
Short Paper: Exploiting WPA2-Enterprise Vendor
Implementation Weaknesses through Challenge Response

Oracles

Pieter Robyns, Bram Bonné, Peter Quax, Wim Lamotte
iMinds/tUL/UHasselt
Wetenschapspark 2

3590 Diepenbeek, Belgium
{pieter.robyns, bram.bonne, peter.quax, wim.lamotte}@uhasselt.be

ABSTRACT
Many of today’s enterprise-scale wireless networks are pro-
tected by the WPA2-Enterprise Protected Extensible Au-
thentication Protocol (PEAP). In this paper it is demon-
strated how an attacker can steal a user’s credentials and
gain unauthorized access to such networks, by utilizing a
class of vulnerable devices as MSCHAPv2 challenge response
oracles. More specifically this paper explains how on these
devices, Lightweight EAP (LEAP) MSCHAPv1 credentials
can be captured and converted to PEAP MSCHAPv2 cre-
dentials by using a rogue Access Point. This man-in-the-
middle vulnerability was found to be present in all current
versions of Apple’s iOS and OS X operating systems, and
may impact other devices as well. A proof-of-concept im-
plementation is available that shows how Authentication
Server certificate validation and certificate pinning mecha-
nisms may be bypassed. Mitigation strategies for the attack
and protective actions which can be undertaken by end-users
are also described in this paper.

Keywords
Network security; WPA2-Enterprise; PEAP; LEAP

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: Security
and protection.

General Terms
Experimentation, Security

1. INTRODUCTION
Since its inception, wireless networking has become in-

creasingly popular. More and more users desire access to
network resources or the internet without having to struggle

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec’14, July 23–25, 2014, Oxford, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2972-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2627393.2627411.

with network cables. As anyone with a wireless network card
can eavesdrop on data sent wirelessly, it is self-evident that
data security and user privacy are crucial aspects. This is
especially true for enterprises, where confidential company
data may be transmitted over the air. Fortunately, this data
can be encrypted using a secure communication protocol.

For the average home user, the procotol that is consid-
ered most secure for wireless communication is WPA2-PSK.
Here, the user configures a single password that is used for
authentication. This password is shared with all users that
require access to the network. For enterprises, this approach
is infeasible: different users may require different access
rights on the network, access may need to be revoked to
former employees or the password may unintentionally leak
to unauthorized parties. Therefore, the most popular choice
for enterprises is WPA2-Enterprise. When this protocol is
used, each user has their own login and password.

Though WPA2-Enterprise is considered secure in gen-
eral, many attacks exist that are based on the Man-In-The-
Middle (MITM) principle. Here, a victim user is tricked into
connecting to a rogue Access Point (AP) that has the same
SSID as the enterprise network. To add to the problem,
many devices on the market automatically join a wireless
network in their Preferred Network List (PNL) by default.
This is convenient for the user, but it also introduces the
risk of joining a network under control of an attacker [15].

To solve these MITM issues, the authenticity of the APs
themselves can be verified by the device. This verification
happens in the background, so the user fully relies on the
used network protocol for its security. In context of WPA2-
Enterprise networks, the IEEE 802.1X Standard specifies
that the EAP protocol should be used for this purpose. EAP
is an extensible authentication protocol that implements a
wide variety of authentication procedures, called EAP meth-
ods.

Though EAP methods are well-defined and thoroughly
examined for flaws by security experts, a correct protocol
implementation is the responsibility of the device vendor.
Unsurprisingly, there are subtle differences between various
vendor implementations. Some of these may contribute to
significant security vulnerabilities, such as those described
in this paper.

For our research we focused mainly on the PEAP method,
because it is popular, widely supported and considered se-
cure. We tested the PEAP implementation of some of the
most popular operating systems used today: Windows, Mac

189

OS X, Android and iOS [9]. A practical attack for which
Apple devices are particularly vulnerable resulted from our
findings. The vulnerability has been reported to Apple prior
to the release of this paper, on February 5, 2014.

