
SYBEX Sample Chapter

The Mac® OS X Command Line:
Unix Under the Hood
Kirk McElhearn

Chapter 5: Working with Files and Directories

Copyright © 2004 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication
may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph,
magnetic or other record, without the prior agreement and written permission of the publisher.

ISBN: 0-7821-4354-7

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the USA and other countries.

TRADEMARKS: Sybex has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following
the capitalization style used by the manufacturer. Copyrights and trademarks of all products and services listed or described herein
are property of their respective owners and companies. All rules and laws pertaining to said copyrights and trademarks are inferred.

This document may contain images, text, trademarks, logos, and/or other material owned by third parties. All rights reserved. Such
material may not be copied, distributed, transmitted, or stored without the express, prior, written consent of the owner.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturers. The
author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the
contents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Sybex Inc.
1151 Marina Village Parkway
Alameda, CA 94501
U.S.A.
Phone: 510-523-8233
www.sybex.com

Chapter 5

Working with Files
and Directories

One of the strongest features of the Mac OS X Finder, and of other graphical user interface operating
systems, is its ability to make file management actions so intuitive that they seem effortless. When you
drag a file from one window to another, for example, the Finder is merely putting a graphical face on
a basic action, that of issuing a command to move a file from one location to another. Figure 5.1 is
an example of what you see in the Finder.

But what you would type to carry out this same operation from the command line is this:

$ mv ~/My\ Folder/My\ File.txt ~/My\ Other\ Folder

Figure 5.1

Moving a file in
the Finder

4354Book.fm Page 97 Sunday, October 17, 2004 3:08 PM

98 CHAPTER 5

WORKING WITH FILES AND DIRECTORIES

You have to admit, there’s something to be said for dragging and dropping files in Finder windows!
But the command line offers many advantages over using the Finder for moving, copying, or deleting

files and folders. Here are just a few:

◆

You can copy or move files from one directory to a distant directory, without having to open
any windows.

◆

You can easily copy or move multiple files using wildcards. You can even select which files to
copy according to certain attributes, such as parts of filenames or extensions.

◆

You can copy or move files that are hidden by the Finder.

◆

You can make files invisible with one simple command.

◆

You can rename files and directories in a jiffy. You can even move and rename a file or directory
with just one command.

◆

You can delete files or directories quickly (but irreversibly—see the section “Removing Files
with

rm

” below for a warning on deleting files).

◆

You can delete files that the Finder refuses to delete. Occasionally, a recalcitrant file that you
have placed in the Trash just won’t go away. Using the command line, you can eliminate it
for good.

As you get more familiar with working via the command line, you will discover more advantages
to using Terminal.

A Caveat on Moving and Copying Files

Mac OS has historically used a unique way of saving files. Many files are in two parts, called the

data fork

and the

resource fork

. Back in the days of Mac OS 9 and earlier, the data fork contained data (the contents
of a file, or code for applications) and the resource fork contained settings, icons, and other information.
Most files used this two-part system; if you have ever copied files to a PC disk and looked on a Windows
computer, you have seen additional folders copied together with your files.

When copying or moving files containing a resource fork, this can be a problem: some files still contain
information in their resource fork, especially those files used by Mac OS 9 or Classic applications.

If you are using files with Mac OS 9 or Classic, the

cp

 and

mv

 commands may strip any resources the files con-
tain. (The

mv

 command is usually safe, and only strips resource forks when moving a file to another volume;
this is, in essence, copying the file, since it creates a new copy of the file on the other volume and then
deletes the original.) Some applications need these resource forks, and stripping them may cause files
you’ve moved or copied with these commands to be unusable. But Apple created some additional com-
mands, called

CpMac

 and

MvMac

 (the capitalization is important here), to resolve these issues.

CpMac

 and

MvMac

 are installed with the Developer Tools. (For more on using the Developer Tools, see Interlude 8,
“Using the Developer Tools.”) These command-line tools allow you to retain resource forks when copying
and moving files and applications, ensuring that everything you copy or move with them remains usable.

4354Book.fm Page 98 Sunday, October 17, 2004 3:08 PM

COPYING FILES WITH CP

99

Copying Files with

cp

The

cp

 (

c

o

p

y) command does exactly what its name suggests: it copies files from one location to
another. At its simplest implementation,

cp

 copies a file (specified by its filename, with either a relative
or absolute path) to a directory (also specified by its name, with either a relative or absolute path). The
basic form is as follows:

cp

source destination

With this in mind, let’s look at a few examples of copying files.

$ cp ~/Documents/MyFile.rtf ~/Public

In the above example, I copied a file from the

Documents

 directory in my home directory to the

Public

 directory, a location where any user can access files. As you can see in the command, the first
part,

cp

, is the command, the second,

~/Documents/MyFile.rtf

, is the source, and the third,

~/Public

,
is the destination. Both the source and destination in this example use absolute filepaths; I could be
anywhere in the file system when running this command.

However, if I were already in the

Documents

 directory, I wouldn’t need to use an absolute filepath
for the source. Since it’s perfectly legal to mix absolute and relative filepaths in a command, I could
merely type the following:

$ cp MyFile.rtf ~/Public

Let’s say I’m in my

Documents

 directory and want to copy a file there from my

Public

 directory.
I could use the following command, using the

.

 and

..

 shortcuts:

$ cp ../Public/MyFile.rtf .

The source,

../Public/MyFile.rtf

, tells the shell to look at the

Public

 directory, which is a sub-
folder of the next directory up in the hierarchy (

..

, or my home directory), and to copy the file called

MyFile.rtf

. The destination,

.

, is the shortcut for the current directory.
When copying files in this simple form, the source is a filename and the destination a directory.

(The destination can also be a filename; see below for more ways to use

cp

.) But the source can also
be multiple filenames. When executing this command, the shell checks the contents of the directory
you refer to, making sure that the file or files exist. If there are several files listed and they all exist,
then the shell goes ahead and copies them all to the destination. You can run a command like this:

$ cp MyFile1.rtf MyFile2.rtf MyFile3.rtf ~/Public

and copy the three files after the

cp

 command to the destination directory.

Using Wildcards to Copy Files

For an even shorter version of this command, you can use a wildcard and save your typing fingers:

$ cp MyFile* ~/Public

4354Book.fm Page 99 Sunday, October 17, 2004 3:08 PM

100 CHAPTER 5

WORKING WITH FILES AND DIRECTORIES

The

*

 wildcard tells the shell to look for all files whose names begin with

MyFile

 and copy them
to

~/Public

. Of course, if you have 10 files like that, all 10 will be copied. If you only want the first
three copied, you need to enter each name individually, or you could use the following command:

$ cp MyFile[1-3].rtf ~/Public

If you want to copy all

.rtf

 files from the source directory, you can use the following:

$ cp *.rtf ~/Public

This will copy all files ending with

.rtf

 to the

Public

 folder. You can use the asterisk wildcard
at any location in a filename. Table 5.1 demonstrates some ways it can be used.

For a more thorough presentation of wildcards, see Interlude 6, “Wildcards and Globbing.”

Warning: Copying Files Replaces Existing Files

By default, the

cp

 command replaces any like-named files in the destination—unlike the Finder, which
gives you an alert, asking if you really want to replace them. The same goes for the

mv

 command (see the
section “Moving Files and Directories with

mv

” below). This is one of the dangers of using the command
line. New actions call for new habits, and the safest way to work with these two commands is to use the

-i

 (interactive) option, which tells the shell to ask you if any files with the same name are present. When
using this option, type

y

 for yes (to replace files) and

n

 for no.

Here’s an example:

$ cp -i MyFile1.rtf New_Directory/

overwrite New_Directory/MyFile1.rtf?

y

$

I typed

y

 when Terminal asked me if I wanted to overwrite the file. If I typed

n

, or pressed Return, at the
overwrite question, the command would stop.

