Covers All Exam Objectives

Includes Real-World Scenarios, Hands-On Exercises,
and Leading-Edge Exam Prep Software Featuring:

* Custom Test Engine

* Hundreds of Sample Questions

* Electronic Flasheards for PCs, Pocket PCs,
and Palm Handhelds

« Entire Book in PDF

Sun Certified Programmer
for Java Platform, SE6
STUDY GUIDE

Exam CX-310-065 Richard F. Raposa

':'E'EEX SERIOUS SKILLS.

SCJP

Sun Certified Programmer
for Java’ Platform, SE6

Study Guide

SCJP

Sun Certified Programmer

for Java’ Platform, SEb6
Study Guide

Richard F. Raposa

WILEY
Wiley Publishing, Inc.

gcqulisitions EEd;or: Jeff Ke;nuanl ; Disclaimer: This eBook does not include ancillary media
Cicloprent Bditor: Jenqifer Lelan that was packaged with the printed version of the book.

Technical Editor: James Nuzzi
Production Editor: Christine O’Connor
Copy Editor: Elizabeth Welch
Production Manager: Tim Tate

Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde

Media Project Manager 1: Laura Moss-Hollister

Media Associate Producer: Shawn Patrick

Media Quality Assurance: Angie Denny

Book Designer: Judy Fung, Bill Gibson

Proofreader: Nancy Bell

Indexer: Robert Swanson

Project Coordinator, Cover: Lynsey Stanford

Cover Designer: Ryan Sneed

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-0-470-41797-3

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by

any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher

for permission should be addressed to the Permission Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or reccommendations it may make. Further, readers should be aware that
Internet Web sites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
5§72-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data

Raposa, Richard F.
SCJP Sun certified programmer for Java platform, SE6, study guide / Richard F. Raposa. — 1st ed.
p. cm.
ISBN 978-0-470-41797-3 (paper/cd-rom)
1. Electronic data processing personnel — Certification. 2. Operating systems (Computers) —
Examinations — Study guides. 3. Java (Computer program language) — Examinations — Study guides.
L. Title.
QA76.3.R357 2009

005.13'3—dc22
2008054906

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. Java is a registered trademark of Sun Microsystems, Inc. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

10987654321

Dear Reader,

Thank you for choosing SCJP: Sun Certified Programmer for Java Platform, SE6 Study
Guide. This book is part of a family of premium-quality Sybex books, all of which are
written by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than thirty years later, we’re still committed to
producing consistently exceptional books. With each of our titles we’re working hard to
set a new standard for the industry. From the paper we print on, to the authors we work
with, our goal is to bring you the best books available.

I hope you see all that reflected in these pages. I'd be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think

about this or any other Sybex book by sending me an email at nedde@wiley. com, or if you
think you’ve found a technical error in this book, please visit http://sybex.custhelp.com.
Customer feedback is critical to our efforts at Sybex.

Best regards,

Q\) <
Neil Edde
Vice President and Publisher

Sybex, an Imprint of Wiley

To Susan, Megan, Ryan, Katelyn, Emma and Sara.

Acknowledgments

A lot of time and energy goes into a book like this, and my wife and kids will be the first
ones to attest to that fact! I owe them many thanks for their patience and understanding
during the months that went into this project.

I also want to thank Jennifer Leland, the Developmental Editor, for putting up with
my complete inability to learn when to use the appropriate styles. Everyone who reads
this book owes James Nuzzi a big thank you for his meticulous job as Technical Editor.
The text and sample questions involve a lot of code, and James did an amazing job finding
errors and typos. Thanks also to Jeff Kellum, Pete Gaughan, Christine O’Connor, and
everyone at John Wiley & Sons, Inc., who helped make this book a reality.

And last but not least, I want to thank all of you who are reading this book in hopes of
learning Java and passing the SCJP Exam. I hope all of you find this book informative and
indispensable wherever your Java adventures take you. Good luck!

About the Author

Rich Raposa runs a Java training firm, JLicense, Inc., based out of Rapid City, SD. He is

a Sun Certified Java Programmer as well as a Sun Certified Java Instructor, and has spent
the past 11 years delivering Java training courses to businesses across the United States. He
has written dozens of Java courses ranging from introductory Java to advanced topics like
Enterprise JavaBeans, Java Web development, and Java Web Services. He enjoys playing
poker and playing the guitar (though he does not claim to be good at either).

Contents at a Glance

Introduction

Assessment Test

Chapter 1 Fundamentals

Chapter 2 Declarations, Initialization, and Scoping
Chapter 3 Flow Control

Chapter 4 API Contents

Chapter 5 Concurrency

Chapter 6 Object-Oriented Concepts

Chapter 7 Collections and Generics

Appendix

Glossary

Index

xXvii

XXV

77
187
269
341
381
425
491
495

507

Contents

Introduction xvii
Assessment Test xx1v
Chapter 1 Fundamentals 1
Weriting Java Classes 2

Packages 4

The package Keyword 5

The import Keyword 6

Package Directory Structure 9

The CLASSPATH Environment Variable 11

Running Java Applications 12

The -classpath Flag 17

JAR Files 17

Command-Line Arguments 19

Reference vs. Primitive Types 22

Primitive Types 22

Reference Types 23

Garbage Collection 28

The System.gc Method 32

The finalize Method 33

Call by Value 36

Java Operators 43

The Assignment Operators 44

The Arithmetic Operators 46

The Relational Operators 50

The instanceof Operator 51

The Bitwise and Logical Operators 53

The Conditional Operator 55

The Equality Operators 56

Equality of Objects 58

Summary 61

Exam Essentials 61

Review Questions 63

Answers to Review Questions 73

Chapter 2 Declarations, Initialization, and Scoping 77
Declaring Variables 78

Scoping 80

Instance Variables 80

Class Variables 83

Local Variables 86

xii

Contents

Declaring Arrays
Array References
Array Objects
Using Arrays
Multidimensional Arrays
Array Initializers
Declaring Classes
The Instantiation Process
Constructors
The Default Constructor
Using #his in Constructors
Using super in Constructors
Instance Initializers
Static Initializers
Declaring Methods
Method Declarations
JavaBeans Naming Convention
Instance Methods
Static Methods
Variable-Length Arguments
Method Overloading
Method Overriding
Covariant Return Types
Method Hiding
Final Methods
Declaring Abstract Classes
Abstract Methods
Declaring Interfaces
Implementing Interfaces
Extending Interfaces
Declaring Enumerations
Using enums
Declaring enum Methods
Declaring enum Constructors
Declaring Nested Classes
Member Inner Classes
Local Inner Classes
Anonymous Inner Classes
Static Nested Classes
Summary
Exam Essentials
Review Questions
Answers to Review Questions

88

89

90

91

93

95

97
100
102
104
105
108
111
114
116
116
118
121
124
126
128
131
134
135
137
138
140
143
144
147
147
149
150
151
152
152
158
159
162
165
166
168
183

Chapter

Chapter

3

q

Contents

Flow Control

Overview of Flow Control

The if Statement

The switch Statement
Switching on an Enum
Final case Values

The for Statement
The Basic for Statement
The Enhanced for Statement

The while Statement

The do Statement

The break Statement

The continue Statement

Overview of Assertions
The assert Statement
Enabling Assertions
Using Assertions

Overview of Exceptions
The try Statement
Multiple catch Clauses
The Handle or Declare Rule
The finally Block

Java API Exceptions and Errors
ArraylndexOutOfBoundsException
ClassCastException
Hllegal ArgumentException
IllegalStateException
NullPointerException
NumberFormatException
AssertionError
ExceptionlnlnitializerError
StackOverflowError
NoClassDefFoundError

Summary

Exam Essentials

Review Questions

Answers to Review Questions

API Contents

The Primitive Wrapper Classes
Autoboxing and Unboxing
Strings
The String Class
The StringBuilder and StringBuffer Classes

xiii

187

188
188
192
194
196
197
197
201
206
209
211
215
218
219
220
221
224
227
229
231
238
242
243
244
245
245
246
246
247
247
248
249
249
250
251
265

269

270
272
274
275
278

Xiv

Chapter

Contents

5

Input and Output
Streams vs. Readers and Writers
Low-Level vs. High-Level Streams
File Input and Output
The FileReader and FileWriter Classes
The File Class
The FileInputStream and FileOutputStream Classes
The DatalnputStream and DataOutputStream Classes
The PrintWriter Class
The format and printf Methods
The Console Class
Object Serialization
The Serializable Interface
The Object OutputStream Class
The ObjectInputStream Class
Formatting and Parsing Data
Format and Parse Numbers and Currency
Format and Parse Dates
Regular Expressions
The Pattern and Matcher Classes
The String.split Method
The Scanner Class
Summary
Exam Essentials
Review Questions
Answers to Review Questions

Concurrency

Overview of Threads
Writing a Thread
Implementing the Runnable Interface
Extending the Thread Class
Thread States
New Threads
Runnable Threads
Blocked Threads
Waiting and Timed-Waiting Threads
Terminated Threads
Thread Synchronization
The Monitor Lock
The wait, notify, and notifyAll Methods
Summary

281
281
283
285
285
287
289
291
294
295
298
301
301
303
304
306
306
312
315
315
320
322
324
325
326
337

341

342
343
344
346
349
349
351
353
353
355
355
358
363
368

Contents

Exam Essentials
Review Questions
Answers to Review Questions

Object-Oriented Concepts

Encapsulation, Coupling, and Cohesion
Tight Encapsulation
Loose Coupling
High Cohesion
OO Design Relationships
The “is-a” Relationship
The “has-a” Relationship
Modifiers and Inheritance
The Access Modifiers
The abstract Modifier
The final Modifier
Polymorphism
Understanding Polymorphism
Casting Polymorphic References
Summary
Exam Essentials
Review Questions
Answers to Review Questions

Collections and Generics

Overview of Collections
The Collections Interfaces
The Comparable Interface
The Difference Between == and equals
Using Generics
Limitations of Nongeneric Collections
Lists
Sets
Maps
Generic Types and Methods
Generic Classes
Generic Interfaces
Generic Methods
Bounded Generic Types
Generic Wildcards
Working with Lists
Sorting Lists
Searching Lists

XV

369
370
378

381

382
382
385
388
390
390
392
393
393
397
399
401
402
405
409
410
412
423

425

426
426
432
433
436
436
438
441
445
449
450
451
453
455
458
461
461
467

Xvi

Appendix
Glossary

Index

Contents

Working with Arrays
Sorting Arrays
Searching Arrays
Summary
Exam Essentials
Review Questions
Answers to Review Questions

470
470
473
475
476
478
487

491
495

507

Introduction

The Sun Certified Programmer for Java Platform, Standard Edition 6 (Java SE 6)
certification exam is for programmers experienced using the Java programming language.
Achieving this certification provides clear evidence that a programmer understands

the basic syntax and structure of the Java programming language and can create Java
technology applications that run on server and desktop systems using Java SE 6.

How Do You Become SCJP Certified?

Pass the exam! You need to achieve a 65% (47 of 72 questions) or higher to pass the
SCJP exam, and once you pass it, then you are a Sun Certified Java Programmer for the
particular version of the exam that you passed. The latest SCJP exam is for JavaSE 6.0,
which is the exam this book covers.

The SCJP Exam

The SCJP exam consists of 72 questions and you are given three and one-half hours to
complete it. You take the exam at an Authorized Worldwide Prometric Testing Center. You
take the SCJP exam on a computer using the mouse to display questions and answers. The
questions appear on the screen one at a time, and you can navigate forward and backward
at any time to view any question or modify your answer. Longer questions do not fit on
the screen and require you to click on the scroll bar. You answer a question by clicking the
appropriate answer.

You are not allowed to bring anything into the exam room, including a pen and paper.
Most testing centers do not allow scratch paper and instead provide a small white board
and a dry-erase marker. Most testing centers have security cameras as well, and it is likely
that other people will be in the exam room taking different exams.

Types of Exam Questions

The SCJP exam consists of the following types of questions:

Multiple choice A majority of the questions are multiple choice. The number of answers
given varies for each question, but typically you are given five to six answers. If a question
has more than one answer, the question specifically states exactly how many correct
answers there are for the question. For example, a question might have five answers and
state that two of them are correct. The exam software only allows you to select two
answers for that particular question.

Drag and drop About 10 to 15 of the exam questions involve filling in the blanks of a
question. The answers are given in a list or box on the screen, and you drag and drop an
answer into the blank. Some of the drag-and-drop questions have the exact same number of
blanks as answers, and some of them have more answers than blanks.

Xviii Introduction

When you navigate from one question to the next during the exam, the multiple choice
questions simply appear on the screen. If the question is drag and drop, you do not see the
actual question initially when you navigate to the question. Instead, you click a button that
displays the question and answers, and when you have finished answering the question, you
close the display and return to the navigation screen, where you can continue to the next
question.

Tips for Taking the SCJP Exam

The most important tip I can give you for passing the exam is to practice answering
questions. Study all of the sample questions that appear at the end of each chapter, as well
as the bonus exam questions and the Assessment Test later in this Introduction. I tried to
write questions that were indicative of the questions on the exam as far as knowledge and
difficulty level. Between this book and its accompanying CD, you have over 400 questions
to prepare you for the exam. Try to answer the questions to the best of your ability without
“cheating” and looking back through the chapters, and practice a group of questions at

a time without checking the answers right away. This will help simulate the taking of the
actual exam.

Some questions on the SCJP exam are easier than others and require less time, while
other questions might take several minutes to answer. You should average about 30
questions an hour. This pace will leave you with an hour or so at the end to go back and
review your answers. If you start running out of time, make sure you at least answer every
question on the exam, even if you have to guess. There is no penalty for a wrong answer, so
do not leave a question blank.

Do not underestimate the exam objectives or try to guess what will or won’t be on the
exam. Because the number of objectives outnumbers the exam questions, not every exam
objective has a corresponding exam question. Therefore, your best plan of action is to
understand every exam objective. If you find yourself struggling with a particular topic,
then write some code! Writing code and making mistakes along the way are the best way to
understand any programming topic.

Also, expect the newer concepts of the Java language to appear on the exam. For
example, I can guarantee that you will see a question on generics and enumerations. These
are newer concepts in the language and they separate the new SCJP exam from the previous
versions.

One unpleasant issue that I ran into with the drag-and-drop questions is that you cannot
review the answer after you move on to the next question. If you go back to a drag-and-
drop question and click the button to display the question and answers, your answer is
lost and you have to re-answer the question in its entirety. Some of these drag-and-drop
questions took some time to determine the answer, and I found that I did not always
remember what my initial answer was, so I had to rethink the question all over again! If
you are getting close to the end of your allotted time and you are trying to review all your
answers, you might want to be judicious about whether to rework through a drag-and-drop
question.

Introduction Xix

If you have to retake the exam, keep in mind that there are several versions of the exam
and the questions will be different each time you take the exam.

Exam Registration

The price of the exam in the United State is $300 and you can purchase a voucher online
at http://www.sun.com/training/catalog/courses/CX-310-065.xml1. This URL is for
the Java SE 6.0 exam. If you are taking a different version of the exam, you can find the
corresponding registration page at http://www.sun.com/training/catalog/courses/.
If you reside outside of the United States, visit http://www.sun.com/training/world_
training.html to purchase a voucher for the exam.

After you purchase your exam voucher, you have up to one year from the date of
purchase to use it. Each voucher is valid for one exam and can only be used at an
Authorized Prometric Testing Center in the country for which it was purchased. Please be
aware that exam vouchers are nonrefundable for any reason.

An exam voucher contains a unique number that you provide to Prometric when
scheduling the exam. To schedule the exam, contact Prometric at (800) 795-3926 (United
States and Canada). You can also visit the Prometric Web site at http://www.2test.com.

When you arrive at the testing facility to take the exam, you need to bring two forms
of identification. One must be a current, government-issued photo ID, such as a valid
passport or driver’s license, with a photo that looks like you. Be sure the names on your
ID are displayed the same way it is displayed on your exam record, and that both IDs have
a current signature that looks like yours. Examples of other pieces of ID are credit cards
and check cashing cards. The test will not be delivered without the appropriate form of
identification. Prometric Test Center Administrators have the right to refuse seating you for
the exam if they are unable to properly identify you.

Do not bring notes, pens, pencils, paper, large purses, or backpacks to the test center.
Supplies needed for taking the exam are provided by the testing center. Prometric
recommends that you arrive at the testing center at least 30 minutes before the test is
scheduled to begin to allow time to complete the sign-in process.

Is This Book for You?

If you want to become certified as a Java programmer, this book is definitely for you. If
you want to acquire a solid foundation in Java and your goal is to prepare for the exam
by learning how to program and develop in Java, this book is for you. You’ll find clear
explanations of the concepts you need to grasp and plenty of help to achieve the high level
of professional competency you need in order to succeed in your chosen field.

However, if you just want to attempt to pass the exam without really understanding
Java, this study guide is not for you. It is written for people who want to acquire hands-on
skills and in-depth knowledge of programming Java.

XX Introduction

What's in the Book?

What makes a Sybex Study Guide the book of choice for hundreds of thousands of SCJPs?
We took into account not only what you need to know to pass the exam, but also what
you need to know to take what you’ve learned and apply it in the real world. Each book
contains the following;:

Objective-by-objective coverage of the topics you need to know Each chapter lists the
objectives covered in that chapter.

P The topics covered in this Study Guide map directly to Sun’s official exam
A&TE objectives. Each exam objective is covered completely.

Assessment Test Directly following this Introduction is an Assessment Test that you
should take. It is designed to help you determine how much you already know about the
Java Platform, Standard Edition 6. Each question is tied to a topic discussed in the book.
Using the results of the Assessment Test, you can figure out the areas where you need to
focus your study. Of course, we do recommend you read the entire book.

Exam Essentials To highlight what you learn, you’ll find a list of Exam Essentials at the
end of each chapter. The Exam Essentials section briefly highlights the topics that need
your particular attention as you prepare for the exam.

Glossary Throughout each chapter, you will be introduced to important terms and con-
cepts that you will need to know for the exam. These terms appear in italic within the
chapters, and at the end of the book, a detailed Glossary gives definitions for these terms,
as well as other general terms you should know.

Review questions, complete with detailed explanations Each chapter is followed by a set
of Review Questions that test what you learned in the chapter. The questions are written
with the exam in mind, meaning that they are designed to have the same look and feel as
what you’ll see on the exam.

Real World Scenarios Because reading a book isn’t enough for you to learn how to apply
these topics in your everyday duties, we have provided Real World Scenarios in special side-
bars. These explain when and why a particular solution would make sense, in a working
environment youw’d actually encounter.

Interactive CD Every Sybex Study Guide comes with a CD complete with additional
questions, flashcards for use with an interactive device, and the book in electronic format.
Details are in the following section.

What's on the CD?

With this new member of our best-selling Study Guide series, we are including quite an
array of training resources. The CD offers bonus exams and flashcards to help you study

Introduction XXi

for the exam. We have also included the complete contents of the Study Guide in electronic
form. The CD’s resources are described here:

The Sybex E-book for SCJP: Sun Certified Programmer for Java Platform,

SE6 Study Guide Many people like the convenience of being able to carry their whole
Study Guide on a CD. They also like being able to search the text via computer to find
specific information quickly and easily. For these reasons, the entire contents of this Study
Guide are supplied on the CD, in PDF. We’ve also included Adobe Acrobat Reader, which
provides the interface for the PDF contents as well as the search capabilities.

The Sybex Test Engine This is a collection of multiple-choice questions that will help you
prepare for your exam. There are three sets of questions:

* Two bonus exams designed to simulate the actual live exam.

* All the questions from the Study Guide, presented in a test engine for your review. You
can review questions by chapter, or you can take a random test.

= The Assessment Test.

Here is a sample screen from the Sybex Test Engine:

- IWiEyPiblishine e AEER
- ROVERANS

he following program, which of the following slatements is true?

puh

. The string running is printed in an infinite loop, and line 11 prints out either NEW or RUNNADLE.,
. The string running is printed in an infinite loop, and there is no other output.
. Line 10 throws an exception at runtime.

_ The code does not compile.

Your Answer:

—_— —
Show Answer Finish

xxii Introduction

Sybex Flashcards for PCs and Handheld Devices The “flashcard” style of question offers
an effective way to quickly and efficiently test your understanding of the fundamental con-
cepts covered in the exam. The Sybex Flashcards set consists of 100 questions presented in
a special engine developed specifically for this Study Guide series. Here’s what the Sybex
Flashcards interface looks like:

Uy F ST oy Py Lj (=] L.:‘l!
Fle Yew Conbel Help

- [oFrions
SUF?I:I.I :: t'll'.'

B
fied Programmet
Platform

STUDY GUIDE

-

Stgrpose you have 2 class named Mamn declzed m 2 package named
com, sybex myprogram. Assuming that Main is in your classpath, what is
the command line to fn Main?

java com svbex myprogram Man

5 ST ES &

Because of the high demand for a product that will run on handheld devices, we have also
developed, in conjunction with Land-] Technologies, a version of the flashcard questions
that you can take with you on your Palm OS PDA (including the PalmPilot and Hand-
spring’s Visor).

How to Use This Book

This book is loaded with valuable information, and you will get the most out of your
studying time if you understand how I put the book together. Here’s a list on how to
approach studying it so you get the most out of it:

1. Take the Assessment Test immediately following this introduction. It’s okay if you
don’t know any of the answers—that’s what this book is for! Carefully read over the
explanations for any question you get wrong and make note of the chapters where that
material is covered.

Introduction XXiii

2. Study each chapter carefully, making sure that you fully understand the information
and the test objectives listed at the beginning of each one. Again, pay extra-close
attention to any chapter that includes material covered in questions you missed on the
Assessment Test.

3. Answer all of the Review Questions related to each chapter. Specifically note any
questions that confuse you and study those sections of the book again. And don’t just
skim these questions—make sure you understand each answer completely!

4. Try your hand at the bonus exams included on the companion CD. The questions in
these exams appear only on the CD.

5. Test yourself using all the flashcards on the CD.

If you follow the steps listed here and study and practice the Review Questions, bonus
exams, and the electronic flashcards, you should do fine.

Assessment Test

1. The following code appears in a file named Book.java. What is the result of compiling
this source file? (Select one answer.)

public class Book {
private int pageNumber;

private class BookReader {
public int getPage() {
return pageNumber;

}

1

2

3

4

5

6.

7. }
8

9

A. The code compiles successfully and one bytecode file is generated: Book.class.
B

The code compiles successfully and two bytecode files are generated: Book.class and
BookReader.class.

C. The code compiles successfully and two bytecode files are generated: Book.class and
Book$BookReader.class.

A compiler error occurs on line 4.

E. A compiler error occurs on line 6.

2. Given the following TV class:

1. public class TV {

2 private String make;

3 private String model;

4.

5. public TV(String make, String model) {
6 this.make = make;

7 this.model = model;

8 }

9.

10. public boolean equals(TV other) {

11. return make.equals(other.make) &&
12. model.equals(other.model);
13. }

14.

15. public int hashCode() f{

16. return make.length() * 10 + model.length();
17. }

18.)

Assessment Test XXV

what is the result of the following statements?

TV a = new TV("Philips", "42PFL5603D");
TV b = new TV("Philips", "42PFL5603D");
if(a.equals(b)) {
System.out.printin("'equal");
} else {
System.out.printin("not equal");

equal
not equal
Line 10 causes a compiler error.

Line 11 causes a compiler error.

moow>» —

Line 15 causes a runtime exception to occur.

When does the String object “hi” instantiated on line 2 become eligible for garbage
collection?

pubTlic class Hello {
String greeting = "hi";

1

2

3

4 public static void main(String [] args) {
5. Hello h = new Hello();

6 h.greeting = null;

7 System.gc();

8 return;

9

10. }

A. Immediately after line §
Immediately after line 6
Immediately after line 7

Immediately after line 8

moow

Immediately after line 9

What is the result of the following code?
6. byte x = 23, y = 4;

7 int z = 23 % 4;

8. System.out.printin(z);
A. 3

B. 4

C. 475

XXvi Assessment Test

D. Compiler error on line 6

E. Compiler error on line 7

5. What is the result of the following program?

1. public class Vehicle {

2 public boolean used;

3 public String make;

4

5. public static void main(String [] args) {
6 Vehicle v = new Vehicle();

7 if(v.used) {

8 System.out.printin(v.make);

9. } else {

10. System.out.printIin(v.make.length());
11. }

12. }

13. }

A. null

B. 0

C. Line 7 generates a compiler error.

D. Line 8 generates an exception at runtime.
E

Line 10 generates an exception at runtime.

6. Given the following class definition:

1. public class PrintStrings {

2 public static void print(String... values) {
3 for(String value : values) {

4. System.out.print(value);

5 }

6 }

7. '}

which of the following statements are valid method calls to print?
A. PrintStrings.print();

PrintStrings.print("abc");

PrintStrings.print('a', 'b', 'c');
PrintStrings.print("a", "b", "c");

moow

PrintStrings.print(new java.util.Date());

Assessment Test xxvii

Given the following Football class definition:

1. package my.sports;

pubTlic class Football {
public static final int teamSize = 11;

v AW N

}
and also the following FootballGame class:

package my.apps;

public int getTeamSize() {

1

2

3

4.

5. public class FootballGame {
6

7 return teamSize;
8

9

}

which of the following statements can appear on line 3 so that the Footbal1Game class
compiles successfully?

A. 1import static my.sports.Football;

B. import my.sports.Football;

C. dimport static my.sports.Football.*;

D. import static my.sports.*;
E

No import statement is necessary.

What is the result of the following statements?

28. Integer i = 5;
29. switch(i) {

30. case 1: System.out.print(1l); break;
31. case 3: System.out.print(3);

32. case 5: System.out.print(5);

33. case 7: System.out.print(7); break;
34. default: System.out.print("default");
35. }

A 5

B. 57

C. 57default
D. Compiler error on line 28
E

Compiler error on line 29

XXviii Assessment Test

9. What is the result of the following code?

3 Boolean m = true;

4 int n = 14;

5. do {

6. n=n>1;

7 if(n < 4) {

8 m = new Boolean(false);
9 }

10. }while(m);
11. System.out.printin(n);

A. 0

B. 2

C. 3

D. An infinite loop

E. Line 10 generates a compiler error.

10. Given the following class definition:

1. public class AssertDemo {

2. public static void main(String [] args) {
3. Integer x = 10;
4. assert x == null && x >= 0;
5. System.out.println(x);
6.
7.

}
and given the following command line, which one of the following statements is true?
java AssertDemo
A. Line 3 generates a compiler error.
B. Line 4 generates a compiler error.
C. Line 4 throws an AssertionError at runtime.
D

The output is 10.

11. Which of the following statements are true? (Select two.)
A. All string literals are automatically instantiated into a String object.

The StringBuilder and StringBuffer classes define the exact same public methods.

C. In a multithreaded environment, use StringBuilder instead of StringBuffer.
D. A StringBuilder object is immutable.
E. A StringBuffer object cannot change its length once it is instantiated.

Assessment Test XXix

12. Suppose you need to write data that consists of char values and String objects to a file
that maintains the format of the original data. The data needs to be buffered to improve
performance. Which two java.io classes can be chained together to best achieve this
result?

FileWriter
FileOutputStream
BufferedOutputStream
BufferedWriter

PrintWriter

mmo o ® >

PipedOutputStream

13. What is the result of the following code?

14. DecimalFormat df = new DecimalFormat("#,000.0#");
15. double pi = 3.141592653;
16. System.out.printin(df.format(pi));

A. 3.141592653
B. 0,003.14

C. ,003.1

D. 003.14

E. 00.04

14. What is the result of the following program?

1. public class PrintX implements Runnable {

2 private int count;

3

4 public PrintX(int count) ({

5. this.count = count;

6 }

7

8 public void run() {

9. for(int i = 1; i <= count; 1i++) {

10. System.out.print("x");

11. }

12. }

13.

14. public static void main(String [] args) {
15. Thread t = new Thread(new PrintX(3));
16. t.start();

17. System.out.print("'y");

XXX Assessment Test
18. t.start();
XXXYXXX

YXXXXXX

A
B
C. Six xs and one y printed in an indeterminate order
D. The code throws an exception at runtime.

E

The code does not compile.

15. What is the result of the following statements?

4. Thread t = new Thread() {

5 public void run() {

6. System.out.printin(

7. Thread.currentThread().getState());
8 }

9.

10. t.start();

A. NEW

B. RUNNABLE

C. BLOCKED

D. TERMINATED

E. The state of the thread is indeterminate.

16. Given the following class definitions:

public class Student implements java.io.Serializable {
private String name;

1

2

3

4 public static void main(String [] args) {
5. s = new Senior();
6

7

8

9

class Senior extends Student {}
10.
11. class Junior extends Student {}

which of the following answers can fill in the blank on line 5 and have the code com-
pile successfully? (Select three.)

17.

18.

Assessment Test

A. Object
B. Junior
C. Student
D. String
E. java.io.Serializable

What is the result of the following program?

1. public abstract class Message {

2 public String recipient;

3

4 public abstract final void sendMessage();
5.

6 public static void main(String [] args) {
7 Message m = new TextMessage();

8 m.recipient = "6055551212";

9. m.sendMessage();

10. }

11. }

12.

13. class TextMessage extends Message {

14. public final void sendMessage() {

15. System.out.printin("TextMessage to "
16. + recipient);

17. }

18. }

TextMessage to 6055551212

TextMessage to null

A
B
C. Compiler error on line 1
D. Compiler error on line 4
E

Compiler error on line 9

Given the following Parent class definition:

1. public class Parent {
Object doSomething(int x) {
return null;

XXXi

xxxii

19.

20.

Assessment Test

which of the following methods could appear in a child class of Parent? (Select three
answers.)

A. public void doSomething(int x)
protected String doSomething(int x)
private Thread doSomething(int x)
private Thread doSomething(short x)

moow

public double doSomething(int y)

What is the result of the following statements?

23. List<Number> data = new Vector<Number>();
24. data.add(10);

25. data.add("4.5F");

26. data.add(new Double(56.7));

27. for(Number number : data) {

28. System.out.print(number);

29. }

A. 104.556.7

B. 104.5F56.7

C. 10 followed by a ClassCastException
D. Compiler error on line 25

E

Compiler error on line 27

Given the following Box class definition:

1. public class Box<T> {

2 T value;

3

4 public Box(T value) {
5. this.value = value;
6 }

7

8 public T getValue() {
9. return value;

10. }

11. }

what is the result of the following statements?

15. Box<String> one = new Box<String>("a string");
16. Box<Integer> two = new Box<Integer>(123);

17. System.out.print(one.getValue());

18. System.out.print(two.getValue());

21.

22.

Assessment Test

Compiler error on line 1
Compiler error on line 2
Compiler error on line 16

a stringl23

moowp

The code compiles but throws an exception at runtime.

Given the following statements:

30. Set<Object> objects = new HashSet<Object>();
31. String one = "hello";

32. int two = 2;

33. Boolean three = new Boolean(true);
34. objects.add(one);

35. objects.add(two);

36. objects.add(three);

37. objects.add(three);

38. for(Object object : objects) {

39. System.out.print(object);

40. }

which of the following statements are true? (Select two.)

A. The code compiles successfully.

The output is hello, 2 and true in an indeterminate order.

The output is hello, 2, true and true in an indeterminate order.

Line 35 generates a compiler error.

moow

Line 37 throws an exception at runtime.

XXXiii

Suppose a class named com.mypackage.MyProgram contains the main method of a stand-

alone Java application, and MyProgram.class is in the following directory:

\my\classes\com\mypackage

Which of the following commands successfully executes MyProgram? (Select two

answers.)

A. java -classpath \my\classes com.mypackage.MyProgram
java -classpath \my\classes\com\mypackage MyProgram
java -classpath=\my\classes com.mypackage.MyProgram

java -classpath \my\classes\com mypackage.MyProgram

moow

java -cp \my\classes com.mypackage.MyProgram

XXXiV Assessment Test

23. What is the result of the following program?

1. public class MathFunctions {

2. public static void addToInt(int x, int amountToAdd)
3. {

4. X = X + amountToAdd;

5. }

6.

7. public static void main(String [] args) {
8. int a = 15;

9. int b = 10;

10. MathFunctions.addToInt(a, b);

11. System.out.printin(a);

12. }

13. }

A. 25

B. 15

C. 10

D. A compiler error occurs on line 4.

E. A compiler error occurs on line 10.

24. Given the following interface and class definitions:

1. //Readable.java

2. public interface Readable {

3. public void read();

4. public int MAX_LENGTH = 10;

5. }

1. //MyReader.java

2. public class MyReader implements Readable {
3. public void read() {

4. Readable.MAX_LENGTH = 25;

5. System.out.println(Readable.MAX_LENGTH);
6. }

7. }

what is the result of the following statement?
new MyReader().read();

A. 25

B. 10

C. Compiler error on line 3 of Readable.java

D.
E.

Assessment Test

Compiler error on line 4 of Readable.java

Compiler error on line 4 of MyReader.java

25. Given the following enum declaration:

26.

27.

1.
2.
3.

public enum Toppings {
PEPPERONI, SAUSAGE, ONION, OLIVES, CHEESE;
}

what is the result of the following statements?

8
9
A.
B.
(¢
D
E

Toppings [] choices = Toppings.values();
System.out.printin(choices[1]);

PEPPERONI

SAUSAGE

The code compiles but the output is indeterminate.
Line 8 generates a compiler error.

Line 9 generates a compiler error.

What is the result of the following code?

21.
22.
23.
24.
25.
26.

final byte b = 1;
int value = 2;
switch(value) {
case b : System.out.print("A");
break;
case 2 : System.out.print("B");
case 3 : System.out.print("C");
default : System.out.print("'D");
break;
}
Compiler error on line 24
B
BC
BCD

Compiler error on line 29

Given the following class definition:

public class EchoInput {
public static void main(String [] args) {
if(args.length <= 3) {
assert false;

XXXV

XXXVi Assessment Test

System.out.printin(args[0] + args[1]
+ args[2]);

O 0 N O
—

}

what is the result of the following command line?

java EchoInput hi there

A. hithere

B. The assert statement on line 4 throws an AssertionError.

C. Line 7 throws an ArrayIndexOutOfBoundsException.

D. The code compiles and runs successfully, but there is no output.
E. The code does not compile.

28. What is the result of the following code?

46. NumberFormat nf =

47. NumberFormat.getCurrencyInstance(Locale.US);
48. double value = 123.456;

49. System.out.printin(nf.format(value));

A. $123.456
B. $123.45
C. $123.46
D. 123.45

E. 123.46

29. Given the following code:

3 Pattern p = Pattern.compile(".+es");

4. String [] words = {"unless", "guesses",
5. "boxes", "guest'};
6. for(String word : words) {

7 if(p.matcher(word).matches()) {

8 System.out.printIin(word);

9

10.)
which of the following strings is output? (Select all that apply.)
A. unless

B. guesses

C. boxes
D. guest
E

None of the above

30.

31.

32.

33.

Assessment Test

What state can a NEW thread transition into? (Select all that apply.)
A. WAITING

RUNNABLE

BLOCKED

TIMED_WAITING

TERMINATED

moow

What is the output of the following program?

1. public class Worker extends Thread {
2 public void run() {

3 System.out.print("N");

4. }

5.

6 public static void main(String [] args) {
7 Thread worker = new Worker();
8 worker.run();

9 System.out.print("0");

10. }

11. }

A. The output is always NO.

B. The output is always ON.

C. The output varies and is either NO or ON.
D

The code does not compile.

Fill in the blank: When an object performs a collection of closely related tasks, this is
referred to as

A. The is-a relationship
The has-a relationship
Tight encapsulation

Loose coupling

moow

High cohesion

What is the result of the following code?

pubTlic class Beverage {
private void drink() {
System.out.printin("Beverage");

public static void main(String [] args) {

1
2
3.
4. }
5
6
7 Beverage b = new Coffee();

XXXVii

XXXViii

34.

Assessment Test

b.drink();

. class Coffee extends Beverage {

public void drink() {
System.out.printin("Coffee");

}

Beverage

Coffee

Compiler error on line 2
Compiler error on line 8

Compiler error on line 13

Given the following variable declaration:

Set<? extends RuntimeException> set = ;

which of the following statements can appear in the blank line so that the statement
compiles successfully? (Select all that apply.)

A.
B.

C.
D.
E

new HashSet<? extends RuntimeException()
new TreeSet<RuntimeException>()

new TreeSet<NullPointerException>()

new LinkedHashSet<Exception>()

None of the above

Answers to Assessment Test

1. C. The code compiles fine, so D and E are incorrect. The bytecode file for the outer
class Book is Book. class, and the bytecode file for the inner class BookReader is
Book$BookReader. class, so the answer is C. For more information, see Chapter 2.

2. A. The code compiles fine, so C, D, and E are incorrect. Based on the definition of the
equals method, two TV objects are equal if they have the same make and mode1 fields, so
the line a.equals(b) evaluates to true and equal is output, so the answer is A. For more
information, see Chapter 1.

3. B. The String on line 2 is created in memory after line 5 executes, and the greeting ref-
erence points to it. After line 6, no references point to "hi" anymore and it immediately
becomes eligible for garbage collection then, so the answer is B. For more information, see
Chapter 1.

4. A. The code compiles fine, so D and E are incorrect. The value of z is the remainder of 23
divided by 4, which is 3. Therefore, the answer is A. For more information, see Chapter 1.

5. E. The code compiles fine, so C is incorrect. The used field initializes to false and the
make field initializes to nu11 for the new Vehicle v. Therefore, line 7 is false and
line 10 executes. Because v.make is a nul11 reference, attempting to invoke its Tength
method results in a NuTTPointerException at runtime. Therefore, the answer is E. For
more information, see Chapter 2.

6. A, B, and D. The print method can take in any number of String objects, including zero,
so A, B, and D are valid statements. C attempts to pass in chars, which is not valid and
generates a compiler error. D also generates a compiler error attempting to pass in a Date
object. For more information, see Chapter 2.

7. C. The code does not compile without a proper import for the teamSize variable on line
7, so E is incorrect. A is not a valid statement. B is a valid statement but does not import
teamSize, so B is incorrect. D causes a compiler error because sports is not a class or
interface name. C is valid and imports all static members of the Footbal1 class, so C is the
correct answer. For more information, see Chapter 2.

8. B. You cannot switch on an Integer, but because of Java’s autoboxing, i is converted to
an int, so lines 28 and 29 are valid, which means D and E are incorrect. The value of i
is 5, so the case on line 32 executes and prints 5. Because there is no break, 7 is printed.
The break on line 33 causes control to break out of the switch, so the output is 57 and the
answer is B. For more information, see Chapter 3.

9. C. Line 10 compiles fine, so E is incorrect. Line 6 right shifts n by 1, which is equivalent to
integer division by 2. The first time through the loop, n becomes 14/2 = 7;
the second time through n becomes 7/2 = 3. Because 3 < 4 is true, mis set to false
and the loop terminates. The value of n is 3, which is printed on line 11, so the answer is C.
For more information, see Chapter 3.

x|

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

Answers to Assessment Test

D. The code compiles, so A and B are incorrect. The command line does not enable asser-
tions, so C cannot happen. Line 5 executes and prints out 10, so the answer is D. For more
information, see Chapter 3.

A and B. String literals are automatically instantiated into String objects, so A is true. B is
also true; the two classes contain the same methods. The only difference between String-
Builder and StringBuffer is that StringBuffer is thread-safe, which is why C is false.
You should use StringBuffer if using mutable strings in a multithreaded application.

D is false; the StringBuilder and StringBuffer classes represent mutable character
sequences. E is false; a StringBuffer and StringBuilder can grow and shrink to match
the number of characters in the sequence. For more information, see Chapter 4.

A and D. The data to be output consists of strings and characters, so writer classes are the
best choice. FileWriter is needed to write to the file, and BufferedWriter is needed to
buffer the data, so the best choices are A and D. For more information, see Chapter 4.

D. The DecimalFormat object calls for at least three digits before the decimal point, so two
leading Os appears before the 3. The format also calls for at least one digit past the decimal
but no more than two. Therefore, the output is 003.14 and the answer is D. For more infor-
mation, see Chapter 4.

D. The code compiles fine, so E is incorrect. However, a Thread object cannot be started
twice, so line 18 throws an I11egalThreadStateException and D is the correct answer.
For more information, see Chapter 5.

B. The state of the currently running thread must be RUNNABLE, so the answer is B. For
more information, see Chapter 5.

A, C,and E. A and C are valid because Object and Student are both parent classes of
Senior. B and D are not valid because Junior and String are not compatible with Senior.
E is valid because Senior is of type Serializable—a type inherited from Student. For
more information, see Chapter 6.

D. The code does not compile, so A and B are incorrect. The problem with this code is
the Message declares the sendMessage method as both abstract and final, which does
not make sense. An abstract method must be overridden, and a final method cannot be
overridden. Using abstract and final on the same method results in a compiler error, so
the answer is D. For more information, see Chapter 6.

B and D. A is incorrect because void is an incompatible return type with Object. (If the
return type is changed, it must be a subclass of the return type in the parent class.) B is a
valid overriding of doSomething in Parent because it is more accessible and String is a
subclass of Object. C is incorrect because it assigns a weaker access, which is not allowed.
D is valid because it is not overriding doSomething in Parent—it is overloading the method
instead. E is not valid because doubTe is not a subclass of Object. Therefore, the answers
are B and D. For more information, see Chapter 6.

D. The code does not compile, so A, B, and C are incorrect. E is also incorrect; line 27
compiles fine because data contains Number objects. Line 25 does not compile because
data is instantiated using generics; only Number objects can be added to data and “4.5F” is
a String. Therefore, the answer is D. For more information, see Chapter 7.

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

Answers to Assessment Test xli

D. The compiles and runs fine, so A, B, C, and E are incorrect. The Box class uses a
generic type named T. For one, the generic type is a String. For two, the generic type
is an Integer. The two value fields are printed out on lines 17 and 18, which print a
stringl23, so the answer is D. For more information, see Chapter 7.

A and B. The code compiles and runs fine, so D and E are incorrect and A is true. Line
37 attempts to add the same object to the set, which does not alter the set. Therefore, C
is incorrect. The for loop on line 38 outputs the objects in an indeterminate order, so the
other correct answer is B. For more information, see Chapter 7.

A and E. A assigns the -classpath flag to the appropriate directory. E also sets the class
path correctly except -cp is used. C uses an equals sign, =, with the -classpath flag, which
is not the correct syntax. B and D set the class path to the wrong directory and also incor-
rectly refer to the MyProgram class without its fully qualified name. Therefore, the answers
are A and E. For more information, see Chapter 1.

B. The code compiles successfully, so D and E are incorrect. The value of a cannot be
changed by the addToInt method, no matter what the method does, because only a copy of
a is passed into the parameter x. Therefore, a does not change and the output on line 11 is
15, so the answer is B. For more information, see Chapter 1.

E. The Readable interface compiles fine, so C and D are incorrect. However, the MyReader
class does not compile, so A and B are incorrect. Fields in an interface are implicitly final,
so attempting to set MAX_LENGTH to 25 on line 4 of MyReader is not allowed and generates a
compiler error. Therefore, the answer is E. For more information, see Chapter 2.

B. The code compiles fine, so D and E are incorrect. The values method of an enum
returns an array containing the elements in the enum, in the order they are declared in the
enum. The element at index 1 is SAUSAGE, which is printed at line 9. Therefore, the answer
is B. For more information, see Chapter 2.

D. The code compiles fine, so A and E are incorrect. The case on line 26 is satisfied, so B is
printed. There is no break, so line 27 executes and C is printed. Because there is no break,
the default block executes and D is printed on line 28. Therefore, the output is BCD and the
answer is D. For more information, see Chapter 3.

C. The code compiles fine, so E is incorrect. The command line has only two arguments,
so args.length is 2 and line 3 is true. However, because assertions are not enabled, line

4 does not throw an AssertionError, so B is incorrect. Line 7 attempts to print args[2],
which generates an ArraylndexOutOfBoundsException, so the answer is C. For more
information, see Chapter 3.

C. The currency format rounds decimals up to two decimal places, so 123.456 is rounded
up to 123.46 and printed in the U.S. locale. The output is $123.46, and therefore the
answer is C. For more information, see Chapter 4.

B and C. The regular expression .+es matches character streams that start with any number
of characters and end in es. Two of the strings in the array match this pattern: guesses and
boxes. Therefore, the answers are B and C. For more information, see Chapter 4.

xlii

30

31.

32.

33.

34.

Answers to Assessment Test

. B. A NEW thread can only transition into the RUNNABLE state, so the answer is B. For more
information, see Chapter 5.

A. The code compiles fine and runs fine, so D is incorrect. On line 8, the run method of
the new Worker thread is invoked. However, the run method does not start a new thread in
the process. (Only a call to start starts a new thread.) In other words, this program is not
multithreaded and the call to run occurs within the main thread. The output of this pro-
gram is always NO and therefore the answer is A. For more information, see Chapter §.

E. The definition of high cohesion is when an object performs a collection of closely related
tasks, so the answer is E. For more information, see Chapter 6.

A. The code compiles fine, so C, D and E are incorrect. A private method cannot be over-
ridden, so drink in Coffee is not overriding drink in Beverage. The method call to drink
on line 8 is referring to the private method on line 2, and that is also the method that gets
invoked at runtime because it is not overridden. Therefore, the output is Beverage and the
correct answer is A. For more information, see Chapter 6.