2. ATTACK DESCRIPTION
Our attack exploits a combination of two vulnerabilities.

A first vulnerability is the fact that some devices accept the
older LEAP method for authentication. This EAP method
is Cisco proprietary and uses the MSCHAPv1 algorithm to
authenticate users. Past research has already proven that
both MSCHAPv1 and MSCHAPv2 are insecure for various
reasons when used without the protection of a TLS tunnel
[19]. Since the LEAP method does not establish a TLS
tunnel from client (or“Supplicant”) to Authentication Server
(AS) prior to exchanging credentials, it is vulnerable to a
rogue AS MITM attack [6].

The second vulnerability is that when the user configures
or joins a PEAP network, some devices reuse the supplied
credentials for all supported EAP methods. Hence, LEAP
credentials do not have to be entered explicitly by the user.
Existing MITM attacks try to capture these LEAP creden-
tials using a rogue AS, and then crack them with dictionary
attack tools like asleap1. In our attack, we will use the
credentials for a different purpose.

Before we discuss a practical implementation of our at-
tack, let us first examine how credentials are exchanged in
LEAP. The three entities participating in the authentica-
tion are the Supplicant, the Authenticator, and the AS. For
simplicity, assume that Authenticator and AS reside on the
same machine. The LEAP authentication procedure is per-
formed as follows [6]:

1. The Supplicant associates with the AP and exchanges
its identity with the AS. This step is identical for all
EAP methods.

2. The AS sends an 8-byte challenge Cs, where Cs =
Random8(seed), to the Supplicant.

3. The Supplicant generates a 24-byte challenge response
Rp, where Rp = ChallengeResponse(Cs, H), H =
MD4(Unicode(PW)) and PW is the password of the
user. Rp is then sent to the AS.

4. The AS calculates Rcheck = ChallengeResponse(Cs, H).
The exchange is successful if Rp and Rcheck match.

5. In case of success, an EAP-Success message is sent
from Authenticator to the Supplicant. Then, AS and
Supplicant switch roles and repeat steps 2 to 4. This
time we denote the challenge sent by the Supplicant as
Cp, and the response by the AS as Rs.

6. The AS derives the Session Key (SK) as

SK = MD5(MD4(Unicode(H))

||Cs||Rp||Cp||Rs) (1)

where “||” is the concatenation operator. The AS en-
crypts this value with the RADIUS secret and sends it
to the Authenticator. The Supplicant also derives the

1This tool can be downloaded from the following URL:
http://www.willhackforsushi.com/?page_id=41

SK, so this key can be used for WEP encrypted uni-
cast communication. Finally, a random broadcast key
is generated by the Authenticator and sent encrypted
with the unicast key to the Supplicant.

Note that a LEAP exchange is practically identical to per-
forming two MSCHAPv1 authentications (steps 2 to 4): one
from AS to Supplicant (Cs → Rp) and one from Supplicant
to AS (Cp → Rs). [25].

Next, let us examine PEAP. This authentication method
is significantly more complex, and among other features sup-
ports MSCHAPv2 mutual authentication to protect against
MITM attacks [16, 17]. Assuming cryptographic binding
is not used (see Section 5.3), PEAP authentication is per-
formed as follows:

1. The Supplicant associates with the AP and exchanges
its identity with the AS.

2. In Phase 1, the Supplicant and AS set up a TLS tunnel
similar to the procedure described in RFC 5246 [7].
From the TLS master secret, a Master Session Key
(MSK) is derived via a one-way function. This key
serves a comparable purpose to the Session Key from
LEAP.

3. Phase 2 is performed inside the TLS tunnel and im-
plies usage of an EAP inner authentication method.
MSCHAPv2 is frequently used for this purpose. As-
suming MSCHAPv2 is used, the AS starts by gen-
erating a 16-byte random server challenge Cs =
Random16(seed) and sends it to the Supplicant.

4. The Supplicant also generates a random 16-byte peer
challenge Cp. Then the challenge response is calcu-
lated as Rp = ChallengeResponse(Challenge(Cs), H),
where Challenge(Cs) = SHA1(Cp||Cs||U)[0 : 7], U is
the username of the user, H = MD4(Unicode(PW)),
PW is the password of the user and [0 : 7] means the
first eight bytes of the data. This challenge response
is transmitted back to the AS, along with Cp and U .