Table 5.1:

Examples of Using the Asterisk As a Wildcard

Wildcard Usage What the Shell Matches

MyFile*.rtf

This string tells the shell to look for any file beginning with

MyFile

 and ending with

.rtf

. It will copy, for example,

MyFile1.rtf

, as well as

MyFileBackup.rtf

.

My*.rtf

This string tells the shell to look for any file beginning with

My

 and ending with

.rtf

.
It will also copy

MyReport.rtf

 or

MyBicycle.rtf

.

*File.rtf

This string tells the shell to look for any file ending with

File.rtf

. It will copy

OldFile.rtf

,

NewFile.rtf

, etc.

My*le[1-3].rtf

This string tells the shell to look for any file beginning with

My

, followed by any
characters, then by

le1

,

le2, or le3, then .rtf. It will copy MyVeryOldFile1.rtf,
but not MyFileBackup1.rtf.

4354Book.fm Page 100 Sunday, October 17, 2004 3:08 PM

COPYING FILES WITH CP 101

Copying a File and Changing Its Name
In the above examples, the sources used were files and the destinations directories. But the destination can
also be a filename. This is useful if you want to copy a file and change its name at the same time. For exam-
ple, to copy MyFile.rtf to your Public folder, renaming it MyFile1.rtf, run the following command:

$ cp MyFile.rtf ~/Public/MyFile1.rtf

Unless you want to change the name, you won’t need to specify a filename in the destination; a
directory will do.

You can do the same thing to make a copy of a file, with a different name, in the same folder. Just
run the command like this:

$ cp MyFile.rtf MyFile1.rtf

The system will make a copy of the file, with the new name.

Preserving File Information while Copying

When you copy a file with cp, some of the information about the file may be lost or changed. This notably
includes the file’s modification date and time. The cp command normally updates this information when
copying, but if you run this command with the -p (preserve) option, this will be preserved. This is very
useful when you are concerned about knowing which of your files is the newest or most recently modified.

In the following example, I had a file called testfile, which I copied normally as testfile1, then
again using cp -p as testfile2. You can see that in the first case the modification time was changed
and in the second it was preserved.

-rw-r--r-- 1 kirk staff 0 Jan 13 09:49 testfile
-rw-r--r-- 1 kirk staff 0 Jan 13 10:19 testfile1
-rw-r--r-- 1 kirk staff 0 Jan 13 09:49 testfile2

Hands On: Copying All the Files in a Directory

As seen in Table 5.1, wildcards save you from typing lots of filenames. You can go the ultimate distance
with the * wildcard and use it to copy all the files from a directory to another directory. To copy all the files
from the current working directory (the directory Terminal is currently in), run the following:

$ cp * [destination]

For example, to copy all the files in your Pictures directory to your home directory, you can run this while
in the Pictures directory:

$ cp * ~

If you are not in the directory you want to copy from, you merely need to specify that directory in the
source, like this:

$ cp ~/Pictures/* ~

Not only does this save you a lot of keystrokes, but you’ll find that it can be even quicker than using the
Finder.

4354Book.fm Page 101 Sunday, October 17, 2004 3:08 PM

102 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

This option preserves more than just the modification time. According to the cp man page, it
“causes cp to preserve in the copy as many of the modification time, access time, file flags, file mode,
user ID, and group ID as allowed by permissions.” Not all this information is preserved in all cases.
For more on using this option, see the cp man page.

Copying Directories with cp
You can use cp to copy directories as well as files, but it works a bit differently. For cp to work with
directories, it needs the -R (recursive) option. This tells the command to copy not only the directory
specified, but all subdirectories it contains as well as any other contents. To copy a directory, you need
to run the following:

$ cp -R [source] [destination]

All the other options and ways of copying, shown above for files, work the same with direc-
tories. Note, however, that while you rename the directory while copying—giving the new direc-
tory a different name than the original—you cannot change the name of its subdirectories or other
contents.

On The Command Line

Overview of the cp Command

Command Syntax

cp [option(s)] source destination

Finder Equivalent

Copy and Paste.

Overview of Options for cp

cp This command copies the source argument to the destination. You can use multiple sources or
wildcards. You can specify a directory as the destination, or specify a path containing a file
name, if you wish to change the name of the file being copied.

-p This option causes cp to preserve in the copy as many of the modification time, access time, file
flags, file mode, user ID, and group ID as allowed by permissions.

-R If the source is a directory, with this option tells cp to copy the directory and all its sub-
directories.

-i This is the interactive option. The shell will ask you to confirm before copying a file that would
overwrite an existing file. If you type y, the copy will continue. If you type n, it will stop.

Getting More Information

To display the man page and learn more about cp, and the options available, type man cp in Terminal.
Several options are available that can be useful in certain situations.

4354Book.fm Page 102 Sunday, October 17, 2004 3:08 PM

COPYING FILES WITH CP 103

The Incredible Shrinking Files

The cp command does not copy the resource forks of files. For most files, this doesn’t make a difference,
but some programs still put information in resources. One example is graphics programs that may put
thumbnail images in the resources of picture files.

You can use cp to remove these resources, making the files much smaller, so you can send them more easily
by e-mail or just save space. (If you have a lot of pictures, you can save several megabytes by removing these
thumbnails.)

To do this, just copy a file, giving it a new name.

$ cp Perceval.jpg PercevalCopy.jpg

In the above example, I copied a picture of my son Perceval, renaming it, in the same directory. If you look
in the Finder, you can see the difference, as shown here:

The original file displays a thumbnail and the copy just shows a standard JPEG icon.

Curiously, when examining the file info in Terminal, there seems to be no difference:

$ ls -l
-rw-r--r-- 1 kirk staff 30819 Nov 14 18:06 Perceval.jpg
-rw-r--r-- 1 kirk staff 30819 Nov 14 18:07 PercevalCopy.jpg

But as you can see here, the Finder shows that the difference is significant:

This is because Terminal does not see the resource fork of the files, and calculates the size only by looking
at their data. However, running ls -ls shows the difference (the -ls option adds a column at the begin-
ning of the line with the number of 512-byte blocks each file takes up):

$ ls -ls

Continued on next page

4354Book.fm Page 103 Sunday, October 17, 2004 3:08 PM

104 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

Moving Files and Directories with mv
The mv (move) command moves files or directories from one location to another. When these loca-
tions are on the same volume, mv works the same as when you drag files from one Finder window to
another. If you run the mv command across volumes, the files or directories are removed from their
original location, whereas the Finder merely copies them. The mv command acts like a cut-and-paste
operation, cutting the file or directory from its original location, and pasting it in its new location. This
command works almost exactly like the cp command, the main exception being that you never have to
use the -R option to move directories. To run this command, do the same things as described in the
previous section, substituting mv for cp.

$ mv MyFile.rtf ~/Public/MyFile.rtf

In this example, the file called MyFile.rtf is moved to my Public folder. The operating system
first writes the file then, after checking to make sure the copied file was written correctly, deletes the
original.

328 -rw-r--r-- 1 kirk staff 30819 Nov 14 18:06 Perceval.jpg
 64 -rw-r--r-- 1 kirk staff 30819 Nov 14 18:07 PercevalCopy.jpg

Removing this thumbnail reduces the size of the file fivefold. If you are sending a number of pictures by
e-mail, this can save a lot of time. However, if you want to strip resource forks from many files at once, you
can use the cp command to copy the files to another folder. Run the command like this:

$ cp *.jpg /folder

sending the copies to another folder. In this manner using the * wildcard to match all filenames with a jpg
extension the resource forks of all the files are removed.

Hands On: Renaming Files in a Jiffy

As we saw earlier, the mv command lets you choose a new name for a file at the destination. But you can
also quickly rename a file with this command. All you need to do is move a file to the same directory it’s in
while changing its name. Run the following:

$ mv OldFileName NewFileName

The mv command takes OldFileName and replaces it with NewFileName in the same directory (since no
different path is specified in the destination). But it gets even better: this command does not differentiate
between files and directories, and you can use mv to rename a directory, retaining all its contents, no mat-
ter how many subdirectories or files it contains.