B and C. The reference set declares an upper bound of RuntimeException on the generic,
so D is not valid because Exception is a parent class of RuntimeException. A is not valid
because a new statement cannot declare a wildcard in the generic type. B is valid because
TreeSet implements Set. C is valid because TreeSet implements Set and Nul1PointerEx-
ception is a subclass of RuntimeException. Therefore, the answers are B and C. For more
information, see Chapter 7.

SCJP: Sun Certified Programmer
for Java Platform, SE6 Study Guide

CX-301-065 Exam Objectives

OBJECTIVE CHAPTER

Section 1: Declarations, Initialization and Scoping

Develop code that declares classes (including abstract and all forms of nested
classes), interfaces, and enums, and includes the appropriate use of package and
import statements (including static imports).

Develop code that declares an interface. Develop code that implements or
extends one or more interfaces. Develop code that declares an abstract class.
Develop code that extends an abstract class.

Develop code that declares, initializes, and uses primitives, arrays, enums, and
objects as static, instance, and local variables. Also, use legal identifiers for
variable names.

Develop code that declares both static and non-static methods, and—if
appropriate—use method names that adhere to the JavaBeans naming standards.
Also develop code that declares and uses a variable-length argument list.

Given a code example, determine if a method is correctly overriding or
overloading another method, and identify legal return values (including covariant
returns), for the method.

Given a set of classes and superclasses, develop constructors for one or more of
the classes. Given a class declaration, determine if a default constructor will be
created, and if so, determine the behavior of that constructor. Given a nested or
non-nested class listing, write code to instantiate the class.

Section 2: Flow Control

Develop code that implements an if or switch statement; and identify legal

3
argument types for these statements.
Develop code that implements all forms of loops and iterators, including the use
of for, the enhanced for loop (for-each), do, while, labels, break, and continue; and
explain the values taken by loop counter variables during and after loop execution.
Develop code that makes use of assertions, and distinguish appropriate from 3

inappropriate uses of assertions.

Sybex®
An Imprint of

@ WILEY

OBJECTIVE CHAPTER

Develop code that makes use of exceptions and exception handling clauses

3
(try, catch, finally), and declares methods and overriding methods that throw
exceptions.
Recognize the effect of an exception arising at a specified pointin a code 3

fragment. Note that the exception may be a runtime exception, a checked
exception, or an error.

Recognize situations that will result in any of the following being thrown:
ArraylndexOutOfBoundsException,ClassCastException, lllegalArgumentException,
lllegalStateException, NullPointerException, NumberFormatException,
AssertionError, ExceptionlinlinitializerError, StackOverflowError or
NoClassDefFoundError. Understand which of these are thrown by the

virtual machine and recognize situations in which others should be thrown
programmatically.

Section 3: API Contents

Develop code that uses the primitive wrapper classes (such as Boolean,
Character, Double, Integer, etc.), and/or autoboxing and unboxing. Discuss the
differences between the String, StringBuilder, and StringBuffer classes.

Given a scenario involving navigating file systems, reading from files, writing
to files, or interacting with the user, develop the correct solution using the
following classes (sometimes in combination), from java.io: BufferedReader,
BufferedWriter, File, FileReader, FileWriter, PrintWriter, and Console.

Develop code that serializes and/or de-serializes objects using the following
APIs from java.io: DatalnputStream, DataOutputStream, FilelnputStream,
FileOutputStream, ObjectinputStream, ObjectOutputStream and Serializable.

Use standard J2SE APIs in the java.text package to correctly format or parse
dates, numbers, and currency values for a specific locale; and, given a scenario,
determine the appropriate methods to use if you want to use the default locale or
a specific locale. Describe the purpose and use of the java.util.Locale class.

Write code that uses standard J2SE APIs in the java.util and java.util.regex
packages to format or parse strings or streams. For strings, write code that uses
the Pattern and Matcher classes and the String.split method. Recognize and use
regular expression patterns for matching (limited to: . (dot), * (star), + (plus), ?,
\d, \s, \w, [], ()). The use of *, +, and ? will be limited to greedy quantifiers, and
the parenthesis operator will only be used as a grouping mechanism, not for
capturing content during matching. For streams, write code using the Formatter
and Scanner classes and the PrintWriter.format/printf methods. Recognize and
use formatting parameters (limited to: %b, %c, %d, %f, %s) in format strings.

Sybex®
An Imprint of

@ WILEY

OBJECTIVE CHAPTER

Section 4: Concurrency

Write code to define, instantiate, and start new threads using both java.lang

5
.Thread and java.lang.Runnable.
Recognize the states in which a thread can exist, and identify ways in which a 5
thread can transition from one state to another.
Given a scenario, write code that makes appropriate use of object locking to 5

protect static or instance variables from concurrent access problems.

Given a scenario, write code that makes appropriate use of wait, notify, or notifyAll.

5
Section 5: 00 Concepts

Develop code that implements tight encapsulation, loose coupling, and high

6
cohesion in classes, and describe the benefits.
Given a scenario, develop code that demonstrates the use of polymorphism. 6
Further, determine when casting will be necessary and recognize compiler vs.
runtime errors related to object reference casting.
Explain the effect of modifiers on inheritance with respect to constructors, 6
instance or static variables, and instance or static methods.
Given a scenario, develop code that declares and/or invokes overridden 6
or overloaded methods and code that declares and/or invokes superclass, or
overloaded constructors.
Develop code that implements “is-a” and/or “has-a” relationships. 6

Section 6: Collections/Generics

Given a design scenario, determine which collection classes and/or interfaces
should be used to properly implement that design, including the use of the
Comparable interface.

7

Distinguish between correct and incorrect overrides of corresponding hashCode
and equals methods, and explain the difference between == and the equals method.

Write code that uses the generic versions of the Collections API, in particular,
the Set, List, and Map interfaces and implementation classes. Recognize the
limitations of the non-generic Collections APl and how to refactor code to use
the generic versions. Write code that uses the NavigableSet and NavigableMap
interfaces.

Develop code that makes proper use of type parameters in class/interface
declarations, instance variables, method arguments, and return types; and
write generic methods or methods that make use of wildcard types and

understand the similarities and differences between these two approaches.
Sybex®
An Imprint of

@ WILEY

OBJECTIVE CHAPTER

Use capabilities in the java.util package to write code to manipulate a list by
sorting, performing a binary search, or converting the list to an array. Use
capabilities in the java.util package to write code to manipulate an array by
sorting, performing a binary search, or converting the array to a list. Use the
java.util.Comparator and java.lang.Comparable interfaces to affect the sorting
of lists and arrays. Furthermore, recognize the effect of the “natural ordering” of
primitive wrapper classes and java.lang.String on sorting.

Section 7: Fundamentals

Given a code example and a scenario, write code that uses the appropriate access 1
modifiers, package declarations, and import statements to interact with (through
access or inheritance) the code in the example.

Given an example of a class and a command line, determine the expected 1
runtime behavior.

Determine the effect upon object references and primitive values when they are 1
passed into methods that perform assignments or other modifying operations on
the parameters.

Given a code example, recognize the point at which an object becomes eligible 1
for garbage collection, determine what is and is not guaranteed by the garbage
collection system, and recognize the behaviors of the Object.finalize() method.

Given the fully-qualified name of a class that is deployed inside and/or outside a 1
JAR file, construct the appropriate directory structure for that class. Given a code
example and a classpath, determine whether the classpath will allow the code to
compile successfully.

Write code that correctly applies the appropriate operators including assignment 1
operators (limited to: =, +=, -=), arithmetic operators (limited to: +, -, *,/, %, ++, --),
relational operators (limited to: <, <=, >, >=, ==, =), the instanceof operator, logical
operators (limited to: &, |, A, !, &&, ||), and the conditional operator (? :), to produce

a desired result. Write code that determines the equality of two objects or two
primitives.

Exam specifications and content are subject to change at any time
OTE without prior notice and at Sun Microsystems’ sole discretion. Please
visit Sun’s website (www.sun.com/training) for the most current
information on their exam content.
Sybex®
An Imprint of

@ WILEY

Fundamentals

SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v" Given a code example and a scenario, write code
that uses the appropriate access modifiers, package
declarations, and import statements to interact with
(through access or inheritance) the code in the example.

v' Given an example of a class and a command line,
determine the expected runtime behavior.

v" Determine the effect upon object references and primitive
values when they are passed into methods that perform
assignments or other modifying operations on the
parameters.

v Given a code example, recognize the point at which an
object becomes eligible for garbage collection, determine
what is and is not guaranteed by the garbage collection
system, and recognize the behaviors of the Object
.finalize() method.

v Given the fully-qualified name of a class that is deployed
inside and/or outside a JAR file, construct the appropriate
directory structure for that class. Given a code example
and a classpath, determine whether the classpath will
allow the code to compile successfully.

v" Write code that correctly applies the appropriate
operators including assignment operators (limited to: =,
+=, -=), arithmetic operators (limited to: +, -, *, /, %,
++, --), relational operators (limited to: <, <=, >, >=, ==,
1=), the instanceof operator, logical operators (limited to:
&, |, ~, !, &, |]), and the conditional operator (? :),
to produce a desired result. Write code that determines
the equality of two objects or two primitives.

Java is an interpretive, object-oriented programming language
' that Sun Microsystems developed. A considerable benefit of
B writing Java applications is that they run in a Java Runtime
Environment (JRE) that is well defined. As a Java programmer, you know your Java
program is going to run on a Java Virtual Machine (JVM), regardless of the device or
operating system. Consequently, you know an int is 32 bits and signed, a booTlean is true
or false, method arguments are passed by value, and the garbage collector cleans up your
unreachable objects whenever it feels like it. (Okay, not every aspect of Java is an exact
science!) The point is that Java runs in a precise environment, and passing the SCJP exam
requires a strong knowledge of these well-defined Java fundamentals.

This chapter covers the fundamentals of Java programming, including writing Java
classes, running Java applications, creating packages, defining classpath, and using the Java
operators. We will also discuss the details of garbage collection and call by value.

Writing Java Classes

The exam objectives state that you need to be able to “write code that uses the appropriate
access modifiers, package declarations, and imports statements.” In other words, you

need to be able to write Java classes, which makes sense because Java is an object-oriented
programming (OOP) language and writing classes is an essential aspect of OOP. Your
executable Java code will appear within the definition of a class. A class describes an
object, which is a noun in your program. The object can either represent something
tangible, like a television or an employee, or it can represent something less obvious but just
as useful in your program, like an event handler or a stream of data being read from a file.

An object is an instance of a class. Think of a class as a blueprint for a house, and the
object as the house. Another common analogy is to think of a class as a recipe for cookies,
and the objects are the cookies. (We will discuss the details of instantiating objects in
Chapter 2, “Declarations, Initialization, and Scoping.”) Because classes are a fundamental
aspect of Java programming, the certification exam assumes you are familiar with the rules
for writing them, and in this section we cover these details.

For starters, a Java class must be defined in a text file with a . java extension. In
addition, if the class is declared public, then the name of the file must match the name of
the class. Consequently, a . java file can only contain at most one top-level public class.
For example, the following class definition must appear in a file named Cat. java:

Writing Java Classes 3

public class Cat {
pubTlic String name;
public int weight;

Compiled Java code is referred to as bytecode, and the name of the bytecode file matches
the name of the class. Compiling the Cat.java source file creates a bytecode file named
Cat.class.

Line Numbers

Java source files do not contain line numbers. However, the classes on the exam display
line numbers. If the numbering starts with a 1, then the entire definition of a source file
is being displayed. If the numbering starts with some other value, then only a portion

of a source file is being displayed. You will see this explanation in the instructions at the
beginning of the SCJP exam.

Java allows multiple classes in a single . java file as long as no more than one of the top-
level classes is declared public. The compiler still generates a separate .class file for each
class defined in the . java file. For example, suppose a file named Customer.java contains
the following two class definitions:

1. public class Customer {
2. pubTlic String name;

3. public String address;
4.)

5.

6. class Order {

7. public int partNumber;
8. pubTlic int quantity;

9. pubTlic boolean shipped;
10. }

Compiling Customer.java generates two files: Customer.class and Order.class. Note
that the Order class cannot be public because Customer is already public, nor can Order
be protected or private because Java does not allow top-level classes to be protected or
private. Therefore, Order must have the default access, often referred to as friendly
or package-level access, meaning only classes within the same package can use the Order
class. (We discuss packages in the next section.)

4 Chapter 1 = Fundamentals

Access Specifiers for Top-Level Classes

A top-level class has two options for an access modifier: publ1ic or package-level access
(often called the default access). Keep an eye out for exam questions that declare a top-
level class as private or protected. For example, the following code will not compile:

//Generates a compiler error: "modifier private not allowed here"
private class HelloWorld {
public static void main(String [] args) {
System.out.printin(args[1] + args[2]);

Multiple Classes in a Single File

Java allows multiple top-level classes to be defined in a single file, but in the real world
this is rarely done. We typically want our classes to be public, and only top-level classes
can be public. That being said, the exam might contain questions that define multiple
classes in a single source file because it is convenient and many questions on the exam
involve more than one class.

Packages

The exam objectives state that you need to be able to “write code that uses the appropriate
package declarations and import statements,” and I can assure you there will be more than
one question on the exam testing your knowledge of the package keyword and its effect
on a Java class. This section discusses the details you need to know about Java packages.
A package is a grouping of classes and interfaces. It can also contain enumerations and
annotated types, but because these are special types of classes and interfaces, I will refer
to items in a package as simply classes and interfaces for brevity. This grouping of classes
and interfaces is typically based on their relationship and usage. For example, the java.io
package contains classes and interfaces related to input and output. The java.net package
contains the classes and interfaces related to networking. There are two key benefits of
using packages in Java:

» Packages organize Java programs by grouping together related classes and interfaces.
» Packages create a namespace for your classes and interfaces.

The Application Programming Interface (API) for the Java Platform, Standard Edition
(Java SE) contains hundreds of packages that you can use in any Java SE application. As

Packages 5

a Java programmer, you will create your own packages for the classes that you develop.
Packages are often drawn as tabbed folders, as shown in Figure 1.1.

FIGURE 1.1 When designing a Java application, packages are drawn as tabbed folders.

java.lang java.io
String File
Object InputStream
System OutputStream
Thread PrintWriter
javax.swing my.company.inventory
JButton ltem
JFrame
Timer Order
Imagelcon ShippingAddress

To view all of the packages in the Java SE API, visit the APT documentation at
http://java.sun.com/javase/6/docs/api/. This web page contains three frames. The upper-
left frame is a list of all the packages. Clicking a package displays its classes and interfaces in the
lower-left frame. Clicking a class or interface in the lower-left frame displays its documentation
page in the main frame. You should spend time browsing the Java API documentation! I find it
extremely useful, especially when using a Java class or interface for the first time.

If you are developing a Java program with hundreds of classes and interfaces, grouping
related types into packages provides a much-needed organization to the project. In
addition, the namespace provided by a package is useful for avoiding naming conflicts.

This section discusses these two benefits of packages in detail. I will start with a
discussion on the package keyword and then cover the details of imports, the CLASSPATH
environment variable, and the directory structure required for packages.

The package Keyword

The package keyword puts a class or interface in a package, and it must be the first line of
code in your source file (aside from comments, which can appear anywhere within a source
file). For example, the following Employee class is declared in the com.sybex.payrol11 package:

package com.sybex.payroll;

public class Employee {
public Employee() {
System.out.printin(
"Constructing a com.sybex.payroll.Employee");

6 Chapter 1 = Fundamentals

Putting a class in a package has two important side effects that you need to know
for the exam:

1. The fully qualified name of a class or interface changes when it is in a package. The
package name becomes a prefix for the class name. For example, the fully qualified
name of the EmpTloyee class shown earlier is com.sybex.payrol1.Employee.

2. The compiled bytecode file must appear in a directory structure on your file system
that matches the package name. For example, a .class file for any class or interface
in the com.sybex.payrol1 package must appear in a directory structure matching
\com\sybex\payro11\. You can either create this directory structure yourself or use
the -d flag during compilation and the compiler will create the necessary directory
structure for you. We discuss the -d flag in detail later in this section.

The fully qualified name of the Employee class is com.sybex.payrol1.Employee. Other
classes that want to use the Employee class need to refer to it by its fully qualified name.
For example, the following program creates an instance of the Employee class:

public class CreateEmployee {
public static void main(String [] args) {
com.sybex.payroll.Employee e =
new com.sybex.payroll.Employee();

Here’s the output of the CreateEmployee program:

Constructing a com.sybex.payroll.Employee

The Unnamed Package

If a class is not specifically declared in a package, then that class belongs to the unnamed
package. Classes and interfaces in the unnamed package cannot be imported into a
source file. You should only use the unnamed package when writing simple classes and
interfaces that are not being used in a production application. In the real world, you will
rarely write a Java class or interface that is not declared in a package. Your classes will
appear in a package name that contains your company’s Internet domain name, which
the next section discusses.

The import Keyword

As you can see by the CreateEmpTloyee program, using the fully qualified name of a class
can be tedious and makes for a lot of typing! The import keyword makes your life as

a coder easier by allowing you to refer to a class in a source file without using its fully
qualified name.

Packages 7

The import keyword is used to import a single class or, when used with the wildcard (¥),
an entire package. A source file can have any number of import statements, and they must
appear after the package declaration and before the class declaration. Importing classes
and packages tells the compiler that you are not going to use fully qualified names for
classes. The compiler searches your list of imports to determine the fully qualified names of
the classes referenced in the source file.

Here is the CreateEmpToyee program again, except this time the com. sybex.payroll
.Employee class is imported, allowing the EmpToyee class to be referred to without using its
fully qualified name:

import com.sybex.payroll.Employee;

public class CreateEmployee2 {
public static void main(String [] args) {
Employee e = new Employee();

The output is the same as before:

Constructing a com.sybex.payroll.Employee

In fact, the compiled bytecode files CreateEmployee.class and CreateEmployee2.class
are completely identical (except for the number 2 that appears in CreateEmployee2.class).
The import statement does not affect the compiled code. Behind the scenes, the compiler
removes the import statement and replaces each occurrence of Employee with com. sybex
.payrol1.EmpTloyee.

What Does Import Mean?

The term import sounds like something is being brought into your source file, but nothing
is physically added to your source code by importing a class or package. An import state-
ment is strictly to make your life as a programmer easier. The Java compiler removes all
import statements and replaces all the class names in your source code with their fully
qualified names. For this reason, you never need to use import statements. Instead, you
can use fully qualified names throughout your source files. However, you will quickly
discover the benefit of import statements, especially when you work with long package
names.

The CreateEmployee and CreateEmployee2 programs both refer to the String class.
String is defined in the java.lang package, but this package was not imported. The java
.lang package is unique in that the compiler automatically imports all the public classes and

8 Chapter 1 = Fundamentals

interfaces of java.lang into every source file, so there is never any need to import types from
java.lang (although it is perfectly valid to do so).

The following program demonstrates an import statement that uses the wildcard to
import an entire package. The program uses the File, FileReader, BufferedReader, and
IOException classes, all found in the java.io package. The program reads a line of text
from a file named mydata. txt.

1. import java.io.*;

2

3. public class ReadFromFile {

4 public static void main(String [] args) {
5. File file = new File("mydata.txt");

6 FileReader fileReader = null;

7 try {

8 fileReader = new FileReader(file);
9 BufferedReader in = new BufferedReader(fileReader);
10. System.out.printin(in.readLine());
11. }catch(IOException e) {

12. e.printStackTrace();

13. }

14. }

15. }

Because nothing is actually included into your source file by the import keyword, using
the wildcard does not impact the size of your bytecode files. However, common practice
in Java is to avoid using the wildcard because it may lead to ambiguity when two packages
are imported that share a common class name. For example, the following code does not
compile because there is a class called AttributelList in both the javax.swing.text.html
.parser package and the javax.management package:

1. import javax.swing.text.html.parser.¥*;
2. import javax.management.*;

3.

4. public class ImportDemo {

5 public Attributelist a;

6. }

The ImportDemo class generates the following compiler error:

reference to AttributelList is ambiguous, both class
javax.management.AttributelList in javax.management and class
javax.swing.text.html.parser.AttributelList in
javax.swing.text.html.parser match

pubTlic AttributelList a;

Packages 9

If you ever are in a situation where you need to use two classes with the same name but
in different packages, then using imports does not work. You will need to refer to each class
by their fully qualified name in your source file. The following code compiles successfully:

. public class FullyQualifiedDemo {

1

2. public javax.management.Attributelist al;

3 public javax.swing.text.html.parser.AttributeList a2;
4

}

The FullyQualifiedDemo program demonstrates why packages are often referred to as
namespaces because package names are used to avoid naming conflicts. Without packages,
there is no way for the compiler or the JVM to distinguish between the two AttributelList
classes. However, because the two Attributelist classes are declared in different
packages, they can be referred to by their fully qualified names to avoid any ambiguity.

Naming Convention for Packages

The namespace ambiguity situation can still occur if programmers happen to use the
same package names in different programs. If you and | both write a class called Dog and
we both define Dog in a package named pets, then a naming conflict still occurs. How-
ever, the standard Java naming convention for a package name is to use your company’s
domain name (in reverse) as a prefix to your package names. For example, a class written
by an employee of Sybex uses a package name that starts with com.sybex.

Subsequent components of the package name may include your department and project
name, followed by a descriptive name for the package. For example, com. sybex
.scjpbook.pets is a good package name for a class named Dog that appears in this book.
It is extremely unlikely that someone else would use this package name, although | am
sure there are other Dog classes in the world.

If everyone who writes Java code follows this naming convention for package names,
then naming conflicts can only occur within a single company or project, making it easier
to resolve the naming conflict.

Package Directory Structure

The exam objectives state that “given the fully-qualified name of a class that is deployed
inside and/or outside a JAR file,” you need to be able to “construct the appropriate
directory structure for that class.” This objective refers to the required directory structure
that results from using packages. In addition to creating a namespace, packages organize
your programs by grouping related classes and interfaces together. One result of using
packages is that the bytecode of a class or interface must appear in a directory structure
that matches its package name. If you do not put your bytecode in the proper directory
structure, the compiler or the JVM will be unable to find your classes.

10 Chapter 1 = Fundamentals

Suppose we have the following class definition:

package com.sybex.payroll;

public class Employee {
public Employee() {
System.out.printin(
"Constructing a com.sybex.payroll.Employee");

This Employee class is in the com.sybex.payrol1 package, so its compiled file Employee
.class must be in a directory with a pathname \com\sybex\payrol11. This requires a
directory named \com, which can appear anywhere on your file system. Inside \com you
must have a \sybex subdirectory, which must contain a \payro11 subdirectory.

The \com directory can appear anywhere on your file system. A common technique is
to put your source files in a directory named \src and your bytecode files in a directory
named \build. For example, suppose the Employee source file is in the following directory:

c:\myproject\src\com\sybex\payrol1\Employee. java

Suppose you want the compiled code to be in the c:\myproject\build directory. You
can use the -d flag of the compiler to achieve this. The -d flag has two effects:

» The compiled code will be output in the directory specified by the -d flag.

= The appropriate directory structure that matches the package names of the classes is
created automatically in the output directory.

Consider the following compiler command, executed from the c:\myproject\src
directory:

javac -d c:\myproject\build .\com\sybex\payroll\Employee.java

The -d flag specifies the output directory as c:\myproject\build. Assuming the class
compiles successfully, the compiler creates the file Employee.class in the following
directory:

c:\myproject\build\com\sybex\payrolT1\Employee.class

Keep in mind the directory c:\myproject\build is arbitrary; we could have output the
bytecode into the directory of our choosing. After you start putting bytecode in arbitrary
directories on your file system, the compiler and the JVM need to know where to look to
find it. They look for the bytecode files in your classpath, an important concept that the
next section discusses in detail.

Packages 1

The CLASSPATH Environment Variable

The exam objectives state that “given a code example and a classpath,” you need to be
able to “determine whether the classpath will allow the code to compile successfully.” The
classpath refers to the path on your file system where your .class files are saved, and the
classpath is defined by the CLASSPATH environment variable. The CLASSPATH environment
variable specifies the directories and JAR files where you want the compiler and the JVM to
search for bytecode. Using CLASSPATH allows your bytecode to be stored in the directory of
your choosing, as well as in multiple directories or Java archive (JAR) files.

For example, suppose you have a class named com. sybex.payro11.Employee. The
compiler and the JVM look for the \com\sybex\payro11 directory structure by searching
your CLASSPATH environment variable. For example, if Employee.class is in the following
directory:

c:\Documents and Settings\Rich\workspaces\build\com\sybex\payroll

then your CLASSPATH needs to include the directory:

c:\Documents and Settings\Rich\workspaces\build

The CLASSPATH environment variable can contain any number of directories and JAR
files. Setting CLASSPATH on Windows can be done from a command prompt using a
semicolon to separate multiple values:

set CLASSPATH="c:\Documents and Settings\Rich\workspaces\build";
c:\myproject\build;c:\tomcat\Tlib\servlet.jar;.;

In this example, the compiler and the JVM look for bytecode files in the two \build
directories specified, the servlet.jar file in c:\tomcat\1ib, and the current working
directory (represented by the dot). The double quotes are necessary in the first directory
because of the spaces in the pathname.

On Unix, you use the setenv command and colons to separate multiple values. For
example:

setenv CLASSPATH /usr/build:/myproject/build:/tomcat/1ib/serviet.jar

A common mistake new Java programmers make is to include part of the package
pathname in the CLASSPATH. If you are struggling with classes not being found, you might
be tempted to try the following command line:

set CLASSPATH=c:\myproject\build\com\sybex\payroll;

Including \com\sybex\payro11 in your CLASSPATH does not work! Do not add any of the
package directories to your CLASSPATH, only the parent directory. The compiler and the JRE
will look for the appropriate subdirectories.

CLASSPATH plays a key role in compiling and running your Java applications, which
we discuss in the next section.

12 Chapter 1 = Fundamentals

Running Java Applications

The SCJP certification exam tests your knowledge of running a Java program from the
command line using an appropriate CLASSPATH. If you are using Sun’s Java Development Kit
(JDK), then java.exe in the \bin folder of the JDK directory is the executable used to run
your Java applications. The sample commands in this book assume java.exe is in your path.

The entry point of a Java program is main, which you can define in any class. The
signature of main must look like this:

public static void main(String [] args)

The only changes you can make to this signature are the name of the parameter args,
which can be arbitrary, and the order of public and static. For example, the following
declaration is a valid signature of main:

static public void main(String [] x)

In addition, you can specify the array of String objects using the syntax for variable-
length arguments:

public static void main(String... args)

Variable-Length Arguments

As of Java 5.0, a method in Java can declare a variable-length argument list denoted by
the ellipsis (. . .). Variable-length arguments are discussed in detail in Chapter 2.

The args array contains the command-line arguments, discussed in detail later in this
section. The main method has to be public so that the JVM has access to it, and making it
static allows the JVM to invoke this method without having to instantiate an instance of
the containing class.

Let’s start with a simple example. Suppose the following class is saved in the
c:\myproject directory. First, does the following SaySomething class compile, and does it
successfully declare the main method?

public class SaySomething {
private static String message = "Hello!";

1.

2

3.

4. public static void main() {

5 System.out.printin(message);
6

7.

}

Running Java Applications 13

The answers are yes and no. Yes, this class compiles, but no, it does not define main
properly. A static method can access a static field in the same class, so there is no
problem with the message field. Also, you can write a method called main that does not
have an array of String objects, so the compiler will not complain about the main method
defined on line 4. However, this class cannot be executed as a Java application because it
does not successfully declare the proper main method for a Java application.

Let’s try it again, this time with the following SayHe17lo class. Does this class compile
and successfully declare the main method?

1. public class SayHello {

2 private static String message = "Hello!";
3.

4. public static void main(String [] args) {
5 System.out.printin(message);

6 }

7.}

The answer is yes to both: SayHello compiles and declares the proper version of main so
that it can be executed as a stand-alone Java application. The following command line runs
the SayHe11o application:

java SayHello

This command line assumes that you run the command from the directory that contains
the file SayHe1lo.class, which in our case is c:\myproject. If you want to run this Java
application from any directory (instead of just c:\myproject), you need to include
c:\myproject in your CLASSPATH. Figure 1.2 shows SayHel1o being executed from
c:\myproject, and then being executed from c:\ after the CLASSPATH is correctly set.

FIGURE 1.2 Compiling and running the SayHel1o program from a command prompt

o] I ten md -lo|

Lixdlx

C:\myproject» javac SayHello. java

ﬁé}Tg?roject>java SayHello

C:\myproject>set CLASSPATH=c:\myproject
C:\myproject>cd ..

C:%2> java SayHello
Hello!

L

14 Chapter 1 = Fundamentals

Specifying the Class Name

The command line for java.exe requires the name of the class that contains main. Notice
that the name of the class is not the same as the name of the bytecode file, which in the
SayHel1lo example is SayHelTlo.class. The following command line does not work:

java SayHello.class

The JVM looks for a class named class in the SayHello package (which it will not find)
and throws a NoClassDefFoundError. The JVM only needs the name of the class; it will
find the corresponding bytecode file by scanning all the directories and JAR files set in
your CLASSPATH environment variable. If you do not set a CLASSPATH, the JVM looks in the
current working directory.

The exam will likely test your knowledge with a more complex example where the class
containing main is in a package. Let’s look at another example, starting with a class called
ColorChanger in the com.sybex.events package:

1. package com.sybex.events;

2.

3. dimport java.awt.Component;

4. import java.awt.Color;

5. dimport java.awt.event.¥;

6.

7. public class ColorChanger implements ActionListener {
8. private Component container;

9.

10. pubTlic ColorChanger(Component c) f{

11. container = c;

12. }

13.

14. public void actionPerformed(ActionEvent e) {
15. String color = e.getActionCommand();

16. if(color.equals('red")) {

17. container.setBackground(Color.RED);
18. } else if(color.equals("blue")) {

19. container.setBackground(Color.BLUE);
20. } else {

21. container.setBackground(Color.WHITE);
22. }

23. }

24.)

Running Java Applications

The source file ColorChanger.java is saved in c:\myproject\src\com\sybex\events
and the class is compiled using the following command executed from c:\myproject\src:

javac -d c:\myproject\build .\com\sybex\events\ColorChanger.java

This command line creates ColorChanger.class in the c:\myproject\build\com\sybex\

events directory. The following program contains main and tests the ColorChanger class:

1. package com.sybex.demos;

2

3. dimport com.sybex.events.ColorChanger;
4. dmport java.awt.Button;

5. import java.awt.Color;

6 import java.awt.event.ActionEvent;

7
8
9

public class TestColors {

10. public static void main(String [] args) {

11. Button b = new Button("Testing...");
12. b.setBackground(Color.GREEN);

13. System.out.printin("Color is " + b.getBackground());
14.

15. ColorChanger cc = new ColorChanger(b);
16. ActionEvent action = new ActionEvent(b,
17. ActionEvent.ACTION_PERFORMED,
18. "blue");

19. cc.actionPerformed(action);

20. System.out.printin("Now the color is "
21. + b.getBackground());

22. }

23. }

TestColors.java is saved in the c:\myproject\src\com\sybex\demos directory.

Because TestColors is not in the same package as ColorChanger, it imports the

ColorChanger class. TestColors is compiled using the following command executed from

the c:\myproject\src directory:

javac -d c:\myproject\build .\com\sybex\demos\TestColors.java

This command line creates TestColors.class in the directory c:\myproject\build\com\
sybex\demos. Figure 1.3 shows the directory structure after compiling the source files with -d.

16 Chapter 1 = Fundamentals

FIGURE 1.3 The source code and bytecode are typically stored in separate folders.

« c:\myproject\

. +src\

. I +com\

. | +sybex\

. | +demos\

. | | +TestColors.java

. | +events\

. | +ColorChanger.java
. +build\

. +com\

. +sybex\

. +demos\

. | +TestColors.class

. +events\

. +ColorChanger.class

A typical exam question at this point is to ask what the CLASSPATH needs to be for you to
run the TestColors program at the command prompt from any working directory. Do you
know the answer? I will reveal it in a moment, but first here is the command prompt that
runs the TestColors application if you execute it from the c:\myproject\build directory:

java com.sybex.demos.TestColors

Notice the fully qualified class name of TestColors must be specified to execute
properly. Using the fully qualified name has nothing to do with CLASSPATH or the current
working directory. The following command does not work and results in a java.lang
.NoClassDefFoundError, no matter what directory you run it from or what your CLASSPATH
is set to:

java TestColors

Why will this never work? Because there is no class called TestColors. Remember,
putting a class in a package changes the name of the class. Because TestColors is in the
com. sybex.demos package, the name of the class is com.sybex.demos.TestColors, and that
name must be used on the command line.

By the way, the answer to the question earlier about CLASSPATH is it needs to contain
c:\myproject\build:

set CLASSPATH=c:\myproject\build;

With this CLASSPATH, the command to run the TestColors program can be executed
from any directory.

Running Java Applications 17

Don’t Panic During the Exam!

The purpose of the ColorChanger and TestColors example is to demonstrate running
a Java application from a command line, so what the code does is not relevant in this
situation. If you are not familiar with the Container and ActionListener classes, a
ColorChanger can listen to action events of a GUl component in Java because it
implements ActionListener. When an action event occurs, the actionPerformed
method is invoked, which changes the background color of the given GUl component.

You might encounter a situation on the exam where you are not familiar with some of the
classes in the given code. Don’t panic! Focus on what the exam question is asking before
trying to figure out what the code is doing. You might discover that the behavior of the

code is irrelevant because the question is testing you on a different facet of the language.

You can also set the classpath for the JVM on the command line using the -classpath
flag, which is discussed in the next section, followed by a discussion on running Java code
stored in JAR files.

The -classpath Flag

The java command that starts the JVM has a -classpath flag that allows the classpath to
be specified from the command line. This is a common technique for ensuring the classpath
is pointing to the right directories and JAR files. Using the -classpath flag overrides the
CLASSPATH environment variable.

For example, we could run the TestColors program using the following command
prompt executed from any directory:

java -classpath c:\myproject\build com.sybex.demos.TestColors

If you have multiple directories or JAR files, use a semicolon on a Windows machine to
separate them on the -classpath flag. For example, the following command line adds the
current directory to the classpath:

java -classpath c:\myproject\build;. com.sybex.demos.TestColors

On a Unix machine, use a colon to separate multiple directories and JAR files:

java -classpath /myproject/build:. com.sybex.demos.TestColors

The java command can also define the classpath using the -cp flag, which is just a
shortcut for the -classpath flag.

JAR Files

Bytecode can be stored in archived, compressed files known as JAR files. JAR is short
for Java archive. The compiler and the JVM can find bytecode files in JAR files without
needing to uncompress the files onto your file system. JAR files are the most common way

18 Chapter 1 = Fundamentals

to distribute Java code, and the exam tests your understanding of JAR files and how they
relate to CLASSPATH.

The JDK comes with the tool jar.exe for creating and extracting JAR files. The
following command adds the bytecode files of the c:\myproject\build directory to a new
JAR file named myproject.jar:

C:\myproject\build>jar -cvf myproject.jar .

added manifest

adding: com/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/demos/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/demos/TestColors.class(in = 1209) (out= 671)(deflated 44%)
adding: com/sybex/events/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/events/ColorChanger.class(in = 883) (out= 545)(deflated 38%)
adding: com/sybex/payrol1/(in = 0) (out= 0)(stored 0%)

adding: com/sybex/payroll1/Employee.class(in = 402) (out= 292)(deflated 27%)

The -c flag is for creating a new JAR file. The -v flag tells the jar command to be
verbose while it is processing files. The -f flag is for denoting the filename of the new
JAR file, which in this example is myproject.jar. After the filename, you specify the
files or directories to include in the JAR. In our example, because all of our bytecode was
conveniently located in the \build directory, we simply added the entire contents of
c:\myproject\build, using the dot to represent the current directory.

JAR Files and Package Names

If a class is in a package, then the JAR file must contain the appropriate directory structure
when the .class file is included in the JAR. Notice in the verbose output of the jar
command shown earlier, the necessary \com directory and subdirectories matching our
package names are added to the JAR.

You can add a JAR file to your CLASSPATH. In fact, it is common to have lots of JAR
files in your CLASSPATH. The following example demonstrates adding myproject.jar to
the CLASSPATH of a Windows machine, then running the TestColors program (which is in
myproject.jar):

C:\>set CLASSPATH=c:\myproject\build\myproject.jar;
C:\>java com.sybex.demos.TestColors

Color is java.awt.Color[r=0,g=255,b=0]
Now the color is java.awt.Color[r=0,g=0,b=255]

Running Java Applications 19

@ Real World Scenario
Separating Source Code and Bytecode Files

You might have been wondering why the examples in this chapter separated the source
files from the bytecode files. In general, when you distribute your code you do not want
the JAR files to include your source code. Having the bytecode separate makes it much
easier to create JAR files that only contain your bytecode.

You might have also noticed that the source code files in \src use the same directory
structure as their package names. This is not a requirement for your . java files; they can
be stored in any directory. In most development teams, you will be required to run the
javadoc tool on your source files to generate the HTML documentation for your classes
and interfaces. The javadoc tool requires that your source file directories match the pack-
age names. The exam does not contain any questions that involve the javadoc tool, but in
the real world you will quickly learn to appreciate the benefits of javadoc documentation!

In projects | work on, we put source code in the \src directory, using the package name
subdirectory structure. Bytecode goes in a subdirectory of \build depending on whether
or not the bytecode is in a JAR. JAR files appear in the \build\1ib directory, and .class
files appear in the \build\cTlasses subdirectory that matches the package name structure.

Command-Line Arguments

The java.exe executable starts the JVM, and on the command line you provide the name
of the class that contains the main method. The command-line arguments are passed into
the main method as a single array of String objects. For example, suppose PrintGreetings
is a class that contains main and it is executed with the command line in Figure 1.4.

FIGURE 1.4 Thiscommand line starts the JVM and invokes the main method in the
PrintGreetings class.

java com sybex. denos. Print Greetings hi goodbye see you |l ater

T R

The JVM args[0] args[2] args[4]
executable

The name of the class args[1] args[3]
that contains the main
method

20 Chapter 1 = Fundamentals

This command has five command-line arguments, so the first element in the String
array is "hi", the second element in the array is "goodbye", and so on. The following
PrintGreetings class contains a for loop that iterates through the command-line
arguments and outputs them to the console:

1. package com.sybex.demos;

2. public class PrintGreetings {

3 public static void main(String [] args) {
4. for(int i = 0; i < args.length; i++) {
5 System.out.printinCargs[il);
6

7

8

}

If PrintGreetings is executed with the command line in Figure 1.4, then the output
looks like this:

hi
goodbye
see

you
Tater

Command-Line Arguments on the Exam

Notice that the first command-line argument in the array is args[0] because Java uses
zero-based indexes for arrays. The exam creators seem to like questions about arrays
and command-line arguments, so don’t be surprised if you see a question that tests both
topics at the same time. For example, what is the output of the DoSometh1ing class when
executed with the following command?

java DoSomething one two

1. public class DoSomething {

2 public static void main(String args []) {
3 System.out.print(args[1]);

4. System.out.print(args[2]);
5

6.

}

Running Java Applications 21

By the way, the square brackets following args instead of preceding args are perfectly
valid in Java, although not common practice. The output of this program is the string
"two" followed by an ArrayIndexOutOfBoundsException on line 4, as shown here:

twoException in thread "main" java.lang.ArrayIndexOutOfBoundsException: 2
at DoSomething.main(DoSomething.java:4)

The length of args is two, so args[2] is beyond the end of the array.

All command-line arguments are treated as String objects, even if they represent
another data type. The wrapper classes in java.lang contain helpful methods for parsing
strings into other data types. Consider the following ParseDemo program:

1. public class ParseDemo {

2 public static void main(String [] args) {

3 System.out.println("Processing " + args.length +
4 " arguments");

5. int x = Integer.parselnt(args[0]);

6 System.out.printin(x);

7 boolean b = Boolean.parseBoolean(args[1]);

8 System.out.printin(b);

9. float f = Float.parseFloat(args[2]);

10. System.out.printIn(f);

11. char ¢ = args[3].charAt(0);
12. System.out.println(c);

13. }

14. }

Here is a command line that runs the ParseDemo program, followed by its output:

c:\myproject>java ParseDemo 34567 false 3.14159 R
Processing 4 arguments

34567

false

3.14159

R

There is no need to parse a String into a char because the String already is an array
of characters. The ParseDemo program simply selects the first character in the String to
“convert” it to a char.

22 Chapter 1 = Fundamentals

We now turn our attention to a discussion on garbage collection, which first requires an
understanding of the differences between reference types and primitive types.

Reference vs. Primitive Types

Java applications contain two types of data: primitive types and reference types. In this
section, we will discuss the differences between a primitive type and a reference type. The
differences are important when we discuss garbage collection later in this chapter.

Primitive Types

Java has eight built-in data types, referred to as the Java primitive types. These eight data
types represent the building blocks for Java objects, because all Java objects are just a
complex collection in memory of these primitive data types. The SCJP exam assumes you
are well versed in the eight primitive data types, their size, and what can be stored in them.
Table 1.1 shows the Java primitive types together with their size in bytes and the range of
values that each holds.

TABLE 1.1 The Java Primitive Data Types

Primitive Type Size Range of Values (inclusive)

byte 8 bits -128 to 127

short 16 bits -32768 to 32767

int 32 bits —2147483648 to 2147483647

Tong 64 bits -9223372036854775808 to 9223372036854775807
float 32 bits 27149t0 (2 -2723) . 2'&7

double 64 bits 271074 tg (2 — 2752) . 21023

char 16 bits "\u0000' to '\uffff' (0 to 65535)

booTlean unspecified true or false

Reference vs. Primitive Types 23

Do | Need to Memorize These Sizes?

Not all of them. Don’t try to memorize the range of values in a Tong, float, or double, but
it is important to know their size in bits. However, you should be able to state the range of
a byte exactly and recognize when a short or int has likely gone beyond its range. Expect a
question involving the size of a char, especially because a char in C/C++ is only 8 bits and
uses the ASCII format, while a Java char is 16 bits and uses the UNICODE format.

Primitive types are allocated in memory by declaring them in your code. For example,
the following lines of code declare an int and a double:

int x;
double d;
In memory, the compiler allocates 32 bits for the variable x and 64 bits for the variable d.

A primitive type can only store a value of that same type. For example, the variable x can
only hold an int and d can only hold a double. Suppose we assign values to x and d:

X
d

12345;
2.7e45;

Figure 1.5 shows how these primitive types look in memory. The value 12345 is stored
in the memory where x is allocated. Similarly, the value 2.7e45 is stored in the memory
where d is allocated.

FIGURE 1.5 Anintis 32 bitsand a double is 64 bits.

12345 2.7e45

32 bits of memory 64 bits of memory

Reference Types

Reference types are variables that are class types, interface types, and array types.

A reference refers to an object (an instance of a class). Unlike primitive types that hold their
values in the memory where the variable is allocated, references do not hold the value of
the object they refer to. Instead, a reference “points” to an object by storing the memory
address where the object is located, a concept referred to as a pointer. However, the Java
language does not allow a programmer to access a physical memory address in any way, so
even though a reference is similar to a pointer, you can only use a reference to gain access
to the fields and methods of the object it refers to. It is impossible to determine the actual
address stored in the memory of the reference variable.

24 Chapter 1 = Fundamentals

Let’s take a look at some examples that declare and initialize reference types. Suppose
we declare a reference of type java.util.Date and a reference of type String:

java.util.Date today;
String greeting;

The today variable is a reference of type Date and can only point to a Date object. The
greeting variable is a reference that can only point to a String object. A value is assigned
to a reference in one of two ways:

= A reference can be assigned to another reference of the same type.
= A reference can be assigned to a new object using the new keyword.
For example, the following statements assign these references to new objects:

today = new java.util.Date();
greeting = "How are you?";

The today reference now points to a new Date object in memory, and today can be
used to access the various fields and methods of this Date object. Similarly, the greeting
reference points to a new String object, "How are you?" The String and Date objects
do not have names and can only be accessed via their corresponding reference. Figure 1.6
shows how the reference types appear in memory.

FIGURE 1.6 Anobjectin memory can only be accessed via a reference.

A Date object

A Date reference
today day
29
month
7
year
2011

A String reference

greeting A String object

> How are you?

Reference vs. Primitive Types

25

String Literals and the String Pool

The new keyword is not required for creating the String object "How are you?' because
itis a string literal. String literals get special treatment by the JVM. Behind the scenes,
the JVM instantiates a String object for "How are you?" and stores it in the string pool.
The greeting reference refers to this String object in the pool. Because String objects
in Java are immutable (which means they cannot be changed), the JVM can optimize the
use of string literals by allowing only one instance of a string in the pool. For example,
the following two String references actually point to the same string in the pool, as
shown in the following diagram:

String sl "New York";

String s2 = "New York";

The String pool
sl

s2

You might think if the two references point to the same object, then changing one object
would inadvertently change the value of the other. But String objects are immutable, so
the following statement only changes s2:

s2 = "New Jersey";

The reference s2 now points to "New Jersey", but s1 still points to "New York", as shown
in the following diagram:

The String pool

sl

“New York”

“New Jersey”

s2

26 Chapter 1 = Fundamentals

In addition, arrays in Java are objects and therefore have a reference type. The Java
language implicitly defines a reference type for each possible array type: one for each of the
eight primitive types and also an Object array. This allows for references of the following type:

int [] grades;
String [] args;
Runnable [] targets;

The null Type

There is a special data type in Java for nu11. The nul1 type does not have a name, so it is
not possible to declare a variable to be the nul1 type. However, you can assign any refer-
ence to the nul1 type:

String firstName = null;
Runnable [] targets = null;

Primitive types cannot be assigned to nul1, only references. The following statement is
not valid:

int x= null; //does not compile

We can also assign a reference to another reference as long as their data types are
compatible. For example, the following code assigns two ArrayList references to each other:

java.util.ArrayList<Integer> al =
new java.util.ArrayList<Integer>();
java.util.ArrayList<Integer> a2 = al;

The references al and a2 both point to the same object, an ArrayList that contains
Integer objects. (Two references pointing to the same object is a common occurrence in
Java.) The ArrayList object can be accessed using either reference. Examine the following
code and determine if it compiles successfully and, if so, what its output is:

al.add(new Integer(12345));

a2.add(new Integer(54321));

forint i = 0; i < al.size(); i++) {
System.out.printin(a2.get(i));

The code adds an Integer to the ArraylList using al, and then adds another Integer
using a2. Because they point to the same ArrayList, the list now has two Integer objects
in it, as shown in Figure 1.7.