5. The AS calculates Rcheck analogous to Rp in step 4.
Rcheck and Rp must match, or the authentication will
fail.

6. The AS calculates a peer challenge response

Rs = PeerResponse(MD4(Unicode(H)),

M1, Rp, Challenge(Cp),M2) (2)

where M1 is the string “Magic server to client signing
constant”and M2 is the string“Pad to make it do more
than one iteration”. This result is SHA1-hashed and
sent to the Supplicant.

7. The Supplicant authenticates the server, completing
the MSCHAPv2 inner authentication.

8. An EAP-Result-TLV exchange is performed between
AS and Supplicant to indicate the result of the PEAP
authentication. Then an EAP-Success message is sent.

9. The MSK is used to derive the WPA2 Pairwise Master
Key (PMK) and subsequent keys. Secure transmission
of data can begin when the 802.11i four-way handshake
[11] is completed.

190

http://www.willhackforsushi.com/?page_id=41

When comparing the core differences between MSCHAPv1
and MSCHAPv2 credentials from RFCs 2433 and 2759, we
can see that they are in fact very minor. Table 1 shows a
comparison between the two methods [24, 25, 19].

Though RFC 2759 states that MSCHAPv2 is incompat-
ible with MSCHAPv1 [24], the insignificance of the afore-
mentioned differences led us to the conclusion that some
MSCHAPv1 messages can be converted to MSCHAPv2 mes-
sages and vice versa.

We will now show that Cs from MSCHAPv1 is identi-
cal to Challenge(Cs) from the MSCHAPv2 AS and that
Rp from the MSCHAPv1 peer is identical to Rcheck at the
MSCHAPv2 server. This way we can be sure that all mes-
sages converted from MSCHAPv1 to MSCHAPv2 or vice
versa will be accepted by the destination host. For the chal-
lenges we derive:

Challenge(Cs) = SHA1(Cp||Cs||U)[0 : 7] (3)

= SHA1(x)[0 : 7] (Cp and Cs are random)
(4)

= Random8(seed), if x = random (5)

= Cs (6)

Given that the ChallengeResponse function is the same in
MSCHAPv1 and MSCHAPv2, we derive for the challenge
responses:

Rs = ChallengeResponse(Cs, H) (7)

= ChallengeResponse(Challenge(Cs), H) (Eq. 6)
(8)

= Rcheck (9)

With the knowledge that the challenge we get from the
PEAP MSCHAPv2 AS can be converted to an MSCHAPv1
challenge (Equation 6), and that the challenge response we
get from our LEAP MSCHAPv1 victim can be converted to
an MSCHAPv2 challenge response that matches Rcheck on
the AS (Equation 9), we devised a relay attack that uses a
vulnerable device as an MSCHAPv2 challenge response ora-
cle in order to gain unauthorized access to PEAP networks.
Figure 1 shows a schematic representation of our attack.

3. PRACTICAL LEAP RELAY ATTACK
In this section we will show how the MSCHAPv1 to

MSCHAPv2 conversion can be exploited in practice. First
we will discuss the preconditions for the attack. Then, a
practical implementation for attacking Apple devices will
be demonstrated.

3.1 Preconditions
A device connecting to a PEAP network is considered vul-

nerable to our attack when all of the following preconditions
are met:

• The device supports the LEAP method.

• The device connects automatically to the PEAP net-
work. This is the default behavior.

• The Authenticator does not require and validate client
certificates. Server certificate validation and certificate
pinning may be enabled on the client.

• The MSCHAPv2 or MSCHAPv1 inner authentication
EAP method is supported and allowed on the AS.

Figure 1: Schematic representation of the Apple LEAP
attack

Note that most of the preconditions listed here are com-
monly fulfilled by default in enterprise network setups.

3.2 Case study: Apple devices
We will now demonstrate how the exploit can be practi-

cally applied to Apple devices (see Figure 1). Our proof-
of-concept implementation uses a simple state machine to
perform the attack (Figure 2). After successful execution,
an attacker gains unauthorized access to the target network
by impersonating a legitimate user.

3.2.1 State 1: Association
Before wireless clients can begin the exchange of EAP

packets to secured networks, they require association with
a wireless AP. We exploit the default auto-join behavior to
have clients associate to an AP under our control. In order
to accomplish this, we set up a fake wireless AP with the
same SSID as the target network. This fake AP broadcasts
beacon packets and replies to Probe Requests from clients.