$ mv Photos Photos-copy

But be warned: as with many Unix commands, there is little room for error. You are safest copying files and
directories if you want to change their names. When doing this, you are left with both the original and the
copy, whereas mv leaves you with only the copy.

The Incredible Shrinking Files (continued)

4354Book.fm Page 104 Sunday, October 17, 2004 3:08 PM

CREATING DIRECTORIES WITH MKDIR 105

I must warn you that by default, the mv command (like cp discussed earlier) replaces any like-
named files in the destination, unlike the Finder, which gives you an alert asking if you really want to
replace them. You can run the mv command with the -i (interactive) option, as with many commands,
to protect against this. If you run the command in the following manner, you will get an alert if a file
exists with the same name:

$ mv -i MyFile.rtf ~/Public
overwrite /Users/kirk/Public/MyFile.rtf? y

Type y to overwrite the file, or type n or Return to stop the move operation and keep the file in
the destination.

Creating Directories with mkdir
We have seen above how to move and copy files from one directory to another, but you will also need
to create directories to put these files in. The mkdir (make directory) command is very easy to use.
Here’s an example:

$ mkdir Test

This command creates a new directory, called Test, in the current directory. Since the filename
does not begin with a /, the shell knows that you are specifying a relative path. If you want to create

On The Command Line

Overview of the mv Command

Command Syntax

mv [option(s)] source destination

Finder Equivalent

Cut and Paste; changing filenames by clicking and editing them.

Overview of Options for mv

mv This command moves the source argument to the destination. You can use multiple sources or
wildcards. You can specify a directory as the destination, or specify a path containing a filename,
if you wish to change the name of the file being moved.

-i This is the interactive option. The shell will ask you to confirm before moving a file that would
overwrite an existing file. If you type y, the move operation will continue. If you type n, or press
Return, it will stop.

Getting More Information

To display the man page and learn more about mv, and the options available, type man mv in Terminal.

4354Book.fm Page 105 Sunday, October 17, 2004 3:08 PM

106 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

the same directory in, say, your Documents directory, you could run the above command after using
cd to move to that directory, or run the following from anywhere:

$ mkdir ~/Documents/Test

The mkdir command can also make several directories at a time. If you want to create three direc-
tories, called Test1, Test2, and Test3, you can run the following:

$ mkdir Test1 Test2 Test3

This command will create the three directories in the current working directory. To do the same
using absolute paths, the command looks like this:

$ mkdir ~/Documents/Test1 ~/Documents/Test2 ~/Documents/Test3

If you want to create directories in hierarchy, mkdir can help as well. The only condition is that
you set up your command in hierarchical order, creating the parent directory before the subdirectory,
and before the sub-subdirectory, etc. If you want to create a series of directories and subdirectories
like this:

Test1/Test2/Test3

you need to run the command as follows:

$ mkdir -p Test1/Test2/Test3

On The Command Line

Overview of the mkdir Command

Command Syntax

mkdir directory ...

Finder Equivalent

New Folder.

Overview of Options for mkdir

mkdir This command creates a new directory. You can specify either a relative or an absolute path
for the directories you create.

-p This option tells mkdir to create all intermediate directories when you specify a hierarchy of
directories.

Getting More Information

To display the man page and learn more about mkdir, and the options available, type man mkdir in Terminal.
There are several options involving permissions for the directories created, which may be useful in some cases.

4354Book.fm Page 106 Sunday, October 17, 2004 3:08 PM

REMOVING DIRECTORIES WITH RMDIR 107

The -p (path) option tells the command to create each intermediate directory as required. The
command first creates the Test1 directory, then the Test2 subdirectory, and finally, further down in
the hierarchy, Test3.

Removing Directories with rmdir
The rmdir (remove directories) command is self-explanatory: it lets you remove directories, deleting
them forever. Like the rm command (covered in the next section), which works on files, rmdir is very
powerful: once you remove a directory in this manner, there is no getting it back. (See the section “A
Safer Way to Remove Files” below for a way to safeguard this command.)

However, rmdir only works with empty directories. You may find it easier to use rm for both files
and directories in all cases—after all, it’s much easier to use just one command instead of two, and
if you apply the safeguard shown below, you need only set it for one command: rm.

To delete an empty directory, run the following:

$ rmdir Files

If you try to remove a directory that contains files or other directories, Terminal will display the
following:

$ rmdir Files
rmdir: Files: Directory not empty

On The Command Line

Overview of the rmdir Command

Command Syntax

rmdir [option] [directory1] [directory2] ...

Finder Equivalent

Move (Folder) to Trash (though rmdir deletes the directory immediately).

Overview of Options for rmdir

rmdir This command removes directories. You can specify a single directory or several directories
as arguments.

-p This option tells rmdir to remove all intermediate directories when you specify a hierarchy
of directories. All the directories in the hierarchy must be empty.

Getting More Information

To display the man page and learn more about rmdir and the options available, type man rmdir in Terminal.
There is one option that can be useful in certain situations.

4354Book.fm Page 107 Sunday, October 17, 2004 3:08 PM

108 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

You can remove several empty directories in one command. Just separate their names with single
spaces, specifying either just their names (for relative paths, within the current working directory) or
their paths (for absolute paths). Here’s an example:

$ rmdir Files ~/Documents/OldDocuments ../Video

You can also use rmdir to remove a hierarchy of directories, as long as all the directories are empty.
Use the -p option as follows:

$ rmdir -p Directory1/Directory2/Directory3

One disadvantage to using the rmdir command is that, unlike the rm command, it has no -i
(interactive) option, which asks you to confirm the deletion, and no -v (verbose) option ; these
deficiencies limit its value.

Removing Files with rm
The rm (remove) command is one of the most powerful and dangerous commands you can use in
Terminal. Be forewarned: when you remove a file with rm, it is deleted forever. While some file recovery
programs may be able to find files deleted in this manner, it is safest to assume that what is eliminated
with rm is gone for good.

While many Unix commands are safe to run, even if you have little experience, rm is like a loaded
gun. For this reason, you should use this command with the utmost care. However, there is a simple
way to apply a safeguard to this command (and others); see the next section for a safety measure that
will take the worry away.

Running the rm command is relatively simple. Look at the contents of this directory:

$ ls
File1 File2 File3

To remove one of these files, run the following:

$ rm File1

You can check to make sure it worked:

$ ls
File2 File3

You can see that the file you removed is indeed gone; it no longer shows up in the list.

A Safer Way to Remove Files
The first way of removing files, as shown above, is really for those people who are totally confident
with the command line. It’s working without a net, though; as I said above, rm is very powerful, but
there is a safeguard you can use to protect yourself. The rm command has an option, -i (for interactive),
which tells Terminal to ask you to confirm that you really want to delete each file.

To use this option, run the command as follows:

$ rm -i File2

4354Book.fm Page 108 Sunday, October 17, 2004 3:08 PM

REMOVING FILES WITH RM 109

Terminal will ask you to confirm.

remove File2?

Type y for yes or n for no.

remove File2? y

If you type y, the file will be deleted. If you type n, or press Return, the file will not be touched.
In both cases, Terminal will display a new prompt; it gives no other information, and you need to run
the ls command again to see what’s in the directory.

A good thing to do is set rm -i as an alias for rm, so you can type rm and use the interactive option
without needing to remember it or typing those extra characters. See Chapter 16, “Configuring the
Shell,” for an explanation of how to do this.

Getting More Feedback with rm
The rm command has another option, -v (verbose), which shows the names of files as it removes them.
If you use this option, Terminal will show the following:

$ rm -v File3
File3
$

An Even Safer Way to Remove Files

There is one good thing about deleting files in Mac OS X (and in previous versions of Mac OS): file deletion
is always a two-step procedure. You first move files to the Trash, then you delete them (unless you are
deleting files on a remote volume; they are deleted immediately when you move them to the trash).

With the command line, this is much more radical. You remove files, and they are gone.

