an exec  of the program getty . This gives us the processes shown in Figure 9.1. 

Figure 9.1. Processes invoked by init to allow terminal logins 

 

All the processes shown in Figure 9.1 have a real user ID of 0 and an effective user ID of 0 (i.e., they all have 
superuser privileges). The init  process also exec s the getty  program with an empty environment. 



It is getty  that calls open  for the terminal device. The terminal is opened for reading and writing. If the device 
is a modem, the open  may delay inside the device driver until the modem is dialed and the call is answered. 
Once the device is open, file descriptors 0, 1, and 2 are set to the device. Then getty  outputs something like 
login:  and waits for us to enter our user name. If the terminal supports multiple speeds, getty  can detect 
special characters that tell it to change the terminal's speed (baud rate). Consult your UNIX system manuals for 
additional details on the getty  program and the data files (gettytab ) that can drive its actions. 

When we enter our user name, getty 's job is complete, and it then invokes the login  program, similar to 

   execle("/bin/login", "login", "-p", username, (c har *)0, envp); 

 

(There can be options in the gettytab  file to have it invoke other programs, but the default is the login  
program.) init  invokes getty  with an empty environment; getty  creates an environment for login  (the envp  
argument) with the name of the terminal (something like TERM=foo, where the type of terminal foo  is taken 
from the gettytab  file) and any environment strings that are specified in the gettytab . The -p  flag to login  
tells it to preserve the environment that it is passed and to add to that environment, not replace it. Figure 9.2 
shows the state of these processes right after login  has been invoked. 

Figure 9.2. State of processes after login has been invoked 

 

 

All the processes shown in Figure 9.2 have superuser privileges, since the original init  process has superuser 
privileges. The process ID of the bottom three processes in Figure 9.2 is the same, since the process ID does not 
change across an exec . Also, all the processes other than the original init  process have a parent process ID of 
1. 

The login  program does many things. Since it has our user name, it can call getpwnam  to fetch our password 
file entry. Then login  calls getpass (3) to display the prompt Password:  and read our password (with echoing 
disabled, of course). It calls crypt (3) to encrypt the password that we entered and compares the encrypted 
result to the pw_passwd  field from our shadow password file entry. If the login attempt fails because of an 
invalid password (after a few tries), login  calls exit  with an argument of 1. This termination will be noticed by 



the parent (init ), and it will do another fork  followed by an exec  of getty , starting the procedure over again 
for this terminal. 

This is the traditional authentication procedure used on UNIX systems. Modern UNIX systems have evolved to 
support multiple authentication procedures. For example, FreeBSD, Linux, Mac OS X, and Solaris all support a 
more flexible scheme known as PAM (Pluggable Authentication Modules). PAM allows an administrator to 
configure the authentication methods to be used to access services that are written to use the PAM library. 

If our application needs to verify that a user has the appropriate permission to perform a task, we can either hard 
code the authentication mechanism in the application, or we can use the PAM library to give us the equivalent 
functionality. The advantage to using PAM is that administrators can configure different ways to authenticate 
users for different tasks, based on the local site policies. 

If we log in correctly, login  will 

• Change to our home directory (chdir ) 
• Change the ownership of our terminal device (chown) so we own it 
• Change the access permissions for our terminal device so we have permission to read from and write to 

it 
• Set our group IDs by calling setgid  and initgroups  
• Initialize the environment with all the information that login  has: our home directory (HOME), shell 

(SHELL), user name (USER and LOGNAME), and a default path (PATH) 
• Change to our user ID (setuid ) and invoke our login shell, as in 
•         execl("/bin/sh", "-sh", (char *)0); 

 

The minus sign as the first character of argv[0]  is a flag to all the shells that they are being invoked as a 
login shell. The shells can look at this character and modify their start-up accordingly. 

The login  program really does more than we've described here. It optionally prints the message-of-the-day file, 
checks for new mail, and performs other tasks. We're interested only in the features that we've described. 

Recall from our discussion of the setuid  function in Section 8.11 that since it is called by a superuser process, 
setuid  changes all three user IDs: the real user ID, effective user ID, and saved set-user-ID. The call to setgid  
that was done earlier by login  has the same effect on all three group IDs. 

At this point, our login shell is running. Its parent process ID is the original init  process (process ID 1), so 
when our login shell terminates, init  is notified (it is sent a SIGCHLD signal), and it can start the whole 
procedure over again for this terminal. File descriptors 0, 1, and 2 for our login shell are set to the terminal 
device. Figure 9.3 shows this arrangement. 

Figure 9.3. Arrangement of processes after everything is set for a terminal login 



 

 

Our login shell now reads its start-up files (.profile  for the Bourne shell and Korn 
shell; .bash_profile , .bash_login , or .profile  for the GNU Bourne-again shell; and .cshrc  and .login  
for the C shell). These start-up files usually change some of the environment variables and add many additional 
variables to the environment. For example, most users set their own PATH and often prompt for the actual 
terminal type (TERM). When the start-up files are done, we finally get the shell's prompt and can enter commands. 

Mac OS X Terminal Logins 

On Mac OS X, the terminal login process follows the same steps as in the BSD login process, since Mac OS X 
is based in part on FreeBSD. With Mac OS X, however, we are presented with a graphical-based login screen 
from the start. 

Linux Terminal Logins 

The Linux login procedure is very similar to the BSD procedure. Indeed, the Linux login  command is derived 
from the 4.3BSD login  command. The main difference between the BSD login procedure and the Linux login 
procedure is in the way the terminal configuration is specified. 

On Linux, /etc/inittab  contains the configuration information specifying the terminal devices for which 
init  should start a getty  process, similar to the way it is done on System V. Depending on the version of 
getty  in use, the terminal characteristics are specified either on the command line (as with agetty ) or in the 
file /etc/gettydefs  (as with mgetty ). 

Solaris Terminal Logins 

Solaris supports two forms of terminal logins: (a) getty  style, as described previously for BSD, and (b) ttymon  
logins, a feature introduced with SVR4. Normally, getty  is used for the console, and ttymon  is used for other 
terminal logins. 



The ttymon  command is part of a larger facility termed SAF, the Service Access Facility. The goal of the SAF 
was to provide a consistent way to administer services that provide access to a system. (See Chapter 6 of Rago 
[1993] for more details.) For our purposes, we end up with the same picture as in Figure 9.3, with a different set 
of steps between init  and the login shell. init  is the parent of sac  (the service access controller), which does a 
fork  and exec  of the ttymon  program when the system enters multiuser state. The ttymon  program monitors 
all the terminal ports listed in its configuration file and does a fork  when we've entered our login name. This 
child of ttymon  does an exec  of login , and login  prompts us for our password. Once this is done, login 

exec s our login shell, and we're at the position shown in Figure 9.3. One difference is that the parent of our 
login shell is now ttymon , whereas the parent of the login shell from a getty  login is init . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.3. Network Logins 

The main (physical) difference between logging in to a system through a serial terminal and logging in to a 
system through a network is that the connection between the terminal and the computer isn't point-to-point. In 
this case, login  is simply a service available, just like any other network service, such as FTP or SMTP. 

With the terminal logins that we described in the previous section, init  knows which terminal devices are 
enabled for logins and spawns a getty  process for each device. In the case of network logins, however, all the 
logins come through the kernel's network interface drivers (e.g., the Ethernet driver), and we don't know ahead 
of time how many of these will occur. Instead of having a process waiting for each possible login, we now have 
to wait for a network connection request to arrive. 

To allow the same software to process logins over both terminal logins and network logins, a software driver 
called a pseudo terminal is used to emulate the behavior of a serial terminal and map terminal operations to 
network operations, and vice versa. (In Chapter 19, we'll talk about pseudo terminals in detail.) 

BSD Network Logins 

In BSD, a single process waits for most network connections: the inetd  process, sometimes called the Internet 
superserver. In this section, we'll look at the sequence of processes involved in network logins for a BSD 
system. We are not interested in the detailed network programming aspects of these processes; refer to Stevens, 
Fenner, and Rudoff [2004] for all the details. 

As part of the system start-up, init  invokes a shell that executes the shell script /etc/rc . One of the daemons 
that is started by this shell script is inetd . Once the shell script terminates, the parent process of inetd  becomes 
init ; inetd  waits for TCP/IP connection requests to arrive at the host. When a connection request arrives for it 
to handle, inetd  does a fork  and exec  of the appropriate program. 

Let's assume that a TCP connection request arrives for the TELNET server. TELNET is a remote login 
application that uses the TCP protocol. A user on another host (that is connected to the server's host through a 
network of some form) or on the same host initiates the login by starting the TELNET client: 

   telnet hostname 

 

The client opens a TCP connection to hostname, and the program that's started on hostname is called the 
TELNET server. The client and the server then exchange data across the TCP connection using the TELNET 
application protocol. What has happened is that the user who started the client program is now logged in to the 
server's host. (This assumes, of course, that the user has a valid account on the server's host.) Figure 9.4 shows 
the sequence of processes involved in executing the TELNET server, called telnetd . 

 

 

 

 

 



Figure 9.4. Sequence of processes involved in executing TELNET server 

 

 

The telnetd  process then opens a pseudo-terminal device and splits into two processes using fork . The parent 
handles the communication across the network connection, and the child does an exec  of the login  program. 
The parent and the child are connected through the pseudo terminal. Before doing the exec , the child sets up 
file descriptors 0, 1, and 2 to the pseudo terminal. If we log in correctly, login  performs the same steps we 
described in Section 9.2: it changes to our home directory and sets our group IDs, user ID, and our initial 
environment. Then login  replaces itself with our login shell by calling exec . Figure 9.5 shows the arrangement 
of the processes at this point. 

Figure 9.5. Arrangement of processes after everything is set for a network login 

 

 



Obviously, a lot is going on between the pseudo-terminal device driver and the actual user at the terminal. We'll 
show all the processes involved in this type of arrangement in Chapter 19 when we talk about pseudo terminals 
in more detail. 

The important thing to understand is that whether we log in through a terminal (Figure 9.3) or a network (Figure 
9.5), we have a login shell with its standard input, standard output, and standard error connected to either a 
terminal device or a pseudo-terminal device. We'll see in the coming sections that this login shell is the start of a 
POSIX.1 session, and that the terminal or pseudo terminal is the controlling terminal for the session. 

Mac OS X Network Logins 

Logging in to a Mac OS X system over a network is identical to a BSD system, because Mac OS X is based 
partially on FreeBSD. 

Linux Network Logins 

Network logins under Linux are the same as under BSD, except that an alternate inetd  process is used, called 
the extended Internet services daemon, xinetd . The xinetd  process provides a finer level of control over 
services it starts than does inetd . 

Solaris Network Logins 

The scenario for network logins under Solaris is almost identical to the steps under BSD and Linux. An inetd  
server is used similar to the BSD version. The Solaris version has the additional ability to run under the service 
access facility framework, although it is not configured to do so. Instead, the inetd  server is started by init . 
Either way, we end up with the same overall picture as in Figure 9.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.4. Process Groups 

In addition to having a process ID, each process also belongs to a process group. We'll encounter process 
groups again when we discuss signals in Chapter 10. 

A process group is a collection of one or more processes, usually associated with the same job (job control is 
discussed in Section 9.8), that can receive signals from the same terminal. Each process group has a unique 
process group ID. Process group IDs are similar to process IDs: they are positive integers and can be stored in a 
pid_t  data type. The function getpgrp  returns the process group ID of the calling process. 

#include <unistd.h> 
 
pid_t getpgrp(void); 

 

Returns: process group ID of calling process 

 

In older BSD-derived systems, the getpgrp  function took a pid argument and returned the process group for 
that process. The Single UNIX Specification defines the getpgid  function as an XSI extension that mimics this 
behavior. 

#include <unistd.h> 
 
pid_t getpgid(pid_t pid); 

 

Returns: process group ID if OK, –1 on error 

 

If pid is 0, the process group ID of the calling process is returned. Thus, 

       getpgid(0); 

 

is equivalent to 

       getpgrp(); 

 

Each process group can have a process group leader. The leader is identified by its process group ID being 
equal to its process ID. 

It is possible for a process group leader to create a process group, create processes in the group, and then 
terminate. The process group still exists, as long as at least one process is in the group, regardless of whether the 
group leader terminates. This is called the process group lifetime—the period of time that begins when the 
group is created and ends when the last remaining process leaves the group. The last remaining process in the 
process group can either terminate or enter some other process group. 

A process joins an existing process group or creates a new process group by calling setpgid . (In the next 
section, we'll see that setsid  also creates a new process group.) 



#include <unistd.h> 
 
int setpgid(pid_t pid, pid_t pgid);  

 

Returns: 0 if OK, –1 on error 

 

This function sets the process group ID to pgid in the process whose process ID equals pid. If the two 
arguments are equal, the process specified by pid becomes a process group leader. If pid is 0, the process ID of 
the caller is used. Also, if pgid is 0, the process ID specified by pid is used as the process group ID. 

A process can set the process group ID of only itself or any of its children. Furthermore, it can't change the 
process group ID of one of its children after that child has called one of the exec  functions. 

In most job-control shells, this function is called after a fork  to have the parent set the process group ID of the 
child, and to have the child set its own process group ID. One of these calls is redundant, but by doing both, we 
are guaranteed that the child is placed into its own process group before either process assumes that this has 
happened. If we didn't do this, we would have a race condition, since the child's process group membership 
would depend on which process executes first. 

When we discuss signals, we'll see how we can send a signal to either a single process (identified by its process 
ID) or a process group (identified by its process group ID). Similarly, the waitpid  function from Section 8.6 
lets us wait for either a single process or one process from a specified process group. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.5. Sessions 

A session is a collection of one or more process groups. For example, we could have the arrangement shown in 
Figure 9.6. Here we have three process groups in a single session. 

Figure 9.6. Arrangement of processes into process groups and sessions 

 
 

The processes in a process group are usually placed there by a shell pipeline. For example, the arrangement 
shown in Figure 9.6 could have been generated by shell commands of the form 

   proc1 | proc2 & 
   proc3 | proc4 | proc5 

 

A process establishes a new session by calling the setsid  function. 

#include <unistd.h> 
 
pid_t setsid(void); 

 

Returns: process group ID if OK, –1 on error 

 

If the calling process is not a process group leader, this function creates a new session. Three things happen. 

1. The process becomes the session leader of this new session. (A session leader is the process that creates 
a session.) The process is the only process in this new session. 

2. The process becomes the process group leader of a new process group. The new process group ID is the 
process ID of the calling process. 

3. The process has no controlling terminal. (We'll discuss controlling terminals in the next section.) If the 
process had a controlling terminal before calling setsid , that association is broken. 

This function returns an error if the caller is already a process group leader. To ensure this is not the case, the 
usual practice is to call fork  and have the parent terminate and the child continue. We are guaranteed that the 
child is not a process group leader, because the process group ID of the parent is inherited by the child, but the 
child gets a new process ID. Hence, it is impossible for the child's process ID to equal its inherited process 
group ID. 



The Single UNIX Specification talks only about a "session leader." There is no "session ID" similar to a process 
ID or a process group ID. Obviously, a session leader is a single process that has a unique process ID, so we 
could talk about a session ID that is the process ID of the session leader. This concept of a session ID was 
introduced in SVR4. Historically, BSD-based systems didn't support this notion, but have since been updated to 
include it. The getsid  function returns the process group ID of a process's session leader. The getsid  function 
is included as an XSI extension in the Single UNIX Specification. 

Some implementations, such as Solaris, join with the Single UNIX Specification in the practice of avoiding the 
use of the phrase "session ID," opting instead to refer to this as the "process group ID of the session leader." The 
two are equivalent, since the session leader is always the leader of a process group. 

#include <unistd.h> 
 
pid_t getsid(pid_t pid); 

 

Returns: session leader's process group ID if OK, –1 on error 

 

If pid is 0, getsid  returns the process group ID of the calling process's session leader. For security reasons, 
some implementations may restrict the calling process from obtaining the process group ID of the session leader 
if pid doesn't belong to the same session as the caller. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.6. Controlling Terminal 

Sessions and process groups have a few other characteristics. 

• A session can have a single controlling terminal. This is usually the terminal device (in the case of a 
terminal login) or pseudo-terminal device (in the case of a network login) on which we log in. 

• The session leader that establishes the connection to the controlling terminal is called the controlling 
process. 

• The process groups within a session can be divided into a single foreground process group and one or 
more background process groups. 

• If a session has a controlling terminal, it has a single foreground process group, and all other process 
groups in the session are background process groups. 

• Whenever we type the terminal's interrupt key (often DELETE or Control-C), this causes the interrupt 
signal be sent to all processes in the foreground process group. 

• Whenever we type the terminal's quit key (often Control-backslash), this causes the quit signal to be sent 
to all processes in the foreground process group. 

• If a modem (or network) disconnect is detected by the terminal interface, the hang-up signal is sent to 
the controlling process (the session leader). 

These characteristics are shown in Figure 9.7. 

Figure 9.7. Process groups and sessions showing controlling terminal 

 
 

Usually, we don't have to worry about the controlling terminal; it is established automatically when we log in. 

POSIX.1 leaves the choice of the mechanism used to allocate a controlling terminal up to each individual 
implementation. We'll show the actual steps in Section 19.4. 

Systems derived from UNIX System V allocate the controlling terminal for a session when the session leader 
opens the first terminal device that is not already associated with a session. This assumes that the call to open  
by the session leader does not specify the O_NOCTTY flag (Section 3.3). 

BSD-based systems allocate the controlling terminal for a session when the session leader calls ioctl  with a 
request argument of TIOCSCTTY (the third argument is a null pointer). The session cannot already have a 



controlling terminal for this call to succeed. (Normally, this call to ioctl  follows a call to setsid , which 
guarantees that the process is a session leader without a controlling terminal.) The POSIX.1 O_NOCTTY flag to 
open  is not used by BSD-based systems, except in compatibility-mode support for other systems. 

There are times when a program wants to talk to the controlling terminal, regardless of whether the standard 
input or standard output is redirected. The way a program guarantees that it is talking to the controlling terminal 
is to open  the file /dev/tty . This special file is a synonym within the kernel for the controlling terminal. 
Naturally, if the program doesn't have a controlling terminal, the open  of this device will fail. 

The classic example is the getpass (3) function, which reads a password (with terminal echoing turned off, of 
course). This function is called by the crypt (1) program and can be used in a pipeline. For example, 

   crypt < salaries | lpr 

 

decrypts the file salaries  and pipes the output to the print spooler. Because crypt  reads its input file on its 
standard input, the standard input can't be used to enter the password. Also, crypt  is designed so that we have 
to enter the encryption password each time we run the program, to prevent us from saving the password in a file 
(which could be a security hole). 

There are known ways to break the encoding used by the crypt  program. See Garfinkel et al. [2003] for more 
details on encrypting files. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.7. tcgetpgrp, tcsetpgrp, and tcgetsid Functions 

We need a way to tell the kernel which process group is the foreground process group, so that the terminal 
device driver knows where to send the terminal input and the terminal-generated signals (Figure 9.7). 

#include <unistd.h> 
 
pid_t tcgetpgrp(int filedes); 

 

Returns: process group ID of foreground process group if OK, –1 on error 

int tcsetpgrp(int filedes, pid_t pgrpid); 

 

Returns: 0 if OK, –1 on error 

 

The function tcgetpgrp  returns the process group ID of the foreground process group associated with the 
terminal open on filedes. 

If the process has a controlling terminal, the process can call tcsetpgrp  to set the foreground process group ID 
to pgrpid. The value of pgrpid must be the process group ID of a process group in the same session, and filedes 
must refer to the controlling terminal of the session. 

Most applications don't call these two functions directly. They are normally called by job-control shells. 

The Single UNIX Specification defines an XSI extension called tcgetsid  to allow an application to obtain the 
process group ID for the session leader given a file descriptor for the controlling TTY. 

#include <termios.h> 
 
pid_t tcgetsid(int filedes); 

 

Returns: session leader's process group ID if OK, –1 on error 

 

Applications that need to manage controlling terminals can use tcgetsid  to identify the session ID of the 
controlling terminal's session leader (which is equivalent to the session leader's process group ID). 

 
 
 
 
 
 
 
 
 
 
 



9.8. Job Control 

Job control is a feature added to BSD around 1980. This feature allows us to start multiple jobs (groups of 
processes) from a single terminal and to control which jobs can access the terminal and which jobs are to run in 
the background. Job control requires three forms of support: 

1. A shell that supports job control 
2. The terminal driver in the kernel must support job control 
3. The kernel must support certain job-control signals 

SVR3 provided a different form of job control called shell layers. The BSD form of job control, 
however, was selected by POSIX.1 and is what we describe here. In earlier versions of the standard, job 
control support was optional, but POSIX.1 now requires platforms to support it. 

From our perspective, using job control from a shell, we can start a job in either the foreground or the 
background. A job is simply a collection of processes, often a pipeline of processes. For example, 

   vi main.c 

 

starts a job consisting of one process in the foreground. The commands 

   pr *.c | lpr & 
   make all & 

 

start two jobs in the background. All the processes invoked by these background jobs are in the background. 

As we said, to use the features provided by job control, we need to be using a shell that supports job control. 
With older systems, it was simple to say which shells supported job control and which didn't. The C shell 
supported job control, the Bourne shell didn't, and it was an option with the Korn shell, depending whether the 
host supported job control. But the C shell has been ported to systems (e.g., earlier versions of System V) that 
don't support job control, and the SVR4 Bourne shell, when invoked by the name jsh  instead of sh , supports 
job control. The Korn shell continues to support job control if the host does. The Bourne-again shell also 
supports job control. We'll just talk generically about a shell that supports job control, versus one that doesn't, 
when the difference between the various shells doesn't matter. 

When we start a background job, the shell assigns it a job identifier and prints one or more of the process IDs. 
The following script shows how the Korn shell handles this: 

   $ make all > Make.out & 
   [1]     1475 
   $ pr *.c | lpr & 
   [2]     1490 
   $                                just press RETU RN 
   [2] +  Done                 pr *.c | lpr & 
   [1] +  Done                 make all > Make.out & 

 

The make is job number 1 and the starting process ID is 1475. The next pipeline is job number 2 and the process 
ID of the first process is 1490. When the jobs are done and when we press RETURN, the shell tells us that the 
jobs are complete. The reason we have to press RETURN is to have the shell print its prompt. The shell doesn't 



print the changed status of background jobs at any random time—only right before it prints its prompt, to let us 
enter a new command line. If the shell didn't do this, it could output while we were entering an input line. 

The interaction with the terminal driver arises because a special terminal character affects the foreground job: 
the suspend key (typically Control-Z). Entering this character causes the terminal driver to send the SIGTSTP 
signal to all processes in the foreground process group. The jobs in any background process groups aren't 
affected. The terminal driver looks for three special characters, which generate signals to the foreground process 
group. 

• The interrupt character (typically DELETE or Control-C) generates SIGINT . 
• The quit character (typically Control-backslash) generates SIGQUIT. 
• The suspend character (typically Control-Z) generates SIGTSTP. 

In Chapter 18, we'll see how we can change these three characters to be any characters we choose and how we 
can disable the terminal driver's processing of these special characters. 

Another job control condition can arise that must be handled by the terminal driver. Since we can have a 
foreground job and one or more background jobs, which of these receives the characters that we enter at the 
terminal? Only the foreground job receives terminal input. It is not an error for a background job to try to read 
from the terminal, but the terminal driver detects this and sends a special signal to the background job: SIGTTIN . 
This signal normally stops the background job; by using the shell, we are notified of this and can bring the job 
into the foreground so that it can read from the terminal. The following demonstrates this: 

   $ cat > temp.foo &          start in background,  but it'll read from standard input 
   [1]     1681 
   $                           we press RETURN 
   [1] + Stopped (SIGTTIN)     cat > temp.foo & 
   $ fg %1                     bring job number 1 i nto the foreground 
   cat > temp.foo              the shell tells us w hich job is now in the foreground 
    
   hello, world                enter one line 
    
   ^D                          type the end-of-file  character 
   $ cat temp.foo              check that the one l ine was put into the file 
   hello, world 
 
 
      

 

The shell starts the cat  process in the background, but when cat  tries to read its standard input (the controlling 
terminal), the terminal driver, knowing that it is a background job, sends the SIGTTIN  signal to the background 
job. The shell detects this change in status of its child (recall our discussion of the wait  and waitpid  function 
in Section 8.6) and tells us that the job has been stopped. We then move the stopped job into the foreground 
with the shell's fg  command. (Refer to the manual page for the shell that you are using, for all the details on its 
job control commands, such as fg  and bg, and the various ways to identify the different jobs.) Doing this causes 
the shell to place the job into the foreground process group (tcsetpgrp ) and send the continue signal (SIGCONT) 
to the process group. Since it is now in the foreground process group, the job can read from the controlling 
terminal. 

What happens if a background job outputs to the controlling terminal? This is an option that we can allow or 
disallow. Normally, we use the stty (1) command to change this option. (We'll see in Chapter 18 how we can 
change this option from a program.) The following shows how this works: 



   $ cat temp.foo &             execute in backgrou nd 
   [1]     1719 
   $ hello, world               the output from the  background job appears after the 
prompt 
                                we press RETURN 
   [1] + Done              cat temp.foo & 
   $ stty tostop              disable ability of ba ckground jobs to output to 
 controlling terminal 
   $ cat temp.foo &             try it again in the  background 
   [1]     1721 
   $                            we press RETURN and  find the job is stopped 
   [1] + Stopped(SIGTTOU)               cat temp.fo o & 
   $ fg %1                      resume stopped job in the foreground 
   cat temp.foo                 the shell tells us which job is now in the foreground 
   hello, world                 and here is its out put 
 
 
      

 

When we disallow background jobs from writing to the controlling terminal, cat  will block when it tries to 
write to its standard output, because the terminal driver identifies the write as coming from a background 
process and sends the job the SIGTTOU signal. As with the previous example, when we use the shell's fg  
command to bring the job into the foreground, the job completes. 

Figure 9.8 summarizes some of the features of job control that we've been describing. The solid lines through 
the terminal driver box mean that the terminal I/O and the terminal-generated signals are always connected from 
the foreground process group to the actual terminal. The dashed line corresponding to the SIGTTOU signal means 
that whether the output from a process in the background process group appears on the terminal is an option. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 9.8. Summary of job control features with foreground and background jobs, and terminal 
driver 

 
 

Is job control necessary or desirable? Job control was originally designed and implemented before windowing 
terminals were widespread. Some people claim that a well-designed windowing system removes any need for 
job control. Some complain that the implementation of job control—requiring support from the kernel, the 
terminal driver, the shell, and some applications—is a hack. Some use job control with a windowing system, 
claiming a need for both. Regardless of your opinion, job control is a required feature of POSIX.1. 

 
 
 
 
 



9.9. Shell Execution of Programs 

Let's examine how the shells execute programs and how this relates to the concepts of process groups, 
controlling terminals, and sessions. To do this, we'll use the ps  command again. 

First, we'll use a shell that doesn't support job control—the classic Bourne shell running on Solaris. If we 
execute 

   ps -o pid,ppid,pgid,sid,comm 

 

the output is 

     PID  PPID  PGID  SID  COMMAND 
     949   947   949  949  sh 
    1774   949   949  949  ps 

 

The parent of the ps  command is the shell, which we would expect. Both the shell and the ps  command are in 
the same session and foreground process group (949). We say that 949 is the foreground process group because 
that is what you get when you execute a command with a shell that doesn't support job control. 

Some platforms support an option to have the ps (1) command print the process group ID associated with the 
session's controlling terminal. This value would be shown under the TPGID column. Unfortunately, the output 
of the ps  command often differs among versions of the UNIX System. For example, Solaris 9 doesn't support 
this option. Under FreeBSD 5.2.1 and Mac OS X 10.3, the command 

    ps -o pid,ppid,pgid,sess,tpgid,command 

 

and under Linux 2.4.22, the command 

    ps -o pid,ppid,pgrp,session,tpgid,comm 

 

print exactly the information we want. 

Note that it is a misnomer to associate a process with a terminal process group ID (the TPGID column). A 
process does not have a terminal process control group. A process belongs to a process group, and the process 
group belongs to a session. The session may or may not have a controlling terminal. If the session does have a 
controlling terminal, then the terminal device knows the process group ID of the foreground process. This value 
can be set in the terminal driver with the tcsetpgrp  function, as we show in Figure 9.8. The foreground process 
group ID is an attribute of the terminal, not the process. This value from the terminal device driver is what ps  
prints as the TPGID. If it finds that the session doesn't have a controlling terminal, ps  prints –1. 

If we execute the command in the background, 

   ps -o pid,ppid,pgid,sid,comm & 

 

the only value that changes is the process ID of the command: 

        PID  PPID  PGID  SID COMMAND 



        949   947   949  949 sh 
       1812   949   949  949 ps 

 

This shell doesn't know about job control, so the background job is not put into its own process group and the 
controlling terminal isn't taken away from the background job. 

Let's now look at how the Bourne shell handles a pipeline. When we execute 

   ps -o pid,ppid,pgid,sid,comm | cat1 

 

the output is 

    PID  PPID  PGID  SID COMMAND 
    949   947   949  949 sh 
   1823   949   949  949 cat1 
   1824  1823   949  949 ps 

 

(The program cat1  is just a copy of the standard cat  program, with a different name. We have another copy of 
cat  with the name cat2 , which we'll use later in this section. When we have two copies of cat  in a pipeline, the 
different names let us differentiate between the two programs.) Note that the last process in the pipeline is the 
child of the shell and that the first process in the pipeline is a child of the last process. It appears that the shell 
fork s a copy of itself and that this copy then fork s to make each of the previous processes in the pipeline. 

If we execute the pipeline in the background, 

   ps -o pid,ppid,pgid,sid,comm | cat1 & 

 

only the process IDs change. Since the shell doesn't handle job control, the process group ID of the background 
processes remains 949, as does the process group ID of the session. 

What happens in this case if a background process tries to read from its controlling terminal? For example, 
suppose that we execute 

   cat > temp.foo & 

 

With job control, this is handled by placing the background job into a background process group, which causes 
the signal SIGTTIN  to be generated if the background job tries to read from the controlling terminal. The way 
this is handled without job control is that the shell automatically redirects the standard input of a background 
process to /dev/null , if the process doesn't redirect standard input itself. A read from /dev/null  generates an 
end of file. This means that our background cat  process immediately reads an end of file and terminates 
normally. 

The previous paragraph adequately handles the case of a background process accessing the controlling terminal 
through its standard input, but what happens if a background process specifically opens /dev/tty  and reads 
from the controlling terminal? The answer is "it depends," but it's probably not what we want. For example, 

   crypt < salaries | lpr & 

 



is such a pipeline. We run it in the background, but the crypt  program opens /dev/tty , changes the terminal 
characteristics (to disable echoing), reads from the device, and resets the terminal characteristics. When we 
execute this background pipeline, the prompt Password:  from crypt  is printed on the terminal, but what we 
enter (the encryption password) is read by the shell, which tries to execute a command of that name. The next 
line we enter to the shell is taken as the password, and the file is not encrypted correctly, sending junk to the 
printer. Here we have two processes trying to read from the same device at the same time, and the result 
depends on the system. Job control, as we described earlier, handles this multiplexing of a single terminal 
between multiple processes in a better fashion. 

Returning to our Bourne shell example, if we execute three processes in the pipeline, we can examine the 
process control used by this shell: 

   ps -o pid,ppid,pgid,sid,comm | cat1 | cat2 

 

generates the following output 

     PID  PPID  PGID  SID COMMAND 
     949   947   949  949 sh 
    1988   949   949  949 cat2 
    1989  1988   949  949 ps 
    1990  1988   949  949 cat1 

 

Don't be alarmed if the output on your system doesn't show the proper command names. Sometimes you might 
get results such as 

        PID  PPID  PGID  SID COMMAND 
        949   947   949  949 sh 
       1831   949   949  949 sh 
       1832  1831   949  949 ps 
       1833  1831   949  949 sh 

 

What's happening here is that the ps  process is racing with the shell, which is forking and executing the cat  
commands. In this case, the shell hasn't yet completed the call to exec  when ps  has obtained the list of 
processes to print. 

Again, the last process in the pipeline is the child of the shell, and all previous processes in the pipeline are 
children of the last process. Figure 9.9 shows what is happening. Since the last process in the pipeline is the 
child of the login shell, the shell is notified when that process (cat2 ) terminates. 

 

 

 

 

 

 



Figure 9.9. Processes in the pipeline ps | cat1 | cat2 when invoked by Bourne shell 

 
 

Now let's examine the same examples using a job-control shell running on Linux. This shows the way these 
shells handle background jobs. We'll use the Bourne-again shell in this example; the results with other job-
control shells are almost identical. 

   ps -o pid,ppid,pgrp,session,tpgid,comm 

 

gives us 

     PID  PPID  PGRP  SESS  TPGID COMMAND 
    2837  2818  2837  2837   5796 bash 
    5796  2837  5796  2837   5796 ps 

 

(Starting with this example, we show the foreground process group in a bolder font .) We immediately have a 
difference from our Bourne shell example. The Bourne-again shell places the foreground job (ps ) into its own 
process group (5796). The ps  command is the process group leader and the only process in this process group. 

Furthermore, this process group is the foreground process group, since it has the controlling terminal. Our login 
shell is a background process group while the ps  command executes. Note, however, that both process groups, 
2837 and 5796, are members of the same session. Indeed, we'll see that the session never changes through our 
examples in this section. 

Executing this process in the background, 

   ps -o pid,ppid,pgrp,session,tpgid,comm & 

 

gives us 

     PID  PPID  PGRP  SESS  TPGID COMMAND 
    2837  2818  2837  2837   2837 bash 
    5797  2837  5797  2837   2837 ps 



 

Again, the ps  command is placed into its own process group, but this time the process group (5797) is no longer 
the foreground process group. It is a background process group. The TPGID of 2837 indicates that the 
foreground process group is our login shell. 

Executing two processes in a pipeline, as in 

   ps -o pid,ppid,pgrp,session,tpgid,comm | cat1 

 

gives us 

     PID  PPID  PGRP  SESS  TPGID COMMAND 
    2837  2818  2837  2837   5799 bash 
    5799  2837  5799  2837   5799 ps 
    5800  2837  5799  2837   5799 cat1 

 

Both processes, ps  and cat1 , are placed into a new process group (5799), and this is the foreground process 
group. We can also see another difference between this example and the similar Bourne shell example. The 
Bourne shell created the last process in the pipeline first, and this final process was the parent of the first 
process. Here, the Bourne-again shell is the parent of both processes. If we execute this pipeline in the 
background, 

   ps -o pid,ppid,pgrp,session,tpgid,comm | cat1 & 

 

the results are similar, but now ps  and cat1  are placed in the same background process group: 

     PID  PPID  PGRP  SESS  TPGID COMMAND 
    2837  2818  2837  2837   2837 bash 
    5801  2837  5801  2837   2837 ps 
    5802  2837  5801  2837   2837 cat1 

 

Note that the order in which a shell creates processes can differ depending on the particular shell in use. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.10. Orphaned Process Groups 

We've mentioned that a process whose parent terminates is called an orphan and is inherited by the init  
process. We now look at entire process groups that can be orphaned and how POSIX.1 handles this situation. 

Example 

Consider a process that fork s a child and then terminates. Although this is nothing abnormal (it happens all the 
time), what happens if the child is stopped (using job control) when the parent terminates? How will the child 
ever be continued, and does the child know that it has been orphaned? Figure 9.10 shows this situation: the 
parent process has fork ed a child that stops, and the parent is about to exit. 

The program that creates this situation is shown in Figure 9.11. This program has some new features. Here, we 
are assuming a job-control shell. Recall from the previous section that the shell places the foreground process 
into its own process group (6099 in this example) and that the shell stays in its own process group (2837). The 
child inherits the process group of its parent (6099). After the fork , 

• The parent sleeps for 5 seconds. This is our (imperfect) way of letting the child execute before the parent 
terminates. 

• The child establishes a signal handler for the hang-up signal (SIGHUP). This is so we can see whether 
SIGHUP is sent to the child. (We discuss signal handlers in Chapter 10.) 

• The child sends itself the stop signal (SIGTSTP) with the kill  function. This stops the child, similar to 
our stopping a foreground job with our terminal's suspend character (Control-Z). 

• When the parent terminates, the child is orphaned, so the child's parent process ID becomes 1, the init  
process ID. 

• At this point, the child is now a member of an orphaned process group. The POSIX.1 definition of an 
orphaned process group is one in which the parent of every member is either itself a member of the 
group or is not a member of the group's session. Another way of wording this is that the process group is 
not orphaned as long as a process in the group has a parent in a different process group but in the same 
session. If the process group is not orphaned, there is a chance that one of those parents in a different 
process group but in the same session will restart a stopped process in the process group that is not 
orphaned. Here, the parent of every process in the group (e.g., process 1 is the parent of process 6100) 
belongs to another session. 

• Since the process group is orphaned when the parent terminates, POSIX.1 requires that every process in 
the newly orphaned process group that is stopped (as our child is) be sent the hang-up signal (SIGHUP) 
followed by the continue signal (SIGCONT). 

• This causes the child to be continued, after processing the hang-up signal. The default action for the 
hang-up signal is to terminate the process, so we have to provide a signal handler to catch the signal. We 
therefore expect the printf  in the sig_hup  function to appear before the printf  in the pr_ids  
function. 

Here is the output from the program shown in Figure 9.11: 

   $ ./a.out 
   parent: pid = 6099, ppid = 2837, pgrp = 6099, tp grp = 6099 
   child: pid = 6100, ppid = 6099, pgrp = 6099, tpg rp = 6099 
   $ SIGHUP received, pid = 6100 
   child: pid = 6100, ppid = 1, pgrp = 6099, tpgrp = 2837 
   read error from controlling TTY, errno = 5 

 

Note that our shell prompt appears with the output from the child, since two processes—our login shell and the 



child—are writing to the terminal. As we expect, the parent process ID of the child has become 1. 

After calling pr_ids  in the child, the program tries to read from standard input. As we saw earlier in this 
chapter, when a background process group tries to read from its controlling terminal, SIGTTIN  is generated for 
the background process group. But here we have an orphaned process group; if the kernel were to stop it with 
this signal, the processes in the process group would probably never be continued. POSIX.1 specifies that the 
read  is to return an error with errno  set to EIO (whose value is 5 on this system) in this situation. 

Finally, note that our child was placed in a background process group when the parent terminated, since the 
parent was executed as a foreground job by the shell. 

Figure 9.10. Example of a process group about to be orphaned 

 

 
 

Figure 9.11. Creating an orphaned process group 

#include "apue.h" 
#include <errno.h> 
 
static void 
sig_hup(int signo) 
{ 
    printf("SIGHUP received, pid = %d\n", getpid()) ; 
} 
 
static void 
pr_ids(char *name) 
{ 
    printf("%s: pid = %d, ppid = %d, pgrp = %d, tpg rp = %d\n", 
        name, getpid(), getppid(), getpgrp(), tcget pgrp(STDIN_FILENO));  
    fflush(stdout); 
} 
 
int 
main(void) 



{ 
     char     c; 
     pid_t    pid; 
 
     pr_ids("parent"); 
     if ((pid = fork()) < 0) { 
         err_sys("fork error"); 
     } else if (pid > 0) {   /* parent */ 
         sleep(5);       /*sleep to let child stop itself */ 
         exit(0);        /* then parent exits */ 
     } else {            /* child */ 
         pr_ids("child"); 
         signal(SIGHUP, sig_hup);    /* establish s ignal handler */ 
         kill(getpid(), SIGTSTP);    /* stop oursel f */ 
         pr_ids("child");    /* prints only if we'r e continued */ 
         if (read(STDIN_FILENO, &c, 1) != 1) 
             printf("read error from controlling TT Y, errno = %d\n", 
                 errno); 
         exit(0); 
     } 
} 

We'll see another example of orphaned process groups in Section 19.5 with the pty  program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.11. FreeBSD Implementation 

Having talked about the various attributes of a process, process group, session, and controlling terminal, it's 
worth looking at how all this can be implemented. We'll look briefly at the implementation used by FreeBSD. 
Some details of the SVR4 implementation of these features can be found in Williams [1989]. Figure 9.12 shows 
the various data structures used by FreeBSD. 

Figure 9.12. FreeBSD implementation of sessions and process groups 

 
 

Let's look at all the fields that we've labeled, starting with the session  structure. One of these structures is 
allocated for each session (e.g., each time setsid  is called). 

• s_count  is the number of process groups in the session. When this counter is decremented to 0, the 
structure can be freed. 

• s_leader  is a pointer to the proc  structure of the session leader. 
• s_ttyvp  is a pointer to the vnode  structure of the controlling terminal. 
• s_ttyp  is a pointer to the tty  structure of the controlling terminal. 
• s_sid  is the session ID. Recall that the concept of a session ID is not part of the Single UNIX 

Specification. 

When setsid  is called, a new session  structure is allocated within the kernel. Now s_count  is set to 1, 
s_leader  is set to point to the proc  structure of the calling process, s_sid  is set to the process ID, and s_ttyvp  
and s_ttyp  are set to null pointers, since the new session doesn't have a controlling terminal. 

Let's move to the tty  structure. The kernel contains one of these structures for each terminal device and each 
pseudo-terminal device. (We talk more about pseudo terminals in Chapter 19.) 



• t_session  points to the session  structure that has this terminal as its controlling terminal. (Note that 
the tty  structure points to the session  structure and vice versa.) This pointer is used by the terminal to 
send a hang-up signal to the session leader if the terminal loses carrier (Figure 9.7). 

• t_pgrp  points to the pgrp  structure of the foreground process group. This field is used by the terminal 
driver to send signals to the foreground process group. The three signals generated by entering special 
characters (interrupt, quit, and suspend) are sent to the foreground process group. 

• t_termios  is a structure containing all the special characters and related information for this terminal, 
such as baud rate, is echo on or off, and so on. We'll return to this structure in Chapter 18. 

• t_winsize  is a winsize  structure that contains the current size of the terminal window. When the size 
of the terminal window changes, the SIGWINCH signal is sent to the foreground process group. We show 
how to set and fetch the terminal's current window size in Section 18.12. 

Note that to find the foreground process group of a particular session, the kernel has to start with the session 
structure, follow s_ttyp  to get to the controlling terminal's tty  structure, and then follow t_pgrp  to get to the 
foreground process group's pgrp  structure. The pgrp  structure contains the information for a particular process 
group. 

• pg_id  is the process group ID. 
• pg_session  points to the session  structure for the session to which this process group belongs. 
• pg_members  is a pointer to the list of proc  structures that are members of this process group. The 

p_pglist  structure in that proc  structure is a doubly-linked list entry that points to both the next process 
and the previous process in the group, and so on, until a null pointer is encountered in the proc  structure 
of the last process in the group. 

The proc  structure contains all the information for a single process. 

• p_pid  contains the process ID. 
• p_pptr  is a pointer to the proc  structure of the parent process. 
• p_pgrp  points to the pgrp  structure of the process group to which this process belongs. 
• p_pglist  is a structure containing pointers to the next and previous processes in the process group, as 

we mentioned earlier. 

Finally, we have the vnode  structure. This structure is allocated when the controlling terminal device is opened. 
All references to /dev/tty  in a process go through this vnode  structure. We show the actual i-node as being 
part of the v-node. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9.12. Summary 

This chapter has described the relationships between groups of processes: sessions, which are made up of 
process groups. Job control is a feature supported by most UNIX systems today, and we've described how it's 
implemented by a shell that supports job control. The controlling terminal for a process, /dev/tty , is also 
involved in these process relationships. 

We've made numerous references to the signals that are used in all these process relationships. The next chapter 
continues the discussion of signals, looking at all the UNIX System signals in detail. 
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10.1. Introduction 

Signals are software interrupts. Most nontrivial application programs need to deal with signals. Signals provide 
a way of handling asynchronous events: a user at a terminal typing the interrupt key to stop a program or the 
next program in a pipeline terminating prematurely. 

Signals have been provided since the early versions of the UNIX System, but the signal model provided with 
systems such as Version 7 was not reliable. Signals could get lost, and it was difficult for a process to turn off 
selected signals when executing critical regions of code. Both 4.3BSD and SVR3 made changes to the signal 
model, adding what are called reliable signals. But the changes made by Berkeley and AT&T were 
incompatible. Fortunately, POSIX.1 standardized the reliable-signal routines, and that is what we describe here. 

In this chapter, we start with an overview of signals and a description of what each signal is normally used for. 
Then we look at the problems with earlier implementations. It is often important to understand what is wrong 
with an implementation before seeing how to do things correctly. This chapter contains numerous examples that 
are not entirely correct and a discussion of the defects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.2. Signal Concepts 

First, every signal has a name. These names all begin with the three characters SIG. For example, SIGABRT is 
the abort signal that is generated when a process calls the abort  function. SIGALRM is the alarm signal that is 
generated when the timer set by the alarm  function goes off. Version 7 had 15 different signals; SVR4 and 
4.4BSD both have 31 different signals. FreeBSD 5.2.1, Mac OS X 10.3, and Linux 2.4.22 support 31 different 
signals, whereas Solaris 9 supports 38 different signals. Both Linux and Solaris, however, support additional 
application-defined signals as real-time extensions (the real-time extensions in POSIX aren't covered in this 
book; refer to Gallmeister [1995] for more information). 

These names are all defined by positive integer constants (the signal number) in the header <signal.h> . 

Implementations actually define the individual signals in an alternate header file, but this header file is included 
by <signal.h> . It is considered bad form for the kernel to include header files meant for user-level applications, 
so if the applications and the kernel both need the same definitions, the information is placed in a kernel header 
file that is then included by the user-level header file. Thus, both FreeBSD 5.2.1 and Mac OS X 10.3 define the 
signals in <sys/signal.h> . Linux 2.4.22 defines the signals in <bits/signum.h> , and Solaris 9 defines them 
in <sys/iso/signal_iso.h> . 

No signal has a signal number of 0. We'll see in Section 10.9 that the kill  function uses the signal number of 0 
for a special case. POSIX.1 calls this value the null signal. 

Numerous conditions can generate a signal. 

• The terminal-generated signals occur when users press certain terminal keys. Pressing the DELETE key 
on the terminal (or Control-C on many systems) normally causes the interrupt signal (SIGINT ) to be 
generated. This is how to stop a runaway program. (We'll see in Chapter 18 how this signal can be 
mapped to any character on the terminal.) 

• Hardware exceptions generate signals: divide by 0, invalid memory reference, and the like. These 
conditions are usually detected by the hardware, and the kernel is notified. The kernel then generates the 
appropriate signal for the process that was running at the time the condition occurred. For example, 
SIGSEGV is generated for a process that executes an invalid memory reference. 

• The kill (2) function allows a process to send any signal to another process or process group. Naturally, 
there are limitations: we have to be the owner of the process that we're sending the signal to, or we have 
to be the superuser. 

• The kill (1) command allows us to send signals to other processes. This program is just an interface to 
the kill  function. This command is often used to terminate a runaway background process. 

• Software conditions can generate signals when something happens about which the process should be 
notified. These aren't hardware-generated conditions (as is the divide-by-0 condition), but software 
conditions. Examples are SIGURG (generated when out-of-band data arrives over a network connection), 
SIGPIPE  (generated when a process writes to a pipe after the reader of the pipe has terminated), and 
SIGALRM (generated when an alarm clock set by the process expires). 

Signals are classic examples of asynchronous events. Signals occur at what appear to be random times to the 
process. The process can't simply test a variable (such as errno ) to see whether a signal has occurred; instead, 
the process has to tell the kernel "if and when this signal occurs, do the following." 

We can tell the kernel to do one of three things when a signal occurs. We call this the disposition of the signal, 
or the action associated with a signal. 



1. Ignore the signal. This works for most signals, but two signals can never be ignored: SIGKILL  and 
SIGSTOP. The reason these two signals can't be ignored is to provide the kernel and the superuser with a 
surefire way of either killing or stopping any process. Also, if we ignore some of the signals that are 
generated by a hardware exception (such as illegal memory reference or divide by 0), the behavior of the 
process is undefined. 

2. Catch the signal. To do this, we tell the kernel to call a function of ours whenever the signal occurs. In 
our function, we can do whatever we want to handle the condition. If we're writing a command 
interpreter, for example, when the user generates the interrupt signal at the keyboard, we probably want 
to return to the main loop of the program, terminating whatever command we were executing for the 
user. If the SIGCHLD signal is caught, it means that a child process has terminated, so the signal-catching 
function can call waitpid  to fetch the child's process ID and termination status. As another example, if 
the process has created temporary files, we may want to write a signal-catching function for the SIGTERM 
signal (the termination signal that is the default signal sent by the kill  command) to clean up the 
temporary files. Note that the two signals SIGKILL  and SIGSTOP can't be caught. 

3. Let the default action apply. Every signal has a default action, shown in Figure 10.1. Note that the 
default action for most signals is to terminate the process. 

Figure 10.1. UNIX System signals 

Name Description ISO 
C 

SUS FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac 
OS X 
10.3 

Solaris 
9 

Default action 

SIGABRT abnormal 
termination 
(abort ) 

• • • • • • terminate+core 

SIGALRM timer expired 
(alarm ) 

  • • • • • terminate 

SIGBUS hardware fault   • • • • • terminate+core 

SIGCANCEL threads library 
internal use 

          • ignore 

SIGCHLD change in status of 
child 

  • • • • • ignore 

SIGCONT continue stopped 
process 

  • • • • • continue/ignore 

SIGEMT hardware fault     • • • • terminate+core 

SIGFPE arithmetic 
exception 

• • • • • • terminate+core 

SIGFREEZE checkpoint freeze           • ignore 

SIGHUP hangup   • • • • • terminate 

SIGILL  illegal instruction • • • • • • terminate+core 

SIGINFO status request 
from keyboard 

    •   •   ignore 



Figure 10.1. UNIX System signals 

Name Description ISO 
C 

SUS FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac 
OS X 
10.3 

Solaris 
9 

Default action 

SIGINT  terminal interrupt 
character 

• • • • • • terminate 

SIGIO  asynchronous I/O     • • • • terminate/ignore 

SIGIOT  hardware fault     • • • • terminate+core 

SIGKILL  termination   • • • • • terminate 

SIGLWP threads library 
internal use 

          • ignore 

SIGPIPE  write to pipe with 
no readers 

  • • • • • terminate 

SIGPOLL pollable event 
(poll ) 

  XSI   •   • terminate 

SIGPROF profiling time 
alarm 
(setitimer ) 

  XSI • • • • terminate 

SIGPWR power fail/restart       •   • terminate/ignore 

SIGQUIT terminal quit 
character 

  • • • • • terminate+core 

SIGSEGV invalid memory 
reference 

• • • • • • terminate+core 

SIGSTKFLT coprocessor stack 
fault 

      •     terminate 

SIGSTOP stop   • • • • • stop process 

SIGSYS invalid system call   XSI • • • • terminate+core 

SIGTERM termination • • • • • • terminate 

SIGTHAW checkpoint thaw           • ignore 

SIGTRAP hardware fault   XSI • • • • terminate+core 

SIGTSTP terminal stop 
character 

  • • • • • stop process 

SIGTTIN  background read 
from control tty 

  • • • • • stop process 

SIGTTOU background write 
to control tty 

  • • • • • stop process 



Figure 10.1. UNIX System signals 

Name Description ISO 
C 

SUS FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac 
OS X 
10.3 

Solaris 
9 

Default action 

SIGURG urgent condition 
(sockets) 

  • • • • • ignore 

SIGUSR1 user-defined 
signal 

  • • • • • terminate 

SIGUSR2 user-defined 
signal 

  • • • • • terminate 

SIGVTALRM virtual time alarm 
(setitimer ) 

  XSI • • • • terminate 

SIGWAITING threads library 
internal use 

          • ignore 

SIGWINCH terminal window 
size change 

    • • • • ignore 

SIGXCPU CPU limit 
exceeded 
(setrlimit ) 

  XSI • • • • terminate+core/ignore 

SIGXFSZ file size limit 
exceeded 
(setrlimit ) 

  XSI • • • • terminate+core/ignore 

SIGXRES resource control 
exceeded 

          • ignore 

 

Figure 10.1 lists the names of all the signals, an indication of which systems support the signal, and the default 
action for the signal. The SUS column contains • if the signal is defined as part of the base POSIX.1 
specification and XSI if it is defined as an XSI extension to the base. 

When the default action is labeled "terminate+core," it means that a memory image of the process is left in the 
file named core  of the current working directory of the process. (Because the file is named core , it shows how 
long this feature has been part of the UNIX System.) This file can be used with most UNIX System debuggers 
to examine the state of the process at the time it terminated. 

The generation of the core  file is an implementation feature of most versions of the UNIX System. Although 
this feature is not part of POSIX.1, it is mentioned as a potential implementation-specific action in the Single 
UNIX Specification's XSI extension. 

The name of the core file varies among implementations. On FreeBSD 5.2.1, for example, the core file is named 
cmdname.core, where cmdname is the name of the command corresponding to the process that received the 
signal. On Mac OS X 10.3, the core file is named core.pid, where pid is the ID of the process that received the 
signal. (These systems allow the core filename to be configured via a sysctl  parameter.) 



Most implementations leave the core file in the current working directory of the corresponding process; Mac OS 
X places all core files in /cores  instead. 

The core file will not be generated if (a) the process was set-user-ID and the current user is not the owner of the 
program file, or (b) the process was set-group-ID and the current user is not the group owner of the file, (c) the 
user does not have permission to write in the current working directory, (d) the file already exists and the user 
does not have permission to write to it, or (e) the file is too big (recall the RLIMIT_CORE limit in Section 7.11). 
The permissions of the core  file (assuming that the file doesn't already exist) are usually user-read and user-
write, although Mac OS X sets only user-read. 

In Figure 10.1, the signals with a description "hardware fault" correspond to implementation-defined hardware 
faults. Many of these names are taken from the original PDP-11 implementation of the UNIX System. Check 
your system's manuals to determine exactly what type of error these signals correspond to. 

We now describe each of these signals in more detail. 

SIGABRT This signal is generated by calling the abort  function (Section 10.17). The process terminates 
abnormally. 

SIGALRM This signal is generated when a timer set with the alarm  function expires (see Section 10.10 for 
more details). This signal is also generated when an interval timer set by the setitimer (2) 
function expires. 

SIGBUS This indicates an implementation-defined hardware fault. Implementations usually generate this 
signal on certain types of memory faults, as we describe in Section 14.9. 

SIGCANCEL This signal is used internally by the Solaris threads library. It is not meant for general use. 

SIGCHLD Whenever a process terminates or stops, the SIGCHLD signal is sent to the parent. By default, this 
signal is ignored, so the parent must catch this signal if it wants to be notified whenever a child's 
status changes. The normal action in the signal-catching function is to call one of the wait  
functions to fetch the child's process ID and termination status.  

Earlier releases of System V had a similar signal named SIGCLD (without the H). The semantics of 
this signal were different from those of other signals, and as far back as SVR2, the manual page 
strongly discouraged its use in new programs. (Strangely enough, this warning disappeared in the 
SVR3 and SVR4 versions of the manual page.) Applications should use the standard SIGCHLD 
signal, but be aware that many systems define SIGCLD to be the same as SIGCHLD for backward 
compatibility. If you maintain software that uses SIGCLD, you need to check your system's manual 
page to see what semantics it follows. We discuss these two signals in Section 10.7. 

SIGCONT This job-control signal is sent to a stopped process when it is continued. The default action is to 
continue a stopped process, but to ignore the signal if the process wasn't stopped. A full-screen 
editor, for example, might catch this signal and use the signal handler to make a note to redraw 
the terminal screen. See Section 10.20 for additional details.  

SIGEMT This indicates an implementation-defined hardware fault.  

The name EMT comes from the PDP-11 "emulator trap" instruction. Not all platforms support 
this signal. On Linux, for example, SIGEMT is supported only for selected architectures, such as 
SPARC, MIPS, and PA-RISC. 

SIGFPE This signals an arithmetic exception, such as divide by 0, floating-point overflow, and so on. 



SIGABRT This signal is generated by calling the abort  function (Section 10.17). The process terminates 
abnormally. 

SIGFREEZE This signal is defined only by Solaris. It is used to notify processes that need to take special action 
before freezing the system state, such as might happen when a system goes into hibernation or 
suspended mode. 

SIGHUP This signal is sent to the controlling process (session leader) associated with a controlling 
terminal if a disconnect is detected by the terminal interface. Referring to Figure 9.12, we see that 
the signal is sent to the process pointed to by the s_leader  field in the session  structure. This 
signal is generated for this condition only if the terminal's CLOCAL flag is not set. (The CLOCAL 
flag for a terminal is set if the attached terminal is local. The flag tells the terminal driver to 
ignore all modem status lines. We describe how to set this flag in Chapter 18.)  

Note that the session leader that receives this signal may be in the background; see Figure 9.7 for 
an example. This differs from the normal terminal-generated signals (interrupt, quit, and 
suspend), which are always delivered to the foreground process group. 

This signal is also generated if the session leader terminates. In this case, the signal is sent to each 
process in the foreground process group. 

This signal is commonly used to notify daemon processes (Chapter 13) to reread their 
configuration files. The reason SIGHUP is chosen for this is that a daemon should not have a 
controlling terminal and would normally never receive this signal. 

SIGILL  This signal indicates that the process has executed an illegal hardware instruction.  

4.3BSD generated this signal from the abort  function. SIGABRT is now used for this. 

SIGINFO This BSD signal is generated by the terminal driver when we type the status key (often Control-
T). This signal is sent to all processes in the foreground process group (refer to Figure 9.8). This 
signal normally causes status information on processes in the foreground process group to be 
displayed on the terminal.  

Linux doesn't provide support for SIGINFO except on the Alpha platform, where it is defined to be 
the same value as SIGPWR. 

SIGINT  This signal is generated by the terminal driver when we type the interrupt key (often DELETE or 
Control-C). This signal is sent to all processes in the foreground process group (refer to Figure 
9.8). This signal is often used to terminate a runaway program, especially when it's generating a 
lot of unwanted output on the screen. 

SIGIO  This signal indicates an asynchronous I/O event. We discuss it in Section 14.6.2.  

In Figure 10.1, we labeled the default action for SIGIO  as either "terminate" or "ignore." 
Unfortunately, the default depends on the system. Under System V, SIGIO  is identical to 
SIGPOLL, so its default action is to terminate the process. Under BSD, the default is to ignore the 
signal. 

Linux 2.4.22 and Solaris 9 define SIGIO  to be the same value as SIGPOLL, so the default behavior 
is to terminate the process. On FreeBSD 5.2.1 and Mac OS X 10.3, the default is to ignore the 
signal. 

SIGIOT  This indicates an implementation-defined hardware fault.  



SIGABRT This signal is generated by calling the abort  function (Section 10.17). The process terminates 
abnormally. 

The name IOT comes from the PDP-11 mnemonic for the "input/output TRAP" instruction. 
Earlier versions of System V generated this signal from the abort  function. SIGABRT is now used 
for this. 

On FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9, SIGIOT  is defined to be the same 
value as SIGABRT. 

SIGKILL  This signal is one of the two that can't be caught or ignored. It provides the system administrator 
with a sure way to kill any process. 

SIGLWP This signal is used internally by the Solaris threads library, and is not available for general use. 

SIGPIPE  If we write to a pipeline but the reader has terminated, SIGPIPE  is generated. We describe pipes in 
Section 15.2. This signal is also generated when a process writes to a socket of type SOCK_STREAM 
that is no longer connected. We describe sockets in Chapter 16. 

SIGPOLL This signal can be generated when a specific event occurs on a pollable device. We describe this 
signal with the poll  function in Section 14.5.2. SIGPOLL originated with SVR3, and loosely 
corresponds to the BSD SIGIO  and SIGURG signals.  

On Linux and Solaris, SIGPOLL is defined to have the same value as SIGIO . 

SIGPROF This signal is generated when a profiling interval timer set by the setitimer (2) function expires. 

SIGPWR This signal is system dependent. Its main use is on a system that has an uninterruptible power 
supply (UPS). If power fails, the UPS takes over and the software can usually be notified. 
Nothing needs to be done at this point, as the system continues running on battery power. But if 
the battery gets low (if the power is off for an extended period), the software is usually notified 
again; at this point, it behooves the system to shut everything down within about 15–30 seconds. 
This is when SIGPWR should be sent. Most systems have the process that is notified of the low-
battery condition send the SIGPWR signal to the init  process, and init  handles the shutdown.  

Linux 2.4.22 and Solaris 9 have entries in the inittab  file for this purpose: powerfail  and 
powerwait  (or powerokwait ). 

In Figure 10.1, we labeled the default action for SIGPWR as either "terminate" or "ignore." 
Unfortunately, the default depends on the system. The default on Linux is to terminate the 
process. On Solaris, the signal is ignored by default. 

SIGQUIT This signal is generated by the terminal driver when we type the terminal quit key (often Control-
backslash). This signal is sent to all processes in the foreground process group (refer to Figure 
9.8). This signal not only terminates the foreground process group (as does SIGINT ), but also 
generates a core  file. 

SIGSEGV This signal indicates that the process has made an invalid memory reference.  

The name SEGV stands for "segmentation violation." 

SIGSTKFLT This signal is defined only by Linux. This signal showed up in the earliest versions of Linux, 
intended to be used for stack faults taken by the math coprocessor. This signal is not generated by 
the kernel, but remains for backward compatibility. 



SIGABRT This signal is generated by calling the abort  function (Section 10.17). The process terminates 
abnormally. 

SIGSTOP This job-control signal stops a process. It is like the interactive stop signal (SIGTSTP), but 
SIGSTOP cannot be caught or ignored. 

SIGSYS This signals an invalid system call. Somehow, the process executed a machine instruction that the 
kernel thought was a system call, but the parameter with the instruction that indicates the type of 
system call was invalid. This might happen if you build a program that uses a new system call and 
you then try to run the same binary on an older version of the operating system where the system 
call doesn't exist. 

SIGTERM This is the termination signal sent by the kill (1) command by default. 

SIGTHAW This signal is defined only by Solaris and is used to notify processes that need to take special 
action when the system resumes operation after being suspended. 

SIGTRAP This indicates an implementation-defined hardware fault.  

The signal name comes from the PDP-11 TRAP instruction. Implementations often use this signal 
to transfer control to a debugger when a breakpoint instruction is executed. 

SIGTSTP This interactive stop signal is generated by the terminal driver when we type the terminal suspend 
key (often Control-Z). This signal is sent to all processes in the foreground process group (refer to 
Figure 9.8).  

Unfortunately, the term stop has different meanings. When discussing job control and signals, we 
talk about stopping and continuing jobs. The terminal driver, however, has historically used the 
term stop to refer to stopping and starting the terminal output using the Control-S and Control-Q 
characters. Therefore, the terminal driver calls the character that generates the interactive stop 
signal the suspend character, not the stop character. 

SIGTTIN  This signal is generated by the terminal driver when a process in a background process group tries 
to read from its controlling terminal. (Refer to the discussion of this topic in Section 9.8.) As 
special cases, if either (a) the reading process is ignoring or blocking this signal or (b) the process 
group of the reading process is orphaned, then the signal is not generated; instead, the read 
operation returns an error with errno  set to EIO.  

SIGTTOU This signal is generated by the terminal driver when a process in a background process group tries 
to write to its controlling terminal. (Refer to the discussion of this topic in Section 9.8.) Unlike the 
SIGTTIN  signal just described, a process has a choice of allowing background writes to the 
controlling terminal. We describe how to change this option in Chapter 18.  

If background writes are not allowed, then like the SIGTTIN  signal, there are two special cases: if 
either (a) the writing process is ignoring or blocking this signal or (b) the process group of the 
writing process is orphaned, then the signal is not generated; instead, the write operation returns 
an error with errno  set to EIO. 

Regardless of whether background writes are allowed, certain terminal operations (other than 
writing) can also generate the SIGTTOU signal: tcsetattr , tcsendbreak , tcdrain , tcflush , 
tcflow , and tcsetpgrp . We describe these terminal operations in Chapter 18. 

SIGURG This signal notifies the process that an urgent condition has occurred. This signal is optionally 
generated when out-of-band data is received on a network connection.  



SIGABRT This signal is generated by calling the abort  function (Section 10.17). The process terminates 
abnormally. 

SIGUSR1 This is a user-defined signal, for use in application programs. 

SIGUSR2 This is another user-defined signal, similar to SIGUSR1, for use in application programs. 

SIGVTALRM This signal is generated when a virtual interval timer set by the setitimer (2) function expires. 

SIGWAITING This signal is used internally by the Solaris threads library, and is not available for general use. 

SIGWINCH The kernel maintains the size of the window associated with each terminal and pseudo terminal. 
A process can get and set the window size with the ioctl  function, which we describe in Section 
18.12. If a process changes the window size from its previous value using the ioctl  set-window-
size command, the kernel generates the SIGWINCH signal for the foreground process group. 

SIGXCPU The Single UNIX Specification supports the concept of resource limits as an XSI extension; refer 
to Section 7.11. If the process exceeds its soft CPU time limit, the SIGXCPU signal is generated.  

In Figure 10.1, we labeled the default action for SIGXCPU as either "terminate with a core file" or 
"ignore." Unfortunately, the default depends on the operating system. Linux 2.4.22 and Solaris 9 
support a default action of terminate with a core file, whereas FreeBSD 5.2.1 and Mac OS X 10.3 
support a default action of ignore. The Single UNIX Specification requires that the default action 
be to terminate the process abnormally. Whether a core file is generated is left up to the 
implementation. 

SIGXFSZ This signal is generated if the process exceeds its soft file size limit; refer to Section 7.11.  

Just as with SIGXCPU, the default action taken with SIGXFSZ depends on the operating system. On 
Linux 2.4.22 and Solaris 9, the default is to terminate the process and create a core file. On 
FreeBSD 5.2.1 and Mac OS X 10.3, the default is to be ignored. The Single UNIX Specification 
requires that the default action be to terminate the process abnormally. Whether a core file is 
generated is left up to the implementation. 

SIGXRES This signal is defined only by Solaris. This signal is optionally used to notify processes that have 
exceeded a preconfigured resource value. The Solaris resource control mechanism is a general 
facility for controlling the use of shared resources among independent application sets. 

 

 

 

 

 

 

 

 



10.3. signal Function 

The simplest interface to the signal features of the UNIX System is the signal  function. 

#include <signal.h> 
 
void (*signal(int signo, void (*func)(int)))(int); 

 

Returns: previous disposition of signal (see following) if OK, SIG_ERR on error 

 

The signal  function is defined by ISO C, which doesn't involve multiple processes, process groups, terminal 
I/O, and the like. Therefore, its definition of signals is vague enough to be almost useless for UNIX systems. 

Implementations derived from UNIX System V support the signal  function, but it provides the old unreliable-
signal semantics. (We describe these older semantics in Section 10.4.) This function provides backward 
compatibility for applications that require the older semantics. New applications should not use these unreliable 
signals. 

4.4BSD also provides the signal  function, but it is defined in terms of the sigaction  function (which we 
describe in Section 10.14), so using it under 4.4BSD provides the newer reliable-signal semantics. FreeBSD 
5.2.1 and Mac OS X 10.3 follow this strategy. 

Solaris 9 has roots in both System V and BSD, but it chooses to follow the System V semantics for the signal  
function. 

On Linux 2.4.22, the semantic of signal  can follow either the BSD or System V semantics, depending on the 
version of the C library and how you compile your application. 

Because the semantics of signal  differ among implementations, it is better to use the sigaction  function 
instead. When we describe the sigaction  function in Section 10.14, we provide an implementation of signal  
that uses it. All the examples in this text use the signal  function that we show in Figure 10.18. 

The signo argument is just the name of the signal from Figure 10.1. The value of func is (a) the constant 
SIG_IGN , (b) the constant SIG_DFL, or (c) the address of a function to be called when the signal occurs. If we 
specify SIG_IGN , we are telling the system to ignore the signal. (Remember that we cannot ignore the two 
signals SIGKILL  and SIGSTOP.) When we specify SIG_DFL, we are setting the action associated with the signal 
to its default value (see the final column in Figure 10.1). When we specify the address of a function to be called 
when the signal occurs, we are arranging to "catch" the signal. We call the function either the signal handler or 
the signal-catching function. 

The prototype for the signal  function states that the function requires two arguments and returns a pointer to a 
function that returns nothing (void ). The signal  function's first argument, signo, is an integer. The second 
argument is a pointer to a function that takes a single integer argument and returns nothing. The function whose 
address is returned as the value of signal  takes a single integer argument (the final (int) ). In plain English, 
this declaration says that the signal handler is passed a single integer argument (the signal number) and that it 
returns nothing. When we call signal  to establish the signal handler, the second argument is a pointer to the 
function. The return value from signal  is the pointer to the previous signal handler. 



Many systems call the signal handler with additional, implementation-dependent arguments. We discuss this 
further in Section 10.14. 

The perplexing signal  function prototype shown at the beginning of this section can be made much simpler 
through the use of the following typedef  [Plauger 1992]: 

   typedef void Sigfunc(int); 

 

Then the prototype becomes 

   Sigfunc *signal(int, Sigfunc *); 

 

We've included this typedef  in apue.h  (Appendix B) and use it with the functions in this chapter. 

If we examine the system's header <signal.h> , we probably find declarations of the form 

   #define SIG_ERR (void (*)())-1 
   #define SIG_DFL (void (*)())0 
   #define SIG_IGN (void (*)())1 

 

These constants can be used in place of the "pointer to a function that takes an integer argument and returns 
nothing," the second argument to signal , and the return value from signal . The three values used for these 
constants need not be -1, 0, and 1. They must be three values that can never be the address of any declarable 
function. Most UNIX systems use the values shown. 

Example 

Figure 10.2 shows a simple signal handler that catches either of the two user-defined signals and prints the 
signal number. In Section 10.10, we describe the pause  function, which simply suspends the calling process 
until a signal is received. 

We invoke the program in the background and use the kill (1) command to send it signals. Note that the term 
kill in the UNIX System is a misnomer. The kill (1) command and the kill (2) function just send a signal to a 
process or process group. Whether or not that signal terminates the process depends on which signal is sent and 
whether the process has arranged to catch the signal. 

   $ ./a.out &                   start process in b ackground 
   [1]      7216                 job-control shell prints job number and process ID 
   $ kill -USR1 7216             send it SIGUSR1 
   received SIGUSR1 
   $ kill -USR2 7216             send it SIGUSR2 
   received SIGUSR2 
   $ kill 7216                   now send it SIGTER M 
   [1]+  Terminated    ./a.out 
 
 
      

 

When we send the SIGTERM signal, the process is terminated, since it doesn't catch the signal, and the default 
action for the signal is termination. 



Figure 10.2. Simple program to catch SIGUSR1 and SIGUSR2 

#include "apue.h" 
 
static void sig_usr(int);   /* one handler for both  signals */  
 
int 
main(void) 
{ 
    if (signal(SIGUSR1, sig_usr) == SIG_ERR) 
        err_sys("can't catch SIGUSR1"); 
    if (signal(SIGUSR2, sig_usr) == SIG_ERR) 
        err_sys("can't catch SIGUSR2"); 
    for ( ; ; ) 
        pause(); 
} 
 
static void 
sig_usr(int signo)      /* argument is signal numbe r */ 
{ 
    if (signo == SIGUSR1) 
        printf("received SIGUSR1\n"); 
    else if (signo == SIGUSR2) 
        printf("received SIGUSR2\n"); 
    else 
        err_dump("received signal %d\n", signo); 
} 

Program Start-Up 

When a program is executed, the status of all signals is either default or ignore. Normally, all signals are set to 
their default action, unless the process that calls exec  is ignoring the signal. Specifically, the exec  functions 
change the disposition of any signals being caught to their default action and leave the status of all other signals 
alone. (Naturally, a signal that is being caught by a process that calls exec  cannot be caught by the same 
function in the new program, since the address of the signal- catching function in the caller probably has no 
meaning in the new program file that is executed.) 

One specific example is how an interactive shell treats the interrupt and quit signals for a background process. 
With a shell that doesn't support job control, when we execute a process in the background, as in 

    cc main.c & 

 

the shell automatically sets the disposition of the interrupt and quit signals in the background process to be 
ignored. This is so that if we type the interrupt character, it doesn't affect the background process. If this weren't 
done and we typed the interrupt character, it would terminate not only the foreground process, but also all the 
background processes. 

Many interactive programs that catch these two signals have code that looks like 

         void sig_int(int), sig_quit(int); 
 
         if (signal(SIGINT, SIG_IGN) != SIG_IGN) 
             signal(SIGINT, sig_int); 
         if (signal(SIGQUIT, SIG_IGN) != SIG_IGN) 
             signal(SIGQUIT, sig_quit); 

 



Doing this, the process catches the signal only if the signal is not currently being ignored. 

These two calls to signal  also show a limitation of the signal  function: we are not able to determine the 
current disposition of a signal without changing the disposition. We'll see later in this chapter how the 
sigaction  function allows us to determine a signal's disposition without changing it. 

Process Creation 

When a process calls fork , the child inherits the parent's signal dispositions. Here, since the child starts off with 
a copy of the parent's memory image, the address of a signal-catching function has meaning in the child. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10.4. Unreliable Signals 

In earlier versions of the UNIX System (such as Version 7), signals were unreliable. By this we mean that 
signals could get lost: a signal could occur and the process would never know about it. Also, a process had little 
control over a signal: a process could catch the signal or ignore it. Sometimes, we would like to tell the kernel to 
block a signal: don't ignore it, just remember if it occurs, and tell us later when we're ready. 

Changes were made with 4.2BSD to provide what are called reliable signals. A different set of changes was 
then made in SVR3 to provide reliable signals under System V. POSIX.1 chose the BSD model to standardize. 

One problem with these early versions is that the action for a signal was reset to its default each time the signal 
occurred. (In the previous example, when we ran the program in Figure 10.2, we avoided this detail by catching 
each signal only once.) The classic example from programming books that described these earlier systems 
concerns how to handle the interrupt signal. The code that was described usually looked like 

         int     sig_int();        /* my signal han dling function */ 
 
         ... 
         signal(SIGINT, sig_int);  /* establish han dler */ 
         ... 
 
     sig_int() 
     { 
         signal(SIGINT, sig_int);  /* reestablish h andler for next time */ 
         ...                       /* process the s ignal ... */ 
     } 

 

(The reason the signal handler is declared as returning an integer is that these early systems didn't support the 
ISO C void  data type.) 

The problem with this code fragment is that there is a window of time—after the signal has occurred, but before 
the call to signal  in the signal handler—when the interrupt signal could occur another time. This second signal 
would cause the default action to occur, which for this signal terminates the process. This is one of those 
conditions that works correctly most of the time, causing us to think that it is correct, when it isn't. 

Another problem with these earlier systems is that the process was unable to turn a signal off when it didn't 
want the signal to occur. All the process could do was ignore the signal. There are times when we would like to 
tell the system "prevent the following signals from occurring, but remember if they do occur." The classic 
example that demonstrates this flaw is shown by a piece of code that catches a signal and sets a flag for the 
process that indicates that the signal occurred: 

      int     sig_int_flag;         /* set nonzero when signal occurs */ 
 
      main() 
      { 
          int      sig_int();       /* my signal ha ndling function */ 
          ... 
          signal(SIGINT, sig_int);  /* establish ha ndler */ 
          ... 
          while (sig_int_flag == 0) 
              pause();              /* go to sleep,  waiting for signal */ 
          ... 
      } 
 
      sig_int() 



      { 
          signal(SIGINT, sig_int);  /* reestablish handler for next time */ 
          sig_int_flag = 1;         /* set flag for  main loop to examine */ 
      } 

 

Here, the process is calling the pause  function to put it to sleep until a signal is caught. When the signal is 
caught, the signal handler just sets the flag sig_int_flag  to a nonzero value. The process is automatically 
awakened by the kernel after the signal handler returns, notices that the flag is nonzero, and does whatever it 
needs to do. But there is a window of time when things can go wrong. If the signal occurs after the test of 
sig_int_flag , but before the call to pause , the process could go to sleep forever (assuming that the signal is 
never generated again). This occurrence of the signal is lost. This is another example of some code that isn't 
right, yet it works most of the time. Debugging this type of problem can be difficult. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10.5. Interrupted System Calls 

A characteristic of earlier UNIX systems is that if a process caught a signal while the process was blocked in a 
"slow" system call, the system call was interrupted. The system call returned an error and errno  was set to 
EINTR. This was done under the assumption that since a signal occurred and the process caught it, there is a 
good chance that something has happened that should wake up the blocked system call. 

Here, we have to differentiate between a system call and a function. It is a system call within the kernel that is 
interrupted when a signal is caught. 

To support this feature, the system calls are divided into two categories: the "slow" system calls and all the 
others. The slow system calls are those that can block forever. Included in this category are 

• Reads that can block the caller forever if data isn't present with certain file types (pipes, terminal devices, 
and network devices) 

• Writes that can block the caller forever if the data can't be accepted immediately by these same file types 
• Opens that block until some condition occurs on certain file types (such as an open of a terminal device 

that waits until an attached modem answers the phone) 
• The pause  function (which by definition puts the calling process to sleep until a signal is caught) and the 

wait  function 
• Certain ioctl  operations 
• Some of the interprocess communication functions (Chapter 15) 

The notable exception to these slow system calls is anything related to disk I/O. Although a read or a write of a 
disk file can block the caller temporarily (while the disk driver queues the request and then the request is 
executed), unless a hardware error occurs, the I/O operation always returns and unblocks the caller quickly. 

One condition that is handled by interrupted system calls, for example, is when a process initiates a read from a 
terminal device and the user at the terminal walks away from the terminal for an extended period. In this 
example, the process could be blocked for hours or days and would remain so unless the system was taken 
down. 

POSIX.1 semantics for interrupted read s and write s changed with the 2001 version of the standard. Earlier 
versions gave implementations a choice for how to deal with read s and write s that have processed partial 
amounts of data. If read  has received and transferred data to an application's buffer, but has not yet received all 
that the application requested and is then interrupted, the operating system could either fail the system call with 
errno  set to EINTR or allow the system call to succeed, returning the partial amount of data received. Similarly, 
if write  is interrupted after transferring some of the data in an application's buffer, the operation system could 
either fail the system call with errno  set to EINTR or allow the system call to succeed, returning the partial 
amount of data written. Historically, implementations derived from System V fail the system call, whereas 
BSD-derived implementations return partial success. With the 2001 version of the POSIX.1 standard, the BSD-
style semantics are required. 

The problem with interrupted system calls is that we now have to handle the error return explicitly. The typical 
code sequence (assuming a read operation and assuming that we want to restart the read even if it's interrupted) 
would be 

    again: 
        if ((n = read(fd, buf, BUFFSIZE)) < 0) { 
            if (errno == EINTR) 
                goto again;     /* just an interrup ted system call */ 
            /* handle other errors */ 



        } 

 

To prevent applications from having to handle interrupted system calls, 4.2BSD introduced the automatic 
restarting of certain interrupted system calls. The system calls that were automatically restarted are ioctl , read , 
readv , write , writev , wait , and waitpid . As we've mentioned, the first five of these functions are interrupted 
by a signal only if they are operating on a slow device; wait  and waitpid  are always interrupted when a signal 
is caught. Since this caused a problem for some applications that didn't want the operation restarted if it was 
interrupted, 4.3BSD allowed the process to disable this feature on a per signal basis. 

POSIX.1 allows an implementation to restart system calls, but it is not required. The Single UNIX Specification 
defines the SA_RESTART flag as an XSI extension to sigaction  to allow applications to request that interrupted 
system calls be restarted. 

System V has never restarted system calls by default. BSD, on the other hand, restarts them if interrupted by 
signals. By default, FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 restart system calls interrupted by signals. 
The default on Solaris 9, however, is to return an error (EINTR) instead. 

One of the reasons 4.2BSD introduced the automatic restart feature is that sometimes we don't know that the 
input or output device is a slow device. If the program we write can be used interactively, then it might be 
reading or writing a slow device, since terminals fall into this category. If we catch signals in this program, and 
if the system doesn't provide the restart capability, then we have to test every read or write for the interrupted 
error return and reissue the read or write. 

Figure 10.3 summarizes the signal functions and their semantics provided by the various implementations. 

Figure 10.3. Features provided by various signal implementations 

Functions System Signal handler 
remains installed 

Ability to block 
signals 

Automatic restart of 
interrupted system calls? 

ISO C, POSIX.1 unspecified unspecified unspecified 

V7, SVR2, SVR3, SVR4, 
Solaris 

    never 

4.2BSD • • always 
signal  

4.3BSD, 4.4BSD, FreeBSD, 
Linux, Mac OS X 

• • 
default 

XSI • • unspecified 
sigset  

SVR3, SVR4, Linux, Solaris • • never 

4.2BSD • • always 
sigvec  

4.3BSD, 4.4BSD, FreeBSD, 
Mac OS X 

• • default 

POSIX.1 • • unspecified 

sigaction  XSI, 4.4BSD, SVR4, 
FreeBSD, Mac OS X, Linux, 
Solaris 

• • optional 



 

We don't discuss the older sigset  and sigvec  functions. Their use has been superceded by the sigaction  
function; they are included only for completeness. In contrast, some implementations promote the signal  
function as a simplified interface to sigaction . 

Be aware that UNIX systems from other vendors can have values different from those shown in this figure. For 
example, sigaction  under SunOS 4.1.2 restarts an interrupted system call by default, different from the 
platforms listed in Figure 10.3. 

In Figure 10.18, we provide our own version of the signal  function that automatically tries to restart 
interrupted system calls (other than for the SIGALRM signal). In Figure 10.19, we provide another function, 
signal_intr , that tries to never do the restart. 

We talk more about interrupted system calls in Section 14.5 with regard to the select  and poll  functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10.6. Reentrant Functions 

When a signal that is being caught is handled by a process, the normal sequence of instructions being executed 
by the process is temporarily interrupted by the signal handler. The process then continues executing, but the 
instructions in the signal handler are now executed. If the signal handler returns (instead of calling exit  or 
longjmp , for example), then the normal sequence of instructions that the process was executing when the signal 
was caught continues executing. (This is similar to what happens when a hardware interrupt occurs.) But in the 
signal handler, we can't tell where the process was executing when the signal was caught. What if the process 
was in the middle of allocating additional memory on its heap using malloc , and we call malloc  from the 
signal handler? Or, what if the process was in the middle of a call to a function, such as getpwnam  (Section 6.2), 
that stores its result in a static location, and we call the same function from the signal handler? In the malloc  
example, havoc can result for the process, since malloc  usually maintains a linked list of all its allocated areas, 
and it may have been in the middle of changing this list. In the case of getpwnam , the information returned to 
the normal caller can get overwritten with the information returned to the signal handler. 

The Single UNIX Specification specifies the functions that are guaranteed to be reentrant. Figure 10.4 lists these 
reentrant functions. 

Figure 10.4. Reentrant functions that may be called from a signal handler 

accept  fchmod  lseek  sendto  stat   

access  fchown  lstat  setgid  symlink   

aio_error  fcntl  mkdir  setpgid  sysconf   

aio_return  fdatasync  mkfifo  setsid  tcdrain   

aio_suspend  fork  open  setsockopt  tcflow   

alarm  fpathconf  pathconf  setuid  tcflush   

bind  fstat  pause  shutdown  tcgetattr   

cfgetispeed  fsync  pipe  sigaction  tcgetpgrp   

cfgetospeed  ftruncate  poll  sigaddset  tcsendbreak   

cfsetispeed  getegid  posix_trace_event  sigdelset  tcsetattr   

cfsetospeed  geteuid  pselect  sigemptyset  tcsetpgrp   

chdir  getgid  raise  sigfillset  time   

chmod getgroups  read  sigismember  timer_getoverrun   

chown  getpeername  readlink  signal  timer_gettime   

clock_gettime  getpgrp  recv  sigpause  timer_settime   

close  getpid  recvfrom  sigpending  times   

connect  getppid  recvmsg  sigprocmask  umask  

creat  getsockname  rename  sigqueue  uname  

dup  getsockopt  rmdir  sigset  unlink   

dup2  getuid  select  sigsuspend  utime   

execle  kill  sem_post  sleep  wait   



Figure 10.4. Reentrant functions that may be called from a signal handler 

accept  fchmod  lseek  sendto  stat   

execve  link  send  socket  waitpid   

_Exit & _exit  listen  sendmsg  socketpair  write   

 

Most functions that are not in Figure 10.4 are missing because (a) they are known to use static data structures, 
(b) they call malloc  or free , or (c) they are part of the standard I/O library. Most implementations of the 
standard I/O library use global data structures in a nonreentrant way. Note that even though we call printf  
from signal handlers in some of our examples, it is not guaranteed to produce the expected results, since the 
signal hander can interrupt a call to printf  from our main program. 

Be aware that even if we call a function listed in Figure 10.4 from a signal handler, there is only one errno  
variable per thread (recall the discussion of errno  and threads in Section 1.7), and we might modify its value. 
Consider a signal handler that is invoked right after main  has set errno . If the signal handler calls read , for 
example, this call can change the value of errno , wiping out the value that was just stored in main . Therefore, 
as a general rule, when calling the functions listed in Figure 10.4 from a signal handler, we should save and 
restore errno . (Be aware that a commonly caught signal is SIGCHLD, and its signal handler usually calls one of 
the wait  functions. All the wait  functions can change errno .) 

Note that longjmp  (Section 7.10) and siglongjmp  (Section 10.15) are missing from Figure 10.4, because the 
signal may have occurred while the main routine was updating a data structure in a nonreentrant way. This data 
structure could be left half updated if we call siglongjmp  instead of returning from the signal handler. If it is 
going to do such things as update global data structures, as we describe here, while catching signals that cause 
sigsetjmp  to be executed, an application needs to block the signals while updating the data structures. 

Example 

Figure 10.5 shows a program that calls the nonreentrant function getpwnam  from a signal handler 
that is called every second. We describe the alarm  function in Section 10.10. We use it here to 
generate a SIGALRM signal every second. 

When this program was run, the results were random. Usually, the program would be terminated by 
a SIGSEGV signal when the signal handler returned after several iterations. An examination of the 
core  file showed that the main  function had called getpwnam , but that some internal pointers had 
been corrupted when the signal handler called the same function. Occasionally, the program would 
run for several seconds before crashing with a SIGSEGV error. When the main  function did run 
correctly after the signal had been caught, the return value was sometimes corrupted and sometimes 
fine. Once (on Mac OS X), messages were printed from the malloc  library routine warning about 
freeing pointers not allocated through malloc . 

As shown by this example, if we call a nonreentrant function from a signal handler, the results are 
unpredictable. 

Figure 10.5. Call a nonreentrant function from a signal handler 

#include "apue.h" 
#include <pwd.h> 



 
static void 
my_alarm(int signo) 
{ 
    struct passwd   *rootptr; 
 
    printf("in signal handler\n"); 
    if ((rootptr = getpwnam("root")) == NULL) 
            err_sys("getpwnam(root) error"); 
    alarm(1); 
} 
 
int 
main(void) 
{ 
    struct passwd   *ptr; 
 
    signal(SIGALRM, my_alarm); 
    alarm(1); 
    for ( ; ; ) { 
        if ((ptr = getpwnam("sar")) == NULL) 
            err_sys("getpwnam error"); 
        if (strcmp(ptr->pw_name, "sar") != 0) 
            printf("return value corrupted!, pw_nam e = %s\n",  
                    ptr->pw_name); 
    } 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.7. SIGCLD Semantics 

Two signals that continually generate confusion are SIGCLD and SIGCHLD. First, SIGCLD (without the H) is the 
System V name, and this signal has different semantics from the BSD signal, named SIGCHLD. The POSIX.1 
signal is also named SIGCHLD. 

The semantics of the BSD SIGCHLD signal are normal, in that its semantics are similar to those of all other 
signals. When the signal occurs, the status of a child has changed, and we need to call one of the wait  functions 
to determine what has happened. 

System V, however, has traditionally handled the SIGCLD signal differently from other signals. SVR4-based 
systems continue this questionable tradition (i.e., compatibility constraint) if we set its disposition using either 
signal  or sigset  (the older, SVR3-compatible functions to set the disposition of a signal). This older handling 
of SIGCLD consists of the following. 

1. If the process specifically sets its disposition to SIG_IGN , children of the calling process will not 
generate zombie processes. Note that this is different from its default action (SIG_DFL), which from 
Figure 10.1 is to be ignored. Instead, on termination, the status of these child processes is discarded. If it 
subsequently calls one of the wait  functions, the calling process will block until all its children have 
terminated, and then wait  returns –1 with errno  set to ECHILD. (The default disposition of this signal is 
to be ignored, but this default will not cause the preceding semantics to occur. Instead, we specifically 
have to set its disposition to SIG_IGN .) 

POSIX.1 does not specify what happens when SIGCHLD is ignored, so this behavior is allowed. The 
Single UNIX Specification includes an XSI extension specifying that this behavior be supported for 
SIGCHLD. 

4.4BSD always generates zombies if SIGCHLD is ignored. If we want to avoid zombies, we have to wait  
for our children. FreeBSD 5.2.1 works like 4.4BSD. Mac OS X 10.3, however, doesn't create zombies 
when SIGCHLD is ignored. 

With SVR4, if either signal  or sigset  is called to set the disposition of SIGCHLD to be ignored, 
zombies are never generated. Solaris 9 and Linux 2.4.22 follow SVR4 in this behavior. 

With sigaction , we can set the SA_NOCLDWAIT flag (Figure 10.16) to avoid zombies. This action is 
supported on all four platforms: FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9. 

2. If we set the disposition of SIGCLD to be caught, the kernel immediately checks whether any child 
processes are ready to be wait ed for and, if so, calls the SIGCLD handler. 

Item 2 changes the way we have to write a signal handler for this signal, as illustrated in the following example. 

Example 

Recall from Section 10.4 that the first thing to do on entry to a signal handler is to call signal  again, 
to reestablish the handler. (This action was to minimize the window of time when the signal is reset 
back to its default and could get lost.) We show this in Figure 10.6. This program doesn't work on 
some platforms. If we compile and run it under a traditional System V platform, such as OpenServer 
5 or UnixWare 7, the output is a continual string of SIGCLD received  lines. Eventually, the process 
runs out of stack space and terminates abnormally. 



FreeBSD 5.2.1 and Mac OS X 10.3 don't exhibit this problem, because BSD-based systems 
generally don't support historic System V semantics for SIGCLD. Linux 2.4.22 also doesn't exhibit 
this problem, because it doesn't call the SIGCHLD signal handler when a process arranges to catch 
SIGCHLD and child processes are ready to be wait ed for, even though SIGCLD and SIGCHLD are 
defined to be the same value. Solaris 9, on the other hand, does call the signal handler in this 
situation, but includes extra code in the kernel to avoid this problem. 

Although the four platforms described in this book solve this problem, realize that platforms (such 
as UnixWare) still exist that haven't addressed it. 

The problem with this program is that the call to signal  at the beginning of the signal handler 
invokes item 2 from the preceding discussion—the kernel checks whether a child needs to be 
wait ed for (which there is, since we're processing a SIGCLD signal), so it generates another call to 
the signal handler. The signal handler calls signal , and the whole process starts over again. 

To fix this program, we have to move the call to signal  after the call to wait . By doing this, we call 
signal  after fetching the child's termination status; the signal is generated again by the kernel only 
if some other child has since terminated. 

POSIX.1 states that when we establish a signal handler for SIGCHLD and there exists a terminated 
child we have not yet wait ed for, it is unspecified whether the signal is generated. This allows the 
behavior described previously. But since POSIX.1 does not reset a signal's disposition to its default 
when the signal occurs (assuming that we're using the POSIX.1 sigaction  function to set its 
disposition), there is no need for us to ever establish a signal handler for SIGCHLD within that 
handler. 

Figure 10.6. System V SIGCLD handler that doesn't work 

#include      "apue.h" 
#include      <sys/wait.h> 
 
static void sig_cld(int); 
 
int 
main() 
{ 
    pid_t   pid; 
 
    if (signal(SIGCLD, sig_cld) == SIG_ERR) 
        perror("signal error"); 
    if ((pid = fork()) < 0) { 
        perror("fork error"); 
    } else if (pid == 0) {      /* child */ 
        sleep(2); 
        _exit(0); 
    } 
    pause();    /* parent */ 
    exit(0); 
} 
 
static void 
sig_cld(int signo)   /* interrupts pause() */ 
{ 
    pid_t   pid; 
    int     status; 
 



    printf("SIGCLD received\n"); 
    if (signal(SIGCLD, sig_cld) == SIG_ERR) /* rees tablish handler */  
        perror("signal error"); 
    if ((pid = wait(&status)) < 0)      /* fetch ch ild status */ 
        perror("wait error"); 
    printf("pid = %d\n", pid); 
} 

Be cognizant of the SIGCHLD semantics for your implementation. Be especially aware of some systems that 
#define SIGCHLD  to be SIGCLD or vice versa. Changing the name may allow you to compile a program that 
was written for another system, but if that program depends on the other semantics, it may not work. 

On the four platforms described in this text, SIGCLD is equivalent to SIGCHLD. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.8. Reliable-Signal Terminology and Semantics 

We need to define some of the terms used throughout our discussion of signals. First, a signal is generated for a 
process (or sent to a process) when the event that causes the signal occurs. The event could be a hardware 
exception (e.g., divide by 0), a software condition (e.g., an alarm  timer expiring), a terminal-generated signal, 
or a call to the kill  function. When the signal is generated, the kernel usually sets a flag of some form in the 
process table. 

We say that a signal is delivered to a process when the action for a signal is taken. During the time between the 
generation of a signal and its delivery, the signal is said to be pending. 

A process has the option of blocking the delivery of a signal. If a signal that is blocked is generated for a 
process, and if the action for that signal is either the default action or to catch the signal, then the signal remains 
pending for the process until the process either (a) unblocks the signal or (b) changes the action to ignore the 
signal. The system determines what to do with a blocked signal when the signal is delivered, not when it's 
generated. This allows the process to change the action for the signal before it's delivered. The sigpending  
function (Section 10.13) can be called by a process to determine which signals are blocked and pending. 

What happens if a blocked signal is generated more than once before the process unblocks the signal? POSIX.1 
allows the system to deliver the signal either once or more than once. If the system delivers the signal more than 
once, we say that the signals are queued. Most UNIX systems, however, do not queue signals unless they 
support the real-time extensions to POSIX.1. Instead, the UNIX kernel simply delivers the signal once. 

The manual pages for SVR2 claimed that the SIGCLD signal was queued while the process was executing its 
SIGCLD signal handler. Although this might have been true on a conceptual level, the actual implementation was 
different. Instead, the signal was regenerated by the kernel as we described in Section 10.7. In SVR3, the 
manual was changed to indicate that the SIGCLD signal was ignored while the process was executing its signal 
handler for SIGCLD. The SVR4 manual removed any mention of what happens to SIGCLD signals that are 
generated while a process is executing its SIGCLD signal handler. 

The SVR4 sigaction (2) manual page in AT&T [1990e] claims that the SA_SIGINFO flag (Figure 10.16) causes 
signals to be reliably queued. This is wrong. Apparently, this feature was partially implemented within the 
kernel, but it is not enabled in SVR4. Curiously, the SVID doesn't make the same claims of reliable queuing. 

What happens if more than one signal is ready to be delivered to a process? POSIX.1 does not specify the order 
in which the signals are delivered to the process. The Rationale for POSIX.1 does suggest, however, that signals 
related to the current state of the process be delivered before other signals. (SIGSEGV is one such signal.) 

Each process has a signal mask that defines the set of signals currently blocked from delivery to that process. 
We can think of this mask as having one bit for each possible signal. If the bit is on for a given signal, that 
signal is currently blocked. A process can examine and change its current signal mask by calling sigprocmask , 
which we describe in Section 10.12. 

Since it is possible for the number of signals to exceed the number of bits in an integer, POSIX.1 defines a data 
type, called sigset_t , that holds a signal set. The signal mask, for example, is stored in one of these signal sets. 
We describe five functions that operate on signal sets in Section 10.11. 

 
 
 
 



10.9. kill and raise Functions 

The kill  function sends a signal to a process or a group of processes. The raise  function allows a process to 
send a signal to itself. 

raise  was originally defined by ISO C. POSIX.1 includes it to align itself with the ISO C standard, but 
POSIX.1 extends the specification of raise  to deal with threads (we discuss how threads interact with signals 
in Section 12.8). Since ISO C does not deal with multiple processes, it could not define a function, such as kill , 
that requires a process ID argument. 

#include <signal.h> 
 
int kill(pid_t pid, int signo);  
 
int raise(int signo); 

 

Both return: 0 if OK, –1 on error 

 

The call 

   raise(signo); 

 

is equivalent to the call 

   kill(getpid(), signo); 

 

There are four different conditions for the pid argument to kill . 

pid 
> 0 

The signal is sent to the process whose process ID is pid. 

pid 
== 0 

The signal is sent to all processes whose process group ID equals the process group ID of the sender and 
for which the sender has permission to send the signal. Note that the term all processes excludes an 
implementation-defined set of system processes. For most UNIX systems, this set of system processes 
includes the kernel processes and init  (pid 1).  

pid 
< 0 

The signal is sent to all processes whose process group ID equals the absolute value of pid and for which 
the sender has permission to send the signal. Again, the set of all processes excludes certain system 
processes, as described earlier.  

pid 
== –
1 

The signal is sent to all processes on the system for which the sender has permission to send the signal. 
As before, the set of processes excludes certain system processes. 

 

As we've mentioned, a process needs permission to send a signal to another process. The superuser can send a 
signal to any process. For other users, the basic rule is that the real or effective user ID of the sender has to 
equal the real or effective user ID of the receiver. If the implementation supports _POSIX_SAVED_IDS (as 
POSIX.1 now requires), the saved set-user-ID of the receiver is checked instead of its effective user ID. There is 



also one special case for the permission testing: if the signal being sent is SIGCONT, a process can send it to any 
other process in the same session. 

POSIX.1 defines signal number 0 as the null signal. If the signo argument is 0, then the normal error checking is 
performed by kill , but no signal is sent. This is often used to determine if a specific process still exists. If we 
send the process the null signal and it doesn't exist, kill  returns –1 and errno  is set to ESRCH. Be aware, 
however, that UNIX systems recycle process IDs after some amount of time, so the existence of a process with 
a given process ID does not mean that it's the process that you think it is. 

Also understand that the test for process existence is not atomic. By the time that kill  returns the answer to the 
caller, the process in question might have exited, so the answer is of limited value. 

If the call to kill  causes the signal to be generated for the calling process and if the signal is not blocked, either 
signo or some other pending, unblocked signal is delivered to the process before kill  returns. (Additional 
conditions occur with threads; see Section 12.8 for more information.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.10. alarm and pause Functions 

The alarm  function allows us to set a timer that will expire at a specified time in the future. When the timer 
expires, the SIGALRM signal is generated. If we ignore or don't catch this signal, its default action is to terminate 
the process. 

#include <unistd.h> 
 
unsigned int alarm(unsigned int seconds); 

 

Returns: 0 or number of seconds until previously set alarm 

 

The seconds value is the number of clock seconds in the future when the signal should be generated. Be aware 
that when that time occurs, the signal is generated by the kernel, but there could be additional time before the 
process gets control to handle the signal, because of processor scheduling delays. 

Earlier UNIX System implementations warned that the signal could also be sent up to 1 second early. POSIX.1 
does not allow this. 

There is only one of these alarm clocks per process. If, when we call alarm , a previously registered alarm clock 
for the process has not yet expired, the number of seconds left for that alarm clock is returned as the value of 
this function. That previously registered alarm clock is replaced by the new value. 

If a previously registered alarm clock for the process has not yet expired and if the seconds value is 0, the 
previous alarm clock is canceled. The number of seconds left for that previous alarm clock is still returned as 
the value of the function. 

Although the default action for SIGALRM is to terminate the process, most processes that use an alarm clock 
catch this signal. If the process then wants to terminate, it can perform whatever cleanup is required before 
terminating. If we intend to catch SIGALRM, we need to be careful to install its signal handler before calling 
alarm . If we call alarm  first and are sent SIGALRM before we can install the signal handler, our process will 
terminate. 

The pause  function suspends the calling process until a signal is caught. 

#include <unistd.h> 
 
int pause(void); 

 

Returns: –1 with errno  set to EINTR  

 

The only time pause  returns is if a signal handler is executed and that handler returns. In that case, pause  
returns –1 with errno  set to EINTR. 

Example 

Using alarm  and pause , we can put a process to sleep for a specified amount of time. The sleep1  



function in Figure 10.7 appears to do this (but it has problems, as we shall see shortly). 

This function looks like the sleep  function, which we describe in Section 10.19, but this simple 
implementation has three problems. 

1. If the caller already has an alarm set, that alarm is erased by the first call to alarm . We can 
correct this by looking at the return value from the first call to alarm . If the number of 
seconds until some previously set alarm is less than the argument, then we should wait only 
until the previously set alarm expires. If the previously set alarm will go off after ours, then 
before returning we should reset this alarm to occur at its designated time in the future. 

2. We have modified the disposition for SIGALRM. If we're writing a function for others to call, 
we should save the disposition when we're called and restore it when we're done. We can 
correct this by saving the return value from signal  and resetting the disposition before we 
return. 

3. There is a race condition between the first call to alarm  and the call to pause . On a busy 
system, it's possible for the alarm to go off and the signal handler to be called before we call 
pause . If that happens, the caller is suspended forever in the call to pause  (assuming that 
some other signal isn't caught). 

Earlier implementations of sleep  looked like our program, with problems 1 and 2 corrected as 
described. There are two ways to correct problem 3. The first uses setjmp , which we show in the 
next example. The other uses sigprocmask  and sigsuspend , and we describe it in Section 10.19. 

Figure 10.7. Simple, incomplete implementation of sleep 

#include     <signal.h> 
#include     <unistd.h> 
 
static void 
sig_alrm(int signo) 
{ 
    /* nothing to do, just return to wake up the pa use */ 
} 
 
unsigned int 
sleep1(unsigned int nsecs) 
{ 
    if (signal(SIGALRM, sig_alrm) == SIG_ERR) 
        return(nsecs); 
    alarm(nsecs);       /* start the timer */ 
    pause();            /* next caught signal wakes  us up */ 
    return(alarm(0));   /* turn off timer, return u nslept time */  
} 

 

Example 

The SVR2 implementation of sleep  used setjmp  and longjmp  (Section 7.10) to avoid the race condition 
described in problem 3 of the previous example. A simple version of this function, called sleep2 , is shown in 
Figure 10.8. (To reduce the size of this example, we don't handle problems 1 and 2 described earlier.) 

The sleep2  function avoids the race condition from Figure 10.7. Even if the pause  is never executed, the 
sleep2  function returns when the SIGALRM occurs. 



There is, however, another subtle problem with the sleep2  function that involves its interaction with other 
signals. If the SIGALRM interrupts some other signal handler, when we call longjmp , we abort the other signal 
handler. Figure 10.9 shows this scenario. The loop in the SIGINT  handler was written so that it executes for 
longer than 5 seconds on one of the systems used by the author. We simply want it to execute longer than the 
argument to sleep2 . The integer k  is declared volatile  to prevent an optimizing compiler from discarding the 
loop. Executing the program shown in Figure 10.9 gives us 

    $ ./a.out 
 
    ^?                      we type the interrupt c haracter 
    sig_int starting 
    sleep2 returned: 0 

 

We can see that the longjmp  from the sleep2  function aborted the other signal handler, sig_int , even though 
it wasn't finished. This is what you'll encounter if you mix the SVR2 sleep  function with other signal handling. 
See Exercise 10.3. 

Figure 10.8. Another (imperfect) implementation of sleep 

#include   <setjmp.h> 
#include   <signal.h> 
#include   <unistd.h> 
 
static jmp_buf  env_alrm; 
 
static void 
sig_alrm(int signo) 
{ 
    longjmp(env_alrm, 1); 
} 
 
unsigned int 
sleep2(unsigned int nsecs) 
{ 
    if (signal(SIGALRM, sig_alrm) == SIG_ERR) 
        return(nsecs); 
    if (setjmp(env_alrm) == 0) { 
        alarm(nsecs);       /* start the timer */ 
        pause();            /* next caught signal w akes us up */ 
    } 
    return(alarm(0));       /* turn off timer, retu rn unslept time */  
} 

 

Figure 10.9. Calling sleep2 from a program that catches other signals 

#include "apue.h" 
 
unsigned int        sleep2(unsigned int); 
static void         sig_int(int); 
 
int 
main(void) 
{ 
    unsigned int        unslept; 
 
    if (signal(SIGINT, sig_int) == SIG_ERR) 



        err_sys("signal(SIGINT) error"); 
    unslept = sleep2(5); 
    printf("sleep2 returned: %u\n", unslept); 
    exit(0); 
} 
 
static void 
sig_int(int signo) 
{ 
    int            i, j; 
    volatile int   k; 
 
    /* 
     * Tune these loops to run for more than 5 seco nds  
     * on whatever system this test program is run.  
     */ 
    printf("\nsig_int starting\n"); 
    for (i = 0; i < 300000; i++) 
        for (j = 0; j < 4000; j++) 
            k += i * j; 
    printf("sig_int finished\n"); 
} 

The purpose of these two examples, the sleep1  and sleep2  functions, is to show the pitfalls in dealing naively 
with signals. The following sections will show ways around all these problems, so we can handle signals 
reliably, without interfering with other pieces of code. 

Example 

A common use for alarm , in addition to implementing the sleep  function, is to put an upper time 
limit on operations that can block. For example, if we have a read  operation on a device that can 
block (a "slow" device, as described in Section 10.5), we might want the read  to time out after some 
amount of time. The program in Figure 10.10 does this, reading one line from standard input and 
writing it to standard output. 

This sequence of code is common in UNIX applications, but this program has two problems. 

1. The program in Figure 10.10 has one of the same flaws that we described in Figure 10.7: a 
race condition between the first call to alarm  and the call to read . If the kernel blocks the 
process between these two function calls for longer than the alarm period, the read  could 
block forever. Most operations of this type use a long alarm period, such as a minute or 
more, making this unlikely; nevertheless, it is a race condition. 

2. If system calls are automatically restarted, the read  is not interrupted when the SIGALRM 
signal handler returns. In this case, the timeout does nothing. 

Here, we specifically want a slow system call to be interrupted. POSIX.1 does not give us a portable 
way to do this; however, the XSI extension in the Single UNIX Specification does. We'll discuss this 
more in Section 10.14. 

Figure 10.10. Calling read with a timeout 

#include "apue.h" 
 
static void sig_alrm(int); 
 



int 
main(void) 
{ 
    int     n; 
    char    line[MAXLINE]; 
 
    if (signal(SIGALRM, sig_alrm) == SIG_ERR) 
        err_sys("signal(SIGALRM) error"); 
 
    alarm(10); 
    if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0 ) 
        err_sys("read error"); 
    alarm(0); 
 
    write(STDOUT_FILENO, line, n); 
    exit(0); 
} 
 
static void 
sig_alrm(int signo) 
{ 
    /* nothing to do, just return to interrupt the read */  
} 

 

Example 

Let's redo the preceding example using longjmp . This way, we don't need to worry about whether a 
slow system call is interrupted. 

This version works as expected, regardless of whether the system restarts interrupted system calls. 
Realize, however, that we still have the problem of interactions with other signal handlers, as in 
Figure 10.8. 

Figure 10.11. Calling read with a timeout, using longjmp 

#include "apue.h" 
#include <setjmp.h> 
 
static void       sig_alrm(int); 
static jmp_buf    env_alrm; 
 
int 
main(void) 
{ 
    int     n; 
    char    line[MAXLINE]; 
 
    if (signal(SIGALRM, sig_alrm) == SIG_ERR) 
        err_sys("signal(SIGALRM) error"); 
    if (setjmp(env_alrm) != 0) 
        err_quit("read timeout"); 
 
    alarm(10); 
    if ((n = read(STDIN_FILENO, line, MAXLINE)) < 0 )  
        err_sys("read error"); 
    alarm(0); 
 
    write(STDOUT_FILENO, line, n); 



    exit(0); 
} 
 
static void 
sig_alrm(int signo) 
{ 
    longjmp(env_alrm, 1); 
} 

If we want to set a time limit on an I/O operation, we need to use longjmp , as shown previously, realizing its 
possible interaction with other signal handlers. Another option is to use the select  or poll  functions, described 
in Sections 14.5.1 and 14.5.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.11. Signal Sets 

We need a data type to represent multiple signals—a signal set. We'll use this with such functions as 
sigprocmask  (in the next section) to tell the kernel not to allow any of the signals in the set to occur. As we 
mentioned earlier, the number of different signals can exceed the number of bits in an integer, so in general, we 
can't use an integer to represent the set with one bit per signal. POSIX.1 defines the data type sigset_t  to 
contain a signal set and the following five functions to manipulate signal sets. 

#include <signal.h> 
 
int sigemptyset(sigset_t *set); 
 
int sigfillset(sigset_t *set); 
 
int sigaddset(sigset_t *set, int signo); 
 
int sigdelset(sigset_t *set, int signo); 

 

All four return: 0 if OK, –1 on error  

int sigismember(const sigset_t *set, int signo);  

 

Returns: 1 if true, 0 if false, –1 on error 

 

The function sigemptyset  initializes the signal set pointed to by set so that all signals are excluded. The 
function sigfillset  initializes the signal set so that all signals are included. All applications have to call either 
sigemptyset  or sigfillset  once for each signal set, before using the signal set, because we cannot assume 
that the C initialization for external and static variables (0) corresponds to the implementation of signal sets on a 
given system. 

Once we have initialized a signal set, we can add and delete specific signals in the set. The function sigaddset  
adds a single signal to an existing set, and sigdelset  removes a single signal from a set. In all the functions 
that take a signal set as an argument, we always pass the address of the signal set as the argument. 

Implementation 

If the implementation has fewer signals than bits in an integer, a signal set can be implemented using one bit per 
signal. For the remainder of this section, assume that an implementation has 31 signals and 32-bit integers. The 
sigemptyset  function zeros the integer, and the sigfillset  function turns on all the bits in the integer. These 
two functions can be implemented as macros in the <signal.h>  header: 

   #define sigemptyset(ptr)   (*(ptr) = 0) 
   #define sigfillset(ptr)    (*(ptr) = ~(sigset_t)0, 0) 

 

Note that sigfillset  must return 0, in addition to setting all the bits on in the signal set, so we use C's comma 
operator, which returns the value after the comma as the value of the expression. 



Using this implementation, sigaddset  turns on a single bit and sigdelset  turns off a single bit; sigismember  
tests a certain bit. Since no signal is ever numbered 0, we subtract 1 from the signal number to obtain the bit to 
manipulate. Figure 10.12 shows implementations of these functions. 

Figure 10.12. An implementation of sigaddset, sigdelset, and sigismember 

#include     <signal.h> 
#include     <errno.h> 
 
/* <signal.h> usually defines NSIG to include signa l number 0 */  
#define SIGBAD(signo)   ((signo) <= 0 || (signo) >=  NSIG) 
 
int 
sigaddset(sigset_t *set, int signo) 
{ 
    if (SIGBAD(signo)) { errno = EINVAL; return(-1) ; } 
 
    *set |= 1 << (signo - 1);       /* turn bit on */ 
    return(0); 
} 
 
int 
sigdelset(sigset_t *set, int signo) 
{ 
    if (SIGBAD(signo)) { errno = EINVAL; return(-1) ; } 
 
    *set &= ~(1 << (signo - 1));    /* turn bit off */ 
    return(0); 
} 
 
int 
sigismember(const sigset_t *set, int signo) 
{ 
     if (SIGBAD(signo)) { errno = EINVAL; return(-1 ); } 
 
     return((*set & (1 << (signo - 1))) != 0); 
} 

We might be tempted to implement these three functions as one-line macros in the <signal.h>  header, but 
POSIX.1 requires us to check the signal number argument for validity and to set errno  if it is invalid. This is 
more difficult to do in a macro than in a function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.12. sigprocmask Function 

Recall from Section 10.8 that the signal mask of a process is the set of signals currently blocked from delivery 
to that process. A process can examine its signal mask, change its signal mask, or perform both operations in 
one step by calling the following function. 

#include <signal.h> 
 
int sigprocmask(int how, const sigset_t *restrict s et,  
                sigset_t *restrict oset); 

 

Returns: 0 if OK, –1 on error 

 

First, if oset is a non-null pointer, the current signal mask for the process is returned through oset. 

Second, if set is a non-null pointer, the how argument indicates how the current signal mask is modified. Figure 
10.13 describes the possible values for how. SIG_BLOCK is an inclusive-OR operation, whereas SIG_SETMASK is 
an assignment. Note that SIGKILL  and SIGSTOP can't be blocked. 

Figure 10.13. Ways to change current signal mask using sigprocmask 

how Description 

SIG_BLOCK The new signal mask for the process is the union of its current signal mask and the signal set 
pointed to by set. That is, set contains the additional signals that we want to block.  

SIG_UNBLOCK The new signal mask for the process is the intersection of its current signal mask and the 
complement of the signal set pointed to by set. That is, set contains the signals that we want to 
unblock.  

SIG_SETMASK The new signal mask for the process is replaced by the value of the signal set pointed to by set. 

 

If set is a null pointer, the signal mask of the process is not changed, and how is ignored. 

After calling sigprocmask , if any unblocked signals are pending, at least one of these signals is delivered to the 
process before sigprocmask  returns. 

The sigprocmask  function is defined only for single-threaded processes. A separate function is provided to 
manipulate a thread's signal mask in a multithreaded process. We'll discuss this in Section 12.8. 

Example 

Figure 10.14 shows a function that prints the names of the signals in the signal mask of the calling 
process. We call this function from the programs shown in Figure 10.20 and Figure 10.22. 

To save space, we don't test the signal mask for every signal that we listed in Figure 10.1. (See 
Exercise 10.9.) 



Figure 10.14. Print the signal mask for the process 

#include "apue.h" 
#include <errno.h> 
 
void 
pr_mask(const char *str) 
{ 
    sigset_t    sigset; 
    int         errno_save; 
 
    errno_save = errno;     /* we can be called by signal handlers */  
    if (sigprocmask(0, NULL, &sigset) < 0) 
        err_sys("sigprocmask error"); 
 
    printf("%s", str); 
    if (sigismember(&sigset, SIGINT))   printf("SIG INT "); 
    if (sigismember(&sigset, SIGQUIT))  printf("SIG QUIT "); 
    if (sigismember(&sigset, SIGUSR1))  printf("SIG USR1 "); 
    if (sigismember(&sigset, SIGALRM))  printf("SIG ALRM "); 
 
    /* remaining signals can go here */ 
 
    printf("\n"); 
    errno = errno_save; 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.13. sigpending Function 

The sigpending  function returns the set of signals that are blocked from delivery and currently pending for the 
calling process. The set of signals is returned through the set argument. 

#include <signal.h> 
 
int sigpending(sigset_t *set);  

 

Returns: 0 if OK, –1 on error 

 
 

Example 

Figure 10.15 shows many of the signal features that we've been describing. 

The process blocks SIGQUIT, saving its current signal mask (to reset later), and then goes to sleep for 5 seconds. 
Any occurrence of the quit signal during this period is blocked and won't be delivered until the signal is 
unblocked. At the end of the 5-second sleep, we check whether the signal is pending and unblock the signal. 

Note that we saved the old mask when we blocked the signal. To unblock the signal, we did a SIG_SETMASK of 
the old mask. Alternatively, we could SIG_UNBLOCK only the signal that we had blocked. Be aware, however, if 
we write a function that can be called by others and if we need to block a signal in our function, we can't use 
SIG_UNBLOCK to unblock the signal. In this case, we have to use SIG_SETMASK and reset the signal mask to its 
prior value, because it's possible that the caller had specifically blocked this signal before calling our function. 
We'll see an example of this in the system  function in Section 10.18. 

If we generate the quit signal during this sleep period, the signal is now pending and unblocked, so it is 
delivered before sigprocmask  returns. We'll see this occur because the printf  in the signal handler is output 
before the printf  that follows the call to sigprocmask . 

The process then goes to sleep for another 5 seconds. If we generate the quit signal during this sleep period, the 
signal should terminate the process, since we reset the handling of the signal to its default when we caught it. In 
the following output, the terminal prints ^\  when we input Control-backslash, the terminal quit character: 

    $ ./a.out 
     
    ^\                       generate signal once ( before 5 seconds are up) 
    SIGQUIT pending          after return from slee p 
    caught SIGQUIT           in signal handler 
    SIGQUIT unblocked        after return from sigp rocmask 
    ^\Quit(coredump)         generate signal again 
    $ ./a.out 
     
    ^\^\^\^\^\^\^\^\^\^\     generate signal 10 tim es (before 5 seconds are up) 
    SIGQUIT pending 
    caught SIGQUIT           signal is generated on ly once 
    SIGQUIT unblocked 
    ^\Quit(coredump)         generate signal again 
 
 
      



 

The message Quit(coredump)  is printed by the shell when it sees that its child terminated abnormally. Note 
that when we run the program the second time, we generate the quit signal ten times while the process is asleep, 
yet the signal is delivered only once to the process when it's unblocked. This demonstrates that signals are not 
queued on this system. 

Figure 10.15. Example of signal sets and sigprocmask 

#include "apue.h" 
 
static void sig_quit(int); 
 
int 
main(void) 
{ 
    sigset_t    newmask, oldmask, pendmask; 
 
    if (signal(SIGQUIT, sig_quit) == SIG_ERR) 
        err_sys("can't catch SIGQUIT"); 
 
    /* 
     * Block SIGQUIT and save current signal mask. 
     */ 
    sigemptyset(&newmask); 
    sigaddset(&newmask, SIGQUIT); 
    if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0) 
        err_sys("SIG_BLOCK error"); 
 
    sleep(5);   /* SIGQUIT here will remain pending  */ 
    if (sigpending(&pendmask) < 0) 
        err_sys("sigpending error"); 
    if (sigismember(&pendmask, SIGQUIT)) 
        printf("\nSIGQUIT pending\n"); 
 
    /* 
     * Reset signal mask which unblocks SIGQUIT. 
     */ 
    if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) 
        err_sys("SIG_SETMASK error"); 
    printf("SIGQUIT unblocked\n"); 
 
    sleep(5);   /* SIGQUIT here will terminate with  core file */  
    exit(0); 
} 
 
static void 
sig_quit(int signo) 
{ 
    printf("caught SIGQUIT\n"); 
    if (signal(SIGQUIT, SIG_DFL) == SIG_ERR) 
        err_sys("can't reset SIGQUIT"); 
} 

 
 
 
 
 
 



10.14. sigaction Function 

The sigaction  function allows us to examine or modify (or both) the action associated with a particular signal. 
This function supersedes the signal  function from earlier releases of the UNIX System. Indeed, at the end of 
this section, we show an implementation of signal  using sigaction . 

#include <signal.h> 
 
int sigaction(int signo, const struct sigaction *re strict act,  
              struct sigaction *restrict oact); 

 

Returns: 0 if OK, –1 on error 

 

The argument signo is the signal number whose action we are examining or modifying. If the act pointer is non-
null, we are modifying the action. If the oact pointer is non-null, the system returns the previous action for the 
signal through the oact pointer. This function uses the following structure: 

     struct sigaction { 
       void      (*sa_handler)(int);   /* addr of s ignal handler, */ 
                                       /* or SIG_IG N, or SIG_DFL */ 
       sigset_t sa_mask;               /* additiona l signals to block */ 
       int      sa_flags;              /* signal op tions, Figure 10.16 */ 
 
       /* alternate handler */ 
       void     (*sa_sigaction)(int, siginfo_t *, v oid *); 
    }; 

 

When changing the action for a signal, if the sa_handler  field contains the address of a signal-catching 
function (as opposed to the constants SIG_IGN  or SIG_DFL), then the sa_mask  field specifies a set of signals that 
are added to the signal mask of the process before the signal-catching function is called. If and when the signal-
catching function returns, the signal mask of the process is reset to its previous value. This way, we are able to 
block certain signals whenever a signal handler is invoked. The operating system includes the signal being 
delivered in the signal mask when the handler is invoked. Hence, we are guaranteed that whenever we are 
processing a given signal, another occurrence of that same signal is blocked until we're finished processing the 
first occurrence. Recall from Section 10.8 that additional occurrences of the same signal are usually not queued. 
If the signal occurs five times while it is blocked, when we unblock the signal, the signal-handling function for 
that signal will usually be invoked only one time. 

Once we install an action for a given signal, that action remains installed until we explicitly change it by calling 
sigaction . Unlike earlier systems with their unreliable signals, POSIX.1 requires that a signal handler remain 
installed until explicitly changed. 

The sa_flags  field of the act structure specifies various options for the handling of this signal. Figure 10.16 
details the meaning of these options when set. The SUS column contains • if the flag is defined as part of the 
base POSIX.1 specification, and XSI if it is defined as an XSI extension to the base. 

Figure 10.16. Option flags (sa_flags) for the handling of each signal 



Option SUS FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac 
OS X 
10.3 

Solaris 
9 

Description 

SA_INTERRUPT     •     System calls interrupted by this signal are not 
automatically restarted (the XSI default for 
sigaction ). See Section 10.5 for more 
information.  

SA_NOCLDSTOP • • • • • If signo is SIGCHLD, do not generate this signal 
when a child process stops (job control). This 
signal is still generated, of course, when a child 
terminates (but see the SA_NOCLDWAIT option 
below). As an XSI extension, SIGCHLD won't be 
sent when a stopped child continues if this flag is 
set.  

SA_NOCLDWAIT XSI • • • • If signo is SIGCHLD, this option prevents the 
system from creating zombie processes when 
children of the calling process terminate. If it 
subsequently calls wait , the calling process 
blocks until all its child processes have 
terminated and then returns –1 with errno  set to 
ECHILD. (Recall Section 10.7.) 

SA_NODEFER XSI • • • • When this signal is caught, the signal is not 
automatically blocked by the system while the 
signal-catching function executes (unless the 
signal is also included in sa_mask ). Note that this 
type of operation corresponds to the earlier 
unreliable signals. 

SA_ONSTACK XSI • • • • If an alternate stack has been declared with 
sigaltstack (2), this signal is delivered to the 
process on the alternate stack. 

SA_RESETHAND XSI • • • • The disposition for this signal is reset to SIG_DFL, 
and the SA_SIGINFO flag is cleared on entry to the 
signal-catching function. Note that this type of 
operation corresponds to the earlier unreliable 
signals. The disposition for the two signals 
SIGILL  and SIGTRAP can't be reset automatically, 
however. Setting this flag causes sigaction  to 
behave as if SA_NODEFER is also set.  

SA_RESTART XSI • • • • System calls interrupted by this signal are 
automatically restarted. (Refer to Section 10.5.)  

SA_SIGINFO • • • • • This option provides additional information to a 
signal handler: a pointer to a siginfo  structure 
and a pointer to an identifier for the process 
context. 

 



The sa_sigaction  field is an alternate signal handler used when the SA_SIGINFO flag is used with sigaction . 
Implementations might use the same storage for both the sa_sigaction  field and the sa_handler  field, so 
applications can use only one of these fields at a time. 

Normally, the signal handler is called as 

   void handler(int signo); 

 

but if the SA_SIGINFO flag is set, the signal handler is called as 

   void handler(int signo, siginfo_t *info, void *c ontext); 

 

The siginfo_t  structure contains information about why the signal was generated. An example of what it 
might look like is shown below. All POSIX.1-compliant implementations must include at least the si_signo  
and si_code  members. Additionally, implementations that are XSI compliant contain at least the following 
fields: 

    struct siginfo { 
      int    si_signo;  /* signal number */ 
      int    si_errno;  /* if nonzero, errno value from <errno.h> */ 
      int    si_code;   /* additional info (depends  on signal) */ 
      pid_t  si_pid;    /* sending process ID */ 
      uid_t  si_uid;    /* sending process real use r ID */ 
      void  *si_addr;   /* address that caused the fault */ 
      int    si_status; /* exit value or signal num ber */ 
      long   si_band;   /* band number for SIGPOLL */ 
      /* possibly other fields also */ 
    }; 

 

Figure 10.17 shows values of si_code  for various signals, as defined by the Single UNIX Specification. Note 
that implementations may define additional code values. 

Figure 10.17. siginfo_t code values 

Signal Code Reason 

  ILL_ILLOPC  illegal opcode 

  ILL_ILLOPN  illegal operand 

  ILL_ILLADR  illegal addressing mode 

SIGILL  ILL_ILLTRP  illegal trap 

  ILL_PRVOPC privileged opcode 

  ILL_PRVREG privileged register 

  ILL_COPROC coprocessor error 

  ILL_BADSTK internal stack error  



Figure 10.17. siginfo_t code values 

Signal Code Reason 

  FPE_INTDIV  integer divide by zero 

  FPE_INTOVF integer overflow 

  FPE_FLTDIV floating-point divide by zero 

  FPE_FLTOVF floating-point overflow 

SIGFPE FPE_FLTUND floating-point underflow 

  FPE_FLTRES floating-point inexact result 

  FPE_FLTINV invalid floating-point operation 

  FPE_FLTSUB subscript out of range  

SIGSEGV SEGV_MAPERR address not mapped to object 

  SEGV_ACCERR invalid permissions for mapped object  

  BUS_ADRALN invalid address alignment 

SIGBUS BUS_ADRERR nonexistent physical address 

  BUS_OBJERR object-specific hardware error  

  TRAP_BRKPT process breakpoint trap 

SIGTRAP TRAP_TRACE process trace trap  

  CLD_EXITED child has exited 

  CLD_KILLED child has terminated abnormally (no core) 

  CLD_DUMPED child has terminated abnormally with core 

SIGCHLD CLD_TRAPPED traced child has trapped 

  CLD_STOPPED child has stopped 

  CLD_CONTINUED stopped child has continued  

  POLL_IN data can be read 

  POLL_OUT data can be written 

SIGPOLL POLL_MSG input message available 

  POLL_ERR I/O error 

  POLL_PRI high-priority message available 

  POLL_HUP device disconnected  

  SI_USER signal sent by kill 



Figure 10.17. siginfo_t code values 

Signal Code Reason 

  SI_QUEUE signal sent by sigqueue  (real-time extension) 

Any SI_TIMER  expiration of a timer set by timer_settime  (real-time extension) 

  SI_ASYNCIO completion of asynchronous I/O request (real-time extension) 

  SI_MESGQ arrival of a message on a message queue (real-time extension) 

 

If the signal is SIGCHLD, then the si_pid , si_status , and si_uid  field will be set. If the signal is SIGILL  or 
SIGSEGV, then the si_addr  contains the address responsible for the fault, although the address might not be 
accurate. If the signal is SIGPOLL, then the si_band  field will contain the priority band for STREAMS 
messages that generate the POLL_IN, POLL_OUT, or POLL_MSG events. (For a complete discussion of priority 
bands, see Rago [1993].) The si_errno  field contains the error number corresponding to the condition that 
caused the signal to be generated, although its use is implementation defined. 

The context argument to the signal handler is a typeless pointer that can be cast to a ucontext_t  structure 
identifying the process context at the time of signal delivery. 

When an implementation supports the real-time signal extensions, signal handlers established with the 
SA_SIGINFO flag will result in signals being queued reliably. A separate range of reserved signals is available 
for real-time application use. The siginfo  structure can contain application-specific data if the signal is 
generated by sigqueue . We do not discuss the real-time extensions further. Refer to Gallmeister [1995] for 
more details. 

Example—signal Function 

Let's now implement the signal  function using sigaction . This is what many platforms do (and what a note in 
the POSIX.1 Rationale states was the intent of POSIX). Systems with binary compatibility constraints, on the 
other hand, might provide a signal  function that supports the older, unreliable-signal semantics. Unless you 
specifically require these older, unreliable semantics (for backward compatibility), you should use the following 
implementation of signal  or call sigaction  directly. (As you might guess, an implementation of signal  with 
the old semantics could call sigaction  specifying SA_RESETHAND and SA_NODEFER.) All the examples in this 
text that call signal  call the function shown in Figure 10.18. 

Note that we must use sigemptyset  to initialize the sa_mask  member of the structure. We're not guaranteed 
that 

    act.sa_mask = 0; 

 

does the same thing. 

We intentionally try to set the SA_RESTART flag for all signals other than SIGALRM, so that any system call 
interrupted by these other signals is automatically restarted. The reason we don't want SIGALRM restarted is to 
allow us to set a timeout for I/O operations. (Recall the discussion of Figure 10.10.) 



Some older systems, such as SunOS, define the SA_INTERRUPT flag. These systems restart interrupted system 
calls by default, so specifying this flag causes system calls to be interrupted. Linux defines the SA_INTERRUPT 
flag for compatibility with applications that use it, but the default is to not restart system calls when the signal 
handler is installed with sigaction . The XSI extension of the Single UNIX Specification specifies that the 
sigaction  function not restart interrupted system calls unless the SA_RESTART flag is specified. 

Figure 10.18. An implementation of signal using sigaction 

#include "apue.h" 
 
/* Reliable version of signal(), using POSIX sigact ion(). */  
Sigfunc * 
signal(int signo, Sigfunc *func) 
{ 
    struct sigaction    act, oact; 
 
    act.sa_handler = func; 
    sigemptyset(&act.sa_mask); 
    act.sa_flags = 0; 
    if (signo == SIGALRM) { 
#ifdef SA_INTERRUPT 
       act.sa_flags |= SA_INTERRUPT; 
#endif 
    } else { 
#ifdef  SA_RESTART 
        act.sa_flags |= SA_RESTART; 
#endif 
    } 
    if (sigaction(signo, &act, &oact) < 0) 
        return(SIG_ERR); 
    return(oact.sa_handler); 
} 

Example—signal_intr Function 

Figure 10.19 shows a version of the signal  function that tries to prevent any interrupted system 
calls from being restarted. 

For improved portability, we specify the SA_INTERRUPT flag, if defined by the system, to prevent 
interrupted system calls from being restarted. 

Figure 10.19. The signal_intr function 

#include "apue.h" 
 
Sigfunc * 
signal_intr(int signo, Sigfunc *func) 
{ 
    struct sigaction    act, oact; 
 
    act.sa_handler = func; 
    sigemptyset(&act.sa_mask); 
    act.sa_flags = 0; 
#ifdef  SA_INTERRUPT 
    act.sa_flags |= SA_INTERRUPT; 
#endif 
    if (sigaction(signo, &act, &oact) < 0)  
        return(SIG_ERR); 



    return(oact.sa_handler); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.15. sigsetjmp and siglongjmp Functions 

In Section 7.10, we described the setjmp  and longjmp  functions, which can be used for nonlocal branching. 
The longjmp  function is often called from a signal handler to return to the main loop of a program, instead of 
returning from the handler. We saw this in Figures 10.8 and 10.11. 

There is a problem in calling longjmp , however. When a signal is caught, the signal-catching function is 
entered with the current signal automatically being added to the signal mask of the process. This prevents 
subsequent occurrences of that signal from interrupting the signal handler. If we longjmp  out of the signal 
handler, what happens to the signal mask for the process? 

Under FreeBSD 5.2.1 and Mac OS X 10.3, setjmp  and longjmp  save and restore the signal mask. Linux 2.4.22 
and Solaris 9, however, do not do this. FreeBSD and Mac OS X provide the functions _setjmp  and _longjmp , 
which do not save and restore the signal mask. 

To allow either form of behavior, POSIX.1 does not specify the effect of setjmp  and longjmp  on signal masks. 
Instead, two new functions, sigsetjmp  and siglongjmp , are defined by POSIX.1. These two functions should 
always be used when branching from a signal handler. 

#include <setjmp.h> 
 
int sigsetjmp(sigjmp_buf env, int savemask); 

 

Returns: 0 if called directly, nonzero if returning from a call to siglongjmp   

void siglongjmp(sigjmp_buf  env, int  val);  

 

The only difference between these functions and the setjmp  and longjmp  functions is that sigsetjmp  has an 
additional argument. If savemask is nonzero, then sigsetjmp  also saves the current signal mask of the process 
in env. When siglongjmp  is called, if the env argument was saved by a call to sigsetjmp  with a nonzero 
savemask, then siglongjmp  restores the saved signal mask. 

Example 

The program in Figure 10.20 demonstrates how the signal mask that is installed by the system when a signal 
handler is invoked automatically includes the signal being caught. The program also illustrates the use of the 
sigsetjmp  and siglongjmp  functions. 

This program demonstrates another technique that should be used whenever siglongjmp  is called from a signal 
handler. We set the variable canjump  to a nonzero value only after we've called sigsetjmp . This variable is 
also examined in the signal handler, and siglongjmp  is called only if the flag canjump  is nonzero. This 
provides protection against the signal handler being called at some earlier or later time, when the jump buffer 
isn't initialized by sigsetjmp . (In this trivial program, we terminate quickly after the siglongjmp , but in larger 
programs, the signal handler may remain installed long after the siglongjmp .) Providing this type of protection 
usually isn't required with longjmp  in normal C code (as opposed to a signal handler). Since a signal can occur 
at any time, however, we need the added protection in a signal handler. 

Here, we use the data type sig_atomic_t , which is defined by the ISO C standard to be the type of variable 
that can be written without being interrupted. By this we mean that a variable of this type should not extend 



across page boundaries on a system with virtual memory and can be accessed with a single machine instruction, 
for example. We always include the ISO type qualifier volatile  for these data types too, since the variable is 
being accessed by two different threads of control: the main  function and the asynchronously executing signal 
handler. Figure 10.21 shows a time line for this program. 

We can divide Figure 10.21 into three parts: the left part (corresponding to main ), the center part (sig_usr1 ), 
and the right part (sig_alrm ). While the process is executing in the left part, its signal mask is 0 (no signals are 
blocked). While executing in the center part, its signal mask is SIGUSR1. While executing in the right part, its 
signal mask is SIGUSR1|SIGALRM. 