The client will associate or reassociate to our fake network
AP when it is closer to the target network AP, because better
signal strength is preferred [8]. Alternatively, we can force
the client to connect to our fake AP by performing an attack
similar to [3]. Since we do not want to receive requests
from devices which are not vulnerable, our implementation
uses the MAC Organizationally Unique Identifier (OUI) to

191

MSCHAPv1 MSCHAPv2
Cs Cs = Random8(seed) Cs = Random16(seed)
Cp Cp = Random8(seed) Cp = Random16(seed)
Rs Rs = ChallengeResponse(Cp, H) Rs = PeerResponse(MD4(Unicode(H)),M1, Rp, Challenge(Cp),M2)
Rp Rp = ChallengeResponse(Cs, H) Rp = ChallengeResponse(Challenge(Cs), H)

Table 1: Differences between MSCHAPv1 and MSCHAPv2 exchanges

Assoc.start Ident. Chal.

Resp. Success

fail

fail

fail

fail

Figure 2: State machine of our attack

identify the device vendor. We can filter out all non-Apple
devices this way.

3.2.2 State 2: Identification
The first step after association in WPA2-Enterprise net-

works is identification. The AS has to know which user
wants to authenticate in order to match corresponding cre-
dentials. We can learn the identity of the vulnerable device
by sending an EAP Identity Request. The device will then
reply with an EAP Identity Response which contains the
username of our victim.

At this point, data sent over the air is still not encrypted.
Hence, some PEAP implementations use anonymous identi-
ties. In this case the real username is only disclosed when
a TLS tunnel has been established between the Supplicant
and the AS. Nonetheless, we can still get the real username
in a later phase of our attack.

Our next goal is to get the challenge value from the target
AP. We created a modified version of the wpa_supplicant2

tool for this purpose. At the end of this state, the binary
executable of this modified version is called from our imple-
mentation.

3.2.3 State 3: Challenge
In State 3, we wait for the wpa_supplicant tool to es-

tablish a TLS tunnel with the target AS and extract an
MSCHAPv2 challenge from the inner authentication. We
can now see why usage of client certificates would mitigate
the attack, as the client certificate validation would not be
successful in this case.

When the MSCHAPv2 challenge is retrieved, we pass it
on to our tool. Upon receipt, the tool will periodically send
LEAP Request messages (containing the extracted chal-
lenge) to the Apple device in order to keep the session alive.

2wpa_supplicant is an open source 802.1X Supplicant im-
plementation by Jouni Malinen.

Device Vulnerable
iPod Touch (iOS 6.1.6) Yes
iPhone 4 (iOS 7.1) Yes
iPhone 4S (iOS 7.1) Yes
Mac OS X 10.8.2 (Mountain Lion) Yes
Samsung GT-S5570 (Android 2.3.4) No
Google Nexus 7 (Android 4.4.2) No
Samsung GT-I8750 (Windows Phone 8.0) No
Windows 7 Desktop No

Table 2: Devices vulnerable to the LEAP relay attack

3.2.4 State 4: Response
After receiving the LEAP Request, our victim will re-

ply with a LEAP Response which contains an MSCHAPv1
challenge response to our MSCHAPv2 challenge. Should
the target PEAP network enforce anonymous identities, the
real or inner identity of the victim will also be revealed to
the attacker through this LEAP Response. Next, our imple-
mentation will forward the received MSCHAPv1 challenge
response as an MSCHAPv2 challenge response to the mod-
ified wpa_supplicant tool, which will in turn forward the
challenge response to the legitimate PEAP network AS.

3.2.5 State 5: Success
When the AS receives our modified challenge response,

authentication proceeds as usual, which means the AS has
to authenticate to our Supplicant. However, since we are not
in possession of the NT password secret, we cannot derive
H. Hence, when receiving the peer challenge response from
the AS, we are forced to accept any sent value.

After this, the MSCHAPv2 inner authentication will com-
plete successfully and the port will be authenticated. The
AS and our Supplicant will derive the MSK, and from this
we can derive the PMK. We now have all components re-
quired to access resources on the internal network.