Reference vs. Primitive Types 21

FIGURE 1.7 TheArraylList object can be accessed using either al or a2.

The ArrayList<Integer> object)
An Integer object

al > 12345

\
/

An Integer object

a2
54321

The for loop compiles successfully and the output looks like this:

12345
54321

Let’s look at a different example. Examine the following code that assigns two
references to each other and determine if it compiles successfully:

java.math.BigDecimal bd = new java.math.BigDecimal(2.75);
String s = bd;

The reference bd is of type BigDecimal, and s is of type String. These two classes are
not compatible, so assigning s to bd generates the following compiler error:

incompatible types

found : java.math.BigDecimal

required: java.lang.String
String s = bd;

Even using the cast operator does not fix the problem. The following code generates a
similar compiler error, except this time the compiler complains the types are inconvertible:

java.math.BigDecimal bd = new java.math.BigDecimal(2.75);
String s = (String) bd;

28 Chapter 1 = Fundamentals

The compiler error looks like this:

inconvertible types

found : java.math.BigDecimal

required: java.lang.String
String s = (String) bd;

Even though s and bd are both references that behind the scenes are identical in terms
of memory consumption (most likely they are 32-bit unsigned integers, but this is JVM-
dependent), it is not possible to assign them to each other because there is no relationship
between a String object and a BigDecimal object. Two references are compatible only
when either the objects they point to are the same type or one of the objects is a child class
of the other. String and BigDecimal have no inheritance relationship.

Hopefully you have a better understanding of the differences between references and
primitive types. References play a key role in understanding garbage collection, our next
topic.

Garbage Collection

All Java objects are stored in your program memory’s heap. The heap, which is also
referred to as the free store, represents a large pool of unused memory allocated to your
Java application. The heap may be quite large, depending on your environment, but there is
always a limit to its size. If your program keeps instantiating objects and leaving them on
the heap, eventually it will run out of memory.

Garbage collection refers to the process of automatically freeing memory on the heap by
deleting objects that are no longer reachable in your program. Every JVM has a garbage
collector, and many different algorithms are used to determine the efficiency and timing of
garbage collection. The SCJP exam does not test your knowledge of any individual garbage
collection algorithm. However, you do need to know “what is and is not guaranteed by the
garbage collection system,” as well as “recognize the point when an object becomes eligible
for garbage collection.” This section discusses both of these objectives in detail.

The new keyword instantiates a new object on the heap and returns a reference to the
object. Typically you will save that object’s reference in a variable. An object will remain on
the heap until it is no longer reachable. An object is no longer reachable when one of two
situations occurs:

* The object no longer has any references pointing to it.

* All references to the object have gone out of scope.

Garbage Collection 29

Objects vs. References

Do not confuse a reference with the object that it refers to. They are two different enti-

ties. The reference is a variable that has a name and can be used to access the contents
of an object. A reference can be assigned to another reference, passed to a method, or

returned from a method. All references are the same size, no matter what their type is.

A reference is most likely 32 bits, but their actual size depends on your JVM.

An object sits on the heap and does not have a name. Therefore, you have no way to
access an object except through a reference. Objects come in all different shapes and
sizes and consume varying amounts of memory. An object cannot be assigned to another
object, nor can an object be passed to a method or returned from a method. It is the
object that gets garbage collected, not its reference.

The Heap

A Reference

hame An Object

A reference may or may
not be created on the heap.
All references are the same
size, no matter what their
data type is, and are accessed
by their variable name. Objects are always on the heap.
They have no name and can only be
accessed via a reference. Objects vary in
size depending on their class definition.

Realizing the difference between a reference and an object goes a long way toward
understanding garbage collection, call by value, the new operator, and many other facets
of the Java language.

Consider the following program that instantiates two GregorianCalendar objects and
assigns them to various references. Study the code and see if you can determine when each
of the two objects either goes out of scope or all references to it are lost.

import java.util.GregorianCalendar;

public static void main(String [] args) {

1

2.

3. public class GCDemo {

4

5 GregorianCalendar christmas, newyears;

30 Chapter 1 = Fundamentals

6. christmas = new GregorianCalendar(2009,12,25);
7. newyears = new GregorianCalendar(2010,1,1);

8.

9. christmas = newyears;

10. GregorianCalendar d = christmas;

11. christmas = null;

12. }

13. }

The two GregorianCalendar objects are created on lines 6 and 7, resulting in the
references and objects that Figure 1.8 shows.

FIGURE 1.8 Each GregorianCalendar object has a reference pointing to it.

christmas day
25
N month
12
year
2009
newyears day
1
month
1
year
2010

On line 9, the christmas reference is assigned to newyears, which results in no more
references pointing to the object from line 6, so this object immediately becomes available
for garbage collection after line 9. There is now only one GregorianCalendar object (from
line 7) reachable in memory, and after line 10 there are three references pointing to it, as
Figure 1.9 shows.

Garbage Collection

FIGURE 1.9 OneGregorianCalendar object has no references to it and the other now

has three.

This object is eligible for

garbage collection.

christmas

newyears

Setting christmas to null on line 11 does not cause the object from line 7 to become
eligible for garbage collection because there are still two references pointing to it: d and

day
25
month
12
year
2009
day
1
month
1
year
2010

newyears. However, after line 12 the main method ends and both d and newyears go out of

scope. Therefore, the object instantiated on line 7 becomes eligible for garbage collection

after line 12.

Know When an Object Is Eligible for Garbage Collection

The GCDemo program is typical of a question that you will encounter on the certification
exam. Make sure you understand exactly when each of the two GregorianCalendar
objects becomes eligible for garbage collection.

What does it mean to become eligible for garbage collection? Why not simply have the
garbage collector immediately free the memory instead? The answer is that there is no
guarantee in Java as to exactly when an object is actually garbage collected. The JVM

32 Chapter 1 = Fundamentals

specification does not define how a garbage collector accomplishes the task of freeing
memory. The specification only states that when an object is eligible for garbage collection,
the garbage collector must eventually free the memory.

As a Java coder, you cannot specifically free memory on the heap. You can only ensure
that your objects that you no longer want in memory are no longer reachable. In other
words, make sure you don’t have any references to the object that are still in scope.

The following section discusses the System.gc method, which provides a small amount
of control over freeing memory on the heap.

The System.gc Method

The java.lang.System class has a static method called gc that attempts to run the garbage
collector. System.gc is the only method in the Java API that communicates with the
garbage collector. Here is what the Java SE API documentation says about the System.gc
method:

Calling the gc method suggests that the Java Virtual Machine expend
effort toward recycling unused objects in order to make the memory they
currently occupy available for quick reuse. When control returns from the
method call, the Java Virtual Machine has made a best effort to reclaim
space from all discarded objects.

In other words, the gc method does not guarantee anything! The method might be
useful if you are familiar with the intricate details of your JVM and how it implements
this method. But the end result is that as a Java programmer you cannot free memory
specifically in your code. You can only ensure that your objects are eligible for garbage
collection, and then assume the garbage collector will do its job!

Let’s look at another example typical of a question found on the exam. Examine
the following code and determine when the String objects become eligible for garbage
collection and when they actually get garbage collected:

1. public class GCDemo2 {

2 public static void main(String [] args) {
3 String one = "Hello";

4 String two = one;

5. String three = "Goodbye";
6

7 three = null;

8 System.gc();

9. one = null;

10. System.gc();

11. two = null;

12. }
13.)

Garbage Collection 33

The "Goodbye" object is created on line 5 and assigned to the reference three. Then
three is set to nu11 and the gc method is invoked. After line 7 the "Goodbye" object is
definitely eligible for garbage collection, but if the exam question asks you when the object
is garbage collected, the answer can only be “unknown.” The call to gc on line 8 might
have caused "Goodbye" to get garbage collected, but that is not guaranteed at all.

Line 9 does not cause "Hello" to become eligible because the reference two points to
"Hello" also. Only after line 11 does "Hello" become eligible for garbage collection, and
as already discussed we cannot know when the objects are actually garbage collected.

The finalize Method

According to the exam objectives, you need to be able to “recognize the behaviors of
the Object.finalize() method.” The garbage collector invokes the finalize method
of an object right before the object is actually garbage collected. The finalize method
is declared in Object, and any subclass can override finalize to perform any necessary
cleanup or dispose of system resources. The finalize method is only invoked on an object
once by the garbage collector.

There won’t be any trick questions about finalize. Just remember it gets invoked once
and only when the object is in the process of being removed from memory. Be sure not
to do anything in the finalize method that might somehow cause the object’s reference
to come back into scope. It is also a good idea to call super.finalize because you are
overriding the behavior of finalize in the parent classes.

Calling super.finalize

If you do call super.finalize, which is recommended, you need to declare the
java.lang.Throwable exception thrown by the parent class’s finalize method:

public class A extends Object {
public void finalize() throws Throwable {
System.out.printin("Finalizing A");

Let’s look at an example. It is difficult to simulate garbage collection because you have little
control over the garbage collector, but I came up with an example that demonstrates when
the finalize method is called and also provides an extra level of complexity in

34 Chapter 1 = Fundamentals

determining when an object is eligible for garbage collection. Consider the following class
named Dog that contains a finalize method that prints out a simple message:

1. public class Dog {

2 private String name;

3 private int age;

4

5. public Dog(String name, int age) {
6 this.name = name;

7 this.age = age;

8 }

9.

10. public void finalize() {

11. System.out.printin(name + " 1is being garbage collected");
12. }

13.)

The following program instantiates two Dog objects and stores them in a java.util
.Vector. Examine this program and see if you can determine when the two Dog objects
become eligible for garbage collection:

1. dimport java.util.Vector;

2 pubTlic class GCDemo3 {

3 public static void main(String [] args) {

4 Vector<Dog> vector = new Vector<Dog>();
5. Dog one = new Dog("Snoopy", 10);

6 Dog two = new Dog("Lassie", 12);

7
8
9

vector.add(one);
. vector.add(two);
10.

11. one = null;

12. System.out.printin("Calling gc once...");
13. System.gc();

14.

15. vector = null;

16. System.out.printin("Calling gc twice...");
17. System.gc();

18.

19. two = null;

20. System.out.println("Calling gc again...");

Garbage Collection 35

21. System.gc();

22. System.out.printin("End of main...");
23.

24. }

25. }

The calls to gc are an attempt to force garbage collection so we can see when finalize
is invoked on the Dog objects. The first step is determining when the objects are eligible for
garbage collection. Adding the two Dog objects to the Vector creates additional references
to the objects. On line 11 the reference one is set to nu11, but Snoopy is not eligible yet for
garbage collection because of line 8. The Vector still has a reference to the Snoopy object,
as shown in Figure 1.10.

FIGURE 1.10 The Vector still has a reference to the Snoopy object.

one > null
o Snoopy ~
10
vector
0
1
. Vector<Dog> object
“Lassie”
12

However, when you set vector to null on line 15, it causes the Snoopy object to
immediately become eligible for garbage collection. The Lassie object still has the
reference two pointing to it, so it does not become eligible until after line 19. Here is a
sample output of the GCDemo3 program. (I use the term “sample output” because the output
can change each time the program is executed depending on when the garbage collector
actually invokes the finalize method.)

Calling gc once...

Calling gc twice...

Snoopy 1is being garbage collected
Calling gc again...

Lassie is being garbage collected
End of main...

36 Chapter 1 = Fundamentals

No objects are freed after the first call to gc because no objects are eligible at that time.
After the second call to gc, the Snoopy object is eligible, but the call to finalize happens in
the thread of the garbage collector, so the output of Snoopy’s finalize method may or may
not appear before the third call to gc. The exact output of running the GCDemo3 program is
indeterminate. The previous output is just one possible result.

The finalize Method Is Only Invoked Once

Expect at least one question on the exam about the finalize method. Keep in mind
that it can only be called once on an object, and it only gets called by the garbage
collector after an object is eligible for garbage collection but before the object is
actually garbage collected.

This ends our discussion on garbage collection, an important topic not just for the SCJP
exam but in our everyday programming of Java. Now we discuss another important topic
in Java: the concept of call by value.

Call by Value

The exam objectives state that you need to know “the effect upon object references and
primitive values when they are passed into methods that perform assignments or other
modifying operations on the parameters.” A variable that is passed into a method is called
an argument. Java simplifies the concept of passing arguments into methods by providing
only one way to pass arguments: by value. Passing arguments by value means that a copy
of the argument is passed to the method. Method return values are also returned by value,
meaning a copy of the variable is returned. The SCJP exam requires an understanding of
what call by value means, and we will discuss the details now.

An argument is passed into a corresponding method parameter. A parameter is the
name of the variable in the method signature that gets assigned the value of the argument.
Let’s look at an example. Suppose we have the following method definition:

21. public Tong cubic(int y) {

22. Tong TongValue = (long) y;
23. y = -1;
24. return longValue * longValue * TongValue;

25.)

Call by Value 37

To invoke this method, you must pass in an int argument. For example, the following
code invokes the cubic method:

31. int x = 11;
32. long result = cubic(x);

The value of x is copied into the parameter y. We now have two ints in memory that
have the value 11: x and y. Changing y to -1 in cubic has no effect on x. In fact, it is
impossible to change x within the cubic function.

Passing Primitives vs. Passing References

Sun seems to enjoy questions on the exam regarding call by value and methods that
attempt to change the value of the argument. If the argument passed into a method
parameter is a primitive type, it is impossible in Java for the method to alter the value of
the original primitive.

If the argument passed into a method parameter is a reference type, the same rule
applies: it is impossible for a method to alter the original reference. However, because the
method now has a reference to the same object that the argument points to, the method
can change the object. This is an important difference to understand. Study the upcom-
ing StackDemo program for an example of this situation.

The following example of call by value uses references. Suppose we have the following
method signature:

5. public int findByName(String TastName, String firstName) {
6 TastName = "Doe";

7. firstName = "Jane";

8 return -1;

9. }

This method has two parameters, TastName and firstName. To invoke this method, two
String objects must be passed in as arguments. For example, the following code invokes
the findByName method. What is the output of this code?

14. String first = "Albert";

15. String last = "Einstein';

16. 1int result = findByName(last, first);
17. System.out.printin(first + " " + last);

38 Chapter 1 = Fundamentals

The argument Tast is copied into the parameter TastName. The argument first is
copied into the parameter firstName. What gets copied? Well, because 1ast and first are
references, they contain memory addresses, and that is what gets copied. The result is that
TastName points to the same String object as Tast, which in this example is "Einstein".
Similarly, firstName points to "Albert", as shown in Figure 1.11. The objects did not get
copied! There is still only one String object with the value "Einstein" in memory and only
one String object with the value "Albert" in memory.

FIGURE 1.11 The arguments from main are copied into the parameters of findByName.

/
> |

first | “Albert” firstName

| —> “Einstein”
last] T~

| lastName
\

\

The memory of the Heap The memory of the
call stack for main call stack for findByName

Because String objects are immutable, the parameters TastName and i rstName cannot
change the objects "Albert" or "Einstein". Setting the parameters equals to "Jane" and "Doe"
has no effect on first and 1ast, as Figure 1.12 shows. Therefore, the output of that code is

Albert Einstein

FIGURE 1.12 Stringobjects are immutable, so findByName cannot change
first and last.

first ——> “Albert” firstName

| __——> “Einstein”
last L / lastName |

“Jane” / /

“Doe” < |

The memory of the Heap The memory of the
call stack for main call stack for findByName

Call by Value 39

The only reason firstName and TastName could not change the objects is because the
example uses String types and String objects are immutable. Let’s look at an example
where the arguments passed in refer to objects that can be altered by the method. Examine
the following program and try to determine its output. If you are not familiar with the
java.util.Stack class, the push method adds an element to the top of the stack and the
pop method removes the top element from the stack.

1. import java.util.Stack;

2

3. public class StackDemo {

4.

5. public static void modifyStacks(Stack<String> one,
6 Stack<Integer> two) ({
7 two.push(50);

8 one.pop();

9. one = new Stack<String>();

10. }

11.

12. public static void main(String [] args) {
13. Stack<String> names = new Stack<String>();
14. names.push("Kim");

15. names.push("Edward");

16. names.push("Jane");

17.

18. Stack<Integer> grades = new Stack<Integer>();
19. grades.push(95);

20. grades.push(87);

21.

22. modifyStacks(names, grades);

23.

24. for(String name : names) {

25. System.out.printTin(name);

26. }

27.

28. for(int grade : grades) {

29. System.out.printin(grade);

30. }

31. }

32. }

Within main, two Stack objects are instantiated. The reference names refers to a Stack
that contains String objects, and the reference grades refers to a Stack containing Integer

40 Chapter 1 = Fundamentals

objects. Three strings are pushed onto the names stack, and two ints are pushed onto
grades. Then names and grades are passed into modifyStacks. The parameter one points
to the stack of Strings and two points to the stack of grades, as Figure 1.13 shows.

FIGURE 1.13 The references from main are copied into the parameters of

modifyStacks.
“Jane” //I
names S Edward” | one |
“Kim”
grades two
//
87 . ——
95
The memory of the Heap The memory of the
call stack for main call stack for modifyStacks

Pushing 50 onto two is the same as pushing it onto grades because the two references
point to the same stack. Similarly, popping a value off one removes "Jane" from the names
stack.

Note that setting one equal to a new Stack does not affect the Stack that names points
to. We cannot modify the reference names within modi fyStacks. Figure 1.14 shows the
references and objects just before the modifyStacks method returns.

FIGURE 1.14 Assigning the one reference to a new Stack does not affect the names

stack.
names S Edward” one
“Kim”
grades 4,/ two
~
~_ |
\ 50 /,//’J
87 //
95
The memory of the Heap The memory of the

call stack for main call stack for modifyStacks

Call by Value n

When modifyStacks returns, names still points to the Stack containing "Kim" and
"Edward", and grades now points to a Stack containing 95, 87, and 50. The output of
StackDemo is

Kim
Edward
95

87

50

Changing the reference one does not change the reference names. Although it is
impossible for the modifyStacks method to alter the names reference, it was quite easy for
the method to modify the object that names points to.

The concept of call by value also applies to values returned by a method, as we will see
in the next section. As discussed earlier in this chapter, you need to be able to view code
and determine when an object becomes eligible for garbage collection. When does the
object on line 9 of StackDemo become eligible for garbage collection? Because the variable
one is a parameter, it goes out of scope when the modi fyStacks method returns on line 10.
Because one is the only reference pointing to the Stack object from line 9, the object is
eligible for garbage collection after line 10.

Passing References vs. Passing Objects

You need to be able to distinguish the difference between a reference and an object.
When passing arguments to a method, it is the reference that gets passed, not the object.
It is impossible to pass an object to a method. In fact, the largest amount of data that can
be copied into a parameter (or returned from a method) is a Tong or a double, both of
which are 64 bits.

Return values are also passed by value, meaning a copy of the data is sent to the calling
method. A method can return void, one of the eight primitive types, or a reference: there
are no other possibilities. (Of course, the reference can be of any class or interface type,
so the possible values you can return are actually endless, as long as you realize that a
reference is getting returned, never an actual object!)

Let’s look at an example using primitive types. Suppose we have the following method
definition:

31. public int max(int a, int b) {

32. int response;
33. if(a < b) {
34. response = b;

35. } else {

42 Chapter 1 = Fundamentals

36. response = a;
37. }

38. return response;
39. }

The max method returns a local variable named response. A copy of response is
returned to the calling method. Consider the following invocation of max:

45. public void go() {

46. int x = 20, y = 30;

47. int biggest = max(20, 30);
48. System.out.printin(biggest);
49. }

In this case, the parameter a is 20 and b is 30, resulting in a response of 30. A copy of
30 is passed back to the go method and stored in biggest. Because max is done executing,
its call-stack memory is freed and a, b, and response all get destroyed. It doesn’t make
sense to try to modify response in the go method because response no longer exists in
memory.

The Call Stack

Every method that gets invoked in a Java thread is pushed onto the thread’s method

call stack. The method at the top of the call stack is the currently executing method. Each
method on the call stack gets its own small amount of memory. When a method finishes
executing (by running to completion, returning a value, or throwing an exception), the
method gets popped off the call stack and its memory is freed. Any parameters and local
variables are destroyed and no longer exist in the program’s memory.

The next example shows a method that returns a reference to an object. Examine the
code and see if you can determine when the File object instantiated on line 6 is eligible for
garbage collection:

import java.io.File;
pubTlic class ReturnDemo {

public File getFile(String fileName) {
File f = new File(fileName);

1
2
3
4.
5
6
7 return f;

Java Operators 43

10. public static void main(String [] args) {

11. ReturnDemo demo = new ReturnDemo();

12. File file = demo.getFile(args[0]);

13.

14. if(file.exists()) {

15. System.out.printin(file.getName() + " file exists");
16. } else {

17. System.out.printin(file.getName() + " doesn't exist");
18. }

19.

20. file = null;

21. }

22. 1}

The getFile method returns the reference f, which points to a new File object. Keep
in mind that this File object is on the heap, not in the method’s call stack memory, so the
File object is not destroyed when getFile returns. The local variable file in main gets a
copy of f when getFile returns. The File object from line 6 does not become eligible for
garbage collection until after line 20.

The ReturnDemo program demonstrates a method that instantiates an object and returns
a reference to that object. This is a common occurrence in Java. Just remember that the
object is on the heap (all objects are instantiated on the heap!) and a copy of the reference
is returned to the calling method. As with method arguments, the largest piece of data that
can be returned from any Java method is 64 bits (a Tong or double). The fact that Java only
allows call by value is an attempt to simplify the language. There is never any confusion
with arguments and parameters: the parameter is always a copy of the argument.

Now that we have discussed the details of call by value, we turn our attention to another
objective in the “Fundamentals” section: the Java operators.

Java Operators

You need to be able to “write code that correctly applies the appropriate operators.” This
section discusses the Java operators that appear on the exam. Table 1.2 lists all of the 41
operators in Java 6.0, listed in their order of precedence. Order of operations in Java is well
defined, and the operators are guaranteed to be evaluated in the order shown. If operators
have the same level of precedence, Java guarantees evaluation in left-to-right order.

44 Chapter 1 = Fundamentals

TABLE 1.2 The Java Operators

Operator

Symbol and Precedence

Post-increment/post-decrement
Pre-increment/pre-decrement
Unary operators
Multiplication/division/modulus
Addition/subtraction

Shift operators

Relational operators

Equal to/not equal to

Bitwise AND, exclusive OR, inclusive OR

Logical AND, OR
Ternary operator

Assignment operators

expression++, expression--

++expression, --expression

+ =~

7‘:, /’ %

+, -

<L, D>, >>>

<, >, <=, >=, instanceof

.
&~

&, ||

= 4= -= ¥= /= %= &= A= |= <<= D>= >>>=

The SCJP exam objectives specifically mention the following operators:

» Assignment operators: =, += and -=

* Arithmetic operators: +, -, *, /, %, ++, and --

» Relational operators: <, <=, >, >= == and !=

= The instanceof operator

» Bitwise and logical operators: &, |, *, !, &, and | |

* The conditional operator (?:)

The upcoming sections discuss each of these categories of operators and the details that
you need to know about the operators for the SCJP exam.

The Assignment Operators

Java has 12 assignment operators: the simple assignment = and 11 compound assignment
operators: +=, -=, *=_and so on. An assignment stores the result of the right-hand side of

Java Operators 45

the expression into the variable on the left-hand side. Here is an example using a simple
assignment:

4. byte b = 120;
5. int x = b;

The byte b is assigned the literal value 120, and the int x is assigned the value of b,
which is also 120. An assignment will not compile if the right-hand operand cannot be
converted to the data type of the left-hand variable. For example, the following line of code
does not compile:

7. int y = 12.5; //does not compile

The literal 12.5 is a double, and a double cannot implicitly be converted to an int without
loss of data. For this code to compile, you would need to cast the right-side to an int:

8. int y = (int) 12.5; //compiles fine

The value of y is 12 after this line of code executes. The decimal value is simply
truncated.

The compound assignment operators perform the given operator first between the left
and right sides of the operand, and then the result is stored in the left-hand variable. What
is the value of z after this line of code?

10. int x = 5;
11. int z = 10;
12. z *= x;

The compound assignment operator is multiplication, so z is multiplied by x, which
evaluates to 50, and then z is assigned 50. The same result could have been evaluated using
a simple assignment:

13. z = z * x;

However, sometimes the compound operator can save us from needing to cast a value
before the assignment. For example, the following statements generate a compiler error. Do
you see why?

15. Tong m = 1000;
16. int n = 5;
17. n=n * m; //compiler error here

Yo

The expression n * mis an int times a Tong. Before the multiplication can be evaluated,
the int is promoted to a Tong. The result is therefore a Tong, so we need a cast to make the
compiler happy:

18. n = (int) (n * m);

46 Chapter 1 = Fundamentals

The result is n equal to 5000. However, using the compound operator avoids the cast.
The following statements compile successfully and assign n to 5000:

19. Tong m = 1000;
20. int n = 5;
21. n *= m;

In this case, the value of mis implicitly cast to an int before the multiplication occurs.
An int times an int results in an int, so no cast is needed.

The Assignment Operators

According to the SCJP exam objectives, knowledge of the assignment operators is
limited to =, += and —=. Of course, if you understand how += and —= work, you understand
how the other compound assignment operators work!

The Arithmetic Operators

The exam objectives specifically mention having working knowledge of the following
arithmetic operators:

» + —:addition and subtraction

» * /:multiplication and division

* %:modulus

» ++ —:increment and decrement

We will now discuss each of these operators in detail.

The Additive Operators

The operators + and — are referred to as additive operators. They can be evaluated on any
of the primitive types except boolean. Additionally, the + operator can be applied to String
objects, which results in string concatenation.

If the operands are of different types, the smaller operand is promoted to the larger. At a
minimum, the operands are promoted to ints. For example, the following innocent-looking
code does not compile. Can you see why?

short s1 = 10, s2 = 12;
short sum = sl + s2; //does not compile!

Because a short is smaller than an int, both s1 and s2 are promoted to ints before the
addition. The result of s1 + s2 is an int, so you can only store the result in a short if you

Java Operators 47

use the cast operator. The compiler complains about a possible loss of precision, but casting
fixes the problem:

short s1 = 10, s2 = 12;
short sum = (short) (sl + s2);

The value of sumis 22 after this code executes.

A Note about Casting

| want to take a moment to point out something subtle but important about the cast oper-
ator. The sole purpose of casting primitive types is to make the compiler happy. When
you assign a larger data type to a smaller one, the compiler complains about a possible
loss of precision.

However, if you are aware and comfortable with the possible loss of precision at runtime,
then you simply cast the result, which tells the compiler you know what you are doing. At
runtime, the data may very well be invalid. For example, the following code compiles and
runs, but you might be surprised by the output:

byte bl = 60, b2 = 60;
byte product = (byte) (bl * b2);
System.out.printin(product);

This code outputs the number 16, clearly not the result of 60 times 60. The mistake lies in
the limitations of a byte, which can only store values up to 127. Because 60 * 60 = 3600,
the value of 16 is the lower 8 bits of the binary representation of 3600. The significant bits
were lost in the runtime assignment of 3600 to the byte product.

We will revisit this discussion of casting again when we talk about inheritance and cast-
ing references in Chapter 6, “O0 Concepts,” because casting reference types is a differ-
ent story altogether!

The JVM ensures order of operations is evaluated left-to-right when operators share the
same precedence. For example, what is the value of x after this line of code executes?

String x = 12 - 6 + "Hello" + 7 + 5;

Following the order from left to right, 12 — 6 is evaluated first and results in 6. The
next + operator is not addition but string concatenation, so the 6 is promoted to a String
and the result is "6He110". Following left to right, the next + is also string concatenation,
resulting in "6He1107", and finally the value of x after the last string concatenation is
"6He11075".

48 Chapter 1 = Fundamentals

The Multiplicative Operators

The operators *, /, and % are referred to as the multiplicative operators. They have a higher
precedence of operation than additive operators. The multiplicative operators can only be
performed on the numeric primitive types; otherwise, a compiler error occurs.

As with + and -, the multiplicative operators promote both operands to the data type of
the larger operand. If both operands are smaller than an int, both operands are converted
to ints before the multiplication occurs. For example, what is the result of the following
statements?

4. int a = 26, b = 5;
5. double d = a / b;

The expression a / b is integer division, which results in the int 5. Therefore, the value
of d is 5.0. The fact that we store the result in a doubTe does not affect the arithmetic
because the assignment takes place after the arithmetic is already performed.

If one of the operands is a float or double, the expression is evaluated using floating-
point arithmetic and the result will be a float or doubTle depending on the operand types.
For example, what is the result of the following statements?

8. int a = 26;
9. float f = a / 5.0F;
Because 5.0 is a float (by virtue of the "F" appended to it), the int a is promoted to

a float and floating-point division is performed. The value of f is 5.2 after this code
executes.

The MODULUS Operator

The modulus operator, also known as the remainder operator, evaluates the remainder
of two numbers when they are divided. For example, what is the result of the following
expression?

int x = 12 % 5;

The remainder of 12 divided by 5 is 2, so x is 2.
If the first operand is negative, so is the result of the modulus. The value of y after the
following statement is —1:

inty = -17 % 4;

In Java you can evaluate the remainder of floating-point numbers as well. While not
as intuitive as integer modulus, there is still a remainder in floating-point division. For
example, what is the output of the following code?

System.out.printin(12.4 % 3.2);

Java Operators 49

The answer is 2.8. A calculator won’t help you on this one. You need to perform the
division longhand to see where the remainder of 2.8 comes from.

The multiplication operators are evaluated left-to-right if the expression does not
contain parentheses. What is the value of result after this statement?

int result =12 +2 * 5% 3 - 15 / 4;

The expression evaluates to an int because all the literal values are ints. Here is how
the expression is evaluated one level of precedence at a time. The parentheses are added for
clarification.

12+ @2 *5)%3-(15/4
12 + (10 % 3) - 3
(12 + 1) - 3
13 -3
10

Therefore the value of result is 10 after the statement executes.

The Increment and Decrement Operators

The operators ++ and — — are referred to as the increment and decrement operators because
they increment and decrement (respectively) a numeric type by 1. The operators can be
applied to an expression either prefix or postfix. These operators have the highest level of
precedence of all the Java operators. They can only be applied to numeric operands, and
the result is the same data type as the operand.

For example, the following statements create an int and increment it using ++. What is
the output of this code?

3. int x = 6;
4. System.out.printin(x++);
5. System.out.printin(x);

Adding or subtracting 1 seems simple enough, but these operators can be confusing
because of when they are evaluated! The output of the previous statements is

When the operator appears after the operand, the increment or decrement does not
occur until after the operand is used in the current expression. On line 3, x is printed out as
6, then incremented to 7, which is demonstrated by the output of line 5.

When the increment operator appears before the operand, the operand is incremented
first, and then the result is used in the current expression. The same is true for the
decrement operator.

50 Chapter 1 = Fundamentals

Examine the following code and try to determine its output:

10. char c = 'A';

11. for(int i = 1; i <= 10; i++) {
12. System.out.print(c++ + " ");
13. }

14. System.out.print(c);

The first value printed is 'A', then c is incremented, which results in 'B' printed on the
second iteration of the loop. In total, 11 chars are printed and the output is

ABCDEFGHTIIJK

The following code demonstrates use of the decrement operator. Examine the code and
try to determine its output:

16. int y = 5;

17. int result = y-- * 3 / --y;

18. System.out.printin('y = " + y);

19. System.out.printin("result = " + result);

I have to admit this is a tricky question! (I hope you never see code like this in the real
world.) Notice y is decremented twice, so the output of y is 3. The value of result is not
as obvious. Order of operations dictates that the multiplication is evaluated first. The value
of yis 5,50 5 * 3 is 15. The multiplication is done, so the post-decrement occurs and y
becomes 4. Now the division is evaluated and y is pre-decremented to 3 before the division,
resulting in 15 / 3, which is 5. The output of this code is

y =3
result =5

Make Sure You Understand the Increment and Decrement Operators

The exam has plenty of questions that use the prefix and postfix increment and decre-
ment operators. In many situations, the exam question is testing a different Java concept,
not the incrementing or decrementing of variables. Make sure you have a good under-
standing of these fundamental (and sometimes tricky) operators.

The Relational Operators

The following operators are referred to as the relational operators:
= <:less than

= <=:less than or equal

Java Operators 51

= >:greater than
= >=:greater than or equal

The relational operators can only be performed on numeric primitive types, and the
result of each relational operator is always a boolean. If the operands are not the same
primitive type, the smaller operand is promoted to the larger operand’s type before the
comparison is made.

To demonstrate the relational operators, let’s take a look at some examples. What is the
result of the following statements?

int x = 10, y = 20, z = 10;
System.out.printin(x < y);
System.out.printin(x <= vy);
System.out.println(x > z);
System.out.println(x >= z);

© 0 N o wuvn

Because x and z are the same value, x > z is false. The other statements evaluate to
true. Therefore, the output of this code is

true
true
false
true

The boolean Primitive Type

The result of a relational operator is a boolean, which can only be the values true or
false. The following line of code does not compile:

int result = x < y;

The booTlean primitive type in Java is not compatible with the int type. In other
languages like C and C++, numeric types are often used for Boolean expressions, where
0 is false and non-zero is true. In Java, a boolean can never be treated as a numeric type,
nor can a numeric type ever be treated as a true or false value.

The instanceof Operator

The instanceof operator compares a reference to a class or interface data type. The result
is true if the reference is an instance of the data type; otherwise, the result is false. The
syntax for the instanceof operator looks like this:

reference instanceof ClassOrInterfaceName

52 Chapter 1 = Fundamentals

Let’s take a look at an example. See if you can determine the output of the following
statements:

3. String s = "Hello, World";

4. if(s instanceof String) {

5. System.out.print("one");

6. }

7. if(s instanceof Object) {

8. System.out.print("two");

9. }

10. if(s instanceof java.io.Serializable) {
11. System.out.print("three");

12. }

The reference s points to a String object, so line 4 is true and "one" is printed on line 5.
Every object in Java is of type Object, so line 7 is true for any reference; therefore, "two"
is printed. The String class implements the Serializable interface, which makes String
objects Serializable objects as well. Therefore, line 10 is also true and the output of the
previous code is

onetwothree

One of the main usages of the instanceof operator is when you cast a reference to a
subclass type. If you cast a reference to an invalid data type, a ClassCastException is
thrown by the JVM. For example, the following statements compile, but at runtime an
exception is thrown:

Object x = new String("a String object");
Date d = (Date) x;

The output of this code is

Exception in thread "main" java.lang.ClassCastException:
java.lang.String cannot be cast to java.util.Date

Using the instanceof operator, you can avoid this situation:

17. Object x = new String("a String object");
18. if(x instanceof Date) ({

19. Date d = (Date) x;

20. }

Because x points to a String object and not a Date object, line 18 is false and the
invalid cast does not occur, avoiding the uncaught ClassCastException. We will see the
instanceof operator again in Chapter 6.

Java Operators 53

The Bitwise and Logical Operators

The following operators are referred to as the bitwise and logical operators:
» &:the AND operator

= ~:the exclusive OR operator

= | : the inclusive OR operator

» &&: the conditional AND operator

= || : the conditional OR operator

The & *, and | operate on expressions where both operands are either primitive numeric
types or both are boolean expressions. When operating on numeric types, they are bitwise
operators. When operating on boolean types, they are logical operators. The & and | | operators
require both operands to be boolean expressions, so they are strictly logical operators.

The term bitwise refers to the & *, and | operators performing a bitwise AND or OR
of the two operands. Table 1.3 shows the result of the possible outcomes for each of these
three operators.

TABLE 1.3 The Bitwise Operators

& (AND) A (exclusive OR) | (inclusive OR)
0&0is0 0"~ 0isO 0] 0isO
0&1is0 0~ 1isl 0] 1isl
1&0is0 17 0isl 1] 0is1
1&1lisl 1~ 1is0 1] lis1

Notice the & operator results in 1 only when both operands are 1, while the | operator
results in 0 only when both operators are 0. The exclusive OR ~ is 1 when the two operands
are different; otherwise it is 0.

The bitwise operators are evaluated on integer types. To compute the result, you need
to know the binary representation of the values. For example, what is the result of the
following expression?

int result = 12 ~ 45;

Begin by converting the 12 and 45 to binary numbers and align them vertically. Then
perform the exclusive OR on each column, as Figure 1.15 shows.

54 Chapter 1 = Fundamentals

FIGURE 1.15 Computing the exclusive or expression12745

12 = 0000 1100
45 = 00101101
127445 = 0010 0001

The result is 00100001 in binary, which is 33 in decimal. Therefore, the value of result
is 33.

The &, ~, and | are also logical operators, meaning they can operate on boolean types.
The result of each operator is identical to Table 1.2 if you were to replace each 0 with false
and each 1 with true. For example, the AND operator & is only true when both operands
are true. The inclusive OR operator | is only false when both operands are false. The
exclusive OR is only true when the two operands are different.

What is the output of the following logical statements?

inta=5, b=10, c = 0;

boolean one = a < b & c != 0;
System.out.println(one);

boolean two = true | true & false;
System.out.printin(two);

boolean three = (c !=0) & (a / c > 1);
System.out.printin(three);

O 00 N O U1 » W

The variable one on line 4 is the result of true & false, which is false. The result of
two on line 6 might surprise you. The & operator has a higher precedence than |, so the
true & false is evaluated first, which results in false. Then true | false is evaluated,
which is true, so two evaluates to true.

You might think that the Boolean on line 8 evaluates to false, but that line of code
actually throws an ArithmeticException when attempting to compute a / c. The value
of c is 0 and integer division by 0 is undefined in Java. Therefore, the last print1n never
executes.

The example of a / c is a typical situation where a conditional operator comes in
handy. The conditional operators & and | | short-circuit, meaning the right operand may
not get evaluated if the left hand operand can determine the result.

For example, when using &&, if the left operand is false, there is no need to check the
right operand. False AND anything is false. In this case, the right-hand expression is not
evaluated. Similarly, when using | |, if the left operand is true, there is no need to check the
right operand because true OR anything is true.

The following statements are a modification of the previous example, except this
time the logical expression short-circuits. What is the value of three after the following
statements?

21. int a =5, b =10, c = 0;
22. boolean three = (c !=0) & (a / c > 1);

Java Operators 55

Because c is 0, the expression ¢ != 0 is false and evaluation stops. The variable three
is false and this code does not throw an exception at runtime.

Short-Circuit Behavior

Watch for the short-circuit behavior on the exam. The exam question might alter a vari-
able in the right operand. For example, what is the output of the following code?

int x = 6;
boolean answer = (x >= 6) || (++x <= 7);

System.out.printin(x);

Because x >= 6 is true, the incrementing of x does not occur in the right operand, so the
output of this code is 6.

The Conditional Operator

Java contains a conditional operator ? :, often referred to as the ternary operator because
it is the only operator in Java that has three operands. The syntax for the conditional
operator is

boolean_expression ? true_expression : false_expression

The first operand must be a boolean expression. If this boolean expression is true, then
the second operand is chosen; otherwise, the third operand is chosen. The second and third
operands can be any expressions that evaluate to a value, or any method calls that return a
value.

The conditional operator is a condensed version of an if/else statement that can be handy
in a lot of different situations, especially when outputting or displaying data. For example,
what is the output of the following statements?

int x = 6;
System.out.printin(x =0 ? 10/x : 0);

Because x is not 0, the output is the result of 10 / 6, which is 1.
Let’s look at another example. What is the output of the following statements?

double d = 0.36;
System.out.printin(d > 0 & d <1 ? d *= 100 : "not a percent");

Because d is between 0 and 1, the output is 36.0. There is no requirement that the
second and third operands be the same data types (or even compatible types).

56 Chapter 1 = Fundamentals

The Equality Operators

The == (equal to) and != (not equal to) operators are referred to as the equality operators.
The equality operators can be used in the following three situations, all of which return a
boolean:

* The two operands are numerical primitive types.
* The two operands are boolean types.
* The two operands are references types or null types.

This implies that you cannot compare a byte to a booTlean, or an int to a reference type.
The two operands must be compatible. If one operand is a larger type, then the smaller
type is promoted before the comparison. For example, you can compare an int to a float;
the int is promoted to a float and a floating-point comparison is made. You can compare
a char to an int: the char is promoted to an int and integer equality is performed.

Let’s look at some uses of the equality operators. Examine the following code and try to
determine its output:

6 int x = 57;

7. float f = 57.0F;
8. double d = 5.70;
9. boolean b = false;
10.
11. boolean one = x == 57;

12. System.out.println(one);
13. boolean two = (f != d);

14. System.out.printin(two);
15. boolean three = (b = true);
16. System.out.printin(three);

Lines 12 and 14 both print out true. The order of operations on line 11 ensures that x
is compared to 57 before the assignment to one, even though parentheses would have made
that statement easier to read (as in line 13). If you glanced over this code too quickly, you
may think that line 16 prints out false, but the actual output is true. On line 15,
(b = true) is an assignment, not a test for equality. Following the order of parentheses, b
is set to true first, then three = b is evaluated, which sets three equal to true. The output
of these statements is

true
true
true

The equality operators can also be evaluated on reference types. It is important to
understand that evaluating == and != on two references compares the references, not the
objects they point to. Two references are equal if and only if they point to the same object
(or both point to nu11); otherwise, the two references are not equal.

Java Operators 57

The following ReferenceDemo program demonstrates comparing references. Examine the

code and try to determine its output.

© 00 N O U1 A W KN R

W N NNNNNRNNRNNRRRRRPBRRPR R 9
O W O N O VT A WINEFEF O WOWOLWNOVIEAE WN R

import java.io.File;

import java.util.Date;

public class ReferenceDemo {

}

public static void main(String [] args) {

File f1 = new File("mydata.txt");
File f2 = new File("mydata.txt");
if(fl 1= f2) {

System.out.printin("fl != f210.

Date today = new Date();

Date now = today;

if(today == now) {
System.out.printin("today == now");

String s1 = "Hello";

String s2 = "Hello";

if(sl == s2) {
System.out.printin("sl == s2");

String x1 = new String("Goodbye");

String x2 = new String("Goodbye");

if(x1l == x2) {
System.out.printIin("xl == x2");

Let’s study this program. The references f1 and 2 point to two different File objects,

so the two references cannot be equal. It is irrelevant that the two File objects look the
same in memory; they are clearly two different objects so their references are not equal. On
the other hand, there is only one Date object in memory and today and now both point to
it, so today == now is true.

Comparing String references in Java tends to be confusing because of how the JVM

treats string literals. Because String objects are immutable, the JVM can reuse string
literals for efficiency and to save memory. Because "He11o0" is a String literal known at
compile time, the JVM only creates one "Hello" object in memory, and s1 and s2 both

58 Chapter 1 = Fundamentals

refer to it. Therefore, s1 == s2 evaluates to true. On the other hand, x1 and x2 are not
literals but actual String objects created dynamically at runtime, making them distinct
objects. Therefore, x1 and x2 point to different objects and cannot be equal. The output of
the ReferenceDemo program is

fl 1= f2
today == now
sl == s2

The important point to take from this discussion is that evaluating == and != on reference
types only compares whether or not the two references point to the same object. If you want to
compare the actual contents of two objects, the equals method is used, which we discuss next.

Equality of Objects

The exam objectives address the ability to “determine the equality of two objects or two
primitives.” As we saw in the previous section, you use the == operator to determine if

two primitives are equal. We also saw that two references are equal if and only if they
point to the same object. But what does it mean for two objects to be equal? (Don’t forget:
references and objects are different entities!) As a Java programmer, you get to decide what
it means for two objects to be equal. The java.lang.0Object class contains an equals
method with the following signature:

public boolean equals (Object obj)

The default implementation in Object tests for reference equality, which we can already
perform with ==. The general rule of thumb is to override equals in all your classes to
define what it means for two objects of your class type to be equal. Equality should be
based on the business logic of your application.

The equals Method

Because the equals method is defined in Object, you can invoke equals on any object,
passing in any other object. For example, the following statements are valid:

String s = "Hello";
java.util.Date d = new java.util.Date();
boolean b = s.equals(d);

The value of b is false. Logic would tell us that a String object and a Date object should
never be equal, and that is the case. Typically two objects have to be of the same class
type for them to be equal. However, that doesn’t stop you from comparing two objects of
different types, because the equals method can be invoked with any two objects.