Let's examine the output when the program in Figure 10.20 is executed: 

   $ ./a.out &                      start process i n background 
   starting main: 
   [1]   531                        the job-control  shell prints its process ID 
   $ kill -USR1 531                 send the proces s SIGUSR1 
   starting sig_usr1: SIGUSR1 
   $ in sig_alrm: SIGUSR1 SIGALRM 
   finishing sig_usr1: SIGUSR1 
   ending main: 
                                    just press RETU RN 
   [1] + Done          ./a.out & 
 
 
      

 

The output is as we expect: when a signal handler is invoked, the signal being caught is added to the current 
signal mask of the process. The original mask is restored when the signal handler returns. Also, siglongjmp  
restores the signal mask that was saved by sigsetjmp . 

If we change the program in Figure 10.20 so that the calls to sigsetjmp  and siglongjmp  are replaced with 
calls to setjmp  and longjmp  on Linux (or _setjmp  and _longjmp  on FreeBSD), the final line of output 
becomes 

    ending main: SIGUSR1 

 

This means that the main  function is executing with the SIGUSR1 signal blocked, after the call to setjmp . This 
probably isn't what we want. 

Figure 10.20. Example of signal masks, sigsetjmp, and siglongjmp 

#include "apue.h" 
#include <setjmp.h> 
#include <time.h> 
 
static void                         sig_usr1(int), sig_alrm(int);  
static sigjmp_buf                   jmpbuf; 
static volatile sig_atomic_t        canjump; 
 
int 
main(void) 
{ 
    if (signal(SIGUSR1, sig_usr1) == SIG_ERR) 



        err_sys("signal(SIGUSR1) error"); 
    if (signal(SIGALRM, sig_alrm) == SIG_ERR) 
        err_sys("signal(SIGALRM) error"); 
    pr_mask("starting main: ");     /* Figure 10.14  */ 
 
    if (sigsetjmp(jmpbuf, 1)) { 
        pr_mask("ending main: "); 
        exit(0); 
    } 
    canjump = 1;         /* now sigsetjmp() is OK * / 
 
    for ( ; ; ) 
        pause(); 
} 
static void 
sig_usr1(int signo) 
{ 
    time_t  starttime; 
 
    if (canjump == 0) 
        return;     /* unexpected signal, ignore */  
 
    pr_mask("starting sig_usr1: "); 
    alarm(3);               /* SIGALRM in 3 seconds  */ 
    starttime = time(NULL); 
    for ( ; ; )             /* busy wait for 5 seco nds */ 
        if (time(NULL) > starttime + 5) 
            break; 
    pr_mask("finishing sig_usr1: "); 
 
    canjump = 0; 
    siglongjmp(jmpbuf, 1);  /* jump back to main, d on't return */  
} 
 
static void 
sig_alrm(int signo) 
{ 
    pr_mask("in sig_alrm: "); 
} 

 

 

 

 

 

 

 

 

 



Figure 10.21. Time line for example program handling two signals 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.16. sigsuspend Function 

We have seen how we can change the signal mask for a process to block and unblock selected signals. We can 
use this technique to protect critical regions of code that we don't want interrupted by a signal. What if we want 
to unblock a signal and then pause , waiting for the previously blocked signal to occur? Assuming that the 
signal is SIGINT , the incorrect way to do this is 

      sigset_t     newmask, oldmask; 
 
      sigemptyset(&newmask); 
      sigaddset(&newmask, SIGINT); 
 
      /* block SIGINT and save current signal mask */ 
      if (sigprocmask(SIG_BLOCK, &newmask, &oldmask ) < 0) 
          err_sys("SIG_BLOCK error"); 
 
      /* critical region of code */ 
 
      /* reset signal mask, which unblocks SIGINT * / 
      if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) 
          err_sys("SIG_SETMASK error"); 
 
      /* window is open */ 
      pause();  /* wait for signal to occur */ 
 
      /* continue processing */ 

If the signal is sent to the process while it is blocked, the signal delivery will be deferred until the signal is 
unblocked. To the application, this can look as if the signal occurs between the unblocking and the pause  
(depending on how the kernel implements signals). If this happens, or if the signal does occur between the 
unblocking and the pause , we have a problem. Any occurrence of the signal in this window of time is lost in the 
sense that we might not see the signal again, in which case the pause  will block indefinitely. This is another 
problem with the earlier unreliable signals. 

To correct this problem, we need a way to both reset the signal mask and put the process to sleep in a single 
atomic operation. This feature is provided by the sigsuspend  function. 

#include <signal.h> 
 
int sigsuspend(const sigset_t *sigmask);  

 

Returns: –1 with errno  set to EINTR 

The signal mask of the process is set to the value pointed to by sigmask. Then the process is suspended until a 
signal is caught or until a signal occurs that terminates the process. If a signal is caught and if the signal handler 
returns, then sigsuspend  returns, and the signal mask of the process is set to its value before the call to 
sigsuspend . 

Note that there is no successful return from this function. If it returns to the caller, it always returns –1 with 
errno  set to EINTR (indicating an interrupted system call). 

Example 



Figure 10.22 shows the correct way to protect a critical region of code from a specific signal. 

Note that when sigsuspend  returns, it sets the signal mask to its value before the call. In this example, the 
SIGINT  signal will be blocked. We therefore reset the signal mask to the value that we saved earlier (oldmask ). 

Running the program from Figure 10.22 produces the following output: 

   $ ./a.out 
   program start: 
   in critical region: SIGINT 
 
   ^?                               type the interr upt character 
   in sig_int: SIGINT SIGUSR1 
   after return from sigsuspend: SIGINT 
   program exit: 

 

We added SIGUSR1 to the mask installed when we called sigsuspend  so that when the signal handler ran, we 
could tell that the mask had actually changed. We can see that when sigsuspend  returns, it restores the signal 
mask to its value before the call. 

Figure 10.22. Protecting a critical region from a signal 

#include "apue.h" 
 
static void sig_int(int); 
 
int 
main(void) 
{ 
    sigset_t    newmask, oldmask, waitmask; 
 
    pr_mask("program start: "); 
 
    if (signal(SIGINT, sig_int) == SIG_ERR) 
        err_sys("signal(SIGINT) error"); 
    sigemptyset(&waitmask); 
    sigaddset(&waitmask, SIGUSR1); 
    sigemptyset(&newmask); 
    sigaddset(&newmask, SIGINT); 
 
    /* 
     * Block SIGINT and save current signal mask. 
     */ 
    if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0)  
        err_sys("SIG_BLOCK error"); 
 
    /* 
     * Critical region of code. 
     */ 
    pr_mask("in critical region: "); 
 
    /* 
     * Pause, allowing all signals except SIGUSR1. 
     */ 
    if (sigsuspend(&waitmask) != -1) 
        err_sys("sigsuspend error"); 
 
    pr_mask("after return from sigsuspend: "); 



 
    /* 
     * Reset signal mask which unblocks SIGINT. 
     */ 
    if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) 
        err_sys("SIG_SETMASK error"); 
 
    /* 
     * And continue processing ... 
     */ 
    pr_mask("program exit: "); 
 
    exit(0); 
} 
 
static void 
sig_int(int signo) 
{ 
    pr_mask("\nin sig_int: "); 
} 

Example 

Another use of sigsuspend  is to wait for a signal handler to set a global variable. In the program shown in 
Figure 10.23, we catch both the interrupt signal and the quit signal, but want to wake up the main routine only 
when the quit signal is caught. 

Sample output from this program is 

   $ ./a.out 
 
   ^?                type the interrupt character 
   interrupt 
 
   ^?                type the interrupt character a gain 
   interrupt 
 
   ^?                and again 
   interrupt 
 
   ^?                and again 
   interrupt 
 
   ^?                and again 
   interrupt 
 
   ^?                and again 
   interrupt 
 
   ^?                and again 
   interrupt 
 
   ^\ $              now terminate with quit charac ter 

 

Figure 10.23. Using sigsuspend to wait for a global variable to be set 

#include "apue.h" 
 



volatile sig_atomic_t    quitflag;    /* set nonzer o by signal handler */  
 
static void 
sig_int(int signo)  /* one signal handler for SIGIN T and SIGQUIT */ 
{ 
    if (signo == SIGINT) 
        printf("\ninterrupt\n"); 
    else if (signo == SIGQUIT) 
        quitflag = 1;   /* set flag for main loop * / 
} 
 
int 
main(void) 
{ 
     sigset_t     newmask, oldmask, zeromask; 
 
     if (signal(SIGINT, sig_int) == SIG_ERR) 
         err_sys("signal(SIGINT) error"); 
     if (signal(SIGQUIT, sig_int) == SIG_ERR) 
         err_sys("signal(SIGQUIT) error"); 
 
     sigemptyset(&zeromask); 
     sigemptyset(&newmask); 
     sigaddset(&newmask, SIGQUIT); 
 
     /* 
      * Block SIGQUIT and save current signal mask.  
      */ 
     if (sigprocmask(SIG_BLOCK, &newmask, &oldmask)  < 0) 
         err_sys("SIG_BLOCK error"); 
 
     while (quitflag == 0) 
         sigsuspend(&zeromask); 
 
     /* 
      * SIGQUIT has been caught and is now blocked;  do whatever. 
      */ 
     quitflag = 0; 
 
     /* 
      * Reset signal mask which unblocks SIGQUIT. 
      */ 
     if (sigprocmask(SIG_SETMASK, &oldmask, NULL) <  0) 
         err_sys("SIG_SETMASK error"); 
 
     exit(0); 
} 

For portability between non-POSIX systems that support ISO C, and POSIX.1 systems, the only thing we 
should do within a signal handler is assign a value to a variable of type sig_atomic_t , and nothing else. 
POSIX.1 goes further and specifies a list of functions that are safe to call from within a signal handler (Figure 
10.4), but if we do this, our code may not run correctly on non-POSIX systems. 

Example 

As another example of signals, we show how signals can be used to synchronize a parent and child. 
Figure 10.24 shows implementations of the five routines TELL_WAIT, TELL_PARENT, TELL_CHILD, 
WAIT_PARENT, and WAIT_CHILD from Section 8.9. 



We use the two user-defined signals: SIGUSR1 is sent by the parent to the child, and SIGUSR2 is sent 
by the child to the parent. In Figure 15.7, we show another implementation of these five functions 
using pipes. 

Figure 10.24. Routines to allow a parent and child to synchronize 

#include "apue.h" 
 
static volatile sig_atomic_t sigflag; /* set nonzer o by sig handler */  
static sigset_t newmask, oldmask, zeromask; 
 
static void 
sig_usr(int signo)   /* one signal handler for SIGU SR1 and SIGUSR2 */ 
{ 
    sigflag = 1; 
} 
 
void 
TELL_WAIT(void) 
{ 
    if (signal(SIGUSR1, sig_usr) == SIG_ERR) 
        err_sys("signal(SIGUSR1) error"); 
    if (signal(SIGUSR2, sig_usr) == SIG_ERR) 
        err_sys("signal(SIGUSR2) error"); 
    sigemptyset(&zeromask); 
    sigemptyset(&newmask); 
    sigaddset(&newmask, SIGUSR1); 
    sigaddset(&newmask, SIGUSR2); 
 
    /* 
     * Block SIGUSR1 and SIGUSR2, and save current signal mask. 
     */ 
    if (sigprocmask(SIG_BLOCK, &newmask, &oldmask) < 0) 
        err_sys("SIG_BLOCK error"); 
} 
 
void 
TELL_PARENT(pid_t pid) 
{ 
    kill(pid, SIGUSR2);              /* tell parent  we're done */ 
} 
 
void 
WAIT_PARENT(void) 
{ 
    while (sigflag == 0) 
        sigsuspend(&zeromask);   /* and wait for pa rent */ 
    sigflag = 0; 
 
    /* 
     * Reset signal mask to original value. 
     */ 
    if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) 
        err_sys("SIG_SETMASK error"); 
} 
 
void 
TELL_CHILD(pid_t pid) 
{ 
    kill(pid, SIGUSR1);             /* tell child w e're done */ 
} 



 
void 
WAIT_CHILD(void) 
{ 
    while (sigflag == 0) 
        sigsuspend(&zeromask);  /* and wait for chi ld */ 
    sigflag = 0; 
 
    /* 
     * Reset signal mask to original value. 
     */ 
    if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) 
        err_sys("SIG_SETMASK error"); 
} 

The sigsuspend  function is fine if we want to go to sleep while waiting for a signal to occur (as we've shown 
in the previous two examples), but what if we want to call other system functions while we're waiting? 
Unfortunately, this problem has no bulletproof solution unless we use multiple threads and dedicate a separate 
thread to handling signals, as we discuss in Section 12.8. 

Without using threads, the best we can do is to set a global variable in the signal handler when the signal occurs. 
For example, if we catch both SIGINT  and SIGALRM and install the signal handlers using the signal_intr  
function, the signals will interrupt any slow system call that is blocked. The signals are most likely to occur 
when we're blocked in a call to the select  function (Section 14.5.1), waiting for input from a slow device. 
(This is especially true for SIGALRM, since we set the alarm clock to prevent us from waiting forever for input.) 
The code to handle this looks similar to the following: 

       if (intr_flag)       /* flag set by our SIGI NT handler */ 
           handle_intr(); 
       if (alrm_flag)       /* flag set by our SIGA LRM handler */ 
           handle_alrm(); 
 
       /* signals occurring in here are lost */ 
 
       while (select( ... ) < 0) { 
           if (errno == EINTR) { 
               if (alrm_flag) 
                   handle_alrm(); 
               else if (intr_flag) 
                   handle_intr(); 
          } else { 
              /* some other error */ 
          } 
      } 

We test each of the global flags before calling select  and again if select  returns an interrupted system call 
error. The problem occurs if either signal is caught between the first two if  statements and the subsequent call 
to select . Signals occurring in here are lost, as indicated by the code comment. The signal handlers are called, 
and they set the appropriate global variable, but the select  never returns (unless some data is ready to be read). 

What we would like to be able to do is the following sequence of steps, in order. 

1. Block SIGINT  and SIGALRM. 
2. Test the two global variables to see whether either signal has occurred and, if so, handle the condition. 
3. Call select  (or any other system function, such as read ) and unblock the two signals, as an atomic 

operation. 



The sigsuspend  function helps us only if step 3 is a pause  operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.17. abort Function 

We mentioned earlier that the abort  function causes abnormal program termination. 

#include <stdlib.h> 
 
void abort(void); 

 

This function never returns 

 

This function sends the SIGABRT signal to the caller. (Processes should not ignore this signal.) ISO C states that 
calling abort  will deliver an unsuccessful termination notification to the host environment by calling 
raise(SIGABRT) . 

ISO C requires that if the signal is caught and the signal handler returns, abort  still doesn't return to its caller. If 
this signal is caught, the only way the signal handler can't return is if it calls exit , _exit , _Exit , longjmp , or 
siglongjmp . (Section 10.15 discusses the differences between longjmp  and siglongjmp .) POSIX.1 also 
specifies that abort  overrides the blocking or ignoring of the signal by the process. 

The intent of letting the process catch the SIGABRT is to allow it to perform any cleanup that it wants to do 
before the process terminates. If the process doesn't terminate itself from this signal handler, POSIX.1 states 
that, when the signal handler returns, abort  terminates the process. 

The ISO C specification of this function leaves it up to the implementation as to whether output streams are 
flushed and whether temporary files (Section 5.13) are deleted. POSIX.1 goes further and requires that if the 
call to abort  terminates the process, then the effect on the open standard I/O streams in the process will be the 
same as if the process had called fclose  on each stream before terminating. 

Earlier versions of System V generated the SIGIOT  signal from the abort  function. Furthermore, it was possible 
for a process to ignore this signal or to catch it and return from the signal handler, in which case abort  returned 
to its caller. 

4.3BSD generated the SIGILL  signal. Before doing this, the 4.3BSD function unblocked the signal and reset its 
disposition to SIG_DFL (terminate with core  file). This prevented a process from either ignoring the signal or 
catching it. 

Historically, implementations of abort  differ in how they deal with standard I/O streams. For defensive 
programming and improved portability, if we want standard I/O streams to be flushed, we specifically do it 
before calling abort . We do this in the err_dump  function (Appendix B). 

Since most UNIX System implementations of tmpfile  call unlink  immediately after creating the file, the ISO 
C warning about temporary files does not usually concern us. 

Example 

Figure 10.25 shows an implementation of the abort  function as specified by POSIX.1. 

We first see whether the default action will occur; if so, we flush all the standard I/O streams. This is 
not equivalent to an fclose  on all the open streams (since it just flushes them and doesn't close 



them), but when the process terminates, the system closes all open files. If the process catches the 
signal and returns, we flush all the streams again, since the process could have generated more 
output. The only condition we don't handle is if the process catches the signal and calls _exit  or 
_Exit . In this case, any unflushed standard I/O buffers in memory are discarded. We assume that a 
caller that does this doesn't want the buffers flushed. 

Recall from Section 10.9 that if calling kill  causes the signal to be generated for the caller, and if 
the signal is not blocked (which we guarantee in Figure 10.25), then the signal (or some other 
pending, unlocked signal) is delivered to the process before kill  returns. We block all signals 
except SIGABRT, so we know that if the call to kill  returns, the process caught the signal and the 
signal handler returned. 

Figure 10.25. Implementation of POSIX.1 abort 

#include <signal.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
 
void 
abort(void)         /* POSIX-style abort() function  */ 
{ 
    sigset_t           mask; 
    struct sigaction   action; 
 
    /* 
     * Caller can't ignore SIGABRT, if so reset to default. 
     */ 
    sigaction(SIGABRT, NULL, &action); 
    if (action.sa_handler == SIG_IGN) { 
        action.sa_handler = SIG_DFL; 
        sigaction(SIGABRT, &action, NULL); 
    } 
    if (action.sa_handler == SIG_DFL) 
        fflush(NULL);           /* flush all open s tdio streams */ 
 
    /* 
     * Caller can't block SIGABRT; make sure it's u nblocked. 
     */ 
    sigfillset(&mask); 
    sigdelset(&mask, SIGABRT);  /* mask has only SI GABRT turned off */  
    sigprocmask(SIG_SETMASK, &mask, NULL); 
    kill(getpid(), SIGABRT);    /* send the signal */ 
 
    /* 
     * If we're here, process caught SIGABRT and re turned. 
     */ 
    fflush(NULL);               /* flush all open s tdio streams */ 
    action.sa_handler = SIG_DFL; 
    sigaction(SIGABRT, &action, NULL);  /* reset to  default */ 
    sigprocmask(SIG_SETMASK, &mask, NULL);  /* just  in case ... */ 
    kill(getpid(), SIGABRT);                /* and one more time */ 
    exit(1);    /* this should never be executed .. . */ 
}  

 
 
 
 



10.18. system Function 

In Section 8.13, we showed an implementation of the system  function. That version, however, did not do any 
signal handling. POSIX.1 requires that system  ignore SIGINT  and SIGQUIT and block SIGCHLD. Before 
showing a version that correctly handles these signals, let's see why we need to worry about signal handling. 

Example 

The program shown in Figure 10.26 uses the version of system  from Section 8.13 to invoke the ed(1) editor. 
(This editor has been part of UNIX systems for a long time. We use it here because it is an interactive program 
that catches the interrupt and quit signals. If we invoke ed from a shell and type the interrupt character, it 
catches the interrupt signal and prints a question mark. The ed program also sets the disposition of the quit 
signal so that it is ignored.) The program in Figure 10.26 catches both SIGINT  and SIGCHLD. If we invoke the 
program, we get 

    $ ./a.out 
 
    a                         append text to the ed itor's buffer 
 
    Here is one line of text 
 
    .                         period on a line by i tself stops append mode 
 
    1,$p                      print first through l ast lines of buffer to see what's 
there 
    Here is one line of text 
    w temp.foo                write the buffer to a  file 
    25                        editor says it wrote 25 bytes 
     
    q                         and leave the editor 
    caught SIGCHLD 
 
 
      

 

When the editor terminates, the system sends the SIGCHLD signal to the parent (the a.out  process). We catch it 
and return from the signal handler. But if it is catching the SIGCHLD signal, the parent should be doing so 
because it has created its own children, so that it knows when its children have terminated. The delivery of this 
signal in the parent should be blocked while the system  function is executing. Indeed, this is what POSIX.1 
specifies. Otherwise, when the child created by system  terminates, it would fool the caller of system  into 
thinking that one of its own children terminated. The caller would then use one of the wait  functions to get the 
termination status of the child, thus preventing the system  function from being able to obtain the child's 
termination status for its return value. 

If we run the program again, this time sending the editor an interrupt signal, we get 

    $ ./a.out 
 
    a              append text to the editor's buff er 
 
    hello, world 
 
    .              period on a line by itself stops  append mode 
 
    1,$p           print first through last lines t o see what's there 



    hello, world 
    w temp.foo     write the buffer to a file 
    13             editor says it wrote 13 bytes 
 
    ^?             type the interrupt character 
    ?              editor catches signal, prints qu estion mark 
    caught SIGINT  and so does the parent process 
 
    q              leave editor 
    caught SIGCHLD 

 

Recall from Section 9.6 that typing the interrupt character causes the interrupt signal to be sent to all the 
processes in the foreground process group. Figure 10.27 shows the arrangement of the processes when the 
editor is running. 

In this example, SIGINT  is sent to all three foreground processes. (The shell ignores it.) As we can see from the 
output, both the a.out  process and the editor catch the signal. But when we're running another program with 
the system  function, we shouldn't have both the parent and the child catching the two terminal-generated 
signals: interrupt and quit. These two signals should really be sent to the program that is running: the child. 
Since the command that is executed by system  can be an interactive command (as is the ed program in this 
example) and since the caller of system  gives up control while the program executes, waiting for it to finish, the 
caller of system  should not be receiving these two terminal-generated signals. This is why POSIX.1 specifies 
that the system  function should ignore these two signals while waiting for the command to complete. 

Figure 10.26. Using system to invoke the ed editor 

#include "apue.h" 
 
static void 
sig_int(int signo) 
{ 
    printf("caught SIGINT\n"); 
} 
 
static void 
sig_chld(int signo) 
{ 
    printf("caught SIGCHLD\n"); 
} 
 
int 
main(void) 
{ 
     if (signal(SIGINT, sig_int) == SIG_ERR) 
         err_sys("signal(SIGINT) error"); 
     if (signal(SIGCHLD, sig_chld) == SIG_ERR)  
         err_sys("signal(SIGCHLD) error"); 
     if (system("/bin/ed") < 0) 
         err_sys("system() error"); 
     exit(0); 
} 
 
 
      

 

 



Figure 10.27. Foreground and background process groups for Figure 10.26 

 

Example 

Figure 10.28 shows an implementation of the system  function with the required signal handling. 

If we link the program in Figure 10.26 with this implementation of the system  function, the resulting binary 
differs from the last (flawed) one in the following ways. 

1. No signal is sent to the calling process when we type the interrupt or quit character. 
2. When the ed command exits, SIGCHLD is not sent to the calling process. Instead, it is blocked until we 

unblock it in the last call to sigprocmask , after the system  function retrieves the child's termination 
status by calling waitpid . 

POSIX.1 states that if wait  or waitpid  returns the status of a child process while SIGCHLD is pending, 
then SIGCHLD should not be delivered to the process unless the status of another child process is also 
available. None of the four implementations discussed in this book implements this semantic. Instead, 
SIGCHLD remains pending after the system  function calls waitpid ; when the signal is unblocked, it is 
delivered to the caller. If we called wait  in the sig_chld  function in Figure 10.26, it would return –1 
with errno  set to ECHILD, since the system  function already retrieved the termination status of the child. 

Many older texts show the ignoring of the interrupt and quit signals as follows: 

    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) { 
        /* child */ 
        execl(...); 
        _exit(127); 
    } 
 
    /* parent */ 
    old_intr = signal(SIGINT, SIG_IGN); 
    old_quit = signal(SIGQUIT, SIG_IGN); 
    waitpid(pid, &status, 0) 
    signal(SIGINT, old_intr); 
    signal(SIGQUIT, old_quit); 

 

The problem with this sequence of code is that we have no guarantee after the fork  whether the parent or child 
runs first. If the child runs first and the parent doesn't run for some time after, it's possible for an interrupt signal 
to be generated before the parent is able to change its disposition to be ignored. For this reason, in Figure 10.28, 
we change the disposition of the signals before the fork . 

Note that we have to reset the dispositions of these two signals in the child before the call to execl . This allows 
execl  to change their dispositions to the default, based on the caller's dispositions, as we described in Section 
8.10. 

Figure 10.28. Correct POSIX.1 implementation of system function 



#include      <sys/wait.h> 
#include      <errno.h> 
#include      <signal.h> 
#include      <unistd.h> 
 
int 
system(const char *cmdstring)   /* with appropriate  signal handling */ 
{ 
    pid_t               pid; 
    int                 status; 
    struct sigaction    ignore, saveintr, savequit;  
    sigset_t            chldmask, savemask; 
 
    if (cmdstring == NULL) 
        return(1);      /* always a command process or with UNIX */ 
 
    ignore.sa_handler = SIG_IGN;    /* ignore SIGIN T and SIGQUIT */ 
    sigemptyset(&ignore.sa_mask); 
    ignore.sa_flags = 0; 
    if (sigaction(SIGINT, &ignore, &saveintr) < 0) 
        return(-1); 
    if (sigaction(SIGQUIT, &ignore, &savequit) < 0)  
        return(-1); 
    sigemptyset(&chldmask);         /* now block SI GCHLD */ 
    sigaddset(&chldmask, SIGCHLD); 
    if (sigprocmask(SIG_BLOCK, &chldmask, &savemask ) < 0) 
        return(-1); 
 
    if ((pid = fork()) < 0) { 
        status = -1;    /* probably out of processe s */ 
    } else if (pid == 0) {          /* child */ 
        /* restore previous signal actions & reset signal mask */ 
        sigaction(SIGINT, &saveintr, NULL); 
        sigaction(SIGQUIT, &savequit, NULL); 
        sigprocmask(SIG_SETMASK, &savemask, NULL); 
 
        execl("/bin/sh", "sh", "-c", cmdstring, (ch ar *)0); 
        _exit(127);     /* exec error */ 
    } else {                        /* parent */ 
       while (waitpid(pid, &status, 0) < 0) 
           if (errno != EINTR) { 
               status = -1; /* error other than EIN TR from waitpid() */  
               break; 
           } 
    } 
 
    /* restore previous signal actions & reset sign al mask */ 
    if (sigaction(SIGINT, &saveintr, NULL) < 0) 
        return(-1); 
    if (sigaction(SIGQUIT, &savequit, NULL) < 0) 
        return(-1); 
    if (sigprocmask(SIG_SETMASK, &savemask, NULL) <  0) 
        return(-1); 
 
    return(status); 
} 

Return Value from system 

Beware of the return value from system . It is the termination status of the shell, which isn't always the 
termination status of the command string. We saw some examples in Figure 8.23, and the results were as we 



expected: if we execute a simple command, such as date , the termination status is 0. Executing the shell 
command exit 44  gave us a termination status of 44. What happens with signals? 

Let's run the program in Figure 8.24 and send some signals to the command that's executing: 

   $ tsys "sleep 30" 
 
   ^?normal termination, exit status = 130    we ty pe the interrupt key 
   $ tsys "sleep 30" 
 
   ^\sh: 946 Quit                             we ty pe the quit key 
   normal termination, exit status = 131 

 

When we terminate the sleep  with the interrupt signal, the pr_exit  function (Figure 8.5) thinks that it 
terminated normally. The same thing happens when we kill the sleep  with the quit key. What is happening here 
is that the Bourne shell has a poorly documented feature that its termination status is 128 plus the signal number, 
when the command it was executing is terminated by a signal. We can see this with the shell interactively. 

   $ sh                             make sure we're  running the Bourne shell 
   $ sh -c "sleep 30" 
 
   ^?                               type the interr upt key 
   $ echo $?                        print terminati on status of last command 
   130 
   $ sh -c "sleep 30" 
 
   ^\sh: 962 Quit - core dumped     type the quit k ey 
   $ echo $?                        print terminati on status of last command 
   131 
   $ exit                           leave Bourne sh ell 
 
 

On the system being used, SIGINT  has a value of 2 and SIGQUIT has a value of 3, giving us the shell's 
termination statuses of 130 and 131. 

Let's try a similar example, but this time we'll send a signal directly to the shell and see what gets returned by 
system : 

    $ tsys "sleep 30" &                 start it in  background this time 
    9257 
    $ ps -f                             look at the  process IDs 
         UID   PID   PPID   TTY    TIME CMD 
         sar  9260    949   pts/5  0:00 ps -f 
         sar  9258   9257   pts/5  0:00 sh -c sleep  60 
         sar   949    947   pts/5  0:01 /bin/sh 
         sar  9257    949   pts/5  0:00 tsys sleep 60 
         sar  9259   9258   pts/5  0:00 sleep 60 
    $ kill -KILL 9258                   kill the sh ell itself 
    abnormal termination, signal number = 9 

Here, we can see that the return value from system  reports an abnormal termination only when the shell itself 
abnormally terminates. 

When writing programs that use the system  function, be sure to interpret the return value correctly. If you call 
fork , exec , and wait  yourself, the termination status is not the same as if you call system . 



10.19. sleep Function 

We've used the sleep  function in numerous examples throughout the text, and we showed two flawed 
implementations of it in Figures 10.7 and 10.8. 

#include <unistd.h> 
 
unsigned int sleep(unsigned int seconds);  

 

Returns: 0 or number of unslept seconds 

 

This function causes the calling process to be suspended until either 

1. The amount of wall clock time specified by seconds has elapsed. 
2. A signal is caught by the process and the signal handler returns. 

As with an alarm  signal, the actual return may be at a time later than requested, because of other system activity. 

In case 1, the return value is 0. When sleep  returns early, because of some signal being caught (case 2), the 
return value is the number of unslept seconds (the requested time minus the actual time slept). 

Although sleep  can be implemented with the alarm  function (Section 10.10), this isn't required. If alarm  is 
used, however, there can be interactions between the two functions. The POSIX.1 standard leaves all these 
interactions unspecified. For example, if we do an alarm(10)  and 3 wall clock seconds later do a sleep(5) , 
what happens? The sleep  will return in 5 seconds (assuming that some other signal isn't caught in that time), 
but will another SIGALRM be generated 2 seconds later? These details depend on the implementation. 

Solaris 9 implements sleep  using alarm . The Solaris sleep(3)  manual page says that a previously scheduled 
alarm is properly handled. For example, in the preceding scenario, before sleep  returns, it will reschedule the 
alarm to happen 2 seconds later; sleep  returns 0 in this case. (Obviously, sleep  must save the address of the 
signal handler for SIGALRM and reset it before returning.) Also, if we do an alarm(6)  and 3 wall clock seconds 
later do a sleep(5) , the sleep  returns in 3 seconds (when the alarm goes off), not in 5 seconds. Here, the 
return value from sleep  is 2 (the number of unslept seconds). 

FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3, on the other hand, use another technique: the delay is 
provided by nanosleep (2). This function is specified to be a high-resolution delay by the real-time extensions 
in the Single UNIX Specification. This function allows the implementation of sleep  to be independent of 
signals. 

For portability, you shouldn't make any assumptions about the implementation of sleep , but if you have any 
intentions of mixing calls to sleep  with any other timing functions, you need to be aware of possible 
interactions. 

Example 

Figure 10.29 shows an implementation of the POSIX.1 sleep  function. This function is a 
modification of Figure 10.7, which handles signals reliably, avoiding the race condition in the earlier 
implementation. We still do not handle any interactions with previously set alarms. (As we 



mentioned, these interactions are explicitly undefined by POSIX.1.) 

It takes more code to write this reliable implementation than what is shown in Figure 10.7. We don't 
use any form of nonlocal branching (as we did in Figure 10.8 to avoid the race condition between 
the alarm  and pause ), so there is no effect on other signal handlers that may be executing when the 
SIGALRM is handled. 

Figure 10.29. Reliable implementation of sleep 

#include "apue.h" 
 
static void 
sig_alrm(int signo) 
{ 
    /* nothing to do, just returning wakes up sigsu spend() */ 
} 
 
unsigned int 
sleep(unsigned int nsecs) 
{ 
    struct sigaction    newact, oldact; 
    sigset_t            newmask, oldmask, suspmask;  
    unsigned int        unslept; 
 
    /* set our handler, save previous information * / 
    newact.sa_handler = sig_alrm; 
    sigemptyset(&newact.sa_mask); 
    newact.sa_flags = 0; 
    sigaction(SIGALRM, &newact, &oldact); 
 
    /* block SIGALRM and save current signal mask * / 
    sigemptyset(&newmask); 
    sigaddset(&newmask, SIGALRM); 
    sigprocmask(SIG_BLOCK, &newmask, &oldmask); 
 
    alarm(nsecs); 
 
    suspmask = oldmask; 
    sigdelset(&suspmask, SIGALRM);    /* make sure SIGALRM isn't blocked */ 
    sigsuspend(&suspmask);            /* wait for a ny signal to be caught */  
 
    /* some signal has been caught,   SIGALRM is no w blocked */ 
 
    unslept = alarm(0); 
    sigaction(SIGALRM, &oldact, NULL);  /* reset pr evious action */ 
 
    /* reset signal mask, which unblocks SIGALRM */  
    sigprocmask(SIG_SETMASK, &oldmask, NULL); 
    return(unslept); 
} 

 
 
 
 
 
 
 
 



10.20. Job-Control Signals 

Of the signals shown in Figure 10.1, POSIX.1 considers six to be job-control signals: 

SIGCHLD Child process has stopped or terminated. 

SIGCONT Continue process, if stopped. 

SIGSTOP Stop signal (can't be caught or ignored). 

SIGTSTP Interactive stop signal. 

SIGTTIN  Read from controlling terminal by member of a background process group. 

SIGTTOU Write to controlling terminal by member of a background process group. 

 

Except for SIGCHLD, most application programs don't handle these signals: interactive shells usually do all the 
work required to handle these signals. When we type the suspend character (usually Control-Z), SIGTSTP is sent 
to all processes in the foreground process group. When we tell the shell to resume a job in the foreground or 
background, the shell sends all the processes in the job the SIGCONT signal. Similarly, if SIGTTIN  or SIGTTOU is 
delivered to a process, the process is stopped by default, and the job-control shell recognizes this and notifies us. 

An exception is a process that is managing the terminal: the vi (1) editor, for example. It needs to know when 
the user wants to suspend it, so that it can restore the terminal's state to the way it was when vi  was started. 
Also, when it resumes in the foreground, the vi  editor needs to set the terminal state back to the way it wants it, 
and it needs to redraw the terminal screen. We see how a program such as vi  handles this in the example that 
follows. 

There are some interactions between the job-control signals. When any of the four stop signals (SIGTSTP, 
SIGSTOP, SIGTTIN , or SIGTTOU) is generated for a process, any pending SIGCONT signal for that process is 
discarded. Similarly, when the SIGCONT signal is generated for a process, any pending stop signals for that same 
process are discarded. 

Note that the default action for SIGCONT is to continue the process, if it is stopped; otherwise, the signal is 
ignored. Normally, we don't have to do anything with this signal. When SIGCONT is generated for a process that 
is stopped, the process is continued, even if the signal is blocked or ignored. 

Example 

The program in Figure 10.30 demonstrates the normal sequence of code used when a program 
handles job control. This program simply copies its standard input to its standard output, but 
comments are given in the signal handler for typical actions performed by a program that manages a 
screen. When the program in Figure 10.30 starts, it arranges to catch the SIGTSTP signal only if the 
signal's disposition is SIG_DFL. The reason is that when the program is started by a shell that doesn't 
support job control (/bin/sh , for example), the signal's disposition should be set to SIG_IGN . In 
fact, the shell doesn't explicitly ignore this signal; init  sets the disposition of the three job-control 
signals (SIGTSTP, SIGTTIN , and SIGTTOU) to SIG_IGN . This disposition is then inherited by all login 
shells. Only a job-control shell should reset the disposition of these three signals to SIG_DFL. 

When we type the suspend character, the process receives the SIGTSTP signal, and the signal handler 
is invoked. At this point, we would do any terminal-related processing: move the cursor to the 
lower-left corner, restore the terminal mode, and so on. We then send ourself the same signal, 



SIGTSTP, after resetting its disposition to its default (stop the process) and unblocking the signal. We 
have to unblock it since we're currently handling that same signal, and the system blocks it 
automatically while it's being caught. At this point, the system stops the process. It is continued only 
when it receives (usually from the job-control shell, in response to an interactive fg  command) 
aSIGCONT signal. We don't catch SIGCONT. Its default disposition is to continue the stopped process; 
when this happens, the program continues as though it returned from the kill  function. When the 
program is continued, we reset the disposition for the SIGTSTP signal and do whatever terminal 
processing we want (we could redraw the screen, for example). 

Figure 10.30. How to handle SIGTSTP 

#include "apue.h" 
 
#define BUFFSIZE   1024 
 
static void sig_tstp(int); 
 
int 
main(void) 
{ 
    int     n; 
    char    buf[BUFFSIZE]; 
 
    /* 
     * Only catch SIGTSTP if we're running with a j ob-control shell.  
     */ 
    if (signal(SIGTSTP, SIG_IGN) == SIG_DFL) 
        signal(SIGTSTP, sig_tstp); 
 
    while ((n = read(STDIN_FILENO, buf, BUFFSIZE)) > 0) 
        if (write(STDOUT_FILENO, buf, n) != n) 
            err_sys("write error"); 
 
    if (n < 0) 
        err_sys("read error"); 
 
    exit(0); 
} 
 
static void 
sig_tstp(int signo) /* signal handler for SIGTSTP * / 
{ 
    sigset_t    mask; 
 
    /* ... move cursor to lower left corner, reset tty mode ... */ 
 
    /* 
     * Unblock SIGTSTP, since it's blocked while we 're handling it. 
     */ 
    sigemptyset(&mask); 
    sigaddset(&mask, SIGTSTP); 
    sigprocmask(SIG_UNBLOCK, &mask, NULL); 
 
    signal(SIGTSTP, SIG_DFL);   /* reset dispositio n to default */ 
 
    kill(getpid(), SIGTSTP);    /* and send the sig nal to ourself */  
 
    /* we won't return from the kill until we're co ntinued */ 
 
    signal(SIGTSTP, sig_tstp);  /* reestablish sign al handler */ 



 
    /* ... reset tty mode, redraw screen ... */ 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.21. Additional Features 

In this section, we describe some additional implementation-dependent features of signals. 

Signal Names 

Some systems provide the array 

    extern char *sys_siglist[]; 

 

The array index is the signal number, giving a pointer to the character string name of the signal. 

FreeBSD 5.2.1, Linux 2.4.22, and Mac OS X 10.3 all provide this array of signal names. Solaris 9 does, too, but 
it uses the name _sys_siglist  instead. 

These systems normally provide the function psignal  also. 

#include <signal.h> 
 
void psignal(int signo, const char *msg);  

 

 

The string msg (which is normally the name of the program) is output to the standard error, followed by a colon 
and a space, followed by a description of the signal, followed by a newline. This function is similar to perror  
(Section 1.7). 

Another common function is strsignal . This function is similar to strerror  (also described in Section 1.7). 

#include <string.h> 
 
char *strsignal(int signo); 

 

Returns: a pointer to a string describing the signal 

 

Given a signal number, strsignal  will return a string that describes the signal. This string can be used by 
applications to print error messages about signals received. 

All the platforms discussed in this book provide the psignal  and strsignal  functions, but differences do 
occur. On Solaris 9, strsignal  will return a null pointer if the signal number is invalid, whereas FreeBSD 5.2.1, 
Linux 2.4.22, and Mac OS X 10.3 return a string indicating that the signal number is unrecognized. Also, to get 
the function prototype for psignal  on Solaris, you need to include <siginfo.h> . 

Signal Mappings 

Solaris provides a couple of functions to map a signal number to a signal name and vice versa. 



#include <signal.h> 
 
int sig2str(int signo, char *str); 
 
int str2sig(const char *str, int *signop);  

 

Both return: 0 if OK, –1 on error 

 

These functions are useful when writing interactive programs that need to accept and print signal names and 
numbers. 

The sig2str  function translates the given signal number into a string and stores the result in the memory 
pointed to by str. The caller must ensure that the memory is large enough to hold the longest string, including 
the terminating null byte. Solaris provides the constant SIG2STR_MAX in <signal.h>  to define the maximum 
string length. The string consists of the signal name without the "SIG" prefix. For example, translating SIGKILL  
would result in the string "KILL" being stored in the str memory buffer. 

The str2sig  function translates the given name into a signal number. The signal number is stored in the integer 
pointed to by signop. The name can be either the signal name without the "SIG" prefix or a string representation 
of the decimal signal number (i.e., "9"). 

Note that sig2str  and str2sig  depart from common practice and don't set errno  when they fail. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10.22. Summary 

Signals are used in most nontrivial applications. An understanding of the hows and whys of signal handling is 
essential to advanced UNIX System programming. This chapter has been a long and thorough look at UNIX 
System signals. We started by looking at the warts in previous implementations of signals and how they 
manifest themselves. We then proceeded to the POSIX.1 reliable-signal concept and all the related functions. 
Once we covered all these details, we were able to provide implementations of the POSIX.1 abort , system , 
and sleep  functions. We finished with a look at the job-control signals and the ways that we can convert 
between signal names and signal numbers. 
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11.1. Introduction 

We discussed processes in earlier chapters. We learned about the environment of a UNIX process, the 
relationships between processes, and ways to control processes. We saw that a limited amount of sharing can 
occur between related processes. 

In this chapter, we'll look inside a process further to see how we can use multiple threads of control (or simply 
threads) to perform multiple tasks within the environment of a single process. All threads within a single 
process have access to the same process components, such as file descriptors and memory. 

Any time you try to share a single resource among multiple users, you have to deal with consistency. We'll 
conclude the chapter with a look at the synchronization mechanisms available to prevent multiple threads from 
viewing inconsistencies in their shared resources. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11.2. Thread Concepts 

A typical UNIX process can be thought of as having a single thread of control: each process is doing only one 
thing at a time. With multiple threads of control, we can design our programs to do more than one thing at a 
time within a single process, with each thread handling a separate task. This approach can have several benefits. 

• We can simplify code that deals with asynchronous events by assigning a separate thread to handle each 
event type. Each thread can then handle its event using a synchronous programming model. A 
synchronous programming model is much simpler than an asynchronous one. 

• Multiple processes have to use complex mechanisms provided by the operating system to share memory 
and file descriptors, as we will see in Chapters 15 and 17. Threads, on the other hand, automatically 
have access to the same memory address space and file descriptors. 

• Some problems can be partitioned so that overall program throughput can be improved. A single process 
that has multiple tasks to perform implicitly serializes those tasks, because there is only one thread of 
control. With multiple threads of control, the processing of independent tasks can be interleaved by 
assigning a separate thread per task. Two tasks can be interleaved only if they don't depend on the 
processing performed by each other. 

• Similarly, interactive programs can realize improved response time by using multiple threads to separate 
the portions of the program that deal with user input and output from the other parts of the program. 

Some people associate multithreaded programming with multiprocessor systems. The benefits of a 
multithreaded programming model can be realized even if your program is running on a uniprocessor. A 
program can be simplified using threads regardless of the number of processors, because the number of 
processors doesn't affect the program structure. Furthermore, as long as your program has to block when 
serializing tasks, you can still see improvements in response time and throughput when running on a 
uniprocessor, because some threads might be able to run while others are blocked. 

A thread consists of the information necessary to represent an execution context within a process. This includes 
a thread ID that identifies the thread within a process, a set of register values, a stack, a scheduling priority and 
policy, a signal mask, an errno  variable (recall Section 1.7), and thread-specific data (Section 12.6). Everything 
within a process is sharable among the threads in a process, including the text of the executable program, the 
program's global and heap memory, the stacks, and the file descriptors. 

The threads interface we're about to see is from POSIX.1-2001. The threads interface, also known as "pthreads" 
for "POSIX threads," is an optional feature in POSIX.1-2001. The feature test macro for POSIX threads is 
_POSIX_THREADS. Applications can either use this in an #ifdef  test to determine at compile time whether 
threads are supported or call sysconf  with the _SC_THREADS constant to determine at runtime whether threads 
are supported. 

 
 
 
 
 
 
 
 
 
 
 
 



11.3. Thread Identification 

Just as every process has a process ID, every thread has a thread ID. Unlike the process ID, which is unique in 
the system, the thread ID has significance only within the context of the process to which it belongs. 

Recall that a process ID, represented by the pid_t  data type, is a non-negative integer. A thread ID is 
represented by the pthread_t  data type. Implementations are allowed to use a structure to represent the 
pthread_t  data type, so portable implementations can't treat them as integers. Therefore, a function must be 
used to compare two thread IDs. 

#include <pthread.h> 
 
int pthread_equal(pthread_t tid1, pthread_t tid2);  

 

Returns: nonzero if equal, 0 otherwise 

 

Linux 2.4.22 uses an unsigned long integer for the pthread_t  data type. Solaris 9 represents the pthread_t  
data type as an unsigned integer. FreeBSD 5.2.1 and Mac OS X 10.3 use a pointer to the pthread  structure for 
the pthread_t  data type. 

A consequence of allowing the pthread_t  data type to be a structure is that there is no portable way to print its 
value. Sometimes, it is useful to print thread IDs during program debugging, but there is usually no need to do 
so otherwise. At worst, this results in nonportable debug code, so it is not much of a limitation. 

A thread can obtain its own thread ID by calling the pthread_self  function. 

#include <pthread.h> 
 
pthread_t pthread_self(void); 

 

Returns: the thread ID of the calling thread 

 

This function can be used with pthread_equal  when a thread needs to identify data structures that are tagged 
with its thread ID. For example, a master thread might place work assignments on a queue and use the thread ID 
to control which jobs go to each worker thread. This is illustrated in Figure 11.1. A single master thread places 
new jobs on a work queue. A pool of three worker threads removes jobs from the queue. Instead of allowing 
each thread to process whichever job is at the head of the queue, the master thread controls job assignment by 
placing the ID of the thread that should process the job in each job structure. Each worker thread then removes 
only jobs that are tagged with its own thread ID. 

 

 

 

 



Figure 11.1. Work queue example 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11.4. Thread Creation 

The traditional UNIX process model supports only one thread of control per process. Conceptually, this is the 
same as a threads-based model whereby each process is made up of only one thread. With pthreads, when a 
program runs, it also starts out as a single process with a single thread of control. As the program runs, its 
behavior should be indistinguishable from the traditional process, until it creates more threads of control. 
Additional threads can be created by calling the pthread_create  function. 

#include <pthread.h> 
 
int pthread_create(pthread_t *restrict tidp, 
                   const pthread_attr_t *restrict a ttr, 
                   void *(*start_rtn)(void), void * restrict arg);  

 

Returns: 0 if OK, error number on failure 

 

The memory location pointed to by tidp is set to the thread ID of the newly created thread when 
pthread_create  returns successfully. The attr argument is used to customize various thread attributes. We'll 
cover thread attributes in Section 12.3, but for now, we'll set this to NULL to create a thread with the default 
attributes. 

The newly created thread starts running at the address of the start_rtn function. This function takes a single 
argument, arg, which is a typeless pointer. If you need to pass more than one argument to the start_rtn function, 
then you need to store them in a structure and pass the address of the structure in arg. 

When a thread is created, there is no guarantee which runs first: the newly created thread or the calling thread. 
The newly created thread has access to the process address space and inherits the calling thread's floating-point 
environment and signal mask; however, the set of pending signals for the thread is cleared. 

Note that the pthread functions usually return an error code when they fail. They don't set errno  like the other 
POSIX functions. The per thread copy of errno  is provided only for compatibility with existing functions that 
use it. With threads, it is cleaner to return the error code from the function, thereby restricting the scope of the 
error to the function that caused it, instead of relying on some global state that is changed as a side effect of the 
function. 

Example 

Although there is no portable way to print the thread ID, we can write a small test program that does, to gain 
some insight into how threads work. The program in Figure 11.2 creates one thread and prints the process and 
thread IDs of the new thread and the initial thread. 

This example has two oddities, necessary to handle races between the main thread and the new thread. (We'll 
learn better ways to deal with these later in this chapter.) The first is the need to sleep in the main thread. If it 
doesn't sleep, the main thread might exit, thereby terminating the entire process before the new thread gets a 
chance to run. This behavior is dependent on the operating system's threads implementation and scheduling 
algorithms. 

The second oddity is that the new thread obtains its thread ID by calling pthread_self  instead of reading it out 
of shared memory or receiving it as an argument to its thread-start routine. Recall that pthread_create  will 
return the thread ID of the newly created thread through the first parameter (tidp). In our example, the main 



thread stores this in ntid , but the new thread can't safely use it. If the new thread runs before the main thread 
returns from calling pthread_create , then the new thread will see the uninitialized contents of ntid  instead of 
the thread ID. 

Running the program in Figure 11.2 on Solaris gives us 

    $ ./a.out 
    main thread: pid 7225 tid 1 (0x1) 
    new thread:  pid 7225 tid 4 (0x4) 

 

As we expect, both threads have the same process ID, but different thread IDs. Running the program in Figure 
11.2 on FreeBSD gives us 

    $ ./a.out 
    main thread: pid 14954 tid 134529024 (0x804c000 ) 
    new thread:  pid 14954 tid 134530048 (0x804c400 ) 

 

As we expect, both threads have the same process ID. If we look at the thread IDs as decimal integers, the 
values look strange, but if we look at them in hexadecimal, they make more sense. As we noted earlier, 
FreeBSD uses a pointer to the thread data structure for its thread ID. 

We would expect Mac OS X to be similar to FreeBSD; however, the thread ID for the main thread is from a 
different address range than the thread IDs for threads created with pthread_create : 

    $ ./a.out 
    main thread: pid 779 tid 2684396012 (0xa000a1ec ) 
    new thread:  pid 779 tid 25166336 (0x1800200) 

 

Running the same program on Linux gives us slightly different results: 

    $ ./a.out 
    new thread:  pid 6628 tid 1026 (0x402) 
    main thread: pid 6626 tid 1024 (0x400) 

 

The Linux thread IDs look more reasonable, but the process IDs don't match. This is an artifact of the Linux 
threads implementation, where the clone  system call is used to implement pthread_create . The clone  system 
call creates a child process that can share a configurable amount of its parent's execution context, such as file 
descriptors and memory. 

Note also that the output from the main thread appears before the output from the thread we create, except on 
Linux. This illustrates that we can't make any assumptions about how threads will be scheduled. 

Figure 11.2. Printing thread IDs 

#include "apue.h" 
#include <pthread.h> 
 
pthread_t ntid; 
 
void 



printids(const char *s) 
{ 
    pid_t      pid; 
    pthread_t  tid; 
 
    pid = getpid(); 
    tid = pthread_self(); 
    printf("%s pid %u tid %u (0x%x)\n", s, (unsigne d int)pid,  
      (unsigned int)tid, (unsigned int)tid); 
} 
 
void * 
thr_fn(void *arg) 
{ 
    printids("new thread: "); 
    return((void *)0); 
} 
 
int 
main(void) 
{ 
    int     err; 
 
    err = pthread_create(&ntid, NULL, thr_fn, NULL) ; 
    if (err != 0) 
        err_quit("can't create thread: %s\n", strer ror(err));  
    printids("main thread:"); 
    sleep(1); 
    exit(0); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11.5. Thread Termination 

If any thread within a process calls exit , _Exit , or _exit , then the entire process terminates. Similarly, when 
the default action is to terminate the process, a signal sent to a thread will terminate the entire process (we'll talk 
more about the interactions between signals and threads in Section 12.8). 

A single thread can exit in three ways, thereby stopping its flow of control, without terminating the entire 
process. 

1. The thread can simply return from the start routine. The return value is the thread's exit code. 
2. The thread can be canceled by another thread in the same process. 
3. The thread can call pthread_exit . 

#include <pthread.h> 
 
void pthread_exit(void *rval_ptr);  

 

 

The rval_ptr is a typeless pointer, similar to the single argument passed to the start routine. This pointer is 
available to other threads in the process by calling the pthread_join  function. 

#include <pthread.h> 
 
int pthread_join(pthread_t thread, void **rval_ptr) ;  

 

Returns: 0 if OK, error number on failure 

 

The calling thread will block until the specified thread calls pthread_exit , returns from its start routine, or is 
canceled. If the thread simply returned from its start routine, rval_ptr will contain the return code. If the thread 
was canceled, the memory location specified by rval_ptr is set to PTHREAD_CANCELED. 

By calling pthread_join , we automatically place a thread in the detached state (discussed shortly) so that its 
resources can be recovered. If the thread was already in the detached state, calling pthread_join  fails, 
returning EINVAL. 

If we're not interested in a thread's return value, we can set rval_ptr to NULL. In this case, calling pthread_join  
allows us to wait for the specified thread, but does not retrieve the thread's termination status. 

Example 

Figure 11.3 shows how to fetch the exit code from a thread that has terminated. 

Running the program in Figure 11.3 gives us 

    $ ./a.out 
    thread 1 returning 
    thread 2 exiting 
    thread 1 exit code 1 
    thread 2 exit code 2 



 

As we can see, when a thread exits by calling pthread_exit  or by simply returning from the start routine, the 
exit status can be obtained by another thread by calling pthread_join . 

Figure 11.3. Fetching the thread exit status 

#include "apue.h" 
#include <pthread.h> 
 
void * 
thr_fn1(void *arg) 
{ 
    printf("thread 1 returning\n"); 
    return((void *)1); 
} 
 
void * 
thr_fn2(void *arg) 
{ 
    printf("thread 2 exiting\n"); 
    pthread_exit((void *)2); 
} 
 
int 
main(void) 
{ 
    int         err; 
    pthread_t   tid1, tid2; 
    void        *tret; 
 
    err = pthread_create(&tid1, NULL, thr_fn1, NULL ); 
    if (err != 0) 
        err_quit("can't create thread 1: %s\n", str error(err)); 
    err = pthread_create(&tid2, NULL, thr_fn2, NULL ); 
    if (err != 0) 
        err_quit("can't create thread 2: %s\n", str error(err)); 
    err = pthread_join(tid1, &tret); 
    if (err != 0) 
        err_quit("can't join with thread 1: %s\n", strerror(err));  
    printf("thread 1 exit code %d\n", (int)tret); 
    err = pthread_join(tid2, &tret); 
    if (err != 0) 
        err_quit("can't join with thread 2: %s\n", strerror(err));  
    printf("thread 2 exit code %d\n", (int)tret); 
    exit(0); 
} 

The typeless pointer passed to pthread_create  and pthread_exit  can be used to pass more than a single 
value. The pointer can be used to pass the address of a structure containing more complex information. Be 
careful that the memory used for the structure is still valid when the caller has completed. If the structure was 
allocated on the caller's stack, for example, the memory contents might have changed by the time the structure 
is used. For example, if a thread allocates a structure on its stack and passes a pointer to this structure to 
pthread_exit , then the stack might be destroyed and its memory reused for something else by the time the 
caller of pthread_join  tries to use it. 

Example 



The program in Figure 11.4 shows the problem with using an automatic variable (allocated on the stack) as the 
argument to pthread_exit . 

When we run this program on Linux, we get 

   $ ./a.out 
   thread 1: 
     structure at 0x409a2abc 
     foo.a = 1 
     foo.b = 2 
     foo.c = 3 
     foo.d = 4 
   parent starting second thread 
   thread 2: ID is 32770 
   parent: 
     structure at 0x409a2abc 
     foo.a = 0 
     foo.b = 32770 
     foo.c = 1075430560 
     foo.d = 1073937284 

 

Of course, the results vary, depending on the memory architecture, the compiler, and the implementation of the 
threads library. The results on FreeBSD are similar: 

   $ ./a.out 
   thread 1: 
     structure at 0xbfafefc0 
     foo.a = 1 
     foo.b = 2 
     foo.c = 3 
     foo.d = 4 
   parent starting second thread 
   thread 2: ID is 134534144 
   parent: 
     structure at 0xbfafefc0 
     foo.a = 0 
     foo.b = 134534144 
     foo.c = 3 
     foo.d = 671642590 

 

As we can see, the contents of the structure (allocated on the stack of thread tid1) have changed by the time the 
main thread can access the structure. Note how the stack of the second thread (tid2) has overwritten the first 
thread's stack. To solve this problem, we can either use a global structure or allocate the structure using malloc . 

Figure 11.4. Incorrect use of pthread_exit argument 

#include "apue.h" 
#include <pthread.h> 
 
struct foo { 
    int a, b, c, d; 
}; 
 
void 
printfoo(const char *s, const struct foo *fp) 
{ 



    printf(s); 
    printf("  structure at 0x%x\n", (unsigned)fp); 
    printf("  foo.a = %d\n", fp->a); 
    printf("  foo.b = %d\n", fp->b); 
    printf("  foo.c = %d\n", fp->c); 
    printf("  foo.d = %d\n", fp->d); 
} 
 
void * 
thr_fn1(void *arg) 
{ 
 
    struct foo  foo = {1, 2, 3, 4}; 
 
    printfoo("thread 1:\n", &foo); 
    pthread_exit((void *)&foo); 
} 
 
void * 
thr_fn2(void *arg) 
{ 
    printf("thread 2: ID is %d\n", pthread_self());  
    pthread_exit((void *)0); 
} 
int 
main(void) 
{ 
    int         err; 
    pthread_t   tid1, tid2; 
    struct foo  *fp; 
 
    err = pthread_create(&tid1, NULL, thr_fn1, NULL ); 
    if (err != 0) 
        err_quit("can't create thread 1: %s\n", str error(err)); 
    err = pthread_join(tid1, (void *)&fp); 
    if (err != 0) 
        err_quit("can't join with thread 1: %s\n", strerror(err));  
    sleep(1); 
    printf("parent starting second thread\n"); 
    err = pthread_create(&tid2, NULL, thr_fn2, NULL ); 
    if (err != 0) 
        err_quit("can't create thread 2: %s\n", str error(err)); 
    sleep(1); 
    printfoo("parent:\n", fp); 
    exit(0); 
} 

One thread can request that another in the same process be canceled by calling the pthread_cancel  function. 

#include <pthread.h> 
 
int pthread_cancel(pthread_t tid);  

 

Returns: 0 if OK, error number on failure 

 

In the default circumstances, pthread_cancel  will cause the thread specified by tid to behave as if it had called 
pthread_exit  with an argument of PTHREAD_CANCELED. However, a thread can elect to ignore or otherwise 



control how it is canceled. We will discuss this in detail in Section 12.7. Note that pthread_cancel  doesn't 
wait for the thread to terminate. It merely makes the request. 

A thread can arrange for functions to be called when it exits, similar to the way that the atexit  function 
(Section 7.3) can be used by a process to arrange that functions can be called when the process exits. The 
functions are known as thread cleanup handlers. More than one cleanup handler can be established for a thread. 
The handlers are recorded in a stack, which means that they are executed in the reverse order from that with 
which they were registered. 

#include <pthread.h> 
 
void pthread_cleanup_push(void (*rtn)(void *), void  *arg);  
 
void pthread_cleanup_pop(int execute); 

 

 

The pthread_cleanup_push  function schedules the cleanup function, rtn, to be called with the single argument, 
arg, when the thread performs one of the following actions: 

• Makes a call to pthread_exit  
• Responds to a cancellation request 
• Makes a call to pthread_cleanup_pop  with a nonzero execute argument 

If the execute argument is set to zero, the cleanup function is not called. In either case, pthread_cleanup_pop  
removes the cleanup handler established by the last call to pthread_cleanup_push . 

A restriction with these functions is that, because they can be implemented as macros, they must be used in 
matched pairs within the same scope in a thread. The macro definition of pthread_cleanup_push  can include a 
{  character, in which case the matching }  character is in the pthread_cleanup_pop  definition. 

Example 

Figure 11.5 shows how to use thread cleanup handlers. Although the example is somewhat contrived, it 
illustrates the mechanics involved. Note that although we never intend to pass a nonzero argument to the thread 
start-up routines, we still need to match calls to pthread_cleanup_pop  with the calls to 
pthread_cleanup_push ; otherwise, the program might not compile. 

Running the program in Figure 11.5 gives us 

    $ ./a.out 
    thread 1 start 
    thread 1 push complete 
    thread 2 start 
    thread 2 push complete 
    cleanup: thread 2 second handler 
    cleanup: thread 2 first handler 
    thread 1 exit code 1 
    thread 2 exit code 2 

 

From the output, we can see that both threads start properly and exit, but that only the second thread's cleanup 
handlers are called. Thus, if the thread terminates by returning from its start routine, its cleanup handlers are not 



called. Also note that the cleanup handlers are called in the reverse order from which they were installed. 

Figure 11.5. Thread cleanup handler 

#include "apue.h" 
#include <pthread.h> 
 
void 
cleanup(void *arg) 
{ 
    printf("cleanup: %s\n", (char *)arg); 
} 
 
void * 
thr_fn1(void *arg) 
{ 
    printf("thread 1 start\n"); 
    pthread_cleanup_push(cleanup, "thread 1 first h andler"); 
    pthread_cleanup_push(cleanup, "thread 1 second handler"); 
    printf("thread 1 push complete\n"); 
    if (arg) 
        return((void *)1); 
    pthread_cleanup_pop(0); 
    pthread_cleanup_pop(0); 
    return((void *)1); 
} 
 
void * 
thr_fn2(void *arg) 
{ 
    printf("thread 2 start\n"); 
    pthread_cleanup_push(cleanup, "thread 2 first h andler"); 
    pthread_cleanup_push(cleanup, "thread 2 second handler"); 
    printf("thread 2 push complete\n"); 
    if (arg) 
        pthread_exit((void *)2); 
    pthread_cleanup_pop(0); 
    pthread_cleanup_pop(0); 
    pthread_exit((void *)2); 
} 
 
int 
main(void) 
{ 
    int         err; 
    pthread_t   tid1, tid2; 
    void        *tret; 
 
    err = pthread_create(&tid1, NULL, thr_fn1, (voi d *)1); 
    if (err != 0) 
        err_quit("can't create thread 1: %s\n", str error(err)); 
    err = pthread_create(&tid2, NULL, thr_fn2, (voi d *)1); 
    if (err != 0) 
        err_quit("can't create thread 2: %s\n", str error(err)); 
    err = pthread_join(tid1, &tret); 
      if (err != 0) 
        err_quit("can't join with thread 1: %s\n", strerror(err));  
    printf("thread 1 exit code %d\n", (int)tret); 
    err = pthread_join(tid2, &tret); 
    if (err != 0) 
        err_quit("can't join with thread 2: %s\n", strerror(err));  



    printf("thread 2 exit code %d\n", (int)tret); 
    exit(0); 
} 

By now, you should begin to see similarities between the thread functions and the process functions. Figure 
11.6 summarizes the similar functions. 

Figure 11.6. Comparison of process and thread primitives 

Process primitive Thread primitive Description 

fork  pthread_create  create a new flow of control 

exit  pthread_exit  exit from an existing flow of control 

waitpid  pthread_join  get exit status from flow of control 

atexit  pthread_cancel_push  register function to be called at exit from flow of control 

getpid  pthread_self  get ID for flow of control 

abort  pthread_cancel  request abnormal termination of flow of control 

 

By default, a thread's termination status is retained until pthread_join  is called for that thread. A thread's 
underlying storage can be reclaimed immediately on termination if that thread has been detached. When a 
thread is detached, the pthread_join  function can't be used to wait for its termination status. A call to 
pthread_join  for a detached thread will fail, returning EINVAL. We can detach a thread by calling 
pthread_detach . 

#include <pthread.h> 
 
int pthread_detach(pthread_t tid);  

 

Returns: 0 if OK, error number on failure 

 

As we will see in the next chapter, we can create a thread that is already in the detached state by modifying the 
thread attributes we pass to pthread_create . 

 
 
 
 
 
 
 
 
 
 
 



11.6. Thread Synchronization 

When multiple threads of control share the same memory, we need to make sure that each thread sees a 
consistent view of its data. If each thread uses variables that other threads don't read or modify, no consistency 
problems exist. Similarly, if a variable is read-only, there is no consistency problem with more than one thread 
reading its value at the same time. However, when one thread can modify a variable that other threads can read 
or modify, we need to synchronize the threads to ensure that they don't use an invalid value when accessing the 
variable's memory contents. 

When one thread modifies a variable, other threads can potentially see inconsistencies when reading the value 
of the variable. On processor architectures in which the modification takes more than one memory cycle, this 
can happen when the memory read is interleaved between the memory write cycles. Of course, this behavior is 
architecture dependent, but portable programs can't make any assumptions about what type of processor 
architecture is being used. 

Figure 11.7 shows a hypothetical example of two threads reading and writing the same variable. In this example, 
thread A reads the variable and then writes a new value to it, but the write operation takes two memory cycles. 
If thread B reads the same variable between the two write cycles, it will see an inconsistent value. 

Figure 11.7. Interleaved memory cycles with two threads 

 

 

To solve this problem, the threads have to use a lock that will allow only one thread to access the variable at a 
time. Figure 11.8 shows this synchronization. If it wants to read the variable, thread B acquires a lock. Similarly, 
when thread A updates the variable, it acquires the same lock. Thus, thread B will be unable to read the variable 
until thread A releases the lock. 

 

 

 

 

 



Figure 11.8. Two threads synchronizing memory access 

 

 

You also need to synchronize two or more threads that might try to modify the same variable at the same time. 
Consider the case in which you increment a variable (Figure 11.9). The increment operation is usually broken 
down into three steps. 

1. Read the memory location into a register. 
2. Increment the value in the register. 
3. Write the new value back to the memory location. 

 

 

 

 

 

 

 

 

 

 



 

Figure 11.9. Two unsynchronized threads incrementing the same variable 

 
 

If two threads try to increment the same variable at almost the same time without synchronizing with each other, 
the results can be inconsistent. You end up with a value that is either one or two greater than before, depending 
on the value observed when the second thread starts its operation. If the second thread performs step 1 before 
the first thread performs step 3, the second thread will read the same initial value as the first thread, increment it, 
and write it back, with no net effect. 

If the modification is atomic, then there isn't a race. In the previous example, if the increment takes only one 
memory cycle, then no race exists. If our data always appears to be sequentially consistent, then we need no 
additional synchronization. Our operations are sequentially consistent when multiple threads can't observe 
inconsistencies in our data. In modern computer systems, memory accesses take multiple bus cycles, and 
multiprocessors generally interleave bus cycles among multiple processors, so we aren't guaranteed that our 
data is sequentially consistent. 

In a sequentially consistent environment, we can explain modifications to our data as a sequential step of 
operations taken by the running threads. We can say such things as "Thread A incremented the variable, then 
thread B incremented the variable, so its value is two greater than before" or "Thread B incremented the 
variable, then thread A incremented the variable, so its value is two greater than before." No possible ordering 
of the two threads can result in any other value of the variable. 

Besides the computer architecture, races can arise from the ways in which our programs use variables, creating 
places where it is possible to view inconsistencies. For example, we might increment a variable and then make a 
decision based on its value. The combination of the increment step and the decision-making step aren't atomic, 
so this opens a window where inconsistencies can arise. 



Mutexes 

We can protect our data and ensure access by only one thread at a time by using the pthreads mutual-exclusion 
interfaces. A mutex is basically a lock that we set (lock) before accessing a shared resource and release (unlock) 
when we're done. While it is set, any other thread that tries to set it will block until we release it. If more than 
one thread is blocked when we unlock the mutex, then all threads blocked on the lock will be made runnable, 
and the first one to run will be able to set the lock. The others will see that the mutex is still locked and go back 
to waiting for it to become available again. In this way, only one thread will proceed at a time. 

This mutual-exclusion mechanism works only if we design our threads to follow the same data-access rules. 
The operating system doesn't serialize access to data for us. If we allow one thread to access a shared resource 
without first acquiring a lock, then inconsistencies can occur even though the rest of our threads do acquire the 
lock before attempting to access the shared resource. 

A mutex variable is represented by the pthread_mutex_t  data type. Before we can use a mutex variable, we 
must first initialize it by either setting it to the constant PTHREAD_MUTEX_INITIALIZER (for statically-allocated 
mutexes only) or calling pthread_mutex_init . If we allocate the mutex dynamically (by calling malloc , for 
example), then we need to call pthread_mutex_destroy  before freeing the memory. 

#include <pthread.h> 
 
int pthread_mutex_init(pthread_mutex_t *restrict mu tex, 
                       const pthread_mutexattr_t *r estrict attr);  
 
int pthread_mutex_destroy(pthread_mutex_t *mutex); 

 

Both return: 0 if OK, error number on failure 

 

To initialize a mutex with the default attributes, we set attr to NULL. We will discuss nondefault mutex attributes 
in Section 12.4. 

To lock a mutex, we call pthread_mutex_lock . If the mutex is already locked, the calling thread will block 
until the mutex is unlocked. To unlock a mutex, we call pthread_mutex_unlock . 

#include <pthread.h> 
 
int pthread_mutex_lock(pthread_mutex_t *mutex); 
 
int pthread_mutex_trylock(pthread_mutex_t *mutex);  
 
int pthread_mutex_unlock(pthread_mutex_t *mutex); 

 

All return: 0 if OK, error number on failure 

 

If a thread can't afford to block, it can use pthread_mutex_trylock  to lock the mutex conditionally. If the 
mutex is unlocked at the time pthread_mutex_trylock  is called, then pthread_mutex_trylock  will lock the 
mutex without blocking and return 0. Otherwise, pthread_mutex_trylock  will fail, returning EBUSY without 
locking the mutex. 



Example 

Figure 11.10 illustrates a mutex used to protect a data structure. When more than one thread needs to 
access a dynamically-allocated object, we can embed a reference count in the object to ensure that 
we don't free its memory before all threads are done using it. 

We lock the mutex before incrementing the reference count, decrementing the reference count, and 
checking whether the reference count reaches zero. No locking is necessary when we initialize the 
reference count to 1 in the foo_alloc  function, because the allocating thread is the only reference to 
it so far. If we were to place the structure on a list at this point, it could be found by other threads, so 
we would need to lock it first. 

Before using the object, threads are expected to add a reference count to it. When they are done, they 
must release the reference. When the last reference is released, the object's memory is freed. 

Figure 11.10. Using a mutex to protect a data structure 

#include <stdlib.h> 
#include <pthread.h> 
 
struct foo { 
    int             f_count; 
    pthread_mutex_t f_lock; 
    /* ... more stuff here ... */ 
}; 
 
struct foo * 
foo_alloc(void) /* allocate the object */ 
{ 
    struct foo *fp; 
 
    if ((fp = malloc(sizeof(struct foo))) != NULL) { 
        fp->f_count = 1; 
        if (pthread_mutex_init(&fp->f_lock, NULL) ! = 0) { 
            free(fp); 
            return(NULL); 
        } 
        /* ... continue initialization ... */ 
    } 
    return(fp); 
} 
 
void 
foo_hold(struct foo *fp) /* add a reference to the object */ 
{ 
    pthread_mutex_lock(&fp->f_lock); 
    fp->f_count++; 
    pthread_mutex_unlock(&fp->f_lock); 
} 
 
void 
foo_rele(struct foo *fp) /* release a reference to the object */  
{ 
    pthread_mutex_lock(&fp->f_lock); 
    if (--fp->f_count == 0) { /* last reference */ 
        pthread_mutex_unlock(&fp->f_lock); 
        pthread_mutex_destroy(&fp->f_lock); 
        free(fp); 
    } else { 



        pthread_mutex_unlock(&fp->f_lock); 
    } 
} 

Deadlock Avoidance 

A thread will deadlock itself if it tries to lock the same mutex twice, but there are less obvious ways to create 
deadlocks with mutexes. For example, when we use more than one mutex in our programs, a deadlock can 
occur if we allow one thread to hold a mutex and block while trying to lock a second mutex at the same time 
that another thread holding the second mutex tries to lock the first mutex. Neither thread can proceed, because 
each needs a resource that is held by the other, so we have a deadlock. 

Deadlocks can be avoided by carefully controlling the order in which mutexes are locked. For example, assume 
that you have two mutexes, A and B, that you need to lock at the same time. If all threads always lock mutex A 
before mutex B, no deadlock can occur from the use of the two mutexes (but you can still deadlock on other 
resources). Similarly, if all threads always lock mutex B before mutex A, no deadlock will occur. You'll have 
the potential for a deadlock only when one thread attempts to lock the mutexes in the opposite order from 
another thread. 

Sometimes, an application's architecture makes it difficult to apply a lock ordering. If enough locks and data 
structures are involved that the functions you have available can't be molded to fit a simple hierarchy, then 
you'll have to try some other approach. In this case, you might be able to release your locks and try again at a 
later time. You can use the pthread_mutex_trylock  interface to avoid deadlocking in this case. If you are 
already holding locks and pthread_mutex_trylock  is successful, then you can proceed. If it can't acquire the 
lock, however, you can release the locks you already hold, clean up, and try again later. 

Example 

In this example, we update Figure 11.10 to show the use of two mutexes. We avoid deadlocks by 
ensuring that when we need to acquire two mutexes at the same time, we always lock them in the 
same order. The second mutex protects a hash list that we use to keep track of the foo  data 
structures. Thus, the hashlock  mutex protects both the fh  hash table and the f_next  hash link field 
in the foo  structure. The f_lock  mutex in the foo  structure protects access to the remainder of the 
foo  structure's fields. 

Comparing Figure 11.11 with Figure 11.10, we see that our allocation function now locks the hash 
list lock, adds the new structure to a hash bucket, and before unlocking the hash list lock, locks the 
mutex in the new structure. Since the new structure is placed on a global list, other threads can find 
it, so we need to block them if they try to access the new structure, until we are done initializing it. 

The foo_find  function locks the hash list lock and searches for the requested structure. If it is 
found, we increase the reference count and return a pointer to the structure. Note that we honor the 
lock ordering by locking the hash list lock in foo_find  before foo_hold  locks the foo  structure's 
f_lock  mutex. 

Now with two locks, the foo_rele  function is more complicated. If this is the last reference, we 
need to unlock the structure mutex so that we can acquire the hash list lock, since we'll need to 
remove the structure from the hash list. Then we reacquire the structure mutex. Because we could 
have blocked since the last time we held the structure mutex, we need to recheck the condition to see 
whether we still need to free the structure. If another thread found the structure and added a 
reference to it while we blocked to honor the lock ordering, we simply need to decrement the 



reference count, unlock everything, and return. 

This locking is complex, so we need to revisit our design. We can simplify things considerably by 
using the hash list lock to protect the structure reference count, too. The structure mutex can be used 
to protect everything else in the foo  structure. Figure 11.12 reflects this change. 

Note how much simpler the program in Figure 11.12 is compared to the program in Figure 11.11. 
The lock-ordering issues surrounding the hash list and the reference count go away when we use the 
same lock for both purposes. Multithreaded software design involves these types of tradeoffs. If 
your locking granularity is too coarse, you end up with too many threads blocking behind the same 
locks, with little improvement possible from concurrency. If your locking granularity is too fine, 
then you suffer bad performance from excess locking overhead, and you end up with complex code. 
As a programmer, you need to find the correct balance between code complexity and performance, 
and still satisfy your locking requirements. 

Figure 11.11. Using two mutexes 

#include <stdlib.h> 
#include <pthread.h> 
 
#define NHASH 29 
#define HASH(fp) (((unsigned long)fp)%NHASH) 
struct foo *fh[NHASH]; 
 
pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZE R; 
 
struct foo { 
    int             f_count; 
    pthread_mutex_t f_lock; 
    struct foo     *f_next; /* protected by hashloc k */ 
    int             f_id; 
    /* ... more stuff here ... */ 
}; 
 
struct foo * 
foo_alloc(void) /* allocate the object */ 
{ 
    struct foo  *fp; 
    int         idx; 
 
    if ((fp = malloc(sizeof(struct foo))) != NULL) { 
        fp->f_count = 1; 
        if (pthread_mutex_init(&fp->f_lock, NULL) ! = 0) { 
            free(fp); 
            return(NULL); 
        } 
        idx = HASH(fp); 
        pthread_mutex_lock(&hashlock); 
        fp->f_next = fh[idx]; 
        fh[idx] = fp->f_next; 
        pthread_mutex_lock(&fp->f_lock); 
        pthread_mutex_unlock(&hashlock); 
        /* ... continue initialization ... */ 
        pthread_mutex_unlock(&fp->f_lock); 
    } 
    return(fp); 
} 
 



void 
foo_hold(struct foo *fp) /* add a reference to the object */ 
{ 
    pthread_mutex_lock(&fp->f_lock); 
    fp->f_count++; 
    pthread_mutex_unlock(&fp->f_lock); 
} 
 
struct foo * 
foo_find(int id) /* find an existing object */ 
{ 
    struct foo *fp; 
    int        idx; 
 
    idx = HASH(fp); 
 
    pthread_mutex_lock(&hashlock); 
    for (fp = fh[idx]; fp != NULL; fp = fp->f_next)  { 
        if (fp->f_id == id) { 
            foo_hold(fp); 
            break; 
        } 
    } 
    pthread_mutex_unlock(&hashlock); 
    return(fp); 
} 
 
void 
foo_rele(struct foo *fp) /* release a reference to the object */  
{ 
    struct foo  *tfp; 
    int         idx; 
 
    pthread_mutex_lock(&fp->f_lock); 
    if (fp->f_count == 1) { /* last reference */ 
        pthread_mutex_unlock(&fp->f_lock); 
        pthread_mutex_lock(&hashlock); 
        pthread_mutex_lock(&fp->f_lock); 
        /* need to recheck the condition */ 
        if (fp->f_count != 1) { 
            fp->f_count--; 
            pthread_mutex_unlock(&fp->f_lock); 
            pthread_mutex_unlock(&hashlock); 
            return; 
        } 
        /* remove from list */ 
        idx = HASH(fp); 
        tfp = fh[idx]; 
        if (tfp == fp) { 
            fh[idx] = fp->f_next; 
        } else { 
            while (tfp->f_next != fp) 
                tfp = tfp->f_next; 
            tfp->f_next = fp->f_next; 
        } 
        pthread_mutex_unlock(&hashlock); 
        pthread_mutex_unlock(&fp->f_lock); 
        pthread_mutex_destroy(&fp->f_lock); 
        free(fp); 
    } else { 
        fp->f_count--; 
        pthread_mutex_unlock(&fp->f_lock); 



    } 
} 

Figure 11.12. Simplified locking 

#include <stdlib.h> 
#include <pthread.h> 
 
#define NHASH 29 
#define HASH(fp) (((unsigned long)fp)%NHASH) 
 
struct foo *fh[NHASH]; 
pthread_mutex_t hashlock = PTHREAD_MUTEX_INITIALIZE R; 
 
struct foo { 
    int             f_count; /* protected by hashlo ck */ 
    pthread_mutex_t f_lock; 
    struct foo     *f_next; /* protected by hashloc k */ 
    int             f_id; 
    /* ... more stuff here ... */ 
}; 
 
struct foo * 
foo_alloc(void) /* allocate the object */ 
{ 
    struct foo  *fp; 
    int         idx; 
 
    if ((fp = malloc(sizeof(struct foo))) != NULL) { 
        fp->f_count = 1; 
        if (pthread_mutex_init(&fp->f_lock, NULL) ! = 0) { 
            free(fp); 
            return(NULL); 
        } 
        idx = HASH(fp); 
        pthread_mutex_lock(&hashlock); 
        fp->f_next = fh[idx]; 
        fh[idx] = fp->f_next; 
        pthread_mutex_lock(&fp->f_lock); 
        pthread_mutex_unlock(&hashlock); 
        /* ... continue initialization ... */ 
    } 
    return(fp); 
 
} 
 
void 
foo_hold(struct foo *fp) /* add a reference to the object */ 
{ 
    pthread_mutex_lock(&hashlock); 
    fp->f_count++; 
    pthread_mutex_unlock(&hashlock); 
} 
 
struct foo * 
foo_find(int id) /* find a existing object */ 
{ 
    struct foo  *fp; 
    int         idx; 
 
    idx = HASH(fp); 
    pthread_mutex_lock(&hashlock); 



    for (fp = fh[idx]; fp != NULL; fp = fp->f_next)  { 
        if (fp->f_id == id) { 
            fp->f_count++; 
            break; 
        } 
    } 
    pthread_mutex_unlock(&hashlock); 
    return(fp); 
} 
 
void 
foo_rele(struct foo *fp) /* release a reference to the object */ 
{ 
    struct foo  *tfp; 
    int         idx; 
 
    pthread_mutex_lock(&hashlock); 
    if (--fp->f_count == 0) { /* last reference, re move from list */  
        idx = HASH(fp); 
        tfp = fh[idx]; 
        if (tfp == fp) { 
            fh[idx] = fp->f_next; 
 
        } else { 
            while (tfp->f_next != fp) 
                tfp = tfp->f_next; 
            tfp->f_next = fp->f_next; 
        } 
        pthread_mutex_unlock(&hashlock); 
        pthread_mutex_destroy(&fp->f_lock); 
        free(fp); 
    } else { 
        pthread_mutex_unlock(&hashlock); 
    } 
} 

Reader–Writer Locks 

Reader–writer locks are similar to mutexes, except that they allow for higher degrees of parallelism. With a 
mutex, the state is either locked or unlocked, and only one thread can lock it at a time. Three states are possible 
with a reader–writer lock: locked in read mode, locked in write mode, and unlocked. Only one thread at a time 
can hold a reader–writer lock in write mode, but multiple threads can hold a reader–writer lock in read mode at 
the same time. 

When a reader–writer lock is write-locked, all threads attempting to lock it block until it is unlocked. When a 
reader–writer lock is read-locked, all threads attempting to lock it in read mode are given access, but any 
threads attempting to lock it in write mode block until all the threads have relinquished their read locks. 
Although implementations vary, reader–writer locks usually block additional readers if a lock is already held in 
read mode and a thread is blocked trying to acquire the lock in write mode. This prevents a constant stream of 
readers from starving waiting writers. 

Reader–writer locks are well suited for situations in which data structures are read more often than they are 
modified. When a reader–writer lock is held in write mode, the data structure it protects can be modified safely, 
since only one thread at a time can hold the lock in write mode. When the reader–writer lock is held in read 
mode, the data structure it protects can be read by multiple threads, as long as the threads first acquire the lock 
in read mode. 



Reader–writer locks are also called shared–exclusive locks. When a reader–writer lock is read-locked, it is said 
to be locked in shared mode. When it is write-locked, it is said to be locked in exclusive mode. 

As with mutexes, reader–writer locks must be initialized before use and destroyed before freeing their 
underlying memory. 

#include <pthread.h> 
 
int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, 
                        const pthread_rwlockattr_t *restrict attr);  
 
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock ); 

 

Both return: 0 if OK, error number on failure 

 

A reader–writer lock is initialized by calling pthread_rwlock_init . We can pass a null pointer for attr if we 
want the reader–writer lock to have the default attributes. We discuss reader–writer lock attributes in Section 
12.4. 

Before freeing the memory backing a reader–writer lock, we need to call pthread_rwlock_destroy  to clean it 
up. If pthread_rwlock_init  allocated any resources for the reader–writer lock, pthread_rwlock_destroy  
frees those resources. If we free the memory backing a reader–writer lock without first calling 
pthread_rwlock_destroy , any resources assigned to the lock will be lost. 

To lock a reader–writer lock in read mode, we call pthread_rwlock_rdlock . To write-lock a reader–writer 
lock, we call pthread_rwlock_wrlock . Regardless of how we lock a reader–writer lock, we can call 
pthread_rwlock_unlock  to unlock it. 

#include <pthread.h> 
 
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) ;  
 
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) ;  
 
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) ;  

 

All return: 0 if OK, error number on failure 

 

Implementations might place a limit on the number of times a reader–writer lock can be locked in shared mode, 
so we need to check the return value of pthread_rwlock_rdlock . Even though pthread_rwlock_wrlock  and 
pthread_rwlock_unlock  have error returns, we don't need to check them if we design our locking properly. 
The only error returns defined are when we use them improperly, such as with an uninitialized lock, or when we 
might deadlock by attempting to acquire a lock we already own. 

The Single UNIX Specification also defines conditional versions of the reader–writer locking primitives. 



#include <pthread.h> 
 
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlo ck);  
 
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlo ck);  

 

Both return: 0 if OK, error number on failure 

 

When the lock can be acquired, these functions return 0. Otherwise, they return the error EBUSY. These 
functions can be used in situations in which conforming to a lock hierarchy isn't enough to avoid a deadlock, as 
we discussed previously. 

Example 

The program in Figure 11.13 illustrates the use of reader–writer locks. A queue of job requests is 
protected by a single reader–writer lock. This example shows a possible implementation of Figure 
11.1, whereby multiple worker threads obtain jobs assigned to them by a single master thread. 

In this example, we lock the queue's reader–writer lock in write mode whenever we need to add a 
job to the queue or remove a job from the queue. Whenever we search the queue, we grab the lock in 
read mode, allowing all the worker threads to search the queue concurrently. Using a reader–writer 
lock will improve performance in this case only if threads search the queue much more frequently 
than they add or remove jobs. 

The worker threads take only those jobs that match their thread ID off the queue. Since the job 
structures are used only by one thread at a time, they don't need any extra locking. 

Figure 11.13. Using reader–writer locks 

#include <stdlib.h> 
#include <pthread.h> 
 
struct job { 
    struct job *j_next; 
    struct job *j_prev; 
    pthread_t   j_id;   /* tells which thread handl es this job */  
    /* ... more stuff here ... */ 
}; 
 
struct queue { 
    struct job      *q_head; 
    struct job      *q_tail; 
    pthread_rwlock_t q_lock; 
}; 
 
/* 
* Initialize a queue. 
*/ 
int 
queue_init(struct queue *qp) 
{ 
    int err; 
 
    qp->q_head = NULL; 
    qp->q_tail = NULL; 



    err = pthread_rwlock_init(&qp->q_lock, NULL); 
    if (err != 0) 
        return(err); 
 
    /* ... continue initialization ... */ 
 
    return(0); 
} 
 
/* 
 * Insert a job at the head of the queue. 
 */ 
void 
job_insert(struct queue *qp, struct job *jp) 
{ 
    pthread_rwlock_wrlock(&qp->q_lock); 
    jp->j_next = qp->q_head; 
    jp->j_prev = NULL; 
    if (qp->q_head != NULL) 
        qp->q_head->j_prev = jp; 
    else 
        qp->q_tail = jp;      /* list was empty */ 
    qp->q_head = jp; 
    pthread_rwlock_unlock(&qp->q_lock); 
} 
 
/* 
 * Append a job on the tail of the queue. 
 */ 
void 
job_append(struct queue *qp, struct job *jp) 
{ 
    pthread_rwlock_wrlock(&qp->q_lock); 
    jp->j_next = NULL; 
    jp->j_prev = qp->q_tail; 
    if (qp->q_tail != NULL) 
        qp->q_tail->j_next = jp; 
    else 
        qp->q_head = jp;   /* list was empty */ 
    qp->q_tail = jp; 
    pthread_rwlock_unlock(&qp->q_lock); 
} 
 
/* 
 * Remove the given job from a queue. 
 */ 
void 
job_remove(struct queue *qp, struct job *jp) 
{ 
    pthread_rwlock_wrlock(&qp->q_lock); 
    if (jp == qp->q_head) { 
        qp->q_head = jp->j_next; 
        if (qp->q_tail == jp) 
            qp->q_tail = NULL; 
    } else if (jp == qp->q_tail) { 
        qp->q_tail = jp->j_prev; 
        if (qp->q_head == jp) 
            qp->q_head = NULL; 
    } else { 
        jp->j_prev->j_next = jp->j_next; 
        jp->j_next->j_prev = jp->j_prev; 
    } 



    pthread_rwlock_unlock(&qp->q_lock); 
} 
/* 
 * Find a job for the given thread ID. 
 */ 
struct job * 
job_find(struct queue *qp, pthread_t id) 
{ 
    struct job *jp; 
 
    if (pthread_rwlock_rdlock(&qp->q_lock) != 0) 
        return(NULL); 
 
    for (jp = qp->q_head; jp != NULL; jp = jp->j_ne xt) 
         if (pthread_equal(jp->j_id, id)) 
             break; 
 
    pthread_rwlock_unlock(&qp->q_lock); 
    return(jp); 
} 

Condition Variables 

Condition variables are another synchronization mechanism available to threads. Condition variables provide a 
place for threads to rendezvous. When used with mutexes, condition variables allow threads to wait in a race-
free way for arbitrary conditions to occur. 

The condition itself is protected by a mutex. A thread must first lock the mutex to change the condition state. 
Other threads will not notice the change until they acquire the mutex, because the mutex must be locked to be 
able to evaluate the condition. 

Before a condition variable is used, it must first be initialized. A condition variable, represented by the 
pthread_cond_t  data type, can be initialized in two ways. We can assign the constant 
PTHREAD_COND_INITIALIZER to a statically-allocated condition variable, but if the condition variable is 
allocated dynamically, we can use the pthread_cond_init  function to initialize it. 

We can use the pthread_mutex_destroy  function to deinitialize a condition variable before freeing its 
underlying memory. 

#include <pthread.h> 
 
int pthread_cond_init(pthread_cond_t *restrict cond , 
                      pthread_condattr_t *restrict attr);  
 
int pthread_cond_destroy(pthread_cond_t *cond); 

 

Both return: 0 if OK, error number on failure 

 

Unless you need to create a conditional variable with nondefault attributes, the attr argument to 
pthread_cond_init  can be set to NULL. We will discuss condition variable attributes in Section 12.4. 

We use pthread_cond_wait  to wait for a condition to be true. A variant is provided to return an error code if 
the condition hasn't been satisfied in the specified amount of time. 



#include <pthread.h> 
 
int pthread_cond_wait(pthread_cond_t *restrict cond , 
                      pthread_mutex_t *restrict mut ex); 
 
int pthread_cond_timedwait(pthread_cond_t *restrict  cond, 
                           pthread_mutex_t *restric t mutex, 
                           const struct timespec *r estrict timeout);  

 

Both return: 0 if OK, error number on failure 

 

The mutex passed to pthread_cond_wait  protects the condition. The caller passes it locked to the function, 
which then atomically places the calling thread on the list of threads waiting for the condition and unlocks the 
mutex. This closes the window between the time that the condition is checked and the time that the thread goes 
to sleep waiting for the condition to change, so that the thread doesn't miss a change in the condition. When 
pthread_cond_wait  returns, the mutex is again locked. 

The pthread_cond_timedwait  function works the same as the pthread_cond_wait  function with the addition 
of the timeout. The timeout value specifies how long we will wait. It is specified by the timespec  structure, 
where a time value is represented by a number of seconds and partial seconds. Partial seconds are specified in 
units of nanoseconds: 

    struct timespec { 
            time_t tv_sec;   /* seconds */ 
            long   tv_nsec;  /* nanoseconds */ 
    }; 

 

Using this structure, we need to specify how long we are willing to wait as an absolute time instead of a relative 
time. For example, if we are willing to wait 3 minutes, instead of translating 3 minutes into a timespec  
structure, we need to translate now + 3 minutes into a timespec  structure. 

We can use gettimeofday  (Section 6.10) to get the current time expressed as a timeval  structure and translate 
this into a timespec  structure. To obtain the absolute time for the timeout value, we can use the following 
function: 

   void 
   maketimeout(struct timespec *tsp, long minutes) 
   { 
        struct timeval now; 
 
        /* get the current time */ 
        gettimeofday(&now); 
        tsp->tv_sec = now.tv_sec; 
        tsp->tv_nsec = now.tv_usec * 1000; /* usec to nsec */ 
        /* add the offset to get timeout value */ 
        tsp->tv_sec += minutes * 60; 
   } 

 

If the timeout expires without the condition occurring, pthread_cond_timedwait  will reacquire the mutex and 
return the error ETIMEDOUT. When it returns from a successful call to pthread_cond_wait  or 



pthread_cond_timedwait , a thread needs to reevaluate the condition, since another thread might have run and 
already changed the condition. 

There are two functions to notify threads that a condition has been satisfied. The pthread_cond_signal  
function will wake up one thread waiting on a condition, whereas the pthread_cond_broadcast  function will 
wake up all threads waiting on a condition. 

The POSIX specification allows for implementations of pthread_cond_signal  to wake up more than one 
thread, to make the implementation simpler. 

#include <pthread.h> 
 
int pthread_cond_signal(pthread_cond_t *cond); 
 
int pthread_cond_broadcast(pthread_cond_t *cond);  

 

Both return: 0 if OK, error number on failure 

 

When we call pthread_cond_signal  or pthread_cond_broadcast , we are said to be signaling the thread or 
condition. We have to be careful to signal the threads only after changing the state of the condition. 

Example 

Figure 11.14 shows an example of how to use condition variables and mutexes together to 
synchronize threads. 

The condition is the state of the work queue. We protect the condition with a mutex and evaluate the 
condition in a while  loop. When we put a message on the work queue, we need to hold the mutex, 
but we don't need to hold the mutex when we signal the waiting threads. As long as it is okay for a 
thread to pull the message off the queue before we call cond_signal , we can do this after releasing 
the mutex. Since we check the condition in a while  loop, this doesn't present a problem: a thread 
will wake up, find that the queue is still empty, and go back to waiting again. If the code couldn't 
tolerate this race, we would need to hold the mutex when we signal the threads. 

Figure 11.14. Using condition variables 

#include <pthread.h> 
 
struct msg { 
    struct msg *m_next; 
    /* ... more stuff here ... */ 
}; 
struct msg *workq; 
pthread_cond_t qready = PTHREAD_COND_INITIALIZER; 
pthread_mutex_t qlock = PTHREAD_MUTEX_INITIALIZER;  
 
void 
process_msg(void) 
{ 
    struct msg *mp; 
 
    for (;;) { 
        pthread_mutex_lock(&qlock); 



        while (workq == NULL) 
            pthread_cond_wait(&qready, &qlock); 
        mp = workq; 
        workq = mp->m_next; 
        pthread_mutex_unlock(&qlock); 
        /* now process the message mp */ 
    } 
} 
 
void 
enqueue_msg(struct msg *mp) 
{ 
    pthread_mutex_lock(&qlock); 
    mp->m_next = workq; 
    workq = mp; 
    pthread_mutex_unlock(&qlock); 
    pthread_cond_signal(&qready); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11.7. Summary 

In this chapter, we introduced the concept of threads and discussed the POSIX.1 primitives available to create 
and destroy them. We also introduced the problem of thread synchronization. We discussed three fundamental 
synchronization mechanisms—mutexes, reader–writer locks, and condition variables—and we saw how to use 
them to protect shared resources. 
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12.1. Introduction 

In Chapter 11, we learned the basics about threads and thread synchronization. In this chapter, we will learn the 
details of controlling thread behavior. We will look at thread attributes and synchronization primitive attributes, 
which we ignored in the previous chapter in favor of the default behaviors. 

We will follow this with a look at how threads can keep data private from other threads in the same process. 
Then we will wrap up the chapter with a look at how some process-based system calls interact with threads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.2. Thread Limits 

We discussed the sysconf  function in Section 2.5.4. The Single UNIX Specification defines several limits 
associated with the operation of threads, which we didn't show in Figure 2.10. As with other system limits, the 
thread limits can be queried using sysconf . Figure 12.1 summarizes these limits. 

Figure 12.1. Thread limits and name arguments to sysconf 

Name of limit Description name argument 

PTHREAD_DESTRUCTOR_ITERATIONS maximum number of times an 
implementation will try to 
destroy the thread-specific data 
when a thread exits (Section 
12.6) 

_SC_THREAD_DESTRUCTOR_ITERATIONS 

PTHREAD_KEYS_MAX maximum number of keys that 
can be created by a process 
(Section 12.6) 

_SC_THREAD_KEYS_MAX  

PTHREAD_STACK_MIN minimum number of bytes that 
can be used for a thread's stack 
(Section 12.3) 

_SC_THREAD_STACK_MIN 

PTHREAD_THREADS_MAX maximum number of threads 
that can be created in a process 
(Section 12.3) 

_SC_THREAD_THREADS_MAX 

 

As with the other limits reported by sysconf , use of these limits is intended to promote application portability 
among different operating system implementations. For example, if your application requires that you create 
four threads for every file you manage, you might have to limit the number of files you can manage 
concurrently if the system won't let you create enough threads. 

Figure 12.2 shows the values of the thread limits for the four implementations described in this book. When the 
implementation doesn't define the corresponding sysconf  symbol (starting with _SC_), "no symbol" is listed. If 
the implementation's limit is indeterminate, "no limit" is listed. This doesn't mean that the value is unlimited, 
however. An "unsupported" entry means that the implementation defines the corresponding sysconf  limit 
symbol, but the sysconf  function doesn't recognize it. 

Note that although an implementation may not provide access to these limits, that doesn't mean that the limits 
don't exist. It just means that the implementation doesn't provide us with a way to get at them using sysconf . 

Figure 12.2. Examples of thread configuration limits 

Limit FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

PTHREAD_DESTRUCTOR_ITERATIONS no symbol unsupported no symbol no limit 

PTHREAD_KEYS_MAX no symbol unsupported no symbol no limit 



Figure 12.2. Examples of thread configuration limits 

Limit FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

PTHREAD_STACK_MIN no symbol unsupported no symbol 4,096 

PTHREAD_THREADS_MAX no symbol unsupported no symbol no limit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.3. Thread Attributes 

In all the examples in which we called pthread_create  in Chapter 11, we passed in a null pointer instead of 
passing in a pointer to a pthread_attr_t  structure. We can use the pthread_attr_t  structure to modify the 
default attributes, and associate these attributes with threads that we create. We use the pthread_attr_init  
function to initialize the pthread_attr_t  structure. After calling pthread_attr_init , the pthread_attr_t  
structure contains the default values for all the thread attributes supported by the implementation. To change 
individual attributes, we need to call other functions, as described later in this section. 

#include <pthread.h> 
 
int pthread_attr_init(pthread_attr_t *attr); 
 
int pthread_attr_destroy(pthread_attr_t   *attr);  

 

Both return: 0 if OK, error number on failure 

 

To deinitialize a pthread_attr_t  structure, we call pthread_attr_destroy . If an implementation of 
pthread_attr_init  allocated any dynamic memory for the attribute object, pthread_attr_destroy  will free 
that memory. In addition, pthread_attr_destroy  will initialize the attribute object with invalid values, so if it 
is used by mistake, pthread_create  will return an error. 

The pthread_attr_t  structure is opaque to applications. This means that applications aren't supposed to know 
anything about its internal structure, thus promoting application portability. Following this model, POSIX.1 
defines separate functions to query and set each attribute. 

The thread attributes defined by POSIX.1 are summarized in Figure 12.3. POSIX.1 defines additional attributes 
in the real-time threads option, but we don't discuss those here. In Figure 12.3, we also show which platforms 
support each thread attribute. If the attribute is accessible through an obsolete interface, we show ob in the table 
entry. 

Figure 12.3. POSIX.1 thread attributes 

Name Description FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

detachstate detached thread attribute • • • • 

guardsize guard buffer size in bytes at end of thread 
stack 

  • • • 

stackaddr lowest address of thread stack ob • • ob  

stacksize size in bytes of thread stack • • • • 

 

In Section 11.5, we introduced the concept of detached threads. If we are no longer interested in an existing 
thread's termination status, we can use pthread_detach  to allow the operating system to reclaim the thread's 
resources when the thread exits. 



If we know that we don't need the thread's termination status at the time we create the thread, we can arrange for 
the thread to start out in the detached state by modifying the detachstate thread attribute in the pthread_attr_t  
structure. We can use the pthread_attr_setdetachstate  function to set the detachstate thread attribute to 
one of two legal values: PTHREAD_CREATE_DETACHED to start the thread in the detached state or 
PTHREAD_CREATE_JOINABLE to start the thread normally, so its termination status can be retrieved by the 
application. 

#include <pthread.h> 
 
int pthread_attr_getdetachstate(const pthread_attr_ t *restrict attr, 
                                int *detachstate); 
 
int pthread_attr_setdetachstate(pthread_attr_t *att r, int detachstate);  

 

Both return: 0 if OK, error number on failure 

 

We can call pthread_attr_getdetachstate  to obtain the current detachstate attribute. The integer pointed to 
by the second argument is set to either PTHREAD_CREATE_DETACHED or PTHREAD_CREATE_JOINABLE, depending 
on the value of the attribute in the given pthread_attr_t  structure. 

Example 

Figure 12.4 shows a function that can be used to create a thread in the detached state. 

Note that we ignore the return value from the call to pthread_attr_destroy . In this case, we 
initialized the thread attributes properly, so pthread_attr_destroy  shouldn't fail. Nonetheless, if it 
does fail, cleaning up would be difficult: we would have to destroy the thread we just created, which 
is possibly already running, asynchronous to the execution of this function. By ignoring the error 
return from pthread_attr_destroy , the worst that can happen is that we leak a small amount of 
memory if pthread_attr_init  allocated any. But if pthread_attr_init  succeeded in initializing 
the thread attributes and then pthread_attr_destroy  failed to clean up, we have no recovery 
strategy anyway, because the attributes structure is opaque to the application. The only interface 
defined to clean up the structure is pthread_attr_destroy , and it just failed. 

Figure 12.4. Creating a thread in the detached state 

#include "apue.h" 
#include <pthread.h> 
 
int 
makethread(void *(*fn)(void *), void *arg) 
{ 
    int             err; 
    pthread_t       tid; 
    pthread_attr_t  attr; 
 
    err = pthread_attr_init(&attr); 
    if (err != 0) 
        return(err); 
    err = pthread_attr_setdetachstate(&attr, PTHREA D_CREATE_DETACHED); 
    if (err == 0) 
        err = pthread_create(&tid, &attr, fn, arg);  
    pthread_attr_destroy(&attr); 



    return(err); 
} 

Support for thread stack attributes is optional for a POSIX-conforming operating system, but is required if the 
system is to conform to the XSI. At compile time, you can check whether your system supports each thread 
stack attribute using the _POSIX_THREAD_ATTR_STACKADDR and _POSIX_THREAD_ATTR_STACKSIZE symbols. If 
one is defined, then the system supports the corresponding thread stack attribute. You can also check at runtime, 
by using the _SC_THREAD_ATTR_STACKADDR and _SC_THREAD_ATTR_STACKSIZE parameters to the sysconf  
function. 

POSIX.1 defines several interfaces to manipulate thread stack attributes. Two older functions, 
pthread_attr_getstackaddr  and pthread_attr_setstackaddr , are marked as obsolete in Version 3 of the 
Single UNIX Specification, although many pthreads implementations still provide them. The preferred way to 
query and modify a thread's stack attributes is to use the newer functions pthread_attr_getstack  and 
pthread_attr_setstack . These functions clear up ambiguities present in the definition of the older interfaces. 

#include <pthread.h> 
 
int pthread_attr_getstack(const pthread_attr_t *res trict attr,  
                          void **restrict stackaddr , 
                          size_t *restrict stacksiz e); 
 
int pthread_attr_setstack(const pthread_attr_t *att r, 
                          void *stackaddr, size_t * stacksize);  

 

Both return: 0 if OK, error number on failure 

 

These two functions are used to manage both the stackaddr and the stacksize thread attributes. 

With a process, the amount of virtual address space is fixed. Since there is only one stack, its size usually isn't a 
problem. With threads, however, the same amount of virtual address space must be shared by all the thread 
stacks. You might have to reduce your default thread stack size if your application uses so many threads that the 
cumulative size of their stacks exceeds the available virtual address space. On the other hand, if your threads 
call functions that allocate large automatic variables or call functions many stack frames deep, you might need 
more than the default stack size. 

If you run out of virtual address space for thread stacks, you can use malloc  or mmap (see Section 14.9) to 
allocate space for an alternate stack and use pthread_attr_setstack  to change the stack location of threads 
you create. The address specified by the stackaddr parameter is the lowest addressable address in the range of 
memory to be used as the thread's stack, aligned at the proper boundary for the processor architecture. 

The stackaddr thread attribute is defined as the lowest memory address for the stack. This is not necessarily the 
start of the stack, however. If stacks grow from higher address to lower addresses for a given processor 
architecture, the stackaddr thread attribute will be the end of the stack instead of the beginning. 

The drawback with pthread_attr_getstackaddr  and pthread_attr_setstackaddr  is that the stackaddr 
parameter was underspecified. It could have been interpreted as the start of the stack or as the lowest memory 
address of the memory extent to use as the stack. On architectures in which the stacks grow down from higher 
memory addresses to lower addresses, if the stackaddr parameter is the lowest memory address of the stack, 



then you need to know the stack size to determine the start of the stack. The pthread_attr_getstack  and 
pthread_attr_setstack  functions correct these shortcomings. 

An application can also get and set the stacksize thread attribute using the pthread_attr_getstacksize  and 
pthread_attr_setstacksize  functions. 

#include <pthread.h> 
 
int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,  
                              size_t *restrict stac ksize); 
 
int pthread_attr_setstacksize(pthread_attr_t *attr 
, size_t stacksize); 

 

Both return: 0 if OK, error number on failure 

 

The pthread_attr_setstacksize  function is useful when you want to change the default stack size but don't 
want to deal with allocating the thread stacks on your own. 

The guardsize thread attribute controls the size of the memory extent after the end of the thread's stack to 
protect against stack overflow. By default, this is set to PAGESIZE bytes. We can set the guardsize thread 
attribute to 0 to disable this feature: no guard buffer will be provided in this case. Also, if we change the 
stackaddr thread attribute, the system assumes that we will be managing our own stacks and disables stack 
guard buffers, just as if we had set the guardsize thread attribute to 0. 

#include <pthread.h> 
 
int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,  
                              size_t *restrict guar dsize); 
 
int pthread_attr_setguardsize(pthread_attr_t *attr 
, size_t guardsize); 

 

Both return: 0 if OK, error number on failure 

 

If the guardsize thread attribute is modified, the operating system might round it up to an integral multiple of the 
page size. If the thread's stack pointer overflows into the guard area, the application will receive an error, 
possibly with a signal. 

The Single UNIX Specification defines several other optional thread attributes as part of the real-time threads 
option. We will not discuss them here. 

More Thread Attributes 

Threads have other attributes not represented by the pthread_attr_t  structure: 

• The cancelability state (discussed in Section 12.7) 
• The cancelability type (also discussed in Section 12.7) 
• The concurrency level 



The concurrency level controls the number of kernel threads or processes on top of which the user-level threads 
are mapped. If an implementation keeps a one-to-one mapping between kernel-level threads and user-level 
threads, then changing the concurrency level will have no effect, since it is possible for all user-level threads to 
be scheduled. If the implementation multiplexes user-level threads on top of kernel-level threads or processes, 
however, you might be able to improve performance by increasing the number of user-level threads that can run 
at a given time. The pthread_setconcurrency  function can be used to provide a hint to the system of the 
desired level of concurrency. 

#include <pthread.h> 
 
int pthread_getconcurrency(void); 

 

Returns: current concurrency level 

int pthread_setconcurrency(int level);  

 

Returns: 0 if OK, error number on failure 

 

The pthread_getconcurrency  function returns the current concurrency level. If the operating system is 
controlling the concurrency level (i.e., if no prior call to pthread_setconcurrency  has been made), then 
pthread_getconcurrency  will return 0. 

The concurrency level specified by pthread_setconcurrency  is only a hint to the system. There is no 
guarantee that the requested concurrency level will be honored. You can tell the system that you want it to 
decide for itself what concurrency level to use by passing a level of 0. Thus, an application can undo the effects 
of a prior call to pthread_setconcurrency  with a nonzero value of level by calling it again with level set to 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.4. Synchronization Attributes 

Just as threads have attributes, so too do their synchronization objects. In this section, we discuss the attributes 
of mutexes, reader–writer locks, and condition variables. 

Mutex Attributes 

We use pthread_mutexattr_init  to initialize a pthread_mutexattr_t  structure and 
pthread_mutexattr_destroy  to deinitialize one. 

#include <pthread.h> 
 
int pthread_mutexattr_init(pthread_mutexattr_t *att r); 
 
int pthread_mutexattr_destroy(pthread_mutexattr_t * attr);  

 

Both return: 0 if OK, error number on failure 

 

The pthread_mutexattr_init  function will initialize the pthread_mutexattr_t  structure with the default 
mutex attributes. Two attributes of interest are the process-shared attribute and the type attribute. Within 
POSIX.1, the process-shared attribute is optional; you can test whether a platform supports it by checking 
whether the _POSIX_THREAD_PROCESS_SHARED symbol is defined. You can also check at runtime by passing the 
_SC_THREAD_PROCESS_SHARED parameter to the sysconf  function. Although this option is not required to be 
provided by POSIX-conforming operating systems, the Single UNIX Specification requires that XSI-
conforming operating systems do support this option. 

Within a process, multiple threads can access the same synchronization object. This is the default behavior, as 
we saw in Chapter 11. In this case, the process-shared mutex attribute is set to PTHREAD_PROCESS_PRIVATE. 

As we shall see in Chapters 14 and 15, mechanisms exist that allow independent processes to map the same 
extent of memory into their independent address spaces. Access to shared data by multiple processes usually 
requires synchronization, just as does access to shared data by multiple threads. If the process-shared mutex 
attribute is set to PTHREAD_PROCESS_SHARED, a mutex allocated from a memory extent shared between multiple 
processes may be used for synchronization by those processes. 

We can use the pthread_mutexattr_getpshared  function to query a pthread_mutexattr_t  structure for its 
process-shared attribute. We can change the process-shared attribute with the 
pthread_mutexattr_setpshared  function. 

#include <pthread.h> 
 
int pthread_mutexattr_getpshared(const pthread_mute xattr_t *  
                                 restrict attr, 
                                 int *restrict psha red); 
 
int pthread_mutexattr_setpshared(pthread_mutexattr_ t *attr, 
                                 int pshared); 

 

Both return: 0 if OK, error number on failure 



 

The process-shared mutex attribute allows the pthread library to provide more efficient mutex implementations 
when the attribute is set to PTHREAD_PROCESS_PRIVATE, which is the default case with multithreaded 
applications. Then the pthread library can restrict the more expensive implementation to the case in which 
mutexes are shared among processes. 

The type mutex attribute controls the characteristics of the mutex. POSIX.1 defines four types. The 
PTHREAD_MUTEX_NORMAL type is a standard mutex that doesn't do any special error checking or deadlock 
detection. The PTHREAD_MUTEX_ERRORCHECK mutex type provides error checking. 

The PTHREAD_MUTEX_RECURSIVE mutex type allows the same thread to lock it multiple times without first 
unlocking it. A recursive mutex maintains a lock count and isn't released until it is unlocked the same number of 
times it is locked. So if you lock a recursive mutex twice and then unlock it, the mutex remains locked until it is 
unlocked a second time. 

Finally, the PTHREAD_MUTEX_DEFAULT type can be used to request default semantics. Implementations are free 
to map this to one of the other types. On Linux, for example, this type is mapped to the normal mutex type. 

The behavior of the four types is shown in Figure 12.5. The "Unlock when not owned" column refers to one 
thread unlocking a mutex that was locked by a different thread. The "Unlock when unlocked" column refers to 
what happens when a thread unlocks a mutex that is already unlocked, which usually is a coding mistake. 

Figure 12.5. Mutex type behavior 

Mutex type Relock without 
unlock? 

Unlock when not 
owned? 

Unlock when 
unlocked? 

PTHREAD_MUTEX_NORMAL deadlock undefined undefined 

PTHREAD_MUTEX_ERRORCHECK returns error returns error returns error 

PTHREAD_MUTEX_RECURSIVE allowed returns error returns error 

PTHREAD_MUTEX_DEFAULT undefined undefined undefined 

 

We can use pthread_mutexattr_gettype  to get the mutex type attribute and pthread_mutexattr_settype  
to change the mutex type attribute. 

#include <pthread.h> 
 
int pthread_mutexattr_gettype(const pthread_mutexat tr_t * 
                              restrict attr, int *r estrict type); 
 
int pthread_mutexattr_settype(pthread_mutexattr_t * attr, int type);  

 

Both return: 0 if OK, error number on failure 

 



Recall from Section 11.6 that a mutex is used to protect the condition that is associated with a condition variable. 
Before blocking the thread, the pthread_cond_wait  and the pthread_cond_timedwait  functions release the 
mutex associated with the condition. This allows other threads to acquire the mutex, change the condition, 
release the mutex, and signal the condition variable. Since the mutex must be held to change the condition, it is 
not a good idea to use a recursive mutex. If a recursive mutex is locked multiple times and used in a call to 
pthread_cond_wait , the condition can never be satisfied, because the unlock done by pthread_cond_wait  
doesn't release the mutex. 

Recursive mutexes are useful when you need to adapt existing single-threaded interfaces to a multithreaded 
environment, but can't change the interfaces to your functions because of compatibility constraints. However, 
using recursive locks can be tricky, and they should be used only when no other solution is possible. 

Example 

Figure 12.6 illustrates a situation in which a recursive mutex might seem to solve a concurrency 
problem. Assume that func1  and func2  are existing functions in a library whose interfaces can't be 
changed, because applications exist that call them, and the applications can't be changed. 

To keep the interfaces the same, we embed a mutex in the data structure whose address (x) is passed 
in as an argument. This is possible only if we have provided an allocator function for the structure, 
so the application doesn't know about its size (assuming we must increase its size when we add a 
mutex to it). 

This is also possible if we originally defined the structure with enough padding to allow us now to 
replace some pad fields with a mutex. Unfortunately, most programmers are unskilled at predicting 
the future, so this is not a common practice. 

If both func1  and func2  must manipulate the structure and it is possible to access it from more than 
one thread at a time, then func1  and func2  must lock the mutex before manipulating the data. If 
func1  must call func2 , we will deadlock if the mutex type is not recursive. We could avoid using a 
recursive mutex if we could release the mutex before calling func2  and reacquire it after func2  
returns, but this opens a window where another thread can possibly grab control of the mutex and 
change the data structure in the middle of func1 . This may not be acceptable, depending on what 
protection the mutex is intended to provide. 

Figure 12.7 shows an alternative to using a recursive mutex in this case. We can leave the interfaces 
to func1  and func2  unchanged and avoid a recursive mutex by providing a private version of 
func2 , called func2_locked . To call func2_locked , we must hold the mutex embedded in the data 
structure whose address we pass as the argument. The body of func2_locked  contains a copy of 
func2 , and func2  now simply acquires the mutex, calls func2_locked , and then releases the mutex. 

If we didn't have to leave the interfaces to the library functions unchanged, we could have added a 
second parameter to each function to indicate whether the structure is locked by the caller. It is 
usually better to leave the interfaces unchanged if we can, however, instead of polluting it with 
implementation artifacts. 

The strategy of providing locked and unlocked versions of functions is usually applicable in simple 
situations. In more complex situations, such as when the library needs to call a function outside the 
library, which then might call back into the library, we need to rely on recursive locks. 

 



Figure 12.6. Recursive locking opportunity 

 
 

Figure 12.7. Avoiding a recursive locking opportunity 

 
 
 

Example 

The program in Figure 12.8 illustrates another situation in which a recursive mutex is necessary. 
Here, we have a "timeout" function that allows us to schedule another function to be run at some 
time in the future. Assuming that threads are an inexpensive resource, we can create a thread for 
each pending timeout. The thread waits until the time has been reached, and then it calls the function 
we've requested. 

The problem arises when we can't create a thread or when the scheduled time to run the function has 
already passed. In these cases, we simply call the requested function now, from the current context. 



Since the function acquires the same lock that we currently hold, a deadlock will occur unless the 
lock is recursive. 

We use the makethread  function from Figure 12.4 to create a thread in the detached state. We want 
the function to run in the future, and we don't want to wait around for the thread to complete. 

We could call sleep  to wait for the timeout to expire, but that gives us only second granularity. If 
we want to wait for some time other than an integral number of seconds, we need to use 
nanosleep (2), which provides similar functionality. 

Although nanosleep  is required to be implemented only in the real-time extensions of the Single 
UNIX Specification, all the platforms discussed in this text support it. 

The caller of timeout  needs to hold a mutex to check the condition and to schedule the retry  
function as an atomic operation. The retry  function will try to lock the same mutex. Unless the 
mutex is recursive, a deadlock will occur if the timeout  function calls retry  directly. 

Figure 12.8. Using a recursive mutex 

#include "apue.h" 
#include <pthread.h> 
#include <time.h> 
#include <sys/time.h> 
 
extern int makethread(void *(*)(void *), void *); 
 
struct to_info { 
    void    (*to_fn)(void *);    /* function */ 
    void    *to_arg;             /* argument */ 
    struct timespec to_wait;     /* time to wait */  
}; 
 
#define SECTONSEC  1000000000    /* seconds to nano seconds */ 
#define USECTONSEC 1000          /* microseconds to  nanoseconds */ 
 
void * 
timeout_helper(void *arg) 
{ 
    struct to_info *tip; 
 
    tip = (struct to_info *)arg; 
    nanosleep(&tip->to_wait, NULL); 
    (*tip->to_fn)(tip->to_arg); 
    return(0); 
} 
 
void 
timeout(const struct timespec *when, void (*func)(v oid *), void *arg)  
{ 
    struct timespec now; 
    struct timeval  tv; 
    struct to_info  *tip; 
    int             err; 
 
    gettimeofday(&tv, NULL); 
    now.tv_sec = tv.tv_sec; 
    now.tv_nsec = tv.tv_usec * USECTONSEC; 
    if ((when->tv_sec > now.tv_sec) || 



      (when->tv_sec == now.tv_sec && when->tv_nsec > now.tv_nsec)) { 
        tip = malloc(sizeof(struct to_info)); 
        if (tip != NULL) { 
            tip->to_fn = func; 
            tip->to_arg = arg; 
            tip->to_wait.tv_sec = when->tv_sec - no w.tv_sec; 
            if (when->tv_nsec >= now.tv_nsec) { 
                tip->to_wait.tv_nsec = when->tv_nse c - now.tv_nsec; 
            } else { 
                tip->to_wait.tv_sec--; 
                tip->to_wait.tv_nsec = SECTONSEC - now.tv_nsec + 
                  when->tv_nsec; 
 
           } 
           err = makethread(timeout_helper, (void * )tip); 
           if (err == 0) 
               return; 
        } 
    } 
 
    /* 
     * We get here if (a) when <= now, or (b) mallo c fails, or 
     * (c) we can't make a thread, so we just call the function now. 
     */ 
    (*func)(arg); 
} 
 
pthread_mutexattr_t attr; 
pthread_mutex_t mutex; 
 
void 
retry(void *arg) 
{ 
    pthread_mutex_lock(&mutex); 
    /* perform retry steps ... */ 
    pthread_mutex_unlock(&mutex); 
} 
 
int 
main(void) 
{ 
    int             err, condition, arg; 
    struct timespec when; 
 
    if ((err = pthread_mutexattr_init(&attr)) != 0)  
        err_exit(err, "pthread_mutexattr_init faile d"); 
    if ((err = pthread_mutexattr_settype(&attr, 
      PTHREAD_MUTEX_RECURSIVE)) != 0) 
        err_exit(err, "can't set recursive type"); 
    if ((err = pthread_mutex_init(&mutex, &attr)) ! = 0) 
        err_exit(err, "can't create recursive mutex "); 
    /* ... */ 
    pthread_mutex_lock(&mutex); 
    /* ... */ 
    if (condition) { 
        /* calculate target time "when" */ 
        timeout(&when, retry, (void *)arg); 
    } 
    /* ... */ 
    pthread_mutex_unlock(&mutex); 
    /* ... */ 
    exit(0); 



} 

Reader–Writer Lock Attributes 

Reader–writer locks also have attributes, similar to mutexes. We use pthread_rwlockattr_init  to initialize a 
pthread_rwlockattr_t  structure and pthread_rwlockattr_destroy  to deinitialize the structure. 

#include <pthread.h> 
 
int pthread_rwlockattr_init(pthread_rwlockattr_t *a ttr); 
 
int pthread_rwlockattr_destroy(pthread_rwlockattr_t  *attr);  

 

Both return: 0 if OK, error number on failure 

 

The only attribute supported for reader–writer locks is the process-shared attribute. It is identical to the mutex 
process-shared attribute. Just as with the mutex process-shared attributes, a pair of functions is provided to get 
and set the process-shared attributes of reader–writer locks. 

#include <pthread.h> 
 
int pthread_rwlockattr_getpshared(const pthread_rwl ockattr_t *  
                                  restrict attr, 
                                  int *restrict psh ared); 
 
int pthread_rwlockattr_setpshared(pthread_rwlockatt r_t *attr, 
                                  int pshared); 

 

Both return: 0 if OK, error number on failure 

 

Although POSIX defines only one reader–writer lock attribute, implementations are free to define additional, 
nonstandard ones. 

Condition Variable Attributes 

Condition variables have attributes, too. There is a pair of functions for initializing and deinitializing them, 
similar to mutexes and reader–writer locks. 

#include <pthread.h> 
 
int pthread_condattr_init(pthread_condattr_t *attr) ; 
 
int pthread_condattr_destroy(pthread_condattr_t *at tr);  

 

Both return: 0 if OK, error number on failure 

 

Just as with the other synchronization primitives, condition variables support the process-shared attribute. 



#include <pthread.h> 
 
int pthread_condattr_getpshared(const pthread_conda ttr_t *  
                                restrict attr, 
                                int *restrict pshar ed); 
 
int pthread_condattr_setpshared(pthread_condattr_t *attr, 
                                int pshared); 

 

Both return: 0 if OK, error number on failure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.5. Reentrancy 

We discussed reentrant functions and signal handlers in Section 10.6. Threads are similar to signal handlers 
when it comes to reentrancy. With both signal handlers and threads, multiple threads of control can potentially 
call the same function at the same time. 

If a function can be safely called by multiple threads at the same time, we say that the function is thread-safe. 
All functions defined in the Single UNIX Specification are guaranteed to be thread-safe, except those listed in 
Figure 12.9. In addition, the ctermid  and tmpnam functions are not guaranteed to be thread-safe if they are 
passed a null pointer. Similarly, there is no guarantee that wcrtomb  and wcsrtombs  are thread-safe when they 
are passed a null pointer for their mbstate_t  argument. 

Figure 12.9. Functions not guaranteed to be thread-safe by POSIX.1 

asctime  ecvt  gethostent  getutxline  putc_unlocked   

basename  encrypt  getlogin  gmtime  putchar_unlocked   

catgets  endgrent  getnetbyaddr  hcreate  putenv   

crypt  endpwent  getnetbyname  hdestroy  pututxline   

ctime  endutxent  getnetent  hsearch  rand   

dbm_clearerr  fcvt  getopt  inet_ntoa  readdir   

dbm_close  ftw  getprotobyname  l64a  setenv   

dbm_delete  gcvt  getprotobynumber  lgamma setgrent   

dbm_error  getc_unlocked  getprotoent  lgammaf  setkey   

dbm_fetch  getchar_unlocked  getpwent  lgammal  setpwent   

dbm_firstkey  getdate  getpwnam  localeconv  setutxent   

dbm_nextkey  getenv  getpwuid  localtime  strerror  

dbm_open getgrent  getservbyname  lrand48  strtok  

dbm_store  getgrgid  getservbyport  mrand48  ttyname  

dirname  getgrnam  getservent  nftw  unsetenv  

dlerror  gethostbyaddr  getutxent  nl_langinfo  wcstombs  

drand48  gethostbyname  getutxid  ptsname  wctomb  

 

Implementations that support thread-safe functions will define the _POSIX_THREAD_SAFE_FUNCTIONS symbol in 
<unistd.h> . Applications can also use the _SC_THREAD_SAFE_FUNCTIONS argument with sysconf  to check for 
support of thread-safe functions at runtime. All XSI-conforming implementations are required to support 
thread-safe functions. 

When it supports the thread-safe functions feature, an implementation provides alternate, thread-safe versions of 
some of the POSIX.1 functions that aren't thread-safe. Figure 12.10 lists the thread-safe versions of these 
functions. Many functions are not thread-safe, because they return data stored in a static memory buffer. They 
are made thread-safe by changing their interfaces to require that the caller provide its own buffer. 



Figure 12.10. Alternate thread-safe functions 

acstime_r  gmtime_r  

ctime_r  localtime_r  

getgrgid_r  rand_r  

getgrnam_r  readdir_r  

getlogin_r  strerror_r  

getpwnam_r  strtok_r  

getpwuid_r  ttyname_r   

 

The functions listed in Figure 12.10 are named the same as their non-thread-safe relatives, but with an _r  
appended at the end of the name, signifying that these versions are reentrant. 

If a function is reentrant with respect to multiple threads, we say that it is thread-safe. This doesn't tell us, 
however, whether the function is reentrant with respect to signal handlers. We say that a function that is safe to 
be reentered from an asynchronous signal handler is async-signal safe. We saw the async-signal safe functions 
in Figure 10.4 when we discussed reentrant functions in Section 10.6. 

In addition to the functions listed in Figure 12.10, POSIX.1 provides a way to manage FILE  objects in a thread-
safe way. You can use flockfile  and ftrylockfile  to obtain a lock associated with a given FILE  object. This 
lock is recursive: you can acquire it again, while you already hold it, without deadlocking. Although the exact 
implementation of the lock is unspecified, it is required that all standard I/O routines that manipulate FILE  
objects behave as if they call flockfile  and funlockfile  internally. 

#include <stdio.h> 
 
int ftrylockfile(FILE *fp); 

 

Returns: 0 if OK, nonzero if lock can't be acquired 

void flockfile(FILE *fp); 
 
void funlockfile(FILE *fp); 

 

 

Although the standard I/O routines might be implemented to be thread-safe from the perspective of their own 
internal data structures, it is still useful to expose the locking to applications. This allows applications to 
compose multiple calls to standard I/O functions into atomic sequences. Of course, when dealing with multiple 
FILE  objects, you need to beware of potential deadlocks and to order your locks carefully. 

If the standard I/O routines acquire their own locks, then we can run into serious performance degradation when 
doing character-at-a-time I/O. In this situation, we end up acquiring and releasing a lock for every character 
read or written. To avoid this overhead, unlocked versions of the character-based standard I/O routines are 
available. 



#include <stdio.h> 
 
int getchar_unlocked(void); 
 
int getc_unlocked(FILE *fp); 

 

Both return: the next character if OK, EOF on end of file or error 

int putchar_unlocked(int c); 
 
int putc_unlocked(int c, FILE *fp); 

 

Both return: c if OK, EOF on error 

 

These four functions should not be called unless surrounded by calls to flockfile  (or ftrylockfile ) and 
funlockfile . Otherwise, unpredictable results can occur (i.e., the types of problems that result from 
unsynchronized access to data by multiple threads of control). 

Once you lock the FILE  object, you can make multiple calls to these functions before releasing the lock. This 
amortizes the locking overhead across the amount of data read or written. 

Example 

Figure 12.11 shows a possible implementation of getenv  (Section 7.9). This version is not reentrant. 
If two threads call it at the same time, they will see inconsistent results, because the string returned 
is stored in a single static buffer that is shared by all threads calling getenv . 

We show a reentrant version of getenv  in Figure 12.12. This version is called getenv_r . It uses the 
pthread_once  function (described in Section 12.6) to ensure that the thread_init  function is 
called only once per process. 

To make getenv_r  reentrant, we changed the interface so that the caller must provide its own 
buffer. Thus, each thread can use a different buffer to avoid interfering with the others. Note, 
however, that this is not enough to make getenv_r  thread-safe. To make getenv_r  thread-safe, we 
need to protect against changes to the environment while we are searching for the requested string. 
We can use a mutex to serialize access to the environment list by getenv_r  and putenv . 

We could have used a reader–writer lock to allow multiple concurrent calls to getenv_r , but the 
added concurrency probably wouldn't improve the performance of our program by very much, for 
two reasons. First, the environment list usually isn't very long, so we won't hold the mutex for too 
long while we scan the list. Second, calls to getenv  and putenv  are infrequent, so if we improve 
their performance, we won't affect the overall performance of the program very much. 

If we make getenv_r  thread-safe, that doesn't mean that it is reentrant with respect to signal 
handlers. If we use a nonrecursive mutex, we run the risk that a thread will deadlock itself if it calls 
getenv_r  from a signal handler. If the signal handler interrupts the thread while it is executing 
getenv_r , we will already be holding env_mutex  locked, so another attempt to lock it will block, 
causing the thread to deadlock. Thus, we must use a recursive mutex to prevent other threads from 
changing the data structures while we look at them, and also prevent deadlocks from signal handlers. 
The problem is that the pthread functions are not guaranteed to be async-signal safe, so we can't use 



them to make another function async-signal safe. 

Figure 12.11. A nonreentrant version of getenv 

#include <limits.h> 
#include <string.h> 
 
static char envbuf[ARG_MAX]; 
 
extern char **environ; 
 
char * 
getenv(const char *name) 
{ 
    int i, len; 
 
    len = strlen(name); 
    for (i = 0; environ[i] != NULL; i++) { 
        if ((strncmp(name, environ[i], len) == 0) & & 
          (environ[i][len] == '=')) { 
            strcpy(envbuf, &environ[i][len+1]); 
            return(envbuf); 
        } 
    } 
    return(NULL); 
 } 

 

Figure 12.12. A reentrant (thread-safe) version of getenv 

#include <string.h> 
#include <errno.h> 
#include <pthread.h> 
#include <stdlib.h> 
 
extern char **environ; 
 
pthread_mutex_t env_mutex; 
static pthread_once_t init_done = PTHREAD_ONCE_INIT ; 
 
static void 
thread_init(void) 
{ 
    pthread_mutexattr_t attr; 
 
    pthread_mutexattr_init(&attr); 
    pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ RECURSIVE);  
    pthread_mutex_init(&env_mutex, &attr); 
    pthread_mutexattr_destroy(&attr); 
} 
 
int 
getenv_r(const char *name, char *buf, int buflen) 
{ 
    int i, len, olen; 
 
    pthread_once(&init_done, thread_init); 
    len = strlen(name); 
    pthread_mutex_lock(&env_mutex); 
    for (i = 0; environ[i] != NULL; i++) { 
        if ((strncmp(name, environ[i], len) == 0) & & 



          (environ[i][len] == '=')) { 
            olen = strlen(&environ[i][len+1]); 
            if (olen >= buflen) { 
                pthread_mutex_unlock(&env_mutex); 
                return(ENOSPC); 
            } 
            strcpy(buf, &environ[i][len+1]); 
            pthread_mutex_unlock(&env_mutex); 
            return(0); 
        } 
    } 
    pthread_mutex_unlock(&env_mutex); 
    return(ENOENT); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.6. Thread-Specific Data 

Thread-specific data, also known as thread-private data, is a mechanism for storing and finding data associated 
with a particular thread. The reason we call the data thread-specific, or thread-private, is that we'd like each 
thread to access its own separate copy of the data, without worrying about synchronizing access with other 
threads. 

Many people went to a lot of trouble designing a threads model that promotes sharing process data and 
attributes. So why would anyone want to promote interfaces that prevent sharing in this model? There are two 
reasons. 

First, sometimes we need to maintain data on a per thread basis. Since there is no guarantee that thread IDs are 
small, sequential integers, we can't simply allocate an array of per thread data and use the thread ID as the index. 
Even if we could depend on small, sequential thread IDs, we'd like a little extra protection so that one thread 
can't mess with another's data. 

The second reason for thread-private data is to provide a mechanism for adapting process-based interfaces to a 
multithreaded environment. An obvious example of this is errno . Recall the discussion of errno  in Section 1.7. 
Older interfaces (before the advent of threads) defined errno  as an integer accessible globally within the 
context of a process. System calls and library routines set errno  as a side effect of failing. To make it possible 
for threads to use these same system calls and library routines, errno  is redefined as thread-private data. Thus, 
one thread making a call that sets errno  doesn't affect the value of errno  for the other threads in the process. 

Recall that all threads in a process have access to the entire address space of the process. Other than using 
registers, there is no way for one thread to prevent another from accessing its data. This is true even for thread-
specific data. Even though the underlying implementation doesn't prevent access, the functions provided to 
manage thread-specific data promote data separation among threads. 

Before allocating thread-specific data, we need to create a key to associate with the data. The key will be used 
to gain access to the thread-specific data. We use pthread_key_create  to create a key. 

#include <pthread.h> 
 
int pthread_key_create(pthread_key_t *keyp, 
                       void (*destructor)(void *));  

 

Returns: 0 if OK, error number on failure 

 

The key created is stored in the memory location pointed to by keyp. The same key can be used by all threads in 
the process, but each thread will associate a different thread-specific data address with the key. When the key is 
created, the data address for each thread is set to a null value. 

In addition to creating a key, pthread_key_create  associates an optional destructor function with the key. 
When the thread exits, if the data address has been set to a non-null value, the destructor function is called with 
the data address as the only argument. If destructor is null, then no destructor function is associated with the key. 
When the thread exits normally, by calling pthread_exit  or by returning, the destructor is called. But if the 
thread calls exit , _exit , _Exit , or abort , or otherwise exits abnormally, the destructor is not called. 



Threads usually use malloc  to allocate memory for their thread-specific data. The destructor function usually 
frees the memory that was allocated. If the thread exited without freeing the memory, then the memory would 
be lost: leaked by the process. 

A thread can allocate multiple keys for thread-specific data. Each key can have a destructor associated with it. 
There can be a different destructor function for each key, or they can all use the same function. Each operating 
system implementation can place a limit on the number of keys a process can allocate (recall 
PTHREAD_KEYS_MAX from Figure 12.1). 

When a thread exits, the destructors for its thread-specific data are called in an implementation-defined order. It 
is possible for the destructor function to call another function that might create new thread-specific data and 
associate it with the key. After all destructors are called, the system will check whether any non-null thread-
specific values were associated with the keys and, if so, call the destructors again. This process will repeat until 
either all keys for the thread have null thread-specific data values or a maximum of 
PTHREAD_DESTRUCTOR_ITERATIONS (Figure 12.1) attempts have been made. 

We can break the association of a key with the thread-specific data values for all threads by calling 
pthread_key_delete . 

#include <pthread.h> 
 
int pthread_key_delete(pthread_key_t *key);  

 

Returns: 0 if OK, error number on failure 

 

Note that calling pthread_key_delete  will not invoke the destructor function associated with the key. To free 
any memory associated with the key's thread-specific data values, we need to take additional steps in the 
application. 

We need to ensure that a key we allocate doesn't change because of a race during initialization. Code like the 
following can result in two threads both calling pthread_key_create : 

   void destructor(void *); 
 
   pthread_key_t key; 
   int init_done = 0; 
 
   int 
   threadfunc(void *arg) 
   { 
        if (!init_done) { 
             init_done = 1; 
             err = pthread_key_create(&key, destruc tor); 
        } 
        ... 
   } 

 

Depending on how the system schedules threads, some threads might see one key value, whereas other threads 
might see a different value. The way to solve this race is to use pthread_once . 