But there’s a safeguard you can use, combining the best of both worlds. Instead of removing files with the
rm command, you can use the mv command to move them to the Trash. This lets you work with a safety net
to make sure you haven’t goofed and deleted the wrong file.

To do this, use the following command:

$ mv filename ~/.Trash

If you look in the Trash, you’ll see the file you moved. You can later empty the Trash when you are sure you
want to delete the file.

There is one thing to note, however. Unlike when you drag or send files to the Trash in the Finder, the above
command replaces any like-named file that is in the Trash. So make sure that you don’t want to get back
other files that are already in the Trash and that may have the same name.

You can also create your own command alias to do this more easily. See Chapter 16 for instructions on
creating this alias.

4354Book.fm Page 109 Sunday, October 17, 2004 3:08 PM

110 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

I have added the prompt after the file removal to illustrate how this is displayed in Terminal. All
this option does is show the name of the file, but it can serve to confirm exactly which file has been
removed. Of course, if you made a typo and removed the wrong file, it’s too late now!

Removing Directories with rm
While there is a special command for removing empty directories (rmdir; see above), the rm command
also lets you do this through the -d option. I cannot repeat often enough how dangerous this com-
mand is. Don’t forget to check the “A Safer Way to Remove Files” section above to see the best safe-
guard to protect against accidental deletions.

To remove a directory, use the following:

$ rm -d Directory1

You can use the -i and -v options, as mentioned above, for additional security:

$ rm -div Directory1

The rm command can also remove directories recursively, using the -r (recursive) option, deleting
a directory and all its subdirectories, as well as any files they contain. This is like dragging a folder
that contains subfolders and files to the Trash in the Finder, except you can’t drag it back out of the
Trash if you want to keep it.

Let’s look at how this works, and how you can use the -i option for minimal protection.
First, create a few nested directories:

$ mkdir Directory1 Directory1/Directory2 Directory1/Directory2/Directory3

Hands On: Shredding Files with rm

There are many programs on the market that shred files: what they do is not only delete files but overwrite
the disk space they used to make sure that file recovery programs cannot get them back. This is a useful
security measure for many people, and it’s no surprise that there is a Unix command that can do this with-
out the need for additional software.

The trick is to use the -P option with rm. This overwrites files first with the byte pattern 0xff, then 0x00,
and then 0xff again; this triple protection may seem overkill, but if you are really concerned about shred-
ding your files it’s reassuring to know that you’re covering all bases.

The command is run as follows:

$ rm -P fileName (fileName2 ...)

Naturally, you can also use the -i option, presented above, to confirm removal of the file(s), or the -v
option to show the names of the files being removed.

Note that the rm command’s three-pass deletion is good, but not the best way of shredding your files. The
Finder offers a U.S. Department of Defense–approved system of deletion offering seven passes, which is
guaranteed to prevent recovery. Some companies or government agencies may need to use this system,
and in such cases, the rm command’s secure deletion is insufficient.

4354Book.fm Page 110 Sunday, October 17, 2004 3:08 PM

REMOVING FILES WITH RM 111

Then, to remove all three of these directories, run the following:

$ rm -ir Directory1
remove Directory1? y
remove Directory1/Directory2? y
remove Directory1/Directory2/Directory3? y

Obviously, if you don’t use the -i option, the command will just remove all the directories with-
out any feedback.

But what if you decide that you don’t want to remove one of the directories? You can type n at any
point to keep it. Watch what happens then:

$ rm -ir Directory1
remove Directory1? y

On The Command Line

Overview of the rm Command

Command Syntax

rm [option(s)] file1/directory1 file2/directory2 ...

Finder Equivalent

Move to Trash (though rm deletes the files or directories immediately).

Overview of Options for rm

rm This command removes (deletes) the file(s) and/or directory(ies) specified in its
arguments. This deletion is quick and painless. It is also permanent: when removing
files or directories, there is no way to get them back.

-i This is the interactive option. The shell will ask you to confirm before removing a file
that would overwrite an existing file. If you type y, the deletion will continue. If you
type n, it will stop.

-v This is the verbose option. It tells the shell to display the name(s) of files or directories
removed after running the command.

-d This option removes directories.

-P This option shreds files by overwriting them. This overwrites files first with the byte
pattern 0xff, then 0x00, and then 0xff again.

-r (or -R) This is the recursive option. It removes directories and files recursively, starting from
the directory specified, it removes every subdirectory and file within that directory.

Getting More Information

To display the man page and learn more about rm and the options available, type man rm in Terminal.
Several additional options can be useful in certain situations.

4354Book.fm Page 111 Sunday, October 17, 2004 3:08 PM

112 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

remove Directory1/Directory2? y
remove Directory1/Directory2/Directory3? n
rm: Directory1/Directory2: Directory not empty
rm: Directory1: Directory not empty

If at any point in the hierarchy you don’t want to delete a file or directory, the system cannot let you
keep an item without its parent directory. In the above example, the decision to not remove Directory3
means that Directory2 (its parent directory) could not be deleted; Directory1 (the parent of Directory2)
could also not be deleted, so none of these three directories will be removed. However, if they contain files,
and you answer y to the rm command’s confirmation requests for these files, they will be removed.

Aliases and Links
When the Finder sees an alias or a symbolic link, it treats them both the same—they will be displayed
the same, and double-clicking on either one will take you to its source (if a folder) or will open the
file or application. Prior to Mac OS X 10.2, aliases maintained references to files or folders through
their unique identity first and their filepath second. Beginning with Mac OS X 10.2, the filepath was
given priority. This means that from 10.2 on, you can delete the original file or folder and create a
new one with the same name and the alias will still work. The advantage to aliases is that the Finder
can keep track of the original if it is moved.

Can’t Empty the Trash?

While in the Finder, you’ll occasionally find that you cannot fully empty the Trash. There may be one or more
files that you cannot empty because of their permissions, or because they are locked. The rm command lets
you empty the Trash easily.

The first thing you need to know is that there are several Trashes. Each user has their own Trash directory
(~/.Trash) and each volume has one (/.Trashes). So, if you have several volumes, you’ll have one Trash
directory to empty for your user account and one per volume. Run these commands to empty all the Trash:

$ sudo rm -rfi ~/.Trash/*
$ sudo rm -rfi /.Trashes/*
$ sudo rm -rfi /Volumes/<volumename>/.Trashes/*

The first command empties your user Trash, the second the startup volume’s Trash, and the final one
empties the trash for any other volume (enter the name of the volume where the command shows
<volumename>.

Since these commands use the -i (interactive) option, Terminal will ask you to confirm deletion of each
file. If you’re sure you want to delete all these files, you can leave this option out.

The second and third commands empty the Trash for all users. So only use them if you really need to do
this. If you just want to empty the Trash for your user account, run these commands:

$ sudo rm –rf /.Trashes/`id –u`/*
$ sudo rm –rf /Volumes/*/.Trashes/`id –u`/*

The above commands get your user ID number and delete the contents of the appropriate Trash subdirectories.

4354Book.fm Page 112 Sunday, October 17, 2004 3:08 PM

ALIASES AND LINKS 113

Symbolic links work strictly according to filepaths. If you move the original, the symbolic link
is broken. But only symbolic links work in Terminal—you cannot do anything with aliases from the
command line.

Creating Symbolic Links with ln
The ln (link) command creates links from Terminal. As mentioned above, these symbolic links function
like Finder aliases (though if the original is moved, the link breaks). Its syntax is very similar to that of
the cp or mv commands: you type the command followed by a source and target path.

$ ln -s /Volumes/Files/Current ~/Current

In the above example, I created a link for the Current directory, located in the Files partition, and
placed it in my home directory. Inspecting this directory shows the following:

$ ls -F
Current@ Documents/ Movies/ Pictures/ Sites/
Desktop/ Library/ Music/ Public/

Remember, ls -F shows the directory contents in short form, but adds a slash after a directory and
an @ after a symbolic link.