© 00 N O U1 A W N R

1
2
3
4.
5.
6
7
8
9

Equality of Objects 59

Let’s look at an example. Suppose we have the following class named Dog:

public class Dog {

}

private String name;
private int age;

public Dog(String name, int age) {
this.name = name;
this.age = age;

What does it mean for two Dog objects to be equal? Suppose in our application two Dog
objects are equal if they have the same name and age. Then Dog can override equals and
implement this business logic:

public class Dog {

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

}

private String name;
private int age;

public Dog(String name, int age) {
this.name = name;
this.age = age;

public boolean equals(Object obj) {
if(!(obj instanceof Dog))
return false;
Dog other = (Dog) obj;
if(this.name.equals(other.name) &&
(this.age == other.age)) {
return true;
} else {
return false;

Within equals, we first test to see if the class type of the other object is Dog. If the other
object is not a Dog object, we can quickly deduce the two objects are not equal. Otherwise,
the incoming reference is cast to a Dog reference and the name and age are checked for
equality. Because the name is a String object, we use the equals method of the String class
to compare the two name objects.

60 Chapter 1 = Fundamentals

The following DogTest program creates three Dog objects and test them for equality.
Examine the code and try to determine its output:

1. public class DogTest {

2 public static void main(String [] args) {
3 Dog one = new Dog("Fido", 3);

4 Dog two = new Dog("Fido", 3);

5. Dog three = new Dog('Lassie", 3);

6

7 if(one.equals(two)) {

8 System.out.printin("Fido");

9. }

10.

11. if(one.equals(three)) {

12. System.out.printin("Lassie");
13. }

14.

15. if(one == two) {

16. System.out.printin("one == two");
17. 1

18. }

19. }

Because the Dog objects referred to by one and two have the same name and age,
one.equals(two) is true and "Fido" is displayed. The "Lassie" object has a different
name, so one.equals(three) is false. The test for one == two is false because one and
two point to different (but equal) objects.

The hashCode Method

The Object class contains a method named hashCode with the following signature:

pubTlic int hashCode()

This method is used by hash table data structures. The hashCode and equals methods
are related in the sense that two objects that are equal should generate the same hash

Exam Essentials 61

code. Therefore, any time you override equals in a class, you should also override
hashCode. In the Dog class, the following hashCode method maintains this required
relationship of equals and hashCode:

public int hashCode() {
return age;

}

If two Dog objects are equal in our example, they have the same age and therefore will
have the same hash code.

Summary

This chapter covered the “Fundamentals” objectives of the SCJP exam. Sun lists these
topics last in their official list of objectives, but we needed to discuss these fundamentals
first before tackling the more advanced topics of the exam.

The goal of this chapter was to discuss the details of running Java applications, including
working with packages and using an appropriate classpath. You should also have a good
understanding of garbage collection and when an object becomes eligible for garbage collection.

We also discussed the details of using the many operators in Java. As the title of the
chapter suggests, these topics are the “fundamentals” of Java that provide the building
blocks for the remainder of this book.

Be sure to test your knowledge of these fundamentals by answering the Review Questions
that follow. I tried to write questions that reflect the style and difficulty level of questions
on the SCJP exam, so attempt to answer the questions seriously without looking back at the
pages of this chapter and do your best. Make sure you have a good understanding of the
following Exam Essentials before attempting the Review Questions, and good luck!

Exam Essentials

Understand the effect of putting a class in a package. In the real world, all classes are
declared within a package. Know how to run a Java class from a command prompt when
the class is in a package, and be sure to recognize what the CLASSPATH environment variable
needs to be.

Get comfortable with looking at code and determining its output. Many of the exam
questions provide either a small program or a snippet of code and ask what the output is.
Practice reading code and determining what it does, including whether or not the given
code compiles successfully.

62 Chapter 1 = Fundamentals

Understand call by value. I can guarantee at least two or three questions on the exam that
have an argument passed into a method and the method alters the parameter. Understand
that a method cannot change the argument. The only effect a method can have on an argu-
ment is when the argument is a reference, in which case the method can alter the object
that the reference points to.

Be able to determine when an object becomes eligible for garbage collection. Knowing
when an object is eligible for garbage collection demonstrates an important understanding
of Java and how it creates and destroys objects. You will see at least one question on the
exam that asks you when an object is eligible for garbage collection, and also at least one
question involving the Object.finalize() method.

Understand the difference between == and the equals method. Use the == comparison
operator to determine if two primitive types are equal and also to determine if two refer-
ences point to the same object. Use the equals method to determine if two objects are
“equal,” which is whatever equality means in the business logic of the class.

Familiarize yourself with the Java operators. The Java operators are a fundamental aspect
of the language, and almost all of the exam questions that contain sample code use one or
more of the Java operators.

Review Questions 63

Review Questions

1. The following code appears in a file named Plant.java. What is the result of compiling
this source file? (Select one answer.)

pubTlic class Plant {

public boolean flowering;
public Leaf [] leaves;

public String color;
public int length;
}

The code compiles successfully and two bytecode files are generated: P1ant.class and
Leaf.class

1
2
3
4
5
6. class Leaf {
7
8
9
A

The code compiles successfully and one bytecode file is generated: P1ant.class.
A compiler error occurs on line 1.

A compiler error occurs on line 3.

moow

A compiler error occurs on line 6.

2. Suppose a class named com.mycompany.Main is a Java application, and Main.class is in
the following directory:

\projects\build\com\mycompany

Which of the following commands successfully executes Main? (Select two answers.)
A. java -classpath=\projects\build com.mycompany.Main

B. java -classpath \projects\build\com\mycompany Main

C. java -classpath \projects\build com.mycompany.Main

D. java -classpath \projects\build\com mycompany.Main

E. java -cp \projects\build com.mycompany.Main

3. Aclass named Test is in the a.b.c package, defined in a file named Test.java and saved
in the following directory:

c:\abcproject\src\Test.java

Assuming the code in Test.java uses only classes from java.lang and contains no com-
piler errors, what is the result of the following command line? (Select one answer).

c:\abcproject\src>javac -d c:\abcproject\deploy Test.java

64

Chapter 1 = Fundamentals

A NoClassDefFoundError occurs.
A ClassNotFoundException occurs.
Test.class is generated in the c:\abcproject\deploy directory.

Test.class is generated in the c:\abcproject\deploy\abc directory.

moow>»

Test.class is generated in the c:\abcproject\deploy\a\b\c directory.

What is the outcome of the following code?

1. public class Employee {

2 pubTlic int employeeld;

3 public String firstName, lastName;

4. public java.util.GregorianCalendar hireDate;
5.

6 public int hashCode() {

7 return employeeld;

8 }

9.

10. public boolean equals(Employee e) {

11. return this.employeeld == e.employeeld;
12. }

13.

14. public static void main(String [] args) {
15. Employee one = new Employee();

16. one.employeeld = 101;

17.

18. Employee two = new Employee();

19. two.employeeld = 101;

20.

21. if(one.equals(two)) {

22. System.out.printin("Success");
23. } else {

24. System.out.printin("Failure");
25. }

26. }

27. }

Success

Failure

A

B

C. Line 6 causes a compiler error.
D. Line 10 causes a compiler error.
E

Line 10 causes a runtime exception to occur.

Review Questions 65

What is the result of compiling the following class?

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.

public class Book {
private int ISBN;
private String title, author;
private int pageCount;

public int hashCode() {
return ISBN;

public boolean equals(Object obj) {
if(!(obj instanceof Book)) ({
return false;

}
Book other = (Book) obj;
return this.ISBN == other.ISBN;

}

The class compiles successfully.
Line 6 causes a compiler error because hashCode does not return a unique value.

Line 10 causes a compiler error because the equals method does not override the par-
ent method correctly.

Line 14 does not compile because the ClassCastException is not handled or declared.

Line 15 does not compile because other.ISBN is a private field.

What is the outcome of the following statements? (Select one answer.)

String s1 = "Canada";

String s2 = new String(sl);

if(sl == s2) {
System.out.println('sl == s2");

}

. if(sl.equals(s2)) {

System.out.printin("sl.equals(s2)");
}
There is no output.
sl == s2
sl.equals(s2)
Both Band C

66

Chapter 1 = Fundamentals

Suppose we have the following class named GC:

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.

import java.util.Date;

pubTlic class GC {
public static void main(String [] args) {

Date one = new Date();
Date two = new Date();
Date three = one;
one = null;
Date four = one;
three = null;
two = null;
two = new Date();

}

Which of the following statements are true? (Select two answers.)

A.

The Date object from line 5 is eligible for garbage collection immediately following
line 8.

The Date object from line § is eligible for garbage collection immediately following
line 10.

The Date object from line § is eligible for garbage collection immediately following
line 13.

The Date object from line 6 is eligible for garbage collection immediately following
line 11.

The Date object from line 6 is eligible for garbage collection immediately following
line 13.

What is the output of the following code?

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.

private class Squares {
public static long square(int x) {
Tong y = x * (long) X;
x = -1;

return y;

public static void main(String [] args) {
int value = 9;
Tong result = square(value);
System.out.printin(value);

10.

Review Questions

A. This code does not compile.
B. 9

c. -1

D. 81

What is the output of the following code?

pubTlic class TestDrive {

public static void go(Car c) {
c.velocity += 10;

public static void main(String [] args) {

1

2

3

4.

5. }
6

7

8 Car porsche = new Car();
9

. go(porsche);
10.
11. Car stolen = porsche;
12. go(stolen);
13.
14. System.out.println(porsche.velocity);
15. }
16. }
17.
18. class Car {
19. public int velocity = 10;
20. }
A. 0
B. 10
C. 20
D. 30
E. This code does not compile.

What is the output of the following code?

1. import java.util.*;

public class DateSwap {

AW N

67

68 Chapter 1 = Fundamentals

5 public static void swap(GregorianCalendar a, GregorianCalendar b)
6 {

7. GregorianCalendar temp = a;

8 a = new GregorianCalendar(2012, 1, 1);

9. b = temp;

10. }

11.

12. public static void main(String [] args) {

13. GregorianCalendar one = new GregorianCalendar(2010, 1, 1);
14. GregorianCalendar two = new GregorianCalendar(2011, 1, 1);
15.

16. swap(one, two);

17.

18. System.out.print(one.get(Calendar.YEAR));

19. System.out.printin(two.get(Calendar.YEAR));

20. }

21. }

A. 20112010

B. 20102011

C. 20122011

D. 20122010

E. 20102012

F. This code does not compile.

11. When does the String object instantiated on line 4 become eligible for garbage collection?

1. public class ReturnDemo {

2

3 public static String getName() {

4 String temp = new String("Jane Doe");
5. return temp;

6 }

7

8 public static void main(String [] args) {
9. String result;

10. result = getName();

11. System.out.printin(result);

12. result = null;

13. System.gc();

14. }

15. }

12.

13.

14.

Mmoo ® >

Review Questions

Immediately after line 4
Immediately after line 5
Immediately after line 10
Immediately after line 12
Immediately after line 13

Immediately after line 14

What is the output of the following code?

4
5
6
A.
B.
C
D
E

. byte a = 40, b = 50;
. byte sum = (byte) a + b;
. System.out.printin(sum);

Line 5 generates a compiler error.
40
50
90

An undefined value

What is the output of the following code?

5.
6
A
B.
Cc
D
E

intx=5%4%3;

. System.out.println(x);

Line 5 generates a compiler error.

2

3
5
6

What is the output of the following code?

3
4
A.
B.
Cc
D
E

. bytey = 14 & 9;
. System.out.printin(y);

Line 3 generates a compiler error.
15
14

69

70 Chapter 1 = Fundamentals

15. What is the output of the following code?

1. public class FinalTest {

2.

3. public static void main(String [] args) {
4. House h = new House();

5. h.address = "123 Main Street";
6. h = null;

7. System.gc();

8. }

9. }

10.

11. class House {

12. public String address;

13.

14. public void finalize() {

15. System.out.printin("Inside House");
16. address = null;

17. }

18. }

A. There is no output.

B. Inside House

C. The output cannot be determined.

D. The code generates a compiler error.

16. Given the following class named House, which of the following statements is true? (Select
two answers.)

public class House {
public String address = new String();

public void finalize() {
System.out.println("Inside House");
address = null;

1
2
3
4
5
6
7
8. }

A. '"Inside House" is displayed just before a House object is garbage collected.
B

Cc

D

E

"Inside House" is displayed twice just before a House object is garbage collected.
The finalize method on line 4 never actually gets called.
There is no need to assign address to nul1 on line 6.

The String object from line 2 is guaranteed to be garbage collected after its corre-
sponding House object is garbage collected.

Review Questions

17. Which of the following statements is true about the following Basebal1Team class?

1. public class BaseballTeam {

2. private String city, mascot;

3. private int numberOfPlayers;

4.

5. public boolean equals(Object obj) {

6. if(!(obj instanceof BaseballTeam)) {

7. return false;

8. }

9. BaseballTeam other = (BaseballTeam) obj;
10. return (city.equals(other.city)

11. && mascot.equals(other.mascot));
12. }

13.

14. public int hashCode() {

15. return numberOfPlayers;

16. }

17. }

A. The class does not compile.
B. The class compiles but contains an improper equals method.
C. The class compiles but contains an improper hashCode method.

D. The class compiles and has proper equals and hashCode methods.

18. What is the output of the following code?

. int x = 0;

. String s = null;

Lif(x == s) {
System.out.println("Success");
} else {
System.out.printin("Failure");

3

4

5

6

7

8

9. }
A. Success

B. Failure

C. Line 4 generates a compiler error.

D. Line 5 generates a compiler error.

19. What is the output of the following code?

3. int x1 = 50, x2 = 75;
4. boolean b = x1 >= x2;
5. if(b = true) {

n

12 Chapter 1 = Fundamentals

System.out.printin("Success");
} else {
System.out.printin('Failure");

6

7

8

9

A. Success
B. Failure

C. Line 4 generates a compiler error.
D

Line 5 generates a compiler error.

20. What is the output of the following code?
5. 1int c = 7;

6. int result = 4;

7. result += ++c;

8. System.out.print(result);
A. 8

B. 11

C. 12

D. 15

E. 16

F

Line 7 generates a compiler error.
21. Determine the output of the following code when executed with the command:

java HelloWorld hello world goodbye

public static class HelloWorld {
public static void main(String [] args) {
System.out.printin(args[1] + args[2]);

1

2

3

4

5.}

A. hello world
B. world goodbye

C. null null

D. An ArrayIndexOutOfBoundsException occurs at runtime.
E

The code does not compile.

Answers to Review Questions 13

Answers to Review Questions

1. A. The code does not contain any compiler errors. It is valid to define multiple classes in a
single file as long as only one of them is pubT1ic and the others have the default access.

2. CandE. C assigns the -classpath flag to the appropriate directory. E also set the class
path correctly except -cp is used. The -cp and -classpath flags are identical. A uses an
equals sign = with the -classpath flag, which is not the correct syntax. B and D set the
class path to the wrong directory and also incorrectly refer to the Main class without its
fully qualified name, which is com.mycompany.Main.

3. E. The -d flag creates the appropriate directory structure that matches the package name.
In this case, that directory created is c:\abcproject\deploy\a\b\c. Therefore, C and D
are wrong. A NoClassDefFoundError occurs if the compiler cannot find the source file, but
in this example the javac command is executed from the same directory that contains the
source file, so this error does not occur. A ClassNotFoundException is a runtime exception
that is not thrown by a compiler, so B is incorrect.

4. A. Based on the definition of the equals method, two EmpTloyee objects are equal if they
have the same employeeld field, so line 21 evaluates to true and "Success" is output, so
B is incorrect. Line 6 successfully overrides hashCode, so C is incorrect. Line 10 is a valid
overriding of equals, so D and E are incorrect.

5. A. Bisincorrect because hashCode does not have to return a unique value (not that the
compiler could determine if the value was unique anyway). C is incorrect because the
equals method correctly overrides equals in Object. D is incorrect because a ClassCast-
Exception does not need to be handled or declared. E is incorrect because although ISBN is
a private field, the equals method is within the class and therefore has access to the pri-
vate field. Therefore, the code compiles successfully and the answer is A.

6. C. The reference sl points to a String object in the string pool because "Canada" is a
literal string known at compile time. The reference s2 points to a String object created
dynamically at runtime, so this object is created on the heap. Therefore B is incorrect
because s1 and s2 point to different objects. However, C is correct because s1 and s2 are
both String objects that equal “Canada", so s1.equals(s2) evaluates to true. Because C
is correct, A and D must be incorrect.

7. BandD. The Date object from line 5 has two references to it — one and three —
and becomes eligible for garbage collection after line 10, so B is a true statement. The refer-
ence four is set to nu11 on line 9, which does not affect the object from line 5. The Date
object from line 6 only has a single reference to it — two — and therefore becomes eligible
for garbage collection after line 11 when two is set to nu11, so D is a true statement.

8. A. A top-level class cannot be declared private, so line 1 causes a compiler error. This
is one of those exam questions where you might waste a couple of minutes if you do not
notice the compiler error right away. Don’t forget to keep an eye out for these subtle types
of compiler errors.

14

9.

10.

1.

12.

13.

14.

15.

16.

Chapter 1 = Fundamentals

D. The code compiles, so E is incorrect. The Car object on line 8 has an initial velocity of
10 from line 19. The call to go on line 9 changes its velocity to 20. The stolen reference
points to the same Car object, so calling go with the stolen argument changes the Car
object’s velocity to 30, so the correct answer is D.

B. The code compiles successfully, so F is incorrect. The two GregorianCalendar
references are passed to the swap method, which does not change either object. In fact, the
only thing swapped in the swap method is b getting assigned to a, but these changes do
not affect the references one and two. Because the objects that one and two refer to are not
changed in the swap method, the output is 20102011 and B is the correct answer.

D. The object on line 4 is referred to by the temp reference, which goes out of scope after

line 5. However, the result reference gets a copy of temp, so it refers to the “Jane Doe" object
until line 12 when result is set to nul1, at which point “Jane Doe" is no longer reachable
and becomes immediately eligible for garbage collection. Therefore, the answer is D.

A. Line 5 generates a possible loss of precision compiler error. The cast operator has the
highest precedence, so it is evaluated first, casting a to a byte (which is fine). Then the
addition is evaluated, causing both a and b to be promoted to ints. The value 90, stored
as an int, is assigned to sum, which is a byte. This requires a cast, so the code does not
compile and therefore the correct answer is A. (This code would compile if parentheses
were used around (a + b).)

B. The * and % operators have the same level or precedence and are therefore evaluated
left-to-right. The result of 5 * 41is20 and 20 % 3 is 2 (20 divided by 3 is 18; the
remainder is 2). Therefore, the answer is B.

E. To evaluate the & operator, you need to express the numbers in binary and evaluate & on
each column, as shown here:

14 = 0000 1110
9 = 0000 1001
14&9 = 0000 1000

The resulting binary number 00001000 is 8 in decimal, so the answer is E.

C. The code compiles successfully, so D is incorrect. Due to the unpredictable behavior of
System. gc, the output cannot be determined. The House object from line 4 is eligible for
garbage collection after line 6, and the call to System.gc may free its memory and cause
"Inside House" to be displayed from the finalize method. However, the System.gc
method may not free the memory of the House object, in which case there would be no
output. Because A or B may occur, the answer is C.

A and D. Just before an object is garbage collected, its finalize method is invoked once,
so A is true but B is incorrect. C is incorrect because it is just not a true statement. D is
correct; there is no need to assign address to nul1 because it is about to be deleted from
memory. E is incorrect, though, because address may not be the only reference to the
String object that address refers to.

17.

18.

19.

20.

21.

Answers to Review Questions 75

C. The class compiles successfully, so A is incorrect. B is incorrect because an equals
method can use any business logic you want to determine if two objects are equal. However,
the rule for proper overriding of equals and hashCode is that if two objects are equal, they
should generate the same hash code. The hashCode method does not properly follow this
rule. Two teams with the same city and mascot but different numberOfPlayers would be
equal but would generate different hash codes. Therefore, D is incorrect and the answer is C.

D. The variable x is an int and s is a reference. These two data types are incomparable
because neither variable can be converted to the other variable’s type.
The compiler error occurs on line 5§ when the comparison is attempted, so the answer is D.

A. The code compiles successfully, so C and D are incorrect. The value of b after line 4 is
false. However, the if statement on line 5 contains an assignment, not a comparison. The
value of b is assigned to true on line 5, and the assignment operator returns true, so line 6
executes and displays "Success".

C. The code compiles successfully, so F is incorrect. On line 7, ¢ is incremented to 8 before
being used in the expression because it is a pre-increment. The 8 is added to result, which
is 4, and the resulting 12 is assigned to result and displayed on line 8. Therefore, the
answer is C.

E. The class declaration on line 1 contains the static modifier, which is not a valid
modifier for a top-level class. This causes a compiler error, so the correct answer is E.

Declarations,
Initialization, and
Scoping

SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v Develop code that declares classes (including abstract
and all forms of nested classes), interfaces, and enums,
and includes the appropriate use of package and import
statements (including static imports).

v Develop code that declares an interface. Develop code
that implements or extends one or more interfaces.
Develop code that declares an abstract class. Develop
code that extends an abstract class.

v Develop code that declares, initializes, and uses primi-
tives, arrays, enums, and objects as static, instance, and
local variables. Also, use legal identifiers for variable
names.

v Develop code that declares both static and non-static
methods, and — if appropriate — use method names that
adhere to the JavaBeans naming standards. Also develop
code that declares and uses a variable-length argument
list.

v Given a code example, determine if a method is correctly
overriding or overloading another method, and identify
legal return values (including covariant returns), for the
method.

v" Given a set of classes and superclasses, develop construc-
tors for one or more of the classes. Given a class declara-
tion, determine if a default constructor will be created,
and if so, determine the behavior of that constructor.
Given a nested or non-nested class listing, write code to
instantiate the class.

These objectives are Section 1 of the SCJP exam objectives.
' The exam tests your knowledge of all aspects of declaring a
L AT Java class, including the details of declaring fields, methods,
and constructors. The exam also tests your knowledge of declaring interfaces, enums,
arrays, and nested classes. This chapter covers all of these topics in detail.

Declaring Variables

The exam objectives state that you need to be able to “develop code that declares, initializes, and
uses primitives, arrays, enums, and objects.” Declaring these various data types involves creating
a variable. A variable represents an allocated piece of memory for storing data. Java is a strongly
typed programming language, meaning every variable must be declared with a specific data type
before it can be used. Declaring a variable involves stating the data type and giving the variable

a name. For example, the following statements declare three variables; an int named channel, a
double named diagonal, and a String reference named brand:

int channel;
double diagonal;
String brand;

A variable is initialized when it is first assigned a value. For example, the following
statements initialize our three variables:

channel = 32;
diagonal = 53.0;
brand = "Acme";

In Java, a variable must be initialized before you can use it. Variables that represent
fields in a class are automatically initialized to their corresponding “zero” value during
object instantiation. Local variables must be specifically initialized. The next section,
“Scoping,” discusses the initializing of variables in detail.

The name of a variable is referred to as its identifier. (The names of your fields, classes,
methods, interfaces, and enums are also identifiers.) The exam objectives include knowing
the “legal identifiers for variable names.” Here are the rules for legal identifiers:

* An identifier is a Unicode character sequence of Java letters and Java digits. These
include the ASCII characters A-Z and a-z, the digits 0-9, the underscore character (_),
and the dollar sign ($).

= The first character of an identifier must be a Java letter, underscore, or dollar sign. (In
other words, the first character cannot be a digit.)

Declaring Variables

* An identifier must not be a Java keyword, true, false, or nu11.

Table 2.1 contains a list of valid and invalid identifiers to demonstrate these rules.
Let’s take a look at the invalid identifiers:

TABLE 2.1 Java ldentifiers

Valid Identifiers Invalid Identifiers
x1 x 1

True true

7 me@company
_firstName 1stName
car$model X*y

$color seven#

* x 1hasa space in it, which is not allowed.

* trueis a reserved word.

= me@company contains the @ symbol, which is not a Java letter or digit.

= 1stName does not start with a Java letter. Identifiers cannot start with a digit.

= x*y contains the multiplication operator. Identifiers cannot contain any of the Java
operators.

= seven# contains the # symbol, which is also not a Java letter or digit.

Java Tokens

When your source code is compiled, the compiler breaks down your code into tokens
based on the spaces, line feeds, tabs and other separators in your code. There are five
types of tokens in Java:

= Separators
« Keywords
= Literals

= Operators
« Identifiers

Because identifiers are the names you come up with for your variables, classes, fields,
methods, interfaces (and so on), the compiler needs to be able to recognize them easily. This
is why Java needs a specific set of rules that must be followed for creating legal identifiers.

80 Chapter 2 - Declarations, Initialization, and Scoping

Scoping

As mentioned previously, the exam objectives state that you need to be able to develop code
that uses “static, instance, and local variables.” Each of these three types of variables has a

different scope. Scope refers to that portion of code where a variable can be accessed. There
are three kinds of variables in Java, depending on their scope:

Instance variables These variables represent the nonstatic fields of a class.
Class variables These variables represent the static fields of a class.

Local variables These variables are defined inside a method. Local variables are only
accessible within the method in which they are declared.

This section discusses these three types of variables in detail, starting with a discussion
of instance variables.

Instance Variables

Instance variables are the nonstatic fields of your class, often referred to simply as fields.
These variables get allocated in memory when a new object is instantiated. Because the new
operator zeroes the memory for an object, all fields initially have their corresponding zero
value, which are as follows:

= Primitive numeric fields initialize to 0. This includes byte, short, int, Tong, float and
double.
* boolean types initialize to false.
* char types initialize to the null character '\u0000'.
= Reference types initialize to nul11.
Instance variables are always initialized during object instantiation, so you can use an

instance variable even if you do not specifically assign it a value.
Let’s take a look at an example. Suppose we have the following class named Television:

public class Television {
public int channel;

public double diagonal;

public String brand;

public Television() {
channel = 4;

© 0 N O LT A W N R

Scoping 81

Examine the following statements and try to determine the output:

3. Television tv = new Television();
4. System.out.printin(tv.channel + " " + tv.diagonal + " " + tv.brand);

The preceding code compiles fine. The channel field is initially O but is set to 4 in the
constructor. The diagonal field is a double so its initial value is 0.0. The brand field is a
reference so its value is nu11. The output is

4 0.0 null

Figure 2.1 shows what this Television object looks like in memory.

FIGURE 2.1 ATelevision object has three fields in memory.

Television reference Television object
tv channel
4
diagonal
0.0
brand
> null

The Lifetime of Instance Variables

An instance variable does not exist in memory until an instance of the class is
instantiated. When an object is instantiated, its instance variables exist in memory until
the object is garbage collected.

Explicit Initialization

Java allows for the explicit initialization of instance variables. Explicit initialization
is when a field is assigned a value at the same time that the field is declared. The field
therefore gets initialized before the constructor executes.

82 Chapter 2 - Declarations, Initialization, and Scoping

For example, the following Apple class uses explicit initialization to initialize its variety

field:

1. public class Apple extends Fruit {

2 public String variety = "McIntosh";

3.

4. public Apple(String variety) {

5 System.out.printIn("Constructing an Apple");
6 this.variety = variety;

7 }

8.}

The variety field is assigned the value "McIntosh" after the memory is zeroed by the
new operator. That means that variety was actually nu11 for a brief moment before it was
assigned "McIntosh".

Explicit initialization allows you to initialize a field before a constructor is executed.
However, the most common reason for using explicit initialization is simply that sometimes
it is just easier to initialize a field when you declare it, especially if the initialization is the
same for every instance of the class.

In the previous example, setting the variety field of all Apple objects to initially be
"McIntosh" probably does not make sense in a real-world application. However, there are
plenty of situations where explicit initialization comes in handy. For example, the following
Movie class has a Vector field that contains Fan objects:

import java.util.Vector;

public class Movie {
public Vector<Fan> fans = new Vector<Fan>();

public double boxOfficeTotal;

1
2
3
4
5. public String title;
6
7
8 public Movie(String title) {
9

. this.title = title;
10. }

11.

12. public void addFan(Fan f) {
13. fans.add(f);

14.)

15.}

Because the Vector has the same initial value for all instances of the Movie class, using
explicit initialization makes sense and simplifies the constructor code. If the Movie class
had multiple constructors, we would have to make sure that the Vector gets instantiated
in each constructor. By using explicit initialization, we are ensured that the fans field is

Scoping 83

properly initialized for all instances of Movie, and the initialization takes place in a single
location (instead of in multiple constructors).

- The code on the exam uses a lot of explicit initialization. This is probably
Ad’TE because it makes the code shorter and simpler. Often the exam question
will likely be testing your knowledge of a topic not specifically related
to explicit initialization, so explicit initialization is one of those fundamental
concepts you are just expected to know.

Class Variables

A class variable is a field within a class declared as static, often referred to as a static
variable or static field. A static field is unique in that the memory is allocated for the field
when the class is loaded by the JVM’s class loader, and the variable remains in memory
until the class loader unloads the class. Because a program typically terminates before a
class is unloaded, the lifetime of a static field is often the lifetime of the application.

Static fields do not belong to instances of a class. You can access a static field before any
instances of the class are created, and if you have 100 instances of the class, you still only
have one instance of the static field.

Global Variables in Java

Java does not support the concept of global variables. All variables in Java appear within
a class or interface. Static fields are the closest thing you have in Java to global variables,
because a static field has a lifetime beyond the life of the instances of the class and a
static field can be accessed from any other class or object (depending on the access
specifier).

Consider the following class named House with a static int field named counter:

1. package my.blueprints;

2. public class House {

3 private Room kitchen; //instance variable

4, pubTlic static int counter = 0; //class variable
5

6 public House() {

7 kitchen = new Room();

8 }

84 Chapter 2 - Declarations, Initialization, and Scoping

9.

10. pubTlic Room getKitchen() {
11. counter++;

12. return kitchen;

13. }

14. }

The counter field is a class variable. There is only one instance of counter in memory,
and it exists in memory before any House objects are instantiated.

Access a class variable using the name of the class. For example, to access counter you
use the following syntax:

House.counter

Notice on line 11 that counter was incremented and we did not use the name of the
class to reference it. Code within the class that contains the static field does not need to use
the class name.

Examine the following HouseTest program. Does it compile, and if so, what is its
output?

import my.bTueprints.House;

public class HouseTest {
public static void main(String [] args) {

House one = new House();
House two = new House();
one.getKitchen();
two.getKitchen();

1

2

3

4

5. System.out.printIin("counter = " + House.counter);
6

7

8

9.

10. one.getKitchen();

11. System.out.printin("counter = " + House.counter);
12.)
13.)

On line 5 the counter variable displays before any House objects are created. This is a
valid statement and the value of counter is 0 at line 5. Two House objects are instantiated,
and calling getKitchen three times on the two House objects increments counter to 3. The
code compiles successfully and the output is

counter = 0
3

counter

Even though the HouseTest class creates two House objects (which in turn causes two
Room objects to be instantiated for the kitchen field), there is still only one counter in
memory and it exists until the program terminates.

Scoping 85

Understanding Static Fields

| often refer to static fields as breaking the rules of object-oriented programming. | am
not implying that static should be avoided, because static fields are an important part

of the Java language and | use them all the time. However, it is important to understand
what it means for a field to be static. It might seem odd that a field of a class can exist
before the class is ever instantiated. Recall my analogy of a class being the blueprint of a
house, and an object being the house. If we make the kitchen static, that means we have
a kitchen before we ever build the house! In addition, if we build 100 houses from our
blueprint, we still only have one kitchen! Obviously a kitchen is not a good candidate for
static when it comes to building houses.

We use static fields when the field is shared among all classes and the field is not unique
to any particular instance. For example, the House class can keep track of how many
times a particular method is invoked on all House objects. Because counter is shared
among all House objects, this is a perfect situation for using a static field.

Global variables are another common example of when to use static. For example, there
is only one standard input and standard output. Making them global variables allows

all objects in your program to access the standard input and output, so System.in and
System.out are good candidates for static fields.

Static Imports

As of Java 5.0, a static variable can be imported into a source file, which allows the static
variable to be accessible without being prefixed with its corresponding class or interface name.
Importing a static member is referred to as a static import and uses the following syntax:

import static packagenames.classname.variablename;

You can also use the asterisk as a wildcard, which allows you to import all of the static
variables from a class or interface. Static imports appear in the same location of a source
file as regular imports: after the package declaration and before the class declaration.

The following program is the same code as the HouseTest program in the previous
example, except the static field counter from House is imported on line 3. The class also
imports all static fields in java.lang.System on line 4, which includes the out field.

import my.bTlueprints.House;

1
2
3. dimport static my.blueprints.House.counter;
4. import static java.lang.System.*;
5
6

public class StaticImportDemo {

86 Chapter 2 - Declarations, Initialization, and Scoping

7. public static void main(String [] args) {

8. out.printin('counter = " + counter);
House one = new House();

10. House two = new House();

11. one.getKitchen();

12. two.getKitchen();

13. one.getKitchen();

14. out.println("counter = " + counter);

15. }

16.}

This code compiles successfully and has the same output as HouseTest. Notice the static
imports allow counter and out to be referenced by their simple names and not prefixed
with their corresponding class name.

el Because static imports are a fairly new concept in Java, expect at least one
A&TE question on the exam to test your knowledge of how to properly declare
and use a static import.

Local Variables

A local variable is a variable defined within a method, which includes any method
parameters. A local variable gets created in memory on the call stack when the method
executes, and is deleted from memory when the method returns and the call stack memory
is destroyed. Local variables never appear on the heap, although a local variable that is a
reference can certainly refer to an object on the heap.

Local variables must be initialized before use. They do not have a default value and
contain garbage data until initialized. The compiler enforces this rule. For example, the
following code generates a compiler error:

4. public int notValid() {
5 int y = 10;

6 int x;

7. int reply = x + vy;

8 return reply;

9. }

The ints y and x are local variables and vy is initialized to 10. However, because x is not
initialized before it is used in the expression on line 7, the compiler generates the following
error:

Test.java:5: variable x might not have been initialized
int reply = x + y;

A

Scoping 87

Until x is assigned a value, it cannot appear within an expression, and the compiler will
gladly remind you of this rule.

The following Mouse class is another example of using local variables. Examine the code
and see if you can distinguish the local variables from the instance variables. Does the
Mouse class compile successfully?

public class Mouse ({
public boolean hasWheel;
private int clickCount;

int response = (int) d;

1
2
3
4.
5. public int rightClick(double d) {
6
7 return response;

8

9

10. pubTlic String wheelClick() {

11. if(hasWheel) {

12. double pi = 3.14159;

13. String greeting = "The mouse ate the " + pi;
14. return greeting;

15. } else {

16. String error = "No wheel found";

17. return error;

18. }

19. }

20.

21. pubTlic void leftClick(int clickCount) {

22. System.out.printin("Left click " + clickCount + " times");
23. this.clickCount = clickCount;

24. }

25.}

Although there may be some confusion about c1ickCount in the TeftClick method, this
class compiles fine. The Mouse class has two instance variables: hasWheel and c1ickCount.

The rightClick method has two local variables: d and response. When the rightClick
method is invoked, d and response get allocated in memory. When response is returned on
line 7, a copy of response is sent to the calling method and both d and response go out of scope.

The whee1Cl1ick method has three local variables: pi, greeting, and error. If hasWheel
is true, this method returns greeting, at which point pi and greeting go out of scope.
The String object "The mouse ate the 3.14159" is on the heap, as shown in Figure 2.2,
so it is not destroyed when the method returns. The same scenario happens when error is
returned: error goes out of scope but the String "No wheel found" is on the heap and still
exists (for as long as it is reachable by a reference).

88 Chapter 2 - Declarations, Initialization, and Scoping

FIGURE 2.2 The local variable greeting points to an object on the heap.

Call stack memory Heap Memory
for wheelClick.

pi
3.14159

greeting

“The mouse ate the 3.14159”

The String object remains on the
heap and wheelClick
returns a reference to it.

pi and greeting go out of
scope when wheelClick returns.

On line 21, the TeftClick method has one local variable: c1ickCount. The c11ickCount
parameter just happens to match the identifier of the c11ickCount field. In these situations,
the local variable is seen first by the method and you must use the this reference to
distinguish between the instance and local variable. The c1ickCount displayed on line 22 is
the value of the parameter. To assign the c1ickCount parameter to the c1ickCount field, we
must use this.clickCount on line 23 to refer to the field.

Examine the following statements and try to determine the output:

. Mouse m = new Mouse();

. m.clickCount = 2;

. System.out.printin(m.wheelClick());
. m.leftClick(1);

. System.out.println(m.cTickCount);

0 N O U1 b

The field hasWheeT initializes to false, so calling whee1Cl1ick on line 6 causes "No
wheel found" to be returned. Calling TeftClick with 1 as the argument causes the 1 to be
displayed and also assigned to the field c1ickCount. Therefore, the output is

No wheel found
Left click 1 times
1

Declaring Arrays

The exam objectives state that you should be able to “develop code that declares, initializes,
and uses arrays.” An array is a contiguous chunk of memory on the heap representing
a fixed-size collection of values that all have the same data type. An array in Java is an

Declaring Arrays 89

object, so you can instantiate an array using the new keyword and assigning a reference

to it, just like any other object. Arrays are fixed in size and cannot dynamically grow or
shrink. (If you need a dynamically sized data structure, use one of the classes in the Java
Collections API found in the java.util package discussed in Chapter 7, “Collections and
Generics.”) This section discusses the details of declaring array references and instantiating
array objects, including the following topics:

= How to declare array references

= How to instantiate array objects

* How to access the elements of an array
= Multidimensional arrays

* Array initializers

* What arrays look like in memory

Array References

An array reference is a reference that denotes the data type of the values to be stored in the
array, using square brackets to denote the array reference. For example, the following code
declares three array references:

4. int [] finishTimes;
5. String lastNames [];
6. GregorianCalendar [] july;

Notice 1astNames demonstrates how the square brackets can appear after the identifier.
This technique is not recommended, though, because the code is more readable when the
square brackets appear before the identifier.

The finishTimes reference can point to any array of ints. Similarly, TastNames
can point to any array of String references and july can point to any array of
GregorianCalendar references. Notice I didn’t use the term “objects” when referring to
the elements of the array. The array is the object, but the contents of the array are either
primitive types or references, as we will see next.

Declaring an Array Reference

In Java it is not valid to declare a size for the array when declaring a reference. An array
reference can point to arrays of any length. The following code is not valid:

int [20] finishTimes; //not valid
String lastNames [100]; //not valid

When declaring an array reference, we are only specifying the data type of the elements
of the array. The size of the array is determined only when the array object is instantiated.

90 Chapter 2 - Declarations, Initialization, and Scoping

Array Objects

Because a Java array is an object, it should be no surprise that you use the new keyword to
instantiate an array. The new keyword requires the type of array being instantiated along
with the size of the array. For example, the following code instantiates three array objects:

5. int [] finishTimes = new int[20];

6. String lastNames [] = new String[100];
7. GregorianCalendar [] july;

8. july = new GregorianCalendar[31];

The finishTimes reference now points to an array of 20 ints. Because this array of
ints is a new object, its memory is zeroed on the heap, so all 20 ints are initially 0. The
lastNames reference points to an array of 100 String references (not String objects!).
Each of the 100 String references is nu11. Similarly, july points to an array of 31 nu11
GregorianCalendar references. Arrays in Java are zero-based indexed, meaning the first
element in the array is index 0, the second element is index 1, and so on. For example, the
following code is valid and initializes some of the values in the arrays:

10. finishTimes[0] = 1002892;

11. finishTimes[1] 1004830;

12. TastNames[99] = "Washington";

13. july[0] = new GregorianCalendar(2010, 7, 1);

Figure 2.3 shows what the finishTimes and TastNames arrays look like in memory;
Figure 2.4 shows what the july array looks like in memory.

FIGURE 2.3 Examples of array references pointing to array objects.

1002892 .
finishTi 1 o array object of
inishTimes] / 20 ints
2 |0
0
array references
19 |0
0 —F—> null
lastNames / — > null
/
2 —F——> null
3 null array object of 100
/ String references
99 ——+——> “Washington”

A String Object

Declaring Arrays 91

FIGURE 2.4 The july reference points to array of 31 GregorianCalendar references.

da:
Y 1
month
7
array reference
year
2010
0 \
july / [E—]
1 A GregorianCalendar
2 — null object
3 ——— null
30 > null

array object of 31
GregorianCalendar
references

Using Arrays

Every array has an attribute named 1ength that is the size of the array. The Tength
attribute is particularly useful when using a for loop to iterate through the elements of the
array. For example, the following for loop initializes the 31 GregorianCalendar references
in the july array:

13.
14.
15.
16.
17.
18.

GregorianCalendar [] july;
july = new GregorianCalendar[31];
int year = 2010, month = 7;
for(int i = 0; i < july.length; i++) {
july[i] = new GregorianCalendar(year, month, i+1);

92 Chapter 2 - Declarations, Initialization, and Scoping

The Enhanced for Loop

In Java 5.0, a new for loop was introduced called the enhanced for loop (also called
a for-each loop). The following code demonstrates the syntax of a for-each loop
by iterating through the july array and displaying each of the 31 GregorianCalendar
objects:

for(GregorianCalendar day : july) {
System.out.print(day.get(Calendar.MONTH) + "/"
+ day.get(Calendar.DAY_OF_MONTH) + "/"
+ day.get(Calendar.YEAR) + " ");

}

This enhanced for loop is read “for each day in july”, where day is of type
GregorianCalendar. The enhanced for loop can also be used for iterating through many
of the data structures found in the java.util package. We discuss these data structures
along with the enhanced for loop in more detail in Chapter 3, “Flow Control.”

Let’s look at an example to demonstrate some of the details of working with arrays.
Study the following ArrayDemo program and determine if it compiles and what its output is.
In addition, try to determine when the array object on line 3 becomes eligible for garbage
collection.

1. public class ArrayDemo {

2 public static void main(String [] args) {
3 double [] cubics = new double[10];

4 for(int i = 0; i < cubics.length; i++) {
5. int value = i + 1;

6 cubics[i] = value * value * value;
7 }

8

9. double [] temp = cubics;

10. temp[5] = -1;

11. System.out.printin(cubics[5]);

12. cubics = null;

13. for(double a : temp) {

14. System.out.print(a + " ");

15. }

16.

17. temp = new double[20];

18. }

19.}

Declaring Arrays 93

While perhaps confusing, this code compiles successfully. The cubics and temp
references are of the same type (a reference to an array of doubles), so they can be assigned
to each other as on line 9. There is still only one array object in memory, so setting temp[5]
to -1 is the equivalent of setting cubics[5] to -1. Figure 2.5 shows the state of the array
before line 12.

FIGURE 2.5 The array of cubic values has two references to it: cubics and temp.

cubics 1 temp

27
64
125

343
512
729
1000

© 0 N O Oh W N B+ O

Here is the output of the ArrayDemo program:

-1.0
1.0 8.0 27.0 64.0 125.0 -1.0 343.0 512.0 729.0 1000.0

Setting cubics to nu11 on line 12 still leaves temp pointing to the array. The array object
is not eligible for garbage collection until immediately after line 17 when temp is assigned
to a different array. By the way, the cubic values are lost at this point and temp refers to an
array with 20 new doubles, each of value 0.0.

Multidimensional Arrays

Java allows for multidimensional arrays, up to as many dimensions as you require.
Declaring a reference to a multidimensional array consists of denoting a set of square
brackets for each dimension of the array. For example, the following values reference can
point to any two-dimensional array of chars, and names can refer to any three-dimensional
array of String references:

5. char [][] values;
6. String [1[1[] names;

94 Chapter 2 - Declarations, Initialization, and Scoping

To instantiate a multidimensional array, you denote the size of each dimension in the
new statement. For example:

7. values = new char[4][3];
8. names = new String[10][5][20];

To access an element in a multidimensional array, specify an index for each dimension.
For example, the following statement stores an 'A" in the first column of the first row of
values, and "George Washington' in the twentieth level of the second column of the first
row of names:

9. values[0][0] = 'A';
10. names[0][1]1[19] = "George Washington";

The following nested for loops are typical when working with two-dimensional arrays.
These particular nested loops fill the values array with chars starting with ‘A’. (Similarly,
you could use three nested loops to iterate through the names array.)

11. char current = 'A';

12. for(int row = 0; row < values.length; row++) {

13. for(int col = 0; col < values[row].length; col++) {
14. values[row][col] = current++;

15. }

16. }

Figure 2.6 shows what the values array looks like in memory. The values array consists
of 4 arrays, each containing 3 chars for a total of 12 chars.

FIGURE 2.6 Thevalues arrayis a double array of chars.

values

)
\
\

A char[][] reference

An array of four J
char[] references ‘K
K

/

Four char arrays

Declaring Arrays 95

Figure 2.7 shows the memory of the names array. The names array consists of 10 array
references, each pointing to an array of 5 array references, each pointing to an array of 20
String references for a total of 1,000 String references.

FIGURE 2.7 Multidimensional arrays in Java.

0 o} —1 > null
1 X —— null
2 \
4
19 —+—> null
0
1 —+—> null
0 —+—> null
names
4
19 —+—> “George
A String[][1[] reference \i Washington”
2 Fifty arrays of
9 3 String references,
4 each of length 20

An array of 10 /

String[][] references Ten arrays of String[]
references, each of
length 5

As you can see in Figure 2.7, the structure of multidimensional arrays in Java allows for
various column lengths. For example, the following statements are valid:

. GregorianCalendar [][] months = new GregorianCalendar[12][];
. months[0] = new GregorianCalendar([31];
. months[1] = new GregorianCalendar([29];
. months[3] = new GregorianCalendar([30];

N o v b

The months array has 12 rows, the first row is length 31, the second row is length 29, and
the fourth row is length 30. The rest of the rows could be initialized in this same fashion.