#include <pthread.h> 
 
pthread_once_t initflag = PTHREAD_ONCE_INIT; 
 
int pthread_once(pthread_once_t *initflag, void (*i nitfn)(void));  

 

Returns: 0 if OK, error number on failure 

 

The initflag must be a nonlocal variable (i.e., global or static) and initialized to PTHREAD_ONCE_INIT. 

If each thread calls pthread_once , the system guarantees that the initialization routine, initfn, will be called 
only once, on the first call to pthread_once . The proper way to create a key without a race is as follows: 

    void destructor(void *); 
 
    pthread_key_t key; 
    pthread_once_t init_done = PTHREAD_ONCE_INIT; 
 
    void 
    thread_init(void) 
    { 
         err = pthread_key_create(&key, destructor) ; 
    } 
 
    int 
    threadfunc(void *arg) 
    { 
         pthread_once(&init_done, thread_init); 
         ... 
    } 

 

Once a key is created, we can associate thread-specific data with the key by calling pthread_setspecific . We 
can obtain the address of the thread-specific data with pthread_getspecific . 

#include <pthread.h> 
 
void *pthread_getspecific(pthread_key_t key); 

 

Returns: thread-specific data value or NULL if no value  
has been associated with the key 

int pthread_setspecific(pthread_key_t key, const vo id *value);  

 

Returns: 0 if OK, error number on failure 

 

If no thread-specific data has been associated with a key, pthread_getspecific  will return a null pointer. We 
can use this to determine whether we need to call pthread_setspecific . 

Example 



In Figure 12.11, we showed a hypothetical implementation of getenv . We came up with a new 
interface to provide the same functionality, but in a thread-safe way (Figure 12.12). But what would 
happen if we couldn't modify our application programs to use the new interface? In that case, we 
could use thread-specific data to maintain a per thread copy of the data buffer used to hold the return 
string. This is shown in Figure 12.13. 

We use pthread_once  to ensure that only one key is created for the thread-specific data we will use. 
If pthread_getspecific  returns a null pointer, we need to allocate the memory buffer and 
associate it with the key. Otherwise, we use the memory buffer returned by pthread_getspecific . 
For the destructor function, we use free  to free the memory previously allocated by malloc . The 
destructor function will be called with the value of the thread-specific data only if the value is non-
null. 

Note that although this version of getenv  is thread-safe, it is not async-signal safe. Even if we made 
the mutex recursive, we could not make it reentrant with respect to signal handlers, because it calls 
malloc , which itself is not async-signal safe. 

Figure 12.13. A thread-safe, compatible version of getenv 

#include <limits.h> 
#include <string.h> 
#include <pthread.h> 
#include <stdlib.h> 
 
static pthread_key_t key; 
static pthread_once_t init_done = PTHREAD_ONCE_INIT ; 
pthread_mutex_t env_mutex = PTHREAD_MUTEX_INITIALIZ ER;  
 
extern char **environ; 
 
static void 
thread_init(void) 
{ 
    pthread_key_create(&key, free); 
} 
 
char * 
getenv(const char *name) 
{ 
    int     i, len; 
    char    *envbuf; 
 
    pthread_once(&init_done, thread_init); 
    pthread_mutex_lock(&env_mutex); 
    envbuf = (char *)pthread_getspecific(key); 
    if (envbuf == NULL) { 
        envbuf = malloc(ARG_MAX); 
        if (envbuf == NULL) { 
            pthread_mutex_unlock(&env_mutex); 
            return(NULL); 
        } 
        pthread_setspecific(key, envbuf); 
    } 
    len = strlen(name); 
    for (i = 0; environ[i] != NULL; i++) { 
        if ((strncmp(name, environ[i], len) == 0) & & 
          (environ[i][len] == '=')) { 
            strcpy(envbuf, &environ[i][len+1]); 



            pthread_mutex_unlock(&env_mutex); 
            return(envbuf); 
        } 
    } 
    pthread_mutex_unlock(&env_mutex); 
    return(NULL); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.7. Cancel Options 

Two thread attributes that are not included in the pthread_attr_t  structure are the cancelability state and the 
cancelability type. These attributes affect the behavior of a thread in response to a call to pthread_cancel  
(Section 11.5). 

The cancelability state attribute can be either PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE. A thread 
can change its cancelability state by calling pthread_setcancelstate . 

#include <pthread.h> 
 
int pthread_setcancelstate(int state, int *oldstate );  

 

Returns: 0 if OK, error number on failure 

 

In one atomic operation, pthread_setcancelstate  sets the current cancelability state to state and stores the 
previous cancelability state in the memory location pointed to by oldstate. 

Recall from Section 11.5 that a call to pthread_cancel  doesn't wait for a thread to terminate. In the default 
case, a thread will continue to execute after a cancellation request is made, until the thread reaches a 
cancellation point. A cancellation point is a place where the thread checks to see whether it has been canceled, 
and then acts on the request. POSIX.1 guarantees that cancellation points will occur when a thread calls any of 
the functions listed in Figure 12.14. 

Figure 12.14. Cancellation points defined by POSIX.1 

accept  mq_timedsend  putpmsg  sigsuspend   

aio_suspend  msgrcv  pwrite  sigtimedwait   

clock_nanosleep  msgsnd  read  sigwait   

close  msync  readv  sigwaitinfo   

connect  nanosleep  recv  sleep   

creat  open  recvfrom  system   

fcntl2  pause  recvmsg  tcdrain   

fsync  poll  select  usleep   

getmsg  pread  sem_timedwait  wait   

getpmsg  pthread_cond_timedwait  sem_wait  waitid   

lockf  pthread_cond_wait  send  waitpid   

mq_receive  pthread_join  sendmsg  write   

mq_send pthread_testcancel  sendto  writev   

mq_timedreceive  putmsg  sigpause    

 



A thread starts with a default cancelability state of PTHREAD_CANCEL_ENABLE. When the state is set to 
PTHREAD_CANCEL_DISABLE, a call to pthread_cancel  will not kill the thread. Instead, the cancellation request 
remains pending for the thread. When the state is enabled again, the thread will act on any pending cancellation 
requests at the next cancellation point. 

In addition to the functions listed in Figure 12.14, POSIX.1 specifies the functions listed in Figure 12.15 as 
optional cancellation points. 

Figure 12.15. Optional cancellation points defined by POSIX.1 

catclose  ftell  getwc  printf   

catgets  ftello  getwchar  putc   

catopen  ftw  getwd  putc_unlocked   

closedir  fwprintf  glob  putchar   

closelog  fwrite  iconv_close  putchar_unlocked   

ctermid  fwscanf  iconv_open  puts   

dbm_close  getc  ioctl  pututxline   

dbm_delete  getc_unlocked  lseek  putwc  

dbm_fetch  getchar  mkstemp  putwchar  

dbm_nextkey  getchar_unlocked  nftw  readdir  

dbm_open getcwd  opendir  readdir_r  

dbm_store  getdate  openlog  remove  

dlclose  getgrent  pclose  rename  

dlopen  getgrgid  perror  rewind  

endgrent  getgrgid_r  popen  rewinddir  

endhostent  getgrnam  posix_fadvise  scanf  

endnetent  getgrnam_r  posix_fallocate  seekdir  

endprotoent  gethostbyaddr  posix_madvise  semop 

endpwent  gethostbyname  posix_spawn  setgrent  

endservent  gethostent  posix_spawnp  sethostent  

endutxent  gethostname  posix_trace_clear  setnetent  

fclose  getlogin  posix_trace_close  setprotoent  

fcntl  getlogin_r  posix_trace_create  setpwent  

fflush  getnetbyaddr  posix_trace_create_withlog  setservent  

fgetc  getnetbyname  posix_trace_eventtypelist_getnext_id  setutxent  

fgetpos  getnetent  posix_trace_eventtypelist_rewind  strerror  

fgets  getprotobyname  posix_trace_flush  syslog  

fgetwc  getprotobynumber  posix_trace_get_attr  tmpfile  



Figure 12.15. Optional cancellation points defined by POSIX.1 

catclose  ftell  getwc  printf   

fgetws  getprotoent  posix_trace_get_filter  tmpnam 

fopen  getpwent  posix_trace_get_status  ttyname  

fprintf  getpwnam  posix_trace_getnext_event  ttyname_r  

fputc  getpwnam_r  posix_trace_open  ungetc  

fputs  getpwuid  posix_trace_rewind  ungetwc  

fputwc  getpwuid_r  posix_trace_set_filter  unlink  

fputws  gets  posix_trace_shutdown  vfprintf  

fread  getservbyname  posix_trace_timedgetnext_event  vfwprintf  

freopen  getservbyport  posix_typed_mem_open  vprintf  

fscanf  getservent  pthread_rwlock_rdlock  vwprintf  

fseek  getutxent  pthread_rwlock_timedrdlock  wprintf  

fseeko  getutxid  pthread_rwlock_timedwrlock  wscanf  

fsetpos  getutxline  pthread_rwlock_wrlock    

 

Note that several of the functions listed in Figure 12.15 are not discussed further in this text. Many are optional 
in the Single UNIX Specification. 

If your application doesn't call one of the functions in Figure 12.14 or Figure 12.15 for a long period of time (if 
it is compute-bound, for example), then you can call pthread_testcancel  to add your own cancellation points 
to the program. 

#include <pthread.h> 
 
void pthread_testcancel(void);  

 

 

When you call pthread_testcancel , if a cancellation request is pending and if cancellation has not been 
disabled, the thread will be canceled. When cancellation is disabled, however, calls to pthread_testcancel  
have no effect. 

The default cancellation type we have been describing is known as deferred cancellation. After a call to 
pthread_cancel , the actual cancellation doesn't occur until the thread hits a cancellation point. We can change 
the cancellation type by calling pthread_setcanceltype . 

#include <pthread.h> 
 
int pthread_setcanceltype(int type, int *oldtype);  

 



#include <pthread.h> 
 
int pthread_setcanceltype(int type, int *oldtype);  

 

Returns: 0 if OK, error number on failure 

 

The type parameter can be either PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS. The 
pthread_setcanceltype  function sets the cancellation type to type and returns the previous type in the integer 
pointed to by oldtype. 

Asynchronous cancellation differs from deferred cancellation in that the thread can be canceled at any time. The 
thread doesn't necessarily need to hit a cancellation point for it to be canceled. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.8. Threads and Signals 

Dealing with signals can be complicated even with a process-based paradigm. Introducing threads into the 
picture makes things even more complicated. 

Each thread has its own signal mask, but the signal disposition is shared by all threads in the process. This 
means that individual threads can block signals, but when a thread modifies the action associated with a given 
signal, all threads share the action. Thus, if one thread chooses to ignore a given signal, another thread can undo 
that choice by restoring the default disposition or installing a signal handler for the signal. 

Signals are delivered to a single thread in the process. If the signal is related to a hardware fault or expiring 
timer, the signal is sent to the thread whose action caused the event. Other signals, on the other hand, are 
delivered to an arbitrary thread. 

In Section 10.12, we discussed how processes can use sigprocmask  to block signals from delivery. The 
behavior of sigprocmask  is undefined in a multithreaded process. Threads have to use pthread_sigmask  
instead. 

#include <signal.h> 
 
int pthread_sigmask(int how, const sigset_t *restri ct set,  
                    sigset_t *restrict oset); 

 

Returns: 0 if OK, error number on failure 

 

The pthread_sigmask  function is identical to sigprocmask , except that pthread_sigmask  works with threads 
and returns an error code on failure instead of setting errno  and returning -1. 

A thread can wait for one or more signals to occur by calling sigwait . 

#include <signal.h> 
 
int sigwait(const sigset_t *restrict set, int *rest rict signop);  

 

Returns: 0 if OK, error number on failure 

 

The set argument specifies the set of signals for which the thread is waiting. On return, the integer to which 
signop points will contain the number of the signal that was delivered. 

If one of the signals specified in the set is pending at the time sigwait  is called, then sigwait  will return 
without blocking. Before returning, sigwait  removes the signal from the set of signals pending for the process. 
To avoid erroneous behavior, a thread must block the signals it is waiting for before calling sigwait . The 
sigwait  function will atomically unblock the signals and wait until one is delivered. Before returning, sigwait  
will restore the thread's signal mask. If the signals are not blocked at the time that sigwait  is called, then a 
timing window is opened up where one of the signals can be delivered to the thread before it completes its call 
to sigwait . 



The advantage to using sigwait  is that it can simplify signal handling by allowing us to treat asynchronously-
generated signals in a synchronous manner. We can prevent the signals from interrupting the threads by adding 
them to each thread's signal mask. Then we can dedicate specific threads to handling the signals. These 
dedicated threads can make function calls without having to worry about which functions are safe to call from a 
signal handler, because they are being called from normal thread context, not from a traditional signal handler 
interrupting a normal thread's execution. 

If multiple threads are blocked in calls to sigwait  for the same signal, only one of the threads will return from 
sigwait  when the signal is delivered. If a signal is being caught (the process has established a signal handler by 
using sigaction , for example) and a thread is waiting for the same signal in a call to sigwait , it is left up to 
the implementation to decide which way to deliver the signal. In this case, the implementation could either 
allow sigwait  to return or invoke the signal handler, but not both. 

To send a signal to a process, we call kill  (Section 10.9). To send a signal to a thread, we call pthread_kill . 

#include <signal.h> 
 
int pthread_kill(pthread_t thread, int signo);  

 

Returns: 0 if OK, error number on failure 

 

We can pass a signo value of 0 to check for existence of the thread. If the default action for a signal is to 
terminate the process, then sending the signal to a thread will still kill the entire process. 

Note that alarm timers are a process resource, and all threads share the same set of alarms. Thus, it is not 
possible for multiple threads in a process to use alarm timers without interfering (or cooperating) with one 
another (this is the subject of Exercise 12.6). 

Example 

Recall that in Figure 10.23, we waited for the signal handler to set a flag indicating that the main program 
should exit. The only threads of control that could run were the main thread and the signal handler, so blocking 
the signals was sufficient to avoid missing a change to the flag. With threads, we need to use a mutex to protect 
the flag, as we show in the program in Figure 12.16. 

Instead of relying on a signal handler that interrupts the main thread of control, we dedicate a separate thread of 
control to handle the signals. We change the value of quitflag  under the protection of a mutex so that the main 
thread of control can't miss the wake-up call made when we call pthread_cond_signal . We use the same 
mutex in the main thread of control to check the value of the flag, and atomically release the mutex and wait for 
the condition. 

Note that we block SIGINT  and SIGQUIT in the beginning of the main thread. When we create the thread to 
handle signals, the thread inherits the current signal mask. Since sigwait  will unblock the signals, only one 
thread is available to receive signals. This enables us to code the main thread without having to worry about 
interrupts from these signals. 

If we run this program, we get output similar to that from Figure 10.23: 

    $ ./a.out 
    ^?                 type the interrupt character  



    interrupt 
    ^?                 type the interrupt character  again 
    interrupt 
    ^?                 and again 
    interrupt 
    ^\ $               now terminate with quit char acter 

 

Figure 12.16. Synchronous signal handling 

#include "apue.h" 
#include <pthread.h> 
 
int         quitflag;   /* set nonzero by thread */  
sigset_t    mask; 
 
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; 
pthread_cond_t wait = PTHREAD_COND_INITIALIZER; 
 
void * 
thr_fn(void *arg) 
{ 
    int err, signo; 
 
    for (;;) { 
        err = sigwait(&mask, &signo); 
        if (err != 0) 
            err_exit(err, "sigwait failed"); 
        switch (signo) { 
        case SIGINT: 
            printf("\ninterrupt\n"); 
            break; 
 
        case SIGQUIT: 
            pthread_mutex_lock(&lock); 
            quitflag = 1; 
            pthread_mutex_unlock(&lock); 
            pthread_cond_signal(&wait); 
            return(0); 
 
        default: 
            printf("unexpected signal %d\n", signo) ; 
            exit(1); 
        } 
    } 
} 
int 
main(void) 
{ 
    int         err; 
    sigset_t    oldmask; 
    pthread_t   tid; 
 
    sigemptyset(&mask); 
    sigaddset(&mask, SIGINT); 
    sigaddset(&mask, SIGQUIT); 
    if ((err = pthread_sigmask(SIG_BLOCK, &mask, &o ldmask)) != 0)  
        err_exit(err, "SIG_BLOCK error"); 
 
    err = pthread_create(&tid, NULL, thr_fn, 0); 
    if (err != 0) 



        err_exit(err, "can't create thread"); 
 
    pthread_mutex_lock(&lock); 
    while (quitflag == 0) 
        pthread_cond_wait(&wait, &lock); 
    pthread_mutex_unlock(&lock); 
 
    /* SIGQUIT has been caught and is now blocked; do whatever */  
    quitflag = 0; 
 
    /* reset signal mask which unblocks SIGQUIT */ 
    if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0) 
        err_sys("SIG_SETMASK error"); 
    exit(0); 
} 

Linux implements threads as separate processes, sharing resources using clone (2). Because of this, the 
behavior of threads on Linux differs from that on other implementations when it comes to signals. In the 
POSIX.1 thread model, asynchronous signals are sent to a process, and then an individual thread within the 
process is selected to receive the signal, based on which threads are not currently blocking the signal. On Linux, 
an asynchronous signal is sent to a particular thread, and since each thread executes as a separate process, the 
system is unable to select a thread that isn't currently blocking the signal. The result is that the thread may not 
notice the signal. Thus, programs like the one in Figure 12.16 work when the signal is generated from the 
terminal driver, which signals the process group, but when you try to send a signal to the process using kill , it 
doesn't work as expected on Linux. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.9. Threads and fork 

When a thread calls fork , a copy of the entire process address space is made for the child. Recall the discussion 
of copy-on-write in Section 8.3. The child is an entirely different process from the parent, and as long as neither 
one makes changes to its memory contents, copies of the memory pages can be shared between parent and child. 

By inheriting a copy of the address space, the child also inherits the state of every mutex, reader–writer lock, 
and condition variable from the parent process. If the parent consists of more than one thread, the child will 
need to clean up the lock state if it isn't going to call exec  immediately after fork  returns. 

Inside the child process, only one thread exists. It is made from a copy of the thread that called fork  in the 
parent. If the threads in the parent process hold any locks, the locks will also be held in the child process. The 
problem is that the child process doesn't contain copies of the threads holding the locks, so there is no way for 
the child to know which locks are held and need to be unlocked. 

This problem can be avoided if the child calls one of the exec  functions directly after returning from fork . In 
this case, the old address space is discarded, so the lock state doesn't matter. This is not always possible, 
however, so if the child needs to continue processing, we need to use a different strategy. 

To clean up the lock state, we can establish fork handlers by calling the function pthread_atfork . 

#include <pthread.h> 
 
int pthread_atfork(void (*prepare)(void), void (*pa rent)(void),  
                   void (*child)(void)); 

 

Returns: 0 if OK, error number on failure 

 

With pthread_atfork , we can install up to three functions to help clean up the locks. The prepare fork handler 
is called in the parent before fork  creates the child process. This fork handler's job is to acquire all locks 
defined by the parent. The parent fork handler is called in the context of the parent after fork  has created the 
child process, but before fork  has returned. This fork handler's job is to unlock all the locks acquired by the 
prepare fork handler. The child fork handler is called in the context of the child process before returning from 
fork . Like the parent fork handler, the child fork handler too must release all the locks acquired by the prepare 
fork handler. 

Note that the locks are not locked once and unlocked twice, as it may appear. When the child address space is 
created, it gets a copy of all locks that the parent defined. Because the prepare fork handler acquired all the 
locks, the memory in the parent and the memory in the child start out with identical contents. When the parent 
and the child unlock their "copy" of the locks, new memory is allocated for the child, and the memory contents 
from the parent are copied to the child's memory (copy-on-write), so we are left with a situation that looks as if 
the parent locked all its copies of the locks and the child locked all its copies of the locks. The parent and the 
child end up unlocking duplicate locks stored in different memory locations, as if the following sequence of 
events occurred. 

1. The parent acquired all its locks. 
2. The child acquired all its locks. 
3. The parent released its locks. 
4. The child released its locks. 



We can call pthread_atfork  multiple times to install more than one set of fork handlers. If we don't have a 
need to use one of the handlers, we can pass a null pointer for the particular handler argument, and it will have 
no effect. When multiple fork handlers are used, the order in which the handlers are called differs. The parent 
and child fork handlers are called in the order in which they were registered, whereas the prepare fork handlers 
are called in the opposite order from which they were registered. This allows multiple modules to register their 
own fork handlers and still honor the locking hierarchy. 

For example, assume that module A calls functions from module B and that each module has its own set of 
locks. If the locking hierarchy is A before B, module B must install its fork handlers before module A. When 
the parent calls fork , the following steps are taken, assuming that the child process runs before the parent. 

1. The prepare fork handler from module A is called to acquire all module A's locks. 
2. The prepare fork handler from module B is called to acquire all module B's locks. 
3. A child process is created. 
4. The child fork handler from module B is called to release all module B's locks in the child process. 
5. The child fork handler from module A is called to release all module A's locks in the child process. 
6. The fork  function returns to the child. 
7. The parent fork handler from module B is called to release all module B's locks in the parent process. 
8. The parent fork handler from module A is called to release all module A's locks in the parent process. 
9. The fork  function returns to the parent. 

If the fork handlers serve to clean up the lock state, what cleans up the state of condition variables? On some 
implementations, condition variables might not need any cleaning up. However, an implementation that uses a 
lock as part of the implementation of condition variables will require cleaning up. The problem is that no 
interface exists to allow us to do this. If the lock is embedded in the condition variable data structure, then we 
can't use condition variables after calling fork , because there is no portable way to clean up its state. On the 
other hand, if an implementation uses a global lock to protect all condition variable data structures in a process, 
then the implementation itself can clean up the lock in the fork  library routine. Application programs shouldn't 
rely on implementation details like this, however. 

Example 

The program in Figure 12.17 illustrates the use of pthread_atfork  and fork handlers. 

We define two mutexes, lock1  and lock2 . The prepare fork handler acquires them both, the child fork handler 
releases them in the context of the child process, and the parent fork handler releases them in the context of the 
parent process. 

When we run this program, we get the following output: 

    $ ./a.out 
    thread started... 
    parent about to fork... 
    preparing locks... 
    child unlocking locks... 
    child returned from fork 
    parent unlocking locks... 
    parent returned from fork 

 

As we can see, the prepare fork handler runs after fork  is called, the child fork handler runs before fork  returns 
in the child, and the parent fork handler runs before fork  returns in the parent. 



Figure 12.17. pthread_atfork example 

#include "apue.h" 
#include <pthread.h> 
 
pthread_mutex_t lock1 = PTHREAD_MUTEX_INITIALIZER; 
pthread_mutex_t lock2 = PTHREAD_MUTEX_INITIALIZER; 
 
void 
prepare(void) 
{ 
    printf("preparing locks...\n"); 
    pthread_mutex_lock(&lock1); 
    pthread_mutex_lock(&lock2); 
} 
void 
parent(void) 
{ 
    printf("parent unlocking locks...\n"); 
    pthread_mutex_unlock(&lock1); 
    pthread_mutex_unlock(&lock2); 
} 
 
void 
child(void) 
{ 
    printf("child unlocking locks...\n"); 
    pthread_mutex_unlock(&lock1); 
    pthread_mutex_unlock(&lock2); 
} 
 
void * 
thr_fn(void *arg) 
{ 
    printf("thread started...\n"); 
    pause(); 
    return(0); 
} 
 
int 
main(void) 
{ 
    int         err; 
    pid_t       pid; 
    pthread_t   tid; 
 
#if defined(BSD) || defined(MACOS) 
    printf("pthread_atfork is unsupported\n"); 
#else 
    if ((err = pthread_atfork(prepare, parent, chil d)) != 0)  
        err_exit(err, "can't install fork handlers" ); 
    err = pthread_create(&tid, NULL, thr_fn, 0); 
    if (err != 0) 
        err_exit(err, "can't create thread"); 
    sleep(2); 
    printf("parent about to fork...\n"); 
    if ((pid = fork()) < 0) 
        err_quit("fork failed"); 
    else if (pid == 0) /* child */ 
        printf("child returned from fork\n"); 
    else        /* parent */ 
        printf("parent returned from fork\n"); 
#endif 



    exit(0); 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.10. Threads and I/O 

We introduced the pread  and pwrite  functions in Section 3.11. These functions are helpful in a multithreaded 
environment, because all threads in a process share the same file descriptors. 

Consider two threads reading from or writing to the same file descriptor at the same time. 

Thread A Thread B 

lseek(fd, 300, SEEK_SET);  lseek(fd, 700, SEEK_SET);  

read(fd, buf1, 100);  read(fd, buf2, 100);   

 

If thread A executes the lseek  and then thread B calls lseek  before thread A calls read , then both threads will 
end up reading the same record. Clearly, this isn't what was intended. 

To solve this problem, we can use pread  to make the setting of the offset and the reading of the data one atomic 
operation. 

Thread A Thread B 

pread(fd, buf1, 100, 300);  pread(fd, buf2, 100, 700);   

 

Using pread , we can ensure that thread A reads the record at offset 300, whereas thread B reads the record at 
offset 700. We can use pwrite  to solve the problem of concurrent threads writing to the same file. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12.11. Summary 

Threads provide an alternate model for partitioning concurrent tasks in UNIX systems. Threads promote sharing 
among separate threads of control, but present unique synchronization problems. In this chapter, we looked at 
how we can fine-tune our threads and their synchronization primitives. We discussed reentrancy with threads. 
We also looked at how threads interact with some of the process-oriented system calls. 
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13.1. Introduction 

Daemons are processes that live for a long time. They are often started when the system is bootstrapped and 
terminate only when the system is shut down. Because they don't have a controlling terminal, we say that they 
run in the background. UNIX systems have numerous daemons that perform day-to-day activities. 

In this chapter, we look at the process structure of daemons and how to write a daemon. Since a daemon does 
not have a controlling terminal, we need to see how a daemon can report error conditions when something goes 
wrong. 

For a discussion of the historical background of the term daemon as it applies to computer systems, see 
Raymond [1996]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

13.2. Daemon Characteristics 

Let's look at some common system daemons and how they relate to the concepts of process groups, controlling 
terminals, and sessions that we described in Chapter 9. The ps (1) command prints the status of various 
processes in the system. There are a multitude of options—consult your system's manual for all the details. 
We'll execute 

   ps -axj 

 

under BSD-based systems to see the information we need for this discussion. The -a  option shows the status of 
processes owned by others, and -x  shows processes that don't have a controlling terminal. The -j  option 
displays the job-related information: the session ID, process group ID, controlling terminal, and terminal 
process group ID. Under System V–based systems, a similar command is ps -efjc . (In an attempt to improve 
security, some UNIX systems don't allow us to use ps  to look at any processes other than our own.) The output 
from ps  looks like 

PPID PID  PGID SID  TTY TPGID UID COMMAND  

0 1 0 0 ? -1 0 init   

1 2 1 1 ? -1 0 [keventd]   

1 3 1 1 ? -1 0 [kapmd]   

0 5 1 1 ? -1 0 [kswapd]   

0 6 1 1 ? -1 0 [bdflush]   

0 7 1 1 ? -1 0 [kupdated]   

1 1009 1009 1009 ? -1 32 portmap   

1 1048 1048 1048 ? -1 0 syslogd -m 0  

1 1335 1335 1335 ? -1 0 xinetd -pidfile /var/run/xinetd.pid   

1 1403 1 1 ? -1 0 [nfsd]   

1 1405 1 1 ? -1 0 [lockd]   

1405 1406 1 1 ? -1 0 [rpciod]   

1 1853 1853 1853 ? -1 0 crond   

1 2182 2182 2182 ? -1 0 /usr/sbin/cupsd   

 

We have removed a few columns that don't interest us, such as the accumulated CPU time. The column 
headings, in order, are the parent process ID, process ID, process group ID, session ID, terminal name, terminal 
process group ID (the foreground process group associated with the controlling terminal), user ID, and 
command string. 

The system that this ps  command was run on (Linux) supports the notion of a session ID, which we mentioned 
with the setsid  function in Section 9.5. The session ID is simply the process ID of the session leader. A BSD-



based system, however, will print the address of the session  structure corresponding to the process group that 
the process belongs to (Section 9.11). 

The system processes you see will depend on the operating system implementation. Anything with a parent 
process ID of 0 is usually a kernel process started as part of the system bootstrap procedure. (An exception to 
this is init , since it is a user-level command started by the kernel at boot time.) Kernel processes are special 
and generally exist for the entire lifetime of the system. They run with superuser privileges and have no 
controlling terminal and no command line. 

Process 1 is usually init , as we described in Section 8.2. It is a system daemon responsible for, among other 
things, starting system services specific to various run levels. These services are usually implemented with the 
help of their own daemons. 

On Linux, the keventd  daemon provides process context for running scheduled functions in the kernel. The 
kapmd daemon provides support for the advanced power management features available with various computer 
systems. The kswapd  daemon is also known as the pageout daemon. It supports the virtual memory subsystem 
by writing dirty pages to disk slowly over time, so the pages can be reclaimed. 

The Linux kernel flushes cached data to disk using two additional daemons: bdflush  and kupdated . The 
bdflush  daemon flushes dirty buffers from the buffer cache back to disk when available memory reaches a 
low-water mark. The kupdated  daemon flushes dirty pages back to disk at regular intervals to decrease data 
loss in the event of a system failure. 

The portmapper daemon, portmap , provides the service of mapping RPC (Remote Procedure Call) program 
numbers to network port numbers. The syslogd  daemon is available to any program to log system messages for 
an operator. The messages may be printed on a console device and also written to a file. (We describe the 
syslog  facility in Section 13.4.) 

We talked about the inetd  daemon (xinetd ) in Section 9.3. It listens on the system's network interfaces for 
incoming requests for various network servers. The nfsd , lockd , and rpciod  daemons provide support for the 
Network File System (NFS). 

The cron  daemon (crond ) executes commands at specified dates and times. Numerous system administration 
tasks are handled by having programs executed regularly by cron . The cupsd  daemon is a print spooler; it 
handles print requests on the system. 

Note that most of the daemons run with superuser privilege (a user ID of 0). None of the daemons has a 
controlling terminal: the terminal name is set to a question mark, and the terminal foreground process group is –
1. The kernel daemons are started without a controlling terminal. The lack of a controlling terminal in the user-
level daemons is probably the result of the daemons having called setsid . All the user-level daemons are 
process group leaders and session leaders and are the only processes in their process group and session. Finally, 
note that the parent of most of these daemons is the init  process. 

 
 
 
 
 
 
 
 



13.3. Coding Rules 

Some basic rules to coding a daemon prevent unwanted interactions from happening. We state these rules and 
then show a function, daemonize , that implements them. 

1. The first thing to do is call umask to set the file mode creation mask to 0. The file mode creation mask 
that's inherited could be set to deny certain permissions. If the daemon process is going to create files, it 
may want to set specific permissions. For example, if it specifically creates files with group-read and 
group-write enabled, a file mode creation mask that turns off either of these permissions would undo its 
efforts. 

2. Call fork  and have the parent exit . This does several things. First, if the daemon was started as a 
simple shell command, having the parent terminate makes the shell think that the command is done. 
Second, the child inherits the process group ID of the parent but gets a new process ID, so we're 
guaranteed that the child is not a process group leader. This is a prerequisite for the call to setsid  that is 
done next. 

3. Call setsid  to create a new session. The three steps listed in Section 9.5 occur. The process (a) becomes 
a session leader of a new session, (b) becomes the process group leader of a new process group, and (c) 
has no controlling terminal. 

Under System V–based systems, some people recommend calling fork  again at this point and having 
the parent terminate. The second child continues as the daemon. This guarantees that the daemon is not a 
session leader, which prevents it from acquiring a controlling terminal under the System V rules 
(Section 9.6). Alternatively, to avoid acquiring a controlling terminal, be sure to specify O_NOCTTY 
whenever opening a terminal device. 

4. Change the current working directory to the root directory. The current working directory inherited from 
the parent could be on a mounted file system. Since daemons normally exist until the system is rebooted, 
if the daemon stays on a mounted file system, that file system cannot be unmounted. 

Alternatively, some daemons might change the current working directory to some specific location, 
where they will do all their work. For example, line printer spooling daemons often change to their spool 
directory. 

5. Unneeded file descriptors should be closed. This prevents the daemon from holding open any 
descriptors that it may have inherited from its parent (which could be a shell or some other process). We 
can use our open_max  function (Figure 2.16) or the getrlimit  function (Section 7.11) to determine the 
highest descriptor and close all descriptors up to that value. 

6. Some daemons open file descriptors 0, 1, and 2 to /dev/null  so that any library routines that try to read 
from standard input or write to standard output or standard error will have no effect. Since the daemon is 
not associated with a terminal device, there is nowhere for output to be displayed; nor is there anywhere 
to receive input from an interactive user. Even if the daemon was started from an interactive session, the 
daemon runs in the background, and the login session can terminate without affecting the daemon. If 
other users log in on the same terminal device, we wouldn't want output from the daemon showing up on 
the terminal, and the users wouldn't expect their input to be read by the daemon. 

Example 

Figure 13.1 shows a function that can be called from a program that wants to initialize itself as a daemon. 

If the daemonize  function is called from a main  program that then goes to sleep, we can check the status of the 



daemon with the ps  command: 

   $ ./a.out 
   $ ps -axj 
    PPID   PID   PGID   SID TTY TPGID UID   COMMAND  
       1  3346   3345  3345 ?      -1 501   ./a.out  
   $ ps -axj |  grep 3345 
       1  3346   3345  3345 ?      -1 501   ./a.out  

 

We can also use ps  to verify that no active process exists with ID 3345. This means that our daemon is in an 
orphaned process group (Section 9.10) and is not a session leader and thus has no chance of allocating a 
controlling terminal. This is a result of performing the second fork  in the daemonize  function. We can see that 
our daemon has been initialized correctly. 

Figure 13.1. Initialize a daemon process 

#include "apue.h" 
#include <syslog.h> 
#include <fcntl.h> 
#include <sys/resource.h> 
 
void 
daemonize(const char *cmd) 
{ 
    int                 i, fd0, fd1, fd2; 
    pid_t               pid; 
    struct rlimit       rl; 
    struct sigaction    sa; 
    /* 
     * Clear file creation mask. 
     */ 
    umask(0); 
 
    /* 
     * Get maximum number of file descriptors. 
     */ 
    if (getrlimit(RLIMIT_NOFILE, &rl) < 0) 
        err_quit("%s: can't get file limit", cmd); 
 
    /* 
     * Become a session leader to lose controlling TTY. 
     */ 
    if ((pid = fork()) < 0) 
        err_quit("%s: can't fork", cmd); 
    else if (pid != 0) /* parent */ 
        exit(0); 
    setsid(); 
 
    /* 
     * Ensure future opens won't allocate controlli ng TTYs. 
     */ 
    sa.sa_handler = SIG_IGN; 
    sigemptyset(&sa.sa_mask); 
    sa.sa_flags = 0; 
    if (sigaction(SIGHUP, &sa, NULL) < 0) 
        err_quit("%s: can't ignore SIGHUP"); 
    if ((pid = fork()) < 0) 
        err_quit("%s: can't fork", cmd); 
    else if (pid != 0) /* parent */ 



        exit(0); 
 
    /* 
     * Change the current working directory to the root so 
     * we won't prevent file systems from being unm ounted. 
     */ 
    if (chdir("/") < 0) 
        err_quit("%s: can't change directory to /") ; 
 
    /* 
     * Close all open file descriptors. 
     */ 
    if (rl.rlim_max == RLIM_INFINITY) 
        rl.rlim_max = 1024; 
    for (i = 0; i < rl.rlim_max; i++) 
        close(i); 
 
    /* 
     * Attach file descriptors 0, 1, and 2 to /dev/ null. 
     */ 
    fd0 = open("/dev/null", O_RDWR); 
    fd1 = dup(0); 
    fd2 = dup(0); 
 
    /* 
     * Initialize the log file. 
     */ 
    openlog(cmd, LOG_CONS, LOG_DAEMON); 
    if (fd0 != 0 || fd1 != 1 || fd2 != 2) { 
        syslog(LOG_ERR, "unexpected file descriptor s %d %d %d",  
          fd0, fd1, fd2); 
        exit(1); 
    } 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3.4. Error Logging 

One problem a daemon has is how to handle error messages. It can't simply write to standard error, since it 
shouldn't have a controlling terminal. We don't want all the daemons writing to the console device, since on 
many workstations, the console device runs a windowing system. We also don't want each daemon writing its 
own error messages into a separate file. It would be a headache for anyone administering the system to keep up 
with which daemon writes to which log file and to check these files on a regular basis. A central daemon error-
logging facility is required. 

The BSD syslog  facility was developed at Berkeley and used widely in 4.2BSD. Most systems derived from 
BSD support syslog . 

Until SVR4, System V never had a central daemon logging facility. 

The syslog  function is included as an XSI extension in the Single UNIX Specification. 

The BSD syslog  facility has been widely used since 4.2BSD. Most daemons use this facility. Figure 13.2 
illustrates its structure. 

Figure 13.2. The BSD syslog facility 

 

 

There are three ways to generate log messages: 

1. Kernel routines can call the log  function. These messages can be read by any user process that open s 
and read s the /dev/klog  device. We won't describe this function any further, since we're not interested 
in writing kernel routines. 



2. Most user processes (daemons) call the syslog (3) function to generate log messages. We describe its 
calling sequence later. This causes the message to be sent to the UNIX domain datagram socket 
/dev/log . 

3. A user process on this host, or on some other host that is connected to this host by a TCP/IP network, 
can send log messages to UDP port 514. Note that the syslog  function never generates these UDP 
datagrams: they require explicit network programming by the process generating the log message. 

Refer to Stevens, Fenner, and Rudoff [2004] for details on UNIX domain sockets and UDP sockets. 

Normally, the syslogd  daemon reads all three forms of log messages. On start-up, this daemon reads a 
configuration file, usually /etc/syslog.conf , which determines where different classes of messages are to be 
sent. For example, urgent messages can be sent to the system administrator (if logged in) and printed on the 
console, whereas warnings may be logged to a file. 

Our interface to this facility is through the syslog  function. 

#include <syslog.h> 
 
void openlog(const char *ident, int option, int fac ility);  
 
void syslog(int priority, const char *format, ...);  
 
void closelog(void); 
 
int setlogmask(int maskpri); 

 

Returns: previous log priority mask value 

 

Calling openlog  is optional. If it's not called, the first time syslog  is called, openlog  is called automatically. 
Calling closelog  is also optional—it just closes the descriptor that was being used to communicate with the 
syslogd  daemon. 

Calling openlog  lets us specify an ident that is added to each log message. This is normally the name of the 
program (cron , inetd , etc.). The option argument is a bitmask specifying various options. Figure 13.3 
describes the available options, including a bullet in the XSI column if the option is included in the openlog  
definition in the Single UNIX Specification. 

Figure 13.3. The option argument for openlog 

option XSI Description 

LOG_CONS • If the log message can't be sent to syslogd  via the UNIX domain datagram, the message is 
written to the console instead. 

LOG_NDELAY • Open the UNIX domain datagram socket to the syslogd  daemon immediately; don't wait 
until the first message is logged. Normally, the socket is not opened until the first message 
is logged. 

LOG_NOWAIT • Do not wait for child processes that might have been created in the process of logging the 
message. This prevents conflicts with applications that catch SIGCHLD, since the application 



Figure 13.3. The option argument for openlog 

option XSI Description 

might have retrieved the child's status by the time that syslog  calls wait . 

LOG_ODELAY • Delay the open of the connection to the syslogd  daemon until the first message is logged. 

LOG_PERROR   Write the log message to standard error in addition to sending it to syslogd . (Unavailable 
on Solaris.) 

LOG_PID • Log the process ID with each message. This is intended for daemons that fork  a child 
process to handle different requests (as compared to daemons, such as syslogd , that never 
call fork ). 

 

The facility argument for openlog  is taken from Figure 13.4. Note that the Single UNIX Specification defines 
only a subset of the facility codes typically available on a given platform. The reason for the facility argument is 
to let the configuration file specify that messages from different facilities are to be handled differently. If we 
don't call openlog , or if we call it with a facility of 0, we can still specify the facility as part of the priority 
argument to syslog . 

Figure 13.4. The facility argument for openlog 

facility XSI  Description 

LOG_AUTH   authorization programs: login, su, getty , ... 

LOG_AUTHPRIV   same as LOG_AUTH, but logged to file with restricted permissions 

LOG_CRON   cron  and at  

LOG_DAEMON   system daemons: inetd, routed,  ... 

LOG_FTP   the FTP daemon (ftpd ) 

LOG_KERN   messages generated by the kernel 

LOG_LOCAL0 • reserved for local use 

LOG_LOCAL1 • reserved for local use 

LOG_LOCAL2 • reserved for local use 

LOG_LOCAL3 • reserved for local use 

LOG_LOCAL4 • reserved for local use 

LOG_LOCAL5 • reserved for local use 

LOG_LOCAL6 • reserved for local use 

LOG_LOCAL7 • reserved for local use 

LOG_LPR   line printer system: lpd, lpc , ... 



Figure 13.4. The facility argument for openlog 

facility XSI  Description 

LOG_MAIL   the mail system 

LOG_NEWS   the Usenet network news system 

LOG_SYSLOG   the syslogd  daemon itself 

LOG_USER • messages from other user processes (default) 

LOG_UUCP   the UUCP system 

 

We call syslog  to generate a log message. The priority argument is a combination of the facility shown in 
Figure 13.4 and a level, shown in Figure 13.5. These levels are ordered by priority, from highest to lowest. 

Figure 13.5. The syslog levels (ordered) 

level Description 

LOG_EMERG emergency (system is unusable) (highest priority) 

LOG_ALERT condition that must be fixed immediately 

LOG_CRIT critical condition (e.g., hard device error) 

LOG_ERR error condition 

LOG_WARNING warning condition 

LOG_NOTICE normal, but significant condition 

LOG_INFO informational message 

LOG_DEBUG debug message (lowest priority) 

 

The format argument and any remaining arguments are passed to the vsprintf  function for formatting. Any 
occurrence of the two characters %m in the format are first replaced with the error message string (strerror ) 
corresponding to the value of errno . 

The setlogmask  function can be used to set the log priority mask for the process. This function returns the 
previous mask. When the log priority mask is set, messages are not logged unless their priority is set in the log 
priority mask. Note that attempts to set the log priority mask to 0 will have no effect. 

The logger (1) program is also provided by many systems as a way to send log messages to the syslog  facility. 
Some implementations allow optional arguments to this program, specifying the facility, level, and ident, 
although the Single UNIX Specification doesn't define any options. The logger  command is intended for a 
shell script running noninteractively that needs to generate log messages. 

Example 



In a (hypothetical) line printer spooler daemon, you might encounter the sequence 

   openlog("lpd", LOG_PID, LOG_LPR); 
   syslog(LOG_ERR, "open error for %s: %m", filenam e); 

 

The first call sets the ident string to the program name, specifies that the process ID should always be printed, 
and sets the default facility to the line printer system. The call to syslog  specifies an error condition and a 
message string. If we had not called openlog , the second call could have been 

   syslog(LOG_ERR | LOG_LPR, "open error for %s: %m ", filename); 

 

Here, we specify the priority argument as a combination of a level and a facility. 

In addition to syslog , many platforms provide a variant that handles variable argument lists. 

#include <syslog.h> 
#include <stdarg.h> 
 
void vsyslog(int priority, const char *format,  
 va_list arg); 

 

 

All four platforms described in this book provide vsyslog , but it is not included in the Single UNIX 
Specification. 

Most syslogd  implementations will queue messages for a short time. If a duplicate message arrives during this 
time, the syslog  daemon will not write it to the log. Instead, the daemon will print out a message similar to 
"last message repeated N times." 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13.5. Single-Instance Daemons 

Some daemons are implemented so that only a single copy of the daemon should be running at a time for proper 
operation. The daemon might need exclusive access to a device, for example. In the case of the cron  daemon, if 
multiple instances were running, each copy might try to start a single scheduled operation, resulting in duplicate 
operations and probably an error. 

If the daemon needs to access a device, the device driver will sometimes prevent multiple opens of the 
corresponding device node in /dev . This restricts us to one copy of the daemon running at a time. If no such 
device is available, however, we need to do the work ourselves. 

The file- and record-locking mechanism provides the basis for one way to ensure that only one copy of a 
daemon is running. (We discuss file and record locking in Section 14.3.) If each daemon creates a file and 
places a write lock on the entire file, only one such write lock will be allowed to be created. Successive attempts 
to create write locks will fail, serving as an indication to successive copies of the daemon that another instance 
is already running. 

File and record locking provides a convenient mutual-exclusion mechanism. If the daemon obtains a write-lock 
on an entire file, the lock will be removed automatically if the daemon exits. This simplifies recovery, removing 
the need for us to clean up from the previous instance of the daemon. 

Example 

The function shown in Figure 13.6 illustrates the use of file and record locking to ensure that only 
one copy of a daemon is running. 

Each copy of the daemon will try to create a file and write its process ID in it. This will allow 
administrators to identify the process easily. If the file is already locked, the lockfile  function will 
fail with errno  set to EACCES or EAGAIN, so we return 1, indicating that the daemon is already 
running. Otherwise, we truncate the file, write our process ID to it, and return 0. 

We need to truncate the file, because the previous instance of the daemon might have had a process 
ID larger than ours, with a larger string length. For example, if the previous instance of the daemon 
was process ID 12345, and the new instance is process ID 9999, when we write the process ID to the 
file, we will be left with 99995 in the file. Truncating the file prevents data from the previous 
daemon appearing as if it applies to the current daemon. 

Figure 13.6. Ensure that only one copy of a daemon is running 

#include <unistd.h> 
#include <stdlib.h> 
#include <fcntl.h> 
#include <syslog.h> 
#include <string.h> 
#include <errno.h> 
#include <stdio.h> 
#include <sys/stat.h> 
 
#define LOCKFILE "/var/run/daemon.pid" 
#define LOCKMODE (S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH) 
 
extern int lockfile(int); 
 
int 



already_running(void) 
{ 
    int     fd; 
    char    buf[16]; 
 
    fd = open(LOCKFILE, O_RDWR|O_CREAT, LOCKMODE); 
    if (fd < 0) { 
        syslog(LOG_ERR, "can't open %s: %s", LOCKFI LE, strerror(errno));  
        exit(1); 
    } 
    if (lockfile(fd) < 0) { 
        if (errno == EACCES || errno == EAGAIN) { 
            close(fd); 
            return(1); 
        } 
        syslog(LOG_ERR, "can't lock %s: %s", LOCKFI LE, strerror(errno));  
        exit(1); 
    } 
    ftruncate(fd, 0); 
    sprintf(buf, "%ld", (long)getpid()); 
    write(fd, buf, strlen(buf)+1); 
    return(0); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13.6. Daemon Conventions 

Several common conventions are followed by daemons in the UNIX System. 

• If the daemon uses a lock file, the file is usually stored in /var/run . Note, however, that the daemon 
might need superuser permissions to create a file here. The name of the file is usually name.pid , where 
name is the name of the daemon or the service. For example, the name of the cron  daemon's lock file is 
/var/run/crond.pid . 

• If the daemon supports configuration options, they are usually stored in /etc . The configuration file is 
named name.conf , where name is the name of the daemon or the name of the service. For example, the 
configuration for the syslogd  daemon is /etc/syslog.conf . 

• Daemons can be started from the command line, but they are usually started from one of the system 
initialization scripts (/etc/rc*  or /etc/init.d/* ). If the daemon should be restarted automatically 
when it exits, we can arrange for init  to restart it if we include a respawn  entry for it in /etc/inittab . 

• If a daemon has a configuration file, the daemon reads it when it starts, but usually won't look at it again. 
If an administrator changes the configuration, the daemon would need to be stopped and restarted to 
account for the configuration changes. To avoid this, some daemons will catch SIGHUP and reread their 
configuration files when they receive the signal. Since they aren't associated with terminals and are 
either session leaders without controlling terminals or members of orphaned process groups, daemons 
have no reason to expect to receive SIGHUP. Thus, they can safely reuse it. 

Example 

The program shown in Figure 13.7 shows one way a daemon can reread its configuration file. The 
program uses sigwait  and multiple threads, as discussed in Section 12.8. 

We call daemonize  from Figure 13.1 to initialize the daemon. When it returns, we call 
already_running  from Figure 13.6 to ensure that only one copy of the daemon is running. At this 
point, SIGHUP is still ignored, so we need to reset the disposition to the default behavior; otherwise, 
the thread calling sigwait  may never see the signal. 

We block all signals, as is recommended for multithreaded programs, and create a thread to handle 
signals. The thread's only job is to wait for SIGHUP and SIGTERM. When it receives SIGHUP, the 
thread calls reread  to reread its configuration file. When it receives SIGTERM, the thread logs a 
message and exits. 

Recall from Figure 10.1 that the default action for SIGHUP and SIGTERM is to terminate the process. 
Because we block these signals, the daemon will not die when one of them is sent to the process. 
Instead, the thread calling sigwait  will return with an indication that the signal has been received. 

Figure 13.7. Daemon rereading configuration files 

#include "apue.h" 
#include <pthread.h> 
#include <syslog.h> 
 
sigset_t    mask; 
 
extern int already_running(void); 
 
void 
reread(void) 
{ 



    /* ... */ 
} 
 
void * 
thr_fn(void *arg) 
{ 
    int err, signo; 
 
    for (;;) { 
        err = sigwait(&mask, &signo); 
        if (err != 0) { 
            syslog(LOG_ERR, "sigwait failed"); 
            exit(1); 
        } 
 
        switch (signo) { 
        case SIGHUP: 
            syslog(LOG_INFO, "Re-reading configurat ion file");  
            reread(); 
            break; 
 
        case SIGTERM: 
            syslog(LOG_INFO, "got SIGTERM; exiting" ); 
            exit(0); 
 
        default: 
            syslog(LOG_INFO, "unexpected signal %d\ n", signo);  
        } 
    } 
    return(0); 
} 
 
int 
main(int argc, char *argv[]) 
{ 
    int                 err; 
    pthread_t           tid; 
    char                *cmd; 
    struct sigaction    sa; 
 
    if ((cmd = strrchr(argv[0], '/')) == NULL) 
        cmd = argv[0]; 
    else 
        cmd++; 
 
    /* 
     * Become a daemon. 
     */ 
    daemonize(cmd); 
 
    /* 
     * Make sure only one copy of the daemon is run ning. 
     */ 
    if (already_running()) { 
        syslog(LOG_ERR, "daemon already running"); 
        exit(1); 
    } 
 
    /* 
     * Restore SIGHUP default and block all signals . 
     */ 
    sa.sa_handler = SIG_DFL; 



    sigemptyset(&sa.sa_mask); 
    sa.sa_flags = 0; 
    if (sigaction(SIGHUP, &sa, NULL) < 0) 
        err_quit("%s: can't restore SIGHUP default" ); 
    sigfillset(&mask); 
    if ((err = pthread_sigmask(SIG_BLOCK, &mask, NU LL)) != 0) 
        err_exit(err, "SIG_BLOCK error"); 
 
    /* 
     * Create a thread to handle SIGHUP and SIGTERM . 
     */ 
    err = pthread_create(&tid, NULL, thr_fn, 0); 
    if (err != 0) 
        err_exit(err, "can't create thread"); 
    /* 
     * Proceed with the rest of the daemon. 
     */ 
    /* ... */ 
    exit(0); 
} 

Example 

As noted in Section 12.8, Linux threads behave differently with respect to signals. Because of this, 
identifying the proper process to signal in Figure 13.7 will be difficult. In addition, we aren't 
guaranteed that the daemon will react as we expect, because of the implementation differences. 

The program in Figure 13.8 shows how a daemon can catch SIGHUP and reread its configuration file 
without using multiple threads. 

After initializing the daemon, we install signal handlers for SIGHUP and SIGTERM. We can either 
place the reread logic in the signal handler or just set a flag in the handler and have the main thread 
of the daemon do all the work instead. 

Figure 13.8. Alternate implementation of daemon rereading configuration files 

#include "apue.h" 
#include <syslog.h> 
#include <errno.h> 
 
extern int lockfile(int); 
extern int already_running(void); 
 
void 
reread(void) 
{ 
    /* ... */ 
} 
 
void 
sigterm(int signo) 
{ 
    syslog(LOG_INFO, "got SIGTERM; exiting"); 
    exit(0); 
} 
 
void 
sighup(int signo) 
{ 



    syslog(LOG_INFO, "Re-reading configuration file "); 
    reread(); 
} 
int 
main(int argc, char *argv[]) 
{ 
    char                *cmd; 
    struct sigaction    sa; 
    if ((cmd = strrchr(argv[0], '/')) == NULL) 
        cmd = argv[0]; 
    else 
        cmd++; 
 
    /* 
     * Become a daemon. 
     */ 
    daemonize(cmd); 
 
    /* 
     * Make sure only one copy of the daemon is run ning. 
     */ 
    if (already_running()) { 
        syslog(LOG_ERR, "daemon already running"); 
        exit(1); 
    } 
 
    /* 
     * Handle signals of interest. 
     */ 
    sa.sa_handler = sigterm; 
    sigemptyset(&sa.sa_mask); 
    sigaddset(&sa.sa_mask, SIGHUP); 
    sa.sa_flags = 0; 
    if (sigaction(SIGTERM, &sa, NULL) < 0) { 
        syslog(LOG_ERR, "can't catch SIGTERM: %s", strerror(errno));  
        exit(1); 
    } 
    sa.sa_handler = sighup; 
    sigemptyset(&sa.sa_mask); 
    sigaddset(&sa.sa_mask, SIGTERM); 
    sa.sa_flags = 0; 
    if (sigaction(SIGHUP, &sa, NULL) < 0) { 
        syslog(LOG_ERR, "can't catch SIGHUP: %s", s trerror(errno)); 
        exit(1); 
    } 
 
    /* 
     * Proceed with the rest of the daemon. 
     */ 
    /* ... */ 
    exit(0); 
}  

 
 
 
 
 
 
 
 



13.7. Client–Server Model 

A common use for a daemon process is as a server process. Indeed, in Figure 13.2, we can call the syslogd  
process a server that has messages sent to it by user processes (clients) using a UNIX domain datagram socket. 

In general, a server is a process that waits for a client to contact it, requesting some type of service. In Figure 
13.2, the service being provided by the syslogd  server is the logging of an error message. 

In Figure 13.2, the communication between the client and the server is one-way. The client sends its service 
request to the server; the server sends nothing back to the client. In the upcoming chapters, we'll see numerous 
examples of two-way communication between a client and a server. The client sends a request to the server, and 
the server sends a reply back to the client. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13.8. Summary 

Daemon processes are running all the time on most UNIX systems. Initializing our own process to run as a 
daemon takes some care and an understanding of the process relationships that we described in Chapter 9. In 
this chapter, we developed a function that can be called by a daemon process to initialize itself correctly. 

We also discussed the ways a daemon can log error messages, since a daemon normally doesn't have a 
controlling terminal. We discussed several conventions that daemons follow on most UNIX systems and 
showed examples of how to implement some of these conventions. 
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14.1. Introduction 

This chapter covers numerous topics and functions that we lump under the term advanced I/O: nonblocking I/O, 
record locking, System V STREAMS, I/O multiplexing (the select  and poll  functions), the readv  and writev  
functions, and memory-mapped I/O (mmap). We need to cover these topics before describing interprocess 
communication in Chapter 15, Chapter 17, and many of the examples in later chapters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.2. Nonblocking I/O 

In Section 10.5, we said that the system calls are divided into two categories: the "slow" ones and all the others. 
The slow system calls are those that can block forever. They include 

• Reads that can block the caller forever if data isn't present with certain file types (pipes, terminal devices, 
and network devices) 

• Writes that can block the caller forever if the data can't be accepted immediately by these same file types 
(no room in the pipe, network flow control, etc.) 

• Opens that block until some condition occurs on certain file types (such as an open of a terminal device 
that waits until an attached modem answers the phone, or an open of a FIFO for writing-only when no 
other process has the FIFO open for reading) 

• Reads and writes of files that have mandatory record locking enabled 
• Certain ioctl  operations 
• Some of the interprocess communication functions (Chapter 15) 

We also said that system calls related to disk I/O are not considered slow, even though the read or write of a 
disk file can block the caller temporarily. 

Nonblocking I/O lets us issue an I/O operation, such as an open , read , or write , and not have it block forever. 
If the operation cannot be completed, the call returns immediately with an error noting that the operation would 
have blocked. 

There are two ways to specify nonblocking I/O for a given descriptor. 

1. If we call open  to get the descriptor, we can specify the O_NONBLOCK flag (Section 3.3). 
2. For a descriptor that is already open, we call fcntl  to turn on the O_NONBLOCK file status flag (Section 

3.14). Figure 3.11 shows a function that we can call to turn on any of the file status flags for a descriptor. 

Earlier versions of System V used the flag O_NDELAY to specify nonblocking mode. These versions of 
System V returned a value of 0 from the read  function if there wasn't any data to be read. Since this use 
of a return value of 0 overlapped with the normal UNIX System convention of 0 meaning the end of file, 
POSIX.1 chose to provide a nonblocking flag with a different name and different semantics. Indeed, 
with these older versions of System V, when we get a return of 0 from read , we don't know whether the 
call would have blocked or whether the end of file was encountered. We'll see that POSIX.1 requires 
that read  return –1 with errno  set to EAGAIN if there is no data to read from a nonblocking descriptor. 
Some platforms derived from System V support both the older O_NDELAY and the POSIX.1 O_NONBLOCK, 
but in this text, we'll use only the POSIX.1 feature. The older O_NDELAY is for backward compatibility 
and should not be used in new applications. 

4.3BSD provided the FNDELAY flag for fcntl , and its semantics were slightly different. Instead of 
affecting only the file status flags for the descriptor, the flags for either the terminal device or the socket 
were also changed to be nonblocking, affecting all users of the terminal or socket, not only the users 
sharing the same file table entry (4.3BSD nonblocking I/O worked only on terminals and sockets). Also, 
4.3BSD returned EWOULDBLOCK if an operation on a nonblocking descriptor could not complete without 
blocking. Today, BSD-based systems provide the POSIX.1 O_NONBLOCK flag and define EWOULDBLOCK to 
be the same as EAGAIN. These systems provide nonblocking semantics consistent with other POSIX-
compatible systems: changes in file status flags affect all users of the same file table entry, but are 
independent of accesses to the same device through other file table entries. (Refer to Figures 3.6 and 
3.8.) 



Example 

Let's look at an example of nonblocking I/O. The program in Figure 14.1 reads up to 500,000 bytes from the 
standard input and attempts to write it to the standard output. The standard output is first set nonblocking. The 
output is in a loop, with the results of each write  being printed on the standard error. The function clr_fl  is 
similar to the function set_fl  that we showed in Figure 3.11. This new function simply clears one or more of 
the flag bits. 

If the standard output is a regular file, we expect the write  to be executed once: 

$ ls -l /etc/termcap                           prin t file size 
-rw-r--r-- 1 root      702559 Feb 23  2002 /etc/ter mcap 
$ ./a.out < /etc/termcap > temp.file           try a regular file first 
read 500000 bytes 
nwrite = 500000, errno = 0                     a si ngle write 
$ ls -l temp.file                              veri fy size of output file 
-rw-rw-r-- 1 sar       500000 Jul   8 04:19 temp.fi le 

 

But if the standard output is a terminal, we expect the write  to return a partial count sometimes and an error at 
other times. This is what we see: 

$ ./a.out < /etc/termcap 2>stderr.out              output to terminal 
                                                   lots of output to terminal ... 
$ cat stderr.out 
read 500000 bytes 
nwrite = 216041, errno = 0 
nwrite = -1, errno = 11                            1,497 of these errors 
... 
nwrite = 16015, errno = 0 
nwrite = -1, errno = 11                            1,856 of these errors 
... 
nwrite = 32081, errno = 0 
nwrite = -1, errno = 11                            1,654 of these errors 
... 
nwrite = 48002, errno = 0 
nwrite = -1, errno = 11                            1,460 of these errors 
... 
                                                   and so on ... 
nwrite = 7949, errno = 0 
 
 
      

 

On this system, the errno  of 11 is EAGAIN. The amount of data accepted by the terminal driver varies from 
system to system. The results will also vary depending on how you are logged in to the system: on the system 
console, on a hardwired terminal, on network connection using a pseudo terminal. If you are running a 
windowing system on your terminal, you are also going through a pseudo-terminal device. 

Figure 14.1. Large nonblocking write 

#include "apue.h" 
#include <errno.h> 
#include <fcntl.h> 
 
char    buf[500000]; 
 



int 
main(void) 
{ 
    int     ntowrite, nwrite; 
    char    *ptr; 
 
    ntowrite = read(STDIN_FILENO, buf, sizeof(buf)) ; 
    fprintf(stderr, "read %d bytes\n", ntowrite); 
 
    set_fl(STDOUT_FILENO, O_NONBLOCK); /* set nonbl ocking */ 
 
    ptr = buf; 
    while (ntowrite > 0) { 
        errno = 0; 
        nwrite = write(STDOUT_FILENO, ptr, ntowrite ); 
        fprintf(stderr, "nwrite = %d, errno = %d\n" , nwrite, errno);  
 
        if (nwrite > 0) { 
            ptr += nwrite; 
            ntowrite -= nwrite; 
        } 
    } 
 
    clr_fl(STDOUT_FILENO, O_NONBLOCK); /* clear non blocking */ 
 
    exit(0); 
} 

In this example, the program issues thousands of write  calls, even though only between 10 and 20 are needed 
to output the data. The rest just return an error. This type of loop, called polling, is a waste of CPU time on a 
multiuser system. In Section 14.5, we'll see that I/O multiplexing with a nonblocking descriptor is a more 
efficient way to do this. 

Sometimes, we can avoid using nonblocking I/O by designing our applications to use multiple threads (see 
Chapter 11). We can allow individual threads to block in I/O calls if we can continue to make progress in other 
threads. This can sometimes simplify the design, as we shall see in Chapter 21; sometimes, however, the 
overhead of synchronization can add more complexity than is saved from using threads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.3. Record Locking 

What happens when two people edit the same file at the same time? In most UNIX systems, the final state of the 
file corresponds to the last process that wrote the file. In some applications, however, such as a database system, 
a process needs to be certain that it alone is writing to a file. To provide this capability for processes that need it, 
commercial UNIX systems provide record locking. (In Chapter 20, we develop a database library that uses 
record locking.) 

Record locking is the term normally used to describe the ability of a process to prevent other processes from 
modifying a region of a file while the first process is reading or modifying that portion of the file. Under the 
UNIX System, the adjective "record" is a misnomer, since the UNIX kernel does not have a notion of records in 
a file. A better term is byte-range locking, since it is a range of a file (possibly the entire file) that is locked. 

History 

One of the criticisms of early UNIX systems was that they couldn't be used to run database systems, because 
there was no support for locking portions of files. As UNIX systems found their way into business computing 
environments, various groups added support record locking (differently, of course). 

Early Berkeley releases supported only the flock  function. This function locks only entire files, not regions of a 
file. 

Record locking was added to System V Release 3 through the fcntl  function. The lockf  function was built on 
top of this, providing a simplified interface. These functions allowed callers to lock arbitrary byte ranges in a 
file, from the entire file down to a single byte within the file. 

POSIX.1 chose to standardize on the fcntl  approach. Figure 14.2 shows the forms of record locking provided 
by various systems. Note that the Single UNIX Specification includes lockf  in the XSI extension. 

Figure 14.2. Forms of record locking supported by various UNIX systems 

System Advisory Mandatory fcntl lockf flock 

SUS •   • XSI   

FreeBSD 5.2.1 •   • • • 

Linux 2.4.22 • • • • • 

Mac OS X 10.3 •   • • • 

Solaris 9 • • • • • 

 

We describe the difference between advisory locking and mandatory locking later in this section. In this text, 
we describe only the POSIX.1 fcntl  locking. 

Record locking was originally added to Version 7 in 1980 by John Bass. The system call entry into the kernel 
was a function named locking . This function provided mandatory record locking and propagated through many 
versions of System III. Xenix systems picked up this function, and some Intel-based System V derivatives, such 
as OpenServer 5, still support it in a Xenix-compatibility library. 



fcntl Record Locking 

Let's repeat the prototype for the fcntl  function from Section 3.14. 

#include <fcntl.h> 
 
int fcntl(int filedes, int cmd, ... /* struct flock  *flockptr */ );  

 

Returns: depends on cmd if OK (see following), –1 on error  

 

For record locking, cmd is F_GETLK, F_SETLK, or F_SETLKW. The third argument (which we'll call flockptr) is a 
pointer to an flock  structure. 

   struct flock { 
     short l_type;   /* F_RDLCK, F_WRLCK, or F_UNLC K */ 
     off_t l_start;  /* offset in bytes, relative t o l_whence */ 
     short l_whence; /* SEEK_SET, SEEK_CUR, or SEEK _END */ 
     off_t l_len;    /* length, in bytes; 0 means l ock to EOF */ 
     pid_t l_pid;    /* returned with F_GETLK */ 
   }; 

 

This structure describes 

• The type of lock desired: F_RDLCK (a shared read lock), F_WRLCK (an exclusive write lock), or F_UNLCK 
(unlocking a region) 

• The starting byte offset of the region being locked or unlocked (l_start  and l_whence ) 
• The size of the region in bytes (l_len ) 
• The ID (l_pid ) of the process holding the lock that can block the current process (returned by F_GETLK 

only) 

There are numerous rules about the specification of the region to be locked or unlocked. 

• The two elements that specify the starting offset of the region are similar to the last two arguments of the 
lseek  function (Section 3.6). Indeed, the l_whence  member is specified as SEEK_SET, SEEK_CUR, or 
SEEK_END. 

• Locks can start and extend beyond the current end of file, but cannot start or extend before the beginning 
of the file. 

• If l_len  is 0, it means that the lock extends to the largest possible offset of the file. This allows us to 
lock a region starting anywhere in the file, up through and including any data that is appended to the file. 
(We don't have to try to guess how many bytes might be appended to the file.) 

• To lock the entire file, we set l_start  and l_whence  to point to the beginning of the file and specify a 
length (l_len ) of 0. (There are several ways to specify the beginning of the file, but most applications 
specify l_start  as 0 and l_whence  as SEEK_SET.) 

We mentioned two types of locks: a shared read lock (l_type  of F_RDLCK) and an exclusive write lock 
(F_WRLCK). The basic rule is that any number of processes can have a shared read lock on a given byte, but only 
one process can have an exclusive write lock on a given byte. Furthermore, if there are one or more read locks 
on a byte, there can't be any write locks on that byte; if there is an exclusive write lock on a byte, there can't be 
any read locks on that byte. We show this compatibility rule in Figure 14.3. 



Figure 14.3. Compatibility between different lock types 

 

 

The compatibility rule applies to lock requests made from different processes, not to multiple lock requests 
made by a single process. If a process has an existing lock on a range of a file, a subsequent attempt to place a 
lock on the same range by the same process will replace the existing lock with the new one. Thus, if a process 
has a write lock on bytes 16–32 of a file and then tries to place a read lock on bytes 16–32, the request will 
succeed (assuming that we're not racing with any other processes trying to lock the same portion of the file), and 
the write lock will be replaced by a read lock. 

To obtain a read lock, the descriptor must be open for reading; to obtain a write lock, the descriptor must be 
open for writing. 

We can now describe the three commands for the fcntl  function. 

F_GETLK Determine whether the lock described by flockptr is blocked by some other lock. If a lock exists that 
would prevent ours from being created, the information on that existing lock overwrites the 
information pointed to by flockptr. If no lock exists that would prevent ours from being created, the 
structure pointed to by flockptr is left unchanged except for the l_type  member, which is set to 
F_UNLCK. 

F_SETLK Set the lock described by flockptr. If we are trying to obtain a read lock (l_type  of F_RDLCK) or a 
write lock (l_type  of F_WRLCK) and the compatibility rule prevents the system from giving us the 
lock (Figure 14.3), fcntl  returns immediately with errno  set to either EACCES or EAGAIN.  

Although POSIX allows an implementation to return either error code, all four implementations 
described in this text return EAGAIN if the locking request cannot be satisfied. 

This command is also used to clear the lock described by flockptr (l_type  of F_UNLCK). 

F_SETLKW This command is a blocking version of F_SETLK. (The W in the command name means wait.) If the 
requested read lock or write lock cannot be granted because another process currently has some part 
of the requested region locked, the calling process is put to sleep. The process wakes up either when 
the lock becomes available or when interrupted by a signal. 

 

Be aware that testing for a lock with F_GETLK and then trying to obtain that lock with F_SETLK or F_SETLKW is 
not an atomic operation. We have no guarantee that, between the two fcntl  calls, some other process won't 
come in and obtain the same lock. If we don't want to block while waiting for a lock to become available to us, 
we must handle the possible error returns from F_SETLK. 



Note that POSIX.1 doesn't specify what happens when one process read-locks a range of a file, a second process 
blocks while trying to get a write lock on the same range, and a third processes then attempts to get another read 
lock on the range. If the third process is allowed to place a read lock on the range just because the range is 
already read-locked, then the implementation might starve processes with pending write locks. This means that 
as additional requests to read lock the same range arrive, the time that the process with the pending write-lock 
request has to wait is extended. If the read-lock requests arrive quickly enough without a lull in the arrival rate, 
then the writer could wait for a long time. 

When setting or releasing a lock on a file, the system combines or splits adjacent areas as required. For example, 
if we lock bytes 100 through 199 and then unlock byte 150, the kernel still maintains the locks on bytes 100 
through 149 and bytes 151 through 199. Figure 14.4 illustrates the byte-range locks in this situation. 

Figure 14.4. File byte-range lock diagram 

 

 

If we were to lock byte 150, the system would coalesce the adjacent locked regions into a single region from 
byte 100 through 199. The resulting picture would be the first diagram in Figure 14.4, the same as when we 
started. 

Example—Requesting and Releasing a Lock 

To save ourselves from having to allocate an flock  structure and fill in all the elements each time, the function 
lock_reg  in Figure 14.5 handles all these details. 

Since most locking calls are to lock or unlock a region (the command F_GETLK is rarely used), we normally use 
one of the following five macros, which are defined in apue.h  (Appendix B). 

#define read_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLK, F_RDLCK, (offse t), (whence), (len)) 
#define readw_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLKW, F_RDLCK, (offs et), (whence), (len)) 
#define write_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLK, F_WRLCK, (offse t), (whence), (len)) 



#define writew_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLKW, F_WRLCK, (offs et), (whence), (len)) 
#define un_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLK, F_UNLCK, (offse t), (whence), (len)) 

 

We have purposely defined the first three arguments to these macros in the same order as the lseek  function. 

Figure 14.5. Function to lock or unlock a region of a file 

#include "apue.h" 
#include <fcntl.h> 
 
int 
lock_reg(int fd, int cmd, int type, off_t offset, i nt whence, off_t len)  
{ 
    struct flock lock; 
 
    lock.l_type = type;     /* F_RDLCK, F_WRLCK, F_ UNLCK */ 
    lock.l_start = offset;  /* byte offset, relativ e to l_whence */ 
    lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */ 
    lock.l_len = len;       /* #bytes (0 means to E OF) */ 
 
    return(fcntl(fd, cmd, &lock)); 
} 

 

Example—Testing for a Lock 

Figure 14.6 defines the function lock_test  that we'll use to test for a lock. 

If a lock exists that would block the request specified by the arguments, this function returns the process ID of 
the process holding the lock. Otherwise, the function returns 0 (false). We normally call this function from the 
following two macros (defined in apue.h ): 

#define is_read_lockable(fd, offset, whence, len) \  
          (lock_test((fd), F_RDLCK, (offset), (when ce), (len)) == 0) 
#define is_write_lockable(fd, offset, whence, len) \ 
          (lock_test((fd), F_WRLCK, (offset), (when ce), (len)) == 0) 

 

Note that the lock_test  function can't be used by a process to see whether it is currently holding a portion of a 
file locked. The definition of the F_GETLK command states that the information returned applies to an existing 
lock that would prevent us from creating our own lock. Since the F_SETLK and F_SETLKW commands always 
replace a process's existing lock if it exists, we can never block on our own lock; thus, the F_GETLK command 
will never report our own lock. 

Figure 14.6. Function to test for a locking condition 

#include "apue.h" 
#include <fcntl.h> 
 
pid_t 
lock_test(int fd, int type, off_t offset, int whenc e, off_t len) 
{ 
    struct flock lock; 



    lock.l_type = type;     /* F_RDLCK or F_WRLCK * / 
    lock.l_start = offset;  /* byte offset, relativ e to l_whence */ 
    lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */ 
    lock.l_len = len;       /* #bytes (0 means to E OF) */ 
 
    if (fcntl(fd, F_GETLK, &lock) < 0) 
        err_sys("fcntl error"); 
 
    if (lock.l_type == F_UNLCK) 
        return(0);      /* false, region isn't lock ed by another proc */  
    return(lock.l_pid); /* true, return pid of lock  owner */ 
} 

 

Example—Deadlock 

Deadlock occurs when two processes are each waiting for a resource that the other has locked. The potential for 
deadlock exists if a process that controls a locked region is put to sleep when it tries to lock another region that 
is controlled by a different process. 

Figure 14.7 shows an example of deadlock. The child locks byte 0 and the parent locks byte 1. Then each tries 
to lock the other's already locked byte. We use the parent–child synchronization routines from Section 8.9 
(TELL_xxx  and WAIT_xxx ) so that each process can wait for the other to obtain its lock. Running the program in 
Figure 14.7 gives us 

   $ ./a.out 
   parent: got the lock, byte 1 
   child: got the lock, byte 0 
   child: writew_lock error: Resource deadlock avoi ded 
   parent: got the lock, byte 0 

 

When a deadlock is detected, the kernel has to choose one process to receive the error return. In this example, 
the child was chosen, but this is an implementation detail. On some systems, the child always receives the error. 
On other systems, the parent always gets the error. On some systems, you might even see the errors split 
between the child and the parent as multiple lock attempts are made. 

Figure 14.7. Example of deadlock detection 

#include "apue.h" 
#include <fcntl.h> 
 
static void 
lockabyte(const char *name, int fd, off_t offset) 
{ 
    if (writew_lock(fd, offset, SEEK_SET, 1) < 0) 
        err_sys("%s: writew_lock error", name); 
    printf("%s: got the lock, byte %ld\n", name, of fset);  
} 
 
int 
main(void) 
{ 
    int      fd; 
    pid_t    pid; 
 
    /* 



     * Create a file and write two bytes to it. 
     */ 
    if ((fd = creat("templock", FILE_MODE)) < 0) 
        err_sys("creat error"); 
    if (write(fd, "ab", 2) != 2) 
        err_sys("write error"); 
 
    TELL_WAIT(); 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {         /* child */ 
        lockabyte("child", fd, 0); 
        TELL_PARENT(getppid()); 
        WAIT_PARENT(); 
        lockabyte("child", fd, 1); 
    } else {                       /* parent */ 
        lockabyte("parent", fd, 1); 
        TELL_CHILD(pid); 
        WAIT_CHILD(); 
        lockabyte("parent", fd, 0); 
    } 
    exit(0); 
} 

Implied Inheritance and Release of Locks 

Three rules govern the automatic inheritance and release of record locks. 

1. Locks are associated with a process and a file. This has two implications. The first is obvious: when a 
process terminates, all its locks are released. The second is far from obvious: whenever a descriptor is 
closed, any locks on the file referenced by that descriptor for that process are released. This means that if 
we do 

2.      fd1 = open(pathname, ...); 
3.      read_lock(fd1, ...); 
4.      fd2 = dup(fd1); 
5.      close(fd2); 

 

after the close(fd2) , the lock that was obtained on fd1  is released. The same thing would happen if we 
replaced the dup  with open , as in 

    fd1 = open(pathname, ...); 
    read_lock(fd1, ...); 
    fd2 = open(pathname, ...) 
    close(fd2); 

 

to open the same file on another descriptor. 

6. Locks are never inherited by the child across a fork . This means that if a process obtains a lock and then 
calls fork , the child is considered another process with regard to the lock that was obtained by the 
parent. The child has to call fcntl  to obtain its own locks on any descriptors that were inherited across 
the fork . This makes sense because locks are meant to prevent multiple processes from writing to the 



same file at the same time. If the child inherited locks across a fork , both the parent and the child could 
write to the same file at the same time. 

7. Locks are inherited by a new program across an exec . Note, however, that if the close-on-exec flag is 
set for a file descriptor, all locks for the underlying file are released when the descriptor is closed as part 
of an exec . 

FreeBSD Implementation 

Let's take a brief look at the data structures used in the FreeBSD implementation. This should help clarify rule 1, 
that locks are associated with a process and a file. 

Consider a process that executes the following statements (ignoring error returns): 

   fd1 = open(pathname, ...); 
   write_lock(fd1, 0, SEEK_SET, 1);    /* parent wr ite locks byte 0 */ 
   if ((pid = fork()) > 0) {           /* parent */  
       fd2 = dup(fd1); 
       fd3 = open(pathname, ...); 
   } else if (pid == 0) { 
       read_lock(fd1, 1, SEEK_SET, 1); /* child rea d locks byte 1 */ 
   } 
   pause(); 

 

Figure 14.8 shows the resulting data structures after both the parent and the child have paused. 

Figure 14.8. The FreeBSD data structures for record locking 

 
 

We've shown the data structures that result from the open , fork , and dup  earlier (Figures 3.8 and 8.2). What is 
new are the lockf  structures that are linked together from the i-node structure. Note that each lockf  structure 
describes one locked region (defined by an offset and length) for a given process. We show two of these 
structures: one for the parent's call to write_lock  and one for the child's call to read_lock . Each structure 
contains the corresponding process ID. 



In the parent, closing any one of fd1 , fd2 , or fd3  causes the parent's lock to be released. When any one of these 
three file descriptors is closed, the kernel goes through the linked list of locks for the corresponding i-node and 
releases the locks held by the calling process. The kernel can't tell (and doesn't care) which descriptor of the 
three was used by the parent to obtain the lock. 

Example 

In the program in Figure 13.6, we saw how a daemon can use a lock on a file to ensure that only one copy of the 
daemon is running. Figure 14.9 shows the implementation of the lockfile  function used by the daemon to 
place a write lock on a file. 

Alternatively, we could define the lockfile  function in terms of the write_lock  function: 

   #define lockfile(fd) write_lock((fd), 0, SEEK_SE T, 0) 

 

Figure 14.9. Place a write lock on an entire file 

#include <unistd.h> 
#include <fcntl.h> 
 
int 
lockfile(int fd) 
{ 
    struct flock fl; 
 
    fl.l_type = F_WRLCK; 
    fl.l_start = 0; 
    fl.l_whence = SEEK_SET; 
    fl.l_len = 0; 
    return(fcntl(fd, F_SETLK, &fl));  
} 

 

Locks at End of File 

Use caution when locking or unlocking relative to the end of file. Most implementations convert an l_whence  
value of SEEK_CUR or SEEK_END into an absolute file offset, using l_start  and the file's current position or 
current length. Often, however, we need to specify a lock relative to the file's current position or current length, 
because we can't call lseek  to obtain the current file offset, since we don't have a lock on the file. (There's a 
chance that another process could change the file's length between the call to lseek  and the lock call.) 

Consider the following sequence of steps: 

   writew_lock(fd, 0, SEEK_END, 0); 
   write(fd, buf, 1); 
   un_lock(fd, 0, SEEK_END); 
   write(fd, buf, 1); 

 

This sequence of code might not do what you expect. It obtains a write lock from the current end of the file 
onward, covering any future data we might append to the file. Assuming that we are at end of file when we 
perform the first write , that will extend the file by one byte, and that byte will be locked. The unlock that 
follows has the effect of removing the locks for future writes that append data to the file, but it leaves a lock on 



the last byte in the file. When the second write occurs, the end of file is extended by one byte, but this byte is 
not locked. The state of the file locks for this sequence of steps is shown in Figure 14.10 

Figure 14.10. File range lock diagram 

 

 

When a portion of a file is locked, the kernel converts the offset specified into an absolute file offset. In addition 
to specifying an absolute file offset (SEEK_SET), fcntl  allows us to specify this offset relative to a point in the 
file: current (SEEK_CUR) or end of file (SEEK_END). The kernel needs to remember the locks independent of the 
current file offset or end of file, because the current offset and end of file can change, and changes to these 
attributes shouldn't affect the state of existing locks. 

If we intended to remove the lock covering the byte we wrote in the first write, we could have specified the 
length as -1. Negative-length values represent the bytes before the specified offset. 

Advisory versus Mandatory Locking 

Consider a library of database access routines. If all the functions in the library handle record locking in a 
consistent way, then we say that any set of processes using these functions to access a database are cooperating 
processes. It is feasible for these database access functions to use advisory locking if they are the only ones 
being used to access the database. But advisory locking doesn't prevent some other process that has write 
permission for the database file from writing whatever it wants to the database file. This rogue process would be 
an uncooperating process, since it's not using the accepted method (the library of database functions) to access 
the database. 

Mandatory locking causes the kernel to check every open , read , and write  to verify that the calling process 
isn't violating a lock on the file being accessed. Mandatory locking is sometimes called enforcement-mode 
locking. 

We saw in Figure 14.2 that Linux 2.4.22 and Solaris 9 provide mandatory record locking, but FreeBSD 5.2.1 
and Mac OS X 10.3 do not. Mandatory record locking is not part of the Single UNIX Specification. On Linux, 
if you want mandatory locking, you need to enable it on a per file system basis by using the -o mand  option to 
the mount  command. 



Mandatory locking is enabled for a particular file by turning on the set-group-ID bit and turning off the group-
execute bit. (Recall Figure 4.12.) Since the set-group-ID bit makes no sense when the group-execute bit is off, 
the designers of SVR3 chose this way to specify that the locking for a file is to be mandatory locking and not 
advisory locking. 

What happens to a process that tries to read  or write  a file that has mandatory locking enabled and the 
specified part of the file is currently read-locked or write-locked by another process? The answer depends on 
the type of operation (read  or write ), the type of lock held by the other process (read lock or write lock), and 
whether the descriptor for the read  or write  is nonblocking. Figure 14.11 shows the eight possibilities. 

Figure 14.11. Effect of mandatory locking on reads and writes by other processes 

Blocking descriptor, tries 
to 

Nonblocking descriptor, tries 
to Type of existing lock on region held by other 

process read  write  read  write   

read lock OK blocks OK EAGAIN  

write lock blocks blocks EAGAIN EAGAIN 

 

In addition to the read  and write  functions in Figure 14.11, the open  function can also be affected by 
mandatory record locks held by another process. Normally, open  succeeds, even if the file being opened has 
outstanding mandatory record locks. The next read  or write  follows the rules listed in Figure 14.11. But if the 
file being opened has outstanding mandatory record locks (either read locks or write locks), and if the flags in 
the call to open  specify either O_TRUNC or O_CREAT, then open  returns an error of EAGAIN immediately, 
regardless of whether O_NONBLOCK is specified. 

Only Solaris treats the O_CREAT flag as an error case. Linux allows the O_CREAT flag to be specified when 
opening a file with an outstanding mandatory lock. Generating the open  error for O_TRUNC makes sense, 
because the file cannot be truncated if it is read-locked or write-locked by another process. Generating the error 
for O_CREAT, however, makes little sense; this flag says to create the file only if it doesn't already exist, but it 
has to exist to be record-locked by another process. 

This handling of locking conflicts with open  can lead to surprising results. While developing the exercises in 
this section, a test program was run that opened a file (whose mode specified mandatory locking), established a 
read lock on an entire file, and then went to sleep for a while. (Recall from Figure 14.11 that a read lock should 
prevent writing to the file by other processes.) During this sleep period, the following behavior was seen in 
other typical UNIX System programs. 

• The same file could be edited with the ed editor, and the results written back to disk! The mandatory 
record locking had no effect at all. Using the system call trace feature provided by some versions of the 
UNIX System, it was seen that ed wrote the new contents to a temporary file, removed the original file, 
and then renamed the temporary file to be the original file. The mandatory record locking has no effect 
on the unlink  function, which allowed this to happen. 

Under Solaris, the system call trace of a process is obtained by the truss (1) command. FreeBSD and 
Mac OS X use the ktrace (1) and kdump(1) commands. Linux provides the strace (1) command for 
tracing the system calls made by a process. 



• The vi  editor was never able to edit the file. It could read the file's contents, but whenever we tried to 
write new data to the file, EAGAIN was returned. If we tried to append new data to the file, the write  
blocked. This behavior from vi  is what we expect. 

• Using the Korn shell's > and >> operators to overwrite or append to the file resulted in the error "cannot 
create." 

• Using the same two operators with the Bourne shell resulted in an error for >, but the >> operator just 
blocked until the mandatory lock was removed, and then proceeded. (The difference in the handling of 
the append operator is because the Korn shell open s the file with O_CREAT and O_APPEND, and we 
mentioned earlier that specifying O_CREAT generates an error. The Bourne shell, however, doesn't 
specify O_CREAT if the file already exists, so the open  succeeds but the next write  blocks.) 

Results will vary, depending on the version of the operating system you are using. The bottom line with this 
exercise is to be wary of mandatory record locking. As seen with the ed example, it can be circumvented. 

Mandatory record locking can also be used by a malicious user to hold a read lock on a file that is publicly 
readable. This can prevent anyone from writing to the file. (Of course, the file has to have mandatory record 
locking enabled for this to occur, which may require the user be able to change the permission bits of the file.) 
Consider a database file that is world readable and has mandatory record locking enabled. If a malicious user 
were to hold a read lock on the entire file, the file could not be written to by other processes. 

Example 

The program in Figure 14.12 determines whether mandatory locking is supported by a system. 

This program creates a file and enables mandatory locking for the file. The program then splits into parent and 
child, with the parent obtaining a write lock on the entire file. The child first sets its descriptor nonblocking and 
then attempts to obtain a read lock on the file, expecting to get an error. This lets us see whether the system 
returns EACCES or EAGAIN. Next, the child rewinds the file and tries to read  from the file. If mandatory locking 
is provided, the read  should return EACCES or EAGAIN (since the descriptor is nonblocking). Otherwise, the 
read  returns the data that it read. Running this program under Solaris 9 (which supports mandatory locking) 
gives us 

$ ./a.out temp.lock 
read_lock of already-locked region returns 11 
read failed (mandatory locking works): Resource tem porarily unavailable 

 

If we look at either the system's headers or the intro (2) manual page, we see that an errno  of 11 corresponds 
to EAGAIN. Under FreeBSD 5.2.1, we get 

$ ./a.out temp.lock 
read_lock of already-locked region returns 35 
read OK (no mandatory locking), buf = ab 

 

Here, an errno  of 35 corresponds to EAGAIN. Mandatory locking is not supported. 

Figure 14.12. Determine whether mandatory locking is supported 

#include "apue.h" 
#include <errno.h> 
#include <fcntl.h> 
#include <sys/wait.h> 



 
int 
main(int argc, char *argv[]) 
{ 
    int             fd; 
    pid_t           pid; 
    char            buf[5]; 
    struct stat     statbuf; 
    if (argc != 2) { 
        fprintf(stderr, "usage: %s filename\n", arg v[0]); 
        exit(1); 
    } 
    if ((fd = open(argv[1], O_RDWR | O_CREAT | O_TR UNC, FILE_MODE)) < 0)  
        err_sys("open error"); 
    if (write(fd, "abcdef", 6) != 6) 
        err_sys("write error"); 
 
    /* turn on set-group-ID and turn off group-exec ute */ 
    if (fstat(fd, &statbuf) < 0) 
        err_sys("fstat error"); 
    if (fchmod(fd, (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0) 
        err_sys("fchmod error"); 
 
    TELL_WAIT(); 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid > 0) {   /* parent */ 
        /* write lock entire file */ 
        if (write_lock(fd, 0, SEEK_SET, 0) < 0) 
            err_sys("write_lock error"); 
 
        TELL_CHILD(pid); 
 
        if (waitpid(pid, NULL, 0) < 0) 
            err_sys("waitpid error"); 
    } else {                /* child */ 
        WAIT_PARENT();      /* wait for parent to s et lock */ 
 
        set_fl(fd, O_NONBLOCK); 
 
       /* first let's see what error we get if regi on is locked */ 
       if (read_lock(fd, 0, SEEK_SET, 0) != -1)    /* no wait */ 
           err_sys("child: read_lock succeeded"); 
       printf("read_lock of already-locked region r eturns %d\n", 
         errno); 
 
       /* now try to read the mandatory locked file  */ 
       if (lseek(fd, 0, SEEK_SET) == -1) 
           err_sys("lseek error"); 
       if (read(fd, buf, 2) < 0) 
           err_ret("read failed (mandatory locking works)"); 
       else 
           printf("read OK (no mandatory locking), buf = %2.2s\n", 
            buf); 
    } 
    exit(0); 
}  

Example 



Let's return to the first question of this section: what happens when two people edit the same file at 
the same time? The normal UNIX System text editors do not use record locking, so the answer is 
still that the final result of the file corresponds to the last process that wrote the file. 

Some versions of the vi  editor use advisory record locking. Even if we were using one of these 
versions of vi , it still doesn't prevent users from running another editor that doesn't use advisory 
record locking. 

If the system provides mandatory record locking, we could modify our favorite editor to use it (if we 
have the sources). Not having the source code to the editor, we might try the following. We write 
our own program that is a front end to vi . This program immediately calls fork , and the parent just 
waits for the child to complete. The child opens the file specified on the command line, enables 
mandatory locking, obtains a write lock on the entire file, and then executes vi . While vi  is running, 
the file is write-locked, so other users can't modify it. When vi  terminates, the parent's wait  returns, 
and our front end terminates. 

A small front-end program of this type can be written, but it doesn't work. The problem is that it is 
common for most editors to read their input file and then close it. A lock is released on a file 
whenever a descriptor that references that file is closed. This means that when the editor closes the 
file after reading its contents, the lock is gone. There is no way to prevent this in the front-end 
program. 

We'll use record locking in Chapter 20 in our database library to provide concurrent access to multiple 
processes. We'll also provide some timing measurements to see what effect record locking has on a process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.4. STREAMS 

The STREAMS mechanism is provided by System V as a general way to interface communication drivers into 
the kernel. We need to discuss STREAMS to understand the terminal interface in System V, the use of the poll  
function for I/O multiplexing (Section 14.5.2), and the implementation of STREAMS-based pipes and named 
pipes (Sections 17.2 and 17.2.1). 

Be careful not to confuse this usage of the word stream with our previous usage of it in the standard I/O library 
(Section 5.2). The streams mechanism was developed by Dennis Ritchie [Ritchie 1984] as a way of cleaning up 
the traditional character I/O system (c-lists) and to accommodate networking protocols. The streams mechanism 
was later added to SVR3, after enhancing it a bit and capitalizing the name. Complete support for STREAMS 
(i.e., a STREAMS-based terminal I/O system) was provided with SVR4. The SVR4 implementation is 
described in [AT&T 1990d]. Rago [1993] discusses both user-level STREAMS programming and kernel-level 
STREAMS programming. 

STREAMS is an optional feature in the Single UNIX Specification (included as the XSI STREAMS Option 
Group). Of the four platforms discussed in this text, only Solaris provides native support for STREAMS. A 
STREAMS subsystem is available for Linux, but you need to add it yourself. It is not usually included by 
default. 

A stream provides a full-duplex path between a user process and a device driver. There is no need for a stream 
to talk to a hardware device; a stream can also be used with a pseudo-device driver. Figure 14.13 shows the 
basic picture for what is called a simple stream. 

Figure 14.13. A simple stream 

 

 

Beneath the stream head, we can push processing modules onto the stream. This is done using an ioctl  
command. Figure 14.14 shows a stream with a single processing module. We also show the connection between 
these boxes with two arrows to stress the full-duplex nature of streams and to emphasize that the processing in 
one direction is separate from the processing in the other direction. 

 



Figure 14.14. A stream with a processing module 

 

 

Any number of processing modules can be pushed onto a stream. We use the term push, because each new 
module goes beneath the stream head, pushing any previously pushed modules down. (This is similar to a last-
in, first-out stack.) In Figure 14.14, we have labeled the downstream and upstream sides of the stream. Data that 
we write to a stream head is sent downstream. Data read by the device driver is sent upstream. 

STREAMS modules are similar to device drivers in that they execute as part of the kernel, and they are 
normally link edited into the kernel when the kernel is built. If the system supports dynamically-loadable kernel 
modules (as do Linux and Solaris), then we can take a STREAMS module that has not been link edited into the 
kernel and try to push it onto a stream; however, there is no guarantee that arbitrary combinations of modules 
and drivers will work properly together. 

We access a stream with the functions from Chapter 3: open , close , read , write , and ioctl . Additionally, 
three new functions were added to the SVR3 kernel to support STREAMS (getmsg , putmsg , and poll ), and 
another two (getpmsg  and putpmsg ) were added with SVR4 to handle messages with different priority bands 
within a stream. We describe these five new functions later in this section. 

The pathname that we open  for a stream normally lives beneath the /dev  directory. Simply looking at the 
device name using ls -l , we can't tell whether the device is a STREAMS device. All STREAMS devices are 
character special files. 

Although some STREAMS documentation implies that we can write processing modules and push them willy-
nilly onto a stream, the writing of these modules requires the same skills and care as writing a device driver. 
Generally, only specialized applications or functions push and pop STREAMS modules. 

Before STREAMS, terminals were handled with the existing c-list mechanism. (Section 10.3.1 of Bach [1986] 
and Section 10.6 of McKusick et al. [1996] describe c-lists in SVR2 and 4.4BSD, respectively.) Adding other 
character-based devices to the kernel usually involved writing a device driver and putting everything into the 
driver. Access to the new device was typically through the raw device, meaning that every user read  or write  



ended up directly in the device driver. The STREAMS mechanism cleans up this way of interacting, allowing 
the data to flow between the stream head and the driver in STREAMS messages and allowing any number of 
intermediate processing modules to operate on the data. 

STREAMS Messages 

All input and output under STREAMS is based on messages. The stream head and the user process exchange 
messages using read , write , ioctl , getmsg , getpmsg , putmsg , and putpmsg . Messages are also passed up and 
down a stream between the stream head, the processing modules, and the device driver. 

Between the user process and the stream head, a message consists of a message type, optional control 
information, and optional data. We show in Figure 14.15 how the various message types are generated by the 
arguments to write , putmsg , and putpmsg . The control information and data are specified by strbuf  
structures: 

   struct strbuf 
     int maxlen;  /* size of buffer */ 
     int len;     /* number of bytes currently in b uffer */ 
     char *buf;   /* pointer to buffer */ 
   }; 

 

Figure 14.15. Type of STREAMS message generated for write, putmsg, and putpmsg 

Function Control? Data? band flag Message type generated 

write  N/A yes N/A N/A M_DATA (ordinary) 

putmsg  no no N/A 0 no message sent, returns 0 

putmsg  no yes N/A 0 M_DATA (ordinary) 

putmsg  yes yes or no N/A 0 M_PROTO (ordinary) 

putmsg  yes yes or no N/A RS_HIPRI  M_PCPROTO (high-priority) 

putmsg  no yes or no N/A RS_HIPRI  error, EINVAL  

putpmsg  yes or no yes or no 0–255 0 error, EINVAL  

putpmsg  no no 0–255 MSG_BAND no message sent, returns 0 

putpmsg  no yes 0 MSG_BAND M_DATA (ordinary) 

putpmsg  no yes 1–255 MSG_BAND M_DATA (priority band) 

putpmsg  yes yes or no 0 MSG_BAND M_PROTO (ordinary) 

putpmsg  yes yes or no 1–255 MSG_BAND M_PROTO (priority band) 

putpmsg  yes yes or no 0 MSG_HIPRI M_PCPROTO (high-priority) 

putpmsg  no yes or no 0 MSG_HIPRI error, EINVAL  

putpmsg  yes or no yes or no nonzero MSG_HIPRI error, EINVAL  

 



When we send a message with putmsg  or putpmsg , len  specifies the number of bytes of data in the buffer. 
When we receive a message with getmsg  or getpmsg , maxlen  specifies the size of the buffer (so the kernel 
won't overflow the buffer), and len  is set by the kernel to the amount of data stored in the buffer. We'll see that 
a zero-length message is OK and that a len  of –1 can specify that there is no control or data. 

Why do we need to pass both control information and data? Providing both allows us to implement service 
interfaces between a user process and a stream. Olander, McGrath, and Israel [1986] describe the original 
implementation of service interfaces in System V. Chapter 5 of AT&T [ 1990d] describes service interfaces in 
detail, along with a simple example. Probably the best-known service interface, described in Chapter 4 of Rago 
[1993], is the System V Transport Layer Interface (TLI), which provides an interface to the networking system. 

Another example of control information is sending a connectionless network message (a datagram). To send the 
message, we need to specify the contents of the message (the data) and the destination address for the message 
(the control information). If we couldn't send control and data together, some ad hoc scheme would be required. 
For example, we could specify the address using an ioctl , followed by a write  of the data. Another technique 
would be to require that the address occupy the first N bytes of the data that is written using write . Separating 
the control information from the data, and providing functions that handle both (putmsg  and getmsg ) is a 
cleaner way to handle this. 

There are about 25 different types of messages, but only a few of these are used between the user process and 
the stream head. The rest are passed up and down a stream within the kernel. (These message types are of 
interest to people writing STREAMS processing modules, but can safely be ignored by people writing user-
level code.) We'll encounter only three of these message types with the functions we use (read , write , getmsg , 
getpmsg , putmsg , and putpmsg ): 

• M_DATA (user data for I/O) 
• M_PROTO (protocol control information) 
• M_PCPROTO (high-priority protocol control information) 

Every message on a stream has a queueing priority: 

• High-priority messages (highest priority) 
• Priority band messages 
• Ordinary messages (lowest priority) 

Ordinary messages are simply priority band messages with a band of 0. Priority band messages have a band of 
1–255, with a higher band specifying a higher priority. High-priority messages are special in that only one is 
queued by the stream head at a time. Additional high-priority messages are discarded when one is already on 
the stream head's read queue. 

Each STREAMS module has two input queues. One receives messages from the module above (messages 
moving downstream from the stream head toward the driver), and one receives messages from the module 
below (messages moving upstream from the driver toward the stream head). The messages on an input queue 
are arranged by priority. We show in Figure 14.15 how the arguments to write , putmsg , and putpmsg  cause 
these various priority messages to be generated. 

There are other types of messages that we don't consider. For example, if the stream head receives an M_SIG 
message from below, it generates a signal. This is how a terminal line discipline module sends the terminal-
generated signals to the foreground process group associated with a controlling terminal. 



putmsg and putpmsg Functions 

A STREAMS message (control information or data, or both) is written to a stream using either putmsg  or 
putpmsg . The difference in these two functions is that the latter allows us to specify a priority band for the 
message. 

#include <stropts.h> 
 
int putmsg(int filedes, const struct strbuf *ctlptr , 
           const struct strbuf *dataptr, int flag);  
 
int putpmsg(int filedes, const struct strbuf *ctlpt r,  
            const struct strbuf *dataptr, int band 
, int flag); 

 

Both return: 0 if OK, –1 on error 

 

We can also write  to a stream, which is equivalent to a putmsg  without any control information and with a flag 
of 0. 

These two functions can generate the three different priorities of messages: ordinary, priority band, and high 
priority. Figure 14.15 details the combinations of the arguments to these two functions that generate the various 
types of messages. 

The notation "N/A" means not applicable. In this figure, a "no" for the control portion of the message 
corresponds to either a null ctlptr argument or ctlptr–>len being –1. A "yes" for the control portion corresponds 
to ctlptr being non-null and ctlptr–>len being greater than or equal to 0. The data portion of the message is 
handled equivalently (using dataptr instead of ctlptr). 

STREAMS ioctl Operations 

In Section 3.15, we said that the ioctl  function is the catchall for anything that can't be done with the other I/O 
functions. The STREAMS system continues this tradition. 

Between Linux and Solaris, there are almost 40 different operations that can be performed on a stream using 
ioctl . Most of these operations are documented in the streamio (7) manual page. The header <stropts.h>  
must be included in C code that uses any of these operations. The second argument for ioctl , request, specifies 
which of the operations to perform. All the requests begin with I_ . The third argument depends on the request. 
Sometimes, the third argument is an integer value; sometimes, it's a pointer to an integer or a structure. 

Example—isastream Function 

We sometimes need to determine if a descriptor refers to a stream or not. This is similar to calling the isatty  
function to determine if a descriptor refers to a terminal device (Section 18.9). Linux and Solaris provide the 
isastream  function. 

#include <stropts.h> 
 
int isastream(int filedes); 

 



Returns: 1 (true) if STREAMS device, 0 (false) otherwise 

 

Like isatty , this is usually a trivial function that merely tries an ioctl  that is valid only on a STREAMS 
device. Figure 14.16 shows one possible implementation of this function. We use the I_CANPUT ioctl  
command, which checks if the band specified by the third argument (0 in the example) is writable. If the ioctl  
succeeds, the stream is not changed. 

We can use the program in Figure 14.17 to test this function. 

Running this program on Solaris 9 shows the various errors returned by the ioctl  function: 

   $ ./a.out /dev/tty /dev/fb /dev/null /etc/motd 
   /dev/tty: streams device 
   /dev/fb: not a stream: Invalid argument 
   /dev/null: not a stream: No such device or addre ss 
   /etc/motd: not a stream: Inappropriate ioctl for  device 

 

Note that /dev/tty  is a STREAMS device, as we expect under Solaris. The character special file /dev/fb  is 
not a STREAMS device, but it supports other ioctl  requests. These devices return EINVAL when the ioctl  
request is unknown. The character special file /dev/null  does not support any ioctl  operations, so the error 
ENODEV is returned. Finally, /etc/motd  is a regular file, not a character special file, so the classic error ENOTTY 
is returned. We never receive the error we might expect: ENOSTR ("Device is not a stream"). 

The message for ENOTTY used to be "Not a typewriter," a historical artifact because the UNIX kernel returns 
ENOTTY whenever an ioctl  is attempted on a descriptor that doesn't refer to a character special device. This 
message has been updated on Solaris to "Inappropriate ioctl for device." 

Figure 14.16. Check if descriptor is a STREAMS device 

#include   <stropts.h> 
#include   <unistd.h> 
 
int 
isastream(int fd) 
{ 
    return(ioctl(fd, I_CANPUT, 0) != -1);  
} 

 

Figure 14.17. Test the isastream function 

#include "apue.h" 
#include <fcntl.h> 
 
int 
main(int argc, char *argv[]) 
{ 
    int     i, fd; 
 
    for (i = 1; i < argc; i++) { 
        if ((fd = open(argv[i], O_RDONLY)) < 0) { 
            err_ret("%s: can't open", argv[i]); 



            continue; 
        } 
 
        if (isastream(fd) == 0) 
            err_ret("%s: not a stream", argv[i]); 
        else 
            err_msg("%s: streams device", argv[i]);  
     } 
 
     exit(0); 
} 

 

Example 

If the ioctl  request is I_LIST , the system returns the names of all the modules on the stream—the ones that 
have been pushed onto the stream, including the topmost driver. (We say topmost because in the case of a 
multiplexing driver, there may be more than one driver. Chapter 12 of Rago [1993] discusses multiplexing 
drivers in detail.) The third argument must be a pointer to a str_list  structure: 

   struct str_list { 
     int                sl_nmods;   /* number of en tries in array */ 
     struct str_mlist  *sl_modlist; /* ptr to first  element of array */ 
   }; 

 

We have to set sl_modlist  to point to the first element of an array of str_mlist  structures and set sl_nmods  
to the number of entries in the array: 

   struct str_mlist { 
     char l_name[FMNAMESZ+1]; /* null terminated mo dule name */ 
   }; 

 

The constant FMNAMESZ is defined in the header <sys/conf.h>  and is often 8. The extra byte in l_name  is for 
the terminating null byte. 

If the third argument to the ioctl  is 0, the count of the number of modules is returned (as the value of ioctl ) 
instead of the module names. We'll use this to determine the number of modules and then allocate the required 
number of str_mlist  structures. 

Figure 14.18 illustrates the I_LIST  operation. Since the returned list of names doesn't differentiate between the 
modules and the driver, when we print the module names, we know that the final entry in the list is the driver at 
the bottom of the stream. 

If we run the program in Figure 14.18 from both a network login and a console login, to see which STREAMS 
modules are pushed onto the controlling terminal, we get the following: 

   $ who 
   sar        console     May 1 18:27 
   sar        pts/7       Jul 12 06:53 
   $ ./a.out /dev/console 
   #modules = 5 
     module: redirmod 
     module: ttcompat 



     module: ldterm 
     module: ptem 
     driver: pts 
   $ ./a.out /dev/pts/7 
   #modules = 4 
     module: ttcompat 
     module: ldterm 
     module: ptem 
     driver: pts 

 

The modules are the same in both cases, except that the console has an extra module on top that helps with 
virtual console redirection. On this computer, a windowing system was running on the console, so 
/dev/console  actually refers to a pseudo terminal instead of to a hardwired device. We'll return to the pseudo 
terminal case in Chapter 19. 

Figure 14.18. List the names of the modules on a stream 

#include "apue.h" 
#include <fcntl.h> 
#include <stropts.h> 
#include <sys/conf.h> 
 
int 
main(int argc, char *argv[]) 
{ 
    int                 fd, i, nmods; 
    struct str_list     list; 
 
    if (argc != 2) 
        err_quit("usage: %s <pathname>", argv[0]); 
 
    if ((fd = open(argv[1], O_RDONLY)) < 0) 
        err_sys("can't open %s", argv[1]); 
    if (isastream(fd) == 0) 
        err_quit("%s is not a stream", argv[1]); 
 
    /* 
     * Fetch number of modules. 
     */ 
    if ((nmods = ioctl(fd, I_LIST, (void *) 0)) < 0 ) 
        err_sys("I_LIST error for nmods"); 
    printf("#modules = %d\n", nmods); 
 
    /* 
     * Allocate storage for all the module names. 
     */ 
    list.sl_modlist = calloc(nmods, sizeof(struct s tr_mlist)); 
    if (list.sl_modlist == NULL) 
        err_sys("calloc error"); 
    list.sl_nmods = nmods; 
 
    /* 
     * Fetch the module names. 
     */ 
    if (ioctl(fd, I_LIST, &list) < 0) 
        err_sys("I_LIST error for list"); 
 
    /* 
     * Print the names. 



     */ 
    for (i = 1; i <= nmods; i++) 
        printf(" %s: %s\n", (i == nmods) ? "driver"  : "module",  
          list.sl_modlist++->l_name); 
 
    exit(0); 
} 

write to STREAMS Devices 

In Figure 14.15 we said that a write  to a STREAMS device generates an M_DATA message. Although this is 
generally true, there are some additional details to consider. First, with a stream, the topmost processing module 
specifies the minimum and maximum packet sizes that can be sent downstream. (We are unable to query the 
module for these values.) If we write  more than the maximum, the stream head normally breaks the data into 
packets of the maximum size, with one final packet that can be smaller than the maximum. 

The next thing to consider is what happens if we write  zero bytes to a stream. Unless the stream refers to a pipe 
or FIFO, a zero-length message is sent downstream. With a pipe or FIFO, the default is to ignore the zero-length 
write , for compatibility with previous versions. We can change this default for pipes and FIFOs using an 
ioctl  to set the write mode for the stream. 

Write Mode 

Two ioctl  commands fetch and set the write mode for a stream. Setting request to I_GWROPT requires that the 
third argument be a pointer to an integer, and the current write mode for the stream is returned in that integer. If 
request is I_SWROPT, the third argument is an integer whose value becomes the new write mode for the stream. 
As with the file descriptor flags and the file status flags (Section 3.14), we should always fetch the current write 
mode value and modify it rather than set the write mode to some absolute value (possibly turning off some other 
bits that were enabled). 

Currently, only two write mode values are defined. 

SNDZERO A zero-length write  to a pipe or FIFO will cause a zero-length message to be sent downstream. By 
default, this zero-length write  sends no message. 

SNDPIPE Causes SIGPIPE  to be sent to the calling process that calls either write  or putmsg  after an error has 
occurred on a stream. 

 

A stream also has a read mode, and we'll look at it after describing the getmsg  and getpmsg  functions. 

getmsg and getpmsg Functions 

STREAMS messages are read from a stream head using read , getmsg , or getpmsg . 



#include <stropts.h> 
 
int getmsg(int filedes, struct strbuf *restrict ctl ptr, 
           struct strbuf *restrict dataptr, int *re strict flagptr);  
 
int getpmsg(int filedes, struct strbuf *restrict ct lptr, 
            struct strbuf *restrict dataptr, int *r estrict bandptr,  
            int *restrict flagptr); 

 

Both return: non-negative value if OK, –1 on error 

 

Note that flagptr and bandptr are pointers to integers. The integer pointed to by these two pointers must be set 
before the call to specify the type of message desired, and the integer is also set on return to the type of message 
that was read. 

If the integer pointed to by flagptr is 0, getmsg  returns the next message on the stream head's read queue. If the 
next message is a high-priority message, the integer pointed to by flagptr is set to RS_HIPRI  on return. If we 
want to receive only high-priority messages, we must set the integer pointed to by flagptr to RS_HIPRI  before 
calling getmsg . 

A different set of constants is used by getpmsg . We can set the integer pointed to by flagptr to MSG_HIPRI to 
receive only high-priority messages. We can set the integer to MSG_BAND and then set the integer pointed to by 
bandptr to a nonzero priority value to receive only messages from that band, or higher (including high-priority 
messages). If we only want to receive the first available message, we can set the integer pointed to by flagptr to 
MSG_ANY; on return, the integer will be overwritten with either MSG_HIPRI or MSG_BAND, depending on the type 
of message received. If the message we retrieved was not a high-priority message, the integer pointed to by 
bandptr will contain the message's priority band. 

If ctlptr is null or ctlptr–>maxlen is –1, the control portion of the message will remain on the stream head's read 
queue, and we will not process it. Similarly, if dataptr is null or dataptr–>maxlen is –1, the data portion of the 
message is not processed and remains on the stream head's read queue. Otherwise, we will retrieve as much 
control and data portions of the message as our buffers will hold, and any remainder will be left on the head of 
the queue for the next call. 

If the call to getmsg  or getpmsg  retrieves a message, the return value is 0. If part of the control portion of the 
message is left on the stream head read queue, the constant MORECTL is returned. Similarly, if part of the data 
portion of the message is left on the queue, the constant MOREDATA is returned. If both control and data are left, 
the return value is (MORECTL|MOREDATA). 

Read Mode 

We also need to consider what happens if we read  from a STREAMS device. There are two potential problems. 

1. What happens to the record boundaries associated with the messages on a stream? 
2. What happens if we call read  and the next message on the stream has control information? 

The default handling for condition 1 is called byte-stream mode. In this mode, a read  takes data from the 
stream until the requested number of bytes has been read or until there is no more data. The message boundaries 
associated with the STREAMS messages are ignored in this mode. The default handling for condition 2 causes 



the read  to return an error if there is a control message at the front of the queue. We can change either of these 
defaults. 

Using ioctl , if we set request to I_GRDOPT, the third argument is a pointer to an integer, and the current read 
mode for the stream is returned in that integer. A request of I_SRDOPT takes the integer value of the third 
argument and sets the read mode to that value. The read mode is specified by one of the following three 
constants: 

RNORM Normal, byte-stream mode (the default), as described previously. 

RMSGN Message-nondiscard mode. A read  takes data from a stream until the requested number of bytes have 
been read or until a message boundary is encountered. If the read  uses a partial message, the rest of the 
data in the message is left on the stream for a subsequent read . 

RMSGD Message-discard mode. This is like the nondiscard mode, but if a partial message is used, the remainder 
of the message is discarded. 

 

Three additional constants can be specified in the read mode to set the behavior of read  when it encounters 
messages containing protocol control information on a stream: 

RPROTNORM Protocol-normal mode: read  returns an error of EBADMSG. This is the default. 

RPROTDAT Protocol-data mode: read  returns the control portion as data. 

RPROTDIS Protocol-discard mode: read  discards the control information but returns any data in the message. 

 

Only one of the message read modes and one of the protocol read modes can be set at a time. The default read 
mode is (RNORM|RPROTNORM). 

Example 

The program in Figure 14.19 is the same as the one in Figure 3.4, but recoded to use getmsg  instead of read . 

If we run this program under Solaris, where both pipes and terminals are implemented using STREAMS, we get 
the following output: 

   $ echo hello, world | ./a.out           requires  STREAMS-based pipes 
   flag = 0, ctl.len = -1, dat.len = 13 
   hello, world 
   flag = 0, ctl.len = 0, dat.len = 0     indicates  a STREAMS hangup 
   $ ./a.out                               requires  STREAMS-based terminals 
   this is line 1 
   flag = 0, ctl.len = -1, dat.len = 15 
   this is line 1 
   and line 2 
   flag = 0, ctl.len = -1, dat.len = 11 
   and line 2 
   ^D                                      type the  terminal EOF character 
   flag = 0, ctl.len = -1, dat.len = 0    tty end o f file is not the same as a hangup 
   $ ./a.out < /etc/motd 
   getmsg error: Not a stream device 
 
 



      

 

When the pipe is closed (when echo  terminates), it appears to the program in Figure 14.19 as a STREAMS 
hangup, with both the control length and the data length set to 0. (We discuss pipes in Section 15.2.) With a 
terminal, however, typing the end-of-file character causes only the data length to be returned as 0. This terminal 
end of file is not the same as a STREAMS hangup. As expected, when we redirect standard input to be a non-
STREAMS device, getmsg  returns an error. 

Figure 14.19. Copy standard input to standard output using getmsg 

#include "apue.h" 
#include <stropts.h> 
 
#define BUFFSIZE     4096 
 
int 
main(void) 
{ 
    int             n, flag; 
    char            ctlbuf[BUFFSIZE], datbuf[BUFFSI ZE]; 
    struct strbuf   ctl, dat; 
 
    ctl.buf = ctlbuf; 
    ctl.maxlen = BUFFSIZE; 
    dat.buf = datbuf; 
    dat.maxlen = BUFFSIZE; 
    for ( ; ; ) { 
        flag = 0;       /* return any message */ 
        if ((n = getmsg(STDIN_FILENO, &ctl, &dat, & flag)) < 0) 
            err_sys("getmsg error"); 
        fprintf(stderr, "flag = %d, ctl.len = %d, d at.len = %d\n",  
          flag, ctl.len, dat.len); 
        if (dat.len == 0) 
            exit(0); 
        else if (dat.len > 0) 
            if (write(STDOUT_FILENO, dat.buf, dat.l en) != dat.len)  
                err_sys("write error"); 
    } 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.5. I/O Multiplexing 

When we read from one descriptor and write to another, we can use blocking I/O in a loop, such as 

        while ((n = read(STDIN_FILENO, buf, BUFSIZ) ) > 0) 
            if (write(STDOUT_FILENO, buf, n) != n) 
                err_sys("write error"); 

 

We see this form of blocking I/O over and over again. What if we have to read from two descriptors? In this 
case, we can't do a blocking read  on either descriptor, as data may appear on one descriptor while we're 
blocked in a read  on the other. A different technique is required to handle this case. 

Let's look at the structure of the telnet (1) command. In this program, we read from the terminal (standard 
input) and write to a network connection, and we read from the network connection and write to the terminal 
(standard output). At the other end of the network connection, the telnetd  daemon reads what we typed and 
presents it to a shell as if we were logged in to the remote machine. The telnetd  daemon sends any output 
generated by the commands we type back to us through the telnet  command, to be displayed on our terminal. 
Figure 14.20 shows a picture of this. 

Figure 14.20. Overview of telnet program 

 

 

The telnet  process has two inputs and two outputs. We can't do a blocking read  on either of the inputs, as we 
never know which input will have data for us. 

One way to handle this particular problem is to divide the process in two pieces (using fork ), with each half 
handling one direction of data. We show this in Figure 14.21. (The cu (1) command provided with System V's 
uucp  communication package was structured like this.) 

Figure 14.21. The telnet program using two processes 

 

 

If we use two processes, we can let each process do a blocking read . But this leads to a problem when the 
operation terminates. If an end of file is received by the child (the network connection is disconnected by the 
telnetd  daemon), then the child terminates, and the parent is notified by the SIGCHLD signal. But if the parent 



terminates (the user enters an end of file at the terminal), then the parent has to tell the child to stop. We can use 
a signal for this (SIGUSR1, for example), but it does complicate the program somewhat. 

Instead of two processes, we could use two threads in a single process. This avoids the termination complexity, 
but requires that we deal with synchronization between the threads, which could add more complexity than it 
saves. 

We could use nonblocking I/O in a single process by setting both descriptors nonblocking and issuing a read  on 
the first descriptor. If data is present, we read it and process it. If there is no data to read, the call returns 
immediately. We then do the same thing with the second descriptor. After this, we wait for some amount of 
time (a few seconds, perhaps) and then try to read from the first descriptor again. This type of loop is called 
polling. The problem is that it wastes CPU time. Most of the time, there won't be data to read, so we waste time 
performing the read  system calls. We also have to guess how long to wait each time around the loop. Although 
it works on any system that supports nonblocking I/O, polling should be avoided on a multitasking system. 

Another technique is called asynchronous I/O. To do this, we tell the kernel to notify us with a signal when a 
descriptor is ready for I/O. There are two problems with this. First, not all systems support this feature (it is an 
optional facility in the Single UNIX Specification). System V provides the SIGPOLL signal for this technique, 
but this signal works only if the descriptor refers to a STREAMS device. BSD has a similar signal, SIGIO , but it 
has similar limitations: it works only on descriptors that refer to terminal devices or networks. The second 
problem with this technique is that there is only one of these signals per process (SIGPOLL or SIGIO ). If we 
enable this signal for two descriptors (in the example we've been talking about, reading from two descriptors), 
the occurrence of the signal doesn't tell us which descriptor is ready. To determine which descriptor is ready, we 
still need to set each nonblocking and try them in sequence. We describe asynchronous I/O briefly in Section 
14.6. 

A better technique is to use I/O multiplexing. To do this, we build a list of the descriptors that we are interested 
in (usually more than one descriptor) and call a function that doesn't return until one of the descriptors is ready 
for I/O. On return from the function, we are told which descriptors are ready for I/O. 

Three functions—poll , pselect , and select —allow us to perform I/O multiplexing. Figure 14.22 summarizes 
which platforms support them. Note that select  is defined by the base POSIX.1 standard, but poll  is an XSI 
extension to the base. 

Figure 14.22. I/O multiplexing supported by various UNIX systems 

System poll pselect select <sys/select.h> 

SUS XSI • • • 

FreeBSD 5.2.1 • • •   

Linux 2.4.22 • • • • 

Mac OS X 10.3 • • •   

Solaris 9 •   • • 

 

POSIX specifies that <sys/select>  be included to pull the information for select  into your program. 
Historically, however, we have had to include three other header files, and some of the implementations haven't 



yet caught up to the standard. Check the select  manual page to see what your system supports. Older systems 
require that you include <sys/types.h> , <sys/time.h> , and <unistd.h> . 

I/O multiplexing was provided with the select  function in 4.2BSD. This function has always worked with any 
descriptor, although its main use has been for terminal I/O and network I/O. SVR3 added the poll  function 
when the STREAMS mechanism was added. Initially, however, poll  worked only with STREAMS devices. In 
SVR4, support was added to allow poll  to work on any descriptor. 

14.5.1. select and pselect Functions 

The select  function lets us do I/O multiplexing under all POSIX-compatible platforms. The arguments we pass 
to select  tell the kernel 

• Which descriptors we're interested in. 
• What conditions we're interested in for each descriptor. (Do we want to read from a given descriptor? 

Do we want to write to a given descriptor? Are we interested in an exception condition for a given 
descriptor?) 

• How long we want to wait. (We can wait forever, wait a fixed amount of time, or not wait at all.) 

On the return from select , the kernel tells us 

• The total count of the number of descriptors that are ready 
• Which descriptors are ready for each of the three conditions (read, write, or exception condition) 

With this return information, we can call the appropriate I/O function (usually read  or write ) and know that 
the function won't block. 

#include <sys/select.h> 
 
int select(int maxfdp1, fd_set *restrict readfds, 
           fd_set *restrict writefds, fd_set *restr ict exceptfds,  
           struct timeval *restrict tvptr); 

 

Returns: count of ready descriptors, 0 on timeout, –1 on error 

 

Let's look at the last argument first. This specifies how long we want to wait: 

   struct timeval { 
     long tv_sec;     /* seconds */ 
     long tv_usec;    /* and microseconds */ 
   }; 

 

There are three conditions. 

   tvptr == NULL 

 

Wait forever. This infinite wait can be interrupted if we catch a signal. Return is made when one of the specified 
descriptors is ready or when a signal is caught. If a signal is caught, select  returns –1 with errno  set to EINTR. 



   tvptr->tv_sec == 0 && tvptr->tv_usec == 0 

 

Don't wait at all. All the specified descriptors are tested, and return is made immediately. This is a way to poll 
the system to find out the status of multiple descriptors, without blocking in the select  function. 

   tvptr->tv_sec != 0 || tvptr->tv_usec != 0 

 

Wait the specified number of seconds and microseconds. Return is made when one of the specified descriptors 
is ready or when the timeout value expires. If the timeout expires before any of the descriptors is ready, the 
return value is 0. (If the system doesn't provide microsecond resolution, the tvptr–>tv_usec value is rounded up 
to the nearest supported value.) As with the first condition, this wait can also be interrupted by a caught signal. 

POSIX.1 allows an implementation to modify the timeval  structure, so after select  returns, you can't rely on 
the structure containing the same values it did before calling select . FreeBSD 5.2.1, Mac OS X 10.3, and 
Solaris 9 all leave the structure unchanged, but Linux 2.4.22 will update it with the time remaining if select  
returns before the timeout value expires. 

The middle three arguments—readfds, writefds, and exceptfds—are pointers to descriptor sets. These three sets 
specify which descriptors we're interested in and for which conditions (readable, writable, or an exception 
condition). A descriptor set is stored in an fd_set  data type. This data type is chosen by the implementation so 
that it can hold one bit for each possible descriptor. We can consider it to be just a big array of bits, as shown in 
Figure 14.23. 

Figure 14.23. Specifying the read, write, and exception descriptors for select 

 

 

The only thing we can do with the fd_set  data type is allocate a variable of this type, assign a variable of this 
type to another variable of the same type, or use one of the following four functions on a variable of this type. 

#include <sys/select.h> 
 
int FD_ISSET(int fd, fd_set *fdset);  

 

Returns: nonzero if fd is in set, 0 otherwise 



#include <sys/select.h> 
 
int FD_ISSET(int fd, fd_set *fdset);  

 

void FD_CLR(int fd, fd_set *fdset); 
void FD_SET(int fd, fd_set *fdset); 
void FD_ZERO(fd_set *fdset); 

 

 

These interfaces can be implemented as either macros or functions. An fd_set  is set to all zero bits by calling 
FD_ZERO. To turn on a single bit in a set, we use FD_SET. We can clear a single bit by calling FD_CLR. Finally, 
we can test whether a given bit is turned on in the set with FD_ISSET. 

After declaring a descriptor set, we must zero the set using FD_ZERO. We then set bits in the set for each 
descriptor that we're interested in, as in 

   fd_set   rset; 
   int      fd; 
 
   FD_ZERO(&rset); 
   FD_SET(fd, &rset); 
   FD_SET(STDIN_FILENO, &rset); 

 

On return from select , we can test whether a given bit in the set is still on using FD_ISSET: 

   if (FD_ISSET(fd, &rset)) { 
       ... 
   } 

 

Any (or all) of the middle three arguments to select  (the pointers to the descriptor sets) can be null pointers if 
we're not interested in that condition. If all three pointers are NULL, then we have a higher precision timer than 
provided by sleep . (Recall from Section 10.19 that sleep  waits for an integral number of seconds. With 
select , we can wait for intervals less than 1 second; the actual resolution depends on the system's clock.) 
Exercise 14.6 shows such a function. 

The first argument to select , maxfdp1, stands for "maximum file descriptor plus 1." We calculate the highest 
descriptor that we're interested in, considering all three of the descriptor sets, add 1, and that's the first argument. 
We could just set the first argument to FD_SETSIZE, a constant in <sys/select.h>  that specifies the maximum 
number of descriptors (often 1,024), but this value is too large for most applications. Indeed, most applications 
probably use between 3 and 10 descriptors. (Some applications need many more descriptors, but these UNIX 
programs are atypical.) By specifying the highest descriptor that we're interested in, we can prevent the kernel 
from going through hundreds of unused bits in the three descriptor sets, looking for bits that are turned on. 

As an example, Figure 14.24 shows what two descriptor sets look like if we write 

   fd_set readset, writeset; 
 
   FD_ZERO(&readset); 
   FD_ZERO(&writeset); 
   FD_SET(0, &readset); 
   FD_SET(3, &readset); 



   FD_SET(1, &writeset); 
   FD_SET(2, &writeset); 
   select(4, &readset, &writeset, NULL, NULL); 

 

Figure 14.24. Example descriptor sets for select 

 

 

The reason we have to add 1 to the maximum descriptor number is that descriptors start at 0, and the first 
argument is really a count of the number of descriptors to check (starting with descriptor 0). 

There are three possible return values from select . 

1. A return value of –1 means that an error occurred. This can happen, for example, if a signal is caught 
before any of the specified descriptors are ready. In this case, none of the descriptor sets will be 
modified. 

2. A return value of 0 means that no descriptors are ready. This happens if the time limit expires before any 
of the descriptors are ready. When this happens, all the descriptor sets will be zeroed out. 

3. A positive return value specifies the number of descriptors that are ready. This value is the sum of the 
descriptors ready in all three sets, so if the same descriptor is ready to be read and written, it will be 
counted twice in the return value. The only bits left on in the three descriptor sets are the bits 
corresponding to the descriptors that are ready. 

We now need to be more specific about what "ready" means. 

• A descriptor in the read set (readfds) is considered ready if a read  from that descriptor won't block. 
• A descriptor in the write set (writefds) is considered ready if a write  to that descriptor won't block. 
• A descriptor in the exception set (exceptfds) is considered ready if an exception condition is pending on 

that descriptor. Currently, an exception condition corresponds to either the arrival of out-of-band data on 
a network connection or certain conditions occurring on a pseudo terminal that has been placed into 
packet mode. (Section 15.10 of Stevens [1990] describes this latter condition.) 

• File descriptors for regular files always return ready for reading, writing, and exception conditions. 

It is important to realize that whether a descriptor is blocking or not doesn't affect whether select  blocks. That 
is, if we have a nonblocking descriptor that we want to read from and we call select  with a timeout value of 5 
seconds, select  will block for up to 5 seconds. Similarly, if we specify an infinite timeout, select  blocks until 
data is ready for the descriptor or until a signal is caught. 



If we encounter the end of file on a descriptor, that descriptor is considered readable by select . We then call 
read  and it returns 0, the way to signify end of file on UNIX systems. (Many people incorrectly assume that 
select  indicates an exception condition on a descriptor when the end of file is reached.) 

POSIX.1 also defines a variant of select  called pselect . 

#include <sys/select.h> 
 
int pselect(int maxfdp1, fd_set *restrict readfds, 
            fd_set *restrict writefds, fd_set *rest rict exceptfds,  
            const struct timespec *restrict tsptr, 
            const sigset_t *restrict sigmask); 

 

Returns: count of ready descriptors, 0 on timeout, –1 on error 

 

The pselect  function is identical to select , with the following exceptions. 

• The timeout value for select  is specified by a timeval  structure, but for pselect , a timespec  
structure is used. (Recall the definition of the timespec  structure in Section 11.6.) Instead of seconds 
and microseconds, the timespec  structure represents the timeout value in seconds and nanoseconds. 
This provides a higher-resolution timeout if the platform supports that fine a level of granularity. 

• The timeout value for pselect  is declared const , and we are guaranteed that its value will not change 
as a result of calling pselect . 

• An optional signal mask argument is available with pselect . If sigmask is null, pselect  behaves as 
select  does with respect to signals. Otherwise, sigmask points to a signal mask that is atomically 
installed when pselect  is called. On return, the previous signal mask is restored. 

14.5.2. poll Function 

The poll  function is similar to select , but the programmer interface is different. As we'll see, poll  is tied to 
the STREAMS system, since it originated with System V, although we are able to use it with any type of file 
descriptor. 

#include <poll.h> 
 
int poll(struct pollfd fdarray[], nfds_t nfds, int timeout);  

 

Returns: count of ready descriptors, 0 on timeout, –1 on error 

 

With poll , instead of building a set of descriptors for each condition (readability, writability, and exception 
condition), as we did with select , we build an array of pollfd  structures, with each array element specifying a 
descriptor number and the conditions that we're interested in for that descriptor: 

   struct pollfd { 
     int   fd;       /* file descriptor to check, o r <0 to ignore */ 
     short events;   /* events of interest on fd */  
     short revents;  /* events that occurred on fd */ 
   }; 

 



The number of elements in the fdarray array is specified by nfds. 

Historically, there have been differences in how the nfds parameter was declared. SVR3 specified the number of 
elements in the array as an unsigned long , which seems excessive. In the SVR4 manual [AT&T 1990d], the 
prototype for poll  showed the data type of the second argument as size_t . (Recall the primitive system data 
types, Figure 2.20.) But the actual prototype in the <poll.h>  header still showed the second argument as an 
unsigned long . The Single UNIX Specification defines the new type nfds_t  to allow the implementation to 
select the appropriate type and hide the details from applications. Note that this type has to be large enough to 
hold an integer, since the return value represents the number of entries in the array with satisfied events. 

The SVID corresponding to SVR4 [AT&T 1989] showed the first argument to poll  as struct pollfd  
fdarray[] , whereas the SVR4 manual page [AT&T 1990d] showed this argument as struct pollfd * fdarray. 
In the C language, both declarations are equivalent. We use the first declaration to reiterate that fdarray  points 
to an array of structures and not a pointer to a single structure. 

To tell the kernel what events we're interested in for each descriptor, we have to set the events  member of each 
array element to one or more of the values in Figure 14.25. On return, the revents  member is set by the kernel, 
specifying which events have occurred for each descriptor. (Note that poll  doesn't change the events  member. 
This differs from select , which modifies its arguments to indicate what is ready.) 

Figure 14.25. The events and revents flags for poll 

Name 
Input to 
events? 

Result from 
revents? Description 

POLLIN • • Data other than high priority can be read without blocking 
(equivalent to POLLRDNORM|POLLRDBAND). 

POLLRDNORM • • Normal data (priority band 0) can be read without blocking. 

POLLRDBAND • • Data from a nonzero priority band can be read without 
blocking. 

POLLPRI • • High-priority data can be read without blocking. 

POLLOUT • • Normal data can be written without blocking. 

POLLWRNORM • • Same as POLLOUT. 

POLLWRBAND • • Data for a nonzero priority band can be written without 
blocking. 

POLLERR   • An error has occurred. 

POLLHUP   • A hangup has occurred. 

POLLNVAL   • The descriptor does not reference an open file. 

 

The first four rows of Figure 14.25 test for readability, the next three test for writability, and the final three are 
for exception conditions. The last three rows in Figure 14.25 are set by the kernel on return. These three values 
are returned in revents  when the condition occurs, even if they weren't specified in the events  field. 



When a descriptor is hung up (POLLHUP), we can no longer write to the descriptor. There may, however, still be 
data to be read from the descriptor. 

The final argument to poll  specifies how long we want to wait. As with select , there are three cases. 

   timeout == -1 

 

Wait forever. (Some systems define the constant INFTIM  in <stropts.h>  as –1.) We return when one of the 
specified descriptors is ready or when a signal is caught. If a signal is caught, poll  returns –1 with errno  set to 
EINTR. 

   timeout == 0 

 

Don't wait. All the specified descriptors are tested, and we return immediately. This is a way to poll the system 
to find out the status of multiple descriptors, without blocking in the call to poll . 

   timeout > 0 

 

Wait timeout milliseconds. We return when one of the specified descriptors is ready or when the timeout 
expires. If the timeout expires before any of the descriptors is ready, the return value is 0. (If your system 
doesn't provide millisecond resolution, timeout is rounded up to the nearest supported value.) 

It is important to realize the difference between an end of file and a hangup. If we're entering data from the 
terminal and type the end-of-file character, POLLIN is turned on so we can read the end-of-file indication (read  
returns 0). POLLHUP is not turned on in revents . If we're reading from a modem and the telephone line is hung 
up, we'll receive the POLLHUP notification. 

As with select , whether a descriptor is blocking or not doesn't affect whether poll  blocks. 

Interruptibility of select and poll 

When the automatic restarting of interrupted system calls was introduced with 4.2BSD (Section 10.5), the 
select  function was never restarted. This characteristic continues with most systems even if the SA_RESTART 
option is specified. But under SVR4, if SA_RESTART was specified, even select  and poll  were automatically 
restarted. To prevent this from catching us when we port software to systems derived from SVR4, we'll always 
use the signal_intr  function (Figure 10.19) if the signal could interrupt a call to select  or poll . 

None of the implementations described in this book restart poll  or select  when a signal is received, even if 
the SA_RESTART flag is used. 

 
 
 
 
 
 
 
 



14.6. Asynchronous I/O 

Using select  and poll , as described in the previous section, is a synchronous form of notification. The system 
doesn't tell us anything until we ask (by calling either select  or poll ). As we saw in Chapter 10, signals 
provide an asynchronous form of notification that something has happened. All systems derived from BSD and 
System V provide some form of asynchronous I/O, using a signal (SIGPOLL in System V; SIGIO  in BSD) to 
notify the process that something of interest has happened on a descriptor. 

We saw that select  and poll  work with any descriptors. But with asynchronous I/O, we now encounter 
restrictions. On systems derived from System V, asynchronous I/O works only with STREAMS devices and 
STREAMS pipes. On systems derived from BSD, asynchronous I/O works only with terminals and networks. 