You can also run ls -l to get more information:

$ ls -l
total 0
lrwxr-xr-x 1 kirk staff 33 Nov 21 09:42 Current -> /Volumes/Files/Current
drwxr-xr-x 7 kirk staff 238 Nov 20 22:24 Desktop
drwxrwxrwx 17 kirk staff 578 Nov 20 22:23 Documents
drwxr-xr-x 43 kirk staff 1462 Nov 20 21:17 Library
drwxr-xr-x 2 kirk staff 68 Jan 10 2002 Movies
drwxr-xr-x 5 kirk staff 170 Sep 24 01:02 Music
drwxr-xr-x 10 kirk staff 340 Jun 25 19:26 Pictures
drwxr-xr-x 7 kirk staff 238 Nov 20 22:12 Public
drwxr-xr-x 4 kirk staff 136 May 28 16:56 Sites

As you can see, Current points (->) to /Volumes/Files/Current and the entry type flag is l, show-
ing that it is a link.

Now that you have a symbolic link in this directory, you can use cd to move into it:

Walden:~ kirk$ cd Current/
Walden:~/Current kirk$

The prompt treats the symbolic link like a directory—it does not show the actual path. But if you
run the pwd command, you will see where you really are:

$ pwd
/Volumes/Files/Current

4354Book.fm Page 113 Sunday, October 17, 2004 3:08 PM

114 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

whereas running pwd -L shows the logical path to the directory, or how you got there:

$ pwd -L
/Users/kirk/Current

(For more on pwd, see Chapter 4, “Navigating the File System.”)

Absolute versus Relative Paths for Symbolic Links

Unlike Finder aliases, symbolic links are not updated when you move their targets in your file system.
If you create an alias to a file using the Finder and move the file somewhere else on the same volume,
the Finder will still know where it is and be able to open it. (The Finder won’t follow aliases copied
to other volumes, because when moving a file to another volume you copy it. It only follows the orig-
inal file the alias points to.) If you copy the alias somewhere else (even to another volume), it will still
find the original file.

With symbolic links created in Terminal, the situation is a bit different. If you create a symbolic
link then move the original, the link breaks. But if you create a new file with the same name as the
original, in the original location, the symbolic link will work again.

If you move the symbolic link, there are two possibilities for what will occur: if you specified a
relative filepath as the source, the link may break. But if you used an absolute filepath when creating
the link, it will still work. In this example:

$ ln -s Current ~/Current

I created a link with an absolute filepath. I told the shell to make a link to /Volumes/Files/Current and
place it in ~/Current. If I were in my home directory and ran the following command:

$ ln -s /Volumes/Files/Current ~/Current

it would have the same effect, at least at first. I would have a link in my home directory that points
to /Volumes/Files/Current. But since this link has a relative filepath, it would break if I decided to
move it anywhere else.

Aliases and the Command Line

Most Mac users are familiar with aliases—they allow you to create virtual pointers to files or folders that
can be placed anywhere on your computer. When you double-click an alias to an application, the applica-
tion opens; when you double-click a file alias, that file opens; and when you double-click a folder alias, a
window opens displaying the contents of that folder.

Aliases are very practical on the Mac for organizing frequently used files, folders, and applications in dif-
ferent locations. You can put aliases to all your common applications in one folder, and, instead of opening
lots of windows to get to the applications, can open them easily with just a double-click. You can also use
file and folder aliases to group pointers to common files and folders, again saving time.

Continued on next page

4354Book.fm Page 114 Sunday, October 17, 2004 3:08 PM

ALIASES AND LINKS 115

Aliases, Symbolic Links, and Hard Links

Symbolic links are very similar to Finder aliases though they react differently when moved, depending
on whether you used absolute or relative filepaths when creating them.

Unix systems offer another kind of link, called hard links. A hard link is more than an alias, and
different from a symbolic link, because it links directly to the original file’s location in the file

Unix systems don’t grok Mac OS aliases. (But note that an alias under Unix has a totally different meaning.
See Chapter 16 for information on shell aliases.) Unix systems have an equivalent to Mac OS aliases called
symbolic links. These are pointers to files, directories, or applications that work from the command line
almost the same as aliases work in the Finder.

If you try to use cd to move into a directory alias, you will see the following:

$ cd Current
Current: Not a directory.

When running ls to look at the contents of a directory, there is nothing to indicate that Current is an alias:

$ ls
Current Library Pictures
Desktop Movies Public
Documents Music Sites

But if you run ls -l you can see the difference:

$ ls -l
total 320
-rw-r--r-- 1 kirk staff 0 21 Nov 10:06 Current
drwx------ 17 kirk staff 578 8 May 16:29 Desktop
drwx------ 36 kirk staff 1224 6 May 08:56 Documents
drwx------ 67 kirk staff 2278 29 Apr 23:01 Library
drwx------ 6 kirk staff 204 5 Feb 20:47 Movies
drwx------ 20 kirk staff 680 21 Mar 21:34 Music
drwx------ 10 kirk staff 340 29 Apr 23:22 Pictures
drwxr-xr-x 8 kirk staff 272 6 May 10:59 Public
drwxr-xr-x 8 kirk staff 272 24 Feb 16:15 Sites

Terminal sees Current, the alias to another folder, as a kind of file. Note the flags at the left of this line:

-rw-r--r-- 1 kirk staff 0 21 Nov 10:06 Current

The first flag, the entry type flag, shows whether the item is a directory (the d flag), a symbolic link (the
l flag), or one of several other types of special items. Since this flag is blank, Terminal sees it as just
another file.

Aliases and the Command Line (continued)

4354Book.fm Page 115 Sunday, October 17, 2004 3:08 PM

116 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

system. When you delete a hard link, the target remains in its original location. When you delete the
target of a hard link, the hard link remains, with the content of the file.

An example may help you clarify this. Imagine a puppet held by several strings to its frame (the
wooden piece that the puppeteer holds). If hard links were strings, you could cut one, two, even three
of these strings (depending on how many there are) and, as long as there is still one string holding on
to the puppet, it remains attached to the frame. Cut the last string and the puppet falls.

Filenames in the file system are actually hard links. Each bit of data that makes up a file is
referenced by a filename. When you move a file, you aren’t moving its data, just its name within
the file system tree. When you delete a file, you delete the reference to that data, not the data
itself.

For all intents and purposes, a hard link is the exact same thing as its target file; unlike symbolic
links or aliases, deleting the target does not actually delete the file. It is more like giving a file several
names. As long as there is at least one hard link to a file, the file system maintains the file and only
deletes the file when there are no more hard links to it. In addition, you can move a hard link or its
target and the link will still work, and if you move a hard link to another volume, it becomes a file—
no longer linked to the original target, it is exactly the same as the original file and can be edited
accordingly.

If you are used to working with aliases, you may find the concept of hard links a bit confusing. The
fact that you can delete the original file, yet not actually delete it, may lead to confusion. The other
problem with hard links is that they cannot refer to directories and cannot be used to refer to files on
other volumes, whether on the same computer or a different computer on a network. In most cases,
symbolic links will be sufficient.

As you can see in Table 5.2, aliases, symbolic links, and hard links have different properties and
different usages. The one to use depends on how you need to work with it.

When looking at links in Terminal, you can tell which type they are by using the ls -l command.
Here are three files: a normal file, a hard link, and a symbolic link.

-rw-r--r-- 2 kirk staff 0 Jan 13 10:51 testfile
-rw-r--r-- 2 kirk staff 0 Jan 13 10:51 hardlink
lrwxr-xr-x 1 kirk staff 8 Jan 13 10:51 symlink -> testfile

The first file is a normal file, but you can tell by looking in the second column that a hard link to
this file exists. If the file had no hard links, the directory link count in this column would be 1; since
it is 2, you know there is a hard link, though you don’t know where.

The second file, a hard link to the first file, shows the same information except for its name. The
only way you know it was created as a hard link is because of its name.