Array Initializers

An array initializer is a shorthand notation for declaring an array and filling it with values,
all in a single statement. Array initializers are convenient for quickly creating smaller
arrays. Instead of using the new keyword, you list the elements of the array in curly braces
separated by commas.

96 Chapter 2 - Declarations, Initialization, and Scoping

The following statement uses an array initializer to create a new array of length 5 and
initializes the ints with the values listed:

int [] amps = {5, 10, 20, 30, 50};

The value of amps[0] is 5, amps[1] is 10, and so on. Notice the semicolon at the end of
the line. It’s a common mistake to forget it, but the compiler will gladly remind you if it is
missing!

) You will definitely see array initializers on the exam, probably in several
A ITE questions. Some of the questions will be testing your knowledge of array
initializers, but expect to see array initializers on questions that are testing
your knowledge of some other exam objective.

If the array contains objects instead of primitives, you can use the new keyword in the
list of array elements. For example, the following statement creates an array referencing
three File objects:

File [] files = {new File("input.txt"),
new File("output.txt"),
new File("error.txt")};

The files array consists of three File references, with files[0] pointing to "input.
txt", files[1] pointing to "output.txt", and files[2] pointing to "error.txt".

Notes on Array Initializers

To use the array initializer syntax, the array must be declared in the same statement that
declares the reference. For example, the following code generates a compiler error:

int [] amps;
amps = {5, 10, 20, 30, 50};

An array initializer can also be used to create a multidimensional array. For example, the
following statements create a two-dimensional array of floats:

float [1[] results = {{2.0F, 1.5F},{-5.1F, 9.2F, 6.7F}};

The value of results[0][0] is 2.0, results[1][0] is -5.1, results[1][2] is 6.7, and so on.

Declaring Classes 97

Declaring Classes

According to the exam objectives, you need to be able to “develop code that declares
classes.” A class is a description of an object and is one of the fundamental building blocks
of object-oriented programming. A Java class is defined in a .java source file and its
corresponding compiled bytecode is in a .class file. The name of the .class file matches
the name of the class, and the .class file must be saved in a directory structure that
matches the package name of the class. In this section, we discuss the elements that make
up a Java class.

A Java class can contain the following elements:

Instance variables Also referred to as fields, instance variables represent the attributes of
the object being described and are used to store the state of the object.

Class variables These are the static fields of the class and represent global variables and
data that is shared among instances of the class.

Methods The methods of a class represent the behaviors of the object being described. We
will discuss methods in detail later in this chapter.

Constructors These are special methods that get invoked during the instantiation process
and allow for the object to initialize its state.

Nested classes A Java class can contain within it the definition of another class. We will
discuss nested classes in detail later in this chapter.

Instance initializers These are blocks of code that execute during the instantiation
process.

Static initializers These are blocks of code that execute when the class is loaded by the
class loader.

We have already discussed instance and class variables earlier in this chapter and we will
see an example of the other elements now. Examine the ColorChanger class in Listing 2.1
and see if you can determine its instance and class variables, methods, constructors, nested
classes and instance and static initializers. The class displays a window with three buttons
in it, and clicking a button changes the background color of the window.

Listing 2.1: The ColorChanger Class

1. package com.sybex.demos;

2

3 import java.awt.¥;

4. import java.awt.event.*;

5. import static java.awt.BorderLayout.*;
6
7

public class ColorChanger extends Frame {

98

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.

Chapter 2 - Declarations, Initialization, and Scoping

private Button redBtn, whiteBtn, blueBtn;
{
redBtn = new Button("Red");
whiteBtn = new Button("White");
blueBtn = new Button("Blue");

private static final Color RED, WHITE, BLUE;

static {
RED = new Color(255,0,0);
WHITE = new Color(255,255,255);
BLUE = new Color(0,0,255);

private class MyButtonListener implements ActionListener {

public void actionPerformed(ActionEvent e) {
String label = e.getActionCommand();
if(label.equals(redBtn.getlLabel())) {
ColorChanger.this.setBackground(RED);

} else if(label.equals(whiteBtn.getLabel())) {

ColorChanger.this.setBackground(WHITE);
} else if(label.equals(blueBtn.getLabel())) {
ColorChanger.this.setBackground(BLUE);

public static Color [] getColors() {
Color [] colors = {RED, WHITE, BLUE};
return colors;

public Button [] getButtons() {
Button [] buttons = {redBtn, whiteBtn, blueBtn};
return buttons;

public ColorChanger(String title) {
super(title);

Declaring Classes 99

48. TayoutButtons();

49, initializeEvents();

50. this.setSize(200, 200);

51. this.setVisible(true);

52. }

53.

54. private void initializeEvents() {

55. MyButtonListener m = new MyButtonlListener();
56. redBtn.addActionListener(m);

57. whiteBtn.addActionListener(m);

58. bTueBtn.addActionListener(m);

59. }

60.

61. protected void TlayoutButtons() {

62. this.setlLayout(new BorderLayout());
63. this.add(redBtn, NORTH);

64. this.add(whiteBtn, SOUTH);

65. this.add(blueBtn, WEST);

66. }

67.

68. public static void main(String [] args) {
69. new ColorChanger("Click a button");
70. }

71.}

Here is a breakdown of each of the elements within the ColorChanger class:

= Line 8 declares three instance variables, each of type java.awt.Button: redBtn,
whiteBtn, and blueBtn.

* Line 15 declares three class variables, each of type java.awt.Color: RED, WHITE, and
BLUE.

= The class has five methods. The main method is static and the other methods are
instance methods: getColors, getButtons, initializeEvents, and TayoutButtons.

* This class has one constructor defined on line 46. It takes in a single argument of type
String that appears in the title bar of the window.

= The ColorChanger class declares one nested class, MyButtonListener, on line 23. This
nested class contains one method, actionPerformed, which gets invoked whenever one
of the three buttons is clicked.

= The class declares one instance initializer, which is the block of code on lines 9 to 13.

= The class declares one static initializer, which is the block of code on lines 17 to 21.

100 Chapter 2 - Declarations, Initialization, and Scoping

Notice ColorChanger contains the main method, so it can be executed as a Java
program. Figure 2.8 shows what the CoTorChanger program looks like when it is executed.

FIGURE 2.8 The ColorChanger program.

| £ Click a button E]@

Do not get hung up on the details of the graphical user interface (GUI)

d»TE code in the ColorChanger example. The SCJP exam no longer requires
knowledge of GUI programming. However, whether or not you understand
what the code does, you should definitely be able to identify the various
elements of the ColorChanger class.

All of these different elements of a class are listed in the exam objectives. If you have not
seen some of these concepts before, do not worry as I cover all of these topics in detail. We
start with a discussion on object initialization, which covers the details of constructors and
the instance and static initializers. Then we discuss the details of writing Java methods and
nested classes.

The Instantiation Process

Initialization is one of the main exam objectives and refers to the details of initializing
the various data types of Java. We have discussed the initialization of primitive types and
arrays. This section discusses the initialization of objects and the instantiation process.

As a Java programmer, you write classes and instantiate them to create objects. The new
operator is the typical way to instantiate a class. For example, the following line of code
instantiates a new java.text.DecimalFormat object:

DecimalFormat df = new DecimalFormat("#,###.00");

This is a fairly straightforward statement, as you have seen the new operator countless
times before. The new operator instantiates the DecimalFormat object on the heap and
returns a reference to the object. The assignment operator = stores this reference in the
variable df. The new operator also has to specify which constructor is invoked on the class.
In the previous statement, a String is passed in, so the DecimalFormat constructor that
takes in a String is invoked.

The Instantiation Process 101

Behind the scenes, the instantiation of an object is a fairly involved process that involves
several steps that occur in a well-defined order. The events that occur during the creation of
a new object are referred to as the instantiation process. The following list of events takes
place when a new object is instantiated:

1. The JVM determines the amount of memory needed for the new object, allocates the
memory on the heap, and zeroes the memory so that it does not contain any garbage data.

Explicit initialization of instance variables is performed.

The appropriate constructor is invoked, depending on the arguments specified in the
new statement.

4. Before the constructor executes, one of the immediate parent class constructors is
executed.

5. Any instance initializers are executed. If a class has multiple instance initializers, they
are executed in the order they appear in the source file.

The body of the constructor executes.
7. The new operator returns a reference to the new object.

Even though the new operator looks like it directly invokes a constructor, the execution
of that constructor occurs at the end of the instantiation process.

Let’s look at an example. Examine the following Fruit and Apple class definitions
(defined in separate source files) and see if you can determine the output of executing main
in Apple.

1. public class Fruit {

2 public String color;

3.

4. public Fruit() {

5 System.out.printin("Constructing a Fruit");
6 }

7. '}

8. public class Apple extends Fruit {

9. public String variety = "McIntosh";

10.

11. pubTic Apple(String variety) {

12. System.out.printIin("Constructing an Apple");
13. this.variety = variety;

14. }

15.

16. {

17. System.out.printin("Inside the instance initializer");

102 Chapter 2 - Declarations, Initialization, and Scoping

18. System.out.printin("The variety is " + variety);
19. }

20.

21. public static void main(String [] args) {

22. Apple apple = new Apple("Granny Smith");

23. System.out.printIin("Variety is " + apple.variety);
24. }

25.}

The main method instantiates a new Apple object, passing in "Granny Smith'. The JVM
allocates memory for an Apple (which includes the memory for the Fruit parent object)
and zeroes the memory. Then explicit initialization occurs, which in this example assigns
variety to "McIntosh" on line 9. Then the Apple constructor on line 11 is invoked, but
before it executes the Fruit constructor on line 4 is invoked and executes. After the Fruit
constructor completes, the instance initializer on lines 16 to 19 is invoked, then the body of
the Apple constructor on line 11 executes. The output of running main looks like this:

Constructing a Fruit

Inside the instance initializer
The variety is McIntosh
Constructing an Apple

Variety is Granny Smith

Now that you have seen the order of events that occur when a new object is instantiated,
we will next look at the details of declaring and using constructors in Java.

Constructors

The exam objectives state that “given a set of classes and superclasses,” you should be

able to “develop constructors for one or more of the classes. Given a class declaration,
determine if a default constructor will be created, and if so, determine the behavior of that
constructor.” This section discusses these topics in detail.

A constructor is a special method within a class that gets invoked during the
instantiation process. The purpose of a constructor is to allow you to “construct” your
object, ensuring that all of the fields are properly initialized. Constructors also can take in
arguments, allowing you to initialize the state of the object.

A constructor has the following properties:

= The name of a constructor must match the name of the class.
= A constructor does not declare a return value.
= A constructor is only invoked one time during the instantiation process.

= A constructor can have any of four levels of access: public, private, protected, or the
default.

= A constructor can throw any number of exceptions.

The Instantiation Process 103

The following Camera class has two constructors: one that takes in an int and one that
takes in no arguments.

1. public class Camera {

2 public int imageCount;

3

4 public Camera() {

5. System.out.printin("Inside no-arg constructor");
6 }

7

8 public Camera(int imageCount) {

9 this.imageCount = imageCount;
10. }

11.})

Each constructor introduces a different way to invoke new on the class. For example,
because the Camera class has two constructors, we can instantiate Camera objects two
different ways, either passing in an int or passing in no arguments:

Camera one = new Camera(1024); //invokes the constructor on line 8

Camera two = new Camera(); //invokes the constructor on Tline 4

A constructor does not declare a return value. If it did, it would just be a method in the
class. For example, the following code contains a compiler error. Can you see what the
problem is?

1. public class Camera {

2 public int imageCount;

3

4 public Camera() {

5. System.out.printin("Inside no-arg constructor");
6 }

7 //The following is not a constructor. It is a method.
8 public void Camera(int imageCount) ({

9. this.imageCount = imageCount;

10. }

11.

12. public static void main(String [] args) {

13. Camera c = new Camera(60);

14. }

15.}

You might think the compiler error is on line 8, but line 8 compiles fine because it is
valid for a class to have a method named Camera. However, because it declares void for

104 Chapter 2 - Declarations, Initialization, and Scoping

a return value, it is not a constructor. This Camera class does not have a constructor that
takes in an int, so the compiler generates the following error:

Camera.java:13: cannot find symbol
symbol : constructor Camera(int)
Tocation: class Camera

Camera c = new Camera(60);

n

1 error

The Default Constructor

Every class has a constructor. If you do not explicitly define a constructor for a class, then
the Java compiler inserts a default constructor for you. The default constructor takes in no
arguments and has an empty method body.

For example, suppose we have a class named Tomato with the following definition:

1. public class Tomato extends Fruit {
2 private double weight;

3 private boolean ripe;

4

5. public void setWeight(double w) {
6 weight = w;

7 }

8

9 public double getWeight() {

10. return weight;

11. }

12.

13. pubTlic void setRipe(boolean b) {
14. ripe = b;

15. }

16.

17. public boolean isRipe() {

18. return ripe;

19. }

20.})

Because the Tomato class does not explicitly define a constructor, the compiler generates
one that looks like the following;:

public Tomato() {
}

The Instantiation Process 105

Notice the default constructor does not do anything at all. However, it does allow us to
instantiate Tomato objects using new with empty parentheses:

Tomato roma = new Tomato();

Because the Tomato class does not contain any explicit initialization and the default
constructor does not do anything, the values of the fields will be their corresponding
default value, which is 0.0 for the double weight and false for the boolean ripe.

Know When a Class Gets a Default Constructor

Keep in mind that you only get a default constructor if you do not explicitly include one in
your class. Suppose we modify the Tomato class and explicitly declare a constructor:

public class Tomato extends Fruit {
public Tomato(double weight, boolean ripe) {
this.weight = weight;
this.ripe = ripe;
}

//The remainder of the class definition remains the same

}

Because this Tomato class has a constructor, the compiler does not add a default
constructor. With only one constructor, that means there is only one way to instantiate a
new Tomato, and that is by passing in a double and a boolean. For example:

Tomato beefsteak = new Tomato(10.45, false);
The following line of code will not compile with this Tomato class:
Tomato t = new Tomato(); //Generates a compiler error

Because knowing when a class gets a default constructor is a specific exam objective,
expect at least one question to test your knowledge of this topic.

Using this in Constructors

The this keyword in Java represents the reference that every object has to itself. The this
keyword also has another use within constructors that is unrelated to the this reference.
You can use the this keyword to invoke another constructor in the same class, allowing
you to avoid repeating code in multiple constructors.

106 Chapter 2 - Declarations, Initialization, and Scoping

For example, the following Employee class has two constructors that perform similar
tasks. Line 10 sets the hireDate field to the current date, while line 16 sets hireDate to a
supplied Date. Otherwise, the two constructors are identical.

1. import java.util.Date;

2

3. public class Employee {

4 private String firstName, TlastName;

5. private Date hireDate;

6

7 public Employee(String fn, String 1n) {
8 firstName = fn;

9 TastName = 1n;

10. hireDate = new Date();

11. }

12.

13. public Employee(String fn, String 1n, Date hd) {
14. firstName = fn;

15. TastName = Tn;

16. hireDate = hd;

17. }

18.}

There are many good reasons to avoid repeating code like these two Employee
constructors do. It would be nice if we could pass the arguments from one constructor
to another and perform all the necessary initialization in one place. By using the this
keyword, we can invoke another constructor in the same class. You use this like a method
call, passing in the arguments to the other constructor.

Let’s look at an example that fixes our issue of repeated code in the EmpTloyee class. The
following modification has one Employee constructor invoking the other constructor:

import java.util.Date;

1

2

3. public class Employee {

4 private String firstName, TlastName;
5. private Date hireDate;
6
7
8
9

public Employee(String fn, String 1n) {

this(fn, Tn, new Date());

. System.out.printin("Inside first constructor");
10. }
11.

The Instantiation Process 107

12. public Employee(String fn, String 1n, Date hd) {

13. System.out.printin("Inside second constructor");
14. firstName = fn;

15. TastName = 1n;

16. hireDate = hd;

17.)

18.}

Notice how there is no repetition of code in the constructors. Study this EmpToyee class
and try to determine the output of the following statement:

Employee e = new Employee("Beetle", "Bailey");

This statement results in the following sequence of events:

1. The EmpTloyee constructor on line 7 is invoked because we are passing in two String
objects.

Line 8 invokes the constructor on line 12.

This second constructor actually executes first, and when it is finished, control jumps
back to line 9.

Therefore, the output of instantiating this new "Beetle Bailey" Employee is

Inside second constructor
Inside first constructor

Invoking Another Constructor Using this

The call to this must be the first line of code in the constructor or a compiler error
occurs. For example, the following Employee constructor does not compile:

public Employee(String fn, String 1n) {
System.out.printin("Inside first constructor");
this(fn, In, new Date());

}

The compiler generates the following error:

Employee.java:9: call to this must be first statement in constructor
this(fn, 1n, new Date());

A

We will revisit this rule in the next section on using the super keyword in constructors.

108 Chapter 2 - Declarations, Initialization, and Scoping

Using super in Constructors

Similar to how you can use the this keyword to invoke another constructor in the same
class, you can use the super keyword to invoke a constructor in the parent class. Using
super allows the child class to choose which parent class constructor gets executed. As
with the this keyword, any calls to super must be the first line of code in your constructor
or the code will not compile.

The super Keyword

Don’t confuse the use of super in a constructor with the super keyword that represents
the reference to an object’s parent. Using super in a constructor is a different, unrelated
use of the super keyword.

Let’s look at an example. The following NonFictionBook class is a child of the Book class
and invokes one of the constructors in Book using the super keyword on line 6:

1. //Book.java

2. public class Book {

3 public String title;
4. pubTlic Person author;
5. public String ISBN;

6

7 public Book(String ISBN) {
8 this.ISBN = ISBN;
9. }

10.

11. public Book() {

12. title = "Unknown";
13. author = null;

14. ISBN = "-1";

15. }

16.}

1. //NonFictionBook.java

2. public class NonFictionBook extends Book {
3. public String subject;
4

The Instantiation Process 109

5. pubTlic NonFictionBook(String subject, String ISBN) {
6. super(ISBN);
7. this.subject = subject;
8. }
9.
10. public NonFictionBook(String subject) {
11 this.subject = subject;
12. }
13. }
@”‘ These two class definitions are not numbered sequentially because they
INING cannot be defined in the same source file.

The call to super on line 6 of NonFictionBook.java invokes the Book constructor on line

7 of Book. java, passing in a String that gets stored in a field of Book. Study the following
code and try to determine its output:

N o v b

6.

NonFictionBook x = new NonFictionBook("American History", "123-45");
NonFictionBook y = new NonFictionBook("Greek Mythology");
System.out.println(x.ISBN);

. System.out.printin(y.ISBN);

Executing this code results in the following sequence of events:

The string “123-45” in the new statement is passed into the constructor on line 5 of
NonFictionBook.

On line 6 of NonFictionBook, the call to super passes the String to line 7 of Book.

On line 8 of Book, the String is assigned to the ISBN field declared on line 5. Therefore,
X.ISBN is “123-45",

The new statement for y invokes the NonFictionBook constructor on line 10 of
NonF1ictionBook.

Because no explicit call to super appears in that constructor, the no-argument
constructor of Book on line 11 is invoked, which assigns the ISBN field to “-1”.
Therefore, y.ISBN is “-1”.

The println statements output the following:

123-45

-1

110 Chapter 2 - Declarations, Initialization, and Scoping

Why does the no-argument constructor get invoked on Book within the NonFictionBook
constructor declared on line 10? The instantiation process requires that the parent class
constructor execute before any child class constructor executes. There are two important
rules of using super in a constructor that enforce this behavior:

* Any call to super must be the first line of code in a constructor or the code will not
compile.

» If a constructor does not explicitly have a call to super or this as its first line of code,
the compiler inserts the statement super(); as the first line of code in the constructor.

In other words, if you write a constructor and do not call super, the compiler does it for
you. In the NonFictionBook constructor on line 10, the constructor actually looks like the
following:

public NonFictionBook(String subject) {

super(); //Compiler adds this statement
this.subject = subject;

}

If you want, you can explicitly add the call to super to make your code more readable.
The behavior of your code does not change by adding super(); because the compiler
adds it for you anyway. With the call to super explicitly declared, it becomes clear which
constructor in the parent is being invoked.

Default Constructors and super

Watch out on the exam for a question that tests your knowledge of the default call to
super. It is an important concept in Java and this default line of code (that you don't
even write) generates a compiler error if the parent class does not have a no-argument
constructor. For example, suppose we have the following Book class:

public class Book {
public String ISBN;

public Book(String ISBN) {
this.ISBN = ISBN;

}

This version of Book only has one constructor. A String must be passed into any new
Book being instantiated. (Recall that you do not get a default constructor in a class that

The Instantiation Process m

explicitly defines its own constructor.) Using this version of the Book class, the following
FictionBook class does not compile:

public class FictionBook extends Book {
public String mainCharacter;

public FictionBook(String m) {
mainCharacter = m;

}

The following compiler error is generated:

FictionBook.java:4: cannot find symbol
symbol : constructor Book()
Tocation: class Book

public FictionBook(String m) {

~

To fix this compiler error, a call to super that passes in a String must explicitly appear
on the first line of code in the constructor of FictionBook, even if it is not clear what
value to pass to the Book constructor. The following constructor in FictionBook compiles
successfully:

public FictionBook(String m) {
super("-1");
mainCharacter = m;

Instance Initializers

An instance initializer is a block of code declared in a class that executes for each new
instance of the class. An instance initializer executes immediately after the parent class
constructor finishes and before the body of the class constructor executes. A class can have
multiple instance initializers and they are executed in the order they appear in the source
file. Instance initializers are not members of a class like fields and methods are. You cannot
explicitly invoke an instance initializer because it does not have a name.

The following Book class contains an instance initializer on lines 11 to 15:

1. public class Book {
2. public String title;
3. public Person author;

112 Chapter 2 = Declarations, Initialization, and Scoping

public String ISBN;

4
5
6 public Book(String ISBN) {

7. System.out.printIn("Inside Book constructor");
8 this.ISBN = ISBN;

9

12. System.out.printin("Inside instance initializer");
13. title = "Unknown";

14. author = null;

5.}

16.}

The only syntax for an instance initializer is the curly braces. It is simply a block of code
located in a class definition with no name or special keyword to declare it. What is the
output of the following statement that instantiates a new Book object?

Book b = new Book("888-999-7777");

Because the instance initializer is invoked before the constructor, line 12 is displayed
before line 7 and the output is

Inside instance initializer
Inside Book constructor

Let’s look at another example of an instance initializer. Study the following Vehicle and
Car class and try to determine the output of main in Car:

1. //Vehicle.java

2. public class Vehicle {

3. public int numOfWheels;

4.

5. public Vehicle(int n) {

6. System.out.printin("Inside Vehicle constructor");
7. numOfWheels = n;

8. }

9. }

1. //Car.java

2. public class Car extends Vehicle {

The Instantiation Process

3 public String make, model, color;

4

5 {

6. System.out.println("Inside Car instance initializer");
7 color = "Red';

8 }

9.

10. pubTlic Car(String make, String model) ({

11. super(4);

12. System.out.println("Inside Car constructor");
13. this.make = make;

14. this.model = model;

15. }

16.

17. public String toString() {

18. return make + " " + model + " " + color;
19. }

20.

21. public static void main(String [] args) {
22. Car ford = new Car('Ford", "Mustang");
23. }

24. }

Running the Car program results in the following sequence of events:

113

1. The new Car statement executes on line 22 of Car.java, which invokes the constructor

on line 10 of Car.

2. The call to super(4) on line 11 passes control to the Vehicle constructor on line 5,

which displays the message “Inside Vehicle constructor”.

3. After the Vehicle constructor returns, the instance initializer in Car on line 5 is
invoked, displaying the message “Inside Car instance initializer”.

4. The body of the Car constructor executes last, displaying “Inside Car constructor”.

Therefore, the output of main is

Inside Vehicle constructor
Inside Car instance initializer
Inside Car constructor

114 Chapter 2 = Declarations, Initialization, and Scoping

Why Use an Instance Initializer?

You can write lots of Java classes that do not use instance initializers. A constructor can
always be used to initialize any fields of an object. Some developers like to use instance
initializers for code readability, because you can put an instance initializer in the vicinity
of your field declarations. For example, the following Button objects in the ColorChanger
class do not rely on constructor arguments to be initialized:

7. public class ColorChanger extends Frame {

8. private Button redBtn, whiteBtn, blueBtn;
9. {

10. redBtn = new Button("Red");

11. whiteBtn = new Button("White");

12. blueBtn = new Button("Blue");

13. }

In this scenario, it really does not matter if the Button objects are instantiated in a
constructor or an instance initializer, so using an instance initializer might make the code
more readable, especially if this is a large source file with multiple constructors.

Static Initializers

A static initializer is a block of code that executes once when a class is loaded by the class
loader. The syntax for a static initializer is the static keyword followed by a set of curly
braces:

static {
//a static initializer

A class can contain multiple static initializers. They are executed in the order they
appear in the source file. The purpose of a static initializer is to perform any complex
initialization of static fields in the class or to perform any tasks that need to be performed
only once. For example, a common use of static initializers is to load system libraries:

pubTlic class MyLibrary {
static {
System.loadLibrary("mylibrary");

1
2
3
4. }
5
6 //remainder of class definition
7

The Instantiation Process 115

If a system library is loaded more than once by a class loader, an exception occurs. Therefore,
calling ToadLibrary for “mylibrary” is something you only want to perform once during the
lifetime of this class, and a static initializer is the perfect place for such a task.

What Is a Class Loader?

Every JVM has a built-in class loader object of type java.lang.ClassLoader that is
responsible for the loading of classes into the memory of a Java program. When you
refer to a class in your Java program, the class loader searches the class path for the
appropriate .class file and loads the bytecode into memory. For each class that is
loaded, the class loader instantiates a java.lang.Class object.

The class loader loads a class only once, so there is only one Class object for each class
that your program uses. It is here in a Class object that the static fields and methods of
your class are stored in memory. The class loader also invokes any static initializers in

a class after the class is loaded. These static initializers allow you to initialize any static
fields or perform any onetime tasks for the class.

You can write your own class loader, but the built-in class loader is sufficient for most
Java applications.

The following MyNumberFormatter class demonstrates a static field getting initialized
in a static initializer. The initialization of the static field involves more than a single
statement, so this is another good example of when to use a static initializer.

1. import java.text.NumberFormat;

2. import java.text.DecimalFormat;

3. import java.util.Locale;

4.

5. public class MyNumberFormatter {

6. public static DecimalFormat df;

7.

8. static {

9. Locale Tocale = new Locale("de"); //German
10. NumberFormat nf = NumberFormat.getInstance(locale);
11. df = new DecimalFormat("#,###.00");

12. }

13.}

Now that we have seen how static initializers work, we will change topics and discuss
one of the most important elements of a class: methods.

116 Chapter 2 - Declarations, Initialization, and Scoping

Declaring Methods

A Java class contains fields that represent the attributes of the object and methods that
represent the behaviors of the object. We have already discussed fields in detail. The exam
objectives state that you should be able to “develop code that declares both static and non-
static methods, and — if appropriate — use method names that adhere to the JavaBeans
naming standards. Also develop code that declares and uses a variable-length argument
list.” This section discusses everything you need to know about declaring and using Java
methods, including the JavaBeans naming convention, static methods, variable-length
arguments, method overloading, method overriding, and covariant return types.

Method Declarations

The definition of a method in Java is referred to as a method declaration. A method
declaration in Java has the following syntax:

accessspecifier otherspecifier returnvalue methodName(parameterlist) throws
exceptionlist {

methodbody

Figure 2.9 shows the elements of the sTeep method declared in the Thread class.

FIGURE 2.9 Theelementsthat comprise a method declaration.

Access Other Return type ~ Method List of parameters
specifiers specifiers (required) name (separated by commas)

NN S

public static void sleep(long millis, int nanos) throws InterruptedException {

// The method/body goes here T
}
Optional list of exceptions
(separated by commas)

Parentheses are required here. “throws” appears
only with an
exception list.

Like any member of a class, a method has an access specifier, which is one of the
following four values:

public The method is accessible to any other class.
private The method is only accessible from within the class.
protected Only classes in the same package and child classes can access the method.

Default access Only classes in the same package can access the method.

Declaring Methods 17

The other specifiers are Java keywords from the following list:
static This modifier declares a static method, also known as a class method.
final The method cannot be overridden by a child class.

abstract This modifier declares an abstract method that must be overridden by any non-
abstract child classes.

native The Java method maps to a method written in a different language, usually C or
C++. The SCJP exam does not require knowledge of the native keyword.

synchronized The calling thread must obtain the object’s lock before the method exe-
cutes. We will discuss synchronized methods in Chapter 5, “Concurrency.”

A method might not declare any of these modifiers, or a method might declare more
than one of these. For example, you can have a final synchronized method.

A Java method must declare a return value. (A method declares void if it does not
actually return anything.) A list of the possible return values of a method follows:

void The method does not return anything.

Primitive type A method can return a byte, short, int, Tong, float, double, boolean,
or char.

Reference type A method can return any reference, meaning a method can return any
data type.

The name of a method must be a valid Java identifier. The name of a method should be a
verb starting with a lowercase letter using the mixed uppercase notation. For example, the
following list of method names is found in the Java API:

= toString

" run

= getStackTrace
= isEmpty

= setTimeZone

The parameter list is a comma-separated list of variable declarations placed within the
parentheses. Use empty parentheses for a method that does not take in any arguments.
Here are some sample parameter lists:

= yield(): No parameters.

= read(byte [1 b, int off, int len): Three parameters — an array of bytes and two
ints.

*= connect(SocketAddress endpoint, int timeout): Two parameters — a
SocketAddress and an int.

= displayErrors(OutputStream out, String... errors): An OutputStream followed
by any number of String references.

118 Chapter 2 - Declarations, Initialization, and Scoping

Variable-Length Argument List

As of Java 5.0, a method in Java can declare a variable-length argument list by using
the ellipsis (. . .) after the data type of the variable-length parameter. For example, the
following method can take in any number of String references:

public void displayErrors(OutputStream out, String... errors)

Behind the scenes, the errors variable is actually implemented as an array of String
references. We will discuss the details of variable-length arguments later in this section.

The exception list is a throws clause that lists the exceptions the method declares. Separate
multiple exceptions by commas. The throws clause is not needed if the method does not
throw any checked exceptions. Here are some examples of methods with a throws clause:

= readLine() throws IOException

= forName(String n) throws ClassNotFoundException

= clone() throws CloneNotSupportedException

= getResponse(int x) throws IOException, RMIException

We will discuss exceptions in detail in Chapter 3, “Flow Control.”

Method Signatures

A method signature consists only of a method’s name and parameter types. The
modifiers, return type, exception list, and method body are not considered a part
of a method’s signature. The concept of a method signature is important in method
overriding, which we discuss later in this chapter.

JavaBeans Naming Convention

JavaBeans is a technology for developing software components in Java. Knowledge of
developing JavaBeans is not required for the SCJP exam. However, the exam objectives
specifically state knowledge of the JavaBeans naming convention for methods. The methods
in the Java API use this naming convention, as do most Java developers.

Declaring Methods 119

JavaBeans have properties that are determined by the pubTic methods in the class. These
special methods have the following properties:

= The property methods begin with “set” and “get,” or “set” and “is” for boolean data
types. The set methods are referred to as mutator methods because they change the
property, and get methods are referred to as accessor methods because they return a
property.

= The letter following the set or get is capitalized.

= The property name is the name of method minus the set or get, with the first letter in
lowercase.

For example, suppose a class contains the following two methods:

public void setLastName(String s)
public String getLastName()

The name of the JavaBean property resulting from these two methods is TastName, and
the data type of the property is String. The parameter of the set method has to be the same
data type as the return value of the get method.

Let’s take a look at the following Employee class example and see if you can determine
its JavaBeans properties:

1. dimport java.util.GregorianCalendar;

2

3. public class Employee implements java.io.Serializable {
4 private String first, last;

5. private GregorianCalendar hireDate;
6 pubTlic double salary;

7 private boolean fullTime;

8

9 public String getFirstName() {

10. return first;

11. }

12.

13. public void setLastName(String s) {
14. Tast = s;

5.)

16.

17. public String getLastName() {

18. return last;

19. }

20.

21. public GregorianCalendar getHireDate() {
22. return hireDate;

120 Chapter 2 - Declarations, Initialization, and Scoping

23. }

24.

25. public void setHireDate(GregorianCalendar hd) {
26. hireDate = hd;

27. }

28.

29. public void setFullTime(boolean fullTime) {
30. this.fullTime = fullTime;

31. }

32.

33. public boolean isFullTime() {

34. return fullTime;

35. }

36.}

Read and Write JavaBeans Properties

A class does not need to contain matching set and get methods for each property. A read-only
property would only have a get method and a write-only property would only have a set method.

I should also point out that the names of the fields in a class have nothing to do with
JavaBean properties. For example, line 6 of the EmpToyee class declares a pubTic field

named salary, but salary is not a JavaBean property of the Employee class.

Here are the JavaBean properties that the Employee class does have:
= firstName: A read-only String property
= TastName: A String property
* hireDate: A GregorianCalendar property

= fullTime: A boolean property

JavaBean Event Methods

The JavaBean specification also defines event handler methods that have the
following naming convention:

public void addXxxxListener(XxxxListener a)
public void removeXxxxListener(XxxxListener a)

Declaring Methods 121

For example, the java.awt.Button class declares the following methods:

public void addActionListener(ActionListener a)
public void removeActionListener(ActionListener a)

According to the JavaBeans method naming convention, the Button class is therefore
a source of events of type ActionEvent, and another object can register and unregister
itself with the Button to listen to the ActionEvent by calling the appropriate add and
remove method.

The exam objectives do not specifically state that you need to know the event listener
methods, so you may or may not see this topic on the exam. However, it is useful
information that is worth knowing as a Java developer because JavaBeans show up in all
sorts of Java technologies.

Instance Methods

An instance method is a nonstatic method of a class. They are referred to as instance
methods because they represent the behaviors of each instance of the class. Instance
methods are also referred to as member methods, member functions, or simply methods.

An instance method can only be invoked on an instance of the class. Without an
instance of the class, the method does not exist and it does not make sense to attempt to
invoke it. You can’t drive a car until you manufacture the car. You can’t cook in the kitchen
until you build the house. Methods are behaviors of the objects, so the objects need to exist
before they can perform their desired behaviors.

You use the dot operator on a reference to invoke an instance method. Let’s look at an
example. The following Customer class contains one constructor and five instance methods:

1. public class Customer {

2 private String name;

3 private int 1id;

4.

5. public Customer(int id, String name) {
6 setId(id);

7 this.setName(name);

8 }

9.

10. public void setName(String name) {
11. this.name = name;

12. }

13.

122 Chapter 2 - Declarations, Initialization, and Scoping

14. public String getName() {

15. return name;

16. }

17.

18. public int getId() {

19. return id;

20. }

21.

22. private void setId(int id) {

23. if(id > 0) {

24. this.id = 1id;

25. }

26. }

27.

28. public void processOrder(String itemName) {
29. System.out.println(this.getName() + " 1is ordering a "
30. + itemName);

31. }

32.}

Invoking an Instance Method Requires a Reference

Notice that every instance method call in Java requires a reference. Even within a class
we have to use the this reference to invoke another method in the same class, although
the this reference is not required because the compiler adds it implicitly when you leave
it off. For example, in the Customer class the this reference is explicitly denoted on lines
7 and 29, while on line 6 the this reference is implied and the compiler adds it behind the
scenes, resulting in this.setId(id).

Examine the following statements. Do they compile and, if yes, what is the result?

41. Customer c = null;
42. c.setName("Sherlock Holmes");
43, System.out.printIin(c.getName());

You might be surprised to find out that this code compiles fine, even though it does
not make sense to invoke setName and getName because no Customer objects have been
instantiated yet. Without any Customer objects in memory, there are no setName and
getName methods to invoke. Because c is null and does not point to an actual Customer
object, the statement on line 42 generates a Nul1PointerException.

45.
46.
47.
48.
49.

Declaring Methods 123

Now look at the following statements and determine if they compile and what their result is:

Customer y = new Customer(101, "Dr. Watson");
System.out.printIin(y.getName());

Customer z = new Customer(202, "Mr. Rattigan');
z.processOrder("Widget #4");
System.out.printin(z.getName());

The code compiles fine. Two Customer objects are instantiated in memory, as shown in

Figure 2.10. The output of the code is

Dr.
Mr.
Mr.

Watson

Rattigan is ordering a Widget #4

Rattigan

FIGURE 2.10 Each Customer object has its own instance fields and methods in
memory.

Customer
reference

Customer object

y

name

“Dr. Watson”

101

Customer
reference

setName
getName
setld

getld
processOrder

Customer object

4

name

> “Mr. Rattigan”

202

setName
getName
setld

getld
processOrder

124 Chapter 2 - Declarations, Initialization, and Scoping

Methods Behind the Scenes

From an object-oriented point of view, each instance of a class gets each field and
method of the class in memory when the object is instantiated. For fields, this is exactly
what happens on the heap. Every object must have its own memory for each nonstatic
field of the class because the values of the fields are unique for each object.

However, from a practical point of view, each object does not need its own copy of

the methods because methods do not have any state and the implementation of each
method is the exact same for every instance. To save memory, the JVM instead stores the
method implementations in the Class object of the class, and each object accesses these
implementations by storing a corresponding function pointer for each method in the
class. In other words, instance methods are actually shared among all instances.

However, it is important to understand that from a theoretical point of view every object
has its own copy of each field and each method in memory. If no Customer objects exist
in memory, then neither do any fields or methods of the Customer class. If there are

100 Customer objects in memory, then there are 100 name references and 100 ints
named id. In theory, there are also 100 setName methods, 100 getName methods, 100
processOrder methods, and so on.

These behind-the-scenes details of how Java stores instance methods in the Class object
to save memory are not a topic on the SCJP exam.

Static Methods

A static method, also referred to as a class method, is declared using the static
keyword. A static method is just like a static field in that it belongs to the class, not the
instances. A static method is invoked without any instances of the class. Instead, use
the name of the class to invoke one of its static methods.

For example, the java.lang.Math class has a static method named sqrt that computes
the square root of a double:

public static double sqrt(double a)

To invoke sqrt, you prefix it with the class name Math:

double x = 49.0;
double response = Math.sqrt(x);

Declaring Methods 125

Compare Static to Global

Java does not allow global methods; all methods must be defined within a class.

A static method is the closest thing we have in Java to creating a global function. They
are utility methods that perform their task only with the arguments passed in or with
other “global” data like static fields.

The following class contains a static method. Examine the code and see if it compiles
and what its output is when incrementCounter is invoked:

1. public class StaticProblem {

2 pubTlic static int counter = 0;

3 public String message;

4

5. public static void incrementCounter() {

6 counter++;

7 System.out.printin(message + counter);
8 }

9. 1}

There is a problem with this class. Keep in mind that incrementCounter can be invoked
with or without any instances of StaticProblem. Let’s assume there are no instances of
StaticProblem in memory when incrementCounter is invoked. That means there are no
message references in memory, so displaying message on line 7 does not make any sense.
Suppose we have 10 instances in memory. Then we would have 10 different message
references in memory, and it is totally unclear which message we are attempting to display.

The StaticProblem class generates a compiler error on line 7. A static method does not
have access to the nonstatic fields in a class because a static method does not have a this
reference. Remember, accessing a field in a class implicitly uses the this reference if you do
not explicitly denote it. Line 7 actually looks like:

7. System.out.printin(this.message + counter);

Because a static method does not have an object associated with it, using the this
reference does not make sense and causes the following compiler error:

StaticProblem.java:7: non-static variable message cannot be
referenced from a static context
System.out.printin(message + counter);

A

126 Chapter 2 - Declarations, Initialization, and Scoping

- | can safely bet that you will be asked a question on the exam regarding a
‘&’TE static method attempting to access a nonstatic field. Static methods cannot
reference the nonstatic fields of the class and do not have access to a this
reference. Understanding this rule implies your understanding of static
methods, and static methods are a fundamental aspect of the Java language,
so expect your knowledge of this subject to be tested on the exam.

Variable-Length Arguments

As of Java 5.0, a method can allow for a variable-length list of arguments to be passed
in to the method. The syntax for declaring a variable-length argument list is to use three
dots, referred to as an ellipsis, following the data type of the parameter. A method can
only declare one parameter as variable length, and it must appear at the end of the list of
parameters.

For example, the following method declaration allows for a variable number of String
references to be passed in:

public void TogErrors(Date timeStamp, String... errors)

To invoke TogErrors, the first argument must be a java.util.Date object followed by
any number of String objects. Examine the following statements and determine if they are
valid method invocations of TogErrors:

31. Date now = new Date();

32. m.TogErrors(now);

33. m.TogErrors(now, "Problem #1");

34. m.logErrors(now, "a", "b", "c", "d", "e", "f'");
35. String [] array = {"does", "this", "work?"};
36. m.logErrors(now, array);

Java treats a variable-length parameter as an array whose elements are the data type
of the parameter. The errors parameter in TogErrors is actually an array of String
references, so each of the previous calls to TogErrors is valid. The array is empty with the
method call on line 32. Line 33 creates an array with one String: "Problem #1", and line
34 creates a String array containing six String objects. Line 36 already passes in an array,
so the compiler does not need to create a new one.

The following example shows the TogErrors method in a class named MyErrorLog.
Notice on line 18 the TogErrors method uses a for-each loop to iterate through the
variable-length parameter errors and write each one to a text file. Examine the code and
see if you can determine its result.

1. import java.io.*;

2. import java.util.Date;

3.

4. public class MyErrorLog {

Declaring Methods

5.

6. private PrintWriter out;

7.

8. public MyErrorLog(String fileName) {

9. try {

10. out = new PrintWriter(new FileWriter(fileName));
11. }catch(IOException e) {

12. e.printStackTrace();

13. }

14. }

15.

16. public void logErrors(Date timeStamp, String... errors) {
17. out.print(timeStamp + ":");

18. for(String error : errors) {

19. out.print(error + ", ");

20. }

21. out.printin();

22. out.flush();

23. }

24.

25. public void finalize() {

26. out.close();

27. }

28.

29. public static void main(String [] args) {

30. Date now = new Date();

31. MyErrorLog m = new MyErrorLog("errors.txt");
32. m.TogErrors(now);

33. m.logErrors(now, "Problem #1");

34, m.logErrors(now, "a", "b", "c", "d", "e", "f");
35. String [] array = {'"does", "this", "work?"};
36. m.logErrors(now, array);

37. }

38.}

The new MyErrorLog statement on line 31 invokes the constructor on line 8, which

127

creates a new text file named errors. txt for writing to. The TogErrors method is invoked

four times, and after running this program the errors. txt file looks something like this:

Tue Aug 04 14:32:56 MDT 2009:

Tue Aug 04 14:32:56 MDT 2009:Problem #1,

Tue Aug 04 14:32:56 MDT 2009:a, b, c, d, e, f,
Tue Aug 04 14:32:56 MDT 2009:does, this, work?,

128 Chapter 2 - Declarations, Initialization, and Scoping

'l As with any new feature of the language, expect variable-length
A&’TE arguments to be on the exam. Remember that a method can only declare
one parameter as variable-length, and it must appear at the end of the
parameter list.

Variable-length arguments can sometimes lead to ambiguities in method overloading
when the compiler cannot determine which method to invoke. For example, a class could
legally declare the following two methods named average:

public static int average(int... values)
public static double average(double... values)

Invoking average with a list of doubles works fine:

average(12.5, -4.78, 39.04); //works fine

However, any attempt to invoke the average method with a list of ints generates a
compiler error:

average(6, 10, 14, 20); //does not compile

Here is the compiler error from this statement:

MyMath.java:12: reference to average is ambiguous, both method average(int...)
in MyMath and method average(double...) in MyMath match

average(6, 10, 14, 20);

The same compiler error occurs when you attempt to invoke average with no
arguments:

average(); //ambiguous!

When using variable-length arguments and method overloading, you need to ensure that
the data types of your parameter lists are unique enough to avoid any ambiguities.

Method Overloading

Method overloading is when a class contains multiple methods with the same name but
different parameter lists. Constructors can also be overloaded. We use method overloading
all the time in Java. It is easier than trying to come up with different names for methods
that perform similar tasks but require different types of data to be passed in. This section
discusses the details of method overloading.

Declaring Methods 129

The rules that apply to method overloading follow:
= The parameter lists must be unique, either in the number of parameters or their data type.
* The return value can be different (as long as the parameter lists are unique).
= The list of declared exceptions can be different (as long as the parameter lists are unique).

For example, suppose a class has the following methods. Do these method declarations
follow the rules for valid method overloading?

public void send(String recipient, String message)

public boolean send(String recipient, StringBuffer message)
public void send(int id) throws UnknownHostException
public void send(float f)

public int send(String [] headers)

Because the parameter lists for these five send methods are unique and unambiguous,
these methods do follow the rules for proper method overloading and could appear in the
same class. The key in overloading is that the parameter lists are unique enough that the
compiler can resolve the appropriate method.

The method signatures must be different for valid method overloading. The return
values and declared exceptions are irrelevant if the method signatures are unique. For
example, the following two method declarations are not valid method overloading because
they have the same signature:

public boolean send(String name, String address)
public void send(String recipient, String message)

Changing the return type is not sufficient, and the names of the parameter does not help
the compiler resolve anything, so these two send methods could not appear in the same class.