4. TEST RESULTS
We tested our attack on devices from multiple vendors.

Table 2 shows on which devices the LEAP relay attack was
successfully performed.

Assuming that the same network protocol stack is used
on all Apple operating systems, we concluded from these re-
sults that all Apple devices are vulnerable. The attack was
executed analogously on each device for multiple APs, using
different AS implementations. These included a TP-Link
WN422G using hostapd and the latest freeradius imple-
mentation on the same machine, a Linksys WRT54G AP
using the latest freeradius implementation on a dedicated
machine, and a Ubiquity UniFi AC 3.x AP using Windows
RADIUS server on a dedicated machine.

192

5. MITIGATION
The attack we described in this paper can be mitigated in

various ways. We will discuss five methods in this section.

5.1 Client certificates
In State 3 of our attack, a TLS tunnel has to be established

between the attacker and the target network AS. When us-
ing client certificates, each client’s certificate must be pro-
vided in the “Client Hello” phase of the TLS tunnel setup.
When this verification fails, the TLS setup will be aborted
and hence, our attack will fail because the MSK cannot be
derived from the TLS master secret.

This countermeasure is very effective and by far the most
secure. However, it would require a lot of administration
effort for enterprises. Especially in enterprises with a Bring
Your Own Device (BYOD) policy, because a signed certifi-
cate for every device allowed on the network must be in-
stalled on the AS.

5.2 iPhone Configuration Utility
iPhone configuration profiles allow the network adminis-

trator to choose which EAP methods clients must use. They
are the only way in which LEAP can be disabled on Apple
devices. If this method is chosen to mitigate the attack, care
must be taken in BYOD environments: if one user does not
install the network profile, the attack can nevertheless be
executed. Furthermore, network profiles can be accidentally
removed by the user. For these reasons, security is put in
the hands of the end user and therefore this method is not
as secure as using client certificates.

5.3 Cryptobinding
An optional feature described in the PEAP version 2 in-

ternet draft is cryptographic binding [17]. This feature in-
troduces the use of a new Type-Length-Value (TLV), the
CryptoBinding TLV, to address MITM attacks. A two-
way handshake containing a Compound MAC Key (CMK)
proves that the two authentications terminate at the same
PEAP peer and PEAP server [14].

To calculate the CMK, the Supplicant is required to use
keying material from both Phase 1 and Phase 2 of the PEAP
exchange. In practical terms this involves the calculation of
the Tunnel Key (TK) and the Inner Session Key (ISK).
These keys are combined in the cryptobinding algorithm to
form the CMK.

The TK is calculated similarly to the MSK from the
TLS master secret, and would be available to an at-
tacker. The ISK however, is calculated at the Supplicant
as ISK = InnerMPPESendKey||InnerMPPERecvKey.
The InnerMPPESendKey and InnerMPPERecvKey are
both derived from the inner MSCHAPv2 Master Key (MK),
which is derived as

MK = GetMasterKey(

MD4(Unicode(H))[0 : 15], Rs) (10)

Since H is unknown to the attacker, the ISK cannot be
derived and authentication will fail.

If all consumer devices would support cryptobinding, this
method would probably be the best way to mitigate our
attack. However, from our experiments we concluded that
Apple devices do not support cryptographic binding at this
time.

Figure 3: Remote LEAP relay attack

5.4 Intrusion detection
A signature based WIDS might be able to detect our at-

tack by passively scanning for LEAP requests. Since these
packets will never be sent by a legitimate AP, IDS sensor
nodes have a clear indication that the network is under
attack. Analytic approaches to detect our attack may in-
clude station counts, association counts, OS fingerprinting
and RSSI value analysis, though these methods often lead
to false positives [4, 12].

As a final note, we would like to indicate that care must be
taken when relying on a WIDS for detection of an attack, as
we believe that in many cases the IDS may be bypassed. For
example, a victim may be in range of the rogue AP, while
the latter is out of range from a WIDS sensor. In Figure
3, an example scenario is shown where the relay attack is
executed over the internet.

5.5 Rogue AP mitigation
If one can prevent the attacker from setting up a rogue

AP, the LEAP relay attack cannot be performed. Several
methods have already been developed to mitigate the rogue
AP attack [2, 18, 22]. However, we believe not all of these
mitigation strategies will work. Context leashing will only
work when creating the rogue AP in a different context,
EAP-SWAT will have the same problems as PEAP, and
other mitigation strategies in these works rely partly on the
awareness and expertise of the user. We believe link layer
protection mechanisms would be the most effective in this
case.

6. FUTURE WORK
Future work could be done by using the same attack prin-

ciples described in this paper. From our experiments we de-
termined that other devices, for example Android devices,
do not employ certificate pinning by default. If the vic-
tim user did not configure a server certificate, we believe a
more generic MITM attack may be executed as described in
RFC 7029 [10]. Note that in this case, the preconditions are
stricter: it is required that server certificates are not used
by the Android device, which was not the case for Apple
devices.

193

Another option for future work would be to implement
the attack for EAP-TTLS. This EAP method is similar to
PEAP, and we believe the attack may therefore apply to
EAP-TTLS secured networks as well.

7. RELATED WORK
A similar, generalized MITM attack on tunneled authen-

tication protocols was demonstrated by N. Asokan et al. in
2002 [1]. Related attacks on PEAP vendor implementations
such as the EAP dumb-down attack were introduced by Raul
Siles in 2013. This attack exploits the default lack of cer-
tificate validation in mobile devices. However, for Apple
devices, the dumb-down attack requires user intervention
whereas our attack is automatic [20]. Furthermore, a cor-
rect configuration of authentication server certificates does
not mitigate our attack for Apple devices.

Other related attacks were proposed at numerous security
conferences. In 2008, Joshua Wright and Brad Antoniewicz
demonstrated how EAP credentials such as MSCHAPv2 ex-
changes can be collected using freeradius-wpe, a rogue
AS implementation [21]. By using the asleap tool, these
credentials can then be cracked with a dictionary attack
[5]. More recently, in 2012, Moxie Marlinspike showed how
MSCHAPv2 credentials can be cracked in less than 24 hours
using cloud-based FPGA nodes [13]. Finally, Josh Yavor in-
dicated the dangers of BYOD and default certificate valida-
tion behavior of mobile devices in 2013 [23].

8. CONCLUSIONS
We demonstrated how MSCHAPv1 challenges and chal-

lenge responses can be converted to MSCHAPv2 challenges
and challenge responses. Then, we indicated how this can be
exploited in practice when a Supplicant supports the inse-
cure LEAP method and when credentials are reused between
EAP methods.

From our experiments we concluded that all Apple devices
are currently vulnerable to our attack. Mitigation is possible
in various ways. However, we noted why some mitigation
strategies might not be feasible for enterprises. Therefore,
users and network managers should take care when their
devices satisfy all mentioned vulnerability preconditions.

9. ACKNOWLEDGEMENTS
We would like to thank Arno Barzan from the Expertise

Centre for Digital Media for his support and insightful sug-
gestions.

10. REFERENCES
[1] N. Asokan, V. Niemi, and K. Nyberg.

Man-in-the-middle in tunnelled authentication
protocols. In Security Protocols, pages 28–41. Springer,
2005.

[2] K. Bauer, H. Gonzales, and D. McCoy. Mitigating evil
twin attacks in 802.11. In Performance, Computing
and Communications Conference, 2008. IPCCC 2008.
IEEE International, pages 513–516, Dec 2008.

[3] A. Cassola, W. Robertson, E. Kirda, and G. Noubir.
A Practical, Targeted, and Stealthy Attack Against
WPA Enterprise Authentication. In Proceedings of
NDSS, volume 2013, 2013.

[4] M. Ciampa. CWNA Guide to Wireless LANs. Cengage
Learning, 2012.

[5] Cisco. Dictionary Attack on Cisco LEAP
Vulnerability, 2003. http://www.cisco.com/en/US/
tech/tk722/tk809/technologies_security_

notice09186a00801aa80f.html.

[6] A. DeKok and A. Sulmicki. Cisco LEAP protocol
description, 2001.
http://freeradius.org/rfc/leap.txt.

[7] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol. RFC 5246, IETF, August
2008.

[8] M. S. Gast. 802.11 Wireless Networks: The Definitive
Guide, Second Edition. O’Reilly, 2005.

[9] A. Gupta, R. Cozza, and C. Lu. Market Share
analysis: Mobile phones, worldwide, 4Q13 and 2013.
Gartner, 2014.

[10] S. Hartman and M. Wasserman. Extensible
Authentication Protocol (EAP) Mutual Cryptographic
Binding. RFC 7029, IETF, October 2013.

[11] C. He and J. C. Mitchell. Analysis of the 802.11 i
4-way handshake. In Proceedings of the 3rd ACM
workshop on Wireless security, pages 43–50. ACM,
2004.

[12] K. Hutchison. Wireless Intrusion Detection Systems.
SANS Institute InfoSec Reading Room, October 2004.

[13] M. Marlinspike. Divide and Conquer: Cracking
MS-CHAPv2, 2012. https://www.cloudcracker.com/
blog/2012/07/29/cracking-ms-chap-v2/.

[14] Microsoft. Cryptobinding, 2014 (accessed). http://
msdn.microsoft.com/en-us/library/cc238384.aspx.

[15] L. Nussel. The Evil Twin problem with
WPA2-Enterprise. SUSE Linux Products GmbH, 2010.

[16] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn,
and S. Josefsson. Protected EAP Protocol (PEAP).
Work in Progress 6, IETF, March 2003.

[17] A. Palekar, D. Simon, J. Salowey, H. Zhou, G. Zorn,
and S. Josefsson. Protected EAP Protocol (PEAP)
Version 2. Work in Progress 10, IETF, October 2004.

[18] V. Roth, W. Polak, E. Rieffel, and T. Turner. Simple
and effective defense against evil twin access points. In
Proceedings of the First ACM Conference on Wireless
Network Security, WiSec ’08, pages 220–235, New
York, NY, USA, 2008. ACM.

[19] B. Schneier, Mudge, and D. Wagner. Cryptanalysis of
Microsoft’s PPTP Authentication Extensions. CQRE
’99, October 1999.

[20] R. Siles. EAP dumb-down attack. In RootedCON
2013, pages 27–28. DinoSec, 2013.

[21] J. Wright. FreeRADIUS-WPE, 2008.
http://www.willhackforsushi.com/?page_id=37.

[22] Z. Yang, A. C. Champion, B. Gu, X. Bai, and
D. Xuan. Link-layer protection in 802.11i wlans with
dummy authentication. In Proceedings of the Second
ACM Conference on Wireless Network Security, WiSec
’09, pages 131–138, New York, NY, USA, 2009. ACM.

[23] J. Yavor. The BYOD PEAP Show. In DefCon 21.
iSEC Partners, 2013.

[24] G. Zorn. Microsoft PPP CHAP Extensions, Version 2.
RFC 2759, IETF, January 2000.

[25] G. Zorn and S. Cobb. Microsoft PPP CHAP
Extensions. RFC 2443, IETF, October 1998.

194

http://www.cisco.com/en/US/tech/tk722/tk809/technologies_security_notice09186a00801aa80f.html
http://www.cisco.com/en/US/tech/tk722/tk809/technologies_security_notice09186a00801aa80f.html
http://www.cisco.com/en/US/tech/tk722/tk809/technologies_security_notice09186a00801aa80f.html
http://freeradius.org/rfc/leap.txt
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
http://msdn.microsoft.com/en-us/library/cc238384.aspx
http://msdn.microsoft.com/en-us/library/cc238384.aspx
http://www.willhackforsushi.com/?page_id=37

	1 Introduction
	2 Attack description
	3 Practical LEAP Relay Attack
	3.1 Preconditions
	3.2 Case study: Apple devices
	3.2.1 State 1: Association
	3.2.2 State 2: Identification
	3.2.3 State 3: Challenge
	3.2.4 State 4: Response
	3.2.5 State 5: Success

	4 Test results
	5 Mitigation
	5.1 Client certificates
	5.2 iPhone Configuration Utility
	5.3 Cryptobinding
	5.4 Intrusion detection
	5.5 Rogue AP mitigation

	6 Future work
	7 Related work
	8 Conclusions
	9 Acknowledgements
	10 References