The third file is a symbolic link, and this shows in two ways. First, the file mode section at the
beginning of the line starts with the letter l, indicating this is a symbolic link. Second, the filename
shows both the name of the link and the file it points to, with the -> symbol between them. Also,
the size of this file is equal to the length of the file it links to; since testfile is 8 letters, symlink
has a size of 8 bytes.

4354Book.fm Page 116 Sunday, October 17, 2004 3:08 PM

ALIASES AND LINKS 117

Table 5.2: Properties and Usage of Aliases, Symbolic Links, and Hard Links

Finder aliases Symbolic links Hard links

Aliases can link to files, directories,
or applications.

Symbolic links can link to files
or directories. They can link to
command-line applications as
well, and when created to Finder
applications, appear and work
like Finder aliases.

Hard links can only link to files.
(The only exceptions are the . and
.. hard links, which are created
with each new directory, but only
the mkdir command can create
these links.)

The Finder resolves aliases when
files are dragged onto them.

The Finder resolves symbolic
links when files are dragged
onto them.

You cannot create hard links to
directories or applications, so
there is no reason to drag items
onto them.

The Finder resolves aliases when
you double-click them.

The Finder resolves symbolic
links when you double-click them.

The Finder resolves hard links to
files when you double-click them.

Aliases can refer to items across
volumes.

Symbolic links can refer to items
across volumes.

Hard links cannot refer to items
across volumes.

Aliases can be moved and still
work. The targets of aliases can
also be moved and still work.

Symbolic links can be moved and
still work (if absolute filepaths
are used). If you use a relative
filepath, the link breaks when
moved. (However, a relative link
using ../ at the beginning of its
path will still work if it is moved
to another directory that is one
level below its target.)

Hard links can be moved on the same
volume and still work, whether you
use an absolute or relative filepath
when creating them. If moved to
another volume, they become copies
of the original files.

Aliases give visual indications
in the Finder (the alias icon has
an arrow), and the Get Info
window shows their paths. They
also maintain any custom or
application icons the item has.

Symbolic links give visual
indications in the Finder (the
symbolic link icon has an arrow),
and the Get Info window shows
their paths. They also maintain
any custom or application icons
the item has.

Hard links are blank file icons,
showing nothing about what they
are. They do not take on specific
custom or application icons.

Aliases give no indication of what
they are in Terminal.

Symbolic links show clearly
in Terminal; a link name is
shown like this: link_name ->
original_file.

Hard links give no indication of
what they are in Terminal, but they
are equivalent to their targets.

You cannot follow aliases in
Terminal.

You can open (if links to files) or
follow (if links to directories)
symbolic links from Terminal.

You can open hard links (or, more
correctly, the files they point to)
from Terminal.

4354Book.fm Page 117 Sunday, October 17, 2004 3:08 PM

118 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

Hands On: Using Links to Work with the Developer Tools

If you have installed the Developer Tools provided with Mac OS X, you probably want to access some of
their special commands, such as MvMac and CpMac. (For more on the Developer Tools, see Interlude 8.)
Since these commands are located in /Developer/Tools, you cannot invoke them without specifying
their entire path, unless you add this path to your shell’s PATH variable. (See Chapter 16 for more on the
PATH variable.)

Another way to do this is to create symbolic links to the commands you use often and put them into /usr/
local/bin, where the shell looks automatically. This saves you from changing your PATH variable, but it
also ensures that the commands remain where they belong. Though you could physically move these com-
mands, they would be in the wrong place when you install the next Developer Tools upgrade.

To create these links, run the following commands:

$ sudo ln -s /Developer/Tools/CpMac /usr/local/bin/cpmac

$ sudo ln -s /Developer/Tools/MvMac /usr/local/bin/mvmac

If you run the commands as above, you’ll do something else that will make using these Developer Tools
commands a bit easier: by naming the links in lowercase letters, you won’t need to remember that the
original commands actually contain a combination of both uppercase and lowercase. (These names are
case-sensitive.)

Once you have created these links, you can use these commands by simply typing their names instead of
their full paths. If you use bash, run the hash -r command; if you use tcsh, run the rehash command so
the system finds the new links in /usr/local/bin and you can use them.

On The Command Line

Overview of the ln Command

Command Syntax

ln [option(s)] source [target]

Finder Equivalent

Make Alias.

Overview of Options for ln

ln This command creates a link between a source (original) file or directory and a target file or
directory. If you don’t use the -s option, this is a hard link.

-s This option creates a symbolic link.

Getting More Information

To display the man page and learn more about ln, and the options available, type man ln in Terminal.

4354Book.fm Page 118 Sunday, October 17, 2004 3:08 PM

COPYING DIRECTORIES WITH DITTO 119

Copying Directories with ditto
As we saw earlier, the cp command copies both files and directories but has one important disadvantage:
it does not copy resources and certain other file information that is required by the Finder. Because of
this, Apple has provided a special command-line tool with its Developer Tools: CpMac copies files so all
Finder information is maintained. Together with MvMac, which is an enhanced version of the mv com-
mand, these two tools offer “safe” copying of files and applications. (For more on using these tools, see
Interlude 8.)

There is another program included in the basic OS X installation for copying directories and their
contents: ditto. This command is most useful for two things:

◆ Copying Mac OS X resources and metadata. The ditto command correctly copies Mac OS X
applications, which are stored as a kind of folder, and also copies other metadata that the
Finder uses.

◆ Backing up data. The ditto command can back up your data safely, keeping all attributes the
Finder needs, and can also make a bootable clone of your startup volume.

This command works in two ways. In the first form, you can copy a directory to another location,
specifying the source directory and the name of the new target directory. You can run the command
like this:

$ ditto directory1 directory2

The command creates the new directory and copies the source directory to the destination, which
can have either the same name as the source (if in a different parent directory) or a different name.

To use ditto to copy Mac OS X resources and metadata (this includes Mac OS aliases and custom
icons), you must use the -rsrcFork option. If the destination is on a file system that does not support
resource forks, ditto will store this data in AppleDouble files.

$ ditto -rsrcFork directory1 directory2

If you specify the name of the destination directory and it does not exist, ditto creates it. In the
following command, this works more like the cp command:

$ ditto -rsrcFork ~/Documents ~/Desktop/DocumentsBackup

As you can see, I copied my Documents directory to the desktop. Since I specified the name of the
destination (DocumentsBackup), ditto created this directory, then copied the contents of my
Documents directory into it.

But ditto becomes very interesting when copying into an existing directory. In this case, the
ditto command copies the contents of the source directory into the destination directory. This is very
different from how cp works. As the ditto man page says, “If the destination directory does not exist
it will be created before the first source is copied. If the destination directory already exists then the
source directories are merged with the previous contents of the destination.”

4354Book.fm Page 119 Sunday, October 17, 2004 3:08 PM

120 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

When copying a directory with cp, the source directory and its contents are copied to the destination
directory. If you have a directory called dailyFiles that contains seven files (Monday, Tuesday, etc.)
and you run the following command:

$ cp -R dailyFiles Backup

you end up with the following structure:

$ ls Backup
dailyFiles

The dailyFiles directory was copied to the Backup directory.
But when doing this:

$ ditto dailyFiles Backup

the result is as follows:

$ ls Backup
Friday Monday Saturday Sunday Thursday Tuesday Wednesday

As you can see, ditto did not copy the dailyFiles directory to Backup, but only its contents.
This difference is both subtle and tricky. On the one hand, it allows you to copy or back up the

contents of a directory or volume to another directory or volume, maintaining the exact same structure
as the original, without replacing the parent directory. If you back up your entire Users directory to a
Backup volume, for example, you will not see a Users directory after the backup, but rather a group of
directories with the names of each user. The structure is that which was inside the source directory.

But this is also tricky. You are probably used to copying a directory and finding that directory
inside the destination. So you need to make sure that if you want to back up all your user folders, you
run ditto with the Users directory, not each individual user directory, as the source.

Finally, ditto overwrites all existing files, symbolic links, and directories in the destination, but
ensures that all these items have the same mode, owner, and group as the source items. Files cannot
overwrite directories or vice versa, so if you have a directory with the name of a file, it will not be
copied.