Method Overloading and Data Type Promotion

There can be some confusion when the parameter types of overloaded methods are
related either by inheritance or promotion. For example, suppose we have the following
overloaded methods:

12. public String convert(int x) {

13. return "int";

14. }

15. public String convert(short b) {
16. return "short";

17. }

130 Chapter 2 - Declarations, Initialization, and Scoping

Now consider the following statements and try to determine which convert method is
invoked at runtime:

byte b = -41;
System.out.printin(convert(b));

The compiler looks for a convert method with a byte parameter. Because one doesn't
exist, it looks for a convert method with a compatible parameter that a byte can be
promoted to, starting with the smallest promotion, which in this example is a short.
Therefore, the convert method on line 15 is invoked when a byte is the argument. The
output of the previous two lines of code is “short”.

Let’s look at an example. The following Email class has four overloaded send methods.
Study the code carefully and try to determine its output.

1. public class Email {

2 public void send(float f) {

3 System.out.printin("float parameter");
4. }

5.

6 public void send(Object x) {

7 System.out.printin("Object parameter");
8 }

9.

10. public void send(String s) {

11. System.out.printIn("String parameter");
12. }

13.

14. public void send(int id) {

15. System.out.printin("int parameter");
16.

17. }

18.

19. public static void main(String [] args) {
20. Email email = new Email();

21. email.send(12.5);

22. email.send(123456);

23. email.send(new String("Hello"));

24. email.send(new java.util.Date());

25. }

26.)

Declaring Methods 131

Within main, the following sequence of events occurs:

1. The call to send on line 21 has a double argument, so the next largest compatible data
type of send parameters is Object on line 6. (Note that as of Java 5.0, primitive types
are autoboxed into their equivalent Object type, which for the literal 12.5 is
java.lang.Double.)

Line 22 invokes the send method on line 14 because 123456 is an int.
Line 23 invokes the send method on line 10 because the argument is a String.
Line 24 invokes the send method on line 6 because Date is a child of Object.

Therefore, the output of running main in the Email class is

Object parameter
int parameter

String parameter
Object parameter

Autoboxing of Primitive Types

Primitive types are automatically boxed into their corresponding wrapper class object
whenever necessary, and they are also unboxed automatically whenever necessary. We
discuss the wrapper classes and autoboxing and unboxing in Chapter 4, “API Contents.”

Method Overriding

The exam objectives state that you should be able to “determine if a method is correctly
overriding another method, and identify legal return values (including covariant returns),
for the method.” Method overriding means writing a child class that contains the same
method signature as its parent class. At runtime the child method executes, not the parent
method. The child method takes the place of the parent method, thereby overriding the
behavior of the parent. Method overriding is an important capability of object-oriented
programming, and this section discusses the details of overriding methods in Java.
The rules for overriding an instance method follow:

= The method in the child has to have the same signature (name and parameter list) as
the method in the parent.

= The access to the child method has to be at least the same or more accessible than the
parent method. For example, if the method is pubTic in the parent class, then it has
to be public in the child class. A method with default access in the parent could be
public or protected, or have the default access in the child class.

132 Chapter 2 - Declarations, Initialization, and Scoping

* The child method cannot throw a greater exception than the parent. In other words,
any exception thrown by the child method must be a subclass of one of the exceptions
thrown by the parent method.

* The return type of the method in the child class has to be the same or a subclass of the
parent method’s return type.

Private Methods and Overriding

Method overriding refers to a child class overriding an instance method that it inherits
from its parent. A private method is not accessible outside of the class it is defined
in, and private methods are not inherited by child classes. Therefore, any discussion
on method overriding implies we are talking about the nonprivate instance methods of
a class. (We discuss overriding nonprivate static methods in the upcoming section on
method hiding.)

The following example demonstrates a child class Lion overriding the eat method in its
parent class Mammal:

//Mammal. java
public class Mammal {
protected int eat(String something) {
System.out.printin("Inside Mammal");
return -1;

//Lion.java
public class Lion extends Mammal {
public int eat(String something) {
System.out.printin("Inside Lion");
return something.length();

Notice the eat method in Lion has the same name and parameter type as eat in Mammal.
The eat method is protected in Mammal and public in Lion, which is valid because publ1ic
is more accessible than protected, so Lion successfully overrides the eat method in Mammal.
What is the output of the following statements?

Declaring Methods 133

20. Mammal mammal = new Mammal();
21. Lion 1ion = new Lion();

22. mammal.eat("food");

23. Tion.eat("warthog");

Because the eat method in Lion hides the eat method in Mammal, calling eat on line 23
results in only the eat method of the Lion class executing. The output of these four lines of
code is

Inside Mammal
Inside Lion

There are situations in method overriding where you might not want to hide the parent
class method, but just add some behavior to it in the child class. You can use the super
keyword to invoke the parent method from the child method, as shown in Figure 2.11 and
demonstrated in the following modified Lion class:

1. public class Lion extends Mammal {

2 public int eat(String something) {

3 System.out.printin("Inside Lion");
4. return super.eat(something);

5 }

6. }

FIGURE 2.11 Achild caninvoke a parent’s overridden method using the super
keyword.

Mammal

> protected int eat(String)

Use the super
keyword to
invoke the eat
method in the
Mammal class. Lion

lioness.eat(“zebra”)
invokes eat in the Lion

public int eat(String) & class.

Using the same Mammal class from the previous example, what would be the output of
the following statements?

29. Lion Tioness = new Lion();
30. lioness.eat("zebra");

134 Chapter 2 - Declarations, Initialization, and Scoping

The following sequence of events occurs:
1. The eat method in Lion is invoked, which prints “Inside Lion”.

2. The eat method in Mammal is called on line 4 using the super reference, which causes
“Inside Mammal” to be displayed.

Therefore, the output is

Inside Lion
Inside Mammal

The super Reference

Just like every object has a reference to itself via the this keyword, every object has a
reference to its parent object via the super keyword. A child object can actually use the
this reference to access parent class members, but there are situations where the child
class must use super to access a parent field or method.

For example, suppose in the Lion class we had the following eat method:

10. public class Lion extends Mammal {

11. public int eat(String something) {

12. System.out.printin("Inside Lion");
13. return this.eat(something);

14. }

15. }

The call to this.eat on line 13 is a recursive call that causes control to jump to line 11,
which creates an infinite recursion eventually resulting in a stack overflow error. In this
example, if the Lion wants to call eat in MammaT, it must use the super reference.

Covariant Return Types

Before Java 5.0, it was required that the overriding method in the child have the same
return type as the overridden method in the parent. Java 5.0 introduced covariant return
types, which allows the overriding method to return a data type that is a child of the return
type in the parent class.

For example, the following Child class successfully overrides the doSomething method
in Parent because FileOutputStreamis a child of OutputStream:

//Parent.java
public class Parent {
public OutputStream doSomething(int x, String s) {
//do something

Declaring Methods 135

}
//Child.java
public class Child extends Parent {
public FileOutputStream doSomething(int y, String s) {
//do something else

Covariant return types are not allowed for primitive types, only Object types. The
following code does not compile:

//Parent.java
public class Parent {
public int doNothing() {
return 0;

}
//Child.java
public class Child extends Parent {
public short doNothing() { //not valid!
return 1;

The following compiler error is generated:

Child.java:2: doNothing() in Child cannot override doNothing() in
Parent; attempting to use incompatible return type
found : short
required: int
public short doNothing() {

A

Covariant return types are yet another new concept introduced in Java 5.0,
d,,“ so expect at least one question on the exam that involves understanding
how they work.

Method Hiding

Method hiding occurs when a child class contains a static method that is also defined in

its parent, using the same rules of instance method overriding discussed earlier. If a static
method in a child class contains the same static method as its parent class, then the method
in the child class bides the method in the parent class but does not override it.

136 Chapter 2 - Declarations, Initialization, and Scoping

Method hiding is subtly different than method overriding. When a method is
overridden, the child version of the method always executes at runtime. Technically, a static
method cannot be overridden because you can still invoke the static method in the parent
class.

For example, the following FictionBook class contains the same static method
getCounter that is declared in its parent class Book:

1. //Book.java

2. public class Book {

3. private static int counter = 0;

4. public static int getCounter() {

5. System.out.printin("Inside Book");

6. return ++ counter;

7. }

8. }

1. //FictionBook.java

2. public class FictionBook extends Book {

3. public static int getCounter() f{

4. System.out.printin("Inside FictionBook");
5. return -1;

6. }

7.

8. public static void main(String [] args) {

9. System.out.printIin(Book.getCounter());
10. System.out.printIn(FictionBook.getCounter());
11. }

12. }

Inside main, getCounter is invoked using both Book and FictionBook. If getCounter was
truly overridden, then the output would be “Inside FictionBook” for both method calls.
However, as you can see by the output here, the getCounter method in Book executes from
line 9:

Inside Book

1

Inside FictionBook
-1

The getCounter method in Book is referred to as a hidden method, which is probably
not the best term to use because the method is not really hidden at all. You can invoke
getCounter in Book at any time using the syntax Book.getCounter, as shown in Figure 2.12.

Declaring Methods 137

FIGURE 2.12 The static getCounter method in FictionBook does not override
getCounter in Book.

Book.getCounter()
invokes the method
in Book.

Book

™ public static int getCounter()

FictionBook.getCounter()
invokes the method
in FictionBook.

FictionBook

I public static int getCounter()

Nonetheless, method hiding is the term used to describe this situation.

Overridden vs. Hidden

When a child class contains the same instance method as a parent class instance method
(assuming all the rules of method overriding are followed), the child class method
overrides the parent class method. When a child class contains a static method that is the
same as a static method in the parent, this child method hides the parent class method.

In simpler terms, instance methods are overridden and static methods are hidden.

A child class cannot contain a nonstatic version of a static method in its parent class.
Neither can a child class contain a static method with the same version of a nonstatic
method in the parent. Either of these situations generates a compiler error.

Final Methods

A method in Java can be declared final using the final keyword. A final method cannot be
overridden. You might make a method final if it has a critical implementation that should
not be changed, or you might just want a child class not to have the option of overriding
a particular method. Whatever the motivation, an attempt to override a final method
generates a compiler error.

The following Lion class has a final method named breathe:

pubTlic class Lion {
public void eat(String something) {
System.out.printIn("Lion is eating");

A w N

138 Chapter 2 - Declarations, Initialization, and Scoping

public final void breathe() {
System.out.printin("Lion is breathing");

O 0 N o wuvn

}

No subclass of Lion can override the breathe method, but let’s try it anyway and see
what happens. The following MountainLion class extends Lion and declares a breathe
method:

1. public class MountainLion extends Lion {

2 pubTlic void breathe() {

3. System.out.printIin("MountainLion is breathing");
4 }

5.}

As expected, this does not compile. Here is the compiler error that it generates:

MountainLion.java:2: breathe() in MountainLion cannot override breathe() in
Lion; overridden method is final

public void breathe() {

n

Declaring Abstract Classes

The exam objectives state that you should be able to “develop code that declares classes
(including abstract classes).” An abstract class is a class that cannot be instantiated. Use the
abstract keyword to declare a class as abstract, as demonstrated by the following Mammal
class:

1. public abstract class Mammal {

2 pubTlic boolean hasFur;

3

4 pubTlic Mammal() {

5. hasFur = false;

6 }

7

8 pubTic Mammal(boolean hasFur) {
9. this.hasFur = hasFur;

10. }

11.

12. public void breathe() {

13. System.out.printin("Mammal is breathing");
14. }

15.

Declaring Abstract Classes 139

16. public void eat(String something) {

17. System.out.println("Mammal is eating " + something);
18. }

19. }

The Mamma1 class seems like a typical class with one field, two constructors, and two
publ1ic methods. However, adding the abstract keyword to line 1 makes the Mammal class
abstract and it cannot be instantiated. The following line of code does not compile:

21. Mammal m = new Mammal();
This statement generates the following compiler error:
Mammal.java:21: Mammal 1is abstract; cannot be instantiated
Mammal m = new Mammal();

A

So how do we take advantage of this abstract class if we cannot instantiate it? The
answer is to subclass it! A child class of Mammal will inherit all the public fields and methods
of Mammal, as well as the ability to invoke its constructors. The Mammal class is still very
useful; we just can’t create any instances of it. From a design point of view, this actually
makes sense because no animal is just a mammal. The concept of mammal is abstract in
the real world, so making it abstract in a Java application seems like a good design.

Why Use Abstraction?

The objective of this section is to discuss the details of declaring abstract classes and
abstract methods. The reason for using abstraction is discussed in detail in Chapter 6,
“0O0 Concepts,” where we revisit our discussion on abstract classes and explain the
benefits and usefulness of abstraction in object-oriented programming.

The following PTatypus class extends Mammal. Examine the code, determine if it
compiles successfully, and try to figure out the output of running the main method:

1. public class Platypus extends Mammal {

2 public int eggCount;

3

4 public void TayEggs() {

5. System.out.printIin("Platypus is laying eggs");

6 }

7

8 public void eat(String something) {

9 System.out.printin("Platypus is eating " + something);

10.)
11.

140 Chapter 2 - Declarations, Initialization, and Scoping

12. public Platypus(boolean hasFur) {

13. super(hasFur);

14. eggCount = 1;

15. 1

16.

17. public static void main(String [] args) {
18. Platypus p = new Platypus(false);
19. p.eat("leaves");

20. p.breathe();

21. p.layEggs();

22.

23. }

24.})

The code compiles fine. The PTatypus class correctly overrides the eat method in Mammal
and also declares a new method, TayEggs, and a field, eggCount. Inside main, the following
sequence of events occurs:

1. A new Platypus is instantiated on line 18, which is valid because PTatypus is not
abstract. The constructor on line 12 is invoked.

2. Line 13 passes the hasFur boolean up to the Mammal constructor. Line 14 sets the
eggCount field to 1.

Invoking the eat method on line 19 executes the overridden eat method on line 8.
Invoking breathe on line 20 executes the breathe method in Mammal.
Invoking TayEggs on line 21 invokes the TayEggs method on line 4.

Therefore, the output is

Platypus is eating leaves
Mammal is breathing
Platypus is laying eggs

We use abstract parent classes all the time in Java to represent the common attributes
and behaviors of child objects. Now that you have seen how to declare an abstract class, we
can discuss the concept of an abstract method in Java.

Abstract Methods

An abstract method is an instance method of a class that does not contain a method body
and must be overridden by any nonabstract child classes. Use the abstract keyword to
declare a method as abstract. Instead of a method body, an abstract method simply has a
semicolon at the end of its declaration. For example, the java.io.InputStream declares the
following method:

public abstract int read() throws IOException;

Declaring Abstract Classes 1M

Notice there are no curly braces—not even empty braces. An abstract method does not contain
a method body. Declaring a method as abstract in a class has the following consequences:

= The enclosing class must be declared abstract.

= Any concrete subclass must override all the abstract methods inherited from the parent
class.

= If a subclass does not override its parent’s abstract methods, the subclass must also be
declared abstract.

Concrete Subclasses

Because an abstract method does not have any implementation, its class must be
abstract. Otherwise, instances of the class could attempt to invoke the abstract method,
which doesn’t make sense because the abstract method does not contain any code. The
term concrete subclass refers to a subclass that is not abstract. Child classes that do
not want to be abstract must override the abstract methods in the parent or be abstract
classes themselves.

Let’s look at an example. The following Mammal class is similar to the previous version,
with the addition of an abstract method named walk:

1. public abstract class Mammal {

2 public boolean hasFur;

3

4 public Mammal() {

5. hasFur = false;

6 }

7

8 public Mammal(boolean hasFur) {

9 this.hasFur = hasFur;

10. }

11.

12. public void breathe() {

13. System.out.printin("Mammal is breathing");
14. }

15.

16. public void eat(String something) {

17. System.out.printin("Mammal is eating " + something);
18. }

19.

20. public abstract void walk();

21.)

142 Chapter 2 - Declarations, Initialization, and Scoping

All the other methods of the class have not changed and can still be called just like
before. However, this time Mammal must be declared abstract because of the walk method
on line 20. Without the abstract keyword on line 1, the Mamma1l class would not compile.

The following two classes shown in Figure 2.13 are valid child classes of Mammal. The
Buffalo class successfully overrides the walk method. The Feline class does not override
walk, but it is declared abstract.

//Buffalo.java

public class Buffalo extends Mammal {

public void walk() {
System.out.printin("Buffalo is walking");

}

//Feline.java

public abstract class Feline extends Mammal {

public void sTeep() {
System.out.printin("Feline is sleeping");

© 00 N O U1 A W KN R
—

B R
N R O
—

—

FIGURE 2.13 Buffalois aconcrete subclass and Feline is an abstract subclass of
Mammal.

Mammal is an

abstract class. abstract Mammal
- - Feline is an
public abstract void walk() abstract subclass
of Mammal.
Buffalo abstract Feline

public void walk()

/

Buffalo is a concrete
subclass of Mammal.

abstract HouseCat

\ HouseCat needs to

be abstract if it does
not override walk().

Declaring Interfaces 143

Does the following HouseCat class compile?

public class HouseCat extends Feline {
public void eat() {
System.out.printIin("HouseCat is eating");

public void breathe() {
System.out.printIin("HouseCat is breathing");

© 00 N O U1 A W N R

}

Because HouseCat extends from Feline and Feline inherits the abstract walk method
from Mammal, HouseCat must either override walk or declare itself abstract. Because it does
neither, the class does not compile and generates the following error:

HouseCat.java:1: HouseCat is not abstract and does not override
abstract method walk() in Mammal
public class HouseCat extends Feline {

A

Declaring Interfaces

An interface is a collection of abstract methods. A class implements an interface, inheriting

all the abstract methods declared in the interface. Therefore, a class that implements an

interface must either override the interface methods or the class must be declared abstract.
An interface has the following properties:

* An interface is defined in a . java file. If the interface is pub1ic, the name of the file
must match the name of the class. If the interface has the default access, it is only
accessible from within its package.

» The bytecode file for a compiled interface is a .class file that matches the name of the
interface. All the rules of package names and subdirectories that apply to classes also
apply to interfaces.

* All the methods in an interface are abstract, whether or not the abstract keyword is
explicitly denoted.

= All the methods in an interface are public, whether or not they are explicitly declared public.
= The fields of an interface are public, static, and final.
= An interface cannot declare static methods.

An interface has some similarities to a class, but an interface is not a class. For example,
an interface cannot be instantiated, and it cannot contain any instance fields.

144 Chapter 2 - Declarations, Initialization, and Scoping

Let’s look at an example. Suppose we have the following interface named Drawable:

import java.awt.Rectangle;

public interface Drawable {
int MAX_WIDTH = 1024;

pubTlic void draw();
abstract Rectangle getDimensions();
void resize(int w, int h);

}

The Drawable interface declares one field, MAX_WIDTH, and three methods. Note that MAX_
WIDTH is pubTic, static, and final, even though these specifiers were omitted. Similarly,
the draw method is abstract, the getDimensions method is public, and the resize method
is both public and abstract.

Implementing Interfaces

A class implements an interface using the implements keyword in the declaration of the
class. A class can implement multiple interfaces by separating the interface names with
commas. For example,

public class Picture implements Drawable
public class Flower implements Plant, Drawable
A class that implements an interface must do one of the following:
= Override all the methods of the interface.
= Declare itself as abstract.

Let’s look at an example. The following Picture class implements the Drawable
interface. Study the code and determine if it compiles successfully.

1. dimport java.awt.Rectangle;

2

3. public class Picture implements Drawable {

4 private Rectangle dimensions;

5. private String artist;

6

7 pubTlic Picture(String artist, int width, int height) {
8 this.artist = artist;

9. dimensions = new Rectangle(width, height);
10. }

11.

12. public void draw() {

Declaring Interfaces 145

13. System.out.printin("Drawing a Picture");
14. }

15.

16. public Rectangle getDimensions() {

17. return dimensions;

18. }

19.

20. pubTlic String getArtist() {

21. return artist;

22. }

23.

24. public void resize(int width, int height) {
25. if(width < Drawable.MAX_WIDTH) {

26. dimensions = new Rectangle(width, height);
27. }

28. }

29. }

Because Picture is not declared asbstract, Picture must implement all the methods of
Drawabe for it to compile, which it does. Notice the Picture class can have any number of
fields and methods in addition to the methods of Drawable. But one thing is certain: if you
have an instance of Picture, then you can invoke draw, resize, and getDimensions on it
because Picture implements DrawabTle.

What Is the Purpose of Interfaces?

An interface can contain abstract method declarations but no method implementations.
Why would we create such an entity? Well, one of the main uses of interfaces is to
provide a communication contract between two objects. In other words, two objects that
need to “interface” with each other use an interface. If you know a class implements an
interface, then you know that class contains concrete implementations of the methods

in that interface, and you are guaranteed to be able to invoke those methods safely and
know the object has implemented them.

For example, the java.lang.Runnable interface contains a single method:

public void run();

If you give me an object whose class implements Runnable, then | can invoke run(); on that
object, even though | might not know or care about any other methods and fields of the object.

This is a very powerful feature of the Java language used throughout the Java API, and
any well-designed application will use interfaces extensively.

146 Chapter 2 - Declarations, Initialization, and Scoping

If a class implements multiple interfaces, then an implementing class must override the
methods of all the interfaces it implements. Suppose we have the following interface named Pl1ant:

1. public interface Plant {
2. public void photosynthesize();
3.}
The following Flower plant successfully implements both P1ant and Drawable:

1. import java.awt.Rectangle;

2.

3. public class Flower implements Plant, Drawable {
4. public int numOfLeaves;

5.

6. public void photosynthesize() {

7. System.out.printin("Plant is photosynthesizing");
8. }

9.

10. public void draw() {

11. System.out.printIin('Drawing a Plant");
12. }

13.

14. public Rectangle getDimensions() {

15. return new Rectangle(0,0);

16. }

17.

18. public void resize(int w, int h) {

19. System.out.printin("Resizing a Plant?");
20. 1

21. }

I can understand drawing a flower, but resizing a flower probably doesn’t make any
sense. There are definitely situations in Java where I have implemented an interface and
have been forced to write methods that I did not want to implement. It is not unusual to
have empty method bodies in these situations, which might apply here to the resize and
getDimension methods of Flower.

Interfaces and Data Types

If a class implements an interface, objects from that class are also the data type of the
interface. For example, the Picture and Flower classes, which seem like two totally
unrelated classes, actually share a common data type because both classes implement
DrawabTe. Objects of type Picture and Flower are also objects of type Drawable. An
object taking on the form of different data types is referred to as polymorphism, and we
discuss the effects of interfaces on polymorphism in detail in Chapter 6.

Declaring Enumerations 147

Extending Interfaces

An interface can extend another interface. In fact, an interface can extend multiple
interfaces. (Don’t accuse Java of not allowing multiple inheritance!) Use the extends
keyword to declare that an interface extends another interface. For example, the following
interface extends the Drawable interface:

1. public interface Paintable extends Drawable {
2. public void paint();
3. }

A class that implements Paintable must override paint and also the three methods in
Drawable.

Let’s look at an example of multiple interface inheritance. The following Image interface
extends both java.lang.Runnable and Drawable:

1. public interface Image extends Runnable, Drawable {
2. public String getFormat();
3.}

A class that implements Image must implement the getFormat method, as well as the run
method from Runnable and the three methods from Drawable.

Multiple Inheritance with Interfaces

While valid, writing an interface that extends multiple interfaces is not a common
occurrence in Java. There are situations where the multiple inheritance makes sense, but
this is not something you will do every day.

Declaring Enumerations

Java 5.0 introduced the concept of enumerations to the Java language, along with a new
keyword: enum. An enumeration is a fixed set of constants. An enum is a Java class that
represents an enumeration. You use enumerations whenever you have a set of items whose
values are known at compile time. Common uses of enumerations include days of the
week, months of the year, the planets in the solar system, the directions on a compass, or
your favorite flavors of ice cream. The possibilities for enums are endless, and you should
use them in your Java applications whenever applicable because they provide a type-safe
representation of constant data in your application.

148 Chapter 2 - Declarations, Initialization, and Scoping

Use the enum keyword to declare an enumeration. Just like classes, an enum is defined
in a source file with a .java extension, and all the rules of package names and directory
structures apply. For example, the following enumeration represents the four seasons:

1. public enum Season {
2. WINTER, SPRING, SUMMER, FALL
3.}

The Season enum is saved in a source file named Season. java, and the compiled
bytecode is in a file named Season.class. Enumerations have the following properties:

= The enum keyword actually defines a class behind the scenes that extends java.lang
.Enum. Therefore, an enum cannot extend any other class or enum.

* You do not instantiate an enum. The constants defined in an enum are all implicitly
public, final, and static, so there is no reason to create instances of the enum class.

= The enum can declare methods and additional fields. These additional fields and
methods must appear after the enum list, and the enum list must end with a semicolon
in this situation.

Because the elements of an enum are static, you can access them using the name of the
enum. Behind the scenes, the compiler writes a class that extends Enum and creates an
instance of the class for each element in the enum. This generated class contains a static
field for each element in the enum.

The following code demonstrates the syntax for accessing enum elements. Study the
code and try to determine its output:

5 Season now = Season.WINTER;

6. switch(now) {

7. case WINTER :

8 System.out.printin("It is cold now");
9. break;

10. case SUMMER :

11. System.out.printin("It is hot now");
12. break;

13. default:

14. System.out.printin("It is nice now");

15.)

You can declare variables of an enum type. The now variable on line 5 is of type Season
and is assigned to Season.WINTER. The case on line 7 is true, so the output of the preceding
code is

It is cold now

Declaring Enumerations 149

Using enums in a switch Statement

A unique feature of enums is that when you switch on a variable of an enum type, you
do not prefix the case statements with the enum type and the case statements must be
values from the enum. For example, the following switch statement does not compile if
now is of type Season:

switch(now) {
case 0 :
System.out.printin("It is cold now");
break;
case 1 :
System.out.printin("It is hot now");
break;
default:
System.out.printin("It is nice now");

}

This code generates the following compiler error:

EnumTest.java:5: an enum switch case label must be the unqualified
name of an enumeration constant
case 0 :

A

Using enums

The compiler generates a special method named values when it generates the class for your
enum declaration. The values method returns an array of the enum values. For example,
suppose we have the following Direction enum:

1. public enum Direction {
2. NORTH, SOUTH, EAST, WEST
3.)

The following for-each loop iterates through the array returned by the values method
and displays each value using the toString method of the enum:

10. for(Direction d : Direction.values()) {
11. System.out.print(d.toString() + " ");
12. }

150 Chapter 2 - Declarations, Initialization, and Scoping

The output of this loop is

NORTH SOUTH EAST WEST

If you ever need the integer value of an enum element, you can use the static method
ordinal inherited from java.lang.Enum. Can you determine the output of the following
for-each loop?

14. for(Direction d : Direction.values()) {
15. System.out.print(d.ordinal() + " ");
16. }

The integer values of an enum start at 0 and Direction has four values, so the output is

0123

The static valueOf method, inherited from java.lang.Enum, is used to convert a String
value to its corresponding enum value. Examine the following statements and try to
determine the output:

23. Direction home = Direction.valueOf("SOUTH");

24. System.out.printin("Heading " + home);

25. Direction nowhere = Direction.valueOf("NORTHWEST");
26. System.out.printin('Going " + nowhere);

The home variable equals Direction.SOUTH, so line 24 displays

Heading SOUTH

However, line 25 throws an exception at runtime because NORTHWEST is not an element
of Direction. The stack trace looks like this:

Exception in thread "main" java.lang.I1legalArgumentException:
No enum const class Direction.NORTHWEST

at java.lang.Enum.valueOf(Enum.java:192)

at Direction.valueOf(Direction.java:1)

at EnumTest.main(EnumTest.java:25)

Declaring enum Methods

An enum can declare methods and constructors, as well as other fields that are not a part
of the enumerated list of elements. The enumeration list must be declared first in the enum,
followed by a semicolon.

Declaring Enumerations 151

Let’s look at an example. The following version of the Direction enum overrides the
toString method, converting the uppercase enum name to lowercase:

1. public enum Direction {

2 NORTH, SOUTH, EAST, WEST;

3.

4. public String toString() {

5 return this.name().toLowerCase();
6 }

7. '}

The name method is inherited from Enum and returns the corresponding element name.
Try to determine the output of the following statements:

10. for(Direction d : Direction.values()) {
11. System.out.print(d + " ");
12. }

Printing the Direction variable d invokes toString behind the scenes, and the output of
this for-each loop is

north south east west

Declaring enum Constructors

An enum can also define constructors, useful for enums that contain additional fields. For
example, suppose the following enum represents the types of ice cream cones a store sells,
and the number of scoops for each cone is also a constant. Because all of this information
regarding ice cream cones is known at compile time, this is a good scenario for using an enum.

1. public enum IceCream {

2. PLAIN(2),

3. SUGAR(3),

4. WAFFLE(5);

5.

6. private IceCream(int scoops) {
7. this.scoops = scoops;

8. }

9.

10. public final int scoops;

152 Chapter 2 - Declarations, Initialization, and Scoping

When each element of the enum is declared, you have to denote the argument for the
constructor within parentheses. This invokes the constructor on line 6, which stores the
value in the scoops field of each element in the IceCream enum.

Study the following code and determine its output:

IceCream conel = IceCream.PLAIN;
IceCream cone2 = IceCream.WAFFLE;
System.out.printin(conel + " needs " + conel.scoops + " scoops.");
System.out.printin(cone2 + " needs " + cone2.scoops + " scoops.");

The output is shown here:

PLAIN needs 2 scoops.
WAFFLE needs 5 scoops.

Declaring Nested Classes

The exam objectives state that you need to be able to “develop code that declares classes
(including all forms of nested classes).” A nested class is a class defined within another
class. A nested class that is nonstatic is referred to as an inner class. There are four types of
nested classes in Java:

= A member inner class is a nonstatic nested class that is declared at the member level of
a class.

= Alocal inner class is defined within a method. Because it appears within a method,
making it static does not make sense.

* An anonymous inner class is a special case of a local inner class that does not have a
name.

» Top-level inner classes are static inner classes that are nested at the member level of a
class.

The concept of inner classes was introduced in Java 1.1. There are several benefits of
using inner classes, including making your code more readable, allowing for utility classes
to be encapsulated within the class using it, and simplifying the process of writing a class,
thereby actually encouraging developers to be more object oriented. (The easier it is to
write a class, the more likely you are to use classes!) This section discusses the details of
declaring and using the four different types of nested classes.

Member Inner Classes

A member inner class is defined at the member level of a class (the same level as fields,
methods and constructors). Member inner classes have the following properties:

Declaring Nested Classes 153

= A member inner class can be declared public, private, protected or have the default
access.

= A member inner class can extend any class and implement any number of interfaces.
*= A member inner class can be abstract or final.
= An inner class cannot declare static fields or methods.

* Most importantly, a member inner class has access to the members of the outer class,
even the private members.

That last property is what makes inner classes so useful and beneficial. A member inner
class has access to its outer class members without using any special syntax.

Let’s look at a simple example to get started. Here is a class named Outer that contains a
protected member inner class named Inner:

public class Outer {
private String greeting;

1

2

3

4 protected class Inner {

5. public int repeat = 3;

6 public void go() {

7 for(int i = 1; i <= repeat; it++) {
8 System.out.printin(greeting);
9

10. }
1.)
12.}

An inner class declaration is like any other top-level class. It can declare fields, methods,
constructors, and so on. The Inner class has a field named repeat and a method named go.
However, what makes Inner unique is it can access the members of Outer.

The important line of code here to focus on is line 8 when the Inner class displays the
private greeting field of the Outer class. For line 8 to make sense, there has to be a unique
greeting associated with the instance of Inner. Otherwise, it is not clear which greeting
reference to display. What makes this possible are the following properties of inner classes:

= An inner class object is associated with exactly one outer class object. This association
is made when the inner object is instantiated with the new keyword.

* You cannot instantiate an instance of an inner class without a corresponding outer
class instance.

The syntax for instantiating an inner class is to use a reference with the new operator.
For example:

Outer a = new Outer();
Outer.Inner b = a.new Inner();

154 Chapter 2 - Declarations, Initialization, and Scoping

Notice the data type of the Inner reference is Outer.Inner. You only use this syntax in
situations where you are instantiating an inner class from somewhere else other than inside
its outer class, something not commonly done. Typically you instantiate inner objects from
within the enclosing class, using the this reference with the new operator:

Inner x = this.new Inner();

The Inner object that x refers to is associated with the Outer object that the this
reference refers to. The this reference is implied and can be omitted, but your code might
be clearer if you explicitly denote it.

Study the following Outer class and see if you can determine the output of its main
method:

1. public class Outer {

2 private String greeting;

3

4 protected class Inner {

5. public int repeat = 3;

6 public void go() {

7 for(int i = 1; i <= repeat; it++) {
8 System.out.printin(greeting);
9. }

10. }

11. }

12.

13. public void displayGreeting() {

14. Inner x = this.new Inner();

15. X.repeat = 2;

16. x.go(Q);

17. }

18.

19. public static void main(String [] args) {
20. Outer y = new Outer();

21. y.greeting = "Hello, Outer";

22. y.displayGreeting();

23. }

24.})

Running main causes the following sequence of events to occur:

1. An Outer object is instantiated within main and its displayGreeting method is
invoked from line 22.

2. One line 14, an Inner object is instantiated that is associated with the Outer object
from line 20.

Declaring Nested Classes 155

3. The repeat field of x is set to 2 on line 15.

4. Line 16 invokes the Inner object’s go method, which prints out the greeting field of y
twice.

Therefore, the output is

Hello, Outer
Hello, Outer

Inner Classes Behind the Scenes

Something interesting to know about inner classes is that a JVM does not have a concept
of inner classes. They are a compile-time feature, and the compiler actually writes a top-
level class for every inner class that you declare. This new top-level class needs some
special fields and methods so that it can access all the members of its enclosing class.
For example, the inner class contains an implicit reference to its outer class object.

When the Outer class example from this section is compiled, two bytecode files are
created: Outer.class and Outer$Inner.class. (Inner classes are one of the only

times you will ever see a dollar sign in an identifier.) The compiler wrote a class named
Outer$Inner to represent our inner class. You cannot instantiate an Quter$Inner object
explicitly. You have to use the appropriate inner class syntax.

Inner classes also have a special syntax for accessing a field in the outer class that you
need to use if the outer class shares a name with a field or method from the inner class. The
following contrived example demonstrates this syntax. Study the code carefully and see if
you can determine the output:

1. public class A {

2 private int x = 10;

3

4 public class B {

5. private int x = 15;

6

7 public class C {

8 private int x = 20;
9.

10. public void go() {
11. System.out.printin(x);

12. System.out.printin(this.x);

156 Chapter 2 - Declarations, Initialization, and Scoping

13. System.out.printIn(B.this.x);
14. System.out.printin(A.this.x);
15. }

16. }

17. }

18.

19. public static void main(String [] args) {
20. A a = new AQ);

21. A.B b =a.new B();

22. A.B.C c = b.new CQ);

23. c.go();

24. }

25.}

Nested Inner Classes

Notice in the A class it has a nested class B that also has a nested class C. This is
perfectly valid but probably not something you will ever see in the real world.

A breakdown of the code in the A class follows:

1. An object of type C is instantiated using an instance of A and B, and its go method is
invoked.

2. The x on line 11 is implicitly referring to this.x, so 11 and 12 display the same value,
which is 20. (The this reference inside the C class refers to the C object.)

3. To access the x field of the B object, prefix the this keyword with the B class name:
B.this.x. Line 13 displays 15.

4. Similarly, the x in A is A. this.x, which is displayed on line 14.

Keep in mind the syntax A.this and B.this is unique to inner classes only. The output
of running main is

20
20
15
10

Declaring Nested Classes

157

Inner Classes as Event Handlers

A common use of inner classes is for event handlers. An event handler is the type of

object that often needs access to the members of its outer class but likely won't be

reused by another class, making it a good candidate for an inner class. The ColorChanger
class discussed in Listing 2.1 earlier in this chapter declared a member inner class named

MyButtonListener:

7. public class ColorChanger extends Frame {

8. private Button redBtn, whiteBtn, blueBtn;

23. private class MyButtonListener implements ActionListener {
24. public void actionPerformed(ActionEvent e) {

25. String label = e.getActionCommand();

26. if(label.equals(redBtn.getLabel())) {

27. ColorChanger.this.setBackground(RED);

28. } else if(label.equals(whiteBtn.getLabel())) {
29. ColorChanger.this.setBackground(WHITE);
30. } else if(label.equals(blueBtn.getLabel())) {
31. ColorChanger.this.setBackground(BLUE);
32. }

33. }

34. }

54. private void initializeEvents() {

55. MyButtonListener m = new MyButtonListener();

56. redBtn.addActionListener(m);

57. whiteBtn.addActionListener(m);

58. blueBtn.addActionListener(m);

59. }

60. //Remainder of class definition...

71. }

Notice the MyButtonListener class uses the special this syntax for accessing the
setBackground method that CoTorChanger inherits from Frame. The inner class also
references the three private Button fields of the outer class.

158 Chapter 2 - Declarations, Initialization, and Scoping

Local Inner Classes

A local inner class is a nested class defined within a method. Like local variables, a local
inner class declaration does not exist until the method is invoked, and it goes out of scope
when the method returns. That means if you define an inner class locally, you can only
create instances from within the method. Local inner classes have the following properties:
* Local inner classes do not have an access specifier.

= Local inner classes cannot be declared static, nor can they declare static fields or
methods.

* Local inner classes have access to all the fields and methods of its enclosing class.

» A local inner class does not have access to the local variables of method unless those
variables are final.

It might seem odd that a local inner class cannot access a local variable, but recall that
the compiler generates a top-level class from your inner class declaration. It is not possible
for a top-level class to have access to a local variable from a method in another class.
However, if the local variable is final, then a copy of the local variable can be stored in the
generated top-level class, which is exactly what the compiler does behind the scenes.

The following class demonstrates a local inner class. Examine the code and see if you
can determine what its output is:

public class LocalInner {

pubTlic double radius;

final double pi = 3.1415;

1

2

3

4

5. public void doSomething() {
6

7

8 class Circle {

9 pubTic double area() {
10. return pi * radius
11. }

12. }

13.

14. Circle ¢ = new Circle();
15. System.out.printin(c.area());
16. }

17.

18. public static void main(String [] args) {

o

radius;

19. LocalInner x = new LocalInner();

Declaring Nested Classes 159

20. x.radius = 10;
21. x.doSomething();
22. }

23.}

The doSomething method contains a local inner class named Circle. The Circle class
declares a method named area that refers to the pi variable from line 6, which is only valid
because pi is final. Circle also refers to radius on line 10, which is valid because radius is a
field of the outer class. The code compiles fine, the value of radius is 10, so the output is

314.15000000000003

By the way, compiling LocalInner.java creates two bytecode files: LocalInner.class
and LocalInner$lCircle.class. The compiler adds a 1 to the name of the Circle class
because it is possible that a different method in the class defines another local class named
Circle.

Precision of Doubles

I didn’t mean for the local inner class example to demonstrate an issue with the precision
of doubles, but because the output of LocalInner is slightly unusual, | probably

should clarify the result. The product of 3.1415 * 10 * 10 is 314.15, but the output is
314.15000000000003. This is because double values are not exact. They are stored in

64 bits using the IEEE standard 754, which is an accurate technique for representing a
floating-point number as a sequence of 1s and 0Os, but the values are not entirely exact.
You won't see a question about this on the exam, but it is good information to know. Visit
the IEEE website at www.ieee.org if you are interested in delving into this topic further.

Anonymous Inner Classes

An anonymous inner class is a local inner class that does not have a name. It is declared
and instantiated all in one statement using the new keyword. Anonymous inner classes
either extend an existing class or implement an existing interface.

For example, the following statement declares and instantiates a new class that is a child
of Thread. The anonymous inner class definition starts on line 6 and ends with the right
curly brace on line 12. The semicolon on line 12 denotes the end of the new statement.

160

Chapter 2 - Declarations, Initialization, and Scoping

Notice that the anonymous inner class has access to the field x and also the final local
variable s. Study the code and try to determine its output.

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.}

public class AnonInner {
public int x = 10;

public void printX() {
final String s = "x = ";
Thread t = new Thread() {
public void run() {
while(true) {
System.out.printin(s + x);

b
t.start();

public static void main(String [] args) {
new AnonInner().printX();

You might not be familiar with threads in Java, but invoking start on a Thread object

caus

es its run method to execute in a new thread of the process. Here is the sequence of

events that occurs within main:

1.

B

A new outer object is instantiated on line 17 and its printX method on line 4 is
invoked.

An anonymous inner class that extends Thread is declared and instantiated on
lines 6 to 12.

The start method is invoked on this Thread object on line 13, which causes the run
method on line 7 to execute.

The run method contains an infinite loop and prints out "x=10" until the JVM is
terminated manually (press Ctrl+C in Windows).

ecause the anonymous inner class does not have a name, the compiler assigns it a

number. When AnonInner is compiled, two bytecode files are generated: AnonInner.class

and

AnonInner$l.class.

Declaring Nested Classes

161

Anonymous Inner Classes and Interfaces

An anonymous inner class must either extend an existing class or implement an
existing interface. When implementing an interface, the syntax almost looks like you are
attempting to instantiate an interface, which of course would not be valid. For example,
the following anonymous inner class implements the java.awt.event.ActionlListener
interface:

ActionListener x = new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.printin("Action occurred");

}s

The above inner class declaration is valid because we are not instantiating a new
ActionListener interface (which wouldn’t be valid), but instead we are instantiating an
anonymous class that implements ActionListener.

Because anonymous inner classes are also local inner classes, all the same rules apply
to both. The difference with anonymous inner classes is that you can create multiple

instances of a local inner class within the method, but an anonymous inner class can only

be instantiated one time.

Inner Classes as Event Handlers

Inner classes were introduced to the Java language in JDK 1.1, which coincided with the
Java language introducing the delegation model for event handling. In the real world, an
inner class is an easy option for handling simple events.

To demonstrate, the following SimpleWindow class defines two inner classes: an
anonymous WindowAdapter that terminates the JVM when a user closes the window, and
an ActionListener that changes the background color of the window to red:

import java.awt.*;
import java.awt.event.*;

public class SimpleWindow {
private Frame frame;

public SimpTleWindow() {
frame = new Frame("Click the button");

162 Chapter 2 - Declarations, Initialization, and Scoping

frame.setSize(250,200);
frame.setlLayout(new FlowLayout());

frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);

s

Button red = new Button("Red");
red.addActionListener(new RedHandler());

frame.add(red);
frame.setVisible(true);

private class RedHandler implements ActionListener {
public void actionPerformed(ActionEvent e) {
frame.setBackground(Color.RED);

public static void main(String [] args) {
new SimpleWindow();

}

Notice both of the inner classes perform simple tasks that require the private frame field,
making them good candidates for inner classes.

You should be aware, however, that inner classes go against some of the fundamental
OOP concepts, such as reuse of classes and high cohesion (discussed in Chapter 6).
Therefore, make sure inner classes make sense in your program’s design and do not
unnecessarily add complexity to your top-level classes.

Static Nested Classes

A static nested class is a static class defined at the member level of an enclosing class. Static
nested classes are not inner classes. They do not have access to the fields and methods of the
enclosing class, and they can be instantiated without a corresponding instance of the outer class.

Declaring Nested Classes 163

In other words, a static nested class is not really much different than a top-level class
except for a few subtle benefits:

= The nesting creates a type of namespace. To denote a nested class from outside its
enclosing class, the nested class is prefixed with the name of the enclosing class (similar
to how static fields and methods are accessed).

= Access to the nested class can be controlled by an access specifier. For example, a
nested class declared as private can only be used within its enclosing class, in effect
hiding it from any other classes.

* The enclosing class has access to the fields and methods of the nested class, even the
private ones.

Let’s look at an example. The following Box class is nested within Shipment:

1. dimport java.awt.Dimension;

2

3. public class Shipment {

4 pubTlic static class Box {

5. public Dimension dimension;

6 public int depth;

7

8 public Box(Dimension d, int x) {
9. dimension = d;

10. depth = x;

11. }

12.

13. public int getVolume() f{

14. return dimension.height * dimension.width * depth;
15. }

16. }

17.

18. public Box box;

19.}

Even though Box is defined inside Shipment, because Box is static it can be used like
any other top-level class. The syntax for referring to Box outside of Shipment is Shipment
.Box. The following Shoe class declares a field of type Shipment.Box and initializes the field
in its constructor. See if you can determine the output of running the main method in Shoe:

import java.awt.Dimension;

1

2.

3. public class Shoe {

4 public Shipment.Box box;
5

164 Chapter 2 - Declarations, Initialization, and Scoping

6 public Shoe() {

7 Dimension dim = new Dimension(6, 10);
8. box = new Shipment.Box(dim, 4);

9. 1

10.

11. public static void main(String [] args) {
12. Shoe sandal = new Shoe();

13. System.out.printin("Volume = "

14. + sandal.box.getVolume());
15. }

16.}

Here is a breakdown of main:
1. A Shoe object is instantiated on line 12, invoking the constructor on line 6.

2. A new Box is instantiated on line 8 with dimensions 6 by 10 by 4, which has a volume
of 240.

3. The volume is printed out on line 14.

Therefore, the output of this program is

Volume = 240

Importing a Nested Class

Because a static nested class is a static member of a class, it can be imported using a
static import. For example, suppose Shipment is in the com.sybex.demos package. Then
we can import the Box class using the following static import:

import static com.sybex.demos.Shipment.Box;

You might be surprised to find out that you can also import the Box class using a regular
import statement. For example, the following Cereal class is valid and compiles
successfully:

import com.sybex.demos.Shipment.Box;

public class Cereal {
Box box;

}

Being able to use an import statement like the one in Cereal is an example of how
declaring a static nested class is like creating a namespace.

Summary 165

Summary

This chapter covered the “Declarations, Initialization, and Scoping” section of the SCJP
exam objectives. Topics discussed include declaring variables, methods, classes, nested
classes, interfaces and enums, as well as the initialization and scoping of variables and
objects.

Declaring a variable involves stating the data type and giving the variable a name.
Variables that represent fields in a class are automatically initialized to their corresponding
“zero” value during object instantiation. Local variables must be specifically initialized.
Make sure you know the rules for declaring a valid identifier in Java.

Scope refers to that portion of code where a variable can be accessed. There are three
kinds of variables in Java, depending on their scope: instance variables, class variables and
local variables. Instance variables are the nonstatic fields of your class. Class variables are
the static fields within a class. Local variables are declared within a method.

An array is a contiguous chunk of memory on the heap representing a fixed-
size collection of values that all have the same data type. Arrays are Object types in
Java instantiated using the new keyword or with an array initializer. Java allows for
multidimensional arrays.

A Java class is defined in a .java source file and its corresponding compiled bytecode is
in a .class file. A class contains instance variables, class variables, methods, constructors,
nested classes, and instance and static initializers. We discussed the events that occur
during the creation of a new object, referred to as the instantiation process, which is
memory allocation, explicit initialization, parent class construction, instance initializers,
then the class constructor executes.

A constructor is a special method within a class that gets invoked during the
instantiation process. Every class has a constructor: the compiler adds a default constructor
if you do not explicitly define one. Use the this keyword to invoke another constructor in
the same class and the super keyword to invoke a parent class constructor.

An instance initializer is a block of code declared in a class that executes for each
new instance of the class. An instance initializer executes immediately after the parent
class constructor finishes and before the body of the class constructor executes. A static
initializer is a block of code that executes once when a class is loaded by the class loader.

A method declaration contains an access specifier, return value, method name,
parameter list, and a throws clause. A method can also be declared static, final, abstract,
native, or synchronized. Use the ellipsis (...) to declare a variable-length argument list.
Classes typically use the JavaBeans naming convention for declaring a property’s accessor
and mutator methods. A static method belongs to the class and is invoked using the name
of the class.

Method overloading is when a class contains multiple methods with the same name
but different parameter lists. Method overriding means writing a child class that contains
the same method signature as its parent class. At runtime the child method executes,
not the parent method. Covariant return types allow the overriding method to return a
data type that is a child of the return type in the parent class. A final method cannot be

166 Chapter 2 - Declarations, Initialization, and Scoping

overridden. Method hiding occurs when a child class contains a static method that is also
defined in its parent.

An abstract class is a class that cannot be instantiated. An abstract method is an
instance method of a class that does not contain a method body and must be overridden
by any nonabstract child classes. An interface is a collection of abstract methods. A class
implements an interface, inheriting all the abstract methods declared in the interface.

An enum is a Java class that represents an enumeration. Use the enum keyword to declare
an enumeration. The constants defined in an enum are all implicitly public, final, and
static. The compiler generates a special method named values that returns an array of the
enum values.

A nested class is a class defined within another class. A nested class that is nonstatic
is referred to as an inner class. A member inner class is defined at the member level of
a class. A local inner class is a nested class defined within a method. An anonymous inner
class is a local inner class that does not have a name. It is declared and instantiated all in
one statement using the new keyword. A static nested class is a static class defined at the
member level of an enclosing class.

Be sure to test your knowledge of declarations, initialization, and scoping by answering
the Review Questions that follow. Make sure you have a good understanding of the
following Exam Essentials before attempting the Review Questions.

Exam Essentials

Be able to read and understand a class definition. A large percentage of questions on the
exam show you a class definition or a snippet of a class and ask you to determine the result
of the code. You need to understand the concepts of instance variable, static variables,
methods, constructors, nested classes.

Recognize the difference between method overloading and method overriding. A method
is overloaded when the class contains two methods with the same name but different
parameter lists. A child class can overload a method that is defined in the parent, but that
is not the same as method overriding. A child class overrides a parent class method when it
contains a method with the same signature as a parent method.

Understand the difference between static and instance. An instance variable or method
is associated with the instances (objects) of the class. They do not exist in memory until
an object is instantiated, and each object has its own instance members in memory. A
static variable belongs to the class and is accessed using the class name. A static variable
or method exists when the class is loaded and there is only one instance of the variable or
method in memory.

Understand the use of this and super in constructors. The this keyword is used to
invoke another constructor in the same class. The super keyword invokes a parent class
constructor. A constructor must contain either a call to this or a call to super on the first

Exam Essentials 167

line of the constructor. If you write a constructor and do not explicitly call this or super
on the first line, the compiler inserts super().

Know how to declare and use an enumeration. An enumeration is declared using the enum
keyword. Expect a question on the exam that uses an enum in a switch statement.

Recognize the different types of nested classes. There are four types of nested classes:
member, local, anonymous and static. Member, local and anonymous nested classes are
referred to as inner classes because they have access to all the fields and methods of their
corresponding outer class. Local inner classes can only access local variables that are final.

Understand how to instantiate and use arrays. Arrays are a common occurrence in the
exam questions. Remember that an array is fixed in size and accessing an index outside of
the array’s range results in an ArraylndexOutOfBoundsException. All array objects have a
length attribute. Arrays can be in a single statement using an array initializer.

168 Chapter 2 - Declarations, Initialization, and Scoping

Review Questions

1. What is the result of the following code?

public class Shape {
private String color;

1

2

3

4 public Shape(String color) {
5. System.out.print("Shape");
6 this.color = color;

7

8

9

public static void main(String [] args) {
10. new Rectangle();
11. }
12. }
13.
14. class Rectangle extends Shape {
15. public Rectangle() {
16. System.out.print("Rectangle");

18. }
ShapeRectangle
RectangleShape

A
B
C. Rectangle
D. Line 4 generates a compiler error.
E

Line 15 generates a compiler error.

2. Given the following class definitions:
public class Parent {

public Parent() {
System.out.print("A");

class Child extends Parent {
public Child(int x) {
System.out.print("B");

© 00 N O U1 W N R
—

=
= o
—

12.
13.
14.
15.
16.}

Review Questions

public Child() {
this(123);
System.out.print("'C");

what is the output of the following statement?

new Child(Q);

A.

moow

ABC
ACB
AB
AC

This code does not compile.

Which of the following identifiers are valid Java identifiers? (Select three.)

mmo o w >

AS$B
_helTloWorld
transient
java.lang
Public
1980_s

What is the output of the following program?

1
2
3
4.
5.
6
7
8
9

10.

public class WaterBottle {
private String brand;
private boolean empty;

public static void main(String [] args) {
WaterBottle wb = new WaterBottle();
if(lwb.empty) {
System.out.printin("Brand = " + wb.brand);

11.}

moowp

Line 6 generates a compiler error.
Line 7 generates a compiler error.
Line 8 generates a compiler error.
There is no output.

Brand = null

169

170 Chapter 2 - Declarations, Initialization, and Scoping

5. Given the following class definition:

1. public class Television {

2 private int channel = setChannel(7);
3

4 public Television(int channel) ({

5. this.channel = channel;

6 System.out.print(channel + " ");
7 }

8

9 public int setChannel(int channel) ({
10. this.channel = channel;

11. System.out.print(channel + " ");
12. return channel;

13. }

14.})

what is the output of the following statement?

new Television(12);

A. 12

B. 12 7

C. 712

D. 7

E. The code does not compile.

6. Given the following my.school.ClassRoom and my.city.School class definitions:

1. //ClassRoom.java

2. package my.school;

3. public class ClassRoom {

4. private int roomNumber;

5. protected String teacherName;
6. static int globalKey = 54321;
7.

8. ClassRoom(int r, String t) {
9. roomNumber = r;

10. teacherName = t;

11. }

12. }

//School.java

Review Questions 1m

1. package my.city;

2 import my.school.ClassRoom;

3. public class School {

4 public static void main(String [] args) {

5. System.out.println(ClassRoom.globalKey);

6 ClassRoom room = new ClassRoom(101, "Mrs. Anderson");
7 System.out.printTn(room.roomNumber);

8 System.out.printin(room.teacherName);

9. }

10. }

which of the following line numbers in main generate a compiler error? (Select all
that apply.)

A. None; the code compiles fine.

B. Line$§

C. Lineé6

D. Line7

E. Line8

Suppose we have the following class named ClassRoom:

1.
2.
3.
4.

package my.school;
public class ClassRoom {

public static int globalKey = 54321;
}

Now suppose we have the following class named Administrator:

1
2
3
4.
5
6
7

package my.city;
public class Administrator {

public int getKey() ({
return globalKey;

}

Which one of the following statements inserted at line 2 of the Administrator class
will make the Administrator class compile successfully?

A.

moow

import my.school.ClassRoom;

import static my.school.ClassRoom.*;
import static my.school.ClassRoom;
import static my.school.*;

Nothing — the class compiles.

172

Chapter 2 - Declarations, Initialization, and Scoping

What is the output of the following program?

1. public class ScorePrinter {

2 pubTlic static void printScores(int... scores) ({
3 for(int x : scores) {

4. System.out.print(x + ",");

5. }

6 }

7

8 public static void main(String [] args) {
9 int [] x = {198, 247, 152, 207};

10. printScores(x);

11. }

12.})

A. Compiler error on line 2

B. Compiler error on line 9

C. Compiler error on line 10

D. 198,247,152,207

E. 198,247,152,207,

Given the following class definition:

1. public class Test {

2 public void print(byte x) {
3 System.out.print("byte");
4 }

5. pubTlic void print(int x) {
6 System.out.print("int");
7

8

9

}

public void print(float x) {
. System.out.print("float");
10. }
11. public void print(Object x) {
12. System.out.print("Object");
13. }
14.})

what is the result of the following statements?
20. Test t = new Test();

21. short s = 123;

22. t.print(s);

Review Questions 173

23. t.print(12345L);
24. t.print(6.789);

A. bytefloatObject
B. intfloatObject
C. byteObjectfloat
D. 1intObjectfloat
E. intObjectObject

F. byteObjectObject

. Given the following interface and class defined in a file named Traceable. java, what is
the result of compiling this code?

1. public interface Traceable {

2 public static int MAX_TRACE;

3 pubTlic void trace();

4. }

5.

6. class Picture implements Traceable {

7 public void trace() {

8 System.out.printin("Tracing a picture");
9. }

10. }

A. Two bytecode files: Traceable.class and Picture.class
B. One bytecode file: Traceable.class

C. Compiler error on line 2

D. Compiler error on line 3

E. Compiler error on line 6

F. Compiler error on line 7

. Given the following class definition:

1. public class Browser {

2 public static void addToFavorites(int id, String... urls) {
3 for(String url : urls) {

4. System.out.printinCurl);

5 }

6 }

7.}

which of the following statements are valid method calls to addToFavorites?
A. Browser.addToFavorites(101);

B. Browser.addToFavorites();

174 Chapter 2 - Declarations, Initialization, and Scoping

C. Browser.addToFavorites(102, "a");
D. Browser.addToFavorites(103, 104, 105);
E. Browser.addToFavorites(106, "x", "y", "z");

12. Suppose we have the following class definition:

1. public class Outer {

2. private int x = 5;

3.

4. protected class Inner {

5. public static int x = 10;
6.

7. public void go() {

8. System.out.println(x);
9. }

10. }

11.})

Given the following code:

15. Outer out = new Outer();

16. Outer.Inner in = out.new Inner();
17. 1in.go();

which of the following statements are true?
A. The output is 10.

B. The outputis 5.

C. Line 16 generates a compiler error.

D. Line 5 generates a compiler error.

13. Given the following class definitions:

class Parent {
public void printResults(String... results) {
System.out.printin("In Parent");

class Child extends Parent {

pubTlic int printResults(int 1id) {
System.out.printin("In Child");

10. return 0O;

1
2

3

4.
5.}
6

7

8

9

14.

15.

Review Questions

what is the result of the following statement?

new Child().printResults(0);

A. In Parent

B. In Child

C. 0

D. Line 2 generates a compiler error.
E. Line 8 generates a compiler error.

Given the following enum declaration:

1. public enum Flavors {

2. VANILLA, CHOCOLATE, STRAWBERRY
3.}

what is the result of the following statement?

System.out.printin(Flavors.CHOCOLATE.ordinal());

A. 0

B. 1

C. CHOCOLATE

D. 9

E. The statement will not compile.

What is the result of the following program?

1. class Parent {

2 public float computePay(double d) {
3 System.out.printin("In Parent");
4. return 0.0F;

5. }

6. }

7

8. public class Child extends Parent {

9. public double computePay(double d) {
10. System.out.printin("In Child");
11. return 0.0;

12. }

13.

14. public static void main(String [] args) {
15. new Child().computePay(0.0);

16. }

17. }

175

176

16.

moowp

Give
1

2

3

4.
5.

6

7

8

9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.}

wha

Chapter 2 - Declarations, Initialization, and Scoping

In Parent
In Child
0.0
null

The code does not compile.

n the following class definition:

import java.awt.Dimension;
public class Shipment {
public static class Box {
public Dimension dimension;
pubTlic int depth;

public Box(Dimension d, int x) {

dimension = d;
depth = x;

private int getVolume() {
return dimension.height * dimension.width * depth;

pubTic Box box;

public void go() {
System.out.printin(box.getVolume());

t is the result of the following code (assuming all types are properly imported)?

Dimension dim = new Dimension(10,10);

Box

b = new Box(dim, 10);

Shipment s = new Shipment();

s.box = b;

s.go();

A. 1000

B. Compiler error on line 3
C. Compiler error on line 13
D. Compiler error on line 17
E. Compiler error on line 20

Review Questions

17. Given the following enum definition:

18.

1.
2.
3.

pubTic enum Flavors {
VANILLA, CHOCOLATE, STRAWBERRY

}

what is the output from the following code?

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

A
B.
C.
D
E

Flavors f = Flavors.STRAWBERRY;
switch(f) {
case O:
System.out.printin('vanilla");
case 1:
System.out.printin("chocolate");
case 2:
System.out.printin("strawberry");
break;
default:
System.out.printin("missing flavor");
}
vanilla
chocolate
strawberry
missing flavor

The code does not compile.

Given the following class definition:

1
2
3
4
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.

import java.awt.¥*;
import java.awt.event.*;

pubTic class MyWindow {
private Frame frame = new Frame();

public void registerEvents() {
WindowAdapter wa = new WindowAdapter() {
public void windowClosing(WindowEvent e) {
frame.setVisible(false);
frame.dispose();

}s

frame.addWindowListener(wa);

177

178

19.

20.

Chapter 2 - Declarations, Initialization, and Scoping

which of the following statements are true? (Select two.)

A.
B.
C.

D.
E.

Lines 10 and 11 generate a compiler error.
Lines 8 to 13 are an anonymous inner class declaration.

The object instantiated on line 8 does not have access to the frame field on line 5
because frame is private.

The method on line 9 never executes because its definition goes out of scope after line 15.

The anonymous inner class on line 8 is a child of WindowAdapter.

Suppose a method in a class has the following method declaration:

public java.io.OutputStream createStream(String fileName) {

}

//method body here...

Which of the following methods could appear in a child class and override
createStream? (Select two.)

mmo o ® >

public java.io.OutputStream createStream(String f)

public java.io.OutputStream createStream(char c)

public java.io.FileOutputStream createStream(String f)

public void createStream(String c)

public java.io.OutputStream createStream(StringBuffer fileName)

protected java.io.OutputStream createStream(String fileName)

Given the following class definitions, what is the output of the statement new Child();?

1
2
3
4.
5.
6
7
8
9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

class Parent {

{
System.out.print("1");

public Parent(String greeting) {
System.out.print("2");

class Child extends Parent {
static {
System.out.print("3");

System.out.print("4");

21.

22.

Review Questions

A. 1234
B. 3123
C. 3142
D. 3124
E. The code does not compile.

Given the following enum declaration:

1. public enum Fruit {
2 APPLE("red"),
3 BANANA("yeTlTlow"),
4 ORANGE("orange"),
5. PLUM("purple");
6
7
8
9

private Fruit(String color) ({
this.color = color;
10.
11. public String color;
12. }

what is the result of the following program?
15. public class FruitStore {

16. public static void main(String [] args) {

17. Fruit one = Fruit.PLUM;

18. System.out.printin("a " + one.name() + " is " + one.color);
19. }

20. }

a PLUM dis purple
a Fruit.PLUM 1is purple

A
B
C. The Fruit enum does not compile.
D. Compiler error on line 17

E

Compiler error on line 18

Given the following class definition:

class Outer {
private int x = 24;

1

2

3

4 public int getX() {

5. String message = "x is ";
6 class Inner {

7 private int x = Outer.this.x;
8 pubTic void printX() {

179

180 Chapter 2 - Declarations, Initialization, and Scoping

9. System.out.printin(message + x);
10. }

11. }

12. Inner in = new Inner();

13. in.printX();

14. return Xx;

5. }

16.}

what is the result of the following statement?
new Outer().getX();

X is 24

x is 0

Compiler error on line 7

Compiler error on line 9

moow>»

Compiler error on line 12

23. Given the following class definitions:
class Parent {

public void print(double d) {
System.out.print("Parent");

1
2
3
4.
5. }
6
7. class Child extends Parent {
8 public void print(int i) {
9 System.out.print("Child");

10.)
11.}

what is the result of the following code?

15. Child child = new Child();
16. child.print(10);

17. child.print(3.14);

A. ChildParent

B. ChildChild

C. ParentParent

D. Line 8 generates a compiler error.
E

Line 17 generates a compiler error.

Review Questions 181

24. Given the following interface definitions:

1. //Readable.java

2. public interface Readable {

3. public abstract void read();

4.)

1. //SpellCheck.java

2. public interface SpellCheck extends Readable {
3. public void checkSpelling();

4.)

which of the following statements are true? (Select all that apply.)
A. The SpellCheck interface does not compile.
B. A class that implements Readable must override the read method.

C. A class that implements Spe11Check inherits both the checkSpel1ling and read
methods.

D. A class that implements Spel11Check only inherits the checkSpe11ing method.
E. An interface cannot extend another interface.
25. Given the following class definitions:

class Pet {

1

2 {

3 System.out.print("A");
4. }

5. public Pet() {

6 System.out.print("'B");
7 }

8 {

9 System.out.print("C");
10. }

11.

12.})

13.

14. class Cat extends Pet {
15. public Cat() {

16. System.out.print("D");
17. }

18. static {

19. System.out.print("E");
20. }

21.}

182 Chapter 2 - Declarations, Initialization, and Scoping

what is the result of the following statement?

new Cat();

A. ABCDE

B. ACBED

C. EACBD

D. EBACD

E. The output may vary.

Answers to Review Questions 183

Answers to Review Questions

1. E. If a constructor does not call this or super on its first line of code, the compiler inserts
the statement super();, which occurs in the Rectangle class just after line 15. A call to
super() in Rectangle invokes a no-argument constructor in Shape, but Shape does not
have a no-argument constructor. The compiler error occurs at line 15, so the answer is E.

2. A. The statement new Child() invokes the constructor on line 12. The call to this(123)
invokes the constructor on line 8, which calls super() implicitly before line 9. The call to
super() invokes the constructor on line 3, where A is printed. Control jumps back to line 9
and B is printed. Control jumps back to line 14 and C is printed.

3. A,B,and E. A is valid because you can use the dollar sign in identifiers. B is valid because
the underscore is a valid Java character. C is not a valid identifier because transient is
a Java keyword. D is not valid because the dot (.) is not allowed in identifiers. E is valid
because Java is case sensitive, so Public is not a keyword and therefore a valid identifier.
F is not valid because the first character is not a letter.

4. E. The code compiles fine, so A, B, and C are incorrect. Boolean fields initialize to false
and references initialize to nul11, so empty is false and brand is nul11. Therefore, line 7 is
true and Brand = nul1 is output. Therefore, D is incorrect and the answer is E.

5. C. The code compiles fine, so E is incorrect. Because explicit initialization occurs before
a constructor is invoked, line 2 executes before the Television constructor on line 4 is
executed. The 7 is output on line 11, then the constructor is invoked and 12 is output.
Therefore, the output is 7 12, so the answer is C.

6. B, C, D, and E. The code does not compile, so A is incorrect. Line 5 is not valid because
globalKey has the default access and School is in a different package than ClassRoom.
Line 6 is not valid for the same reason: the ClassRoom constructor has default access so
School does not have access to it. Line 7 is not valid because roomNumber is private and
therefore not accessible outside of ClassRoom. Line 8 is not valid because teacherName
is protected and School is neither in the same package nor a subclass of ClassRoom.
Therefore, the answers are B, C, D, and E.

7. B. Eisincorrect. Without any imports, the Administrator class will not compile because
line 5 of Administrator refers to globalKey, a static field in ClassRoom.
A imports the ClassRoom class, which is a valid import but does not import globalKey.
B imports all static fields of ClassRoom, so B is a correct answer. C and D are not valid
statements and generate compiler errors. Therefore, the only correct answer is B.

8. E. The printScores method takes in a variable-length argument on line 2 and it is
correctly declared, so A is incorrect. Line 9 is a valid array initializer statement, so B is
incorrect. A variable-length parameter is an array behind the scenes and can accept an
array argument, so line 10 is valid and C is incorrect. The code compiles and the for-each
loop displays each number in the array followed by a comma, so D is incorrect and E is the
correct answer.

184

10.

1.

12.

13.

14.

15.

16.

17.

18.

Chapter 2 - Declarations, Initialization, and Scoping

B. The argument on line 22 is a short. It can be promoted to an int, so print on line 5

is invoked. The argument on line 23 is a Tong. It can be promoted to a float, so print on
line 8 is invoked. The argument on line 24 is a doubTe. It can be promoted to a java.lang.
Double, so print on line 11 is invoked. Therefore, the output is intfloatObject and the
correct answer is B.

C. This is a tricky question. The code does not compile, so A and B are incorrect. All fields
in an interface are implicitly final, and static final fields must be initialized. Line 3 compiles
fine, as do lines 6 and 7, so D, E, and F are incorrect. Because MAX_TRACE is not initialized,
line 2 generates a compiler error. Therefore, the answer is C.

A, C,and E. The urls parameter is variable length, so any number of Strings can be
passed in after the int argument. A has no Strings, C has one String, and E has three
Strings, so these answers are correct. B does not pass in the required int and generates a
compiler error. D passes in three ints, which also generates a compiler error.

D. The class does not compile, so A and B are incorrect. Line 16 compiles and is the proper
syntax for instantiating a new Inner object outside of the Outer class, so C is incorrect. An
inner class cannot declare static fields or methods, so line 5 generates a compiler error and
the answer is D.

B. The code compiles fine, so D and E are incorrect. The printResults method in Child
is overloading printResults in Parent, not overriding. In method overloading, the return
type can be any data type, so printResults in Child returning an int is not a problem.
Invoking printResults with an int argument calls the method on line 8, which displays
In Child. Therefore, the answer is B.

B. The ordinal method of an enum element returns its corresponding int value. Enums
are zero-based, so VANILLA is 0, CHOCOLATE is 1, and STRAWBERRY is 2. Therefore, the
answer is B.

E. The return type of an overridden method must either be the same or a child class of the
return type of the parent method. Because doubTle is not a child class of fl1oat (they are
primitive types), line 8 generates a compiler error. Therefore, the answer is E.

A. The code compiles fine. A class can contain a static nested class, so B is incorrect. Line
13 can access only fields of Box which it does, so C is incorrect. Shipment can use the Box
class without any special syntax or prefixes, so line 17 is valid and D is incorrect. Shipment
has access to the private methods of Box, so line 20 is valid and E is incorrect. The volume
of the Box is 10¥10*10 = 1000, so the output is 1000 and the answer is A.

E. A case statement on an enum data type must be the unqualified name of an
enumeration constant. You cannot use their ordinal values in a case. Therefore, a compiler
error occurs on lines 11, 13, and 15, so the answer is E.

B and E. The code compiles fine, so A is incorrect. B is a true statement. C is incorrect
because inner classes have access to all private fields of the enclosing class. D

is incorrect because the scope of a method declaration is really not relevant. (The method can
still be invoked at any time.) E is a true statement. Therefore, the correct answers are B and E.

19.

20.

21.

22.

23.

24.

25.

Answers to Review Questions 185

A and C. A has the same signature and return type, and C has the same signature and

a covariant return type, so A and C are valid overriding declarations. B and E are valid
methods for a child class, but they are examples of method overloading, not overriding.

D has an incompatible return type. F is a weaker access than pub1ic, which is not allowed.

E. The Child class gets the default constructor because it does not define a constructor
explicitly. The default constructor contains the line super(); which does not compile
because Parent does not have a no-argument constructor. Therefore, the correct answer is E.

A. All the code compiles fine, so C, D, and E are incorrect. The name method of an enum
element returns its unqualified name, which for the one reference is PLUM. The color field
for PLUM is purpTe, so the output isa PLUM 1is purple. Therefore, the answer is A.

D. The code does not compile, so A and B are incorrect. Line 7 uses the proper syntax for
an inner class accessing a field in the enclosing class, so C is incorrect. Line 12 is fine, so E
is incorrect. On line 9, the local inner class Inner is attempting to access a non-final local
variable, which generates a compiler error. Therefore, the answer is D.

A. The code compiles fine, so D and E are incorrect. The child class is overloading print,
not overriding it. The method call on line 16 invokes print in the child, and the method
call on line 17 invokes print in the parent, so the output is ChildParent. Therefore, the
answer is A.

C. The Spel1Check interface compiles fine, so A is false. B is false; a class that implements
Readable can be declared abstract and not override read. C is a true statement; a class
that implements Spel11Check must either override both checkSpel1ing and read or declare
itself as abstract. Because C is true, D must be false. E is false; an interface can actually
extend multiple interfaces. Therefore, the only answer is C.

C. Executing new Cat() means the Cat class must be loaded first by the class loader,
which causes its static initializer on line 18 to execute first, displaying E. The Pet instance
initializers are next, in the order they appear, so A and C are displayed. Then the Pet
constructor is invoked, displaying B, and finally the Cat constructor is invoked, displaying D.
The output is EACBD, so the answer is C.

Flow Control

SCJP EXAM OBJECTIVES COVERED IN
THIS CHAPTER:

v' Develop code that implements an if or switch statement;
and identify legal argument types for these statements.

v' Develop code that implements all forms of loops and
iterators, including the use of for, the enhanced for loop
(for-each), do, while, labels, break, and continue; and
explain the values taken by loop counter variables during
and after loop execution.

v Develop code that makes use of assertions, and
distinguish appropriate from inappropriate uses of
assertions.

v' Develop code that makes use of exceptions and exception
handling clauses (try, catch, finally), and declares
methods and overriding methods that throw exceptions.

v" Recognize the effect of an exception arising at a specified
point in a code fragment. Note that the exception may be
a runtime exception, a checked exception, or an error.

v' Recognize situations that will result
in any of the following being thrown:
ArraylndexOutOfBoundsException, ClassCastException,
lllegalArgumentException, lllegalStateException,
NullPointerException, NumberFormatException,
AssertionError, ExceptionlinlinitializerError,
StackOverflowError or NoClassDefFoundError.
Understand which of these are thrown by the virtual
machine and recognize situations in which others should
be thrown programmatically.

The exam tests your knowledge of all aspects of flow control,
including decision making, loop control structures, assertions, and
exception handling. This chapter covers all of these topics in detail.

Overview of Flow Control

Flow control refers to the order in which the statements in your Java program execute.
The starting point of a Java program is the main method, and the statements of your Java
program generally execute in the order they appear. However, we often need to alter

this flow of control by making decisions or looping through statements to repeat a task.
Problems might arise at runtime that might justify a method immediately terminating, or
you might have trouble finding a bug so you make various assertions in your code. Each
of these situations changes the order of execution (and therefore the flow of control) of the
statements in your program.

Section 2 of the SCJP exam tests your knowledge of the various aspects of Java that
affect the flow of control of a Java program. For example, Java contains the following
typical control structures that most programming languages define for making decisions
and repetition:

* Decision Making: The if-else and switch statements are the two control structures
in Java for making decisions.

= Repetition: for loops, enhanced for loops, while loops, and do-while loops are the
control structure for performing repetition.

This chapter discusses the proper syntax and usage of these control structures. We also
examine the details of Java assertions, which are helpful in detecting and fixing bugs in your
Java programs. In addition, we cover exception handling in detail, including when exceptions
need to be caught and when they can be ignored. We start with the control structures,
beginning with the most basic of decision-making structures: the if-else statement.

The if Statement

The exam objectives state that you should be able to “develop code that implements an if
statement and identify legal argument types.” An if statement, also referred to as an if-
else or if-then-else statement, is the most basic of decision-making control structures in
Java. Figure 3.1 shows the syntax of an if statement.

The if Statement 189

FIGURE 3.1 Thesyntax of an if statement

The if keyword
Parentheses (required)

7

if(boolean_expression) {

//if block -~ o
Executes when boolean_expression is true.

} else {\
//e|se block The else statement and subsequent

else block is optional.

Executes when boolean_expression is false.

The following rules apply to an if-else statement:

» The expression in parentheses must evaluate to a boolean. Otherwise, a compiler error
is generated.

= If the booTlean expression evaluates to true, the block of code following the if executes.
= If the boolean expression evaluates to false, the else block executes.
» The else block is optional.

» The curly braces are not required in either the if or e1se block if the block of code is a
single statement. However, for readability it is a good idea to always use the curly braces.

= An else block can contain an additional if statement.

The following simple example of an if statement demonstrates the syntax:

8. int x = (int) (Math.random() * 10 + 1);
9. if(x <=5) {

10. System.out.printIn("Under five");
11. }

The value of x is assigned a random number between 1 and 10. If the value of x is less
than or equal to 5, then Under five displays on line 10. If x is greater than 5, the block of
code that contains line 10 is skipped.

An else can be added to any if statement. The following if-then-else statement
outputs either Under five or Over five:

8. int x = (int) (Math.random() * 10 + 1);
9. if(x <=5) {

10. System.out.printIin("Under five");
11. } else {
12. System.out.printin("Over five");

13.)

190 Chapter 3 - Flow Control

if Statements and boolean Expressions

The expression in parentheses of an if statement must evaluate to a boolean
expression. The following code does not compile:
int y = 12;

if(y) {
//This does not work

}

The following compiler error occurs:

If Then.java:11: incompatible types

found D dint
required: boolean
ifly) {

In other languages like C and C++ that do not have primitive Boolean types, any
non-zero value is considered true and any zero value is false. This concept does not
translate in Java. All the control structures that we discuss in this chapter require
booTlean expressions that evaluate to either true or false.

An if-then-else statement can contain any number of else if blocks. For example,
study the following code and see if you can determine its output:

1. public class Grades {

2 public static void showGrade(int grade) {
3 if(grade >= 90) {

4. System.out.print("A");

5. } else if(grade >= 80) ({

6 System.out.print("B");

7 } else if(grade >= 70) {

8 System.out.print("C");

9. } else if(grade >= 60) {

10. System.out.print("D");

11. } else {

12. System.out.print("F");

13. }

14. System.out.printin(" is your grade");
15. }

16.

The if Statement 191

17. public static void main(String [] args) {

18. showGrade(77);
19. showGrade(54);
20. 1

21.})

After an if expression evaluates to true and its corresponding block of code executes,
control leaves the if-then-else statement. For example, when grade equals 77, line 7 is
true and line 8 executes, printing C. Line 9 is also true, but it is not evaluated because
control jumps out of the if statement to line 14.

When grade equals 54, none of the if statements are true, so the else on line 11
executes and an F displays. The output of the Grades program is

C 1is your grade
F is your grade

Note that at most one block of code in an if-then-else control structure executes. The
last eTse block is always optional. When no else block appears, no block of code executes
if all the boolean expressions are false. Otherwise, when an if-then-else does contain
an ending else block, exactly one block of code in the control structure executes: either the
first if condition to evaluate to true, or the else block if all if conditions are false.

Be Careful with boolean Comparisons

Watch out for assignment statements that look like boolean expressions. For example,
look at the following code and see if you can determine its output:

12. boolean b = false;
13. if(b = true) {

14. System.out.printin("true");
15. } else {

16. System.out.printin("false");
17. })

This code compiles fine. On line 13, b = true is an assignment, not a comparison. The
result of this booTean assignment is the value of b after the assignment, which is true.
Therefore, the output of this code is

true

Keep an eye out for this type of question on the exam.

192 Chapter 3 - Flow Control

Next we discuss the other decision-making control structure in Java: the switch
statement.

The switch Statement

The exam objectives state that you should be able to “develop code that implements a
switch statement and identify legal argument types.” A switch statement is a decision-
making control structure based on testing an integer value for equality to a list of

case statements. A switch is similar to an if-then-else statement, except that a switch
statement can only test for equality and it is possible for multiple blocks of code in a
switch to execute. Figure 3.2 shows the syntax of a switch statement.

FIGURE 3.2 The syntax of a switch statement

The switch keyword
Parentheses (required)

Beginning curly brace

switch(integer_variable) {
case constantexpression :

The body of / statements;
© body of @ case constantexpression :

switch consists /
statements;

of one or more

case statements. The default

aéfault t«— blockis optional

statements; and must
appear at the

} \ end.

Ending curly brace

The following rules apply to using switch statements:

= The integer_variable must be compatible with an int, which means you can only
switch on a byte, short, char, int, Byte, Short, Character, Integer, or an enum type.

* Any number of case statements can appear.
» The constantexpression of a case must be a literal value or a final variable.

* The default block is optional and must appear at the end of all the case statements. If
none of the case statements equal the expression, the default block executes.

= When a case is true, no other case statements are tested for equality, and all
statements following the case execute until a break occurs or the end of the switch
statement is reached.

The switch Statement 193

The last rule is what makes a switch statement unique. The value being switched on is
compared for equality to each case statement in the order that they appear. Once a case
statement is true, no subsequent case statements are tested. All statements following a true
case execute, even if control “falls through” other case statements, until a break occurs.

Let’s look at an example. The following code switches on an int. See if you can
determine the output:

6 int x = 0;

7. switch(x) {

8. case 0 :

9. case 1 :

10. System.out.printin("0 or 1");
11. break;

12. case 2 :

13. System.out.printin("2");

14. case 3 :

15. System.out.printin("2 or 3");
16. break;

17. default :

18. System.out.println("default");

19.}
20.System.out.printIin("After switch");
Here is the flow of control that occurs when this code executes:
The int x is declared and assigned the value 0.
The case 0 is true on line 8, so no more cases are tested for equality.

x does not equal 1 on line 9, but x is not compared to 1 on line 9. Instead, control just
falls through to line 10.

0 or 1is printed on line 10.

The break is hit on line 11, causing control to jump out of the switch statement down
to line 20 and After switch is printed.

Therefore, the output of this switch is

0Oorl
After switch

Using the same switch statement, the following output displays when x equals 2:

2
2 or 3
After switch

194 Chapter 3 - Flow Control

Notice if x is 2, the case on line 12 is true, so all statements after line 12 execute until
the break on line 16. Therefore, lines 13 and 15 both execute, resulting in the preceding
output.

Switching on a Reference

Because Java autoboxes and unboxes the primitive types, you can switch on a reference
of type Byte, Short, Character, or Integer. For example, the following switch variable is
a Character reference:

Character value = 'C';
switch(value) {
case 'A'
case 'B'
System.out.printIn("Nice job!");
break;
case 'C'
System.out.printin("Not bad.");
break;
default :
System.out.printIn("Not good.");
}

The wrapped Character value is unboxed to a char in the switch statement. If the
reference happens to be null at runtime, a Nul1PointerException is thrown.

Switching on an Enum
A switch statement can be executed on integer-compatible types, which includes enums.
When the variable being switched on is an enum, the following rules apply:

= The case statements must be one of the elements of the enumeration. A compiler error
occurs if one of the case statements is not one of the values in the enum.

* You cannot use an enum value’s ordinal value for a case; you can only use the name of
the enum element.

= The enum element in the case is not prefixed with the enum name.

The switch Statement 195

The following class contains a switch statement on an enum named Console. Study the
code and see if you can determine its output:

1. public class EnumSwitch {

2 public enum Console {

3 XBOX, WII, PLAYSTATION

4, }

5.

6 public static void main(String [] args) {

7 Console myConsole = Console.WII;

8 switch(myConsole) {

9 case XBOX :

10. System.out.printIn("XBox console");
11. break;

12. case WIT :

13. System.out.printin("WII console");
14. break;

15. case PLAYSTATION :

16. System.out.printIn("PlayStation console");
17. break;

18. default :

19. System.out.printin("Not here");
20. }

21.)

22.})

The switch variable on line 8 is a Console reference, so the only valid case statements
are elements of the Console enum. The myConsole reference points to WII, so line 12 is true
and the output is

WII console

Because the three case statements are every possible value of myConsole and each case
contains a break, the default block of code in this example should never execute. Even
though it appears to be unreachable, the compiler does not complain. (This is a good place
for an assertion, discussed later in the section “Overview of Assertions.”)

The following switch statement would not be valid:

25. Console yourConsole = Console.XBOX;

26. switch(yourConsole) {

27. case 0 : //not valid

28. System.out.printIn("XBox console");
29. break;

196 Chapter 3 - Flow Control

30. case Console.WII : //not valid

31. System.out.println("WII console");
32. break;

33. }

Line 27 attempts to use the ordinal value of XBOX, which is not allowed. Line 30 uses the
fully qualified name of the WII element, which is also not allowed. The following compiler
errors occur:

EnumSwitch.java:27: an enum switch case Tabel must be the unqualified
name of an enumeration constant

case 0 :
EnumSwitch.java:30: an enum switch case Tabel must be the unqualified
name of an enumeration constant

case Console.WII :

A

Final case Values

A case value must be a constant expression. The examples in this chapter have been either
literals or enum constants, but you can also use final variables. Examine the following
code and try to determine its output:

public class FinalSwitch {

public static final char UPPER_A = 'A';
public static final char UPPER_B = 'B';
public static final char UPPER_C = 'C';

public static String convertGrade(char grade) {
String response = "";
switch(grade) {
case UPPER_A :
case UPPER_B :
System.out.printIn("Nice job!");
break;
case UPPER_C :
System.out.printin("Not bad.");
break;
default :
System.out.printIn("Not good.");

The for Statement 197

return response;

public static void main(String [] args) {
System.out.printin(convertGrade('C'));

The value being switched on is the parameter grade. Because each case statement uses a
final variable, the code compiles fine and the output is

Not bad.

The for Statement

The exam objectives state that you should be able to “develop code that implements all
forms of loops and iterators, including the use of for and the enhanced for loop (for-each),
and explain the values taken by loop counter variables during and after loop execution.”
This section discusses these details of for and for-each loops. A for statement is a
repetition control structure that is useful for repeating a block of code a fixed number of
times. There are two types of for statements in Java:

= The basic for statement
= The enhanced for statement

This section discusses the details of both types of for statements, starting with the basic
for statement.

The Basic for Statement

A basic for statement has the following properties:

= The two semicolons are required and create three sections: an initialization
statement, a boolean expression, and an update statement.

= The initialization step occurs once at the beginning of the loop.
* The boolean_expression must evaluate to true or false.

= The initialization and update_statement sections can contain multiple statements,
separated by commas.

198 Chapter 3 - Flow Control

Figure 3.3 shows the syntax and order of execution of the basic for statement.

FIGURE 3.3 The syntax of a basic for statement

The for keyword Semicolons (required)

Parentheses (required)

for(initialization; boolean_expression; update_statement) {

e 7 S

1. The initialization 2. The boolean is checked. 4. The update statement
statement executes each time
executes after the body.

3. If the boolean is true, the

body of the loop executes.
5. The boolean is checked

each time after the update
statement. Steps 3-5 repeat
} until the boolean is false.

Let’s look at an example. The following for loop displays the numbers 1 to 10:

for(int x = 1; x <= 10; x++) {
System.out.print(x + " ");

The following sequence of events occurs during this loop:
1. Theint xis allocated in memory and initialized to 1.

2. The boolean expression is evaluated. x is less than or equal to 10 so the body of the
loop executes.

The print statement displays 1 and a space.

The end of the for loop is reached on line 7, so control jumps to the update statement
x++, incrementing X to 2.

5. The boolean is checked again. x is still less than or equal to 10, so steps 3 and 4 repeat
until x is the value 11.

6. The boolean is now false, so the for loop terminates and x goes out of scope.

The output of this loop is

12345678910

The for Statement 199

The Scope of for Loop Variables

Any variables declared in the initialization step are local variables in the for loop and go
out of scope when the loop finishes. For example, the following code attempts to display
k after it goes out of scope:

for(int k = 10; k >= 1; k--) {
System.out.print(k);

}
System.out.print(k);

The following compiler error occurs:

For.java:19: cannot find symbol
symbol : variable k

Tocation: class For
System.out.printin(k);

A

Watch for a question that tests your knowledge of this subject. By the way, if you need
to use k outside the loop, declare it outside the loop. For example, the following code is
valid:
int k = 10;
for(k = 10; k >= 1; k--) {

System.out.print(k);

}
System.out.print(k);

The output of this code is

109876543210

There will be questions on the SCJP exam that test your knowledge of the syntax
and behavior of basic for statements. The exam seems to favor nested for statements,
something along the lines of the following example:

for(char one = 'a'; one <= 'f'; one++) {
for(int i = 1; i <= 3; i++) {

4.

5

6 System.out.print(" " + one + i);
7. }

8 System.out.println();

9.

}

200 Chapter 3 = Flow Control

Be sure to check the syntax first to make sure the code compiles, which it does in this
example. The outer loop has a char loop control variable that goes from 'a' to 'f',
totaling six iterations. The inner loop has an int loop control variable that goes from 1 to
3 and prints something, so the output will be 6 * 3 = 18 values. The printin call on line
8 occurs after the inner loop, so a line break occurs after every three values are printed.

If you carefully go through the steps of displaying the first couple of rows, you will quickly
deduce the remaining rows. The output of these nested loops is

al a2 a3
bl b2 b3
cl c2 c3
dl d2 d3
el e2 e3
fl f2 3

Let’s look at another example. Examine the following code and determine if it compiles
and what the output is:

12. for(int a =1, b = 10; a < b; at+, b=b - 2) {
13. System.out.printin(a + b);
14. }

Again, be sure to look for compiler errors first. This code compiles fine. You can
initialize two variables in the initialization step, and you can have multiple update
statements as long as they are separated by commas. If you see a loop like this on the exam,
my advice is to carefully step through each iteration. This example might look confusing,
but it actually only iterates three times:

1. ais1andbis 10: Because 1 < 10 is true, 11 displays and the update statement
executes, incrementing a to 2 and decrementing b to 8.

2. ais2andbis 8: Because 2 < 8 is true, 10 displays and we go back to the update
statement.
ais 3 and b is 6: Because 3 < 6 is true, 9 displays and the updates execute again.
ais 4 and b is 4: Because 4 < 4 is false, we are finished.

Therefore, the output of this example is

11

10

9

The for Statement 201

Some for Statement Notes

All of the three sections of a for statement are optional. If you don’t need to initialize
a variable or update anything, you can leave those sections blank. For example, the
following for loop does not contain an update statement:

for(int i = 1; i <= 10;) {
System.out.print(i++ + ",");

}

The output of this loop is
1,2,3,4,5,6,7,8,9,10,

Updating the loop control variable within the loop defeats the purpose of the update
statement and makes your code more difficult to read, so this example is not something |
recommend using in the real world.

Also, the boolean expression of a for statement defaults to true if it is left blank. For
example, the following for statement is an infinite loop:

for(C 5 ;) {
System.out.print("Hi");
}

This particular loop will run until the JVM is terminated.

The Enhanced for Statement

Java 5.0 introduced a new looping control structure called the enhanced for statement, also
referred to as a for-each loop. An enhanced for statement is designed for iterating through
arrays and collections. The syntax is simpler than a basic for loop and makes your code
more readable. Figure 3.4 shows the syntax of an enhanced for statement.

FIGURE 3.4 The syntax of an enhanced for statement

The for keyword
Parentheses (required)

for(datatype iterator : collection) {
//body ofithe loop

The iterator)
The data type automatically The array or iterable
of the iterator initializes to the collection being iterated

next item in the over
collection for each
iteration.

202 Chapter 3 - Flow Control

An enhanced for statement has the following properties:
= The data type of the iterator must be compatible with the data type of the collection.
= The scope of the iterator is the body of the loop.

* The number of iterations of the loop equals the size of the collection. If the collection is
empty, the body of the loop does not execute.

= The collection must be an array or an object of type java.lang.Iterable, an interface
introduced in Java 5.0 exclusively for for-each loops.

Let’s start with a simple example to demonstrate how it looks. Examine the following
enhanced for statement and try to determine its output:

3. char [] grades = {'A', 'B', 'C', 'D', 'F'};
4. for(char grade : grades) {

5 System.out.print(grade + " ");

6.}

The collection in this example has five elements, so the loop executes five times. The
grade iterator is initially 'A', then 'B', and so on. The output is

ABCDF

You must declare the iterator within the enhanced for statement; it cannot be a variable
that is already declared. For example, the following code does not compile:

9. char grade;

10. for(grade : grades) { //does not compile!
11. System.out.print(grade + " ");

12. }

The compiler complains that grade on line 10 is not a statement and that a semicolon is
expected. The compiler thinks I am trying to declare a basic for loop on line 10 because
the declaration of the iterator does not include a data type.

The Scope of Enhanced for Loop Variables

The scope of the iterator in an enhanced for loop is only within the body of the loop.
To demonstrate, study the following code and see if you can determine its result:

15. String [] replies = {"Hello", "Hi", "How are you?"};
16. String s = "Bye";

17. for(String reply : replies) {

18. s = reply;

19. }

20. System.out.printin(s);

21. System.out.printin(reply);

The for Statement 203

The variable reply is out of scope at line 21, so the following compiler error occurs:

EnhancedFor.java:21: cannot find symbol
symbol : variable reply

Tocation: class EnhancedFor
System.out.printin(reply);

A

By the way, if we comment out line 21 and run this code, what is the output of s on line
207 If you are unsure, try typing in this code and running it yourself to verify the result.

I will now discuss two common uses of the nested for statements: iterating over
collections and nesting enhanced for statements.

Enhanced for Loops and Collections

Let’s look at an example of an enhanced for loop that iterates over a collection. The
collection must be an object whose class implements java.lang.Iterable, which includes
most of the Collections API classes in the java.util package. The following code iterates
through a java.util.ArrayList. Examine the code and see if you can determine its output:

1. import java.util.ArraylList;

2

3. public class Favorites ({

4 private ArraylList<String> urls = new ArraylList<String>();
5.

6 pubTlic void showFavorites() ({

7 for(String url : urls) {

8 ifCurl.startsWith("http://")) {

9. System.out.printinCurl);

10. } else {

11. System.out.printin("http://" + url);
12. }

13. }

14. }

15.

16. public void addFavorite(String url) {

17. urls.addCurl);

18. }

19.

20. public static void main(String [] args) {
21. Favorites f = new Favorites();

204 Chapter 3 - Flow Control

22. f.addFavorite("sybex.com");

23. f.addFavorite("wiley.com");

24. f.addFavorite("http://google.com");
25. f.addFavorite("yahoo.com");

26. f.showFavorites();

27. }

28.}

The sequence of events of the Favorites program follows:

1. A Favorites object is instantiated in main and four String objects are added to the
urls field.

The showFavorites method is invoked, which executes the enhanced for loop on line 7.

The first time through the loop the iterator url is "sybex.com" and "http://sybex.com"

displays.
4. The loop iterates three more times until all four String objects are output.

The output of main in Favorites is

http://sybex.com
http://wiley.com
http://google.com
http://yahoo.com

@ Real World Scenario
When to Use—or Not Use—Enhanced for Loops

The enhanced for statement was added to the Java language to simplify your code in
those common situations where you need to iterate over an array or collection of objects.
You will use enhanced for loops all the time when iterating over arrays and collections.

Notice that the enhanced for loop hides the index variable when iterating over arrays,
and it hides the actual iterator when iterating over collections. For example, suppose you
need to iterate over an array and change each element. You won't be able to do that with
an enhanced for loop because you won’t have the index variable of the array. Similarly,
suppose you want to delete the element in a collection represented by the current
iterator. You may not be able to do this (depending on the collection) because the iterator
does not know of its location in the collection. In these situations, you can simply use a
basic for loop for iterating over the array or collection.

The for Statement 205

However, this situation does not diminish the usefulness of enhanced for statements. In
many programming situations, you iterate over a collection of data and do not need to
modify or delete elements in the collection, making an enhanced for loop the preferred
solution. They can also make your code more readable when iterating over nested
collections, as shown in the next section. The general rule of thumb is to use enhanced
for loops whenever you can!

Nested Enhanced for Loops

You really start to see the benefit of the enhanced for syntax when iterating over tabular
data (with rows and columns) using nested loops. The following example uses nested
enhanced for loops to display a multiplication table of the numbers 1 to 9. Examine the
code and see if you can determine its output:

3. int [] digits = {1,2,3,4,5,6,7,8,9};
4. for(int x : digits) {

5 for(int y : digits) {

6 System.out.print(x * y + "\t");

7.)

8 System.out.printin();

9. 1}

The digits array has nine elements, so the outer loop on line 4 iterates nine times and
so does the inner loop on line 5. Therefore, line 6 executes 9 * 9 = 81 times. The first time
through the outer loop, x is 1 and y goes from 1 to 9, printing 1*1, 1*2, 1*3, and so on up
to 1%9. This process repeats for x equal to 2, printing 2*1, 2%2, 2*3, and so on up to 2*9.
The process keeps repeating until the following multiplication table displays:

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

I could have just as easily written this example using basic for loops, and before Java 5.0
it would have been the only option! But I like the enhanced for loop for its simplicity and
readability. Make sure you understand the details of the enhanced for statement. As I have
mentioned before, the newer Java topics tend to be emphasized on the SCJP exam.

Next we discuss another popular looping control structure: the while statement.

206 Chapter 3 = Flow Control

The while Statement

The exam objectives state that you should be able to “develop code that implements all
forms of loops and iterators, including while”. A while statement is a repetition control
structure that is useful for repeating a block of code an indeterminate number of times.

Figure 3.5 shows the syntax of a while statement.

FIGURE 3.5 Thesyntax ofawhileloop

The while keyword Parentheses (required)

/ / / Curly braces are

while (boolean_expression) {<«<— required if the body

body of loo is more than one
} //body P statement.

The body of the loop executes
while the boolean expression is
true.

The following rules apply to a while statement:

» The value in parentheses must evaluate to a boolean expression, either true or false.

= If the boolean expression is true, the body of the loop executes and the boolean is

checked again.

= If the boolean expression is false, the loop does not execute and control jumps to the

next statement following the end of the loop.

= The body of the loop executes until the boolean expression is false.

Let’s start with a simple example. The following while statement prints the chars 'A' to

'"H' on the same line:

3. char c = 'A';

4. while(c <= 'H") {

5 System.out.print(c++);
6

}

The loop executes eight times, and the output is

ABCDEFGH

The while Statement 207

The following program demonstrates a better example of when to use a while loop
because it executes an indeterminate number of times. Examine the code and see if you can
determine the result:

1. public class RollDice {

2 public static int rollDice() {

3 return ((int) (Math.random() * 6)) + 1;
4, }

5.

6 public static void main(String [] args) {

7 int one = rollDice();

8 int two = rollDice();

9. System.out.print("You rolled a " + (one + two));
10. while(one + two != 11) {

11. one = rollDice();

12. two = rollDice();

13. System.out.print(", " + (one + two));
14. }

5. }

16.}

The while loop on line 10 executes until the two variables one and two add up to 11.
Because they are randomly generated, this could happen right away or it could take a while.
A sample output follows:

You rolled a 7, 8, 9, 6, 11

The output changes every time you run Ro11Dice because it uses randomly generated
numbers.
You can easily write an infinite loop with a while statement:

13. while(true) {
14. System.out.printin("This could take a while.");
15. }

In this example, line 14 will print This could take a while. until the user terminates
the JVM.

208 Chapter 3 - Flow Control

A Note on Unreachable Code

Itis possible to have a while loop whose body never gets executed:

8. 1int x = 0;

9. while(x > 0) {

10. System.out.printin("Not here");
11. }

However, you cannot write code that is unreachable or a compiler error is generated. For
example, the following code does not compile:

17. while(false) {
18. System.out.printin("Not here.");
19. }

The difference between these two while loops is that the compiler knows on line 17 that
line 18 will never execute. The compiler cannot make the same assumption about the
while loop on line 9 because x is a variable. Line 17 generates the following compiler
error:

WhileLoop.java:17: unreachable statement
while(false) {

A

While we are on the subject, an if-then statement can contain unreachable code. For
example, the following statements compile fine:

21. if(false) {
22. System.out.printin("Unreachable");
23. }

Java allows you to write unreachable if statements to simplify debugging code. | could
easily change the statement on line 21 to if(true) to test something and then change
it back to if(false) in production. Better yet, | could use a static final boolean that
could be defined in one place and used anywhere in my program.

You can write infinite whiTle loops and while loops that never execute.
Next we discuss do statements, which are similar to whiTe loops except the body of a
do-while loop is guaranteed to execute at least one time.

The do Statement 209

The do Statement

The exam objectives state that you should be able to “develop code that implements all
forms of loops and iterators, including do.” A do statement, also referred to as a do-
while loop, is a repetition control structure that is useful for repeating a block of code an
indeterminate number of times, but at least once. A do-while loop is declared using the do
keyword. Figure 3.6 shows the syntax of a do statement.

FIGURE 3.6 The syntax of a do statement

Curly braces are
required if the body

The body of the loo
is more than one y P

The do executes while the
keyword statement. boolean expression
is true.
do {

//body of loop
}whlle (boolean_expression); «——— Semicolon

The wh|Ie keyword

Parentheses (required)

The following rules apply to a do statement:
* The body of the loop executes once before the boolean expression is tested.
* The value in parentheses must evaluate to a boolean expression, either true or false.

= If the boolean expression is true, the body of the loop executes again, and then the
boolean is checked again.

= If the boolean expression is false, the loop does not execute again and control jumps
to the next statement following the end of the loop.

= Just like a while loop, the body of the do loop executes until the boolean expression is
false.

*= Don’t forget the semicolon after the boolean expression — it’s easy to miss!
The following simple example prints out the numbers 1 to 10:

inty = 1;

do {

System.out.print(y++ + " ");
lwhile(y <= 10);

o U1 bW

210 Chapter 3 - Flow Control

The output is

12345678910

You cannot write a do-whiTe loop whose body never executes because the body executes
before the boolean expression is tested. For example, try to determine the output of the
following example:

8. char c = 'a';
9. do {
10. System.out.printin(c++);

11. }while(false);
12. System.out.println(c);

An 'a' is printed on line 10, and then the boolean expression on line 11 is tested.
Because it is false, the loop terminates. Line 12 prints outa 'b', so the output is

In the section on the while statement, I wrote a program that simulated the rolling of
two dice until an 11 is rolled. That example is actually better suited for a do-whiTe loop
because we have to roll the dice at least once. The same loop rewritten using a do statement
follows:

7. 1int one = 0, two = 0;
8. System.out.print("You rolled a ");

9. do {

10. one = rol1Dice();

11. two = rol1Dice();

12. System.out.print(one + two + " ");

13. }while(Cone + two != 11);

The two dice are rolled first, and then we check to see if an 11 was rolled. If not, the
dice are rolled again and again until they add up to 11. The output looks something like the
following:

You rolled a 72 858759101097 88511

The output is different each time you run the program because of the use of random
numbers, but the dice are always rolled at least once.

The break Statement 21

Scope of do Variables

A variable declared within the block of a do statement only has scope within that block.
Be aware that the boolean expression of a do statement is outside the block, so the
following code does not compile:

17. do {

18. int one = rollDice();

19. int two = rollDice();

20. System.out.printin("You rolled a " + (one + two));

21. }while(Cone + two != 11);

The variables one and two are out of scope on line 21. For this loop to work, one and two
need to be declared outside of the do statement.

Now that we have discussed the various looping control structures in Java, | want to discuss
two important keywords that affect the flow of control of loops: break and continue. Let’s
start with a discussion of the break statement.

The break Statement

The exam objectives state that you should be able to “develop code that implements

all forms of loops and iterators, including the use of break.” A break statement transfers
flow of control out of an enclosing statement. A break statement can appear within the
following control structures:

= switch
= for

= while
= do

Figure 3.7 shows the syntax for a break statement within a while statement. (The
syntax is similar for the other control structures.)

212 Chapter 3 - Flow Control

FIGURE 3.7 The syntax of a break statement.

When using a label, a colon is required.
optional_label : while (boolean_expression) {

//anywhere within the loop:
break optional_label,

When the break statement
executes, control immediately
jumps to the next statement
following the control structure.

We saw an example of using an unlabeled break in the earlier section on switch
statements. A break statement within one of the repetition control structures causes the
loop to immediately complete. For example, see if you can determine the effect of the break
in this loop:

3. for(int k = 1; k < 10; k++) {
4 System.out.print(k + " ");
5. if(tk % 3 == 0)

6 break;

7.}

If the loop control variable k is divisible by 3 on line 5, then the break executes on line 6
and flow of control jumps down to the next statement after line 7. The output of this loop is

123

Let’s look at a more complex example. The following Vacation class uses an enhanced
for loop to iterate over an enum named Days. Examine the code and see if you can
determine the output of running main:

public class Vacation {

public enum Days {

SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

public void workUntil(Days dayOff) {
for(Days day : Days.values()) {

1
2
3
4.
5. }
6
7
8
9 if(day != dayOff) {

The break Statement 213

10. System.out.printin("Working on " + day);
11. } else {

12. break;

13. }

14. }

5. }

16.

17. public static void main(String [] args) {
18. Vacation v = new Vacation();

19. v.workUntil(Days.THURSDAY);

20. }

21.})

The enhanced for loop on line 8 iterates through the values of the enum and displays
a message on line 10 if the dayOff argument doesn’t match the current day. Once line 9 is
false, the break occurs on line 12 and the loop terminates. The number of times this loop
iterates varies depending on the value of dayOff. The main method invokes workUnti1 with
Days . THURDAY as the argument, so the output of main is

Working on SUNDAY
Working on MONDAY
Working on TUESDAY
Working on WEDNESDAY

A break statement can contain a label denoting which control structure to break out of.
An unlabeled break statement terminates the immediately enclosing control structure. If
you need to break out of an outer loop or switch, you need to use a labeled break.

A label is a prefix that appears before a statement and is followed by a colon:

label_name : statement

A label can be any valid identifier, as long as it is does not hide a label being used by an
enclosing statement. The following while loop contains a label named myloop and a break
statement that refers to the myTloop label. See if you can determine the output:

4. 1dint count = 1;

5. 1int sum = 0;

6. myloop : while(count <= 100) {

7. sum += count++;

8. if(sum > 10) {

9. break myloop;

10. }

11.})

12.System.out.printin("sum = " + sum);

13.System.out.printin("count = " + count);

214

Chapter 3 = Flow Control

Here is the sequence of events for this whiTe loop:

1. countis 1 and sumis 0, so the first time through the loop sumis O + 1 = 1 and count
gets incremented to 2.

2. Line 8 is false, the body of the loop is complete, and control jumps back up to the
boolean expression on line 6.

3. The loop executes again, sumis now 1 + 2 = 3, and count is now 3, so the loop executes
again.

4. sumis 3 + 3 =6, count is 4, and the loop executes again.

5. sumis 6 +4 =10, count is 5, and the loop executes again.

6. sumis 10 + 5 = 15, count is 6, and line 8 is finally true.

7. Line 9 executes, causing myloop to terminate and control jumps to line 12.

Therefore, the output of this code is
sum = 15
count = 6

Using Labels

Note that the myloop label is not required in the previous example, but you can still use
a label even when it is unnecessary. You might use a label for clarification if a loop is
long and it is unclear what is being affected by a break statement. You might also use
a label to ensure that modifications to the code later do not affect your use of the break
statement.

There are also situations where a label is required, as we will see in the next example.

The myloop label is not needed in the previous example, but there are situations where a

label is necessary (especially in nested loops) to obtain the desired behavior of a break. To
demonstrate this type of situation, let’s start with a nested loop that does not use labels. See
if you can determine the behavior of the following loops:

15.
16.
17.
18.
19.
20.
21.
22.
23.

int x = 1;
while(x <= 10) {
System.out.print(x++ + " ");

for(int y = 10; y >= 1; y--) {

System.out.print(y + " ");
ify = 8)
break;

The continue Statement 215

The break on line 21 refers to its enclosing loop, which is the for loop on line 18. The
while loop executes 10 times, and for each value of x the for loop executes three times
(when y is 10, 9, and 8). The output is

1109821098310984109851098610987 10988109
891098101009 8

If we want the outer while loop to break on line 21 instead of the inner for loop, we
need to use a label as shown here:

25. int x =1, y = 10;
26. loopx : while(x <= 10) {

27. System.out.print(x++ + " ");
28. for(; y >=1; y--) {

29. System.out.print(y + " ");
30. if(y == 8)

31. break Toopx;

32.)

33. }

The break statement on line 31 refers to the while loop on line 26. The while loop
terminates during its first iteration when y becomes 8, so the output of this code is

110098

You can also use labels with the continue keyword, which we discuss next.

The continue Statement

The exam objectives state that you should be able to “develop code that implements all
forms of loops and iterators, including the use of continue.” A continue statement within
a repetition control structure transfers flow of control to the loop-continuation point of
the loop. The control structures that can contain a continue statement together with their
corresponding continuation point follow:

= for: Control transfers to the update expression of the for statement.
= while: Control transfers to the boolean expression.
* do: Control transfers to the boolean expression.

Figure 3.8 shows the syntax for the continue statement within a for loop.

216 Chapter 3 - Flow Control

FIGURE 3.8 The syntax of the continue statement

When using a label, a colon is required.

optional_label : for (initialization; booleanexpression; update_statement) {
//anywhere within the loop:
continue optional_label,

When the continue statement
executes, control immediately
jumps to the update_statement.

Here’s a simple for loop with an unlabeled continue statement. See if you can determine
its output:

3. for(char c = 'm'; c <= 'p'; c++) {
4 if(c == 'n') {

5. continue;

6. }

7 System.out.print(c);

8.}

The sequence of events for this loop follows:
c is initialized to 'm', which is less than 'p', so the loop body executes.

2. Line4is falseand 'm' displays on line 7. The loop body is done, so control jumps to
the update statement and c is incremented to 'n".

3. The loop body executes again, but this time line 4 is true so the continue executes on
line 5, causing control to jump immediately to the update statement c++. No output
displays because line 7 is skipped.

4. The loop body executes two more times with c equal to 'o' and c equal to 'p"'.

Therefore, the output is

mop

Let’s look at an example with a nested loop. Study the following code and see if you can
determine what the output is:

10. for(int a = 1; a <= 4; a++) {

11. for(char x = 'a'; x <= 'c'; x++) {
12. if(a==2 || x=="b")

13. continue;

14. System.out.print(" " + a + x);
15. }

16. }

The continue Statement 217

P is the type of example you will find on the exam. My advice is to write
down the values of each variable through each iteration of the loop. Take
your time and step through the loops carefully.

é/ The previous nested for loop is obviously a contrived example, but it

Here is a breakdown of each iteration through the loop:

1. aequals 1 the first time through the outer loop, and x equals 'a' the first time
through the inner loop, so '1a' is output on line 14. Then x equals 'b', so the con-
tinue executes and control jumps to the x++ update statement on line 11. x equals 'c'
and '1c' displays.

2. aequals 2 the second time through the outer loop. The inner loop executes three times,
but line 12 is true on each iteration so the continue executes each time and the print
statement is skipped. No output occurs when a equals 2.

3. aequals 3 on the next iteration, which is similar to the case when a was 1.
The continue executes when x is 'b', so the outputis '3a' and '3c'.

4. Similarly, when a equals 4 the output is '4a' and '4c'.

Therefore, the output of the code is

la 1c 3a 3c 4a 4c

As with break statements, a continue statement can declare a label denoting the loop
to continue on. The following nested loops demonstrate a labeled continue statement.
Examine the code and see if you can determine its output:

19. char row = 'A';
20. rowlabel : while(row <= 'D') {

21. System.out.print(row++);

22. for(int i = 1; i <= 5; i++) {
23. if(i%2 == 0)

24, continue;

25. if(i%3 == 0) {

26. System.out.printin();
27. continue rowlabel;
28. }

29. System.out.print(i);

30. }

31. }

218

Al
Bl
C1
D1

Chapter 3 = Flow Control

Here is a breakdown of what this code does:

The first time through the outer while loop on line 20, row equals 'A' and it is printed
on line 21 and incremented to 'B'. i equals 1 during the first iteration of the inner
loop. Line 23 and 25 are false, so line 29 executes and '1' is printed.

When i equals 2, line 23 is true and the continue statement on line 24 executes.
Because it is an unlabeled continue, it applies to the for loop, so control jumps to the
update statement i++ and i now equals 3.

When i equals 3, line 25 is true, a newline is printed and the continue statement on
line 27 executes. This continue refers to the while loop, so control jumps to the bool-
ean expression on line 20.

row equals 'B' the second time through the outer loop and is printed on line 21. The
inner loop behaves the same, printing only '1' because of the continue statements.

When row equals 'C' and row equals 'D', the result is similar.

Therefore, the output of this code is

Line 24 of this example could have been clearer if we had used a label on the for loop

on line 22, but I wanted to demonstrate that it wasn’t required.

We now turn our attention to two other aspects of Java that affect flow control:

assertions and exceptions.

Overview of Assertions

The exam objectives state that you should be able to “develop code that makes use of
assertions, and distinguish appropriate from inappropriate uses of assertions.” This section
addresses these objectives. An assertion in Java is a boolean expression placed at particular
points in your code where you think something should always be true. (The definition of
the word “assert” is to insist that something is true and to affirm your claim with certainty.)
For example, I am certain that in the following code, the value of x is greater than 0:

inta =3, b =05;
int x = a * b;

assert x > 0;

An assertion allows me to check for bugs in my code that might otherwise go unnoticed.

You can place assertions throughout your code, turn them on for testing and debugging
purposes, and then turn them off when your program is in production.

Overview of Assertions 219

Why assert something if you are sure it is true? Well, in the world of computer
programming, asserting that something is true and verifying it at runtime are two different
things. During the coding phase, I might be certain that a value is positive, but it would be
nice to verify at runtime that the value actually is positive, and the assertion allows me to
do that.

In the next section, we discuss the details of writing and using assertions in Java and
how they affect the flow of control of your application.

The assert Statement

An assert statement inserts an assertion at a particular point in your code. The syntax for
an assert statement has two forms:

assert boolean_expression;
assert boolean_expression : error_message;

The boolean expression must evaluate to true or false. The optional error message
is a String used as the message for the AssertionError that is thrown. The two possible
outcomes of an assert statement are

= If the boolean expression is true, then our assertion has been validated and nothing
happens. The program continues to execute in its normal manner.

= If the boolean expression is false, then our assertion was invalid and a java.lang
.AssertionError is thrown, causing our program to terminate at this line of code.

The AssertionError is typically not handled by your code, so your program terminates
and the stack trace displays at the standard output. For example, the following assertion fails:

1. public class Asserts {

2 public static void main(String [] args) {
3 int x = 10;

4. assert x < 0;

5 System.out.printin('x = " + x);

6 }

7.}

Because the assert statement on line 4 is false, line 5 does not execute. Assuming
assertions are enabled, the program terminates at line 4 and the following stack trace
displays:

Exception in thread "main' java.lang.AssertionError
at Asserts.main(Asserts.java:4)

The next section discusses how to enable assertions in your Java programs.

220 Chapter 3 - Flow Control

Enabling Assertions

By default, assert statements are ignored by the JVM at runtime. To enable assertions, use
the -enableassertions flag on the command line:

java -enableassertions Rectangle

You can also use the shortcut -ea flag:
java -ea Rectangle

Using the -enableassertions flag without any arguments enables assertions in all
classes except system classes. You can also enable assertions for a specific class or package.
For example, the following command enables assertions only for classes in the com. sybex
.demos package and any subpackages:

java -ea:com.sybex.demos... my.programs.Main

If the classes are in the unnamed packaged, then simply use the three dots:
java -ea:... Rectangle

You can also enable assertions for a specific class:
java -ea:com.sybex.demos.TestColors my.programs.Main

You can disable assertions using the -disableassertions (or -da) for a specific class
or package that was previously enabled. For example, the following command enables
assertions for the com.sybex.demos package, but disables assertions for the TestColors
class:

java -ea:com.sybex.demos... -da:com.sybex.demos.TestColors my.programs.Main
)’ Enabling assertions is an important aspect of using them, because if
A&TE assertions are not enabled, assert statements are ignored at runtime.

Assertions were added to the Java language in the J2SE 1.4 release, as
was the new assert keyword. This was a fairly major addition to the Java
language, and you can expect at least one question on the syntax and
flow of control of an assertion, as well as at least one question on how to
enable assertions at runtime. Keep an eye out for a question that contains
an assert statement but that is not executed with assertions enabled; the
assert statement is ignored in that situation.

Overview of Assertions 221

Using Assertions

We use assertions for many reasons, including the following:

Internal invariants You assert that a value is within a certain constraint. assert x < 01is
an example of an internal invariant.

Class invariants You assert the validity of an object’s state. Class invariants are typically
private methods within the class that return a boolean. The upcoming Rectangle class
demonstrates a class invariant.

Control flow invariants You assert that a line of code you assume is unreachable is never
reached. The upcoming TestColors class demonstrates a control flow invariant.

Preconditions You assert that certain conditions are met before a method is invoked.

Post conditions You assert that certain conditions are met after a method executes
successfully.

The following example demonstrates a control flow invariant. Suppose we have the
following enum declaration:

1. public enum Colors f{
2. RED, GREEN, BLUE
3. }

The following TestColors class contains a switch statement that switches on a Colors
object. Because there are only three possible outcomes, the default statement on line 11
should never execute:

1. public class TestColors {

2 public static void testColor(Colors c) {

3 switch(c) {

4. case RED :

5. case GREEN :

6 System.out.printin("Red or green");
7 break;

8 case BLUE :

9. System.out.printin("Blue");

10. break;

11. default :

12. assert false : "Invalid color";
13. }

14.)

15.}

222 Chapter 3 - Flow Control

Because the value of ¢ on line 2 can only be RED, GREEN, or BLUE and the switch statement
has a case for all three of these outcomes, you can assert that line 12 is not reachable. This
example is typical of when to use an assertion. I insist with all certainty that line 12 will not
execute. Notice that if it does, an AssertionError is thrown because the boolean is false.

The only way this assertion would fail is if somehow the enum is modified. Suppose you
are working on a project that uses the CoTors enum, and during the development phase it is
discovered that yellow needs to be added to the list of colors. The assertion can help uncover
the ripple effect of such a change. Suppose the new version of Colors looks like this:

1. public enum Colors {
2. RED, GREEN, BLUE, YELLOW
3.}

See if you can determine the output of the following main method added to the
TestColors class:

public static void main(String [] args) {
Colors c = Colors.YELLOW;
testColor(c);

Because YELLOW is a new color and not one of the cases, the default block executes and
the assert fails. (It has to fail because it uses false for the boolean expression.) Assuming
assertions are enabled, an AssertionError is thrown and the following stack trace displays:

Exception in thread "main" java.lang.AssertionError: Invalid color
at TestColors.testColor(TestColors.java:12)
at TestColors.main(TestColors.java:18)

A control flow assertion is a common use of assert statements. When possible, place an
assert statement at any location in your code that you assume will not be reached.

Assertions Should Not Alter Outcomes

Because assertions can and probably will be turned off in a production environment, your
assertions should not contain any business logic that affects the outcome of your code.
For example, the following assertion is not a good design because it alters the value of a
variable:

int x = 10;
assert ++x > 10; //Not a good design!

When assertions are turned on, x is incremented to 11, but when assertions are turned
off, the value of x is 10. Therefore, the outcome of the code will be different, and assert
statements should have no effect on your application if they are turned off, so this is not
a good use of assertions.

The following example demonstrates a class invariant. A Rectangle object is not

Overview of Assertions

223

considered valid if either its width or height is negative. Examine the following Rectangle

class, and assuming assertions are turned on, determine the output of running the main

method:

1. public class Rectangle {

2 private int width, height;

3

4. public Rectangle(int width, int height) {

5. this.width = width;

6 this.height = height;

7 }

8

9. public int getArea() {

10. assert isValid() : "Not a valid Rectangle";
11. return width * height;

12. }

13.

14. private boolean isValid() {

15. return (width >= 0 && height >= 0);

16. }

17.

18. public static void main(String [] args) {

19. Rectangle one = new Rectangle(5,12);

20. Rectangle two = new Rectangle(-4,10);

21. System.out.printin("Area one = " + one.getArea());
22. System.out.printin("Area two = " + two.getArea());
23. }

24.})

The isvValid method is an example of a class invariant. It is a private method that
tests the state of the object. Line 10 invokes isvValid in an assertion statement before

computing the area. Within main, Rectangle one is valid and its area is output. Rectangle

two has a negative width so the assertion fails on line 10. The output is shown here:

Area one = 60

Exception in thread "main" java.lang.AssertionError: Not a valid Rectangle

at Rectangle.getArea(Rectangle.java:10)
at Rectangle.main(Rectangle.java:22)

224 Chapter 3 - Flow Control

Validating Method Parameters

Do not use assertions to check for valid arguments passed in to a method. Use an
I11egalArgumentException instead. For example, the constructor of Rectangle should
throw an I111egalArgumentException when either the width or height is negative:

public Rectangle(int width, int height) {
if(width < 0 || height < 0) {
throw new ITlegalArgumentException();
}
this.width = width;
this.height = height;
}

This constructor greatly improves the reliability of the Rectangle class because there

is no way to change the field’s width and height except in the constructor. Remember,
assertions are for situations where you are certain of something and you just want to
verify it. You cannot be certain that someone instantiating a Rectangle will pass in
positive values. However, with the Rectangle constructor defined here, | should be able
to assert with a great deal of certainty that invoking isValid on any Rectangle object
will return true.

Assertions are used for debugging purposes, allowing you to verify that something you
think is true during the coding phase is actually true at runtime. The next section covers
exceptions, which affect the flow of control of your application similar to failed assertions.
Unlike assertions, exceptions are situations that arise at runtime that cannot be predicted
during the coding phase.

Overview of Exceptions

This section addresses the exam objectives that state you should be able to “develop code
that makes use of exception handling clauses (try, catch, finally), and declares methods and
overriding methods that throw exceptions,” as well as “recognize the effect of an exception
arising at a specified point in a code fragment.” An exception is an event that occurs during
the execution of a program that disrupts the normal flow of control. In Java, an exception
is an object that a method “throws” down the method call stack by handing it to the JVM
and letting the JVM search for a handler. As the exception object travels down the methods
on the call stack, any method along the way has the opportunity to catch the exception.
Once caught, the method can obtain information about the problem and attempt to fix it,
log the error in a file, or simply ignore the exception altogether. A caught exception can
also be rethrown, or a method can throw a different type of exception.

Overview of Exceptions 225

I want to start with a simple example to demonstrate how an exception affects the
flow of control of an application. The following ExceptionDemo class generates an
ArithmeticException on line 15 when 5 is divided by 0. Study the code and see if you can
determine its output.

public class ExceptionDemo {

public void methodl() {
System.out.printin("Inside methodl");
method2();

public void method2() {

1

2

3

4.

5. }
6

7

8 System.out.printin("Inside method2");
9

. method3();
10. }
11.
12. public void method3() {
13. System.out.printin("Inside method3");
14. int x =5, y=0;
15. int z = x/y; //throws an ArithmeticException
16. System.out.printin('z = " + z);
17. }
18.
19. public static void main(String [] args) {
20. System.out.printIin("Inside main");
21. new ExceptionDemo().methodl();
22. System.out.printin("End of main");
23. }
24.})

Here is the sequence of events that occurs in this program:

1. Running the program puts the main method on the bottom of the call stack. (Figure 3.7
shows the method call stack.) Inside main displays on line 19 and method1 is invoked
on a new ExceptionDemo object.

2. methodl is pushed on the call stack. Inside methodl displays on line 3 and method2
is called.

3. method? is pushed on the call stack. Inside method2 displays on line 8 and method3
is called.

4. method3 is pushed on the call stack. Inside method3 displays, and then line 15 causes
an ArithmeticException to be thrown.

226 Chapter 3 - Flow Control

5. Because method3 does not catch the exception, it is immediately popped off the call
stack. Notice that line 16 does not execute.

6. Because method2 does not catch the exception, it also pops off the call stack. The same
happens with methodl and main.

7. Because the exception was not caught, the program terminates and the JVM dumps the
following stack trace:

Inside main
Inside methodl
Inside method?2
Inside method3
Exception in thread "main' java.lang.ArithmeticException: / by zero
at ExceptionDemo.method3(ExceptionDemo.java:15)
at ExceptionDemo.method2(ExceptionDemo.java:9)
at ExceptionDemo.methodl(ExceptionDemo.java:4)
at ExceptionDemo.main(ExceptionDemo.java:21)

Figure 3.9 shows the exception being thrown down the method call stack of ExceptionDemo.

FIGURE 3.9 TheArithmeticException isthrown down the call stack.

]]] method3 causes an ArithmeticException
ArithmeticException to be thrown down the call stack.
object
method3
method2
methodl1
main

Notice that an unhandled exception terminates your program, which obviously is not
good if you don’t want your program terminating every time an exception occurs.

We now look at how to catch an exception so it does not terminate the application using
a try statement.

Overview of Exceptions 227

The try Statement

A try statement is a block of code that contains one or more statements that may throw
an exception. A try statement can be followed by one or more catch clauses, also called
exception handlers. Figure 3.10 shows the syntax of a try statement.

FIGURE 3.10 The syntax of a try statement

The try keyword If an exception is thrown in a try
statement, the catch clauses
attempt to catch it.

try { /

//The try block is also referred to ~ The identifier refers to
the caught exception

Curly braces are //as prptected C,Ode e object.
required. —} catch (exception_type identifier) {

//exception dler
1

The type of
exception you are

The catch keyword trying to catch

A try statement can declare any number of catch clauses. A catch clause must have
exactly one parameter: the data type of the exception trying to be caught. If an exception
is thrown within a try block, the JVM searches for a handler by checking the exception
types of its catch clauses in the order they appear. If the exception type of a catch clause
matches the data type of the thrown exception, flow of control jumps to that catch block
and the catch’s identifier receives a copy of the reference to the exception object (similar to
an argument copied into a method parameter).

For example, the following try statement catches the ArithmeticException thrown in
method3 of the ExceptionDemo class from the previous section. See if you can determine the
output of running main in ExceptionDemo if method3 is modified as follows:

12. public void method3() {

13. System.out.printin("Inside method3");

14. int x =5, y=0;

15. try {

16. int z = x/y; //throws an ArithmeticException
17. System.out.printin("z = " + z);

18. }catch(ArithmeticException e) {

19. System.out.printIin("Something went wrong: "

20. + e.getMessage());

21. }

23.)

228 Chapter 3 - Flow Control

Here is the sequence of events that occurs when method3 executes:
1. "Inside method3" displays and x and y are initialized.

2. Flow of control enters the try block on line 15, and line 16 causes an
ArithmeticException to be thrown.

3. The JVM searches the associated catch clauses for one that catches an
ArithmeticException, which line 18 does. Flow of control jumps to line 18.
(Line 17 does not execute.)
The catch block executes, displaying an error message.
Because the exception was handled, execution resumes as normal. method3 finishes

successfully and is popped off the method call stack. The remaining methods
complete successfully, and the output is

Inside main

Inside methodl

Inside method?2

Inside method3

Something went wrong: / by zero
End of main

Because the exception was handled, the program did not terminate prematurely, as
shown by the display of End of main.

The Throwable Class

The java.lang.Throwable class is the parent class of all objects that can be thrown
(either by the JVM or by using the throw keyword). Only objects of type Throwable or
subclasses of Throwable can appear in a catch clause.

When you catch an exception, a common task is to display the stack trace or logitto a
file. The following methods defined in Throwable provide information about the stack
trace and the exception thrown:

public void printStackTrace()

This method prints the stack trace to System.err.
public void printStackTrace(PrintStream s)
This method prints the stack trace to the specified PrintStream.
public void printStackTrace(PrintWriter s)

This method prints the stack trace to the specified PrintWriter.

Overview of Exceptions 229

public String getMessage()

This method returns the detail message of the Throwable object. The message is set in
the Throwable constructor.

public String toString()

This method returns a short description of the ThrowabTe object that includes the type of
exception and its message.

You can find examples of printing the stack trace throughout this section. Here is a simple
example to demonstrate the difference between getMessage and toString:

try {
throw new NullPointerException("Be careful!");
}catch(Nul1PointerException e) {
System.out.printin("getMessage: " + e.getMessage());
System.out.printin("toString: " + e.toString());

}

The output of this code is

getMessage: Be careful!
toString: java.lang.NullPointerException: Be careful!

Multiple catch Clauses

Let’s look at a more realistic example and one that contains multiple catch clauses. The
following MyFileReader class opens a file for reading and reads in a single character. The
FileReader constructor invoked on line 6 throws a FileNotFoundException if the specified
file cannot be found. Study the code and see if you can determine the output when the file is
not found on line 6.

1. dimport java.io.*;

2

3. public class MyFileReader ({

4. public void readFromFile(String fileName) {

5 try {

6 FileReader fis = new FileReader(fileName);
7 System.out.printin(fileName + " was found");

230

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.}

Chapter 3 = Flow Control

char data = (char) fis.read();
System.out.printin("Just read: " + data);

} catch(FileNotFoundException e) {
System.out.printin("Oops - file not found: " +

e.getMessage());

} catch(IOException e) {
System.out.printIn("Something went wrong");
e.printStackTrace();

}
System.out.printin("End of readFromFile");

public static void main(String [] args) {
MyFileReader reader = new MyFileReader();
reader.readFromFile("mydata.txt");
System.out.printin("End of main");

Here is the flow of control of main when no file is found:

Line 21 instantiates a new MyFileReader object and its readFromFile method is
invoked on line 22 with the filename mydata. txt.

The try block is entered on line S.

The FileReader constructor invoked on line 6 throws a java.io
.FiTeNotFoundException.

Flow of control jumps to the first catch block on line 10. The FileNotFoundException
is caught and e refers to it. Line 11 displays a message.

The catch on line 13 is skipped because the exception has already been caught. Line 17
executes and the readFromFile method completes its execution.

Control jumps to line 23. End of main displays and the program finishes successfully.

The output of running MyFileReader is

Oops - file not found: mydata.txt (The system cannot find the file specified)

End of readFromFile

End of main

Overview of Exceptions 231

The Order of catch Clauses

catch clauses are checked in the order they appear. If an exception is caught in

a catch clause, any subsequent catch blocks are ignored. Watch for invalid try-catch
statements that contain unreachable code and therefore do not compile. For example, do
you see what is wrong with the following try-catch statement?

5 try {

6 FileReader fis = new FileReader(fileName);
7. System.out.printin(fileName + " was found");
8 char data = (char) fis.read();

9. System.out.printin("Just read: " + data);
10. } catch(IOException e) {

11. System.out.printin("Something went wrong");
12. e.printStackTrace();

13. } catch(FileNotFoundException e) {

14. System.out.printin("Oops - file not found: " +
15. e.getMessage());

16. }

FileNotFoundException is a child class of IOException. If a FileNotFoundException is
thrown within this try block, it will be caught on line 10. Therefore, it is not possible for
the catch block on line 13 to ever execute. This code does not compile and generates the
following compiler error:

MyFileReader.java:13: exception java.io.FileNotFoundException has
already been caught
} catch(FileNotFoundException e) {

A

A catch clause of a try statement cannot catch an exception that is a child class of an
earlier catch clause.

The Handle or Declare Rule

According to the exam objectives, you should know “that the exception may be a runtime
exception, a checked exception, or an error.” These different types of exceptions are
important because of the Handle or Declare Rule, which this section discusses. Exceptions
fit into three categories:

Runtime exceptions An exception is referred to as a runtime exception if its data type is
java.lang.RuntimeException or a subclass of RuntimeException.

232 Chapter 3 - Flow Control

Checked exceptions An exception is referred to as a checked exception if its data type is a
child class of java.lang.Exception, but not a child class of RuntimeException.

Errors An exception is referred to as an error if its data type is a child class of java
.lang.Error. An error is associated with problems that arise outside of your application,
and you typically do not attempt to recover from errors.

Figure 3.11 shows the class hierarchy of the three types of exceptions along with
some examples of errors, checked exceptions, and runtime exceptions. You can always
determine what category an exception fits into by whether it subclasses RuntimeException,
Exception, or Error.

FIGURE 3.11 The three categories of exceptions.

java.lang.Throwable

/ \

java.lang.Exception java.lang.Error

—| java.lang.ClassNotFoundException | java.lang.AssertionError |

java.io.IOException | java.lang. LinkageError |

java.lang.VirtualMachineError |

IR

|
_| java.sql.SQLException |
|

java.lang.InterruptedException | java.io.lOError |

java.lang.RuntimeException

/

—| java.lang.ArithmeticException |

—| java.lang.ClassCastException |

—| java.lang.NullPointerException |

You might wonder why there is such a distinct categorizing of exceptions. The categories
are important because the compiler enforces a rule known as the Handle or Declare Rule
that only applies to checked exceptions. The Handle or Declare Rule states that if any
statement might throw a checked exception, it must do one of the following:

= Handle the exception by enclosing the statement in a try block that provides a
corresponding handler for the exception.

= The method that contains the statement must declare the checked exception in the
throws clause of the method declaration.

Overview of Exceptions 233

In other words, checked exceptions cannot be ignored. You must write code to either
catch and handle a checked exception, or declare that you are not catching the exception,
which means it must be handled by some other method down the call stack. Either way,
eventually a checked exception must be handled.

The throws Keyword

A method uses the throws keyword to declare that it might throw an exception. For
example, the following method named readFromFile declares that it might throw a
java.io.IOException:

public void readFromFile(String fileName) throws IOException {
FileReader fis = new FileReader(fileName);
System.out.println(fileName + " was found");
char data = (char) fis.read();
System.out.printin("Just read: " + data);
System.out.printin("End of readFromFile");

}

Because IOException is a checked exception, any method that invokes readFromFile
must either handle or declare the IOException.

Why Not Catch Errors or Runtime Exceptions?

Checked exceptions must be handled or declared, while errors and runtime exceptions
can be ignored. This does not imply that you cannot try to catch an error or exception.
You can try to catch any object of type Throwable, which includes errors and runtime
exceptions.

However, catching an error is often pointless because recovering from an error is difficult
and often impossible. On the other hand, you could catch a runtime exception and
recover from the problem, but in general this is considered poor programming design.
Believe it or not, the preferred technique for runtime exceptions is to let them crash your
program, because, in general, runtime exceptions can be avoided with better code. For
example, if a NuTTPointerException occurs at runtime, modify your code so that it tests
the corresponding reference for nul1 before trying to use it.

Be glad that errors and runtime exceptions do not need to handled or declared. They can
occur in so many situations that if you had to handle or declare them, you would quickly
become irritated with Java!

234 Chapter 3 - Flow Control

To demonstrate the Handle or Declare Rule, let’s look at an example similar to
the ExceptionDemo earlier in this section. (By the way, ExceptionDemo threw an
ArithmeticException, which is a runtime exception, so the Handle or Declare Rule did
not apply to its method3.) In the following CheckedDemo class, line 14 calls the static method
Class.forName, which declares the checked exception ClassNotFoundException. Study the
following code and see if it compiles:

public class CheckedDemo {

public void methodl() {
System.out.printIin("Inside methodl");
method2();

public void method2() {

1

2

3

4.

5. }
6

7

8 System.out.printin("Inside method2");
9

. method3();
10. }
11.
12. public void method3() {
13. System.out.printin("Inside method3");
14. Class ¢ = Class.forName("java.lang.String");
15. System.out.printin("class name: " + c.getName());
16. }
17.})

Because line 14 invokes a method that declares a checked exception, the Handle
or Declare Rule applies. Because the ClassNotFoundException is neither handled nor
declared, this code does not compile and the following compiler error is generated:

CheckedDemo.java:14: unreported exception java.lang.ClassNotFoundException; must
be caught or declared to

be thrown
Class ¢ = Class.forName("java.lang.String");

A

There are two options for method3: either include a try-catch statement around line
14 that catches a ClassNotFoundException, or declare the exception using the throws
keyword. Let’s have method3 declare the exception instead of handling it:

12. pubTic void method3() throws ClassNotFoundException {
13. System.out.println("Inside method3");

14. Class ¢ = Class.forName("java.lang.String");

15. System.out.printin("class name: " + c.getName());

16. }

Overview of Exceptions 235

Declaring the exception fixes the compiler error on line 14, but the CheckedDemo class
still does not compile. We have simply moved the compiler error up to line 9:

CheckedDemo.java:9: unreported exception java.lang.ClassNotFoundException; must
be caught or declared to be thrown

method3();

A

Because method3 now declares a checked exception, method2 needs to handle or declare
the ClassNotFoundException. Notice how declaring a checked exception does not mean
we can ignore that exception; it simply pushes the responsibility to the calling method.
method2 now has two options: catch the ClassNotFoundException or declare it. Let’s
declare it again:

7. public void method2() throws ClassNotFoundException {
8. System.out.printin("Inside method2");

. method3();

10. }

Again, this fixes the compiler error on line 9, but the CheckedDemo class still does not
compile. Now the error message is on line 4:

CheckedDemo.java:4: unreported exception java.lang.ClassNotFoundException; must
be caught or declared to be thrown

method2();

A

methodl must either handle or declare the ClassNotFoundException. Let’s handle it this
time, which should take care of the compiler error. See if you can determine the output of
the following version of CheckedDemo:

1. public class CheckedDemo {

2 public void methodl() {

3 System.out.printin("Inside methodl");
4. try {

5. method2();

6 }catch(ClassNotFoundException e) {

7 e.printStackTrace();

8

9

10.
11. pubTlic void method2() throws ClassNotFoundException {
12. System.out.printin("Inside method2");

236 Chapter 3 = Flow Control

13. method3();

14. }

15.

16. public void method3() throws ClassNotFoundException {
17. System.out.printin("Inside method3");

18. Class ¢ = Class.forName("java.lang.String");

19. System.out.printin("class name: " + c.getName());
20. }

21.

22. public static void main(String [] args) {

23. System.out.printin("Inside main");

24. new CheckedDemo().methodl();

25. System.out.printin("End of main");

26. }

27.})

I should point out that although the Class.forName metho