One limitation of asynchronous I/O is that there is only one signal per process. If we enable more than one 
descriptor for asynchronous I/O, we cannot tell which descriptor the signal corresponds to when the signal is 
delivered. 

The Single UNIX Specification includes an optional generic asynchronous I/O mechanism, adopted from the 
real-time draft standard. It is unrelated to the mechanisms we describe here. This mechanism solves a lot of the 
limitations that exist with these older asynchronous I/O mechanisms, but we will not discuss it further. 

14.6.1. System V Asynchronous I/O 

In System V, asynchronous I/O is part of the STREAMS system and works only with STREAMS devices and 
STREAMS pipes. The System V asynchronous I/O signal is SIGPOLL. 

To enable asynchronous I/O for a STREAMS device, we have to call ioctl  with a second argument (request) 
of I_SETSIG . The third argument is an integer value formed from one or more of the constants in Figure 14.26. 
These constants are defined in <stropts.h> . 

Figure 14.26. Conditions for generating SIGPOLL signal 

Constant Description 

S_INPUT A message other than a high-priority message has arrived. 

S_RDNORM An ordinary message has arrived. 

S_RDBAND A message with a nonzero priority band has arrived. 

S_BANDURG If this constant is specified with S_RDBAND, the SIGURG signal is generated instead of SIGPOLL 
when a nonzero priority band message has arrived. 

S_HIPRI  A high-priority message has arrived. 

S_OUTPUT The write queue is no longer full. 

S_WRNORM Same as S_OUTPUT. 

S_WRBAND We can send a nonzero priority band message. 

S_MSG A STREAMS signal message that contains the SIGPOLL signal has arrived. 

S_ERROR An M_ERROR message has arrived. 



Figure 14.26. Conditions for generating SIGPOLL signal 

Constant Description 

S_HANGUP An M_HANGUP message has arrived. 

 

In Figure 14.26, whenever we say "has arrived," we mean "has arrived at the stream head's read queue." 

In addition to calling ioctl  to specify the conditions that should generate the SIGPOLL signal, we also have to 
establish a signal handler for this signal. Recall from Figure 10.1 that the default action for SIGPOLL is to 
terminate the process, so we should establish the signal handler before calling ioctl . 

14.6.2. BSD Asynchronous I/O 

Asynchronous I/O in BSD-derived systems is a combination of two signals: SIGIO  and SIGURG. The former is 
the general asynchronous I/O signal, and the latter is used only to notify the process that out-of-band data has 
arrived on a network connection. 

To receive the SIGIO  signal, we need to perform three steps. 

1.  Establish a signal handler for SIGIO , by calling either signal  or sigaction . 

2.  Set the process ID or process group ID to receive the signal for the descriptor, by calling fcntl  with a 
command of F_SETOWN (Section 3.14). 

3.  Enable asynchronous I/O on the descriptor by calling fcntl  with a command of F_SETFL to set the 
O_ASYNC file status flag (Figure 3.9). 

Step 3 can be performed only on descriptors that refer to terminals or networks, which is a fundamental 
limitation of the BSD asynchronous I/O facility. 

For the SIGURG signal, we need perform only steps 1 and 2. SIGURG is generated only for descriptors that refer 
to network connections that support out-of-band data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.7. readv and writev Functions 

The readv  and writev  functions let us read into and write from multiple noncontiguous buffers in a single 
function call. These operations are called scatter read and gather write. 

#include <sys/uio.h> 
 
ssize_t readv(int filedes, const struct iovec *iov 
, int iovcnt); 
 
ssize_t writev(int filedes, const struct iovec *iov , int iovcnt);  

 

Both return: number of bytes read or written, –1 on error 

 

The second argument to both functions is a pointer to an array of iovec  structures: 

   struct iovec { 
     void   *iov_base;   /* starting address of buf fer */ 
     size_t  iov_len;    /* size of buffer */ 
   }; 

 

The number of elements in the iov array is specified by iovcnt. It is limited to IOV_MAX (Recall Figure 2.10). 
Figure 14.27 shows a picture relating the arguments to these two functions and the iovec  structure. 

Figure 14.27. The iovec structure for readv and writev 

 
 

The writev  function gathers the output data from the buffers in order: iov[0], iov[1], through iov[iovcnt–1]; 
writev  returns the total number of bytes output, which should normally equal the sum of all the buffer lengths. 

The readv  function scatters the data into the buffers in order, always filling one buffer before proceeding to the 
next. readv  returns the total number of bytes that were read. A count of 0 is returned if there is no more data 
and the end of file is encountered. 

These two functions originated in 4.2BSD and were later added to SVR4. These two functions are included in 
the XSI extension of the Single UNIX Specification. 

Although the Single UNIX Specification defines the buffer address to be a void * , many implementations that 
predate the standard still use a char *  instead. 



Example 

In Section 20.8, in the function _db_writeidx , we need to write two buffers consecutively to a file. 
The second buffer to output is an argument passed by the caller, and the first buffer is one we create, 
containing the length of the second buffer and a file offset of other information in the file. There are 
three ways we can do this. 

1. Call write  twice, once for each buffer. 
2. Allocate a buffer of our own that is large enough to contain both buffers, and copy both into 

the new buffer. We then call write  once for this new buffer. 
3. Call writev  to output both buffers. 

The solution we use in Section 20.8 is to use writev , but it's instructive to compare it to the other 
two solutions. 

Figure 14.28 shows the results from the three methods just described. 

The test program that we measured output a 100-byte header followed by 200 bytes of data. This 
was done 1,048,576 times, generating a 300-megabyte file. The test program has three separate 
cases—one for each of the techniques measured in Figure 14.28. We used times  (Section 8.16) to 
obtain the user CPU time, system CPU time, and wall clock time before and after the writes. All 
three times are shown in seconds. 

As we expect, the system time increases when we call write  twice, compared to calling either 
write  or writev  once. This correlates with the results in Figure 3.5. 

Next, note that the sum of the CPU times (user plus system) is less when we do a buffer copy 
followed by a single write  compared to a single call to writev . With the single write , we copy the 
buffers to a staging buffer at user level, and then the kernel will copy the data to its internal buffers 
when we call write . With writev , we should do less copying, because the kernel only needs to 
copy the data directly into its staging buffers. The fixed cost of using writev  for such small amounts 
of data, however, is greater than the benefit. As the amount of data we need to copy increases, the 
more expensive it will be to copy the buffers in our program, and the writev  alternative will be 
more attractive. 

Be careful not to infer too much about the relative performance of Linux to Mac OS X from the 
numbers shown in Figure 14.28. The two computers were very different: they had different 
processor architectures, different amounts of RAM, and disks with different speeds. To do an 
apples-to-apples comparison of one operating system to another, we need to use the same hardware 
for each operating system. 

Figure 14.28. Timing results comparing writev and other techniques 

Linux (Intel x86) Mac OS X (PowerPC) 

Operation User System Clock User System Clock 

two write s 1.29 3.15 7.39 1.60 17.40 19.84 

buffer copy, then one write  1.03 1.98 6.47 1.10 11.09 12.54 

one writev  0.70 2.72 6.41 0.86 13.58 14.72 



 

In summary, we should always try to use the fewest number of system calls necessary to get the job done. If we 
are writing small amounts of data, we will find it less expensive to copy the data ourselves and use a single 
write  instead of using writev . We might find, however, that the performance benefits aren't worth the extra 
complexity cost needed to manage our own staging buffers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.8. readn and writen Functions 

Pipes, FIFOs, and some devices, notably terminals, networks, and STREAMS devices, have the following two 
properties. 

1. A read  operation may return less than asked for, even though we have not encountered the end of file. 
This is not an error, and we should simply continue reading from the device. 

2. A write  operation can also return less than we specified. This may be caused by flow control 
constraints by downstream modules, for example. Again, it's not an error, and we should continue 
writing the remainder of the data. (Normally, this short return from a write  occurs only with a 
nonblocking descriptor or if a signal is caught.) 

We'll never see this happen when reading or writing a disk file, except when the file system runs out of space or 
we hit our quota limit and we can't write all that we requested. 

Generally, when we read from or write to a pipe, network device, or terminal, we need to take these 
characteristics into consideration. We can use the following two functions to read or write N bytes of data, 
letting these functions handle a possible return value that's less than requested. These two functions simply call 
read  or write  as many times as required to read or write the entire N bytes of data. 

#include "apue.h" 
 
ssize_t readn(int filedes, void *buf, size_t nbytes ); 
 
ssize_t writen(int filedes, void *buf, size_t nbyte s);  

 

Both return: number of bytes read or written, –1 on error 

 

We define these functions as a convenience for later examples, similar to the error-handling routines used in 
many of the examples in this text. The readn  and writen  functions are not part of any standard. 

We call writen  whenever we're writing to one of the file types that we mentioned, but we call readn  only when 
we know ahead of time that we will be receiving a certain number of bytes. Figure 14.29 shows 
implementations of readn  and writen  that we will use in later examples. 

Figure 14.29. The readn and writen functions 

#include "apue.h" 
 
ssize_t             /* Read "n" bytes from a descri ptor */ 
readn(int fd, void *ptr, size_t n) 
{ 
    size_t       nleft; 
    ssize_t      nread; 
 
    nleft = n; 
    while (nleft > 0) { 
        if ((nread = read(fd, ptr, nleft)) < 0) { 
            if (nleft == n) 
                return(-1); /* error, return -1 */ 
            else 
                break;      /* error, return amount  read so far */ 



        } else if (nread == 0) { 
            break;          /* EOF */ 
        } 
        nleft -= nread; 
        ptr += nread; 
    } 
    return(n - nleft);      /* return >= 0 */ 
} 
 
ssize_t             /* Write "n" bytes to a descrip tor */ 
writen(int fd, const void *ptr, size_t n) 
{ 
    size_t      nleft; 
    ssize_t     nwritten; 
 
    nleft = n; 
    while (nleft > 0) { 
        if ((nwritten = write(fd, ptr, nleft)) < 0)  { 
            if (nleft == n) 
                return(-1); /* error, return -1 */ 
            else 
                break;      /* error, return amount  written so far */  
        } else if (nwritten == 0) { 
            break; 
        } 
        nleft -= nwritten; 
        ptr   += nwritten; 
    } 
    return(n - nleft);      /* return >= 0 */ 
} 

Note that if we encounter an error and have previously read or written any data, we return the amount of data 
transferred instead of the error. Similarly, if we reach end of file while reading, we return the number of bytes 
copied to the caller's buffer if we already read some data successfully and have not yet satisfied the amount 
requested. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.9. Memory-Mapped I/O 

Memory-mapped I/O lets us map a file on disk into a buffer in memory so that, when we fetch bytes from the 
buffer, the corresponding bytes of the file are read. Similarly, when we store data in the buffer, the 
corresponding bytes are automatically written to the file. This lets us perform I/O without using read  or write . 

Memory-mapped I/O has been in use with virtual memory systems for many years. In 1981, 4.1BSD provided a 
different form of memory-mapped I/O with its vread  and vwrite  functions. These two functions were then 
removed in 4.2BSD and were intended to be replaced with the mmap function. The mmap function, however, was 
not included with 4.2BSD (for reasons described in Section 2.5 of McKusick et al. [1996]). Gingell, Moran, and 
Shannon [1987] describe one implementation of mmap. The mmap function is included in the memory-mapped 
files option in the Single UNIX Specification and is required on all XSI-conforming systems; most UNIX 
systems support it. 

To use this feature, we have to tell the kernel to map a given file to a region in memory. This is done by the 
mmap function. 

#include <sys/mman.h> 
 
void *mmap(void *addr, size_t len, int prot, int fl ag, int filedes,  
           off_t off ); 

 

Returns: starting address of mapped region if OK, MAP_FAILED on error 

 

The addr argument lets us specify the address of where we want the mapped region to start. We normally set 
this to 0 to allow the system to choose the starting address. The return value of this function is the starting 
address of the mapped area. 

The filedes argument is the file descriptor specifying the file that is to be mapped. We have to open this file 
before we can map it into the address space. The len argument is the number of bytes to map, and off is the 
starting offset in the file of the bytes to map. (Some restrictions on the value of off are described later.) 

The prot argument specifies the protection of the mapped region. 

We can specify the protection as either PROT_NONE or the bitwise OR of any combination of PROT_READ, 
PROT_WRITE, and PROT_EXEC. The protection specified for a region can't allow more access than the open  mode 
of the file. For example, we can't specify PROT_WRITE if the file was opened read-only. 

Before looking at the flag argument, let's see what's going on here. Figure 14.31 shows a memory-mapped file. 
(Recall the memory layout of a typical process, Figure 7.6.) In this figure, "start addr" is the return value from 
mmap. We have shown the mapped memory being somewhere between the heap and the stack: this is an 
implementation detail and may differ from one implementation to the next. 

 

 

 



Figure 14.31. Example of a memory-mapped file 

 
 

The flag argument affects various attributes of the mapped region. 

MAP_FIXED The return value must equal addr. Use of this flag is discouraged, as it hinders portability. If this 
flag is not specified and if addr is nonzero, then the kernel uses addr as a hint of where to place 
the mapped region, but there is no guarantee that the requested address will be used. Maximum 
portability is obtained by specifying addr as 0. 

Support for the MAP_FIXED flag is optional on POSIX-conforming systems, but required on XSI-
conforming systems. 

MAP_SHARED This flag describes the disposition of store operations into the mapped region by this process. 
This flag specifies that store operations modify the mapped file—that is, a store operation is 
equivalent to a write  to the file. Either this flag or the next (MAP_PRIVATE), but not both, must 
be specified. 

MAP_PRIVATE This flag says that store operations into the mapped region cause a private copy of the mapped 
file to be created. All successive references to the mapped region then reference the copy. (One 
use of this flag is for a debugger that maps the text portion of a program file but allows the user 
to modify the instructions. Any modifications affect the copy, not the original program file.) 

 

Each implementation has additional MAP_xxx flag values, which are specific to that implementation. Check the 
mmap(2) manual page on your system for details. 

The value of off and the value of addr (if MAP_FIXED is specified) are required to be multiples of the system's 
virtual memory page size. This value can be obtained from the sysconf  function (Section 2.5.4) with an 
argument of _SC_PAGESIZE or _SC_PAGE_SIZE. Since off and addr are often specified as 0, this requirement is 
not a big deal. 



Since the starting offset of the mapped file is tied to the system's virtual memory page size, what happens if the 
length of the mapped region isn't a multiple of the page size? Assume that the file size is 12 bytes and that the 
system's page size is 512 bytes. In this case, the system normally provides a mapped region of 512 bytes, and 
the final 500 bytes of this region are set to 0. We can modify the final 500 bytes, but any changes we make to 
them are not reflected in the file. Thus, we cannot append to a file with mmap. We must first grow the file, as we 
will see in Figure 14.32. 

Figure 14.32. Copy a file using memory-mapped I/O 

#include "apue.h" 
#include <fcntl.h> 
#include <sys/mman.h> 
 
int 
main(int argc, char *argv[]) 
{ 
    int         fdin, fdout; 
    void        *src, *dst; 
    struct stat statbuf; 
 
    if (argc != 3) 
        err_quit("usage: %s <fromfile> <tofile>", a rgv[0]); 
 
    if ((fdin = open(argv[1], O_RDONLY)) < 0) 
        err_sys("can't open %s for reading", argv[1 ]); 
 
    if ((fdout = open(argv[2], O_RDWR | O_CREAT | O _TRUNC, 
      FILE_MODE)) < 0) 
        err_sys("can't creat %s for writing", argv[ 2]); 
 
    if (fstat(fdin, &statbuf) < 0)   /* need size o f input file */  
        err_sys("fstat error"); 
 
    /* set size of output file */ 
    if (lseek(fdout, statbuf.st_size - 1, SEEK_SET)  == -1) 
        err_sys("lseek error"); 
    if (write(fdout, "", 1) != 1) 
        err_sys("write error"); 
 
    if ((src = mmap(0, statbuf.st_size, PROT_READ, MAP_SHARED, 
      fdin, 0)) == MAP_FAILED) 
        err_sys("mmap error for input"); 
 
    if ((dst = mmap(0, statbuf.st_size, PROT_READ |  PROT_WRITE, 
      MAP_SHARED, fdout, 0)) == MAP_FAILED) 
        err_sys("mmap error for output"); 
 
    memcpy(dst, src, statbuf.st_size); /* does the file copy */ 
    exit(0); 
} 

Two signals are normally used with mapped regions. SIGSEGV is the signal normally used to indicate that we 
have tried to access memory that is not available to us. This signal can also be generated if we try to store into a 
mapped region that we specified to mmap as read-only. The SIGBUS signal can be generated if we access a 
portion of the mapped region that does not make sense at the time of the access. For example, assume that we 
map a file using the file's size, but before we reference the mapped region, the file's size is truncated by some 
other process. If we then try to access the memory-mapped region corresponding to the end portion of the file 
that was truncated, we'll receive SIGBUS. 



A memory-mapped region is inherited by a child across a fork  (since it's part of the parent's address space), but 
for the same reason, is not inherited by the new program across an exec . 

We can change the permissions on an existing mapping by calling mprotect . 

#include <sys/mman.h> 
 
int mprotect(void *addr, size_t len, int prot);  

 

Returns: 0 if OK, –1 on error 

 

The legal values for prot are the same as those for mmap (Figure 14.30). The address argument must be an 
integral multiple of the system's page size. 

Figure 14.30. Protection of memory-mapped region 

prot Description 

PROT_READ Region can be read. 

PROT_WRITE Region can be written. 

PROT_EXEC Region can be executed. 

PROT_NONE Region cannot be accessed. 

 

The mprotect  function is included as part of the memory protection option in the Single UNIX Specification, 
but all XSI-conforming systems are required to support it. 

If the pages in a shared mapping have been modified, we can call msync  to flush the changes to the file that 
backs the mapping. The msync  function is similar to fsync  (Section 3.13), but works on memory-mapped 
regions. 

#include <sys/mman.h> 
 
int msync(void *addr, size_t len, int flags);  

 

Returns: 0 if OK, –1 on error 

 

If the mapping is private, the file mapped is not modified. As with the other memory-mapped functions, the 
address must be aligned on a page boundary. 

The flags argument allows us some control over how the memory is flushed. We can specify the MS_ASYNC flag 
to simply schedule the pages to be written. If we want to wait for the writes to complete before returning, we 
can use the MS_SYNC flag. Either MS_ASYNC or MS_SYNC must be specified. 



An optional flag, MS_INVALIDATE, lets us tell the operating system to discard any pages that are out of sync with 
the underlying storage. Some implementations will discard all pages in the specified range when we use this 
flag, but this behavior is not required. 

A memory-mapped region is automatically unmapped when the process terminates or by calling munmap 
directly. Closing the file descriptor filedes does not unmap the region. 

#include <sys/mman.h> 
 
int munmap(caddr_t addr, size_t len);  

 

Returns: 0 if OK, –1 on error  

 

munmap does not affect the object that was mapped—that is, the call to munmap does not cause the contents of 
the mapped region to be written to the disk file. The updating of the disk file for a MAP_SHARED region happens 
automatically by the kernel's virtual memory algorithm as we store into the memory-mapped region. 
Modifications to memory in a MAP_PRIVATE region are discarded when the region is unmapped. 

Example 

The program in Figure 14.32 copies a file (similar to the cp (1) command) using memory-mapped 
I/O. 

We first open both files and then call fstat  to obtain the size of the input file. We need this size for 
the call to mmap for the input file, and we also need to set the size of the output file. We call lseek  
and then write  one byte to set the size of the output file. If we don't set the output file's size, the call 
to mmap for the output file is OK, but the first reference to the associated memory region generates 
SIGBUS. We might be tempted to use ftruncate  to set the size of the output file, but not all systems 
extend the size of a file with this function. (See Section 4.13.) 

Extending a file with ftruncate  works on the four platforms discussed in this text. 

We then call mmap for each file, to map the file into memory, and finally call memcpy to copy from 
the input buffer to the output buffer. As the bytes of data are fetched from the input buffer (src ), the 
input file is automatically read by the kernel; as the data is stored in the output buffer (dst ), the data 
is automatically written to the output file. 

Exactly when the data is written to the file is dependent on the system's page management 
algorithms. Some systems have daemons that write dirty pages to disk slowly over time. If we want 
to ensure that the data is safely written to the file, we need to call msync  with the MS_SYNC flag 
before exiting. 

Let's compare this memory-mapped file copy to a copy that is done by calling read  and write  (with 
a buffer size of 8,192). Figure 14.33 shows the results. The times are given in seconds, and the size 
of the file being copied was 300 megabytes. 

For Solaris 9, the total CPU time (user + system) is almost the same for both types of copies: 9.88 
seconds versus 9.62 seconds. For Linux 2.4.22, the total CPU time is almost doubled when we use 
mmap and memcpy (1.06 seconds versus 1.95 seconds). The difference is probably because the two 



systems implement process time accounting differently. 

As far as elapsed time is concerned, the version with mmap and memcpy is faster than the version with 
read  and write . This makes sense, because we're doing less work with mmap and memcpy. With 
read  and write , we copy the data from the kernel's buffer to the application's buffer (read ), and 
then copy the data from the application's buffer to the kernel's buffer (write ). With mmap and 
memcpy, we copy the data directly from one kernel buffer mapped into our address space into 
another kernel buffer mapped into our address space. 

Figure 14.33. Timing results comparing read/write versus mmap/memcpy 

Linux 2.4.22 (Intel x86) Solaris 9 (SPARC) 

Operation User System Clock User System Clock 

read/write  0.04 1.02 39.76 0.18 9.70 41.66 

mmap/memcpy 0.64 1.31 24.26 1.68 7.94 28.53 

 

Memory-mapped I/O is faster when copying one regular file to another. There are limitations. We can't use it to 
copy between certain devices (such as a network device or a terminal device), and we have to be careful if the 
size of the underlying file could change after we map it. Nevertheless, some applications can benefit from 
memory-mapped I/O, as it can often simplify the algorithms, since we manipulate memory instead of reading 
and writing a file. One example that can benefit from memory-mapped I/O is the manipulation of a frame buffer 
device that references a bit-mapped display. 

Krieger, Stumm, and Unrau [1992] describe an alternative to the standard I/O library (Chapter 5) that uses 
memory-mapped I/O. 

We return to memory-mapped I/O in Section 15.9, showing an example of how it can be used to provide shared 
memory between related processes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14.10. Summary 

In this chapter, we've described numerous advanced I/O functions, most of which are used in the examples in 
later chapters: 

• Nonblocking I/O—issuing an I/O operation without letting it block 
• Record locking (which we'll look at in more detail through an example, the database library in Chapter 

20) 
• System V STREAMS (which we'll need in Chapter 17 to understand STREAMS-based pipes, passing 

file descriptors, and System V client–server connections) 
• I/O multiplexing—the select  and poll  functions (we'll use these in many of the later examples) 
• The readv  and writev  functions (also used in many of the later examples) 
• Memory-mapped I/O (mmap) 
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15.1. Introduction 

In Chapter 8, we described the process control primitives and saw how to invoke multiple processes. But the 
only way for these processes to exchange information is by passing open files across a fork  or an exec  or 
through the file system. We'll now describe other techniques for processes to communicate with each other: IPC, 
or interprocess communication. 

In the past, UNIX System IPC was a hodgepodge of various approaches, few of which were portable across all 
UNIX system implementations. Through the POSIX and The Open Group (formerly X/Open) standardization 
efforts, the situation has improved, but differences still exist. Figure 15.1 summarizes the various forms of IPC 
that are supported by the four implementations discussed in this text. 

Figure 15.1. Summary of UNIX System IPC 

IPC type SUS FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

half-duplex pipes • (full) • • (full) 

FIFOs • • • • • 

full-duplex pipes allowed •,UDS opt, UDS UDS •, UDS 

named full-duplex pipes XSI option UDS opt, UDS UDS •, UDS 

message queues XSI • •   • 

semaphores XSI • • • • 

shared memory XSI • • • • 

sockets • • • • • 

STREAMS XSI option   opt   • 

 

Note that the Single UNIX Specification (the "SUS" column) allows an implementation to support full-duplex 
pipes, but requires only half-duplex pipes. An implementation that supports full-duplex pipes will still work 
with correctly written applications that assume that the underlying operating system supports only half-duplex 
pipes. We use "(full)" instead of a bullet to show implementations that support half-duplex pipes by using full-
duplex pipes. 

In Figure 15.1, we show a bullet where basic functionality is supported. For full-duplex pipes, if the feature can 
be provided through UNIX domain sockets (Section 17.3), we show "UDS" in the column. Some 
implementations support the feature with pipes and UNIX domain sockets, so these entries have both "UDS" 
and a bullet. 

As we mentioned in Section 14.4, support for STREAMS is optional in the Single UNIX Specification. Named 
full-duplex pipes are provided as mounted STREAMS-based pipes and so are also optional in the Single UNIX 
Specification. On Linux, support for STREAMS is available in a separate, optional package called "LiS" (for 
Linux STREAMS). We show "opt" where the platform provides support for the feature through an optional 
package—one that is not usually installed by default. 



The first seven forms of IPC in Figure 15.1 are usually restricted to IPC between processes on the same host. 
The final two rows—sockets and STREAMS—are the only two that are generally supported for IPC between 
processes on different hosts. 

We have divided the discussion of IPC into three chapters. In this chapter, we examine classical IPC: pipes, 
FIFOs, message queues, semaphores, and shared memory. In the next chapter, we take a look at network IPC 
using the sockets mechanism. In Chapter 17, we take a look at some advanced features of IPC. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.2. Pipes 

Pipes are the oldest form of UNIX System IPC and are provided by all UNIX systems. Pipes have two 
limitations. 

1. Historically, they have been half duplex (i.e., data flows in only one direction). Some systems now 
provide full-duplex pipes, but for maximum portability, we should never assume that this is the case. 

2. Pipes can be used only between processes that have a common ancestor. Normally, a pipe is created by a 
process, that process calls fork , and the pipe is used between the parent and the child. 

We'll see that FIFOs (Section 15.5) get around the second limitation, and that UNIX domain sockets (Section 
17.3) and named STREAMS-based pipes (Section 17.2.2) get around both limitations. 

Despite these limitations, half-duplex pipes are still the most commonly used form of IPC. Every time you type 
a sequence of commands in a pipeline for the shell to execute, the shell creates a separate process for each 
command and links the standard output of one to the standard input of the next using a pipe. 

A pipe is created by calling the pipe  function. 

#include <unistd.h> 
 
int pipe(int filedes[2]);  

 

Returns: 0 if OK, –1 on error 

 

Two file descriptors are returned through the filedes argument: filedes[0] is open for reading, and filedes[1] is 
open for writing. The output of filedes[1] is the input for filedes[0]. 

Pipes are implemented using UNIX domain sockets in 4.3BSD, 4.4BSD, and Mac OS X 10.3. Even though 
UNIX domain sockets are full duplex by default, these operating systems hobble the sockets used with pipes so 
that they operate in half-duplex mode only. 

POSIX.1 allows for an implementation to support full-duplex pipes. For these implementations, filedes[0] and 
filedes[1] are open for both reading and writing. 

Two ways to picture a half-duplex pipe are shown in Figure 15.2. The left half of the figure shows the two ends 
of the pipe connected in a single process. The right half of the figure emphasizes that the data in the pipe flows 
through the kernel. 

 

 

 

 

 

 



Figure 15.2. Two ways to view a half-duplex pipe 

 
 

The fstat  function (Section 4.2) returns a file type of FIFO for the file descriptor of either end of a pipe. We 
can test for a pipe with the S_ISFIFO  macro. 

POSIX.1 states that the st_size  member of the stat  structure is undefined for pipes. But when the fstat  
function is applied to the file descriptor for the read end of the pipe, many systems store in st_size  the number 
of bytes available for reading in the pipe. This is, however, nonportable. 

A pipe in a single process is next to useless. Normally, the process that calls pipe  then calls fork , creating an 
IPC channel from the parent to the child or vice versa. Figure 15.3 shows this scenario. 

Figure 15.3. Half-duplex pipe after a fork 

 

What happens after the fork  depends on which direction of data flow we want. For a pipe from the parent to the 
child, the parent closes the read end of the pipe (fd[0] ), and the child closes the write end (fd[1] ). Figure 15.4 
shows the resulting arrangement of descriptors. 

 

 

 



Figure 15.4. Pipe from parent to child 

 

For a pipe from the child to the parent, the parent closes fd[1] , and the child closes fd[0] . 

When one end of a pipe is closed, the following two rules apply. 

1. If we read  from a pipe whose write end has been closed, read  returns 0 to indicate an end of file after 
all the data has been read. (Technically, we should say that this end of file is not generated until there are 
no more writers for the pipe. It's possible to duplicate a pipe descriptor so that multiple processes have 
the pipe open for writing. Normally, however, there is a single reader and a single writer for a pipe. 
When we get to FIFOs in the next section, we'll see that often there are multiple writers for a single 
FIFO.) 

2. If we write  to a pipe whose read end has been closed, the signal SIGPIPE  is generated. If we either 
ignore the signal or catch it and return from the signal handler, write  returns –1 with errno  set to EPIPE. 

When we're writing to a pipe (or FIFO), the constant PIPE_BUF specifies the kernel's pipe buffer size. A write  
of PIPE_BUF bytes or less will not be interleaved with the write s from other processes to the same pipe (or 
FIFO). But if multiple processes are writing to a pipe (or FIFO), and if we write  more than PIPE_BUF bytes, 
the data might be interleaved with the data from the other writers. We can determine the value of PIPE_BUF by 
using pathconf  or fpathconf  (recall Figure 2.11). 

Example 

Figure 15.5 shows the code to create a pipe between a parent and its child and to send data down the 
pipe. 

Figure 15.5. Send data from parent to child over a pipe 

#include "apue.h" 
 
int 
main(void) 
{ 
    int     n; 
    int     fd[2]; 
    pid_t   pid; 
    char    line[MAXLINE]; 
 



    if (pipe(fd) < 0) 
        err_sys("pipe error"); 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid > 0) {       /* parent */  
        close(fd[0]); 
        write(fd[1], "hello world\n", 12); 
    } else {                /* child */ 
        close(fd[1]); 
        n = read(fd[0], line, MAXLINE); 
        write(STDOUT_FILENO, line, n); 
    } 
    exit(0); 
} 

In the previous example, we called read  and write  directly on the pipe descriptors. What is more interesting is 
to duplicate the pipe descriptors onto standard input or standard output. Often, the child then runs some other 
program, and that program can either read from its standard input (the pipe that we created) or write to its 
standard output (the pipe). 

Example 

Consider a program that displays some output that it has created, one page at a time. Rather than 
reinvent the pagination done by several UNIX system utilities, we want to invoke the user's favorite 
pager. To avoid writing all the data to a temporary file and calling system  to display that file, we 
want to pipe the output directly to the pager. To do this, we create a pipe, fork  a child process, set 
up the child's standard input to be the read end of the pipe, and exec  the user's pager program. 
Figure 15.6 shows how to do this. (This example takes a command-line argument to specify the 
name of a file to display. Often, a program of this type would already have the data to display to the 
terminal in memory.) 

Before calling fork , we create a pipe. After the fork , the parent closes its read end, and the child 
closes its write end. The child then calls dup2  to have its standard input be the read end of the pipe. 
When the pager program is executed, its standard input will be the read end of the pipe. 

When we duplicate a descriptor onto another (fd[0]  onto standard input in the child), we have to be 
careful that the descriptor doesn't already have the desired value. If the descriptor already had the 
desired value and we called dup2  and close , the single copy of the descriptor would be closed. 
(Recall the operation of dup2  when its two arguments are equal, discussed in Section 3.12). In this 
program, if standard input had not been opened by the shell, the fopen  at the beginning of the 
program should have used descriptor 0, the lowest unused descriptor, so fd[0]  should never equal 
standard input. Nevertheless, whenever we call dup2  and close  to duplicate a descriptor onto 
another, we'll always compare the descriptors first, as a defensive programming measure. 

Note how we try to use the environment variable PAGER to obtain the name of the user's pager 
program. If this doesn't work, we use a default. This is a common usage of environment variables. 

Figure 15.6. Copy file to pager program 

#include "apue.h" 
#include <sys/wait.h> 
 
#define DEF_PAGER   "/bin/more"     /* default page r program */ 
 



int 
main(int argc, char *argv[]) 
{ 
    int    n; 
    int    fd[2]; 
    pid_t  pid; 
    char   *pager, *argv0; 
    char   line[MAXLINE]; 
    FILE   *fp; 
 
    if (argc != 2) 
        err_quit("usage: a.out <pathname>"); 
 
    if ((fp = fopen(argv[1], "r")) == NULL) 
        err_sys("can't open %s", argv[1]); 
    if (pipe(fd) < 0) 
        err_sys("pipe error"); 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid > 0) {                              /* parent */  
        close(fd[0]);       /* close read end */ 
 
        /* parent copies argv[1] to pipe */ 
        while (fgets(line, MAXLINE, fp) != NULL) { 
            n = strlen(line); 
            if (write(fd[1], line, n) != n) 
                err_sys("write error to pipe"); 
        } 
        if (ferror(fp)) 
            err_sys("fgets error"); 
 
        close(fd[1]);   /* close write end of pipe for reader */ 
 
        if (waitpid(pid, NULL, 0) < 0) 
            err_sys("waitpid error"); 
        exit(0); 
    } else {                                        /* child */ 
        close(fd[1]);   /* close write end */ 
        if (fd[0] != STDIN_FILENO) { 
            if (dup2(fd[0], STDIN_FILENO) != STDIN_ FILENO) 
                err_sys("dup2 error to stdin"); 
            close(fd[0]);   /* don't need this afte r dup2 */ 
        } 
 
        /* get arguments for execl() */ 
        if ((pager = getenv("PAGER")) == NULL) 
            pager = DEF_PAGER; 
        if ((argv0 = strrchr(pager, '/')) != NULL) 
            argv0++;        /* step past rightmost slash */ 
        else 
            argv0 = pager;  /* no slash in pager */  
 
        if (execl(pager, argv0, (char *)0) < 0) 
            err_sys("execl error for %s", pager); 
    } 
    exit(0); 
} 

Example 



Recall the five functions TELL_WAIT, TELL_PARENT, TELL_CHILD, WAIT_PARENT, and WAIT_CHILD 
from Section 8.9. In Figure 10.24, we showed an implementation using signals. Figure 15.7 shows 
an implementation using pipes. 

We create two pipes before the fork , as shown in Figure 15.8. The parent writes the character "p" 
across the top pipe when TELL_CHILD is called, and the child writes the character "c" across the 
bottom pipe when TELL_PARENT is called. The corresponding WAIT_xxx  functions do a blocking 
read  for the single character. 

Note that each pipe has an extra reader, which doesn't matter. That is, in addition to the child reading 
from pfd1[0] , the parent also has this end of the top pipe open for reading. This doesn't affect us, 
since the parent doesn't try to read from this pipe. 

Figure 15.7. Routines to let a parent and child synchronize 

 
#include "apue.h" 
 
static int  pfd1[2], pfd2[2]; 
 
void 
TELL_WAIT(void) 
{ 
    if (pipe(pfd1) < 0 || pipe(pfd2) < 0) 
        err_sys("pipe error"); 
} 
 
void 
TELL_PARENT(pid_t pid) 
{ 
    if (write(pfd2[1], "c", 1) != 1) 
        err_sys("write error"); 
} 
 
void 
WAIT_PARENT(void) 
{ 
    char    c; 
 
    if (read(pfd1[0], &c, 1) != 1) 
        err_sys("read error"); 
 
    if (c != 'p') 
        err_quit("WAIT_PARENT: incorrect data");  
} 
 
void 
TELL_CHILD(pid_t pid) 
{ 
    if (write(pfd1[1], "p", 1) != 1) 
        err_sys("write error"); 
} 
 
void 
WAIT_CHILD(void) 
{ 
    char    c; 
 
    if (read(pfd2[0], &c, 1) != 1) 



        err_sys("read error"); 
 
    if (c != 'c') 
        err_quit("WAIT_CHILD: incorrect data"); 
} 

Figure 15.8. Using two pipes for parent–child synchronization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.3. popen and pclose Functions 

Since a common operation is to create a pipe to another process, to either read its output or send it input, the 
standard I/O library has historically provided the popen  and pclose  functions. These two functions handle all 
the dirty work that we've been doing ourselves: creating a pipe, fork ing a child, closing the unused ends of the 
pipe, executing a shell to run the command, and waiting for the command to terminate. 

 
#include <stdio.h> 
 
FILE *popen(const char *cmdstring, const char *type );  

 

Returns: file pointer if OK, NULL on error 

int pclose(FILE *fp); 

 

Returns: termination status of cmdstring, or –1 on error 

 

The function popen  does a fork  and exec  to execute the cmdstring, and returns a standard I/O file pointer. If 
type is "r" , the file pointer is connected to the standard output of cmdstring (Figure 15.9). 

Figure 15.9. Result of fp = popen(cmdstring, "r") 

 

If type is "w" , the file pointer is connected to the standard input of cmdstring, as shown in Figure 15.10. 

Figure 15.10. Result of fp = popen(cmdstring, "w") 

 

One way to remember the final argument to popen  is to remember that, like fopen , the returned file pointer is 
readable if type is "r"  or writable if type is "w" . 

The pclose  function closes the standard I/O stream, waits for the command to terminate, and returns the 
termination status of the shell. (We described the termination status in Section 8.6. The system  function, 
described in Section 8.13, also returns the termination status.) If the shell cannot be executed, the termination 
status returned by pclose  is as if the shell had executed exit(127) . 

The cmdstring is executed by the Bourne shell, as in 

sh -c cmdstring 

 

This means that the shell expands any of its special characters in cmdstring. This allows us to say, for example, 



   fp = popen("ls *.c", "r"); 
 
or 
 
   fp = popen("cmd 2>&1", "r"); 

 
 

Example 

Let's redo the program from Figure 15.6, using popen . This is shown in Figure 15.11. 

Using popen  reduces the amount of code we have to write. 

The shell command ${PAGER:-more}  says to use the value of the shell variable PAGER if it is defined 
and non-null; otherwise, use the string more . 

Figure 15.11. Copy file to pager program using popen 

#include "apue.h" 
#include <sys/wait.h> 
 
#define PAGER   "${PAGER:-more}" /* environment var iable, or default */  
 
int 
main(int argc, char *argv[]) 
{ 
    char    line[MAXLINE]; 
    FILE    *fpin, *fpout; 
 
    if (argc != 2) 
        err_quit("usage: a.out <pathname>"); 
    if ((fpin = fopen(argv[1], "r")) == NULL) 
        err_sys("can't open %s", argv[1]); 
 
    if ((fpout = popen(PAGER, "w")) == NULL) 
        err_sys("popen error"); 
 
    /* copy argv[1] to pager */ 
    while (fgets(line, MAXLINE, fpin) != NULL) { 
        if (fputs(line, fpout) == EOF) 
            err_sys("fputs error to pipe"); 
    } 
    if (ferror(fpin)) 
        err_sys("fgets error"); 
    if (pclose(fpout) == -1) 
        err_sys("pclose error"); 
 
    exit(0); 
} 
 
 
      

 

Example—popen and pclose Functions 

Figure 15.12 shows our version of popen  and pclose . 



Although the core of popen  is similar to the code we've used earlier in this chapter, there are many 
details that we need to take care of. First, each time popen  is called, we have to remember the 
process ID of the child that we create and either its file descriptor or FILE  pointer. We choose to 
save the child's process ID in the array childpid , which we index by the file descriptor. This way, 
when pclose  is called with the FILE  pointer as its argument, we call the standard I/O function 
fileno  to get the file descriptor, and then have the child process ID for the call to waitpid . Since 
it's possible for a given process to call popen  more than once, we dynamically allocate the childpid  
array (the first time popen  is called), with room for as many children as there are file descriptors. 

Calling pipe  and fork  and then duplicating the appropriate descriptors for each process is similar to 
what we did earlier in this chapter. 

POSIX.1 requires that popen  close any streams that are still open in the child from previous calls to 
popen . To do this, we go through the childpid  array in the child, closing any descriptors that are 
still open. 

What happens if the caller of pclose  has established a signal handler for SIGCHLD? The call to 
waitpid  from pclose  would return an error of EINTR. Since the caller is allowed to catch this signal 
(or any other signal that might interrupt the call to waitpid ), we simply call waitpid  again if it is 
interrupted by a caught signal. 

Note that if the application calls waitpid  and obtains the exit status of the child created by popen , 
we will call waitpid  when the application calls pclose , find that the child no longer exists, and 
return –1 with errno  set to ECHILD. This is the behavior required by POSIX.1 in this situation. 

Some early versions of pclose  returned an error of EINTR if a signal interrupted the wait . Also, 
some early versions of pclose  blocked or ignored the signals SIGINT , SIGQUIT, and SIGHUP during 
the wait . This is not allowed by POSIX.1. 

Figure 15.12. The popen and pclose functions 

#include "apue.h" 
#include <errno.h> 
#include <fcntl.h> 
#include <sys/wait.h> 
 
/* 
 * Pointer to array allocated at run-time. 
 */ 
static pid_t    *childpid = NULL; 
 
/* 
 * From our open_max(), Figure 2.16 . 
 */ 
static int      maxfd; 
 
FILE * 
popen(const char *cmdstring, const char *type) 
{ 
    int     i; 
    int     pfd[2]; 
    pid_t   pid; 
    FILE    *fp; 
 
    /* only allow "r" or "w" */ 



    if ((type[0] != 'r' && type[0] != 'w') || type[ 1] != 0) { 
        errno = EINVAL;     /* required by POSIX */  
        return(NULL); 
    } 
 
    if (childpid == NULL) {     /* first time throu gh */ 
        /* allocate zeroed out array for child pids  */ 
        maxfd = open_max(); 
        if ((childpid = calloc(maxfd, sizeof(pid_t) )) == NULL) 
            return(NULL); 
    } 
 
    if (pipe(pfd) < 0) 
        return(NULL);   /* errno set by pipe() */ 
 
    if ((pid = fork()) < 0) { 
        return(NULL);   /* errno set by fork() */ 
    } else if (pid == 0) {                           /* child */ 
        if (*type == 'r') { 
            close(pfd[0]); 
            if (pfd[1] != STDOUT_FILENO) { 
                dup2(pfd[1], STDOUT_FILENO); 
                close(pfd[1]); 
            } 
        } else { 
            close(pfd[1]); 
            if (pfd[0] != STDIN_FILENO) { 
                dup2(pfd[0], STDIN_FILENO); 
                close(pfd[0]); 
            } 
        } 
 
        /* close all descriptors in childpid[] */ 
        for (i = 0; i < maxfd; i++) 
            if (childpid[i] > 0) 
                close(i); 
 
        execl("/bin/sh", "sh", "-c", cmdstring, (ch ar *)0); 
        _exit(127); 
    } 
 
    /* parent continues... */ 
    if (*type == 'r') { 
        close(pfd[1]); 
        if ((fp = fdopen(pfd[0], type)) == NULL) 
            return(NULL); 
    } else { 
        close(pfd[0]); 
        if ((fp = fdopen(pfd[1], type)) == NULL) 
            return(NULL); 
    } 
 
    childpid[fileno(fp)] = pid; /* remember child p id for this fd */  
    return(fp); 
} 
 
 
int 
pclose(FILE *fp) 
{ 
    int     fd, stat; 
    pid_t   pid; 



 
    if (childpid == NULL) { 
        errno = EINVAL; 
        return(-1);     /* popen() has never been c alled */ 
    } 
 
    fd = fileno(fp); 
    if ((pid = childpid[fd]) == 0) { 
        errno = EINVAL; 
        return(-1);     /* fp wasn't opened by pope n() */ 
    } 
 
    childpid[fd] = 0; 
    if (fclose(fp) == EOF) 
        return(-1); 
 
    while (waitpid(pid, &stat, 0) < 0) 
        if (errno != EINTR) 
            return(-1); /* error other than EINTR f rom waitpid() */ 
 
    return(stat);   /* return child's termination s tatus */ 
} 

Note that popen  should never be called by a set-user-ID or set-group-ID program. When it executes the 
command, popen  does the equivalent of 

    execl("/bin/sh", "sh", "-c", command, NULL); 

 

which executes the shell and command with the environment inherited by the caller. A malicious user can 
manipulate the environment so that the shell executes commands other than those intended, with the elevated 
permissions granted by the set-ID file mode. 

One thing that popen  is especially well suited for is executing simple filters to transform the input or output of 
the running command. Such is the case when a command wants to build its own pipeline. 

Example 

Consider an application that writes a prompt to standard output and reads a line from standard input. 
With popen , we can interpose a program between the application and its input to transform the 
input. Figure 15.13 shows the arrangement of processes. 

The transformation could be pathname expansion, for example, or providing a history mechanism 
(remembering previously entered commands). 

Figure 15.14 shows a simple filter to demonstrate this operation. The filter copies standard input to 
standard output, converting any uppercase character to lowercase. The reason we're careful to 
fflush  standard output after writing a newline is discussed in the next section when we talk about 
coprocesses. 

We compile this filter into the executable file myuclc , which we then invoke from the program in 
Figure 15.15 using popen . 

We need to call fflush  after writing the prompt, because the standard output is normally line 
buffered, and the prompt does not contain a newline. 



Figure 15.13. Transforming input using popen 

 

Figure 15.14. Filter to convert uppercase characters to lowercase 

#include "apue.h" 
#include <ctype.h> 
 
int 
main(void) 
{ 
    int     c; 
 
    while ((c = getchar()) != EOF) {  
        if (isupper(c)) 
            c = tolower(c); 
        if (putchar(c) == EOF) 
            err_sys("output error");  
        if (c == '\n') 
            fflush(stdout); 
    } 
    exit(0); 
} 

 

Figure 15.15. Invoke uppercase/lowercase filter to read commands 

#include "apue.h" 
#include <sys/wait.h> 
 
int 
main(void) 
{ 
    char    line[MAXLINE]; 
    FILE    *fpin; 
 
    if ((fpin = popen("myuclc", "r")) == NULL) 
        err_sys("popen error"); 
    for ( ; ; ) { 
        fputs("prompt> ", stdout); 
        fflush(stdout); 
        if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */  
            break; 
        if (fputs(line, stdout) == EOF) 
            err_sys("fputs error to pipe"); 
    } 
    if (pclose(fpin) == -1) 
        err_sys("pclose error"); 
    putchar('\n'); 
    exit(0); 



15.4. Coprocesses 

A UNIX system filter is a program that reads from standard input and writes to standard output. Filters are 
normally connected linearly in shell pipelines. A filter becomes a coprocess when the same program generates 
the filter's input and reads the filter's output. 

The Korn shell provides coprocesses [Bolsky and Korn 1995]. The Bourne shell, the Bourne-again shell, and 
the C shell don't provide a way to connect processes together as coprocesses. A coprocess normally runs in the 
background from a shell, and its standard input and standard output are connected to another program using a 
pipe. Although the shell syntax required to initiate a coprocess and connect its input and output to other 
processes is quite contorted (see pp. 62–63 of Bolsky and Korn [1995] for all the details), coprocesses are also 
useful from a C program. 

Whereas popen  gives us a one-way pipe to the standard input or from the standard output of another process, 
with a coprocess, we have two one-way pipes to the other process: one to its standard input and one from its 
standard output. We want to write to its standard input, let it operate on the data, and then read from its standard 
output. 

Example 

Let's look at coprocesses with an example. The process creates two pipes: one is the standard input 
of the coprocess, and the other is the standard output of the coprocess. Figure 15.16 shows this 
arrangement. 

The program in Figure 15.17 is a simple coprocess that reads two numbers from its standard input, 
computes their sum, and writes the sum to its standard output. (Coprocesses usually do more 
interesting work than we illustrate here. This example is admittedly contrived so that we can study 
the plumbing needed to connect the processes.) 

We compile this program and leave the executable in the file add2 . 

The program in Figure 15.18 invokes the add2  coprocess after reading two numbers from its 
standard input. The value from the coprocess is written to its standard output. 

Here, we create two pipes, with the parent and the child closing the ends they don't need. We have to 
use two pipes: one for the standard input of the coprocess and one for its standard output. The child 
then calls dup2  to move the pipe descriptors onto its standard input and standard output, before 
calling execl . 

If we compile and run the program in Figure 15.18, it works as expected. Furthermore, if we kill  
the add2  coprocess while the program in Figure 15.18 is waiting for our input and then enter two 
numbers, the signal handler is invoked when the program writes to the pipe that has no reader. (See 
Exercise 15.4.) 

Recall from Figure 15.1 that not all systems provide full-duplex pipes using the pipe  function. In 
Figure 17.4, we provide another version of this example using a single full-duplex pipe instead of 
two half-duplex pipes, for those systems that support full-duplex pipes. 

 

 



Figure 15.16. Driving a coprocess by writing its standard input and reading its standard output 

 

Figure 15.17. Simple filter to add two numbers 

#include "apue.h" 
 
int 
main(void) 
{ 
    int     n,  int1,  int2; 
    char    line[MAXLINE]; 
 
    while ((n = read(STDIN_FILENO, line, MAXLINE)) > 0) { 
        line[n] = 0;        /* null terminate */ 
        if (sscanf(line, "%d%d", &int1, &int2) == 2 ) { 
            sprintf(line, "%d\n", int1 + int2); 
            n = strlen(line); 
            if (write(STDOUT_FILENO, line, n) != n)  
                err_sys("write error"); 
        } else { 
            if (write(STDOUT_FILENO, "invalid args\ n", 13) != 13)  
                err_sys("write error"); 
        } 
    } 
    exit(0); 
} 

Figure 15.18. Program to drive the add2 filter 

 
#include "apue.h" 
 
static void sig_pipe(int);      /* our signal handl er */ 
 
int 
main(void) 
{ 
    int     n, fd1[2], fd2[2]; 
    pid_t   pid; 
    char    line[MAXLINE]; 
 
    if (signal(SIGPIPE, sig_pipe) == SIG_ERR) 
        err_sys("signal error"); 
 
    if (pipe(fd1) < 0 || pipe(fd2) < 0) 
        err_sys("pipe error"); 
 
    if ((pid = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (pid > 0) {                         / * parent */  
        close(fd1[0]); 
        close(fd2[1]); 
        while (fgets(line, MAXLINE, stdin) != NULL)  { 



            n = strlen(line); 
            if (write(fd1[1], line, n) != n) 
                err_sys("write error to pipe"); 
            if ((n = read(fd2[0], line, MAXLINE)) <  0) 
                err_sys("read error from pipe"); 
            if (n == 0) { 
                err_msg("child closed pipe"); 
                break; 
            } 
            line[n] = 0;    /* null terminate */ 
            if (fputs(line, stdout) == EOF) 
                err_sys("fputs error"); 
        } 
        if (ferror(stdin)) 
            err_sys("fgets error on stdin"); 
        exit(0); 
    } else {                                  /* ch ild */ 
        close(fd1[1]); 
        close(fd2[0]); 
        if (fd1[0] != STDIN_FILENO) { 
            if (dup2(fd1[0], STDIN_FILENO) != STDIN _FILENO) 
                err_sys("dup2 error to stdin"); 
            close(fd1[0]); 
        } 
 
        if (fd2[1] != STDOUT_FILENO) { 
            if (dup2(fd2[1], STDOUT_FILENO) != STDO UT_FILENO) 
                err_sys("dup2 error to stdout"); 
            close(fd2[1]); 
        } 
        if (execl("./add2", "add2", (char *)0) < 0)  
            err_sys("execl error"); 
    } 
    exit(0); 
} 
 
static void 
sig_pipe(int signo) 
{ 
    printf("SIGPIPE caught\n"); 
    exit(1); 
} 

Example 

In the coprocess add2  (Figure 15.17), we purposely used low-level I/O (UNIX system calls): read  and write . 
What happens if we rewrite this coprocess to use standard I/O? Figure 15.19 shows the new version. 

If we invoke this new coprocess from the program in Figure 15.18, it no longer works. The problem is the 
default standard I/O buffering. When the program in Figure 15.19 is invoked, the first fgets  on the standard 
input causes the standard I/O library to allocate a buffer and choose the type of buffering. Since the standard 
input is a pipe, the standard I/O library defaults to fully buffered. The same thing happens with the standard 
output. While add2  is blocked reading from its standard input, the program in Figure 15.18 is blocked reading 
from the pipe. We have a deadlock. 

Here, we have control over the coprocess that's being run. We can change the program in Figure 15.19 by 
adding the following four lines before the while  loop: 

   if (setvbuf(stdin, NULL, _IOLBF, 0) != 0) 



       err_sys("setvbuf error"); 
   if (setvbuf(stdout, NULL, _IOLBF, 0) != 0) 
       err_sys("setvbuf error"); 

 

These lines cause fgets  to return when a line is available and cause printf  to do an fflush  when a newline is 
output (refer back to Section 5.4 for the details on standard I/O buffering). Making these explicit calls to 
setvbuf  fixes the program in Figure 15.19. 

If we aren't able to modify the program that we're piping the output into, other techniques are required. For 
example, if we use awk(1) as a coprocess from our program (instead of the add2  program), the following won't 
work: 

   #! /bin/awk -f 
   { print $1 + $2 } 

 

The reason this won't work is again the standard I/O buffering. But in this case, we cannot change the way awk 
works (unless we have the source code for it). We are unable to modify the executable of awk in any way to 
change the way the standard I/O buffering is handled. 

The solution for this general problem is to make the coprocess being invoked (awk in this case) think that its 
standard input and standard output are connected to a terminal. That causes the standard I/O routines in the 
coprocess to line buffer these two I/O streams, similar to what we did with the explicit calls to setvbuf  
previously. We use pseudo terminals to do this in Chapter 19. 

Figure 15.19. Filter to add two numbers, using standard I/O 

#include "apue.h" 
 
int 
main(void) 
{ 
    int     int1, int2; 
    char    line[MAXLINE]; 
 
    while (fgets(line, MAXLINE, stdin) != NULL) { 
        if (sscanf(line, "%d%d", &int1, &int2) == 2 ) {  
            if (printf("%d\n", int1 + int2) == EOF)  
                err_sys("printf error"); 
        } else { 
            if (printf("invalid args\n") == EOF) 
                err_sys("printf error"); 
        } 
    } 
    exit(0); 
} 

 
 
 
 
 
 
 
 



15.5. FIFOs 

FIFOs are sometimes called named pipes. Pipes can be used only between related processes when a common 
ancestor has created the pipe. (An exception to this is mounted STREAMS-based pipes, which we discuss in 
Section 17.2.2.) With FIFOs, however, unrelated processes can exchange data. 

We saw in Chapter 4 that a FIFO is a type of file. One of the encodings of the st_mode  member of the stat  
structure (Section 4.2) indicates that a file is a FIFO. We can test for this with the S_ISFIFO  macro. 

Creating a FIFO is similar to creating a file. Indeed, the pathname for a FIFO exists in the file system. 

#include <sys/stat.h> 
 
int mkfifo(const char *pathname, mode_t mode);  
 

 

Returns: 0 if OK, –1 on error  

 

The specification of the mode argument for the mkfifo  function is the same as for the open  function (Section 
3.3). The rules for the user and group ownership of the new FIFO are the same as we described in Section 4.6. 

Once we have used mkfifo  to create a FIFO, we open it using open . Indeed, the normal file I/O functions 
(close , read , write , unlink , etc.) all work with FIFOs. 

Applications can create FIFOs with the mknod function. Because POSIX.1 originally didn't include mknod, the 
mkfifo  function was invented specifically for POSIX.1. The mknod function is now included as an XSI 
extension. On most systems, the mkfifo  function calls mknod to create the FIFO. 

POSIX.1 also includes support for the mkfifo (1) command. All four platforms discussed in this text provide 
this command. This allows a FIFO to be created using a shell command and then accessed with the normal shell 
I/O redirection. 

When we open  a FIFO, the nonblocking flag (O_NONBLOCK) affects what happens. 

• In the normal case (O_NONBLOCK not specified), an open  for read-only blocks until some other process 
opens the FIFO for writing. Similarly, an open  for write-only blocks until some other process opens the 
FIFO for reading. 

• If O_NONBLOCK is specified, an open  for read-only returns immediately. But an open  for write-only 
returns –1 with errno  set to ENXIO if no process has the FIFO open for reading. 

As with a pipe, if we write  to a FIFO that no process has open for reading, the signal SIGPIPE  is generated. 
When the last writer for a FIFO closes the FIFO, an end of file is generated for the reader of the FIFO. 

It is common to have multiple writers for a given FIFO. This means that we have to worry about atomic writes 
if we don't want the writes from multiple processes to be interleaved. (We'll see a way around this problem in 
Section 17.2.2.) As with pipes, the constant PIPE_BUF specifies the maximum amount of data that can be 
written atomically to a FIFO. 

There are two uses for FIFOs. 



1. FIFOs are used by shell commands to pass data from one shell pipeline to another without creating 
intermediate temporary files. 

2. FIFOs are used as rendezvous points in client–server applications to pass data between the clients and 
the servers. 

We discuss each of these uses with an example. 

Example—Using FIFOs to Duplicate Output Streams 

FIFOs can be used to duplicate an output stream in a series of shell commands. This prevents writing the data to 
an intermediate disk file (similar to using pipes to avoid intermediate disk files). But whereas pipes can be used 
only for linear connections between processes, a FIFO has a name, so it can be used for nonlinear connections. 

Consider a procedure that needs to process a filtered input stream twice. Figure 15.20 shows this arrangement. 

With a FIFO and the UNIX program tee (1), we can accomplish this procedure without using a temporary file. 
(The tee  program copies its standard input to both its standard output and to the file named on its command 
line.) 

   mkfifo fifo1 
   prog3 < fifo1 & 
   prog1 < infile | tee fifo1 | prog2 

 

We create the FIFO and then start prog3  in the background, reading from the FIFO. We then start prog1  and 
use tee  to send its input to both the FIFO and prog2 . Figure 15.21 shows the process arrangement. 

Figure 15.20. Procedure that processes a filtered input stream twice 

 

 

Figure 15.21. Using a FIFO and tee to send a stream to two different processes 

 



 
 

Example—Client–Server Communication Using a FIFO 

Another use for FIFOs is to send data between a client and a server. If we have a server that is 
contacted by numerous clients, each client can write its request to a well-known FIFO that the server 
creates. (By "well-known" we mean that the pathname of the FIFO is known to all the clients that 
need to contact the server.) Figure 15.22 shows this arrangement. Since there are multiple writers for 
the FIFO, the requests sent by the clients to the server need to be less than PIPE_BUF bytes in size. 
This prevents any interleaving of the client write s. 

The problem in using FIFOs for this type of client–server communication is how to send replies 
back from the server to each client. A single FIFO can't be used, as the clients would never know 
when to read their response versus responses for other clients. One solution is for each client to send 
its process ID with the request. The server then creates a unique FIFO for each client, using a 
pathname based on the client's process ID. For example, the server can create a FIFO with the name 
/tmp/serv1.XXXXX , where XXXXX is replaced with the client's process ID. Figure 15.23 shows this 
arrangement. 

This arrangement works, although it is impossible for the server to tell whether a client crashes. This 
causes the client-specific FIFOs to be left in the file system. The server also must catch SIGPIPE , 
since it's possible for a client to send a request and terminate before reading the response, leaving the 
client-specific FIFO with one writer (the server) and no reader. We'll see a more elegant approach to 
this problem when we discuss mounted STREAMS-based pipes and connld  in Section 17.2.2. 

With the arrangement shown in Figure 15.23, if the server opens its well-known FIFO read-only 
(since it only read s from it) each time the number of clients goes from 1 to 0, the server will read  
an end of file on the FIFO. To prevent the server from having to handle this case, a common trick is 
just to have the server open  its well-known FIFO for read–write. (See Exercise 15.10.) 

Figure 15.22. Clients sending requests to a server using a FIFO 

 

 



Figure 15.23. Client–server communication using FIFOs 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.6. XSI IPC 

The three types of IPC that we call XSI IPC—message queues, semaphores, and shared memory—have many 
similarities. In this section, we cover these similar features; in the following sections, we look at the specific 
functions for each of the three IPC types. 

The XSI IPC functions are based closely on the System V IPC functions. These three types of IPC originated in 
the 1970s in an internal AT&T version of the UNIX System called "Columbus UNIX." These IPC features were 
later added to System V. They are often criticized for inventing their own namespace instead of using the file 
system. 

Recall from Figure 15.1 that message queues, semaphores, and shared memory are defined as XSI extensions in 
the Single UNIX Specification. 

15.6.1. Identifiers and Keys 

Each IPC structure (message queue, semaphore, or shared memory segment) in the kernel is referred to by a 
non-negative integer identifier. To send or fetch a message to or from a message queue, for example, all we 
need know is the identifier for the queue. Unlike file descriptors, IPC identifiers are not small integers. Indeed, 
when a given IPC structure is created and then removed, the identifier associated with that structure continually 
increases until it reaches the maximum positive value for an integer, and then wraps around to 0. 

The identifier is an internal name for an IPC object. Cooperating processes need an external naming scheme to 
be able to rendezvous using the same IPC object. For this purpose, an IPC object is associated with a key that 
acts as an external name. 

Whenever an IPC structure is being created (by calling msgget , semget , or shmget ), a key must be specified. 
The data type of this key is the primitive system data type key_t , which is often defined as a long integer in the 
header <sys/types.h> . This key is converted into an identifier by the kernel. 

There are various ways for a client and a server to rendezvous at the same IPC structure. 

1. The server can create a new IPC structure by specifying a key of IPC_PRIVATE  and store the returned 
identifier somewhere (such as a file) for the client to obtain. The key IPC_PRIVATE  guarantees that the 
server creates a new IPC structure. The disadvantage to this technique is that file system operations are 
required for the server to write the integer identifier to a file, and then for the clients to retrieve this 
identifier later. 

The IPC_PRIVATE  key is also used in a parent–child relationship. The parent creates a new IPC structure 
specifying IPC_PRIVATE , and the resulting identifier is then available to the child after the fork . The 
child can pass the identifier to a new program as an argument to one of the exec  functions. 

2. The client and the server can agree on a key by defining the key in a common header, for example. The 
server then creates a new IPC structure specifying this key. The problem with this approach is that it's 
possible for the key to already be associated with an IPC structure, in which case the get  function 
(msgget , semget , or shmget ) returns an error. The server must handle this error, deleting the existing 
IPC structure, and try to create it again. 

3. The client and the server can agree on a pathname and project ID (the project ID is a character value 
between 0 and 255) and call the function ftok  to convert these two values into a key. This key is then 
used in step 2. The only service provided by ftok  is a way of generating a key from a pathname and 
project ID. 



#include <sys/ipc.h> 
 
key_t ftok(const char *path, int id);  

 

Returns: key if OK, (key_t) -1 on error 

 

The path argument must refer to an existing file. Only the lower 8 bits of id are used when generating the key. 

The key created by ftok  is usually formed by taking parts of the st_dev  and st_ino  fields in the stat  structure 
(Section 4.2) corresponding to the given pathname and combining them with the project ID. If two pathnames 
refer to two different files, then ftok  usually returns two different keys for the two pathnames. However, 
because both i-node numbers and keys are often stored in long integers, there can be information loss creating a 
key. This means that two different pathnames to different files can generate the same key if the same project ID 
is used. 

The three get  functions (msgget , semget , and shmget ) all have two similar arguments: a key and an integer 
flag. A new IPC structure is created (normally, by a server) if either key is IPC_PRIVATE  or key is not currently 
associated with an IPC structure of the particular type and the IPC_CREAT bit of flag is specified. To reference 
an existing queue (normally done by a client), key must equal the key that was specified when the queue was 
created, and IPC_CREAT must not be specified. 

Note that it's never possible to specify IPC_PRIVATE  to reference an existing queue, since this special key value 
always creates a new queue. To reference an existing queue that was created with a key of IPC_PRIVATE , we 
must know the associatedidentifier and then use that identifier in the other IPC calls (such as msgsnd  and 
msgrcv ), bypassing the get  function. 

If we want to create a new IPC structure, making sure that we don't reference an existing one with the same 
identifier, we must specify a flag with both the IPC_CREAT and IPC_EXCL bits set. Doing this causes an error 
return of EEXIST if the IPC structure already exists. (This is similar to an open  that specifies the O_CREAT and 
O_EXCL flags.) 

15.6.2. Permission Structure 

XSI IPC associates an ipc_perm  structure with each IPC structure. This structure defines the permissions and 
owner and includes at least the following members: 

   struct ipc_perm { 
     uid_t  uid;  /* owner's effective user id */ 
     gid_t  gid;  /* owner's effective group id */ 
     uid_t  cuid; /* creator's effective user id */  
     gid_t  cgid; /* creator's effective group id * / 
     mode_t mode; /* access modes */ 
     . 
     . 
     . 
   }; 

 

Each implementation includes additional members. See <sys/ipc.h>  on your system for the complete 
definition. 



All the fields are initialized when the IPC structure is created. At a later time, we can modify the uid , gid , and 
mode fields by calling msgctl , semctl , or shmctl . To change these values, the calling process must be either 
the creator of the IPC structure or the superuser. Changing these fields is similar to calling chown  or chmod for a 
file. 

The values in the mode field are similar to the values we saw in Figure 4.6, but there is nothing corresponding to 
execute permission for any of the IPC structures. Also, message queues and shared memory use the terms read 
and write, but semaphores use the terms read and alter. Figure 15.24 shows the six permissions for each form of 
IPC. 

Figure 15.24. XSI IPC permissions 

Permission Bit 

user-read 0400  

user-write (alter) 0200   

group-read 0040  

group-write (alter) 0020  

other-read 0004  

other-write (alter) 0002   

 

Some implementations define symbolic constants to represent each permission, however, these constants are not 
standardized by the Single UNIX Specification. 

15.6.3. Configuration Limits 

All three forms of XSI IPC have built-in limits that we may encounter. Most of these limits can be changed by 
reconfiguring the kernel. We describe the limits when we describe each of the three forms of IPC. 

Each platform provides its own way to report and modify a particular limit. FreeBSD 5.2.1, Linux 2.4.22, and 
Mac OS X 10.3 provide the sysctl  command to view and modify kernel configuration parameters. On Solaris 
9, changes to kernel configuration parameters are made by modifying the file /etc/system  and rebooting. 

On Linux, you can display the IPC-related limits by running ipcs -l . On FreeBSD, the equivalent command is 
ipcs -T . On Solaris, you can discover the tunable parameters by running sysdef -i . 

15.6.4. Advantages and Disadvantages 

A fundamental problem with XSI IPC is that the IPC structures are systemwide and do not have a reference 
count. For example, if we create a message queue, place some messages on the queue, and then terminate, the 
message queue and its contents are not deleted. They remain in the system until specifically read or deleted by 
some process calling msgrcv  or msgctl , by someone executing the ipcrm (1) command, or by the system being 
rebooted. Compare this with a pipe, which is completely removed when the last process to reference it 
terminates. With a FIFO, although the name stays in the file system until explicitly removed, any data left in a 
FIFO is removed when the last process to reference the FIFO terminates. 



Another problem with XSI IPC is that these IPC structures are not known by names in the file system. We can't 
access them and modify their properties with the functions we described in Chapters 3 and 4. Almost a dozen 
new system calls (msgget , semop, shmat , and so on) were added to the kernel to support these IPC objects. We 
can't see the IPC objects with an ls  command, we can't remove them with the rm command, and we can't 
change their permissions with the chmod command. Instead, two new commands —ipcs (1) and ipcrm (1)—
were added. 

Since these forms of IPC don't use file descriptors, we can't use the multiplexed I/O functions (select  and 
poll ) with them. This makes it harder to use more than one of these IPC structures at a time or to use any of 
these IPC structures with file or device I/O. For example, we can't have a server wait for a message to be placed 
on one of two message queues without some form of busy–wait loop. 

An overview of a transaction processing system built using System V IPC is given in Andrade, Carges, and 
Kovach [1989]. They claim that the namespace used by System V IPC (the identifiers) is an advantage, not a 
problem as we said earlier, because using identifiers allows a process to send a message to a message queue 
with a single function call (msgsnd), whereas other forms of IPC normally require an open , write , and close . 
This argument is false. Clients still have to obtain the identifier for the server's queue somehow, to avoid using a 
key and calling msgget . The identifier assigned to a particular queue depends on how many other message 
queues exist when the queue is created and how many times the table in the kernel assigned to the new queue 
has been used since the kernel was bootstrapped. This is a dynamic value that can't be guessed or stored in a 
header. As we mentioned in Section 15.6.1, minimally a server has to write the assigned queue identifier to a 
file for its clients to read. 

Other advantages listed by these authors for message queues are that they're reliable, flow controlled, record 
oriented, and can be processed in other than first-in, first-out order. As we saw in Section 14.4, the STREAMS 
mechanism also possesses all these properties, although an open  is required before sending data to a stream, and 
a close  is required when we're finished. Figure 15.25 compares some of the features of these various forms of 
IPC. 

Figure 15.25. Comparison of features of various forms of IPC 

IPC type Connectionless? Reliable? Flow 
control? 

Records? Message types or 
priorities? 

message queues no yes yes yes yes 

STREAMS no yes yes yes yes 

UNIX domain stream 
socket 

no yes yes no no 

UNIX domain datagram 
socket 

yes yes no yes no 

FIFOs (non-STREAMS) no yes yes no no 

 

(We describe stream and datagram sockets in Chapter 16. We describe UNIX domain sockets in Section 17.3.) 
By "connectionless," we mean the ability to send a message without having to call some form of an open 
function first. As described previously, we don't consider message queues connectionless, since some technique 
is required to obtain the identifier for a queue. Since all these forms of IPC are restricted to a single host, all are 
reliable. When the messages are sent across a network, the possibility of messages being lost becomes a concern. 



"Flow control" means that the sender is put to sleep if there is a shortage of system resources (buffers) or if the 
receiver can't accept any more messages. When the flow control condition subsides, the sender should 
automatically be awakened. 

One feature that we don't show in Figure 15.25 is whether the IPC facility can automatically create a unique 
connection to a server for each client. We'll see in Chapter 17 that STREAMS and UNIX stream sockets 
provide this capability. 

The next three sections describe each of the three forms of XSI IPC in detail. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.7. Message Queues 

A message queue is a linked list of messages stored within the kernel and identified by a message queue 
identifier. We'll call the message queue just a queue and its identifier a queue ID. 

The Single UNIX Specification includes an alternate IPC message queue implementation in the message-
passing option of its real-time extensions. We do not cover the real-time extensions in this text. 

A new queue is created or an existing queue opened by msgget . New messages are added to the end of a queue 
by msgsnd . Every message has a positive long integer type field, a non-negative length, and the actual data 
bytes (corresponding to the length), all of which are specified to msgsnd  when the message is added to a queue. 
Messages are fetched from a queue by msgrcv . We don't have to fetch the messages in a first-in, first-out order. 
Instead, we can fetch messages based on their type field. 

Each queue has the following msqid_ds  structure associated with it: 

   struct msqid_ds { 
     struct ipc_perm  msg_perm;     /* see Section 15.6.2 */ 
     msgqnum_t        msg_qnum;     /* # of message s on queue */ 
     msglen_t         msg_qbytes;   /* max # of byt es on queue */ 
     pid_t            msg_lspid;    /* pid of last msgsnd() */ 
     pid_t            msg_lrpid;    /* pid of last msgrcv() */ 
     time_t           msg_stime;    /* last-msgsnd( ) time */ 
     time_t           msg_rtime;    /* last-msgrcv( ) time */ 
     time_t           msg_ctime;    /* last-change time */ 
     . 
     . 
     . 
   }; 

 

This structure defines the current status of the queue. The members shown are the ones defined by the Single 
UNIX Specification. Implementations include additional fields not covered by the standard. 

Figure 15.26 lists the system limits that affect message queues. We show "notsup" where the platform doesn't 
support the feature. We show "derived" whenever a limit is derived from other limits. For example, the 
maximum number of messages in a Linux system is based on the maximum number of queues and the 
maximum amount of data allowed on the queues. If the minimum message size is 1 byte, that would limit the 
number of messages systemwide to maximum # queues * maximum size of a queue. Given the limits in Figure 
15.26, Linux has an upper bound of 262,144 messages with the default configuration. (Even though a message 
can contain zero bytes of data, Linux treats it as if it contained 1 byte, to limit the number of messages queued.) 

Figure 15.26. System limits that affect message queues 

Typical values 
Description FreeBSD 

5.2.1 
Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

Size in bytes of largest message we can send 16,384 8,192 notsup 2,048 

The maximum size in bytes of a particular queue (i.e., the 
sum of all the messages on the queue) 

2,048 16,384 notsup 4,096 



Figure 15.26. System limits that affect message queues 

Typical values 
Description FreeBSD 

5.2.1 
Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

The maximum number of messages queues, systemwide 40 16 notsup 50 

The maximum number of messages, systemwide 40 derived notsup 40 

 

Recall from Figure 15.1 that Mac OS X 10.3 doesn't support XSI message queues. Since Mac OS X is based in 
part on FreeBSD, and FreeBSD supports message queues, it is possible for Mac OS X to support them, too. 
Indeed, a good Internet search engine will provide pointers to a third-party port of XSI message queues for Mac 
OS X. 

The first function normally called is msgget  to either open an existing queue or create a new queue. 

#include <sys/msg.h> 
 
int msgget(key_t key, int flag); 

 

Returns: message queue ID if OK, –1 on error 

 

In Section 15.6.1, we described the rules for converting the key into an identifier and discussed whether a new 
queue is created or an existing queue is referenced. When a new queue is created, the following members of the 
msqid_ds  structure are initialized. 

• The ipc_perm  structure is initialized as described in Section 15.6.2. The mode member of this structure 
is set to the corresponding permission bits of flag. These permissions are specified with the values from 
Figure 15.24. 

• msg_qnum, msg_lspid , msg_lrpid , msg_stime , and msg_rtime  are all set to 0. 
• msg_ctime  is set to the current time. 
• msg_qbytes  is set to the system limit. 

On success, msgget  returns the non-negative queue ID. This value is then used with the other three message 
queue functions. 

The msgctl  function performs various operations on a queue. This function and the related functions for 
semaphores and shared memory (semctl  and shmctl ) are the ioctl -like functions for XSI IPC (i.e., the 
garbage-can functions). 

#include <sys/msg.h> 
 
int msgctl(int msqid, int cmd, struct msqid_ds *buf  );  

 

Returns: 0 if OK, –1 on error 



 

The cmd argument specifies the command to be performed on the queue specified by msqid. 

IPC_STAT Fetch the msqid_ds  structure for this queue, storing it in the structure pointed to by buf. 

IPC_SET Copy the following fields from the structure pointed to by buf to the msqid_ds  structure associated 
with this queue: msg_perm.uid , msg_perm.gid , msg_perm.mode , and msg_qbytes . This command 
can be executed only by a process whose effective user ID equals msg_perm.cuid  or msg_perm.uid  
or by a process with superuser privileges. Only the superuser can increase the value of msg_qbytes . 

IPC_RMID Remove the message queue from the system and any data still on the queue. This removal is 
immediate. Any other process still using the message queue will get an error of EIDRM on its next 
attempted operation on the queue. This command can be executed only by a process whose effective 
user ID equals msg_perm.cuid  or msg_perm.uid  or by a process with superuser privileges. 

 

We'll see that these three commands (IPC_STAT, IPC_SET, and IPC_RMID) are also provided for semaphores and 
shared memory. 

Data is placed onto a message queue by calling msgsnd . 

#include <sys/msg.h> 
 
int msgsnd(int msqid, const void *ptr, size_t nbyte s, int flag);  

 

Returns: 0 if OK, –1 on error 

 

As we mentioned earlier, each message is composed of a positive long integer type field, a non-negative length 
(nbytes), and the actual data bytes (corresponding to the length). Messages are always placed at the end of the 
queue. 

The ptr argument points to a long integer that contains the positive integer message type, and it is immediately 
followed by the message data. (There is no message data if nbytes is 0.) If the largest message we send is 512 
bytes, we can define the following structure: 

   struct mymesg { 
     long  mtype;      /* positive message type */ 
     char  mtext[512]; /* message data, of length n bytes */ 
   }; 

 

The ptr argument is then a pointer to a mymesg structure. The message type can be used by the receiver to fetch 
messages in an order other than first in, first out. 

Some platforms support both 32-bit and 64-bit environments. This affects the size of long integers and pointers. 
For example, on 64-bit SPARC systems, Solaris allows both 32-bit and 64-bit applications to coexist. If a 32-bit 
application were to exchange this structure over a pipe or a socket with a 64-bit application, problems would 
arise, because the size of a long integer is 4 bytes in a 32-bit application, but 8 bytes in a 64-bit application. This 
means that a 32-bit application will expect that the mtext  field will start 4 bytes after the start of the structure, 



whereas a 64-bit application will expect the mtext  field to start 8 bytes after the start of the structure. In this 
situation, part of the 64-bit application's mtype  field will appear as part of the mtext  field to the 32-bit 
application, and the first 4 bytes in the 32-bit application's mtext  field will be interpreted as a part of the mtype  
field by the 64-bit application. 

This problem doesn't happen with XSI message queues, however. Solaris implements the 32-bit version of the 
IPC system calls with different entry points than the 64-bit version of the IPC system calls. The system calls 
know how to deal with a 32-bit application communicating with a 64-bit application, and treat the type field 
specially to avoid it interfering with the data portion of the message. The only potential problem is a loss of 
information when a 64-bit application sends a message with a value in the 8-byte type field that is larger than 
will fit in a 32-bit application's 4-byte type field. In this case, the 32-bit application will see a truncated type 
value. 

A flag value of IPC_NOWAIT can be specified. This is similar to the nonblocking I/O flag for file I/O (Section 
14.2). If the message queue is full (either the total number of messages on the queue equals the system limit, or 
the total number of bytes on the queue equals the system limit), specifying IPC_NOWAIT causes msgsnd  to return 
immediately with an error of EAGAIN. If IPC_NOWAIT is not specified, we are blocked until there is room for the 
message, the queue is removed from the system, or a signal is caught and the signal handler returns. In the 
second case, an error of EIDRM is returned ("identifier removed"); in the last case, the error returned is EINTR. 

Note how ungracefully the removal of a message queue is handled. Since a reference count is not maintained 
with each message queue (as there is for open files), the removal of a queue simply generates errors on the next 
queue operation by processes still using the queue. Semaphores handle this removal in the same fashion. In 
contrast, when a file is removed, the file's contents are not deleted until the last open descriptor for the file is 
closed. 

When msgsnd  returns successfully, the msqid_ds  structure associated with the message queue is updated to 
indicate the process ID that made the call (msg_lspid ), the time that the call was made (msg_stime ), and that 
one more message is on the queue (msg_qnum). 

Messages are retrieved from a queue by msgrcv . 

#include <sys/msg.h> 
 
ssize_t msgrcv(int msqid, void *ptr, size_t nbytes  
, long type, int flag); 

 

Returns: size of data portion of message if OK, –1 on error 

 

As with msgsnd , the ptr argument points to a long integer (where the message type of the returned message is 
stored) followed by a data buffer for the actual message data. nbytes specifies the size of the data buffer. If the 
returned message is larger than nbytes and the MSG_NOERROR bit in flag is set, the message is truncated. (In this 
case, no notification is given to us that the message was truncated, and the remainder of the message is 
discarded.) If the message is too big and this flag value is not specified, an error of E2BIG is returned instead 
(and the message stays on the queue). 

The type argument lets us specify which message we want. 



type == 
0 

The first message on the queue is returned. 

type > 0 The first message on the queue whose message type equals type is returned. 

type < 0 The first message on the queue whose message type is the lowest value less than or equal to the 
absolute value of type is returned. 

 

A nonzero type is used to read the messages in an order other than first in, first out. For example, the type could 
be a priority value if the application assigns priorities to the messages. Another use of this field is to contain the 
process ID of the client if a single message queue is being used by multiple clients and a single server (as long 
as a process ID fits in a long integer). 

We can specify a flag value of IPC_NOWAIT to make the operation nonblocking, causing msgrcv  to return -1 
with errno  set to ENOMSG if a message of the specified type is not available. If IPC_NOWAIT is not specified, the 
operation blocks until a message of the specified type is available, the queue is removed from the system (-1 is 
returned with errno  set to EIDRM), or a signal is caught and the signal handler returns (causing msgrcv  to return 
–1 with errno  set to EINTR). 

When msgrcv  succeeds, the kernel updates the msqid_ds  structure associated with the message queue to 
indicate the caller's process ID (msg_lrpid ), the time of the call (msg_rtime ), and that one less message is on 
the queue (msg_qnum). 

Example—Timing Comparison of Message Queues versus Stream Pipes 

If we need a bidirectional flow of data between a client and a server, we can use either message 
queues or full-duplex pipes. (Recall from Figure 15.1 that full-duplex pipes are available through the 
UNIX domain sockets mechanism (Section 17.3), although some platforms provide a full-duplex 
pipe mechanism through the pipe  function.) 

Figure 15.27 shows a timing comparison of three of these techniques on Solaris: message queues, 
STREAMS-based pipes, and UNIX domain sockets. The tests consisted of a program that created 
the IPC channel, called fork , and then sent about 200 megabytes of data from the parent to the 
child. The data was sent using 100,000 calls to msgsnd , with a message length of 2,000 bytes for the 
message queue, and 100,000 calls to write , with a length of 2,000 bytes for the STREAMS-based 
pipe and UNIX domain socket. The times are all in seconds. 

These numbers show us that message queues, originally implemented to provide higher-than-
normal-speed IPC, are no longer that much faster than other forms of IPC (in fact, STREAMS-based 
pipes are faster than message queues). (When message queues were implemented, the only other 
form of IPC available was half-duplex pipes.) When we consider the problems in using message 
queues (Section 15.6.4), we come to the conclusion that we shouldn't use them for new applications. 

Figure 15.27. Timing comparison of IPC alternatives on Solaris 

Operation User System Clock 

message queue 0.57 3.63 4.22 

STREAMS pipe 0.50 3.21 3.71 



Figure 15.27. Timing comparison of IPC alternatives on Solaris 

Operation User System Clock 

UNIX domain socket 0.43 4.45 5.59 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.8. Semaphores 

A semaphore isn't a form of IPC similar to the others that we've described (pipes, FIFOs, and message queues). 
A semaphore is a counter used to provide access to a shared data object for multiple processes. 

The Single UNIX Specification includes an alternate set of semaphore interfaces in the semaphore option of its 
real-time extensions. We do not discuss these interfaces in this text. 

To obtain a shared resource, a process needs to do the following: 

1. Test the semaphore that controls the resource. 
2. If the value of the semaphore is positive, the process can use the resource. In this case, the process 

decrements the semaphore value by 1, indicating that it has used one unit of the resource. 
3. Otherwise, if the value of the semaphore is 0, the process goes to sleep until the semaphore value is 

greater than 0. When the process wakes up, it returns to step 1. 

When a process is done with a shared resource that is controlled by a semaphore, the semaphore value is 
incremented by 1. If any other processes are asleep, waiting for the semaphore, they are awakened. 

To implement semaphores correctly, the test of a semaphore's value and the decrementing of this value must be 
an atomic operation. For this reason, semaphores are normally implemented inside the kernel. 

A common form of semaphore is called a binary semaphore. It controls a single resource, and its value is 
initialized to 1. In general, however, a semaphore can be initialized to any positive value, with the value 
indicating how many units of the shared resource are available for sharing. 

XSI semaphores are, unfortunately, more complicated than this. Three features contribute to this unnecessary 
complication. 

1. A semaphore is not simply a single non-negative value. Instead, we have to define a semaphore as a set 
of one or more semaphore values. When we create a semaphore, we specify the number of values in the 
set. 

2. The creation of a semaphore (semget ) is independent of its initialization (semctl ). This is a fatal flaw, 
since we cannot atomically create a new semaphore set and initialize all the values in the set. 

3. Since all forms of XSI IPC remain in existence even when no process is using them, we have to worry 
about a program that terminates without releasing the semaphores it has been allocated. The undo 
feature that we describe later is supposed to handle this. 

The kernel maintains a semid_ds  structure for each semaphore set: 

   struct semid_ds { 
     struct ipc_perm  sem_perm;  /* see Section 15. 6.2 */ 
     unsigned short   sem_nsems; /* # of semaphores  in set */ 
     time_t           sem_otime; /* last-semop() ti me */ 
     time_t           sem_ctime; /* last-change tim e */ 
     . 
     . 
     . 
   }; 

 

The Single UNIX Specification defines the fields shown, but implementations can define additional members in 
the semid_ds  structure. 



Each semaphore is represented by an anonymous structure containing at least the following members: 

   struct { 
     unsigned short  semval;   /* semaphore value, always >= 0 */ 
     pid_t           sempid;   /* pid for last oper ation */ 
     unsigned short  semncnt;  /* # processes await ing semval>curval */ 
     unsigned short  semzcnt;  /* # processes await ing semval==0 */ 
     . 
     . 
     . 
   }; 

 

Figure 15.28 lists the system limits (Section 15.6.3) that affect semaphore sets. 

Figure 15.28. System limits that affect semaphores 

Typical values 
Description FreeBSD 

5.2.1 
Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

The maximum value of any semaphore 32,767 32,767 32,767 32,767 

The maximum value of any semaphore's adjust-on-
exit value 

16,384 32,767 16,384 16,384 

The maximum number of semaphore sets, 
systemwide 

10 128 87,381 10 

The maximum number of semaphores, systemwide 60 32,000 87,381 60 

The maximum number of semaphores per semaphore 
set 

60 250 87,381 25 

The maximum number of undo structures, 
systemwide 

30 32,000 87,381 30 

The maximum number of undo entries per undo 
structures 

10 32 10 10 

The maximum number of operations per semop call 100 32 100 10 

 

The first function to call is semget  to obtain a semaphore ID. 

#include <sys/sem.h> 
 
int semget(key_t key, int nsems, int flag);  

 

Returns: semaphore ID if OK, –1 on error 

 



In Section 15.6.1, we described the rules for converting the key into an identifier and discussed whether a new 
set is created or an existing set is referenced. When a new set is created, the following members of the 
semid_ds  structure are initialized. 

• The ipc_perm  structure is initialized as described in Section 15.6.2. The mode member of this structure 
is set to the corresponding permission bits of flag. These permissions are specified with the values from 
Figure 15.24. 

• sem_otime  is set to 0. 
• sem_ctime  is set to the current time. 
• sem_nsems is set to nsems. 

The number of semaphores in the set is nsems. If a new set is being created (typically in the server), we must 
specify nsems. If we are referencing an existing set (a client), we can specify nsems as 0. 

The semctl  function is the catchall for various semaphore operations. 

#include <sys/sem.h> 
 
int semctl(int semid, int semnum, int  cmd,  
           ... /* union semun arg */); 

 

Returns: (see following) 

 

The fourth argument is optional, depending on the command requested, and if present, is of type semun, a union 
of various command-specific arguments: 

   union semun { 
     int              val;    /* for SETVAL */ 
     struct semid_ds *buf;    /* for IPC_STAT and I PC_SET */ 
     unsigned short  *array;  /* for GETALL and SET ALL */ 
   }; 

 

Note that the optional argument is the actual union, not a pointer to the union. 

The cmd argument specifies one of the following ten commands to be performed on the set specified by semid. 
The five commands that refer to one particular semaphore value use semnum to specify one member of the set. 
The value of semnum is between 0 and nsems-1, inclusive. 

IPC_STAT Fetch the semid_ds  structure for this set, storing it in the structure pointed to by arg.buf. 

IPC_SET Set the sem_perm.uid , sem_perm.gid , and sem_perm.mode  fields from the structure pointed to by 
arg.buf in the semid_ds  structure associated with this set. This command can be executed only by a 
process whose effective user ID equals sem_perm.cuid  or sem_perm.uid  or by a process with 
superuser privileges. 

IPC_RMID Remove the semaphore set from the system. This removal is immediate. Any other process still 
using the semaphore will get an error of EIDRM on its next attempted operation on the semaphore. 
This command can be executed only by a process whose effective user ID equals sem_perm.cuid  or 
sem_perm.uid  or by a process with superuser privileges. 



IPC_STAT Fetch the semid_ds  structure for this set, storing it in the structure pointed to by arg.buf. 

GETVAL Return the value of semval  for the member semnum. 

SETVAL Set the value of semval  for the member semnum. The value is specified by arg.val. 

GETPID Return the value of sempid  for the member semnum. 

GETNCNT Return the value of semncnt  for the member semnum. 

GETZCNT Return the value of semzcnt  for the member semnum. 

GETALL Fetch all the semaphore values in the set. These values are stored in the array pointed to by 
arg.array. 

SETALL Set all the semaphore values in the set to the values pointed to by arg.array. 

 

For all the GET commands other than GETALL, the function returns the corresponding value. For the remaining 
commands, the return value is 0. 

The function semop atomically performs an array of operations on a semaphore set. 

#include <sys/sem.h> 
 
int semop(int semid, struct sembuf semoparray[], si ze_t nops);  

 

Returns: 0 if OK, –1 on error 

 

The semoparray argument is a pointer to an array of semaphore operations, represented by sembuf  structures: 

 struct sembuf { 
   unsigned short  sem_num;  /* member # in set (0,  1, ..., nsems-1) */ 
   short           sem_op;   /* operation (negative , 0, or positive) */ 
   short           sem_flg;  /* IPC_NOWAIT, SEM_UND O */ 
 }; 

 

The nops argument specifies the number of operations (elements) in the array. 

The operation on each member of the set is specified by the corresponding sem_op value. This value can be 
negative, 0, or positive. (In the following discussion, we refer to the "undo" flag for a semaphore. This flag 
corresponds to the SEM_UNDO bit in the corresponding sem_flg  member.) 

1. The easiest case is when sem_op is positive. This case corresponds to the returning of resources by the 
process. The value of sem_op is added to the semaphore's value. If the undo flag is specified, sem_op is 
also subtracted from the semaphore's adjustment value for this process. 

2. If sem_op is negative, we want to obtain resources that the semaphore controls. 

If the semaphore's value is greater than or equal to the absolute value of sem_op (the resources are 
available), the absolute value of sem_op is subtracted from the semaphore's value. This guarantees that 
the resulting value for the semaphore is greater than or equal to 0. If the undo flag is specified, the 
absolute value of sem_op is also added to the semaphore's adjustment value for this process. 



If the semaphore's value is less than the absolute value of sem_op (the resources are not available), the 
following conditions apply. 

a. If IPC_NOWAIT is specified, semop returns with an error of EAGAIN. 
b. If IPC_NOWAIT is not specified, the semncnt  value for this semaphore is incremented (since the 

caller is about to go to sleep), and the calling process is suspended until one of the following 
occurs. 

i. The semaphore's value becomes greater than or equal to the absolute value of sem_op 
(i.e., some other process has released some resources). The value of semncnt  for this 
semaphore is decremented (since the calling process is done waiting), and the absolute 
value of sem_op is subtracted from the semaphore's value. If the undo flag is specified, 
the absolute value of sem_op is also added to the semaphore's adjustment value for this 
process. 

ii.  The semaphore is removed from the system. In this case, the function returns an error of 
EIDRM. 

iii.  A signal is caught by the process, and the signal handler returns. In this case, the value of 
semncnt  for this semaphore is decremented (since the calling process is no longer 
waiting), and the function returns an error of EINTR. 

3. If sem_op is 0, this means that the calling process wants to wait until the semaphore's value becomes 0. 

If the semaphore's value is currently 0, the function returns immediately. 

If the semaphore's value is nonzero, the following conditions apply. 

a. If IPC_NOWAIT is specified, return is made with an error of EAGAIN. 
b. If IPC_NOWAIT is not specified, the semzcnt  value for this semaphore is incremented (since the 

caller is about to go to sleep), and the calling process is suspended until one of the following 
occurs. 

i. The semaphore's value becomes 0. The value of semzcnt  for this semaphore is 
decremented (since the calling process is done waiting). 

ii.  The semaphore is removed from the system. In this case, the function returns an error of 
EIDRM. 

iii.  A signal is caught by the process, and the signal handler returns. In this case, the value of 
semzcnt  for this semaphore is decremented (since the calling process is no longer 
waiting), and the function returns an error of EINTR. 

The semop function operates atomically; it does either all the operations in the array or none of them. 

Semaphore Adjustment on exit 

As we mentioned earlier, it is a problem if a process terminates while it has resources allocated through a 
semaphore. Whenever we specify the SEM_UNDO flag for a semaphore operation and we allocate resources (a 
sem_op value less than 0), the kernel remembers how many resources we allocated from that particular 
semaphore (the absolute value of sem_op). When the process terminates, either voluntarily or involuntarily, the 
kernel checks whether the process has any outstanding semaphore adjustments and, if so, applies the adjustment 
to the corresponding semaphore. 

If we set the value of a semaphore using semctl , with either the SETVAL or SETALL commands, the adjustment 
value for that semaphore in all processes is set to 0. 

Example—Timing Comparison of Semaphores versus Record Locking 



If we are sharing a single resource among multiple processes, we can use either a semaphore or 
record locking. It's interesting to compare the timing differences between the two techniques. 

With a semaphore, we create a semaphore set consisting of a single member and initialize the 
semaphore's value to 1. To allocate the resource, we call semop with a sem_op of -1; to release the 
resource, we perform a sem_op of +1. We also specify SEM_UNDO with each operation, to handle the 
case of a process that terminates without releasing its resource. 

With record locking, we create an empty file and use the first byte of the file (which need not exist) 
as the lock byte. To allocate the resource, we obtain a write lock on the byte; to release it, we unlock 
the byte. The properties of record locking guarantee that if a process terminates while holding a 
lock, then the lock is automatically released by the kernel. 

Figure 15.29 shows the time required to perform these two locking techniques on Linux. In each 
case, the resource was allocated and then released 100,000 times. This was done simultaneously by 
three different processes. The times in Figure 15.29 are the totals in seconds for all three processes. 

On Linux, there is about a 60 percent penalty in the elapsed time for record locking compared to 
semaphore locking. 

Even though record locking is slower than semaphore locking, if we're locking a single resource 
(such as a shared memory segment) and don't need all the fancy features of XSI semaphores, record 
locking is preferred. The reasons are that it is much simpler to use, and the system takes care of any 
lingering locks when a process terminates. 

Figure 15.29. Timing comparison of locking alternatives on Linux 

Operation User System Clock 

semaphores with undo 0.38 0.48 0.86 

advisory record locking 0.41 0.95 1.36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



15.9. Shared Memory 

Shared memory allows two or more processes to share a given region of memory. This is the fastest form of 
IPC, because the data does not need to be copied between the client and the server. The only trick in using 
shared memory is synchronizing access to a given region among multiple processes. If the server is placing data 
into a shared memory region, the client shouldn't try to access the data until the server is done. Often, 
semaphores are used to synchronize shared memory access. (But as we saw at the end of the previous section, 
record locking can also be used.) 

The Single UNIX Specification includes an alternate set of interfaces to access shared memory in the shared 
memory objects option of its real-time extensions. We do not cover the real-time extensions in this text. 

The kernel maintains a structure with at least the following members for each shared memory segment: 

   struct shmid_ds { 
     struct ipc_perm  shm_perm;    /* see Section 1 5.6.2 */ 
     size_t           shm_segsz;   /* size of segme nt in bytes */ 
     pid_t            shm_lpid;    /* pid of last s hmop() */ 
     pid_t            shm_cpid;    /* pid of creato r */ 
     shmatt_t         shm_nattch;  /* number of cur rent attaches */ 
     time_t           shm_atime;   /* last-attach t ime */ 
     time_t           shm_dtime;   /* last-detach t ime */ 
     time_t           shm_ctime;   /* last-change t ime */ 
     . 
     . 
     . 
   }; 

 

(Each implementation adds other structure members as needed to support shared memory segments.) 

The type shmatt_t  is defined to be an unsigned integer at least as large as an unsigned short . Figure 15.30 
lists the system limits (Section 15.6.3) that affect shared memory. 

Figure 15.30. System limits that affect shared memory 

Typical values 
Description FreeBSD 

5.2.1 
Linux 
2.4.22 

Mac OS X 
10.3 Solaris 9 

The maximum size in bytes of a shared memory 
segment 

33,554,432 33,554,432 4,194,304 8,388,608 

The minimum size in bytes of a shared memory 
segment 

1 1 1 1 

The maximum number of shared memory segments, 
systemwide 

192 4,096 32 100 

The maximum number of shared memory segments, 
per process 

128 4,096 8 6 

 



The first function called is usually shmget , to obtain a shared memory identifier. 

#include <sys/shm.h> 
 
int shmget(key_t key, size_t size, int flag);  

 

Returns: shared memory ID if OK, –1 on error 

 

In Section 15.6.1, we described the rules for converting the key into an identifier and whether a new segment is 
created or an existing segment is referenced. When a new segment is created, the following members of the 
shmid_ds  structure are initialized. 

• The ipc_perm  structure is initialized as described in Section 15.6.2. The mode member of this structure 
is set to the corresponding permission bits of flag. These permissions are specified with the values from 
Figure 15.24. 

• shm_lpid , shm_nattach , shm_atime , and shm_dtime  are all set to 0. 
• shm_ctime  is set to the current time. 
• shm_segsz  is set to the size requested. 

The size parameter is the size of the shared memory segment in bytes. Implementations will usually round up 
the size to a multiple of the system's page size, but if an application specifies size as a value other than an 
integral multiple of the system's page size, the remainder of the last page will be unavailable for use. If a new 
segment is being created (typically in the server), we must specify its size. If we are referencing an existing 
segment (a client), we can specify size as 0. When a new segment is created, the contents of the segment are 
initialized with zeros. 

The shmctl  function is the catchall for various shared memory operations. 

#include <sys/shm.h> 
 
int shmctl(int shmid, int cmd, struct shmid_ds *buf );  

 

Returns: 0 if OK, –1 on error 

 

The cmd argument specifies one of the following five commands to be performed, on the segment specified by 
shmid. 

IPC_STAT Fetch the shmid_ds  structure for this segment, storing it in the structure pointed to by buf. 

IPC_SET Set the following three fields from the structure pointed to by buf in the shmid_ds  structure 
associated with this shared memory segment: shm_perm.uid , shm_perm.gid , and shm_perm.mode . 
This command can be executed only by a process whose effective user ID equals shm_perm.cuid  or 
shm_perm.uid  or by a process with superuser privileges. 

IPC_RMID Remove the shared memory segment set from the system. Since an attachment count is maintained 
for shared memory segments (the shm_nattch  field in the shmid_ds  structure), the segment is not 
removed until the last process using the segment terminates or detaches it. Regardless of whether the 
segment is still in use, the segment's identifier is immediately removed so that shmat  can no longer 



IPC_STAT Fetch the shmid_ds  structure for this segment, storing it in the structure pointed to by buf. 

attach the segment. This command can be executed only by a process whose effective user ID equals 
shm_perm.cuid  or shm_perm.uid  or by a process with superuser privileges. 

 

Two additional commands are provided by Linux and Solaris, but are not part of the Single UNIX Specification. 

SHM_LOCK Lock the shared memory segment in memory. This command can be executed only by the 
superuser. 

SHM_UNLOCK Unlock the shared memory segment. This command can be executed only by the superuser. 

 

Once a shared memory segment has been created, a process attaches it to its address space by calling shmat . 

#include <sys/shm.h> 
 
void *shmat(int shmid, const void *addr, int flag);  

 

Returns: pointer to shared memory segment if OK, –1 on error 

 

The address in the calling process at which the segment is attached depends on the addr argument and whether 
the SHM_RND bit is specified in flag. 

• If addr is 0, the segment is attached at the first available address selected by the kernel. This is the 
recommended technique. 

• If addr is nonzero and SHM_RND is not specified, the segment is attached at the address given by addr. 
• If addr is nonzero and SHM_RND is specified, the segment is attached at the address given by (addr - (addr 

modulus SHMLBA)). The SHM_RND command stands for "round." SHMLBA stands for "low boundary 
address multiple" and is always a power of 2. What the arithmetic does is round the address down to the 
next multiple of SHMLBA. 

Unless we plan to run the application on only a single type of hardware (which is highly unlikely today), we 
should not specify the address where the segment is to be attached. Instead, we should specify an addr of 0 and 
let the system choose the address. 

If the SHM_RDONLY bit is specified in flag, the segment is attached read-only. Otherwise, the segment is attached 
read–write. 

The value returned by shmat  is the address at which the segment is attached, or –1 if an error occurred. If shmat  
succeeds, the kernel will increment the shm_nattch  counter in the shmid_ds  structure associated with the 
shared memory segment. 

When we're done with a shared memory segment, we call shmdt  to detach it. Note that this does not remove the 
identifier and its associated data structure from the system. The identifier remains in existence until some 
process (often a server) specifically removes it by calling shmctl  with a command of IPC_RMID. 



#include <sys/shm.h> 
 
int shmdt(void *addr); 

 

Returns: 0 if OK, –1 on error 

 

The addr argument is the value that was returned by a previous call to shmat . If successful, shmdt  will 
decrement the shm_nattch  counter in the associated shmid_ds  structure. 

Example 

Where a kernel places shared memory segments that are attached with an address of 0 is highly system 
dependent. Figure 15.31 shows a program that prints some information on where one particular system places 
various types of data. 

Running this program on an Intel-based Linux system gives us the following output: 

$ ./a.out 
array[] from 804a080 to 8053cc0 
stack around bffff9e4 
malloced from 8053cc8 to 806c368 
shared memory attached from 40162000 to 4017a6a0 

 

Figure 15.32 shows a picture of this, similar to what we said was a typical memory layout in Figure 7.6. Note 
that the shared memory segment is placed well below the stack. 

Figure 15.31. Print where various types of data are stored 

#include "apue.h" 
#include <sys/shm.h> 
 
#define ARRAY_SIZE  40000 
#define MALLOC_SIZE 100000 
#define SHM_SIZE    100000 
#define SHM_MODE    0600    /* user read/write */ 
 
char    array[ARRAY_SIZE];  /* uninitialized data =  bss */ 
 
int 
main(void) 
{ 
    int     shmid; 
    char    *ptr, *shmptr; 
 
    printf("array[] from %lx to %lx\n", (unsigned l ong)&array[0],  
      (unsigned long)&array[ARRAY_SIZE]); 
    printf("stack around %lx\n", (unsigned long)&sh mid); 
 
    if ((ptr = malloc(MALLOC_SIZE)) == NULL) 
        err_sys("malloc error"); 
    printf("malloced from %lx to %lx\n", (unsigned long)ptr, 
      (unsigned long)ptr+MALLOC_SIZE); 
 
    if ((shmid = shmget(IPC_PRIVATE, SHM_SIZE, SHM_ MODE)) < 0) 



        err_sys("shmget error"); 
    if ((shmptr = shmat(shmid, 0, 0)) == (void *)-1 ) 
        err_sys("shmat error"); 
    printf("shared memory attached from %lx to %lx\ n", 
      (unsigned long)shmptr, (unsigned long)shmptr+ SHM_SIZE); 
 
    if (shmctl(shmid, IPC_RMID, 0) < 0) 
        err_sys("shmctl error"); 
 
    exit(0); 
} 

Figure 15.32. Memory layout on an Intel-based Linux system 

 

Recall that the mmap function (Section 14.9) can be used to map portions of a file into the address space of a 
process. This is conceptually similar to attaching a shared memory segment using the shmat  XSI IPC function. 
The main difference is that the memory segment mapped with mmap is backed by a file, whereas no file is 
associated with an XSI shared memory segment. 

Example—Memory Mapping of /dev/zero 

Shared memory can be used between unrelated processes. But if the processes are related, some 
implementations provide a different technique. 

The following technique works on FreeBSD 5.2.1, Linux 2.4.22, and Solaris 9. Mac OS X 10.3 
currently doesn't support the mapping of character devices into the address space of a process. 

The device /dev/zero  is an infinite source of 0 bytes when read. This device also accepts any data 
that is written to it, ignoring the data. Our interest in this device for IPC arises from its special 
properties when it is memory mapped. 

• An unnamed memory region is created whose size is the second argument to mmap, rounded 
up to the nearest page size on the system. 

• The memory region is initialized to 0. 
• Multiple processes can share this region if a common ancestor specifies the MAP_SHARED flag 



to mmap. 

The program in Figure 15.33 is an example that uses this special device. 

The program opens the /dev/zero  device and calls mmap, specifying a size of a long integer. Note 
that once the region is mapped, we can close  the device. The process then creates a child. Since 
MAP_SHARED was specified in the call to mmap, writes to the memory-mapped region by one process 
are seen by the other process. (If we had specified MAP_PRIVATE instead, this example wouldn't 
work.) 

The parent and the child then alternate running, incrementing a long integer in the shared memory-
mapped region, using the synchronization functions from Section 8.9. The memory-mapped region 
is initialized to 0 by mmap. The parent increments it to 1, then the child increments it to 2, then the 
parent increments it to 3, and so on. Note that we have to use parentheses when we increment the 
value of the long integer in the update  function, since we are incrementing the value and not the 
pointer. 

The advantage of using /dev/zero  in the manner that we've shown is that an actual file need not 
exist before we call mmap to create the mapped region. Mapping /dev/zero  automatically creates a 
mapped region of the specified size. The disadvantage of this technique is that it works only between 
related processes. With related processes, however, it is probably simpler and more efficient to use 
threads (Chapters 11 and 12). Note that regardless of which technique is used, we still need to 
synchronize access to the shared data. 

Figure 15.33. IPC between parent and child using memory mapped I/O of /dev/zero 

#include "apue.h" 
#include <fcntl.h> 
#include <sys/mman.h> 
 
#define NLOOPS       1000 
#define SIZE         sizeof(long)     /* size of sh ared memory area */  
 
static int 
update(long *ptr) 
{ 
    return((*ptr)++);    /* return value before inc rement */ 
} 
 
int 
main(void) 
{ 
    int     fd, i, counter; 
    pid_t   pid; 
    void    *area; 
 
    if ((fd = open("/dev/zero", O_RDWR)) < 0) 
        err_sys("open error"); 
    if ((area = mmap(0, SIZE, PROT_READ | PROT_WRIT E, MAP_SHARED, 
      fd, 0)) == MAP_FAILED) 
        err_sys("mmap error"); 
    close(fd);      /* can close /dev/zero now that  it's mapped */ 
 
    TELL_WAIT(); 
 
    if ((pid = fork()) < 0) { 



        err_sys("fork error"); 
    } else if (pid > 0) {           /* parent */ 
        for (i = 0; i < NLOOPS; i += 2) { 
            if ((counter = update((long *)area)) !=  i) 
                err_quit("parent: expected %d, got %d", i, counter); 
 
            TELL_CHILD(pid); 
            WAIT_CHILD(); 
        } 
    } else {                         /* child */ 
        for (i = 1; i < NLOOPS + 1; i += 2) { 
            WAIT_PARENT(); 
 
            if ((counter = update((long *)area)) !=  i) 
                err_quit("child: expected %d, got % d", i, counter); 
 
            TELL_PARENT(getppid()); 
        } 
    } 
 
    exit(0); 
} 

Example—Anonymous Memory Mapping 

Many implementations provide anonymous memory mapping, a facility similar to the /dev/zero  feature. To 
use this facility, we specify the MAP_ANON flag to mmap and specify the file descriptor as -1. The resulting region 
is anonymous (since it's not associated with a pathname through a file descriptor) and creates a memory region 
that can be shared with descendant processes. 

The anonymous memory-mapping facility is supported by all four platforms discussed in this text. Note, 
however, that Linux defines the MAP_ANONYMOUS flag for this facility, but defines the MAP_ANON flag to be the 
same value for improved application portability. 

To modify the program in Figure 15.33 to use this facility, we make three changes: (a) remove the open  of 
/dev/zero , (b) remove the close  of fd , and (c) change the call to mmap to the following: 

if ((area = mmap(0, SIZE, PROT_READ | PROT_WRITE, 
                  MAP_ANON | MAP_SHARED, -1, 0)) ==  MAP_FAILED) 

 

In this call, we specify the MAP_ANON flag and set the file descriptor to -1. The rest of the program from Figure 
15.33 is unchanged. 

The last two examples illustrate sharing memory among multiple related processes. If shared memory is 
required between unrelated processes, there are two alternatives. Applications can use the XSI shared memory 
functions, or they can use mmap to map the same file into their address spaces using the MAP_SHARED flag. 

 
 
 
 
 
 
 



5.10. Client–Server Properties 

Let's detail some of the properties of clients and servers that are affected by the various types of IPC used 
between them. The simplest type of relationship is to have the client fork  and exec  the desired server. Two 
half-duplex pipes can be created before the fork  to allow data to be transferred in both directions. Figure 15.16 
is an example of this. The server that is executed can be a set-user-ID program, giving it special privileges. Also, 
the server can determine the real identity of the client by looking at its real user ID. (Recall from Section 8.10 
that the real user ID and real group ID don't change across an exec .) 

With this arrangement, we can build an open server. (We show an implementation of this client–server in 
Section 17.5.) It opens files for the client instead of the client calling the open  function. This way, additional 
permission checking can be added, above and beyond the normal UNIX system user/group/other permissions. 
We assume that the server is a set-user-ID program, giving it additional permissions (root permission, perhaps). 
The server uses the real user ID of the client to determine whether to give it access to the requested file. This 
way, we can build a server that allows certain users permissions that they don't normally have. 

In this example, since the server is a child of the parent, all the server can do is pass back the contents of the file 
to the parent. Although this works fine for regular files, it can't be used for special device files, for example. We 
would like to be able to have the server open the requested file and pass back the file descriptor. Whereas a 
parent can pass a child an open descriptor, a child cannot pass a descriptor back to the parent (unless special 
programming techniques are used, which we cover in Chapter 17). 

We showed the next type of server in Figure 15.23. The server is a daemon process that is contacted using some 
form of IPC by all clients. We can't use pipes for this type of client–server. A form of named IPC is required, 
such as FIFOs or message queues. With FIFOs, we saw that an individual per client FIFO is also required if the 
server is to send data back to the client. If the client–server application sends data only from the client to the 
server, a single well-known FIFO suffices. (The System V line printer spooler used this form of client–server 
arrangement. The client was the lp (1) command, and the server was the lpsched  daemon process. A single 
FIFO was used, since the flow of data was only from the client to the server. Nothing was sent back to the 
client.) 

Multiple possibilities exist with message queues. 

1. A single queue can be used between the server and all the clients, using the type field of each message to 
indicate the message recipient. For example, the clients can send their requests with a type field of 1. 
Included in the request must be the client's process ID. The server then sends the response with the type 
field set to the client's process ID. The server receives only the messages with a type field of 1 (the 
fourth argument for msgrcv ), and the clients receive only the messages with a type field equal to their 
process IDs. 

2. Alternatively, an individual message queue can be used for each client. Before sending the first request 
to a server, each client creates its own message queue with a key of IPC_PRIVATE . The server also has 
its own queue, with a key or identifier known to all clients. The client sends its first request to the 
server's well-known queue, and this request must contain the message queue ID of the client's queue. 
The server sends its first response to the client's queue, and all future requests and responses are 
exchanged on this queue. 

One problem with this technique is that each client-specific queue usually has only a single message on 
it: a request for the server or a response for a client. This seems wasteful of a limited systemwide 
resource (a message queue), and a FIFO can be used instead. Another problem is that the server has to 
read messages from multiple queues. Neither select  nor poll  works with message queues. 



Either of these two techniques using message queues can be implemented using shared memory segments and a 
synchronization method (a semaphore or record locking). 

The problem with this type of client–server relationship (the client and the server being unrelated processes) is 
for the server to identify the client accurately. Unless the server is performing a nonprivileged operation, it is 
essential that the server know who the client is. This is required, for example, if the server is a set-user-ID 
program. Although all these forms of IPC go through the kernel, there is no facility provided by them to have 
the kernel identify the sender. 

With message queues, if a single queue is used between the client and the server (so that only a single message 
is on the queue at a time, for example), the msg_lspid  of the queue contains the process ID of the other process. 
But when writing the server, we want the effective user ID of the client, not its process ID. There is no portable 
way to obtain the effective user ID, given the process ID. (Naturally, the kernel maintains both values in the 
process table entry, but other than rummaging around through the kernel's memory, we can't obtain one, given 
the other.) 

We'll use the following technique in Section 17.3 to allow the server to identify the client. The same technique 
can be used with FIFOs, message queues, semaphores, or shared memory. For the following description, 
assume that FIFOs are being used, as in Figure 15.23. The client must create its own FIFO and set the file 
access permissions of the FIFO so that only user-read and user-write are on. We assume that the server has 
superuser privileges (or else it probably wouldn't care about the client's true identity), so the server can still read 
and write to this FIFO. When the server receives the client's first request on the server's well-known FIFO 
(which must contain the identity of the client-specific FIFO), the server calls either stat  or fstat  on the client-
specific FIFO. The server assumes that the effective user ID of the client is the owner of the FIFO (the st_uid  
field of the stat  structure). The server verifies that only the user-read and user-write permissions are enabled. 
As another check, the server should also look at the three times associated with the FIFO (the st_atime , 
st_mtime , and st_ctime  fields of the stat  structure) to verify that they are recent (no older than 15 or 30 
seconds, for example). If a malicious client can create a FIFO with someone else as the owner and set the file's 
permission bits to user-read and user-write only, then the system has other fundamental security problems. 

To use this technique with XSI IPC, recall that the ipc_perm  structure associated with each message queue, 
semaphore, and shared memory segment identifies the creator of the IPC structure (the cuid  and cgid  fields). 
As with the example using FIFOs, the server should require the client to create the IPC structure and have the 
client set the access permissions to user-read and user-write only. The times associated with the IPC structure 
should also be verified by the server to be recent (since these IPC structures hang around until explicitly 
deleted). 

We'll see in Section 17.2.2 that a far better way of doing this authentication is for the kernel to provide the 
effective user ID and effective group ID of the client. This is done by the STREAMS subsystem when file 
descriptors are passed between processes. 

 
 
 
 
 
 
 
 
 
 



15.11. Summary 

We've detailed numerous forms of interprocess communication: pipes, named pipes (FIFOs), and the three 
forms of IPC commonly called XSI IPC (message queues, semaphores, and shared memory). Semaphores are 
really a synchronization primitive, not true IPC, and are often used to synchronize access to a shared resource, 
such as a shared memory segment. With pipes, we looked at the implementation of the popen  function, at 
coprocesses, and the pitfalls that can be encountered with the standard I/O library's buffering. 

After comparing the timing of message queues versus full-duplex pipes, and semaphores versus record locking, 
we can make the following recommendations: learn pipes and FIFOs, since these two basic techniques can still 
be used effectively in numerous applications. Avoid using message queues and semaphores in any new 
applications. Full-duplex pipes and record locking should be considered instead, as they are far simpler. Shared 
memory still has its use, although the same functionality can be provided through the use of the mmap function 
(Section 14.9). 

In the next chapter, we will look at network IPC, which can allow processes to communicate across machine 
boundaries. 
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16.1. Introduction 

In the previous chapter, we looked at pipes, FIFOs, message queues, semaphores, and shared memory: the 
classical methods of IPC provided by various UNIX systems. These mechanisms allow processes running on 
the same computer to communicate with one another. In this chapter, we look at the mechanisms that allow 
processes running on different computers (connected to a common network) to communicate with one another: 
network IPC. 

In this chapter, we describe the socket network IPC interface, which can be used by processes to communicate 
with other processes, regardless of where they are running: on the same machine or on different machines. 
Indeed, this was one of the design goals of the socket interface. The same interfaces can be used for both 
intermachine communication and intramachine communication. Although the socket interface can be used to 
communicate using many different network protocols, we will restrict our discussion to the TCP/IP protocol 
suite in this chapter, since it is the de facto standard for communicating over the Internet. 

The socket API as specified by POSIX.1 is based on the 4.4BSD socket interface. Although minor changes have 
been made over the years, the current socket interface closely resembles the interface when it was originally 
introduced in 4.2BSD in the early 1980s. 

This chapter is only an overview of the socket API. Stevens, Fenner, and Rudoff [2004] discuss the socket 
interface in detail in the definitive text on network programming in the UNIX System. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16.2. Socket Descriptors 

A socket is an abstraction of a communication endpoint. Just as they would use file descriptors to access a file, 
applications use socket descriptors to access sockets. Socket descriptors are implemented as file descriptors in 
the UNIX System. Indeed, many of the functions that deal with file descriptors, such as read  and write , will 
work with a socket descriptor. 

To create a socket, we call the socket  function. 

#include <sys/socket.h> 
 
int socket(int domain, int type, int protocol);  

 

Returns: file (socket) descriptor if OK, –1 on error 

 

The domain argument determines the nature of the communication, including the address format (described in 
more detail in the next section). Figure 16.1 summarizes the domains specified by POSIX.1. The constants start 
with AF_ (for address family) because each domain has its own format for representing an address. 

Figure 16.1. Socket communication domains 

Domain Description 

AF_INET IPv4 Internet domain 

AF_INET6  IPv6 Internet domain 

AF_UNIX UNIX domain 

AF_UNSPEC unspecified 

 

We discuss the UNIX domain in Section 17.3. Most systems define the AF_LOCAL domain also, which is an alias 
for AF_UNIX. The AF_UNSPEC domain is a wildcard that represents "any" domain. Historically, some platforms 
provide support for additional network protocols, such as AF_IPX  for the NetWare protocol family, but domain 
constants for these protocols are not defined by the POSIX.1 standard. 

The type argument determines the type of the socket, which further determines the communication 
characteristics. The socket types defined by POSIX.1 are summarized in Figure 16.2, but implementations are 
free to add support for additional types. 

Figure 16.2. Socket types 

Type Description 

SOCK_DGRAM fixed-length, connectionless, unreliable messages 

SOCK_RAW datagram interface to IP (optional in POSIX.1) 



Figure 16.2. Socket types 

Type Description 

SOCK_SEQPACKET fixed-length, sequenced, reliable, connection-oriented messages 

SOCK_STREAM sequenced, reliable, bidirectional, connection-oriented byte streams 

 

The protocol argument is usually zero, to select the default protocol for the given domain and socket type. 
When multiple protocols are supported for the same domain and socket type, we can use the protocol argument 
to select a particular protocol. The default protocol for a SOCK_STREAM socket in the AF_INET communication 
domain is TCP (Transmission Control Protocol). The default protocol for a SOCK_DGRAM socket in the AF_INET 
communication domain is UDP (User Datagram Protocol). 

With a datagram (SOCK_DGRAM) interface, no logical connection needs to exist between peers for them to 
communicate. All you need to do is send a message addressed to the socket being used by the peer process. 

A datagram, therefore, provides a connectionless service. A byte stream (SOCK_STREAM), on the other hand, 
requires that, before you can exchange data, you set up a logical connection between your socket and the socket 
belonging to the peer you want to communicate with. 

A datagram is a self-contained message. Sending a datagram is analogous to mailing someone a letter. You can 
mail many letters, but you can't guarantee the order of delivery, and some might get lost along the way. Each 
letter contains the address of the recipient, making the letter independent from all the others. Each letter can 
even go to different recipients. 

In contrast, using a connection-oriented protocol for communicating with a peer is like making a phone call. 
First, you need to establish a connection by placing a phone call, but after the connection is in place, you can 
communicate bidirectionally with each other. The connection is a peer-to-peer communication channel over 
which you talk. Your words contain no addressing information, as a point-to-point virtual connection exists 
between both ends of the call, and the connection itself implies a particular source and destination. 

With a SOCK_STREAM socket, applications are unaware of message boundaries, since the socket provides a byte 
stream service. This means that when we read data from a socket, it might not return the same number of bytes 
written by the process sending us data. We will eventually get everything sent to us, but it might take several 
function calls. 

A SOCK_SEQPACKET socket is just like a SOCK_STREAM socket except that we get a message-based service instead 
of a byte-stream service. This means that the amount of data received from a SOCK_SEQPACKET socket is the 
same amount as was written. The Stream Control Transmission Protocol (SCTP) provides a sequential packet 
service in the Internet domain. 

A SOCK_RAW socket provides a datagram interface directly to the underlying network layer (which means IP in 
the Internet domain). Applications are responsible for building their own protocol headers when using this 
interface, because the transport protocols (TCP and UDP, for example) are bypassed. Superuser privileges are 
required to create a raw socket to prevent malicious applications from creating packets that might bypass 
established security mechanisms. 



Calling socket  is similar to calling open . In both cases, you get a file descriptor that can be used for I/O. When 
you are done using the file descriptor, you call close  to relinquish access to the file or socket and free up the 
file descriptor for reuse. 

Although a socket descriptor is actually a file descriptor, you can't use a socket descriptor with every function 
that accepts a file descriptor argument. Figure 16.3 summarizes most of the functions we've described so far that 
are used with file descriptors and describes how they behave when used with a socket descriptor. Unspecified 
and implementation-defined behavior usually means that the function doesn't work with socket descriptors. For 
example, lseek  doesn't work with sockets, since sockets don't support the concept of a file offset. 

Figure 16.3. How file descriptor functions act with sockets 

Function Behavior with socket 

close  (Section 3.3) deallocates the socket 

dup , dup2  (Section 3.12) duplicates the file descriptor as normal 

fchdir  (Section 4.22) fails with errno  set to ENOTDIR  

fchmod  (Section 4.9) unspecified 

fchown  (Section 4.11) implementation defined 

fcntl  (Section 3.14) some commands supported, including F_DUPFD, F_GETFD, F_GETFL, 
F_GETOWN, F_SETFD, F_SETFL, and F_SETOWN  

fdatasync , fsync  (Section 3.13) implementation defined 

fstat  (Section 4.2) some stat  structure members supported, but how left up to the 
implementation 

ftruncate  (Section 4.13) unspecified 

getmsg , getpmsg  (Section 14.4) works if sockets are implemented with STREAMS (i.e., on Solaris) 

ioctl  (Section 3.15) some commands work, depending on underlying device driver 

lseek  (Section 3.6) implementation defined (usually fails with errno  set to ESPIPE) 

mmap (Section 14.9) unspecified 

poll  (Section 14.5.2) works as expected 

putmsg , putpmsg  (Section 14.4) works if sockets are implemented with STREAMS (i.e., on Solaris) 

read  (Section 3.7) and readv  
(Section 14.7) 

equivalent to recv  (Section 16.5) without any flags 

select  (Section 14.5.1) works as expected 

write  (Section 3.8) and writev  
(Section 14.7) 

equivalent to send  (Section 16.5) without any flags 

 

Communication on a socket is bidirectional. We can disable I/O on a socket with the shutdown  function. 



#include <sys/socket.h> 
 
int shutdown (int sockfd, int how);  

 

Returns: 0 if OK, –1 on error 

 

If how is SHUT_RD, then reading from the socket is disabled. If how is SHUT_WR, then we can't use the socket for 
transmitting data. We can use SHUT_RDWR to disable both data transmission and reception. 

Given that we can close  a socket, why is shutdown  needed? There are several reasons. First, close  will 
deallocate the network endpoint only when the last active reference is closed. This means that if we duplicate 
the socket (with dup , for example), the socket won't be deallocated until we close the last file descriptor 
referring to it. The shutdown  function allows us to deactivate a socket independently of the number of active 
file descriptors referencing it. Second, it is sometimes convenient to shut a socket down in one direction only. 
For example, we can shut a socket down for writing if we want the process we are communicating with to be 
able to determine when we are done transmitting data, while still allowing us to use the socket to receive data 
sent to us by the process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16.3. Addressing 

In the previous section, we learned how to create and destroy a socket. Before we learn to do something useful 
with a socket, we need to learn how to identify the process that we want to communicate with. Identifying the 
process has two components. The machine's network address helps us identify the computer on the network we 
wish to contact, and the service helps us identify the particular process on the computer. 

16.3.1. Byte Ordering 

When communicating with processes running on the same computer, we generally don't have to worry about 
byte ordering. The byte order is a characteristic of the processor architecture, dictating how bytes are ordered 
within larger data types, such as integers. Figure 16.4 shows how the bytes within a 32-bit integer are numbered. 

Figure 16.4. Byte order in a 32-bit integer 

 

If the processor architecture supports big-endian byte order, then the highest byte address occurs in the least 
significant byte (LSB). Little-endian byte order is the opposite: the least significant byte contains the lowest 
byte address. Note that regardless of the byte ordering, the most significant byte (MSB) is always on the left, 
and the least significant byte is always on the right. Thus, if we were to assign a 32-bit integer the value 
0x04030201 , the most significant byte would contain 4, and the least significant byte would contain 1, 
regardless of the byte ordering. If we were then to cast a character pointer (cp ) to the address of the integer, we 
would see a difference from the byte ordering. On a little-endian processor, cp[0]  would refer to the least 
significant byte and contain 1; cp[3]  would refer to the most significant byte and contain 4. Compare that to a 
big-endian processor, where cp[0]  would contain 4, referring to the most significant byte, and cp[3]  would 
contain 1, referring to the least significant byte. Figure 16.5 summarizes the byte ordering for the four platforms 
discussed in this text. 

Figure 16.5. Byte order for test platforms 

Operating system Processor architecture Byte order 

FreeBSD 5.2.1 Intel Pentium little-endian 

Linux 2.4.22 Intel Pentium little-endian 

Mac OS X 10.3 PowerPC big-endian 

Solaris 9 Sun SPARC big-endian 

 



To confuse matters further, some processors can be configured for either little-endian or big-endian operation. 

Network protocols specify a byte ordering so that heterogeneous computer systems can exchange protocol 
information without confusing the byte ordering. The TCP/IP protocol suite uses big-endian byte order. The 
byte ordering becomes visible to applications when they exchange formatted data. With TCP/IP, addresses are 
presented in network byte order, so applications sometimes need to translate them between the processor 's byte 
order and the network byte order. This is common when printing an address in a human-readable form, for 
example. 

Four common functions are provided to convert between the processor byte order and the network byte order 
for TCP/IP applications. 

#include <arpa/inet.h> 
 
uint32_t htonl(uint32_t hostint32); 

 

Returns: 32-bit integer in network byte order 

uint16_t htons(uint16_t hostint16); 

 

Returns: 16-bit integer in network byte order 

uint32_t ntohl(uint32_t netint32); 

 

Returns: 32-bit integer in host byte order 

uint16_t ntohs(uint16_t netint16); 

 

Returns: 16-bit integer in host byte order 

 

The h is for "host" byte order, and the n is for "network" byte order. The l  is for "long" (i.e., 4-byte) integer, 
and the s  is for "short" (i.e., 2-byte) integer. These four functions are defined in <arpa/inet.h> , although some 
older systems define them in <netinet/in.h> . 

16.3.2. Address Formats 

An address identifies a socket endpoint in a particular communication domain. The address format is specific to 
the particular domain. So that addresses with different formats can be passed to the socket functions, the 
addresses are cast to a generic sockaddr  address structure: 

   struct sockaddr { 
     sa_family_t   sa_family;   /* address family * / 
     char          sa_data[];   /* variable-length address */ 
     . 
     . 
     . 
   }; 

 



Implementations are free to add additional members and define a size for the sa_data  member. For example, 
on Linux, the structure is defined as 

   struct sockaddr { 
     sa_family_t  sa_family;     /* address family */ 
     char         sa_data[14];   /* variable-length  address */ 
   }; 

 

But on FreeBSD, the structure is defined as 

   struct sockaddr { 
     unsigned char  sa_len;        /* total length */ 
     sa_family_t    sa_family;     /* address famil y */ 
     char           sa_data[14];   /* variable-leng th address */ 
   }; 

 

Internet addresses are defined in <netinet/in.h> . In the IPv4 Internet domain (AF_INET), a socket address is 
represented by a sockaddr_in  structure: 

   struct in_addr { 
     in_addr_t       s_addr;       /* IPv4 address */ 
   }; 
 
   struct sockaddr_in { 
     sa_family_t    sin_family;   /* address family  */ 
     in_port_t      sin_port;     /* port number */  
     struct in_addr sin_addr;     /* IPv4 address * / 
   }; 

 

The in_port_t  data type is defined to be a uint16_t . The in_addr_t  data type is defined to be a uint32_t . 
These integer data types specify the number of bits in the data type and are defined in <stdint.h> . 

In contrast to the AF_INET domain, the IPv6 Internet domain (AF_INET6 ) socket address is represented by a 
sockaddr_in6  structure: 

   struct in6_addr { 
     uint8_t        s6_addr[16];     /* IPv6 addres s */ 
   }; 

 
   struct sockaddr_in6 { 
     sa_family_t     sin6_family;     /* address fa mily */ 
     in_port_t       sin6_port;       /* port numbe r */ 
     uint32_t        sin6_flowinfo;   /* traffic cl ass and flow info */ 
     struct in6_addr sin6_addr;       /* IPv6 addre ss */ 
     uint32_t        sin6_scope_id;   /* set of int erfaces for scope */ 
   }; 

 

These are the definitions required by the Single UNIX Specification. Individual implementations are free to add 
additional fields. For example, on Linux, the sockaddr_in  structure is defined as 

   struct sockaddr_in { 
     sa_family_t     sin_family;     /* address fam ily */ 
     in_port_t       sin_port;       /* port number  */ 



     struct in_addr  sin_addr;       /* IPv4 addres s */ 
     unsigned char   sin_zero[8];    /* filler */ 
   }; 

 

where the sin_zero  member is a filler field that should be set to all-zero values. 

Note that although the sockaddr_in  and sockaddr_in6  structures are quite different, they are both passed to 
the socket routines cast to a sockaddr  structure. In Section 17.3, we will see that the structure of a UNIX 
domain socket address is different from both of the Internet domain socket address formats. 

It is sometimes necessary to print an address in a format that is understandable by a person instead of a 
computer. The BSD networking software included the inet_addr  and inet_ntoa  functions to convert between 
the binary address format and a string in dotted-decimal notation (a.b.c.d). These functions, however, work only 
with IPv4 addresses. Two new functions—inet_ntop  and inet_pton —support similar functionality and work 
with both IPv4 and IPv6 addresses. 

#include <arpa/inet.h> 
 
const char *inet_ntop(int domain, const void *restr ict addr,  
                      char *restrict str, 
 socklen_t size); 

 

Returns: pointer to address string on success, NULL on error 

int inet_pton(int domain, const char *restrict str,  
              void *restrict addr); 

 

Returns: 1 on success, 0 if the format is invalid, or –1 on error 

 

The inet_ntop  function converts a binary address in network byte order into a text string; inet_pton  converts 
a text string into a binary address in network byte order. Only two domain values are supported: AF_INET and 
AF_INET6 . 

For inet_ntop , the size parameter specifies the size of the buffer (str) to hold the text string. Two constants are 
defined to make our job easier: INET_ADDRSTRLEN is large enough to hold a text string representing an IPv4 
address, and INET6_ADDRSTRLEN is large enough to hold a text string representing an IPv6 address. For 
inet_pton , the addr buffer needs to be large enough to hold a 32-bit address if domain is AF_INET or large 
enough to hold a 128-bit address if domain is AF_INET6 . 

16.3.3. Address Lookup 

Ideally, an application won't have to be aware of the internal structure of a socket address. If an application 
simply passes socket addresses around as sockaddr  structures and doesn't rely on any protocol-specific features, 
then the application will work with many different protocols that provide the same type of service. 

Historically, the BSD networking software has provided interfaces to access the various network configuration 
information. In Section 6.7, we briefly discussed the networking data files and the functions used to access them. 
In this section, we discuss them in a little more detail and introduce the newer functions used to look up 
addressing information. 



The network configuration information returned by these functions can be kept in a number of places. They can 
be kept in static files (/etc/hosts , /etc/services , etc.), or they can be managed by a name service, such as 
DNS (Domain Name System) or NIS (Network Information Service). Regardless of where the information is 
kept, the same functions can be used to access it. 

The hosts known by a given computer system are found by calling gethostent . 

#include <netdb.h> 
 
struct hostent *gethostent(void);  

 

Returns: pointer if OK, NULL on error 

void sethostent(int stayopen); 
 
void endhostent(void); 

 

 

If the host database file isn't already open, gethostent  will open it. The gethostent  function returns the next 
entry in the file. The sethostent  function will open the file or rewind it if it is already open. The endhostent  
function will close the file. 

When gethostent  returns, we get a pointer to a hostent  structure which might point to a static data buffer that 
is overwritten each time we call gethostent . The hostent  structure is defined to have at least the following 
members: 

   struct hostent { 
     char   *h_name;       /* name of host */ 
     char  **h_aliases;    /* pointer to alternate host name array */ 
     int     h_addrtype;   /* address type */ 
     int     h_length;     /* length in bytes of ad dress */ 
     char  **h_addr_list;  /* pointer to array of n etwork addresses */ 
     . 
     . 
     . 
   }; 

 

The addresses returned are in network byte order. 

Two additional functions—gethostbyname  and gethostbyaddr —originally were included with the hostent  
functions, but are now considered to be obsolete. We'll see replacements for them shortly. 

We can get network names and numbers with a similar set of interfaces. 

#include <netdb.h> 
 
struct netent *getnetbyaddr(uint32_t net, int type) ;  
 
struct netent *getnetbyname(const char *name); 
 
struct netent *getnetent(void); 

 



#include <netdb.h> 
 
struct netent *getnetbyaddr(uint32_t net, int type) ;  
 
struct netent *getnetbyname(const char *name); 
 
struct netent *getnetent(void); 

 

All return: pointer if OK, NULL on error 

void setnetent(int stayopen); 
 
void endnetent(void); 

 

 

The netent  structure contains at least the following fields: 

   struct netent { 
     char     *n_name;      /* network name */ 
     char    **n_aliases;   /* alternate network na me array pointer */ 
     int       n_addrtype;  /* address type */ 
     uint32_t  n_net;       /* network number */ 
     . 
     . 
     . 
   }; 

 

The network number is returned in network byte order. The address type is one of the address family constants 
(AF_INET, for example). 

We can map between protocol names and numbers with the following functions. 

#include <netdb.h> 
 
struct protoent *getprotobyname(const char *name);  
 
struct protoent *getprotobynumber(int proto); 
 
struct protoent *getprotoent(void); 

 

All return: pointer if OK, NULL on error 

void setprotoent(int stayopen); 
 
void endprotoent(void); 

 

 

The protoent  structure as defined by POSIX.1 has at least the following members: 

   struct protoent { 
     char   *p_name;     /* protocol name */ 
     char  **p_aliases;  /* pointer to alternate pr otocol name array */ 



     int     p_proto;    /* protocol number */ 
     . 
     . 
     . 
   }; 

 

Services are represented by the port number portion of the address. Each service is offered on a unique, well-
known port number. We can map a service name to a port number with getservbyname , map a port number to 
a service name with getservbyport , or scan the services database sequentially with getservent . 

#include <netdb.h> 
 
struct servent *getservbyname(const char *name, 
 const char *proto); 
 
struct servent *getservbyport(int port, const char *proto);  
 
struct servent *getservent(void); 

 

All return: pointer if OK, NULL on error 

void setservent(int stayopen); 
 
void endservent(void); 

 

 

The servent  structure is defined to have at least the following members: 

   struct servent { 
     char   *s_name;      /* service name */ 
     char  **s_aliases;   /* pointer to alternate s ervice name array */ 
     int     s_port;      /* port number */ 
     char   *s_proto;     /* name of protocol */ 
     . 
     . 
     . 
   }; 

 

POSIX.1 defines several new functions to allow an application to map from a host name and a service name to 
an address and vice versa. These functions replace the older gethostbyname  and gethostbyaddr  functions. 

The getaddrinfo  function allows us to map a host name and a service name to an address. 

#include <sys/socket.h> 
#include <netdb.h> 
 
int getaddrinfo(const char *restrict host, 
                const char *restrict service, 
                const struct addrinfo *restrict hin t,  
                struct addrinfo **restrict res); 

 

Returns: 0 if OK, nonzero error code on error 



#include <sys/socket.h> 
#include <netdb.h> 
 
int getaddrinfo(const char *restrict host, 
                const char *restrict service, 
                const struct addrinfo *restrict hin t,  
                struct addrinfo **restrict res); 

 

void freeaddrinfo(struct addrinfo *ai); 

 

 

We need to provide the host name, the service name, or both. If we provide only one name, the other should be 
a null pointer. The host name can be either a node name or the host address in dotted-decimal notation. 

The getaddrinfo  function returns a linked list of addrinfo  structures. We can use freeaddrinfo  to free one 
or more of these structures, depending on how many structures are linked together using the ai_next  field. 

The addrinfo  structure is defined to include at least the following members: 

   struct addrinfo { 
     int               ai_flags;       /* customize  behavior */ 
     int               ai_family;      /* address f amily */ 
     int               ai_socktype;    /* socket ty pe */ 
     int               ai_protocol;    /* protocol */ 
     socklen_t         ai_addrlen;     /* length in  bytes of address */ 
     struct sockaddr  *ai_addr;        /* address * / 
     char             *ai_canonname;   /* canonical  name of host */ 
     struct addrinfo  *ai_next;        /* next in l ist */ 
     . 
     . 
     . 
   }; 

 

We can supply an optional hint to select addresses that meet certain criteria. The hint is a template used for 
filtering addresses and uses only the ai_family , ai_flags , ai_protocol , and ai_socktype  fields. The 
remaining integer fields must be set to 0, and the pointer fields must be null. Figure 16.6 summarizes the flags 
we can use in the ai_flags  field to customize how addresses and names are treated. 

Figure 16.6. Flags for addrinfo structure 

Flag Description 

AI_ADDRCONFIG Query for whichever address type (IPv4 or IPv6) is configured. 

AI_ALL  Look for both IPv4 and IPv6 addresses (used only with AI_V4MAPPED). 

AI_CANONNAME Request a canonical name (as opposed to an alias). 

AI_NUMERICHOST Return the host address in numeric format. 

AI_NUMERICSERV Return the service as a port number. 



Figure 16.6. Flags for addrinfo structure 

Flag Description 

AI_PASSIVE  Socket address is intended to be bound for listening. 

AI_V4MAPPED If no IPv6 addresses are found, return IPv4 addresses mapped in IPv6 format. 

 

If getaddrinfo  fails, we can't use perror  or strerror  to generate an error message. Instead, we need to call 
gai_strerror  to convert the error code returned into an error message. 

#include <netdb.h> 
 
const char *gai_strerror(int error); 

 

Returns: a pointer to a string describing the error 

 

The getnameinfo  function converts an address into a host name and a service name. 

#include <sys/socket.h> 
#include <netdb.h> 
 
int getnameinfo(const struct sockaddr *restrict add r, 
                socklen_t alen, char *restrict host , 
                socklen_t hostlen, char *restrict s ervice,  
                socklen_t servlen, unsigned int fla gs); 

 

Returns: 0 if OK, nonzero on error 

 

The socket address (addr) is translated into a host name and a service name. If host is non-null, it points to a 
buffer hostlen bytes long that will be used to return the host name. Similarly, if service is non-null, it points to a 
buffer servlen bytes long that will be used to return the service name. 

The flags argument gives us some control over how the translation is done. Figure 16.7 summarizes the 
supported flags. 

Figure 16.7. Flags for the getnameinfo function 

Flag Description 

NI_DGRAM The service is datagram based instead of stream based. 

NI_NAMEREQD If the host name can't be found, treat this as an error. 

NI_NOFQDN Return only the node name portion of the fully-qualified domain name for local hosts. 

NI_NUMERICHOST Return the numeric form of the host address instead of the name. 



Figure 16.7. Flags for the getnameinfo function 

Flag Description 

NI_NUMERICSERV Return the numeric form of the service address (i.e., the port number) instead of the name. 

 
 

Example 

Figure 16.8 illustrates the use of the getaddrinfo  function. 

This program illustrates the use of the getaddrinfo  function. If multiple protocols provide the given service for 
the given host, the program will print more than one entry. In this example, we print out the address information 
only for the protocols that work with IPv4 (ai_family  equals AF_INET). If we wanted to restrict the output to 
the AF_INET protocol family, we could set the ai_family  field in the hint. 

When we run the program on one of the test systems, we get 

   $ ./a.out harry nfs 
   flags canon family inet type stream protocol TCP  
       host harry address 192.168.1.105 port 2049 
   flags canon family inet type datagram protocol U DP 
       host harry address 192.168.1.105 port 2049 

 

Figure 16.8. Print host and service information 

#include "apue.h" 
#include <netdb.h> 
#include <arpa/inet.h> 
#if defined(BSD) || defined(MACOS) 
#include <sys/socket.h> 
#include <netinet/in.h> 
#endif 
 
void 
print_family(struct addrinfo *aip) 
{ 
    printf(" family "); 
    switch (aip->ai_family) { 
    case AF_INET: 
        printf("inet"); 
        break; 
    case AF_INET6: 
        printf("inet6"); 
        break; 
    case AF_UNIX: 
        printf("unix"); 
        break; 
    case AF_UNSPEC: 
        printf("unspecified"); 
        break; 
    default: 
        printf("unknown"); 
    } 
 



} 
void 
print_type(struct addrinfo *aip) 
{ 
    printf(" type "); 
    switch (aip->ai_socktype) { 
    case SOCK_STREAM: 
        printf("stream"); 
        break; 
    case SOCK_DGRAM: 
        printf("datagram"); 
        break; 
    case SOCK_SEQPACKET: 
        printf("seqpacket"); 
        break; 
    case SOCK_RAW: 
        printf("raw"); 
        break; 
    default: 
        printf("unknown (%d)", aip->ai_socktype); 
    } 
} 
 
void 
print_protocol(struct addrinfo *aip) 
{ 
    printf(" protocol "); 
    switch (aip->ai_protocol) { 
    case 0: 
        printf("default"); 
        break; 
    case IPPROTO_TCP: 
        printf("TCP"); 
        break; 
    case IPPROTO_UDP: 
        printf("UDP"); 
        break; 
    case IPPROTO_RAW: 
        printf("raw"); 
        break; 
    default: 
        printf("unknown (%d)", aip->ai_protocol); 
    } 
} 
 
void 
print_flags(struct addrinfo *aip) 
{ 
    printf("flags"); 
    if (aip->ai_flags == 0) { 
        printf(" 0"); 
 
    } else { 
        if (aip->ai_flags & AI_PASSIVE) 
            printf(" passive"); 
        if (aip->ai_flags & AI_CANONNAME) 
            printf(" canon"); 
        if (aip->ai_flags & AI_NUMERICHOST) 
            printf(" numhost"); 
#if defined(AI_NUMERICSERV) 
        if (aip->ai_flags & AI_NUMERICSERV) 
            printf(" numserv"); 



#endif 
#if defined(AI_V4MAPPED) 
        if (aip->ai_flags & AI_V4MAPPED) 
            printf(" v4mapped"); 
#endif 
#if defined(AI_ALL) 
        if (aip->ai_flags & AI_ALL) 
            printf(" all"); 
#endif 
    } 
} 
int 
main(int argc, char *argv[]) 
{ 
    struct addrinfo     *ailist, *aip; 
    struct addrinfo     hint; 
    struct sockaddr_in  *sinp; 
    const char          *addr; 
    int                 err; 
    char                abuf[INET_ADDRSTRLEN]; 
 
    if (argc != 3) 
        err_quit("usage: %s nodename service", argv [0]); 
    hint.ai_flags = AI_CANONNAME; 
    hint.ai_family = 0; 
    hint.ai_socktype = 0; 
    hint.ai_protocol = 0; 
    hint.ai_addrlen = 0; 
    hint.ai_canonname = NULL; 
    hint.ai_addr = NULL; 
    hint.ai_next = NULL; 
    if ((err = getaddrinfo(argv[1], argv[2], &hint,  &ailist)) != 0) 
        err_quit("getaddrinfo error: %s", gai_strer ror(err)); 
    for (aip = ailist; aip != NULL; aip = aip->ai_n ext) { 
        print_flags(aip); 
        print_family(aip); 
        print_type(aip); 
        print_protocol(aip); 
        printf("\n\thost %s", aip->ai_canonname?aip ->ai_canonname:"-");  
        if (aip->ai_family == AF_INET) { 
 
           sinp = (struct sockaddr_in *)aip->ai_add r; 
           addr = inet_ntop(AF_INET, &sinp->sin_add r, abuf, 
               INET_ADDRSTRLEN); 
           printf(" address %s", addr?addr:"unknown "); 
           printf(" port %d", ntohs(sinp->sin_port) ); 
        } 
        printf("\n"); 
    } 
    exit(0); 
} 

16.3.4. Associating Addresses with Sockets 

The address associated with a client's socket is of little interest, and we can let the system choose a default 
address for us. For a server, however, we need to associate a well-known address with the server's socket on 
which client requests will arrive. Clients need a way to discover the address to use to contact a server, and the 
simplest scheme is for a server to reserve an address and register it in /etc/services  or with a name service. 

We use the bind  function to associate an address with a socket. 



#include <sys/socket.h> 
 
int bind(int sockfd, const struct sockaddr *addr,  
 socklen_t len); 

 

Returns: 0 if OK, –1 on error 

 

There are several restrictions on the address we can use: 

• The address we specify must be valid for the machine on which the process is running; we can't specify 
an address belonging to some other machine. 

• The address must match the format supported by the address family we used to create the socket. 
• The port number in the address cannot be less than 1,024 unless the process has the appropriate privilege 

(i.e., is the superuser). 
• Usually, only one socket endpoint can be bound to a given address, although some protocols allow 

duplicate bindings. 

For the Internet domain, if we specify the special IP address INADDR_ANY, the socket endpoint will be bound to 
all the system's network interfaces. This means that we can receive packets from any of the network interface 
cards installed in the system. We'll see in the next section that the system will choose an address and bind it to 
our socket for us if we call connect  or listen  without first binding an address to the socket. 

We can use the getsockname  function to discover the address bound to a socket. 

#include <sys/socket.h> 
 
int getsockname(int sockfd, struct sockaddr *restri ct addr,  
                socklen_t *restrict alenp); 

 

Returns: 0 if OK, –1 on error 

 

Before calling getsockname , we set alenp to point to an integer containing the size of the sockaddr  buffer. On 
return, the integer is set to the size of the address returned. If the address won't fit in the buffer provided, the 
address is silently truncated. If no address is currently bound to the socket, the results are undefined. 

If the socket is connected to a peer, we can find out the peer's address by calling the getpeername  function. 

#include <sys/socket.h> 
 
int getpeername(int sockfd, struct sockaddr *restri ct addr,  
                socklen_t *restrict alenp); 

 

Returns: 0 if OK, –1 on error 

Other than returning the peer's address, the getpeername  function is identical to the getsockname  function. 

 



16.4. Connection Establishment 

If we're dealing with a connection-oriented network service (SOCK_STREAM or SOCK_SEQPACKET), then before 
we can exchange data, we need to create a connection between the socket of the process requesting the service 
(the client) and the process providing the service (the server). We use the connect  function to create a 
connection. 

#include <sys/socket.h> 
 
int connect(int sockfd, const struct sockaddr *addr , socklen_t len);  

 

Returns: 0 if OK, –1 on error 

 

The address we specify with connect  is the address of the server with which we wish to communicate. If 
sockfd is not bound to an address, connect  will bind a default address for the caller. 

When we try to connect to a server, the connect request might fail for several reasons. The machine to which we 
are trying to connect must be up and running, the server must be bound to the address we are trying to contact, 
and there must be room in the server's pending connect queue (we'll learn more about this shortly). Thus, 
applications must be able to handle connect  error returns that might be caused by transient conditions. 

Example 

Figure 16.9 shows one way to handle transient connect  errors. This is likely with a server that is 
running on a heavily loaded system. 

This function shows what is known as an exponential backoff algorithm. If the call to connect  fails, 
the process goes to sleep for a short time and then tries again, increasing the delay each time through 
the loop, up to a maximum delay of about 2 minutes. 

Figure 16.9. Connect with retry 

#include "apue.h" 
#include <sys/socket.h> 
 
#define MAXSLEEP 128 
 
int 
connect_retry(int sockfd, const struct sockaddr *ad dr, socklen_t alen)  
{ 
    int nsec; 
     
    /* 
     * Try to connect with exponential backoff. 
     */ 
    for (nsec = 1; nsec <= MAXSLEEP; nsec <<= 1) { 
        if (connect(sockfd, addr, alen) == 0) { 
            /* 
             * Connection accepted. 
             */ 
            return(0); 
        } 
 



        /* 
         * Delay before trying again. 
         */ 
        if (nsec <= MAXSLEEP/2) 
            sleep(nsec); 
    } 
    return(-1); 
} 

If the socket descriptor is in nonblocking mode, which we discuss further in Section 16.8, connect  will return –
1 with errno  set to the special error code EINPROGRESS if the connection can't be established immediately. The 
application can use either poll  or select  to determine when the file descriptor is writable. At this point, the 
connection is complete. 

The connect  function can also be used with a connectionless network service (SOCK_DGRAM). This might seem 
like a contradiction, but it is an optimization instead. If we call connect  with a SOCK_DGRAM socket, the 
destination address of all messages we send is set to the address we specified in the connect  call, relieving us 
from having to provide the address every time we transmit a message. In addition, we will receive datagrams 
only from the address we've specified. 

A server announces that it is willing to accept connect requests by calling the listen  function. 

#include <sys/socket.h> 
 
int listen(int sockfd, int backlog);  

 

Returns: 0 if OK, –1 on error 

 

The backlog argument provides a hint to the system of the number of outstanding connect requests that it should 
enqueue on behalf of the process. The actual value is determined by the system, but the upper limit is specified 
as SOMAXCONN in <sys/socket.h> . 

On Solaris, the SOMAXCONN value in <sys/socket.h>  is ignored. The particular maximum depends on the 
implementation of each protocol. For TCP, the default is 128. 

Once the queue is full, the system will reject additional connect requests, so the backlog value must be chosen 
based on the expected load of the server and the amount of processing it must do to accept a connect request 
and start the service. 

Once a server has called listen , the socket used can receive connect requests. We use the accept  function to 
retrieve a connect request and convert that into a connection. 

#include <sys/socket.h> 
 
int accept(int sockfd, struct sockaddr *restrict ad dr,  
           socklen_t *restrict len); 

 

Returns: file (socket) descriptor if OK, –1 on error 

 



The file descriptor returned by accept  is a socket descriptor that is connected to the client that called connect . 
This new socket descriptor has the same socket type and address family as the original socket (sockfd). The 
original socket passed to accept  is not associated with the connection, but instead remains available to receive 
additional connect requests. 

If we don't care about the client's identity, we can set the addr and len parameters to NULL. Otherwise, before 
calling accept , we need to set the addr parameter to a buffer large enough to hold the address and set the 
integer pointed to by len to the size of the buffer. On return, accept  will fill in the client's address in the buffer 
and update the integer pointed to by len to reflect the size of the address. 

If no connect requests are pending, accept  will block until one arrives. If sockfd is in nonblocking mode, 
accept  will return –1 and set errno  to either EAGAIN or EWOULDBLOCK. 

All four platforms discussed in this text define EAGAIN to be the same as EWOULDBLOCK. 

If a server calls accept  and no connect request is present, the server will block until one arrives. Alternatively, 
a server can use either poll  or select  to wait for a connect request to arrive. In this case, a socket with pending 
connect requests will appear to be readable. 

Example 

Figure 16.10 shows a function we can use to allocate and initialize a socket for use by a server 
process. 

We'll see that TCP has some strange rules regarding address reuse that make this example 
inadequate. Figure 16.20 shows a version of this function that bypasses these rules, solving the 
major drawback with this version. 

Figure 16.10. Initialize a socket endpoint for use by a server 

#include "apue.h" 
#include <errno.h> 
#include <sys/socket.h> 
 
int 
initserver(int type, const struct sockaddr *addr, s ocklen_t alen,  
  int qlen) 
{ 
    int fd; 
    int err = 0; 
 
    if ((fd = socket(addr->sa_family, type, 0)) < 0 ) 
        return(-1); 
    if (bind(fd, addr, alen) < 0) { 
        err = errno; 
        goto errout; 
    } 
    if (type == SOCK_STREAM || type == SOCK_SEQPACK ET) { 
        if (listen(fd, qlen) < 0) { 
            err = errno; 
            goto errout; 
        } 
    } 
    return(fd); 
 
errout: 



    close(fd); 
    errno = err; 
    return(-1); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16.5. Data Transfer 

Since a socket endpoint is represented as a file descriptor, we can use read  and write  to communicate with a 
socket, as long as it is connected. Recall that a datagram socket can be "connected" if we set the default peer 
address using the connect  function. Using read  and write  with socket descriptors is significant, because it 
means that we can pass socket descriptors to functions that were originally designed to work with local files. 
We can also arrange to pass the socket descriptors to child processes that execute programs that know nothing 
about sockets. 

Although we can exchange data using read  and write , that is about all we can do with these two functions. If 
we want to specify options, receive packets from multiple clients, or send out-of-band data, we need to use one 
of the six socket functions designed for data transfer. 

Three functions are available for sending data, and three are available for receiving data. First, we'll look at the 
ones used to send data. 

The simplest one is send . It is similar to write , but allows us to specify flags to change how the data we want 
to transmit is treated. 

#include <sys/socket.h> 
 
ssize_t send(int sockfd, const void *buf, size_t nb ytes, int flags);  

 

Returns: number of bytes sent if OK, –1 on error 

 

Like write , the socket has to be connected to use send . The buf and nbytes arguments have the same meaning 
as they do with write . 

Unlike write , however, send  supports a fourth flags argument. Two flags are defined by the Single UNIX 
Specification, but it is common for implementations to support additional ones. They are summarized in Figure 
16.11. 

Figure 16.11. Flags used with send socket calls 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS 
X 10.3 

Solaris 
9 

MSG_DONTROUTE Don't route packet outside of local 
network. 

  • • • • 

MSG_DONTWAIT Enable nonblocking operation 
(equivalent to using O_NONBLOCK). 

  • • •   

MSG_EOR This is the end of record if 
supported by protocol. 

• • • •   

MSG_OOB Send out-of-band data if supported 
by protocol (see Section 16.7). 

• • • • • 

 



If send  returns success, it doesn't necessarily mean that the process at the other end of the connection receives 
the data. All we are guaranteed is that when send  succeeds, the data has been delivered to the network drivers 
without error. 

With a protocol that supports message boundaries, if we try to send a single message larger than the maximum 
supported by the protocol, send  will fail with errno  set to EMSGSIZE. With a byte-stream protocol, send  will 
block until the entire amount of data has been transmitted. 

The sendto  function is similar to send . The difference is that sendto  allows us to specify a destination address 
to be used with connectionless sockets. 

#include <sys/socket.h> 
 
ssize_t sendto(int sockfd, const void *buf, size_t nbytes, int flags,  
               const struct sockaddr *destaddr, 
 socklen_t destlen); 

 

Returns: number of bytes sent if OK, –1 on error 

 

With a connection-oriented socket, the destination address is ignored, as the destination is implied by the 
connection. With a connectionless socket, we can't use send  unless the destination address is first set by calling 
connect , so sendto  gives us an alternate way to send a message. 

We have one more choice when transmitting data over a socket. We can call sendmsg  with a msghdr  structure 
to specify multiple buffers from which to transmit data, similar to the writev  function (Section 14.7). 

#include <sys/socket.h> 
 
ssize_t sendmsg(int sockfd, const struct msghdr *ms g, int flags);  

 

Returns: number of bytes sent if OK, –1 on error 

 

POSIX.1 defines the msghdr  structure to have at least the following members: 

   struct msghdr { 
     void          *msg_name;         /* optional a ddress */ 
     socklen_t      msg_namelen;      /* address si ze in bytes */ 
     struct iovec  *msg_iov;          /* array of I /O buffers */ 
     int            msg_iovlen;       /* number of elements in array */ 
     void          *msg_control;      /* ancillary data */ 
     socklen_t      msg_controllen;   /* number of ancillary bytes */ 
     int            msg_flags;        /* flags for received message */ 
     . 
     . 
     . 
   }; 

 

We saw the iovec  structure in Section 14.7. We'll see the use of ancillary data in Section 17.4.2. 



The recv  function is similar to read , but allows us to specify some options to control how we receive the data. 

#include <sys/socket.h> 
 
ssize_t recv(int sockfd, void *buf, size_t nbytes, 
 int flags); 

 

Returns: length of message in bytes, 0 if no messages are available and peer has done an orderly shutdown, or –
1 on error 

 

The flags that can be passed to recv  are summarized in Figure 16.12. Only three are defined by the Single 
UNIX Specification. 

Figure 16.12. Flags used with recv socket calls 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
5.2.1 

Mac OS 
X 10.3 

Solaris 
9 

MSG_OOB Retrieve out-of-band data if supported 
by protocol (see Section 16.7). 

• • • • • 

MSG_PEEK Return packet contents without 
consuming packet. 

• • • • • 

MSG_TRUNC Request that the real length of the 
packet be returned, even if it was 
truncated. 

    •     

MSG_WAITALL Wait until all data is available 
(SOCK_STREAM only). 

• • • • • 

 

When we specify the MSG_PEEK flag, we can peek at the next data to be read without actually consuming it. The 
next call to read  or one of the recv  functions will return the same data we peeked at. 

With SOCK_STREAM sockets, we can receive less data than we requested. The MSG_WAITALL flag inhibits this 
behavior, preventing recv  from returning until all the data we requested has been received. With SOCK_DGRAM 
and SOCK_SEQPACKET sockets, the MSG_WAITALL flag provides no change in behavior, because these message-
based socket types already return an entire message in a single read. 

If the sender has called shutdown  (Section 16.2) to end transmission, or if the network protocol supports orderly 
shutdown by default and the sender has closed the socket, then recv  will return 0 when we have received all the 
data. 

If we are interested in the identity of the sender, we can use recvfrom  to obtain the source address from which 
the data was sent. 



#include <sys/socket.h> 
 
ssize_t recvfrom(int sockfd, void *restrict buf, 
 size_t len, int flags, 
                 struct sockaddr *restrict addr, 
                 socklen_t *restrict addrlen); 

 

Returns: length of message in bytes, 0 if no messages are available and peer has done an orderly shutdown, or –
1 on error 

 

If addr is non-null, it will contain the address of the socket endpoint from which the data was sent. When calling 
recvfrom , we need to set the addrlen parameter to point to an integer containing the size in bytes of the socket 
buffer to which addr points. On return, the integer is set to the actual size of the address in bytes. 

Because it allows us to retrieve the address of the sender, recvfrom  is usually used with connectionless sockets. 
Otherwise, recvfrom  behaves identically to recv . 

To receive data into multiple buffers, similar to readv  (Section 14.7), or if we want to receive ancillary data 
(Section 17.4.2), we can use recvmsg . 

#include <sys/socket.h> 
 
ssize_t recvmsg(int sockfd, struct msghdr *msg, 
 int flags); 

 

Returns: length of message in bytes, 0 if no messages are available and peer has done an orderly shutdown, or –
1 on error 

 

The msghdr  structure (which we saw used with sendmsg ) is used by recvmsg  to specify the input buffers to be 
used to receive the data. We can set the flags argument to change the default behavior of recvmsg . On return, 
the msg_flags  field of the msghdr  structure is set to indicate various characteristics of the data received. (The 
msg_flags  field is ignored on entry to recvmsg ). The possible values on return from recvmsg  are summarized 
in Figure 16.13. We'll see an example that uses recvmsg  in Chapter 17. 

Figure 16.13. Flags returned in msg_flags by recvmsg 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

MSG_CTRUNC Control data was truncated. • • • • • 

MSG_DONTWAIT recvmsg  was called in 
nonblocking mode. 

    •   • 

MSG_EOR End of record was received. • • • • • 

MSG_OOB Out-of-band data was received. • • • • • 



Figure 16.13. Flags returned in msg_flags by recvmsg 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

MSG_TRUNC Normal data was truncated. • • • • • 

 
 

Example—Connection-Oriented Client 

Figure 16.14 shows a client command that communicates with a server to obtain the output from a 
system's uptime  command. We call this service "remote uptime" (or "ruptime" for short). 

This program connects to a server, reads the string sent by the server, and prints the string on the 
standard output. Since we're using a SOCK_STREAM socket, we can't be guaranteed that we will read 
the entire string in one call to recv , so we need to repeat the call until it returns 0. 

The getaddrinfo  function might return more than one candidate address for us to use if the server 
supports multiple network interfaces or multiple network protocols. We try each one in turn, giving 
up when we find one that allows us to connect to the service. We use the connect_retry  function 
from Figure 16.9 to establish a connection with the server. 

Figure 16.14. Client command to get uptime from server 

#include "apue.h" 
#include <netdb.h> 
#include <errno.h> 
#include <sys/socket.h> 
 
#define MAXADDRLEN  256 
 
#define BUFLEN      128 
 
extern int connect_retry(int, const struct sockaddr  *, socklen_t); 
 
void 
print_uptime(int sockfd) 
{ 
    int     n; 
    char    buf[BUFLEN]; 
 
    while ((n = recv(sockfd, buf, BUFLEN, 0)) > 0) 
        write(STDOUT_FILENO, buf, n); 
    if (n < 0) 
        err_sys("recv error"); 
} 
 
int 
main(int argc, char *argv[]) 
{ 
    struct addrinfo *ailist, *aip; 
    struct addrinfo hint; 
    int             sockfd, err; 
 
    if (argc != 2) 



        err_quit("usage: ruptime hostname"); 
    hint.ai_flags = 0; 
    hint.ai_family = 0; 
    hint.ai_socktype = SOCK_STREAM; 
    hint.ai_protocol = 0; 
    hint.ai_addrlen = 0; 
    hint.ai_canonname = NULL; 
    hint.ai_addr = NULL; 
    hint.ai_next = NULL; 
    if ((err = getaddrinfo(argv[1], "ruptime", &hin t, &ailist)) != 0) 
        err_quit("getaddrinfo error: %s", gai_strer ror(err)); 
    for (aip = ailist; aip != NULL; aip = aip->ai_n ext) { 
        if ((sockfd = socket(aip->ai_family, SOCK_S TREAM, 0)) < 0) 
            err = errno; 
        if (connect_retry(sockfd, aip->ai_addr, aip ->ai_addrlen) < 0) {  
            err = errno; 
        } else { 
            print_uptime(sockfd); 
            exit(0); 
        } 
    } 
    fprintf(stderr, "can't connect to %s: %s\n", ar gv[1], 
      strerror(err)); 
    exit(1); 
} 

Example—Connection-Oriented Server 

Figure 16.15 shows the server that provides the uptime  command's output to the client program 
from Figure 16.14. 

To find out its address, the server needs to get the name of the host on which it is running. Some 
systems don't define the _SC_HOST_NAME_MAX constant, so we use HOST_NAME_MAX in this case. If the 
system doesn't define HOST_NAME_MAX, we define it ourselves. POSIX.1 states that the minimum 
value for the host name is 255 bytes, not including the terminating null, so we define 
HOST_NAME_MAX to be 256 to include the terminating null. 

The server gets the host name by calling gethostname  and looks up the address for the remote 
uptime service. Multiple addresses can be returned, but we simply choose the first one for which we 
can establish a passive socket endpoint. Handling multiple addresses is left as an exercise. 

We use the initserver  function from Figure 16.10 to initialize the socket endpoint on which we 
will wait for connect requests to arrive. (Actually, we use the version from Figure 16.20; we'll see 
why when we discuss socket options in Section 16.6.) 

Figure 16.15. Server program to provide system uptime 

#include "apue.h" 
#include <netdb.h> 
#include <errno.h> 
#include <syslog.h> 
#include <sys/socket.h> 
 
#define BUFLEN  128 
#define QLEN 10 
 
#ifndef HOST_NAME_MAX 



#define HOST_NAME_MAX 256 
#endif 
 
extern int initserver(int, struct sockaddr *, sockl en_t, int); 
 
void 
serve(int sockfd) 
{ 
    int     clfd; 
    FILE    *fp; 
    char    buf[BUFLEN]; 
 
    for (;;) { 
        clfd = accept(sockfd, NULL, NULL); 
        if (clfd < 0) { 
            syslog(LOG_ERR, "ruptimed: accept error : %s", 
              strerror(errno)); 
            exit(1); 
        } 
        if ((fp = popen("/usr/bin/uptime", "r")) ==  NULL) { 
            sprintf(buf, "error: %s\n", strerror(er rno)); 
            send(clfd, buf, strlen(buf), 0); 
        } else { 
            while (fgets(buf, BUFLEN, fp) != NULL) 
                send(clfd, buf, strlen(buf), 0); 
            pclose(fp); 
        } 
        close(clfd); 
    } 
} 
 
int 
main(int argc, char *argv[]) 
{ 
    struct addrinfo *ailist, *aip; 
    struct addrinfo hint; 
    int             sockfd, err, n; 
    char            *host; 
 
    if (argc != 1) 
        err_quit("usage: ruptimed"); 
#ifdef _SC_HOST_NAME_MAX 
    n = sysconf(_SC_HOST_NAME_MAX); 
    if (n < 0)  /* best guess */ 
#endif 
        n = HOST_NAME_MAX; 
    host = malloc(n); 
    if (host == NULL) 
        err_sys("malloc error"); 
    if (gethostname(host, n) < 0) 
        err_sys("gethostname error"); 
    daemonize("ruptimed"); 
    hint.ai_flags = AI_CANONNAME; 
    hint.ai_family = 0; 
    hint.ai_socktype = SOCK_STREAM; 
    hint.ai_protocol = 0; 
    hint.ai_addrlen = 0; 
    hint.ai_canonname = NULL; 
    hint.ai_addr = NULL; 
    hint.ai_next = NULL; 
    if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {  
        syslog(LOG_ERR, "ruptimed: getaddrinfo erro r: %s", 



          gai_strerror(err)); 
        exit(1); 
    } 
    for (aip = ailist; aip != NULL; aip = aip->ai_n ext) { 
        if ((sockfd = initserver(SOCK_STREAM, aip-> ai_addr, 
          aip->ai_addrlen, QLEN)) >= 0) { 
            serve(sockfd); 
            exit(0); 
        } 
    } 
    exit(1); 
} 

Example—Alternate Connection-Oriented Server 

Previously, we stated that using file descriptors to access sockets was significant, because it allowed 
programs that knew nothing about networking to be used in a networked environment. The version 
of the server shown in Figure 16.16 illustrates this point. Instead of reading the output of the uptime  
command and sending it to the client, the server arranges to have the standard output and standard 
error of the uptime  command be the socket endpoint connected to the client. 

Instead of using popen  to run the uptime  command and reading the output from the pipe connected 
to the command's standard output, we use fork  to create a child process and then use dup2  to 
arrange that the child's copy of STDIN_FILENO is open to /dev/null  and that both STDOUT_FILENO 
and STDERR_FILENO are open to the socket endpoint. When we execute uptime , the command writes 
the results to its standard output, which is connected to the socket, and the data is sent back to the 
ruptime  client command. 

The parent can safely close the file descriptor connected to the client, because the child still has it 
open. The parent waits for the child to complete before proceeding, so that the child doesn't become 
a zombie. Since it shouldn't take too long to run the uptime  command, the parent can afford to wait 
for the child to exit before accepting the next connect request. This strategy might not be appropriate 
if the child takes a long time, however. 

Figure 16.16. Server program illustrating command writing directly to socket 

#include "apue.h" 
#include <netdb.h> 
#include <errno.h> 
#include <syslog.h> 
#include <fcntl.h> 
#include <sys/socket.h> 
#include <sys/wait.h> 
 
#define QLEN 10 
 
#ifndef HOST_NAME_MAX 
#define HOST_NAME_MAX 256 
#endif 
 
extern int initserver(int, struct sockaddr *, sockl en_t, int); 
 
void 
serve(int sockfd) 
{ 
    int     clfd, status; 
    pid_t   pid; 



 
    for (;;) { 
        clfd = accept(sockfd, NULL, NULL); 
        if (clfd < 0) { 
            syslog(LOG_ERR, "ruptimed: accept error : %s", 
              strerror(errno)); 
            exit(1); 
        } 
        if ((pid = fork()) < 0) { 
            syslog(LOG_ERR, "ruptimed: fork error: %s", 
              strerror(errno)); 
            exit(1); 
        } else if (pid == 0) {  /* child */ 
            /* 
             * The parent called daemonize (Figure 13.1), so 
             * STDIN_FILENO, STDOUT_FILENO, and STD ERR_FILENO 
             * are already open to /dev/null. Thus,  the call to 
             * close doesn't need to be protected b y checks that 
             * clfd isn't already equal to one of t hese values. 
             */ 
            if (dup2(clfd, STDOUT_FILENO) != STDOUT _FILENO || 
              dup2(clfd, STDERR_FILENO) != STDERR_F ILENO) { 
                syslog(LOG_ERR, "ruptimed: unexpect ed error"); 
                exit(1); 
            } 
            close(clfd); 
            execl("/usr/bin/uptime", "uptime", (cha r *)0); 
            syslog(LOG_ERR, "ruptimed: unexpected r eturn from exec: %s",  
              strerror(errno)); 
        } else {        /* parent */ 
            close(clfd); 
            waitpid(pid, &status, 0); 
        } 
    } 
} 
 
int 
main(int argc, char *argv[]) 
{ 
    struct addrinfo *ailist, *aip; 
    struct addrinfo hint; 
    int             sockfd, err, n; 
    char            *host; 
 
    if (argc != 1) 
        err_quit("usage: ruptimed"); 
#ifdef _SC_HOST_NAME_MAX 
    n = sysconf(_SC_HOST_NAME_MAX); 
    if (n < 0)  /* best guess */ 
#endif 
        n = HOST_NAME_MAX; 
    host = malloc(n); 
    if (host == NULL) 
        err_sys("malloc error"); 
    if (gethostname(host, n) < 0) 
        err_sys("gethostname error"); 
    daemonize("ruptimed"); 
    hint.ai_flags = AI_CANONNAME; 
    hint.ai_family = 0; 
    hint.ai_socktype = SOCK_STREAM; 
    hint.ai_protocol = 0; 
    hint.ai_addrlen = 0; 



    hint.ai_canonname = NULL; 
    hint.ai_addr = NULL; 
    hint.ai_next = NULL; 
    if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) { 
        syslog(LOG_ERR, "ruptimed: getaddrinfo erro r: %s", 
          gai_strerror(err)); 
        exit(1); 
    } 
    for (aip = ailist; aip != NULL; aip = aip->ai_n ext) { 
        if ((sockfd = initserver(SOCK_STREAM, aip-> ai_addr, 
          aip->ai_addrlen, QLEN)) >= 0) { 
            serve(sockfd); 
            exit(0); 
        } 
    } 
    exit(1); 
} 

The previous examples have used connection-oriented sockets. But how do we choose the appropriate type? 
When do we use a connection-oriented socket, and when do we use a connectionless socket? The answer 
depends on how much work we want to do and what kind of tolerance we have for errors. 

With a connectionless socket, packets can arrive out of order, so if we can't fit all our data in one packet, we 
will have to worry about ordering in our application. The maximum packet size is a characteristic of the 
communication protocol. Also, with a connectionless socket, the packets can be lost. If our application can't 
tolerate this loss, we should use connection-oriented sockets. 

Tolerating packet loss means that we have two choices. If we intend to have reliable communication with our 
peer, we have to number our packets and request retransmission from the peer application when we detect a 
missing packet. We will also have to identify duplicate packets and discard them, since a packet might be 
delayed and appear to be lost, but show up after we have requested retransmission. 

The other choice we have is to deal with the error by letting the user retry the command. For simple applications, 
this might be adequate, but for complex applications, this usually isn't a viable alternative, so it is generally 
better to use connection-oriented sockets in this case. 

The drawbacks to connection-oriented sockets are that more work and time are needed to establish a connection, 
and each connection consumes more resources from the operating system. 

Example—Connectionless Client 

The program in Figure 16.17 is a version of the uptime  client command that uses the datagram 
socket interface. 

The main  function for the datagram-based client is similar to the one for the connection-oriented 
client, with the addition of installing a signal handler for SIGALRM. We use the alarm  function to 
avoid blocking indefinitely in the call to recvfrom . 

With the connection-oriented protocol, we needed to connect to the server before exchanging data. 
The arrival of the connect request was enough for the server to determine that it needed to provide 
service to a client. But with the datagram-based protocol, we need a way to notify the server that we 
want it to perform its service on our behalf. In this example, we simply send the server a 1-byte 
message. The server will receive it, get our address from the packet, and use this address to transmit 
its response. If the server offered multiple services, we could use this request message to indicate the 



service we want, but since the server does only one thing, the content of the 1-byte message doesn't 
matter. 

If the server isn't running, the client will block indefinitely in the call to recvfrom . With the 
connection-oriented example, the connect  call will fail if the server isn't running. To avoid blocking 
indefinitely, we set an alarm clock before calling recvfrom . 

Figure 16.17. Client command using datagram service 

#include "apue.h" 
#include <netdb.h> 
#include <errno.h> 
#include <sys/socket.h> 
 
#define BUFLEN      128 
#define TIMEOUT     20 
 
void 
sigalrm(int signo) 
{ 
} 
 
void 
print_uptime(int sockfd, struct addrinfo *aip) 
{ 
    int     n; 
    char    buf[BUFLEN]; 
 
    buf[0] = 0; 
    if (sendto(sockfd, buf, 1, 0, aip->ai_addr, aip ->ai_addrlen) < 0) 
        err_sys("sendto error"); 
    alarm(TIMEOUT); 
    if ((n = recvfrom(sockfd, buf, BUFLEN, 0, NULL,  NULL)) < 0) { 
        if (errno != EINTR) 
            alarm(0); 
        err_sys("recv error"); 
    } 
    alarm(0); 
    write(STDOUT_FILENO, buf, n); 
} 
int 
main(int argc, char *argv[]) 
{ 
    struct addrinfo     *ailist, *aip; 
    struct addrinfo      hint; 
    int                  sockfd, err; 
    struct sigaction     sa; 
 
    if (argc != 2) 
        err_quit("usage: ruptime hostname"); 
    sa.sa_handler = sigalrm; 
    sa.sa_flags = 0; 
    sigemptyset(&sa.sa_mask); 
    if (sigaction(SIGALRM, &sa, NULL) < 0) 
        err_sys("sigaction error"); 
    hint.ai_flags = 0; 
    hint.ai_family = 0; 
    hint.ai_socktype = SOCK_DGRAM; 
    hint.ai_protocol = 0; 
    hint.ai_addrlen = 0; 



    hint.ai_canonname = NULL; 
    hint.ai_addr = NULL; 
    hint.ai_next = NULL; 
    if ((err = getaddrinfo(argv[1], "ruptime", &hin t, &ailist)) != 0) 
        err_quit("getaddrinfo error: %s", gai_strer ror(err)); 
 
    for (aip = ailist; aip != NULL; aip = aip->ai_n ext) { 
        if ((sockfd = socket(aip->ai_family, SOCK_D GRAM, 0)) < 0) { 
            err = errno; 
        } else { 
            print_uptime(sockfd, aip); 
            exit(0); 
        } 
     } 
 
     fprintf(stderr, "can't contact %s: %s\n", argv [1], strerror(err));  
     exit(1); 
} 

Example—Connectionless Server 

The program in Figure 16.18 is the datagram version of the uptime  server. 

The server blocks in recvfrom  for a request for service. When a request arrives, we save the 
requester's address and use popen  to run the uptime  command. We send the output back to the client 
using the sendto  function, with the destination address set to the requester's address. 

Figure 16.18. Server providing system uptime over datagrams 

#include "apue.h" 
#include <netdb.h> 
#include <errno.h> 
#include <syslog.h> 
#include <sys/socket.h> 
 
#define BUFLEN      128 
#define MAXADDRLEN  256 
 
#ifndef HOST_NAME_MAX 
#define HOST_NAME_MAX 256 
#endif 
 
extern int initserver(int, struct sockaddr *, sockl en_t, int); 
 
void 
serve(int sockfd) 
{ 
    int         n; 
    socklen_t   alen; 
    FILE        *fp; 
    char        buf[BUFLEN]; 
    char        abuf[MAXADDRLEN]; 
 
    for (;;) { 
        alen = MAXADDRLEN; 
        if ((n = recvfrom(sockfd, buf, BUFLEN, 0, 
          (struct sockaddr *)abuf, &alen)) < 0) { 
            syslog(LOG_ERR, "ruptimed: recvfrom err or: %s", 
              strerror(errno)); 
            exit(1); 



        } 
        if ((fp = popen("/usr/bin/uptime", "r")) ==  NULL) { 
            sprintf(buf, "error: %s\n", strerror(er rno)); 
            sendto(sockfd, buf, strlen(buf), 0, 
              (struct sockaddr *)abuf, alen); 
        } else { 
            if (fgets(buf, BUFLEN, fp) != NULL) 
                sendto(sockfd, buf, strlen(buf), 0,  
 
                  (struct sockaddr *)abuf, alen); 
            pclose(fp); 
        } 
 
    } 
 
} 
 
int 
main(int argc, char *argv[]) 
{ 
    struct addrinfo *ailist, *aip; 
    struct addrinfo hint; 
    int             sockfd, err, n; 
    char            *host; 
 
    if (argc != 1) 
        err_quit("usage: ruptimed"); 
#ifdef _SC_HOST_NAME_MAX 
    n = sysconf(_SC_HOST_NAME_MAX); 
    if (n < 0)  /* best guess */ 
#endif 
        n = HOST_NAME_MAX; 
    host = malloc(n); 
    if (host == NULL) 
        err_sys("malloc error"); 
    if (gethostname(host, n) < 0) 
        err_sys("gethostname error"); 
    daemonize("ruptimed"); 
    hint.ai_flags = AI_CANONNAME; 
    hint.ai_family = 0; 
    hint.ai_socktype = SOCK_DGRAM; 
    hint.ai_protocol = 0; 
    hint.ai_addrlen = 0; 
    hint.ai_canonname = NULL; 
    hint.ai_addr = NULL; 
    hint.ai_next = NULL; 
    if ((err = getaddrinfo(host, "ruptime", &hint, &ailist)) != 0) {  
        syslog(LOG_ERR, "ruptimed: getaddrinfo erro r: %s", 
          gai_strerror(err)); 
        exit(1); 
    } 
    for (aip = ailist; aip != NULL; aip = aip->ai_n ext) { 
        if ((sockfd = initserver(SOCK_DGRAM, aip->a i_addr, 
          aip->ai_addrlen, 0)) >= 0) { 
            serve(sockfd); 
            exit(0); 
        } 
    } 
    exit(1); 
}  

 
 



16.6. Socket Options 

The socket mechanism provides two socket-option interfaces for us to control the behavior of sockets. One 
interface is used to set an option, and another interface allows us to query the state of an option. We can get and 
set three kinds of options: 

1. Generic options that work with all socket types 
2. Options that are managed at the socket level, but depend on the underlying protocols for support 
3. Protocol-specific options unique to each individual protocol 

The Single UNIX Specification defines only the socket-layer options (the first two option types in the preceding 
list). 

We can set a socket option with the setsockopt  function. 

#include <sys/socket.h> 
 
int setsockopt(int sockfd, int level, int option,  
 const void *val, 
               socklen_t len); 

 

Returns: 0 if OK, –1 on error 

 

The level argument identifies the protocol to which the option applies. If the option is a generic socket-level 
option, then level is set to SOL_SOCKET. Otherwise, level is set to the number of the protocol that controls the 
option. Examples are IPPROTO_TCP for TCP options and IPPROTO_IP for IP options. Figure 16.19 summarizes 
the generic socket-level options defined by the Single UNIX Specification. 

Figure 16.19. Socket options 

Option Type of val argument Description 

SO_ACCEPTCONN int  Return whether a socket is enabled for listening (getsockopt  only). 

SO_BROADCAST int  Broadcast datagrams if *val  is nonzero. 

SO_DEBUG int  Debugging in network drivers enabled if *val  is nonzero. 

SO_DONTROUTE int  Bypass normal routing if *val  is nonzero. 

SO_ERROR int  Return and clear pending socket error (getsockopt  only). 

SO_KEEPALIVE int  Periodic keep-alive messages enabled if *val  is nonzero. 

SO_LINGER struct linger  Delay time when unsent messages exist and socket is closed. 

SO_OOBINLINE int  Out-of-band data placed inline with normal data if *val  is nonzero. 

SO_RCVBUF int  The size in bytes of the receive buffer. 

SO_RCVLOWAT int  The minimum amount of data in bytes to return on a receive call. 



Figure 16.19. Socket options 

Option Type of val argument Description 

SO_RCVTIMEO struct timeval  The timeout value for a socket receive call. 

SO_REUSEADDR int  Reuse addresses in bind  if *val  is nonzero. 

SO_SNDBUF int  The size in bytes of the send buffer. 

SO_SNDLOWAT int  The minimum amount of data in bytes to transmit in a send call. 

SO_SNDTIMEO struct timeval  The timeout value for a socket send call. 

SO_TYPE int  Identify the socket type (getsockopt only ). 

 

The val argument points to a data structure or an integer, depending on the option. Some options are on/off 
switches. If the integer is nonzero, then the option is enabled. If the integer is zero, then the option is disabled. 
The len argument specifies the size of the object to which val points. 

We can find out the current value of an option with the getsockopt  function. 

#include <sys/socket.h> 
 
int getsockopt(int sockfd, int level, int option,  
 void *restrict val, 
               socklen_t *restrict lenp); 

 

Returns: 0 if OK, –1 on error 

 

Note that the lenp argument is a pointer to an integer. Before calling getsockopt , we set the integer to the size 
of the buffer where the option is to be copied. If the actual size of the option is greater than this size, the option 
is silently truncated. If the actual size of the option is less than or equal to this size, then the integer is updated 
with the actual size on return. 

Example 

The function in Figure 16.10 fails to operate properly when the server terminates and we try to 
restart it immediately. Normally, the implementation of TCP will prevent us from binding the same 
address until a timeout expires, which is usually on the order of several minutes. Luckily, the 
SO_REUSEADDR socket option allows us to bypass this restriction, as illustrated in Figure 16.20. 

To enable the SO_REUSEADDR option, we set an integer to a nonzero value and pass the address of the 
integer as the val argument to setsockopt . We set the len argument to the size of an integer to 
indicate the size of the object to which val points. 

Figure 16.20. Initialize a socket endpoint for use by a server with address reuse 

#include "apue.h" 
#include <errno.h> 



#include <sys/socket.h> 
 
int 
initserver(int type, const struct sockaddr *addr, s ocklen_t alen,  
  int qlen) 
{ 
    int fd, err; 
    int reuse = 1; 
 
    if ((fd = socket(addr->sa_family, type, 0)) < 0 ) 
        return(-1); 
    if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &r euse, 
      sizeof(int)) < 0) { 
        err = errno; 
        goto errout; 
    } 
    if (bind(fd, addr, alen) < 0) { 
        err = errno; 
        goto errout; 
    } 
    if (type == SOCK_STREAM || type == SOCK_SEQPACK ET) { 
        if (listen(fd, qlen) < 0) { 
            err = errno; 
            goto errout; 
        } 
    } 
    return(fd); 
 
errout: 
    close(fd); 
    errno = err; 
    return(-1); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16.7. Out-of-Band Data 

Out-of-band data is an optional feature supported by some communication protocols, allowing higher-priority 
delivery of data than normal. Out-of-band data is sent ahead of any data that is already queued for transmission. 
TCP supports out-of-band data, but UDP doesn't. The socket interface to out-of-band data is heavily influenced 
by TCP's implementation of out-of-band data. 

TCP refers to out-of-band data as "urgent" data. TCP supports only a single byte of urgent data, but allows 
urgent data to be delivered out of band from the normal data delivery mechanisms. To generate urgent data, we 
specify the MSG_OOB flag to any of the three send  functions. If we send more than one byte with the MSG_OOB 
flag, the last byte will be treated as the urgent-data byte. 

When urgent data is received, we are sent the SIGURG signal if we have arranged for signal generation by the 
socket. In Sections 3.14 and 14.6.2, we saw that we could use the F_SETOWN command to fcntl  to set the 
ownership of a socket. If the third argument to fcntl  is positive, it specifies a process ID. If it is a negative 
value other than -1, it represents the process group ID. Thus, we can arrange that our process receive signals 
from a socket by calling 

   fcntl(sockfd, F_SETOWN, pid); 

 

The F_GETOWN command can be used to retrieve the current socket ownership. As with the F_SETOWN command, 
a negative value represents a process group ID, and a positive value represents a process ID. Thus, the call 

   owner = fcntl(sockfd, F_GETOWN, 0); 

 

will return with owner  equal to the ID of the process configured to receive signals from the socket if owner  is 
positive and with the absolute value of owner  equal to the ID of the process group configured to receive signals 
from the socket if owner  is negative. 

TCP supports the notion of an urgent mark : the point in the normal data stream where the urgent data would go. 
We can choose to receive the urgent data inline with the normal data if we use the SO_OOBINLINE socket option. 
To help us identify when we have reached the urgent mark, we can use the sockatmark  function. 

#include <sys/socket.h> 
 
int sockatmark(int sockfd); 

 

Returns: 1 if at mark, 0 if not at mark, –1 on error 

 

When the next byte to be read is where the urgent mark is located, sockatmark  will return 1. 

When out-of-band data is present in a socket's read queue, the select  function (Section 14.5.1) will return the 
file descriptor as having an exception condition pending. We can choose to receive the urgent data inline with 
the normal data, or we can use the MSG_OOB flag with one of the recv  functions to receive the urgent data ahead 
of any other queue data. TCP queues only one byte of urgent data. If another urgent byte arrives before we 
receive the current one, the existing one is discarded. 



16.8. Nonblocking and Asynchronous I/O 

Normally, the recv  functions will block when no data is immediately available. Similarly, the send  functions 
will block when there is not enough room in the socket's output queue to send the message. This behavior 
changes when the socket is in nonblocking mode. In this case, these functions will fail instead of blocking, 
setting errno  to either EWOULDBLOCK or EAGAIN. When this happens, we can use either poll  or select  to 
determine when we can receive or transmit data. 

The real-time extensions in the Single UNIX Specification include support for a generic asynchronous I/O 
mechanism. The socket mechanism has its own way of handling asynchronous I/O, but this isn't standardized in 
the Single UNIX Specification. Some texts refer to the classic socket-based asynchronous I/O mechanism as 
"signal-based I/O" to distinguish it from the asynchronous I/O mechanism in the real-time extensions. 

With socket-based asynchronous I/O, we can arrange to be sent the SIGIO  signal when we can read data from a 
socket or when space becomes available in a socket's write queue. Enabling asynchronous I/O is a two-step 
process. 

1. Establish socket ownership so signals can be delivered to the proper processes. 
2. Inform the socket that we want it to signal us when I/O operations won't block. 

We can accomplish the first step in three ways. 

1. Use the F_SETOWN command with fcntl . 
2. Use the FIOSETOWN command with ioctl . 
3. Use the SIOCSPGRP command with ioctl . 

To accomplish the second step, we have two choices. 

1. Use the F_SETFL command with fcntl  and enable the O_ASYNC file flag. 
2. Use the FIOASYNC command with ioctl . 

We have several options, but they are not universally supported. Figure 16.21 summarizes the support for these 

options provided by the platforms discussed in this text. We show • where support is provided and where 
support depends on the particular domain. For example, on Linux, the UNIX domain sockets don't support 
FIOSETOWN or SIOCSPGRP. 

Figure 16.21. Socket asynchronous I/O management commands 

Mechanism POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

fcntl(fd, F_SETOWN, pid)  • • • • • 

ioctl(fd, FIOSETOWN, pid)    • 
 

• • 

ioctl(fd, SIOCSPGRP, pid)    • 
 

• • 

fcntl(fd, F_SETFL, 
flags|O_ASYNC)  

  • • •   



Figure 16.21. Socket asynchronous I/O management commands 

Mechanism POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

ioctl(fd, FIOASYNC, &n);    • • • • 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16.9. Summary 

In this chapter, we looked at the IPC mechanisms that allow processes to communicate with other processes on 
different machines as well as within the same machine. We discussed how socket endpoints are named and how 
we can discover the addresses to use when contacting servers. 

We presented examples of clients and servers that use connectionless (i.e., datagram-based) sockets and 
connection-oriented sockets. We briefly discussed asynchronous and nonblocking socket I/O and the interfaces 
used to manage socket options. 

In the next chapter, we will look at some advanced IPC topics, including how we can use sockets to pass file 
descriptors between processes running on the same machine. 
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17.1. Introduction 

In the previous two chapters, we discussed various forms of IPC, including pipes and sockets. In this chapter, 
we look at two advanced forms of IPC—STREAMS-based pipes and UNIX domain sockets—and what we can 
do with them. With these forms of IPC, we can pass open file descriptors between processes, servers can 
associate names with their file descriptors, and clients can use these names to rendezvous with the servers. We'll 
also see how the operating system provides a unique IPC channel per client. Many of the ideas that form the 
basis for the techniques described in this chapter come from the paper by Presotto and Ritchie [1990]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17.2. STREAMS-Based Pipes 

A STREAMS-based pipe ("STREAMS pipe," for short) is a bidirectional (full-duplex) pipe. To obtain 
bidirectional data flow between a parent and a child, only a single STREAMS pipe is required. 

Recall from Section 15.1 that STREAMS pipes are supported by Solaris and are available in an optional add-on 
package with Linux. 

Figure 17.1 shows the two ways to view a STREAMS pipe. The only difference between this picture and Figure 
15.2 is that the arrows have heads on both ends; since the STREAMS pipe is full duplex, data can flow in both 
directions. 

Figure 17.1. Two ways to view a STREAMS pipe 

 
 

If we look inside a STREAMS pipe (Figure 17.2), we see that it is simply two stream heads, with each write 
queue (WQ) pointing at the other's read queue (RQ). Data written to one end of the pipe is placed in messages 
on the other's read queue. 

Figure 17.2. Inside a STREAMS pipe 

 

 

Since a STREAMS pipe is a stream, we can push a STREAMS module onto either end of the pipe to process 
data written to the pipe (Figure 17.3). But if we push a module on one end, we can't pop it off the other end. If 
we want to remove it, we need to remove it from the same end on which it was pushed. 

 



Figure 17.3. Inside a STREAMS pipe with a module 

 

 

Assuming that we don't do anything fancy, such as pushing modules, a STREAMS pipe behaves just like a non-
STREAMS pipe, except that it supports most of the STREAMS ioctl  commands described in streamio (7). In 
Section 17.2.2, we'll see an example of pushing a module on a STREAMS pipe to provide unique connections 
when we give the pipe a name in the file system. 

Example 

Let's redo the coprocess example, Figure 15.18, with a single STREAMS pipe. Figure 17.4 shows 
the new main  function. The add2  coprocess is the same (Figure 15.17). We call a new function, 
s_pipe , to create a single STREAMS pipe. (We show versions of this function for both STREAMS 
pipes and UNIX domain sockets shortly.) 

The parent uses only fd[0] , and the child uses only fd[1] . Since each end of the STREAMS pipe is 
full duplex, the parent reads and writes fd[0] , and the child duplicates fd[1]  to both standard input 
and standard output. Figure 17.5 shows the resulting descriptors. Note that this example also works 
with full-duplex pipes that are not based on STREAMS, because it doesn't make use of any 
STREAMS features other than the full-duplex nature of STREAMS-based pipes. 

Rago [1993] covers STREAMS-based pipes in more detail. Recall from Figure 15.1 that FreeBSD 
supports full-duplex pipes, but these pipes are not based on the STREAMS mechanism. 

Figure 17.4. Program to drive the add2 filter, using a STREAMS pipe 

#include "apue.h" 
 
static void sig_pipe(int);      /* our signal handl er */ 
 
int 
main(void) 
{ 
    int     n; 
    int     fd[2]; 
    pid_t   pid; 
    char    line[MAXLINE]; 
 
    if (signal(SIGPIPE, sig_pipe) == SIG_ERR) 
        err_sys("signal error"); 
 
    if (s_pipe(fd) < 0)         /* need only a sing le stream pipe */  
        err_sys("pipe error"); 
    if ((pid = fork()) < 0) { 



        err_sys("fork error"); 
    } else if (pid > 0) {                           /* parent */ 
        close(fd[1]); 
        while (fgets(line, MAXLINE, stdin) != NULL)  { 
            n = strlen(line); 
            if (write(fd[0], line, n) != n) 
                err_sys("write error to pipe"); 
            if ((n = read(fd[0], line, MAXLINE)) < 0) 
                err_sys("read error from pipe"); 
            if (n == 0) { 
                err_msg("child closed pipe"); 
                break; 
            } 
            line[n] = 0; /* null terminate */ 
            if (fputs(line, stdout) == EOF) 
                err_sys("fputs error"); 
        } 
        if (ferror(stdin)) 
            err_sys("fgets error on stdin"); 
        exit(0); 
    } else {                                    /* child */ 
        close(fd[0]); 
        if (fd[1] != STDIN_FILENO && 
          dup2(fd[1], STDIN_FILENO) != STDIN_FILENO ) 
            err_sys("dup2 error to stdin"); 
        if (fd[1] != STDOUT_FILENO && 
          dup2(fd[1], STDOUT_FILENO) != STDOUT_FILE NO) 
               err_sys("dup2 error to stdout"); 
        if (execl("./add2", "add2", (char *)0) < 0)  
            err_sys("execl error"); 
    } 
    exit(0); 
} 
static void 
sig_pipe(int signo) 
{ 
    printf("SIGPIPE caught\n"); 
    exit(1); 
} 

Figure 17.5. Arrangement of descriptors for coprocess 

 

 

We define the function s_pipe  to be similar to the standard pipe  function. Both functions take the same 
argument, but the descriptors returned by s_pipe  are open for reading and writing. 

Example—STREAMS-Based s_pipe Function 

Figure 17.6 shows the STREAMS-based version of the s_pipe  function. This version simply calls 
the standard pipe  function, which creates a full-duplex pipe. 



Figure 17.6. STREAMS version of the s_pipe function 

#include "apue.h" 
/* 
 * Returns a STREAMS-based pipe, with the two file descriptors  
 * returned in fd[0] and fd[1]. 
 */ 
int 
s_pipe(int fd[2]) 
{ 
    return(pipe(fd)); 
} 

 

17.2.1. Naming STREAMS Pipes 

Normally, pipes can be used only between related processes: child processes inheriting pipes from their parent 
processes. In Section 15.5, we saw that unrelated processes can communicate using FIFOs, but this provides 
only a one-way communication path. The STREAMS mechanism provides a way for processes to give a pipe a 
name in the file system. This bypasses the problem of dealing with unidirectional FIFOs. 

We can use the fattach  function to give a STREAMS pipe a name in the file system. 

#include <stropts.h> 
 
int fattach(int filedes, const char *path);  

 

Returns: 0 if OK, –1 on error 

 

The path argument must refer to an existing file, and the calling process must either own the file and have write 
permissions to it or be running with superuser privileges. 

Once a STREAMS pipe is attached to the file system namespace, the underlying file is inaccessible. Any 
process that opens the name will gain access to the pipe, not the underlying file. Any processes that had the 
underlying file open before fattach  was called, however, can continue to access the underlying file. Indeed, 
these processes generally will be unaware that the name now refers to a different file. 

Figure 17.7 shows a pipe attached to the pathname /tmp/pipe . Only one end of the pipe is attached to a name 
in the file system. The other end is used to communicate with processes that open the attached filename. Even 
though it can attach any kind of STREAMS file descriptor to a name in the file system, the fattach  function is 
most commonly used to give a name to a STREAMS pipe. 

 

 

 

 

 



Figure 17.7. A pipe mounted on a name in the file system 

 

 

A process can call fdetach  to undo the association between a STREAMS file and the name in the file system. 

#include <stropts.h> 
 
int fdetach(const char *path);  

 

Returns: 0 if OK, –1 on error 

 

After fdetach  is called, any processes that had accessed the STREAMS pipe by opening the path will still 
continue to access the stream, but subsequent opens of the path will access the original file residing in the file 
system. 

17.2.2. Unique Connections 

Although we can attach one end of a STREAMS pipe to the file system namespace, we still have problems if 
multiple processes want to communicate with a server using the named STREAMS pipe. Data from one client 
will be interleaved with data from the other clients writing to the pipe. Even if we guarantee that the clients 
write less than PIPE_BUF bytes so that the writes are atomic, we have no way to write back to an individual 
client and guarantee that the intended client will read the message. With multiple clients reading from the same 
pipe, we cannot control which one will be scheduled and actually read what we send. 

The connld  STREAMS module solves this problem. Before attaching a STREAMS pipe to a name in the file 
system, a server process can push the connld  module on the end of the pipe that is to be attached. This results in 
the configuration shown in Figure 17.8. 

 

 

 

 



Figure 17.8. Setting up connld for unique connections 

 

 

In Figure 17.8, the server process has attached one end of its pipe to the path /tmp/pipe . We show a dotted line 
to indicate a client process in the middle of opening the attached STREAMS pipe. Once the open completes, we 
have the configuration shown in Figure 17.9. 

Figure 17.9. Using connld to make unique connections 

 
 

The client process never receives an open file descriptor for the end of the pipe that it opened. Instead, the 
operating system creates a new pipe and returns one end to the client process as the result of opening 
/tmp/pipe . The system sends the other end of the new pipe to the server process by passing its file descriptor 
over the existing (attached) pipe, resulting in a unique connection between the client process and the server 
process. We'll see the mechanics of passing file descriptors using STREAMS pipes in Section 17.4.1. 

The fattach  function is built on top of the mount  system call. This facility is known as mounted streams. 
Mounted streams and the connld  module were developed by Presotto and Ritchie [1990] for the Research 
UNIX system. These mechanisms were then picked up by SVR4. 



We will now develop three functions that can be used to create unique connections between unrelated processes. 
These functions mimic the connection-oriented socket functions discussed in Section 16.4. We use STREAMS 
pipes for the underlying communication mechanism here, but we'll see alternate implementations of these 
functions that use UNIX domain sockets in Section 17.3. 

#include "apue.h" 
 
int serv_listen(const char *name); 

 

Returns: file descriptor to listen on if OK, negative value on error 

int serv_accept(int listenfd, uid_t *uidptr); 

 

Returns: new file descriptor if OK, negative value on error 

int cli_conn(const char *name); 

 

Returns: file descriptor if OK, negative value on error 

 

The serv_listen  function (Figure 17.10) can be used by a server to announce its willingness to listen for client 
connect requests on a well-known name (some pathname in the file system). Clients will use this name when 
they want to connect to the server. The return value is the server's end of the STREAMS pipe. 

Figure 17.10. The serv_listen function using STREAMS pipes 

#include "apue.h" 
#include <fcntl.h> 
#include <stropts.h> 
 
/* pipe permissions: user rw, group rw, others rw * / 
#define FIFO_MODE (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP| S_IROTH|S_IWOTH)  
 
/* 
 * Establish an endpoint to listen for connect requ ests. 
 * Returns fd if all OK, <0 on error 
 */ 
int 
serv_listen(const char *name) 
{ 
   int     tempfd; 
   int     fd[2]; 
 
   /* 
    * Create a file: mount point for fattach(). 
    */ 
   unlink(name); 
   if ((tempfd = creat(name, FIFO_MODE)) < 0) 
       return(-1); 
   if (close(tempfd) < 0) 
       return(-2); 
   if (pipe(fd) < 0) 
       return(-3); 
   /* 
    * Push connld & fattach() on fd[1]. 
    */ 



   if (ioctl(fd[1], I_PUSH, "connld") < 0) { 
       close(fd[0]); 
       close(fd[1]); 
       return(-4); 
   } 
   if (fattach(fd[1], name) < 0) { 
       close(fd[0]); 
       close(fd[1]); 
       return(-5); 
   } 
   close(fd[1]); /* fattach holds this end open */ 
 
   return(fd[0]); /* fd[0] is where client connecti ons arrive */ 
} 

The serv_accept  function (Figure 17.11) is used by a server to wait for a client's connect request to arrive. 
When one arrives, the system automatically creates a new STREAMS pipe, and the function returns one end to 
the server. Additionally, the effective user ID of the client is stored in the memory to which uidptr points. 

Figure 17.11. The serv_accept function using STREAMS pipes 

#include "apue.h" 
#include <stropts.h> 
 
/* 
 * Wait for a client connection to arrive, and acce pt it. 
 * We also obtain the client's user ID. 
 * Returns new fd if all OK, <0 on error. 
 */ 
int 
serv_accept(int listenfd, uid_t *uidptr) 
{ 
    struct strrecvfd    recvfd; 
    if (ioctl(listenfd, I_RECVFD, &recvfd) < 0) 
        return(-1);     /* could be EINTR if signal  caught */  
    if (uidptr != NULL) 
        *uidptr = recvfd.uid;   /* effective uid of  caller */  
    return(recvfd.fd);  /* return the new descripto r */ 
} 

 

A client calls cli_conn  (Figure 17.12) to connect to a server. The name argument specified by the client must 
be the same name that was advertised by the server's call to serv_listen . On return, the client gets a file 
descriptor connected to the server. 

Figure 17.12. The cli_conn function using STREAMS pipes 

#include "apue.h" 
#include <fcntl.h> 
#include <stropts.h> 
 
/* 
 * Create a client endpoint and connect to a server .  
 * Returns fd if all OK, <0 on error. 
 */ 
int 
cli_conn(const char *name) 
{ 



    int     fd; 
 
    /* open the mounted stream */ 
    if ((fd = open(name, O_RDWR)) < 0) 
        return(-1); 
    if (isastream(fd) == 0) { 
        close(fd); 
        return(-2); 
    } 
    return(fd); 
} 

 

We double-check that the returned descriptor refers to a STREAMS device, in case the server has not been 
started but the pathname still exists in the file system. In Section 17.6, we'll see how these three functions are 
used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17.3. UNIX Domain Sockets 

UNIX domain sockets are used to communicate with processes running on the same machine. Although Internet 
domain sockets can be used for this same purpose, UNIX domain sockets are more efficient. UNIX domain 
sockets only copy data; they have no protocol processing to perform, no network headers to add or remove, no 
checksums to calculate, no sequence numbers to generate, and no acknowledgements to send. 

UNIX domain sockets provide both stream and datagram interfaces. The UNIX domain datagram service is 
reliable, however. Messages are neither lost nor delivered out of order. UNIX domain sockets are like a cross 
between sockets and pipes. You can use the network-oriented socket interfaces with them, or you can use the 
socketpair  function to create a pair of unnamed, connected, UNIX domain sockets. 

#include <sys/socket.h> 
 
int socketpair(int domain, int type, int protocol,  
 int sockfd[2]); 

 

Returns: 0 if OK, –1 on error 

 

Although the interface is sufficiently general to allow socketpair  to be used with arbitrary domains, operating 
systems typically provide support only for the UNIX domain. 

Example—s_pipe Function Using UNIX Domain Sockets 

Figure 17.13 shows the socket-based version of the s_pipe  function previously shown in Figure 
17.6. The function creates a pair of connected UNIX domain stream sockets. 

Some BSD-based systems use UNIX domain sockets to implement pipes. But when pipe  is called, 
the write end of the first descriptor and the read end of the second descriptor are both closed. To get 
a full-duplex pipe, we must call socketpair  directly. 

Figure 17.13. Socket version of the s_pipe function 

#include "apue.h" 
#include <sys/socket.h> 
 
/* 
 * Returns a full-duplex "stream" pipe (a UNIX doma in socket)  
 * with the two file descriptors returned in fd[0] and fd[1].  
 */ 
int 
s_pipe(int fd[2]) 
{ 
    return(socketpair(AF_UNIX, SOCK_STREAM, 0, fd)) ; 
} 

 

17.3.1. Naming UNIX Domain Sockets 

Although the socketpair  function creates sockets that are connected to each other, the individual sockets don't 
have names. This means that they can't be addressed by unrelated processes. 



In Section 16.3.4, we learned how to bind an address to an Internet domain socket. Just as with Internet domain 
sockets, UNIX domain sockets can be named and used to advertise services. The address format used with 
UNIX domain sockets differs from Internet domain sockets, however. 

Recall from Section 16.3 that socket address formats differ from one implementation to the next. An address for 
a UNIX domain socket is represented by a sockaddr_un  structure. On Linux 2.4.22 and Solaris 9, the 
sockaddr_un  structure is defined in the header <sys/un.h>  as follows: 

   struct sockaddr_un { 
        sa_family_t sun_family;      /* AF_UNIX */ 
        char        sun_path[108];   /* pathname */  
   }; 

 

On FreeBSD 5.2.1 and Mac OS X 10.3, however, the sockaddr_un  structure is defined as 

   struct sockaddr_un { 
        unsigned char  sun_len;         /* length i ncluding null */ 
        sa_family_t    sun_family;      /* AF_UNIX */ 
        char           sun_path[104];   /* pathname  */ 
   }; 

 

The sun_path  member of the sockaddr_un  structure contains a pathname. When we bind an address to a 
UNIX domain socket, the system creates a file of type S_IFSOCK with the same name. 

This file exists only as a means of advertising the socket name to clients. The file can't be opened or otherwise 
used for communication by applications. 

If the file already exists when we try to bind the same address, the bind  request will fail. When we close the 
socket, this file is not automatically removed, so we need to make sure that we unlink it before our application 
exits. 

Example 

The program in Figure 17.14 shows an example of binding an address to a UNIX domain socket. 

When we run this program, the bind  request succeeds, but if we run the program a second time, we get an error, 
because the file already exists. The program won't succeed again until we remove the file. 

$ ./a.out                                       run  the program 
UNIX domain socket bound 
$ ls -l foo.socket                              loo k at the socket file 
srwxrwxr-x 1 sar        0 Aug 22 12:43 foo.socket 
$ ./a.out                                       try  to run the program again 
bind failed: Address already in use 
$ rm foo.socket                                 rem ove the socket file 
$ ./a.out                                       run  the program a third time 
UNIX domain socket bound                        now  it succeeds 
 
 
      

 

The way we determine the size of the address to bind is to determine the offset of the sun_path  member in the 



sockaddr_un  structure and add to this the length of the pathname, not including the terminating null byte. Since 
implementations vary in what members precede sun_path  in the sockaddr_un  structure, we use the offsetof  
macro from <stddef.h>  (included by apue.h ) to calculate the offset of the sun_path  member from the start of 
the structure. If you look in <stddef.h> , you'll see a definition similar to the following: 

#define offsetof(TYPE, MEMBER) ((int)&((TYPE *)0)-> MEMBER) 

 

The expression evaluates to an integer, which is the starting address of the member, assuming that the structure 
begins at address 0. 

Figure 17.14. Binding an address to a UNIX domain socket 

#include "apue.h" 
#include <sys/socket.h> 
#include <sys/un.h> 
 
int 
main(void) 
{ 
    int fd, size; 
    struct sockaddr_un un; 
 
    un.sun_family = AF_UNIX; 
    strcpy(un.sun_path, "foo.socket"); 
    if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)  
        err_sys("socket failed"); 
    size = offsetof(struct sockaddr_un, sun_path) +  strlen(un.sun_path);  
    if (bind(fd, (struct sockaddr *)&un, size) < 0)  
        err_sys("bind failed"); 
    printf("UNIX domain socket bound\n"); 
    exit(0); 
} 

 

17.3.2. Unique Connections 

A server can arrange for unique UNIX domain connections to clients using the standard bind , listen , and 
accept  functions. Clients use connect  to contact the server; after the connect request is accepted by the server, 
a unique connection exists between the client and the server. This style of operation is the same that we 
illustrated with Internet domain sockets in Figures 16.14 and 16.15. 

Figure 17.15 shows the UNIX domain socket version of the serv_listen  function. 

Figure 17.15. The serv_listen function for UNIX domain sockets 

#include "apue.h" 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <errno.h> 
 
#define QLEN 10 
 
/* 
 * Create a server endpoint of a connection. 
 * Returns fd if all OK, <0 on error. 



 */ 
int 
serv_listen(const char *name) 
{ 
    int                 fd, len, err, rval; 
    struct sockaddr_un  un; 
 
    /* create a UNIX domain stream socket */ 
    if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)  
       return(-1); 
    unlink(name);   /* in case it already exists */  
 
    /* fill in socket address structure */ 
    memset(&un, 0, sizeof(un)); 
    un.sun_family = AF_UNIX; 
    strcpy(un.sun_path, name); 
    len = offsetof(struct sockaddr_un, sun_path) + strlen(name);  
 
    /* bind the name to the descriptor */ 
    if (bind(fd, (struct sockaddr *)&un, len) < 0) { 
        rval = -2; 
        goto errout; 
    } 
    if (listen(fd, QLEN) < 0) { /* tell kernel we'r e a server */  
        rval = -3; 
        goto errout; 
    } 
    return(fd); 
 
errout: 
    err = errno; 
    close(fd); 
    errno = err; 
    return(rval); 
} 

First, we create a single UNIX domain socket by calling socket . We then fill in a sockaddr_un  structure with 
the well-known pathname to be assigned to the socket. This structure is the argument to bind . Note that we 
don't need to set the sun_len  field present on some platforms, because the operating system sets this for us 
using the address length we pass to the bind  function. 

Finally, we call listen  (Section 16.4) to tell the kernel that the process will be acting as a server awaiting 
connections from clients. When a connect request from a client arrives, the server calls the serv_accept  
function (Figure 17.16). 

Figure 17.16. The serv_accept function for UNIX domain sockets 

#include "apue.h" 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <time.h> 
#include <errno.h> 
 
#define STALE   30  /* client's name can't be older  than this (sec) */ 
 
/* 
 * Wait for a client connection to arrive, and acce pt it. 
 * We also obtain the client's user ID from the pat hname 
 * that it must bind before calling us. 



 * Returns new fd if all OK, <0 on error 
 */ 
int 
serv_accept(int listenfd, uid_t *uidptr) 
{ 
    int                 clifd, len, err, rval; 
    time_t              staletime; 
    struct sockaddr_un  un; 
    struct stat         statbuf; 
 
    len = sizeof(un); 
    if ((clifd = accept(listenfd, (struct sockaddr *)&un, &len)) < 0) 
        return(-1);     /* often errno=EINTR, if si gnal caught */ 
 
    /* obtain the client's uid from its calling add ress */ 
    len - = offsetof(struct sockaddr_un, sun_path); /* len of  pathname */  
    un.sun_path[len] = 0;           /* null termina te */ 
 
    if (stat(un.sun_path, &statbuf) < 0) { 
        rval = -2; 
        goto errout; 
    } 
#ifdef S_ISSOCK     /* not defined for SVR4 */ 
    if (S_ISSOCK(statbuf.st_mode) == 0) { 
        rval = -3;      /* not a socket */ 
        goto errout; 
    } 
#endif 
    if ((statbuf.st_mode & (S_IRWXG | S_IRWXO)) || 
        (statbuf.st_mode & S_IRWXU) != S_IRWXU) { 
          rval = -4;     /* is not rwx------ */ 
          goto errout; 
    } 
 
    staletime = time(NULL) - STALE; 
    if (statbuf.st_atime < staletime || 
        statbuf.st_ctime < staletime || 
        statbuf.st_mtime < staletime) { 
          rval = -5;    /* i-node is too old */ 
          goto errout; 
    } 
    if (uidptr != NULL) 
        *uidptr = statbuf.st_uid;   /* return uid o f caller */ 
    unlink(un.sun_path);        /* we're done with pathname now */ 
    return(clifd); 
 
errout: 
    err = errno; 
    close(clifd); 
    errno = err; 
    return(rval); 
} 

The server blocks in the call to accept , waiting for a client to call cli_conn . When accept  returns, its return 
value is a brand new descriptor that is connected to the client. (This is somewhat similar to what the connld  
module does with the STREAMS subsystem.) Additionally, the pathname that the client assigned to its socket 
(the name that contained the client's process ID) is also returned by accept , through the second argument (the 
pointer to the sockaddr_un  structure). We null terminate this pathname and call stat . This lets us verify that 
the pathname is indeed a socket and that the permissions allow only user-read, user-write, and user-execute. We 



also verify that the three times associated with the socket are no older than 30 seconds. (Recall from Section 
6.10 that the time  function returns the current time and date in seconds past the Epoch.) 

If all these checks are OK, we assume that the identity of the client (its effective user ID) is the owner of the 
socket. Although this check isn't perfect, it's the best we can do with current systems. (It would be better if the 
kernel returned the effective user ID to accept  as the I_RECVFD ioctl  command does.) 

The client initiates the connection to the server by calling the cli_conn  function (Figure 17.17). 

Figure 17.17. The cli_conn function for UNIX domain sockets 

#include "apue.h" 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <errno.h> 
 
#define CLI_PATH    "/var/tmp/"      /* +5 for pid = 14 chars */ 
#define CLI_PERM    S_IRWXU          /* rwx for use r only */ 
 
/* 
 * Create a client endpoint and connect to a server . 
 * Returns fd if all OK, <0 on error. 
 */ 
int 
cli_conn(const char *name) 
{ 
    int                fd, len, err, rval; 
    struct sockaddr_un un; 
 
    /* create a UNIX domain stream socket */ 
    if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)  
        return(-1); 
 
    /* fill socket address structure with our addre ss */ 
    memset(&un, 0, sizeof(un)); 
    un.sun_family = AF_UNIX; 
    sprintf(un.sun_path, "%s%05d", CLI_PATH, getpid ()); 
    len = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);  
 
    unlink(un.sun_path);        /* in case it alrea dy exists */ 
    if (bind(fd, (struct sockaddr *)&un, len) < 0) { 
        rval = -2; 
        goto errout; 
    } 
    if (chmod(un.sun_path, CLI_PERM) < 0) { 
        rval = -3; 
        goto errout; 
    } 
    /* fill socket address structure with server's address */ 
    memset(&un, 0, sizeof(un)); 
    un.sun_family = AF_UNIX; 
    strcpy(un.sun_path, name); 
    len = offsetof(struct sockaddr_un, sun_path) + strlen(name); 
    if (connect(fd, (struct sockaddr *)&un, len) < 0) { 
        rval = -4; 
        goto errout; 
    } 
    return(fd); 
 
errout: 



    err = errno; 
    close(fd); 
    errno = err; 
    return(rval); 
} 

We call socket  to create the client's end of a UNIX domain socket. We then fill in a sockaddr_un  structure 
with a client-specific name. 

We don't let the system choose a default address for us, because the server would be unable to distinguish one 
client from another. Instead, we bind our own address, a step we usually don't take when developing a client 
program that uses sockets. 

The last five characters of the pathname we bind are made from the process ID of the client. We call unlink , 
just in case the pathname already exists. We then call bind  to assign a name to the client's socket. This creates a 
socket file in the file system with the same name as the bound pathname. We call chmod to turn off all 
permissions other than user-read, user-write, and user-execute. In serv_accept , the server checks these 
permissions and the user ID of the socket to verify the client's identity. 

We then have to fill in another sockaddr_un  structure, this time with the well-known pathname of the server. 
Finally, we call the connect  function to initiate the connection with the server. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17.4. Passing File Descriptors 

The ability to pass an open file descriptor between processes is powerful. It can lead to different ways of 
designing client–server applications. It allows one process (typically a server) to do everything that is required 
to open a file (involving such details as translating a network name to a network address, dialing a modem, 
negotiating locks for the file, etc.) and simply pass back to the calling process a descriptor that can be used with 
all the I/O functions. All the details involved in opening the file or device are hidden from the client. 

We must be more specific about what we mean by "passing an open file descriptor" from one process to another. 
Recall Figure 3.7, which showed two processes that have opened the same file. Although they share the same v-
node, each process has its own file table entry. 

When we pass an open file descriptor from one process to another, we want the passing process and the 
receiving process to share the same file table entry. Figure 17.18 shows the desired arrangement. 

Figure 17.18. Passing an open file from the top process to the bottom process 

 
 

Technically, we are passing a pointer to an open file table entry from one process to another. This pointer is 
assigned the first available descriptor in the receiving process. (Saying that we are passing an open descriptor 
mistakenly gives the impression that the descriptor number in the receiving process is the same as in the sending 
process, which usually isn't true.) Having two processes share an open file table is exactly what happens after a 
fork  (recall Figure 8.2). 

What normally happens when a descriptor is passed from one process to another is that the sending process, 
after passing the descriptor, then closes the descriptor. Closing the descriptor by the sender doesn't really close 
the file or device, since the descriptor is still considered open by the receiving process (even if the receiver 
hasn't specifically received the descriptor yet). 



We define the following three functions that we use in this chapter to send and receive file descriptors. Later in 
this section, we'll show the code for these three functions for both STREAMS and sockets. 

#include "apue.h" 
 
int send_fd(int fd, int fd_to_send); 
int send_err(int fd, int status, const char *errmsg ); 

 

Both return: 0 if OK, –1 on error 

int recv_fd(int fd, ssize_t (*userfunc)(int, const void *, size_t));  

 

Returns: file descriptor if OK, negative value on error 

 

A process (normally a server) that wants to pass a descriptor to another process calls either send_fd  or 
send_err . The process waiting to receive the descriptor (the client) calls recv_fd . 

The send_fd  function sends the descriptor fd_to_send across using the STREAMS pipe or UNIX domain 
socket represented by fd. 

We'll use the term s-pipe to refer to a bidirectional communication channel that could be implemented as either 
a STREAMS pipe or a UNIX domain stream socket. 

The send_err  function sends the errmsg using fd, followed by the status byte. The value of status must be in 
the range –1 through –255. 

Clients call recv_fd  to receive a descriptor. If all is OK (the sender called send_fd ), the non-negative 
descriptor is returned as the value of the function. Otherwise, the value returned is the status that was sent by 
send_err  (a negative value in the range –1 through -255). Additionally, if an error message was sent by the 
server, the client's userfunc is called to process the message. The first argument to userfunc is the constant 
STDERR_FILENO, followed by a pointer to the error message and its length. The return value from userfunc is the 
number of bytes written or a negative number on error. Often, the client specifies the normal write  function as 
the userfunc. 

We implement our own protocol that is used by these three functions. To send a descriptor, send_fd  sends two 
bytes of 0, followed by the actual descriptor. To send an error, send_err  sends the errmsg, followed by a byte 
of 0, followed by the absolute value of the status byte (1 through 255). The recv_fd  function reads everything 
on the s-pipe until it encounters a null byte. Any characters read up to this point are passed to the caller's 
userfunc. The next byte read by recv_fd  is the status byte. If the status byte is 0, a descriptor was passed; 
otherwise, there is no descriptor to receive. 

The function send_err  calls the send_fd  function after writing the error message to the s-pipe. This is shown 
in Figure 17.19. 

Figure 17.19. The send_err function 

#include "apue.h" 
/* 
 * Used when we had planned to send an fd using sen d_fd(), 
 * but encountered an error instead. We send the er ror back 



 * using the send_fd()/recv_fd() protocol. 
 */ 
int 
send_err(int fd, int errcode, const char *msg) 
{ 
    int     n; 
 
    if ((n = strlen(msg)) > 0) 
        if (writen(fd, msg, n) != n)    /* send the  error message */  
            return(-1); 
 
    if (errcode >= 0) 
        errcode = -1;   /* must be negative */ 
 
    if (send_fd(fd, errcode) < 0) 
        return(-1); 
 
    return(0); 
} 

 

In the next two sections, we'll look at the implementation of the send_fd  and recv_fd  functions. 

17.4.1. Passing File Descriptors over STREAMS-Based Pipes 

With STREAMS pipes, file descriptors are exchanged using two ioctl  commands: I_SENDFD and I_RECVFD. 
To send a descriptor, we set the third argument for ioctl  to the actual descriptor. This is shown in Figure 17.20. 

Figure 17.20. The send_fd function for STREAMS pipes 

#include "apue.h" 
#include <stropts.h> 
 
/* 
 * Pass a file descriptor to another process. 
 * If fd<0, then -fd is sent back instead as the er ror status. 
 */ 
int 
send_fd(int fd, int fd_to_send) 
{ 
    char    buf[2];     /* send_fd()/recv_fd() 2-by te protocol */  
     
    buf[0] = 0;         /* null byte flag to recv_f d() */ 
    if (fd_to_send < 0) { 
        buf[1] = -fd_to_send;   /* nonzero status m eans error */ 
        if (buf[1] == 0) 
            buf[1] = 1; /* -256, etc. would screw u p protocol */ 
    } else { 
        buf[1] = 0;     /* zero status means OK */ 
    } 
 
    if (write(fd, buf, 2) != 2) 
        return(-1); 
    if (fd_to_send >= 0) 
        if (ioctl(fd, I_SENDFD, fd_to_send) < 0) 
            return(-1); 
    return(0); 
} 



When we receive a descriptor, the third argument for ioctl  is a pointer to a strrecvfd  structure: 

   struct strrecvfd { 
       int    fd;       /* new descriptor */ 
       uid_t  uid;      /* effective user ID of sen der */ 
       gid_t  gid;      /* effective group ID of se nder */ 
       char   fill[8]; 
   }; 

 

The recv_fd  function reads the STREAMS pipe until the first byte of the 2-byte protocol (the null byte) is 
received. When we issue the I_RECVFD ioctl  command, the next message on the stream head's read queue 
must be a descriptor from an I_SENDFD call, or we get an error. This function is shown in Figure 17.21. 

Figure 17.21. The recv_fd function for STREAMS pipes 

#include "apue.h" 
#include <stropts.h> 
 
/* 
 * Receive a file descriptor from another process ( a server). 
 * In addition, any data received from the server i s passed 
 * to (*userfunc)(STDERR_FILENO, buf, nbytes). We h ave a 
 * 2-byte protocol for receiving the fd from send_f d(). 
 */ 
int 
recv_fd(int fd, ssize_t (*userfunc)(int, const void  *, size_t)) 
{ 
    int                 newfd, nread, flag, status;  
    char                *ptr; 
    char                buf[MAXLINE]; 
    struct strbuf       dat; 
    struct strrecvfd    recvfd; 
 
    status = -1; 
    for ( ; ; ) { 
        dat.buf = buf; 
        dat.maxlen = MAXLINE; 
        flag = 0; 
        if (getmsg(fd, NULL, &dat, &flag) < 0) 
            err_sys("getmsg error"); 
        nread = dat.len; 
        if (nread == 0) { 
            err_ret("connection closed by server");  
            return(-1); 
        } 
        /* 
         * See if this is the final data with null & status. 
         * Null must be next to last byte of buffer , status 
         * byte is last byte. Zero status means the re must 
         * be a file descriptor to receive. 
         */ 
        for (ptr = buf; ptr < &buf[nread]; ) { 
            if (*ptr++ == 0) { 
                if (ptr != &buf[nread-1]) 
                    err_dump("message format error" ); 
                 status = *ptr & 0xFF;   /* prevent  sign extension */  
                 if (status == 0) { 
                     if (ioctl(fd, I_RECVFD, &recvf d) < 0) 
                         return(-1); 
                     newfd = recvfd.fd;  /* new des criptor */ 



                 } else { 
                     newfd = -status; 
                 } 
                 nread -= 2; 
            } 
        } 
        if (nread > 0) 
            if ((*userfunc)(STDERR_FILENO, buf, nre ad) != nread) 
                 return(-1); 
 
        if (status >= 0)    /* final data has arriv ed */ 
            return(newfd);  /* descriptor, or -stat us */ 
    } 
} 

17.4.2. Passing File Descriptors over UNIX Domain Sockets 

To exchange file descriptors using UNIX domain sockets, we call the sendmsg (2) and recvmsg (2) functions 
(Section 16.5). Both functions take a pointer to a msghdr  structure that contains all the information on what to 
send or receive. The structure on your system might look similar to the following: 

    struct msghdr { 
        void         *msg_name;        /* optional address */ 
        socklen_t     msg_namelen;     /* address s ize in bytes */ 
        struct iovec *msg_iov;         /* array of I/O buffers */ 
        int           msg_iovlen;      /* number of  elements in array */ 
        void         *msg_control;     /* ancillary  data */ 
        socklen_t     msg_controllen;  /* number of  ancillary bytes */ 
        int           msg_flags;       /* flags for  received message */ 
    }; 

 

The first two elements are normally used for sending datagrams on a network connection, where the destination 
address can be specified with each datagram. The next two elements allow us to specify an array of buffers 
(scatter read or gather write), as we described for the readv  and writev  functions (Section 14.7). The 
msg_flags  field contains flags describing the message received, as summarized in Figure 16.13. 

Two elements deal with the passing or receiving of control information. The msg_control  field points to a 
cmsghdr  (control message header) structure, and the msg_controllen  field contains the number of bytes of 
control information. 

    struct cmsghdr  { 
        socklen_t   cmsg_len;    /* data byte count , including header */ 
        int         cmsg_level;  /* originating pro tocol */ 
        int         cmsg_type;   /* protocol-specif ic type */ 
        /* followed by the actual control message d ata */ 
    }; 

 

To send a file descriptor, we set cmsg_len  to the size of the cmsghdr  structure, plus the size of an integer (the 
descriptor). The cmsg_level  field is set to SOL_SOCKET, and cmsg_type  is set to SCM_RIGHTS, to indicate that 
we are passing access rights. (SCM stands for socket-level control message.) Access rights can be passed only 
across a UNIX domain socket. The descriptor is stored right after the cmsg_type  field, using the macro 
CMSG_DATA to obtain the pointer to this integer. 



Three macros are used to access the control data, and one macro is used to help calculate the value to be used 
for cmsg_len . 

#include <sys/socket.h> 
 
unsigned char *CMSG_DATA(struct cmsghdr *cp); 

 

Returns: pointer to data associated with cmsghdr  structure 

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *mp);  

 

Returns: pointer to first cmsghdr  structure associated  
with the msghdr  structure, or NULL if none exists 

struct cmsghdr *CMSG_NXTHDR(struct msghdr *mp, 
                            struct cmsghdr *cp); 

 

Returns: pointer to next cmsghdr  structure associated with  
the msghdr  structure given the current cmsghdr   

structure, or NULL if we're at the last one 

unsigned int CMSG_LEN(unsigned int nbytes); 

 

Returns: size to allocate for data object nbytes large 

 

The Single UNIX Specification defines the first three macros, but omits CMSG_LEN. 

The CMSG_LEN macro returns the number of bytes needed to store a data object of size nbytes, after adding the 
size of the cmsghdr  structure, adjusting for any alignment constraints required by the processor architecture, 
and rounding up. 

The program in Figure 17.22 is the send_fd  function for UNIX domain sockets. 

Figure 17.22. The send_fd function for UNIX domain sockets 

#include "apue.h" 
#include <sys/socket.h> 
 
/* size of control buffer to send/recv one file des criptor */ 
#define CONTROLLEN  CMSG_LEN(sizeof(int)) 
 
static struct cmsghdr   *cmptr = NULL;  /* malloc'e d first time */ 
 
/* 
 * Pass a file descriptor to another process. 
 * If fd<0, then -fd is sent back instead as the er ror status. 
 */ 
int 
send_fd(int fd, int fd_to_send) 
{ 
    struct iovec    iov[1]; 
    struct msghdr   msg; 



    char            buf[2]; /* send_fd()/recv_fd() 2-byte protocol */ 
 
    iov[0].iov_base = buf; 
    iov[0].iov_len  = 2; 
    msg.msg_iov     = iov; 
    msg.msg_iovlen  = 1; 
    msg.msg_name    = NULL; 
    msg.msg_namelen = 0; 
    if (fd_to_send < 0) { 
        msg.msg_control    = NULL; 
        msg.msg_controllen = 0; 
        buf[1] = -fd_to_send;   /* nonzero status m eans error */ 
        if (buf[1] == 0) 
            buf[1] = 1; /* -256, etc. would screw u p protocol */ 
    } else { 
        if (cmptr == NULL && (cmptr = malloc(CONTRO LLEN)) == NULL) 
            return(-1); 
        cmptr->cmsg_level  = SOL_SOCKET; 
        cmptr->cmsg_type   = SCM_RIGHTS; 
        cmptr->cmsg_len    = CONTROLLEN; 
        msg.msg_control    = cmptr; 
        msg.msg_controllen = CONTROLLEN; 
        *(int *)CMSG_DATA(cmptr) = fd_to_send;     /* the fd to pass */  
        buf[1] = 0;          /* zero status means O K */ 
    } 
    buf[0] = 0;              /* null byte flag to r ecv_fd() */ 
    if (sendmsg(fd, &msg, 0) != 2) 
        return(-1); 
    return(0); 
} 

In the sendmsg  call, we send both the protocol data (the null and the status byte) and the descriptor. 

To receive a descriptor (Figure 17.23), we allocate enough room for a cmsghdr  structure and a descriptor, set 
msg_control  to point to the allocated area, and call recvmsg . We use the CMSG_LEN macro to calculate the 
amount of space needed. 

We read from the socket until we read the null byte that precedes the final status byte. Everything up to this null 
byte is an error message from the sender. This is shown in Figure 17.23. 

Figure 17.23. The recv_fd function for UNIX domain sockets 

#include "apue.h" 
#include <sys/socket.h>     /* struct msghdr */ 
 
/* size of control buffer to send/recv one file des criptor */ 
#define CONTROLLEN  CMSG_LEN(sizeof(int)) 
 
static struct cmsghdr   *cmptr = NULL;      /* mall oc'ed first time */  
 
/* 
 * Receive a file descriptor from a server process.   Also, any data 
 * received is passed to (*userfunc)(STDERR_FILENO,  buf, nbytes). 
 * We have a 2-byte protocol for receiving the fd f rom send_fd(). 
 */ 
int 
recv_fd(int fd, ssize_t (*userfunc)(int, const void  *, size_t)) 
{ 
   int             newfd, nr, status; 



   char            *ptr; 
   char            buf[MAXLINE]; 
   struct iovec    iov[1]; 
   struct msghdr   msg; 
 
   status = -1; 
   for ( ; ; ) { 
       iov[0].iov_base = buf; 
       iov[0].iov_len  = sizeof(buf); 
       msg.msg_iov     = iov; 
       msg.msg_iovlen  = 1; 
       msg.msg_name    = NULL; 
       msg.msg_namelen = 0; 
       if (cmptr == NULL && (cmptr = malloc(CONTROL LEN)) == NULL) 
           return(-1); 
       msg.msg_control    = cmptr; 
       msg.msg_controllen = CONTROLLEN; 
       if ((nr = recvmsg(fd, &msg, 0)) < 0) { 
           err_sys("recvmsg error"); 
       } else if (nr == 0) { 
           err_ret("connection closed by server"); 
           return(-1); 
       } 
       /* 
        * See if this is the final data with null &  status.  Null 
        * is next to last byte of buffer; status by te is last byte. 
        * Zero status means there is a file descrip tor to receive. 
        */ 
       for (ptr = buf; ptr < &buf[nr]; ) { 
           if (*ptr++ == 0) { 
               if (ptr != &buf[nr-1]) 
                   err_dump("message format error") ; 
               status = *ptr & 0xFF;  /* prevent si gn extension */ 
               if (status == 0) { 
                   if (msg.msg_controllen != CONTRO LLEN) 
                       err_dump("status = 0 but no fd"); 
                   newfd = *(int *)CMSG_DATA(cmptr) ; 
               } else { 
                   newfd = -status; 
               } 
               nr -= 2; 
           } 
        } 
        if (nr > 0 && (*userfunc)(STDERR_FILENO, bu f, nr) != nr) 
            return(-1); 
        if (status >= 0)    /* final data has arriv ed */ 
            return(newfd);  /* descriptor, or -stat us */ 
   } 
} 

Note that we are always prepared to receive a descriptor (we set msg_control  and msg_controllen  before 
each call to recvmsg ), but only if msg_controllen  is nonzero on return did we receive a descriptor. 

When it comes to passing file descriptors, one difference between UNIX domain sockets and STREAMS pipes 
is that we get the identity of the sending process with STREAMS pipes. Some versions of UNIX domain 
sockets provide similar functionality, but their interfaces differ. 

FreeBSD 5.2.1 and Linux 2.4.22 provide support for sending credentials over UNIX domain sockets, but they 
do it differently. Mac OS X 10.3 is derived in part from FreeBSD, but has credential passing disabled. Solaris 9 
doesn't support sending credentials over UNIX domain sockets. 



With FreeBSD, credentials are transmitted as a cmsgcred  structure: 

    #define CMGROUP_MAX 16 
    struct cmsgcred { 
        pid_t cmcred_pid;                   /* send er's process ID */ 
        uid_t cmcred_uid;                   /* send er's real UID */ 
        uid_t cmcred_euid;                  /* send er's effective UID */ 
        gid_t cmcred_gid;                   /* send er's real GID */ 
        short cmcred_ngroups;               /* numb er of groups */ 
        gid_t cmcred_groups[CMGROUP_MAX];   /* grou ps */ 
    }; 

 

When we transmit credentials, we need to reserve space only for the cmsgcred  structure. The kernel will fill it 
in for us to prevent an application from pretending to have a different identity. 

On Linux, credentials are transmitted as a ucred  structure: 

    struct ucred { 
        uint32_t pid;   /* sender's process ID */ 
        uint32_t uid;   /* sender's user ID */ 
        uint32_t gid;   /* sender's group ID */ 
    }; 

 

Unlike FreeBSD, Linux requires that we initialize this structure before transmission. The kernel will ensure that 
applications either use values that correspond to the caller or have the appropriate privilege to use other values. 

Figure 17.24 shows the send_fd  function updated to include the credentials of the sending process. 

Figure 17.24. Sending credentials over UNIX domain sockets 

#include "apue.h" 
#include <sys/socket.h> 
 
#if defined(SCM_CREDS)          /* BSD interface */  
#define CREDSTRUCT      cmsgcred 
#define SCM_CREDTYPE    SCM_CREDS 
#elif defined(SCM_CREDENTIALS)  /* Linux interface */ 
#define CREDSTRUCT      ucred 
#define SCM_CREDTYPE    SCM_CREDENTIALS 
#else 
#error passing credentials is unsupported! 
#endif 
 
/* size of control buffer to send/recv one file des criptor */ 
#define RIGHTSLEN   CMSG_LEN(sizeof(int)) 
#define CREDSLEN    CMSG_LEN(sizeof(struct CREDSTRU CT)) 
#define CONTROLLEN  (RIGHTSLEN + CREDSLEN) 
 
static struct cmsghdr   *cmptr = NULL;  /* malloc'e d first time */ 
 
/* 
 * Pass a file descriptor to another process. 
 * If fd<0, then -fd is sent back instead as the er ror status. 
 */ 
int 
send_fd(int fd, int fd_to_send) 
{ 



    struct CREDSTRUCT   *credp; 
    struct cmsghdr      *cmp; 
    struct iovec        iov[1]; 
    struct msghdr       msg; 
    char                buf[2]; /* send_fd/recv_ufd  2-byte protocol */  
 
    iov[0].iov_base = buf; 
    iov[0].iov_len =  2; 
    msg.msg_iov     = iov; 
    msg.msg_iovlen =  1; 
    msg.msg_name    = NULL; 
    msg.msg_namelen = 0; 
    msg.msg_flags = 0; 
    if (fd_to_send < 0) { 
        msg.msg_control    = NULL; 
        msg.msg_controllen = 0; 
        buf[1] = -fd_to_send;   /* nonzero status m eans error */ 
        if (buf[1] == 0) 
            buf[1] = 1; /* -256, etc. would screw u p protocol */ 
    } else { 
        if (cmptr == NULL && (cmptr = malloc(CONTRO LLEN)) == NULL) 
            return(-1); 
        msg.msg_control    = cmptr; 
        msg.msg_controllen = CONTROLLEN; 
        cmp = cmptr; 
        cmp->cmsg_level =  SOL_SOCKET; 
        cmp->cmsg_type   = SCM_RIGHTS; 
        cmp->cmsg_len    = RIGHTSLEN; 
        *(int *)CMSG_DATA(cmp) = fd_to_send;   /* t he fd to pass */ 
 
        cmp = CMSG_NXTHDR(&msg, cmp); 
        cmp->cmsg_level =  SOL_SOCKET; 
        cmp->cmsg_type   = SCM_CREDTYPE; 
        cmp->cmsg_len    = CREDSLEN; 
        credp = (struct CREDSTRUCT *)CMSG_DATA(cmp) ; 
#if defined(SCM_CREDENTIALS) 
        credp->uid = geteuid(); 
        credp->gid = getegid(); 
        credp->pid = getpid(); 
#endif 
        buf[1] = 0;     /* zero status means OK */ 
    } 
    buf[0] = 0;         /* null byte flag to recv_u fd() */ 
    if (sendmsg(fd, &msg, 0) != 2) 
        return(-1); 
    return(0); 
} 

Note that we need to initialize the credentials structure only on Linux. 

The function in Figure 17.25 is a modified version of recv_fd , called recv_ufd , that returns the user ID of the 
sender through a reference parameter. 

Figure 17.25. Receiving credentials over UNIX domain sockets 

#include "apue.h" 
#include <sys/socket.h>     /* struct msghdr */ 
#include <sys/un.h> 
 
#if defined(SCM_CREDS)          /* BSD interface */  



#define CREDSTRUCT      cmsgcred 
#define CR_UID          cmcred_uid 
#define CREDOPT         LOCAL_PEERCRED 
#define SCM_CREDTYPE    SCM_CREDS 
#elif defined(SCM_CREDENTIALS)  /* Linux interface */ 
#define CREDSTRUCT      ucred 
#define CR_UID          uid 
#define CREDOPT         SO_PASSCRED 
#define SCM_CREDTYPE    SCM_CREDENTIALS 
#else 
#error passing credentials is unsupported! 
#endif 
 
/* size of control buffer to send/recv one file des criptor */  
#define RIGHTSLEN   CMSG_LEN(sizeof(int)) 
#define CREDSLEN    CMSG_LEN(sizeof(struct CREDSTRU CT)) 
#define CONTROLLEN  (RIGHTSLEN + CREDSLEN) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17.5. An Open Server, Version 1 

Using file descriptor passing, we now develop an open server: a program that is executed by a process to open 
one or more files. But instead of sending the contents of the file back to the calling process, the server sends 
back an open file descriptor. This lets the server work with any type of file (such as a device or a socket) and 
not simply regular files. It also means that a minimum of information is exchanged using IPC: the filename and 
open mode from the client to the server, and the returned descriptor from the server to the client. The contents 
of the file are not exchanged using IPC. 

There are several advantages in designing the server to be a separate executable program (either one that is 
executed by the client, as we develop in this section, or a daemon server, which we develop in the next section). 

• The server can easily be contacted by any client, similar to the client calling a library function. We are 
not hard coding a particular service into the application, but designing a general facility that others can 
reuse. 

• If we need to change the server, only a single program is affected. Conversely, updating a library 
function can require that all programs that call the function be updated (i.e., relinked with the link editor). 
Shared libraries can simplify this updating (Section 7.7). 

• The server can be a set-user-ID program, providing it with additional permissions that the client does not 
have. Note that a library function (or shared library function) can't provide this capability. 

The client process creates an s-pipe (either a STREAMS-based pipe or a UNIX domain socket pair) and then 
calls fork  and exec  to invoke the server. The client sends requests across the s-pipe, and the server sends back 
responses across the s-pipe. 

We define the following application protocol between the client and the server. 

1. The client sends a request of the form "open  <pathname> <openmode>\0" across the s-pipe to the server. 
The <openmode> is the numeric value, in ASCII decimal, of the second argument to the open  function. 
This request string is terminated by a null byte. 

2. The server sends back an open descriptor or an error by calling either send_fd  or send_err . 

This is an example of a process sending an open descriptor to its parent. In Section 17.6, we'll modify this 
example to use a single daemon server, where the server sends a descriptor to a completely unrelated process. 

We first have the header, open.h  (Figure 17.26), which includes the standard headers and defines the function 
prototypes. 

Figure 17.26. The open.h header 

#include "apue.h" 
#include <errno.h> 
 
#define CL_OPEN "open"        /* client's request f or server */  
 
int     csopen(char *, int); 

 

The main  function (Figure 17.27) is a loop that reads a pathname from standard input and copies the file to 
standard output. The function calls csopen  to contact the open server and return an open descriptor. 

Figure 17.27. The client main function, version 1 



#include    "open.h" 
#include    <fcntl.h> 
 
#define BUFFSIZE    8192 
 
int 
main(int argc, char *argv[]) 
{ 
    int     n, fd; 
    char    buf[BUFFSIZE], line[MAXLINE]; 
 
    /* read filename to cat from stdin */ 
    while (fgets(line, MAXLINE, stdin) != NULL) { 
        if (line[strlen(line) - 1] == '\n') 
            line[strlen(line) - 1] = 0; /* replace newline with null */  
 
        /* open the file */ 
        if ((fd = csopen(line, O_RDONLY)) < 0) 
            continue;   /* csopen() prints error fr om server */ 
 
        /* and cat to stdout */ 
        while ((n = read(fd, buf, BUFFSIZE)) > 0) 
            if (write(STDOUT_FILENO, buf, n) != n) 
                err_sys("write error"); 
        if (n < 0) 
            err_sys("read error"); 
        close(fd); 
    } 
 
    exit(0); 
} 

The function csopen  (Figure 17.28) does the fork  and exec  of the server, after creating the s-pipe. 

Figure 17.28. The csopen function, version 1 

#include    "open.h" 
#include    <sys/uio.h>     /* struct iovec */ 
 
/* 
 * Open the file by sending the "name" and "oflag" to the 
 * connection server and reading a file descriptor back. 
 */ 
int 
csopen(char *name, int oflag) 
{ 
    pid_t           pid; 
    int             len; 
    char            buf[10]; 
    struct iovec    iov[3]; 
    static int      fd[2] = { -1, -1 }; 
 
    if (fd[0] < 0) {    /* fork/exec our open serve r first time */ 
        if (s_pipe(fd) < 0) 
            err_sys("s_pipe error"); 
        if ((pid = fork()) < 0) { 
            err_sys("fork error"); 
        } else if (pid == 0) {      /* child */ 
            close(fd[0]); 
            if (fd[1] != STDIN_FILENO && 
              dup2(fd[1], STDIN_FILENO) != STDIN_FI LENO) 



                err_sys("dup2 error to stdin"); 
            if (fd[1] != STDOUT_FILENO && 
              dup2(fd[1], STDOUT_FILENO) != STDOUT_ FILENO) 
                err_sys("dup2 error to stdout"); 
            if (execl("./opend", "opend", (char *)0 ) < 0) 
                err_sys("execl error"); 
        } 
        close(fd[1]);               /* parent */ 
    } 
    sprintf(buf, " %d", oflag);     /* oflag to asc ii */ 
    iov[0].iov_base = CL_OPEN " ";      /* string c oncatenation */ 
    iov[0].iov_len  = strlen(CL_OPEN) + 1; 
    iov[1].iov_base = name; 
    iov[1].iov_len  = strlen(name); 
    iov[2].iov_base = buf; 
    iov[2].iov_len  = strlen(buf) + 1;  /* +1 for n ull at end of buf */  
    len = iov[0].iov_len + iov[1].iov_len + iov[2]. iov_len; 
    if (writev(fd[0], &iov[0], 3) != len) 
        err_sys("writev error"); 
 
    /* read descriptor, returned errors handled by write() */ 
    return(recv_fd(fd[0], write)); 
} 

The child closes one end of the pipe, and the parent closes the other. For the server that it executes, the child 
also duplicates its end of the pipe onto its standard input and standard output. (Another option would have been 
to pass the ASCII representation of the descriptor fd[1]  as an argument to the server.) 

The parent sends to the server the request containing the pathname and open mode. Finally, the parent calls 
recv_fd  to return either the descriptor or an error. If an error is returned by the server, write  is called to output 
the message to standard error. 

Now let's look at the open server. It is the program opend  that is executed by the client in Figure 17.28. First, 
we have the opend.h  header (Figure 17.29), which includes the standard headers and declares the global 
variables and function prototypes. 

Figure 17.29. The opend.h header, version 1 

#include "apue.h" 
#include <errno.h> 
 
#define CL_OPEN "open"         /* client's request for server */ 
 
extern char  errmsg[];  /* error message string to return to client */  
extern int   oflag;     /* open() flag: O_xxx ... * / 
extern char *pathname;  /* of file to open() for cl ient */ 
 
int      cli_args(int, char **); 
void     request(char *, int, int); 

 

The main  function (Figure 17.30) reads the requests from the client on the s-pipe (its standard input) and calls 
the function request . 

Figure 17.30. The server main function, version 1 

#include    "opend.h" 



 
char     errmsg[MAXLINE]; 
int      oflag; 
char    *pathname; 
 
int 
main(void) 
{ 
    int     nread; 
    char    buf[MAXLINE]; 
 
    for ( ; ; ) {   /* read arg buffer from client,  process request */  
        if ((nread = read(STDIN_FILENO, buf, MAXLIN E)) < 0) 
            err_sys("read error on stream pipe"); 
        else if (nread == 0) 
            break;      /* client has closed the st ream pipe */ 
        request(buf, nread, STDOUT_FILENO); 
    } 
    exit(0); 
} 

The function request  in Figure 17.31 does all the work. It calls the function buf_args  to break up the client's 
request into a standard argv -style argument list and calls the function cli_args  to process the client's 
arguments. If all is OK, open  is called to open the file, and then send_fd  sends the descriptor back to the client 
across the s-pipe (its standard output). If an error is encountered, send_err  is called to send back an error 
message, using the client–server protocol that we described earlier. 

Figure 17.31. The request function, version 1 

#include    "opend.h" 
#include    <fcntl.h> 
 
void 
request(char *buf, int nread, int fd) 
{ 
    int     newfd; 
 
    if (buf[nread-1] != 0) { 
        sprintf(errmsg, "request not null terminate d: %*.*s\n", 
          nread, nread, buf); 
        send_err(fd, -1, errmsg); 
        return; 
    } 
    if (buf_args(buf, cli_args) < 0) {  /* parse ar gs & set options */  
        send_err(fd, -1, errmsg); 
        return; 
    } 
    if ((newfd = open(pathname, oflag)) < 0) { 
        sprintf(errmsg, "can't open %s: %s\n", path name, 
          strerror(errno)); 
        send_err(fd, -1, errmsg); 
        return; 
    } 
    if (send_fd(fd, newfd) < 0)     /* send the des criptor */ 
        err_sys("send_fd error"); 
    close(newfd);       /* we're done with descript or */ 
} 



The client's request is a null-terminated string of white-space-separated arguments. The function buf_args  in 
Figure 17.32 breaks this string into a standard argv -style argument list and calls a user function to process the 
arguments. We'll use the buf_args  function later in this chapter. We use the ISO C function strtok  to tokenize 
the string into separate arguments. 

Figure 17.32. The buf_args function 

#include "apue.h" 
 
#define MAXARGC     50  /* max number of arguments in buf */ 
#define WHITE   " \t\n" /* white space for tokenizi ng arguments */ 
 
/* 
 * buf[] contains white-space-separated arguments.  We convert it to an 
 * argv-style array of pointers, and call the user' s function (optfunc) 
 * to process the array.  We return -1 if there's a  problem parsing buf,  
 * else we return whatever optfunc() returns.  Note  that user's buf[] 
 * array is modified (nulls placed after each token ). 
 */ 
int 
buf_args(char *buf, int (*optfunc)(int, char **)) 
{ 
    char    *ptr, *argv[MAXARGC]; 
    int     argc; 
 
    if (strtok(buf, WHITE) == NULL)    /* an argv[0 ] is required */ 
        return(-1); 
    argv[argc = 0] = buf; 
    while ((ptr = strtok(NULL, WHITE)) != NULL) { 
        if (++argc >= MAXARGC-1)    /* -1 for room for NULL at end */ 
            return(-1); 
        argv[argc] = ptr; 
    } 
    argv[++argc] = NULL; 
 
    /* 
     * Since argv[] pointers point into the user's buf[], 
     * user's function can just copy the pointers, even 
     * though argv[] array will disappear on return . 
     */ 
    return((*optfunc)(argc, argv)); 
} 

The server's function that is called by buf_args  is cli_args  (Figure 17.33). It verifies that the client sent the 
right number of arguments and stores the pathname and open mode in global variables. 

Figure 17.33. The cli_args function 

#include    "opend.h" 
 
/* 
 * This function is called by buf_args(), which is called by 
 * request().  buf_args() has broken up the client' s buffer 
 * into an argv[]-style array, which we now process . 
 */ 
int 
cli_args(int argc, char **argv) 
{ 
    if (argc != 3 || strcmp(argv[0], CL_OPEN) != 0)  { 
        strcpy(errmsg, "usage: <pathname> <oflag>\n "); 



        return(-1); 
    } 
    pathname = argv[1];     /* save ptr to pathname  to open */  
    oflag = atoi(argv[2]); 
    return(0); 
} 

 

This completes the open server that is invoked by a fork  and exec  from the client. A single s-pipe is created 
before the fork  and is used to communicate between the client and the server. With this arrangement, we have 
one server per client. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17.6. An Open Server, Version 2 

In the previous section, we developed an open server that was invoked by a fork  and exec  by the client, 
demonstrating how we can pass file descriptors from a child to a parent. In this section, we develop an open 
server as a daemon process. One server handles all clients. We expect this design to be more efficient, since a 
fork  and exec  are avoided. We still use an s-pipe between the client and the server and demonstrate passing file 
descriptors between unrelated processes. We'll use the three functions serv_listen , serv_accept , and 
cli_conn  introduced in Section 17.2.2. This server also demonstrates how a single server can handle multiple 
clients, using both the select  and poll  functions from Section 14.5. 

The client is similar to the client from Section 17.5. Indeed, the file main.c  is identical (Figure 17.27). We add 
the following line to the open.h  header (Figure 17.26): 

#define CS_OPEN "/home/sar/opend" /* server's well- known name */ 

 

The file open.c  does change from Figure 17.28, since we now call cli_conn  instead of doing the fork  and 
exec . This is shown in Figure 17.34. 

Figure 17.34. The csopen function, version 2 

#include    "open.h" 
#include    <sys/uio.h>     /* struct iovec */ 
 
/* 
 * Open the file by sending the "name" and "oflag" to the 
 * connection server and reading a file descriptor back. 
 */ 
int 
csopen(char *name, int oflag) 
{ 
    int             len; 
    char            buf[10]; 
    struct iovec    iov[3]; 
    static int      csfd = -1; 
 
    if (csfd < 0) {     /* open connection to conn server */ 
        if ((csfd = cli_conn(CS_OPEN)) < 0) 
            err_sys("cli_conn error"); 
    } 
 
    sprintf(buf, " %d", oflag);     /* oflag to asc ii */ 
    iov[0].iov_base = CL_OPEN " ";  /* string conca tenation */ 
    iov[0].iov_len  = strlen(CL_OPEN) + 1; 
    iov[1].iov_base = name; 
    iov[1].iov_len  = strlen(name); 
    iov[2].iov_base = buf; 
    iov[2].iov_len  = strlen(buf) + 1;  /* null alw ays sent */ 
    len = iov[0].iov_len + iov[1].iov_len + iov[2]. iov_len; 
    if (writev(csfd, &iov[0], 3) != len) 
        err_sys("writev error"); 
 
    /* read back descriptor; returned errors handle d by write() */  
    return(recv_fd(csfd, write)); 
} 

 



The protocol from the client to the server remains the same. 

Next, we'll look at the server. The header opend.h  (Figure 17.35) includes the standard headers and declares the 
global variables and the function prototypes. 

Figure 17.35. The opend.h header, version 2 

#include "apue.h" 
#include <errno.h> 
 
#define CS_OPEN "/home/sar/opend"   /* well-known n ame */ 
#define CL_OPEN "open"              /* client's req uest for server */ 
 
extern int   debug;     /* nonzero if interactive ( not daemon) */ 
extern char  errmsg[];  /* error message string to return to client */  
extern int   oflag;     /* open flag: O_xxx ... */ 
extern char *pathname;  /* of file to open for clie nt */ 
 
typedef struct {    /* one Client struct per connec ted client */ 
  int   fd;         /* fd, or -1 if available */ 
  uid_t uid; 
} Client; 
 
extern Client   *client;        /* ptr to malloc'ed  array */ 
extern int       client_size;   /* # entries in cli ent[] array */ 
 
int      cli_args(int, char **); 
int      client_add(int, uid_t); 
void     client_del(int); 
void     loop(void); 
void     request(char *, int, int, uid_t); 

 

Since this server handles all clients, it must maintain the state of each client connection. This is done with the 
client  array declared in the opend.h  header. Figure 17.36 defines three functions that manipulate this array. 

Figure 17.36. Functions to manipulate client array 

#include    "opend.h" 
 
#define NALLOC  10   /* # client structs to alloc/r ealloc for */ 
 
static void 
client_alloc(void)   /* alloc more entries in the c lient[] array */ 
{ 
    int     i; 
 
    if (client == NULL) 
        client = malloc(NALLOC * sizeof(Client)); 
    else 
        client = realloc(client, (client_size+NALLO C)*sizeof(Client));  
    if (client == NULL) 
        err_sys("can't alloc for client array"); 
 
    /* initialize the new entries */ 
    for (i = client_size; i < client_size + NALLOC;  i++) 
        client[i].fd = -1;  /* fd of -1 means entry  available */ 
 
    client_size += NALLOC; 
} 



/* 
 * Called by loop() when connection request from a new client arrives.  
 */ 
int 
client_add(int fd, uid_t uid) 
{ 
    int     i; 
 
    if (client == NULL)     /* first time we're cal led */ 
        client_alloc(); 
again: 
    for (i = 0; i < client_size; i++) { 
        if (client[i].fd == -1) {   /* find an avai lable entry */ 
            client[i].fd = fd; 
            client[i].uid = uid; 
            return(i);  /* return index in client[]  array */ 
        } 
    } 
    /* client array full, time to realloc for more */ 
    client_alloc(); 
    goto again;     /* and search again (will work this time) */ 
} 
/* 
 * Called by loop() when we're done with a client. 
 */ 
void 
client_del(int fd) 
{ 
    int     i; 
 
    for (i = 0; i < client_size; i++) { 
        if (client[i].fd == fd) { 
            client[i].fd = -1; 
            return; 
        } 
    } 
    log_quit("can't find client entry for fd %d", f d); 
} 

The first time client_add  is called, it calls client_alloc , which calls malloc  to allocate space for ten entries 
in the array. After these ten entries are all in use, a later call to client_add  causes realloc  to allocate 
additional space. By dynamically allocating space this way, we have not limited the size of the client  array at 
compile time to some value that we guessed and put into a header. These functions call the log_  functions 
(Appendix B) if an error occurs, since we assume that the server is a daemon. 

The main  function (Figure 17.37) defines the global variables, processes the command-line options, and calls 
the function loop . If we invoke the server with the -d  option, the server runs interactively instead of as a 
daemon. This is used when testing the server. 

Figure 17.37. The server main function, version 2 

#include    "opend.h" 
#include    <syslog.h> 
 
int      debug, oflag, client_size, log_to_stderr; 
char     errmsg[MAXLINE]; 
char    *pathname; 
Client  *client = NULL; 
 



int 
main(int argc, char *argv[]) 
{ 
    int     c; 
 
    log_open("open.serv", LOG_PID, LOG_USER); 
 
    opterr = 0;     /* don't want getopt() writing to stderr */  
    while ((c = getopt(argc, argv, "d")) != EOF) { 
        switch (c) { 
        case 'd':       /* debug */ 
            debug = log_to_stderr = 1; 
            break; 
 
        case '?': 
            err_quit("unrecognized option: -%c", op topt); 
        } 
    } 
 
    if (debug == 0) 
        daemonize("opend"); 
 
    loop();     /* never returns */ 
} 

The function loop  is the server's infinite loop. We'll show two versions of this function. Figure 17.38 shows one 
version that uses select ; Figure 17.39 shows another version that uses poll . 

Figure 17.38. The loop function using select 

#include    "opend.h" 
#include    <sys/time.h> 
#include    <sys/select.h> 
 
void 
loop(void) 
{ 
    int     i, n, maxfd, maxi, listenfd, clifd, nre ad; 
    char    buf[MAXLINE]; 
    uid_t   uid; 
    fd_set  rset, allset; 
 
    FD_ZERO(&allset); 
 
    /* obtain fd to listen for client requests on * / 
    if ((listenfd = serv_listen(CS_OPEN)) < 0) 
        log_sys("serv_listen error"); 
    FD_SET(listenfd, &allset); 
    maxfd = listenfd; 
    maxi = -1; 
 
    for ( ; ; ) { 
        rset = allset;  /* rset gets modified each time around */ 
        if ((n = select(maxfd + 1, &rset, NULL, NUL L, NULL)) < 0) 
            log_sys("select error"); 
 
        if (FD_ISSET(listenfd, &rset)) { 
            /* accept new client request */ 
            if ((clifd = serv_accept(listenfd, &uid )) < 0) 
                log_sys("serv_accept error: %d", cl ifd); 
            i = client_add(clifd, uid); 



            FD_SET(clifd, &allset); 
            if (clifd > maxfd) 
                maxfd = clifd;  /* max fd for selec t() */ 
            if (i > maxi) 
                maxi = i;   /* max index in client[ ] array */ 
            log_msg("new connection: uid %d, fd %d" , uid, clifd); 
            continue; 
        } 
        for (i = 0; i <= maxi; i++) {   /* go throu gh client[] array */  
            if ((clifd = client[i].fd) < 0) 
                continue; 
            if (FD_ISSET(clifd, &rset)) { 
                /* read argument buffer from client  */ 
                if ((nread = read(clifd, buf, MAXLI NE)) < 0) { 
                    log_sys("read error on fd %d", clifd); 
                } else if (nread == 0) { 
                    log_msg("closed: uid %d, fd %d" , 
                      client[i].uid, clifd); 
                    client_del(clifd);  /* client h as closed cxn */ 
                    FD_CLR(clifd, &allset); 
                    close(clifd); 
                } else {    /* process client's req uest */ 
                    request(buf, nread, clifd, clie nt[i].uid); 
                } 
            } 
        } 
    } 
} 

This function calls serv_listen  to create the server's endpoint for the client connections. The remainder of the 
function is a loop that starts with a call to select . Two conditions can be true after select  returns. 

1. The descriptor listenfd  can be ready for reading, which means that a new client has called cli_conn . 
To handle this, we call serv_accept  and then update the client  array and associated bookkeeping 
information for the new client. (We keep track of the highest descriptor number for the first argument to 
select . We also keep track of the highest index in use in the client  array.) 

2. An existing client's connection can be ready for reading. This means that the client has either terminated 
or sent a new request. We find out about a client termination by read  returning 0 (end of file). If read  
returns a value greater than 0, there is a new request to process, which we handle by calling request . 

We keep track of which descriptors are currently in use in the allset  descriptor set. As new clients connect to 
the server, the appropriate bit is turned on in this descriptor set. The appropriate bit is turned off when the client 
terminates. 

We always know when a client terminates, whether the termination is voluntary or not, since all the client's 
descriptors (including the connection to the server) are automatically closed by the kernel. This differs from the 
XSI IPC mechanisms. 

The loop  function that uses poll  is shown in Figure 17.39. 

Figure 17.39. The loop function using poll 

#include    "opend.h" 
#include    <poll.h> 
#if !defined(BSD) && !defined(MACOS) 
#include    <stropts.h> 



#endif 
 
void 
loop(void) 
{ 
    int             i, maxi, listenfd, clifd, nread ; 
    char            buf[MAXLINE]; 
    uid_t           uid; 
    struct pollfd   *pollfd; 
 
    if ((pollfd = malloc(open_max() * sizeof(struct  pollfd))) == NULL)  
        err_sys("malloc error"); 
 
    /* obtain fd to listen for client requests on * / 
    if ((listenfd = serv_listen(CS_OPEN)) < 0) 
        log_sys("serv_listen error"); 
    client_add(listenfd, 0);    /* we use [0] for l istenfd */ 
    pollfd[0].fd = listenfd; 
    pollfd[0].events = POLLIN; 
    maxi = 0; 
 
    for ( ; ; ) { 
        if (poll(pollfd, maxi + 1, -1) < 0) 
            log_sys("poll error"); 
  
        if (pollfd[0].revents & POLLIN) { 
            /* accept new client request */ 
            if ((clifd = serv_accept(listenfd, &uid )) > 0) 
                log_sys("serv_accept error: %d", cl ifd); 
            i = client_add(clifd, uid); 
            pollfd[i].fd = clifd; 
            pollfd[i].events = POLLIN; 
            if (i > maxi) 
                maxi = i; 
            log_msg("new connection: uid %d, fd %d" , uid, clifd); 
        } 
 
        for (i = 1; i <= maxi; i++) { 
            if ((clifd = client[i].fd) < 0) 
                continue; 
            if (pollfd[i].revents & POLLHUP) { 
                goto hungup; 
            } else if (pollfd[i].revents & POLLIN) { 
                /* read argument buffer from client  */ 
                if ((nread = read(clifd, buf, MAXLI NE)) < 0) { 
                    log_sys("read error on fd %d", clifd); 
                } else if (nread == 0) { 
hungup:  
                    log_msg("closed: uid %d, fd %d" , 
                      client[i].uid, clifd); 
                    client_del(clifd);  /* client h as closed conn */ 
                    pollfd[i].fd = -1; 
                    close(clifd); 
                } else {        /* process client's  request */ 
                    request(buf, nread, clifd, clie nt[i].uid); 
                } 
            }  
        } 
    } 
} 



To allow for as many clients as there are possible open descriptors, we dynamically allocate space for the array 
of pollfd  structures. (Recall the open_max  function from Figure 2.16.) 

We use the first entry (index 0) of the client  array for the listenfd  descriptor. That way, a client's index in 
the client  array is the same index that we use in the pollfd  array. The arrival of a new client connection is 
indicated by a POLLIN on the listenfd  descriptor. As before, we call serv_accept  to accept the connection. 

For an existing client, we have to handle two different events from poll : a client termination is indicated by 
POLLHUP, and a new request from an existing client is indicated by POLLIN. Recall from Exercise 15.7 that the 
hang-up message can arrive at the stream head while there is still data to be read from the stream. With a pipe, 
we want to read all the data before processing the hangup. But with this server, when we receive the hangup 
from the client, we can close  the connection (the stream) to the client, effectively throwing away any data still 
on the stream. There is no reason to process any requests still on the stream, since we can't send any responses 
back. 

As with the select  version of this function, new requests from a client are handled by calling the request  
function (Figure 17.40). This function is similar to the earlier version (Figure 17.31). It calls the same function, 
buf_args  (Figure 17.32), that calls cli_args  (Figure 17.33), but since it runs from a daemon process, it logs 
error messages instead of printing them on the standard error stream. 

Figure 17.40. The request function, version 2 

#include    "opend.h" 
#include    <fcntl.h> 
 
void 
request(char *buf, int nread, int clifd, uid_t uid)  
{ 
    int     newfd; 
 
    if (buf[nread-1] != 0) { 
        sprintf(errmsg, 
          "request from uid %d not null terminated:  %*.*s\n", 
          uid, nread, nread, buf); 
        send_err(clifd, -1, errmsg); 
        return; 
    } 
    log_msg("request: %s, from uid %d", buf, uid); 
 
    /* parse the arguments, set options */ 
    if (buf_args(buf, cli_args) < 0) { 
        send_err(clifd, -1, errmsg); 
        log_msg(errmsg); 
        return; 
    } 
 
    if ((newfd = open(pathname, oflag)) < 0) { 
        sprintf(errmsg, "can't open %s: %s\n", 
          pathname, strerror(errno)); 
        send_err(clifd, -1, errmsg); 
        log_msg(errmsg); 
        return; 
    } 
 
    /* send the descriptor */ 
    if (send_fd(clifd, newfd) < 0) 
        log_sys("send_fd error"); 
    log_msg("sent fd %d over fd %d for %s", newfd, clifd, pathname);  



    close(newfd);       /* we're done with descript or */ 
} 

This completes the second version of the open server, using a single daemon to handle all the client requests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



17.7. Summary 

The key points in this chapter are the ability to pass file descriptors between processes and the ability of a server 
to accept unique connections from clients. We've seen how to do this using both STREAMS pipes and UNIX 
domain sockets. Although all platforms provide support for UNIX domain sockets (refer back to Figure 15.1), 
we've seen that there are differences in each implementation, which makes it more difficult for us to develop 
portable applications. 

We presented two versions of an open server. One version was invoked directly by the client, using fork  and 
exec . The second was a daemon server that handled all client requests. Both versions used the file descriptor 
passing and receiving functions. The final version also used the client–server connection functions introduced in 
Section 17.2.2 and the I/O multiplexing functions from Section 14.5. 
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18.1. Introduction 

The handling of terminal I/O is a messy area, regardless of the operating system. The UNIX System is no 
exception. The manual page for terminal I/O is usually one of the longest in most editions of the programmer's 
manuals. 

With the UNIX System, a schism formed in the late 1970s when System III developed a different set of terminal 
routines from those of Version 7. The System III style of terminal I/O continued through System V, and the 
Version 7 style became the standard for the BSD-derived systems. As with signals, this difference between the 
two worlds has been conquered by POSIX.1. In this chapter, we look at all the POSIX.1 terminal functions and 
some of the platform-specific additions. 

Part of the complexity of the terminal I/O system occurs because people use terminal I/O for so many different 
things: terminals, hardwired lines between computers, modems, printers, and so on. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.2. Overview 

Terminal I/O has two modes: 

1. Canonical mode input processing. In this mode, terminal input is processed as lines. The terminal driver 
returns at most one line per read request. 

2. Noncanonical mode input processing. The input characters are not assembled into lines. 

If we don't do anything special, canonical mode is the default. For example, if the shell redirects standard input 
to the terminal and we use read  and write  to copy standard input to standard output, the terminal is in 
canonical mode, and each read  returns at most one line. Programs that manipulate the entire screen, such as the 
vi  editor, use noncanonical mode, since the commands may be single characters and are not terminated by 
newlines. Also, this editor doesn't want processing by the system of the special characters, since they may 
overlap with the editor commands. For example, the Control-D character is often the end-of-file character for 
the terminal, but it's also a vi  command to scroll down one-half screen. 

The Version 7 and older BSD-style terminal drivers supported three modes for terminal input: (a) cooked mode 
(the input is collected into lines, and the special characters are processed), (b) raw mode (the input is not 
assembled into lines, and there is no processing of special characters), and (c) cbreak mode (the input is not 
assembled into lines, but some of the special characters are processed). Figure 18.20 shows a POSIX.1 function 
that places a terminal in cbreak or raw mode. 

POSIX.1 defines 11 special input characters, 9 of which we can change. We've been using some of these 
throughout the text: the end-of-file character (usually Control-D) and the suspend character (usually Control-Z), 
for example. Section 18.3 describes each of these characters. 

We can think of a terminal device as being controlled by a terminal driver, usually within the kernel. Each 
terminal device has an input queue and an output queue, shown in Figure 18.1. 

Figure 18.1. Logical picture of input and output queues for a terminal device 

 
 

There are several points to consider from this picture. 

• If echoing is enabled, there is an implied link between the input queue and the output queue. 
• The size of the input queue, MAX_INPUT (see Figure 2.11), is finite. When the input queue for a particular 

device fills, the system behavior is implementation dependent. Most UNIX systems echo the bell 
character when this happens. 

• There is another input limit, MAX_CANON, that we don't show here. This limit is the maximum number of 
bytes in a canonical input line. 



• Although the size of the output queue is finite, no constants defining that size are accessible to the 
program, because when the output queue starts to fill up, the kernel simply puts the writing process to 
sleep until room is available. 

• We'll see how the tcflush  flush function allows us to flush either the input queue or the output queue. 
Similarly, when we describe the tcsetattr  function, we'll see how we can tell the system to change the 
attributes of a terminal device only after the output queue is empty. (We want to do this, for example, if 
we're changing the output attributes.) We can also tell the system to discard everything in the input 
queue when changing the terminal attributes. (We want to do this if we're changing the input attributes 
or changing between canonical and noncanonical modes, so that previously entered characters aren't 
interpreted in the wrong mode.) 

Most UNIX systems implement all the canonical processing in a module called the terminal line discipline. We 
can think of this module as a box that sits between the kernel's generic read and write functions and the actual 
device driver (see Figure 18.2). 

Figure 18.2. Terminal line discipline 

 

 

Note the similarity of this picture and the diagram of a stream shown in Figure 14.14. We'll return to this picture 
in Chapter 19, when we discuss pseudo terminals. 

All the terminal device characteristics that we can examine and change are contained in a termios  structure. 
This structure is defined in the header <termios.h> , which we use throughout this chapter: 

   struct termios { 
     tcflag_t  c_iflag;    /* input flags */ 
     tcflag_t  c_oflag;    /* output flags */ 



     tcflag_t  c_cflag;    /* control flags */ 
     tcflag_t  c_lflag;    /* local flags */ 
     cc_t      c_cc[NCCS]; /* control characters */  
   }; 

 

Roughly speaking, the input flags control the input of characters by the terminal device driver (strip eighth bit 
on input, enable input parity checking, etc.), the output flags control the driver output (perform output 
processing, map newline to CR/LF, etc.), the control flags affect the RS-232 serial lines (ignore modem status 
lines, one or two stop bits per character, etc.), and the local flags affect the interface between the driver and the 
user (echo on or off, visually erase characters, enable terminal-generated signals, job control stop signal for 
background output, etc.). 

The type tcflag_t  is big enough to hold each of the flag values and is often defined as an unsigned int  or an 
unsigned long . The c_cc  array contains all the special characters that we can change. NCCS is the number of 
elements in this array and is typically between 15 and 20 (since most implementations of the UNIX System 
support more than the 11 POSIX-defined special characters). The cc_t  type is large enough to hold each special 
character and is typically an unsigned char . 

Versions of System V that predated the POSIX standard had a header named <termio.h>  and a structure 
named termio . POSIX.1 added an s  to the names, to differentiate them from their predecessors. 

Figures 18.3 through 18.6 list all the terminal flags that we can change to affect the characteristics of a terminal 
device. Note that even though the Single UNIX Specification defines a common subset that all platforms start 
from, all the implementations have their own additions. Most of these additions come from the historical 
differences between the systems. We'll discuss each of these flag values in detail in Section 18.5. 

Figure 18.3. c_cflag terminal flags 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

CBAUDEXT extended baud rate         • 

CCAR_OFLOW DCD flow control of output   •   •   

CCTS_OFLOW CTS flow control of output   •   • • 

CDSR_OFLOW DSR flow control of output   •   •   

CDTR_IFLOW DTR flow control of input   •   •   

CIBAUDEXT extended input baud rate         • 

CIGNORE ignore control flags   •   •   

CLOCAL ignore modem status lines • • • • • 

CREAD enable receiver • • • • • 

CRTSCTS enable hardware flow control   • • • • 

CRTS_IFLOW RTS flow control of input   •   • • 

CRTSXOFF enable input hardware flow         • 



Figure 18.3. c_cflag terminal flags 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

control 

CSIZE character size mask • • • • • 

CSTOPB send two stop bits, else one • • • • • 

HUPCL hang up on last close • • • • • 

MDMBUF same as CCAR_OFLOW   •   •   

PARENB parity enable • • • • • 

PAREXT mark or space parity         • 

PARODD odd parity, else even • • • • • 

 

Figure 18.4. c_iflag terminal flags 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

BRKINT generate SIGINT  on BREAK • • • • • 

ICRNL map CR to NL on input • • • • • 

IGNBRK ignore BREAK condition • • • • • 

IGNCR ignore CR • • • • • 

IGNPAR ignore characters with parity 
errors 

• • • • • 

IMAXBEL ring bell on input queue full   • • • • 

INLCR map NL to CR on input • • • • • 

INPCK enable input parity checking • • • • • 

ISTRIP  strip eighth bit off input 
characters 

• • • • • 

IUCLC map uppercase to lowercase on 
input 

    •   • 

IXANY enable any characters to restart 
output 

XSI • • • • 

IXOFF enable start/stop input flow 
control 

• • • • • 

IXON enable start/stop output flow • • • • • 



Figure 18.4. c_iflag terminal flags 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

control 

PARMRK mark parity errors • • • • • 

 

Figure 18.5. c_lflag terminal flags 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

ALTWERASE use alternate WERASE 
algorithm 

  •   •   

ECHO enable echo • • • • • 

ECHOCTL echo control chars as ^(Char)   • • • • 

ECHOE visually erase chars • • • • • 

ECHOK echo kill • • • • • 

ECHOKE visual erase for kill   • • • • 

ECHONL echo NL • • • • • 

ECHOPRT visual erase mode for hard 
copy 

  • • • • 

EXTPROC external character processing   •   •   

FLUSHO output being flushed   • • • • 

ICANON canonical input • • • • • 

IEXTEN enable extended input char 
processing 

• • • • • 

ISIG  enable terminal-generated 
signals 

• • • • • 

NOFLSH disable flush after interrupt or 
quit 

• • • • • 

NOKERNINFO no kernel output from 
STATUS 

  •   •   

PENDIN retype pending input   • • • • 

TOSTOP send SIGTTOU for background 
output 

• • • • • 

XCASE canonical upper/lower     •   • 



Figure 18.5. c_lflag terminal flags 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

presentation 

 

Figure 18.6. c_oflag terminal flags 

Flag Description POSIX.1 FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

BSDLY backspace delay mask XSI   •   • 

CMSPAR mark or space parity     •     

CRDLY CR delay mask XSI   •   • 

FFDLY form feed delay mask XSI   •   • 

NLDLY NL delay mask XSI   •   • 

OCRNL map CR to NL on output XSI • •   • 

OFDEL fill is DEL, else NUL XSI   •   • 

OFILL  use fill character for delay XSI   •   • 

OLCUC map lowercase to uppercase on 
output 

    •   • 

ONLCR map NL to CR-NL XSI • • • • 

ONLRET NL performs CR function XSI • •   • 

ONOCR no CR output at column 0 XSI • •   • 

ONOEOT discard EOTs (^D) on output   •   •   

OPOST perform output processing • • • • • 

OXTABS expand tabs to spaces   •   •   

TABDLY horizontal tab delay mask XSI   •   • 

VTDLY vertical tab delay mask XSI   •   • 

 

Given all the options available, how do we examine and change these characteristics of a terminal device? 
Figure 18.7 summarizes the various functions defined by the Single UNIX Specification that operate on 
terminal devices. (All the functions listed are part of the base POSIX specification, except for tcgetsid , which 
is an XSI extension. We described tcgetpgrp , tcgetsid , and tcsetpgrp  in Section 9.7.) 



Figure 18.7. Summary of terminal I/O functions 

Function Description 

tcgetattr  fetch attributes (termios  structure) 

tcsetattr  set attributes (termios  structure) 

cfgetispeed  get input speed 

cfgetospeed  get output speed 

cfsetispeed  set input speed 

cfsetospeed  set output speed 

tcdrain  wait for all output to be transmitted 

tcflow  suspend transmit or receive 

tcflush  flush pending input and/or output 

tcsendbreak  send BREAK character 

tcgetpgrp  get foreground process group ID 

tcsetpgrp  set foreground process group ID 

tcgetsid  get process group ID of session leader for controlling 
TTY (XSI extension) 

 

Note that the Single UNIX Specification doesn't use the classic ioctl  on terminal devices. Instead, it uses the 
13 functions shown in Figure 18.7. The reason is that the ioctl  function for terminal devices uses a different 
data type for its final argument, which depends on the action being performed. This makes type checking of the 
arguments impossible. 

Although only 13 functions operate on terminal devices, the first two functions in Figure 18.7 (tcgetattr  and 
tcsetattr ) manipulate almost 70 different flags (see Figures 18.3 through 18.6). The handling of terminal 
devices is complicated by the large number of options available for terminal devices and trying to determine 
which options are required for a particular device (be it a terminal, modem, printer, or whatever). 

The relationships among the 13 functions shown in Figure 18.7 are shown in Figure 18.8. 

 

 

 

 

 

 



Figure 18.8. Relationships among the terminal-related functions 

 
 

POSIX.1 doesn't specify where in the termios  structure the baud rate information is stored; that is an 
implementation detail. Some systems, such as Linux and Solaris, store this information in the c_cflag  field. 
BSD-derived systems, such as FreeBSD and Mac OS X, have two separate fields in the structure: one for the 
input speed and one for the output speed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.3. Special Input Characters 

POSIX.1 defines 11 characters that are handled specially on input. Implementations define additional special 
characters. Figure 18.9 summarizes these special characters. 

Figure 18.9. Summary of special terminal input characters 

Characte
r 

Descriptio
n 

c_cc 
subscrip

t 
Enabled by Typica

l value 
POSIX.

1 
FreeBS
D 5.2.1 

Linu
x 

2.4.2
2 

Ma
c 

OS 
X 

10.3 

Solari
s 9 

      field flag             

CR carriage 
return 

(can't 
change) 

c_lfla
g 

ICANON \r  • • • • • 

DISCAR
D 

discard 
output 

VDISCAR
D 

c_lfla
g 

IEXTEN ^O   • • • • 

DSUSP delayed 
suspend 
(SIGTSTP) 

VDSUSP c_lfla
g 

ISIG  ^Y   •   • • 

EOF end of file VEOF c_lfla
g 

ICANON ^D • • • • • 

EOL end of line VEOL c_lfla
g 

ICANON   • • • • • 

EOL2 alternate 
end of line 

VEOL2 c_lfla
g 

ICANON     • • • • 

ERASE backspace 
one 
character 

VERASE c_lfla
g 

ICANON ^H, ^? • • • • • 

ERASE2 alternate 
backspace 
character 

VERASE2 c_lfla
g 

ICANON ^H, ^?   •       

INTR interrupt 
signal 
(SIGINT ) 

VINTR c_lfla
g 

ISIG  ^?, ^C • • • • • 

KILL erase line VKILL  c_lfla
g 

ICANON ^U • • • • • 

LNEXT literal next VLNEXT c_lfla
g 

IEXTEN ^V   • • • • 

NL line feed 
(newline) 

(can't 
change) 

c_lfla
g 

ICANON \n  • • • • • 

QUIT quit signal VQUIT c_lfla
g 

ISIG  ^\ • • • • • 



Figure 18.9. Summary of special terminal input characters 

Characte
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c_cc 
subscrip

t 
Enabled by Typica
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Of the 11 POSIX.1 special characters, we can change 9 of them to almost any value that we like. The 
exceptions are the newline and carriage return characters (\n  and \r , respectively) and perhaps the STOP and 
START characters (depends on the implementation). To do this, we modify the appropriate entry in the c_cc  
array of the termios  structure. The elements in this array are referred to by name, with each name beginning 
with a V (the third column in Figure 18.9). 

POSIX.1 allows us to disable these characters. If we set the value of an entry in the c_cc  array to the value of 
_POSIX_VDISABLE, then we disable the corresponding special character. 

In older versions of the Single UNIX Specification, support for _POSIX_VDISABLE was optional. It is now 
required. 

All four platforms discussed in this text support this feature. Linux 2.4.22 and Solaris 9 define 
_POSIX_VDISABLE as 0; FreeBSD 5.2.1 and Mac OS X 10.3 define it as 0xff . 

Some earlier UNIX systems disabled a feature if the corresponding special input character was 0. 

Example 

Before describing all the special characters in detail, let's look at a small program that changes them. 
The program in Figure 18.10 disables the interrupt character and sets the end-of-file character to 



Control-B. 

Note the following in this program. 

• We modify the terminal characters only if standard input is a terminal device. We call 
isatty  (Section 18.9) to check this. 

• We fetch the _POSIX_VDISABLE value using fpathconf . 
• The function tcgetattr  (Section 18.4) fetches a termios  structure from the kernel. After 

we've modified this structure, we call tcsetattr  to set the attributes. The only attributes that 
change are the ones we specifically modified. 

• Disabling the interrupt key is different from ignoring the interrupt signal. The program in 
Figure 18.10 simply disables the special character that causes the terminal driver to generate 
SIGINT . We can still use the kill  function to send the signal to the process. 

Figure 18.10. Disable interrupt character and change end-of-file character 

#include "apue.h" 
#include <termios.h> 
 
int 
main(void) 
{ 
    struct termios term; 
    long           vdisable; 
 
    if (isatty(STDIN_FILENO) == 0) 
        err_quit("standard input is not a terminal device"); 
 
    if ((vdisable = fpathconf(STDIN_FILENO, _PC_VDI SABLE)) < 0) 
        err_quit("fpathconf error or _POSIX_VDISABL E not in effect");  
 
    if (tcgetattr(STDIN_FILENO, &term) < 0) /* fetc h tty state */ 
        err_sys("tcgetattr error"); 
 
    term.c_cc[VINTR] = vdisable;    /* disable INTR  character */ 
    term.c_cc[VEOF]  = 2;           /* EOF is Contr ol-B */ 
 
    if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &term) <  0) 
        err_sys("tcsetattr error"); 
 
    exit(0); 
} 

 

We now describe each of the special characters in more detail. We call these the special input characters, but 
two of the characters, STOP and START (Control-S and Control-Q), are also handled specially when output. 
Note that when recognized by the terminal driver and processed specially, most of these special characters are 
then discarded: they are not returned to the process in a read operation. The exceptions to this are the newline 
characters (NL, EOL, EOL2) and the carriage return (CR). 



CR The carriage return character. We cannot change this character. This character is recognized on 
input in canonical mode. When both ICANON (canonical mode) and ICRNL (map CR to NL) are set 
and IGNCR (ignore CR) is not set, the CR character is translated to NL and has the same effect as a 
NL character. This character is returned to the reading process (perhaps after being translated to a 
NL). 

DISCARD The discard character. This character, recognized on input in extended mode (IEXTEN), causes 
subsequent output to be discarded until another DISCARD character is entered or the discard 
condition is cleared (see the FLUSHO option). This character is discarded when processed (i.e., it is 
not passed to the process). 

DSUSP The delayed-suspend job-control character. This character is recognized on input in extended mode 
(IEXTEN) if job control is supported and if the ISIG  flag is set. Like the SUSP character, this 
delayed-suspend character generates the SIGTSTP signal that is sent to all processes in the 
foreground process group (refer to Figure 9.7). But the delayed-suspend character generates a 
signal only when a process reads from the controlling terminal, not when the character is typed. 
This character is discarded when processed (i.e., it is not passed to the process). 

EOF The end-of-file character. This character is recognized on input in canonical mode (ICANON). When 
we type this character, all bytes waiting to be read are immediately passed to the reading process. If 
no bytes are waiting to be read, a count of 0 is returned. Entering an EOF character at the beginning 
of the line is the normal way to indicate an end of file to a program. This character is discarded 
when processed in canonical mode (i.e., it is not passed to the process). 

EOL The additional line delimiter character, like NL. This character is recognized on input in canonical 
mode (ICANON) and is returned to the reading process; however, this character is not normally used. 

EOL2 Another line delimiter character, like NL. This character is treated identically to the EOL character. 

ERASE The erase character (backspace). This character is recognized on input in canonical mode (ICANON) 
and erases the previous character in the line, not erasing beyond the beginning of the line. This 
character is discarded when processed in canonical mode (i.e., it is not passed to the process). 

ERASE2 The alternate erase character (backspace). This character is treated exactly like the erase character 
(ERASE).  

INTR The interrupt character. This character is recognized on input if the ISIG  flag is set and generates 
the SIGINT  signal that is sent to all processes in the foreground process group (refer to Figure 9.7). 
This character is discarded when processed (i.e., it is not passed to the process).  

KILL The kill character. (The name "kill" is overused; recall the kill  function used to send a signal to a 
process. This character should be called the line-erase character; it has nothing to do with signals.) 
It is recognized on input in canonical mode (ICANON). It erases the entire line and is discarded when 
processed (i.e., it is not passed to the process).  

LNEXT The literal-next character. This character is recognized on input in extended mode (IEXTEN) and 
causes any special meaning of the next character to be ignored. This works for all special characters 
listed in this section. We can use this character to type any character to a program. The LNEXT 
character is discarded when processed, but the next character entered is passed to the process.  

NL The newline character, which is also called the line delimiter. We cannot change this character. 
This character is recognized on input in canonical mode (ICANON). This character is returned to the 
reading process.  

QUIT The quit character. This character is recognized on input if the ISIG  flag is set. The quit character 
generates the SIGQUIT signal, which is sent to all processes in the foreground process group (refer 



CR The carriage return character. We cannot change this character. This character is recognized on 
input in canonical mode. When both ICANON (canonical mode) and ICRNL (map CR to NL) are set 
and IGNCR (ignore CR) is not set, the CR character is translated to NL and has the same effect as a 
NL character. This character is returned to the reading process (perhaps after being translated to a 
NL). 

to Figure 9.7). This character is discarded when processed (i.e., it is not passed to the process).  

  Recall from Figure 10.1 that the difference between INTR and QUIT is that the QUIT character not 
only terminates the process by default, but also generates a core  file.  

REPRINT The reprint character. This character is recognized on input in extended, canonical mode (both 
IEXTEN and ICANON flags set) and causes all unread input to be output (reechoed). This character is 
discarded when processed (i.e., it is not passed to the process).  

START The start character. This character is recognized on input if the IXON flag is set and is automatically 
generated as output if the IXOFF flag is set. A received START character with IXON set causes 
stopped output (from a previously entered STOP character) to restart. In this case, the START 
character is discarded when processed (i.e., it is not passed to the process).  

  When IXOFF is set, the terminal driver automatically generates a START character to resume input 
that it had previously stopped, when the new input will not overflow the input buffer. 

STATUS The BSD status-request character. This character is recognized on input in extended, canonical 
mode (both IEXTEN and ICANON flags set) and generates the SIGINFO signal, which is sent to all 
processes in the foreground process group (refer to Figure 9.7). Additionally, if the NOKERNINFO 
flag is not set, status information on the foreground process group is also displayed on the terminal. 
This character is discarded when processed (i.e., it is not passed to the process).  

STOP The stop character. This character is recognized on input if the IXON flag is set and is automatically 
generated as output if the IXOFF flag is set. A received STOP character with IXON set stops the 
output. In this case, the STOP character is discarded when processed (i.e., it is not passed to the 
process). The stopped output is restarted when a START character is entered.  

  When IXOFF is set, the terminal driver automatically generates a STOP character to prevent the 
input buffer from overflowing.  

SUSP The suspend job-control character. This character is recognized on input if job control is supported 
and if the ISIG  flag is set. The suspend character generates the SIGTSTP signal, which is sent to all 
processes in the foreground process group (refer to Figure 9.7). This character is discarded when 
processed (i.e., it is not passed to the process).  

WERASE The word-erase character. This character is recognized on input in extended, canonical mode (both 
IEXTEN and ICANON flags set) and causes the previous word to be erased. First, it skips backward 
over any white space (spaces or tabs), then backward over the previous token, leaving the cursor 
positioned where the first character of the previous token was located. Normally, the previous 
token ends when a white space character is encountered. We can change this, however, by setting 
the ALTWERASE flag. This flag causes the previous token to end when the first nonalphanumeric 
character is encountered. The word-erase character is discarded when processed (i.e., it is not 
passed to the process). 

 

Another "character" that we need to define for terminal devices is the BREAK character. BREAK is not really a 
character, but rather a condition that occurs during asynchronous serial data transmission. A BREAK condition 
is signaled to the device driver in various ways, depending on the serial interface. 



Most old serial terminals have a key labeled BREAK that generates the BREAK condition, which is why most 
people think of BREAK as a character. Some newer terminal keyboards don't have a BREAK key. On PCs, the 
break key might be mapped for other purpose. For example, the Windows command interpreter can be 
interrupted by typing Control-BREAK. 

For asynchronous serial data transmission, a BREAK is a sequence of zero-valued bits that continues for longer 
than the time required to send one byte. The entire sequence of zero-valued bits is considered a single BREAK. 
In Section 18.8, we'll see how to send a BREAK with the tcsendbreak  function. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.4. Getting and Setting Terminal Attributes 

To get and set a termios  structure, we call two functions: tcgetattr  and tcsetattr . This is how we examine 
and modify the various option flags and special characters to make the terminal operate the way we want it to. 

#include <termios.h> 
 
int tcgetattr(int filedes, struct termios *termptr) ; 
 
int tcsetattr(int filedes, int opt, const struct te rmios *termptr);  

 

Both return: 0 if OK, –1 on error 

 

Both functions take a pointer to a termios  structure and either return the current terminal attributes or set the 
terminal's attributes. Since these two functions operate only on terminal devices, errno  is set to ENOTTY and –1 
is returned if filedes does not refer to a terminal device. 

The argument opt for tcsetattr  lets us specify when we want the new terminal attributes to take effect. This 
argument is specified as one of the following constants. 

TCSANOW The change occurs immediately. 

TCSADRAIN The change occurs after all output has been transmitted. This option should be used if we are 
changing the output parameters. 

TCSAFLUSH The change occurs after all output has been transmitted. Furthermore, when the change takes place, 
all input data that has not been read is discarded (flushed). 

 

The return status of tcsetattr  confuses the programming. This function returns OK if it was able to perform 
any of the requested actions, even if it couldn't perform all the requested actions. If the function returns OK, it is 
our responsibility to see whether all the requested actions were performed. This means that after we call 
tcsetattr  to set the desired attributes, we need to call tcgetattr  and compare the actual terminal's attributes 
to the desired attributes to detect any differences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.5. Terminal Option Flags 

In this section, we list all the various terminal option flags, expanding the descriptions of all the options from 
Figures 18.3 through 18.6. This list is alphabetical and indicates in which of the four terminal flag fields the 
option appears. (The field a given option is controlled by is usually not apparent from the option name alone.) 
We also note whether each option is defined by the Single UNIX Specification and list the platforms that 
support it. 

All the flags listed specify one or more bits that we turn on or clear, unless we call the flag a mask. A mask 
defines multiple bits grouped together from which a set of values is defined. We have a defined name for the 
mask and a name for each value. For example, to set the character size, we first zero the bits using the character-
size mask CSIZE, and then set one of the values CS5, CS6, CS7, or CS8. 

The six delay values supported by Linux and Solaris are also masks: BSDLY, CRDLY, FFDLY, NLDLY, TABDLY, and 
VTDLY. Refer to the termio (7I) manual page on Solaris for the length of each delay value. In all cases, a delay 
mask of 0 means no delay. If a delay is specified, the OFILL  and OFDEL flags determine whether the driver does 
an actual delay or whether fill characters are transmitted instead. 

Example 

Figure 18.11 demonstrates the use of these masks to extract a value and to set a value. 

Figure 18.11. Example of tcgetattr and tcsetattr 

#include "apue.h" 
#include <termios.h> 
 
int 
main(void) 
{ 
    struct termios term; 
 
    if (tcgetattr(STDIN_FILENO, &term) < 0) 
        err_sys("tcgetattr error"); 
 
    switch (term.c_cflag & CSIZE) { 
    case CS5: 
        printf("5 bits/byte\n"); 
        break; 
    case CS6: 
        printf("6 bits/byte\n"); 
        break; 
    case CS7: 
        printf("7 bits/byte\n"); 
        break; 
    case CS8: 
        printf("8 bits/byte\n"); 
        break; 
    default: 
        printf("unknown bits/byte\n"); 
    } 
 
    term.c_cflag &= ~CSIZE;     /* zero out the bits */  
    term.c_cflag |= CS8;        /* set 8 bits/byte */ 
    if (tcsetattr(STDIN_FILENO, TCSANOW, &term) < 0 ) 
        err_sys("tcsetattr error"); 
 



    exit(0); 
} 

We now describe each of the flags. 

ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the 
WERASE character is entered. Instead of moving backward until the previous white space 
character, this flag causes the WERASE character to move backward until the first 
nonalphanumeric character is encountered.  

BRKINT (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If this flag is set and IGNBRK is not set, 
the input and output queues are flushed when a BREAK is received, and a SIGINT  signal is 
generated. This signal is generated for the foreground process group if the terminal device is a 
controlling terminal.  

  If neither IGNBRK nor BRKINT is set, then a BREAK is read as a single character \0 , unless PARMRK 
is set, in which case the BREAK is read as the 3-byte sequence \377 , \0 , \0 .  

BSDLY (c_oflag , XSI, Linux, Solaris) Backspace delay mask. The values for the mask are BS0 or BS1.  

CBAUDEXT (c_cflag , Solaris) Extended baud rates. Used to enable baud rates greater than B38400. (We 
discuss baud rates in Section 18.7.)  

CCAR_OFLOW (c_cflag , FreeBSD, Mac OS X) Enable hardware flow control of the output using the RS-232 
modem carrier signal (DCD, known as Data- Carrier-Detect). This is the same as the old MDMBUF 
flag.  

CCTS_OFLOW (c_cflag , FreeBSD, Mac OS X, Solaris) Enable hardware flow control of the output using the 
Clear-To-Send (CTS) RS-232 signal.  

CDSR_OFLOW (c_cflag , FreeBSD, Mac OS X) Flow control the output according to the Data-Set-Ready (DSR) 
RS-232 signal.  

CDTR_IFLOW (c_cflag , FreeBSD, Mac OS X) Flow control the input according to the Data-Terminal-Ready 
(DTR) RS-232 signal.  

CIBAUDEXT (c_cflag , Solaris) Extended input baud rates. Used to enable input baud rates greater than 
B38400. (We discuss baud rates in Section 18.7.) 

CIGNORE (c_cflag , FreeBSD, Mac OS X) Ignore control flags.  

CLOCAL (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the modem status lines are 
ignored. This usually means that the device is directly attached. When this flag is not set, an open  
of a terminal device usually blocks until the modem answers a call and establishes a connection, 
for example.  

CMSPAR (c_oflag , Linux) Select mark or space parity. If PARODD is set, the parity bit is always 1 (mark 
parity). Otherwise, the parity bit is always 0 (space parity).  

CRDLY (c_oflag , XSI, Linux, Solaris) Carriage return delay mask. The values for the mask are CR0, CR1, 
CR2, or CR3. 

CREAD (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the receiver is enabled, and 
characters can be received.  

CRTSCTS (c_cflag , FreeBSD, Linux, Mac OS X, Solaris) Behavior depends on platform. For Solaris, 
enables outbound hardware flow control if set. On the other three platforms, enables both inbound 



ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the 
WERASE character is entered. Instead of moving backward until the previous white space 
character, this flag causes the WERASE character to move backward until the first 
nonalphanumeric character is encountered.  

and outbound hardware flow control (equivalent to CCTS_OFLOW|CRTS_IFLOW).  

CRTS_IFLOW (c_cflag , FreeBSD, Mac OS X, Solaris) Request-To-Send (RTS) flow control of input.  

CRTSXOFF (c_cflag , Solaris) If set, inbound hardware flow control is enabled. The state of the Request-To-
Send RS-232 signal controls the flow control.  

CSIZE (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) This field is a mask that specifies the 
number of bits per byte for both transmission and reception. This size does not include the parity 
bit, if any. The values for the field defined by this mask are CS5, CS6, CS7, and CS8, for 5, 6, 7, 
and 8 bits per byte, respectively.  

CSTOPB (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, two stop bits are used; 
otherwise, one stop bit is used.  

ECHO (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, input characters are echoed back 
to the terminal device. Input characters can be echoed in either canonical or noncanonical mode.  

ECHOCTL (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set and if ECHO is set, ASCII control characters 
(those characters in the range 0 through octal 37, inclusive) other than the ASCII TAB, the ASCII 
NL, and the START and STOP characters are echoed as ^X, where X is the character formed by 
adding octal 100 to the control character. This means that the ASCII Control-A character (octal 1) 
is echoed as ^A. Also, the ASCII DELETE character (octal 177) is echoed as ̂? . If this flag is not 
set, the ASCII control characters are echoed as themselves. As with the ECHO flag, this flag affects 
the echoing of control characters in both canonical and noncanonical modes.  

  Be aware that some systems echo the EOF character differently, since its typical value is Control-
D. (Control-D is the ASCII EOT character, which can cause some terminals to hang up.) Check 
your manual.  

ECHOE (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the ERASE 
character erases the last character in the current line from the display. This is usually done in the 
terminal driver by writing the three-character sequence backspace, space, backspace.  

  If the WERASE character is supported, ECHOE causes the previous word to be erased using one or 
more of the same three-character sequence.  

  If the ECHOPRT flag is supported, the actions described here for ECHOE assume that the ECHOPRT 
flag is not set. 

ECHOK (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the KILL 
character erases the current line from the display or outputs the NL character (to emphasize that 
the entire line was erased).  

  If the ECHOKE flag is supported, this description of ECHOK assumes that ECHOKE is not set.  

ECHOKE (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the KILL character is 
echoed by erasing each character on the line. The way in which each character is erased is 
selected by the ECHOE and ECHOPRT flags.  

ECHONL (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if ICANON is set, the NL 
character is echoed, even if ECHO is not set.  



ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the 
WERASE character is entered. Instead of moving backward until the previous white space 
character, this flag causes the WERASE character to move backward until the first 
nonalphanumeric character is encountered.  

ECHOPRT (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set and if both ICANON and ECHO are set, then 
the ERASE character (and WERASE character, if supported) cause all the characters being erased 
to be printed as they are erased. This is often useful on a hard-copy terminal to see exactly which 
characters are being deleted.  

EXTPROC (c_lflag , FreeBSD, Mac OS X) If set, canonical character processing is performed external to 
the operating system. This can be the case if the serial communication peripheral card can offload 
the host processor by doing some of the line discipline processing. This can also be the case when 
using pseudo terminals (Chapter 19).  

FFDLY (c_oflag , XSI, Linux, Solaris) Form feed delay mask. The values for the mask are FF0 or FF1.  

FLUSHO (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set, output is being flushed. This flag is set 
when we type the DISCARD character; the flag is cleared when we type another DISCARD 
character. We can also set or clear this condition by setting or clearing this terminal flag.  

HUPCL (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the modem control lines are 
lowered (i.e., the modem connection is broken) when the last process closes the device.  

ICANON (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, canonical mode is in effect 
(Section 18.10). This enables the following characters: EOF, EOL, EOL2, ERASE, KILL, 
REPRINT, STATUS, and WERASE. The input characters are assembled into lines.  

  If canonical mode is not enabled, read requests are satisfied directly from the input queue. A read 
does not return until at least MIN bytes have been received or the timeout value TIME has 
expired between bytes. Refer to Section 18.11 for additional details. 

ICRNL (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if IGNCR is not set, a 
received CR character is translated into a NL character.  

IEXTEN (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the extended, implementation-
defined special characters are recognized and processed.  

IGNBRK (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, a BREAK condition on 
input is ignored. See BRKINT for a way to have a BREAK condition either generate a SIGINT  
signal or be read as data.  

IGNCR (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, a received CR character is 
ignored. If this flag is not set, it is possible to translate the received CR into a NL character if the 
ICRNL flag is set.  

IGNPAR (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, an input byte with a framing 
error (other than a BREAK) or an input byte with a parity error is ignored.  

IMAXBEL (c_iflag , FreeBSD, Linux, Mac OS X, Solaris) Ring bell when input queue is full.  

INLCR (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, a received NL character is 
translated into a CR character.  

INPCK (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, input parity checking is 
enabled. If INPCK is not set, input parity checking is disabled.  

  Parity "generation and detection" and "input parity checking" are two different things. The 



ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the 
WERASE character is entered. Instead of moving backward until the previous white space 
character, this flag causes the WERASE character to move backward until the first 
nonalphanumeric character is encountered.  

generation and detection of parity bits is controlled by the PARENB flag. Setting this flag usually 
causes the device driver for the serial interface to generate parity for outgoing characters and to 
verify the parity of incoming characters. The flag PARODD determines whether the parity should be 
odd or even. If an input character arrives with the wrong parity, then the state of the INPCK flag is 
checked. If this flag is set, then the IGNPAR flag is checked (to see whether the input byte with the 
parity error should be ignored); if the byte should not be ignored, then the PARMRK flag is checked 
to see what characters should be passed to the reading process.  

ISIG  (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the input characters are 
compared against the special characters that cause the terminal-generated signals to be generated 
(INTR, QUIT, SUSP, and DSUSP); if equal, the corresponding signal is generated.  

ISTRIP  (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set, valid input bytes are 
stripped to 7 bits. When this flag is not set, all 8 bits are processed. 

IUCLC (c_iflag , Linux, Solaris) Map uppercase to lowercase on input.  

IXANY (c_iflag , XSI, FreeBSD, Linux, Mac OS X, Solaris) Enable any characters to restart output.  

IXOFF (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, start–stop input control is 
enabled. When it notices that the input queue is getting full, the terminal driver outputs a STOP 
character. This character should be recognized by the device that is sending the data and cause the 
device to stop. Later, when the characters on the input queue have been processed, the terminal 
driver will output a START character. This should cause the device to resume sending data.  

IXON (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, start–stop output control is 
enabled. When the terminal driver receives a STOP character, output stops. While the output is 
stopped, the next START character resumes the output. If this flag is not set, the START and 
STOP characters are read by the process as normal characters.  

MDMBUF (c_cflag , FreeBSD, Mac OS X) Flow control the output according to the modem carrier flag. 
This is the old name for the CCAR_OFLOW flag.  

NLDLY (c_oflag , XSI, Linux, Solaris) Newline delay mask. The values for the mask are NL0 or NL1.  

NOFLSH (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) By default, when the terminal driver 
generates the SIGINT  and SIGQUIT signals, both the input and output queues are flushed. Also, 
when it generates the SIGSUSP signal, the input queue is flushed. If the NOFLSH flag is set, this 
normal flushing of the queues does not occur when these signals are generated.  

NOKERNINFO (c_lflag , FreeBSD, Mac OS X) When set, this flag prevents the STATUS character from 
printing information on the foreground process group. Regardless of this flag, however, the 
STATUS character still causes the SIGINFO signal to be sent to the foreground process group.  

OCRNL (c_oflag , XSI, FreeBSD, Linux, Solaris) If set, map CR to NL on output.  

OFDEL (c_oflag , XSI, Linux, Solaris) If set, the output fill character is ASCII DEL; otherwise, it's 
ASCII NUL. See the OFILL  flag. 

OFILL  (c_oflag , XSI, Linux, Solaris) If set, fill characters (either ASCII DEL or ASCII NUL; see the 
OFDEL flag) are transmitted for a delay, instead of using a timed delay. See the six delay masks: 
BSDLY, CRDLY, FFDLY, NLDLY, TABDLY, and VTDLY.  



ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the 
WERASE character is entered. Instead of moving backward until the previous white space 
character, this flag causes the WERASE character to move backward until the first 
nonalphanumeric character is encountered.  

OLCUC (c_oflag , Linux, Solaris) If set, map lowercase characters to uppercase characters on output. 

ONLCR (c_oflag , XSI, FreeBSD, Linux, Mac OS X, Solaris) If set, map NL to CR-NL on output.  

ONLRET (c_oflag , XSI, FreeBSD, Linux, Solaris) If set, the NL character is assumed to perform the 
carriage return function on output.  

ONOCR (c_oflag , XSI, FreeBSD, Linux, Solaris) If set, a CR is not output at column 0.  

ONOEOT (c_oflag , FreeBSD, Mac OS X) If set, EOT (^D) characters are discarded on output. This may be 
necessary on some terminals that interpret the Control-D as a hangup.  

OPOST (c_oflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, implementation-defined output 
processing takes place. Refer to Figure 18.6 for the various implementation-defined flags for the 
c_oflag  word.  

OXTABS (c_oflag , FreeBSD, Mac OS X) If set, tabs are expanded to spaces on output. This produces the 
same effect as setting the horizontal tab delay (TABDLY)to XTABS or TAB3.  

PARENB (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, parity generation is enabled for 
outgoing characters, and parity checking is performed on incoming characters. The parity is odd if 
PARODD is set; otherwise, it is even parity. See also the discussion of the INPCK, IGNPAR, and 
PARMRK flags.  

PAREXT (c_cflag , Solaris) Select mark or space parity. If PARODD is set, the parity bit is always 1 (mark 
parity). Otherwise, the parity bit is always 0 (space parity).  

PARMRK (c_iflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) When set and if IGNPAR is not set, a 
byte with a framing error (other than a BREAK) or a byte with a parity error is read by the 
process as the three-character sequence \377 , \0 , X, where X is the byte received in error. If 
ISTRIP  is not set, a valid \377  is passed to the process as \377 , \377 . If neither IGNPAR nor 
PARMRK is set, a byte with a framing error (other than a BREAK) or with a parity error is read as a 
single character \0 .  

PARODD (c_cflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set, the parity for outgoing and 
incoming characters is odd parity. Otherwise, the parity is even parity. Note that the PARENB flag 
controls the generation and detection of parity.  

  The PARODD flag also controls whether mark or space parity is used when either the CMSPAR or 
PAREXT flag is set.  

PENDIN (c_lflag , FreeBSD, Linux, Mac OS X, Solaris) If set, any input that has not been read is 
reprinted by the system when the next character is input. This action is similar to what happens 
when we type the REPRINT character. 

TABDLY (c_oflag , XSI, Linux, Solaris) Horizontal tab delay mask. The values for the mask are TAB0, 
TAB1, TAB2, or TAB3.  

  The value XTABS is equal to TAB3. This value causes the system to expand tabs into spaces. The 
system assumes a tab stop every eight spaces, and we can't change this assumption.  

TOSTOP (c_lflag , POSIX.1, FreeBSD, Linux, Mac OS X, Solaris) If set and if the implementation 
supports job control, the SIGTTOU signal is sent to the process group of a background process that 



ALTWERASE (c_lflag , FreeBSD, Mac OS X) If set, an alternate word-erase algorithm is used when the 
WERASE character is entered. Instead of moving backward until the previous white space 
character, this flag causes the WERASE character to move backward until the first 
nonalphanumeric character is encountered.  

tries to write to its controlling terminal. By default, this signal stops all the processes in the 
process group. This signal is not generated by the terminal driver if the background process that is 
writing to the controlling terminal is either ignoring or blocking the signal.  

VTDLY (c_oflag , XSI, Linux, Solaris) Vertical tab delay mask. The values for the mask are VT0 or VT1.  

XCASE (c_lflag , Linux, Solaris) If set and if ICANON is also set, the terminal is assumed to be uppercase 
only, and all input is converted to lowercase. To input an uppercase character, precede it with a 
backslash. Similarly, an uppercase character is output by the system by being preceded by a 
backslash. (This option flag is obsolete today, since most, if not all, uppercase-only terminals 
have disappeared.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.6. stty Command 

All the options described in the previous section can be examined and changed from within a program, with the 
tcgetattr  and tcsetattr  functions (Section 18.4) or from the command line (or a shell script), with the 
stty (1) command. This command is simply an interface to the first six functions that we listed in Figure 18.7. 
If we execute this command with its -a  option, it displays all the terminal options: 

$ stty -a 
speed 9600 baud; 25 rows; 80 columns; 
lflags: icanon isig iexten echo echoe -echok echoke  -echonl echoctl 
        -echoprt -altwerase -noflsh -tostop -flusho  pendin -nokerninfo 
        -extproc 
iflags: -istrip icrnl -inlcr -igncr ixon -ixoff ixa ny imaxbel -ignbrk 
        brkint -inpck -ignpar -parmrk 
oflags: opost onlcr -ocrnl -oxtabs -onocr -onlret 
cflags: cread cs8 -parenb -parodd hupcl -clocal -cs topb -crtscts 
        -dsrflow -dtrflow -mdmbuf 
cchars: discard = ^O; dsusp = ^Y; eof = ^D; eol = < undef>; 
        eol2 = <undef>; erase = ^H; erase2 = ^?; in tr = ^C; kill = ^U; 
        lnext = ^V; min = 1; quit = ^; reprint = ^R ; start = ^Q; 
        status = ^T; stop = ^S; susp = ^Z; time = 0 ; werase = ^W; 

 

Option names preceded by a hyphen are disabled. The last four lines display the current settings for each of the 
terminal special characters (Section 18.3). The first line displays the number of rows and columns for the 
current terminal window; we discuss this in Section 18.12. 

The stty  command uses its standard input to get and set the terminal option flags. Although some older 
implementations used standard output, POSIX.1 requires that the standard input be used. All four 
implementations discussed in this text provide versions of stty  that operate on standard input. This means that 
we can type 

          stty -a </dev/tty1a 

 

if we are interested in discovering the settings on the terminal named tty1a . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.7. Baud Rate Functions 

The term baud rate is a historical term that should be referred to today as "bits per second." Although most 
terminal devices use the same baud rate for both input and output, the capability exists to set the two to different 
values, if the hardware allows this. 

#include <termios.h> 
 
speed_t cfgetispeed(const struct termios *termptr);  
 
speed_t cfgetospeed(const struct termios *termptr);  

 

Both return: baud rate value  

int cfsetispeed(struct termios *termptr, speed_t sp eed);  
 
int cfsetospeed(struct termios *termptr, speed_t sp eed);  

 

Both return: 0 if OK, –1 on error 

 

The return value from the two cfget  functions and the speed argument to the two cfset  functions are one of 
the following constants: B50, B75, B110, B134, B150, B200, B300, B600, B1200 , B1800 , B2400 , B4800 , B9600 , 
B19200 , or B38400 . The constant B0 means "hang up." When B0 is specified as the output baud rate when 
tcsetattr  is called, the modem control lines are no longer asserted. 

Most systems define additional baud rate values, such as B57600  and B115200 . 

To use these functions, we must realize that the input and output baud rates are stored in the device's termios  
structure, as shown in Figure 18.8. Before calling either of the cfget  functions, we first have to obtain the 
device's termios  structure using tcgetattr . Similarly, after calling either of the two cfset  functions, all we've 
done is set the baud rate in a termios  structure. For this change to affect the device, we have to call tcsetattr . 
If there is an error in either of the baud rates that we set, we may not find out about the error until we call 
tcsetattr . 

The four baud rate functions exist to insulate applications from differences in the way that implementations 
represent baud rates in the termios  structure. BSD-derived platforms tend to store baud rates as numeric values 
equal to the rates (i.e., 9,600 baud is stored as the value 9,600), whereas Linux and System V–derived platforms 
tend to encode the baud rate in a bitmask. The speed values we get from the cfget  functions and pass to the 
cfset  functions are untranslated from their representation as they are stored in the termios  structure. 

 
 
 
 
 
 
 
 
 
 



18.8. Line Control Functions 

The following four functions provide line control capability for terminal devices. All four require that filedes 
refer to a terminal device; otherwise, an error is returned with errno  set to ENOTTY. 

#include <termios.h> 
 
int tcdrain(int filedes); 
 
int tcflow(int filedes, int action); 
 
int tcflush(int filedes, int queue); 
 
int tcsendbreak(int filedes, int duration);  

 

All four return: 0 if OK, –1 on error  

 

The tcdrain  function waits for all output to be transmitted. The tcflow  function gives us control over both 
input and output flow control. The action argument must be one of the following four values: 

TCOOFF Output is suspended. 

TCOON Output that was previously suspended is restarted. 

TCIOFF The system transmits a STOP character, which should cause the terminal device to stop sending data. 

TCION The system transmits a START character, which should cause the terminal device to resume sending 
data. 

 

The tcflush  function lets us flush (throw away) either the input buffer (data that has been received by the 
terminal driver, which we have not read) or the output buffer (data that we have written, which has not yet been 
transmitted). The queue argument must be one of the following three constants: 

TCIFLUSH The input queue is flushed. 

TCOFLUSH The output queue is flushed. 

TCIOFLUSH Both the input and the output queues are flushed. 

 

The tcsendbreak  function transmits a continuous stream of zero bits for a specified duration. If the duration 
argument is 0, the transmission lasts between 0.25 seconds and 0.5 seconds. POSIX.1 specifies that if duration 
is nonzero, the transmission time is implementation dependent. 

 
 
 
 
 
 
 



18.9. Terminal Identification 

Historically, the name of the controlling terminal in most versions of the UNIX System has been /dev/tty . 
POSIX.1 provides a runtime function that we can call to determine the name of the controlling terminal. 

#include <stdio.h> 
 
char *ctermid(char *ptr); 

 

Returns: pointer to name of controlling terminal  
on success, pointer to empty string on error 

 

If ptr is non-null, it is assumed to point to an array of at least L_ctermid  bytes, and the name of the controlling 
terminal of the process is stored in the array. The constant L_ctermid  is defined in <stdio.h> . If ptr is a null 
pointer, the function allocates room for the array (usually as a static variable). Again, the name of the 
controlling terminal of the process is stored in the array. 

In both cases, the starting address of the array is returned as the value of the function. Since most UNIX systems 
use /dev/tty  as the name of the controlling terminal, this function is intended to aid portability to other 
operating systems. 

All four platforms described in this text return the string /dev/tty  when we call ctermid . 

Example—ctermid Function 

Figure 18.12 shows an implementation of the POSIX.1 ctermid  function. 

Note that we can't protect against overrunning the caller's buffer, because we have no way to 
determine its size. 

Figure 18.12. Implementation of POSIX.1 ctermid function 

#include     <stdio.h> 
#include     <string.h> 
 
static char ctermid_name[L_ctermid]; 
 
char * 
ctermid(char *str) 
{ 
    if (str == NULL) 
        str = ctermid_name; 
    return(strcpy(str, "/dev/tty"));    /* strcpy()  returns str */  
} 

 

Two functions that are more interesting for a UNIX system are isatty , which returns true if a file descriptor 
refers to a terminal device, and ttyname , which returns the pathname of the terminal device that is open on a 
file descriptor. 



#include <unistd.h> 
 
int isatty(int filedes); 

 

Returns: 1 (true) if terminal device, 0 (false) otherwise  

char *ttyname(int filedes); 

 

Returns: pointer to pathname of terminal, NULL on error 

 
 

Example—isatty Function 

The isatty  function is trivial to implement, as we show in Figure 18.13. We simply try one of the terminal-
specific functions (that doesn't change anything if it succeeds) and look at the return value. 

We test our isatty  function with the program in Figure 18.14. 

When we run the program from Figure 18.14, we get the following output: 

   $ ./a.out 
   fd 0: tty 
   fd 1: tty 
   fd 2: tty 
   $ ./a.out </etc/passwd 2>/dev/null 
   fd 0: not a tty 
   fd 1: tty 
   fd 2: not a tty 

 

Figure 18.13. Implementation of POSIX.1 isatty function 

#include    <termios.h> 
 
int 
isatty(int fd) 
{ 
    struct termios ts; 
    return(tcgetattr(fd, &ts) != -1); /* true if no  error (is a tty) */  
} 

 

Figure 18.14. Test the isatty function 

#include "apue.h" 
 
int 
main(void) 
{ 
    printf("fd 0: %s\n", isatty(0) ? "tty" : "not a  tty");  
    printf("fd 1: %s\n", isatty(1) ? "tty" : "not a  tty");  
    printf("fd 2: %s\n", isatty(2) ? "tty" : "not a  tty");  
    exit(0); 
} 



Example—ttyname Function 

The ttyname  function (Figure 18.15) is longer, as we have to search all the device entries, looking for a match. 

The technique is to read the /dev  directory, looking for an entry with the same device number and i-node 
number. Recall from Section 4.23 that each file system has a unique device number (the st_dev  field in the 
stat  structure, from Section 4.2), and each directory entry in that file system has a unique i-node number (the 
st_ino  field in the stat  structure). We assume in this function that when we hit a matching device number and 
matching i-node number, we've located the desired directory entry. We could also verify that the two entries 
have matching st_rdev  fields (the major and minor device numbers for the terminal device) and that the 
directory entry is also a character special file. But since we've already verified that the file descriptor argument 
is both a terminal device and a character special file, and since a matching device number and i-node number is 
unique on a UNIX system, there is no need for the additional comparisons. 

The name of our terminal might reside in a subdirectory in /dev . Thus, we might need to search the entire file 
system tree under /dev . We skip several directories that might produce incorrect or odd-looking results: 
/dev/. , /dev/.. , and /dev/fd . We also skip the aliases /dev/stdin , /dev/stdout , and /dev/stderr , since 
they are symbolic links to files in /dev/fd . 

We can test this implementation with the program shown in Figure 18.16. 

Running the program from Figure 18.16 gives us 

   $ ./a.out < /dev/console 2> /dev/null 
   fd 0: /dev/console 
   fd 1: /dev/ttyp3 
   fd 2: not a tty 

 

Figure 18.15. Implementation of POSIX.1 ttyname function 

#include    <sys/stat.h> 
#include    <dirent.h> 
#include    <limits.h> 
#include    <string.h> 
#include    <termios.h> 
#include    <unistd.h> 
#include    <stdlib.h> 
 
struct devdir { 
    struct devdir    *d_next; 
    char             *d_name; 
}; 
 
static struct devdir    *head; 
static struct devdir    *tail; 
static char             pathname[_POSIX_PATH_MAX + 1]; 
 
static void 
add(char *dirname) 
{ 
    struct devdir    *ddp; 
    int              len; 
 
    len = strlen(dirname); 
 
    /* 



     * Skip ., .., and /dev/fd. 
     */ 
    if ((dirname[len-1] == '.') && (dirname[len-2] == '/' || 
      (dirname[len-2] == '.' && dirname[len-3] == ' /'))) 
        return; 
    if (strcmp(dirname, "/dev/fd") == 0) 
        return; 
    ddp = malloc(sizeof(struct devdir)); 
    if (ddp == NULL) 
        return; 
 
    ddp->d_name = strdup(dirname); 
    if (ddp->d_name == NULL) { 
        free(ddp); 
        return; 
    } 
    ddp->d_next = NULL; 
    if (tail == NULL) { 
        head = ddp; 
        tail = ddp; 
    } else { 
        tail->d_next = ddp; 
        tail = ddp; 
    } 
} 
 
static void 
cleanup(void) 
{ 
    struct devdir *ddp, *nddp; 
 
    ddp = head; 
    while (ddp != NULL) { 
        nddp = ddp->d_next; 
        free(ddp->d_name); 
        free(ddp); 
        ddp = nddp; 
    } 
    head = NULL; 
    tail = NULL; 
} 
 
static char * 
searchdir(char *dirname, struct stat *fdstatp) 
{ 
    struct stat     devstat; 
    DIR             *dp; 
    int             devlen; 
    struct dirent   *dirp; 
 
    strcpy(pathname, dirname); 
    if ((dp = opendir(dirname)) == NULL) 
        return(NULL); 
    strcat(pathname, "/"); 
    devlen = strlen(pathname); 
    while ((dirp = readdir(dp)) != NULL) { 
        strncpy(pathname + devlen, dirp->d_name, 
          _POSIX_PATH_MAX - devlen); 
        /* 
         * Skip aliases. 
         */ 
        if (strcmp(pathname, "/dev/stdin") == 0 || 



          strcmp(pathname, "/dev/stdout") == 0 || 
          strcmp(pathname, "/dev/stderr") == 0) 
            continue; 
        if (stat(pathname, &devstat) < 0) 
            continue; 
        if (S_ISDIR(devstat.st_mode)) { 
            add(pathname); 
            continue; 
        } 
        if (devstat.st_ino == fdstatp->st_ino && 
          devstat.st_dev == fdstatp->st_dev) { /* f ound a match */  
            closedir(dp); 
            return(pathname); 
        } 
    } 
    closedir(dp); 
    return(NULL); 
} 
 
char * 
ttyname(int fd) 
{ 
    struct stat     fdstat; 
    struct devdir   *ddp; 
    char            *rval; 
 
    if (isatty(fd) == 0) 
        return(NULL); 
    if (fstat(fd, &fdstat) < 0) 
        return(NULL); 
    if (S_ISCHR(fdstat.st_mode) == 0) 
        return(NULL); 
 
    rval = searchdir("/dev", &fdstat); 
    if (rval == NULL) { 
        for (ddp = head; ddp != NULL; ddp = ddp->d_ next) 
            if ((rval = searchdir(ddp->d_name, &fds tat)) != NULL) 
                break; 
    } 
 
    cleanup(); 
    return(rval); 
} 

Figure 18.16. Test the ttyname function 

#include "apue.h" 
 
int 
main(void) 
{ 
    char *name; 
 
    if (isatty(0)) { 
        name = ttyname(0); 
        if (name == NULL) 
            name = "undefined";  
    } else { 
        name = "not a tty"; 
    } 
    printf("fd 0: %s\n", name);  
    if (isatty(1)) { 



        name = ttyname(1); 
        if (name == NULL) 
            name = "undefined";  
    } else { 
        name = "not a tty"; 
    } 
    printf("fd 1: %s\n", name);  
    if (isatty(2)) { 
        name = ttyname(2); 
        if (name == NULL) 
            name = "undefined";  
    } else { 
        name = "not a tty"; 
    } 
    printf("fd 2: %s\n", name);  
    exit(0); 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.10. Canonical Mode 

Canonical mode is simple: we issue a read, and the terminal driver returns when a line has been entered. Several 
conditions cause the read to return. 

• The read returns when the requested number of bytes have been read. We don't have to read a complete 
line. If we read a partial line, no information is lost; the next read starts where the previous read stopped. 

• The read returns when a line delimiter is encountered. Recall from Section 18.3 that the following 
characters are interpreted as end of line in canonical mode: NL, EOL, EOL2, and EOF. Also, recall from 
Section 18.5 that if ICRNL is set and if IGNCR is not set, then the CR character also terminates a line, 
since it acts just like the NL character. 

Realize that of these five line delimiters, one (EOF) is discarded by the terminal driver when it's 
processed. The other four are returned to the caller as the last character of the line. 

• The read also returns if a signal is caught and if the function is not automatically restarted (Section 10.5). 

Example—getpass Function 

We now show the function getpass , which reads a password of some type from the user at a 
terminal. This function is called by the login (1) and crypt (1) programs. To read the password, the 
function must turn off echoing, but it can leave the terminal in canonical mode, as whatever we type 
as the password forms a complete line. Figure 18.17 shows a typical implementation on a UNIX 
system. 

There are several points to consider in this example. 

• Instead of hardwiring /dev/tty  into the program, we call the function ctermid  to open the 
controlling terminal. 

• We read and write only to the controlling terminal and return an error if we can't open this 
device for reading and writing. There are other conventions to use. The BSD version of 
getpass  reads from standard input and writes to standard error if the controlling terminal 
can't be opened for reading and writing. The System V version always writes to standard 
error but reads only from the controlling terminal. 

• We block the two signals SIGINT  and SIGTSTP. If we didn't do this, entering the INTR 
character would abort the program and leave the terminal with echoing disabled. Similarly, 
entering the SUSP character would stop the program and return to the shell with echoing 
disabled. We choose to block the signals while we have echoing disabled. If they are 
generated while we're reading the password, they are held until we return. There are other 
ways to handle these signals. Some versions just ignore SIGINT  (saving its previous action) 
while in getpass , resetting the action for this signal to its previous value before returning. 
This means that any occurrence of the signal while it's ignored is lost. Other versions catch 
SIGINT  (saving its previous action) and if the signal is caught, send themselves the signal 
with the kill  function after resetting the terminal state and signal action. None of the 
versions of getpass  catch, ignore, or block SIGQUIT, so entering the QUIT character aborts 
the program and probably leaves the terminal with echoing disabled. 

• Be aware that some shells, notably the Korn shell, turn echoing back on whenever they read 
interactive input. These shells are the ones that provide command-line editing and therefore 
manipulate the state of the terminal every time we enter an interactive command. So, if we 
invoke this program under one of these shells and abort it with the QUIT character, it may 
reenable echoing for us. Other shells that don't provide this form of command-line editing, 



such as the Bourne shell, will abort the program and leave the terminal in no-echo mode. If 
we do this to our terminal, the stty  command can reenable echoing. 

• We use standard I/O to read and write the controlling terminal. We specifically set the stream 
to be unbuffered; otherwise, there might be some interactions between the writing and 
reading of the stream (we would need some calls to fflush ). We could have also used 
unbuffered I/O (Chapter 3), but we would have to simulate the getc  function using read . 

• We store only up to eight characters as the password. Any additional characters that are 
entered are ignored. 

The program in Figure 18.18 calls getpass  and prints what we enter to let us verify that the ERASE 
and KILL characters work (as they should in canonical mode). 

Whenever a program that calls getpass  is done with the cleartext password, the program should 
zero it out in memory, just to be safe. If the program were to generate a core  file that others might 
be able to read or if some other process were somehow able to read our memory, they might be able 
to read the cleartext password. (By "cleartext," we mean the password that we type at the prompt 
that is printed by getpass . Most UNIX system programs then modify this cleartext password into an 
"encrypted" password. The field pw_passwd  in the password file, for example, contains the 
encrypted password, not the cleartext password.) 

Figure 18.17. Implementation of getpass function 

#include <signal.h> 
#include <stdio.h> 
#include <termios.h> 
 
#define MAX_PASS_LEN    8      /* max #chars for us er to enter */ 
 
char * 
getpass(const char *prompt) 
{ 
    static char     buf[MAX_PASS_LEN + 1]; /* null byte at end */ 
    char            *ptr; 
    sigset_t        sig, osig; 
    struct termios  ts, ots; 
    FILE            *fp; 
    int             c; 
 
    if ((fp = fopen(ctermid(NULL), "r+")) == NULL) 
        return(NULL); 
    setbuf(fp, NULL); 
 
    sigemptyset(&sig); 
    sigaddset(&sig, SIGINT);        /* block SIGINT  */ 
    sigaddset(&sig, SIGTSTP);       /* block SIGTST P */ 
    sigprocmask(SIG_BLOCK, &sig, &osig);    /* and save mask */ 
 
    tcgetattr(fileno(fp), &ts);     /* save tty sta te */ 
    ots = ts;                       /* structure co py */ 
    ts.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);  
    tcsetattr(fileno(fp), TCSAFLUSH, &ts); 
    fputs(prompt, fp); 
 
    ptr = buf; 
    while ((c = getc(fp)) != EOF && c != '\n') 
        if (ptr < &buf[MAX_PASS_LEN]) 
            *ptr++ = c; 



    *ptr = 0;                  /* null terminate */  
    putc('\n', fp);            /* we echo a newline  */ 
 
    tcsetattr(fileno(fp), TCSAFLUSH, &ots); /* rest ore TTY state */  
    sigprocmask(SIG_SETMASK, &osig, NULL);  /* rest ore mask */ 
    fclose(fp);         /* done with /dev/tty */ 
    return(buf); 
} 

Figure 18.18. Call the getpass function 

#include "apue.h" 
 
char    *getpass(const char *); 
 
int 
main(void) 
{ 
    char   *ptr; 
 
    if ((ptr = getpass("Enter password:")) == NULL)  
        err_sys("getpass error"); 
    printf("password: %s\n", ptr); 
 
    /* now use password (probably encrypt it) ... * / 
 
    while (*ptr != 0) 
        *ptr++ = 0;      /* zero it out when we're done with it */  
    exit(0); 
} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.11. Noncanonical Mode 

Noncanonical mode is specified by turning off the ICANON flag in the c_lflag  field of the termios  structure. In 
noncanonical mode, the input data is not assembled into lines. The following special characters (Section 18.3) 
are not processed: ERASE, KILL, EOF, NL, EOL, EOL2, CR, REPRINT, STATUS, and WERASE. 

As we said, canonical mode is easy: the system returns up to one line at a time. But with noncanonical mode, 
how does the system know when to return data to us? If it returned one byte at a time, overhead would be 
excessive. (Recall Figure 3.5, which showed the overhead in reading one byte at a time. Each time we doubled 
the amount of data returned, we halved the system call overhead.) The system can't always return multiple bytes 
at a time, since sometimes we don't know how much data to read until we start reading it. 

The solution is to tell the system to return when either a specified amount of data has been read or after a given 
amount of time has passed. This technique uses two variables in the c_cc  array in the termios  structure: MIN 
and TIME. These two elements of the array are indexed by the names VMIN and VTIME. 

MIN specifies the minimum number of bytes before a read  returns. TIME specifies the number of tenths of a 
second to wait for data to arrive. There are four cases. 

Case A: MIN > 0, TIME > 0 

TIME specifies an interbyte timer that is started only when the first byte is received. If MIN bytes are received 
before the timer expires, read  returns MIN bytes. If the timer expires before MIN bytes are received, read  
returns the bytes received. (At least one byte is returned if the timer expires, because the timer is not started 
until the first byte is received.) In this case, the caller blocks until the first byte is received. If data is already 
available when read  is called, it is as if the data had been received immediately after the read . 

Case B: MIN > 0, TIME == 0 

The read  does not return until MIN bytes have been received. This can cause a read  to block indefinitely. 

Case C: MIN == 0, TIME > 0 

TIME specifies a read timer that is started when read  is called. (Compare this to case A, in which a nonzero 
TIME represented an interbyte timer that was not started until the first byte was received.) The read  returns 
when a single byte is received or when the timer expires. If the timer expires, read  returns 0. 

Case D: MIN == 0, TIME == 0 

If some data is available, read  returns up to the number of bytes requested. If no data is available, read  returns 
0 immediately. 

Realize in all these cases that MIN is only a minimum. If the program requests more than MIN bytes of data, it's 
possible to receive up to the requested amount. This also applies to cases C and D, in which MIN is 0. 

Figure 18.19 summarizes the four cases for noncanonical input. In this figure, nbytes is the third argument to 
read  (the maximum number of bytes to return). 

 

 



Figure 18.19. Four cases for noncanonical input 

 
 

Be aware that POSIX.1 allows the subscripts VMIN and VTIME to have the same values as VEOF and VEOL, 
respectively. Indeed, Solaris does this for backward compatibility with older versions of System V. This creates 
a portability problem, however. In going from noncanonical to canonical mode, we must now restore VEOF and 
VEOL also. If VMIN equals VEOF and we don't restore their values, when we set VMIN to its typical value of 1, the 
end-of-file character becomes Control-A. The easiest way around this problem is to save the entire termios  
structure when going into noncanonical mode and restore it when going back to canonical mode. 

Example 

The program in Figure 18.20 defines the tty_cbreak  and tty_raw  functions that set the terminal in cbreak 
mode and raw mode. (The terms cbreak and raw come from the Version 7 terminal driver.) We can reset the 
terminal to its original state (the state before either of these functions was called) by calling the function 
tty_reset . 

If we've called tty_cbreak , we need to call tty_reset  before calling tty_raw . The same goes for calling 
tty_cbreak  after calling tty_raw . This improves the chances that the terminal will be left in a usable state if 
we encounter any errors. 

Two additional functions are also provided: tty_atexit  can be established as an exit handler to ensure that the 
terminal mode is reset by exit , and tty_termios  returns a pointer to the original canonical mode termios  
structure. 

Our definition of cbreak mode is the following: 

• Noncanonical mode. As we mentioned at the beginning of this section, this mode turns off some input 
character processing. It does not turn off signal handling, so the user can always type one of the 
terminal-generated signals. Be aware that the caller should catch these signals, or there's a chance that 
the signal will terminate the program, and the terminal will be left in cbreak mode. 

As a general rule, whenever we write a program that changes the terminal mode, we should catch most 
signals. This allows us to reset the terminal mode before terminating. 

• Echo off. 
• One byte at a time input. To do this, we set MIN to 1 and TIME to 0. This is case B from Figure 18.19. 

A read  won't return until at least one byte is available. 

We define raw mode as follows: 



• Noncanonical mode. We also turn off processing of the signal-generating characters (ISIG ) and the 
extended input character processing (IEXTEN). Additionally, we disable a BREAK character from 
generating a signal, by turning off BRKINT. 

• Echo off. 
• We disable the CR-to-NL mapping on input (ICRNL), input parity detection (INPCK), the stripping of the 

eighth bit on input (ISTRIP ), and output flow control (IXON). 
• Eight-bit characters (CS8), and parity checking is disabled (PARENB). 
• All output processing is disabled (OPOST). 
• One byte at a time input (MIN = 1, TIME = 0). 

The program in Figure 18.21 tests raw and cbreak modes. 

Running the program in Figure 18.21, we can see what happens with these two terminal modes: 

$ ./a.out 
Enter raw mode characters, terminate with DELETE 
                                                 4 
                                                   33 
                                                     133 
                                                        61 
                                                          70 
                                                            176 
                          type DELETE 
Enter cbreak mode characters, terminate with SIGINT  
1                         type Control-A 
10                        type backspace 
signal caught             type interrupt key 

 

In raw mode, the characters entered were Control-D (04) and the special function key F7. On the terminal being 
used, this function key generated five characters: ESC (033), [ (0133), 1 (061), 8 (070), and ~ (0176). Note that 
with the output processing turned off in raw mode (~OPOST), we do not get a carriage return output after each 
character. Also note that special-character processing is disabled in cbreak mode (so, for example, Control-D, 
the end-of-file character, and backspace aren't handled specially), whereas the terminal-generated signals are 
still processed. 

Figure 18.20. Set terminal mode to cbreak or raw 

#include "apue.h" 
#include <termios.h> 
#include <errno.h> 
 
static struct termios       save_termios; 
static int                  ttysavefd = -1; 
static enum { RESET, RAW, CBREAK } ttystate = RESET ; 
 
int 
tty_cbreak(int fd) /* put terminal into a cbreak mo de */ 
{ 
    int              err; 
    struct termios   buf; 
 
    if (ttystate != RESET) { 
        errno = EINVAL; 
        return(-1); 
    } 



    if (tcgetattr(fd, &buf) < 0) 
        return(-1); 
    save_termios = buf; /* structure copy */ 
 
    /* 
     * Echo off, canonical mode off. 
     */ 
    buf.c_lflag &= ~(ECHO | ICANON); 
 
    /* 
     * Case B: 1 byte at a time, no timer. 
     */ 
    buf.c_cc[VMIN] = 1; 
    buf.c_cc[VTIME] = 0; 
    if (tcsetattr(fd, TCSAFLUSH, &buf) < 0) 
        return(-1); 
 
    /* 
     * Verify that the changes stuck. tcsetattr can  return 0 on 
     * partial success. 
     */ 
    if (tcgetattr(fd, &buf) < 0) { 
        err = errno; 
        tcsetattr(fd, TCSAFLUSH, &save_termios); 
        errno = err; 
        return(-1); 
    } 
    if ((buf.c_lflag & (ECHO | ICANON)) || buf.c_cc [VMIN] != 1 ||  
      buf.c_cc[VTIME] != 0) { 
        /* 
         * Only some of the changes were made. Rest ore the 
         * original settings. 
         */ 
        tcsetattr(fd, TCSAFLUSH, &save_termios); 
        errno = EINVAL; 
        return(-1); 
    } 
 
    ttystate = CBREAK; 
    ttysavefd = fd; 
    return(0); 
} 
 
int 
tty_raw(int fd)     /* put terminal into a raw mode  */ 
{ 
    int             err; 
    struct termios  buf; 
 
    if (ttystate != RESET) { 
        errno = EINVAL; 
        return(-1); 
    } 
    if (tcgetattr(fd, &buf) < 0) 
        return(-1); 
    save_termios = buf; /* structure copy */ 
 
    /* 
     * Echo off, canonical mode off, extended input  
     * processing off, signal chars off. 
     */ 
    buf.c_lflag &= ~(ECHO | ICANON | IEXTEN | ISIG) ; 



 
    /* 
     * No SIGINT on BREAK, CR-to-NL off, input pari ty 
     * check off, don't strip 8th bit on input, out put 
     * flow control off. 
     */ 
    buf.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRI P | IXON); 
 
    /* 
     * Clear size bits, parity checking off. 
     */ 
    buf.c_cflag &= ~(CSIZE | PARENB); 
 
    /* 
     * Set 8 bits/char. 
     */ 
    buf.c_cflag |= CS8; 
 
    /* 
     * Output processing off. 
     */ 
    buf.c_oflag &= ~(OPOST); 
 
    /* 
     * Case B: 1 byte at a time, no timer. 
     */ 
    buf.c_cc[VMIN] = 1; 
    buf.c_cc[VTIME] = 0; 
    if (tcsetattr(fd, TCSAFLUSH, &buf) < 0) 
        return(-1); 
 
    /* 
     * Verify that the changes stuck. tcsetattr can  return 0 on 
     * partial success. 
     */ 
    if (tcgetattr(fd, &buf) < 0) { 
        err = errno; 
        tcsetattr(fd, TCSAFLUSH, &save_termios); 
        errno = err; 
        return(-1); 
    } 
    if ((buf.c_lflag & (ECHO | ICANON | IEXTEN | IS IG)) || 
      (buf.c_iflag & (BRKINT | ICRNL | INPCK | ISTR IP | IXON)) ||  
      (buf.c_cflag & (CSIZE | PARENB | CS8)) != CS8  || 
      (buf.c_oflag & OPOST) || buf.c_cc[VMIN] != 1 || 
      buf.c_cc[VTIME] != 0) { 
        /* 
         * Only some of the changes were made. Rest ore the 
         * original settings. 
         */ 
        tcsetattr(fd, TCSAFLUSH, &save_termios); 
        errno = EINVAL; 
        return(-1); 
    } 
 
    ttystate = RAW; 
    ttysavefd = fd; 
    return(0); 
} 
 
int 
tty_reset(int fd)      /* restore terminal's mode * / 



{ 
    if (ttystate == RESET) 
        return(0); 
    if (tcsetattr(fd, TCSAFLUSH, &save_termios) < 0 ) 
        return(-1); 
    ttystate = RESET; 
    return(0); 
} 
void 
tty_atexit(void)        /* can be set up by atexit( tty_atexit) */  
{ 
    if (ttysavefd >= 0) 
        tty_reset(ttysavefd); 
} 
 
struct termios * 
tty_termios(void)       /* let caller see original tty state */ 
{ 
    return(&save_termios); 
} 

Figure 18.21. Test raw and cbreak terminal modes 

#include "apue.h" 
 
static void 
sig_catch(int signo) 
{ 
    printf("signal caught\n"); 
    tty_reset(STDIN_FILENO); 
    exit(0); 
} 
 
int 
main(void) 
{ 
    int    i; 
    char   c; 
 
    if (signal(SIGINT, sig_catch) == SIG_ERR)   /* catch signals */ 
        err_sys("signal(SIGINT) error"); 
    if (signal(SIGQUIT, sig_catch) == SIG_ERR) 
        err_sys("signal(SIGQUIT) error"); 
    if (signal(SIGTERM, sig_catch) == SIG_ERR) 
        err_sys("signal(SIGTERM) error"); 
 
    if (tty_raw(STDIN_FILENO) < 0) 
        err_sys("tty_raw error"); 
    printf("Enter raw mode characters, terminate wi th DELETE\n"); 
    while ((i = read(STDIN_FILENO, &c, 1)) == 1) { 
        if ((c &= 255) == 0177)     /* 0177 = ASCII  DELETE */ 
            break; 
        printf("%o\n", c); 
    } 
    if (tty_reset(STDIN_FILENO) < 0) 
        err_sys("tty_reset error"); 
    if (i <= 0) 
        err_sys("read error"); 
    if (tty_cbreak(STDIN_FILENO) < 0) 
        err_sys("tty_cbreak error"); 
    printf("\nEnter cbreak mode characters, termina te with SIGINT\n");  
    while ((i = read(STDIN_FILENO, &c, 1)) == 1) { 



        c &= 255; 
        printf("%o\n", c); 
    } 
    if (tty_reset(STDIN_FILENO) < 0) 
        err_sys("tty_reset error"); 
    if (i <= 0) 
        err_sys("read error"); 
    exit(0); 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.12. Terminal Window Size 

Most UNIX systems provide a way to keep track of the current terminal window size and to have the kernel 
notify the foreground process group when the size changes. The kernel maintains a winsize  structure for every 
terminal and pseudo terminal: 

   struct winsize { 
     unsigned short ws_row;       /* rows, in chara cters */ 
     unsigned short ws_col;       /* columns, in ch aracters */ 
     unsigned short ws_xpixel;    /* horizontal siz e, pixels (unused) */ 
     unsigned short ws_ypixel;    /* vertical size,  pixels (unused) */ 
   }; 

 

The rules for this structure are as follows. 

• We can fetch the current value of this structure using an ioctl  (Section 3.15) of TIOCGWINSZ. 
• We can store a new value of this structure in the kernel using an ioctl  of TIOCSWINSZ. If this new value 

differs from the current value stored in the kernel, a SIGWINCH signal is sent to the foreground process 
group. (Note from Figure 10.1 that the default action for this signal is to be ignored.) 

• Other than storing the current value of the structure and generating a signal when the value changes, the 
kernel does nothing else with this structure. Interpreting the structure is entirely up to the application. 

The reason for providing this feature is to notify applications (such as the vi  editor) when the window size 
changes. When it receives the signal, the application can fetch the new size and redraw the screen. 

Example 

Figure 18.22 shows a program that prints the current window size and goes to sleep. Each time the window size 
changes, SIGWINCH is caught and the new size is printed. We have to terminate this program with a signal. 

Running the program in Figure 18.22 on a windowed terminal gives us 

$ ./a.out 
35 rows, 80 columns       initial size 
SIGWINCH received         change window size: signa l is caught 
40 rows, 123 columns 
SIGWINCH received         and again 
42 rows, 33 columns 
^? $                      type the interrupt key to  terminate 

 

Figure 18.22. Print window size 

#include "apue.h" 
#include <termios.h> 
#ifndef TIOCGWINSZ 
#include <sys/ioctl.h> 
#endif 
 
static void 
pr_winsize(int fd) 
{ 
    struct winsize size; 
 
    if (ioctl(fd, TIOCGWINSZ, (char *) &size) < 0) 



        err_sys("TIOCGWINSZ error"); 
    printf("%d rows, %d columns\n", size.ws_row, si ze.ws_col);  
} 
 
static void 
sig_winch(int signo) 
{ 
    printf("SIGWINCH received\n"); 
    pr_winsize(STDIN_FILENO); 
} 
 
int 
main(void) 
{ 
    if (isatty(STDIN_FILENO) == 0) 
        exit(1); 
    if (signal(SIGWINCH, sig_winch) == SIG_ERR) 
        err_sys("signal error"); 
    pr_winsize(STDIN_FILENO);   /* print initial si ze */ 
    for ( ; ; )                 /* and sleep foreve r */ 
        pause(); 
}   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.13. termcap, terminfo, and curses 

termcap  stands for "terminal capability," and it refers to the text file /etc/termcap  and a set of routines to read 
this file. The termcap  scheme was developed at Berkeley to support the vi  editor. The termcap  file contains 
descriptions of various terminals: what features the terminal supports (how many lines and rows, whether the 
terminal support backspace, etc.) and how to make the terminal perform certain operations (clear the screen, 
move the cursor to a given location, etc.). Taking this information out of the compiled program and placing it 
into a text file that can easily be edited allows the vi  editor to run on many different terminals. 

The routines that support the termcap  file were then extracted from the vi  editor and placed into a separate 
curses  library. Many features were added to make this library usable for any program that wanted to 
manipulate the screen. 

The termcap  scheme was not perfect. As more and more terminals were added to the data file, it took longer to 
scan the file, looking for a specific terminal. The data file also used two-character names to identify the various 
terminal attributes. These deficiencies led to development of the terminfo  scheme and its associated curses  
library. The terminal descriptions in terminfo  are basically compiled versions of a textual description and can 
be located faster at runtime. terminfo  appeared with SVR2 and has been in all System V releases since then. 

Historically, System V–based systems used terminfo , and BSD-derived systems used termcap , but it is now 
common for systems to provide both. Mac OS X, however, supports only terminfo . 

A description of terminfo  and the curses  library is provided by Goodheart [1991], but this is currently out of 
print. Strang [1986] describes the Berkeley version of the curses  library. Strang, Mui, and O'Reilly [1988] 
provide a description of termcap  and terminfo . 

The ncurses  library, a free version that is compatible with the SVR4 curses  interface, can be found at 
http://invisible-island.net/ncurses/ncurses.html . 

Neither termcap  nor terminfo , by itself, addresses the problems we've been looking at in this chapter: 
changing the terminal's mode, changing one of the terminal special characters, handling the window size, and so 
on. What they do provide is a way to perform typical operations (clear the screen, move the cursor) on a wide 
variety of terminals. On the other hand, curses  does help with some of the details that we've addressed in this 
chapter. Functions are provided by curses  to set raw mode, set cbreak mode, turn echo on and off, and the like. 
But the curses  library is designed for character-based dumb terminals, which have mostly been replaced by 
pixel-based graphics terminals today. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



18.14. Summary 

Terminals have many features and options, most of which we're able to change to suit our needs. In this chapter, 
we've described numerous functions that change a terminal's operation: special input characters and the option 
flags. We've looked at all the terminal special characters and the many options that can be set or reset for a 
terminal device. 

There are two modes of terminal input—canonical (line at a time) and noncanonical. We showed examples of 
both modes and provided functions that map between the POSIX.1 terminal options and the older BSD cbreak 
and raw modes. We also described how to fetch and change the window size of a terminal. 
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19.1. Introduction 

In Chapter 9, we saw that terminal logins come in through a terminal device, automatically providing terminal 
semantics. A terminal line discipline (Figure 18.2) exists between the terminal and the programs that we run, so 
we can set the terminal's special characters (backspace, line erase, interrupt, etc.) and the like. When a login 
arrives on a network connection, however, a terminal line discipline is not automatically provided between the 
incoming network connection and the login shell. Figure 9.5 showed that a pseudo-terminal device driver is 
used to provide terminal semantics. 

In addition to network logins, pseudo terminals have other uses that we explore in this chapter. We start with an 
overview on how to use pseudo terminals, followed by a discussion of specific use cases. We then provide 
functions to create pseudo terminals on various platforms and then use these functions to write a program that 
we call pty . We'll show various uses of this program: making a transcript of all the character input and output 
on the terminal (the script (1) program) and running coprocesses to avoid the buffering problems we 
encountered in the program from Figure 15.19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19.2. Overview 

The term pseudo terminal implies that it looks like a terminal to an application program, but it's not a real 
terminal. Figure 19.1 shows the typical arrangement of the processes involved when a pseudo terminal is being 
used. The key points in this figure are the following. 

Figure 19.1. Typical arrangement of processes using a pseudo terminal 

 

 

• Normally, a process opens the pseudo-terminal master and then calls fork . The child establishes a new 
session, opens the corresponding pseudo-terminal slave, duplicates the file descriptor to the standard 
input, standard output, and standard error, and then calls exec . The pseudo-terminal slave becomes the 
controlling terminal for the child process. 

• It appears to the user process above the slave that its standard input, standard output, and standard error 
are a terminal device. The process can issue all the terminal I/O functions from Chapter 18 on these 
descriptors. But since there is not a real terminal device beneath the slave, functions that don't make 
sense (change the baud rate, send a break character, set odd parity, etc.) are just ignored. 

• Anything written to the master appears as input to the slave and vice versa. Indeed, all the input to the 
slave comes from the user process above the pseudo-terminal master. This behaves like a bidirectional 
pipe, but with the terminal line discipline module above the slave, we have additional capabilities over a 
plain pipe. 

Figure 19.1 shows what a pseudo terminal looks like on a FreeBSD, Mac OS X, or Linux system. In Sections 
19.3.2 and 19.3.3, we show how to open these devices. 

Under Solaris, a pseudo terminal is built using the STREAMS subsystem (Section 14.4). Figure 19.2 details the 
arrangement of the pseudo-terminal STREAMS modules under Solaris. The two STREAMS modules that are 



shown as dashed boxes are optional. The pckt  and ptem  modules help provide semantics specific to pseudo 
terminals. The other two modules (ldterm  and ttcompat ) provide line discipline processing. 

Figure 19.2. Arrangement of pseudo terminals under Solaris 

 

 

Note that the three STREAMS modules above the slave are the same as the output from the program shown in 
Figure 14.18 for a network login. In Section 19.3.1, we show how to build this arrangement of STREAMS 
modules. 

From this point on, we'll simplify the figures by not showing the "read and write functions" from Figure 19.1 or 
the "stream head" from Figure 19.2. We'll also use the abbreviation PTY for pseudo terminal and lump all the 
STREAMS modules above the slave PTY in Figure 19.2 into a box called "terminal line discipline," as in 
Figure 19.1. 

We'll now examine some of the typical uses of pseudo terminals. 



Network Login Servers 

Pseudo terminals are built into servers that provide network logins. The typical examples are the telnetd  and 
rlogind  servers. Chapter 15 of Stevens [1990] details the steps involved in the rlogin  service. Once the login 
shell is running on the remote host, we have the arrangement shown in Figure 19.3. A similar arrangement is 
used by the telnetd  server. 

Figure 19.3. Arrangement of processes for rlogind server 

 

 

We show two calls to exec  between the rlogind  server and the login shell, because the login  program is 
usually between the two to validate the user. 

A key point in this figure is that the process driving the PTY master is normally reading and writing another I/O 
stream at the same time. In this example, the other I/O stream is the TCP/IP box. This implies that the process 
must be using some form of I/O multiplexing (Section 14.5), such as select  or poll , or must be divided into 
two processes or threads. 

script Program 

The script (1) program that is supplied with most UNIX systems makes a copy in a file of everything that is 
input and output during a terminal session. The program does this by placing itself between the terminal and a 
new invocation of our login shell. Figure 19.4 details the interactions involved in the script  program. Here, we 
specifically show that the script  program is normally run from a login shell, which then waits for script  to 
terminate. 

 

 

 



Figure 19.4. The script program 

 
 

While script  is running, everything output by the terminal line discipline above the PTY slave is copied to the 
script file (usually called typescript ). Since our keystrokes are normally echoed by that line discipline module, 
the script file also contains our input. The script file won't contain any passwords that we enter, however, since 
passwords aren't echoed. 

While writing the first edition of this book, Rich Stevens used the script  program to capture the output of the 
example programs. This avoided typographical errors that could have occurred if he had copied the program 
output by hand. The drawback to using script , however, is having to deal with control characters that are 
present in the script file. 

After developing the general pty  program in Section 19.5, we'll see that a trivial shell script turns it into a 
version of the script  program. 

expect Program 

Pseudo terminals can be used to drive interactive programs in noninteractive modes. Numerous programs are 
hardwired to require a terminal to run. One example is the passwd (1) command, which requires that the user 
enter a password in response to a prompt. 

Rather than modify all the interactive programs to support a batch mode of operation, a better solution is to 
provide a way to drive any interactive program from a script. The expect  program [Libes 1990, 1991, 1994] 
provides a way to do this. It uses pseudo terminals to run other programs, similar to the pty  program in Section 
19.5. But expect  also provides a programming language to examine the output of the program being run to 
make decisions about what to send the program as input. When an interactive program is being run from a script, 
we can't just copy everything from the script to the program and vice versa. Instead, we have to send the 
program some input, look at its output, and decide what to send it next. 



Running Coprocesses 

In the coprocess example in Figure 15.19, we couldn't invoke a coprocess that used the standard I/O library for 
its input and output, because when we talked to the coprocess across a pipe, the standard I/O library fully 
buffered the standard input and standard output, leading to a deadlock. If the coprocess is a compiled program 
for which we don't have the source code, we can't add fflush  statements to solve this problem. Figure 15.16 
showed a process driving a coprocess. What we need to do is place a pseudo terminal between the two 
processes, as shown in Figure 19.5, to trick the coprocess into thinking that it is being driven from a terminal 
instead of from another process. 

Figure 19.5. Driving a coprocess using a pseudo terminal 

 

 

Now the standard input and standard output of the coprocess look like a terminal device, so the standard I/O 
library will set these two streams to be line buffered. 

The parent can obtain a pseudo terminal between itself and the coprocess in two ways. (The parent in this case 
could be either the program in Figure 15.18, which used two pipes to communicate with the coprocess, or the 
program in Figure 17.4, which used a single STREAMS pipe.) One way is for the parent to call the pty_fork  
function directly (Section 19.4) instead of calling fork . Another is to exec  the pty  program (Section 19.5) with 
the coprocess as its argument. We'll look at these two solutions after showing the pty  program. 

Watching the Output of Long-Running Programs 

If we have a program that runs for a long time, we can easily run it in the background using any of the standard 
shells. But if we redirect its standard output to a file, and if it doesn't generate much output, we can't easily 
monitor its progress, because the standard I/O library will fully buffer its standard output. All that we'll see are 
blocks of output written by the standard I/O library to the output file, possibly in chunks as large as 8,192 bytes. 

If we have the source code, we can insert calls to fflush . Alternatively, we can run the program under the pty  
program, making its standard I/O library think that its standard output is a terminal. Figure 19.6 shows this 
arrangement, where we have called the slow output program slowout . The fork/exec  arrow from the login 
shell to the pty  process is shown as a dashed arrow to reiterate that the pty  process is running as a background 
job. 

 

 

 

 

 



Figure 19.6. Running a slow output program using a pseudo terminal 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19.3. Opening Pseudo-Terminal Devices 

The way we open a pseudo-terminal device differs among platforms. The Single UNIX Specification includes 
several functions as XSI extensions in an attempt to unify the methods. These extensions are based on the 
functions originally provided to manage STREAMS-based pseudo terminals in System V Release 4. 

The posix_openpt  function is provided as a portable way to open an available pseudo-terminal master device. 

#include <stdlib.h> 
#include <fcntl.h> 
 
int posix_openpt(int oflag); 

 

Returns: file descriptor of next available PTY master if OK, –1 on error 

 

The oflag argument is a bitmask that specifies how the master device is to be opened, similar to the same 
argument used with open (2). Not all open flags are supported, however. With posix_openpt , we can specify 
O_RDWR to open the master device for reading and writing, and we can specify O_NOCTTY to prevent the master 
device from becoming a controlling terminal for the caller. All other open flags result in unspecified behavior. 

Before a slave pseudo-terminal device can be used, its permissions need to be set so that it is accessible to 
applications. The grantpt  function does just this. It sets the user ID of the slave's device node to be the caller's 
real user ID and sets the node's group ID to an unspecified value, usually some group that has access to terminal 
devices. The permissions are set to allow read and write access to individual owners and write access to group 
owners (0620). 

#include <stdlib.h> 
 
int grantpt(int filedes); 
 
int unlockpt(int filedes); 

 

Both return: 0 on success, –1 on error 

 

To change permission on the slave device node, grantpt  might need to fork  and exec  a set-user-ID program 
(/usr/lib/pt_chmod  on Solaris, for example). Thus, the behavior is unspecified if the caller is catching 
SIGCHLD. 

The unlockpt  function is used to grant access to the slave pseudo-terminal device, thereby allowing 
applications to open the device. By preventing others from opening the slave device, applications setting up the 
devices have an opportunity to initialize the slave and master devices properly before they can be used. 

Note that in both grantpt  and unlockpt , the file descriptor argument is the file descriptor associated with the 
master pseudo-terminal device. 

The ptsname  function is used to find the pathname of the slave pseudo-terminal device, given the file descriptor 
of the master. This allows applications to identify the slave independent of any particular conventions that 



might be followed by a given platform. Note that the name returned might be stored in static memory, so it can 
be overwritten on successive calls. 

#include <stdlib.h> 
 
char *ptsname(int filedes); 

 

Returns: pointer to name of PTY slave if OK, NULL on error 

 

Figure 19.7 summarizes the pseudo-terminal functions in the Single UNIX Specification and indicates which 
functions are supported by the platforms discussed in this text. 

Figure 19.7. XSI pseudo-terminal functions 

Function Description XSI FreeBSD 
5.2.1 

Linux 
2.4.22 

Mac OS X 
10.3 

Solaris 
9 

grantpt  Change permissions of slave PTY 
device. 

• • •   • 

posix_openpt  Open a master PTY device. • •       

ptsname  Return name of slave PTY 
device. 

• • •   • 

unlockpt  Allow slave PTY device to be 
opened. 

• • •   • 

 

On FreeBSD, unlockpt  does nothing; the O_NOCTTY flag is defined only for compatibility with applications that 
call posix_openpt . FreeBSD does not allocate a controlling terminal as a side effect of opening a terminal 
device, so the O_NOCTTY flag has no effect. 

Even though the Single UNIX Specification has tried to improve portability in this area, implementations are 
still catching up, as illustrated by Figure 19.7. Thus, we provide two functions that handle all the details: 
ptym_open  to open the next available PTY master device and ptys_open  to open the corresponding slave 
device. 

#include "apue.h" 
 
int ptym_open(char *pts_name, int pts_namesz);  

 

Returns: file descriptor of PTY master if OK, –1 on error  

int ptys_open(char *pts_name); 

 

Returns: file descriptor of PTY slave if OK, –1 on error 

 



Normally, we don't call these two functions directly; the function pty_fork  (Section 19.4) calls them and also 
fork s a child process. 

The ptym_open  function determines the next available PTY master and opens the device. The caller must 
allocate an array to hold the name of either the master or the slave; if the call succeeds, the name of the 
corresponding slave is returned through pts_name. This name is then passed to ptys_open , which opens the 
slave device. The length of the buffer in bytes is passed in pts_namesz so that the ptym_open  function doesn't 
copy a string that is longer than the buffer. 

The reason for providing two functions to open the two devices will become obvious when we show the 
pty_fork  function. Normally, a process calls ptym_open  to open the master and obtain the name of the slave. 
The process then fork s, and the child calls ptys_open  to open the slave after calling setsid  to establish a new 
session. This is how the slave becomes the controlling terminal for the child. 

19.3.1. STREAMS-Based Pseudo Terminals 

The details of the STREAMS implementation of pseudo terminals under Solaris are covered in Appendix C of 
Sun Microsystems [2002]. The next available PTY master device is accessed through a STREAMS clone device. 
A clone device is a special device that returns an unused device when it is opened. (STREAMS clone opens are 
discussed in detail in Rago [1993].) 

The STREAMS-based PTY master clone device is /dev/ptmx . When we open it, the clone open routine 
automatically determines the first unused PTY master device and opens that unused device. (We'll see in the 
next section that, under BSD-based systems, we have to find the first unused PTY master ourselves.) 

Figure 19.8. STREAMS-based pseudo-terminal open functions 

#include "apue.h" 
#include <errno.h> 
#include <fcntl.h> 
#include <stropts.h> 
 
int 
ptym_open(char *pts_name, int pts_namesz) 
{ 
    char    *ptr; 
    int     fdm; 
 
    /* 
     * Return the name of the master device so that  on failure 
     * the caller can print an error message.  Null  terminate 
     * to handle case where strlen("/dev/ptmx") > p ts_namesz. 
     */ 
    strncpy(pts_name, "/dev/ptmx", pts_namesz); 
    pts_name[pts_namesz - 1] = '\0'; 
    if ((fdm = open(pts_name, O_RDWR)) < 0) 
        return(-1); 
    if (grantpt(fdm) < 0) {     /* grant access to slave */ 
        close(fdm); 
        return(-2); 
    } 
    if (unlockpt(fdm) < 0) {    /* clear slave's lo ck flag */ 
        close(fdm); 
        return(-3); 
    } 
    if ((ptr = ptsname(fdm)) == NULL) { /* get slav e's name */ 



        close(fdm); 
        return(-4); 
    } 
 
    /* 
     * Return name of slave.  Null terminate to han dle 
     * case where strlen(ptr) > pts_namesz. 
     */ 
    strncpy(pts_name, ptr, pts_namesz); 
    pts_name[pts_namesz - 1] = '\0'; 
    return(fdm);            /* return fd of master */ 
} 
 
int 
ptys_open(char *pts_name) 
{ 
    int     fds, setup; 
 
    /* 
     * The following open should allocate a control ling terminal.  
     */ 
    if ((fds = open(pts_name, O_RDWR)) < 0) 
        return(-5); 
 
    /* 
     * Check if stream is already set up by autopus h facility. 
     */ 
    if ((setup = ioctl(fds, I_FIND, "ldterm")) < 0)  { 
        close(fds); 
        return(-6); 
    } 
    if (setup == 0) { 
        if (ioctl(fds, I_PUSH, "ptem") < 0) { 
            close(fds); 
            return(-7); 
        } 
        if (ioctl(fds, I_PUSH, "ldterm") < 0) { 
            close(fds); 
            return(-8); 
        } 
        if (ioctl(fds, I_PUSH, "ttcompat") < 0) { 
            close(fds); 
            return(-9); 
        } 
    } 
    return(fds); 
} 

We first open  the clone device /dev/ptmx  to get a file descriptor for the PTY master. Opening this master 
device automatically locks out the corresponding slave device. 

We then call grantpt  to change permissions of the slave device. On Solaris, it changes the ownership of the 
slave to the real user ID, changes the group ownership to the group tty , and changes the permissions to allow 
only user-read, user-write, and group-write. The reason for setting the group ownership to tty  and enabling 
group-write permission is that the programs wall (1) and write (1) are set-group-ID to the group tty . Calling 
grantpt  executes the program /usr/lib/pt_chmod , which is set-user-ID to root so that it can modify the 
ownership and permissions of the slave. 



The function unlockpt  is called to clear an internal lock on the slave device. We have to do this before we can 
open the slave. Additionally, we must call ptsname  to obtain the name of the slave device. This name is of the 
form /dev/pts/ NNN. 

The next function in the file is ptys_open , which does the actual open of the slave device. Solaris follows the 
historical System V behavior: if the caller is a session leader that does not already have a controlling terminal, 
this call to open  allocates the PTY slave as the controlling terminal. If we didn't want this to happen, we could 
specify the O_NOCTTY flag for open . 

After opening the slave device, we might need to push three STREAMS modules onto the slave's stream. 
Together, the pseudo terminal emulation module (ptem ) and the terminal line discipline module (ldterm ) act 
like a real terminal. The ttcompat  module provides compatibility for older V7, 4BSD, and Xenix ioctl  calls. 
It's an optional module, but since it's automatically pushed for console logins and network logins (see the output 
from the program shown in Figure 14.18), we push it onto the slave's stream. 

The reason that we might not need to push these three modules is that they might be there already. The 
STREAMS system supports a facility known as autopush, which allows an administrator to configure a list of 
modules to be pushed onto a stream whenever a particular device is opened (see Rago [1993] for more details). 
We use the I_FIND ioctl  command to see whether ldterm  is already on the stream. If so, we assume that the 
stream has been configured by the autopush mechanism and avoid pushing the modules a second time. 

The result of calling ptym_open  and ptys_open  is two file descriptors open in the calling process: one for the 
master and one for the slave. 

19.3.2. BSD-Based Pseudo Terminals 

Under BSD-based systems and Linux-based systems, we provide our own versions of the XSI functions, which 
we can optionally include in our library, depending on which functions (if any) are provided by the underlying 
platform. 

In our version of posix_openpt , we have to determine the first available PTY master device. To do this, we 
start at /dev/ptyp0  and keep trying until we successfully open a PTY master or until we run out of devices. We 
can get two different errors from open : EIO means that the device is already in use; ENOENT means that the 
device doesn't exist. In the latter case, we can terminate the search, as all pseudo terminals are in use. Once we 
are able to open a PTY master, say /dev/pty MN, the name of the corresponding slave is /dev/tty MN. On 
Linux, if the name of the PTY master is /dev/pty/m XX, then the name of the corresponding PTY slave is 
/dev/pty/s XX. 

In our version of grantpt , we call chown  and chmod but realize that these two functions won't work unless the 
calling process has superuser permissions. If it is important that the ownership and protection be changed, these 
two function calls need to be placed into a set-user-ID root executable, similar to the way Solaris implements it. 

The function ptys_open  in Figure 19.9 simply opens the slave device. No other initialization is necessary. The 
open  of the slave PTY under BSD-based systems does not have the side effect of allocating the device as the 
controlling terminal. In Section 19.4, we'll see how to allocate the controlling terminal under BSD-based 
systems. 

Figure 19.9. Pseudo-terminal open functions for BSD and Linux 

#include "apue.h" 
#include <errno.h> 



#include <fcntl.h> 
#include <grp.h> 
 
#ifndef _HAS_OPENPT 
int 
posix_openpt(int oflag) 
{ 
    int     fdm; 
    char    *ptr1, *ptr2; 
    char    ptm_name[16]; 
 
    strcpy(ptm_name, "/dev/ptyXY"); 
    /* array index:   0123456789   (for references in following code) */  
    for (ptr1 = "pqrstuvwxyzPQRST"; *ptr1 != 0; ptr 1++) { 
        ptm_name[8] = *ptr1; 
        for (ptr2 = "0123456789abcdef"; *ptr2 != 0;  ptr2++) { 
            ptm_name[9] = *ptr2; 
 
            /* 
             * Try to open the master. 
             */ 
            if ((fdm = open(ptm_name, oflag)) < 0) { 
                if (errno == ENOENT)    /* differen t from EIO */ 
                    return(-1);         /* out of p ty devices */ 
                else 
                    continue;           /* try next  pty device */ 
            } 
            return(fdm);        /* got it, return f d of master */ 
            } 
    } 
    errno = EAGAIN; 
    return(-1);     /* out of pty devices */ 
} 
#endif 
 
#ifndef _HAS_PTSNAME 
char * 
ptsname(int fdm) 
{ 
    static char pts_name[16]; 
    char        *ptm_name; 
 
    ptm_name = ttyname(fdm); 
    if (ptm_name == NULL) 
        return(NULL); 
    strncpy(pts_name, ptm_name, sizeof(pts_name)); 
    pts_name[sizeof(pts_name) - 1] = '\0'; 
    if (strncmp(pts_name, "/dev/pty/", 9) == 0) 
        pts_name[9] = 's';  /* change /dev/pty/mXX to /dev/pty/sXX */ 
    else 
        pts_name[5] = 't';  /* change "pty" to "tty " */ 
    return(pts_name); 
} 
#endif 
 
#ifndef _HAS_GRANTPT 
int 
grantpt(int fdm) 
{ 
    struct group    *grptr; 
    int             gid; 
    char            *pts_name; 



 
    pts_name = ptsname(fdm); 
    if ((grptr = getgrnam("tty")) != NULL) 
        gid = grptr->gr_gid; 
    else 
        gid = -1;       /* group tty is not in the group file */ 
 
    /* 
     * The following two calls won't work unless we 're the superuser. 
     */ 
    if (chown(pts_name, getuid(), gid) < 0) 
        return(-1); 
    return(chmod(pts_name, S_IRUSR | S_IWUSR | S_IW GRP)); 
} 
#endif 
 
#ifndef _HAS_UNLOCKPT 
int 
unlockpt(int fdm) 
{ 
 
    return(0); /* nothing to do */ 
} 
#endif 
 
int 
ptym_open(char *pts_name, int pts_namesz) 
{ 
    char    *ptr; 
    int     fdm; 
 
    /* 
     * Return the name of the master device so that  on failure 
     * the caller can print an error message.  Null  terminate 
     * to handle case where string length > pts_nam esz. 
     */ 
    strncpy(pts_name, "/dev/ptyXX", pts_namesz); 
    pts_name[pts_namesz - 1] = '\0'; 
    if ((fdm = posix_openpt(O_RDWR)) < 0) 
        return(-1); 
    if (grantpt(fdm) < 0) {     /* grant access to slave */ 
        close(fdm); 
        return(-2); 
    } 
    if (unlockpt(fdm) < 0) {    /* clear slave's lo ck flag */ 
        close(fdm); 
        return(-3); 
    } 
    if ((ptr = ptsname(fdm)) == NULL) { /* get slav e's name */ 
        close(fdm); 
        return(-4); 
    } 
 
    /* 
     * Return name of slave.  Null terminate to han dle 
     * case where strlen(ptr) > pts_namesz. 
     */ 
    strncpy(pts_name, ptr, pts_namesz); 
    pts_name[pts_namesz - 1] = '\0'; 
    return(fdm);            /* return fd of master */ 
} 
 



int 
ptys_open(char *pts_name) 
{ 
    int fds; 
 
    if ((fds = open(pts_name, O_RDWR)) < 0) 
        return(-5); 
    return(fds); 
} 

Our version of posix_openpt  tries 16 different groups of 16 PTY master devices: /dev/ptyp0  through 
/dev/ptyTf . The actual number of PTY devices available depends on two factors: (a) the number configured 
into the kernel, and (b) the number of special device files that have been created in the /dev  directory. The 
number available to any program is the lesser of (a) or (b). 

19.3.3. Linux-Based Pseudo Terminals 

Linux supports the BSD method for accessing pseudo terminals, so the same functions shown in Figure 19.9 
will also work on Linux. However, Linux also supports a clone-style interface to pseudo terminals using 
/dev/ptmx  (but this is not a STREAMS device). The clone interface requires extra steps to identify and unlock 
a slave device. The functions we can use to access these pseudo terminals on Linux are shown in Figure 19.10. 

Figure 19.10. Pseudo-terminal open functions for Linux 

#include "apue.h" 
#include <fcntl.h> 
 
#ifndef _HAS_OPENPT 
int 
posix_openpt(int oflag) 
{ 
    int     fdm; 
 
    fdm = open("/dev/ptmx", oflag); 
    return(fdm); 
} 
#endif 
 
#ifndef _HAS_PTSNAME 
char * 
ptsname(int fdm) 
{ 
    int         sminor; 
    static char pts_name[16]; 
 
    if (ioctl(fdm, TIOCGPTN, &sminor) < 0) 
        return(NULL); 
    snprintf(pts_name, sizeof(pts_name), "/dev/pts/ %d", sminor);  
    return(pts_name); 
} 
#endif 
 
#ifndef _HAS_GRANTPT 
int 
grantpt(int fdm) 
{ 
    char            *pts_name; 
 



    pts_name = ptsname(fdm); 
    return(chmod(pts_name, S_IRUSR | S_IWUSR | S_IW GRP)); 
} 
#endif 
 
#ifndef _HAS_UNLOCKPT 
int 
unlockpt(int fdm) 
{ 
    int lock = 0; 
 
    return(ioctl(fdm, TIOCSPTLCK, &lock)); 
} 
#endif 
 
int 
ptym_open(char *pts_name, int pts_namesz) 
{ 
    char    *ptr; 
    int     fdm; 
 
    /* 
     * Return the name of the master device so that  on failure 
     * the caller can print an error message.  Null  terminate 
     * to handle case where string length > pts_nam esz. 
     */ 
    strncpy(pts_name, "/dev/ptmx", pts_namesz); 
    pts_name[pts_namesz - 1] = '\0'; 
 
    fdm = posix_openpt(O_RDWR); 
    if (fdm < 0) 
        return(-1); 
    if (grantpt(fdm) < 0) {     /* grant access to slave */ 
        close(fdm); 
        return(-2); 
    } 
    if (unlockpt(fdm) < 0) {    /* clear slave's lo ck flag */ 
        close(fdm); 
        return(-3); 
    } 
    if ((ptr = ptsname(fdm)) == NULL) { /* get slav e's name */ 
        close(fdm); 
        return(-4); 
    } 
    /* 
     * Return name of slave.  Null terminate to han dle case 
     * where strlen(ptr) > pts_namesz. 
     */ 
    strncpy(pts_name, ptr, pts_namesz); 
    pts_name[pts_namesz - 1] = '\0'; 
    return(fdm);            /* return fd of master */ 
} 
 
int 
ptys_open(char *pts_name) 
{ 
    int fds; 
 
    if ((fds = open(pts_name, O_RDWR)) < 0) 
        return(-5); 
    return(fds); 
} 



On Linux, the PTY slave device is already owned by group tty , so all we need to do in grantpt  is ensure that 
the permissions are correct. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19.4. pty_fork Function 

We now use the two functions from the previous section, ptym_open  and ptys_open , to write a new function 
that we call pty_fork . This new function combines the opening of the master and the slave with a call to fork , 
establishing the child as a session leader with a controlling terminal. 

#include "apue.h" 
#include <termios.h> 
#include <sys/ioctl.h>   /* find struct winsize on BSD systems */  
 
pid_t pty_fork(int *ptrfdm, char *slave_name, int s lave_namesz, 
               const struct termios *slave_termios,  
               const struct winsize *slave_winsize) ; 

 

Returns: 0 in child, process ID of child in parent, –1 on error 

 

The file descriptor of the PTY master is returned through the ptrfdm pointer. 

If slave_name is non-null, the name of the slave device is stored at that location. The caller has to allocate the 
storage pointed to by this argument. 

If the pointer slave_termios is non-null, the system uses the referenced structure to initialize the terminal line 
discipline of the slave. If this pointer is null, the system sets the slave's termios  structure to an implementation-
defined initial state. Similarly, if the slave_winsize pointer is non-null, the referenced structure initializes the 
slave's window size. If this pointer is null, the winsize  structure is normally initialized to 0. 

Figure 19.11 shows the code for this function. It works on all four platforms described in this text, calling the 
appropriate ptym_open  and ptys_open  functions. 

Figure 19.11. The pty_fork function 

#include "apue.h" 
#include <termios.h> 
#ifndef TIOCGWINSZ 
#include <sys/ioctl.h> 
#endif 
 
pid_t 
pty_fork(int *ptrfdm, char *slave_name, int slave_n amesz, 
         const struct termios *slave_termios, 
         const struct winsize *slave_winsize) 
{ 
    int     fdm, fds; 
    pid_t   pid; 
    char    pts_name[20]; 
 
    if ((fdm = ptym_open(pts_name, sizeof(pts_name) )) < 0) 
        err_sys("can't open master pty: %s, error % d", pts_name, fdm);  
 
    if (slave_name != NULL) { 
        /* 
         * Return name of slave.  Null terminate to  handle case 
         * where strlen(pts_name) > slave_namesz. 
         */ 



        strncpy(slave_name, pts_name, slave_namesz) ; 
        slave_name[slave_namesz - 1] = '\0'; 
    } 
 
    if ((pid = fork()) < 0) { 
        return(-1); 
    } else if (pid == 0) {      /* child */ 
        if (setsid() < 0) 
            err_sys("setsid error"); 
 
        /* 
         * System V acquires controlling terminal o n open(). 
         */ 
        if ((fds = ptys_open(pts_name)) < 0) 
            err_sys("can't open slave pty"); 
        close(fdm);     /* all done with master in child */ 
 
#if defined(TIOCSCTTY) 
        /* 
         * TIOCSCTTY is the BSD way to acquire a co ntrolling terminal.  
         */ 
        if (ioctl(fds, TIOCSCTTY, (char *)0) < 0) 
            err_sys("TIOCSCTTY error"); 
#endif 
 
        /* 
         * Set slave's termios and window size. 
         */ 
        if (slave_termios != NULL) { 
            if (tcsetattr(fds, TCSANOW, slave_termi os) < 0) 
                err_sys("tcsetattr error on slave p ty"); 
        } 
        if (slave_winsize != NULL) { 
            if (ioctl(fds, TIOCSWINSZ, slave_winsiz e) < 0) 
                err_sys("TIOCSWINSZ error on slave pty"); 
        } 
        /* 
         * Slave becomes stdin/stdout/stderr of chi ld. 
         */ 
        if (dup2(fds, STDIN_FILENO) != STDIN_FILENO ) 
            err_sys("dup2 error to stdin"); 
        if (dup2(fds, STDOUT_FILENO) != STDOUT_FILE NO) 
            err_sys("dup2 error to stdout"); 
        if (dup2(fds, STDERR_FILENO) != STDERR_FILE NO) 
            err_sys("dup2 error to stderr"); 
        if (fds != STDIN_FILENO && fds != STDOUT_FI LENO && 
          fds != STDERR_FILENO) 
            close(fds); 
        return(0);      /* child returns 0 just lik e fork() */ 
    } else {                    /* parent */ 
        *ptrfdm = fdm;  /* return fd of master */ 
        return(pid);    /* parent returns pid of ch ild */ 
    } 
} 

After opening the PTY master, fork  is called. As we mentioned before, we want to wait to call ptys_open  until 
in the child and after calling setsid  to establish a new session. When it calls setsid , the child is not a process 
group leader, so the three steps listed in Section 9.5 occur: (a) a new session is created with the child as the 
session leader, (b) a new process group is created for the child, and (c) the child loses any association it might 
have had with its previous controlling terminal. Under Linux and Solaris, the slave becomes the controlling 



terminal of this new session when ptys_open  is called. Under FreeBSD and Mac OS X, we have to call ioctl  
with an argument of TIOCSCTTY to allocate the controlling terminal. (Linux also supports the TIOCSCTTY ioctl  
command.) The two structures termios  and winsize  are then initialized in the child. Finally, the slave file 
descriptor is duplicated onto standard input, standard output, and standard error in the child. This means that 
whatever process the caller exec s from the child will have these three descriptors connected to the slave PTY 
(its controlling terminal). 

After the call to fork , the parent just returns the PTY master descriptor and the process ID of the child. In the 
next section, we use the pty_fork  function in the pty  program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



19.5. pty Program 

The goal in writing the pty  program is to be able to type 

    pty prog arg1 arg2 

 

instead of 

    prog arg1 arg2 

 

When we use pty  to execute another program, that program is executed in a session of its own, connected to a 
pseudo terminal. 

Let's look at the source code for the pty  program. The first file (Figure 19.12) contains the main  function. It 
calls the pty_fork  function from the previous section. 

Figure 19.12. The main function for the pty program 

#include "apue.h" 
#include <termios.h> 
#ifndef TIOCGWINSZ 
#include <sys/ioctl.h>  /* for struct winsize */ 
#endif 
 
#ifdef LINUX 
#define OPTSTR "+d:einv" 
#else 
#define OPTSTR "d:einv" 
#endif 
 
static void set_noecho(int);    /* at the end of th is file */ 
void        do_driver(char *);  /* in the file driv er.c */ 
void        loop(int, int);     /* in the file loop .c */ 
 
int 
main(int argc, char *argv[]) 
{ 
    int             fdm, c, ignoreeof, interactive,  noecho, verbose; 
    pid_t           pid; 
    char            *driver; 
    char            slave_name[20]; 
    struct termios  orig_termios; 
    struct winsize  size; 
 
    interactive = isatty(STDIN_FILENO); 
    ignoreeof = 0; 
    noecho = 0; 
    verbose = 0; 
    driver = NULL; 
 
    opterr = 0;     /* don't want getopt() writing to stderr */ 
    while ((c = getopt(argc, argv, OPTSTR)) != EOF)  { 
        switch (c) { 
        case 'd':        /* driver for stdin/stdout  */ 
            driver = optarg; 
            break; 
        case 'e':        /* noecho for slave pty's line discipline */ 



            noecho = 1; 
            break; 
 
        case 'i':       /* ignore EOF on standard i nput */ 
            ignoreeof = 1; 
            break; 
 
        case 'n':       /* not interactive */ 
            interactive = 0; 
            break; 
 
        case 'v':       /* verbose */ 
            verbose = 1; 
            break; 
 
        case '?': 
            err_quit("unrecognized option: -%c", op topt); 
        } 
    } 
    if (optind >= argc) 
        err_quit("usage: pty [ -d driver -einv ] pr ogram [ arg ... ]");  
 
    if (interactive) {  /* fetch current termios an d window size */ 
        if (tcgetattr(STDIN_FILENO, &orig_termios) < 0) 
            err_sys("tcgetattr error on stdin"); 
        if (ioctl(STDIN_FILENO, TIOCGWINSZ, (char * ) &size) < 0) 
            err_sys("TIOCGWINSZ error"); 
        pid = pty_fork(&fdm, slave_name, sizeof(sla ve_name), 
          &orig_termios, &size); 
    } else { 
        pid = pty_fork(&fdm, slave_name, sizeof(sla ve_name), 
          NULL, NULL); 
    } 
 
    if (pid < 0) { 
        err_sys("fork error"); 
    } else if (pid == 0) {      /* child */ 
        if (noecho) 
            set_noecho(STDIN_FILENO);   /* stdin is  slave pty */ 
 
        if (execvp(argv[optind], &argv[optind]) < 0 ) 
            err_sys("can't execute: %s", argv[optin d]); 
    } 
 
    if (verbose) { 
        fprintf(stderr, "slave name = %s\n", slave_ name); 
        if (driver != NULL) 
            fprintf(stderr, "driver = %s\n", driver ); 
    } 
 
    if (interactive && driver == NULL) { 
        if (tty_raw(STDIN_FILENO) < 0)  /* user's t ty to raw mode */ 
        err_sys("tty_raw error"); 
    if (atexit(tty_atexit) < 0)         /* reset us er's tty on exit */ 
        err_sys("atexit error"); 
    } 
 
    if (driver) 
        do_driver(driver);   /* changes our stdin/s tdout */ 
 
    loop(fdm, ignoreeof);    /* copies stdin -> pty m, ptym -> stdout */  
 



    exit(0); 
} 
 
static void 
set_noecho(int fd)     /* turn off echo (for slave pty) */ 
{ 
    struct termios stermios; 
 
    if (tcgetattr(fd, &stermios) < 0) 
        err_sys("tcgetattr error"); 
 
    stermios.c_lflag &= ~(ECHO | ECHOE | ECHOK | EC HONL); 
 
    /* 
     * Also turn off NL to CR/NL mapping on output.  
     */ 
    stermios.c_oflag &= ~(ONLCR); 
 
    if (tcsetattr(fd, TCSANOW, &stermios) < 0) 
        err_sys("tcsetattr error"); 
} 

In the next section, we'll look at the various command-line options when we examine different uses of the pty  
program. The getopt  function helps us parse command-line arguments in a consistent manner. We'll discuss 
getopt  in more detail in Chapter 21. 

Before calling pty_fork , we fetch the current values for the termios  and winsize  structures, passing these as 
arguments to pty_fork . This way, the PTY slave assumes the same initial state as the current terminal. 

After returning from pty_fork , the child optionally turns off echoing for the slave PTY and then calls execvp  
to execute the program specified on the command line. All remaining command-line arguments are passed as 
arguments to this program. 

The parent optionally sets the user's terminal to raw mode. In this case, the parent also sets an exit handler to 
reset the terminal state when exit  is called. We describe the do_driver  function in the next section. 

The parent then calls the function loop  (Figure 19.13), which copies everything received from the standard 
input to the PTY master and everything from the PTY master to standard output. For variety, we have coded it 
in two processes this time, although a single process using select , poll , or multiple threads would also work. 

Figure 19.13. The loop function 

#include "apue.h" 
 
#define BUFFSIZE    512 
 
static void sig_term(int); 
static volatile sig_atomic_t    sigcaught; /* set b y signal handler */ 
 
void 
loop(int ptym, int ignoreeof) 
{ 
    pid_t   child; 
    int     nread; 
    char    buf[BUFFSIZE]; 
 
    if ((child = fork()) < 0) { 



        err_sys("fork error"); 
    } else if (child == 0) {    /* child copies std in to ptym */ 
        for ( ; ; ) { 
            if ((nread = read(STDIN_FILENO, buf, BU FFSIZE)) < 0) 
                err_sys("read error from stdin"); 
            else if (nread == 0) 
                break;      /* EOF on stdin means w e're done */ 
            if (writen(ptym, buf, nread) != nread) 
                err_sys("writen error to master pty "); 
        } 
 
        /* 
         * We always terminate when we encounter an  EOF on stdin, 
         * but we notify the parent only if ignoree of is 0. 
         */ 
        if (ignoreeof == 0) 
            kill(getppid(), SIGTERM);   /* notify p arent */ 
        exit(0);    /* and terminate; child can't r eturn */ 
    } 
 
    /* 
     * Parent copies ptym to stdout. 
     */ 
    if (signal_intr(SIGTERM, sig_term) == SIG_ERR) 
        err_sys("signal_intr error for SIGTERM"); 
 
    for ( ; ; ) { 
        if ((nread = read(ptym, buf, BUFFSIZE)) <= 0) 
            break;      /* signal caught, error, or  EOF */ 
        if (writen(STDOUT_FILENO, buf, nread) != nr ead) 
            err_sys("writen error to stdout"); 
    } 
 
    /* 
     * There are three ways to get here: sig_term()  below caught the 
     * SIGTERM from the child, we read an EOF on th e pty master (which 
     * means we have to signal the child to stop), or an error. 
     */ 
    if (sigcaught == 0) /* tell child if it didn't send us the signal */  
        kill(child, SIGTERM); 
    /* 
     * Parent returns to caller. 
     */ 
} 
 
/* 
 * The child sends us SIGTERM when it gets EOF on t he pty slave or 
 * when read() fails.  We probably interrupted the read() of ptym. 
 */ 
static void 
sig_term(int signo) 
{ 
    sigcaught = 1;      /* just set flag and return  */ 
} 

Note that, with two processes, when one terminates, it has to notify the other. We use the SIGTERM signal for 
this notification. 

 
 
 



19.6. Using the pty Program 

We'll now look at various examples with the pty  program, seeing the need for the command-line options. 

If our shell is the Korn shell, we can execute 

pty ksh 

 

and get a brand new invocation of the shell, running under a pseudo terminal. 

If the file ttyname  is the program we showed in Figure 18.16, we can run the pty  program as follows: 

   $ who 
   sar  :0      Oct  5 18:07 
   sar  pts/0   Oct  5 18:07 
   sar  pts/1   Oct  5 18:07 
   sar  pts/2   Oct  5 18:07 
   sar  pts/3   Oct  5 18:07 
   sar  pts/4   Oct  5 18:07        pts/4 is the hi ghest PTY currently in use 
   $ pty ttyname                    run program in Figure 18.16 from PTY 
   fd 0: /dev/pts/5                 pts/5 is the ne xt available PTY 
   fd 1: /dev/pts/5 
   fd 2: /dev/pts/5 
 
 
      

 
 

utmp File 

In Section 6.8, we described the utmp  file that records all users currently logged in to a UNIX system. The 
question is whether a user running a program on a pseudo terminal is considered logged in. In the case of 
remote logins, telnetd  and rlogind , obviously an entry should be made in the utmp  file for the user logged in 
on the pseudo terminal. There is little agreement, however, whether users running a shell on a pseudo terminal 
from a window system or from a program, such as script , should have entries made in the utmp  file. Some 
systems record these and some don't. If a system doesn't record these in the utmp  file, the who(1) program 
normally won't show the corresponding pseudo terminals as being used. 

Unless the utmp  file has other-write permission enabled (which is considered to be a security hole), random 
programs that use pseudo terminals won't be able to write to this file. 

Job Control Interaction 

If we run a job-control shell under pty , it works normally. For example, 

    pty ksh 

 

runs the Korn shell under pty . We can run programs under this new shell and use job control just as we do with 
our login shell. But if we run an interactive program other than a job-control shell under pty , asin 

    pty cat 



 

everything is fine until we type the job-control suspend character. At that point, the job-control character is 
echoed as ^Z  and is ignored. Under earlier BSD-based systems, the cat  process terminates, the pty  process 
terminates, and we're back to our original shell. To understand what's going on here, we need to examine all the 
processes involved, their process groups, and sessions. Figure 19.14 shows the arrangement when pty cat  is 
running. 

Figure 19.14. Process groups and sessions for pty cat 

 
 

When we type the suspend character (Control-Z), it is recognized by the line discipline module beneath the cat  
process, since pty  puts the terminal (beneath the pty  parent) into raw mode. But the kernel won't stop the cat  
process, because it belongs to an orphaned process group (Section 9.10). The parent of cat  is the pty  parent, 
and it belongs to another session. 

Historically, implementations have handled this condition differently. POSIX.1 says only that the SIGTSTP 
signal can't be delivered to the process. Systems derived from 4.3BSD delivered SIGKILL  instead, which the 
process can't even catch. In 4.4BSD, this behavior was changed to conform to POSIX.1. Instead of sending 
SIGKILL , the 4.4BSD kernel silently discards the SIGTSTP signal if it has the default disposition and is to be 
delivered to a process in an orphaned process group. Most current implementations follow this behavior. 

When we use pty  to run a job-control shell, the jobs invoked by this new shell are never members of an 
orphaned process group, because the job-control shell always belongs to the same session. In that case, the 
Control-Z that we type is sent to the process invoked by the shell, not to the shell itself. 

The only way to avoid this inability of the process invoked by pty  to handle job-control signals is to add yet 
another command-line flag to pty , telling it to recognize the job control suspend character itself (in the pty  
child) instead of letting the character get all the way through to the other line discipline. 



Watching the Output of Long-Running Programs 

Another example of job-control interaction with the pty  program is with the example in Figure 19.6. If we run 
the program that generates output slowly as 

   pty slowout > file.out & 

 

the pty  process is stopped immediately when the child tries to read from its standard input (the terminal). The 
reason is that the job is a background job and gets job-control stopped when it tries to access the terminal. If we 
redirect standard input so that pty  doesn't try to read from the terminal, as in 

   pty slowout < /dev/null > file.out & 

 

the pty  program stops immediately because it reads an end of file on its standard input and terminates. The 
solution for this problem is the -i  option, which says to ignore an end of file on the standard input: 

   pty -i slowout < /dev/null > file.out & 

 

This flag causes the pty  child in Figure 19.13 to exit when the end of file is encountered, but the child doesn't 
tell the parent to terminate. Instead, the parent continues copying the PTY slave output to standard output (the 
file file.out  in the example). 

script Program 

Using the pty  program, we can implement the script(1)  program as the following shell script: 

    #!/bin/sh 
    pty "${SHELL:-/bin/sh}" | tee typescript 

 

Once we run this shell script, we can execute the ps  command to see all the process relationships. Figure 19.15 
details these relationships. 

 

 

 

 

 

 

 

 



Figure 19.15. Arrangement of processes for script shell script 

 
 

In this example, we assume that the SHELL variable is the Korn shell (probably /bin/ksh ). As we mentioned 
earlier, script  copies only what is output by the new shell (and any processes that it invokes), but since the line 
discipline module above the PTY slave normally has echo enabled, most of what we type also gets written to 
the typescript  file. 

Running Coprocesses 

In Figure 15.8, the coprocess couldn't use the standard I/O functions, because standard input and standard 
output do not refer to a terminal, so the standard I/O functions treat them as fully buffered. If we run the 
coprocess under pty  by replacing the line 

    if (execl("./add2", "add2", (char *)0) < 0) 

 

with 

    if (execl("./pty", "pty", "-e", "add2", (char * )0) < 0) 

 

the program now works, even if the coprocess uses standard I/O. 

Figure 19.16 shows the arrangement of processes when we run the coprocess with a pseudo terminal as its input 
and output. It is an expansion of Figure 19.5, showing all the process connections and data flow. The box 
labeled "driving program" is the program from Figure 15.8, with the execl  changed as described previously. 

 

 

 

 



Figure 19.16. Running a coprocess with a pseudo terminal as its input and output 

 
 

This example shows the need for the -e  (no echo) option for the pty  program. The pty  program is not running 
interactively, because its standard input is not connected to a terminal. In Figure 19.12, the interactive  flag 
defaults to false, since the call to isatty  returns false. This means that the line discipline above the actual 
terminal remains in a canonical mode with echo enabled. By specifying the -e  option, we turn off echo in the 
line discipline module above the PTY slave. If we don't do this, everything we type is echoed twice—by both 
line discipline modules. 

We also have the -e  option turn off the ONLCR flag in the termios  structure to prevent all the output from the 
coprocess from being terminated with a carriage return and a newline. 

Testing this example on different systems showed another problem that we alluded to in Section 14.8 when we 
described the readn  and writen  functions. The amount of data returned by a read , when the descriptor refers to 
something other than an ordinary disk file, can differ between implementations. This coprocess example using 
pty  gave unexpected results that were tracked down to the read  function on the pipe in the program from 
Figure 15.8 returning less than a line. The solution was to not use the program shown in Figure 15.8, but to use 
the version of this program from Exercise 15.5 that was modified to use the standard I/O library, with the 
standard I/O streams for the both pipes set to line buffering. By doing this, the fgets  function does as many 
read s as required to obtain a complete line. The while  loop in Figure 15.8 assumes that each line sent to the 
coprocess causes one line to be returned. 

Driving Interactive Programs Noninteractively 

Although it's tempting to think that pty  can run any coprocess, even a coprocess that is interactive, it doesn't 
work. The problem is that pty  just copies everything on its standard input to the PTY and everything from the 
PTY to its standard output, never looking at what it sends or what it gets back. 

As an example, we can run the telnet  command under pty  talking directly to the remote host: 

    pty telnet 192.168.1.3 

 



Doing this provides no benefit over just typing telnet 192.168.1.3 , but we would like to run the telnet  
program from a script, perhaps to check some condition on the remote host. If the file telnet.cmd  contains the 
four lines 

    sar 
    passwd 
    uptime 
    exit 

 

the first line is the user name we use to log in to the remote host, the second line is the password, the third line 
is a command we'd like to run, and the fourth line terminates the session. But if we run this script as 

    pty -i < telnet.cmd telnet 192.168.1.3 

 

it doesn't do what we want. What happens is that the contents of the file telnet.cmd  are sent to the remote host 
before it has a chance to prompt us for an account name and password. When it turns off echoing to read the 
password, login  uses the tcsetattr  option, which discards any data already queued. Thus, the data we send is 
thrown away. 

When we run the telnet  program interactively, we wait for the remote host to prompt for a password before we 
type it, but the pty  program doesn't know to do this. This is why it takes a more sophisticated program than pty , 
such as expect , to drive an interactive program from a script file. 

Even running pty  from the program in Figure 15.8, as we showed earlier, doesn't help, because the program in 
Figure 15.8 assumes that each line it writes to the pipe generates exactly one line on the other pipe. With an 
interactive program, one line of input may generate many lines of output. Furthermore, the program in Figure 
15.8 always sent a line to the coprocess before reading from it. This won't work when we want to read from the 
coprocess before sending it anything. 

There are a few ways to proceed from here to be able to drive an interactive program from a script. We could 
add a command language and interpreter to pty , but a reasonable command language would probably be ten 
times larger than the pty  program. Another option is to take a command language and use the pty_fork  
function to invoke interactive programs. This is what the expect  program does. 

We'll take a different path and just provide an option (-d ) to allow pty  to be connected to a driver process for its 
input and output. The standard output of the driver is pty 's standard input and vice versa. This is similar to a 
coprocess, but on "the other side" of pty . The resulting arrangement of processes is almost identical to Figure 
19.16, but in the current scenario, pty  does the fork  and exec  of the driver process. Also, instead of two half-
duplex pipes, we'll use a single bidirectional pipe between pty  and the driver process. 

Figure 19.17 shows the source for the do_driver  function, which is called by the main  function of pty  (Figure 
19.12) when the -d  option is specified. 

Figure 19.17. The do_driver function for the pty program 

#include "apue.h" 
 
void 
do_driver(char *driver) 
{ 
    pid_t   child; 



    int     pipe[2]; 
 
    /* 
     * Create a stream pipe to communicate with the  driver. 
     */  
    if (s_pipe(pipe) < 0) 
        err_sys("can't create stream pipe"); 
 
    if ((child = fork()) < 0) { 
        err_sys("fork error"); 
    } else if (child == 0) {        /* child */ 
        close(pipe[1]); 
 
        /* stdin for driver */ 
        if (dup2(pipe[0], STDIN_FILENO) != STDIN_FI LENO) 
            err_sys("dup2 error to stdin"); 
 
        /* stdout for driver */ 
        if (dup2(pipe[0], STDOUT_FILENO) != STDOUT_ FILENO) 
            err_sys("dup2 error to stdout"); 
        if (pipe[0] != STDIN_FILENO && pipe[0] != S TDOUT_FILENO) 
            close(pipe[0]); 
 
        /* leave stderr for driver alone */ 
        execlp(driver, driver, (char *)0); 
        err_sys("execlp error for: %s", driver); 
    } 
    close(pipe[0]);     /* parent */ 
    if (dup2(pipe[1], STDIN_FILENO) != STDIN_FILENO ) 
        err_sys("dup2 error to stdin"); 
    if (dup2(pipe[1], STDOUT_FILENO) != STDOUT_FILE NO) 
        err_sys("dup2 error to stdout"); 
    if (pipe[1] != STDIN_FILENO && pipe[1] != STDOU T_FILENO) 
        close(pipe[1]); 
 
    /* 
     * Parent returns, but with stdin and stdout co nnected 
     * to the driver. 
     */ 
} 

By writing our own driver program that is invoked by pty , we can drive interactive programs in any way 
desired. Even though it has its standard input and standard output connected to pty , the driver process can still 
interact with the user by reading and writing /dev/tty . This solution still isn't as general as the expect  
program, but it provides a useful option to pty  for fewer than 50 lines of code. 

 
 
 
 
 
 
 
 
 
 
 
 



19.7. Advanced Features 

Pseudo terminals have some additional capabilities that we briefly mention here. These capabilities are further 
documented in Sun Microsystems [2002] and the BSD pty (4) manual page. 

Packet Mode 

Packet mode lets the PTY master learn of state changes in the PTY slave. On Solaris, this mode is enabled by 
pushing the STREAMS module pckt  onto the PTY master side. We showed this optional module in Figure 19.2. 
On FreeBSD, Linux, and Mac OS X, this mode is enabled with the TIOCPKT ioctl  command. 

The details of packet mode differ between Solaris and the other platforms. Under Solaris, the process reading 
the PTY master has to call getmsg  to fetch the messages from the stream head, because the pckt  module 
converts certain events into nondata STREAMS messages. With the other platforms, each read  from the PTY 
master returns a status byte followed by optional data. 

Regardless of the implementation details, the purpose of packet mode is to inform the process reading the PTY 
master when the following events occur at the line discipline module above the PTY slave: when the read queue 
is flushed, when the write queue is flushed, whenever output is stopped (e.g., Control-S), whenever output is 
restarted, whenever XON/XOFF flow control is enabled after being disabled, and whenever XON/XOFF flow 
control is disabled after being enabled. These events are used, for example, by the rlogin  client and rlogind  
server. 

Remote Mode 

A PTY master can set the PTY slave into remote mode by issuing an ioctl  of TIOCREMOTE. Although FreeBSD 
5.2.1, Mac OS X 10.3, and Solaris 9 use the same command to enable and disable this feature, under Solaris the 
third argument to ioctl  is an integer, whereas with FreeBSD and Mac OS X, it is a pointer to an integer. 
(Linux 2.4.22 doesn't support this command.) 

When it sets this mode, the PTY master is telling the PTY slave's line discipline module not to perform any 
processing of the data that it receives from the PTY master, regardless of the canonical/noncanonical flag in the 
slave's termios  structure. Remote mode is intended for an application, such as a window manager, that does its 
own line editing. 

Window Size Changes 

The process above the PTY master can issue the ioctl  of TIOCSWINSZ to set the window size of the slave. If 
the new size differs from the current size, a SIGWINCH signal is sent to the foreground process group of the PTY 
slave. 

Signal Generation 

The process reading and writing the PTY master can send signals to the process group of the PTY slave. Under 
Solaris 9, this is done with an ioctl  of TIOCSIGNAL, with the third argument set to the signal number. With 
FreeBSD 5.2.1 and Mac OS X 10.3, the ioctl  is TIOCSIG, and the third argument is a pointer to the integer 
signal number. (Linux 2.4.22 doesn't support this ioctl  command either.) 

 
 



19.8. Summary 

We started this chapter with an overview of how to use pseudo terminals and a look at some use cases. We 
continued by examining the code required to open a pseudo terminal under the four platforms discussed in this 
text. We then used this code to provide the generic pty_fork  function that can be used by many different 
applications. We used this function as the basis for a small program (pty ), which we then used to explore many 
of the properties of pseudo terminals. 

Pseudo terminals are used daily on most UNIX systems to provide network logins. We've examined other uses 
for pseudo terminals, from the script  program to driving interactive programs from a batch script. 
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20.1. Introduction 

During the early 1980s, the UNIX System was considered a hostile environment for running multiuser database 
systems. (See Stonebraker [1981] and Weinberger [1982].) Earlier systems, such as Version 7, did indeed 
present large obstacles, since they did not provide any form of IPC (other than half-duplex pipes) and did not 
provide any form of byte-range locking. Many of these deficiencies were remedied, however. By the late 1980s, 
the UNIX System had evolved to provide a suitable environment for running reliable, multiuser database 
systems. Since then, numerous commercial firms have offered these types of database systems. 

In this chapter, we develop a simple, multiuser database library of C functions that any program can call to fetch 
and store records in a database. This library of C functions is usually only one part of a complete database 
system. We do not develop the other pieces, such as a query language, leaving these items to the many 
textbooks on database systems. Our interest is the UNIX System interface a database library requires and how 
that interface relates to the topics we've already covered (such as record—byte-range—locking, in Section 14.3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20.2. History 

One popular library of database functions in the UNIX System is the dbm(3) library. This library was developed 
by Ken Thompson and uses a dynamic hashing scheme. It was originally provided with Version 7, appears in all 
BSD releases, and was also provided in SVR4's BSD-compatibility library [AT&T 1990c]. The BSD 
developers extended the dbm library and called it ndbm. The ndbm library was included in BSD as well as in 
SVR4. The ndbm functions are standardized in the XSI extensions of the Single UNIX Specification. 

Seltzer and Yigit [1991] provide a detailed history of the dynamic hashing algorithm used by the dbm library 
and other implementations of this library, including gdbm, the GNU version of the dbm library. Unfortunately, a 
basic limitation of all these implementations is that none allows concurrent updating of the database by multiple 
processes. These implementations provide no type of concurrency controls (such as record locking). 

4.4BSD provided a new db(3) library that supports three forms of access: (a) record oriented, (b) hashing, and 
(c) a B-tree. Again, no form of concurrency was provided (as was plainly stated in the BUGS section of the 
db(3) manual page). 

Sleepycat Software (http://www.sleepycat.com) provides versions of the db  library that do support concurrent 
access, locking, and transactions. 

Most commercial database libraries do provide the concurrency controls required for multiple processes to 
update a database simultaneously. These systems typically use advisory locking, as we described in Section 
14.3, but they often implement their own locking primitives to avoid the overhead of a system call to acquire an 
uncontested lock. These commercial systems usually implement their database using B+ trees [Comer 1979] or 
some dynamic hashing technique, such as linear hashing [Litwin 1980] or extendible hashing [Fagin et al. 1979]. 

Figure 20.1 summarizes the database libraries commonly found in the four operating systems described in this 
book. Note that on Linux, the gdbm library provides support for both dbm and ndbm functions. 

Figure 20.1. Support for database libraries on various platforms 

Library  POSIX.1 FreeBSD 5.2.1 Linux 2.4.22 Mac OS X 10.3 Solaris 9 

dbm    gdbm   • 

ndbm XSI • gdbm • • 

db  • • • • 

 
 
 
 
 
 
 
 
 
 
 
 
 



20.3. The Library 

The library we develop in this chapter will be similar to the ndbm library, but we'll add the concurrency control 
mechanisms to allow multiple processes to update the same database at the same time. We first describe the C 
interface to the database library, then in the next section describe the actual implementation. 

When we open a database, we are returned a handle (an opaque pointer) representing the database. We'll pass 
this handle to the remaining database functions. 

#include "apue_db.h" 
 
DBHANDLE db_open(const char *pathname, int oflag, . .. /* int mode */);  

 

Returns: database handle if OK, NULL on error 

void db_close(DBHANDLE db); 

 

 

If db_open  is successful, two files are created: pathname.idx is the index file, and pathname.dat is the data file. 
The oflag argument is used as the second argument to open  (Section 3.3) to specify how the files are to be 
opened (read-only, read–write, create file if it doesn't exist, etc.). The mode argument is used as the third 
argument to open  (the file access permissions) if the database files are created. 

When we're done with a database, we call db_close . It closes the index file and the data file and releases any 
memory that it allocated for internal buffers. 

When we store a new record in the database, we have to specify the key for the record and the data associated 
with the key. If the database contained personnel records, the key could be the employee ID, and the data could 
be the employee's name, address, telephone number, date of hire, and the like. Our implementation requires that 
the key for each record be unique. (We can't have two employee records with the same employee ID, for 
example.) 

#include "apue_db.h" 
 
int db_store(DBHANDLE db, const char *key, const ch ar *data,  
             int flag); 

 

Returns: 0 if OK, nonzero on error (see following) 

 

The key and data arguments are null-terminated character strings. The only restriction on these two strings is 
that neither can contain null bytes. They may contain, for example, newlines. 

The flag argument can be DB_INSERT (to insert a new record), DB_REPLACE (to replace an existing record), or 
DB_STORE (to either insert or replace, whichever is appropriate). These three constants are defined in the 
apue_db.h  header. If we specify either DB_INSERT or DB_STORE and the record does not exist, a new record is 
inserted. If we specify either DB_REPLACE or DB_STORE and the record already exists, the existing record is 
replaced with the new record. If we specify DB_REPLACE and the record doesn't exist, we set errno  to ENOENT 



and return –1 without adding the new record. If we specify DB_INSERT and the record already exists, no record 
is inserted. In this case, the return value is 1 to distinguish this from a normal error return (–1). 

We can fetch any record from the database by specifying its key. 

#include "apue_db.h" 
 
char *db_fetch(DBHANDLE db, const char *key);  

 

Returns: pointer to data if OK, NULL if record not found 

 

The return value is a pointer to the data that was stored with the key, if the record is found. We can also delete a 
record from the database by specifying its key. 

#include "apue_db.h" 
 
int db_delete(DBHANDLE db, const char *key);  

 

Returns: 0 if OK, –1 if record not found 

 

In addition to fetching a record by specifying its key, we can go through the entire database, reading each record 
in turn. To do this, we first call db_rewind  to rewind the database to the first record and then call db_nextrec  
in a loop to read each sequential record. 

#include "apue_db.h" 
 
void db_rewind(DBHANDLE db); 
 
char *db_nextrec(DBHANDLE db, char *key);  

 

Returns: pointer to data if OK, NULL on end of file 

 

If key is a non-null pointer, db_nextrec  returns the key by copying it to the memory starting at that location. 

There is no order to the records returned by db_nextrec . All we're guaranteed is that we'll read each record in 
the database once. If we store three records with keys of A, B, and C, in that order, we have no idea in which 
order db_nextrec  will return the three records. It might return B, then A, then C, or some other (apparently 
random) order. The actual order depends on the implementation of the database. 

These seven functions provide the interface to the database library. We now describe the actual implementation 
that we have chosen. 

 
 
 
 



20.4. Implementation Overview 

Database access libraries often use two files to store the information: an index file and a data file. The index file 
contains the actual index value (the key) and a pointer to the corresponding data record in the data file. 
Numerous techniques can be used to organize the index file so that it can be searched quickly and efficiently for 
any key: hashing and B+ trees are popular. We have chosen to use a fixed-size hash table with chaining for the 
index file. We mentioned in the description of db_open  that we create two files: one with a suffix of .idx  and 
one with a suffix of .dat . 

We store the key and the index as null-terminated character strings; they cannot contain arbitrary binary data. 
Some database systems store numerical data in a binary format (1, 2, or 4 bytes for an integer, for example) to 
save storage space. This complicates the functions and requires more work to make the database files portable 
between different systems. For example, if a network has two systems that use different formats for storing 
binary integers, we need to handle this if we want both systems to access the database. (It is not at all 
uncommon today to have systems with different architectures sharing files on a network.) Storing all the records, 
both keys and data, as character strings simplifies everything. It does require additional disk space, but that is a 
small cost for portability. 

With db_store , only one record for each key is allowed. Some database systems allow a key to have multiple 
records and then provide a way to access all the records associated with a given key. Additionally, we have only 
a single index file, meaning that each data record can have only a single key (we don't support secondary keys). 
Some database systems allow each record to have multiple keys and often use one index file per key. Each time 
a new record is inserted or deleted, all index files must be updated accordingly. (An example of a file with 
multiple indexes is an employee file. We could have one index whose key is the employee ID and another 
whose key is the employee's Social Security number. Having an index whose key is the employee name could 
be a problem, as names need not be unique.) 

Figure 20.2 shows a general picture of the database implementation. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 20.2. Arrangement of index file and data file 

 
 

The index file consists of three portions: the free-list pointer, the hash table, and the index records. In Figure 
20.2, all the fields called ptr are simply file offsets stored as an ASCII number. 

To find a record in the database, given its key, db_fetch  calculates the hash value of the key, which leads to 
one hash chain in the hash table. (The chain ptr field could be 0, indicating an empty chain.) We then follow this 
hash chain, which is a linked list of all the index records with this hash value. When we encounter a chain ptr 
value of 0, we've hit the end of the hash chain. 

Let's look at an actual database file. The program in Figure 20.3 creates a new database and writes three records 
to it. Since we store all the fields in the database as ASCII characters, we can look at the actual index file and 
data file using any of the standard UNIX System tools: 

   $ ls -l db4.* 
   -rw-r--r--  1 sar       28 Oct 19 21:33 db4.dat 
   -rw-r--r--  1 sar       72 Oct 19 21:33 db4.idx 
   $ cat db4.idx 
      0  53  35   0 
      0  10Alpha:0:6 
      0  10beta:6:14 
     17  11gamma:20:8 
   $ cat db4.dat 
   data1 
   Data for beta 
   record3 

 
 



Figure 20.3. Create a database and write three records to it 

#include "apue.h" 
#include "apue_db.h" 
#include <fcntl.h> 
 
int 
main(void) 
{ 
    DBHANDLE    db; 
 
    if ((db = db_open("db4", O_RDWR | O_CREAT | O_T RUNC, 
      FILE_MODE)) == NULL) 
        err_sys("db_open error"); 
 
    if (db_store(db, "Alpha", "data1", DB_INSERT) ! = 0) 
        err_quit("db_store error for alpha"); 
    if (db_store(db, "beta", "Data for beta", DB_IN SERT) != 0)  
        err_quit("db_store error for beta"); 
    if (db_store(db, "gamma", "record3", DB_INSERT)  != 0) 
        err_quit("db_store error for gamma"); 
 
    db_close(db); 
    exit(0); 
} 

 

To keep this example small, we have set the size of each ptr field to four ASCII characters; the number of hash 
chains is three. Since each ptr is a file offset, a four-character field limits the total size of the index file and data 
file to 10,000 bytes. When we do some performance measurements of the database system in Section 20.9, we 
set the size of each ptr field to six characters (allowing file sizes up to 1 million bytes), and the number of hash 
chains to more than 100. 

The first line in the index file 

    0 53 35 0 

 

is the free-list pointer (0, the free list is empty) and the three hash chain pointers: 53, 35, and 0. The next line 

   0 10Alpha:0:6 

 

shows the format of each index record. The first field (0) is the four-character chain pointer. This record is the 
end of its hash chain. The next field (10) is the four-character idx len, the length of the remainder of this index 
record. We read each index record using two read s: one to read the two fixed-size fields (the chain ptr and idx 
len) and another to read the remaining (variable-length) portion. The remaining three fields—key, dat off, and 
dat len—are delimited by a separator character (a colon in this case). We need the separator character, since 
each of these three fields is variable length. The separator character can't appear in the key. Finally, a newline 
terminates the index record. The newline isn't required, since idx len contains the length of the record. We store 
the newline to separate each index record so we can use the normal UNIX System tools, such as cat  and more , 
with the index file. The key is the value that we specified when we wrote the record to the database. The data 
offset (0) and data length (6) refer to the data file. We can see that the data record does start at offset 0 in the 
data file and has a length of 6 bytes. (As with the index file, we automatically append a newline to each data 
record, so we can use the normal UNIX System tools with the file. This newline at the end is not returned to the 
caller by db_fetch .) 



If we follow the three hash chains in this example, we see that the first record on the first hash chain is at offset 
53 (gamma). The next record on this chain is at offset 17 (alpha ), and this is the last record on the chain. The 
first record on the second hash chain is at offset 35 (beta ), and it's the last record on the chain. The third hash 
chain is empty. 

Note that the order of the keys in the index file and the order of their corresponding records in the data file is the 
same as the order of the calls to db_store  in Figure 20.3. Since the O_TRUNC flag was specified for db_open , 
the index file and the data file were both truncated and the database initialized from scratch. In this case, 
db_store  just appends the new index records and data records to the end of the corresponding file. We'll see 
later that db_store  can also reuse portions of these two files that correspond to deleted records. 

The choice of a fixed-size hash table for the index is a compromise. It allows fast access as long as each hash 
chain isn't too long. We want to be able to search for any key quickly, but we don't want to complicate the data 
structures by using either a B-tree or dynamic hashing. Dynamic hashing has the advantage that any data record 
can be located with only two disk accesses (see Litwin [1980] or Fagin et al. [1979] for details). B-trees have 
the advantage of traversing the database in (sorted) key order (something that we can't do with the db_nextrec  
function using a hash table.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20.5. Centralized or Decentralized? 

Given multiple processes accessing the same database, we can implement the functions in two ways: 

1. Centralized. Have a single process that is the database manager, and have it be the only process that 
accesses the database. The functions contact this central process using some form of IPC. 

2. Decentralized. Have each function apply the required concurrency controls (locking) and then issue its 
own I/O function calls. 

Database systems have been built using each of these techniques. Given adequate locking routines, the 
decentralized implementation is usually faster, because IPC is avoided. Figure 20.4 depicts the operation of the 
centralized approach. 

Figure 20.4. Centralized approach for database access 

 

 

We purposely show the IPC going through the kernel, as most forms of message passing under the UNIX 
System operate this way. (Shared memory, as described in Section 15.9, avoids this copying of the data.) We 
see with the centralized approach that a record is read by the central process and then passed to the requesting 
process using IPC. This is a disadvantage of this design. Note that the centralized database manager is the only 
process that does I/O with the database files. 

The centralized approach has the advantage that customer tuning of its operation may be possible. For example, 
we might be able to assign different priorities to different processes through the centralized process. This could 



affect the scheduling of I/O operations by the centralized process. With the decentralized approach, this is more 
difficult to do. We are usually at the mercy of the kernel's disk I/O scheduling policy and locking policy; that is, 
if three processes are waiting for a lock to become available, which process gets the lock next? 

Another advantage of the centralized approach is that recovery is easier than with the decentralized approach. 
All the state information is in one place in the centralized approach, so if the database processes are killed, we 
have only one place to look to identify the outstanding transactions we need to resolve to restore the database to 
a consistent state. 

The decentralized approach is shown in Figure 20.5. This is the design that we'll implement in this chapter. 

Figure 20.5. Decentralized approach for database access 

 

 

The user processes that call the functions in the database library to perform I/O are considered cooperating 
processes, since they use byte-range locking to provide concurrent access. 

 
 
 
 
 
 
 



20.6. Concurrency 

We purposely chose a two-file implementation (an index file and a data file) because that is a common 
implementation technique. It requires us to handle the locking interactions of both files. But there are numerous 
ways to handle the locking of these two files. 

Coarse-Grained Locking 

The simplest form of locking is to use one of the two files as a lock for the entire database and to require the 
caller to obtain this lock before operating on the database. We call this coarse-grained locking. For example, we 
can say that the process with a read lock on byte 0 of the index file has read access to the entire database. A 
process with a write lock on byte 0 of the index file has write access to the entire database. We can use the 
normal UNIX System byte-range locking semantics to allow any number of readers at one time, but only one 
writer at a time. (Recall Figure 14.3.) The functions db_fetch  and db_nextrec  require a read lock, and 
db_delete , db_store , and db_open  all require a write lock. (The reason db_open  requires a write lock is that if 
the file is being created, it has to write the empty free list and hash chains at the front of the index file.) 

The problem with coarse-grained locking is that it doesn't allow the maximum amount of concurrency. If a 
process is adding a record to one hash chain, another process should be able to read a record on a different hash 
chain. 

Fine-Grained Locking 

We enhance coarse-grained locking to allow more concurrency and call this fine-grained locking. We first 
require a reader or a writer to obtain a read lock or a write lock on the hash chain for a given record. We allow 
any number of readers at one time on any hash chain but only a single writer on a hash chain. Next, a writer 
needing to access the free list (either db_delete  or db_store ) must obtain a write lock on the free list. Finally, 
whenever it appends a new record to the end of either the index file or the data file, db_store  has to obtain a 
write lock on that portion of the file. 

We expect fine-grained locking to provide more concurrency than coarse-grained locking. In Section 20.9, we'll 
show some actual measurements. In Section 20.8, we show the source code to our implementation of fine-
grained locking and discuss the details of implementing locking. (Coarse-grained locking is merely a 
simplification of the locking that we show.) 

In the source code, we call read , readv , write , and writev  directly. We do not use the standard I/O library. 
Although it is possible to use byte-range locking with the standard I/O library, careful handling of buffering is 
required. We don't want an fgets , for example, to return data that was read into a standard I/O buffer 10 
minutes ago if the data was modified by another process 5 minutes ago. 

Our discussion of concurrency is predicated on the simple needs of the database library. Commercial systems 
often have additional requirements. See Chapter 16 of Date [2004] for additional details on concurrency. 

 
 
 
 
 
 
 
 



20.7. Building the Library 

The database library consists of two files: a public C header file and a C source file. We can build a static 
library using the commands 

gcc -I../include -Wall -c db.c 
ar rsv libapue_db.a db.o 

 

Applications that want to link with libapue_db.a  will also need to link with libapue.a , since we use some of 
our common functions in the database library. 

If, on the other hand, we want to build a dynamic shared library version of the database library, we can use the 
following commands: 

gcc -I../include -Wall -fPIC -c db.c 
gcc -shared -Wl,-soname,libapue_db.so.1 -o libapue_ db.so.1 \ 
    -L../lib -lapue -lc db.o 

 

The resulting shared library, libapue_db.so.1 , needs to be placed in a common directory where the dynamic 
linker/loader can find it. Alternatively, we can place it in a private directory and modify our LD_LIBRARY_PATH 
environment variable to include the private directory in the search path of the dynamic linker/loader. 

The steps used to build shared libraries vary among platforms. Here, we have shown how to do it on a Linux 
system with the GNU C compiler. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20.8. Source Code 

We start with the apue_db.h  header shown first. This header is included by the library source code and all 
applications that call the library. 

For the remainder of this text, we depart from the style of the previous examples in several ways. First, because 
the source code example is longer than usual, we number the lines. This makes it easier to link the discussion 
with the corresponding source code. Second, we place the description of the source code immediately below the 
source code on the same page. 

This style was inspired by John Lions in his book documenting the UNIX Version 6 operating system source 
code [Lions 1977, 1996]. It simplifies the task of studying large amounts of source code. 

Note that we do not bother to number blank lines. Although this departs from the normal behavior of such tools 
as pr (1), we have nothing interesting to say about blank lines. 

1   #ifndef _APUE_DB_H 
2   #define _APUE_DB_H 
 
3   typedef    void *  DBHANDLE; 
 
4   DBHANDLE  db_open(const char *, int, ...); 
5   void      db_close(DBHANDLE); 
6   char     *db_fetch(DBHANDLE, const char *); 
7   int       db_store(DBHANDLE, const char *, cons t char *, int); 
8   int       db_delete(DBHANDLE, const char *); 
9   void      db_rewind(DBHANDLE); 
10  char     *db_nextrec(DBHANDLE, char *); 
 
11  /* 
12  * Flags for db_store(). 
13  */ 
14  #define DB_INSERT    1    /* insert new record only */ 
15  #define DB_REPLACE   2    /* replace existing r ecord */ 
16  #define DB_STORE     3    /* replace or insert */ 
 
17  /* 
18  * Implementation limits. 
19  */ 
20  #define IDXLEN_MIN    6   /* key, sep, start, s ep, length, \n */ 
21  #define IDXLEN_MAX 1024   /* arbitrary */ 
22  #define DATLEN_MIN    2   /* data byte, newline  */ 
23  #define DATLEN_MAX 1024   /* arbitrary */ 
 
24  #endif /* _APUE_DB_H */ 
 
 
      

 

[1 – 
3] 

We use the _APUE_DB_H symbol to ensure that the contents of the header file are included only once. The 
DBHANDLE type represents an active reference to the database and is used to isolate applications from the 
implementation details of the database. Compare this technique with the way the standard I/O library 
exposes the FILE  structure to applications. 

[4 – 
10] 

Next, we declare the prototypes for the database library's public functions. Since this header is included 
by applications that want to use the library, we don't declare the prototypes for the library's private 
functions here. 



[1 – 
3] 

We use the _APUE_DB_H symbol to ensure that the contents of the header file are included only once. The 
DBHANDLE type represents an active reference to the database and is used to isolate applications from the 
implementation details of the database. Compare this technique with the way the standard I/O library 
exposes the FILE  structure to applications. 

[11–
24] 

The legal flags that can be passed to the db_store  function are defined next, followed by fundamental 
limits of the implementation. These limits can be changed, if desired, to support bigger databases. 

  The minimum index record length is specified by IDXLEN_MIN. This represents a 1-byte key, a 1-byte 
separator, a 1-byte starting offset, another 1-byte separator, a 1-byte length, and a terminating newline 
character. (Recall the format of an index record from Figure 20.2.) An index record will usually be larger 
than IDXLEN_MIN bytes, but this is the bare minimum size. 

 

The next file is db.c , the C source file for the library. For simplicity, we include all functions in a single file. 
This has the advantage that we can hide private functions by declaring them static . 

1    #include "apue.h" 
2    #include "apue_db.h" 
3    #include <fcntl.h>     /* open & db_open flags  */ 
4    #include <stdarg.h> 
5    #include <errno.h> 
6    #include <sys/uio.h>   /* struct iovec */ 
 
7    /* 
8     * Internal index file constants. 
9     * These are used to construct records in the 
10    * index file and data file. 
11    */ 
12   #define IDXLEN_SZ     4    /* index record len gth (ASCII chars) */ 
13   #define SEP         ':'    /* separator char i n index record */ 
14   #define SPACE       ' '    /* space character */ 
15   #define NEWLINE     '\n'   /* newline characte r */ 
 
16   /* 
17    * The following definitions are for hash chai ns and free 
18    * list chain in the index file. 
19    */ 
20   #define PTR_SZ        6    /* size of ptr fiel d in hash chain */ 
21   #define PTR_MAX  999999    /* max file offset = 10**PTR_SZ - 1 */ 
22   #define NHASH_DEF   137    /* default hash tab le size */ 
23   #define FREE_OFF      0    /* free list offset  in index file */ 
24   #define HASH_OFF PTR_SZ    /* hash table offse t in index file */ 
 
25   typedef unsigned long DBHASH;  /* hash values */ 
26   typedef unsigned long COUNT;   /* unsigned cou nter */ 
 
 
      

 

[1 – 
6] 

We include apue.h  because we use some of the functions from our private library. In turn, apue.h  
includes several standard header files, including <stdio.h>  and <unistd.h> . We include <stdarg.h>  
because the db_open  function uses the variable-argument functions declared by <stdarg.h> . 

[7 – 
26] 

The size of an index record is specified by IDXLEN_SZ. We use some characters, such as colon and 
newline, as delimiters in the database. We use the space character as "white out" when we delete a record. 

  Some of the values that we have defined as constants could also be made variable, with some added 



[1 – 
6] 

We include apue.h  because we use some of the functions from our private library. In turn, apue.h  
includes several standard header files, including <stdio.h>  and <unistd.h> . We include <stdarg.h>  
because the db_open  function uses the variable-argument functions declared by <stdarg.h> . 

complexity in the implementation. For example, we set the size of the hash table to 137 entries. A better 
technique would be to let the caller specify this as an argument to db_open , based on the expected size of 
the database. We would then have to store this size at the beginning of the index file. 

 
27   /* 
28    * Library's private representation of the dat abase. 
29    */ 
30   typedef struct { 
31     int    idxfd;  /* fd for index file */ 
32     int    datfd;  /* fd for data file */ 
33     char  *idxbuf; /* malloc'ed buffer for index  record */ 
34     char  *datbuf; /* malloc'ed buffer for data record*/ 
35     char  *name;   /* name db was opened under * / 
36     off_t  idxoff; /* offset in index file of in dex record */ 
37                    /* key is at (idxoff + PTR_SZ  + IDXLEN_SZ) */ 
38     size_t idxlen; /* length of index record */ 
39                    /* excludes IDXLEN_SZ bytes a t front of record */ 
40                    /* includes newline at end of  index record */ 
41     off_t  datoff; /* offset in data file of dat a record */ 
42     size_t datlen; /* length of data record */ 
43                    /* includes newline at end */  
44     off_t  ptrval; /* contents of chain ptr in i ndex record */ 
45     off_t  ptroff; /* chain ptr offset pointing to this idx record */ 
46     off_t  chainoff; /* offset of hash chain for  this index record */ 
47     off_t  hashoff;  /* offset in index file of hash table */ 
48     DBHASH nhash;    /* current hash table size */ 
49     COUNT  cnt_delok;    /* delete OK */ 
50     COUNT  cnt_delerr;   /* delete error */ 
51     COUNT  cnt_fetchok;  /* fetch OK */ 
52     COUNT  cnt_fetcherr; /* fetch error */ 
53     COUNT  cnt_nextrec;  /* nextrec */ 
54     COUNT  cnt_stor1;    /* store: DB_INSERT, no  empty, appended */ 
55     COUNT  cnt_stor2;    /* store: DB_INSERT, fo und empty, reused */ 
56     COUNT  cnt_stor3;    /* store: DB_REPLACE, d iff len, appended */ 
57     COUNT  cnt_stor4;    /* store: DB_REPLACE, s ame len, overwrote */ 
58     COUNT  cnt_storerr;  /* store error */ 
59   } DB; 
 
 
      

 

[27 
– 
48] 

The DB structure is where we keep all the information for each open database. The DBHANDLE value that is 
returned by db_open  and used by all the other functions is really just a pointer to one of these structures, 
but we hide that from the callers. 

  Since we store pointers and lengths as ASCII in the database, we convert these to numeric values and 
save them in the DB structure. We also save the hash table size even though it is fixed, just in case we 
decide to enhance the library to allow callers to specify the size when the database is created (see 
Exercise 20.7). 

[49 
– 
59] 

The last ten fields in the DB structure count both successful and unsuccessful operations. If we want to 
analyze the performance of our database, we can write a function to return these statistics, but for now, 
we only maintain the counters. 

 



60   /* 
61    * Internal functions. 
62    */ 
63   static DB     *_db_alloc(int); 
64   static void    _db_dodelete(DB *); 
65   static int     _db_find_and_lock(DB *, const c har *, int); 
66   static int     _db_findfree(DB *, int, int); 
67   static void    _db_free(DB *); 
68   static DBHASH  _db_hash(DB *, const char *); 
69   static char   *_db_readdat(DB *); 
70   static off_t   _db_readidx(DB *, off_t); 
71   static off_t   _db_readptr(DB *, off_t); 
72   static void    _db_writedat(DB *, const char * , off_t, int); 
73   static void    _db_writeidx(DB *, const char * , off_t, int, off_t); 
74   static void    _db_writeptr(DB *, off_t, off_t ); 
 
75   /* 
76    * Open or create a database.  Same arguments as open(2). 
77    */ 
78   DBHANDLE 
79   db_open(const char *pathname, int oflag, ...) 
80   { 
81      DB          *db; 
82      int         len, mode; 
83      size_t      i; 
84      char        asciiptr[PTR_SZ + 1], 
85                  hash[(NHASH_DEF + 1) * PTR_SZ +  2]; 
86                      /* +2 for newline and null */ 
87      struct stat statbuff; 
 
88      /* 
89       * Allocate a DB structure, and the buffers  it needs. 
90       */ 
91      len = strlen(pathname); 
92      if ((db = _db_alloc(len)) == NULL) 
93          err_dump("db_open: _db_alloc error for DB"); 
 
 
      

 

[60 
– 
74] 

We have chosen to name all the user-callable (public) functions starting with db_  and all the internal 
(private) functions starting with _db_ . The public functions were declared in the library's header file, 
apue_db.h . We declare the internal functions as static  so they are visible only to functions residing in 
the same file (the file containing the library implementation). 

[75 
– 
93] 

The db_open  function has the same arguments as open (2). If the caller wants to create the database files, 
the optional third argument specifies the file permissions. The db_open  function opens the index file and 
the data file, initializing the index file, if necessary. The function starts by calling _db_alloc  to allocate 
and initialize a DB structure. 

 
 94     db->nhash   = NHASH_DEF;/* hash table size */ 
 95     db->hashoff = HASH_OFF; /* offset in index file of hash table */ 
 96     strcpy(db->name, pathname); 
 97     strcat(db->name, ".idx"); 
 
 98     if (oflag & O_CREAT) { 
 99         va_list ap; 
 
100         va_start(ap, oflag); 
101         mode = va_arg(ap, int); 



102         va_end(ap); 
 
103         /* 
104          * Open index file and data file. 
105          */ 
106         db->idxfd = open(db->name, oflag, mode) ; 
107         strcpy(db->name + len, ".dat"); 
108         db->datfd = open(db->name, oflag, mode) ; 
109     } else { 
110         /* 
111          * Open index file and data file. 
112          */ 
113         db->idxfd = open(db->name, oflag); 
114         strcpy(db->name + len, ".dat"); 
115         db->datfd = open(db->name, oflag); 
116     } 
117     if (db->idxfd < 0 || db->datfd < 0) { 
118         _db_free(db); 
119         return(NULL); 
120     } 
 
 
      

 

[94 – 
97] 

We continue to initialize the DB structure. The pathname passed in by the caller specifies the prefix of 
the database filenames. We append the suffix .idx  to create the name for the database index file. 

[98 – 
108] 

If the caller wants to create the database files, we use the variable argument functions from <stdarg.h>  
to find the optional third argument. Then we use open  to create and open the index file and data file. 
Note that the filename of the data file starts with the same prefix as the index file but has .dat  as a 
suffix instead. 

[109 – 
116] 

If the caller doesn't specify the O_CREAT flag, then we're opening existing database files. In this case, we 
simply call open  with two arguments. 

[117 – 
120] 

If we hit an error opening or creating either database file, we call _db_free  to clean up the DB structure 
and then return NULL to the caller. If one open  succeeded and one failed, _db_free  will take care of 
closing the open file descriptor, as we shall see shortly. 

 
121  if ((oflag & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC)) { 
122      /* 
123       * If the database was created, we have to  initialize 
124       * it. Write lock the entire file so that we can stat 
125       * it, check its size, and initialize it, atomically. 
126       */ 
127      if (writew_lock(db->idxfd, 0, SEEK_SET, 0)  < 0) 
128          err_dump("db_open: writew_lock error") ; 
 
129      if (fstat(db->idxfd, &statbuff) < 0) 
130          err_sys("db_open: fstat error"); 
 
131      if (statbuff.st_size == 0) { 
132          /* 
133           * We have to build a list of (NHASH_D EF + 1) chain 
134           * ptrs with a value of 0. The +1 is f or the free 
135           * list pointer that precedes the hash  table. 
136           */ 
137           sprintf(asciiptr, "%*d", PTR_SZ, 0); 

 



[121 – 
130] 

We encounter locking if the database is being created. Consider two processes trying to create the same 
database at about the same time. Assume that the first process calls fstat  and is blocked by the kernel 
after fstat  returns. The second process calls db_open , finds that the length of the index file is 0, and 
initializes the free list and hash chain. The second process then writes one record to the database. At this 
point, the second process is blocked, and the first process continues executing right after the call to 
fstat . The first process finds the size of the index file to be 0 (since fstat  was called before the 
second process initialized the index file), so the first process initializes the free list and hash chain, 
wiping out the record that the second process stored in the database. The way to prevent this is to use 
locking. We use the macros readw_lock , writew_lock , and un_lock  from Section 14.3. 

[131 – 
137] 

If the size of the index file is 0, we have just created it, so we need to initialize the free list and hash 
chain pointers it contains. Note that we use the format string %*d to convert a database pointer from an 
integer to an ASCII string. (We'll use this type of format again in _db_writeidx  and _db_writeptr .) 
This format tells sprintf  to take the PTR_SZ argument and use it as the minimum field width for the 
next argument, which is 0 in this instance (here we are initializing the pointers to 0, since we are 
creating a new database). This has the effect of forcing the string created to be at least PTR_SZ 
characters (padded on the left with spaces). In _db_writeidx  and _db_writeptr , we will pass a 
pointer value instead of zero, but we will first verify that the pointer value isn't greater than PTR_MAX, to 
guarantee that every pointer string we write to the database occupies exactly PTR_SZ (6) characters. 

 
138           hash[0] = 0; 
139           for (i = 0; i < NHASH_DEF + 1; i++) 
140               strcat(hash, asciiptr); 
141           strcat(hash, "\n"); 
142           i = strlen(hash); 
143           if (write(db->idxfd, hash, i) != i) 
144               err_dump("db_open: index file ini t write error"); 
145        } 
146        if (un_lock(db->idxfd, 0, SEEK_SET, 0) <  0) 
147            err_dump("db_open: un_lock error"); 
148    } 
149    db_rewind(db); 
150    return(db); 
151  } 
152  /* 
153   * Allocate & initialize a DB structure and it s buffers. 
154   */ 
155  static DB * 
156  _db_alloc(int namelen) 
157  { 
158    DB      *db; 
159    /* 
160     * Use calloc, to initialize the structure t o zero. 
161     */ 
162    if ((db = calloc(1, sizeof(DB))) == NULL) 
163        err_dump("_db_alloc: calloc error for DB "); 
164    db->idxfd = db->datfd = -1;       /* descrip tors */ 
 
165    /* 
166     * Allocate room for the name. 
167     * +5 for ".idx" or ".dat" plus null at end.  
168     */ 
169    if ((db->name = malloc(namelen + 5)) == NULL ) 
170        err_dump("_db_alloc: malloc error for na me"); 
 
 
      

 



[138 – 
151] 

We continue to initialize the newly created database. We build the hash table and write it to the index 
file. Then we unlock the index file, reset the database file pointers, and return a pointer to the DB 
structure as the opaque handle for the caller to use with the other database functions. 

[152 – 
164] 

The _db_alloc  function is called by db_open  to allocate storage for the DB structure, an index buffer, 
and a data buffer. We use calloc  to allocate memory to hold the DB structure and ensure that it is 
initialized to all zeros. Since this has the side effect of setting the database file descriptors to zero, we 
need to reset them to –1 to indicate that they are not yet valid. 

[165 – 
170] 

We allocate space to hold the name of the database file. We use this buffer to create both filenames by 
changing the suffix to refer to either the index file or the data file, as we saw in db_open . 

 
171    /* 
172     * Allocate an index buffer and a data buffe r. 
173     * +2 for newline and null at end. 
174     */ 
175    if ((db->idxbuf = malloc(IDXLEN_MAX + 2)) ==  NULL) 
176        err_dump("_db_alloc: malloc error for in dex buffer"); 
177    if ((db->datbuf = malloc(DATLEN_MAX + 2)) ==  NULL) 
178        err_dump("_db_alloc: malloc error for da ta buffer"); 
179    return(db); 
180  } 
 
181  /* 
182   * Relinquish access to the database. 
183   */ 
184  void 
185  db_close(DBHANDLE h) 
186  { 
187    _db_free((DB *)h); /* closes fds, free buffe rs & struct */ 
188  } 
 
189  /* 
190   * Free up a DB structure, and all the malloc' ed buffers it 
191   * may point to. Also close the file descripto rs if still open. 
192   */ 
193  static void 
194  _db_free(DB *db) 
195  { 
196    if (db->idxfd >= 0) 
197        close(db->idxfd); 
198    if (db->datfd >= 0) 
199        close(db->datfd); 
 
 
      

 

[171 – 
180] 

We allocate space for buffers for the index and data files. The buffer sizes are defined in apue_db.h . 
An enhancement to the database library would be to allow these buffers to expand as required. We 
could keep track of the size of these two buffers and call realloc  whenever we find we need a bigger 
buffer. Finally, we return a pointer to the DB structure that we allocated. 

[181 – 
188] 

The db_close  function is a wrapper that casts a database handle to a DB structure pointer, passing it to 
_db_free  to release any resources and free the DB structure. 

[189 – 
199] 

The _db_free  function is called by db_open  if an error occurs while opening the index file or data file 
and is also called by db_close  when an application is done using the database. If the file descriptor for 
the database index file is valid, we close it. The same is done with the file descriptor for the data file. 



[171 – 
180] 

We allocate space for buffers for the index and data files. The buffer sizes are defined in apue_db.h . 
An enhancement to the database library would be to allow these buffers to expand as required. We 
could keep track of the size of these two buffers and call realloc  whenever we find we need a bigger 
buffer. Finally, we return a pointer to the DB structure that we allocated. 

(Recall that when we allocate a new DB structure in _db_alloc , we initialize each file descriptor to –1. 
If we are unable to open one of the database files, the corresponding file descriptor will still be set to –
1, and we will avoid trying to close it.) 

 
200    if (db->idxbuf != NULL) 
201        free(db->idxbuf); 
202    if (db->datbuf != NULL) 
203        free(db->datbuf); 
204    if (db->name != NULL) 
205        free(db->name); 
206    free(db); 
207  } 
 
208  /* 
209   * Fetch a record. Return a pointer to the nul l-terminated data. 
210   */ 
211  char * 
212  db_fetch(DBHANDLE h, const char *key) 
213  { 
214    DB      *db = h; 
215    char    *ptr; 
 
216    if (_db_find_and_lock(db, key, 0) < 0) { 
217        ptr = NULL;             /* error, record  not found */ 
218        db->cnt_fetcherr++; 
219    } else { 
220        ptr = _db_readdat(db); /* return pointer  to data */ 
221        db->cnt_fetchok++; 
222    } 
 
223    /* 
224     * Unlock the hash chain that _db_find_and_l ock locked. 
225     */ 
226    if (un_lock(db->idxfd, db->chainoff, SEEK_SE T, 1) < 0) 
227        err_dump("db_fetch: un_lock error"); 
228    return(ptr); 
229  } 
 
 
      

 

[200 – 
207] 

Next, we free any dynamically-allocated buffers. We can safely pass a null pointer to free , so we don't 
need to check the value of each buffer pointer beforehand, but we do so anyway because we consider it 
better style to free only those objects that we allocated. (Not all deallocator functions are as forgiving as 
free .) Finally, we free the memory backing the DB structure. 

[208 – 
218] 

The db_fetch  function is used to read a record given its key. We first try to find the record by calling 
_db_find_and_lock . If the record can't be found, we set the return value (ptr ) to NULL and increment 
the count of unsuccessful record searches. Because _db_find_and_lock  returns with the database 
index file locked, we can't return until we unlock it. 

[219 – 
229] 

If the record is found, we call _db_readdat  to read the corresponding data record and increment the 
count of the successful record searches. Before returning, we unlock the index file by calling un_lock . 



[200 – 
207] 

Next, we free any dynamically-allocated buffers. We can safely pass a null pointer to free , so we don't 
need to check the value of each buffer pointer beforehand, but we do so anyway because we consider it 
better style to free only those objects that we allocated. (Not all deallocator functions are as forgiving as 
free .) Finally, we free the memory backing the DB structure. 

Then we return a pointer to the record found (or NULL if the record wasn't found). 

 
230  /* 
231   * Find the specified record. Called by db_del ete, db_fetch, 
232   * and db_store. Returns with the hash chain l ocked. 
233   */ 
234  static int 
235  _db_find_and_lock(DB *db, const char *key, int  writelock) 
236  { 
237    off_t   offset, nextoffset; 
 
238    /* 
239     * Calculate the hash value for this key, th en calculate the 
240     * byte offset of corresponding chain ptr in  hash table. 
241     * This is where our search starts. First we  calculate the 
242     * offset in the hash table for this key. 
243     */ 
244    db->chainoff = (_db_hash(db, key) * PTR_SZ) + db->hashoff; 
245    db->ptroff = db->chainoff; 
 
246    /* 
247     * We lock the hash chain here. The caller m ust unlock it 
248     * when done. Note we lock and unlock only t he first byte. 
249     */ 
250    if (writelock) { 
251        if (writew_lock(db->idxfd, db->chainoff,  SEEK_SET, 1) < 0) 
252            err_dump("_db_find_and_lock: writew_ lock error"); 
253    } else { 
254        if (readw_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0) 
255            err_dump("_db_find_and_lock: readw_l ock error"); 
256    } 
 
257    /* 
258     * Get the offset in the index file of first  record 
259     * on the hash chain (can be 0). 
260     */ 
261    offset = _db_readptr(db, db->ptroff); 
 
 
      

 

[230 – 
237] 

The _db_find_and_lock  function is used internally by the library to find a record given its key. We set 
the writelock  parameter to a nonzero value if we want to acquire a write lock on the index file while 
we search for the record. If we set writelock  to zero, we read-lock the index file while we search it. 

[238 – 
256] 

We prepare to traverse a hash chain in _db_find_and_lock . We convert the key into a hash value, 
which we use to calculate the starting address of the hash chain in the file (chainoff ). We wait for the 
lock to be granted before going through the hash chain. Note that we lock only the first byte in the start 
of the hash chain. This increases concurrency by allowing multiple processes to search different hash 
chains at the same time. 

[257 – 
261] 

We call _db_readptr  to read the first pointer in the hash chain. If this returns zero, the hash chain is 
empty. 



 
262    while (offset != 0) { 
263        nextoffset = _db_readidx(db, offset); 
264        if (strcmp(db->idxbuf, key) == 0) 
265            break;       /* found a match */ 
266        db->ptroff = offset; /* offset of this ( unequal) record */ 
267        offset = nextoffset; /* next one to comp are */ 
268    } 
269    /* 
270     * offset == 0 on error (record not found). 
271     */ 
272    return(offset == 0 ? -1 : 0); 
273  } 
 
274  /* 
275   * Calculate the hash value for a key. 
276   */ 
277  static DBHASH 
278  _db_hash(DB *db, const char *key) 
279  { 
280    DBHASH      hval = 0; 
281    char        c; 
282    int         i; 
 
283    for (i = 1; (c = *key++) != 0; i++) 
284        hval += c * i;      /* ascii char times its 1-based index */ 
285    return(hval % db->nhash); 
286  } 
 
 
      

 

[262 – 
268] 

In the while  loop, we go through each index record on the hash chain, comparing keys. We call 
_db_readidx  to read each index record. It populates the idxbuf  field with the key of the current 
record. If _db_readidx  returns zero, we've reached the last entry in the chain. 

[269 – 
273] 

If offset  is zero after the loop, we've reached the end of a hash chain without finding a matching key, 
so we return –1. Otherwise, we found a match (and exited the loop with the break  statement), so we 
return success (0). In this case, the ptroff  field contains the address of the previous index record, 
datoff  contains the address of the data record, and datlen  contains the size of the data record. As we 
make our way through the hash chain, we save the previous index record that points to the current index 
record. We'll use this when we delete a record, since we have to modify the chain pointer of the 
previous record to delete the current record. 

[274 – 
286] 

_db_hash  calculates the hash value for a given key. It multiplies each ASCII character times its 1-based 
index and divides the result by the number of hash table entries. The remainder from the division is the 
hash value for this key. Recall that the number of hash table entries is 137, which is a prime number. 
According to Knuth [1998], prime hashes generally provide good distribution characteristics. 

 
287  /* 
288   * Read a chain ptr field from anywhere in the  index file: 
289   * the free list pointer, a hash table chain p tr, or an 
290   * index record chain ptr. 
291   */ 
292  static off_t 
293  _db_readptr(DB *db, off_t offset) 
294  { 
295    char    asciiptr[PTR_SZ + 1]; 
 



296    if (lseek(db->idxfd, offset, SEEK_SET) == -1 ) 
297        err_dump("_db_readptr: lseek error to pt r field"); 
298    if (read(db->idxfd, asciiptr, PTR_SZ) != PTR _SZ) 
299        err_dump("_db_readptr: read error of ptr  field"); 
300    asciiptr[PTR_SZ] = 0;       /* null terminat e */ 
301    return(atol(asciiptr)); 
302  } 
 
303  /* 
304   * Read the next index record. We start at the  specified offset 
305   * in the index file. We read the index record  into db->idxbuf 
306   * and replace the separators with null bytes.  If all is OK we 
307   * set db->datoff and db->datlen to the offset  and length of the 
308   * corresponding data record in the data file.  
309   */ 
310  static off_t 
311  _db_readidx(DB *db, off_t offset) 
312  { 
313    ssize_t             i; 
314    char            *ptr1, *ptr2; 
315    char            asciiptr[PTR_SZ + 1], asciil en[IDXLEN_SZ + 1]; 
316    struct iovec    iov[2]; 
 
 
      

 

[287 – 
302] 

_db_readptr  reads any one of three different chain pointers: (a) the pointer at the beginning of the 
index file that points to the first index record on the free list, (b) the pointers in the hash table that point 
to the first index record on each hash chain, and (c) the pointers that are stored at the beginning of each 
index record (whether the index record is part of a hash chain or on the free list). We convert the pointer 
from ASCII to a long integer before returning it. No locking is done by this function; that is up to the 
caller. 

[303 – 
316] 

The _db_readidx  function is used to read the record at the specified offset from the index file. On 
success, the function will return the offset of the next record in the list. In this case, the function will 
populate several fields in the DB structure: idxoff  contains the offset of the current record in the index 
file, ptrval  contains the offset of the next index entry in the list, idxlen  contains the length of the 
current index record, idxbuf  contains the actual index record, datoff  contains the offset of the record 
in the data file, and datlen  contains the length of the data record. 

 
317    /* 
318     * Position index file and record the offset . db_nextrec 
319     * calls us with offset==0, meaning read fro m current offset. 
320     * We still need to call lseek to record the  current offset. 
321     */ 
322    if ((db->idxoff = lseek(db->idxfd, offset, 
323      offset == 0 ? SEEK_CUR : SEEK_SET)) == -1)  
324        err_dump("_db_readidx: lseek error"); 
 
325    /* 
326     * Read the ascii chain ptr and the ascii le ngth at 
327     * the front of the index record. This tells  us the 
328     * remaining size of the index record. 
329     */ 
330    iov[0].iov_base = asciiptr; 
331    iov[0].iov_len  = PTR_SZ; 
332    iov[1].iov_base = asciilen; 
333    iov[1].iov_len  = IDXLEN_SZ; 
334    if ((i = readv(db->idxfd, &iov[0], 2)) != PT R_SZ + IDXLEN_SZ) { 



335        if (i == 0 && offset == 0) 
336            return(-1);     /* EOF for db_nextre c */ 
337        err_dump("_db_readidx: readv error of in dex record"); 
338    } 
 
339    /* 
340     * This is our return value; always >= 0. 
341     */ 
342    asciiptr[PTR_SZ] = 0;        /* null termina te */ 
343    db->ptrval = atol(asciiptr); /* offset of ne xt key in chain */ 
 
344    asciilen[IDXLEN_SZ] = 0;     /* null termina te */ 
345    if ((db->idxlen = atoi(asciilen)) < IDXLEN_M IN || 
346      db->idxlen > IDXLEN_MAX) 
347        err_dump("_db_readidx: invalid length");  
 
 
      

 

[317 – 
324] 

We start by seeking to the index file offset provided by the caller. We record the offset in the DB 
structure, so even if the caller wants to read the record at the current file offset (by setting offset  to 0), 
we still need to call lseek  to determine the current offset. Since an index record will never be stored at 
offset 0 in the index file, we can safely overload the value of 0 to mean "read from the current offset." 

[325 – 
338] 

We call readv  to read the two fixed-length fields at the beginning of the index record: the chain pointer 
to the next index record and the size of the variable-length index record that follows. 

[339 – 
347] 

We convert the offset of the next record to an integer and store it in the ptrval  field (this will be used 
as the return value for this function). Then we convert the length of the index record into an integer and 
save it in the idxlen  field. 

 
348    /* 
349     * Now read the actual index record. We read  it into the key 
350     * buffer that we malloced when we opened th e database. 
351     */ 
352    if ((i = read(db->idxfd, db->idxbuf, db->idx len)) != db->idxlen) 
353        err_dump("_db_readidx: read error of ind ex record"); 
354    if (db->idxbuf[db->idxlen-1] != NEWLINE)    /* sanity check */ 
355        err_dump("_db_readidx: missing newline") ; 
356    db->idxbuf[db->idxlen-1] = 0;    /* replace newline with null */ 
 
357    /* 
358     * Find the separators in the index record. 
359     */ 
360    if ((ptr1 = strchr(db->idxbuf, SEP)) == NULL ) 
361        err_dump("_db_readidx: missing first sep arator"); 
362    *ptr1++ = 0;                /* replace SEP w ith null */ 
 
363    if ((ptr2 = strchr(ptr1, SEP)) == NULL) 
364        err_dump("_db_readidx: missing second se parator"); 
365    *ptr2++ = 0;                /* replace SEP w ith null */ 
 
366    if (strchr(ptr2, SEP) != NULL) 
367        err_dump("_db_readidx: too many separato rs"); 
 
368    /* 
369     * Get the starting offset and length of the  data record. 
370     */ 
371    if ((db->datoff = atol(ptr1)) < 0) 
372        err_dump("_db_readidx: starting offset <  0"); 



373    if ((db->datlen = atol(ptr2)) <= 0 || db->da tlen > DATLEN_MAX) 
374        err_dump("_db_readidx: invalid length");  
375    return(db->ptrval);     /* return offset of next key in chain */ 
376  } 
 
 
      

 

[348 – 
356] 

We read the variable-length index record into the idxbuf  field in the DB structure. The record should be 
terminated with a newline, which we replace with a null byte. If the index file is corrupt, we terminate 
and drop core by calling err_dump . 

[357 – 
367] 

We separate the index record into three fields: the key, the offset of the corresponding data record, and 
the length of the data record. The strchr  function finds the first occurrence of the specified character in 
the given string. Here we look for the character that separates fields in the record (SEP, which we define 
to be a colon). 

[368 – 
376] 

We convert the data record offset and length into integers and store them in the DB structure. Then we 
return the offset of the next record in the hash chain. Note that we do not read the data record. That is 
left to the caller. In db_fetch , for example, we don't read the data record until _db_find_and_lock  has 
read the index record that matches the key that we're looking for. 

 
377  /* 
378   * Read the current data record into the data buffer. 
379   * Return a pointer to the null-terminated dat a buffer. 
380   */ 
381  static char * 
382  _db_readdat(DB *db) 
383  { 
384    if (lseek(db->datfd, db->datoff, SEEK_SET) = = -1) 
385        err_dump("_db_readdat: lseek error"); 
386    if (read(db->datfd, db->datbuf, db->datlen) != db->datlen) 
387        err_dump("_db_readdat: read error"); 
388    if (db->datbuf[db->datlen-1] != NEWLINE)    /* sanity check */ 
389        err_dump("_db_readdat: missing newline") ; 
390    db->datbuf[db->datlen-1] = 0; /* replace new line with null */ 
391    return(db->datbuf);     /* return pointer to  data record */ 
392  } 
 
393  /* 
394   * Delete the specified record. 
395   */ 
396  int 
397  db_delete(DBHANDLE h, const char *key) 
398  { 
399    DB      *db = h; 
400    int     rc = 0;         /* assume record wil l be found */ 
 
401    if (_db_find_and_lock(db, key, 1) == 0) { 
402        _db_dodelete(db); 
403        db->cnt_delok++; 
404    } else { 
405        rc = -1;            /* not found */ 
406        db->cnt_delerr++; 
407    } 
408    if (un_lock(db->idxfd, db->chainoff, SEEK_SE T, 1) < 0) 
409        err_dump("db_delete: un_lock error"); 
410    return(rc); 
411  } 
 



 
      

 

[377 – 
392] 

The _db_readdat  function populates the datbuf  field in the DB structure with the contents of the data 
record, expecting that the datoff  and datlen  fields have been properly initialized already. 

[393 – 
411] 

The db_delete  function is used to delete a record given its key. We use _db_find_and_lock  to 
determine whether the record exists in the database. If it does, we call _db_dodelete  to do the work 
needed to delete the record. The third argument to _db_find_and_lock  controls whether the chain is 
read-locked or write-locked. Here we are requesting a write lock, since we will potentially change the 
list. Since _db_find_and_lock  returns with the lock still held, we need to unlock it, regardless of 
whether the record was found. 

 
412  /* 
413   * Delete the current record specified by the DB structure. 
414   * This function is called by db_delete and db _store, after 
415   * the record has been located by _db_find_and _lock. 
416   */ 
417  static void 
418  _db_dodelete(DB *db) 
419  { 
420    int     i; 
421    char    *ptr; 
422    off_t   freeptr, saveptr; 
 
423    /* 
424     * Set data buffer and key to all blanks. 
425     */ 
426    for (ptr = db->datbuf, i = 0; i < db->datlen  - 1; i++) 
427        *ptr++ = SPACE; 
428    *ptr = 0;   /* null terminate for _db_writed at */ 
429    ptr = db->idxbuf; 
430    while (*ptr) 
431        *ptr++ = SPACE; 
 
432    /* 
433     * We have to lock the free list. 
434     */ 
435    if (writew_lock(db->idxfd, FREE_OFF, SEEK_SE T, 1) < 0) 
436        err_dump("_db_dodelete: writew_lock erro r"); 
 
437    /* 
438     * Write the data record with all blanks. 
439     */ 
440    _db_writedat(db, db->datbuf, db->datoff, SEE K_SET); 
 
 
      

 

[412 – 
431] 

The _db_dodelete  function does all the work necessary to delete a record from the database. (This 
function is also called by db_store .) Most of the function just updates two linked lists: the free list and 
the hash chain for this key. When a record is deleted, we set its key and data record to blanks. This fact 
is used by db_nextrec , which we'll examine later in this section. 

[432 – 
440] 

We call writew_lock  to write-lock the free list. This is to prevent two processes that are deleting 
records at the same time, on two different hash chains, from interfering with each other. Since we'll add 
the deleted record to the free list, which changes the free-list pointer, only one process at a time can be 
doing this. 



[412 – 
431] 

The _db_dodelete  function does all the work necessary to delete a record from the database. (This 
function is also called by db_store .) Most of the function just updates two linked lists: the free list and 
the hash chain for this key. When a record is deleted, we set its key and data record to blanks. This fact 
is used by db_nextrec , which we'll examine later in this section. 

  We write the all-blank data record by calling _db_writedat . Note that there is no need for 
_db_writedat  to lock the data file in this case. Since db_delete  has write-locked the hash chain for 
this record, we know that no other process is reading or writing this particular data record. 

 
441    /* 
442     * Read the free list pointer. Its value bec omes the 
443     * chain ptr field of the deleted index reco rd. This means 
444     * the deleted record becomes the head of th e free list. 
445     */ 
446    freeptr = _db_readptr(db, FREE_OFF); 
 
447    /* 
448     * Save the contents of index record chain p tr, 
449     * before it's rewritten by _db_writeidx. 
450     */ 
451    saveptr = db->ptrval; 
 
452    /* 
453     * Rewrite the index record. This also rewri tes the length 
454     * of the index record, the data offset, and  the data length, 
455     * none of which has changed, but that's OK.  
456     */ 
457    _db_writeidx(db, db->idxbuf, db->idxoff, SEE K_SET, freeptr); 
 
458    /* 
459     * Write the new free list pointer. 
460     */ 
461    _db_writeptr(db, FREE_OFF, db->idxoff); 
 
462    /* 
463     * Rewrite the chain ptr that pointed to thi s record being 
464     * deleted. Recall that _db_find_and_lock se ts db->ptroff to 
465     * point to this chain ptr. We set this chai n ptr to the 
466     * contents of the deleted record's chain pt r, saveptr. 
467     */ 
468    _db_writeptr(db, db->ptroff, saveptr); 
469    if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1 ) < 0) 
470        err_dump("_db_dodelete: un_lock error");  
471  } 
 
 
      

 

[441 – 
461] 

We read the free-list pointer and then update the index record so that its next record pointer is set to the 
first record on the free list. (If the free list was empty, this new chain pointer is 0.) We have already 
cleared the key. Then we update the free-list pointer with the offset of the index record we are deleting. 
This means that the free list is handled on a last-in, first-out basis; that is, deleted records are added to 
the front of the free list (although we remove entries from the free list on a first-fit basis). 

  We don't have a separate free list for each file. When we add a deleted index record to the free list, the 
index record still points to the deleted data record. There are better ways to do this, in exchange for 
added complexity. 

[462 – We update the previous record in the hash chain to point to the record after the one we are deleting, thus 



[441 – 
461] 

We read the free-list pointer and then update the index record so that its next record pointer is set to the 
first record on the free list. (If the free list was empty, this new chain pointer is 0.) We have already 
cleared the key. Then we update the free-list pointer with the offset of the index record we are deleting. 
This means that the free list is handled on a last-in, first-out basis; that is, deleted records are added to 
the front of the free list (although we remove entries from the free list on a first-fit basis). 

471] removing the deleted record from the hash chain. Finally, we unlock the free list. 

 
472  /* 
473   * Write a data record. Called by _db_dodelete  (to write 
474   * the record with blanks) and db_store. 
475   */ 
476  static void 
477  _db_writedat(DB *db, const char *data, off_t o ffset, int whence) 
478  { 
479    struct iovec    iov[2]; 
480    static char     newline = NEWLINE; 
 
481    /* 
482     * If we're appending, we have to lock befor e doing the lseek 
483     * and write to make the two an atomic opera tion. If we're 
484     * overwriting an existing record, we don't have to lock. 
485     */ 
486    if (whence == SEEK_END) /* we're appending, lock entire file */ 
487        if (writew_lock(db->datfd, 0, SEEK_SET, 0) < 0) 
488            err_dump("_db_writedat: writew_lock error"); 
 
489    if ((db->datoff = lseek(db->datfd, offset, w hence)) == -1) 
490        err_dump("_db_writedat: lseek error"); 
491    db->datlen = strlen(data) + 1;  /* datlen in cludes newline */ 
 
492    iov[0].iov_base = (char *) data; 
493    iov[0].iov_len  = db->datlen - 1; 
494    iov[1].iov_base = &newline; 
495    iov[1].iov_len  = 1; 
496    if (writev(db->datfd, &iov[0], 2) != db->dat len) 
497        err_dump("_db_writedat: writev error of data record"); 
 
498    if (whence == SEEK_END) 
499        if (un_lock(db->datfd, 0, SEEK_SET, 0) <  0) 
500            err_dump("_db_writedat: un_lock erro r"); 
501  } 
 
 
      

 

[472 – 
491] 

We call _db_writedat  to write a data record. When we delete a record, we use _db_writedat  to 
overwrite the record with blanks; _db_writedat  doesn't need to lock the data file, because db_delete  
has write-locked the hash chain for this record. Thus, no other process could be reading or writing this 
particular data record. When we cover db_store  later in this section, we'll encounter the case in which 
_db_writedat  is appending to the data file and has to lock it. 

  We seek to the location where we want to write the data record. The amount to write is the record size 
plus 1 byte for the terminating newline we add. 

[492 – 
501] 

We set up the iovec  array and call writev  to write the data record and newline. We can't assume that 
the caller's buffer has room at the end for us to append the newline, so we write the newline from a 
separate buffer. If we are appending a record to the file, we release the lock we acquired earlier. 



 
502  /* 
503   * Write an index record.  _db_writedat is cal led before 
504   * this function to set the datoff and datlen fields in the 
505   * DB structure, which we need to write the in dex record. 
506   */ 
507  static void 
508  _db_writeidx(DB *db, const char *key, 
509               off_t offset, int whence, off_t p trval) 
510  { 
511    struct iovec    iov[2]; 
512    char            asciiptrlen[PTR_SZ + IDXLEN_ SZ +1]; 
513    int             len; 
514    char            *fmt; 
 
515    if ((db->ptrval = ptrval) < 0 || ptrval > PT R_MAX) 
516        err_quit("_db_writeidx: invalid ptr: %d" , ptrval); 
517    if (sizeof(off_t) == sizeof(long long)) 
518        fmt = "%s%c%lld%c%d\n"; 
519    else 
520        fmt = "%s%c%ld%c%d\n"; 
521    sprintf(db->idxbuf, fmt, key, SEP, db->datof f, SEP, db->datlen); 
522    if ((len = strlen(db->idxbuf)) < IDXLEN_MIN || len > IDXLEN_MAX) 
523        err_dump("_db_writeidx: invalid length") ; 
524    sprintf(asciiptrlen, "%*ld%*d", PTR_SZ, ptrv al, IDXLEN_SZ, len); 
 
525    /* 
526     * If we're appending, we have to lock befor e doing the lseek 
527     * and write to make the two an atomic opera tion. If we're 
528     * overwriting an existing record, we don't have to lock. 
529     */ 
530    if (whence == SEEK_END)     /* we're appendi ng */ 
531        if (writew_lock(db->idxfd, ((db->nhash+1 )*PTR_SZ)+1, 
532          SEEK_SET, 0) < 0) 
533            err_dump("_db_writeidx: writew_lock error"); 
 
 
      

 

[502 – 
524] 

The _db_writeidx  function is called to write an index record. After validating the next pointer in the 
chain, we create the index record and store the second half of it in idxbuf . We need the size of this 
portion of the index record to create the first half of the index record, which we store in the local 
variable asciiptrlen . 

  Note that we select the format string passed to sprintf  based on the size of the off_t  data type. Even 
a 32-bit system can provide 64-bit file offsets, so we can't make any assumptions about the size of the 
off_t  data type. 

[525 – 
533] 

As with _db_writedat , this function deals with locking only when a new index record is being 
appended to the index file. When _db_dodelete  calls this function, we're rewriting an existing index 
record. In this case, the caller has write-locked the hash chain, so no additional locking is required. 

 
534    /* 
535     * Position the index file and record the of fset. 
536     */ 
537    if ((db->idxoff = lseek(db->idxfd, offset, w hence)) == -1) 
538        err_dump("_db_writeidx: lseek error"); 
 
539    iov[0].iov_base = asciiptrlen; 
540    iov[0].iov_len  = PTR_SZ + IDXLEN_SZ; 



541    iov[1].iov_base = db->idxbuf; 
542    iov[1].iov_len  = len; 
543    if (writev(db->idxfd, &iov[0], 2) != PTR_SZ + IDXLEN_SZ + len) 
544        err_dump("_db_writeidx: writev error of index record"); 
 
545    if (whence == SEEK_END) 
546        if (un_lock(db->idxfd, ((db->nhash+1)*PT R_SZ)+1, 
547          SEEK_SET, 0) < 0) 
548            err_dump("_db_writeidx: un_lock erro r"); 
549  } 
 
550  /* 
551   * Write a chain ptr field somewhere in the in dex file: 
552   * the free list, the hash table, or in an ind ex record. 
553   */ 
554  static void 
555  _db_writeptr(DB *db, off_t offset, off_t ptrva l) 
556  { 
557    char    asciiptr[PTR_SZ + 1]; 
 
558    if (ptrval < 0 || ptrval > PTR_MAX) 
559        err_quit("_db_writeptr: invalid ptr: %d" , ptrval); 
560    sprintf(asciiptr, "%*ld", PTR_SZ, ptrval); 
 
561    if (lseek(db->idxfd, offset, SEEK_SET) == -1 ) 
562        err_dump("_db_writeptr: lseek error to p tr field"); 
563    if (write(db->idxfd, asciiptr, PTR_SZ) != PT R_SZ) 
564        err_dump("_db_writeptr: write error of p tr field"); 
565  } 
 
 
      

 

[534 – 
549] 

We seek to the location where we want to write the index record and save this offset in the idxoff  field 
of the DB structure. Since we built the index record in two separate buffers, we use writev  to store it in 
the index file. If we were appending to the file, we release the lock we acquired before seeking. This 
makes the seek and the write an atomic operation from the perspective of concurrently running 
processes appending new records to the same database. 

[550 – 
565] 

_db_writeptr  is used to write a chain pointer to the index file. We validate that the chain pointer is 
within bounds, then convert it to an ASCII string. We seek to the specified offset in the index file and 
write the pointer. 

 
566  /* 
567   * Store a record in the database.  Return 0 i f OK, 1 if record 
568   * exists and DB_INSERT specified, -1 on error . 
569   */ 
570  int 
571  db_store(DBHANDLE h, const char *key, const ch ar *data, int flag) 
572  { 
573    DB      *db = h; 
574    int     rc, keylen, datlen; 
575    off_t   ptrval; 
 
576    if (flag != DB_INSERT && flag != DB_REPLACE && 
577      flag != DB_STORE) { 
578        errno = EINVAL; 
579        return(-1); 
580    } 
581    keylen = strlen(key); 



582    datlen = strlen(data) + 1;      /* +1 for ne wline at end */ 
583    if (datlen < DATLEN_MIN || datlen > DATLEN_M AX) 
584        err_dump("db_store: invalid data length" ); 
 
585    /* 
586     * _db_find_and_lock calculates which hash t able this new record 
587     * goes into (db->chainoff), regardless of w hether it already 
588     * exists or not. The following calls to _db _writeptr change the 
589     * hash table entry for this chain to point to the new record. 
590     * The new record is added to the front of t he hash chain. 
591     */ 
592    if (_db_find_and_lock(db, key, 1) < 0) { /* record not found */ 
593        if (flag == DB_REPLACE) { 
594            rc = -1; 
595            db->cnt_storerr++; 
596            errno = ENOENT;     /* error, record  does not exist */ 
597            goto doreturn; 
598        } 
 
 
      

 

[566 – 
584] 

We use db_store  to add a record to the database. We first validate the flag value we are passed. Then 
we make sure that the length of the data record is valid. If it isn't, we drop core and exit. This is OK for 
an example, but if we were building a production-quality library, we'd return an error status instead, 
which would give the application a chance to recover. 

[585 – 
598] 

We call _db_find_and_lock  to see if the record already exists. It is OK if the record doesn't exist and 
either DB_INSERT or DB_STORE is specified, or if the record already exists and either DB_REPLACE or 
DB_STORE is specified. If we're replacing an existing record, that implies that the keys are identical but 
that the data records probably differ. Note that the final argument to _db_find_and_lock  specifies that 
the hash chain must be write-locked, as we will probably be modifying this hash chain. 

 
599        /* 
600         * _db_find_and_lock locked the hash cha in for us; read 
601         * the chain ptr to the first index reco rd on hash chain. 
602         */ 
603        ptrval = _db_readptr(db, db->chainoff); 
 
604        if (_db_findfree(db, keylen, datlen) < 0 ) { 
605            /* 
606             * Can't find an empty record big en ough. Append the 
607             * new record to the ends of the ind ex and data files. 
608             */ 
609            _db_writedat(db, data, 0, SEEK_END);  
610            _db_writeidx(db, key, 0, SEEK_END, p trval); 
 
611            /* 
612             * db->idxoff was set by _db_writeid x. The new 
613             * record goes to the front of the h ash chain. 
614             */ 
615            _db_writeptr(db, db->chainoff, db->i dxoff); 
616            db->cnt_stor1++; 
617        } else { 
618            /* 
619             * Reuse an empty record. _db_findfr ee removed it from 
620             * the free list and set both db->da toff and db->idxoff. 
621             * Reused record goes to the front o f the hash chain. 
622             */ 
623            _db_writedat(db, data, db->datoff, S EEK_SET); 



624            _db_writeidx(db, key, db->idxoff, SE EK_SET, ptrval); 
625            _db_writeptr(db, db->chainoff, db->i dxoff); 
626            db->cnt_stor2++; 
627        } 
 
 
      

 

[599 – 
603] 

After we call _db_find_and_lock , the code divides into four cases. In the first two, no record was 
found, so we are adding a new record. We read the offset of the first entry on the hash list. 

[604 – 
616] 

Case 1: we call _db_findfree  to search the free list for a deleted record with the same size key and 
same size data. If no such record is found, we have to append the new record to the ends of the index 
and data files. We call _db_writedat  to write the data part, _db_writeidx  to write the index part, and 
_db_writeptr  to place the new record on the front of the hash chain. We increment a count 
(cnt_stor1 ) of the number of times we executed this case to allow us to characterize the behavior of 
the database.  

[617 – 
627] 

Case 2: _db_findfree  found an empty record with the correct sizes and removed it from the free list 
(we'll see the implementation of _db_findfree  shortly). We write the data and index portions of the 
new record and add the record to the front of the hash chain as we did in case 1. The cnt_stor2  field 
counts how many times we've executed this case. 

 
628    } else {                        /* record fo und */ 
629        if (flag == DB_INSERT) { 
630            rc = 1;     /* error, record already  in db */ 
631            db->cnt_storerr++; 
632            goto doreturn; 
633        } 
 
634        /* 
635         * We are replacing an existing record. We know the new 
636         * key equals the existing key, but we n eed to check if 
637         * the data records are the same size. 
638         */ 
639        if (datlen != db->datlen) { 
640            _db_dodelete(db);   /* delete the ex isting record */ 
 
641            /* 
642             * Reread the chain ptr in the hash table 
643             * (it may change with the deletion) . 
644             */ 
645            ptrval = _db_readptr(db, db->chainof f); 
 
646            /* 
647             * Append new index and data records  to end of files. 
648             */ 
649            _db_writedat(db, data, 0, SEEK_END);  
650            _db_writeidx(db, key, 0, SEEK_END, p trval); 
 
651            /* 
652             * New record goes to the front of t he hash chain. 
653             */ 
654            _db_writeptr(db, db->chainoff, db->i dxoff); 
655            db->cnt_stor3++; 
656        } else { 
 
 
      

 



[628 – 
633] 

Now we reach the two cases in which a record with the same key already exists in the database. If the 
caller isn't replacing the record, we set the return code to indicate that a record exists, increment the 
count of the number of store errors, and jump to the end of the function, where we handle the common 
return logic. 

[634 – 
656] 

Case 3: an existing record is being replaced, and the length of the new data record differs from the 
length of the existing one. We call _db_dodelete  to delete the existing record. Recall that this places 
the deleted record at the head of the free list. Then we append the new record to the ends of the data and 
index files by calling _db_writedat  and _db_writeidx . (There are other ways to handle this case. We 
could try to find a deleted record that has the correct data size.) The new record is added to the front of 
the hash chain by calling _db_writeptr . The cnt_stor3  counter in the DB structure records the number 
of times we've executed this case. 

 
657            /* 
658             * Same size data, just replace data  record. 
659             */ 
660            _db_writedat(db, data, db->datoff, S EEK_SET); 
661            db->cnt_stor4++; 
662        } 
663    } 
664    rc = 0;     /* OK */ 
 
665  doreturn: /* unlock hash chain locked by _db_f ind_and_lock */ 
666    if (un_lock(db->idxfd, db->chainoff, SEEK_SE T, 1) < 0) 
667        err_dump("db_store: un_lock error"); 
668    return(rc); 
669  } 
 
670  /* 
671   * Try to find a free index record and accompa nying data record 
672   * of the correct sizes. We're only called by db_store. 
673   */ 
674  static int 
675  _db_findfree(DB *db, int keylen, int datlen) 
676  { 
677    int     rc; 
678    off_t   offset, nextoffset, saveoffset; 
 
679    /* 
680     * Lock the free list. 
681     */ 
682    if (writew_lock(db->idxfd, FREE_OFF, SEEK_SE T, 1) < 0) 
683        err_dump("_db_findfree: writew_lock erro r"); 
 
684    /* 
685     * Read the free list pointer. 
686     */ 
687    saveoffset = FREE_OFF; 
688    offset = _db_readptr(db, saveoffset); 
 
 
      

 

[657 – 
663] 

Case 4: An existing record is being replaced, and the length of the new data record equals the length of 
the existing data record. This is the easiest case; we simply rewrite the data record and increment the 
counter (cnt_stor4 ) for this case. 

[664 – In the normal case, we set the return code to indicate success and fall through to the common return 



[657 – 
663] 

Case 4: An existing record is being replaced, and the length of the new data record equals the length of 
the existing data record. This is the easiest case; we simply rewrite the data record and increment the 
counter (cnt_stor4 ) for this case. 

669] logic. We unlock the hash chain that was locked as a result of calling _db_find_and_lock  and return 
to the caller. 

[670 – 
688] 

The _db_findfree  function tries to find a free index record and associated data record of the specified 
sizes. We need to write-lock the free list to avoid interfering with any other processes using the free list. 
After locking the free list, we get the pointer address at the head of the list. 

 
689    while (offset != 0) { 
690        nextoffset = _db_readidx(db, offset); 
691        if (strlen(db->idxbuf) == keylen && db-> datlen == datlen) 
692            break;      /* found a match */ 
693        saveoffset = offset; 
694        offset = nextoffset; 
695    } 
 
696    if (offset == 0) { 
697        rc = -1;    /* no match found */ 
698    } else { 
699        /* 
700         * Found a free record with matching siz es. 
701         * The index record was read in by _db_r eadidx above, 
702         * which sets db->ptrval. Also, saveoffs et points to 
703         * the chain ptr that pointed to this em pty record on 
704         * the free list. We set this chain ptr to db->ptrval, 
705         * which removes the empty record from t he free list. 
706         */ 
707        _db_writeptr(db, saveoffset, db->ptrval) ; 
708        rc = 0; 
 
709        /* 
710         * Notice also that _db_readidx set both  db->idxoff 
711         * and db->datoff. This is used by the c aller, db_store, 
712         * to write the new index record and dat a record. 
713         */ 
714    } 
 
715    /* 
716     * Unlock the free list. 
717     */ 
718    if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1 ) < 0) 
719        err_dump("_db_findfree: un_lock error");  
720    return(rc); 
721  } 
 
 
      

 

[689 – 
695] 

The while  loop in _db_findfree  goes through the free list, looking for a record with matching key and 
data sizes. In this simple implementation, we reuse a deleted record only if the key length and data 
length equal the lengths for the new record being inserted. There are a variety of better ways to reuse 
this deleted space, in exchange for added complexity. 

[696 – 
714] 

If we can't find an available record of the requested key and data sizes, we set the return code to 
indicate failure. Otherwise, we write the previous record's chain pointer to point to the next chain 
pointer value of the record we have found. This removes the record from the free list. 



[689 – 
695] 

The while  loop in _db_findfree  goes through the free list, looking for a record with matching key and 
data sizes. In this simple implementation, we reuse a deleted record only if the key length and data 
length equal the lengths for the new record being inserted. There are a variety of better ways to reuse 
this deleted space, in exchange for added complexity. 

[715 – 
721] 

Once we are done with the free list, we release the write lock. Then we return the status to the caller. 

 
722  /* 
723   * Rewind the index file for db_nextrec. 
724   * Automatically called by db_open. 
725   * Must be called before first db_nextrec. 
726   */ 
727  void 
728  db_rewind(DBHANDLE h) 
729  { 
730    DB      *db = h; 
731    off_t   offset; 
 
732    offset = (db->nhash + 1) * PTR_SZ;  /* +1 fo r free list ptr */ 
 
733    /* 
734     * We're just setting the file offset for th is process 
735     * to the start of the index records; no nee d to lock. 
736     * +1 below for newline at end of hash table . 
737     */ 
738    if ((db->idxoff = lseek(db->idxfd, offset+1,  SEEK_SET)) == -1) 
739        err_dump("db_rewind: lseek error"); 
740  } 
 
741  /* 
742   * Return the next sequential record. 
743   * We just step our way through the index file , ignoring deleted 
744   * records. db_rewind must be called before th is function is 
745   * called the first time. 
746   */ 
747  char * 
748  db_nextrec(DBHANDLE h, char *key) 
749  { 
750    DB      *db = h; 
751    char    c; 
752    char    *ptr; 
 
 
      

 

[722 – 
740] 

The db_rewind  function is used to reset the database to "the beginning;" we set the file offset for the 
index file to point to the first record in the index file (immediately following the hash table). (Recall the 
structure of the index file from Figure 20.2.) 

[741 – 
752] 

The db_nextrec  function returns the next record in the database. The return value is a pointer to the 
data buffer. If the caller provides a non-null value for the key  parameter, the corresponding key is 
copied to this address. The caller is responsible for allocating a buffer big enough to store the key. A 
buffer whose size is IDXLEN_MAX bytes is large enough to hold any key. 

  Records are returned sequentially, in the order that they happen to be stored in the database file. Thus, 
the records are not sorted by key value. Also, because we do not follow the hash chains, we can come 
across records that have been deleted, but we will not return these to the caller. 



 
753    /* 
754     * We read lock the free list so that we don 't read 
755     * a record in the middle of its being delet ed. 
756     */ 
757    if (readw_lock(db->idxfd, FREE_OFF, SEEK_SET , 1) < 0) 
758        err_dump("db_nextrec: readw_lock error") ; 
 
759    do { 
760        /* 
761         * Read next sequential index record. 
762         */ 
763        if (_db_readidx(db, 0) < 0) { 
764            ptr = NULL;     /* end of index file , EOF */ 
765            goto doreturn; 
766        } 
 
767        /* 
768         * Check if key is all blank (empty reco rd). 
769         */ 
770        ptr = db->idxbuf; 
771        while ((c = *ptr++) != 0 && c == SPACE) 
772            ;   /* skip until null byte or nonbl ank */ 
773    } while (c == 0);   /* loop until a nonblank  key is found */ 
 
774    if (key != NULL) 
775        strcpy(key, db->idxbuf);    /* return ke y */ 
776    ptr = _db_readdat(db);  /* return pointer to  data buffer */ 
777    db->cnt_nextrec++; 
 
778  doreturn: 
779    if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1 ) < 0) 
780        err_dump("db_nextrec: un_lock error"); 
781    return(ptr); 
782  } 
 
 
      

 

[753 – 
758] 

We first need to read-lock the free list so that no other processes can remove a record while we are 
reading it. 

[759 – 
773] 

We call _db_readidx  to read the next record. We pass in an offset of 0 to tell _db_readidx  to continue 
reading from the current offset. Since we are reading the index file sequentially, we can come across 
records that have been deleted. We want to return only valid records, so we skip any record whose key 
is all spaces (recall that _db_dodelete  clears a key by setting it to all spaces). 

[774 – 
782] 

When we find a valid key, we copy it to the caller's buffer if one was supplied. Then we read the data 
record and set the return value to point to the internal buffer containing the data record. We increment a 
statistics counter, unlock the free list, and return the pointer to the data record. 

 

The normal use of db_rewind  and db_nextrec  is in a loop of the form 

db_rewind(db); 
while ((ptr = db_nextrec(db, key)) != NULL) { 
    /* process record */ 
} 

 



As we warned earlier, there is no order to the returned records; they are not in key order. 

If the database is being modified while db_nextrec  is called from a loop, the records returned by db_nextrec  
are simply a snapshot of a changing database at some point in time. db_nextrec  always returns a "correct" 
record when it is called; that is, it won't return a record that was deleted. But it is possible for a record returned 
by db_nextrec  to be deleted immediately after db_nextrec  returns. Similarly, if a deleted record is reused 
right after db_nextrec  skips over the deleted record, we won't see that new record unless we rewind the 
database and go through it again. If it's important to obtain an accurate "frozen" snapshot of the database using 
db_nextrec , there must be no insertions or deletions going on at the same time. 

Look at the locking used by db_nextrec . We're not going through any hash chain, and we can't determine the 
hash chain that a record belongs on. Therefore, it is possible for an index record to be in the process of being 
deleted when db_nextrec  is reading the record. To prevent this, db_nextrec  read-locks the free list, thereby 
avoiding any interaction with _db_dodelete  and _db_findfree . 

Before we conclude our study of the db.c  source file, we need to describe the locking when new index records 
or data records are appended to the end of the file. In cases 1 and 3, db_store  calls both _db_writeidx  and 
_db_writedat  with a third argument of 0 and a fourth argument of SEEK_END. This fourth argument is the flag 
to these two functions, indicating that the new record is being appended to the file. The technique used by 
_db_writeidx  is to write-lock the index file from the end of the hash chain to the end of file. This won't 
interfere with any other readers or writers of the database (since they will lock a hash chain), but it does prevent 
other callers of db_store  from trying to append at the same time. The technique used by _db_writedat  is to 
write-lock the entire data file. Again, this won't interfere with other readers or writers of the database (since they 
don't even try to lock the data file), but it does prevent other callers of db_store  from trying to append to the 
data file at the same time. (See Exercise 20.3.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20.9. Performance 

To test the database library and to obtain some timing measurements of the database access patterns of typical 
applications, a test program was written. This program takes two command-line arguments: the number of 
children to create and the number of database records (nrec) for each child to write to the database. The program 
then creates an empty database (by calling db_open ), fork s the number of child processes, and waits for all the 
children to terminate. Each child performs the following steps. 

1. Write nrec records to the database. 
2. Read the nrec records back by key value. 
3. Perform the following loop nrec x 5 times. 

a. Read a random record. 
b. Every 37 times through the loop, delete a random record. 
c. Every 11 times through the loop, insert a new record and read the record back. 
d. Every 17 times through the loop, replace a random record with a new record. Every other one of 

these replacements is a record with the same size data, and the alternate is a record with a longer 
data portion. 

4. Delete all the records that this child wrote. Every time a record is deleted, ten random records are looked 
up. 

The number of operations performed on the database is counted by the cnt_xxx  variables in the DB structure, 
which were incremented in the functions. The number of operations differs from one child to the next, since the 
random-number generator used to select records is initialized in each child to the child's process ID. A typical 
count of the operations performed in each child, when nrec is 500, is shown in Figure 20.6. 

Figure 20.6. Typical count of operations performed by each child when nrec is 500 

Operation Count 

db_store , DB_INSERT, no empty record, appended 678 

db_store , DB_INSERT, empty record reused 164 

db_store , DB_REPLACE, different data length, appended 97 

db_store , DB_REPLACE, equal data length 109 

db_store , record not found 19 

db_fetch , record found 8,114 

db_fetch , record not found 732 

db_delete , record found 842 

db_delete , record not found 110 

 

We performed about ten times more fetches than stores or deletions, which is probably typical of many database 
applications. 

Each child is doing these operations (fetching, storing, and deleting) only with the records that the child wrote. 
The concurrency controls are being exercised because all the children are operating on the same database (albeit 



different records in the same database). The total number of records in the database increases in proportion to 
the number of children. (With one child, nrec records are originally written to the database. With two children, 
nrec x 2 records are originally written, and so on.) 

To test the concurrency provided by coarse-grained locking versus fine-grained locking and to compare the 
three types of locking (no locking, advisory locking, and mandatory locking), we ran three versions of the test 
program. The first version used the source code shown in Section 20.8, which we've called fine-grained locking. 
The second version changed the locking calls to implement coarse-grained locking, as described in Section 20.6. 
The third version had all locking calls removed, so we could measure the overhead involved in locking. We can 
run the first and second versions (fine-grained locking and coarse-grained locking) using either advisory or 
mandatory locking, by changing the permission bits on the database files. (In all the tests reported in this section, 
we measured the times for mandatory locking using only the implementation of fine-grained locking.) 

All the timing tests in this section were done on a SPARC system running Solaris 9. 

Single-Process Results 

Figure 20.7 shows the results when only a single child process ran, with an nrec of 500, 1,000, and 2,000. 

Figure 20.7. Single child, varying nrec, different locking techniques 

Advisory locking Mandatory locking No locking 

Coarse-grained locking Fine-grained locking Fine-grained locking 

nrec User Sys Clock User Sys Clock User Sys Clock User Sys Clock 

500 0.42 0.89 1.31 0.42 1.17 1.59 0.41 1.04 1.45 0.46 1.49 1.95 

1,000 1.51 3.89 5.41 1.64 4.13 5.78 1.63 4.12 5.76 1.73 6.34 8.07 

2,000 3.91 10.06 13.98 4.09 10.30 14.39 4.03 10.63 14.66 4.47 16.21 20.70 

 

The last 12 columns give the corresponding times in seconds. In all cases, the user CPU time plus the system 
CPU time approximately equals the clock time. This set of tests was CPU-limited and not disk-limited. 

The six columns under "Advisory locking" are almost equal for each row. This makes sense because for a single 
process, there is no difference between coarse-grained locking and fine-grained locking. 

Comparing no locking versus advisory locking, we see that adding the locking calls adds between 2 percent and 
31 percent to the system CPU time. Even though the locks are never used (since only a single process is 
running), the system call overhead in the calls to fcntl  adds time. Also note that the user CPU time is about the 
same for all four versions of locking. Since the user code is almost equivalent (except for the number of calls to 
fcntl ), this makes sense. 

The final point to note from Figure 20.7 is that mandatory locking adds between 43 percent and 54 percent to 
the system CPU time, compared to advisory locking. Since the number of locking calls is the same for advisory 
fine-grained locking and mandatory fine-grained locking, the additional system call overhead must be in the 
reads and writes. 



The final test was to try the no-locking program with multiple children. The results, as expected, were random 
errors. Normally, records that were added to the database couldn't be found, and the test program aborted. 
Different errors occurred every time the test program was run. This illustrates a classic race condition: multiple 
processes updating the same file without using any form of locking. 

Multiple-Process Results 

The next set of measurements looks mainly at the differences between coarse-grained locking and fine-grained 
locking. As we said earlier, intuitively, we expect fine-grained locking to provide additional concurrency, since 
there is less time that portions of the database are locked from other processes. Figure 20.8 shows the results for 
an nrec of 500, varying the number of children from 1 to 12. 

Figure 20.8. Comparison of various locking techniques, nrec = 500 

Advisory locking Mandatory locking 

Coarse-grained locking Fine-grained locking ∆ Fine-grained locking ∆ 

#Proc User Sys Clock User Sys Clock Clock User Sys Clock Percent 

1 0.41 1.00 1.42 0.41 1.05 1.47 0.05 0.47 1.40 1.87 33 

2 1.10 2.81 3.92 1.11 2.80 3.92 0.00 1.15 4.06 5.22 45 

3 2.17 5.27 7.44 2.19 5.18 7.37 –0.07 2.31 7.67 9.99 48 

4 3.36 8.55 11.91 3.26 8.67 11.94 0.03 3.51 12.69 16.20 46 

5 4.72 13.08 17.80 4.99 12.64 17.64 –0.16 4.91 19.21 24.14 52 

6 6.45 17.96 24.42 6.83 17.29 24.14 –0.28 7.03 26.59 33.66 54 

7 8.46 23.12 31.62 8.67 22.96 31.65 0.03 9.25 35.47 44.74 54 

8 10.83 29.68 40.55 11.00 29.39 40.41 –0.14 11.67 45.90 57.63 56 

9 13.35 36.81 50.23 13.43 36.28 49.76 –0.47 14.45 58.02 72.49 60 

10 16.35 45.28 61.66 16.09 44.10 60.23 –1.43 17.43 70.90 88.37 61 

11 18.97 54.24 73.24 19.13 51.70 70.87 –2.37 20.62 84.98 105.69 64 

12 22.92 63.54 86.51 22.94 61.28 84.29 –2.22 24.41 101.68 126.20 66 

 

All times are in seconds and are the total for the parent and all its children. There are many items to consider 
from this data. 

The eighth column, labeled "∆ clock," is the difference in seconds between the clock times from advisory 
coarse-grained locking to advisory fine-grained locking. This is the measurement of how much concurrency we 
obtain by going from coarse-grained locking to fine-grained locking. On the system used for these tests, coarse-
grained locking is roughly the same until we have more than seven processes. Even after seven processes, the 
decrease in clock time using fine-grained locking isn't that great (less than 3 percent), which makes us wonder 
whether the additional code required to implement fine-grained locking is worth the effort. 



We would like the clock time to decrease from coarse-grained to fine-grained locking, as it eventually does, but 
we expect the system time to remain higher for fine-grained locking, for any number of processes. The reason 
we expect this is that with fine-grained locking, we are issuing more fcntl  calls than with coarse-grained 
locking. If we total the number of fcntl  calls in Figure 20.6 for coarse-grained locking and fine-grained 
locking, we have an average of 21,730 for coarse-grained locking and 25,292 for fine-grained locking. (To get 
these numbers, realize that each operation in Figure 20.6 requires two calls to fcntl  for coarse-grained locking 
and that the first three calls to db_store  along with record deletion [record found] each require four calls to 
fcntl  for fine-grained locking.) We expect this increase of 16 percent in the number of calls to fcntl  to result 
in an increased system time for fine-grained locking. Therefore, the slight decrease in system time for fine-
grained locking, when the number of processes exceeds seven, is puzzling. 

The reason for the decrease is that with coarse-grained locking, we hold locks for longer periods of time, thus 
increasing the likelihood that other processes will block on a lock. With fine-grained locking, the locking is 
done over shorter intervals, so there is less chance that processes will block. If we analyze the system behavior 
running 12 database processes, we will see that there is three times as much process switching with coarse-
grained locking as with fine-grained locking. This means that processes block on locks less often with fine-
grained locking. 

The final column, labeled "∆ percent," is the percentage increase in the system CPU time from advisory fine-
grained locking to mandatory fine-grained locking. These percentages verify what we saw in Figure 20.7, that 
mandatory locking adds significantly (between 33 percent and 66 percent) to the system time. 

Since the user code for all these tests is almost identical (there are some additional fcntl  calls for both advisory 
fine-grained and mandatory fine-grained locking), we expect the user CPU times to be the same across any row. 

The values in the first row of Figure 20.8 are similar to those for an nrec of 500 in Figure 20.7. This 
corresponds to our expectation. 

Figure 20.9 is a graph of the data from Figure 20.8 for advisory fine-grained locking. We plot the clock time as 
the number of processes goes from 1 to 12. We also plot the user CPU time divided by the number of processes 
and the system CPU time divided by the number of processes. 

Figure 20.9. Values from Figure 20.8 for advisory fine-grained locking 

 



 

Note that both CPU times, divided by the number of processes, are linear but that the plot of the clock time is 
nonlinear. The probable reason is the added amount of CPU time used by the operating system to switch 
between processes as the number of processes increases. This operating system overhead would show up as an 
increased clock time, but shouldn't affect the CPU times of the individual processes. 

The reason the user CPU time increases with the number of processes is that there are more records in the 
database. Each hash chain is getting longer, so it takes the _db_find_and_lock  function longer, on the average, 
to find a record. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



This chapter has taken a long look at the design and implementation of a database library. Although we've kept 
the library small and simple for presentation purposes, it contains the record locking required to allow 
concurrent access by multiple processes. 

We've also looked at the performance of this library with various numbers of processes using no locking, 
advisory locking (fine-grained and coarse-grained), and mandatory locking. We saw that advisory locking adds 
less than 10 percent to the clock time over no locking and that mandatory locking adds another 33 percent to 66 
percent over advisory locking. 
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21.1. Introduction 

We now develop a program that can communicate with a network printer. These printers are connected to 
multiple computers via Ethernet and often support PostScript files as well as plaintext files. Applications 
generally use the Internet Printing Protocol (IPP) to communicate with these printers, although some support 
alternate communication protocols. 

We are about to describe two programs: a print spooler daemon that sends jobs to a printer and a command to 
submit print jobs to the spooler daemon. Since the print spooler has to do multiple things (communicate with 
clients submitting jobs, communicate with the printer, read files, scan directories, etc.), this gives us a chance to 
use many of the functions from earlier chapters. For example, we use threads (Chapters 11 and 12) to simplify 
the design of the print spooler and sockets (Chapter 16) to communicate between the program used to schedule 
a file to be printed and the print spooler, and also between the print spooler and the network printer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21.2. The Internet Printing Protocol 

IPP specifies the communication rules for building network-based printing systems. By embedding an IPP 
server inside a printer with an Ethernet card, the printer can service requests from many computer systems. 
These computer systems need not be located on the same physical network, however. IPP is built on top of 
standard Internet protocols, so any computer that can create a TCP/IP connection to the printer can submit a 
print job. 

Specifically, IPP is built on top of HTTP, the Hypertext Transfer Protocol (Section 21.3). HTTP, in turn, is built 
on top of TCP/IP. The structure of an IPP message is shown in Figure 21.1. 

Figure 21.1. Structure of an IPP message 

 
 

IPP is a request–response protocol. A client sends a request message to a server, and the server answers with a 
response message. The IPP header contains a field that indicates the requested operation. Operations are defined 
to submit print jobs, cancel print jobs, get job attributes, get printer attributes, pause and restart the printer, place 
a job on hold, and release a held job. 

Figure 21.2 shows the structure of an IPP message header. The first 2 bytes are the IPP version number. For 
protocol version 1.1, each byte has a value of 1. For a protocol request, the next 2 bytes contain a value 
identifying the requested operation. For a protocol response, these 2 bytes contain a status code instead. 

Figure 21.2. Structure of an IPP header 

 

 

The next 4 bytes contain an integer identifying the request. Optional attributes follow this, terminated by an 
end-of-attributes tag. Any data that might be associated with the request follows immediately after the end-of-
attributes tag. 

In the header, integers are stored as signed, two's-complement, binary values in big-endian byte order (i.e., 
network byte order). Attributes are stored in groups. Each group starts with a single byte identifying the group. 
Within each group, an attribute is generally represented as a 1-byte tag, followed by a 2-byte name length, 



followed by the name of the attribute, followed by a 2-byte value length, and finally the value itself. The value 
can be encoded as a string, a binary integer, or a more complex structure, such as a date/timestamp. 

Figure 21.3 shows how the attributes-charset  attribute would be encoded with a value of utf-8 . 

Figure 21.3. Sample IPP attribute encoding 

 

 

Depending on the operation requested, some attributes are required to be provided in the request message, 
whereas others are optional. For example, Figure 21.4 shows the attributes defined for a print-job request. 

Figure 21.4. Attributes of print-job request 

Attribute Status Description 

attributes-charset  required The character set used by attributes of type text  or name  

attributes-natural-
language  

required The natural language used by attributes of type text  or name  

printer-uri  required The printer's Universal Resource Identifier 

requesting-user-name  optional Name of user submitting job (used for authentication, if enabled) 

job-name  optional Name of job used to distinguish between multiple jobs 

ipp-attribute-
fidelity  

optional If true, tells printer to reject job if all attributes can't be met; otherwise, 
printer does its best to print the job 

document-name  optional The name of the document (suitable for printing in a banner, for 
example) 

document-format  optional The format of the document (plaintext, PostScript, etc.) 

document-natural-
language  

optional The natural language of the document 

compression  optional The algorithm used to compress the document data 



Figure 21.4. Attributes of print-job request 

Attribute Status Description 

job-k-octets  optional Size of the document in 1,024-octet units 

job-impressions  optional Number of impressions (images imposed on a page) submitted in this job 

job-media-sheets  optional Number of sheets printed by this job 

 

The IPP header contains a mixture of text and binary data. Attribute names are stored as text, but sizes are 
stored as binary integers. This complicates the process of building and parsing the header, since we need to 
worry about such things as network byte order and whether our host processor can address an integer on an 
arbitrary byte boundary. A better alternative would have been to design the header to contain text only. This 
simplifies processing at the cost of slightly larger protocol messages. 

IPP is specified in a series of documents (Requests For Comments, or RFCs) available at 
http://www.pwg.org/ipp . The main documents are listed in Figure 21.5, although many other documents are 
available to further specify administrative procedures, job attributes, and the like. 

Figure 21.5. Primary IPP RFCs 

RFC Title 

2567 Design Goals for an Internet Printing Protocol 

2568 Rationale for the Structure of the Model and Protocol for the Internet Printing Protocol 

2911 Internet Printing Protocol/1.1: Model and Semantics 

2910 Internet Printing Protocol/1.1: Encoding and Transport 

3196 Internet Printing Protocol/1.1: Implementor's Guide 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21.3. The Hypertext Transfer Protocol 

Version 1.1 of HTTP is specified in RFC 2616. HTTP is also a request–response protocol. A request message 
contains a start line, followed by header lines, a blank line, and an optional entity body. The entity body 
contains the IPP header and data in this case. 

HTTP headers are ASCII, with each line terminated by a carriage return (\r ) and a line feed (\n ). The start line 
consists of a method that indicates what operation the client is requesting, a Uniform Resource Locator (URL) 
that describes the server and protocol, and a string indicating the HTTP version. The only method used by IPP 
is POST, which is used to send data to a server. 

The header lines specify attributes, such as the format and length of the entity body. A header line consists of an 
attribute name followed by a colon, optional white space, and the attribute value, and is terminated by a carriage 
return and a line feed. For example, to specify that the entity body contains an IPP message, we include the 
header line 

    Content-Type: application/ipp 

 

The start line in an HTTP response message contains a version string followed by a numeric status code and a 
status message, terminated by a carriage return and a line feed. The remainder of the HTTP response message 
has the same format as the request message: headers followed by a blank line and an optional entity body. 

The following is a sample HTTP header for a print request for the author's printer: 

    POST /phaser860/ipp HTTP/1.1^M 
    Content-Length: 21931^M 
    Content-Type: application/ipp^M 
    Host: phaser860:ipp^M 
    ^M 

 

The ̂ M at the end of the each line is the carriage return that precedes the line feed. The line feed doesn't show up 
as a printable character. Note that the last line of the header is empty, except for the carriage return and line feed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21.4. Printer Spooling 

The programs that we develop in this chapter form the basis of a simple printer spooler. A simple user 
command sends a file to the printer spooler; the spooler saves it to disk, queues the request, and ultimately 
sends the file to the printer. 

All UNIX Systems provide at least one print spooling system. FreeBSD ships LPD, the BSD print spooling 
system (see lpd (8) and Chapter 13 of Stevens [1990]). Linux and Mac OS X include CUPS, the Common 
UNIX Printing System (see cupsd (8)). Solaris ships with the standard System V printer spooler (see lp (1) and 
lpsched (1M)). In this chapter, our interest is not in these spooling systems per se, but in communicating with a 
network printer. We need to develop a spooling system to solve the problem of multiuser access to a single 
resource (the printer). 

We use a simple command that reads a file and sends it to the printer spooler daemon. The command has one 
option to force the file to be treated as plaintext (the default assumes that the file is PostScript). We call this 
command print . 

In our printer spooler daemon, printd , we use multiple threads to divide up the work that the daemon needs to 
accomplish. 

• One thread listens on a socket for new print requests arriving from clients running the print  command. 
• A separate thread is spawned for each client to copy the file to be printed to a spooling area. 
• One thread communicates with the printer, sending it queued jobs one at a time. 
• One thread handles signals. 

Figure 21.6 shows how these components fit together. 

Figure 21.6. Printer spooling components 

 
 

The print configuration file is /etc/printer.conf . It identifies the host name of the server running the printer 
spooling daemon and the host name of the network printer. The spooling daemon is identified by a line starting 
with the printserver  keyword, followed by white space and the host name of the server. The printer is 
identified by a line starting with the printer  keyword, followed by white space and the host name of the printer. 

A sample printer configuration file might contain the following lines: 

         printserver  blade 
         printer      phaser860 

 



where blade  is the host name of the computer system running the printer spooling daemon, and phaser860  is 
the host name of the network printer. 

Security 

Programs that run with superuser privileges have the potential to open a computer system up to attack. Such 
programs usually aren't more vulnerable than any other program, but when compromised can lead to attackers 
obtaining full access to your system. 

The printer spooling daemon in this chapter starts out with superuser privileges in this example to be able to 
bind a socket to a privileged TCP port number. To make the daemon less vulnerable to attack, we can 

• Design the daemon to conform to the principles of least privilege (Section 8.11). After we obtain a 
socket bound to a privileged port address, we can change the user and group IDs of the daemon to 
something other that root  (lp , for example). All the files and directories used to store queued print jobs 
should be owned by this nonprivileged user. This way, the daemon, if compromised, will provide the 
attacker with access only to the printing subsystem. This is still a concern, but it is far less serious than 
an attacker getting full access to your system. 

• Audit the daemon's source code for all known potential vulnerabilities, such as buffer overruns. 
• Log unexpected or suspicious behavior so that an administrator can take note and investigate further. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



21.5. Source Code 

The source code for this chapter comprises five files, not including some of the common library routines we've 
used in earlier chapters: 

ipp.h  Header file containing IPP definitions 

print.h  Header containing common constants, data structure definitions, and utility routine declarations 

util.c  Utility routines used by the two programs 

print.c  The C source file for the command used to print a file 

printd.c  The C source file for the printer spooling daemon 

 

We will study each file in the order listed. 

We start with the ipp.h  header file. 

  1   #ifndef _IPP_H 
  2   #define _IPP_H 
 
  3   /* 
  4    * Defines parts of the IPP protocol between the scheduler 
  5    * and the printer. Based on RFC2911 and RFC2 910. 
  6    */ 
  7   /* 
  8    * Status code classes. 
  9    */ 
 10   #define STATCLASS_OK(x)    ((x)  >= 0x0000 &&  (x) <= 0x00ff) 
 11   #define STATCLASS_INFO(x)  ((x)  >= 0x0100 &&  (x) <= 0x01ff) 
 12   #define STATCLASS_REDIR(x) ((x)  >= 0x0200 &&  (x) <= 0x02ff) 
 13   #define STATCLASS_CLIERR(x)((x)  >= 0x0400 &&  (x) <= 0x04ff) 
 14   #define STATCLASS_SRVERR(x)((x)  >= 0x0500 &&  (x) <= 0x05ff) 
 
 15   /* 
 16    * Status codes. 
 17    */ 
 18   #define STAT_OK            0x0000  /* success  */ 
 19   #define STAT_OK_ATTRIGN    0x0001  /* OK; som e attrs ignored */ 
 20   #define STAT_OK_ATTRCON    0x0002  /* OK; som e attrs conflicted */ 
 
 21   #define STAT_CLI_BADREQ    0x0400  /* invalid  client request */ 
 22   #define STAT_CLI_FORBID    0x0401  /* request  is forbidden */ 
 23   #define STAT_CLI_NOAUTH    0x0402  /* authent ication required */ 
 24   #define STAT_CLI_NOPERM    0x0403  /* client not authorized */ 
 25   #define STAT_CLI_NOTPOS    0x0404  /* request  not possible */ 
 26   #define STAT_CLI_TIMOUT    0x0405  /* client too slow */ 
 27   #define STAT_CLI_NOTFND    0x0406  /* no obje ct found for URI */ 
 28   #define STAT_CLI_OBJGONE   0x0407  /* object no longer available */ 
 29   #define STAT_CLI_TOOBIG    0x0408  /* request ed entity too big */ 
 30   #define STAT_CLI_TOOLNG    0x0409  /* attribu te value too large */ 
 31   #define STAT_CLI_BADFMT    0x040a  /* unsuppo rted doc format */ 
 32   #define STAT_CLI_NOTSUP    0x040b  /* attribu tes not supported */ 
 33   #define STAT_CLI_NOSCHM    0x040c  /* URI sch eme not supported */ 
 34   #define STAT_CLI_NOCHAR    0x040d  /* charset  not supported */ 
 35   #define STAT_CLI_ATTRCON   0x040e  /* attribu tes conflicted */ 
 36   #define STAT_CLI_NOCOMP    0x040f  /* compres sion not supported */ 
 37   #define STAT_CLI_COMPERR   0x0410  /* data ca n't be decompressed */ 



 38   #define STAT_CLI_FMTERR    0x0411  /* documen t format error */ 
 39   #define STAT_CLI_ACCERR    0x0412  /* error a ccessing data */ 
 
 
      

 

[1–
14] 

We start the ipp.h  header with the standard #ifdef  to prevent errors when it is included twice in the 
same file. Then we define the classes of IPP status codes (see Section 13 in RFC 2911). 

[15–
39] 

We define specific status codes based on RFC 2911. We don't use these codes in the program shown 
here; their use is left as an exercise (See Exercise 21.1). 

 
 40  #define STAT_SRV_INTERN    0x0500  /* unexpect ed internal error */ 
 41  #define STAT_SRV_NOTSUP    0x0501  /* operatio n not supported */ 
 42  #define STAT_SRV_UNAVAIL   0x0502  /* service unavailable */ 
 43  #define STAT_SRV_BADVER    0x0503  /* version not supported */ 
 44  #define STAT_SRV_DEVERR    0x0504  /* device e rror */ 
 45  #define STAT_SRV_TMPERR    0x0505  /* temporar y error */ 
 46  #define STAT_SRV_REJECT    0x0506  /* server n ot accepting jobs */ 
 47  #define STAT_SRV_TOOBUSY   0x0507  /* server t oo busy */ 
 48  #define STAT_SRV_CANCEL    0x0508  /* job has been canceled */ 
 49  #define STAT_SRV_NOMULTI   0x0509  /* multi-do c jobs unsupported */ 
 
 50  /* 
 51   * Operation IDs 
 52   */ 
 53  #define OP_PRINT_JOB           0x02 
 54  #define OP_PRINT_URI           0x03 
 55  #define OP_VALIDATE_JOB        0x04 
 56  #define OP_CREATE_JOB          0x05 
 57  #define OP_SEND_DOC            0x06 
 58  #define OP_SEND_URI            0x07 
 59  #define OP_CANCEL_JOB          0x08 
 60  #define OP_GET_JOB_ATTR        0x09 
 61  #define OP_GET_JOBS            0x0a 
 62  #define OP_GET_PRINTER_ATTR    0x0b 
 63  #define OP_HOLD_JOB            0x0c 
 64  #define OP_RELEASE_JOB         0x0d 
 65  #define OP_RESTART_JOB         0x0e 
 66  #define OP_PAUSE_PRINTER       0x10 
 67  #define OP_RESUME_PRINTER      0x11 
 68  #define OP_PURGE_JOBS          0x12 
 
 69  /* 
 70   * Attribute Tags. 
 71   */ 
 72  #define TAG_OPERATION_ATTR     0x01  /* operat ion attributes tag */ 
 73  #define TAG_JOB_ATTR           0x02  /* job at tributes tag */ 
 74  #define TAG_END_OF_ATTR        0x03  /* end of  attributes tag */ 
 75  #define TAG_PRINTER_ATTR       0x04  /* printe r attributes tag */ 
 76  #define TAG_UNSUPP_ATTR        0x05  /* unsupp orted attributes tag */ 
 
 
      

 

[40–
49] 

We continue to define status codes. The ones in the range 0x500  to 0x5ff  are server error codes. All 
codes are described in Sections 13.1.1 through 13.1.5 in RFC 2911. 

[50–
68] 

We define the various operation IDs next. There is one ID for each task defined by IPP (see Section 
4.4.15 in RFC 2911). In our example, we will use only the print-job operation. 



[40–
49] 

We continue to define status codes. The ones in the range 0x500  to 0x5ff  are server error codes. All 
codes are described in Sections 13.1.1 through 13.1.5 in RFC 2911. 

[69–
76] 

The attribute tags delimit the attribute groups in the IPP request and response messages. The tag values 
are defined in Section 3.5.1 of RFC 2910. 

 
 77  /* 
 78   * Value Tags. 
 79   */ 
 80  #define TAG_UNSUPPORTED        0x10  /* unsupp orted value */ 
 81  #define TAG_UNKNOWN            0x12  /* unknow n value */ 
 82  #define TAG_NONE               0x13  /* no val ue */ 
 83  #define TAG_INTEGER            0x21  /* intege r */ 
 84  #define TAG_BOOLEAN            0x22  /* boolea n */ 
 85  #define TAG_ENUM               0x23  /* enumer ation */ 
 86  #define TAG_OCTSTR             0x30  /* octetS tring */ 
 87  #define TAG_DATETIME           0x31  /* dateTi me */ 
 88  #define TAG_RESOLUTION         0x32  /* resolu tion */ 
 89  #define TAG_INTRANGE           0x33  /* rangeO fInteger */ 
 90  #define TAG_TEXTWLANG          0x35  /* textWi thLanguage */ 
 91  #define TAG_NAMEWLANG          0x36  /* nameWi thLanguage */ 
 92  #define TAG_TEXTWOLANG         0x41  /* textWi thoutLanguage */ 
 93  #define TAG_NAMEWOLANG         0x42  /* nameWi thoutLanguage */ 
 94  #define TAG_KEYWORD            0x44  /* keywor d */ 
 95  #define TAG_URI                0x45  /* URI */  
 96  #define TAG_URISCHEME          0x46  /* uriSch eme */ 
 97  #define TAG_CHARSET            0x47  /* charse t */ 
 98  #define TAG_NATULANG           0x48  /* natura lLanguage */ 
 99  #define TAG_MIMETYPE           0x49  /* mimeMe diaType */ 
 
100  struct ipp_hdr { 
101    int8_t  major_version;  /* always 1 */ 
102    int8_t  minor_version;  /* always 1 */ 
103    union { 
104        int16_t op; /* operation ID */ 
105        int16_t st; /* status */ 
106    } u; 
107    int32_t request_id;     /* request ID */ 
108    char    attr_group[1];  /* start of optional  attributes group */ 
109    /* optional data follows */ 
110  }; 
 
111  #define operation u.op 
112  #define status u.st 
 
113  #endif /* _IPP_H */ 
 
 
      

 

[77–99] The value tags indicate the format of individual attributes and parameters. They are defined in Section 
3.5.2 of RFC 2910. 

[100–
113] 

We define the structure of an IPP header. Request messages start with the same header as response 
messages, except that the operation ID in the request is replaced by a status code in the response. 

  We end the header file with a #endif  to match the #ifdef  at the start of the file. 

 

The next file is the print.h  header. 



 1   #ifndef _PRINT_H 
 2   #define _PRINT_H 
 3   /* 
 4    * Print server header file. 
 5    */ 
 6   #include <sys/socket.h> 
 7   #include <arpa/inet.h> 
 8   #if defined(BSD) || defined(MACOS) 
 9   #include <netinet/in.h> 
10   #endif 
11   #include <netdb.h> 
12   #include <errno.h> 
 
13   #define CONFIG_FILE    "/etc/printer.conf" 
14   #define SPOOLDIR       "/var/spool/printer" 
15   #define JOBFILE        "jobno" 
16   #define DATADIR        "data" 
17   #define REQDIR         "reqs" 
 
18   #define FILENMSZ        64 
19   #define FILEPERM        (S_IRUSR|S_IWUSR) 
20   #define USERNM_MAX      64 
21   #define JOBNM_MAX       256 
22   #define MSGLEN_MAX      512 
 
23   #ifndef HOST_NAME_MAX 
24   #define HOST_NAME_MAX   256 
25   #endif 
 
26   #define IPP_PORT        631 
27   #define QLEN            10 
28   #define IBUFSZ          512    /* IPP header b uffer size */ 
29   #define HBUFSZ          512    /* HTTP header buffer size */ 
30   #define IOBUFSZ         8192   /* data buffer size */ 
 
 
      

 

[1–
12] 

We include all header files that an application might need if it included this header. This makes it easy 
for applications to include print.h  without having to track down all the header dependencies. 

[13–
17] 

We define the files and directories for the implementation. Copies of the files to be printed will be stored 
in the directory /var/spool/printer/data ; control information for each request will be stored in the 
directory /var/spool/printer/reqs . The file containing the next job number is 
/var/spool/printer/jobno . 

[18–
30] 

Next, we define limits and constants. FILEPERM is the permissions used when creating copies of files 
submitted to be printed. The permissions are restrictive because we don't want ordinary users to be able 
to read one another's files while they are waiting to be printed. IPP is defined to use port 631. The QLEN 
is the backlog parameter we pass to listen  (see Section 16.4 for details). 

 
31   #ifndef ETIME 
32   #define ETIME ETIMEDOUT 
33   #endif 
 
34   extern int getaddrlist(const char *, const cha r *, 
35     struct addrinfo **); 
36   extern char *get_printserver(void); 
37   extern struct addrinfo *get_printaddr(void); 
38   extern ssize_t tread(int, void *, size_t, unsi gned int); 



39   extern ssize_t treadn(int, void *, size_t, uns igned int); 
40   extern int connect_retry(int, const struct soc kaddr *, socklen_t); 
41   extern int initserver(int, struct sockaddr *, socklen_t, int); 
 
42   /* 
43    * Structure describing a print request. 
44    */ 
45   struct printreq { 
46      long size;                  /* size in byte s */ 
47      long flags;                 /* see below */  
48      char usernm[USERNM_MAX];    /* user's name */ 
49      char jobnm[JOBNM_MAX];      /* job's name * / 
50   }; 
 
51   /* 
52    * Request flags. 
53    */ 
54   #define PR_TEXT        0x01    /* treat file a s plain text */ 
 
55   /* 
56    * The response from the spooling daemon to th e print command. 
57    */ 
58   struct printresp { 
59      long retcode;               /* 0=success, ! 0=error code */ 
60      long jobid;                 /* job ID */ 
61      char msg[MSGLEN_MAX];       /* error messag e */ 
62   }; 
 
63   #endif /* _PRINT_H */ 
 
 
      

 

[31–
33] 

Some platforms don't define the error ETIME, so we define it to an alternate error code that makes sense 
for these systems. 

[34–
41] 

Next, we declare all the public routines contained in util.c  (we'll look at these next). Note that the 
connect_retry  function, from Figure 16.9, and the initserver  function, from Figure 16.20, are not 
included in util.c . 

[42–
63] 

The printreq  and printresp  structures define the protocol between the print command and the printer 
spooling daemon. The print  command sends the printreq  structure defining the user name, job name, 
and file size to the printer spooling daemon. The spooling daemon responds with a printresp  structure 
consisting of a return code, a job ID, and an error message if the request failed. 

 

The next file we will look at is util.c , the file containing utility routines. 

  1  #include "apue.h" 
  2  #include "print.h" 
  3  #include <ctype.h> 
  4  #include <sys/select.h> 
 
  5  #define MAXCFGLINE 512 
  6  #define MAXKWLEN   16 
  7  #define MAXFMTLEN  16 
 
  8  /* 
  9   * Get the address list for the given host and  service and 
 10   * return through ailistpp. Returns 0 on succe ss or an error 



 11   * code on failure. Note that we do not set er rno if we 
 12   * encounter an error. 
 13   * 
 14   * LOCKING: none. 
 15   */ 
 16  int 
 17  getaddrlist(const char *host, const char *serv ice, 
 18    struct addrinfo **ailistpp) 
 19  { 
 20     int             err; 
 21     struct addrinfo hint; 
 
 22     hint.ai_flags = AI_CANONNAME; 
 23     hint.ai_family = AF_INET; 
 24     hint.ai_socktype = SOCK_STREAM; 
 25     hint.ai_protocol = 0; 
 26     hint.ai_addrlen = 0; 
 27     hint.ai_canonname = NULL; 
 28     hint.ai_addr = NULL; 
 29     hint.ai_next = NULL; 
 30     err = getaddrinfo(host, service, &hint, ail istpp); 
 31     return(err); 
 32  } 
 
 
      

 

[1–
7] 

We first define the limits needed by the functions in this file. MAXCFGLINE is the maximum size of a line in 
the printer configuration file, MAXKWLEN is the maximum size of a keyword in the configuration file, and 
MAXFMTLEN is the maximum size of the format string we pass to sscanf . 

[8–
32] 

The first function is getaddrlist . It is a wrapper for getaddrinfo  (Section 16.3.3), since we always call 
getaddrinfo  with the same hint structure. Note that we need no mutex locking in this function. The 
LOCKING comment at the beginning of each function is intended only for documenting multithreaded 
locking. This comment lists the assumptions, if any, that are made regarding the locking, tells which locks 
the function might acquire or release, and tells which locks must be held to call the function. 

 
 33  /* 
 34   * Given a keyword, scan the configuration fil e for a match 
 35   * and return the string value corresponding t o the keyword. 
 36   * 
 37   * LOCKING: none. 
 38   */ 
 39  static char * 
 40  scan_configfile(char *keyword) 
 41  { 
 42     int             n, match; 
 43     FILE            *fp; 
 44     char            keybuf[MAXKWLEN], pattern[M AXFMTLEN]; 
 45     char            line[MAXCFGLINE]; 
 46     static char     valbuf[MAXCFGLINE]; 
 
 47     if ((fp = fopen(CONFIG_FILE, "r")) == NULL)  
 48         log_sys("can't open %s", CONFIG_FILE); 
 49     sprintf(pattern, "%%%ds %%%ds", MAXKWLEN-1,  MAXCFGLINE-1); 
 50     match = 0; 
 51     while (fgets(line, MAXCFGLINE, fp) != NULL)  { 
 52         n = sscanf(line, pattern, keybuf, valbu f); 
 53         if (n == 2 && strcmp(keyword, keybuf) = = 0) { 
 54             match = 1; 



 55             break; 
 56         } 
 57     } 
 58     fclose(fp); 
 59     if (match != 0) 
 60         return(valbuf); 
 61     else 
 62         return(NULL); 
 63  } 
 
 
      

 

[33–
46] 

The scan_configfile  function searches through the printer configuration file for the specified 
keyword. 

[47–
63] 

We open the configuration file for reading and build the format string corresponding to the search 
pattern. The notation %%%ds builds a format specifier that limits the string size so we don't overrun the 
buffers used to store the strings on the stack. We read the file one line at a time and scan for two strings 
separated by white space; if we find them, we compare the first string with the keyword. If we find a 
match or we reach the end of the file, the loop ends and we close the file. If the keyword matches, we 
return a pointer to the buffer containing the string after the keyword; otherwise, we return NULL. 

  The string returned is stored in a static buffer (valbuf ), which can be overwritten on successive calls. 
Thus, scan_configfile  can't be called by a multithreaded application unless we take care to avoid 
calling it from multiple threads at the same time. 

 
 64  /* 
 65   * Return the host name running the print serv er or NULL on error. 
 66   * 
 67   * LOCKING: none. 
 68   */ 
 69  char * 
 70  get_printserver(void) 
 71  { 
 72     return(scan_configfile("printserver")); 
 73  } 
 
 74  /* 
 75   * Return the address of the network printer o r NULL on error. 
 76   * 
 77   * LOCKING: none. 
 78   */ 
 79  struct addrinfo * 
 80  get_printaddr(void) 
 81  { 
 82     int             err; 
 83     char            *p; 
 84     struct addrinfo *ailist; 
 
 85     if ((p = scan_configfile("printer")) != NUL L) { 
 86         if ((err = getaddrlist(p, "ipp", &ailis t)) != 0) { 
 87             log_msg("no address information for  %s", p); 
 88             return(NULL); 
 89         } 
 90         return(ailist); 
 91     } 
 92     log_msg("no printer address specified"); 
 93     return(NULL); 
 94  } 



 
 
      

 

[64–
73] 

The get_printserver  function is simply a wrapper function that calls scan_configfile  to find the 
name of the computer system where the printer spooling daemon is running. 

[74–
94] 

We use the get_printaddr  function to get the address of the network printer. It is similar to the 
previous function except that when we find the name of the printer in the configuration file, we use the 
name to find the corresponding network address. 

  Both get_printserver  and get_printaddr  call scan_configfile . If it can't open the printer 
configuration file, scan_configfile  calls log_sys  to print an error message and exit. Although 
get_printserver  is meant to be called from a client command and get_printaddr  is meant to be 
called from the daemon, having both call log_sys  is OK, because we can arrange for the log functions to 
print to the standard error instead of to the log file by setting a global variable. 

 
 95  /* 
 96   * "Timed" read - timout specifies the # of se conds to wait before 
 97   * giving up (5th argument to select controls how long to wait for 
 98   * data to be readable).  Returns # of bytes r ead or -1 on error. 
 99   * 
100   * LOCKING: none. 
101   */ 
102  ssize_t 
103  tread(int fd, void *buf, size_t nbytes, unsign ed int timout) 
104  { 
105    int             nfds; 
106    fd_set          readfds; 
107    struct timeval  tv; 
 
108    tv.tv_sec = timout; 
109    tv.tv_usec = 0; 
110    FD_ZERO(&readfds); 
111    FD_SET(fd, &readfds); 
112    nfds = select(fd+1, &readfds, NULL, NULL, &t v); 
113    if (nfds <= 0) { 
114        if (nfds == 0) 
115            errno = ETIME; 
116        return(-1); 
117    } 
118    return(read(fd, buf, nbytes)); 
119  } 
 
 
      

 

[95–
107] 

We provide a function called tread  to read a specified number of bytes, but block for at most timout 
seconds before giving up. This function is useful when reading from a socket or a pipe. If we don't 
receive data before the specified time limit, we return –1 with errno  set to ETIME. If data is available 
within the time limit, we return at most nbytes bytes of data, but we can return less than requested if all 
the data doesn't arrive in time. 

  We will use tread  to prevent denial-of-service attacks on the printer spooling daemon. A malicious 
user might repeatedly try to connect to the daemon without sending it data, just to prevent other users 
from being able to submit print jobs. By giving up after a reasonable amount of time, we prevent this 
from happening. The tricky part is selecting a suitable timeout value that is large enough to prevent 



[95–
107] 

We provide a function called tread  to read a specified number of bytes, but block for at most timout 
seconds before giving up. This function is useful when reading from a socket or a pipe. If we don't 
receive data before the specified time limit, we return –1 with errno  set to ETIME. If data is available 
within the time limit, we return at most nbytes bytes of data, but we can return less than requested if all 
the data doesn't arrive in time. 

premature failures when the system is under load and tasks are taking longer to complete. If we choose 
a value too large, however, we might enable denial-of-service attacks by allowing the daemon to 
consume too many resources to process the pending requests. 

[108–
119] 

We use select  to wait for the specified file descriptor to be readable. If the time limit expires before 
data is available to be read, select  returns 0, so we set errno  to ETIME in this case. If select  fails or 
times out, we return –1. Otherwise, we return whatever data is available. 

 
120  /* 
121   * "Timed" read - timout specifies the number of seconds to wait 
122   * per read call before giving up, but read ex actly nbytes bytes. 
123   * Returns number of bytes read or -1 on error . 
124   * 
125   * LOCKING: none. 
126   */ 
127  ssize_t 
128  treadn(int fd, void *buf, size_t nbytes, unsig ned int timout) 
129  { 
130    size_t nleft; 
131    ssize_t nread; 
 
132    nleft = nbytes; 
133    while (nleft > 0) { 
134        if ((nread = tread(fd, buf, nleft, timou t)) < 0) { 
135            if (nleft == nbytes) 
136                return(-1); /* error, return -1 */ 
137            else 
138                break;      /* error, return amo unt read so far */ 
139        } else if (nread == 0) { 
140            break;          /* EOF */ 
141        } 
142        nleft -= nread; 
143        buf += nread; 
144    } 
145    return(nbytes - nleft);      /* return >= 0 */ 
146  } 
 
 
      

 

[120–
146] 

We also provide a variation of tread , called treadn , that reads exactly the number of bytes requested. 
This is similar to the readn  function described in Section 14.8, but with the addition of the timeout 
parameter. 

  To read exactly nbytes bytes, we have to be prepared to make multiple calls to read . The difficult part 
is trying to apply a single timeout value to multiple calls to read . We don't want to use an alarm, 
because signals can be messy to deal with in multithreaded applications. We can't rely on the system 
updating the timeval  structure on return from select  to indicate the amount of time left, because 
many platforms do not support this (Section 14.5.1). Thus, we compromise and define the timeout 
value in this case to apply to an individual read  call. Instead of limiting the total amount of time we 
wait, it limits the amount of time we'll wait in every iteration of the loop. The maximum time we can 



[120–
146] 

We also provide a variation of tread , called treadn , that reads exactly the number of bytes requested. 
This is similar to the readn  function described in Section 14.8, but with the addition of the timeout 
parameter. 

wait is bounded by (nbytes x timout) seconds (worst case, we'll receive only 1 byte at a time). 

  We use nleft  to record the number of bytes remaining to be read. If tread  fails and we have received 
data in a previous iteration, we break out of the while  loop and return the number of bytes read; 
otherwise, we return –1. 

 

The command used to submit a print job is shown next. The C source file is print.c . 

  1  /* 
  2   * The client command for printing documents. Opens the file 
  3   * and sends it to the printer spooling daemon . Usage: 
  4   *     print [-t] filename 
  5   */ 
  6  #include "apue.h" 
  7  #include "print.h" 
  8  #include <fcntl.h> 
  9  #include <pwd.h> 
 
 10  /* 
 11   * Needed for logging funtions. 
 12   */ 
 13  int log_to_stderr = 1; 
 
 14  void submit_file(int, int, const char *, size_ t, int); 
 
 15  int 
 16  main(int argc, char *argv[]) 
 17  { 
 18     int             fd, sockfd, err, text, c; 
 19     struct stat     sbuf; 
 20     char            *host; 
 21     struct addrinfo *ailist, *aip; 
 
 22     err = 0; 
 23     text = 0; 
 24     while ((c = getopt(argc, argv, "t")) != -1)  { 
 25         switch (c) { 
 26         case 't': 
 27             text = 1; 
 28             break; 
 
 29         case '?': 
 30             err = 1; 
 31             break; 
 32         } 
 33     } 
 
 
      

 

[1–
14] 

We need to define an integer called log_to_stderr  to be able to use the log functions in our library. If 
set to a nonzero value, error messages will be sent to the standard error stream instead of to a log file. 
Although we don't use any logging functions in print.c , we do link util.o  with print.o  to build the 
executable print  command, and util.c  contains functions for both user commands and daemons. 



[1–
14] 

We need to define an integer called log_to_stderr  to be able to use the log functions in our library. If 
set to a nonzero value, error messages will be sent to the standard error stream instead of to a log file. 
Although we don't use any logging functions in print.c , we do link util.o  with print.o  to build the 
executable print  command, and util.c  contains functions for both user commands and daemons. 

[15–
33] 

We support one option, -t , to force the file to be printed as text (instead of as a PostScript program, for 
example). We use the getopt (3) function to process the command options. 

 
 34     if (err || (optind != argc - 1)) 
 35         err_quit("usage: print [-t] filename");  
 36     if ((fd = open(argv[optind], O_RDONLY)) < 0 ) 
 37         err_sys("print: can't open %s", argv[1] ); 
 38     if (fstat(fd, &sbuf) < 0) 
 39         err_sys("print: can't stat %s", argv[1] ); 
 40     if (!S_ISREG(sbuf.st_mode)) 
 41         err_quit("print: %s must be a regular f ile\n", argv[1]); 
 
 42     /* 
 43      * Get the hostname of the host acting as t he print server. 
 44      */ 
 45     if ((host = get_printserver()) == NULL) 
 46         err_quit("print: no print server define d"); 
 47     if ((err = getaddrlist(host, "print", &aili st)) != 0) 
 48         err_quit("print: getaddrinfo error: %s" , gai_strerror(err)); 
 
 49     for (aip = ailist; aip != NULL; aip = aip-> ai_next) { 
 50         if ((sockfd = socket(AF_INET, SOCK_STRE AM, 0)) < 0) { 
 51             err = errno; 
 52         } else if (connect_retry(sockfd, aip->a i_addr, 
 53           aip->ai_addrlen) < 0) { 
 54             err = errno; 

 

[34–
41] 

When getopt  completes processing the command options, it leaves the variable optind  set to the index 
of the first nonoptional argument. If this is any value other than the index of the last argument, then the 
wrong number of arguments was specified (we support only one nonoptional argument). Our error 
processing includes checks to ensure that we can open the file to be printed and that it is a regular file (as 
opposed to a directory or other type of file). 

[42–
48] 

We get the name of the printer spooling daemon by calling the get_printserver  function from util.c  
and then translate the host name into a network address by calling getaddrlist  (also from util.c ). 

  Note that we specify the service as "print." As part of installing the printer spooling daemon on a system, 
we need to make sure that /etc/services  (or the equivalent database) has an entry for the printer 
service. When we select a port number for the daemon, it would be a good idea to select one that is 
privileged, to prevent malicious users from writing applications that pretend to be a printer spooling 
daemon but instead steal copies of the files we try to print. This means that the port number should be 
less than 1,024 (recall Section 16.3.4) and that our daemon will have to run with superuser privileges to 
allow it to bind to a reserved port. 

[49–
54] 

We try to connect to the daemon using one address at a time from the list returned by getaddrinfo . We 
will try to send the file to the daemon using the first address to which we can connect. 

 
 55         } else { 
 56             submit_file(fd, sockfd, argv[1], sb uf.st_size, text); 
 57             exit(0); 
 58         } 
 59     } 



 60     errno = err; 
 61     err_ret("print: can't contact %s", host); 
 62     exit(1); 
 63  } 
 
 64  /* 
 65   * Send a file to the printer daemon. 
 66   */ 
 67  void 
 68  submit_file(int fd, int sockfd, const char *fn ame, size_t nbytes, 
 69              int text) 
 70  { 
 71     int                 nr, nw, len; 
 72     struct passwd       *pwd; 
 73     struct printreq     req; 
 74     struct printresp    res; 
 75     char                buf[IOBUFSZ]; 
 
 76     /* 
 77      * First build the header. 
 78      */ 
 79     if ((pwd = getpwuid(geteuid())) == NULL) 
 80         strcpy(req.usernm, "unknown"); 
 81     else 
 82         strcpy(req.usernm, pwd->pw_name); 
 83     req.size = htonl(nbytes); 
 84     if (text) 
 85         req.flags = htonl(PR_TEXT); 
 86     else 
 87         req.flags = 0; 
 
 
      

 

[55–
63] 

If we can make a connection, we call submit_file  to transmit the file to the printer spooling daemon. If 
we can't connect to any of the addresses, we print an error message and exit. We use err_ret  and exit  
instead of making a single call to err_sys  to avoid a compiler warning, because the last line in main  
wouldn't be a return  statement or a call to exit . 

[64–
87] 

submit_file  sends a print request to the daemon and reads the response.First, we build the printreq  
request header. We use geteuid  to get the caller's effective user ID and pass this to getpwuid  to look for 
the user in the system's password file. We copy the user's name to the request header or use the string 
unknown  if we can't identify the user. We store the size of the file to be printed in the header after 
converting it to network byte order. Then we do the same with the PR_TEXT flag if the file is to be 
printed as plaintext. 

 
 88     if ((len = strlen(fname)) >= JOBNM_MAX) { 
 89         /* 
 90          * Truncate the filename (+-5 accounts for the leading 
 91          * four characters and the terminating null). 
 92          */ 
 93         strcpy(req.jobnm, "... "); 
 94         strncat(req.jobnm, &fname[len-JOBNM_MAX +5], JOBNM_MAX-5); 
 95     } else { 
 96         strcpy(req.jobnm, fname); 
 97     } 
 
 98     /* 
 99      * Send the header to the server. 
100      */ 



101     nw = writen(sockfd, &req, sizeof(struct pri ntreq)); 
102     if (nw != sizeof(struct printreq)) { 
103         if (nw < 0) 
104             err_sys("can't write to print serve r"); 
105         else 
106             err_quit("short write (%d/%d) to pr int server", 
107               nw, sizeof(struct printreq)); 
108     } 
 
109     /* 
110      * Now send the file. 
111      */ 
112     while ((nr = read(fd, buf, IOBUFSZ)) != 0) { 
113         nw = writen(sockfd, buf, nr); 
114         if (nw != nr) { 
115             if (nw < 0) 
116                 err_sys("can't write to print s erver"); 
117             else 
118                 err_quit("short write (%d/%d) t o print server", 
119                   nw, nr); 
120         } 
121     } 
 
 
      

 

[88–
108] 

We set the job name to the name of the file being printed. If the name is longer than will fit in the 
message, we truncate the beginning portion of the name and prepend an ellipsis to indicate that there 
were more characters than would fit in the field. Then we send the request header to the daemon using 
writen . If the write fails or if we transmit less than we expect, we print an error message and exit. 

[109–
121] 

After sending the header to the daemon, we send the file to be printed. We read the file IOBUFSZ bytes 
at a time and use writen  to send the data to the daemon. As with the header, if the write fails or we 
write less than we expect, we print an error message and exit. 

 
122     /* 
123      * Read the response. 
124      */ 
125     if ((nr = readn(sockfd, &res, sizeof(struct  printresp))) != 
126       sizeof(struct printresp)) 
127         err_sys("can't read response from serve r"); 
128     if (res.retcode != 0) { 
129         printf("rejected: %s\n", res.msg); 
130         exit(1); 
131     } else { 
132         printf("job ID %ld\n", ntohl(res.jobid) ); 
133     } 
134     exit(0); 
135   } 

 

[122–
135] 

After we send the file to be printed to the daemon, we read the daemon's response. If the request failed, 
the return code (retcode ) will be nonzero, so we print the textual error message included in the 
response. If the request succeeded, we print the job ID so that the user knows how to refer to the 
request in the future. (Writing a command to cancel the print request is left as an exercise; the job ID 
can be used in the cancellation request to identify the job to be removed from the print queue.) 

  Note that a successful response from the daemon does not mean that the printer was able to print the 
file. It merely means that the daemon successfully added the print job to the queue. 



 

Most of what we have seen in print.c  was discussed in earlier chapters. The only topic that we haven't 
covered is the getopt  function, although we saw it earlier in the pty  program from Chapter 19. 

It is important that all commands on a system follow the same conventions, because this makes them easier to 
use. If someone is familiar with the way command-line options are formed with one command, it would create 
more chances for mistakes if another command followed different conventions. 

This problem is sometimes visible when dealing with white space on the command line. Some commands 
require that an option be separated from its argument by white space, but other commands require the argument 
to follow immediate after its option, without any intervening spaces. Without a consistent set of rules to follow, 
users either have to memorize the syntax of all commands or resort to a trial-and-error process when invoking 
them. 

The Single UNIX Specification includes a set of conventions and guidelines that promote consistent command-
line syntax. They include such suggestions as "Restrict each command-line option to a single alphanumeric 
character" and "All options should be preceded by a - character." 

Luckily, the getopt  function exists to help command developers process command-line options in a consistent 
manner. 

#include <fcntl.h> 
 
int getopt(int argc, const * const argv[], const ch ar *options);  
 
extern int optind, opterr, optopt; 
extern char *optarg; 
 

 

Returns: the next option character, or  
–1 when all options have been processed 

 

The argc and argv arguments are the same ones passed to the main  function of the program. The options 
argument is a string containing the option characters supported by the command. If an option character is 
followed by a colon, then the option takes an argument. Otherwise, the option exists by itself. For example, if 
the usage statement for a command was 

    command [-i] [-u username] [-z] filename 

 

we would pass "iu:z"  as the options string to getopt . 

The normal use of getopt  is in a loop that terminates when getopt  returns –1. During each iteration of the loop, 
getopt  will return the next option processed. It is up to the application to sort out any conflict in options, 
however; getopt  simply parses the options and enforces a standard format. 

When it encounters an invalid option, getopt  returns a question mark instead of the character. If an option's 
argument is missing, getopt  will also return a question mark, but if the first character in the options string is a 
colon, getopt  returns a colon instead. The special pattern --  will cause getopt  to stop processing options and 



return –1. This allows users to provide command arguments that start with a minus sign but aren't options. For 
example, if you have a file named -bar , you can't remove it by typing 

    rm -bar 

 

because rm will try to interpret -bar  as options. The way to remove the file is to type 

    rm -- -bar 

 

The getopt  function supports four external variables. 

optarg  If an option takes an argument, getopt  sets optarg  to point to the option's argument string when an 
option is processed. 

opterr  If an option error is encountered, getopt  will print an error message by default. To disable this 
behavior, applications can set opterr  to 0. 

optind  The index in the argv  array of the next string to be processed. It starts out at 1 and is incremented for 
each argument processed by getopt . 

optopt  If an error is encountered during options processing, getopt  will set optopt  to point to the option 
string that caused the error. 

 

The last file we will look at is the C source file for the printer spooling daemon. 

  1  /* 
  2   * Print server daemon. 
  3   */ 
  4  #include "apue.h" 
  5  #include "print.h" 
  6  #include "ipp.h" 
  7  #include <fcntl.h> 
  8  #include <dirent.h> 
  9  #include <ctype.h> 
 10  #include <pwd.h> 
 11  #include <pthread.h> 
 12  #include <strings.h> 
 13  #include <sys/select.h> 
 14  #include <sys/uio.h> 
 
 15  /* 
 16   * These are for the HTTP response from the pr inter. 
 17   */ 
 18  #define HTTP_INFO(x)   ((x) >= 100 && (x) <= 1 99) 
 19  #define HTTP_SUCCESS(x) ((x) >= 200 && (x) <= 299) 
 
 20  /* 
 21   * Describes a print job. 
 22   */ 
 23  struct job { 
 24     struct job      *next;       /* next in lis t */ 
 25     struct job      *prev;       /* previous in  list */ 
 26     long             jobid;      /* job ID */ 
 27     struct printreq  req;        /* copy of pri nt request */ 
 28  }; 



 
 29  /* 
 30   * Describes a thread processing a client requ est. 
 31   */ 
 32  struct worker_thread { 
 33     struct worker_thread  *next;     /* next in  list */ 
 34     struct worker_thread  *prev;     /* previou s in list */ 
 35     pthread_t              tid;      /* thread ID */ 
 36     int                    sockfd;   /* socket */ 
 37  }; 
 
 
      

 

[1–
19] 

The printer spooling daemon includes the IPP header file that we saw earlier, because the daemon needs 
to communicate with the printer using this protocol. The HTTP_INFO and HTTP_SUCCESS macros define 
the status of the HTTP request (recall that IPP is built on top of HTTP). 

[20–
37] 

The job  and worker_thread  structures are used by the spooling daemon to keep track of print jobs and 
threads accepting print requests, respectively. 

 
 38  /* 
 39   * Needed for logging. 
 40   */ 
 41  int                    log_to_stderr = 0; 
 
 42  /* 
 43   * Printer-related stuff. 
 44   */ 
 45  struct addrinfo        *printer; 
 46  char                   *printer_name; 
 47  pthread_mutex_t        configlock = PTHREAD_MU TEX_INITIALIZER; 
 48  int                    reread; 
 
 49  /* 
 50   * Thread-related stuff. 
 51   */ 
 52  struct worker_thread   *workers; 
 53  pthread_mutex_t        workerlock = PTHREAD_MU TEX_INITIALIZER; 
 54  sigset_t               mask; 
 
 55  /* 
 56   * Job-related stuff. 
 57   */ 
 58  struct job             *jobhead, *jobtail; 
 59  int                    jobfd; 
 
 
      

 

[38–
41] 

Our logging functions require that we define the log_to_stderr  variable and set it to 0 to force log 
messages to be sent to the system log instead of to the standard error. In print.c , we defined 
log_to_stderr  and set it to 1, even though we don't use the log functions in the user command. We 
could have avoided this by splitting the utility functions into two separate files: one for the server and 
one for the client commands. 

[42–
48] 

We use the global variable printer  to hold the network address of the printer.We store the host name of 
the printer in printer_name . The configlock  mutex protects access to the reread  variable, which is 
used to indicate that the daemon needs to reread the configuration file, presumably because an 



[38–
41] 

Our logging functions require that we define the log_to_stderr  variable and set it to 0 to force log 
messages to be sent to the system log instead of to the standard error. In print.c , we defined 
log_to_stderr  and set it to 1, even though we don't use the log functions in the user command. We 
could have avoided this by splitting the utility functions into two separate files: one for the server and 
one for the client commands. 

administrator changed the printer or its network address. 

[49–
54] 

Next, we define the thread-related variables. We use workers  as the head of a doubly-linked list of 
threads that are receiving files from clients. This list is protected by the mutex workerlock . The signal 
mask used by the threads is held in the variable mask. 

[55–
59] 

For the list of pending jobs, we define jobhead  to be the start of the list and jobtail  to be the tail of the 
list. This list is also doubly linked, but we need to add jobs to the end of the list, so we need to remember 
a pointer to the list tail. With the list of worker threads, the order doesn't matter, so we can add them to 
the head of the list and don't need to remember the tail pointer. jobfd  is the file descriptor for the job 
file. 

 
 60  long                   nextjob; 
 61  pthread_mutex_t        joblock = PTHREAD_MUTEX _INITIALIZER; 
 62  pthread_cond_t         jobwait = PTHREAD_COND_ INITIALIZER; 
 
 63  /* 
 64   * Function prototypes. 
 65   */ 
 66  void       init_request(void); 
 67  void       init_printer(void); 
 68  void       update_jobno(void); 
 69  long       get_newjobno(void); 
 70  void       add_job(struct printreq *, long); 
 71  void       replace_job(struct job *); 
 72  void       remove_job(struct job *); 
 73  void       build_qonstart(void); 
 74  void       *client_thread(void *); 
 75  void       *printer_thread(void *); 
 76  void       *signal_thread(void *); 
 77  ssize_t    readmore(int, char **, int, int *);  
 78  int        printer_status(int, struct job *); 
 79  void       add_worker(pthread_t, int); 
 80  void       kill_workers(void); 
 81  void       client_cleanup(void *); 
 
 82  /* 
 83   * Main print server thread.  Accepts connect requests from 
 84   * clients and spawns additional threads to se rvice requests. 
 85   * 
 86   * LOCKING: none. 
 87   */ 
 88  int 
 89  main(int argc, char *argv[]) 
 90  { 
 91     pthread_t           tid; 
 92     struct addrinfo     *ailist, *aip; 
 93     int                 sockfd, err, i, n, maxf d; 
 94     char                *host; 
 95     fd_set              rendezvous, rset; 
 96     struct sigaction    sa; 
 97     struct passwd       *pwdp; 
 
 



      

 

[60–
62] 

nextjob  is the ID of the next print job to be received. The joblock  mutex protects the linked list of 
jobs, as well as the condition represented by the jobwait  condition variable. 

[63–
81] 

We declare the function prototypes for the remaining functions in this file. Doing this up front allows us 
to place the functions in the file without worrying about the order in which each is called. 

[82–
97] 

The main  function for the printer spooling daemon has two tasks to perform: initialize the daemon and 
then process connect requests from clients. 

 
 98     if (argc != 1) 
 99         err_quit("usage: printd"); 
100     daemonize("printd"); 
 
101     sigemptyset(&sa.sa_mask); 
102     sa.sa_flags = 0; 
103     sa.sa_handler = SIG_IGN; 
104     if (sigaction(SIGPIPE, &sa, NULL) < 0) 
105         log_sys("sigaction failed"); 
106     sigemptyset(&mask); 
107     sigaddset(&mask, SIGHUP); 
108     sigaddset(&mask, SIGTERM); 
109     if ((err = pthread_sigmask(SIG_BLOCK, &mask , NULL)) != 0) 
110         log_sys("pthread_sigmask failed"); 
111     init_request(); 
112     init_printer(); 
 
113  #ifdef _SC_HOST_NAME_MAX 
114    n = sysconf(_SC_HOST_NAME_MAX); 
115    if (n < 0)  /* best guess */ 
116  #endif 
117        n = HOST_NAME_MAX; 
 
118    if ((host = malloc(n)) == NULL) 
119        log_sys("malloc error"); 
120    if (gethostname(host, n) < 0) 
121        log_sys("gethostname error"); 
 
 
      

 

[98–
100] 

The daemon doesn't have any options, so if argc  is not 1, we call err_quit  to print an error message 
and exit. We call the daemonize  function from Figure 13.1 to become a daemon. After this point, we 
can't print error messages to standard error; we need to log them instead. 

[101–
112] 

We arrange to ignore SIGPIPE . We will be writing to socket file descriptors, and we don't want a write 
error to trigger SIGPIPE , because the default action is to kill the process. Next, we set the signal mask 
of the thread to include SIGHUP and SIGTERM. All threads we create will inherit this signal mask. We'll 
use SIGHUP to tell the daemon to reread the configuration file and SIGTERM to tell the daemon to clean 
up and exit gracefully. We call init_request  to initialize the job requests and ensure that only one 
copy of the daemon is running, and we call init_printer  to initialize the printer information (we'll 
see both of these functions shortly). 

[113–
121] 

If the platform defines the _SC_HOST_NAME_MAX symbol, we call sysconf  to get the maximum size of a 
host name. If sysconf  fails or the limit is undefined, we use HOST_NAME_MAX as a best guess. 
Sometimes, this is defined for us by the platform, but if it isn't, we chose our own value in print.h . 
We allocate memory to hold the host name and call gethostname  to retrieve it. 



 
122    if ((err = getaddrlist(host, "print", &ailis t)) != 0) { 
123        log_quit("getaddrinfo error: %s", gai_st rerror(err)); 
124        exit(1); 
125    } 
126    FD_ZERO(&rendezvous); 
127    maxfd = -1; 
128    for (aip = ailist; aip != NULL; aip = aip->a i_next) { 
129        if ((sockfd = initserver(SOCK_STREAM, ai p->ai_addr, 
130          aip->ai_addrlen, QLEN)) >= 0) { 
131            FD_SET(sockfd, &rendezvous); 
132            if (sockfd > maxfd) 
133                maxfd = sockfd; 
134        } 
135    } 
136    if (maxfd == -1) 
137        log_quit("service not enabled"); 
 
138    pwdp = getpwnam("lp"); 
139    if (pwdp == NULL) 
140        log_sys("can't find user lp"); 
141    if (pwdp->pw_uid == 0) 
142        log_quit("user lp is privileged"); 
143    if (setuid(pwdp->pw_uid) < 0) 
144        log_sys("can't change IDs to user lp"); 
 
 
      

 

[122–
135] 

Next, we try to find the network address that the daemon is supposed to use to provide printer spooling 
service. We clear the rendezvous fd_set  variable that we will use with select  to wait for client 
connect requests. We initialize the maximum file descriptor to –1 so that the first file descriptor we 
allocate is sure to be greater than maxfd . For each network address on which we need to provide 
service, we call initserver  (from Figure 16.20) to allocate and initialize a socket. If initserver  
succeeds, we add the file descriptor to the fd_set ; if it is greater than the maximum, we set maxfd  
equal to the socket file descriptor. 

[136–
137] 

If maxfd  is still –1 after stepping through the list of addrinfo  structures, we can't enable the printer 
spooling service, so we log a message and exit. 

[138–
144] 

Our daemon needs superuser privileges to bind a socket to a reserved port number. Now that this is 
done, we can lower its privileges by changing its user ID to the one associated with user lp  (recall the 
security discussion in Section 21.4). We want to follow the principles of least privilege to avoid 
exposing the system to any potential vulnerabilities in the daemon. We call getpwnam  to find the 
password entry associated with user lp . If no such user account exists, or if it exists with the same user 
ID as the superuser, we log a message and exit. Otherwise, we call setuid  to change both the real and 
effective user IDs to the user ID for lp . To avoid exposing our system, we choose to provide no service 
at all if we can't reduce our privileges. 

 
145    pthread_create(&tid, NULL, printer_thread, N ULL); 
146    pthread_create(&tid, NULL, signal_thread, NU LL); 
147    build_qonstart(); 
 
148    log_msg("daemon initialized"); 
 
149    for (;;) { 
150        rset = rendezvous; 
151        if (select(maxfd+1, &rset, NULL, NULL, N ULL) < 0) 



152            log_sys("select failed"); 
153        for (i = 0; i <= maxfd; i++) { 
154            if (FD_ISSET(i, &rset)) { 
 
155                /* 
156                 * Accept the connection and han dle 
157                 * the request. 
158                 */ 
159                sockfd = accept(i, NULL, NULL); 
160                if (sockfd < 0) 
161                    log_ret("accept failed"); 
162                pthread_create(&tid, NULL, clien t_thread, 
163                  (void *)sockfd); 
164            } 
165        } 
166    } 
167    exit(1); 
168  } 
 
 
      

 

[145–
148] 

We call pthread_create  twice to create one thread to handle signals and one thread to communicate 
with the printer. (By restricting printer communication to one thread, we can simplify the locking of the 
printer-related data structures.) Then we call build_qonstart  to search the directories in 
/var/spool/printer  for any pending jobs. For each job that we find on disk, we will create a 
structure to let the printer thread know that it should send the file to the printer. At this point, we are 
done setting up the daemon, so we log a message to indicate that the daemon has initialized 
successfully. 

[149–
168] 

We copy the rendezvous fd_set  structure to rset  and call select  to wait for one of the file 
descriptors to become readable. We have to copy rendezvous , because select  will modify the fd_set  
structure that we pass to it to include only those file descriptors that satisfy the event. Since the sockets 
have been initialized for use by a server, a readable file descriptor means that a connect request is 
pending. After select  returns, we check rset  for a readable file descriptor. If we find one, we call 
accept  to accept the connection. If this fails, we log a message and continue checking for more 
readable file descriptors. Otherwise, we create a thread to handle the client connection. The main  thread 
loops, farming requests out to other threads for processing, and should never reach the exit  statement. 

 
169  /* 
170   * Initialize the job ID file. Use a record lo ck to prevent 
171   * more than one printer daemon from running a t a time. 
172   * 
173   * LOCKING: none, except for record-lock on jo b ID file. 
174   */ 
175  void 
176  init_request(void) 
177  { 
178    int     n; 
179    char    name[FILENMSZ]; 
 
180    sprintf(name, "%s/%s", SPOOLDIR, JOBFILE); 
181    jobfd = open(name, O_CREAT|O_RDWR, S_IRUSR|S _IWUSR); 
182    if (write_lock(jobfd, 0, SEEK_SET, 0) < 0) 
183        log_quit("daemon already running"); 
 
184    /* 
185     * Reuse the name buffer for the job counter . 
186     */ 



187    if ((n = read(jobfd, name, FILENMSZ)) < 0) 
188        log_sys("can't read job file"); 
189    if (n == 0) 
190        nextjob = 1; 
191    else 
192        nextjob = atol(name); 
193  } 
 
 
      

 

[169–
183] 

The init_request  function does two things: it places a record lock on the job file, 
/var/spool/printer/jobno , and it reads the file to determine the next job number to assign. We 
place a write lock on the entire file to indicate that the daemon is running. If someone tries to start 
additional copies of the printer spooling daemon while one is already running, these additional 
daemons will fail to obtain the write lock and will exit. Thus, only one copy of the daemon can be 
running at a time. (Recall that we used this technique in Figure 13.6; we discussed the write_lock  
macro in Section 14.3.) 

[184–
193] 

The job file contains an ASCII integer string representing the next job number. If the file was just 
created and therefore is empty, we set nextjob  to 1. Otherwise, we use atol  to convert the string to an 
integer and use this as the next job number. We leave jobfd  open to the job file so that we can update 
the job number as jobs are created. We can't close the file, because this would release the write lock 
that we've placed on it. 

  On a system where a long integer is 64 bits wide, we need a buffer at least 21 bytes in size to fit a string 
representing the largest possible long integer. We are safe reusing the filename buffer, because 
FILENMSZ is defined to be 64 in print.h . 

 
194  /* 
195   * Initialize printer information. 
196   * 
197   * LOCKING: none. 
198   */ 
199  void 
200  init_printer(void) 
201  { 
202    printer = get_printaddr(); 
203    if (printer == NULL) { 
204        log_msg("no printer device registered");  
205        exit(1); 
206    } 
207    printer_name = printer->ai_canonname; 
208    if (printer_name == NULL) 
209        printer_name = "printer"; 
210    log_msg("printer is %s", printer_name); 
211   } 
 
212   /* 
213    * Update the job ID file with the next job n umber. 
214    * 
215    * LOCKING: none. 
216    */ 
217   void 
218   update_jobno(void) 
219   { 
220     char    buf[32]; 
 
221     lseek(jobfd, 0, SEEK_SET); 



222     sprintf(buf, "%ld", nextjob); 
223     if (write(jobfd, buf, strlen(buf)) < 0) 
224         log_sys("can't update job file"); 
225   } 
 
 
      

 

[194–
211] 

The init_printer  function is used to set the printer name and address. We get the printer address by 
calling get_printaddr  (from util.c ). If this fails, we log a message and exit. We can't do this by 
calling log_sys , because get_printaddr  can fail without setting errno . When it fails and does set 
errno , however, get_printaddr  logs its own error message. We set the printer name to the 
ai_canonname  field in the addrinfo  structure. If this field is null, we set the printer name to a default 
value of printer . Note that we log the name of the printer we are using to aid administrators in 
diagnosing problems with the spooling system. 

[212–
225] 

The update_jobno  function is used to write the next job number to the job file, 
/var/spool/printer/jobno . First, we seek to the beginning of the file. Then we convert the integer 
job number into a string and write it to the file. If the write fails, we log an error message and exit. 

 
226  /* 
227   * Get the next job number. 
228   * 
229   * LOCKING: acquires and releases joblock. 
230   */ 
231  long 
232  get_newjobno(void) 
233  { 
234    long    jobid; 
 
235    pthread_mutex_lock(&joblock); 
236    jobid = nextjob++; 
237    if (nextjob <= 0) 
238        nextjob = 1; 
239    pthread_mutex_unlock(&joblock); 
240    return(jobid); 
241  } 
 
242  /* 
243   * Add a new job to the list of pending jobs. Then signal 
244   * the printer thread that a job is pending. 
245   * 
246   * LOCKING: acquires and releases joblock. 
247   */ 
248  void 
249  add_job(struct printreq *reqp, long jobid) 
250  { 
251    struct job *jp; 
 
252    if ((jp = malloc(sizeof(struct job))) == NUL L) 
253        log_sys("malloc failed"); 
254    memcpy(&jp->req, reqp, sizeof(struct printre q)); 
 
 
      

 



[226–
241] 

The get_newjobno  function is used to get the next job number. We first lock the joblock  mutex. We 
increment the nextjob  variable and handle the case where it wraps around. Then we unlock the mutex 
and return the value nextjob  had before we incremented it. Multiple threads can call get_newjobno  at 
the same time; we need to serialize access to the next job number so that each thread gets a unique job 
number. (Refer to Figure 11.9 to see what could happen if we don't serialize the threads in this case.) 

[242–
254] 

The add_job  function is used to add a new print request to the end of the list of pending print jobs. We 
start by allocating space for the job  structure. If this fails, we log a message and exit. At this point, the 
print request is stored safely on disk; when the printer spooling daemon is restarted, it will pick the 
request up. After we allocate memory for the new job, we copy the request structure from the client 
into the job structure. Recall from print.h  that a job  structure consists of a pair of list pointers, a job 
ID, and a copy of the printreq  structure sent to us by the client print  command. 

 
255    jp->jobid = jobid; 
256    jp->next = NULL; 
257    pthread_mutex_lock(&joblock); 
258    jp->prev = jobtail; 
259    if (jobtail == NULL) 
260        jobhead = jp; 
261    else 
262        jobtail->next = jp; 
263    jobtail = jp; 
264    pthread_mutex_unlock(&joblock); 
265    pthread_cond_signal(&jobwait); 
266  } 
 
267  /* 
268   * Replace a job back on the head of the list.  
269   * 
270   * LOCKING: acquires and releases joblock. 
271   */ 
272  void 
273  replace_job(struct job *jp) 
274  { 
275    pthread_mutex_lock(&joblock); 
276    jp->prev = NULL; 
277    jp->next = jobhead; 
278    if (jobhead == NULL) 
279        jobtail = jp; 
280    else 
281        jobhead->prev = jp; 
282    jobhead = jp; 
283    pthread_mutex_unlock(&joblock); 
284  } 
 
 
      

 

[255–
266] 

We save the job ID and lock the joblock  mutex to gain exclusive access to the linked list of print jobs. 
We are about to add the new job structure to the end of the list. We set the new structure's previous 
pointer to the last job on the list. If the list is empty, we set jobhead  to point to the new structure. 
Otherwise, we set the next pointer in the last entry on the list to point to the new structure. Then we set 
jobtail  to point to the new structure. We unlock the mutex and signal the printer thread that another 
job is available. 

[267–
284] 

The replace_job  function is used to insert a job at the head of the pending job list. We acquire the 
joblock  mutex, set the previous pointer in the job  structure to null, and set the next pointer in the job  



[255–
266] 

We save the job ID and lock the joblock  mutex to gain exclusive access to the linked list of print jobs. 
We are about to add the new job structure to the end of the list. We set the new structure's previous 
pointer to the last job on the list. If the list is empty, we set jobhead  to point to the new structure. 
Otherwise, we set the next pointer in the last entry on the list to point to the new structure. Then we set 
jobtail  to point to the new structure. We unlock the mutex and signal the printer thread that another 
job is available. 

structure to point to the head of the list. If the list is empty, we set jobtail  to point to the job  structure 
we are replacing. Otherwise, we set the previous pointer in the first job  structure on the list to point to 
the job  structure we are replacing. Then we set the jobhead  pointer to the job  structure we are 
replacing. Finally, we release the joblock  mutex. 

 
285  /* 
286   * Remove a job from the list of pending jobs.  
287   * 
288   * LOCKING: caller must hold joblock. 
289   */ 
290  void 
291  remove_job(struct job *target) 
292  { 
293    if (target->next != NULL) 
294        target->next->prev = target->prev; 
295    else 
296        jobtail = target->prev; 
297    if (target->prev != NULL) 
298        target->prev->next = target->next; 
299    else 
300        jobhead = target->next; 
301  } 
 
302  /* 
303   * Check the spool directory for pending jobs on start-up. 
304   * 
305   * LOCKING: none. 
306   */ 
307  void 
308  build_qonstart(void) 
309  { 
310    int             fd, err, nr; 
311    long            jobid; 
312    DIR             *dirp; 
313    struct dirent   *entp; 
314    struct printreq req; 
315    char            dname[FILENMSZ], fname[FILEN MSZ]; 
 
316    sprintf(dname, "%s/%s", SPOOLDIR, REQDIR); 
317    if ((dirp = opendir(dname)) == NULL) 
318        return; 
 
 
      

 

[285–
301] 

remove_job  removes a job from the list of pending jobs given a pointer to the job to be removed. The 
caller must already hold the joblock  mutex. If the next pointer is non-null, we set the next entry's 
previous pointer to the target's previous pointer. Otherwise, the entry is the last one on the list, so we 
set jobtail  to the target's previous pointer. If the target's previous pointer is non-null, we set the 
previous entry's next pointer equal to the target's next pointer. Otherwise, this is the first entry in the 
list, so we set jobhead  to point to the next entry in the list after the target. 



[285–
301] 

remove_job  removes a job from the list of pending jobs given a pointer to the job to be removed. The 
caller must already hold the joblock  mutex. If the next pointer is non-null, we set the next entry's 
previous pointer to the target's previous pointer. Otherwise, the entry is the last one on the list, so we 
set jobtail  to the target's previous pointer. If the target's previous pointer is non-null, we set the 
previous entry's next pointer equal to the target's next pointer. Otherwise, this is the first entry in the 
list, so we set jobhead  to point to the next entry in the list after the target. 

[302–
318] 

When the daemon starts, it calls build_qonstart  to build an in-memory list of print jobs from the disk 
files stored in /var/spool/printer/reqs . If we can't open the directory, no print jobs are pending, so 
we return. 

 
319    while ((entp = readdir(dirp)) != NULL) { 
320        /* 
321         * Skip "." and ".." 
322         */ 
323        if (strcmp(entp->d_name, ".") == 0 || 
324          strcmp(entp->d_name, "..") == 0) 
325            continue; 
 
326        /* 
327         * Read the request structure. 
328         */ 
329        sprintf(fname, "%s/%s/%s", SPOOLDIR, REQ DIR, entp->d_name); 
330        if ((fd = open(fname, O_RDONLY)) < 0) 
331            continue; 
332        nr = read(fd, &req, sizeof(struct printr eq)); 
333        if (nr != sizeof(struct printreq)) { 
334            if (nr < 0) 
335                err = errno; 
336            else 
337                err = EIO; 
338            close(fd); 
339            log_msg("build_qonstart: can't read %s: %s", 
340              fname, strerror(err)); 
341            unlink(fname); 
342            sprintf(fname, "%s/%s/%s", SPOOLDIR,  DATADIR, 
343              entp->d_name); 
344            unlink(fname); 
345            continue; 
346        } 
347        jobid = atol(entp->d_name); 
348        log_msg("adding job %ld to queue", jobid ); 
349        add_job(&req, jobid); 
350    } 
351    closedir(dirp); 
352  } 
 
 
      

 

[319–
325] 

We read each entry in the directory, one at a time. We skip the entries for dot and dot-dot. 

[326–
346] 

For each entry, we create the full pathname of the file and open it for reading. If the open  call fails, we 
just skip the file. Otherwise, we read the printreq  structure stored in it. If we don't read the entire 
structure, we close the file, log a message, and unlink the file. Then we create the full pathname of the 
corresponding data file and unlink it, too. 



[319–
325] 

We read each entry in the directory, one at a time. We skip the entries for dot and dot-dot. 

[347–
352] 

If we were able to read a complete printreq  structure, we convert the filename into a job ID (the name 
of the file is its job ID), log a message, and then add the request to the list of pending print jobs. When 
we are done reading the directory, readdir  will return NULL, and we close the directory and return. 

 
353  /* 
354   * Accept a print job from a client. 
355   * 
356   * LOCKING: none. 
357   */ 
358  void * 
359  client_thread(void *arg) 
360  { 
361    int                 n, fd, sockfd, nr, nw, f irst; 
362    long                jobid; 
363    pthread_t           tid; 
364    struct printreq     req; 
365    struct printresp    res; 
366    char                name[FILENMSZ]; 
367    char                buf[IOBUFSZ]; 
 
368    tid = pthread_self(); 
369    pthread_cleanup_push(client_cleanup, (void * )tid); 
370    sockfd = (int)arg; 
371    add_worker(tid, sockfd); 
 
372    /* 
373     * Read the request header. 
374     */ 
375    if ((n = treadn(sockfd, &req, sizeof(struct printreq), 10)) != 
376      sizeof(struct printreq)) { 
377        res.jobid = 0; 
378        if (n < 0) 
379            res.retcode = htonl(errno); 
380        else 
381            res.retcode = htonl(EIO); 
382        strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX); 
383        writen(sockfd, &res, sizeof(struct print resp)); 
384        pthread_exit((void *)1); 
385    } 
 
 
      

 

[353–
371] 

The client_thread  is spawned from the main  thread when a connect request is accepted. Its job is to 
receive the file to be printed from the client print  command. We create a separate thread for each 
client print request. 

  The first thing we do is install a thread cleanup handler (see Section 11.5 for a discussion of thread 
cleanup handlers). The cleanup handler is client_cleanup , which we will see later. It takes a single 
argument: our thread ID. Then we call add_worker  to create a worker_thread  structure and add it to 
the list of active client threads. 

[372–
385] 

At this point, we are done with the thread's initialization tasks, so we read the request header from the 
client. If the client sends less than we expect or we encounter an error, we respond with a message 
indicating the reason for the error and call pthread_exit  to terminate the thread. 

 



386    req.size = ntohl(req.size); 
387    req.flags = ntohl(req.flags); 
 
388    /* 
389     * Create the data file. 
390     */ 
391    jobid = get_newjobno(); 
392    sprintf(name, "%s/%s/%ld", SPOOLDIR, DATADIR , jobid); 
393    if ((fd = creat(name, FILEPERM)) < 0) { 
394        res.jobid = 0; 
395        if (n < 0) 
396            res.retcode = htonl(errno); 
397        else 
398            res.retcode = htonl(EIO); 
399        log_msg("client_thread: can't create %s:  %s", name, 
400          strerror(res.retcode)); 
401        strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX); 
402        writen(sockfd, &res, sizeof(struct print resp)); 
403        pthread_exit((void *)1); 
404    } 
 
405    /* 
406     * Read the file and store it in the spool d irectory. 
407     */ 
408    first = 1; 
409    while ((nr = tread(sockfd, buf, IOBUFSZ, 20) ) > 0) { 
410        if (first) { 
411            first = 0; 
412            if (strncmp(buf, "%!PS", 4) != 0) 
413                req.flags |= PR_TEXT; 
414        } 
 
 
      

 

[386–
404] 

We convert the integer fields in the request header to host byte order and call get_newjobno  to reserve 
the next job ID for this print request. We create the job data file, named 
/var/spool/printer/data/ jobid, where jobid is the request's job ID. We use permissions that 
prevent others from being able read the files (FILEPERM is defined as S_IRUSR|S_IWUSR in print.h ). If 
we can't create the file, we log an error message, send a failure response back to the client, and 
terminate the thread by calling pthread_exit . 

[405–
414] 

We read the file contents from the client, with the intent of writing the contents out to our private copy 
of the data file. But before we write anything, we need to check if this is a PostScript file the first time 
through the loop. If the file doesn't begin with the pattern %!PS, we can assume that the file is plaintext, 
so we set the PR_TEXT flag in the request header in this case. (Recall that the client can also set this flag 
if the -t  flag is included when the print  command is executed.) Although PostScript programs are not 
required to start with the pattern %!PS, the document formatting guidelines (Adobe Systems [1999]) 
strongly recommends that they do. 

 
415        nw = write(fd, buf, nr); 
416        if (nw != nr) { 
417            if (nw < 0) 
418                res.retcode = htonl(errno); 
419            else 
420                res.retcode = htonl(EIO); 
421            log_msg("client_thread: can't write %s: %s", name, 
422              strerror(res.retcode)); 
423            close(fd); 



424            strncpy(res.msg, strerror(res.retcod e), MSGLEN_MAX); 
425            writen(sockfd, &res, sizeof(struct p rintresp)); 
426            unlink(name); 
427            pthread_exit((void *)1); 
428        } 
429    } 
430    close(fd); 
 
431    /* 
432     * Create the control file. 
433     */ 
434    sprintf(name, "%s/%s/%ld", SPOOLDIR, REQDIR,  jobid); 
435    fd = creat(name, FILEPERM); 
436    if (fd < 0) { 
437        res.jobid = 0; 
438        if (n < 0) 
439            res.retcode = htonl(errno); 
440        else 
441            res.retcode = htonl(EIO); 
442        log_msg("client_thread: can't create %s:  %s", name, 
443          strerror(res.retcode)); 
444        strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX); 
445        writen(sockfd, &res, sizeof(struct print resp)); 
446        sprintf(name, "%s/%s/%ld", SPOOLDIR, DAT ADIR, jobid); 
447        unlink(name); 
448        pthread_exit((void *)1); 
449    } 
 
 
      

 

[415–
430] 

We write the data that we read from the client to the data file. If write  fails, we log an error message, 
close the file descriptor for the data file, send an error message back to the client, delete the data file, 
and terminate the thread by calling pthread_exit . Note that we do not explicitly close the socket file 
descriptor. This is done for us by our thread cleanup handler as part of the processing that occurs when 
we call pthread_exit . 

  When we receive all the data to be printed, we close the file descriptor for the data file. 

[431–
449] 

Next, we create a file, /var/spool/printer/reqs/ jobid, to remember the print request. If this fails, 
we log an error message, send an error response to the client, remove the data file, and terminate the 
thread. 

 
450    nw = write(fd, &req, sizeof(struct printreq) ); 
451    if (nw != sizeof(struct printreq)) { 
452        res.jobid = 0; 
453        if (nw < 0) 
454            res.retcode = htonl(errno); 
455        else 
456            res.retcode = htonl(EIO); 
457        log_msg("client_thread: can't write %s: %s", name, 
458          strerror(res.retcode)); 
459        close(fd); 
460        strncpy(res.msg, strerror(res.retcode), MSGLEN_MAX); 
461        writen(sockfd, &res, sizeof(struct print resp)); 
462        unlink(name); 
463        sprintf(name, "%s/%s/%ld", SPOOLDIR, DAT ADIR, jobid); 
464        unlink(name); 
465        pthread_exit((void *)1); 
466    } 
467    close(fd); 



 
468    /* 
469     * Send response to client. 
470     */ 
471    res.retcode = 0; 
472    res.jobid = htonl(jobid); 
473    sprintf(res.msg, "request ID %ld", jobid); 
474    writen(sockfd, &res, sizeof(struct printresp )); 
 
475    /* 
476     * Notify the printer thread, clean up, and exit. 
477     */ 
478    log_msg("adding job %ld to queue", jobid); 
479    add_job(&req, jobid); 
480    pthread_cleanup_pop(1); 
481    return((void *)0); 
482  } 
 
 
      

 

[450–
466] 

We write the printreq  structure to the control file. On error, we log a message, close the descriptor for 
the control file, send a failure response back to the client, remove the data and control files, and 
terminate the thread. 

[467–
474] 

We close the file descriptor for the control file and send a message containing the job ID and a 
successful status (retcode  set to 0) back to the client. 

[475–
482] 

We call add_job  to add the received job to the list of pending print jobs and call 
pthread_cleanup_pop  to complete the cleanup processing. The thread terminates when we return. 

  Note that before the thread exits, we must close any file descriptors we no longer need. Unlike process 
termination, file descriptors are not closed automatically when a thread ends if other threads exist in the 
process. If we didn't close unneeded file descriptors, we'd eventually run out of resources. 

 
483    /* 
484    * Add a worker to the list of worker threads . 
485    * 
486    * LOCKING: acquires and releases workerlock.  
487    */ 
488   void 
489   add_worker(pthread_t tid, int sockfd) 
490   { 
491     struct worker_thread    *wtp; 
 
492     if ((wtp = malloc(sizeof(struct worker_thre ad))) == NULL) { 
493         log_ret("add_worker: can't malloc"); 
494         pthread_exit((void *)1); 
495     } 
496     wtp->tid = tid; 
497     wtp->sockfd = sockfd; 
498     pthread_mutex_lock(&workerlock); 
499     wtp->prev = NULL; 
500     wtp->next = workers; 
501     if (workers == NULL) 
502         workers = wtp; 
503     else 
504         workers->prev = wtp; 
505     pthread_mutex_unlock(&workerlock); 
506   } 
 



507   /* 
508    * Cancel (kill) all outstanding workers. 
509    * 
510    * LOCKING: acquires and releases workerlock.  
511    */ 
512   void 
513   kill_workers(void) 
514   { 
515     struct worker_thread    *wtp; 
 
516     pthread_mutex_lock(&workerlock); 
517     for (wtp = workers; wtp != NULL; wtp = wtp- >next) 
518         pthread_cancel(wtp->tid); 
519     pthread_mutex_unlock(&workerlock); 
520   } 
 
 
      

 

[483–
506] 

add_worker  adds a worker_thread  structure to the list of active threads. We allocate memory for the 
structure, initialize it, lock the workerlock  mutex, add the structure to the head of the list, and unlock 
the mutex. 

[507–
520] 

The kill_workers  function walks the list of worker threads and cancels each one. We hold the 
workerlock  mutex while we walk the list. Recall that pthread_cancel  merely schedules a thread for 
cancellation; actual cancellation happens when each thread reaches the next cancellation point. 

 
521   /* 
522    * Cancellation routine for the worker thread . 
523    * 
524    * LOCKING: acquires and releases workerlock.  
525    */ 
526   void 
527   client_cleanup(void *arg) 
528   { 
529     struct worker_thread    *wtp; 
530     pthread_t               tid; 
 
531     tid = (pthread_t)arg; 
532     pthread_mutex_lock(&workerlock); 
533     for (wtp = workers; wtp != NULL; wtp = wtp- >next) { 
534         if (wtp->tid == tid) { 
535             if (wtp->next != NULL) 
536                 wtp->next->prev = wtp->prev; 
537             if (wtp->prev != NULL) 
538                 wtp->prev->next = wtp->next; 
539             else 
540                 workers = wtp->next; 
541             break; 
542         } 
543     } 
544     pthread_mutex_unlock(&workerlock); 
545     if (wtp != NULL) { 
546         close(wtp->sockfd); 
547         free(wtp); 
548     } 
549   } 
 
 
      

 



[521–
543] 

The client_cleanup  function is the thread cleanup handler for the worker threads that communicate 
with client commands. This function is called when the thread calls pthread_exit , calls 
pthread_cleanup_pop  with a nonzero argument, or responds to a cancellation request. The argument 
is the thread ID of the thread terminating. 

  We lock the workerlock  mutex and search the list of worker threads until we find a matching thread 
ID. When we find a match, we remove the worker thread structure from the list and stop the search. 

[544–
549] 

We unlock the workerlock  mutex, close the socket file descriptor used by the thread to communicate 
with the client, and free the memory backing the worker_thread  structure. 

  Since we try to acquire the workerlock  mutex, if a thread reaches a cancellation point while the 
kill_workers  function is still walking the list, we will have to wait until kill_workers  releases the 
mutex before we can proceed. 

 
550   /* 
551    * Deal with signals. 
552    * 
553    * LOCKING: acquires and releases configlock.  
554    */ 
555   void * 
556   signal_thread(void *arg) 
557   { 
558     int     err, signo; 
 
559     for (;;) { 
560         err = sigwait(&mask, &signo); 
561         if (err != 0) 
562             log_quit("sigwait failed: %s", stre rror(err)); 
563         switch (signo) { 
564         case SIGHUP: 
565             /* 
566              * Schedule to re-read the configur ation file. 
567              */ 
568             pthread_mutex_lock(&configlock); 
569             reread = 1; 
570             pthread_mutex_unlock(&configlock); 
571             break; 
 
572         case SIGTERM: 
573             kill_workers(); 
574             log_msg("terminate with signal %s",  strsignal(signo)); 
575             exit(0); 
 
576         default: 
577             kill_workers(); 
578             log_quit("unexpected signal %d", si gno); 
579         } 
580     } 
581   } 
 
 
      

 

[550–
563] 

The signal_thread  function is run by the thread that is responsible for handling signals. In the main  
function, we initialized the signal mask to include SIGHUP and SIGTERM. Here, we call sigwait  to wait 
for one of these signals to occur. If sigwait  fails, we log an error message and exit. 

[564– If we receive SIGHUP, we acquire the configlock  mutex, set the reread  variable to 1, and release the 



[550–
563] 

The signal_thread  function is run by the thread that is responsible for handling signals. In the main  
function, we initialized the signal mask to include SIGHUP and SIGTERM. Here, we call sigwait  to wait 
for one of these signals to occur. If sigwait  fails, we log an error message and exit. 

571] mutex. This tells the printer daemon to reread the configuration file on the next iteration in its 
processing loop. 

[572–
575] 

If we receive SIGTERM, we call kill_workers  to kill all the worker threads, log a message, and call 
exit  to terminate the process. 

[576–
581] 

If we receive a signal we are not expecting, we kill the worker threads and call log_quit  to log a 
message and exit. 

 
582   /* 
583    * Add an option to the IPP header. 
584    * 
585    * LOCKING: none. 
586    */ 
587   char * 
588   add_option(char *cp, int tag, char *optname, char *optval) 
589   { 
590     int     n; 
591     union { 
592         int16_t s; 
593         char c[2]; 
594     }       u; 
 
595     *cp++ = tag; 
596     n = strlen(optname); 
597     u.s = htons(n); 
598     *cp++ = u.c[0]; 
599     *cp++ = u.c[1]; 
600     strcpy(cp, optname); 
601     cp += n; 
602     n = strlen(optval); 
603     u.s = htons(n); 
604     *cp++ = u.c[0]; 
605     *cp++ = u.c[1]; 
606     strcpy(cp, optval); 
607     return(cp + n); 
608   } 
 
 
      

 

[582–
594] 

The add_option  function is used to add an option to the IPP header that we build to send to the printer. 
Recall from Figure 21.3 that the format of an attribute is a 1-byte tag describing the type of the 
attribute, followed by the length of the attribute name stored in binary as a 2-byte integer, followed by 
the name, the size of the attribute value, and finally the value itself. 

  IPP makes no attempt to control the alignment of the binary integers embedded in the header. Some 
processor architectures, such as the SPARC, can't load an integer from an arbitrary address. This means 
that we can't store the integers in the header by casting a pointer to an int16_t  to the address in the 
header where the integer is to be stored. Instead, we need to copy the integer 1 byte at a time. This is 
why we define the union  containing a 16-bit integer and 2 bytes. 

[595–
608] 

We store the tag in the header and convert the length of the attribute name to network byte order. We 
copy the length 1 byte at a time to the header. Then we copy the attribute name. We repeat this process 



[582–
594] 

The add_option  function is used to add an option to the IPP header that we build to send to the printer. 
Recall from Figure 21.3 that the format of an attribute is a 1-byte tag describing the type of the 
attribute, followed by the length of the attribute name stored in binary as a 2-byte integer, followed by 
the name, the size of the attribute value, and finally the value itself. 

for the attribute value and return the address in the header where the next part of the header should 
begin. 

 
609   /* 
610    * Single thread to communicate with the prin ter. 
611    * 
612    * LOCKING: acquires and releases joblock and  configlock. 
613    */ 
614   void * 
615   printer_thread(void *arg) 
616   { 
617     struct job      *jp; 
618     int             hlen, ilen, sockfd, fd, nr,  nw; 
619     char            *icp, *hcp; 
620     struct ipp_hdr  *hp; 
621     struct stat     sbuf; 
622     struct iovec    iov[2]; 
623     char            name[FILENMSZ]; 
624     char            hbuf[HBUFSZ]; 
625     char            ibuf[IBUFSZ]; 
626     char            buf[IOBUFSZ]; 
627     char            str[64]; 
 
628     for (;;) { 
629         /* 
630          * Get a job to print. 
631          */ 
632         pthread_mutex_lock(&joblock); 
633         while (jobhead == NULL) { 
634             log_msg("printer_thread: waiting... "); 
635             pthread_cond_wait(&jobwait, &jobloc k); 
636         } 
637         remove_job(jp = jobhead); 
638         log_msg("printer_thread: picked up job %ld", jp->jobid); 
639         pthread_mutex_unlock(&joblock); 
 
640         update_jobno(); 
 
 
      

 

[609–
627] 

The printer_thread  function is run by the thread that communicates with the network printer. We'll 
use icp  and ibuf  to build the IPP header. We'll use hcp  and hbuf  to build the HTTP header. We need 
to build the headers in separate buffers. The HTTP header includes a length field in ASCII, and we 
won't know how much space to reserve for it until we assemble the IPP header. We'll use writev  to 
write these two headers in one call. 

[628–
640] 

The printer thread runs in an infinite loop that waits for jobs to transmit to the printer. We use the 
joblock  mutex to protect the list of jobs. If a job is not pending, we use pthread_cond_wait  to wait 
for one to arrive. When a job is ready, we remove it from the list by calling remove_job . We still hold 
the mutex at this point, so we release it and call update_jobno  to write the next job number to 
/var/spool/printer/jobno . 

 



641         /* 
642          * Check for a change in the config fil e. 
643          */ 
644         pthread_mutex_lock(&configlock); 
645         if (reread) { 
646             freeaddrinfo(printer); 
647             printer = NULL; 
648             printer_name = NULL; 
649             reread = 0; 
650             pthread_mutex_unlock(&configlock); 
651             init_printer(); 
652         } else { 
653             pthread_mutex_unlock(&configlock); 
654         } 
 
655         /* 
656          * Send job to printer. 
657          */ 
658         sprintf(name, "%s/%s/%ld", SPOOLDIR, DA TADIR, jp->jobid); 
659         if ((fd = open(name, O_RDONLY)) < 0) { 
660             log_msg("job %ld canceled - can't o pen %s: %s", 
661               jp->jobid, name, strerror(errno)) ; 
662             free(jp); 
663             continue; 
664         } 
665         if (fstat(fd, &sbuf) < 0) { 
666             log_msg("job %ld canceled - can't f stat %s: %s", 
667               jp->jobid, name, strerror(errno)) ; 
668             free(jp); 
669             close(fd); 
670             continue; 
671         } 
 
 
      

 

[641–
654] 

Now that we have a job to print, we check for a change in the configuration file. We lock the 
configlock  mutex and check the reread  variable. If it is nonzero, then we free the old printer 
addrinfo  list, clear the pointers, unlock the mutex, and call init_printer  to reinitialize the printer 
information. Since only this context looks at and potentially changes the printer information after the 
main  thread initialized it, we don't need any synchronization other than using the configlock  mutex to 
protect the state of the reread  flag. 

  Note that although we acquire and release two different mutex locks in this function, we never hold 
both at the same time, so we don't need to establish a lock hierarchy (Section 11.6). 

[655–
671] 

If we can't open the data file, we log a message, free the job  structure, and continue. After opening the 
file, we call fstat  to find the size of the file. If this fails, we log a message, clean up, and continue. 

 
672         if ((sockfd = socket(AF_INET, SOCK_STRE AM, 0)) < 0) { 
673             log_msg("job %ld deferred - can't c reate socket: %s", 
674               jp->jobid, strerror(errno)); 
675             goto defer; 
676         } 
677         if (connect_retry(sockfd, printer->ai_a ddr, 
678           printer->ai_addrlen) < 0) { 
679             log_msg("job %ld deferred - can't c ontact printer: %s", 
680               jp->jobid, strerror(errno)); 
681             goto defer; 
682         } 



 
683         /* 
684          * Set up the IPP header. 
685          */ 
686         icp = ibuf; 
687         hp = (struct ipp_hdr *)icp; 
688         hp->major_version = 1; 
689         hp->minor_version = 1; 
690         hp->operation = htons(OP_PRINT_JOB); 
691         hp->request_id = htonl(jp->jobid); 
692         icp += offsetof(struct ipp_hdr, attr_gr oup); 
693         *icp++ = TAG_OPERATION_ATTR; 
694         icp = add_option(icp, TAG_CHARSET, "att ributes-charset", 
695           "utf-8"); 
696         icp = add_option(icp, TAG_NATULANG, 
697           "attributes-natural-language", "en-us "); 
698         sprintf(str, "http://%s:%d", printer_na me, IPP_PORT); 
699         icp = add_option(icp, TAG_URI, "printer -uri", str); 
 
 
      

 

[672–
682] 

We open a stream socket to communicate with the printer. If the socket  call fails, we jump down to 
defer , where we will clean up, delay, and try again later. If we can create a socket, we call 
connect_retry  to connect to the printer. 

[683–
699] 

Next, we set up the IPP header. The operation is a print-job request. We use htons  to convert the 2-
byte operation ID from host to network byte order and htonl  to convert the 4-byte job ID from host to 
network byte order. After the initial portion of the header, we set the tag value to indicate that operation 
attributes follow. We call add_option  to add attributes to the message. Figure 21.4 lists the required 
and optional attributes for print-job requests. The first three are required. We specify the character set 
to be UTF-8, which the printer must support. We specify the language as en-us , which represents U.S. 
English. Another required attribute is the printer Universal Resource Identifier (URI). We set it to 
http:// printer_name:631 . (We really should ask the printer for a list of supported URIs and select 
one from that list, but that would complicate this example without adding much value.) 

 
700         icp = add_option(icp, TAG_NAMEWOLANG, 
701           "requesting-user-name", jp->req.usern m); 
702         icp = add_option(icp, TAG_NAMEWOLANG, " job-name", 
703           jp->req.jobnm); 
704         if (jp->req.flags & PR_TEXT) { 
705             icp = add_option(icp, TAG_MIMETYPE,  "document-format", 
706               "text/plain"); 
707         } else { 
708             icp = add_option(icp, TAG_MIMETYPE,  "document-format", 
709               "application/postscript"); 
710         } 
711         *icp++ = TAG_END_OF_ATTR; 
712         ilen = icp - ibuf; 
 
713         /* 
714          * Set up the HTTP header. 
715          */ 
716         hcp = hbuf; 
717         sprintf(hcp, "POST /%s/ipp HTTP/1.1\r\n ", printer_name); 
718         hcp += strlen(hcp); 
719         sprintf(hcp, "Content-Length: %ld\r\n",  
720           (long)sbuf.st_size + ilen); 
721         hcp += strlen(hcp); 



722         strcpy(hcp, "Content-Type: application/ ipp\r\n"); 
723         hcp += strlen(hcp); 
724         sprintf(hcp, "Host: %s:%d\r\n", printer _name, IPP_PORT); 
725         hcp += strlen(hcp); 
726         *hcp++ = '\r'; 
727         *hcp++ = '\n'; 
728         hlen = hcp - hbuf; 
 
 
      

 

[700–
712] 

The requesting-user-name  attribute is recommended, but not required. The job-name  attribute is 
optional. Recall that the print  command sends the name of the file being printed as the job name, 
which can help users distinguish among multiple pending jobs. The last attribute we supply is the 
document-format . If we omit it, the printer will assume that the file conforms to the printer's default 
format. For a PostScript printer, this is probably PostScript, but some printers can autosense the format 
and choose between PostScript and text or PostScript and PCL (HP's Printer Command Language). If 
the PR_TEXT flag is set, we specify the document format as text/plain . Otherwise, we set it to 
application/postscript . Then we delimit the end of the attributes portion of the header with an 
end-of-attributes tag and calculate the size of the IPP header. 

[713–
728] 

Now that we know the IPP header size, we can set up the HTTP header. We set the Context-Length  to 
the size in bytes of the IPP header plus the size of the file to be printed. The Content-Type  is 
application/ipp . We mark the end of the HTTP header with a carriage return and a line feed. 

 
729         /* 
730          * Write the headers first. Then send t he file. 
731          */ 
732         iov[0].iov_base = hbuf; 
733         iov[0].iov_len = hlen; 
734         iov[1].iov_base = ibuf; 
735         iov[1].iov_len = ilen; 
736         if ((nw = writev(sockfd, iov, 2)) != hl en + ilen) { 
737             log_ret("can't write to printer"); 
738             goto defer; 
739         } 
740         while ((nr = read(fd, buf, IOBUFSZ)) > 0) { 
741             if ((nw = write(sockfd, buf, nr)) ! = nr) { 
742                 if (nw < 0) 
743                   log_ret("can't write to print er"); 
744                 else 
745                   log_msg("short write (%d/%d) to printer", nw, nr); 
746                 goto defer; 
747             } 
748         } 
749         if (nr < 0) { 
750             log_ret("can't read %s", name); 
751             goto defer; 
752         } 
 
753         /* 
754          * Read the response from the printer. 
755          */ 
756         if (printer_status(sockfd, jp)) { 
757             unlink(name); 
758             sprintf(name, "%s/%s/%ld", SPOOLDIR , REQDIR, jp->jobid); 
759             unlink(name); 
760             free(jp); 
761             jp = NULL; 



762         } 
 
 
      

 

[729–
739] 

We set the first element of the iovec  array to refer to the HTTP header and the second element to refer 
to the IPP header. Then we use writev  to send both headers to the printer. If the write fails, we log a 
message and jump to defer , where we will clean up and delay before trying again. 

[740–
752] 

Next, we send the data file to the printer. We read the data file in IOBUFSZ chunks and write it to the 
socket connected to the printer. If either read  or write  fails, we log a message and jump to defer . 

[753–
762] 

After sending the entire file to be printed, we call printer_status  to receive the printer's response to 
our print request. If printer_status  succeeds, it returns a positive value, and we delete the data and 
control files. Then we free the job  structure, set its pointer to NULL, and fall through to the defer  label. 

 
763   defer: 
764         close(fd); 
765         if (sockfd >= 0) 
766             close(sockfd); 
767         if (jp != NULL) { 
768             replace_job(jp); 
769             sleep(60); 
770         } 
771     } 
772   } 
 
773   /* 
774    * Read data from the printer, possibly incre asing the buffer. 
775    * Returns offset of end of data in buffer or  -1 on failure. 
776    * 
777    * LOCKING: none. 
778    */ 
779   ssize_t 
780   readmore(int sockfd, char **bpp, int off, int  *bszp) 
781   { 
782     ssize_t nr; 
783     char    *bp = *bpp; 
784     int     bsz = *bszp; 
 
785     if (off >= bsz) { 
786         bsz += IOBUFSZ; 
787         if ((bp = realloc(*bpp, bsz)) == NULL) 
788             log_sys("readmore: can't allocate b igger read buffer"); 
789         *bszp = bsz; 
790         *bpp = bp; 
791     } 
792     if ((nr = tread(sockfd, &bp[off], bsz-off, 1)) > 0) 
793         return(off+nr); 
794     else 
795         return(-1); 
796   } 
 
 
      

 

[763–
772] 

At the defer  label, we close the file descriptor for the open data file. If the socket descriptor is valid, 
we close it. On error, we place the job back on the head of the pending job list and delay for 1 minute. 
On success, jp  is NULL, so we simply go back to the top of the loop to get the next job to print. 



[763–
772] 

At the defer  label, we close the file descriptor for the open data file. If the socket descriptor is valid, 
we close it. On error, we place the job back on the head of the pending job list and delay for 1 minute. 
On success, jp  is NULL, so we simply go back to the top of the loop to get the next job to print. 

[773–
796] 

The readmore  function is used to read part of the response message from the printer. If we're at the end 
of the buffer, we reallocate a bigger buffer and return the new starting buffer address and buffer size 
through the bpp  and bszp  parameters, respectively. In either case, we read as much as the buffer will 
hold, starting at the end of the data already in the buffer. We return the new offset in the buffer 
corresponding to the end of the data read. If the read  fails or the timeout expires, we return –1. 

 
797   /* 
798    * Read and parse the response from the print er. Return 1 
799    * if the request was successful, and 0 other wise. 
800    * 
801    * LOCKING: none. 
802    */ 
803   int 
804   printer_status(int sockfd, struct job *jp) 
805   { 
806     int             i, success, code, len, foun d, bufsz; 
807     long            jobid; 
808     ssize_t         nr; 
809     char            *statcode, *reason, *cp, *c ontentlen; 
810     struct ipp_hdr  *hp; 
811     char            *bp; 
 
812     /* 
813      * Read the HTTP header followed by the IPP  response header. 
814      * They can be returned in multiple read at tempts. Use the 
815      * Content-Length specifier to determine ho w much to read. 
816      */ 
817     success = 0; 
818     bufsz = IOBUFSZ; 
819     if ((bp = malloc(IOBUFSZ)) == NULL) 
820         log_sys("printer_status: can't allocate  read buffer"); 
 
821     while ((nr = tread(sockfd, bp, IOBUFSZ, 5))  > 0) { 
822         /* 
823          * Find the status. Response starts wit h "HTTP/x.y" 
824          * so we can skip the first 8 character s. 
825          */ 
826         cp = bp + 8; 
827         while (isspace((int)*cp)) 
828             cp++; 
829         statcode = cp; 
830         while (isdigit((int)*cp)) 
831             cp++; 
832         if (cp == statcode) { /* Bad format; lo g it and move on */ 
833             log_msg(bp); 
 
 
      

 

[797–
811] 

The printer_status  function reads the printer's response to a print-job request. We don't know how 
the printer will respond; it might send a response in multiple messages, send the complete response in 
one message, or include intermediate acknowledgements, such as HTTP 100 Continue  messages. We 
need to handle all these possibilities. 

[812– We allocate a buffer and read from the printer, expecting a response to be available within about 5 



[797–
811] 

The printer_status  function reads the printer's response to a print-job request. We don't know how 
the printer will respond; it might send a response in multiple messages, send the complete response in 
one message, or include intermediate acknowledgements, such as HTTP 100 Continue  messages. We 
need to handle all these possibilities. 

833] seconds. We skip the HTTP/1.1  and any white space that starts the message. The numeric status code 
should follow. If it doesn't, we log the contents of the message. 

 
834         } else { 
835             *cp++ = '\0'; 
836             reason = cp; 
837             while (*cp != '\r' && *cp != '\n') 
838                 cp++; 
839             *cp = '\0'; 
840             code = atoi(statcode); 
841             if (HTTP_INFO(code)) 
842                 continue; 
843             if (!HTTP_SUCCESS(code)) { /* proba ble error: log it */ 
844                 bp[nr] = '\0'; 
845                 log_msg("error: %s", reason); 
846                 break; 
847             } 
 
848             /* 
849              * The HTTP request was okay, but w e still 
850              * need to check the IPP status. Fi rst 
851              * search for the Content-Length sp ecifier. 
852              */ 
853             i = cp - bp; 
854             for (;;) { 
855                 while (*cp != 'C' && *cp != 'c'  && i < nr) { 
856                     cp++; 
857                     i++; 
858                 } 
859                 if (i >= nr && /* get more head er */ 
860                   ((nr = readmore(sockfd, &bp, i, &bufsz)) < 0)) 
861                     goto out; 
862                 cp = &bp[i]; 
 
 
      

 

[834–
839] 

If we have found a numeric status code in the response, we convert the first nondigit character to a null 
byte. The reason string (a text message) should follow. We search for the terminating carriage return or 
line feed, also terminating the text string with a null byte. 

[840–
847] 

We convert the code to an integer. If this is an informational message only, we ignore it and continue 
the loop so we end up reading more. We expect to see either a success message or an error message. If 
we get an error message, we log the error and break out of the loop. 

[848–
862] 

If the HTTP request was successful, we need to check the IPP status. We search through the message 
until we find the Content-Length  attribute, so we look for a C or c . HTTP header keywords are case-
insensitive, so we need to check both lowercase and uppercase characters. 

  If we run out of buffer space, we read some more. Since readmore  calls realloc , which might change 
the address of the buffer, we need to reset cp  to point to the correct place in the buffer. 

 
863                 if (strncasecmp(cp, "Content-Le ngth:", 15) == 0) { 
864                     cp += 15; 



865                     while (isspace((int)*cp)) 
866                         cp++; 
867                     contentlen = cp; 
868                     while (isdigit((int)*cp)) 
869                         cp++; 
870                     *cp++ = '\0'; 
871                     i = cp - bp; 
872                     len = atoi(contentlen); 
873                     break; 
874                 } else { 
875                     cp++; 
876                     i++; 
877                 } 
878             } 
879             if (i >= nr && /* get more header * / 
880               ((nr = readmore(sockfd, &bp, i, & bufsz)) < 0)) 
881                 goto out; 
882             cp = &bp[i]; 
 
883             found = 0; 
884             while (!found) {     /* look for en d of HTTP header */ 
885                 while (i < nr - 2) { 
886                     if (*cp == '\n' && *(cp + 1 ) == '\r' && 
887                       *(cp + 2) == '\n') { 
888                         found = 1; 
889                         cp += 3; 
890                         i += 3; 
891                         break; 
892                     } 
893                     cp++; 
894                     i++; 
895                 } 
896                 if (i >= nr && /* get more head er */ 
897                   ((nr = readmore(sockfd, &bp, i, &bufsz)) < 0)) 
898                     goto out; 
899                 cp = &bp[i]; 
900             } 
 
 
      

 

[863–
882] 

If we find the Content-Length  attribute string, we search for its value. We convert this numeric string 
into an integer, break out of the for  loop, and read more from the printer if we've exhausted the 
contents of the buffer. If we reach the end of the buffer without finding the Content-Length  attribute, 
we continue in the loop and read some more from the printer. 

[883–
900] 

Once we get the length of the message as specified by the Content-Length  attribute, we search for the 
end of the HTTP header (a blank line). If we find it, we set the found  flag and skip past the blank line 
in the message. 

 
901             if (nr - i < len && /* get more hea der */ 
902               ((nr = readmore(sockfd, &bp, i, & bufsz)) < 0)) 
903                 goto out; 
904             cp = &bp[i]; 
 
905             hp = (struct ipp_hdr *)cp; 
906             i = ntohs(hp->status); 
907             jobid = ntohl(hp->request_id); 
908             if (jobid != jp->jobid) { 
909                 /* 
910                  * Different jobs. Ignore it. 



911                  */ 
912                 log_msg("jobid %ld status code %d", jobid, i); 
913                 break; 
914             } 
 
915             if (STATCLASS_OK(i)) 
916                 success = 1; 
917             break; 
918         } 
919      } 
 
920    out: 
921      free(bp); 
922      if (nr < 0) { 
923          log_msg("jobid %ld: error reading prin ter response: %s", 
924            jobid, strerror(errno)); 
925      } 
926      return(success); 
927   } 
 
 
      

 

[901–
904] 

We continue searching for the end of the HTTP header. If we run out of space in the buffer, we read 
more. When we find the end of the HTTP header, we calculate the number of bytes that the HTTP 
header consumed. If the amount we've read minus the size of the HTTP header is not equal to the 
amount of data in the IPP message (the value we calculated from the content length), then we read 
some more. 

[905–
927] 

We get the status and job ID from the IPP header in the message. Both are stored as integers in network 
byte order, so we need to convert them to the host byte order by calling ntohs  and ntohl . If the job 
IDs don't match, then this is not our response, so we log a message and break out of the outer while  
loop. If the IPP status indicates success, then we save the return value and break out of the loop. We 
return 1 if the print request was successful and 0 if it failed. 

 

This concludes our look at the extended example in this chapter. The programs in this chapter were tested with a 
Xerox Phaser 860 network-attached PostScript printer. Unfortunately, this printer doesn't recognize the 
text/plain  document format, but it does support the ability to autosense between plaintext and PostScript. 
Therefore, with this printer, we can print PostScript files and text files, but we cannot print the source to a 
PostScript program as plaintext unless we use some other utility, such as a2ps (1) to encapsulate the PostScript 
program. 

 
 
 
 
 
 
 
 
 
 
 
 



 

21.6. Summary 

This chapter has examined in detail two complete programs: a print spooler daemon that sends a print job to a 
network printer and a command that can be used to submit a job to be printed to the spooling daemon. This has 
given us a chance to see lots of features that we described in earlier chapters used in a real program: threads, I/O 
multiplexing, file I/O, socket I/O, and signals. 



Appendix A. Function Prototypes 

This appendix contains the function prototypes for the standard ISO C, POSIX, and UNIX System functions 
described in the text. Often, we want to see only the arguments to a function ("Which argument is the file 
pointer for fgets ?") or only the return value ("Does sprintf  return a pointer or a count?"). These prototypes 
also show which headers need to be included to obtain the definitions of any special constants and to obtain the 
ISO C function prototype to help detect any compile-time errors. 

The page number reference for each function prototype appears to the right of the first header file listed for the 
function. The page number reference gives the page containing the prototype for the function. That page should 
be consulted for additional information on the function. 

Some functions are supported by only a few of the platforms described in this text. In addition, some platforms 
support function flags that other platforms don't support. In these cases, we usually list the platforms for which 
support is provided. In a few cases, however, we list platforms that lack support. 

void  abort (void); 

 

    <stdlib.h> 

 

This function never returns 

p. 
340  

int  accept(intsockfd, struct sockaddr *restrict addr, 
       socklen_t *restrict len); 

 

    <sys/socket.h> 

 

Returns: file (socket) descriptor if OK, –1 on error 

p. 
563 

int  access(const char *pathname, int mode); 
             <unistd.h> 
             mode: R_OK, W_OK, X_OK, F_OK 

 

    Returns: 0 if OK, –1 on error p. 95 

unsigned 
int 

 

alarm(unsigned int seconds); 

 

    <unistd.h> 

 

Returns: 0 or number of seconds until previously set alarm 

p. 
313  

char  *asctime(const struct tm *tmptr); 

 

    <time.h> 

 

Returns: pointer to null-terminated string 

p. 
175  



void  abort (void); 

 

int  atexit(void (*func)(void)); 

 

    <stdlib.h> 

 

Returns: 0 if OK, nonzero on error 

p. 
182  

int  bind(int sockfd, const struct sockaddr *addr, 
 socklen_t len); 

 

    <sys/socket.h> 

 

Returns: 0 if OK, –1 on error 

p. 
560  

void  *calloc(size_t nobj, size_t size); 

 

    <stdlib.h> 

 

Returns: non-null pointer if OK, NULL on error 

p. 
189 

speed_t  cfgetispeed(const struct termios *termptr); 

 

    <termios.h> 

 

Returns: baud rate value 

p. 
652 

speed_t  cfgetospeed(const struct termios *termptr); 

 

    <termios.h> 

 

Returns: baud rate value 

p. 
652 

int  cfsetispeed(struct termios *termptr, speed_t speed) ; 

 

    <termios.h> 

 

Returns: 0 if OK, –1 on error 

p. 
652 

int  cfsetospeed(struct termios *termptr, speed_t speed) ; 

 

    <termios.h> 

 

Returns: 0 if OK, –1 on error 

p. 
652 

int  chdir(const char *pathname); 



void  abort (void); 

 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
125 

int  chmod(const char *pathname, mode_t mode); 

 

    <sys/stat.h>mode: 
S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH) 

 

Returns: 0 if OK, –1 on error 

p. 99 

int  chown(const char *pathname, uid_t owner, gid_t grou p); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
102  

void  clearerr(FILE *fp); 

 

    <stdio.h> 

 
p. 
141 

int  close(int filedes); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 63 

int  closedir(DIR *dp); 

 

    <dirent.h> 

 

Returns: 0 if OK, –1 on error 

p. 
120 

void  closelog(void); 

 

    <syslog.h> 

 
p. 
430 

unsigned 
char 

 

*CMSG_DATA(struct cmsghdr *cp); 

 

    <sys/socket.h> 

 
p. 
607 



void  abort (void); 

 

Returns: pointer to data associated with cmsghdr  structure 

struct 
cmsghdr 

 

*CMSG_FIRSTHDR(struct msghdr *mp); 

 

    <sys/socket.h> 

 

Returns: pointer to first cmsghdr  structure associated with the msghdr  
structure, or NULL if none exists 

p. 
607 

unsigned 
int 

 

CMSG_LEN(unsigned int nbytes); 

 

    <sys/socket.h> 

 

Returns: size to allocate for data object nbytes large 

p. 
607 

struct 
cmsghdr 

 

*CMSG_NXTHDR(struct msghdr *mp, struct cmsghdr *cp) ; 

 

    <sys/socket.h> 

 

Returns: pointer to next cmsghdr  structure associated with the msghdr  
structure given the current cmsghdr  structure, or NULL if we're 

at the last one 

p. 
607 

int  connect(int sockfd, const struct sockaddr *addr, 
 socklen_t len); 

 

    <sys/socket.h> 

 

Returns: 0 if OK, –1 on error 

p. 
561 

int  creat(const char *pathname, mode_t mode); 

 

    <fcntl.h> 
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH) 

 

Returns: file descriptor opened for write-only if OK, –1 on error 

p. 62 

char  *ctermid(char *ptr); 

 

    <stdio.h> 

 
p. 
654 



void  abort (void); 

 

Returns: pointer to name of controlling terminal on success, pointer to 
empty string on error 

char  *ctime(const time_t *calptr); 

 

    <time.h> 

 

Returns: pointer to null-terminated string 

p. 
175 

int  dup(int filedes); 

 

    <unistd.h> 

 

Returns: new file descriptor if OK, –1 on error 

p. 76 

int  dup2(int filedes, int filedes2); 

 

    <unistd.h> 

 

Returns: new file descriptor if OK, –1 on error 

p. 76 

void  endgrent(void); 

 

    <grp.h> 

 
p. 
167  

void  endhostent(void); 

 

    <netdb.h> 

 
p. 
553 

void  endnetent(void); 

 

    <netdb.h> 

 
p. 
554 

void  endprotoent(void); 

 

    <netdb.h> 

 
p. 
554 

void  endpwent(void); 

 

    <pwd.h> 

 
p. 
164 

void  endservent(void); 



void  abort (void); 

 

 

    <netdb.h> 

 
p. 
555 

void  endspent(void); 

 

    <shadow.h> 

 

Platforms: Linux 2.4.22, Solaris 9 

p. 
166 

int  execl(const char *pathname, const char *arg0, ... / * (char *) 0 */ ); 

 

    <unistd.h> 

 

Returns: –1 on error, no return on success 

p. 
231 

int  execle(const char *pathname, const char *arg0, ... /* (char *) 0, 
       char *const envp[] */ ); 

 

    <unistd.h> 

 

Returns: –1 on error, no return on success 

p. 
231 

int  execlp(const char *filename, const char *arg0, ... /* (char *) 0 */ ); 

 

    <unistd.h> 

 

Returns: –1 on error, no return on success 

p. 
231 

int  execv(const char *pathname, char *const argv[]); 

 

    <unistd.h> 

 

Returns: –1 on error, no return on success 

p. 
231 

int  execve(const char *pathname, char *const argv[], ch ar *const envp[]); 

 

    <unistd.h> 

 

Returns: –1 on error, no return on success 

p. 
231 

int  execvp(const char *filename, char *const argv[]); 

 

    <unistd.h> p. 



void  abort (void); 

 

 

Returns: –1 on error, no return on success 

231 

void  _Exit(int status); 

 

    <stdlib.h> 

 

This function never returns 

p. 
180 

void  _exit(int status); 

 

    <unistd.h> 

 

This function never returns 

p. 
180 

void  exit(int status); 

 

    <stdlib.h> 

 

This function never returns 

p. 
180 

int  fattach(int filedes, const char *path); 

 

    <stropts.h> 

 

Returns: 0 if OK, –1 on error 
Platforms: Linux 2.4.22, Solaris 9 

p. 
589 

int  fchdir(int filedes); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
125 

int  fchmod(int filedes, mode_t mode); 

 

    <sys/stat.h> 
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH) 

 

Returns: 0 if OK, –1 on error 

p. 99 

int  fchown(int filedes, uid_t owner, gid_t group); 

 

    <unistd.h> p. 



void  abort (void); 

 

 

Returns: 0 if OK, –1 on error 

102 

int  fclose(FILE *fp); 

 

    <stdio.h> 

 

Returns: 0 if OK, EOF on error 

p. 
139 

int  fcntl(int filedes, int cmd, ... /* int arg */ ); 

 

    <fcntl.h> 
cmd: F_DUPFD, F_GETFD, F_SETFD, F_GETFL, F_SETFL, 
     F_GETOWN, F_SETOWN, F_GETLK, F_SETLK, F_SETLKW  

 

Returns: depends on cmd if OK, –1 on error 

p. 78 

int  fdatasync(int filedes); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 
Platforms : Linux 2.4.22, Solaris 9 

p. 77 

void  FD_CLR(int fd, fd_set *fdset); 

 

    <sys/select.h> 

 
p. 
476 

int  fdetach(const char *path); 

 

    <stropts.h> 

 

Returns: 0 if OK, –1 on error 
Platforms: Linux 2.4.22, Solaris 9 

p. 
590 

int  FD_ISSET(int fd, fd_set *fdset); 

 

    <sys/select.h> 

 

Returns: nonzero if fd is in set, 0 otherwise 

p. 
476 

FILE  *fdopen(int filedes, const char *type); 

 

    <stdio.h> p. 



void  abort (void); 

 

type: "r", "w", "a", "r+", "w+", "a+", 

 

Returns: file pointer if OK, NULL on error 

138 

void  FD_SET(int fd, fd_set *fdset); 

 

    <sys/select.h> 

 
p. 
476 

void  FD_ZERO(fd_set *fdset); 

 

    <sys/select.h> 

 
p. 
476 

int  feof(FILE *fp); 

 

    <stdio.h> 

 

Returns: nonzero (true) if end of file on stream, 0 (false) otherwise 

p. 
141 

int  ferror(FILE *fp); 

 

    <stdio.h> 

 

Returns: nonzero (true) if error on stream, 0 (false) otherwise 

p. 
141 

int  fflush(FILE *fp); 

 

    <stdio.h> 

 

Returns: 0 if OK, EOF on error 

p. 
137 

int  fgetc(FILE *fp); 

 

    <stdio.h> 

 

Returns: next character if OK, EOF on end of file or error 

p. 
140 

int  fgetpos(FILE *restrict fp, fpos_t *restrict pos); 

 

    <stdio.h> 

 

Returns: 0 if OK, nonzero on error 

p. 
148 

char  *fgets(char *restrict buf, int n, FILE *restrict fp ); 



void  abort (void); 

 

 

    <stdio.h> 

 

Returns: buf  if OK, NULL on end of file or error 

p. 
142 

int  fileno(FILE *fp); 

 

    <stdio.h> 

 

Returns: file descriptor associated with the stream 

p. 
153 

void  flockfile(FILE *fp); 

 

    <stdio.h> 

 
p. 
403 

FILE  *fopen(const char *restrict pathname, const char *r estrict type); 

 

    <stdio.h> 
type: "r", "w", "a", "r+", "w+", "a+", 

 

Returns: file pointer if OK, NULL on error 

p. 
138 

pid_t  fork(void); 

 

    <unistd.h> 

 

Returns: 0 in child, process ID of child in parent, –1 on error 

p. 
211 

long  fpathconf(int filedes, int name); 

 

    <unistd.h> 
name: _PC_ASYNC_IO, _PC_CHOWN_RESTRICTED, 
      _PC_FILESIZEBITS, _PC_LINK_MAX, _PC_MAX_CANON , 
      _PC_MAX_INPUT, _PC_NAME_MAX, _PC_NO_TRUNC, 
      _PC_PATH_MAX, 'u'_PC_PIPE_BUF, _PC_PRIO_IO, _ PC_SYNC_IO, 
      _PC_SYMLINK_MAX, _PC_VDISABLE 

 

Returns: corresponding value if OK, –1 on error 

p. 41 

int  fprintf(FILE *restrict fp, const char *restrict for mat, ...); 

 

    <stdio.h> 

 

Returns: number of characters output if OK, negative value if output error 

p. 
149 



void  abort (void); 

 

int  fputc(int c, FILE *fp); 

 

    <stdio.h> 

 

Returns: c if OK, EOF on error 

p. 
142 

int  fputs(const char *restrict str, FILE *restrict fp);  

 

    <stdio.h> 

 

Returns: non-negative value if OK, EOF on error 

p. 
143 

size_t  fread(void *restrict ptr, size_t size, size_t nobj 
, FILE *restrict fp); 

 

    <stdio.h> 

 

Returns: number of objects read 

p. 
146 

void  free(void *ptr); 

 

    <stdlib.h> 

 
p. 
189 

void  freeaddrinfo(struct addrinfo *ai); 

 

    <sys/socket.h> 
<netdb.h> 

 

p. 
555 

FILE  *freopen(const char *restrict pathname, const char *restrict type, 
         FILE *restrict fp); 

 

    <stdio.h>type: "r", "w", "a", "r+", "w+", "a+", 

 

Returns: file pointer if OK, NULL on error 

p. 
138 

int  fscanf(FILE *restrict fp, const char *restrict form at, ...); 

 

    <stdio.h> 

 

Returns: number of input items assigned, EOF if input error or end of file 
before any conversion 

p. 
151 

int  fseek(FILE *fp, long offset, int whence); 

 



void  abort (void); 

 

    <stdio.h> 
whence: SEEK_SET, SEEK_CUR, SEEK_END 

 

Returns: 0 if OK, nonzero on error 

p. 
147 

int  fseeko(FILE *fp, off_t offset, int whence); 

 

    <stdio.h> 
whence: SEEK_SET, SEEK_CUR, SEEK_END 

 

Returns: 0 if OK, nonzero on error 

p. 
148 

int  fsetpos(FILE *fp, const fpos_t *pos); 

 

    <stdio.h> 

 

Returns: 0 if OK, nonzero on error 

p. 
148 

int  fstat(int filedes, struct stat *buf); 

 

    <sys/stat.h> 

 

Returns: 0 if OK, –1 on error 

p. 87 

int  fsync(int filedes); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 77 

long  ftell(FILE *fp); 

 

    <stdio.h> 

 

Returns: current file position indicator if OK, -1L on error 

p. 
147 

off_t  ftello(FILE *fp); 

 

    <stdio.h> 

 

Returns: current file position indicator if OK, (off_t) -1 on error 

p. 
148 

key_t  ftok(const char *path, int id); 

 



void  abort (void); 

 

    <sys/ipc.h> 

 

Returns: key if OK, (key_t) -1 on error 

p. 
519 

int  ftruncate(int filedes, off_t length); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
105 

int  ftrylockfile(FILE *fp); 

 

    <stdio.h> 

 

Returns: 0 if OK, nonzero if lock can't be acquired 

p. 
403 

void  funlockfile(FILE *fp); 

 

    <stdio.h> 

 
p. 
403 

int  fwide(FILE *fp, int mode); 

 

    <stdio.h> 
<wchar.h> 

 

Returns: positive if stream is wide oriented, negative if stream is 
byte oriented, or 0 if stream has no orientation 

p. 
134 

size_t  fwrite(const void *restrict ptr, size_t size, 
 size_t nobj, 
       FILE *restrict fp); 

 

    <stdio.h> 

 

Returns: number of objects written 

p. 
146 

const  
char  

*gai_strerror(int error); 

 

    <netdb.h> 

 

Returns: a pointer to a string describing the error 

p. 
556 

int  getaddrinfo(const char *restrict host, const char * restrict service, 
            const struct addrinfo *restrict hint, 
            struct addrinfo **restrict res); 



void  abort (void); 

 

 

    <sys/socket.h> <netdb.h> 

 

Returns: 0 if OK, nonzero error code on error 

p. 
555 

int  getc(FILE *fp); 

 

    <stdio.h> 

 

Returns: next character if OK, EOF on end of file or error 

p. 
140 

int  getchar(void); 

 

    <stdio.h> 

 

Returns: next character if OK, EOF on end of file or error 

p. 
140 

int  getchar_unlocked(void); 

 

    <stdio.h> 

 

Returns: the next character if OK, EOF on end of file or error 

p. 
403 

int  getc_unlocked(FILE *fp); 

 

    <stdio.h> 

 

Returns: the next character if OK, EOF on end of file or error 

p. 
403 

char  *getcwd(char *buf, size_t size); 

 

    <unistd.h> 

 

Returns: buf if OK, NULL on error 

p. 
126 

gid_t  getegid(void); 

 

    <unistd.h> 

 

Returns: effective group ID of calling process 

p. 
210 

char  *getenv(const char *name); 

 



void  abort (void); 

 

    <stdlib.h> 

 

Returns: pointer to value associated with name, NULL if not found 

p. 
192 

uid_t  geteuid(void); 

 

    <unistd.h> 

 

Returns: effective user ID of calling process 

p. 
210 

gid_t  getgid(void); 

 

    <unistd.h> 

 

Returns: real group ID of calling process 

p. 
210 

structgroup 

 
*getgrent(void); 

 

    <grp.h> 

 

Returns: pointer if OK, NULL on error or end of file 

p. 
167 

structgroup 

 
*getgrgid(gid_t gid); 

 

    <grp.h> 

 

Returns: pointer if OK, NULL on error 

p. 
166 

structgroup 

 
*getgrnam(const char *name); 

 

    <grp.h> 

 

Returns: pointer if OK, NULL on error 

p. 
166 

int  getgroups(int gidsetsize, gid_t grouplist[]); 

 

    <unistd.h> 

 

Returns: number of supplementary group IDs if OK, –1 on error 

p. 
168 

structhostent 

 
*gethostent(void); 

 

    <netdb.h> 

 
p. 



void  abort (void); 

 

Returns: pointer if OK, NULL on error 
553 

int  gethostname(char *name, int namelen); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
172 

char  *getlogin(void); 

 

    <unistd.h> 

 

Returns: pointer to string giving login name if OK, NULL on error 

p. 
256 

int  getmsg(int filedes, struct strbuf *restrict ctlptr,  
      struct strbuf *restrict dataptr, int *restric t flagptr); 

 

    <stropts.h>* 
flagptr: 0, RS_HIPRI 

 

Returns: non-negative value if OK, –1 on error 
Platforms: Linux 2.4.22, Solaris 9 

p. 
469 

int  getnameinfo(const struct sockaddr *restrict addr, 
 socklen_t alen, 
            char *restrict host, socklen_t hostlen 
, char *restrict service, 
            socklen_t servlen, unsigned int flags);  

 

    <sys/socket.h> <netdb.h> 

 

Returns: 0 if OK, nonzero on error 

p. 
556 

structnetent 

 
*getnetbyaddr(uint32_t net, int type); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p. 
554 

structnetent 

 
*getnetbyname(const char *name); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p. 
554 



void  abort (void); 

 

structnetent 

 
*getnetent(void); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p. 
554 

int  getopt(int argc, const * const argv[], const char * options); 

 

    <fcntl.h> 
extern int optind, opterr, optopt; 
extern char *optarg; 

 

Returns: the next option character, or –1 when all options have been processed 

p. 
774 

int  getpeername(int sockfd, struct sockaddr *restrict a ddr, 
            socklen_t *restrict alenp); 

 

    <sys/socket.h> 

 

Returns: 0 if OK, –1 on error 

p. 
561 

pid_t  getpgid(pid_t pid); 

 

    <unistd.h> 

 

Returns: process group ID if OK, –1 on error 

p. 
269 

pid_t  getpgrp(void); 

 

    <unistd.h> 

 

Returns: process group ID of calling process 

p. 
269 

pid_t  getpid(void); 

 

    <unistd.h> 

 

Returns: process ID of calling process 

p. 
210 

int  getpmsg(int filedes, struct strbuf *restrict ctlptr , 
        struct strbuf *restrict dataptr, int *restr ict bandptr, 
        int *restrict flagptr); 

 

    <stropts.h> 
          *flagptr: 0, MSG_HIPRI, MSG_BAND, MSG_ANY  

p. 
469 



void  abort (void); 

 

 

Returns: non-negative value if OK, –1 on error 
Platforms: Linux 2.4.22, Solaris 9 

pid_t  getppid(void);  

    <unistd.h> 

 

Returns: parent process ID of calling process 

p.210 

structprotoent  

 
*getprotobyname(const char *name); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p.554 

structprotoent  

 
*getprotobynumber(int proto); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p.554 

structprotoent  

 
*getprotoent(void); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error. 

p.554 

structpasswd 

 
*getpwent(void); 

 

    <pwd.h> 

 

Returns: pointer if OK, NULL on error or end of file 

p.164 

structpasswd 

 
*getpwnam(const char *name); 

 

    <pwd.h> 

 

Returns: pointer if OK, NULL on error 

p.163 

structpasswd 

 
*getpwuid(uid_tuid); 

 

    <pwd.h> 

 
p.163 



void  abort (void); 

 

Returns: pointer if OK, NULL on error 

int  getrlimit(int resource, struct rlimit *rlptr); 

 

    <sys/resource.h> 

 

Returns: 0 if OK, nonzero on error 

p.202 

char  *gets(char *buf); 

 

    <stdio.h> 

 

Returns: buf  if OK, NULL on end of file or error 

p142 

structservent 

 
*getservbyname(const char *name, const char *proto) ; 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p.555 

structservent 

 
*getservbyport(int port, const char *proto); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p.555 

structservent 

 
*getservent(void); 

 

    <netdb.h> 

 

Returns: pointer if OK, NULL on error 

p.555 

pid_t  getsid(pid_t pid); 

 

    <unistd.h> 

 

Returns: session leader's process group ID if OK, –1 on error 

p.271 

int  getsockname(int sockfd, struct sockaddr *restrict a ddr, 
            socklen_t *restrict alenp); 

 

    <sys/socket.h> 

 
p.561 



void  abort (void); 

 

Returns: 0 if OK, –1 on error 

int  getsockopt(int sockfd, int level, int option, void *restrict val, 
           socklen_t *restrict lenp); 

 

    <sys/socket.h> 

 

Returns: 0 if OK, –1 on error 

p.579 

structspwd 

 
*getspent(void); 

 

    <shadow.h> 

 

Returns: pointer if OK, NULL on error 

Platforms: Linux 2.4.22, Solaris 9 

p.166 

structspwd 

 
*getspnam(const char *name); 

 

    <shadow.h> 

 

Returns: pointer if OK, NULL on error 

Platforms: Linux 2.4.22, Solaris 9 

p.166 

int  gettimeofday(struct timeval *restrict tp, void *res trict tzp); 

 

    <sys/time.h> 

 

Returns: 0 always 

p.173 

uid_t  getuid(void); 

 

    <unistd.h> 

 

Returns: real user ID of calling process 

p.210 

structtm 

 
*gmtime(const time_t *calptr); 

 

    <time.h> 

 

Returns: pointer to broken-down time 

p.175 

int  grantpt(int filedes); 



void  abort (void); 

 

 

    <stdlib.h> 

 

Returns: 0 on success, –1 on error 

Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9 

p.682 

uint32_t  htonl(uint32_t hostint32); 

 

    <arpa/inet.h> 

 

Returns: 32-bit integer in network byte order 

p.550 

uint16_t  htons(uint16_t hostint16); 

 

    <arpa/inet.h> 

 

Returns: 16-bit integer in network byte order 

p.550 

constchar 

 
*inet_ntop(int domain, const void *restrict addr, 
 char *restrict str, 
           socklen_t size); 

 

    <arpa/inet.h> 

 
Returns: pointer to address string on success, NULL on error 

p.552 

int  inet_pton(int domain, const char *restrict str, 
 void *restrict addr); 

 

    <arpa/inet.h> 

 

Returns: 1 on success, 0 if the format is invalid, or –1 on error 

p.552 

int  initgroups(const char *username, gid_t basegid); 

 

             <grp.h>    /* Linux & Solaris */ 
         <unistd.h> /* FreeBSD & Mac OS X */ 

 

Returns: 0 if OK, –1 on error 

p.168 

int  ioctl(int filedes, int request, ...); 

 

             <unistd.h>        /* System V */ 
         <sys/ioctl.h>     /* BSD and Linux */ 
         <stropts.h>       /* XSI STREAMS */ 

p.83 



void  abort (void); 

 

 

Returns: –1 on error, something else if OK 

int  isastream(int filedes); 

 

    <stropts.h> 

 

Returns: 1 (true) if STREAMS device, 0 (false) otherwise 

Platforms: Linux 2.4.22, Solaris 9 

p.465 

int  isatty(int filedes); 

 

    <unistd.h> 

 

Returns: 1 (true) if terminal device, 0 (false) otherwise 

p.655 

int   kill(pid_t pid, int signo); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p.312 

int  lchown(const char *pathname, uid_t owner, gid_t gro up); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p.102 

int  link(const char *existingpath, const char *newpath) ; 

 

    <unistd.h> 

 
Returns: 0 if OK, –1 on error 

p.109 

int  listen(int sockfd, int backlog); 

 

    <sys/socket.h> 

 

Returns: 0 if OK, –1 on error 

p.563 

structtm 

 
*localtime(const time_t *calptr); 

 

    <time.h> 

 
p.175 



void  abort (void); 

 

Returns: pointer to broken-down time 

void  longjmp(jmp_buf env, int val); 

 

    <setjmp.h> 

 

This function never returns 

p. 
197 

off_t  lseek(int filedes, off_t offset, int whence); 

 

    <unistd.h> 
whence; SEEK_SET, SEEK_CUR, SEEK_END 

 

Returns: new file offset if OK, –1 on error 

p.63 

int  lstat(const char *restrict pathname, struct stat *r estrict buf; 

 

    <sys/stat.h> 

 

Returns: 0 if OK, –1 on error 

p.87 

void  *malloc(size_t size); 

 

    <stdlib.h> 

 

Returns: non-null pointer if OK, NULL on error 

p.189 

int  mkdir(const char *pathname, mode_t mode; 

 

    <sys/stat.h> 
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH) 

 

Returns: 0 if OK, –1 on error 

p.119 

int  mkfifo(const char *pathname, mode_t mode); 

 

    <sys/stat.h> 
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH) 

 

Returns: 0 if OK, –1 on error 

p.514 

int  mkstemp(char *template); 

 

    <stdlib.h> p.158 



void  abort (void); 

 

 

Returns: file descriptor if OK, –1 on error 

time_t  mktime(struct tm *tmptr); 

 

    <time.h> 

 

Returns: calendar time if OK, –1 on error 

p.175 

caddr_t  mmap(void *addr, size_t len, int prot, int flag, 
 int filedes, off_t off); 

 

    <sys/mman.h> 
prot: PROT_READ, PROT_WRITE, PROT_EXEC, PROT_NONE 
flag: MAP_FIXED, MAP_SHARED, MAP_PRIVATE 

 

Returns: starting address of mapped region if OK, MAP_FAILED on error 

p.487 

int  mprotect(void *addr, size_t len, int prot); 

 

    <sys/mman.h> 

 

Returns: 0 if OK, –1 on error 

p.489 

int  msgctl(int msqid, int cmd, struct msqid_ds *buf ); 

 

    <sys/msg.h> 
cmd: IPC_STAT, IPC_SET, IPC_RMID 

 

Returns: 0 if OK, –1 on error 
Platforms: FreeBSD 5.2.1, Linux 2.4 .22, Solaris 9 

p.524 

int  msgget(key_t key, int flag); 

 

    <sys/msg.h> 
flag: 0, IPC_CREAT, IPC_EXCL 

 

Returns: message queue ID if OK, –1 on error 
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9 

p.524 

ssize_t  msgrcv(int msqid, void *ptr, size_t nbytes, long ty pe, int flag); 

 

    <sys/msg.h> 
flag: 0, IPC_NOWAIT, MSG_NOERROR 

 

p.526 



void  abort (void); 

 

Returns: size of data portion of message if OK, –1 on error 
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9 

int  msgsnd(int msqid, const void *ptr, size_t nbytes, 
 int flag); 

 

    <sys/msg.h> 
flag: 0, IPC_NOWAIT 

 

Returns: 0 if OK, –1 on error 
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9 

p.525 

int  msync(void *addr, size_t len, int flags); 

 

    <sys/mman.h> 

 

Returns: 0 if OK, –1 on error 

p.490 

int  munmap(caddr_t addr, size_t len); 

 

    <sys/mman.h> 

 

Returns: 0 if OK, –1 on error 

p.490 

uint32_t  ntohl(uint32_tnetint32); 

 

    <arpa/inet.h> 

 

Returns: 32-bit integer in host byte order 

p.550 

uint16_t  ntohs(uint16_t netint16); 

 

    <arpa/inet.h> 

 

Returns: 16-bit integer in host byte order 

p.550 

int  open(const char *pathname, int oflag, ... /* mode_t  mode */ ); 

 

    <fcntl.h> 
oflag: O_RDONLY, O_WRONLY, O_RDWR; 
       O_APPEND, O_CREAT, O_DSYNC, O_EXCL, O_NOCTTY , 
       O_NONBLOCK, O_RSYNC, O_SYNC, O_TRUNC 
mode: S_IS[UG]ID, S_ISVTX, S_I[RWX](USR|GRP|OTH) 

 

p.60 



void  abort (void); 

 

Returns: file descriptor if OK, –1 on error 
Platforms: O_FSYNC flag on FreeBSD 5.2.1 and Mac OS X 10.3 

DIR *opendir(const char *pathname); 

 

    <direct.h> 

 

Returns: pointer if OK, NULL on error 

p.120 

void  openlog(char *ident, int option, int facility; 

 

    <syslog.h> 
  option: LOG_CONS, LOG_NDELAY, LOG_NOWAIT, LOG_ODE LAY, 
          LOG_PERROR, LOG_PID 
facility: LOG_AUTH, LOG_AUTHPRIV, LOG_CRON, LOG_DAE MON, 
          LOG_FTP, LOG_KERN, LOG_LOCAL[0-7], LOG_LP R, 
          LOG_MAIL, LOG_NEWS, LOG_SYSLOG, LOG_USER,  LOG_UUCP 

 

p.430 

long  pathconf(const char *pathname, int name); 

 

    <unistd.h> 
name: _PC_ASYNC_IO, _PC_CHOWN_RESTRICTED, 
      _PC_FILESIZEBITS, _PC_LINK_MAX, _PC_MAX_CANON , 
      _PC_MAX_INPUT, _PC_NAME_MAX, _PC_NO_TRUNC, 
      _PC_PATH_MAX, _PC_PIPE_BUF, _PC_PRIO_IO, 
      _PC_SYMLINK_MAX, _PC_SYNC_IO, _PC_VDISABLE 

 

Returns: corresponding value if OK, –1 on 

p.41 

int  pause(void); 

 

    <unistd.h> 

 

Returns: –1 with errno  set to EINTR 

p.313 

int  pclose(FILE *fp); 

 

    <stdio.h> 

 

Returns: termination status of popen  cmdstring, or –1 on error 

p.503 

void  perror(const char *msg); 

 

    <stdio.h> 

 
p.15 

int  pipe(int filedes[2]); 



void  abort (void); 

 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p.497 

int  poll(struct pollfd fdarray[], nfds_t nfds, int time out); 

 

    <poll.h> 

 

Returns: count of ready descriptors, 0 on timeout, –1 on error 
Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9 

p.479 

FILE  *popen(const char *cmdstring, const char *type); 

 

    <stdio.h> 
type: "r", "w" 

 

Returns: file pointer if OK, NULL on error 

p.503 

int  posix_openpt(int oflag); 

 

    <stdlib.h> 
<fcntl.h> 
oflag: O_RWDR, O_NOCTTY 

 

Returns: file descriptor of next available PTY master if OK, –1 on error 
Platforms: FreeBSD 5.2.1 

p.681 

ssize_t  pread(int filedes, void *buf, size_t nbytes, off_t offset); 

 

    <unistd.h> 

 

Returns: number of bytes read, 0 if end of file, –1 on error 

p.75 

int  printf(const char *restrict format, ...); 

 

    <stdio.h> 

 

Returns: number of characters output if OK, negative value if output error 

p.149 

int  pselect(int maxfdp1, fd_set *restrict readfds, 
 fd_set *restrict writefds, 
        fd_set *restrict exceptfds, const struct ti mespec *restrict tsptr, 
        const sigset_t *restrict sigmask); 

 



void  abort (void); 

 

    <sys/select.h> 

 

Returns: count of ready descriptors, 0 on timeout, –1 on error 
Platforms: FreeBSD 5.2 .1, Linux 2.4.22, Mac OS X 10.3 

p.478 

void  psignal(int signo, const char *msg); 

 

    <signal.h> 
<siginfo.h> /* on Solaris */ 

 

p.352 

int  pthread_atfork(void (*prepare)(void), void (*parent )(void), 
               void (*child)(void); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.417 

int  pthread_attr_destroy(pthread_attr_t *attr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.389 

int  pthread_attr_getdetachstate(const pthread_attr_t *r estrict attr, 
                            int *detachstate); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.390 

int  pthread_attr_getguardsize(const pthread_attr_t *res trict attr, 
                          size_t *restricts guardsi ze); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.392 

int  pthread_attr_getstack(const pthread_attr_t *restric t attr, void 
                      **restrict stackaddr, size_t *restrictstacksize); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.391 

int  pthread_attr_getstacksize(const pthread_attr_t *res trict attr, 



void  abort (void); 

 

                          size_t *restrict stacksiz e); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.392 

int  pthread_attr_init(pthread_attr_t *attr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.389 

int  pthread_attr_setdetachstate(pthread_attr_t *attr, 
 int detachstate); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.390 

int  pthread_attr_setguardsize(pthread_attr_t *attr, 
 size_t guardsize); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.392 

int  pthread_attr_setstack(const pthread_attr_t *attr, 
 void *stackaddr, 
                      size_t *stacksize); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.391 

int  pthread_attr_setstacksize(pthread_attr_t *attr, 
 size_t stacksize); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.392 

int  pthread_cancel(pthread_t tid); 

 

    <pthread.h> 

 
p.365 



void  abort (void); 

 

Returns: 0 if OK, error number on failure 

void  pthread_cleanup_pop(int execute); 

 

    <pthread.h> 

 
p.365 

void  pthread_cleanup_push(void (*rtn)(void *), void *arg ); 

 

    <pthread.h> 

 
p.365 

int  pthread_condattr_destroy(pthread_condattr_t *attr);  

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.401 

int  pthread_condattr_getpshared(const pthread_condattr_ t *restrict attr, 
                            int *restrict pshared);  

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.401 

int  pthread_condattr_init(pthread_condattr_t *attr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.401 

int  pthread_condattr_setpshared(pthread_condattr_t *att r, int pshared); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.401 

int  pthread_cond_broadcast(pthread_cond_t *cond); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.384 

int  pthread_cond_destroy(pthread_cond_t *cond); 

 



void  abort (void); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p.383 

int  pthread_cond_init(pthread_cond_t *restrict cond, 
                  pthread_condattr_t *restrict attr ); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
383  

int  pthread_cond_signal(pthread_cond_t *cond); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
384  

int  pthread_cond_timedwait(pthread_cond_t *restrict con d, 
                       pthread_mutex_t *restrict mu tex, 
                       const struct timespec *restr ict timeout); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
383  

int  pthread_cond_wait(pthread_cond_t *restrict cond, 
                  pthread_mutex_t *restrict mutex);  

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
383  

int  pthread_create(pthread_t *restrict tidp, 
               const pthread_attr_t *restrict attr,  
               void *(*start_rtn)(void), void *rest rict arg); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
357  

int  pthread_detach(pthread_t tid); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
368  



void  abort (void); 

 

int  pthread_equal(pthread_t tid1, pthread_t tid2); 

 

    <pthread.h> 

 

Returns: nonzero if equal, 0 otherwise 

p. 
357  

void  pthread_exit(void *rval_ptr); 

 

    <pthread.h> 

 
p. 
361  

int  pthread_getconcurrency(void); 

 

    <pthread.h> 

 

Returns: current concurrency level 

p. 
393  

void  *pthread_getspecific(pthread_key_t key); 

 

    <pthread.h> 

 

Returns: thread-specific data value or NULL if no value has been associated with the 
key 

p. 
408  

int  pthread_join(pthread_t thread, void **rval_ptr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
361  

int  pthread_key_create(pthread_key_t *keyp, void (*dest ructor)(void *); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
406  

int  pthread_key_delete(pthread_key_t *key); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
407  

int  pthread_kill(pthread_t thread, int signo); 

 



void  abort (void); 

 

    <signal.h> 

 

Returns: 0 if OK, error number on failure 

p. 
414  

int  pthread_mutexattr_destroy(pthread_mutexattr_t *attr ); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
393  

int  pthread_mutexattr_getpshared(const pthread_mutexatt r_t *restrict attr, int 
*restrict pshared); 
 
      

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
394  

int  pthread_mutexattr_gettype(const pthread_mutexattr_t  *restrict attr, 
                          int *restrict type); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
395  

int  pthread_mutexattr_init(pthread_mutexattr_t *attr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
393  

int  pthread_mutexattr_setpshared(pthread_mutexattr_t *a ttr, int pshared); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
394  

int  pthread_mutexattr_settype(pthread_mutexattr_t *attr , int type); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
395  

int  pthread_mutex_destroy(pthread_mutex_t *mutex); 



void  abort (void); 

 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
371  

int  pthread_mutex_init(pthread_mutex_t *restrict mutex,  
                   const pthread_mutexattr_t *restr ict attr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
371  

int  pthread_mutex_lock(pthread_mutex_t *mutex); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
371  

int  pthread_mutex_trylock(pthread_mutex_t *mutex); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
371  

int  pthread_mutex_unlock(pthread_mutex_t *mutex); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
371  

int  pthread_once(pthread_once_t *initflag, void (*initf n)(void); 

 

    <pthread.h> 
pthread_once_t initflag = PTHREAD_ONCE_INIT; 

 

Returns: 0 if OK, error number on failure 

p. 
408  

int  pthread_rwlockattr_destroy(pthread_rwlockattr_t *at tr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
400  

int  pthread_rwlockattr_getpshared(const pthread_rwlocka ttr_t *restrict attr, 



void  abort (void); 

 

                              int *restrict pshared ); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
400  

int  pthread_rwlockattr_init(pthread_rwlockattr_t *attr) ; 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
400  

int  pthread_rwlockattr_setpshared(pthread_rwlockattr_t *attr, int pshared); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
400  

int  pthread_rwlock_destroy(pthread_rwlock_t *rwlock); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
379  

int  pthread_rwlock_init(pthread_rwlock_t *restrict rwlo ck, 
                    const pthread_rwlockattr_t *res trict attr); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
379  

int  pthread_rwlock_rdlock(pthread_rwlock_t *rwlock); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
379  

int  pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);  

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
379  

int  pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);  



void  abort (void); 

 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
379  

int  pthread_rwlock_unlock(pthread_rwlock_t *rwlock); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
379  

int  pthread_rwlock_wrlock(pthread_rwlock_t *rwlock); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
379  

pthread_t  pthread_self(void); 

 

    <pthread.h> 

 

Returns: thread ID of the calling thread 

p. 
357  

int  pthread_setcancelstate(int state, int *oldstate); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
410  

int  pthread_setcanceltype(int type, int *oldtype); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
411  

int  pthread_setconcurrency(int level); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
393  

int  pthread_setspecific(pthread_key_t key, const void * value); 

 



void  abort (void); 

 

    <pthread.h> 

 

Returns: 0 if OK, error number on failure 

p. 
408  

int  pthread_sigmask(int how, const sigset_t *restrict s et, 
                sigset_t *restrict> oset); 

 

    <signal.h> 

 

Returns: 0 if OK, error number on failure 

p. 
413  

void  pthread_testcancel(void); 

 

    <pthread.h> 

 
p. 
411  

char  *ptsname(int filedes); 

 

    <stdlib.h> 

 

Returns: pointer to name of PTY slave if OK, NULL on error 

Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9 

p. 
682  

int  putc(int c, FILE *fp); 

 

    <stdio.h> 

 

Returns: c if OK, EOF on error 

p. 
142  

int  putchar(int c); 

 

    <stdio.h> 

 

Returns: c if OK, EOF on error 

p. 
142  

int  putchar_unlocked(int c); 

 

    <stdio.h> 

 

Returns: c if OK, EOF on error 

p. 
403  

int  putc_unlocked(int c, FILE *fp); 

 



void  abort (void); 

 

    <stdio.h> 

 

Returns: c if OK, EOF on error 

p. 
403  

int  putenv(char *str); 

 

    <stdlib.h> 

 

Returns: 0 if OK, nonzero on error 

p. 
194  

int  putmsg(int filedes, const struct strbuf *ctlptr, 
       const struct strbuf *dataptr, int flag) 

 

    <stropts.h> 
flag: 0, RS_HIPRI 

 

Returns: 0 if OK, –1 on error 

Platforms: Linux 2.4.22, Solaris 9 

p. 
463  

int  putpmsg(int filedes, const struct strbuf *ctlptr, 
        const struct strbuf *dataptr, int band, 
 int flag); 

 

    <stropts.h> 
flag: 0, MSG_HIPRI, MSG_BAND 

 

Returns: 0 if OK, –1 on error 

Platforms: Linux 2.4.22, Solaris 9 

p. 
463  

int  puts(const char *str); 

 

    <stdio.h> 

 

Returns: non-negative value if OK, EOF on error 

p. 
143  

ssize_t  pwrite(int filedes, const void *buf, size_t nbytes 
, off_t offset); 

 

    <unistd.h> 

 

Returns: number of bytes written if OK, –1 on error 

p. 75  

int  raise(int signo); 

 



void  abort (void); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p. 
312  

ssize_t  read(int filedes, void *buf, size_t nbytes); 

 

    <unistd.h> 

 

Returns: number of bytes read if OK, 0 if end of file, –1 on error 

p. 67 

struct 
dirent 

 

*readdir(DIR *dp); 

 

    <dirent.h> 

 

Returns: pointer if OK, NULL at end of directory or error 

p. 
120  

int  readlink(const char *restrict pathname, char *restr ict buf, 
         size_t bufsize); 

 

    <unistd.h> 

 

Returns: number of bytes read if OK, –1 on error 

p. 
115  

ssize_t  readv(int filedes, const struct iovec *iov, int iov cnt; 

 

    <sys/uio.h> 

 

Returns: number of bytes read if OK, –1 on error 

p. 
483  

void  *realloc(void *ptr, size_t newsize); 

 

    <stdlib.h> 

 

Returns: non-null pointer if OK, NULL on error 

p. 
189  

ssize_t  recv(int sockfd, void *buf, size_t nbytes, int flag s); 

 

    <sys/socket.h> 
flags: 0, MSG_PEEK, MSG_OOB, MSG_WAITALL 

 

Returns: length of message in bytes, 0 if no messages are available and peer has 
done an orderly shutdown, or –1 on error 

p. 
567  



void  abort (void); 

 

Platforms: MSG_TRUNC flag on Linux 2.4.22 

ssize_t  recvfrom(int sockfd, void *restrict buf, size_t len , int flags, 
         struct sockaddr *restrict addr, socklen_t *restrict addrlen); 

 

    <sys/socket.h> 
flags: 0, MSG_PEEK, MSG_OOB, MSG_WAITALL 

 

Returns: length of message in bytes, 0 if no messages are available and peer has 
done an orderly shutdown, or –1 on error 

Platforms: MSG_TRUNC flag on Linux 2.4.22 

p. 
567  

ssize_t  recvmsg(int sockfd, struct msghdr *msg, int flags; 

 

    <sys/socket.h> 
flags: 0, MSG_PEEK, MSG_OOB, MSG_WAITALL 

 

Returns: length of message in bytes, 0 if no messages are available 

and peer has done an orderly shutdown, or –1 on error 

Platforms: MSG_TRUNC flag on Linux 2.4.22 

p. 
568  

int  remove(const char *pathname); 

 

    <stdio.h> 

 

Returns: 0 if OK, –1 on error 

p. 
111  

int  rename(const char *oldname, const char *newname); 

 

    <stdio.h> 

 

Returns: 0 if OK, –1 on error 

p. 
111  

void  rewind(FILE *fp); 

 

    <stdio.h> 

 
p. 
147  

void  rewinddir(DIR *dp); 

 

    <dirent.h> 

 
p. 
120 

int  rmdir(const char *pathname); 



void  abort (void); 

 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
120  

int  scanf(const char *restrict format, ...); 

 

    <stdio.h> 

 

Returns: number of input items assigned, EOF if input error or 

end of file before any conversion 

p. 
151  

void  seekdir(DIR *dp, long loc); 

 

    <dirent.h> 

 
p. 
120  

int  select(int maxfdp1, fd_set *restrict readfds, 
       fd_set *restrict writefds, fd_set *restrict exceptfds, struct 
timeval *restrict tvptr); 
 
      

 

    <sys/select.h> 

 

Returns: count of ready descriptors, 0 on timeout, –1 on error 

p. 
475 

int  semctl(int semid, int semnum, int cmd, ... /* union  semun arg */ ); 

 

    <sys/sem.h> 
cmd: IPC_STAT, IPC_SET, IPC_RMID, GETPID, GETNCNT, 
     GETZCNT, GETVAL, SETVAL, GETALL, SETALL 

 

Returns: (depends on command) 

p. 
529  

int  semget(key_t key, int nsems, int flag); 

 

    <sys/sem.h> 
flag: 0, IPC_CREAT, IPC_EXCL 

 

Returns: semaphore ID if OK, –1 on error 

p. 
529  

int  semop(int semid, struct sembuf semoparray[], size_t  nops); 

 

    <sys/sem.h> p. 



void  abort (void); 

 

 

Returns: 0 if OK, –1 on error 

530 

ssize_t  send(int sockfd, const void *buf, size_t nbytes, 
 int flags); 

 

    <sys/socket.h> 
flags: 0, MSG_DONTROUTE, MSG_EOR, MSG_OOB 

 

Returns: number of bytes sent if OK, –1 on error 

Platforms: MSG_DONTWAIT flag on FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3 
MSG_EOR flag not on Solaris 9 

p. 
565  

ssize_t  sendmsg(int sockfd, const struct msghdr *msg, int f lags); 

 

    <sys/socket.h> 
flags: 0, MSG_DONTROUTE, MSG_EOR, MSG_OOB 

 

Returns: number of bytes sent if OK, –1 on error 

Platforms: MSG_DONTWAIT flag on FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3 
MSG_EOR flag not on Solaris 9 

p. 
566  

ssize_t  sendto(int sockfd, const void *buf, size_t nbytes, 
 int flags, 
       const struct sockaddr *destaddr, socklen_t d estlen); 

 

    <sys/socket.h> 
flags: 0, MSG_DONTROUTE, MSG_EOR, MSG_OOB 

 

Returns: number of bytes sent if OK, –1 on error 

Platforms: MSG_DONTWAIT flag on FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3 
MSG_EOR flag not on Solaris 9 

p. 
566  

void  setbuf(FILE *restrict fp, char *restrict buf ); 

 

    <stdio.h> 

 
p. 
136  

int  setegid(gid_t gid); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
241  



void  abort (void); 

 

int  setenv(const char *name, const char *value, int rew rite); 

 

    <stdlib.h> 

 

Returns: 0 if OK, nonzero on error 

p. 
194  

int  seteuid(uid_t uid); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
241  

int  setgid(gid_t gid); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
237  

void  setgrent(void); 

 

    <grp.h> 

 
p. 
167  

int  setgroups(int ngroups, const gid_t grouplist[]); 

 

    <grp.h>    /* on Linux */ 
<unistd.h> /* on FreeBSD, Mac OS X, and Solaris */ 

 

Returns: 0 if OK, –1 on error 

p. 
168  

void  sethostent(int stayopen); 

 

    <netdb.h> 

 
p. 
553  

int  setjmp(jmp_buf env); 

 

    <setjmp.h> 

 

Returns: 0 if called directly, nonzero if returning from a call to longjmp 

p. 
197  

int  setlogmask(int maskpri); 

 

    <syslog.h> 

 
p. 
430  



void  abort (void); 

 

Returns: previous log priority mask value 

void  setnetent(int stayopen); 

 

    <netdb.h> 

 
p. 
554  

int  setpgid(pid_t pid, pid_t pgid); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
269  

void  setprotoent(int stayopen); 

 

    <netdb.h> 

 
p. 
554  

void  setpwent(void); 

 

    <pwd.h> 

 
p. 
164  

int  setregid(gid_t rgid, gid_t egid); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
240  

int  setreuid(uid_t ruid, uid_t euid); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
240  

int  setrlimit(int resource, const struct rlimit *rlptr) ; 

 

    <sys/resource.h> 

 
Returns: 0 if OK, nonzero on error 

p. 
202  

void  setservent(int stayopen); 

 

    <netdb.h> 

 
p. 
555  

pid_t  setsid(void); 



void  abort (void); 

 

 

    <unistd.h> 

 
Returns: process group ID if OK, –1 on error 

p. 
271  

int  setsockopt(int sockfd, int level, int option, 
 const void *val, socklen_t len); 

 

    <sys/socket.h> 

 
Returns: 0 if OK, –1 on error 

p. 
579  

void  setspent(void); 

 

    <shadow.h> 

 
Platforms: Linux 2.4.22, Solaris 9 

p. 
166  

int  setuid(uid_t uid); 

 

    <unistd.h> 

 
Returns: 0 if OK, –1 on error 

p. 
237  

int  setvbuf(FILE *restrict fp, char *restrict buf, int mode, size_t size); 

 

    <stdio.h> 
mode: _IOFBF, _IOLBF, _IONBF 

 

Returns: 0 if OK, nonzero on error 

p. 
136  

void  *shmat(int shmid, const void *addr, int flag); 

 

    <sys/shm.h>flag: 0, SHM_RND, SHM_RDONLY 

 

Returns: pointer to shared memory segment if OK, –1 on error 

p. 
536  

int  shmctl(int shmid, int cmd, struct shmid_ds *buf ); 

 

    <sys/shm.h> 
cmd: IPC_STAT, IPC_SET, IPC_RMID, 
     SHM_LOCK, SHM_UNLOCK 

 

Returns: 0 if OK, –1 on error 

p. 
535  

int  shmdt(void *addr); 

 

    <sys/shm.h> p. 



void  abort (void); 

 

 

Returns: 0 if OK, –1 on error 

536  

int  shmget(key_t key, int size, int flag); 

 

    <sys/shm.h> 
flag: 0, IPC_CREAT, IPC_EXCL 

 

Returns: shared memory ID if OK, –1 on error 

p. 
534  

int  shutdown(int sockfd, int how); 

 

    <sys/socket.h> 
how: SHUT_RD, SHUT_WR, SHUT_RDWR 

 

Returns: 0 if OK, –1 on error 

p. 
548  

int  sig2str(int signo, char *str); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error Platforms: Solaris 9 

p. 
353  

int  sigaction(int signo, const struct sigaction *restri ct act, 
          struct sigaction *restrict oact); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p. 
324  

int  sigaddset(sigset_t *set, int signo); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p. 
319  

int  sigdelset(sigset_t *set, int signo); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p. 
319  

int  sigemptyset(sigset_t *set); 

 



void  abort (void); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p. 
319  

int  sigfillset(sigset_t *set); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p. 
319  

int  sigismember(const sigset_t *set, int signo); 

 

    <signal.h> 

 

Returns: 1 if true, 0 if false, –1 on error 

p. 
319  

void  siglongjmp(sigjmp_buf env, int val); 

 

    <setjmp.h> 

 

This function never returns 

p. 
330  

void  (*signal(int signo, void (*func)(int)))(int); 

 

    <signal.h> 

 

Returns: previous disposition of signal if OK, SIG_ERR on error 

p. 
298  

int  sigpending(sigset_t *set); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error 

p. 
322  

int  sigprocmask(int how, const sigset_t *restrict set, 
            sigset_t *restrict oset); 

 

    <signal.h> 
how: SIG_BLOCK, SIG_UNBLOCK, SIG_SETMASK 

 

Returns: 0 if OK, –1 on error 

p. 
320  

int  sigsetjmp(sigjmp_buf env, int savemask); 

 



void  abort (void); 

 

    <setjmp.h> 

 

Returns: 0 if called directly, nonzero if returning from a call to siglongjmp  

p. 
330  

int  sigsuspend(const sigset_t *sigmask); 

 

    <signal.h> 

 

Returns: –1 with errno  set to EINTR 

p. 
334  

int  sigwait(const sigset_t *restrict set, int *restrict  signop); 

 

    <signal.h> 

 

Returns: 0 if OK, error number on failure 

p. 
413  

unsigned 
int 

 

sleep(unsigned int seconds); 

 

    <unistd.h> 

 

Returns: 0 or number of unslept seconds 

p. 
347  

int  snprintf(char *restrict buf, size_t n, const char * restrict format, ...); 

 

    <stdio.h> 

 

Returns: number of characters stored in array if OK, negative value if encoding 
error 

p. 
149  

int  sockatmark(int sockfd); 

 

    <sys/socket.h> 

 

Returns: 1 if at mark, 0 if not at mark, –1 on error 

p. 
582  

int  socket(int domain, int type, int protocol); 

 

    <sys/socket.h> 

 

type: SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET, 

Returns: file (socket) descriptor if OK, –1 on error 

p. 
546  



void  abort (void); 

 

int  socketpair(int domain, int type, int protocol, int sockfd[2]); 

 

    <sys/socket.h> 
type: SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET, 

 

Returns: 0 if OK, –1 on error 

p. 
594  

int  sprintf(char *restrict buf, const char *restrict fo rmat, ...); 

 

    <stdio.h> 

 

Returns: number of characters stored in array if OK, negative value if encoding 
error 

p. 
149  

int  sscanf(const char *restrict buf, const char *restri ct format, ...); 

 

    <stdio.h> 

 

Returns: number of input items assigned, EOF if input error or end of file before 
any conversion 

p. 
151  

int  stat(const char *restrict pathname, struct stat *re strict buf); 

 

    <sys/stat.h> 

 

Returns: 0 if OK, –1 on error 

p. 87  

int  str2sig(const char *str, int *signop); 

 

    <signal.h> 

 

Returns: 0 if OK, –1 on error Platforms: Solaris 9 

p. 
353  

char  *strerror(int errnum); 

 

    <string.h> 

 

Returns: pointer to message string 

p. 15  

size_t  strftime(char *restrict buf, size_t maxsize, 
         const char *restrict format, const struct tm *restrict tmptr); 

 

    <time.h> 

 
p. 
176  



void  abort (void); 

 

Returns: number of characters stored in array if room, 0 otherwise 

char  *strsignal(int signo); 

 

    <string.h> 

 

Returns: a pointer to a string describing the signal 

p. 
352  

int  symlink(const char *actualpath, const char *sympath ); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
115  

void  sync(void); 

 

    <unistd.h> 

 
p. 77  

long  sysconf(int name); 

 

    <unistd.h> 
name: _SC_ARG_MAX, _SC_ATEXIT_MAX, _SC_CHILD_MAX,_S C_CLK_TCK, 
_SC_COLL_WEIGHTS_MAX, 
      _SC_HOST_NAME_MAX, _SC_IOV_MAX, _SC_JOB_CONTR OL, 
      _SC_LINE_MAX, _SC_LOGIN_NAME_MAX, _SC_NGROUPS _MAX, 
      _SC_OPEN_MAX, _SC_PAGESIZE, _SC_PAGE_SIZE, 
      _SC_READER_WRITER_LOCKS, _SC_RE_DUP_MAX, 
      _SC_SAVED_IDS, _SC_SHELL, _SC_STREAM_MAX, 
      _SC_SYMLOOP_MAX, _SC_TTY_NAME_MAX, _SC_TZNAME _MAX, 
      _SC_VERSION, _SC_XOPEN_CRYPT, _SC_XOPEN_LEGAC Y, 
      _SC_XOPEN_REALTIME, _SC_XOPEN_REALTIME_THREAD S, 
      _SC_XOPEN_VERSION 
 
      

 

Returns: corresponding value if OK, –1 on error 

p. 41  

void  syslog(int priority, char *format, ...); 

 

    <syslog.h> 

 
p. 
430  

int  system(const char *cmdstring); 

 

    <stdlib.h> 

 
p. 
246  



void  abort (void); 

 

Returns: termination status of shell 

int  tcdrain(int filedes); 

 

    <termios.h> 

 

Returns: 0 if OK, –1 on error 

p. 
653  

int  tcflow(int filedes, int action); 

 

    <termios.h> 
action: TCOOFF, TCOON, TCIOFF, TCION 

 

Returns: 0 if OK, –1 on error 

p. 
653  

int  tcflush(int filedes, int queue); 

 

    <termios.h> 
queue: TCIFLUSH, TCOFLUSH, TCIOFLUSH 

 

Returns: 0 if OK, –1 on error 

p. 
653  

int  tcgetattr(int filedes, struct termios *termptr); 

 

    <termios.h> 

 

Returns: 0 if OK, –1 on error 

p. 
643  

pid_t  tcgetpgrp(int filedes); 

 

    <unistd.h> 

 

Returns: process group ID of foreground process group if OK, –1 on error 

p. 
273  

pid_t  tcgetsid(int filedes); 

 

    <termios.h> 

 

Returns: session leader's process group ID if OK, –1 on error 

p. 
274  

int  tcsendbreak(int filedes, int duration); 

 

    <termios.h> 

 
p. 
653  



void  abort (void); 

 

Returns: 0 if OK, –1 on error 

int  tcsetattr(int filedes, int opt, const struct termio s *termptr); 

 

    <termios.h> 
opt: TCSANOW, TCSADRAIN, TCSAFLUSH 

 

Returns: 0 if OK, –1 on error 

p. 
643  

int  tcsetpgrp(int filedes, pid_t pgrpid); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
273  

long  telldir(DIR *dp); 

 

    <dirent.h> 

 

Returns: current location in directory associated with dp 

p. 
120  

char  *tempnam(const char *directory, const char *prefix) ; 

 

    <stdio.h> 

 

Returns: pointer to unique pathname 

p. 
157  

time_t  time(time_t *calptr); 

 

    <time.h> 

 

Returns: value of time if OK, –1 on error 

p. 
173  

clock_t  times(struct tms *buf); 

 

    <sys/times.h> 

 

Returns: elapsed wall clock time in clock ticks if OK, –1 on error 

p. 
257  

FILE  *tmpfile(void); 

 

    <stdio.h> 

 
p. 
155  



void  abort (void); 

 

Returns: file pointer if OK, NULL on error 

char  *tmpnam(char *ptr); 

 

    <stdio.h> 

 

Returns: pointer to unique pathname 

p. 
155  

int  truncate(const char *pathname, off_t length); 

 

    <unistd.h> 

 

Returns: 0 if OK, –1 on error 

p. 
105  

char  *ttyname(int filedes); 

 

    <unistd.h> 

 

Returns: pointer to pathname of terminal, NULL on error 

p. 
655  

mode_t  umask(mode_t cmask); 

 

    <sys/stat.h> 

 

Returns: previous file mode creation mask 

p. 97  

int  uname(struct utsname *name); 

 

    <sys/utsname.h> 

 

Returns: non-negative value if OK, –1 on error 

p. 
171  

int  ungetc(int c, FILE *fp); 

 

    <stdio.h> 

 

Returns: c if OK, EOF on error 

p. 
141  

int  unlink(const char *pathname); 

 

    <unistd.h> 

 
p. 
109  



void  abort (void); 

 

Returns: 0 if OK, –1 on error 

int  unlockpt(int filedes); 

 

    <stdlib.h> 

 

Returns: 0 on success, –1 on error 

Platforms: FreeBSD 5.2.1, Linux 2.4.22, Solaris 9 

p. 
682  

void  unsetenv(const char *name); 

 

    <stdlib.h> 

 
p. 
194  

int  utime(const char *pathname, const struct utimbuf *t imes); 

 

    <utime.h> 

 

Returns: 0 if OK, –1 on error 

p. 
116  

int  vfprintf(FILE *restrict fp, const char *restrict fo rmat, va_list arg); 

 

    <stdarg.h> 
<stdio.h> 

 

Returns: number of characters output if OK, negative value if output error 

p. 
151  

int  vfscanf(FILE *restrict fp, const char *restrict for mat, va_list arg); 

 

    <stdarg.h> 
<stdio.h> 

 

Returns: number of input items assigned, EOF if input error or end of file before 
any conversion 

p. 
151  

int  vprintf(const char *restrict format, va_list arg); 

 

    <stdarg.h> 
<stdio.h> 

 

Returns: number of characters output if OK, negative value if output error 

p. 
151  

int  vscanf(const char *restrict format, va_list arg); 

 



void  abort (void); 

 

    <stdarg.h> 
<stdio.h> 

 

Returns: number of input items assigned, EOF if input error or end of file before 
any conversion 

p. 
151  

int  vsnprintf(char *restrict buf, size_t n, const char *restrict format, 
          va_list arg); 

 

    <stdarg.h> 
<stdio.h> 

 

Returns: number of characters stored in array if OK, negative value if encoding 
error 

p. 
151  

int  vsprintf(char *restrict buf, const char *restrict f ormat, va_list arg); 

 

    <stdarg.h> 
<stdio.h> 

 

Returns: number of characters stored in array if OK, negative value if encoding 
error 

p. 
151  

int  vsscanf(const char *restrict buf, const char *restr ict format, 
        va_list arg); 

 

    <stdarg.h> 
<stdio.h> 

 

Returns: number of input items assigned, EOF if input error or end of file before 
any conversion 

p. 
151  

void  vsyslog (int priority, const char *format, va_list arg); 

 

    <syslog.h> 
<stdarg.h> 

 

p. 
432  

pid_t  wait(int *statloc); 

 

    <sys/wait.h> 

 

Returns: process ID if OK, 0, or –1 on error 

p. 
220  

int  waitid(idtype_t idtype, id_t id, siginfo_t *infop, 
 int options); 

 



void  abort (void); 

 

    <sys/wait.h> 
idtype: P_PID, P_PGID, P_ALL 
options: WCONTINUED, WEXITED, WNOHANG, WNOWAIT, WST OPPED 

 

Returns: 0 if OK, –1 on error 

Platforms: Solaris 9 

p. 
220  

pid_t  waitpid(pid_t pid, int *statloc, int options); 

 

    <sys/wait.h> 
options: 0, WCONTINUED, WNOHANG, WUNTRACED 

 

Returns: process ID if OK, 0, or –1 on error 

p. 
220  

pid_t  wait3(int *statloc, int options, struct rusage *rus age); 

 

    <sys/types.h> 
<sys/wait.h> 
<sys/time.h> 
<sys/resource.h> 
options: 0, WNOHANG, WUNTRACED 

 

Returns: process ID if OK, 0, or –1 on error 

p. 
227 

pid_t  wait4(pid_t pid, int *statloc, int options, struct rusage *rusage); 

 

    <sys/types.h> 
<sys/wait.h> 
<sys/time.h> 
<sys/resource.h> 
options: 0, WNOHANG, WUNTRACED 

 

Returns: process ID if OK, 0, or –1 on error 

p. 
227  

ssize_t  write(int filedes, const void *buf, size_t nbytes);  

 

    <unistd.h> 

 

Returns: number of bytes written if OK, –1 on error 

p. 68  

ssize_t  writev(int filedes, const struct iovec *iov, int io vcnt); 

 

    <sys/uio.h> 

Returns: number of bytes written if OK, –1 on error 

p. 
483 

 



Appendix B. Miscellaneous Source Code 

Section B.1. Our Header File 

B.2 Standard Error Routines 

B.1. Our Header File 

Most programs in the text include the header apue.h , shown in Figure B.1. It defines constants (such as 
MAXLINE) and prototypes for our own functions. 

Figure B.1. Our header: apue.h 

/* Our own header, to be included before all standa rd system headers */ 
 
#ifndef _APUE_H 
#define _APUE_H 
 
#define _XOPEN_SOURCE   600  /* Single UNIX Specifi cation, Version 3 */ 
 
#include <sys/types.h>       /* some systems still require this */ 
#include <sys/stat.h> 
#include <sys/termios.h>     /* for winsize */ 
#ifndef TIOCGWINSZ 
#include <sys/ioctl.h> 
#endif 
#include <stdio.h>     /* for convenience */ 
#include <stdlib.h>    /* for convenience */ 
#include <stddef.h>    /* for offsetof */ 
#include <string.h>    /* for convenience */ 
#include <unistd.h>    /* for convenience */ 
#include <signal.h>    /* for SIG_ERR */ 
 
 
#define MAXLINE 4096               /* max line leng th */ 
 
/* 
 * Default file access permissions for new files. 
 */ 
#define FILE_MODE   (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH) 
 
/* 
 * Default permissions for new directories. 
 */ 
#define DIR_MODE    (FILE_MODE | S_IXUSR | S_IXGRP | S_IXOTH) 
 
typedef void   Sigfunc(int);   /* for signal handle rs */ 
 
#if defined(SIG_IGN) && !defined(SIG_ERR) 
#define SIG_ERR ((Sigfunc *)-1) 
#endif 
 
#define min(a,b)     ((a) < (b) ? (a) : (b)) 
#define max(a,b)     ((a) > (b) ? (a) : (b)) 
 
/* 
 * Prototypes for our own functions. 
 */ 
char    *path_alloc(int *);              /* Figure 2.15  */ 



long     open_max(void);                 /* Figure 2.16  */ 
void     clr_fl(int, int);               /* Figure 3.11  */ 
void     set_fl(int, int);               /* Figure 3.11  */ 
void     pr_exit(int);                   /* Figure 8.5  */ 
void     pr_mask(const char *);          /* Figure 10.14  */ 
Sigfunc *signal_intr(int, Sigfunc *);    /* Figure 10.19  */ 
 
int      tty_cbreak(int);                /* Figure 18.20  */ 
int      tty_raw(int);                   /* Figure 18.20  */ 
int      tty_reset(int);                 /* Figure 18.20  */ 
void     tty_atexit(void);               /* Figure 18.20  */ 
#ifdef  ECHO    /* only if <termios.h>  has been in cluded */ 
struct termios  *tty_termios(void);      /* Figure 18.20  */ 
#endif 
 
void     sleep_us(unsigned int);             /* Exercise 14.6  */ 
ssize_t  readn(int, void *, size_t);         /* Figure 14.29  */ 
ssize_t  writen(int, const void *, size_t);  /* Figure 14.29  */ 
void     daemonize(const char *);            /* Figure 13.1  */ 
 
int      s_pipe(int *);                 /* Figures 17.6  and 17.13  */ 
int      recv_fd(int, ssize_t (*func)(int, 
                 const void *, size_t));/* Figures 17.21  and 17.23  */ 
int      send_fd(int, int);             /* Figures 17.20  and 17.22  */ 
int      send_err(int, int, 
                  const char *);        /* Figure 17.19  */ 
int      serv_listen(const char *);     /* Figures 17.10  and 17.15  */ 
int      serv_accept(int, uid_t *);     /* Figures 17.11  and 17.16  */ 
 
int      cli_conn(const char *);        /* Figures 17.12  and 17.17  */ 
int      buf_args(char *, int (*func)(int, 
                  char **));            /* Figure 17.32  */ 
 
int      ptym_open(char *, int);    /* Figures 19.8 , 19.9 , and 19.10  */ 
int      ptys_open(char *);         /* Figures 19.8 , 19.9 , and 19.10  */ 
#ifdef  TIOCGWINSZ 
pid_t    pty_fork(int *, char *, int, const struct termios *, 
                  const struct winsize *);      /* Figure 19.11  */ 
#endif 
 
int     lock_reg(int, int, int, off_t, int, off_t);  /* Figure 14.5  */ 
#define read_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLK, F_RDLCK, (offse t), (whence), (len)) 
#define readw_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLKW, F_RDLCK, (offs et), (whence), (len))  
#define write_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLK, F_WRLCK, (offse t), (whence), (len)) 
#define writew_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLKW, F_WRLCK, (offs et), (whence), (len))  
#define un_lock(fd, offset, whence, len) \ 
            lock_reg((fd), F_SETLK, F_UNLCK, (offse t), (whence), (len)) 
 
pid_t   lock_test(int, int, off_t, int, off_t);     /* Figure 14.6  */ 
 
#define is_read_lockable(fd, offset, whence, len) \  
            (lock_test((fd), F_RDLCK, (offset), (wh ence), (len)) == 0) 
#define is_write_lockable(fd, offset, whence, len) \ 
            (lock_test((fd), F_WRLCK, (offset), (wh ence), (len)) == 0) 
 
void    err_dump(const char *, ...);        /* Appendix B  */ 
void    err_msg(const char *, ...); 
void    err_quit(const char *, ...); 



void    err_exit(int, const char *, ...); 
void    err_ret(const char *, ...); 
void    err_sys(const char *, ...); 
 
void    log_msg(const char *, ...);         /* Appendix B  */ 
void    log_open(const char *, int, int); 
void    log_quit(const char *, ...); 
void    log_ret(const char *, ...); 
void    log_sys(const char *, ...); 
 
void    TELL_WAIT(void);        /* parent/child fro m Section 8.9 */ 
void    TELL_PARENT(pid_t); 
void    TELL_CHILD(pid_t); 
void    WAIT_PARENT(void); 
void    WAIT_CHILD(void); 
 
#endif  /* _APUE_H */ 

Most programs need to include the following headers: <stdio.h> , <stdlib.h>  (for the exit  function 
prototype), and <unistd.h>  (for all the standard UNIX function prototypes). So our header automatically 
includes these system headers, along with <string.h> . This also reduces the size of all the program listings in 
the text. 

The reasons we include our header before all the normal system headers are to allow us to define anything that 
might be required by headers before they are included, control the order in which header files are included, and 
allow us to redefine anything that needs to be fixed up to hide the differences between systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



B.2 Standard Error Routines 

Two sets of error functions are used in most of the examples throughout the text to handle error conditions. One 
set begins with err_  and outputs an error message to standard error. The other set begins with log_  and is for 
daemon processes (Chapter 13) that probably have no controlling terminal. 

The reason for our own error functions is to let us write our error handling with a single line of C code, as in 

    if (error condition) 
              err_dump(printf format with any numbe r of arguments); 

 

instead of 

    if (error condition){ 
              char buf[200]; 
              sprintf(buf, printf format with any n umber of arguments); 
              perror(buf); 
              abort(); 
    } 

 

Our error functions use the variable-length argument list facility from ISO C. See Section 7.3 of Kernighan and 
Ritchie [1988] for additional details. Be aware that this ISO C facility differs from the varargs  facility 
provided by earlier systems (such as SVR3 and 4.3BSD). The names of the macros are the same, but the 
arguments to some of the macros have changed. 

Figure B.2 summarizes the differences between the various error functions. 

Figure B.2. Our standard error functions 

Function Adds string from strerror ? Parameter to strerror Terminate ? 

err_dump  yes errno  abort();  

err_exit  yes explicit parameter exit(1);   

err_msg  no   return;   

err_quit  no   exit(1);   

err_ret  yes errno  return;   

err_sys  yes errno  exit(1);  

log_msg  no   return;   

log_quit  no   exit(2);  

log_ret  yes errno  return;  

log_sys  yes errno  exit(2);  

 

Figure B.3 shows the error functions that output to standard error. 



Figure B.3. Error functions that output to standard error 

#include "apue.h" 
#include <errno.h>      /* for definition of errno */ 
#include <stdarg.h>     /* ISO C variable aruments */ 
 
static void err_doit(int, int, const char *, va_lis t); 
 
/* 
 * Nonfatal error related to a system call. 
 * Print a message and return. 
 */ 
void 
err_ret(const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 
    err_doit(1, errno, fmt, ap); 
    va_end(ap); 
} 
 
/* 
 * Fatal error related to a system call. 
 * Print a message and terminate. 
 */ 
void 
err_sys(const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 
    err_doit(1, errno, fmt, ap); 
    va_end(ap); 
    exit(1); 
} 
 
/* 
 * Fatal error unrelated to a system call. 
 * Error code passed as explict parameter. 
 * Print a message and terminate. 
 */ 
void 
err_exit(int error, const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 
    err_doit(1, error, fmt, ap); 
    va_end(ap); 
    exit(1); 
} 
 
/* 
 * Fatal error related to a system call. 
 * Print a message, dump core, and terminate. 
 */ 
void 
err_dump(const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 



    err_doit(1, errno, fmt, ap); 
    va_end(ap); 
    abort();        /* dump core and terminate */ 
    exit(1);        /* shouldn't get here */ 
} 
 
/* 
 * Nonfatal error unrelated to a system call. 
 * Print a message and return. 
 */ 
void 
err_msg(const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 
    err_doit(0, 0, fmt, ap); 
    va_end(ap); 
} 
 
/* 
 * Fatal error unrelated to a system call. 
 * Print a message and terminate. 
 */ 
void 
err_quit(const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 
    err_doit(0, 0, fmt, ap); 
    va_end(ap); 
    exit(1); 
} 
 
/* 
 * Print a message and return to caller. 
 * Caller specifies "errnoflag". 
 */ 
static void 
err_doit(int errnoflag, int error, const char *fmt,  va_list ap) 
{ 
    char    buf[MAXLINE]; 
   vsnprintf(buf, MAXLINE, fmt, ap); 
   if (errnoflag) 
       snprintf(buf+strlen(buf), MAXLINE-strlen(buf ), ": %s", 
         strerror(error)); 
   strcat(buf, "\n"); 
   fflush(stdout);     /* in case stdout and stderr  are the same */  
   fputs(buf, stderr); 
   fflush(NULL);       /* flushes all stdio output streams */ 
} 

 

Figure B.4 shows the log_XXX  error functions. These require the caller to define the variable log_to_stderr  
and set it nonzero if the process is not running as a daemon. In this case, the error messages are sent to standard 
error. If the log_to_stderr  flag is 0, the syslog  facility (Section 13.4) is used. 

Figure B.4. Error functions for daemons 



/* 
 * Error routines for programs that can run as a da emon. 
 */ 
 
#include "apue.h" 
#include <errno.h>      /* for definition of errno */ 
#include <stdarg.h>     /* ISO C variable arguments  */ 
#include <syslog.h> 
 
static void log_doit(int, int, const char *, va_lis t ap); 
 
/* 
 * Caller must define and set this: nonzero if 
 * interactive, zero if daemon 
 */ 
extern int log_to_stderr; 
 
/* 
 * Initialize syslog(), if running as daemon. 
 */ 
void 
log_open(const char *ident, int option, int facilit y) 
{ 
    if (log_to_stderr == 0) 
        openlog(ident, option, facility); 
} 
 
/* 
 * Nonfatal error related to a system call. 
 * Print a message with the system's errno value an d return. 
 */ 
void 
log_ret(const char *fmt, ...) 
{ 
    va_list     ap; 
    va_start(ap, fmt); 
    log_doit(1, LOG_ERR, fmt, ap); 
    va_end(ap); 
} 
 
/* 
 * Fatal error related to a system call. 
 * Print a message and terminate. 
 */ 
void 
log_sys(const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 
    log_doit(1, LOG_ERR, fmt, ap); 
    va_end(ap); 
    exit(2); 
} 
 
/* 
 * Nonfatal error unrelated to a system call. 
 * Print a message and return. 
 */ 
void 
log_msg(const char *fmt, ...) 
{ 



    va_list ap; 
 
    va_start(ap, fmt); 
    log_doit(0, LOG_ERR, fmt, ap); 
    va_end(ap); 
} 
 
/* 
 * Fatal error unrelated to a system call. 
 * Print a message and terminate. 
 */ 
void 
log_quit(const char *fmt, ...) 
{ 
    va_list     ap; 
 
    va_start(ap, fmt); 
    log_doit(0, LOG_ERR, fmt, ap); 
    va_end(ap); 
    exit(2); 
} 
 
/* 
 * Print a message and return to caller. 
 * Caller specifies "errnoflag" and "priority". 
 */ 
static void 
log_doit(int errnoflag, int priority, const char *f mt, va_list ap)  
{ 
    int     errno_save; 
    char    buf[MAXLINE]; 
 
    errno_save = errno;     /* value caller might w ant printed */ 
    vsnprintf(buf, MAXLINE, fmt, ap); 
    if (errnoflag) 
        snprintf(buf+strlen(buf), MAXLINE-strlen(bu f), ": %s", 
          strerror(errno_save)); 
    strcat(buf, "\n"); 
    if (log_to_stderr) { 
        fflush(stdout); 
        fputs(buf, stderr); 
        fflush(stderr); 
    } else { 
        syslog(priority, buf); 
    } 
}  

 