Copying Applications with ditto
As I mentioned earlier, only ditto and CpMac can copy applications correctly under Mac OS X. If you
haven’t installed the Developer Tools, ditto is the only way you can do this.

When copying items with ditto, remember that ditto copies the contents of a directory. You may
also recall that Mac OS X applications are actually directories masquerading as single items. So, with
this in mind, you can probably imagine what will happen if you try to copy an application with ditto.

$ sudo ditto -rsrcFork /Applications/Calculator.app ~

(Notice the use of sudo before this command—in many cases, you will get a "Permission denied"
result from Terminal if you run ditto on an application without sudo. For more on using sudo, see
Interlude 7, “Using sudo.”)

4354Book.fm Page 120 Sunday, October 17, 2004 3:08 PM

COPYING DIRECTORIES WITH DITTO 121

In the above example, I tried to copy the Calculator application to my home directory. But when
I look in my home directory, I see the following:

$ ls ~
Contents Desktop Library Music Public
Documents Movies Pictures Sites

There’s nothing called Calculator, but there is something called Contents. If you recall from the
section on the cp command, copying an application has surprising consequences (at least copying
native Mac OS X applications, which are, in fact, directories containing other files and directories).
The cp command strips the resources and metadata that the application needs to appear as an appli-
cation, leaving behind nothing but a directory called Contents. But ditto, with the -rsrcFork option,
is supposed to keep this data, right?

Well, it does, but you need to run ditto differently. Instead of specifying a source (the appli-
cation) and a destination (the directory to which you want to copy the application), you need to
run ditto like this:

$ ditto -rsrcFork /Applications/Calculator.app ~/Calculator.app

When done in this manner, ditto copies the application as is, and it works fine.
One final note: I have used the -rsrcFork option here, but if you run the above command without

it, it will work just fine. Most of Apple’s own applications (such as Calculator) have no resource forks,
but other applications may have them. It is safer to use this option, though if you copy an application
without it you’ll probably find out right away whether it works or not.

Backing Up Your Files with ditto
As we saw above, ditto is the safest way to copy Mac OS X files and applications. If you want to
regularly back up your files, you can use ditto to do this.

Start by choosing a location for your backups. The best way is to have a separate partition or hard
disk for backups. But if you haven’t partitioned your hard drive, you could also use an external
medium such as a Zip drive.

To use a removable medium such as a Zip drive, insert your Zip cartridge and run the following
commands:

$ cd /Volumes
$ ls

The first command moves you to the Volumes directory, which contains the names of all mounted
volumes. The second lists these volumes. Use the exact name of the Zip cartridge or other medium,
as shown here. When I insert a 250MB Zip cartridge in my drive, it shows up as ZIP 250.

If you have a partition dedicated to backups, you can copy everything to this location. If not, create
a directory on this partition with the same name as your user name. (I’ll show the following commands
with my user name, kirk; replace this with your user name.)

$ cd /Volumes/'Zip 250'
$ mkdir kirk

4354Book.fm Page 121 Sunday, October 17, 2004 3:08 PM

122 CHAPTER 5 WORKING WITH FILES AND DIRECTORIES

If you are backing up your home directory, first make sure there is enough room on the destination;
if there isn’t, you will have to back up something that will fit—your Documents directory, for example.
Run the following command, changing partitionName to the name of your partition or external backup
medium:

$ ditto -rsrcFork /Users/kirk /Volumes/partitionName/kirk

If I run this command to my backup partition (called Backup), it would be as follows:

$ ditto -rsrcFork /Users/kirk /Volumes/Backup/kirk

If I run this command to my Zip cartridge, it would be as follows (note the use of quotes, because
of the space in the name of the Zip cartridge):

$ ditto -rsrcFork /Users/kirk /Volumes/'Zip 250'/kirk

Backup may take a few minutes, depending on how many files you have in your directories. The
copy will be finished when Terminal displays a prompt.

When running this command, you may see some messages like this:

/Users/kirk/Library/Preferences/com.apple.loginwindow.plist:
Permission denied

This means that there is an issue with permissions that you don’t have. These files are not copied,
but the rest of your files and directories are copied. (To copy every file, you can run the command
using the sudo command. For more on sudo, see Interlude 7.)

Why Use ditto?

The ditto command is the command-line equivalent of a Finder drag-and-drop copy. So why use ditto
instead of copying in the Finder? The main reason to use this command is so you can add it to scripts, or have
it run automatically using cron. (For more on cron, see Interlude 9, “Automating Commands.”) Otherwise,
unless you cannot access the Finder (because of problems on a computer, or because you have logged in
remotely) there is little reason to use it. Drag-and-drop copies are generally faster and easier than command-
line copies.

However, there is one thing you can do with ditto that you cannot do from the Finder: you can use it to
create a bootable backup of your startup volume, and one reason you would want to do this is to copy
invisible files. For a complete explanation on cloning your startup volume, see Interlude 4, “Cloning your
Mac OS X Startup Volume.”

4354Book.fm Page 122 Sunday, October 17, 2004 3:08 PM

SUMMING UP 123

Summing Up
This chapter has shown you the essential commands for copying, moving, and deleting files and
directories, as well as creating directories. These commands—cp, mv, rm, mkdir, rmdir, and ditto—
do similar things as drag-and-drop copying in the Finder but, as some of the examples show, offer more
power and flexibility. While the Finder remains easier to use for most operations, these commands give
you a powerful alternative and in some cases provide tools that the Finder cannot offer.

On The Command Line

Overview of the ditto Command

Command Syntax

ditto [option(s)] [source] [destination]

Finder Equivalent

Copy.

Overview of Options for ditto

ditto This command copies the source argument to the destination. If the destination
directory does not exist, it will be created before the copy is made. If it does exist,
the contents of the source are merged in the destination directory.

-rsrcFork This is the resource fork option. It tells ditto to copy Mac OS resource forks and metadata.

Getting More Information

To display the man page and learn more about ditto, and the options available, type man ditto in Terminal.
This command has several options that can be useful in certain situations.

Hands On: Backing Up Files across a Network

The ditto command is a great tool for backing up files locally, but if you want to back up files and syn-
chronize directories across a network, the rsync command is what you need. This command can set up a
secure connection and copy files and directories to another computer, maintaining an exact copy of the
source directory on both sides—it can delete any files in the destination that are not in the source.

For more on the rsync command, see Chapter 13, “Using the Network.”

4354Book.fm Page 123 Sunday, October 17, 2004 3:08 PM

Interlude 4: Cloning Your
Mac OS X Startup Volume

While backing up your personal files is essential to make sure you don’t lose any data in case of a crash
or hardware problem, backing up your startup volume is purely optional, yet can be useful as insurance.
If you do this from time to time, such as before making any new system upgrades, you can always revert
to a working system if you encounter any problems. It can take a long time to reinstall the system and
all its upgrades if you do have problems; a clone of your startup volume lets you get up and running in
a short time.

Under previous versions of Mac OS, you could merely copy your System Folder to another volume
to make a backup and recopy it to your startup volume in case of problems. You could even boot off
this backup easily, as long as your backup System Folder was blessed, or set to be bootable (usually, it was
sufficient to open the System Folder for this to occur).

Under Mac OS X, you cannot just copy your startup volume to another disk. Well, you can, but
you won’t be able to boot from this backup. There are many files that don’t get copied if you do a
drag-and-drop copy, and many of the Unix permissions and links are either changed or damaged
during copy. To make a useful copy of your Mac OS X startup volume, you must clone it, making
an exact copy not only of all the files, but also of the permissions and settings.

While you can use third-party tools to clone your Mac OS X startup volume (using a program
such as Mike Bombich’s shareware Carbon Copy Cloner, http://www.bombich.com/software/
ccc.html, or Intego Personal Backup X, http://www.intego.com), you can also accomplish this task
using the command line.

Note: this procedure covers Mac OS X 10.3 (Panther) and 10.2 (Jaguar) and does not work with
older versions of Mac OS X.

Considerations for Cloning a Mac OS X Startup Volume
Several issues must be considered when cloning a Mac OS X startup volume. The following is adapted
from Mike Bombich’s “Guide to Backing Up Mac OS X,” found at http://www.bombich.com/mactips/
image.html.

File Permissions Must Be Preserved Many files belong to the root user, so you cannot simply
copy these files from the Finder. There are other issues with permissions, such as the setuid bit,
a feature of a file that, when executed, gives the file or application the same privileges as the owner
of the file; if the owner of the file is root, then root privileges are granted during the execution of
this file. Copying via the Finder sets the owner of the new files to the user who copied them and
assigns a default set of permissions. Many applications and system files will not work properly
with the default Finder settings.

The Invisible Unix System Files Must Be Copied Some of the essential directories for Mac OS X
are invisible: these are /private, /bin, /usr, and /sbin. These directories hold critical files that allow

4354Book.fm Page 124 Sunday, October 17, 2004 3:08 PM

INTERLUDE 4: CLONING YOUR MAC OS X STARTUP VOLUME 125

the computer to boot and operate. There are also other invisible files at the root level of the file system
that the Finder cannot copy.

Unix-Style Links Must Be Preserved Symbolic links and hard links are different from Mac
aliases, and the Finder does not copy them correctly. Because there are some critical symbolic links
on a Mac OS X volume, the integrity of these files must be preserved when you clone the volume.

Special Directories Some directories are populated by the system. For example, the Volumes
directory is populated with directories corresponding to the names of volumes you have on your
system. These directories are called mountpoints and are created on the fly by Apple’s
autodiskmount utility. Because these directories do not contain data on your startup volume, they
do not need to be copied during a clone operation. The Volumes directory is just a placeholder (and
Mac OS X recreates the Volumes directory on startup). The /dev directory is also a placeholder,
for system devices such as disk drives, output devices, and communications devices. The list of
devices in this directory is created each time the computer is started up and when new hardware
is added, so it is unnecessary to copy the items in this directory. Because this is a Unix system direc-
tory, however, you will not have a bootable volume unless this directory is recreated on the cloned
disk. Creating an empty directory is sufficient. Likewise, it is important to back up mach_kernel
(the most important file in the system), but mach and mach.sym are destroyed and recreated each
boot by the /etc/rc boot script. Finally, the Network folder at the root level does not need to be
backed up because it is populated by the system on startup.

Resource Forks Must Be Preserved While Apple is trying to move away from resource forks,
many applications and documents still use them. Because of this, any backup or cloning utility
must preserve the resource forks. If you try to clone a Mac OS X disk without preserving resource
forks, many of your personal documents will be damaged.

Preparing to Clone a Mac OS X Startup Volume
Do the following before cloning your Mac OS X startup volume:

◆ Make sure the Ignore Ownership on This Volume setting is not checked for your target volume.
To check this setting, click on the target volume’s icon in the Finder, select File � Get Info, then
click the disclosure triangle next to Ownership and Permissions. Make sure the box at the bottom
is not checked, otherwise permissions and ownership settings will not be preserved, no matter how
you copy files.

◆ Run Disk Utility on the target and source volumes before cloning. This is not required, but
is a good idea to avoid disk- or directory-related problems during cloning. If you are cloning
to an external FireWire device, it’s a good idea to reformat (not simply erase) the drive with
Disk Utility prior to cloning.

Cloning a Mac OS X Startup Volume with ditto
The ditto command preserves permissions when run as root and preserves resource forks when run with
the -rsrcFork option. (For more on ditto, see Chapter 5, “Working with Files and Directories.”) This
command is easy to use to clone a Mac OS X startup volume, and you can clone a disk with just a few
steps. Here’s what you need to do to clone your startup volume. (Note: use the following procedure at

4354Book.fm Page 125 Sunday, October 17, 2004 3:08 PM

126 INTERLUDE 4: CLONING YOUR MAC OS X STARTUP VOLUME

your own risk. Make sure, before erasing your original volume, that you are able to boot from the clone
and that no files are missing.)

In the following procedure, the volume used for the clone is called /Volumes/Backup. Change this to
reflect the name of the actual volume you are using. Also, you must have an administrator password to
run these commands. Terminal will ask you to enter that password after you type the first command.

Note that some of these commands may take a while to run, and the commands don’t give you any
feedback in Terminal. You may have a couple hundred megabytes of files in your /Applications
folder, for example, and this takes a long time to copy.

1. Use ditto to copy each of the visible directories from your startup volume to your backup
volume. You need to repeat this step for each of these files or directories at the root level of
your drive:

$ sudo ditto -rsrcFork /Applications /Volumes/Backup/Applications
$ sudo ditto -rsrcFork /Developer /Volumes/Backup/Developer
$ sudo ditto -rsrcFork /Library /Volumes/Backup/Library
$ sudo ditto -rsrcFork /System /Volumes/Backup/System
$ sudo ditto -rsrcFork /Users /Volumes/Backup/Users
$ sudo ditto -rsrcFork /System\ Folder /Volumes/Backup/System\ Folder

If you have not installed the Mac OS X Developer Tools, you won’t have a Developer directory;
if you haven’t installed Mac OS 9 on the same volume as Mac OS X, you won’t have a System
Folder.

If you have installed Mac OS 9, you’ll also want to copy the Mac OS 9 Applications folder
(the following command should all be on one line):

% sudo ditto -rsrcFork '/Applications (Mac OS 9)'
 '/Volumes/Backup/Applications (Mac OS 9)'

You don’t need to back up any of these files or directories at the root level of your file system:

dev
Volumes
Network
etc
tmp
var
automount
.vol
mach
mach.sym
.DS_Store
Cleanup At Startup

4354Book.fm Page 126 Sunday, October 17, 2004 3:08 PM

INTERLUDE 4: CLONING YOUR MAC OS X STARTUP VOLUME 127

TheVolumeSettingsFolder
File Transfer Folder
Trash
.Trashes
TheFindByContentFolder

However, if you find any other files or directories there, you should copy them. Use the same
syntax as above to copy these additional items.

2. Use ditto to copy your system files:

$ sudo ditto -rsrcFork /cores /Volumes/Backup/cores
$ sudo ditto -rsrcFork /private /Volumes/Backup/private
$ sudo ditto -rsrcFork /usr /Volumes/Backup/usr
$ sudo ditto -rsrcFork /bin /Volumes/Backup/bin
$ sudo ditto -rsrcFork /sbin /Volumes/Backup/sbin
$ sudo ditto -rsrcFork /mach_kernel /Volumes/Backup/mach_kernel
$ sudo ditto -rsrcFork /.hidden /Volumes/Backup/.hidden

3. Recreate symbolic links and empty directories:

$ cd /Volumes/Backup
$ ln -s private/etc etc
$ ln -s private/var var
$ ln -s private/tmp tmp
$ mkdir dev Volumes Network

4. Bless the system (Mac OS X) and System Folder (Mac OS 9), if copied, on the target:

$ sudo bless -folder /Volumes/Backup/System/Library/CoreServices
$ sudo bless -folder9 /Volumes/Backup/System\ Folder -bootBlocks

The last step is required if you want to be able to boot from your clone. Another way to accomplish
this is to select it as the startup disk in the Startup Disk pane of the System Preferences.

You should now have a bootable clone of your Mac OS X startup volume. To check that it works,
select this volume as the startup disk in the Startup Disk pane of the System Preferences and restart.
If all went correctly, you’ll be able to start up from this volume.

If you ever need to copy this clone back to your startup volume, repeat the procedure using the
volume containing the clone as the source and the desired startup volume as the destination.

4354Book.fm Page 127 Sunday, October 17, 2004 3:08 PM

	Copyright © 2004 SYBEX Inc:
	, 1151 Marina Village Parkway, Alameda, CA 94501:
	 World rights reserved:

